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We investigate the dynamics and gravitational-wave (GW) emission in the binary merger of equal-mass
black holes as obtained from numerical relativity simulations. The simulations were performed with an
evolution code based on generalized harmonic coordinates developed by Pretorius, and used quasiequili-
brium initial-data sets constructed by Cook and Pfeiffer. Results from the evolution of three sets of initial
data are explored in detail, corresponding to different initial separations of the black holes, and exhibit
between 2–8 GW cycles before coalescence. We find that to a good approximation the inspiral phase of
the evolution is quasicircular, followed by a ‘‘blurred, quasicircular plunge’’ lasting for about 1–1.5 GW
cycles. After this plunge the GW frequency decouples from the orbital frequency, and we define this time
to be the start of the merger phase. Roughly 10–15 M separates the time between the beginning of the
merger phase and when we are able to extract quasinormal ring-down modes from gravitational waves
emitted by the newly formed black hole. This suggests that the merger lasts for a correspondingly short
amount of time, approximately 0.5–0.75 of a full GW cycle. We present first-order comparisons between
analytical models of the various stages of the merger and the numerical results—more detailed and
accurate comparisons will need to await numerical simulations with higher accuracy, better control of
systemic errors (including coordinate artifacts), and initial configurations where the binaries are further
separated. During the inspiral, we find that if the orbital phase is well modeled, the leading order
Newtonian quadrupole formula is able to match both the amplitude and phase of the numerical GW quite
accurately until close to the point of merger. We provide comparisons between the numerical results and
analytical predictions based on the adiabatic post-Newtonian (PN) and nonadiabatic resummed-PN
models (effective-one-body and Padé models). For all models considered, 3PN and 3.5PN orders match
the inspiral numerical data the best. From the ring-down portion of the GW, we extract the fundamental
quasinormal mode and several of the overtones. Finally, we estimate the optimal signal-to-noise ratio
(SNR) for typical binaries detectable by GW experiments. We find that, when the merger and ring-down
phases are included, binaries with total mass larger than 40M� (sources for ground-based detectors) are
brought in band and can be detected with signal-to-noise up to� 15 at 100 Mpc, whereas for binaries with
total mass larger than 2� 106M� (sources for space-based detectors) the SNR can be � 104 at 1 Gpc.
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I. INTRODUCTION

With gravitational-wave (GW) detectors operating [1–
3] or under commissioning [4], it is more and more desir-
able to improve the theoretical predictions of the GW
signals. Compact binaries composed of black holes (BH)
and/or neutron stars are among the most promising candi-
dates for the first detection.

The past year has been marked by breakthroughs in
numerical relativity (NR) with several independent groups
being able to simulate binary black-hole coalescence
through the last stages of inspiral (2–4 orbits), merger,
ring-down, and sufficiently long afterwards to extract the
emitted GW signal [5–9]. In Ref. [5] the first stable
evolution of such an entire merger process was presented.
A couple of the key elements responsible for this success
where the use of a formulation of the field equations based
on a generalization of harmonic coordinates [10–12] and

the addition of constraint damping terms to the equations
[13,14]. Similar techniques have been successfully incor-
porated into other efforts since [15–17]. Some months
afterwords, two groups [6,7] independently presented
modifications of the Baumgarte–Shapiro–Shibata–
Nakamura (or Nakamura–Oohara–Kojima) [18–20] for-
mulation of the field equations that allowed them to simu-
late complete merger events. Among the key modifications
were gauge conditions allowing the BHs to move through
the computational domain in a so-called puncture evolu-
tion [21]; these methods have also been successfully re-
produced by other groups since [8,9,22–24].

In this paper, after analyzing the main features of the
dynamics and waveforms obtained from the NR simula-
tions, we present a preliminary comparison between the
numerical and analytical waveforms. The analytical model
we use for the inspiral phase is the post-Newtonian (PN)
approximation [25,26] in the adiabatic limit1 [26], whereas
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for the inspiral–(plunge)–merger–ring-down phases we
consider the PN nonadiabatic and resummed models,
such as the effective-one-body (EOB) [27–32] and Padé
resummations [33]. Because of the limited resolution,
initial eccentricity, relatively close initial configurations,
and possible coordinate artifacts, it is difficult to claim very
high accuracy when comparing with analytical models.
Thus, we shall refer to those comparisons as first-order
comparisons. We will only consider a few dynamical quan-
tities of the analytical models characterizing the binary
evolution, notably gauge-invariant quantities such as the
orbital and wave frequencies, and the GW phase, all as
measured by an observer at infinity. When comparing, we
will assume that the numerical and analytical waveforms
refer to equal-mass binaries, but we apply a fitting proce-
dure to obtain the best-match time of coalescence and the
spin variables. We will use the confrontation with analyti-
cal models as an interesting diagnostic of the numerical
results. When simulations that are more accurate and begin
closer to an inspiralling circular binary become available,
we will be able to do more stringent tests of analytical
models, compare all dynamical quantities expressed in the
same gauge, and use those results to discriminate between
models.

Certainly, the most intriguing and long-awaited result of
the numerical simulation is the transition inspiral–
merger–ring-down. Is it a strongly nonlinear phase? How
much energy and angular momentum is released? Over
how many GW cycles does it occur? How spread in fre-
quency is the signal power spectrum? Answers to these
questions are relevant from a theoretical point of view, e.g.,
to study general relativity in the strongly coupled regime,
and also from an observational point of view, e.g., to build
faithful templates to detect GW waves and test general
relativity with GW experiments. In this paper we shall start
to scratch the surface of this problem. We pinpoint several
interesting features of the inspiral to ring-down transition
that need to be investigated more quantitatively in the
future when more accurate simulations become available.

Quasinormal modes (QNM) (or ring-down modes) of
Schwarzschild and Kerr BHs were predicted a long time
ago [34–37]. Their associated signal can be described
analytically in terms of damped sinusoids. By fitting to
the numerical waveforms we extract the dominant QNMs
of the final Kerr BH—i.e. the fundamental mode and
several of the overtones—and try to make connections to
the previous dynamical phase.

Finally, we discuss the impact of the merger and ring-
down phases on the detectability of GWs emitted by equal-
mass binaries for ground-based and space-based detectors,
and compare those results with predictions from analytical
models.

This paper is organized as follows. In Sec. II we review
the initial-data sets of Cook and Pfeiffer [38] used in the
numerical simulations. In Sec. III we present and discuss

the results of NR simulations of binary BH mergers ob-
tained with the generalized-harmonic-gauge code of
Pretorius [5]. In Sec. IV we provide a first-order compari-
son between numerical and analytical results for the last
stages of inspiral. In Secs. V and VI we analyze the ring-
down and merger phases as predicted by the numerical
simulations. In Sec. VII we present a first-order compari-
son between the numerical results and the EOB predictions
for inspiral, plunge, merger, and ring-down. In Sec. VIII
we evaluate the Fourier transform of the waveforms and
discuss how the inclusion of the merger and ring-down
phases will increase the optimal signal-to-noise ratio of
ground-based and space-based detectors. Section IX con-
tains our main conclusions and a discussion on how to
make more robust comparisons with analytical models in
future NR simulations.

Some material we defer to appendices. The majority of
the comparisons and analysis of gravitational waveforms
focus on the dominant quadrupole multipole moment of
the wave; in Appendix A we briefly describe the subdo-
minant multipole moments extracted from the waves.
Appendix B compares the energy and angular-momentum
flux of the numerically extracted GW with analytical mod-
els of the fluxes. In Appendix C we describe some possible
artifacts induced by extracting the GW a finite distance
from the source in the simulations. Appendix D contains
tables of fitting coefficients from the QNM ring-down fits.
We have analyzed three sets of binary black-hole evolu-
tions—some figures from the case with the closest initial
separation are contained in Appendix E to simplify the
main text.

II. INITIAL DATA

The evolutions presented in this paper begin with initial
data that has been prepared using the methods developed
by Cook and Pfeiffer [38–41]. This approach incorporates
the extended conformal thin-sandwich (CTS) decomposi-
tion [42,43], the ‘‘Komar mass method’’ for locating cir-
cular orbits [44,45], and quasiequilibrium boundary
conditions on BH excision surfaces [38,46]. The data we
have used are designed to represent an equal-mass binary
BH configuration in which the binary is in quasiequili-
brium with the holes in a nearly circular orbit and where
the spins of the individual holes correspond to ‘‘corota-
tion.’’ Within the CTS approach, the conformal metric, the
trace of the extrinsic curvature, and their time derivatives
must be freely specified. The time derivatives of the con-
formal metric and the trace of the extrinsic curvature are
chosen to vanish. This time derivative is taken along an
approximate helical Killing vector which defines the no-
tion of quasiequilibrium. The initial data is constructed on
a ‘‘maximal slice’’ which fixes the trace of the extrinsic
curvature to zero. Finally, the conformal metric is chosen
to be flat.
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The initial data produced by this procedure do a very
good job of representing the desired astrophysical situation
of a pair of BHs nearing the point of coalescence. However,
two important approximations have been made in the
construction of these initial-data sets. When the initial
data are evolved, these approximations will affect the
subsequent dynamics and the GW that is produced. The
first approximation is that the initial data are ‘‘conformally
flat.’’ The choice of a flat conformal metric is known to
introduce small errors in representing both individual spin-
ning BHs and binary systems. As part of this error, some
amount of unphysical gravitational radiation is included in
the initial data. The second approximation is in placing the
binary in a circular orbit. This approximation is motivated
by the fact that, for large enough separation, the time scale
for radial motion due to radiation reaction is large com-
pared to the orbital period. However, this approximation
results in BHs having little, if any, initial radial momen-
tum. For sufficiently small separations, this is clearly not
‘‘astrophysically correct.’’

Until now, the best way to estimate the quality of BH
binary initial data has been to compare them against the
results obtained by PN methods. Comparisons of gauge-
invariant quantities such as the total energy and angular
momentum of the system or the orbital angular velocity, all
measured at infinity, are in good agreement with adiabatic
sequences of circular orbits as determined by third-order
PN (3PN) calculations [26] and their EOB resummed
extension [27,30] (see Figs. 10–18 of Ref. [38], Figs. 3–
5 of Ref. [47], and Figs. 3–5 of Ref. [48] and discussion
around them). There are, of course, differences between
the numerical initial data and the PN/EOB models and
these differences increase as the binary separation de-
creases and the system becomes more relativistic. Among
these differences, there is also some evidence that the
initial orbit incorporates a small eccentricity [49].

Adiabatic sequences of BH binaries exhibit an inner-
most stable circular orbit (ISCO) defined by a turning point
in the total conserved energy. For the numerical initial data,
the quasiequilibrium approximation becomes less accurate
as the binary separation decreases and we would expect the
approximation to be rather poor at the ISCO. PN methods
restricted to circular orbits suffer similar problems as they
approach the ISCO. The PN/EOB and numerical initial-
data circular-orbit models are in reasonable agreement up
to the ISCO, but it is difficult to ascertain the accuracy of
either in this limit.

The comparisons done in Refs. [38,47,48] between nu-
merical initial data and PN/EOB models are limited by the
fact that they use adiabatic circular orbits. Essentially,
these comparisons lend strength to the belief that the
conformal-flatness approximation is not causing signifi-
cant problems with the nonradiative aspects of the initial
data. Clearly, they cannot shed any light on the effects of
the circular-orbit approximation. Some insight on this issue

has been obtained by performing full dynamical evolutions
of the PN/EOB equations of motion for equal-mass bi-
naries [28,50]. These studies show that neglecting the
radial momentum, at both the initial time and throughout
the evolution as done in adiabatic circular orbits, results in
a phase error in the waveforms (see e.g., Fig. 5 of
Ref. [28]). Neglecting the radial momentum at the initial
time also introduces eccentricity into the dynamics (see
e.g., Fig. 4 of Ref. [50]).

III. NUMERICAL RELATIVITY RESULTS AND
THEIR DIAGNOSTICS

A. Initial data for generalized harmonic evolution

The corotating quasicircular BH inspiral data discussed
in the previous section were evolved using a numerical
code based on a generalized harmonic (GH) decomposition
of the field equations, as described in detail in
Ref. [5,51,52]. As supplied by Pfeiffer [40,41], the initial
data is given in terms of standard 3� 1 or ADM (Arnowitt-
Deser-Misner) variables [53–56], namely, the lapse func-
tion �, shift vector �i, spatial metric hij, and extrinsic
curvature Kij:

 ds2 � ��2dt2 � hij�dx
i � �idt��dxj � �jdt�; (1)

 Kij � �hi
lhj

mrmnl: (2)

In the above n� � ��r�t is the unit timelike vector
normal to t � const hypersurfaces, and we use units where
G � c � 1. The GH code directly integrates the 4-metric
elements g��

 ds2 � g��dx�dx�; (3)

and therefore needs the values of g�� and @g��=@t at t � 0
as initial conditions. The initial data (1) and (2) provides
most of what is required to construct g��jt�0, @g��=@tjt�0;
what must still be specified are the components of the
gauge encoded in @�=@tjt�0 and @�i=@tjt�0. We choose
the time derivatives of the lapse and shift such that the slice
is spacetime harmonic at t � 0:

 @��n� � ��K (4)

 @��in� � � ��ijkh
jk � @j�hij; (5)

where K is the trace of the extrinsic curvature, and ��ijk are
the Christoffel symbols of the spatial metric hij.

B. Characterization of the waveform

Gravitational wave information is obtained by comput-
ing the Weyl scalar �4, which has the asymptotic property
of being equal to the outgoing radiation if the complex null
tetrad is chosen correctly. To be explicit, we define a
spherical coordinate system centered on the center of
mass of the binary with orthonormal bases �r̂; �̂; �̂�. The
coordinates are chosen so that the azimuthal axis is aligned
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with the orbital angular momentum and the binary orbits in
the direction of increasing azimuthal coordinate.

To define our complex null tetrad, we use the timelike
unit vector normal to a given hypersurface n̂ and the radial
unit vector r̂ to define an ingoing ( ~k) and outgoing null
vector ( ~‘) by

 

~k 	
1���
2
p �n̂� r̂�; (6)

 

~‘ 	
1���
2
p �n̂� r̂�: (7)

We define the complex null vector ~m by

 

~m 	
1���
2
p ��̂� i�̂�: (8)

In terms of this tetrad, we define �4 as
 �4 	 C����‘

��m��
‘��m��
; (9)

where C���� is the Weyl tensor and 
 denotes complex
conjugation.

To relate �4 to the GWs, we note that in transverse-
traceless (TT) gauge,

 

1
4 �

�hTT
�̂ �̂
� �hTT

�̂ �̂
� � �Rn̂ �̂ n̂ �̂ � �Rn̂ �̂ r̂ �̂ � �Rr̂ �̂ r̂ �̂

� Rn̂ �̂ n̂ �̂ � Rn̂ �̂ r̂ �̂ � Rr̂ �̂ r̂ �̂; (10)

 

1
2

�hTT
�̂ �̂
� �Rn̂ �̂ n̂ �̂ � �Rr̂ �̂ r̂ �̂ � Rn̂ �̂ r̂ �̂ � Rr̂ �̂ n̂ �̂: (11)

Following convention, we take the h� and h� polarizations
of the GW to be given by

 

�h� �
1
2�

�hTT
�̂ �̂
� �hTT

�̂ �̂
�; (12)

 

�h� � �hTT
�̂ �̂
: (13)

We find, then, that in vacuum regions of the spacetime,

 �4 � �h� � i �h�: (14)

It is most convenient to deal with �4 in terms of its
harmonic decomposition. Given the definition of �4 in
Eq. (9) and the fact that ~m
 carries a spin weight of �1,
it is appropriate to decompose �4 in terms of spin-weight
�2 spherical harmonics �2Y‘m��;��. There is some free-
dom in the definition of the spin-weighted spherical har-
monics. To be explicit, we defined the general spin-
weighted spherical harmonics by

 sY‘m��;�� 	 ��1�s

���������������
2‘� 1

4	

s
d‘m��s����e

im�; (15)

where d‘ms is the Wigner d-function
 

d‘ms��� 	
XC2

t�C1

��1�t
���������������������������������������������������������������������
�‘�m�!�‘�m�!�‘� s�!�‘� s�!

p
�‘�m� t�!�‘� s� t�!t!�t� s�m�!

� �cos�=2�2‘�m�s�2t�sin�=2�2t�s�m; (16)

and where C1�max�0;m�s� and C2�min�‘�m;‘�s�.

