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We study the inspiral, merger, and ringdown of unequal mass black hole binaries by analyzing a
catalogue of numerical simulations for seven different values of the mass ratio (from q � M2=M1 � 1 to
q � 4). We compare numerical and post-Newtonian results by projecting the waveforms onto spin-
weighted spherical harmonics, characterized by angular indices �l;m�. We find that the post-Newtonian
equations predict remarkably well the relation between the wave amplitude and the orbital frequency for
each �l; m�, and that the convergence of the post-Newtonian series to the numerical results is non-
monotonic. To leading order, the total energy emitted in the merger phase scales like �2 and the spin of the
final black hole scales like �, where � � q=�1� q�2 is the symmetric mass ratio. We study the multipolar
distribution of the radiation, finding that odd-l multipoles are suppressed in the equal mass limit. Higher
multipoles carry a larger fraction of the total energy as q increases. We introduce and compare three
different definitions for the ringdown starting time. Applying linear-estimation methods (the so-called
Prony methods) to the ringdown phase, we find resolution-dependent time variations in the fitted
parameters of the final black hole. By cross correlating information from different multipoles, we
show that ringdown fits can be used to obtain precise estimates of the mass and spin of the final black
hole, which are in remarkable agreement with energy and angular momentum balance calculations.
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I. INTRODUCTION

More than 30 years after the first numerical simulations
of binary black hole dynamics, the numerical relativity
community is finally ready to compare binary black hole
simulations with experimental data. Thanks to a series of
recent breakthroughs, long term evolutions of inspiralling
binary black holes that last for more than one orbit
have been obtained with several independent codes, and
accurate gravitational wave signals have been computed
[1–11].

The use of numerical waveforms as templates for gravi-
tational wave detection requires large-scale parameter
studies, and correspondingly large computational resour-
ces. The main current technical problems in the field are
the efficiency of the numerical simulations and the devel-
opment of a ‘‘data analysis pipeline,’’ connecting numeri-

cal simulations with analytical calculations of the early
inspiral and late ringdown phases, and (eventually) with
gravitational wave searches in actual detector data. To
build a common language between the numerical relativity
and data analysis communities, we must develop a deeper
understanding of the physical content of the simulations
using analytical techniques, such as post-Newtonian (PN)
theory and black hole perturbation theory. A better ana-
lytical understanding of the simulations is important for
many reasons:

(1) To determine which regions of the parameter space
(mass, spin magnitude and inclination, orbital sepa-
ration, eccentricity . . .) must be explored by numeri-
cal simulations, and which regions can be covered
by (say) analytically inspired interpolations of the
numerical waveforms. This would obviously save a
significant amount of computing time.

(2) To develop optimal strategies for the construction of
detection templates, using a combination of numeri-
cal and analytical techniques.

(3) To understand details of the nonlinear physics en-
coded in the strong-field merger gravitational wave-
forms, and extract as much science as possible from
a detection.

In this paper we focus on point (3), and we try to
develop a general framework to quantitatively compare
analytical calculations of the inspiral and ringdown wave-
forms with the ‘‘full’’ waveforms produced by numerical
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simulations, extending from late inspiral through merger
and ringdown.

Our work can be considered an extension of the recent
analysis by Buonanno, Cook, and Pretorius ([1], hence-
forth BCP). BCP studied simulations of nonspinning, equal
mass black hole binaries starting out at three different
initial separations. In this work we examine a larger set
of simulations performed using the BAM code [2,3] and the
moving puncture method. We consider seven different
mass ratios (q � M2=M1 ’ 1 to q ’ 4 in steps of ’ 0:5)
with initial coordinate separation D ’ 7M, roughly corre-
sponding to �2 orbits before merger. For each mass ratio,
the simulations were carried out at three different resolu-
tions. To explore the effect of initial separation on the
physical parameters of the remnant, we also consider two
runs at separation D ’ 8M (for q � 2 and q � 3), and one
run at separation D ’ 10M (for q � 1). We typically use
an extraction radius rext � 30M, with the exception of the
q � 1 run with D ’ 10M, in which case we extract gravi-
tational waves at rext � 30M, 40M, and 50M.

Section II contains details of our numerical setup. In
Sec. II A we study in some detail a well-known issue with
the extraction of gravitational waveforms from numerical
simulations: the problem of fixing integration constants
when we integrate the Weyl scalar �4 twice in time to
obtain the gravitational wave amplitude h. Fixing the in-
tegration constants to zero produces a systematic drift in h
and in its first time derivative. This drift is sometimes
referred to in the literature as a ‘‘memory effect,’’ but
this is somewhat misleading. The so-called memory effect
is really due to numerical errors, wrong initial conditions,
and limitations of wave-extraction techniques, and it
should not be confused with the Christodoulou memory,
which is a true (if typically small) physical effect due to the
nonlinearity of general relativity [12]. We find that the
extraction radius is critical to reduce the amplitude drift,
and that resolution only seems to affect the drift for low-
amplitude components of the wave.

In Sec. III we study the inspiral-merger transition. We
start by projecting the 2.5PN gravitational wave amplitude
for quasicircular, nonspinning binaries [13–15] onto spin-
weighted spherical harmonics. In this way we obtain the

spin-weighted spherical harmonic components of the Weyl
scalar as PN series in the binary’s orbital frequency:  l;m �
 l;m�M��. We refer to this analytical expression of the
gravitational wave amplitudes as the post-Newtonian qua-
sicircular (PNQC) approximation (see Sec. III A for de-
tails, and Appendix A for a complete list of all the
multipolar components).

The PNQC approximation can be used in two ways.
First, given the orbital frequency evolution ��t�, we can
compute (an approximation to) the multipolar components
 l;m. Conversely, given the modulus of the wave amplitude
j l;mj�t�, we can numerically invert the PN expansions to
obtain a PNQC estimate of the orbital frequency: � ’
!PNQC. In Secs. III B we compare !PNQC with two alter-
native estimates of the orbital frequency, first introduced in
BCP: !Dm (an estimate obtained from the gravitational
wave frequency) and !c (computed from the punctures’
coordinate motion). Using these three different estimates
of the orbital frequency, we study the convergence of the
PNQC approximation. We find that, as in the point-particle
case [16], the convergence of the PN series is not
monotonic. We also study the effect of resolution and
wave extraction on the agreement between PNQC
results and numerical results. We find that low resolution
increases numerical noise in the frequencies and ampli-
tudes at late times. A small extraction radius produces
systematic errors at large separations, where gravitational
wavelengths are longer, but it does not sensibly affect the
ringdown phase.

In Sec. III C we study in detail the total radiated energy
Etot and the final angular momentum jfin as functions of the
mass ratio, providing fitting formulas for each of these
quantities. We also compare the energy and angular mo-
mentum fluxes with their PNQC estimates, and we study
(both analytically and numerically) the multipolar distri-
bution of the radiation. To leading order, we find that
Etot � �

2 and jfin � �, where � � q=�1� q�2 is the so-
called symmetric mass ratio, and we provide fitting for-
mulas for these quantities. As predicted by the PNQC
approximation, odd-l multipoles of the radiation are sup-
pressed in the equal mass limit. As the mass ratio increases,
higher multipoles (with l > 2) carry a larger fraction of the

TABLE I. Summary of the main results of this paper (see text). To convert from radiated momenta to kick velocities in km s�1, the
numbers in this table must be multiplied by c=104 ’ 30 km s�1. Further details (including estimates of the uncertainties) are given in
the bulk of the paper.

