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We calculate the angular resolution of the planned LISA detector, a space-based laser interferometer for
measuring low-frequency gravitational waves from galactic and extragalactic sources. LISA is not a pointed
instrument; it is an all-sky monitor with a quadrupolar beam pattern. LISA will measure simultaneously both
polarization components of incoming gravitational waves, so the data will consist of two time series. All
physical properties of the source, including its position, must be extracted from these time series. LISA’s
angular resolution is therefore not a fixed quantity, but rather depends on the type of signal and on how much
other information must be extracted. Information about the source position will be encoded in the measured
signal in three ways(1) through the relative amplitudes and phases of the two polarization components,
(2) through the periodic Doppler shift imposed on the signal by the detector's motion around the Sun, and
(3) through the further modulation of the signal caused by the detector’s time-varying orientation. We derive
the basic formulas required to calculate the LISA’s angular resoluliéyy for a given source. We then
evaluateA () ¢ for two sources of particular interest: monchromatic sources and mergers of supermassive black
holes. For these two types of sources, we calculatethe high signal-to-noise approximatjothe full
variance-covariance matrix, which gives the accuracy to which all source parameters can be measured. Since
our results on LISA's angular resolution depend mainly on gross features of the detector geometry, orbit, and
noise curve, we expect these results to be fairly insensitive to modest changes in detector design that may occur
between now and launch. We also expect that our calculations could be easily modified to apply to a modified
design.[S0556-282(98)00112-X

PACS numbg(s): 95.55.Ym, 04.80.Nn, 95.75.Pq, 97.60.Gb

[. INTRODUCTION massive black holes must surely occur in the universe, but
the event rates are highly uncertain.

This paper calculates the angular resolution of the planned In addition to their different frequency bands, another im-
LISA gravitational wave detector. LISAshort for Laser In-  portant difference between LISA and the ground-based inter-
terferometer Space Antennia in essence a space-based ver-ferometers concerns their means of identifying the angular
sion of the ground-based interferometric detectors currentlyposition of the source on the sky. LISA is not a pointed
under construction: the Laser Interferometric Gravitationalinstrument; it is an “all-sky monitor” with a quadrupolar
Wave ObservatoryLIGO), VIRGO, etc. There are some beam pattern. The ground-based detectors share this charac-
major differences, however. The primary difference is thatteristic, but because there will be at least three ground-based
LISA will be sensitive to gravitational waves in a much detectors, and because they will be sensitive to gravitational
lower frequency band: I¢*—10 ! Hz. (This low-frequency radiation, whose wavelength is much shorter than the dis-
regime is unobservable by any proposed ground-based deteence between detectors, they will be able to determine the
tors, due to seismic noise. The ground-based interferometesource position to withim~1° by a standard time-of-flight
will be sensitive in the range 1010°Hz.) The method[5]. This method is not available to LISA. Only one
107 4-10! Hz band contains many known gravitational space-based detector is currently planned. Moreover the
waves sources that LISA is “guaranteed” to see. Thesegravitational wavelength at the heart of the LISA band
guaranteed sources comprise a wide variety of short-perioft~102 Hz) is of order 1 AU, so a second detector would
binary star systems, both galactic and extragalactic, includhave to be placed at least several AU away from the Earth
ing close white dwarf binaries, interacting white dwarf bina-for time-of-flight measurements to give useful constraints on
ries, unevolved binaries, W UMa binaries, neutron star binasource positions.
ries, etc.[1-3]. Indeed, our galaxy probably contains so As we shall see, LISA can be thought of as two detectors,
many short-period, stellar-mass binaries that LISA will beeach measuring a different polarization of the gravitational
unable to resolve them individually, and the resulting “con-wave. Thus the data consists of two time series. All informa-
fusion noise” will actually dominate over instrumental noise tion about the source positig@as well asall other physical
as the principal obstruction to findirgfher sources of gravi- variables must be extracted from these two time series. An-
tational waves(GW'’s) in the datastream. In addition to gular position information is encoded in the time series in the
stellar-mass binaries, other possible LISA sources includeollowing ways. First, the relative amplitudes and phases of
(1) a stochastic GW background generated in the early unithe two polarizations provide some position information.
verse,(2) the inspiral of compact, stellar-mass objects intoSecond, most sources will be “visible” to LISA for months
supermassive black holéSMBH's), and (3) the merger of or longer, so LISA’s translational motion around the Sun
two SMBH's [4]. The detection of any one of these would imposes on the signal a periodic Doppler shift, whose mag-
clearly be of immense interest. The events involving supernitude and phase depend on the angular position of the
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source.(In exactly the same way, radio astronomers takel0*M <M (1+2z)<10'M,. This mass range is set by the
advantage of the Doppler shift caused by the Earth’s rotatiofrequency band where LISA is sensitive. While the event rate
to determine a pulsar’s position to an accuracy much bettefior such mergers is highly uncertafit could be several per
than that implied by the beam width of the radio telescpbpe.year, or<1/yr; se€[7] for a recent reviey if SMBH merg-
Finally, as we shall describe, LISA’s orientation rotates on aerswere discovered, they could provide a way of determin-
one-year time scale, which imposes a further sourceing all the basic cosmological parametensd;Q,, and
position-dependent modulation on the measured signal. 1A ;—to remarkably high accuracy. The idea is that from the
Fourier space, the effect of the detector's changing orientagravitational waveform, one expects to determine the lumi-
tion on a monochromatic signal of frequenfyyis to spread nosity distanceD, to the source to an accuracy of roughly
the measured power ovémoughly) a rangef,+ 2/T, where  (S/N) L. (In fact, we find that LISA does roughly a factor
T is one year(The factor of 2 arises from the quadrupole 10 worse than this: typicallAD, /D, ~1%; see Table )l
beam pattern of the detectpi.he effect of the periodic Dop- As pointed out in the LISA Pre-Phase A Repptt (herein-
pler shift coming from the detector’s center-of-mass motionafter referred to as the LPPARf the source position on the
is to spread the power over a randgg(l=v/c), where sky could be determined to sufficient accuracy that one could
v/c~10"%. These two effects are therefore of roughly equalidentify the host galaxy or galaxy cluster, then presumably
size atfy~10 3 Hz, which is near the center of the LISA one could also determine the redshift optically. Clearly, a
band; rotational modulation is more significant at lower fre-mere handful of such measurements would be sufficient to
guencies and Doppler modulation is more significant aidetermineHy, 4, andA, to roughly 1% accuracy. One of
higher frequencies. the key motivations for this paper is to see whether LISA has
It is also worth emphasizing that much of the uncertaintysufficient angular resolution to make such identifications
in the position measurement arises from the fact that fronpossible. In brief, we find that LISA will determine the
this pair of time series one must try to extratitthe physical SMBH location to no better than-10 ° steradians(and
parameters of the binary: the orbital plane of the binary, thetypically to ~10™ steradianswhich is not sufficient by it-
masses of the bodies, etc. Errors in determining the sourcgelf to permit identification of the host galaxy. However this
position are correlated with errors in these other parameterposition measurement will be available days before the final
The result is that LISA’s angular resolution is significantly merger; other telescopésadio, optical, x-ray should know
worse than one would suppose if one ignored these correlavhen and where to look, so if the merger is accompanied by
tions. From this consideration, it should be clear that LISA’san electromagnetic outbur&.g., from an accretion disk be-
angular resolution depends not just on the detector and theg carried along by one of the ho)eshe host galaxy might
signal-to-noise, but on the type of source as well. still be determined. Whether such an electromagnetic out-
In this paper we derive the formulas necessary for calcuburst can be expected appears to be an interesting open prob-
lating LISA’s angular resolutiot Q) 5 for some given source, lem[8].
and we then evaluaté Q) ¢ for two sources of particular in- The plan of this paper is as follows. Sections Il and Il
terest: monochromatic sourceg.g., short-period, white- give brief summaries of relevant background information.
dwarf binarieg and mergers of supermassive black holes.Section Il reviews the basic formulas of signal analysis and
For these two types of sources, we perforce calculate hoywarameter estimatiofmostly to establish notation and con-
accurately LISA can measure all the other sources paramventiong, while Sec. Ill describes LISA’s configuration and
eters, as well. A preliminary estimate of LISA’s angular orbit, its response to gravitational waves, and its noise
resolution has already been made by Petersstiml. [4,6], sources. In Sec. IV we derive LISA’s angular resolution for
but that estimate was only for monochromatic, high-monochromatic sources, and in Sec. V we derive LISA’s
frequency sources, and it assumed that the frequency, polaahgular resolution for SMBH mergers. For both cases we
ization, and amplitude of the signal were knoapriori, so  calculate the Fisher matrix, which estimates how accurately
only the source position had to be extracted from the datahe detector can extraetll the physical parameters of the
Also, for simplicity the estimate by Peterseiat al. [4,6]  system from the measured signal. Our conclusions are sum-
took into account the information from only a single polar- marized in Sec. VI.
ization, and it neglected the information encoded via the ro- We should state at the outset the principal limitations of
tation of the detector. In essence, our paper provides a mudhis study. Firstly, and necessarily, the current detector de-
more realistic calculation. Since LISA’s angular resolutionsign cannot be regarded as final, and the published noise
depends mainly on gross features of the detector orbit andurves—for both the instrumental noise and the confusion
noise curve, rather than exact details of the detector desigmpise—can only be regarded as rough estimdtesite de
we expect that our results will be fairly insensitive to con- mieux we use the current design and the best estimates of the
templated design changes. We also expect that the calculaeise sources currently available. Relatedly, while it is a goal
tion presented here could be very easily modified to apply t@f the LISA design that the instrumental noise should be
a different design. stationary and Gaussigd], probably we will not know how
We now turn to our main motivation for considering well this goal has been met until the the instrument is func-
SMBH mergers. The striking feature of these mergers is théioning. Faute de mieuxwe assume the noise is stationary
huge amplitude of the emitted gravitational wav€&hat is, and Gaussian. Finally, to simplify things, in our treatment of
huge compared to other GW sourgesISA would be  SMBH mergers we assume that the two holes are in a circu-
capable of detecting SMBH mergers at basically any reasorar orbit, and we assume that the plane of the binary orbit is
able redshift(z<10, say with signal-to-noiseS/N~ 10°, fixed. That is, we ignore both orbital eccentricity and the
so long as the black holes are in the mass rang@recession of the orbital plane caused by the spins of the
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holes[9]. We also represent the SMBH waveform by the
guadrupole portion of the inspiral wavefortthe piece that
dominates the signal-to-noiségnoring the merger and ring- y
down parts of the waveform and ignoring higher-order mul-
tipoles components. We intend to take all these effects into
account in a later pap¢i0,11].