Finally, for convenience, we always decompose the
dimensionless Weyl scalar rM�4 where M � m1 �m2

is the mass of the initial binary system with m1 and m2

the irreducible [57] masses of the individual BHs, and r is
the generalized harmonic radial coordinate. We then define

 rM�4�t; ~r� �
X
‘m
�2C‘m�t; r��2Y‘m��;��: (17)

The complex mode amplitudes �2C‘m�t; r�, extracted at a
fixed generalized harmonic coordinate radius r, contain the
full information about the gravitational waveforms as a
time series.

In the numerical code the four orthonormal vectors
�n̂; r̂; �̂; �̂� used to construct the null tetrad are computed
as follows. The spacetime is evolved using Cartesian co-
ordinates x, y, z with time t, and we use the standard
transformation to define the spherical coordinates:

 x � r cos��� sin���; (18)

 y � r sin��� sin���; (19)

 z � r cos���; (20)

n̂ is the timelike unit vector normal to t � const surfaces,
and r̂ is the unit spacelike vector pointing in the direction
�@=@r�a. In the limit r! 1 the time coordinate t coincides
with TT time. �̂ is computed by making �@=@��a orthonor-
mal to �n̂; r̂� using a Gramm-Schmidt process, and then �̂
is calculated by making �@=@��a orthonormal to �n̂; r̂; �̂�.
All norms are computed with the full spacetime metric
g��. The Weyl scalar �4 is evaluated over the entire
numerical grid (i.e. at all x, y, z mesh points) at regular
intervals in time. We then interpolate �4�t; x; y; z� to a set
of coordinate spheres at several ‘‘extraction radii’’ ri, with
a uniform distribution of points in ��;��.2 All the wave-
form related data from the simulations presented here are
taken from such samplings of �4�t; r � ri; �; ��, and we
have used ri � 12:5, 25, 37.5, and 50 M. The plots and
comparisons shown in the main part of the paper use ri �
50 M, while in Appendix C we discuss the trends that are
seen in �4 as a function of ri. To summarize the results of
the Appendix, prior to merger the extraction radii at 37.5
and 50 M appear to be well within the ‘‘wave-zone,’’ and
thus gives a decent representation of the waveform.
Specifically, the coordinate propagation speed of the
wave from one extraction sphere to the next is very close
to unity, and the structure of the wave, normalized by r, is
similar at the two extraction points. Interestingly though, at
later times during the simulation, apparently in coinci-
dence with the strongest wave emission around the merger
part of the evolution, the gauge seems to change slightly in
the extraction zone. The coordinate speed drops by several

233� 65 points in � 2 0 . . .	, � 2 0 . . . 2	 for this set of
simulations.
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percent, and the amplitude of the normalized waveform
also decreases as the wave moves outward. The effect is
more pronounced for binaries that are initially further
separated. As not all metric information was saved when
the simulations were run, we cannot describe what under-
lying properties of the metric are responsible for the
change in propagation behavior, though for the purposes
of this paper the effect is sufficiently small that we do not
believe it will alter any of the primary conclusions. A
couple of exceptions are in the estimates of the total energy
and angular momentum radiated—these calculations in-
volve double and triple time integrations of squares of the
wave, and so significantly amplify even small systematic
errors in the waveform. This is, we believe, the cause of the
increasing overestimate of these quantities as the initial
orbital separation increases, as shown later in Table II.
Future work will attempt to address these gauge-related
issues.

C. Numerical results and a discussion of errors

We have evolved 3 sets of initial data, labeled by d �
13, 16, and 19 in Ref. [38]; the initial orbital parameters are
summarized in Table I.3 Each initial-data set was evolved
using three different grid resolutions, summarized in
Table II. Most of the results presented in this paper are
from the highest resolution simulations, with the lower

resolution runs providing error estimates via the
Richardson expansion. During evolution the same tempo-
ral source-function evolution equations were used as with
the scalar-field-collapse binaries described in Ref. [5,51],
and the (covariant) spatial source functions were kept equal
to zero. We have quite extensively tested this code to make
sure we are solving the Einstein equations, and conver-
gence tests of the residual of the Einstein equation for
similar simulations were presented in Ref. [52].

Table III lists some key information obtained from each
merger simulation. Figure 1 shows the orbital motion prior
to merger. The uncertainties and error estimates listed in
the table were calculated using an assumed Richardson
expansion, as discussed in [52]. At least three simulations
are needed to verify that one is in the convergent regime in
general, and for the properties listed in the table we do see
close to second order convergence for most properties—a
couple of anomalous cases (the phase error and merger
time for the d � 19 case) are discussed further below.
Assuming one is in the convergent regime, results from
two simulations can then be used to estimate the truncation
error. This estimate will not account for systematic errors,
and here we list several potential sources of such error.
Some quantities are in principle susceptible to gauge or
coordinate effects, including the apparent horizons (AHs),
and therefore properties measured using them; orbital pa-
rameters such as angular frequency and eccentricity de-
duced from the positions of the AHs; the finite GW
extraction radius and nature of the coordinates at the ex-
traction surface (see Sec. III B and Appendix C); and the
choice of tetrad used to calculate �4 [58–60]. Certain
postprocessing operations have a truncation error associ-
ated with them and we have not estimated the magnitude of

TABLE II. The three sets of characteristic spatial resolutions used in the simulation discussed
here, where each resolution is labeled relative to the coarsest resolution h. The grid is adaptive
with a total of 8 levels of refinement, and the coordinate system is compactified. The wave zone
is defined to be at r � 50M, the orbital zone within about r � 10M, and the BH zone is within
2–3M of each AH. A Courant-Friedrichs-Lewy factor of 0.2 was used in all cases.

‘‘Resolution’’ Wave-zone resolution Orbital-zone resolution BH resolution

h 1:6M 0:20M 0:048M
3=4h 1:2M 0:15M 0:036M
1=2h 0:82M 0:10M 0:024M

TABLE I. Several parameters describing the initial data [38] (left to right): the ADM mass of
the spacetime, the initial angular velocity of each BH, the ADM angular momentum, the initial
proper separation between the holes, and their initial spins. The units have been scaled to M, the
sum of initial AH masses.

‘‘d’’ MADM=M M! JADM=M2 ‘=M S1=m2
1

13 0.986 0.0562 0.875 7.96 0.107
16 0.988 0.0416 0.911 9.77 0.0802
19 0.989 0.0325 0.951 11.5 0.0629

3Note that when writing S1;2=m
2
1;2 we mean by m1;2 the

irreducible mass mirr
1;2. When later on we compare with PN

models, we should first express the rest masses appearing in
the PN formula in terms of mirr

1;2 and the spin variable S1;2.
However, since we deal here with very small spins, the error
in not doing so is very small.
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these. For example, in all cases �4 was sampled on a mesh
of size 33� 65 points in ��� at the extraction radius at a
given time. We suspect that many of these systematic
errors are small, though eventually the accuracy of the
simulations will be improved (through a combination of
high-order methods and higher resolution), and then it may
become important to quantify and eliminate these addi-
tional uncertainties.

In a waveform, the error of most significance to GW
detection is an error in the phase. The first generation of
numerical binary BH merger simulations [5–8,52,61–63],
with the notable exception of the Caltech/Cornell effort
[64], all suffer from rather significant cumulative phase
errors in the inspiral portion of the waveform for the longer
duration merger events. In Ref. [61] it was argued that the
dominant portion of the phase could be factored out as a
constant phase shift within the wave, resulting in a ‘‘uni-
versal’’ merger result for the class of initial conditions
considered. Henceforth, we shall denote by maquillage
the operation of phase shifting waveforms to make them
agree at a specified point in time, improving their coinci-
dence (appearance) over a larger interval of time. For
certain applications this maquillage waveform is the rele-
vant one. For example, in a matched-filter search the initial
phase of the waveform is an extrinsic parameter [33] and is
irrelevant for detectability of the signal. Also, when com-

paring waveforms from different initial-data sets the wave-
forms need to be aligned in some manner for a meaningful
comparison, and so again a constant phase difference,
whatever the source, is largely irrelevant. However, for
parameter estimation in an inspiral search where a hybrid
PN/numerical template is used, the association of a nu-
merical merger/ring-down to a PN inspiral waveform will
be very sensitive to all phase errors. In particular, an
uncertainty in the overall phase evolution prior to merger
in the numerical waveform is directly related to an uncer-
tainty in the merger time for the given initial conditions,
and this will translate to an uncertainty in the PN binary
parameters identified with the match.

For the reasons just outlined, in Table III we give two
estimates of the phase errors in the waveforms. The first is
the cumulative error in the phase directly measured from
the waveform, and the second is the cumulative error after
the maquillage. Specifically, in the latter case we shift all
the waveforms in time so that the peak amplitudes (corre-
sponding to the peak of the energy radiated) occur at t � 0,
and then apply a constant rotation in the complex plane of
the waveform to give optimal overlap with a reference
waveform (typically the highest resolution result).
Example waveforms before and after the shift for the three
resolutions are given in Figs. 2 and 3. Unfortunately, the
lowest resolution waveform data for the d � 19 case was

TABLE III. A summary of simulation results. From top to bottom: (i) the mass Mf of the final BH estimated from AH properties;
(ii) the energy EGW emitted in GWs extracted using the Newman-Penrose scalar �4 at a coordinate radius of r � 50M from the origin;
(iii) the Kerr spin parameter af and corresponding nonzero z-component Jz of the angular-momentum vector of the final BH (from AH
properties); (iv) an estimate JzGW of the angular-momentum radiated in GWs (from �4); (v) the number of orbits in coordinate space
before a common AH, at coordinate time t � tCAH, is first detected; (vi) an estimate t � tpeak of when the GW amplitude reaches its
peak; (vii) an estimate t � tdec of when the GW frequency decouples from the orbital frequency; (viii) for d � 19 two estimates of the
eccentricity in the initial data calculated using (21) (e1) and (22) (e2); (ix) the estimated maximum error in the amplitude of the
extracted GWs (occurring near the peak of emission); (x) an estimate of the cumulative phase error in the wave from t � 0 until
merger; and (xi) the phase error after maquillage. The estimated uncertainties and errors do not include possible systematic errors; see
the discussion in Secs. III B and III C, and Appendix C for more information. In all plots in the paper where we have shifted time by
either tCAH or tpeak, any quantity shown that was measured from the waveform at r � 50M is also shifted by the propagation time �t of
the wave to r � 50M. We have estimated �t by finding the shift resulting in a best-fit between orbital frequency measured using the
GW versus AH orbital motion, as shown in Fig. 7; specifically, we get �t � 65M, 68M, and 70M for d � 13, 16, and 19, respectively.

d � 13 d � 16 d � 19

Mf=M 0:950� 0:005 0:954� 0:005 0:952� 0:005
EGW=M 0:036� 0:004 0:043� 0:004 0:052� 0:004
af=Mf 0:71� 0:02 0:71� 0:02 0:70� 0:02
Jzf=M

2 0:64� 0:02 0:65� 0:02 0:63� 0:02
JzGW=M

2 0:23� 0:02 0:31� 0:02 0:42� 0:02
Number of orbits 1:47� 0:10 2:47� 0:09 4:39� 0:18
tCAH=M 109� 4 228� 16 529� 22
�tpeak � tCAH�=M � 9 � 9 � 9
�tdec � tCAH�=M � �11 � �11 � �9
Initial eccentricity e1 � � � � � � 0:018� 0:003
Initial eccentricity e2 � � � � � � 0:012��0:014;�0:012�
Maximum GW amplitude error 8% 9% 8%
(Maximum GW phase error)/(2	) 0.08 0.7 1
(Maximum .‘‘shifted’’ GW phase error)/(2	) 0.04 0.06 0.05
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accidentally deleted, and so only the medium and higher
resolution results are shown. The two d � 19 cases are
unusual in that the phase difference between them does not
grow monotonically with time; rather the phase difference
initially grows then decreases so that by merger time the
difference is close to zero. We are not entirely sure why the
error in the phase evolution behaves so in this case. One
possibility is that for this longer integration time we are too
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FIG. 1 (color online). (top) The orbital motion of one BH from
each of the three cases: the dot-dashed (blue) line is d � 13, the
solid (black) d � 16, and the dashed (red) d � 19. The position
of the BH is defined as the center of its AH, and the curve ends
once an encompassing horizon is found. The eccentricity present
in the initial data is particularly evident for the d � 19 case,
though in part this is due to numerical error—see Fig. 5. To aid
in the comparison each trajectory was rotated by a constant
phase so that they coincide at a coordinate separation of 3M.
(bottom) The orbital motion of the BH’s from the d � 16
simulation, showing the coordinate shapes of the AHs at several
key moments. Also shown is the location of the corotating light
ring of the final BH—see the discussion in Sec. VI.
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FIG. 2 (color online). The Re
�2C22� component of the d �
13 and d � 16 waveforms, unshifted (top) and shifted (bottom).
All resolutions are shown to demonstrate the size of numerical
errors in the simulation, and data such as this was used to
compute the errors for waveform quantities listed in Table II.
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far from the convergent regime to see the trends in phase
evolution observed for the shorter d � 13 and d � 16 runs.
However, other estimators of convergence, including AH
properties and orbital motion as shown in Figs. 4 and 5
which do include data from the lowest resolution, suggest
the d � 19 case is in the convergent regime. Another
possibility is that the numerical error in the phase has a
periodic time component whose frequency is sufficiently
low that the d � 13 and 16 runs do not show it. Regardless,
that the 1=2h and 3=4h d � 19 cases merge at almost the
same time makes it impossible to use them to estimate the
error in merger time and phase. Therefore, the errors

quoted for these two numbers in Table III for d � 19
were estimated using the difference in merger time be-
tween the h and 1=2h d � 19 runs, with the estimated
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FIG. 3 (color online). In the top panel we show the Re
�2C22�
component of the d � 19 waveform, unshifted (top) and shifted
(bottom). The lower resolution data for the d � 19 case was
accidentally deleted. In the bottom panel we zoom in for a close-
up of the inspiral part of the unshifted waveform. From these two
results alone it would appear as if the d � 19 simulations have
anomalously good convergence behavior (compare to Fig. 2).
However, this is not the case—refer to the discussion in
Sec. III C, and see Figs. 4 and 5 for other estimators of the
convergence of the solution.
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panel) for the d � 19 simulations. The angular momentum
was estimated using the ratio of polar to equatorial proper
circumference of the horizon [70]; the dynamical horizons
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the mean. Except near the time of merger, the sum of AH masses
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phase error being the error in the merger time divided by
the waveform period at ring-down multiplied by 2	.

A final note regarding the phase difference in maquillage
waveforms: for two orbits that are quite similar, either
because of similar initial conditions or the same initial

conditions but different numerical truncation error, the
time/phase shifting can be performed at any time during
the common inspiral/merger phase. The phase difference
will then by construction be identically zero at the time of
the match, and slowly drift as one moves away from the
matching time. The choice of matching at the peak of the
wave amplitude effectively minimizes the net phase error as
this is where the wave frequency is highest.

D. Diagnostic of the orbital evolution

The initial orbits of the d � 19 case displayed in Fig. 1
are clearly neither circular nor a smooth adiabatic inspiral.
It is natural to refer to such orbits as being eccentric.
However, describing orbits as ‘‘eccentric’’ when radiative
effects are strong can be problematic. The notion of eccen-
tricity is precise in Newtonian physics, where the eccen-
tricity is one of two parameters needed to describe a
general, bound elliptic orbit. In general relativity, even
when considering only the conservative dynamics, binaries
do not follow closed elliptic orbits. When the dissipative
effects of gravitational radiation are strong, it becomes
even more difficult to define the concept of eccentricity.

The initial data we use starts with essentially no radial
momentum. If radiative dissipation is neglected, such or-
bits can be circular or eccentric depending on the magni-
tude of the orbital angular velocity. But, because of
radiation reaction, initial data with no radial momentum
cannot represent a binary on a smooth quasicircular inspi-
ral. In fact, such an orbit must have some effective
eccentricity.