q jfin jQNM
Etot

M �%l � 2; 3� Jtot

M2
EEMOP

M �%l � 2; 3� JEMOP

M2
104PEMOP

M
EISCO

M �%l � 2; 3� JISCO

M2
104PISCO

M
Efilter

M

1.0 0.689 0.684 0.0372 (96.3, 0.4) 0.246 0.0185 (97.3, 0.7) 0.0700 0 0.0266 (99.1,0.5) 0.1231 0 0.028
1.5 0.665 0.664 0.0340 (94.8, 2.0) 0.229 0.0174 (91.9, 2.1) 0.0676 2.32 0.0245 (97.1,2.4) 0.1165 2.05 0.026
2.0 0.626 0.626 0.0286 (91.8, 4.6) 0.196 0.0142 (91.5, 5.1) 0.0565 8.77 0.0208 (93.5,5.4) 0.0985 3.17 0.021
2.5 0.584 0.581 0.0238 (89.2, 6.8) 0.167 0.0119 (92.4, 7.6) 0.0480 9.42 0.0172 (91.1,8.0) 0.0850 3.68 0.018
3.0 0.543 0.544 0.0200 (86.8, 8.7) 0.143 0.0103 (85.4, 9.3) 0.0438 8.99 0.0146 (88.1,10.1) 0.0737 3.92 0.015
3.5 0.506 0.509 0.0170 (84.6, 10.1) 0.124 0.0089 (84.2, 9.6) 0.0387 8.29 0.0123 (86.2,11.8) 0.0645 3.88 0.012
4.0 0.474 0.478 0.0145 (83.2, 11.3) 0.108 0.0078 (82.1, 10.4) 0.0345 7.49 0.0106 (83.4,13.0) 0.0568 3.82 0.011
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total energy: for q * 2, l � 3 typically carries �10% of
the total energy (see Table I below).

In Sec. IV we turn our attention to the merger-ringdown
transition. During ringdown the waveform can be de-
scribed as a superposition of complex exponentials, the
quasinormal modes (QNMs). In [17] we argued that Prony
methods (which are well known in signal processing) are in
many ways ‘‘optimal’’ methods to extract QNM frequen-
cies from a numerical signal. After explaining our choice
of the fitting window, in Sec. IV B we use Prony methods
and standard, nonlinear least-squares fits to look at the time
dependence of the final black hole’s parameters. We find
resolution-dependent deviations in these parameters from
the values predicted by linear black hole perturbation
theory. These effects may be due to nonlinearities and/or
to rotational mode coupling, but at present we cannot
exclude the possibility that they are, more trivially, an
artifact of finite numerical resolution. In Sec. IV C we
show that, by cross correlating information from different
multipolar components of the ringdown waves, we can find
an empirical ‘‘best guess’’ for the optimal time to estimate
the final black hole’s mass and angular momentum. We
argue that, because of the no-hair theorem, this best guess
corresponds to the last time when the angular momenta (or
masses) obtained by fitting the dominant multipoles agree
with each other. In support of this argument, we also show
that estimates of the mass and spin of the final black hole
based on QNM fits are in remarkable agreement with
wave-extraction methods.

Black hole QNMs do not form a complete set, and for
this reason it is not possible to define unambiguously the
beginning of the ringdown phase. In Sec. IV D we consider
three different definitions of the ringdown starting time,
two of which have already appeared in the literature (but
not in the context of binary black hole simulations). The
first definition is based on looking for the time at which a
QNM expansion provides the best fit to the actual numeri-
cal waveform, in the sense of a suitably defined norm [18].
Unfortunately, when applied to our numerical waveforms,
this method is not particularly useful. The reason is that the
norm is quite flat (and even worse, has some oscillations)
over a wide range of starting times around the minimum. A
second, more useful definition looks for the time max-
imizing the energy content of the QNM component of
the waveform. For this reason, following Nollert [19], we
call it the energy maximized orthogonal projection
(EMOP). We find that the ‘‘EMOP time’’ tEMOP and the
maximum fraction of energy carried by ringdown ( ’ 42%)
are remarkably independent of the mass ratio q. This is an
indication that the ringdown waveform is in some sense
‘‘universal’’: it does not depend too much on the details of
the premerger phase. To our knowledge, the third definition
of the ringdown starting time has not been introduced
before. It uses a detection-based criterion, maximizing
the ‘‘effective energy’’ deposited in a matched filter.

In the conclusions we present a list of open problems and
directions for future research.

To improve readability, some lengthy equations and
technical material are presented in the Appendices.

Appendix A lists the spin-weighted spherical harmonic
components of the Weyl scalar, up to and including 2.5PN
terms in a PN expansion of the waveforms.

Appendix B provides fits for the energy, angular mo-
mentum, and linear momentum radiated after the estimated
time of formation of a common apparent horizon (CAH).
Since the total energy radiated in a simulation depends on
the initial separation of the binary, in this Appendix we also
try to provide estimates for the energy, angular momentum,
and linear momentum radiated ‘‘after plunge.’’ A problem
here is that the innermost stable circular orbit (ISCO) is a
controversial concept for comparable-mass binaries, and
there is no unique way to define the beginning of the plunge
phase. Given these intrinsic ambiguities, we estimate the
starting time of the plunge, tISCO, as the time when the
orbital frequency � becomes larger than the ISCO fre-
quency computed in PN theory (at 2PN or 3PN order, to
bracket uncertainties). We also present a comparison of our
results with PN estimates of the post-plunge radiation by
Blanchet et al. [20].

Computational resources and resolution limitations re-
duce the accuracy of numerical simulations for large mass
ratio. Unfortunately, many astrophysical black hole bi-
naries could have q � 10 or larger (see e.g. [21] and
references therein). It is important to determine the maxi-
mum value of q that should be simulated in numerical
relativity, or equivalently, the smallest value of q for which
black hole perturbation theory can be considered adequate
for detection and/or parameter estimation. Appendix C
collects some results from perturbation theory that
may be useful in this context. We point out that, for large
mass ratio, our numerical simulations seem to be in rea-
sonable agreement with perturbative calculations of parti-
cles plunging with large angular momentum into a
Schwarzschild black hole.

Finally, in Appendix D we introduce quantitative mea-
sures of the polarization state of the waveform. We show
that the polarization of the wave (as viewed from the
normal to the orbital plane) is circular for both inspiral
and ringdown, with the exception of the unphysical por-
tions of the wave: the initial data burst and the final, noise-
dominated part of the ringdown waveform.

In all of this paper we adopt geometrical units (c � G �
1). Unless otherwise indicated, physical quantities are
usually normalized to the total Arnowitt-Deser-Misner
(ADM) mass of the system M. The ADM masses of all
configurations presented in this study have been calculated
using Ansorg’s [22] spectral solver for binary black hole
puncture data. Because of the spectral accuracy and the
compactification of the coordinates, which facilitates
evaluation of the ADM mass at infinite radius, the uncer-
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tainties in this quantity are negligible relative to those
arising out of the numerical time evolution.

For reference, we find it useful to summarize some of
our main results in Table I. There we list, for each mass
ratio:

(1) the dimensionless angular momentum of the final
black hole (Jfin=M

2
fin) as estimated from wave-

extraction methods (jfin) and from QNM fits (jQNM);
(2) the total energy and angular momentum radiated in

each simulation (Etot=M, Jtot=M2);
(3) the energy, angular momentum, and linear momen-

tum radiated in ringdown, where the ringdown start-
ing time is chosen according to the EMOP criterion
(EEMOP=M, JEMOP=M

2, PEMOP=M);
(4) the energy, angular momentum, and linear momen-

tum radiated after plunge, where the plunge is de-
fined by the location of the 3PN ISCO (EISCO=M,
JISCO=M2, PISCO=M);

(5) the effective fraction of energy detected by a ring-
down filter (Efilter=M).

The table also shows the fraction of energy being radi-
ated in the two dominant multipoles (l � 2, 3).

II. NUMERICAL SETUP

The sequence of numerical simulations of unequal mass
black hole binaries studied in this work has been obtained
with the BAM code [2] using the moving puncture method
[5,6]. Specifically, we study here a subset of the sequence
used in Ref. [3] to determine the maximum recoil resulting
from the inspiral of nonspinning black hole binaries. The
BAM code has been described extensively in Ref. [2] and
further details of the numerical simulations of the unequal
mass binaries are given in Ref. [3]. Here we summarize the
model parameters relevant for our present study.