Throughout this paper, we assume that the detector arm
length is much smaller than the gravitational wavelength,
and we take the gravitational waveform(t) to be in the
(standard de Donder gauge. Time is in units of seconds and
frequency is units of Hz.

FIG. 1. Shows the two coordinate systems used in our analysis:
1l. REVIEW OF SIGNAL ANALYSIS “barred” coordinates tied to the ecliptic and “unbarred” coordi-
nates that are tied to the detector and rotate with it.
This section briefly reviews the basic formulas of signal

analysis, partly to fix notation. For a more complete discus- s

sion, sed12] or [13]. —[h]=
The output ofN detectors can be represented by the vec- N

tor s, (t), «=1,2,...N. Itis often convenient to work with

the Fourier transform of the signal; the convention we use i?io

(h[h)

Wz(h”‘)m- (2.5

For a given incident gravitational wave, different realiza-

ns of the noise will give rise to somewhat different best-fit
o parameters. However, for larg#N, the best-fit parameters

S,(f )EJ’ e?mMs (t)dt. (2.)  will have a Gaussian distribution centered on the correct val-

ues. Specifically, lek' be the “true” values of the physical

The outputs,(t) is the sum of gravitational waves,(t)  Parameters, and lat' + AN’ be the best fit parameters in the
plus instrumental noisa,(t). We assume that the noise is Presence of some rea!|zat|.on of thei noise. Then forllarge
stationary and Gaussian. “Stationarity” essentially means> N, the parameter-estimation erraka." have the Gaussian

that the different Fourier components(f ) of the noise are probability distribution

uncorrelated; thus we have p(m\i):Ne,(l,z)rijmimj. 2.6
=~ - ' _1 g
(Na(FINg(F)*)=38(F=1)Sy(f )ag. (2.2 HereT';; is the so-called Fisher information matrix defined
where “()" denotes the “expectation value” an8,(f ),z by
is referred to as the spectral density of the noise. When shl oh
N=1 (i.e., when there is just a single detegtowe will F”E(W N 2.7

dispense with Greek indices and just wistd ) andS,(f ).

“Gaussianity” means that each Fourier component ha Ay =y s : ot
Gaussian probability distribution. Under the assumptions OSEZ?{;/rgeg/elilmiﬁg)v:rig]r?cgf)c%r\?;rri:;ienzgﬁgziitgcgﬁcégr.
stationarity and Gaussianity, we obtain a natural inner prod- '

uct on the vector space of signals. Given two sigrg/ét) (ANANY=(T Y+ O(SIN) 2, (2.9
andk,(t), we define ¢|k) by

Il. LISA

k=2r )71 B(gE (f Ykg(F ) +9.(F KE(F ))df.
(glio 0 [Sal(F) 1@ (T kp(T )+ GulT)KG(T ) In this section we describe LISA’'s geometry and noise
(2.3 curve; these are the only aspects of the detector that are
necessary for our analysis. For more details on how the de-

In terms of this inner product, the probability for the noise t0tgctor works, we refer the reader to the LPPRR
have some realization, is just

p(n= no)oce‘(“0|”0)’2. (2.4 A. Detector configuration and orbit

The geometry of the LISA mission, as currently envi-
Thus, if the actual incident waveform fis the probability of  sioned, is depicted in Figs. 1 and 2. The detector is a three-
measuring a signa in the detector output is proportional to arm laser interferometer, with each arm being B km
e~ (s~hls=N2 " Correspondingly, given a measured sigsal long. It consists of six drag-free satellites, positioned so that
the gravitational waveforrh that “best fits” the data is the two adjacent satellites sit at each vertex of an equilateral
one that minimizes the quantitg£ h|s—h). triangle. (One satellite at each vertex would suffice, but the
It also follows from Eq.(2.3) that for any functiong,(t) current design calls for two, which provides some redun-
andk,(t), the expectation value ofg(n)(k|n), for an en- dancy and greatly simplifies the pointing contydhe detec-
semble of realizations of the detector noisg(t), is just tor's center-of-mass follows a circular, heliocentric trajec-
(glk). Hence the signal-to-noise of the detection will be ap-tory, trailing 20° behind the Earth. The plane of the detector
proximately given by is tilted by 60° with respect to the ecliptic; this angle allows
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y whereT equals one year, and whetg is just a constant that
specifies the detector’s location at tirhe 0.
The normal to the detector plang, is at a constant 60°

angle toz%, andz® precesses arourd! at a constant rate:

_ i
2=372— 7[cos d(t)x3+sin ¢(t)y?]. (3.9

L, Iy
Using z,/?=0 and Eqgs(3.1)—(3.4), we see that the direc-
U tions|? can be written in terms of the barred coordinates as
/s 12=cos a;(t)[ cos ¢(t)y?—sin ¢(t)x?]
. V3, .
i 1, +sin a;(t) > 224 1[cos ¢(t)x3+sin p(t)y?] |,

X
(3.9

FIG. 2. lllustrates the orientation of LISA’s 3 arms in the
x—Yy plane. where thea;(t) increase linearly with time:
the satellites tamaintainthe shape of an equilateral triangle o () =27t/T—w/12= (i - 1)m/3+ aq, 36
throughout the orbit. We refer the reader to Fig. 34792
of the LPPAR for a useful picture of the orbital geometry,
and to Falleret al. [14] for a simple explanation ofvhy the
60°-tilt allows the equilateral shape to be maintained.