We will use two methods to attempt to calculate this
eccentricity in the d � 19 case. Neither of these methods
work well for the d � 13 and d � 16 cases as they do not
exhibit enough orbital motion prior to merger. The first
method uses the following relationship that holds for an
orbit with eccentricity e, orbital angular frequency !, and
separation r in Newtonian theory:

 !2�t�r3�t�=M� 1 � e cos���t��: (21)

Lower order general relativistic corrections (in particular
perihelion precession) will change the argument to the
cosine function, though the amplitude remains e. The
bottom panel in Fig. 5 shows the left-hand side of
Eq. (21) for the d � 19 simulation, with! and r calculated
from the coordinate motion of the BHs. A certain amount
of eccentricity is due to numerical error, though the trend in
the curves of Fig. 5 as resolution increases indicates that
some amount of eccentricity does come from the initial
data. The numerical data does not follow Eq. (21) too
closely, though at early times there are clear oscillations
about a line, and we will use the amplitude of these
oscillations to define e. For a fitting function we use a0 �
a1t� e cos�a2t� a3�, and guided by Eq. (21), we define
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FIG. 5 (color online). In the top panel we show the coordinate
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simulations. This plot highlights the eccentricity within the orbit
and it also reflects the phasing behavior in the waveform for the
3=4h and 1=2h cases—see Fig. 3. In the bottom panel we
estimate the eccentricity for the d � 19 case: shown is a plot
of the left-hand side of Eq. (21) together with a fit of the form
a0 � a1t� e cos�a2t� a3� to the early time behavior of this
function. We estimate the eccentricity to be the amplitude of the
sinusoidal part of the fitting function.
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the amplitude of the oscillation to be the eccentricity. For
the 1=2h run the fit gives e � 0:018� 0:003, with the
uncertainty calculated using the 1=2h and 3=4h data and
assumed second order convergence.

For a second estimate of the eccentricity we use another
Newtonian definition given in Ref. [65]:

 e �
�������!p
p

�
�������
!a
p

�������!p
p

�
�������
!a
p ; (22)

where !p is the frequency ! at a local maxima, and !a is
the frequency at the following local minima. Using this
definition, and the data for the d � 19 case shown in Fig. 7,
we get e � 0:012 (0.029, 0.068) for the 1=2h �3=4h; h�
resolution runs. The rather large differences in the values
calculated using the different resolutions means that the
corresponding uncertainty in e calculated using Eq. (22) is
also large: �0:014 (for the values quoted in Table III we
restricted e � 0).

As mentioned in Sec. II, Refs. [49,65] have shown that
3PN estimates of eccentric orbits suggest the quasicircular
initial data being used has some intrinsic eccentricity. From
Fig. 2 of Ref. [49], we find a 3PN estimate of e� 0:01 for
the d � 19 case. We note that this is remarkably close to
the eccentricity estimate obtained via Eq. (22). However,
despite this coincidence, we should be cautious in attribut-
ing the ‘‘eccentricity’’ observed in the orbit of the d � 19
case to a nonvanishing eccentricity in the initial data. It is
important to remember that the initial data are constructed
to have vanishing radial velocity. As shown by Miller [50],
initially circular orbits clearly lead to the kind of effective
eccentric behavior seen in our numerical evolutions. A
comparison of Fig. 4 of Ref. [50] with Fig. 5 of this paper
also shows striking similarity. It is clear that the initial data,
through a combination of a vanishing initial radial velocity
and possibly nonvanishing initial eccentricity, results in an
evolution that exhibits some undesired eccentric behavior.
However, it is not yet possible to determine which, if either,
effect dominates.

Despite the presence of the eccentricity, the orbital
motion on average is quasicircular. By this we mean that
throughout the evolution the radial velocity is smaller than
the tangential velocity. At leading order, the quadrupole
formula predicts for the radial velocity _r � �16=5�M=r�3

and for the ratio between the radial and tangential velocity
_r=�!r� � �2=3 _!=!2 � �16=5�M=r�5=2 �

�16=5�M!�5=3, where we use !2r3=M � 1. In Fig. 6 we
show how the above relations are satisfied by the numerical
simulations. For simplicity we only consider the high-
resolution run d � 19. Quite interestingly, the curves
�16=5�M=r�5=2 or �16=5�M!�5=3 average the behavior
of _r=�!r� during the inspiral part and converge to it at later
times. Between 30–50M before the formation of the com-
mon AH (CAH), we notice an abrupt change in the behav-

ior of the ratio between the radial velocity and the
tangential velocity, which suggests the presence of a
blurred dynamical ISCO with subsequent plunge [28].
Even during the plunge, the radial velocity is still much
smaller than the tangential velocity, reaching the value of
20% only at the end of the plunge. This result is a further
confirmation that the numerical, equal-mass dynamics is
quasicircular until the end, as predicted by the EOB ap-
proach [28].

IV. THE INSPIRAL

The analysis in Sec. III D has shown that, despite the
presence of an initial eccentricity, the dynamics is quasi-
circular. If the dynamics is sufficiently quasicircular, then it
should be possible to model the inspiral waveform and
frequency using Newtonian and PN methods together with
the quadrupole formula. In this section, we will compare
the numerical waveforms to the expected results from
Newtonian theory and PN theory [26] assuming an adia-
batic inspiral. In a subsequent section (Sec. VII), we will
also consider the nonadiabatic EOB model [27–30] and
Padé approximants [33]. Our analysis should be considered
as a first-order attempt to assess the closeness of analytical
and numerical results. More rigorous comparisons will be
tackled in the future when numerical simulations start with
initial conditions that more accurately model a binary on
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an adiabatic path closer to that described by PN methods,
and with simulations that have smaller or better understood
systematic errors.4

In addition to examining the full waveforms, it is useful
to focus attention on the angular frequency of the waves
and the underlying orbital motion. From the evolved data,
there are several methods for determining the orbital an-
gular frequency. The most direct measure is obtained by
tracking the coordinate locations of the centers of the AHs
of each individual BH. We label this measure of the
frequency by !c. Because it is based directly on general-
ized harmonic coordinate values, this measure of ! is
susceptible to gauge effects. A second method for deter-
mining! is to track the phase of the maximum of �4 in the
equatorial plane as it intersects the extraction surface at
r � 50M. We denote the orbital angular frequency deter-
mined by this method by !
. Since the angular resolution
at which �4 is sampled is coarser than the temporal
resolution, we use spatial interpolation to find the phase
�max�t� of the maximum at time t, then smooth the curve in
t before computing!
 � d�max=dt. As a third method, we
note that, if a complex signal f�t� has a dominant fre-
quency and it is circular polarized, then that frequency is
given by Im
 _f=f�, where the dot ( _) denotes a time deriva-
tive. In terms of the mode amplitudes �2C‘m�t; r�, the
dominant circular-polarized frequency can be estimated by

 !Dm � �
1

m
Im
�
�2

_C‘m
�2C‘m

�
; (23)

where we note that m in this equation is the azimuthal
index and should not be confused with the total mass.
These different definitions of the frequency are summa-
rized in Table IV.

Figure 7 compares the orbital angular velocity M!�t�
obtained by these approaches, for the initial separations
d � 16 and 19. First, note that various frequencies have
been appropriately shifted in time to account for the wave
propagation time to the extraction sphere. The initial nu-
merical waveform is dominated by spurious radiation as-
sociated with the initial data, and !
 and !D2 are quite

noisy at early times. Though it is somewhat difficult to see
in these plots,!
 and !D2 also extend to earlier times than
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FIG. 7 (color online). Orbital angular frequencies for the d �
16 and d � 19 cases evaluated using several different methods.
The solid (black) line labeled !c displays M! as determined
from the coordinate locations of the center of each BH’s AH.
The solid (green) line labeled !
 displays M! as extracted by
tracking the phase of the peak in �4 at an extraction surface
placed at r � 50M. The long-dash (red) line labeled !D2 dis-
plays the dominant frequency in �2C22 obtained using Eq. (23).
The dash-dash-dot (blue) line labeled !NQC displays the orbital
angular velocity obtained from �2C22�t� using Eq. (27). Finally,
the vertical dotted (blue) line marks the approximate time that a
common AH forms.

4Note that when comparing with analytical models we assume
that the binary total mass M, introduced in Sec. III as the sum of
the irreducible [57] BH masses computed from the AH, coin-
cides with the rest masses appearing in the PN waveforms, and is
constant. In a numerical evolution, the mass estimated from the
AH can change during evolution. In these simulations we believe
most of this change is due to numerical error, though in principle
part of it could be accretion of gravitational energy. Also, given
that the AH is a coordinate dependent object part of the change
could be gauge related, though this is unlikely. Regardless of the
source, for the highest resolution simulations the change in M is
relatively small. For example, for the d � 19 case, we find that
the maximum drift in M is less that about 0.2% before CAH
formation. After the CAH, the final AH mass drops by about 1%
in the last 100M. Those variations are within or smaller than
other errors present in the numerical simulation.
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does!c. This is a manifestation of the fact that!
 and!D2

are obtained from information at the extraction sphere at
r � 50M. Also small and difficult to see, we note that there
are unexpected deviations at early times in!c. We find that
all three measures of ! agree quite well except near the
beginning of the evolution and near the end of the inspiral
30–40M before the time of the peak in j�4j.

The aberrant behavior of ! at early times is primarily
due to the use of conformally flat initial data and, conse-
quently, to a lack of physically realistic initial radiative
modes. This strongly affects !
 and !D2. The small
anomalous behavior in !c at early times might also be
caused by artifacts in the initial data, and note that impos-
ing spacetime harmonic coordinates at the initial time does
create some ‘‘artificial’’ coordinate dynamics. Each of
these methods for measuring ! are based directly on
generalized harmonic coordinate values, and are suscep-
tible to gauge effects. In particular, the coordinate position
of an AH is certainly not a gauge-invariant quantity, and
given that the BHs are in the strong-field region of the
spacetime there is no a priori reason to expect the coor-
dinate locations to have any simple mapping to what one
may describe as the physical orbit. It is therefore somewhat
surprising how well these ‘‘almost-harmonic’’ coordinates
describe the orbit—more examples of this are given in the
next section.

A. Newtonian quadrupole approximation

Now consider a Newtonian binary in a circular orbit with
orbital angular frequency !. For a binary with reduced
mass � � m1m2=M and mass ratio � � �=M, the stan-
dard quadrupole formula yields

 rM�4 � 32

����
	
5

r
��M!�8=3
e�2i�!t��0�

�2Y22

� e2i�!t��0�
�2Y2�2�; (24)

where �0 fixes the initial phase of the orbit and assuming
right-handed rotation about the positive z-axis. If we re-
place !t by the accumulated phase of the orbit

 ��t� �
Z t

0
!�t0�dt0; (25)

then we find that we can approximate ‘ � 2 modes of the
inspiral waveform by

 �2C2�2�t� � 32

����
	
5

r
�
M!�t��8=3e�2i���t���0�: (26)

Note that we have assumed an adiabatic inspiral and have
replaced the constant orbital angular frequency ! of the
circular orbit with a time-dependent orbital angular fre-
quency !�t�. We refer to the result in Eq. (26) as the
Newtonian quadrupole circular-orbit (NQC)
approximation.

This result can be used in two ways. First, if we assume
that Eq. (26) provides a good approximation to the wave-
form, then we can extract !�t� from the waveform via

 M!�t� �
�

1

32�

����
5

	

s
j�2C2�2�t�j

�
3=8
: (27)

In Fig. 7 we have also plotted !NQC obtained by the
Newtonian quadrupole circular-orbit approximation of
Eq. (27). As noted previously, near the beginning of each
evolution, artifacts from the initial data dominate the
waveform and this leads to large inaccuracies in !
 and
!D2. Similar inaccuracies at early time are also seen in
!NQC. Near the end of the inspiral, when the orbital motion
is no longer close to circular, we should not expect Eq. (27)
to yield an accurate value forM! and we see that the NQC
method is systematically underestimating the value ofM!.

The inconsistency of these methods for determining !
near the end of the inspiral should remind us that the very
notion of ‘‘orbital angular frequency’’ becomes poorly
defined after the formation of a common horizon. !c
terminates near the end of the inspiral as a common hori-
zon forms. The various methods agree quite well until
about a quarter of an orbit before the formation of a
common horizon (see Fig. 8 below). At this point, which
we refer to as the ‘‘decoupling point,’’ !c separates from
!
 and !D2 and begins to rise more rapidly. Determining
the precise point of decoupling is difficult due to numerical
noise in the frequencies, but it seems to occur close to a
value of M!dec � 0:15� 0:01. Incidentally, this moment
of decoupling also seems to coincide with the time the
centers of the individual AH’s cross what we estimate to be
the late time corotating light ring of the final BH (see
Sec. VI). Finally, in Secs. IV B and VII, we will again
examine the orbital angular frequency of the numerical
models and find that ! from 3PN-adiabatic and EOB
circular orbits agrees well with !c.

TABLE IV. We summarize several frequency variables used in the text.

Symbol Type Computed

!c Orbital frequency From AH centers (see Sec. IV)
!
 �2C22 frequency By tracking wave peak (see Sec. IV)
!Dm �2Clm dominant (circular-polarized) frequency From Eq. (23)
!NQC �2C22 Newtonian quasicircular frequency From Eq. (27)
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The second way that the NQC approximation can be
used is to estimate �2C2�2�t� by using! extracted from the
evolution. Figure 8 compares the real part of �2C22�t� with
the waveform estimated using the Newtonian quadrupole

circular-orbit approximation of Eq. (26) for both the d �
16 and 19 cases. In the upper half of each plot, we use !c
for the orbital angular frequency. In the lower half of each
plot, !
 is used. We do not consider reconstructing the
waveform from !D2 or !NQC because these were them-
selves derived from �2C22�t�.

A benefit of examining these plots is that they give a
clear indication of how much of the initial waveform is
contaminated by artifacts from the initial data. This can be
most clearly seen in Fig. 8 in the comparison with !c
where we find that the estimated waveform begins later
than the extracted waveform. The reason is that !c is a
function of ‘‘coordinate time’’ while the extracted wave-
form is a function of ‘‘retarded time’’ at the extraction
radius. So, the beginning of the estimated waveform marks
the earliest time that a waveform produced by the numeri-
cally evolved inspiral motion could begin. The numerical
signal preceding this is due entirely to the unphysical
initial radiative content of the initial data. This signal
precedes the inspiral waveform because it originates
from spatial locations in the domain that are closer than
the binary to the extraction sphere. An initial segment of
the true inspiral signal is also contaminated because of
initial-data artifacts propagating to the extraction sphere
from beyond the binary. If we make the reasonable as-
sumption that the most significant contributions to the
initial-data artifacts originate within the extraction sphere
located at r � 50M, then we should expect a total of
around 2� 50M of the signal to be contaminated as mea-
sured in the retarded time of the extraction sphere. This
number cannot be exact since we expect the initial-data
artifacts to be strongest close to the center of the extraction
sphere, and also because of variations in the coordinate
speed of light in the strong field region.

Both halves of the plots in Fig. 8 show a clear mismatch
at early times. Because!
 is constructed from information
at the extraction sphere, it shows an initial pulse of radia-
tion that is clearly an artifact of the initial data. However,
the level of contamination of the waveform decays quickly
following this initial pulse and appears to have become
insignificant by a time of 30M to 50M following this ‘‘-
initial-data pulse.’’5

A striking feature of these figures is the excellent agree-
ment between the estimated and extracted waveforms fol-
lowing the initial contamination and up to a short time
before the formation of a common AH. During this phase
of the inspiral, Fig. 1 clearly shows that the motion of the
binary is not circular. Nor is it the smooth adiabatic inspiral
that we would expect from an astrophysical binary that has
evolved from much larger separation. In fact, the observed
motion exhibits a small radial oscillation about this ‘‘de-
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FIG. 8 (color online). Comparison of numerical and NQC
inspiral waveforms for the d � 16 and 19 cases. In all plots,
the solid (black) line displays �2C22�t� from the numerical
waveform and the vertical long-dashed (blue) line marks the
approximate time that a common AH forms. In the upper plots,
the dashed (red) line displays �2C22�t� as computed from
Eq. (26) using !c and ��t� is obtained from Eq. (25). In the
lower plots, the dashed (red) line displays �2C22�t� as computed
from Eq. (26) using !
. The longer evolution of the d � 19 run
leads to significant changes in scale for �2C22�t�. Therefore, we
change scales for the final 90M of the evolution.

5We also note that, if we were computing �2C22 without
assuming the Keplerian relation !2r3=M � 1, the agreement
would be better at earlier times because the Keplerian relation
has its largest error there (see Fig. 5).
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sired’’ motion. This effect is most easily seen in the longer
d � 19 evolution, and also in the plots of ! in Fig. 7 (see
also Fig. 5 and 10, which includes a fit to the PN form for!
expected for adiabatic inspiral from large separation). The
point we want to emphasize is that Eq. (26) gives an
excellent approximation for the waveform, even when the
motion is clearly noncircular, so long as the phase��t� and
orbital angular velocity !�t� accurately incorporate the
noncircular aspects of the orbital motion. As mentioned
above, the NQC approximation appears to work quite well
up until about 1=4 of an orbit (half a full wave cycle) before
the appearance of a common horizon.