A sequence of quasicircular initial data of nonspinning
black hole binaries is determined by the initial coordinate
separation D, the mass ratio q of the black holes, and the
initial momenta Pi of each black hole. Approximate values
of Pi appropriate for quasicircular orbits were calculated
using the 3PN-accurate expression given in Sec. VII of
Ref. [2]. For most of the models we consider in this work,
the initial coordinate separation is D ’ 7M (denoted by
‘‘D7’’). The mass ratio is varied from q ’ 1:0 to q ’ 4:0 in
steps of approximately 0.5. In order to assess the impact of
larger initial separations on our results, we also construct
models with larger initial separation:D ’ 10M for q ’ 1:0,
and D ’ 8M for q ’ 2:0 and q ’ 3:0. We will denote these
models by D10 and D8, respectively. The complete set of
models is summarized in Table II.

All models have been evolved in time using a resolution
of M1=22:4 near the punctures, where M1 is the puncture
mass of the smaller hole. The models starting from an
initial separation D � 7M have also been evolved using
resolutions of M1=25:6 and M1=28:8. In the remainder of
this work we will refer to these resolutions as low (LR),

medium (MR), and high resolution (HR). Gravitational
waves have been extracted in the form of the Newman-
Penrose scalar �4. Unless specified otherwise, we use an
extraction radius rext � 30M. We decompose the resulting
�4 into modes by projection onto spherical harmonics of
spin-weight s � �2 (see Ref. [2] for conventions) accord-
ing to

 Mr�4 � Mr
X1
l�2

Xl
m��l

�2Ylm��;�� l;m: (2.1)

In Fig. 1 we show examples of the resulting modes by
plotting jRe�Mr l;m�j, the modulus of the real part of the
waveforms. Except for the spurious initial wave burst
(visible up to about t � 50M) and for the final, noisy signal
following the ringdown phase, the imaginary part of  l;m is
related to the real part by a phase shift of �=2 (see
Appendix D for a more detailed discussion of the polar-
ization of the waveforms). The figures demonstrate that the
l � 2, jmj � 2 modes dominate the gravitational wave
emission in all simulations. Contributions due to higher-
order modes become increasingly significant, though, as
the mass ratio is increased. In all of our models we find the
strongest contributions of higher-l modes to result from
m � �l. An exception to this rule is the equal mass limit
(q � 1), where odd-m modes (including the l � m � 3
component) are suppressed. For this reason, in the left
panel of Fig. 1 we only show modes with l � 2, 4.

In Fig. 2 we plot the modulus jMr l;mj of the amplitude
of some of the dominant multipoles. Two features of this
plot are worth stressing: (i) the l � m � 4 mode does not

TABLE II. Summary of the main physical parameters for the
series of simulations studied in this work. q denotes the mass
ratio, D is the initial coordinate separation, and J the total
angular momentum. We also list the simulation time at which
the orbital frequency equals the orbital frequency at the 3PN
innermost stable circular orbit or ISCO, t3PN

ISCO; an estimate of the
time at which a CAH forms, tCAH; the time at which the energy
flux has a maximum, tflux; and the time at which the modulus of
the l � m � 2 mode has a peak, tpeak. All quantities are nor-
malized to the ADM mass M. The final column lists the number
N of orbits until the estimated time of formation of the CAH.

q D=M J=M2 t3PN
ISCO=M tCAH=M tflux=M tpeak=M N

1.00 7.046 0.8845 211.9 215.0 231.8 234.0 1.94
1.49 7.044 0.8494 213.5 218.2 234.3 236.4 1.96
1.99 7.040 0.7870 211.6 217.5 233.6 235.4 1.93
2.48 7.036 0.7232 213.2 221.0 236.2 238.1 1.96
2.97 7.034 0.6649 213.2 223.2 237.8 239.8 1.98
3.46 7.030 0.6132 215.0 226.8 240.6 242.5 2.02
3.95 7.028 0.5679 216.7 230.5 243.0 244.8 2.06

1.00 10.104 0.9826 972.7 973.7 992.3 994.5 5.93
1.99 8.086 0.8214 438.0 443.9 459.2 461.6 3.44
2.97 8.038 0.6865 392.2 402.9 414.5 418.1 3.23

EMANUELE BERTI et al. PHYSICAL REVIEW D 76, 064034 (2007)

064034-4



have a single, clear damping time in the ringdown phase
(this is particularly evident for q � 2:0); (ii) the amplitude
modulation visible in the inspiral phase is induced by some
eccentricity in the initial data. This eccentricity seems to
decrease during the evolution, but estimates of the eccen-
tricity damping are beyond the scope of this paper.

The late-time, exponentially decaying portion of the
waveforms is the ringdown phase. As the wave amplitude
decreases, numerical noise gradually starts dominating the
signal. In order to exclude this noisy part from the fitting of
damped sinusoids in the modeling of the ringdown part,
discussed in Sec. IV below, we introduce a cutoff time
beyond which we no longer use the waveforms. The prac-
tical criterion to choose this late-time cutoff will be dis-
cussed in more detail in Sec. IV.

In order to assess the uncertainties arising from the
discretization of the Einstein equations, we performed a
convergence analysis for mass ratios q � 1, 2, 3, and 4. We
find our results to converge at second order, with the
exception of the equal mass (q � 1) case, where we have
fourth-order convergence. Second-order convergence is
demonstrated in Fig. 3, where we show the real part of
the l � m � 2 and l � m � 4 components of the scaled

Newman-Penrose scalar Mr�4. Here we choose the worst
case (mass ratio q � 4) but the convergence is still quite
good, especially considering that we do not apply any time
shift to the waveforms. We similarly find second-order
convergence for the radiated energy and momenta (see
[3] for further convergence plots). We are therefore able
to apply Richardson extrapolation and use the difference
between the values thus obtained and the high-resolution
numerical results as estimates for the uncertainties associ-
ated with the finite differencing of the equations.

For part of our analysis, we find it helpful to have
estimates of the merger time of the black hole binary.
The most reliable estimate would be the formation of a
CAH. In order to reduce the computational cost, however,
all simulations have been performed without using an
apparent horizon finder, so that we need to rely on alter-
native estimates. In the case of equal masses, we follow
Ref. [5] and use the lapse function � to estimate the black
hole merger time as the time when the � � 0:3 regions
around each hole merge. Unfortunately, this criterion does
not generalize straightforwardly to unequal mass binaries.
For these cases, we instead locate the time when the ratio of
the radial and tangential speeds of the punctures is equal to
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FIG. 2 (color online). jMr l;mj for different mass ratios. Each plot shows only some of the dominant components: l � m � 2, 3, 4
and (l � 2, m � 1). The initial burst of radiation is induced by the initial data, and the wiggles at late times are due to numerical noise.
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FIG. 1 (color online). jRe�Mr l;m�j for q � 1:0 (left) and q � 2:0 (right). For the equal mass (q � 1:0) binary the l � m � 3
component is strongly suppressed, and we do not show it.
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0.3, which corresponds roughly to the time when the black
holes reach the ‘‘light ring’’ in the effective-one-body
model [23]. This is discussed further in Sec. III below.

A. Memory effects in subdominant multipoles

The effect of a gravitational wave on a detector in the far
field of the source is best described in terms of the
transverse-tracefree part of the metric. The two polariza-
tion states, h� and h	, of the gravitational wave are related
to the curvature, expressed in terms of the complex
Newman-Penrose scalar �4, by

 �4 � �h� � i �h	: (2.2)

Here h��t� z� � hTTxx � �hTTyy , h	�t� z� � hTTxy � hTTyx
for a wave propagating in the z-direction. Note that differ-
ent conventions (typically for the Newman-Penrose scalar)
are used in the literature, correspondingly leading to differ-
ent relations with h� and h	. Reference [24], for example,
has a factor 2 in their Eq. (5.3).