We label the arms 1,2,3, and call their lengthsL,,L 5.
Gravitational waves cause time-varying changes in ar
lengths by amount$L,(t), which are different in the three — A IA T AT
arms. The differences are measured interferometri¢aBy. AQs=2m(ApsAds—(AusAds) @7
With 3 arms, there are two linearly independent differences,
6L,— 6L, and 6L,— 6L;. Therefore LISA will be able to
measure simultaneously both polarizations of an incomin
gravitational wave.

where g is just a constant specifying the orientation of the
arms att=0.

In this paper we are primarily interested in LISA’s angu-
lar resolution. The error box for the position measurement
mhas solid angleAQ ¢ given by

where us=cosfs. The second term in brackets in E§.7)
accounts for the fact that errors iy and ¢ will in general
%e correlated, so that the error box on the sky is elliptical in
general, not circular. Also note the overall factor af id our

We find “busef‘é',,to im(;?’d“ce‘"’o Ca.”fia”hm;rdi”ate definition of AQs. With this choice, the probability that the
systems: “unbarred” coordinatesy, ) tied to the detector source liesoutside an (appropriately shapederror ellipse

and “barred” coordinatesx,y,z) tied to the ecliptic. Un- enclosing solid angldQ is simply e~ 42/A%s,

barred and barred spherical polar andlég) and @qﬁ) are
related in the usual way to the Cartesian coordinates: B. Detector response

— l(2 12 D (AP a 212 }
COS&_Z/(;( +y2+;2 , Cosf=2/(x +y2+f) , etc. We de Because the LISA antenna has three arms, it produces
note byx® the unit vector along the x-axis, and similarly for basically the same information as a pair of two-arm detec-

y*,z%x%,y?,z%. Here the superscripta” is an abstract index  tors, and therefore is capable of simultaneously measuring
indicating that the object is a vector in 3-d|n;er;smnal Spacepoth polarizations of the gravitational wave. To begin with,
The unit vectors along the arms are call§d 3,13, respec-  however, we shall consider onlysingle two-arm detector,

tively. The detector lies in thg-y plane, and the-y coor-  formed by arms 1 and 2. The extension to two detectors will
dinates rotate with detector. We assign, for all time, the fol-be straightforward.

lowing coordinate-directions to the three arms:

1. Single detector

|&=cos y;x®+sin y;y? 3.1
: SHWXTSIn vy @D We refer to the detector formed just by arms 1 and 2 as
“detector I.” Detector | measurek,(t), given by
where
hi(t)=[6L4(t)—SLo(1) /L (3.8a
vi=ml12+(i—1)7/3 (3.2
= 3hap((1317-1313) (3.80)
as shown in Fig. 2. The/12 term in Eq(3.2) is included for V3
later convenience. We choose th/ plane to be the ecliptic = ?(%hxx— zhyy) (3.80

(i.e., the plane of the Earth’s motion around the Surhe

detector’s center-of-mass follows the trajectory where we used Eq3.1) to go from Eqs[3.8b)] to [3.8(0)].

. . . That is, for an arbitrary waveform,y(t), the “relative arm
O0t)=m12, &(t)=cdo+2mt/IT (3.3 length difference”h,(t) measured by a 60°-interferometer is
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always preciselw3/2 times as large as the “relative arm by Apostolatos, Cutler, Sussman, and Tho[f@g (ACST),
length difference” measured by a 90°-interferomef@rre-  who investigated the case, where the detector location and
sult which is well-known among LISA cognoscentThis  orientation are fixedon the time scale of the observatjon
result assumes the 60°-interferometer is “placed symmetribut where the orbital plane of the binary undergoes Lense-
cally” inside the 90°-interferometer, as shown in Fig. 2. ThatThirring precessioridue to the post-Newtonian coupling be-
is the reason for ourr/12 term in Eq.(3.2). This simple tween the bodies’ spins and their orbital angular momen-
observation saves a lot of work. It means that all the formutum), thereby modulating the complex amplitude of the
las derived in the extensive literature on 90°-interferometersneasured signal in a nearly equivalent way. We refer to
(LIGO, VIRGO, etc) can be carried over immediately to ACST for derivations of many of the formulas quoted below.
LISA: one just remembers to multiply the signal amplitude (There is one important difference between the “rotating-
by v3/2. source” case studied in ACST and the “rotating-detector”
Consider a monochromatic, plane-fronted gravitationakcase studied here: the “Thomas precession” term identified
wave travelling in the- n? direction. The general such solu- in ACST is absent in the “rotating-detector” case. Note also
tion can be written as the sum of two orthogonal polarizathat some of the sign conventions in ACST are different
tion states. Letp? and g? be axes orthogonal ta?, with  from those used here; in particuld, is defined to be posi-

g2= — €2°n,p... Define polarization basis tensors by tive in ACST, but has no definite sign here.
. . To begin, we rewrite the sign&B.11) in the conventional
Hap=PaPo—dabp: Hap=Palpt daPpb- (3.9  amplitude-and-phase form. For a waveform whose amplitude

. _ . and frequency are slowly changing functions of time, we can
For a particular, unigue choice op,g?), called the waves’ \yrite

principal axes there is precisely ar/2 phase delay between
the two polarizations:

V3 t
h|(t):?A|(t)005{j 2f(t)dt’ + @p (1) +ep(t) ],

hap(t) =A, Hicod2mft) + A H sin(27ft).
(3.10 (3.14
Here A, and A, are constants, the amplitudes of the twowheref(t) is the GW frequency thawvould be measured by
polarization states, and we have omitted an arbitrary phasg non-rotating detector positioned at the solar system bary-
by our choice of the zero of time. Our convention is center, and\(t), ¢, (t), andep(t) are given by
A,=|A,|=0; A,=0 for right-hand polarized waves and
A, =<0 for left-hand polarization. A (1) =[A2F,2(t) + AZF[2(1)]Y2, (3.153
The strainh,(t) that the waves produce in detector | de-

pends onA, and A, , the principal polarization axes, and —AFX(1)
the direction of propagation: cpp,|(t)=tan1(—+), (3.15h
ALF (1)
3 +
=7 A (b5, ds ys)cos2m) ¢o(1)=2mf(1)c IR sin fscod $(1) ],
(3.150

V3 o .
T AR (0, ds, ggsin2att),  B1D o ep— 1 AU We refer togp(t) as theDoppler phasgit

. y s just the difference between the phase of the wavefront at
whereF,” andF* are the “detector beam-pattern” coeffi- the detector and the phase of the wavefront at the barycenter.

cients[16]: We have neglected second-order Doppler corrections to Eq.
. ) (3.150; this is justified since such corrections are of order
F\"(6s,¢s,¥s)=3(1+C0S 6s)cOS 2psCOS s (v/c)|ep(t)|=3%x1074(f/10"3) radians. In Eq(3.159 we

also neglect the small change in the source frequén@s

TC0S0sSiN 2psSin 25, (3123 o asured at the barycentémat occurgiuring the time delay