Another rather intriguing example demonstrating the
adequacy of the quadrupole formula, and how well adapted
the numerical coordinate system is in describing the binary
motion, is shown in Fig. 9. For brevity we focus on a single
example here, comparing the real part of the �2C22 com-
ponent of the d � 19 waveform to the same component of
a waveform calculated using the quadrupole formula6 for
two point sources of massM=2 following trajectories given
by the coordinate locations of the AH’s from the simula-
tion. The latter curve ends when a common AH forms, and
has again been shifted in time by a constant amount to

account for the propagation time for the wave to reach the
extraction surface. The difference between this comparison
and the preceding NQC comparison is we have not as-
sumed circular orbits, using instead the detailed orbit
motion obtained from the simulation. Not only does the
good agreement testify to the well-suited nature of the
coordinates, it shows that the quadrupole formula does a
remarkably good job of capturing the dominant physics of
GW emission during the entire merger regime prior to
common AH formation.

B. Adiabatic post-Newtonian model

The post-Newtonian approximation to the two-body
dynamics of compact objects provides the most accurate
predictions for the motion and the GW emission during the
inspiral phase, when the weak-field and slow-motion as-
sumptions hold.

In a more rigorous analysis we would compare the
numerical and analytical dynamical quantities expressed
in the same coordinate system and gauge. Here and in
Appendix B, we limit the comparison to a few gauge-
invariant dynamical quantities, such as the orbital fre-
quency !, the orbital phase �, the energy flux FE, and
the angular-momentum flux FJ, expressed in terms of the
instantaneous orbital frequency and/or the time of a sta-
tionary observer at infinity. This is also motivated by the
fact that previous studies [28,33] have shown that PN-
approximants to dynamical quantities are more robust
(under change of PN order) if expressed in terms of
gauge-invariant quantities, notably the instantaneous
orbital-frequency M!. At the present time, PN calcula-
tions provide the orbital frequency through 3.5PN order
[25] if spins are neglected, and through 2.5PN order [66] if
spins are included. As mentioned in Sec. II and shown in
Table I, the numerical initial data describe BHs which
carry a small spin aligned with the direction of the orbital
angular-momentum ‘. For this reason we include spin
effects in the PN approximants.

In this section we limit the analysis to the so-called PN-
adiabatic model. In Sec. VII we shall investigate the com-
parisons with the EOB model which goes beyond the
adiabatic approximation. In the PN-adiabatic model the
waveforms are computed assuming that the motion pro-
ceeds along an adiabatic sequence of quasicircular orbits.
More specifically, one assumes _r � 0 and evaluates the
variation in time of the orbital frequency ! from the
energy-balance equation dE=dt � �FE, where E is the
two-body energy and FE is the GW energy flux. In par-
ticular, E and FE are first computed for circular orbits and
written as a power expansion in M!, then _!�t� �
�FE�!�=�dE�!�=d!�. The adiabatic sequence of circular
orbits ends at the conservative innermost circular orbit
(ICO), i.e., the ICO evaluated from the conservative dy-
namics by imposing �dE=d!�ICO � 0 [26]. The study of
Ref. [28] (see, in particular, Figs. 4 and 5 and discussion
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6Here we mean taking directly four time derivatives of the
coordinate motion of the centers of the individual AHs.
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around them) and Ref. [50], showed that waveforms com-
puted in the adiabatic approximation (which are very ac-
curate at large separations) can have a non-negligible phase
difference with respect to waveforms computed in the
nonadiabatic approximation, even before reaching the
last stable orbit. The accuracy of our numerical simulations
and the nature of the initial data will not allow us to explore
these phase differences. Nevertheless, we have found it
useful to use the adiabatic PN model as a diagnostic of the
last few cycles of the numerical evolution.

As discussed in Sec. IVA, it takes a certain time for the
evolution to settle to a quasicircular orbit. Moreover, the
numerical results contain a non-negligible amount of ec-
centricity. For these reasons we shall evaluate the PN-
adiabatic approximant which best averages the numerical
orbital frequency until either the dynamical ISCO, the

decoupling frequency, or the CAH. Again, these issues
will be overcome when numerical simulations starting at
larger separation, and from initial conditions that more
accurately model an adiabatic inspiral, become available.
We notice that in principle there could be non-negligible
differences between the instantaneous orbital frequency as
defined in PN theory and in the numerical simulation. In
the latter, the orbital angular frequency is calculated from
the coordinate locations of the centers of the AHs of each
individual BH. However, since in Sec. IV B we have found
that the numerical orbital-frequency agrees quite well with
the numerical GW frequency extracted at larger radii, we
expect that the differences are small.

Defining � � ��tc � t�=5M, where tc is the time at
which the orbital-frequency diverges (time of coalescence,
not to be confused with the decoupling time), we have
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where �M � m1 �m2, the spin variables are

 S 	 S1 � S2; (29)

 � 	 M
�

S2

m2
�

S1

m1

�
; (30)

with Si � �im
2
i Ŝi. In Eq. (28) we have denoted with S‘ and �‘ the spin components along the direction of the orbital

angular-momentum ‘ [66]. The orbital phase through 3.5PN order reads
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where C � 0:577 . . . is the Euler constant and �0 is an
arbitrary constant. The nonspin terms in Eqs. (28) and (31)
are given by Eqs. (12) and (13) of Refs. [25,67], while we
evaluated the spin terms through 2.5PN order using the
recent results of Ref. [66] (we use the constant spin vari-
ables as defined in Ref. [66]), and we neglected spin-spin
contributions.

For each of the three runs, we determine the time of
coalescence tc and the spin-magnitude � � �1 � �2 by

fitting the PN orbital frequency (28) to the numerical
orbital frequency !c using a nonlinear least-squares
method. Figure 10 shows the results for d � 16 and d �
19. Because of the initial burst of radiation related to the
initial conditions, we remove from the numerical data the
first � 22M and � 34M, for the d � 16 and d � 19 runs,
respectively. In Sec. III D we discussed the possible pres-
ence of a blurred dynamical ISCO [28] occurring 30–50M
before the CAH forms, at M!dyn ISCO � 0:078–0:097. The
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orbital frequency at the conservative ICO evaluated at 3PN
order with � � 0:080 is M!ICO � 0:143 and with � �
0:063 is M!ICO � 0:140. We mark all these frequencies in
Fig. 10 along with the decoupling frequency. In principle,
the adiabatic PN waveform should be used only until the

last stable orbit, since it was derived from the balance
equation for circular orbits which ends at this last stable
orbit. However, since the two-body motion predicted by
the numerical simulations is rather adiabatic and quasicir-
cular until the CAH forms [28], we extend the PN wave-
forms through the plunge until almost that point. More
specifically, we fit until the time at which the numerical
orbital frequency decouples from the GW frequency,
M!dec � 0:15� 0:01. Notice that by fitting the time of
coalescence tc and � we are fitting the initial value of the
orbital frequency. We find that the 3PN-approximant best
fits the data with �d�16 � 0:111 and td�16

c � 220:1M
[M!�t � 0� � 0:047 89], �d�19 � 0:0874 and td�19

c �
509:1M [M!�t � 0� � 0:034 77]. If we fit until the CAH
time, we find �d�16 � 0:0812 and td�16

c � 217:6M
[M!�t � 0� � 0:047 15], �d�19 � 0:0626 and td�19

c �
506:2 m [M!�t � 0� � 0:034 47]. Those values are closer
to the nominal � values of Table I. However, we think this
is accidental. Finally, notice that if we fit until the dynami-
cal ISCO M!dyn ISCO � 0:096 we find �d�19 � 0:113 and
td�19
c � 514:3M [M!�t � 0� � 0:035 02].

In Fig. 10 we also show curves evaluated using the
nominal � value of Table I. To understand how spins affect
the PN-adiabatic orbital frequency, we show in Fig. 10 also
the case in which we fix � � 0 and fit only tc. The latter
values produce a difference of � 0:3 GW cycles at the
CAH time with respect to the case where we fit both tc and
�. Although we can use the numerical results to discrimi-
nate between several PN-adiabatic models with spin, it is
not clear which role the spin variable is playing in fitting
the data. In fact, the spin values obtained from the fit are
also affected by the eccentricity present in the numerical
data but absent in the analytical model.

Using the time of coalescence and spin values obtained
from the fits, we plot in Fig. 11 the waveforms Re
�2C22�.
Notice that the GW phase differences between the fitted
models is smaller than the maximum GW phase error
estimated in Table III using lower resolution runs. This
gives a concrete example of how cumulative phase error in
a numerical simulation translates to uncertainties associat-
ing PN model parameters with the numerical waveform,
despite the deceptively small phase error after maquillage.
PN-adiabatic models can also fit the data of lower resolu-
tion runs and give initial orbital frequencies larger than
those found for the high resolution runs.

So far, when comparing with numerical waveforms, we
have neglected higher-order PN corrections to the GW
amplitude and have restricted the comparison to
Re
�2C22�, i.e., we used waveforms in the so-called re-
stricted approximation. In Ref. [68] the authors evaluated
the ready-to-use PN waveforms h� and h� through 2PN
order in the amplitude (see Ref. [69] where this computa-
tion has been pushed through 2.5PN order). In Figs. 12 we
compare the numerical h� and h�, which are obtained by
integrating  4 twice in time, with the analytical h� and h�
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FIG. 10 (color online). We compare the NR and three analyti-
cal orbital frequencies obtained by fitting (i) both tc and �
(dashed line), (ii) only tc and using the nominal � value from
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when a dynamical ISCO could be present.
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as given by Eqs. (2)–(4) of Ref. [68]. The phase is com-
puted from Eq. (31) at 3PN order with the values of tc and
� obtained from the best fit. The waves are extracted along
the direction perpendicular to the orbital plane. Because
the BH masses are equal, only the 2nd harmonic is present.
We would conclude that higher-order PN amplitude cor-

rections have a mild effect in the waveform emitted by
equal-mass binaries. However, we notice an oscillating
behavior in the PN approximation to h� and h�. For
example, the 1PN correction is rather large and opposite
in sign to the Newtonian correction, resulting in a signifi-
cant reduction of the amplitude of the signal. The 1.5PN
and 2PN corrections undo this effect. This oscillating
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behavior seems to also affect the higher multipoles Clm. In
fact, we checked that C44 is well approximated by the 3PN-
adiabatic model for the phase, if computed at (leading)
1PN order in the amplitude, but the agreement becomes
worse when 2PN corrections are added. We plan to inves-
tigate in more detail the effect of higher-order PN correc-
tions and higher multipoles in the future.

To obtain more robust comparisons between PN and
numerical predictions, it would be preferable to start the
numerical evolution where we are confident that the PN
expansion can be safely applied. First, we notice that, if we
were computing ! as a function of time instead of from
Eq. (28), then integrating numerically the following equa-
tion [25,66]
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which can be derived expanding _! � �F�!�=�dE=d!� in
powers of (M!), we find some differences from Eq. (28).
In particular, at 3.5PN and 2.5PN orders, ! derived from
Eq. (28) reaches a maximum and then starts decreasing,
becoming negative. By contrast, this behavior does not
occur in the ! derived by numerically integrating
Eq. (32). In Fig. 13 we show the differences in the orbital
frequency and the number of GW cycles if the latter
quantities were computed from Eq. (32) at different PN
orders but with the same initial frequency !0 � 0:033 61.
We consider here a nonspinning binary. In the bottom panel
of Fig. 13 we compute the differences in the number of GW
cycles between the 3PN! from the analytical Eq. (28) and
several PN ! from Eq. (32). Quite interestingly the 3.5PN
order computed numerically is very close to the 3PN order
computed analytically, whereas the 3.5PN order computed
analytically has almost half a cycle of difference at the end
of the inspiral. These differences are a consequence of the
fact that at such (close) initial separation,M!� 0:033, the
differences between PN-approximants are not negligible.
This fact is better illustrated in Fig. 14. We start the
evolutions at M! � 0:004 (top panel) and M! � 0:02
(bottom panel) and plot the differences between the num-
ber of GW cycles at 3.5PN and at nPN order versus the !
computed at 3.5PN order. All quantities are obtained by
numerically integrating Eq. (28) with spins set to zero. 2PN
and 2.5PN approximants accumulate large differences
from the 3.5PN-approximant when evolving from larger
separations (top panel).

Thus, summarizing, the phase computed at 3PN order
from Eq. (28) or at 3.5PN order from Eq. (32) best fit the
numerical results. If we wanted to investigate to which PN
order, notably 3PN or 3.5PN, the NR orbital frequency is
closest to, we would need to start the numerical evolution
at frequencies smaller than the one used in the d � 19 run,
which is �0:033.

V. THE RING-DOWN PHASE

During the ring-down, the GW can be decomposed in
terms of the quasinormal modes (QNM) of Kerr [70–72].
These modes are distinguished by their longitudinal and
azimuthal indices ‘ and m, as well as by their overtone
number n. Each mode has a particular frequency !‘mn and
decay constant �‘mn which are functions of the Kerr pa-
rameter a and total mass Mf of the background BH that is
being perturbed. To shorten the notation, we will introduce
the complex frequency !̂‘mn and use 
 to denote complex
conjugation:

 !̂ ‘mn 	 !‘mn � i=�‘mn: (33)

Following Ref. [73], the ring-down can be expressed, in
terms of the Weyl scalar as

 rM�4 �
X
‘mn

fC‘mne
�i�!̂‘mnt��‘mn�S‘mn

� C0‘mne
i�!̂
‘mnt��

0
‘mn�S
‘mng; (34)

where C‘mn, C0‘mn, �‘mn, and �0‘mn are real constants, and
S‘mn � S‘m�a!̂‘mn� are the spin-weight �2 spheroidal
harmonics7 implicitly evaluated at the complex QNM fre-
quencies. The primed terms are necessary because, for a
given �‘;m; n� and a fixed nonvanishing angular momen-
tum, there are two solutions of the eigenvalue problem. To
make the notation as clear as possible, we will always take
the real frequencies and decay constants to be non-
negative, so !‘mn � 0 and �‘mn � 0. Of the two solutions
to the eigenvalue problem for fixed �‘;m; n�, one solution

7We note that the � dependence of spheroidal harmonics is
connected to the separability of the Kerr metric in terms of
Boyer-Lindquist coordinates. While our spherical coordinate
system is not Boyer-Lindquist, the differences are not significant
in the wave zone where the waveform is extracted.
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has positive frequency and one negative, and the complex
frequencies are related by �!̂‘mn � !̂
‘�mn (see Ref. [73]
for a full discussion). Because of this relationship, it is only
necessary to determine the positive (or negative) frequency
modes. In Ref. [73] the authors compute the positive
frequency modes and choose the convention that !‘mn �
!‘�mn, with equality in the case that m � 0 or a � 0.
Finally, we note that with these conventions, it is necessary

to introduce an overall sign change on the real frequency in
the equations of Ref. [73] in order for the signs of the
frequencies of the various modes to agree with numerical
simulations.
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FIG. 14 (color online). We plot the differences between the
number of GW cycles at 3.5PN and at nPN order versus the
3.5PN !. All quantities are computed integrating numerically
Eq. (32) with spins set to zero. The initial and final frequencies
are M! � 0:004 and M! � 0:026 in the top panel, M! � 0:02
and M! � 0:13 in the bottom panel. They correspond to an
equal-mass binary sweeping in the most sensitive frequency
band of LIGO from �43 Hz to �280 Hz of mass �3� 3�M�
in the top panel and of mass �15� 15�M� in the bottom panel.
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FIG. 13 (color online). In the top panel we plot the orbital
frequency for several PN approximants computed from Eqs. (28)
and (32) whose frequencies coincide at time t � 0. In the bottom
panel we plot the differences between the number of GW cycles
at 3PN computed from the analytical Eq. (28), and at nPN order
computed from Eq. (32). The initial frequency coincides with the
one computed from the fit of the d � 19 run when � � 0.
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The decomposition of �4 in terms of spin-weight �2
spherical harmonics is given by Eq. (17). In order to relate
the expansion coefficients in Eqs. (17) and (34), we need
the expansion of the spheroidal harmonics in terms of the
spherical harmonics. Following Press and Teukolsky [74],

 S‘mn �
X
‘00
A‘‘00mn�2Y‘00m: (35)

Using the orthonormality of spin-weighted spherical har-
monics, we find that
 

�2C‘m �
X
‘00n

fC‘00mnA‘‘00mne
�i�!̂‘00mnt��‘00mn�

� C0‘00�mnA


‘‘00�mne

i�!̂

‘00�mn

t��0
‘00�mn

�
g; (36)

 

	
X
‘00n

fC‘‘00mne
�i�!̂‘00mnt��‘‘00mn�

� C0‘‘00mne
i�!̂


‘00�mn
t��0

‘‘00mn
�
g: (37)

So, in principle, a spherical harmonic mode amplitude

�2C‘m of the ring-down signal can contain a contribution
from any of the negative frequency modes with azimuthal
indexm and from any of the positive frequency modes with
azimuthal index �m. Note that in the second version of
this expansion, the complex coefficients A‘‘00mn have been
absorbed into the new real expansion coefficients C‘‘00mn,
C0‘‘00mn,�‘‘00mn, and�0‘‘00mn, where each coefficient now has
four indices.