Given the Newman-Penrose scalar �4 for a particular
mode, we thus have to integrate twice in time to obtain h�
and h	 and, in consequence, fix two constants of integra-
tion, which correspond to the values and time derivatives of
h� and h	 at the initial time as functions on the (celestial)
sphere. Integrations in time over �4 are also required to
compute the radiated energy, linear and angular momen-
tum from the radiation content:

 

dE
dt
� lim

r!1

�
r2

16�

Z
�

��������
Z t

�1
�4d~t

��������2
d�

�
; (2.3)

 

dPi
dt
� � lim

r!1

�
r2

16�

Z
�
‘i

��������
Z t

�1
�4d~t

��������2
d�

�
; (2.4)

 

dJz
dt
� � lim

r!1

�
r2

16�
Re
�Z

�

�
@�

Z t

�1
�4d~t

�

	

�Z t

�1

Z t̂

�1

��4d~tdt̂
�
d�

��
; (2.5)

where

 ‘i � �� sin� cos�; � sin� sin�; � cos��: (2.6)

The definitions above are based on time integrals which
start in the infinite past (at time t � �1), and thus capture
the complete gravitational wave signal. Starting the time
integrations at t � �1 corresponds to the limit of infinite
extraction radius on the initial time slice—the slice would
then extend all the way to spatial infinity, no part of the
waveform would be lost, and it would take an infinite time
for the waves to reach the extraction sphere. With our
current setup of the numerical codes, this situation cannot
be handled, and we work with finite extraction radii. The
constants of integration would then correspond to the
signal that has been lost. In order to accurately compute
from the Newman-Penrose scalar the radiated energy and
momenta and the gravitational wave strain required by data
analysts, it is thus necessary to understand the influence of
these constants of integration, and ideally, how to choose
them correctly.1

Naively setting the constants to zero typically leads to a
nonzero value and slope of h� and h	 after the passage of
the wave. This effect will in general have contributions
from the signal that has been lost due to a finite extraction
radius, from numerical error, and from the inherent ambi-
guities of the extraction procedure at finite radius. Fur-
thermore, a time independent gravitational wave memory
effect is also possible and has been described in the litera-
ture [12,14] (see also [26]). Apart from the effect due to an
improper setting of the constants of integration, the other
effects will accumulate over time, which may allow for
some discrimination.

While the time independent phenomenon is physically
expected (although it should be small), the time-dependent
drift phenomenon appears to be counterintuitive and we
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FIG. 3 (color online). Convergence plots for Mr 22 (left) and Mr 44 (right). These plots show the differences between runs at
different resolutions (as indicated in the inset), scaled to be consistent with second-order accuracy. They refer to run D7, mass ratio
q � 4, and rext � 30M.

1Koppitz et al. recently argued that the choice of integration
constants may be important for an accurate calculation of the
recoil velocity of the final black hole [25].
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expect h� and h	 to settle down into a stationary state at
late times. All unphysical effects in the nonzero value and
slope of h� and h	 after the passage of the wave should
converge away with resolution and increasing extraction
radius. A rigorous convergence test could attempt to iden-
tify a remaining physical gravitational wave memory effect
(independent of time after the passage of the wave).
Consistency with the physical situation requires that the
slope of h� and h	 after the passage of the wave converge
away with resolution and increasing extraction radius.

We study this effect in more detail by considering the
D10 run with q � 1:0. In Fig. 4 we plot the resulting l � 2,
m � 2 contribution for h� obtained at different extraction
radii. The figure demonstrates two important features of
this memory effect. First, the linear growth starts right at
the beginning of the simulation, indicating that the memory
effect is indeed essentially due to a nonvanishing constant
of integration, or that possibly it is accumulated already in
the early stages of the wave pulse (including the artificial
burst of radiation). Second, the slope decreases signifi-
cantly if we use larger extraction radii.

We next apply a least-squares fit of a linear function
f�t� � a0 � a1t to h� and h	 resulting from the simula-
tions of models q � 1:0, D10; q � 2:0, D8; and q � 3:0,
D8. The resulting slopes are labeled as a�1 and a	1 , respec-
tively, in Table III. The table demonstrates in the case of
the model with q � 1:0, D10 that the coefficients are
essentially independent of the grid resolution. Columns 5
to 7 of the table indicate, however, that their dependence on
the extraction radius can be rather well approximated by
power laws: a�1 � r

�4
ex , and a	1 � r

�2
ex . This discrepancy

between the � and 	 polarization modes is rather surpris-
ing, because the circular polarization of the waves implies
that they differ merely by a phase shift of �=2. The key
observation in this context is that this simple relation
between h� and h	 applies to the inspiral waveform but
not to the spurious initial wave burst. This is explicitly
shown in Appendix D. We thus conclude that the slope is a
consequence of the omitted early wave signal (the constant

of integration) or the initial wave burst. We emphasize,
however, that the decreasing impact of the initial data pulse
at larger radii is not due to it being dissipated away by
numerical viscosity, which would have manifested itself in
a resolution dependence of the slope.

The picture is somewhat more complicated in the case of
the l � 4, m � 4 mode plotted in Fig. 5, where we do not
only see a significant dependence of the memory effect on
resolution, but also a nonlinear trend of h�, suggesting
contributions from the ambiguities of wave extraction or
numerical error. Consistent with the issue being due to the
ambiguities of the wave-extraction algorithm, we observe a
significant decrease in the memory effect at larger extrac-
tion radius. In contrast to the l � 2,m � 2 case, we did not
find a simple systematic dependence of the coefficients on
extraction radius and resolution.

We conclude this section with a discussion of alternative
choices for the integration constants. For each polarization
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FIG. 4 (color online). Effect of changing the extraction radius on the memory effect when we do not apply corrections to the
integration constants. These plots refer to the dominant multipole (l � m � 2) of run D10 with q � 1:0.

TABLE III. Average slope of the l � 2, m � 2 component of
h� for different runs and mass ratios, obtained from linear
regression.

q Run Resolution rex 105a�1 r4
exa
�
1 105a	1 r2

exa
	
1

1.0 D10 HR 30 7.11 57.6 3.67 0.033
1.0 D10 HR 40 2.24 57.3 2.37 0.038
1.0 D10 HR 50 0.91 56.9 1.42 0.036
1.0 D10 MR 30 7.12 57.7 3.67 0.033
1.0 D10 MR 40 2.27 58.1 2.38 0.038
1.0 D10 MR 50 0.94 58.8 1.42 0.036
1.0 D10 LR 30 7.09 57.4 3.68 0.033
1.0 D10 LR 40 2.26 57.9 2.38 0.038
1.0 D10 LR 50 0.94 58.8 1.42 0.036
2.0 D8 LR 20 1.35 2.16 5.57 0.022
2.0 D8 LR 25 0.56 2.19 4.57 0.029
2.0 D8 LR 30 0.27 2.19 3.20 0.029
3.0 D8 LR 20 0.86 1.38 3.33 0.013
3.0 D8 LR 25 0.36 1.41 2.83 0.018
3.0 D8 LR 30 0.17 1.38 2.00 0.018
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and each mode in the spectral decompositions we work
with (to take care of the angular dependence of these
constants of integration), we can fix the integration con-
stants by demanding that the time derivative of h�=	
vanishes at late times. This can be achieved by matching
to a ringdown signal, or more heuristically by subtracting
the time average or time-dependent polynomials, such as
those obtained by the fitting processes mentioned above.
The second constant of integration, which may have a
contribution from a physical memory effect, is typically
very small, and can be set to zero for many practical
purposes if the wave-extraction radius is not too small.
From our observations, we conclude that using a suffi-
ciently large extraction radius is certainly a highly recom-
mended way of reducing spurious memory effects.