EX(0s.be.the) = E(1+ COLO)COS 2besin R sin?slc; the fractional correction tep(t) due to this ef-
i (Os.¢s.99) =2 51608 2bssin 25 fect is of order1f~1(df/dt)R/c, which for a binary is
+C0s fssin 2¢5C0s 5. (3.120  ~0.04(4u/M)(6M/r)>%(£/107%), whereu andM are the

] ) reduced and total mass of the binary, respectively, raigd
Here the subscript “S” stands for “source,”fg,¢s) dive  the orbital radius.

the source location in the “unbarred,” detector-based coor- A (t) is the waveform amplitude, and we referdq, (t)

dinate system, andss is the “polarization angle” of the as the waveform'polarization phaseThe time-dependence
wavefront, definedup to an arbitary multiple ofr) as fol-  of A (t) and ¢p.(t) are determined by, (t) and F}‘(t),

lows: which in turn depends oms(t), ¢s(t), and yg(t). Using
Egs.(2.1)—(2.6) we find
tan ys=(22,)/(2°py)- 1y 92020
In the case of interest here, the source polarization is as-

sumed fixed, but the detector plane rotates throughout the
observation. A very closely related problem was examined (3.19

Y S
cos Os(t)=3% cos fs— - sin 6<c08 p(t) — )
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ds(t)=a;+ 712 by Eq.(3.18), while the termd=_ (t), andF «(t) are given in
_ o o . terms off4(t), ¢4(t), ¥g(t) by Eq.(3.12), and finallyd4(t),
_, V3 cos 5+ sin 0scog (1) — ¢s] d<(t),5(t) are given by Eqgs.(3.16, (3.17), and Egs.
+tan 2 sin O (1) — ] : (3.18—(3.22. We note that an equivalent expression for

A(t) was derived independently by Giampiéti7].
(3.17

Now consider the case where the monochromatic source

is a Circu'ar' Newtonian binar}(_ThiS is quite genera|: any We have stated that with its three arms, LISA functions

monochromatic point source can be represented as a circuldke a pair of two-arm detectors, outputting two linearly

Newtonian binary. The lowest-order, quadrupole approxi- independent  signals: s,(t)=[6L(t) - 6Lo(t)]/L  and

mation gives S =[dL,(t)—6L3(f )]J/L. We now extend our above
analysis to include both detectors. We continue to assume

pd= eabcnbf_c, (3.183 the noise is stationary and Gaussian; nevertheless, the noise

in different arms will generally be correlated. Let(t)

2. Two detectors

2M1M, A =6L,(t)/L be the noise in théth arm; then
Ap=—5—[1+(L%ny)7),
(3.189 (mi(F)[mi(F))=Cy(F)a(F 1) (3.23
AM 1M, whereC;;(f )#0 in general. Clearly then the noise outputs
=77 Na, of detectorsl and !l will be correlated too. However it is

(3.189  also clear that we can always find some nontrigjalwhich
is a (frequency-dependentinear combinations, ands;/,

where M; and M, are the two masses, is their orbital and which is orthognal ts, in the sense that the noisesp
separationD is the distance between source and observelis uncorrelated with the noise & . Just set
andL? is the unit vector parallel to the binary’s orbital an- 5
gular momentum vector. The binary’s circular orbit, when s,,(f )=s,.(f )
projected on the plane of the sky—i.e., projected orthogonal
to the waves' propagation direction-looks elliptical. The ~5(f )ClZ(f )~ Caalf )~ Colf )+ Cas(f )
principal axisp? is just the major axis of this ellips€See ! Ci(f )=2C5(f )+Co(f )
Fig. 21 in ACST) We letL? point in the direction 6, ,¢,). (3.29
The anglesfg(t) and ¢(t) do not depend on the principal
polarization directiorp?, so they are already given by Egs. and then we have
(3.16, (3.17 above. Using Eqg.3.13 and(3.183, ¢4(t) is

given by (M(f)[Ay(f7))=0. (3.29
tan ¢S(t)=(ﬂaza—£anazbnb)/ (€apcn?LP2°) We find thinking in terms of such orthogonal detectors to be
very convenient for calculations.
(3.19 Unfortunately, there do not yet exist estimates for how the
where noise in LISA’s three arms will be correlated. In this paper

we will make the simplifying assumption that the noise is
. 3 _ _ _ “totally symmetric” among the three arms, in the following
L®2,=3 cos 6, — 5 singcogp(t)—4] (320  sense:

N - = - == — Ciof )=Coy(f )=Cyy(f ), 3.26
L2n,=cos 6, cos O+ sin 6, sin 6scoL b, — bs) 12 T)=Cod)=Can(T) (3.263
(323 Cua(f )=Caal f )=Cag(f ). (3.261
~ - — - — V3 —
€apN?LPZ°= 1 sin 6, sin Ossin( | — Ps) — > cos ¢(t) It is not too unreasonable to suppose that the instrumental

noise will approximately totally symmetric, since the indi-
vidual satellites will all be virtually identical. Also, one can

x(cos 6, sin fssin ¢s easily show that the confusion noise due to an isotropic

N v background of gravitational wave sources must be totally
—COS fsSin 6, sin ) — - sin (1) symmetric. The reason is that for an isotropic background
Cij(f )/Sy(f ) can only be a function ofe,|?17)?, where
X(cos Ossin 6, cos ¢, €, 1S the Euclidean 3-metric. The totally symmetric condi-
- tion then follows from the facts that LISA’s arms are all the
—CO0S 6| Sin 6<C0S ¢s). (3.22  same length and the angle between any two different arms is

. _ _ /3. (Of course, our galaxy is not spherically symmetric, and
__ To recapitulate, Eqg3.14), (3.19 give h;(t) in terms of 5o the confusion noise from galactic binaries cannot be ex-
Os, ds, Ay, Ay, Fo (1), andF(t). AL andA, are given pected to satisfy the condition of total symmelry.
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For totally symmetric noise, the linear combination of

'5(f ) and’s,,(f ) that is orthogonal tcs(f ) is actually
frequency-independent. That combination is

s, (1) =37 Y 5L, (t)+ SL,(t)—28L5(t)]/L

=37 Ys(t)+2s(1)] (3.27)

which implies

(Na(F)[Na())=6,p0(F=F)Sy(F),  (3.28

where ,8 take on values or I, andS,(f ) is the spectral
density for detector I.

In terms of the “unbarred” coordinates introduced in Sec.
Il A, it is easy to show using Eq.3.1) that

‘/3 1 1
hll(t)z?(ihxy+5hyx)- (3.29
That is, just ash|(t) is equivalent to the response of of a
90°-interferometetmodulo the overall factov3/2), soh;,(t)
is equivalent to the response ahother90°-interferometer,
rotated byw/4 radians with respect to the first on@his

result was previously derived by P. Bender, in unpublished

work [18].) It is therefore trivial to write down the beam
coefficients for detector II:

F1(0s,0s,s)=F| (0s,bs— ml4,ihs)

Fii (0s,¢s.,1hs)=F [ (0s,ps— ml4ps).

Finally, in complete analogy with Eq§3.14) and(3.15, we
can writeh (t) as

(3.309

(3.300

V3 t
hy ()= 7A||(t)003{f 2f(t")dt’ + @p 1 (1) + @p(t)

(3.3)
where
A =[ATF2()+AZF2(D]Y3 (3.32a
_AXFX(t)
—tan-1 L
ep(t)=tan Afﬁ(t))’ (3.32h

and wherepp(t) is still given by Eq.(3.150.

Figs. 3 and 4 show an example of the modulation patterns
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FIG. 3. The amplitude#, (t) andA,(t) during a one-year ob-
servation, for the following choice of initial detector position and
orientation and of the source’s position and polarizatigg= 0,
ag=0, us=0.3,»5s=5.0, 4 = —0.2, ¢, =4.0. The overall scale is
arbitrary.