The expansion coefficients A‘‘00mn depend on the prod-
uct of the Kerr parameter and the complex QNM frequency
a!̂‘mn and for sufficiently small values can be determined
via perturbation theory (cf. Ref. [74]). For example, using
first-order perturbation theory, we find
 

�2C22 �
X
n

�
C22ne

�i�!̂22nt��22n� � C02�2ne
i�!̂
2�2nt��

0
2�2n�

�
1

18

���
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s
a!̂32n�4� a!̂32n�C32ne

�i�!̂32nt��32n�

�
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���
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s
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3�2n�4� a!̂



3�2n�C

0
3�2ne

i�!̂
3�2nt��
0
3�2n�

�

���
5
p

294
�a!̂42n�

2C42ne�i�!̂42nt��42n�

�

���
5
p

294
�a!̂
4�2n�

2C04�2ne
i�!̂4�2nt��04�2n�

�
: (38)

We have extracted the various QNM contributions to the

�2C22�t� ring-down signal in the following way.8 At late
times, we expect the ‘ � 2, m � 2, n � 0 QNM to domi-
nate. We fit the signal after time tr � tpeak to this single
mode using nonlinear regression and choose tr to minimize
the error in the fit. There are four dimensionless parameters
in this nonlinear fit: C220, �220, m!220, and �220=m.

However, instead of fitting directly for these four parame-
ters, we treat m!‘mn and �‘mn=m as functions of a=Mf and
Mf=m which can be obtained via interpolation from tabu-
lated values (cf. Tables II–IV of Ref. [73]) or via approx-
imating functions (cf. Tables VIII–X of Ref. [73]). The
advantage of using �a=Mf;Mf=m; C220; �220� for the set of
fitting parameters comes when we fit to additional modes.

If we knew a=Mf andMf=M precisely from the fit to the
dominant mode, then we could directly compute the values
for M!‘mn and �‘mn=M for all additional contributing
modes. All that would be necessary for determining the
contribution of each additional mode would be to fit for its
amplitude and phase. However, we will not know a=Mf

and Mf=M precisely from the fit to the dominant mode.
Therefore, we treat the frequency and damping constant for
each mode as functions of a=Mf and Mf=M so that they
are determined consistently when we fit multiple modes to
a given signal.

To make our procedure more explicit, we note that for
the �2C22�t� ring-down signal, the contributions of modes
with ‘ > 2 seem to be near the level of numerical preci-
sion, as are the positive frequency modes with ‘ � 2 and
m � �2. Therefore, we take as our fitting function:

 �2C22 �
XN
n�0

C222ne
�i�!̂22n�a=Mf;Mf=m��t�tpeak���222n�: (39)

We fit separately the real Re
�2C22� and imaginary
Im
�2C22� parts of the �2C22�t� ring-down signal without
any phase shifting of the numerical waveform. Separate fits
were performed because simple nonlinear least-squares
fitting was used. During each fit, numerical data for the
waveforms for times prior to tr � tpeak are removed from
the signal. Starting with N � 0, we fit the data for a
sequence of values for tr and choose as our final tr the
value that produces the smallest error estimate for a=Mf

and Mf=M. We include additional overtones (N > 0) suc-
cessively, using results from N � 0 fits as seeds for the
N � 1 fits, and so forth. For each value of N, we refit the
entire function, so for N � 0 there are 4 parameters in the
fit, for N � 1 there are 6, for N � 2 there are 8, and so
forth (see Tables VII, VIII, and IX for and explicit list of
the parameters being fit for each N). At each set, we
determine new values for a=Mf and Mf=M that are used
consistently for all of the modes. Also, each time we
include a new mode in the fit, we also fit the data for a
sequence of values for tr and again choose our final tr for
that set of modes by the value that produces the smallest
error estimates for a=Mf and Mf=M.

Tables VII, VIII, and IX in Appendix D display the fit
parameters for the �2C22�t�waveform obtained from initial
data with separation parameters d � 13, d � 16, and d �
19. These tables show the fits for only the high resolution
( 1

2h) runs and give results to 3 significant figures. In most
cases, the errors in the fit suggest that only two significant

8After the work to fit the ring-down modes was completed, a
similar approach was posted in the preprint archives [75].

BUONANNO, COOK, AND PRETORIUS PHYSICAL REVIEW D 75, 124018 (2007)

124018-20



figures can be trusted, but we display the additional digit in
order to clearly illustrate the level of consistency in the fits.
However, even if the accuracy of the individual fits were
higher, we must still take into account the discretization
error when estimating the value of parameters from the fits.
Using Richardson techniques, we can, for example, esti-
mate the value and error of the angular momentum and
mass of the BH at the end of the ring-down phase by using
fits to the medium ( 3

4h) and high ( 1
2 h) resolution runs.

Table V shows the results of this analysis for the angular
momentum ratio a=Mf and final mass ratio Mf=m and
includes results for the d � 13, d � 16, and d � 19 cases.
There is considerable consistency in the value of the final
mass ratio, with Mf=M � 0:95 for all separations.
However, there is a discernible decrease in a=Mf as the
separation increases. In fact each case differs by about 0.01
in value from its neighboring separation. This variation in
the final spin of the coalesced BH is, in fact, completely
consistent with the change in the spins of the initial coro-
tating BHs. If we compute the total angular momentum
contained in the spin of the individual BHs S, then we find,
respectively, for the d � �13; 16; 19� cases S=M2

f �

�0:06; 0:04; 0:03�.
Figure 15 shows the quality of the fit to Re
�2C22�t�� for

the cases N � 0, 1, 2, 3 and for the separations d � 16 and
19. We note that by including modes through the n � 3
overtone, we can fit the ring-down quite well to times
preceding the point where j�2C22j reaches its peak. For
each case beyond the fit to the fundamental n � 0 mode,
we include the residual of the previous fit. To be explicit,
the residual displayed for N � 1 is defined as the differ-
ence between the numerical signal and the fit obtained
using the fundamental mode. The residual displayed for
N � 2 is the difference between the numerical signal and
the n � 0, 1 modes used in the N � 1 fit. This residual
gives an estimate of the remaining signal that is being fit.
However, it is important to remember that, for each value
of N, the entire signal is actually being fit, including a
redetermination of a=Mf andMf=M for all the modes. The
most important point to notice from the residuals is that for
each value of N there is a clear signal that is being fit.

A close examination of Tables VII, VIII, and IX reveals
a significant level of consistency to the fits. For each

separation d, the spin and mass ratios remain very consis-
tent and the C22n and �22n coefficients remain quite con-
sistent, as we increase the number of overtones included in
the fits. This is true individually within the separate fits of
the real and imaginary parts of �2C22, and consistency is
also seen between the fits of the real and imaginary parts.
While the ‘ � 2,m � 2 QNMs seem to dominate the ring-
down signal in �2C22, the ‘ � 2, m � �2 modes and the
modes with ‘ > 2 should be present. However, the remain-
ing residual after the N � 3 fit (not shown in any figure)
has very low amplitude at times after the peak in j�2C22j.
While there are some hints to structure, there is insufficient
signal and the simple approach we have used for fitting
does not yield consistent fits when additional modes are
included.

However, if we fix the values for a=Mf andMf=M to the
values obtained from the ‘ � 2, m � 2 fits, we can fit for
the C‘�2n and �‘�2n coefficients for a range of modes.
Doing so, we find that the fundamental QNM with ‘ � 3,
m � �2 has the most significant contribution, followed by
the ‘ � 4, m � �2 and ‘ � 3, m � 2 fundamental modes
at roughly comparable levels. Unlike the case of fitting
only the ‘ � 2, m � 2 modes, adding in higher overtones
when an increased spectrum of modes was considered did
not lead to consistent fits. Part of the difficulty in finding
consistent fits to the subdominant modes is likely due to the
fact that the signal associated with these modes is close to
the level of numerical precision in the waveform. However,
it is also likely that more sophisticated fitting methods are
needed. In particular, it would be useful to fit the real and
imaginary parts of the waveform simultaneously. It may
also be helpful to fit several �2C‘m modes simultaneously.

While fitting multiple modes is problematic in some
cases, it is essential in others. For the case of �2C32�t�,
the dominant QNMs include both ‘ � 2 and ‘ � 3, both
withm � 2. In fact, it was not possible to fit the ring-down
signal of �2C32�t� without fitting simultaneously for these
two modes. To be explicit, we take as our fitting function

 �2C32 �
XN
n�0

fC322ne
�i�!̂22n�a=Mf;Mf=M��t�tpeak���322n�

� C332ne
�i�!̂32n�a=Mf;Mf=M��t�tpeak���332n�g: (40)

Fitting proceeds as with �2C22, starting with N � 0 and

TABLE V. Richardson extrapolated values for the angular-momentum ratio a=Mf and final mass ratioMf=M from the ring-down fits
to Re
�2C22� for the d � 13, d � 16, and d � 19 cases. For each separation we provide estimates when N overtones of the ‘ � 2,
m � 2 QNMs are used.

d � 13 d � 16 d � 19
N a=Mf Mf=M a=Mf Mf=M a=Mf Mf=M

0 0:724� 0:002 0:948� 0:006 0:72� 0:01 0:945� 0:003 0:702� 0:007 0:946� 0:002
1 0:723� 0:002 0:945� 0:008 0:72� 0:01 0:942� 0:001 0:706� 0:004 0:947� 0:001
2 0:735� 0:002 0:955� 0:006 0:725� 0:007 0:946� 0:002 0:711� 0:002 0:949� 0:002
3 0:732� 0:006 0:951� 0:003 0:725� 0:007 0:946� 0:002 0:709� 0:003 0:947� 0:001
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then adding successive overtones which allow us to fit to
successively earlier times in the ring-down.

Tables X, XI, and XII in Appendix D display the fit
parameters for the �2C32�t�waveform obtained from initial

data with separation parameter d�13, d�16, and d � 19.
Figure 16 shows the quality of the fit to Re
�2C32�t�� for
the cases N � 0, 1, 2 and for the separations d � 16 and
19. We note that by including modes through the n � 2
overtone, we can again fit the ring-down quite well to times
preceding the point where j�2C22j reaches its peak. As for
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FIG. 15 (color online). Comparison of numerical and QNM

�2C22 ring-down waveforms for d � 16 and 19. All plots show
the numerical ring-down waveform as a thin solid (black) line.
The thick solid (red) line displays the fit of the ring-down signal
using the first N ‘ � 2, m � 2 overtones beyond the fundamen-
tal. For plots containing N > 0 overtones, we also include the fit
residual from the previous value of N. This is displayed as a
dashed (blue) line. The coefficients for the displayed fits are
found in Tables VIII and IX.
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�2C32 ring-down waveforms for d � 16 and 19. All plots show
the numerical ring-down waveform as a thin solid (black) line.
The thick solid (red) line displays the fit of the ring-down signal
using the first N ‘ � 2, m � 2 and ‘ � 3, m � 2 overtones
beyond the fundamental. For plots containing N > 0 overtones,
we also include the fit residual from the previous value of N.
This is displayed as a dashed (blue) line. The coefficients for the
displayed fits are found in Tables XI and XII.
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Re
�2C22�t��, we also include the residuals of the previous
fit. We note that the level of consistency of the fits, though
significant, is not as high for �2C32 as seen for �2C22.

During the ring-down phase, it is possible for a few
percent of the final mass Mf and angular momentum
aMf to be radiated away from the system. The Kerr
QNM frequencies and decay constants are computed as-
suming that the mass and angular momentum they carry
away constitute a negligible perturbation on the system.
This raises the question as to whether or not the radiated
energy and angular momentum are affecting the QNM fits.
This issue will, of course, become more significant as the
fits are pushed to earlier times. As we have seen for the
cases of �2C22 and �2C32, fitting to earlier times in the
ring-down requires the use of higher overtones (n > 0)
with shorter decay times. Because these higher overtones
dominate the waveform only at earlier times in the ring-
down, we should expect some increase in the level of
uncertainty in the fits as we incorporate these overtones.

Finally, we want to revisit the plots of the orbital angular
frequency displayed in Fig. 7. The !
 and!D2 frequencies
continue beyond the inspiral phase and through the ring-
down. Beyond the inspiral phase, this frequency clearly
cannot be associated with the orbital angular frequency.
Rather they are half of the dominant GW frequencies seen
in �2C22. In Fig. 17, we plot this dominant frequency from
a time about 10M before the formation of a common AH
and through the ring-down. In this range of times, !c
clearly decouples from !
 and !D2. As the dynamics
transitions from the inspiral phase, the dominant frequency
rises very rapidly, finally reaching a plateau associated
with the dominant QNM ring-down frequency. Both !

and !D2 agree quite well through both the transition and
ring-down, but we note that !D2 shows an unusual ‘‘beat-
ing’’ of the frequency during the ring-down.

We also plot in Fig. 17 the dominant frequency as
measured by the fits to the ring-down. Using the ring-down
fit function in Eq. (39) together with the fit value given in
Tables VII, VIII, and IX yields an analytic expression for

�2C22 through the ring-down phase. Because we indepen-
dently fit Eq. (39) to the real and imaginary parts of

�2C22�t� we have three different ways that we can con-
struct �2C22. We can take the coefficients for the fit from
either Re
�2C22� or Im
�2C22� and use that set of coeffi-
cients exclusively in Eq. (39). Using the analytic represen-
tation of �2C22�t� we can compute the dominant frequency
using Eq. (23) with m�2. A plot of this frequency using
the coefficient obtained form the fit of Re
�2C22� is shown
if Fig. 17 with the label ‘‘ReRDfit (N�3).’’ Notice that
the frequencies agree well during the ring-down phase and
show a period following the peak in j�2C22j where the
frequency increases before reaching its plateau. Also, we
see no evidence of the beating seen in !D2.

However, if we instead construct an analytic representa-
tion of �2C22 using the coefficients from the fits to both

Re
�2C22� and Im
�2C22�, we recover the beating of the
frequency. To be clear, using Eq. (23) to construct the
dominant frequency incorporates both the real and imagi-
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nary parts of �2C22. If we consistently use the coefficients
from the fit to Re
�2C22� when constructing an analytic
representation for Re
�2C22� and use the coefficients from
Im
�2C22� for its representation, then we obtain the line
labeled ‘‘Re� Imfits’’ in Fig. 17. The plot of this
frequency clearly shows a beating of the frequency and
this is due to a small mismatch between the real and
imaginary fit coefficients. It seems clear that the beating
we observe in!D2 is caused by a similar effect. Essentially,
numerical error is leading to a nonphysical mode that is not
circularly polarized, leading to the mismatch seen between
the real and imaginary parts of �4.

VI. THE (PLUNGE AND) MERGER

In Sec. III D we discussed the possible presence of a
rather blurred dynamical ISCO which marks the beginning
of the plunge phase. The latter ends when the CAH forms.
The plunge has a duration of 30–50M, corresponding to
1–1:5 GW cycles. The plunge cycle has a slightly different
shape than the inspiralling cycles when viewed in
Re
�2C22� (see Fig. 11), but it can barely be distinguished
from the inspiralling cycles when viewed in h� and h� (see
Fig. 12). Quite interestingly we notice that the onset of the
plunge phase seems to happen soon after the ‘‘knee’’ in the
frequency curve (see Fig. 7), and when the first change in
the slope of the GW energy flux occurs (see Fig. 26,
especially the bottom panel). A second change of slope
in the frequency and GW energy flux seems to happen
roughly around the CAH, the third change occurs at the
peak of the radiation.