III. THE INSPIRAL-MERGER TRANSITION

The parameters chosen in Sec. II for the initial data do
not give perfect quasicircular (noneccentric) orbits. This
problem has been discussed in various papers [1,10,27,28].
A simple way to visualize the residual eccentricity of the
binary’s orbit is to compare the punctures’ motion with
predictions for circular, Newtonian orbits. At leading or-
der, the quadrupole formula predicts that the orbital radius
should evolve according to [29]

 vr � _r � �
64

5

�M3

r3 ; (3.1)

where � � M1M2=M
2 � q=�1� q�2 is the symmetric

mass ratio. From the relation between the orbital radius r
and the (Keplerian) orbital frequency �, M � �2r3, we
get the ratio of radial and tangential velocities in unequal
mass, circular orbit binaries:

 

vr
vt
�

�
_r

�r

�
� �

64

5
��M��5=3: (3.2)

This formula is of course a rough approximation, being
based on the quadrupole formula and assuming a Keplerian
orbit [1]. In Fig. 6 we show the ratio of radial and tangential
velocities vr=vt obtained from the punctures’ motion and
from the Newtonian quadrupole prediction. Curves labeled
‘‘Newtonian’’ are obtained by replacing the punctures’
orbital frequency � � !c (see Sec. III B below for details
of the definition) in Eq. (3.2). Curves obtained from the
actual puncture orbital motion clearly oscillate around the
Newtonian circular value, mainly because of the nonzero
orbital eccentricity. A similar effect was observed in Fig. 6
of BCP.

At early times in the evolution, say �t� tpeak� &

�100M, the ratio jvr=vtj & 0:05, and the orbit is (to a
reasonably good approximation) quasicircular. At later
times vr=vt grows, as the motion turns from inspiral to
plunge. Given the computational cost of implementing an
apparent horizon finder during the evolution, we use the
following rough criterion to locate the formation of the
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FIG. 6 (color online). Ratio of radial and tangential velocities
for D8 runs and for two values of the mass ratio (q � 2:0 and
q � 3:0).
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apparent horizon. In the effective-one-body model [23],
the ratio between radial and tangential velocities is
vr=vt � 0:3 (so that the motion is strongly ‘‘plunging’’)
at the light ring r � 3M. Since the light ring should be
close to the location where a CAH forms, we simply define
the time of formation of a CAH tCAH as the point where the
ratio vr=vt, as computed from the punctures’ orbital mo-
tion, becomes larger than 0.3 (see also the related discus-
sion around Table II). Figure 6 shows that vr=vt rises very
steeply in this region, so we expect the error introduced by
our rough approximation to be at most of order a few M.

A. The post-Newtonian quasicircular approximation
for the inspiral phase

In this work we will perform extensive comparisons of
numerical waveforms with the PN approximation. For this
purpose it is useful to decompose the Weyl scalar �4 in
spin-weighted spherical harmonic components according

to Eq. (2.1). The  l;m’s can be obtained by taking two time
derivatives of the PN gravitational waveforms h�;	 ac-
cording to Eq. (2.2), and then computing

 

Mr l;m�Mr
Z

sin�d�d��2Y


l;m��;���4

�Mr
Z

sin�d�d��2Y


l;m��;��� �h� � i �h	�: (3.3)

The azimuthal dependence of the PN waveforms has the
functional form �

R
�dt� 2M� ln�=�0� �� [13]. Thus,

the expansion of the waveform h � h� � ih	 in spin-
weighted spherical harmonics has a time dependence of
the form exp��im�

R
�dt� 2M� ln�=�0��. For consis-

tency, we use the same convention2 on spin-weighted
spherical harmonics as in Refs. [1,2]. For the dominant,
l � m � 2 component of the waveform we get

 Mr�h� � ih	�2;2 � 8

����
�
5

r
��M��2=3

�
1�

55�� 107

42
�M��2=3 � 2��M�� �

2173� 7483�� 2047�2

1512
�M��4=3

�

�
�107� 34�

21
��$i�

�
�M��5=3

�
e�im�

R
�dt�2M� ln�=�0�: (3.4)

Here �0 is an arbitrary constant [13] and the orbital
angular velocity � is a time-dependent quantity, the
3.5PN expansion of which can be found (for example) in
[30].

Kidder et al. [15] recently corrected an inconsistency in
the derivation of radiation reaction terms of Ref. [30]. They
also argued that radiation reaction terms are in fact negli-
gible in the 2.5PN waveform, since they can be absorbed
into a 5PN contribution to the orbital phase evolution. The
constant $ in Eq. (3.4) depends on whether radiation
reaction terms are absorbed into a redefinition of the phase.
If we include radiation reaction terms in the waveform by
using Eq. (27) of [15] (as recommended by Kidder et al.),
then $ � �24. If instead we neglect the radiation reaction
contribution by using their Eq. (32), we find$ � �8=7. In
the following we present analytical results including all
known contributions to the waveform (including the
$-dependent 2.5PN terms). Given the ambiguity due to
the inclusion of radiation reaction terms, we decided not to
include 2.5PN contributions in our comparisons with the
l � m � 2 numerical waveforms.

As stated earlier, to compute the projection of �4 onto
spin-weighted spherical harmonics, we must take the sec-

ond time derivative of expressions like Eq. (3.4) above.
Noticing that the logarithmic term in the phase is of 4PN
order [13], we will simply neglect it when taking the
derivative.3 One can then show that, up to 2.5PN order,

  l;m � �m2�2�h� � ih	�l;m; (3.5)

the only exception to this rule being the 2.5PN contribution
to the amplitude of the l � m � 2 component.

In our calculation of the amplitudes, we discard terms of
order O�M��14=3 (i.e. we compute all terms in a 2.5PN
expansion of the gravitational wave amplitude, as given in
[14]). We only list the positive-m components of the domi-
nant multipoles, since negative-m components are ob-
tained by the symmetry property

  l;�m � ��1�l 
l;m: (3.6)

The small mass ratio limit of these results was obtained by
Poisson and by Tagoshi and Sasaki [31]. For comparable-
mass ratios, we find that the amplitudes of the dominant
components are

2This definition does not include the Condon-Shortley phase,
an extra factor of ��1�m which is needed for agreement with the
usual definition of scalar (s � 0) spherical harmonics.

3This is consistent with the PN order considered here. While it
would be preferable to keep the logarithmic term, it introduces
an extra unknown constant which we choose not to worry about
in the present work.
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where � is the symmetric mass ratio and we defined the
phase ~� as

 ei ~� � eim�
R

�dt�2M� ln�=�0�: (3.8)

The complete expressions of all multipolar components are
listed, for reference, in Appendix A. The leading-order
term in (3.7a) is nothing but the quadrupole approximation:
see e.g. Eq. (24) of BCP. As predictable from symmetry
arguments the odd-m multipoles, being proportional to
�M=M, are suppressed in the equal mass case. To recover
the spin-weighted expansion of the waveform h� � ih	,
one only has to divide these expressions by �m2�2. The
only exception to this rule is the l � m � 2 component:
the term proportional to 112=5 in (3.7a) is the lowest-order
correction due to the fact that the orbital angular velocity
� is in fact a time-dependent quantity.

Terms with l > 2 and higher-order PN corrections pro-
vide a strong consistency check on both the PN expansion
and the numerical results. First, they tell us if the PN
expansion is a good approximation for higher multipolar
components of the radiation (l > 2). Second, they can be
used to check convergence of the PN expansion for any
�l;m�. If the series is convergent, for example, going
beyond the so-called ‘‘restricted PN approximation’’ (i.e.,
including higher powers of �M��1=3 in the expansion for
 2;2) should yield better agreement with the amplitude
predicted by numerical simulations.