1. Instrument noise

It is a LISA design goal that the instrumental noise be
stationary and Gaussian; our analysis will assume that goal
has been met. The following is the current best estimate of
the spectral density of thastrumentalnoise S, ;,(f ) for
detector 1[4]:

Snin(f )=5.049< 10°[*(f )+ B%(f )+ ¥?] (3.39
where
af )=10722731/1073) 77",

B(f)=10"2*°{f/107%), y=10"2"

(3.39

due to detector rotation, for one representative choice of p"’ﬁerea(f ) is mainly due to temperature fluctuatior(f )

rameter values.

C. Noise spectrum

reflects the loss in sensitivity, when the gravitational wave-
length becomes comparable to or shorter than than the detec-
tor arm length, andy (a constantis mainly due to photon

We will assume the noise spectra for detectors | and Il arghot noise. We will assume that E48.34—(3.35 above

the same; both are given I,(f ), which we represent as
the sum of instrumental nois®, ;,(f ) and confusion noise

Sh.eol):

Sa(f )=Snin(f )+ Sncolf ). (3.33

give the noise spectral density for detector Il as well.

2. Confusion noise

It seems very likely that gravitational waves from short-
period, stellar-mass binaries will actually be more important
than the instrumental noise in “drowning out” the signal

These two contributions are shown in Fig. 5. We now con-sfrom other types of sources. The issuevdfy stellar-mass

sider them in turn.

binaries should be regarded as effectively a noise source is a
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FIG. 5. Shows the spectral density of both the instrumental and
confusion noise. logS, i, (f ) and logeS, .o(f ) are plotted versus
logy,f. The total noise is given b$,(f ) =S, in(f )+ Sy co(f ).

FIG. 4. The polarization phases, (t) and ¢, (t) during a
one-year observation, for the same parameter values as in Fig. 4

wnany free parameters as there are data points. In fact, to
rmodel this signal accurately, one needs not only the fre-
Hils [20] and Hils, Bender, and Webbirj8] for further de- quency _of each source, but its location and orientation, since
tails ' ' the motion of the detector “smears out” the the signal over

: a frequency range-2/year, in a manner that depends on

. Th'e first remark is that the orplts of these St?""’}r'mas%hese additional variables. So the motion of the detector only
binaries can be treated as Newtonian, and the radiation comy

d v f h q | e h ggravates the problem of “fitting out” the stellar-mass bi-
puted accurately from the quadrupole approximation. Thg,ares One might even argue that instrumental noise is in

orbit of a Newtonian binary is periodic, so in Fourier spacepinciple no different from binary confusion noise; instru-
its gravitational radiation is composed of discrete lines atpental noise always arises from some deterministic physical
f=2/P,4/P,6/P, etc., whereP is the orbital period(The processes that one could also in principle model and then
sequence is multiples of R/instead of 1P because the ra- attempt to remove from the data by some fitting procedure
diation is quadrupolar.lt seems reasonable to assume that(or by monitoring these processes direjtlput in practice
most of the short-period, stellar-mass binaries have smatbne reaches a point, where there are simply too many
eccentricity:e<0.2. In this case>60% of the power comes variables—too many free parameters—to obtain a fit that has
out in the lowest-frequency lind,=2/P [3]. Current esti- predictive power.
mates of the confusion noise therefore neglect the higher- The number of galactic binaries per bin decreases with
frequency lines. increasing frequency. Somewhere in the range®18z to
Second, for an observation time ©§~ 1 yr, the discrete 4X 10 3 Hz, there is a transition from having many galactic
Fourier transform sorts monochromatic signals into fre-binaries per bin to having fewer than one, on average. At
quency bins of widthA f=1/T;~3x 108 Hz. The typical frequencies above this transition, most of the information
time scale on which these binaries evolve=ia0” yrs; thus ~about some broad-spectrum sour¢such as a SMBH
in one year's observation, a binary’s emitted GW frequencyMergey will come from the bins that do not contain galactic
changes by=f/10'=10"19(f/10"%) Hz—i.e., much less bmangs. At _these frequencies, then,_ the b|_nary confusion
than the width of one bin! Thus, ignoring for the moment thenoise is dominated by the extragalactic contribution.
motion of the detector, each binary remains in the same bin The following represents the current best estimate by
throughout the observation. The lower half of the LISA Bender and Hil§20] for the level of the binary confusion
band, 10%-10"3 Hz, contains roughly 10* frequency NOIS€:
bins, while our galaxy contains 3x 10’ close white dwarf
binaries (CWDB's) with GW frequencies in this range, so B B 5 _
roughly 16 per bin. Thus the problem of “fitting” for all the Sneolf ) =1 1070325775 107315 f<10"2",
binaries, in order to then “take them out” of the data, is 10 468%-26  107°275%f,
extremely underdetermined: there are at least tiffes as (3.36

subtle, but important one. We confine ourselves to a fe
remarks on this subject, and refer to the reader to Bender a

10742.68%71.9’ f< 1073.15’
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wheref is measured in Hz. This estimate assumes a spad@.32 to determine the partial derivatives Af,(t) andy (t)
denSity of CWDB’s which is 10% of the theoretical value with respect to the four ang|&s, gs, E_, andgl_ , though
predicted by Webbink21], and does not yet take into ac- the final expressions would be cumbersome. In our calcula-

count the contribution from helium cataclysmic variablestion, we preferred simply to take these derivatives numeri-
(which are likely to be important in the range 1 to 3 mHz cally. The remaining partial derivatives are

IV. MONOCHROMATIC SOURCES IAL(1) IAL(1) A1) 0. (459
Any monochromatic point source of gravitational waves dln A deg ©dfo ' '
can be thought oés a circular-orbit binary: they are in 1-1
correspondence. Therefore, in the rest of this section we shall Ixa(t) — Ixa(t)  dxa(t) ot 4.5b
always speak of the angular resolution of LISA for circular- alnA 7 dey T dfg mt. (45D

orbit binaries, but the results would apply to any monochro-
matic source. An arbitrary circular-orbit binary is described
by sevenfree parameters: the frequenty (as measured by

an observer at the solar system barycentiye ang|es§3, _For monochromatic sources, the Qetailed shgpe of the
gs, gL and EL; an overall amplitude proportional to noise curve has no beanng on the Fischer matrix; all that
A=M,M,/rD: and a trivial overall phase, related to the MAtters isSy(fo), wheref, is the source frequency. And
choice oft=0. S, (fp) is inversely proportional to the signal-to-noise of the
detection, so we can elimina&(f,) from the problem sim-

ply by normalizing the results to some fixed, fiducsN. In
Table I, we normalize our results ®N=10, whereS/N is

For a circular, Newtonian binary, the waveforim,(t)  thetotal signal-to-noise accumulated by both detectors | and

B. Results

A. The measured signal

(a=1,I1) can be written as Il. The advantage of this way of representing our results is
i that Table | remains valid foany noise spectral density.
h ()= —A (t)cos v (t 4.1 (preyer the results do_depend on our assumption that the
(1) 2 «(1)COS Xa(1) @D noise is totally symmetric among the three apmEable |
lists LISA’s angular resolution () 5 for a one-year observa-
where tion, for a range of source frequencifysand for representa-
SO =27fgt+ @o+ @ (1) + @p(t 4.2 tive choices of angle9s, ¢s, 6, ,¢, . For these cases, we
Xa(t ot + @0t @p.olt) +¢o(l) 42 also listS /N and AQg,, the signal-to-noise and angular
where ¢, is just a constant of integration, andl,(t), resolution of detector | taken alon@®ne expects, /N to be
©p.o(t), andep(t) are given by Eqs(3.15 and(3.32. roughly 2-2S/N=7.07, but the exact value clearly depends