In Fig. 18 we illustrate some other interesting features of
the inspiral to ring-down transition, i.e., the binary BH
merger. We plot the frequencies !c and !
, and the GW
energy flux (multiplied by 100). Circles mark the position
(time and frequency) at which the CAH forms and show
when the coordinate separation between the BHs becomes
less than the estimated corotating light ring of the final BH.
The latter are coordinate dependent quantities. The light
ring is an unstable circular null geodesic of the Kerr
geometry in the equatorial plane of the BH, and we esti-
mate the position of the light ring by noting that for a Kerr
BH with a � 0:70, in Boyer-Lindquist coordinates the
corotating light ring is a radial distance of � 1:17 times
that of the outer horizon [76]. For an estimate of the light-
ring location in the generalized harmonic coordinates of
the simulation, we took the late-time coordinate radius of
the final AH multiplied by 1.17. Of course the different
coordinates used to arrive at this value make it a rather
rough estimate, though given that the notion of a light ring
is not well-defined near coalescence it would not add much
if we found the exact location. When the equal-mass binary
reaches the CAH, only half of the total energy has been
released. A little while before this point, we observe that
!
 decouples from !c. Note also that at the peak of the
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FIG. 18 (color online). Features of the merger phase. We plot
the frequency evaluated from the orbit and the wave, and the GW
energy flux. We mark with circles the time when the common
AH of the final BH first appears, when the binary separation
reaches the light ring of the final BH, the peak of the radiation
flux (which occurs around 3–4M before the peak in the ampli-
tude of the waveform), when 50% of the energy and angular
momentum have been radiated, and the time when 99% of the
energy has been radiated (99% of the angular momentum
appears to be radiated around 5–10M before this, though due
to the oscillations in dJz=dt we are much less certain exactly
when this occurs—see Fig. 27). The top panel refers to the d �
16 run and the bottom panel to the d � 19 run.
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radiation, 23% of the total energy has yet to be released.
Here and in the following, the total energy refers to the
energy radiated from the beginning of the simulation until
the end. Thus, it does not include the energy radiated
during the long inspiral preceding the initial time of the
simulation.

The results obtained in Sec. V, in particular, Figs. 17 and
discussion around them, suggests that the GW emission
soon after the peak of radiation is caused by the excitation
of the QNMs of the final Kerr BH. The frequency of the
least damped QNM l � 2, m � 2, n � 0 is responsible for
the plateau, and the higher overtones (l � 2, m � 2, n >
0), which have smaller frequencies and smaller decay
times, should be responsible for raising the frequency
from the peak of the radiation to the plateau. It is still not
completely clear to us whether the higher overtones and/or
other QNMs, e.g., l � 2, m � 2, n � 0, are able to
smoothly connect the decoupling frequency with the pla-
teau. In fact, soon after the decoupling, there could be a
very short nonlinear phase, perhaps with strong mode
mixing, that would preclude a description in terms of
QNMs. To clarify those issues, it would be interesting to
compute the binary BH metric around the decoupling point
or the CAH, decompose it as a single Kerr metric plus
perturbations, e.g., as done in the close limit approximation
[77–80], and determine more precisely when the perturba-
tive regime starts. In the next section, following a more
phenomenological approach aimed at providing templates
for GW detection, we will see how the ring-down phase
could be matched to the inspiral phase in the EOB model,
assuming that the QNMs are responsible for raising the
frequency from the decoupling to the plateau.

Finally, if we denote by merger the phase from roughly
the decoupling point when M!dec � 0:14–0:16 to the peak
of Re
�2C22� when M!peak � 0:2 or the peak of radiation,
the merger occurs in a very short time � 10–15M, corre-
sponding to � 0:5–0:75 GW cycles. During this phase the
frequency increases by � 45%, causing the GW spectrum
to spread over a large frequency range (see Figs. 22 and
23). We shall discuss how this will affect the detectability
of GWs from equal-mass binaries in Sec. VIII.

VII. EFFECTIVE-ONE-BODY APPROACH TO
INSPIRAL–(PLUNGE)–MERGER-RING-DOWN

The Taylor-expanded Hamiltonian for a two-body sys-
tem was computed at 3PN order in Refs. [81,82]. It took
several years to compute the GW energy flux at 3.5PN
order [25]. Before the 3.5PN dynamics was completed
the Taylor-expanded PN predictions for the GW energy
flux and the phasing of equal-mass binaries were not
accurate enough to obtain robust predictions of the GW
signal during the last stages of inspiral and plunge. For
example, through 2.5PN order, the PN-approximants of
some of the crucial ingredients entering the GW signal,
such as the GW energy flux, differ significantly when

evaluated at subsequent PN orders in the typical frequency
band of ground-based detectors [33]. On the other hand,
the signal-to-noise ratio of ground-based interferometers
(especially the LIGOs) reaches its maximum around
comparable-mass binaries. Thus, likely, the first detection
may come from a coalescence of stellar-comparable-mass
BHs merging in the most sensitive region of the detector’s
frequency band.

At the beginning of 2000, in absence of NR results and
under the urgency of providing templates to search for
comparable-mass BHs, some resummation techniques of
the PN series were proposed. In Ref. [33], the authors
proposed the Padé resummation of the two-body energy
and the GW energy flux, and in Refs. [27] a specific
resummation of the PN Hamiltonian was proposed, the
so-called effective-one-body (EOB) Hamiltonian. Later
on, in Ref. [28] the last stages of inspiral and plunge
were modeled by combining the EOB Hamiltonian with
the Padé resummation of radiation-reaction effects, provid-
ing the GW signal which includes effects beyond the
adiabatic approximation. The EOB Hamiltonian was
then extended at 3PN order without spin effects in
Ref. [30] and with spin effects in Ref. [31]. More recently,
the transition from inspiral to plunge including spin cou-
plings has been modeled in Ref. [32]. These analytical
studies predicted that (i) the two-body motion would be
quasicircular throughout the last stages of inspiral and
plunge, until the light-ring (see Fig. 1 of Ref. [28]),
(ii) the ISCO for an equal-mass binary is a rather blurred
concept, taking place roughly during half of a GW cycle
(see Fig. 12 of Ref. [28]), and that (iii) the adiabatic plunge
lasts only for almost one GW cycle (see Fig. 12 of
Ref. [28]).

In Refs. [28,32], the authors also provided an example of
the full waveform by modeling the merger as a very short
(instantaneous) phase and by matching the natural end of
the EOB plunge (around the light-ring) with the ring-down
phase (see Ref. [83] where similar ideas subsequently
developed also in NR). The matching was done using
only the least-damped QNM whose mass and spin were
determined by the binary BH energy and angular momen-
tum at the end of the EOB plunge. The choice of the light-
ring at � 3M for shifting the description between a (qua-
sicircular) binary motion and a deformed Kerr BH, was
inspired by two considerations [28]. First, in the test-mass
limit, �� 1, Refs. [35,36] (see also Ref. [76]) realized a
long time ago that the basic physical reason underlying the
presence of a universal merger signal was that, when a test
particle falls below 3M (which is also the unstable light
storage ring of Schwarzschild), the GW it generates is
strongly filtered by the effective potential barrier centered
around it. Second, for the equal-mass case � � 1=4, the
close limit approximation [77–80,84] suggests a matching
between the two-body and the perturbed-black-hole de-
scriptions when the distance modulus �0 ’ 2, which
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would correspond to a Schwarzschild-like radial distance
’ 2:6M.

For nonspinning, equal-mass binaries, the EOB ap-
proach predicts at 3PN order [32]: aend=Mend ’ 0:77,
Mend ’ 0:974M, an energy released of ’ 1:3%M until
tend and � 1% from the least-damped QNM phase
[29,32]. Here and henceforth we denote by the subscript
‘‘end’’ the time at the end of the EOB plunge. Depending
on the PN order the ending time can occur slightly before
the conservative light-ring. tend is the time at which the
quasicircular assumption used in building the EOB equa-
tions of motion breaks down [32].

We show now some first-order comparisons between the
numerical waveforms and the EOB waveforms, evaluated
with the EOB conservative dynamics at 3PN order with
spin-orbit and spin-spin effects included through 2PN or-
der, and Padé radiation-reaction energy flux at 3.5PN order
[32]. In contrast to the PN adiabatic model discussed in
Sec. IV B, which should be used with confidence only until
the last stable orbit, the EOB model extends beyond it
through the plunge.

In Sec. IV B a comparison of the PN orbital frequency
with the numerical results was obtained by fitting to the
orbital frequency !c. In the EOB model the orbital fre-
quency is obtained by solving the EOB equations of mo-
tion, thus it is more complicated to implement a least-
square fit. Here, we simply determine by hand which initial
EOB orbital frequency best matches, on average, the nu-
merical orbital frequency !c from the initial time to the
light-ring or CAH (see Sec. VI), and compute the corre-
sponding wave. In Fig. 19 we show the results for the d �
16 and d � 19 runs assuming the nominal � value from
Table I. At the initial time t � 0, we find M!0 � 0:047,
E0=M � 0:986, J0=M2 � 0:896 for d � 16 and M!0 �
0:034, E0=M � 0:988, J0=M

2 � 0:945 for d � 19. The
evolution ends at rend ’ 2:5M, where M!end ’ 0:16,
Eend=M ’ 0:971, Jend=M

2 ’ 0:741 for the d � 16 run,
and at rend ’ 2:5M where M!end ’ 0:16, Eend=M ’
0:971, Jend=M

2 ’ 0:737 for the d � 19 run. We notice
that the EOB conservative ISCO for � � 0:063 is at
M!ISCO � 0:096 [31,32], rather close to the frequency
range M!dyn ISCO � 0:078–0:097 of the dynamical ISCO
discussed in Sec. III D. In Fig. 20 we compare the NR and
EOB Re
�2C22� waveforms. The two vertical dashed lines
in Fig. 20 mark the region during which a dynamical ISCO
may be present. We compute the EOB waveform using
Eq. (26), which is valid in the adiabatic circular-orbit case.
We checked that by relaxing this assumption and comput-
ing Re
�2C22� by taking derivatives of the binary quadru-
pole moment, the wave does not change much, except at
the very end.

By assuming the merger is a very short phase, the
authors of Ref. [28] simply joined the GW signal at the
end of the inspiral to the least-damped QNM. As said
above, this modeling was inspired by the idea that, once

beyond the light-ring (i.e., inside the potential barrier), the
GW emission is quickly dominated by the excitation of the
QNM of the newly formed BH. The choice of matching
only one QNM inevitably creates a sudden jump of the GW
frequency at the matching point. However, a smoother
transition can be obtained by including higher overtones.
As discussed in Sec. VI, the analysis done in Sec. V would
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FIG. 19 (color online). We compare the NR orbital frequency
and the EOB orbital frequency obtained using the nominal �
value from Table I. The top panel refers to the run d � 16, the
bottom panel to d � 19. The horizontal light continuous line
marks the ISCO frequency, as predicted by the conservative
3PN-EOB Hamiltonian. The two dashed lines span the region
in which a dynamical ISCO might be present.
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suggest that the QNM production starts a bit later, around
the peak of the radiation. At this stage we do not know
whether a linear superposition of QNM can be responsible
for raising the frequency from around the light ring (see
Fig. 18) to the peak of radiation. In the spirit of an effective
approach aimed at modeling the GW signal for detection,
we push this idea further by including higher overtones
when matching to the ring-down phase and discuss the
consequences. The inclusion of higher overtones when
matching to the ring-down phase has also recently been

adopted in Ref. [85], where the authors computed the
transition inspiral–plunge–ring-down of a test particle in
Schwarzschild. By including higher overtones, the authors
could successfully match the exact numerical rise of fre-
quency from the light ring to the least damped QNM as
obtained from the Zerilli equation.

First, we evaluate the BH mass and angular-momentum
at the end of the EOB plunge, finding Mend 	 Eend ’
0:971M and aend=Mend 	 Jend=E2

end ’ 0:785. Then, we no-
tice that those values are not the final BH mass and angular
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momentum because the binary has yet to emit energy and
angular-momentum from the light-ring or CAH to the
least-damped mode (see discussions around Fig. 18).
Future NR simulations will provide predictions for differ-
ent mass ratios and spins. Here, guided by the results of
Sec. VI and Fig. 18, we assume that �Mend �Mf�=Mend �

1:5% and �aend � af�=aend � 6%. Thus, we obtain Mf �

0:956M and af=Mf � 0:738. Using Ref. [73], we deter-
mine the frequency and the decay time of the fundamental
mode and the first two overtones, finding M!220 � 0:576,
M!221 � 0:565, M!222 � 0:545, �220=M � 0:0828,
�221=M � 0:250, and �222=M � 0:422. We then determine
the three unknown amplitudes and three unknown phases
of the three QNMs by imposing the continuity of the
frequency !D2, Eq. (23), the wave and its first five deriva-
tives at t � tend. We note that this matching procedure is
rather sensitive to the time of matching because the fre-
quency is increasing very quickly around tend. In Fig. 21 we
compare the frequency and the inspiral–(plunge)–
merger–ring-down wave Re
�2C22� of the EOB model
with the NR results for the case d � 16. The EOB ring-
down frequency is computed from Eq. (23) where we used
in Im
�2C22� the same three amplitudes and three phases of
Re
�2C22�. Were we to use in Im
�2C22� the three ampli-
tudes and phases obtained by matching it at tend, we would
not obtain a good result. This is due to numerical errors
introduced by matching separately Re
�2C22� and
Im
�2C22� at tend.

As seen in Fig. 21, by matching the fundamental QNM
and the first two overtones, the frequency transition be-
comes smoother, but nevertheless it differs from the NR
frequency !
. As we shall see in the next section, this
effective way of including a short in time, but spread in
frequency, merger phase, can mimic the frequency spread
of the power spectrum of the NR waves, though with a
slightly different power law.

VIII. DETECTABILITY OF THE SIGNAL

In this section we compute the Fourier transform of the
numerical waveforms, compare the results with the ana-
lytical predictions, and give an estimate of the optimal
signal-to-noise ratio (SNR) for ground-based and space-
based detectors.

Frequency domain PN templates for the inspiral phase
are generally computed in the so-called stationary phase
approximation (SPA). They read

 hSPA�f� �Af�7=6ei�SPA�f�; A �
1������

30
p

	2=3

M5=6
c

DL
;

(41)

where f is the frequency of the GWs, Mc � �3=5M is the
chirp mass, andDL is the luminosity distance to the source.
In Eq. (41) we have adopted the standard ‘‘restricted PN
approximation,’’ in which the amplitude is expressed to the

leading order in a PN expansion while the phasing
�SPA�f�, is expressed to the highest PN order available.
The phase is currently known through 3.5PN order. Here,
we are only interested in computing the amplitude of the
Fourier transform of the signal and investigating how and
when it starts deviating from the Newtonian prediction
f�7=6. We shall analyze the comparisons between the
Fourier transform phases in the future.

In the top panel of Fig. 22 we plot the Fourier transform
amplitudes of the numerical waveform for the three runs,
for a �15� 15�M� binary which is a typical source for
LIGO/VIRGO/GEO/TAMA. Using Table I we find that for
this binary mass the initial GW frequency in the three runs
is 121, 89, and 71 Hz (vertical dot lines in the top panel of
Fig. 22). To compute the Fourier transform we extrapolate
the numerical waveforms at earlier time, for almost 6�
104 m, by attaching to it the 3PN-adiabatic model which
best fits it. We compute the Fourier transform in three
different ways, from Re
�4� and h� extracted along the
direction perpendicular to the orbital plane, and from

�2C22. Besides a normalization factor, the amplitudes
computed from Re
�4� and �2C22 must agree in the in-
spiral phase, where they satisfy more and more the re-
stricted PN approximation, but they can differ in the last
part of inspiral, merger, and ring-down, when nonlinear
effects and higher harmonics can become important.

From Fig. 22, we see that at low frequency, during the
last stages of inspiral, the amplitude can be approximated
by the Newtonian amplitude f�7=6, with small bumps
maybe due to the presence of eccentricity. At higher fre-
quency, during the merger and ring-down the slope
changes to f�n. At this stage we cannot uniquely deter-
mine the slope index or say if there is more than one
change in the slope. We estimate n � 0:6–0:89 and notice
that the change in the slope can occur as early as the
beginning of the plunge M!� 0:1 or as late as the decou-
pling time M!� 0:16. As an example in Fig. 22 we show
the case n � 2=3. Finally, the signal drops at higher fre-
quencies, around the frequency of the fundamental QNM,
i.e., 620 Hz for the �15� 15�M�. Even if the merger
occurs in a short time, corresponding to � 0:5–0:75 GW
cycle, the frequency increases very quickly during this
phase and then approaches the frequency of the fundamen-
tal QNM. As a consequence, the Fourier transform signal
spreads over a large frequency band 300–600 Hz. We also
computed the Fourier transform amplitude from �4 ex-
tracted along directions � � 0, and found differences in the
merger–ring-down amplitude slope. We shall discuss those
interesting features in a future publication.