Notice also that multipoles which are formally of higher
PN order are not necessarily subdominant. For instance,
 2;1 is of order �M��3. Based on power counting, this term
should be comparable to  3;3 and larger than  4;4.
However, the amplitude of these terms is proportional to
�8=3�

���������
�=5

p
’ 2:11 for (l � 2, m � 1), 27

������������
6�=7

p
’ 44:31

for (l � 3, m � 3), and �1024=9�
���������
�=7

p
’ 76:22 for

(l � 4, m � 4), respectively. At the maximum orbital fre-
quency we are interested in (the ISCO frequency, which
is of order M� � M�ISCO ’ 0:1), the (2, 1) amplitude
is much smaller than the (4, 4) amplitude:  2;1 ’
0:06��M=M� 4;4. For this reason, in the following we
will limit consideration to terms with l � m � 2, 3, 4.
Figure 2 shows that the dominance of these terms is
quantitatively confirmed by numerical simulations of the
inspiral-merger transition.

B. Estimates of the binary’s orbital frequency from
numerical simulations

In the following, we estimate the orbital frequency � of
a binary at any given time by three different methods, that
we list below.

(1) Orbital frequency from the gravitational wave fre-
quency: � ’ !Dm
This estimate of � is based on the observation that
the gravitational wave frequency in a mode charac-
terized by azimuthal number m is !GW � m�. In
practice, the calculation can be carried out in two
equivalent ways:

(i) Decompose each mode into a real amplitude
and a real phase,  l;m �Al;m exp�i�l;m�.
Then compute

 !Dm �
1

m
d�l;m

dt
: (3.9)

(ii) Alternatively, observe that, if some frequency
dominates the Fourier expansion of a signal,
this frequency can be estimated by comput-
ing
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 !Dm � �
1

m
Im
� _ l;m
 l;m

�
: (3.10)

The latter method was used also in BCP, and
it relies on the (implicit) assumption that the
modulus of the complex mode amplitudes
 l;m changes slowly compared with their
phase. However, we verified that methods
(i) and (ii) yield results which are basically
indistinguishable from each other. In the fol-
lowing, when we refer to !Dm we always
compute Eq. (3.10) by finite differencing. In
any case, we verified for all modes that using
Eq. (3.9) would not produce appreciable
differences.

(2) Orbital frequency from the coordinate orbital mo-
tion of the punctures: � ’ !c
The idea here is to convert each puncture’s motion
in the �x; y� plane into polar coordinates �r; ��, then
compute d�

dt . There are two problems with this esti-
mate of the orbital frequency. The first is that this
definition obviously depends on the choice of coor-
dinates, and we expect it to get worse as we get
closer to merger. In our particular set of coordinates,
the puncture motion agrees better with other esti-
mates of the orbital frequency for large mass ratio,
when the system becomes more similar to a test
particle moving in Schwarzschild. The second prob-
lem is that, to compare the puncture coordinate
frequencies against the other two, we need to take
into account the finite time it takes for the waves to
reach the extraction sphere. We simply estimate this
propagation time to be �t ’ rext, but since the
propagation speed may differ from unity and waves
are not emitted from the origin, this introduces a
(small) additional uncertainty in the comparison.

(3) Orbital frequency from the post-Newtonian quasi-
circular approximation: � ’ !PNQC

BCP made the remarkable observation that, even
very close to merger, the l � jmj � 2 modes of
the inspiral waveform can be well approximated
by the standard quadrupole formula for a
Newtonian binary in circular orbit. They computed
the leading-order term in Eq. (3.7a):

 Mr 2;�2 � 32

����
�
5

r
��M��8=3e
2i���t���0�; (3.11)

where ��t� is the accumulated phase of the orbit
with respect to some initial phase �0. Ignoring
logarithmic terms,

 ��t� �
Z t

0
��t0�dt0: (3.12)

BCP pointed out that this simple Newtonian quasi-
circular (NQC) approximation can be used in two

ways. First, given the orbital frequency evolution
��t�, we can compute (an approximation to) the
wave amplitude. Conversely, given the modulus of
the wave amplitude, we can estimate the orbital
frequency � � !NQC by inverting the modulus of
Eq. (3.11), and check whether !NQC agrees with the
estimates !Dm (computed from the gravitational
wave frequency) and !c (computed from the punc-
tures’ coordinate motion).
We will show below that using Eqs. (3.7a)–(3.7d)
and, more generally, the expressions listed in
Appendix A, their observation can be extended to
all multipolar components of the radiation. Our
approximation improves on the simple NQC esti-
mate in that we include all PN terms in the expan-
sion up to 2.5PN, but it still assumes that the orbits
are quasicircular. For this reason, we call it a PNQC
estimate of the frequency.

The three different estimates are shown in Fig. 7, to be
compared with Fig. 7 in BCP. For this plot we choose runs
D8 (since the inspiral part lasts longer) and we compare
two values of the mass ratio: q � 2:0 and q � 3:0. After
the final black hole’s formation (roughly, for t > tCAH), the
system is no longer a binary, and therefore different esti-
mates of the orbital frequency disagree with each other.
The most physically meaningful quantity after merger is
the gravitational wave frequency !Dm. This frequency
levels off to a constant, which is roughly proportional to
the fundamental l � m quasinormal frequency of the final
black hole (see Sec. IV for a detailed analysis of the
merger-ringdown transition).

The puncture coordinate frequency !c is a reliable
estimate at early times and large separations, whereas
!Dm is initially noisy, being contaminated by spurious
initial data radiation or noise from boundary reflections.
However, the puncture coordinates provide a bad estimate
of the orbital frequency already �30M before the peak of
the radiation. In this sense, when we are close to merger
our coordinates are not as good as the generalized har-
monic coordinates used in BCP. Coordinate choices having
such a big impact, some care is required if we want to
attach physical meaning to quantities like!c. For example,
BCP use the ‘‘decoupling point’’ where !c separates from
!Dm to mark the beginning of the merger phase. With our
particular choice of coordinates, this decoupling point
would occur much earlier, clearly invalidating the estimate.
We argue that comparing !Dm and (our best PN guess for)
!PNQC should provide a coordinate-independent, more
reliable estimate of the decoupling point.

In Fig. 7 the PNQC frequency !PNQC is computed by
inverting Eqs. (3.7) and keeping only the leading order.
This simple leading-order approximation is in excellent
agreement with the other estimates (!c and !Dm) until
�20M before the radiation peak. At this point the orbit
transitions from inspiral to plunge, and we cannot expect

INSPIRAL, MERGER, AND RINGDOWN OF UNEQUAL . . . PHYSICAL REVIEW D 76, 064034 (2007)

064034-11



the PN inspiral calculation to provide the correct orbital
frequency anymore.

We expect the transition from inspiral to plunge to
happen, roughly, when the binary’s orbital frequency
crosses the ISCO frequency. To estimate the ISCO, we
look for extrema of the 2PN and 3PN Taylor expansions
of the binding energy (see Appendix B for numerical
values of M�ISCO, and Sec. IIIA of Ref. [32] for a dis-
cussion of this and alternative methods of estimating the
ISCO). The corresponding estimates are marked by hori-
zontal lines in Fig. 7. Around the transition region, !PNQC

(which is computed assuming that the motion is a slow,
quasicircular inspiral) should deviate more and more from
!c and !Dm.

This statement is made more quantitative in Fig. 8,
where we zoom in around the ISCO region. Thick lines
(the actual gravitational wave frequencies of the system in

a multipole with l � m, divided by m) and thin lines (the
PNQC estimates) are almost parallel to each other before
the ISCO, and they deviate significantly as the orbit crosses
the ISCO. The pre-ISCO agreement is better, and the post-
ISCO deviation larger, for the q � 3:0 binary than for the
q � 2:0 binary. This is in agreement with the physical
expectation that, as the binary’s masses become compa-
rable, the very notion of an ISCO becomes less and less
significant: roughly speaking, the system cannot be de-
scribed anymore by the simple-minded picture of a
‘‘small’’ particle orbiting a larger black hole.