The calculation of the Fischer matrix is simplified by the on the various angles specifigdhe sizes of the position
following trivial observation. Although the measured fre- error ellipsesA Qg and A€, simply scale like &/N) 2.
quency is not exactly constant, due to the motion of the Since everything in the problem is periodic with period
detector, it is verynearly the constanf,. Therefore we can one year, one obtains exactly the same resultg fgears of
take the factor B,(f ) out of the integral in Eq(2.3, and  observation, whefT is an integer(That is, one obtains the
write same results after normalizing ®@N=10; if instead one

normalizes to sources at some fixed distance, 8iéhscales
fw oT* (F )a(f )df like T and AQg scales likeT™1.) This scaling will hold
e @ e approximately, but not exactly, whéhis some non-integer
(4.33 greater than 1. LISA’s angular resolution would certainly be
much worse for observation times significantly less than one
2 ® year.
= S.(fo) a;w J_m‘?iha(t)aiha(t)dt' The results in Table | are easily summarized. LISA’s an-
(4.30) gular resolution for monochromatic sources is roughly in the
range 103 to 10 ! steradiangequivalently, 3 to 300 square
where we used Parseval’'s theorem to go from @Ba to  degreep for source frequencies in the range “fef,
Eq. (4.3b. Then using the fact that>A"1dA/dt, we can <10 ? andS/N=10. Having data from both detectors | and
approximate Eq(4.3b by Il provides hardly any improvement in angular resolution,
apart from the trivial improvement due to the increaSéd.
Presumably this is because in one year’s time, LISA’'s
changing orientation allows detector | by itself to measure
both polarizations of the incoming wave fairly accurately.
+AZ(D)dixo(1) djxa(D)]dL. (4.4 LISA’s angular resolution is roughly a hundred times better
at 10 2 Hz than at 10 Hz (for fixed S/N). Clearly this is

Thus to evaluate the Fisher mat(ltk4), we need the deriva- because the Dopp|er modulation is a much b|gger effect in
tives of A,(t) and x,(t) with respect to the seven physical the higher-frequency sources.

parameters I, ¢q,fg,0s,¢s,0, ,¢ . Clearly one might We note that one application of the results in this section
straightforwardly use the chain rule with Eg®8.15 and is to compact stellar mass objeclike neutron starsin orbit

2
RAN= 58 2

@hlom=15(10 2 3 [ aA05AL0
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TABLE I. LISA’s angular resolutiom ()¢ (in steradiansfor monochromatic sources. Results are for a 1-year observation, with source
strength normalized so that tot@le., detectors | and Il combing&/N=10. S;/N andAQg, are the signal-to-noise and angular resolution

(in steradiansachievable by detector | alone, for the same source strength. LISA’s initial position and orientation are givgn gy

=0.

fow s b L L S//N AQg, AQg
1074 0.3 5.0 -0.2 4.0 7.07 2.1%10°?! 8.27x10°?
1074 0.3 5.0 0.2 0.0 7.19 2.2810°¢ 7.89x 1072
1074 -0.3 1.0 -0.2 4.0 6.89 1.2810°1 7.28x107°2
104 -0.3 1.0 0.8 0.0 6.80 1.2310°1 7.11x10°?
3x10°4 0.3 5.0 -0.2 4.0 7.07 2.0x10°? 7.53x 1072
3x10°4 0.3 5.0 0.2 0.0 7.19 2.2210°1 7.21x 1072
3x1074 -0.3 1.0 -0.2 4.0 6.89 1251071 6.53x 102
3x1074 -0.3 1.0 0.8 0.0 6.80 1.2210°% 6.28x 1072
1073 0.3 5.0 -0.2 4.0 7.07 1.0%10°1* 3.98x 1072
1073 0.3 5.0 0.2 0.0 7.19 1.0810°% 3.83x10°?
1073 -0.3 1.0 -0.2 4.0 6.89 7.5810°? 3.15x10°?
1073 -0.3 1.0 0.8 0.0 6.80 6.5110 2 3.14x 1072
3x10°°8 0.3 5.0 -0.2 4.0 7.07 2.9%5 102 1.07x 1072
3x10°8 0.3 5.0 0.2 0.0 7.19 2.9410°2 1.07x 1072
3x10°8 -0.3 1.0 -0.2 4.0 6.89 1.8%¥10°2 7.06x10°8
3x10°8 -0.3 1.0 0.8 0.0 6.80 1.7310° 2 7.22x10°8
1072 0.3 5.0 -0.2 4.0 7.07 2.5%10°3 1.08x 1073
1072 0.3 5.0 0.2 0.0 7.19 2.9010°3 1.15x 1073
1072 -0.3 1.0 -0.2 4.0 6.89 1.9910°° 7.74<1074
1072 -0.3 1.0 0.8 0.0 6.80 1.9510°3 7.66x10°4

around SMBH's. In that case, orbital evolution is sufficiently plication we omit is the possible eccentricity of the orbit.
slow on the time scale of the observation that the signal ig-inally, we have ignored higher-order multipole components
of the inspiral waveform, the merger waveform, and the
the orbital period. To the extent that the strongest line domipost-merger ringdown waveform, all of which should be
measurable for SMBH mergers in the®2d0’'M range,

effectively a sum of “lines” at frequencies/P, where P is

nates, the source is therefore monochromatic.

V. SUPERMASSIVE BLACK HOLE MERGERS

estimation to be quite accurate.

therefore be highly abbreviated; we refer[tt2] for more
extensive discussion and derivations.

precession of the binary’s orbital plane, and its correspondbodies collide and merge i$o lowest order.

due to the large S/N ratio. These last pieces encode informa-
tion about the physical source differently than the simple
quadrupole inspiral waveform, and thus should improve pa-
In this section we consider the information LISA could rameter estimation by breaking near-degeneracies present in
extract from the collision of two supermassive black holesour simplified waveform. Thus our analysis here ignores
Note that since high signal-to-noise ratios are expected fogpome effects that tend to degrade parameter extraction accu-
this case, we expect the Fischer matrix approach to errgiacy, and ignores others that tend to improve it. One might
hope that, when the dust settles, the preliminary results given
SMBH collisions are related by simple re-scaling to thehere are close to LISA’s true angular resolution for SMBH
mergers of stellar-mass black holes; many of the issues thanergers. In any case, we plan to include these complications
arise in gravitational wave&GW) data analysis are identical in later work.
for the two cases, so we take take advantage of the extensive One might expect such collisions to occur at significant
literature on the latter. Our exposition in this section will redshift z=1) so in this section we carry along the factors
of (1+2z) that we have ignored in earlier parts of the paper
(see Ref[22]). These collisions would be visible to LISA for
Unlike our treatment of monochromatic sources in Seca significant fraction of year. Assuming circular orbits, the
IV, our treatment here will be based on some simplifyingtime interval from the instant(f ) that quadrupole fre-
assumptions. Most importantly, we neglect the spin-inducedjuency sweeps padt until the instantt., when the two

ing modulation of the waveform amplitude and phase. Given
that the rotation of the detector and the rotation of the bina-
ry’s orbital plane modulate the signal in very similar ways, it
may in practice prove difficult to disentangle these two ef-
fects in the data analysis, and the accuracy of position mea-
surement would be correspondingly degraded. Another com-

=3.003x 10° 5(f/10°%) —8/3{

te—t(f )=5(8xf ) I M(1+2)] 53

M(1+2)
10°M ¢

—5/3

(5.9
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where M=M3*M3%(M,+M,)¥5, andf andt are the fre- 3 o
quency and time measured by an observer at the Earth. W(f)=2mfte— pe— w4+ S [8mM(1+2)f]
. 20(743 11u
A. The measured signal it _ 312
[ + 9 (336+ M X+ (48— 16m)x"“|.