In the bottom panel of Fig. 22, we show the sky averaged
SNRs versus total mass, for an equal-mass binary at
100 Mpc, and for initial LIGO. The dash-dotted and dashed
curves are computed assuming the SPA inspiral signal (41)

9Similar results were also obtained independently in Ref. [86]
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until the Schwarzschild ISCO fISCO � 4400=�M=M�� and
the ICO predicted by adiabatic PN theory at 3PN order
[48], respectively. The average SNR for one detector for an
SPA signal is computed using
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q
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s
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�
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: (42)

The continuous light curve in Fig. 22 is computed from the
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FIG. 22 (color online). In the top panel we plot the amplitude
of the Fourier transform of the numerical waveform for a binary
with (redshift) mass �15� 15�M�. The lower horizontal axis
marks the gravitational-wave frequency in Hz, while the upper
axis marks the dimensionless orbital angular velocity that co-
incides with the instantaneous GW frequency. The vertical
dotted lines mark the frequencies at which the runs start. In
the bottom panel, we show the average SNR for one detector
versus the (redshift) total mass for an equal-mass binary at
100 Mpc.
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FIG. 23 (color online). In the top panel we plot the amplitude
of the Fourier transform of the numerical waveform for a binary
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axis marks the dimensionless orbital angular velocity that co-
incides with the instantaneous GW frequency. The vertical
dotted line marks the frequency at which the d � 19 run starts.
In the bottom panel we show the average SNR versus the
(redshift) total mass for an equal-mass binary at 3 Gpc (z �
0:54).
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EOB inspiral–(plunge)–merger–ring-down wave shown
in Fig. 21. The change in the slope that we observe in the
top panel of Fig. 22, together with the inclusion of the
signal beyond the ISCO, causes an increase of the SNR for
large masses [28,31,32,87]. For total masses lower than
�15� 15�M�, the end of the inspiral occurs around the
most sensitive LIGO frequency, while the merger–ring-
down is pushed to higher frequency where the sensitivity is
much lower. As a consequence, the average SNR which
includes merger and ring-down phases does not differ
much from the one that includes only the inspiral phase.
Astrophysical observations and theoretical predictions
suggest that stellar mass BHs have a total mass ranging
between 6–30M�. If binary BHs of larger total mass exist,
they could be detected by initial LIGO with very high
SNR. The EOB model with the instantaneous matching
to three QNMs predicts a SNR close to the NR result. It is
smaller because the effective matching of the inspiral to the
three QNMs (see Fig. 21) gives a Fourier transform am-
plitude which extends until the QNM frequency, but with a
slope index slightly larger than � �0:6–0:8.

In the top panel of Fig. 23 we plot the amplitude of the
Fourier transform for a signal typical of LISA, a �106 �
106�M� supermassive BH binary. In the bottom panel we
show the average SNR for one Michelson LISA configu-
ration versus the total (redshift) mass for an equal-mass
binary at 3 Gpc. The dip in the plot is due to the white-
dwarf/white-dwarf confusion noise [88]. Because of the
inclusion of merger and ring-down phases, the SNR in-
creases considerably for total masses larger than 2�
106M�. We notice that Fig. 23 is consistent with Fig. 7
of Ref. [73], where the authors computed the SNR due to
the ring-down phase, assuming �3%m of energy released
during the merger.

IX. CONCLUSIONS

In this paper we have analyzed the data of several
numerical simulations of the inspiral–merger–ring-down
of an equal-mass binary carrying a very small spin aligned
with the orbital angular momentum.

The combination of several effects, including (i) limited
resolution, (ii) relatively close initial configurations, and
(iii) lack of diagnostics to measure and compensate for
possible coordinate artifacts, makes it impossible to claim
very high accuracy in the comparisons with analytical
models and the analysis of the merger waveform.
Nevertheless, the resolution studies performed in Sec. III
suggest that we are in the convergent regime, and so mean-
ingful conclusions can be drawn from the data.
Furthermore, the consistency with which several quantities
have been measured by independent means suggests that
adverse gauge effects are minor and will not affect many of
the conclusions reached. In particular, as Tables III and V
show, the final mass and angular momentum extracted
from the ring-down are very close to their values measured

through AH properties. Also, the orbital frequency mea-
sured via AH motion is close to the one extracted from the
GW, as Fig. 7 shows.

We found that one of the dominant forms of numerical
error is a slow drift in the phase of the waveform. With
respect to detectability in a GW burst search, this error
does not seem to be very significant, as the cumulated
phase error up to the peak in the radiation can be factored
out by a constant phase shift and the subsequent
coalescence/ring-down waveform does not seem to be
significantly affected by prior phase error. However, for
matching to PN models at earlier time and parameter
estimation this error is significant, and directly translates
into uncertainties in matching parameters.

As Figs. 2 and 3 show, the numerical evolution is char-
acterized by a strong initial pulse of radiation. The timing
of the pulse suggests that it is associated with the assump-
tion of conformal flatness. In fact it has very similar
characteristics to the initial pulse seen in scalar field col-
lapse generated binaries [5,52], which also begin with a
conformally flat spatial metric. Fortunately, the effects of
this pulse of radiation seem to diminish rapidly. The initial
data does not put the binary on a clean circular inspiral
path. As discussed in Sec. III D (see Fig. 5), the trajectory
clearly oscillates about the desired trajectory. The effects
of this oscillation can be interpreted as a small eccentricity
of the initial orbit. We estimated it to be e� 0:02 for the
d � 19 case. While these oscillations could be due to an
actual eccentricity in the initial data, they could also be due
to a lack of an appropriate initial radial momentum. The
current simulations cannot determine which effect, if ei-
ther, is most significant. However, while there are oscilla-
tions in the inspiral trajectory, the resulting dynamics is
still adiabatic (e.g., see Fig. 6) and modeled well by
circular orbits.

Concerning the inspiral phase, as described in Sec. IVA
it is remarkable how well the Newtonian quasicircular
approximation can match the numerical signal of an
equal-mass binary. For this we mean that if the orbital
phase is modeled well, the leading order Newtonian term
in the expansion of the waveform is able to model both the
amplitude and phase of the GW quite accurately until close
to the time of merger. It is also striking how, despite
possible coordinate artifacts, a GW signal computed with
the leading quadrupole formula using the coordinate mo-
tion of the AH’s matches the numerically extracted wave to
a reasonable degree (see Fig. 9).

As discussed in Sec. IV B, the PN adiabatic phase and
frequency matches !c (frequency computed from the AH
motion) well. In particular, if the analytical expressions for
! (28) and � (31) are used, the 3PN-approximant best fits
the data, whereas if the expression for _! (32) is solved
numerically, a 3.5PN-approximant also matches the nu-
merical data to a similar level. The accuracy of the PN-
adiabatic model improves with increasing binary separa-
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tion. We expect it deviates from nonadiabatic models when
approaching the last stable orbit. Nevertheless, we found
that, if the PN-adiabatic model is extrapolated even to the
formation of the CAH, it gives reasonable results. This is
due to the fact that the numerical plunge cycle is very short
and still quasicircular for an equal-mass binary, as origi-
nally predicted in the EOB model [28]. In Sec. VII we
compared the numerical results with the EOB model.
Again we found that the 3.5PN-approximant best matches
the data. The blurred ISCO phase of half of a GW cycle and
subsequent plunge phase of almost one GW cycle pre-
dicted in the EOB model [28] seems to be consistent
with the numerical results. By properly adjusting the
mass and angular momentum of the BH at the end of the
EOB plunge, to account for the energy and angular-
momentum released during the merger, and by including
three QNMs, we could match the EOB inspiral-(plunge)
wave to the ring-down wave (see Fig. 21). This matching
procedure is very sensitive to the time of matching and it is
only partially effective (see the difference in the GW
frequency in Fig. 21) since it does not capture the details
of the merger, but could be improved in the future.

As Fig. 7 shows, !c decouples from the dominant GW
frequency just before the point of formation of the common
AH, around the light ring. We conjecture that this decou-
pling time marks the transition point between inspiral-
(plunge) and merger. We found that the merger accounts
for only a brief time (� 10–15M) compared to the inspiral
(arbitrarily long) or ring-down phases (� 30M as mea-
sured by adding �220 to the time at which higher-order
modes and overtones become insignificant). However, the
dominant GW frequency rises very quickly and spans a
significant range of frequencies during the merger, as can
be seen in the top panel of Fig. 22. With current data, the
peak in j�2C22j (which occurs a fewM after the peak of the
radiation) seems to be a natural point to mark the transition
between the merger and ring-down phases. It is possible
that the higher-order ring-down modes/overtones (with
lower frequencies than !220) are excited by resonance
with the dominant GW frequency as it rises during the
merger. An open and important question remains whether
it would be possible to model the merger by using some
kind of nonlinear modification of the onset of each QNM.

Concerning the ring-down phase, we extracted the fun-
damental QNM and first few overtones. Results are shown
in several tables of Appendix D and Figs. 15 and 16. We fit
to the individual �2C‘m modes instead of to �4 directly
because fitting to �2C‘m includes information from all
directions. The fit to each �2C‘m can, in principle, include
QNMs for all values of ‘ � jmj but only the negative
frequency modes with azimuthal index m and positive
frequency modes with index �m. For �2C22, we found
only the ‘ � 2, m � 2 QNMs are significant. As seen in
Fig. 17, we could fit the ring-down signal to times slightly
before the peak in j�2C22j by using n � 0 . . . 3. For �2C32,

we found that we must use both the ‘ � 2, m � 2 and ‘ �
3, m � 2 QNMs, but other modes do not contribute at a
significant level. Also in this case we can again fit the ring-
down signal to times slightly before the peak in j�2C32j by
using n � 0 . . . 2. More sophisticated ring-down fitting
techniques will be helpful in gaining a better understanding
of the transition from merger to ring-down.

Quite interestingly throughout the inspiral–merger–-
ring-down the balance equation dE=dt � !dJ=dt holds
quite well on average, as Fig. 27 in Appendix B shows,
with a single frequency always dominating the entire evo-
lution (see Fig. 7).

The analysis of the inspiral–merger–ring-down sug-
gests that it should be possible to come up with good
hybrid numerical/analytical waveforms, or even complete
analytical waveforms where the full numerics guides how
we need to patch the inspiral and ring-down waveforms
together. To this end, it will be very important to devise a
simple model of how the QNM’s are excited during the
transition regime. Of course, all of this will be moot if the
relative simplicity of this merger scenario breaks down for
more interesting initial conditions (m1 � m2, S1 � S2 6� 0
and nonaligned with the orbital angular momentum), so it
will be important to numerically evolve more varied
classes of initial data.

Finally, during the relatively brief merger phase the
dominant GW frequency rises quickly, generating a signal
in the Fourier domain that is rather spread out in frequency.
The top panels in Figs. 22 and 23 indicate a change of slope
in the signal Fourier amplitude ~h. The slope during inspiral
is�7=6. The slope during the transition merger-ring-down
seems to be� �0:6–0:8. The inclusion of the merger-ring-
down signal increases the SNR for large binary masses. If
binary BHs of mass larger than 40M� exist, they could be
detected by one single LIGO with SNR up to �15 at
100 Mpc. LISA could detect supermassive BHs of masses
2� 106–107, with SNR up to 104 at 1 Gpc.
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APPENDIX A: ADDITIONAL MULTIPOLE
MOMENTS

For the majority of comparisons in this paper we focused
on the dominant ‘ � jmj � 2 spherical harmonic compo-
nents of a waveform, as for quasicircular, equal-mass
binaries that are initially corotating one does not expect
other multipoles to be present to any significant degree. In
Fig. 24 we plot the magnitudes of several higher multiple
moments of the waveform relative to the �2C2;2 multipole
moment for the d � 19 h=2 run (the d � 13 and d � 16
have a similar spectrum). The next-to-leading order com-
ponent of the waveform is the �2C4;4 moment, which is
about an order of magnitude smaller than �2C2;2. At up to 5
times smaller than �2C4;4 are the �2C‘�3;2, �2C6;4, and

�2C6;6 modes. Interestingly, during the ring-down part of
the waveform the relative magnitude of the �2C‘�3;2

modes grow and become almost as significant as the

�2C4;4 mode. We only calculated components of �4 up
to ‘ � jmj � 6—all other modes not shown (including the
axisymmetric m � 0 modes) are at least a factor of 3 times
smaller than any of the modes in the plot. Note, however,
that the subdominant components of the waveform are
more susceptible to gauge effects and numerical truncation
error in the solution as their relative amplitudes are so
small; hence one should be wary of drawing any significant
conclusions from Fig. 24.

Even though the higher multipole moments are small, it
will still be interesting to compare them to the predictions
of perturbative calculations. Furthermore, for unequal
mass binaries and/or binaries with significant initial

spins—in particular with spin components that are not
aligned with the orbital angular momentum—the higher
multiple moments will play a much more important role in
the description of the waveforms. We leave it to future
studies to analyze these modes in more detail.

APPENDIX B: ENERGY AND ANGULAR-
MOMENTUM FLUX

The GW energy flux emitted by a binary moving along
an adiabatic sequence of circular orbits is currently known
through 3.5PN order [25] for nonspinning BHs and through
2.5PN for spinning BHs [66]. It reads
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The numerical energy flux is computed in terms of the
mode amplitudes �2C‘m�t� as
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In the top panels of Figs. 25 and 26, we compare the PN-
adiabatic and numerical fluxes for the runs d � 16 and d �
19. We compute the PN-adiabatic flux from Eq. (B1), using
the best-fit ! derived in Sec. IV B. To better pinpoint the
differences, we show in the bottom panels of Figs. 25 and
26, the GW energy fluxes normalized to the Newtonian
GW flux, assuming the Keplerian relation !2r3=M � 1
valid for circular orbits. In addition, we show a curve where
the flux has been calculated without assuming the
Keplerian relation. We notice that for the case d�19, ex-
cept for the very first part of the evolution, the PN-adiabatic
flux averages the numerical one until�30–50M before the
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FIG. 24 (color online). Magnitudes of several subdominate
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extracted—those not present in the plot were several times (at
least) smaller than any of the modes shown.
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CAH forms. For the case d � 16, the PN-adiabatic flux
computed from the best-fit PN-adiabatic ! always over-
estimates the numerical one.

Figures 25 and 26 show that the frequency obtained by
fitting the numerical frequency, as done in Sec. IV B, not

only provides a GW signal that matches the numerical one
quite well, but also provides an energy flux that is consis-
tent with the numerical energy flux. However, this study
does not give hints on which analytical model and/or PN
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energy fluxes of the numerical simulation and PN-adiabatic
model when the best-fit for the orbital frequency is used (see
Sec. IV B). In the bottom plot, we show the same comparisons
but we divide the fluxes by the Newtonian GW flux. For the
numerical case we show the results assuming circular orbits, i.e.,
FNewt � 32=5�2�M!�10=3 and not assuming circular orbits, i.e.,
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FIG. 25 (color online). In the top plot we compare the GW
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model when the best fit for the orbital frequency is used (see
Sec. IV B). In the bottom plot, we show the same comparisons
but we divide the fluxes by the Newtonian GW flux. For the
numerical case we show the results assuming circular orbits, i.e.,
FNewt � 32=5�2�M!�10=3 and not assuming circular orbits, i.e.,
FNewt � 32=5�2�M!�6�M=r��4. The data refers to the d � 16
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order best fits the numerical flux. We leave for future work
a more detail study of the comparison between numerical
and analytical energy and angular-momentum fluxes,
which includes fully relaxing the assumption of circular
orbits and comparisons with the Padé resummed fluxes.

In PN theory it is possible to show that the following
relationship holds between the radiated angular-
momentum flux dJz=dt and energy flux dE=dt for circular
orbits:

 

dE
dt
� !

dJz
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: (B4)

The above equation is used in building the EOB equations
of motion [28,32]. The numerical angular-momentum flux
is computed in terms of the mode amplitudes �2C‘m�t� as
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where E‘m�t� is a dimensionless second time integral of

�2C‘m�t� defined by
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In Fig. 27 we plot these two quantities calculated from
the angular momentum and energy fluxes of the numerical
simulation, using the frequency !D2 (23). The oscillations
we see in the numerical dJz=dt are, we believe, due in part
to improper initial conditions in the double-time integral of
�4 used to obtain dJz=dt (we used initial conditions that
are valid at t � �1); however, on average (B4) appears to
hold to a reasonable degree throughout the entire
evolution.

APPENDIX C: EFFECT OF EXTRACTION RADIUS
ON MEASURED WAVEFORM

There are many coordinate related issues in extracting
GWs from the simulation, most of which have not been
rigorously addressed for this set of runs. The issues can be
summarized by the question how does the gauge used in
the simulation affect the assumed relationship between �4

and the gravitational-wave strain given in Eq. (14)? Most
certainly there are differences that decay by some power of
r, as only in the limit as r! 1 is (14) strictly satisfied. To
test whether such differences are present and estimate how
significant they are, we can examine rM�4�t; r; �; ��, or
equivalently �2C‘m�t; r� as defined in Eq. (17), as a func-
tion of extraction radius r. In the wave zone of a ‘‘good’’
coordinate system �2C‘m�t; r� � �2C‘m�t� r� for large r,
and so by comparing the waveform at several extraction
radii will give some hints as to the adequacy of the
coordinates.