An interesting question is if the agreement between the
PNQC frequency !PNQC and other estimates of the orbital
frequency, namely !c and !Dm, improves if we include
additional terms in Eqs. (3.7a)–(3.7c). In other words, can
we use different estimates of the PNQC orbital frequency
!PNQC to estimate the convergence rate of the PN approxi-
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FIG. 8 (color online). Orbital frequencies from the puncture motion (� � !c), from the gravitational wave frequency (� � !Dm),
and from the PNQC approximation (� � !PNQC) in the region around the ISCO. Here !PNQC is computed inverting Eqs. (3.7a)–
(3.7c), and keeping only the leading order in the PN expansions on the right-hand side.
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FIG. 7 (color online). Orbital frequencies from the puncture motion (� � !c), from the gravitational wave frequency (� � !Dm),
and from the PNQC approximation (� � !PNQC). Here !PNQC is computed by inverting Eqs. (3.7a)–(3.7c), and keeping only the
leading order in the PN expansions on the right-hand side. Times are measured starting from tpeak, the peak of the l � m � 2 mode
amplitude for the given mass ratio (see Table II). Horizontal lines mark 2PN and 3PN estimates of the ISCO frequency (as listed in
Tables X and XI); the vertical dashed line marks (an estimate of) the CAH formation. The plots refer to runs D8 and two different mass
ratios (q � 2:0 on the left, and q � 3:0 on the right).
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mation? Conversely, if we substitute!Dm into Eqs. (3.7) to
compute some PN approximation to the amplitude, does
the agreement with the modulus of the numerical ampli-
tude jMr l;mj get better as we increase the PN order? We
address these issues below.

1. Convergence of the post-Newtonian quasicircular
approximation

In Fig. 9 we show a simple ‘‘visual’’ convergence test of
the PN approximation. We substitute !Dm into Eqs. (3.7a)
and (3.7b) and we compute successive PN approximations
to the wave amplitude as functions of time; then we com-
pare the results with the modulus of the actual numerical
amplitude jMr l;mj.

At early times we clearly see oscillations in the PN
estimates of the amplitude, that damp away as the binary
evolves. These oscillations are due to!D2 being very noisy
near the beginning of the simulation (compare the early
portion of Fig. 7), and they would not be present if we used
as a reference !c, which is much smoother at early times.4

The first PN correction is seen to deviate significantly from
all other PN approximations. This is a general feature of
PN expansions. The poor convergence properties of the PN
approximation have long been known in the point-particle
limit [16], where exact results can be obtained by simply
integrating the Zerilli equation. Fortunately, in our case
higher-order PN expansions (of order higher than 1PN for
l � m � 2) are reasonably consistent with each other.

A comparison of the PNQC orbital frequencies com-
puted at different PN orders is also instructive. Let us
assume that, within the accuracy of our numerical simula-
tions, !Dm is a good representation of the ‘‘true’’ orbital
frequency of the binary.5 If by increasing the PN order we
find that !PNQC gets closer and closer to !Dm, this would
provide an indication that the PN expansion is converging
to the actual solution of the full, nonlinear problem.
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FIG. 9 (color online). Amplitudes obtained by substituting !Dm into the PNQC equations are compared with the numerical
amplitude. All plots refer to runs D8. Figures on the left refer to q � 2:0, those on the right to q � 3:0. The top row shows amplitudes
for l � m � 2, the bottom row for l � m � 3. Vertical lines mark 2PN and 3PN estimates of the ISCO.

4The reason why we do not choose !c as a baseline for
comparison is that this frequency significantly deviates from
the others close to merger, where the comparison between PN
theory and numerical simulations is most interesting.

5In practice, of course, this is only true in an approximate
sense. For example, in the early inspiral !Dm is heavily con-
taminated by the initial data burst and boundary reflection noise;
finite-differencing effects will introduce errors in the calculation
of!Dm given the computed waveform; and finally, the waveform
itself is obtained at finite extraction radius, introducing addi-
tional uncertainties. What we are really assuming is that, taken
together, all of these effects are smaller than the errors intro-
duced by the PN approximation to general relativity.
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Figure 10 shows the relative deviation between !PNQC,
as computed by keeping more and more terms in Eqs. (3.7),
and the supposedly more accurate orbital frequency
!D2. Once again, at early times we see oscillations in the
relative deviation, that damp away as the binary evolves.
The magnitude of the relative deviation j�!PNQC �

!D2�=!D2j can be taken as an indicator of the accuracy
of the PN approximation. These plots confirm, from a
slightly different perspective, the nonmonotonic conver-
gence of the PN series. After the transition from inspiral to
plunge (very roughly corresponding to the vertical lines,
marking the estimated location of the ISCO at 2PN and
3PN), the PNQC frequency, which is only valid for the
inspiral phase, clearly decouples from!D2, and the relative

error becomes much larger. Perhaps in the future, as the
accuracy of numerical simulations increases and higher-
order PN calculations become available, it will be possible
to use the change in slope of j�!PNQC �!D2�=!D2j to
monitor the occurrence of an orbital instability (the
‘‘plunge phase’’) in full general relativity.

We already pointed out that our assumed ‘‘exact’’ orbital
frequency, !D2, is in practice affected by various sources
of numerical error: finite-differencing errors, the finite
extraction radius, and the initial data burst all introduce
uncertainties. To bracket these uncertainties, in Fig. 11 we
choose one of our longest runs (D10 for q � 1:0) and we
study the effect of resolution and extraction radius on
�!PNQC �!D2�=!D2.
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FIG. 10 (color online). Relative deviation between the orbital frequency obtained from the PNQC inspiral formulas and the true
frequency of the signal !D2. Plots refer to runs D8 with q � 2:0 (left), q � 3:0 (right).
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FIG. 11 (color online). The effect of changing extraction radius (top) and resolution (bottom) on the errors. These plots refer to mass
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resolution, respectively) are indicated in the inset.
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Two remarkable features emerge from this plot. First of
all, at lower resolution the ‘‘wiggles’’ induced by initial
data are still visible at later times. The second effect is
perhaps the most important for matching numerical wave-
forms to the PN approximation, and for building template
banks for gravitational wave detection. We see that small
extraction radii produce a systematic bias (i.e., a larger
deviation of !PNQC from !Dm) at large orbital separations.
This effect is easily understandable: the typical wavelength
in the ‘‘early’’ inspiral part is of order �� 100M, which is
actually larger than the typical extraction radii used in the
present simulations. Such small extraction radii inevitably
produce a bias in the waveform. We observed a similar, and
probably related, problem in the context of what we called
the memory effect (Sec. II A).

C. Radiated energy and angular momentum

1. Total radiated energy

The total radiated energy computed from wave-
extraction methods, and the energy radiated into each
multipole l, are listed in Table IV and plotted in Fig. 12.
The error estimates listed in the table are obtained from
Richardson extrapolation as described in Sec. II (cf. also
Table V below, where we also list the radiated energies and
the final angular momenta computed using QNM fits).

Table IV and Fig. 12 clearly illustrate that the relative
contribution of higher multipoles becomes more relevant
as the mass ratio increases. As expected from symmetry
considerations (and from the calculations in Appendix A),
odd values of m are suppressed as the mass ratio q! 1.