We define a signat (t) by
(5.9
2M M ,(1+72)

HO="D7 1

t
cos fof(t - 2 HereM=M;+M,, u=M;M,/M, M=u*M?"® and the
post-Newtonian expansion paramexéf ) is defined by
where f(t) is the (redshifted frequency a detectowould
measure if it were nonrotating and its position were fixed at x(f )=[7M(1+2)f]%3 (5.10
the Solar system barycenter. In E§.2), M, M, andr are
the unredshifted masses and orbital separation that would bhe i , i
measured by an observer near the source,(3nis the “lu- | € parameters; "i‘rs‘d ¢. are just constants of integration.
minosity distance” to the sourd@2]. We think ofH(t) asa 1€ termp is a PN spin-orbit coupling term defined in
“carrier” signal, which is modulated by the motion of the [12)- (8is only approximately conserved by tRé-*N equa-
detector. Themeasuredsignalh,(t) is given by tions of motion, but in our moqlel we treat it as a c_ons_)tdnt
this paper, we “cut-off” the signalsomewhat arbitarilyat
v . feutor=[3¥27M(1+2)] %, corresponding tor/M=3. In
h,(t)= —Aa(t)A(t)cos( f f(t")dt' + @p o(t) + @p(t) fact, the value of this cutoff substantially affects the calcu-
2 0 ' lated signal-to-nois&/N in cases, wher#1 (1+2) is greater
(5.3 than ~3x10°M,, because in these cases most of S
accumulates at the very end of inspiral. That is because

whereA(t) and A (t) are defined by LISA’s noise curveS,(f ) falls very rapidly with increasing

f for f<3x10 3 Hz. However we will find that the pre-
A(t)=2M My(1+2)/[D r(1)] (5.9 dicted angular resolution of the detection, for a source at
fixed distance, is rather insensitive ftQ,_of -
A (H)=A(DIA(L). (5.5 From Eq.(5.6) we therefore have

Thus-Ag(t) basically ejlcodes the amplltude modulation. h(f )=§Aa(t)Af*7’6ei[‘/’”)*""p“)*‘DD(”] (F>0)

How ish,(f ) related toH(f ), the Fourier transform of the 2

carrier? Since\ ,(t), ¢p (1), and ¢p(t) all vary on time (5.1

scales of~1 yr>1/f, we can approximatEa(f ) using the

stationary phase approximation. This gi\83 wheret=t(f ) is given through®(v/c)® by [12]

F‘a(f ):g./\a(t)efi[@p,a(tpr‘PD(I)]H(f ) (f>0) t(f ):tc_5(87Tf )—B/S[M(1+Z)]_5/3

(5.6 X[ +%(%Z+ %)x— ?x3’2+0(x2) .
wheret=t(f ) is the instant at whichNthe GW frequency (5.12
sweeps through the valuk So givenH(f ), we have a
simple (approximatg expression foh,(f ). Note that our model of the signal is the just inspiral wave-

In this paper, we use a “model” ofi(f ) that was de- form: it does not include the final merger and ringdown.
veloped in[23,12. This model is based on the so-called Partly this is necessitated by our current ignorance about the
“restricted post-Newtonian approximation.” In brief, the final merger. However it also seems to us that this neglect is
model includes post-Newtonian corrections to gifeaseof  justified by the particular problem we are trying to solve; that
the waveform througid(v/c)3, but it takes the waveform to is, it seems unlikely that signal from the final burst will sig-
be quadrupolar, with an overall amplitude given by thenificantly improve LISA’s angular resolution, even if it
lowest-order approximation. A more detailed explanation ofdominates the signal-to-noise. The reason is that the final

this model is given if12]. Specifically, our modeH (f ) is burst is only a few seconds long, and obviously LISA’s ori-
entation and velocity hardly change in that interval, so

~7[6i W there’'s modulational encoding of the source positigDf
- AT 7™ 0<f<f yroffs X ; . .
H(f )= , (5.7 course, the final burst could give extra information about the
0, f>feutor chirp massM, which is correlated with the position un-
knowns, butM is already very well determined by the
where lower-frequency data.

., Note thath,(f ) gep_ergs_on 10 physical parameters:
A=(5/96)"2m~2*D [ M(1+2)]>° (5.8 M,u,B,¢c.tc.InD ,0s.¢s.6, ... The next step is to-
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evaluate the Fisher matri{2.8). As in Sec. IV, we numeri- and so detector | is effectively sensitive to only a single

cally evaluate the partial derivatives bf(f ) with respect ~polarization. o
to the four ang|esgs1gs,a,gb using Egs.(3.19 and The distance determination accurak®, /D, for SMBH
~ I i 0f — 0, H 0, -
(3.32. The partial derivatives ol ,(f ) with respect to the METgers 1S roughly in the range 0.1%—30%, W.ﬁn % be
ing typical. This is much worse than the naive guess of

other 5 parameters are given by Ed8.14 and (3.19
of [12]. P g y Eds.14 (3.19 AD| /D ~(SIN) L. Clearly the “extra error” is due to cor-

relations betwee, and the various angles describing the
source. The quantityAQ =2m(Au Ad —(Ap Ad.))
represents LISA’s accuracy in determining the orbital plane
Using Eq. (4.3 as our model for the signal, we have of the binary. We find that large values AD, /D, have a
computed the variance-covariance matBi¥ for a wide strong positive correlation with large values®f), , as one
range of masses and angles. We note that since the signahight expect.
to-noise is high for SMBH mergers, the Fischer matrix ap-  Finally we note that a recent paper by Schillif#] has
proximation, Eq.(2.8), is expected be quite accurate. looked more carefully LISA'a transfer function, and con-
Clearly there is a very large, non-trivial parameter spacgjydes that the high-frequency part of the instrumental noise
to explore: M, u,B,0s,¢s,6, ,¢_. (The Fisher matrix is is somewhat lower than previously estimated, so that the
independent ofp, andt., and InD,_ just affects the overall termB(f ) in Egs.(3.34—(3.35 should be reduced by some
scaling) Here we will look at just a few representative cases factor <1.5. Re-running the code with this change, we find,
Our results are shown in Table II. In all cases we takemakes a negligible correction to the valuesAdd listed in
B=0 (that is, thetrue value of 8 is zero, but the best-fit Taple 1.
value can be non-zeypand we take the initial position and

orientation of the detector to b¢y;=0, a;=0. We take as VI. CONCLUSIONS AND FUTURE WORK
our fiducial source a binary az=1 in a low-density

(£0=0) universe withtH,=75 km/s-Mpc; consequently our We have seen that, for SMBH mergers, LISA should
fiducial distance is DLEHalz: 13.037<10° yr. The achieve an angular resolution @fery roughly ~0.3 square
masses listed in Table Il are the “true” masses, as theydegrees. What are the implications of this result for the idea
appear in Eq(5.2), not their redshifted versions. All results of using such mergers to determine the cosmological param-
are for one year of data. etersHy, g, andAy? Since LISA can determine the lumi-
As stated earlier, foAM>3x 10°M,, mostof the signal-  nosity distance to the source, but not its redshift, one clearly
to-noise accumulates at the very end of the inspiral, antheeds the reshift of the host galaxy or galactic cluster to do
therefore the tota/N we calculate with our model wave- cosmology. Since one square degree contain§* L, gal-
form depends rather sensitively on how one assumes the sigixies, the LISA measurement alone is clearly insufficient to
nal is “cut-off” as the two bodies merge. Therefore 8N identify the host galaxy or cluster. On the other hand: be-
results listed in Table Il should not be regarded as accurate t@ause the signal-to-noise is so large, one will know that a
better than a factor of-2. However we find that our results merger is occurring weeks before the final burst. We have
for AQls donotdepend sensitively on this cutdfor a given  checked that, more than a day before the final burst, LISA
source at fixed distanteWe also find that, for the mass yjj| have achieved most of the angular resolution indicated
range we looked a0’ to 107MQ)’ increasing the observa- i, Taple 1. Thus one will know very accuratelwhenthe
tion to include longer than the final year did not S|gn|f|cantlyﬁna| burst will occur, and will know to within a degree,

increase the angular resolution. whereit will occur. At the right time, every available tele-