Figures 28–30 show two plots each of �2C2;2�t; r� at
four extraction radii, r � 12:5M, 25M, 37:5M, and 50M,
for each of the three simulations (h=2 resolution). The
plots on the top show the early part of the waveform,
shifted by an appropriate amount in time assuming that
the wave is propagating with unit velocity. As can be seen,
going from an extraction radius of 37:5M to 50M the
shifted waveforms all overlap quite closely, in consistency
with wavelike propagation. However, these time shifts do
not give such a good match in the part of the waveform
associated with the coalescence and ring-down of the
binary. This is evident from the plots on the bottom, where
now the time shift has been chosen to give the best possible
phase overlap around peak amplitude. What these latter
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plots suggest is that the gauge changes by a small amount
with time in the wave extraction regime of the simulation,
and the amount of change is apparently correlated with the
amplitude of the GWs being emitted.

These effects are summarized in Table VI, where we
give the average coordinate propagation speeds between

the different extraction radii during the inspiral and coales-
cence/merger portion of the signal. Another apparent
gauge pathology seen in Figs. 28–30 is that near the
peak amplitude the assumed 1=r decay in the wave ampli-
tude [factored out in Eq. (17)] does not describe the situ-
ation as well as in the inspiral regime. This could happen
(for example) if the coordinate sphere r � ri begins to
deviate from a geometric sphere of radius ri; such a change
in gauge could also affect the coordinate velocity of the
wave, and in fact the trend of decreasing amplitude with
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respectively.
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extraction radius is consistent with the decrease in wave
speed (though cannot by itself account for all the change in
velocity).

APPENDIX D: TABLES

This appendix contains tables from the QNM ring-down
analysis presented in Sec. V. Tables VII, VIII, and IX are fit
parameters for the �2C22 component of the waveform from
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FIG. 30 (color online). Time-shifted waveforms versus extrac-
tion radius for d � 19 (see the caption describing the corre-
sponding d � 13 plot in Fig. 28).

TABLE VI. The average GW propagation speed between vari-
ous extraction radii for the inspiral part of the wave and the
coalescence/ring-down (‘‘peak’’) part—see Figs. 28–30.

d � 13 vavg;inspiral vavg;peak

r � 12:5M to 25M � � � 0.84
r � 25M to 37:5M 0.98 0.89
r � 37:5M to 50M 0.98 0.93

d � 16 vavg;inspiral vavg;peak

r � 12:5M to 25M � � � 0.77
r � 25M to 37:5M 0.99 0.85
r � 37:5M to 50M 0.99 0.89

d � 19 vavg;inspiral vavg;peak

r � 12:5M to 25M � � � 0.71
r � 25M to 37:5M 1.20 0.81
r � 37:5M to 50M 1.00 0.86

TABLE VII. Fit parameters for �2C32 for the d � 13 case.
tr=m denotes the time after the peak in j�2C22j at which the
fitting started.

Re
�2C22� Im
�2C22�

N � 0 N � 1 N � 2 N � 3 N � 0 N � 1 N � 2 N � 3

tr=M 20 8.5 �2:5 �6:5 17 4 �0:5 �9:5
a=Mf 0.725 0.723 0.737 0.736 0.725 0.735 0.733 0.748
Mf=M 0.943 0.939 0.950 0.949 0.943 0.948 0.945 0.959

C2220 �0:143 �0:146�0:140 �0:140 �0:145�0:142�0:144 �0:138
�2220 1.65 1.60 1.60 1.58 1.66 1.59 1.57 1.58
C2221 � � � 0.115 0.103 0.106 � � � 0.0985 0.120 0.0946
�2221 � � � 1.25 0.975 0.959 � � � 1.07 0.979 0.946
C2222 � � � � � � �0:0268�0:0365 � � � � � � �0:0442�0:0265
�2222 � � � � � � 0.580 0.501 � � � � � � 0.688 0.445
C2223 � � � � � � � � � �0:005 13 � � � � � � � � � �0:002 65
�2223 � � � � � � � � � 3.14 � � � � � � � � � 3.04

M!220 0.577 0.579 0.579 0.579 0.577 0.579 0.580 0.580
M=�220 0.0845 0.0850 0.0834 0.0835 0.0847 0.0836 0.0841 0.0820
M!221 � � � 0.567 0.568 0.568 � � � 0.569 0.569 0.569
M=�221 � � � 0.257 0.252 0.252 � � � 0.253 0.254 0.248
M!222 � � � � � � 0.548 0.548 � � � � � � 0.548 0.550
M=�222 � � � � � � 0.425 0.423 � � � � � � 0.428 0.417
M!223 � � � � � � � � � 0.520 � � � � � � � � � 0.522
M=�223 � � � � � � � � � 0.602 � � � � � � � � � 0.591

TABLE VIII. Fit parameters for �2C32 for the d � 16 case.
tr=m denotes the time after the peak in j�2C22j at which the
fitting started.

Re
�2C22� Im
�2C22�

N � 0 N � 1 N � 2 N � 3 N � 0 N � 1 N � 2 N � 3

tr=M 20.5 8.5 2.5 �2:5 19 10 0 �4
a=Mf 0.729 0.726 0.730 0.731 0.728 0.722 0.736 0.739
Mf=M 0.947 0.942 0.944 0.945 0.947 0.939 0.949 0.951

C2220 �0:151 �0:155 �0:153 �0:153 �0:152 �0:158 �0:152 �0:150
�2220 1.70 1.66 1.63 1.62 1.71 1.67 1.63 1.62
C2221 � � � 0.146 0.164 0.169 � � � 0.151 0.147 0.153
�2221 � � � 1.13 0.922 0.894 � � � 1.26 0.920 0.811
C2222 � � � � � � �0:0971�0:126 � � � � � � �0:0666�0:0959
�2222 � � � � � � 0.636 0.548 � � � � � � 0.559 0.278
C2223 � � � � � � � � � 0.0444 � � � � � � � � � 0.0263
�2223 � � � � � � � � � 0.325 � � � � � � � � � �0:133

M!220 0.577 0.578 0.579 0.579 0.577 0.578 0.579 0.580
M=�220 0.0840 0.0846 0.0842 0.0842 0.0841 0.0851 0.0836 0.0833
M!221 � � � 0.567 0.568 0.568 � � � 0.566 0.568 0.569
M=�221 � � � 0.256 0.254 0.254 � � � 0.257 0.252 0.251
M!222 � � � � � � 0.547 0.547 � � � � � � 0.548 0.549
M=�222 � � � � � � 0.429 0.429 � � � � � � 0.426 0.424
M!223 � � � � � � � � � 0.518 � � � � � � � � � 0.520
M=�223 � � � � � � � � � 0.607 � � � � � � � � � 0.600
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TABLE IX. Fit parameters for �2C32 for the d � 19 case. tr=M denotes the time after the peak in j�2C22j at which the fitting started.

Re
�2C22� Im
�2C22�

N � 0 N � 1 N � 2 N � 3 N � 0 N � 1 N � 2 N � 3

tr=M 21.5 7.5 1 �4 20.5 7 �1:5 �5:5
a=Mf 0.707 0.709 0.712 0.712 0.705 0.705 0.721 0.723
Mf=M 0.948 0.947 0.948 0.947 0.946 0.943 0.955 0.955

C2220 0.170 0.172 0.171 0.171 0.173 0.176 0.168 0.168
�2220 2.46 2.41 2.39 2.39 2.47 2.40 2.39 2.37
C2221 � � � �0:158 �0:179 �0:183 � � � �0:177 �0:160 �0:167
�2221 � � � 1.97 1.81 1.80 � � � 1.97 1.79 1.71
C2222 � � � � � � 0.0859 0.107 � � � � � � 0.0590 0.0824
�2222 � � � � � � 157 1.50 � � � � � � 1.47 1.26
C2223 � � � � � � � � � �0:0273 � � � � � � � � � �0:0160
�2223 � � � � � � � � � 1.22 � � � � � � � � � 0.815

M!220 0.566 0.567 0.568 0.568 0.565 0.567 0.568 0.569
M=�220 0.0850 0.0850 0.0848 0.0848 0.0852 0.0855 0.0837 0.0836
M!221 � � � 0.555 0.556 0.556 � � � 0.555 0.557 0.557
M=�221 � � � 0.257 0.256 0.256 � � � 0.258 0.253 0.253
M!222 � � � � � � 0.534 0.534 � � � � � � 0.535 0.536
M=�222 � � � � � � 0.432 0.432 � � � � � � 0.427 0.426
M!223 � � � � � � � � � 0.505 � � � � � � � � � 0.507
M=�223 � � � � � � � � � 0.613 � � � � � � � � � 0.603

TABLE X. Fit parameters for �2C32 for the d � 13 case. tr=M denotes the time after the peak in j�2C22j at which the fitting started.

Re
�2C32� Im
�2C32�

N � 0 N � 1 N � 2 N � 0 N � 1 N � 2

tr=M 16 �0:5 �4:5 14.5 �2 10
a=Mf 0.731 0.753 0.721 0.704 0.738 0.710
Mf=M 0.947 0.955 0.921 0.931 0.953 0.925

C3220 �0:007 53 �0:007 30 �0:008 68 �0:007 55 �0:007 21 �0:008 04
�3220 1.53 1.33 1.16 0.915 0.816 0.720
C3320 0.005 99 0.005 63 0.006 28 0.008 44 0.007 34 0.008 11
�3320 2.77 2.61 2.14 2.86 2.89 2.61
C3221 � � � 0.008 22 0.0272 � � � 0.007 87 0.0142
�3221 � � � 0.749 1.17 � � � 0.720 0.872
C3321 � � � �0:005 92 �0:0188 � � � �0:007 528 �0:0121
�3321 � � � 1.56 0.298 � � � 2.16 1.48
C3222 � � � � � � �0:0153 � � � � � � �0:002 35
�3222 � � � � � � 2.46 � � � � � � 1.98
C3322 � � � � � � �0:0127 � � � � � � �0:002 01
�3322 � � � � � � 1.71 � � � � � � 3.10

M!220 0.578 0.585 0.589 0.574 0.578 0.580
M=�220 0.0840 0.0821 0.0868 0.0866 0.0831 0.0869
M!320 0.817 0.820 0.836 0.819 0.815 0.827
M=�320 0.0874 0.0855 0.0904 0.0902 0.0865 0.0905
M!221 � � � 0.575 0.577 � � � 0.567 0.568
M=�221 � � � 0.248 0.262 � � � 0.251 0.263
M!321 � � � 0.813 0.828 � � � 0.807 0.818
M=�321 � � � 0.258 0.273 � � � 0.261 0.273
M!222 � � � � � � 0.555 � � � � � � 0.546
M=�222 � � � � � � 0.443 � � � � � � 0.443
M!322 � � � � � � 0.812 � � � � � � 0.802
M=�322 � � � � � � 0.462 � � � � � � 0.462
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TABLE XI. Fit parameters for �2C32 for the d � 16 case. tr=m denotes the time after the peak in j�2C22j at which the fitting started.

Re
�2C32� Im
�2C32�

N � 0 N � 1 N � 2 N � 0 N � 1 N � 2

tr=M 15.5 3.5 �5 14.5 0.5 �5
a=Mf 0.740 0.718 0.722 0.731 0.7.22 0.729
Mf=M 0.952 0.936 0.922 0.944 0.928 0.918

C3220 �0:009 03 �0:009 90 �0:107 �0:008 46 �0:009 32 �0:0101
�3220 1.57 1.61 1.25 1.32 1.05 0.828
C3320 0.008 35 0.009 19 0.009 07 0.009 81 0.0102 0.009 88
�3320 2.88 2.75 2.28 2.88 2.49 2.20
C3221 � � � 0.009 99 0.0350 � � � 0.0216 0.0413
�3221 � � � 1.91 1.37 � � � 0.911 0.918
C3321 � � � �0:0189 �0:0265 � � � �0:0192 �0:0273
�3321 � � � 2.14 0.649 � � � 1.34 0.404
C3222 � � � � � � �0:0179 � � � � � � �0:017
�3222 � � � � � � 2.67 � � � � � � 2.10
C3322 � � � � � � �0:0149 � � � � � � �0:0137
�3322 � � � � � � 2.08 � � � � � � 1.79

M!220 0.579 0.578 0.589 0.580 0.588 0.595
M=�220 0.0831 0.0856 0.0867 0.0842 0.0859 0.0867
M!320 0.817 0.821 0.835 0.820 0.833 0.841
M=�320 0.0865 0.0891 0.0903 0.0877 0.0895 0.0903
M!221 � � � 0.566 0.577 � � � 0.576 0.583
M=�221 � � � 0.259 0.262 � � � 0.260 0.262
M!321 � � � 0.813 0.827 � � � 0.824 0.833
M=�321 � � � 0.269 0.273 � � � 0.270 0.273
M!222 � � � � � � 0.555 � � � � � � 0.561
M=�222 � � � � � � 0.442 � � � � � � 0.442
M!322 � � � � � � 0.811 � � � � � � 0.817
M=�322 � � � � � � 0.461 � � � � � � 0.461

TABLE XII. Fit parameters for �2C32 for the d � 19 case. tr=M denotes the time after the peak in j�2C22j at which the fitting
started.

Re
�2C32� Im
�2C32�

N � 0 N � 1 N � 2 N � 0 N � 1 N � 2

tr=M 13.5 0 �5 12.5 �0:5 �6
a=Mf 0.729 0.723 0.706 0.730 0.713 0.704
Mf=M 0.964 0.956 0.937 0.961 0.944 0.930

C3220 0.009 31 0.009 78 0.0107 0.007 42 0.008 23 0.008 96
�3220 2.40 2.34 2.23 2.10 2.02 1.91
C3320 0.007 04 0.007 29 0.007 82 0.008 30 0.008 80 0.009 07
�3320 0.471 0.326 0.493 0.431 0.218 �0:0134
C3221 � � � �0:009 74 �0:0210 � � � �0:0148 �0:0259
�3221 � � � 2.05 2.23 � � � 1.69 1.91
C3321 � � � 0.009 61 0.0187 � � � 0.0137 0.0225
�3321 � � � 2.58 1.77 � � � 2.26 1.59
C3222 � � � � � � �0:007 50 � � � � � � �0:0853
�3222 � � � � � � 0.442 � � � � � � 0.0885
C3322 � � � � � � �0:007 95 � � � � � � �0:008 82
�3322 � � � � � � 0.291 � � � � � � 0.0739

M!220 0.566 0.568 0.571 0.569 0.571 0.574
M=�220 0.0826 0.0835 0.0860 0.0828 0.0850 0.0866
M!320 0.802 0.805 0.815 0.805 0.812 0.819
M=�320 0.0860 0.0870 0.0896 0.0862 0.0886 0.0902
M!221 � � � 0.557 0.559 � � � 0.559 0.562
M=�221 � � � 0.252 0.260 � � � 0.227 0.262
M!321 � � � 0.797 0.806 � � � 0.804 0.811
M=�321 � � � 0.263 0.271 � � � 0.268 0.273
M!222 � � � � � � 0.537 � � � � � � 0.539
M=�222 � � � � � � 0.439 � � � � � � 0.442
M!322 � � � � � � 0.790 � � � � � � 0.794
M=�322 � � � � � � 0.458 � � � � � � 0.461
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the d � 13, 16 and 19 cases respectively; similarly
Tables X, XI, and XII are fit parameters for the �2C32
component of the waveform for the same set of
separations.

APPENDIX E: RESULTS FOR d � 13

This appendix contains some figures showing results
from the d � 13 run that were excluded from the main

text for brevity. Figure 31 shows orbital angular frequen-
cies extracted using several methods (Sec. IVA), and a
comparison of the numerical and NQC inspiral waveforms
(Sec. IVA), Fig. 32 shows a comparison of frequencies and
waveform components between NR and various analytical
counterparts (Sec. IV B), Fig. 33 shows results from QNM
extraction (Sec. V), and Fig. 34 plots the dominant fre-
quencies during the ring-down phase (Sec. V) and identi-
fies features of the merger (Sec. VI).
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FIG. 32 (color online). (top panel) Comparison of the NR and
three analytical orbital frequencies—see Fig. 10 for a full
description. (bottom panel) Comparison of the NR and analytical
Re
�2C22�—see Fig. 11 for a full description.
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FIG. 31 (color online). (top panel) Orbital angular frequencies
for the d � 13 case. See Fig. 7 for a full description. (bottom
panel) Comparison of numerical and NQC inspiral waveforms
for the d � 13. See Fig. 8 for a full description.
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