The following points emerge from Table II. Unlike the ; : -
case for monochromatic sources, having essentially two des:cope can be trained at the right spot in the &y/happened

tectorsdoessubstantially increase LISA’s angular resolution with the impact of the comet Shoemaker-Levy on Jupiter

for SMBH mergers. The angular resolutidr{) 5 achievable ?lmd’,,'f ?n? IS |UCky’t.thﬁ rg]erg;ng binary Cf?u'd . send l.JbF; a
by detectors | and Il combined is roughly 1Dsteradians. are” electromagnetically8]. course, a tlare 1S possible

The angular resolution depends strongly on the masses aﬁ)@ly if there is normal matter involved in the collision; e.g.,

the particular angles involved, howeverQs is roughly in if.at least one of 'the black holes has pre.served an accretion
the range 10°-10 2 steradians for 1Mo<M(1+2) disk up to the point qf merger. It is possible there. could be
<10'Mg . AQgis generally larger for the lower mass black SOMe electromagngtl_(? _S|gnal even befo_re thg f|r_1al burst.
holes (M~ 10*—~1PM ) because the signal-to-noise is gen- Clearly, these possibilities deserve more investigation.
erally smaller in these cases. Finally, we list some ways in which our analysis could be
The angular resolution achievable by detectors | and Ifmproved. First, it would be useful to have a better under-
combined is roughly an order of magnitude better than thastanding of how the instrumental noise in the different arms
achievable with detector | alone. Notice this is quite differentwill be correlated; our assumption of “total symmetry” be-
from the case of monochromatic sources, where the improvaween the different arms was a crude estimate intended just
ment was only a factor of 2. It seems clear that this differ- to get us started. Of course it would also be useful to have a
ence arises because, in the SMBH case, the time-scale ovieetter estimate of the confusion noise levels, but it may take
which most of the signal-to-noise is accumulated is rathea working LISA to provide that! Second, our treatment of
shorter than a year. During this “effective” integration time, monochromatic sources could be improved by doing a full
the orientation of detector | does not change dramaticallyMonte Carlo estimation of the errors. The S/N for any mono-

B. Results
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TABLE II. LISA’s angular resolution for SMBH mergers. All mergers are taken to occur at redshift and luminosity distance
DL=H51, where we takeH,=75 km/s-Mpc. Results marked with subscript “I” are for detector | alone; results without a subscript
represent the signal-to-noise and accuracies achievable using both detectors | and Il. LISA’s initial position and orientation are given by
o= $o=0. AQ is in units of 10°° steradians.

Ml M2 _ _ _ o AQS,| AQS ADL/DL AILL/,U/
(Mg) (Mg) Ms s i o S/N SN (107°str)  (107°str) (X109 (X107?)
10 10 0.3 5.0 0.8 2.0 975 1336 153 1.52 1.53 1.52
10’ 10 -01 20 -02 4.0 1435 2085 256 15.5 1.34 1.10
10’ 10 -08 1.0 0.5 3.0 3150 4907 148 29.1 0.294 0.630
10 10 -0.5 30 -06 -—20 2505 3361 234 24.5 0.944 0.846
10’ 10 09 20 -08 5.0 4610 6715 53.8 13.0 15.8 0.454
10 10 -0.6 1.0 0.2 3.0 2386 3940 164 38.8 0.539 0.775
10’ 10’ -01 30 -09 6.0 3411 3984 457 78.7 0.822 0.807
10’ 10° 03 50 0.8 2.0 469 641 125 1.53 1.32 0.515
10’ 10° -01 20 -02 4.0 687 1001 188 12.4 1.15 0.376
10’ 10° -08 1.0 0.5 3.0 1483 2310 104 20.9 0.275 0.219
10’ 10° -05 30 -06 —20 1182 1589 154 18.1 0.831 0.299
10’ 10° 09 20 -08 5.0 2193 3188 423 9.61 13.8 0.159
10’ 10° -06 1.0 0.2 3.0 1125 1853 116 27.4 0.471 0.270
10’ 10° -01 30 -09 6.0 1612 1884 312 56.2 0.690 0.285
10° 10° 03 5.0 0.8 2.0 2774 3806 94.0 0.87 1.16 0.320
10° 10° -01 20 -02 4.0 4091 5935 128 9.13 1.02 0.228
10° 10° -08 1.0 0.5 3.0 9016 14041 71.1 15.6 0.212 0.127
10° 10° -05 30 -06 —-20 7165 9607 104 13.8 0.711 0.173
10° 10° 09 20 -08 50 13152 19172 275 6.93 11.8 0.091
10° 10° -06 1.0 0.2 3.0 6826 11280 76.8 20.8 0.394 0.156
10° 10° -01 30 -09 6.0 9749 11385 220 39.8 0.564 0.159
10° 10° 03 50 0.8 2.0 1318 1809 152 1.67 1.55 0.107
10° 10° -01 20 -02 4.0 1943 2820 164 16.6 1.35 0.077
10° 10° -08 1.0 0.5 3.0 4280 6666 99.5 25.3 0.274 0.049
10° 10° -05 30 -06 —20 3402 4561 135 23.8 0.940 0.061
10° 10° 09 20 -08 5.0 6246 9104 43.0 10.5 14.3 0.031
10° 10° -06 1.0 0.2 3.0 3241 5355 109 345 0.508 0.055
10° 10° -01 30 -09 6.0 4628 5405 289 60.0 0.650 0.055
10° 10° 0.3 5.0 0.8 2.0 667 913 294 4.54 2.49 0.199
10° 10° -01 20 -02 4.0 982 1425 331 42.4 2.18 0.145
10° 10° -0.8 1.0 0.5 3.0 2157 3359 238 62.4 0.436 0.086
10° 10° -05 30 -06 —-20 1715 2301 312 61.5 1.51 0.118
10° 10° 09 20 -08 5.0 3154 4595 90.1 24.1 20.9 0.059
10° 10° -06 1.0 0.2 3.0 1633 2698 269 90.9 0.813 0.105
10° 10° -01 30 -09 6.0 2335 2727 647 144 0.977 0.104
10° 10 03 50 0.8 2.0 239 324 642 14.4 4.28 0.120
10° 10t -0.1 20 -0.2 4.0 348 508 942 118 3.78 0.084
10° 10* -08 1.0 0.5 3.0 751 1172 848 197 0.787 0.049
10° 10* -05 30 -06 —20 599 807 1086 186 2.58 0.068
10° 10t 09 20 -08 5.0 1116 1620 279 69.2 33.3 0.035
10° 10t -06 1.0 0.2 3.0 570 939 1197 316 1.48 0.057
10° 10 -01 30 -09 6.0 821 958 2252 488 1.94 0.061
10 10t 0.3 5.0 0.8 2.0 109 148 684 19.2 3.11 0.343
10t 10t -01 20 -02 4.0 156 234 1290 85.4 2.69 0.250
10* 10t -0.8 1.0 0.5 3.0 306 478 1184 113 0.794 0.153
10t 10* -05 30 -06 —-20 247 338 1159 106 2.31 0.210
10t 10t 09 20 -08 5.0 487 698 250 51.8 29.3 0.115
10* 10t -0.6 1.0 0.2 3.0 235 378 1494 170 1.33 0.178

10t 10t -01 30 -09 6.0 343 403 2457 443 2.46 0.200
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