TABLE IV. Total energy radiated in merger simulations of unequal mass black holes, and percentage of energy in the different
multipoles (normalized to the total energy radiated in l � 2; . . . ; 5). The numbers refer to high-resolution D7 runs, and error estimates
are obtained using Richardson extrapolation. In parentheses we list numbers obtained eliminating the initial data burst (in practice, we
remove all data for t < t0 � 75M).

q Etot=M (%) l � 2 l � 3 l � 4 l � 5

1.0 3:718� 0:069 98:02� 0:22 0:428� 0:025 1:521� 0:197 0:026� 0:005
(3:651� 0:065) (98:08� 0:20) (0:368� 0:008) (1:526� 0:208) (0:024� 0:015)

1.5 3:403� 0:032 96:43� 0:03 2:070� 0:042 1:384� 0:079 0:110� 0:017
(3:340� 0:025) (96:51� 0:04) (2:014� 0:036) (1:369� 0:075) (0:109� 0:007)

2.0 2:858� 0:055 93:62� 0:10 4:693� 0:035 1:426� 0:047 0:264� 0:011
(2:802� 0:055) (93:73� 0:10) (4:648� 0:040) (1:388� 0:053) (0:236� 0:006)

2.5 2:383� 0:051 90:87� 0:12 6:991� 0:060 1:730� 0:046 0:405� 0:017
(2:334� 0:053) (91:00� 0:13) (6:957� 0:075) (1:679� 0:052) (0:362� 0:002)

3.0 2:000� 0:035 88:55� 0:05 8:877� 0:083 2:036� 0:103 0:541� 0:020
(1:958� 0:036) (88:68� 0:05) (8:854� 0:075) (1:975� 0:106) (0:487� 0:019)

3.5 1:695� 0:058 86:56� 0:02 10:374� 0:058 2:393� 0:101 0:676� 0:023
(1:659� 0:059) (86:70� 0:02) (10:359� 0:084) (2:326� 0:096) (0:615� 0:006)

4.0 1:451� 0:034 84:84� 0:02 11:573� 0:018 2:770� 0:021 0:815� 0:027
(1:419� 0:036) (84:99� 0:04) (11:565� 0:044) (2:700� 0:012) (0:746� 0:012)
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FIG. 12 (color online). Left: total energy Etot=M radiated in the merger (including the initial data burst) fitted by Eqs. (3.13) and
(3.14), respectively. Right: numerical data for the energy El=M emitted into each multipole l are compared with the fitting functions
(3.15). Error bars are estimated by Richardson extrapolation. Notice the suppression of odd multipoles as q! 1.
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The dominant components for all mass ratios are �l;m� �
�2; 2�, (3, 3), (4, 4). We often observe a non-negligible
contribution (partly due to spurious initial data radiation)
also in �l;m� � �2; 1�, (2, 0), (4, 0), (5, 5). The initial data
radiation burst can be eliminated by starting the integration
of the energy flux after the initial burst has passed. In
Table IV we decided, somewhat arbitrarily, to start the
integration at t � 75M. Changes in the starting time have
a marginal impact on the results: at the level of 0.1% for the
(2, 2) modes, and of about a few percent for the weakest
modes (which have higher errors anyway).

In practical applications it may be useful to have some
fitting formulas for the total energy radiated and for the
contribution of different multipoles. Since the energy is
proportional to j _�4j

2, and the l � m � 2 component
 2;2 � � dominates the radiation, we expect the total radi-
ated energy to be roughly proportional to �2 [recall that the
symmetric mass ratio � � q=�1� q�2 tends to 1=4 in the
equal mass limit]. Indeed, it turns out that the total radiated
energy in the merger Etot is fitted extremely well (devia-
tions from the data being & 4%) by the function

 

Etot

M
� 0:036 262

�
4q

�1� q�2

�
2
: (3.13)

Fitting by a higher-order function, e.g.

 

Etot
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� 0:032 661

�
4q

�1� q�2
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� 0:004 458

�
4q

�1� q�2

�
4
;

(3.14)

marginally improves the quality of the fit, bringing the
agreement with the data to the level of �1% (see the left
panel of Fig. 12).

The different multipolar components are slightly harder
to fit. Since again we expect the energy in each component
to be proportional to the square of the amplitudes, the even
components with l � m should be proportional to
�4q=�1� q�2�2, and the odd components should scale
with �q�q� 1�=�1� q�3�2. After some experimentation
with including higher-order corrections in �, we found
that the following functions provide a satisfactory fit of
the data:

 

El
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(3.15b)

For l � 2, we find the best-fit coefficients to be (c1 �
0:024 231, c2 � 0:012 163); for l � 4, they are (c1 �
0:001 029 4, c2 � �0:000 532 8). For l � 3 we find (d1 �
0:000 17, d2 � 0:105 09, d3 � 0:139 90) and for l � 5
(d1 � 0:000 012, d2 � 0:011 020, d3 � 0:000 463).
Numerical data for different multipolar contributions and
the corresponding fitting functions are shown in the right
panel of Fig. 12.

TABLE V. Energy radiated EQNM=M and final dimensionless angular momentum jQNM as computed by a QNM fit of high-resolution
D7 runs. We use the absolute cutoff criterion for the fits. Results are presented using two fitting methods: MP and LM (the latter results
are in parentheses). For ease of comparison, we also give the energy radiated as computed by wave-extraction techniques. We denote
by tPT the ‘‘perturbation theory time’’ when the l � m � 2 and l � m � 3 predictions for mass and angular momentum are in
agreement. For comparison, we also show estimates of the radiated energy Etot=M and of the final angular momentum jfin obtained by
subtracting the radiated energy and angular momentum from the initial ADM mass and angular momentum. Uncertainties are
estimated using Richardson extrapolation as described in Sec. II.

q Etot=M (%) EQNM=M (%) jfin jQNM �tPT � tpeak�=M

1.0 3:718� 0:069 3:73� 0:26 0:688� 0:002 0:684� 0:006 48:5� 2:3
(3:65� 0:32) (0:684� 0:005)

1.5 3:403� 0:032 3:35� 0:02 0:665� 0:002 0:664� 0:003 44:8� 0:9
(3:23� 0:41) (0:665� 0:008)

2.0 2:858� 0:055 2:69� 0:12 0:626� 0:003 0:626� 0:005 46:5� 4:0
(2:66� 0:05) (0:626� 0:002)

2.5 2:383� 0:051 2:43� 0:55 0:583� 0:003 0:581� 0:009 44:6� 2:0
(2:36� 0:37) (0:581� 0:008)

3.0 2:000� 0:035 1:97� 0:02 0:543� 0:002 0:544� 0:002 44:8� 1:8
(2:06� 0:02) (0:543� 0:003)

3.5 1:695� 0:058 1:63� 0:06 0:506� 0:003 0:509� 0:002 32:5� 4:9
(1:47� 0:02) (0:512� 0:002)

4.0 1:451� 0:034 1:30� 0:96 0:473� 0:013 0:478� 0:014 27:8� 26:6
(1:50� 0:55) (0:473� 0:008)
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2. Final angular momentum

A good fit to the final angular momentum, for small
mass ratios, was found in Ref. [3]:

 j� 0:089� 2:4
q

�1� q�2
: (3.16)

In this paper we compute the final angular momentum in
two ways. One estimate, that we denote by jfin, is obtained
by subtracting the total radiated angular momentum (as
computed by wave extraction) from the total angular mo-
mentum at the beginning of the simulation. A second
estimate jQNM is based on QNM fits, and will be described
in detail in Sec. IV below. The actual data, together with
error estimates based on Richardson extrapolation, can be
found in Table V. We find our estimates to be accurate
within a few percent for q > 3, and even more accurate as
q! 1. We found that very good fits (accurate to within
�1% of the numerical data) are given by

 

jQNM ’ 3:352
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�1� q�2
� 2:461

q2

�1� q�4
; (3.17a)

jfin ’ 3:272
q

�1� q�2
� 2:075

q2

�1� q�4
: (3.17b)

The quality of these fits, and the very good agreement
between the two different estimates of the final angular
momentum, is illustrated in Fig. 13.

The functional form of Eq. (3.17) can be justified by a
simple physical argument. Consider an extreme-mass ratio
binary with the smaller body orbiting near the ISCO. The
orbital angular momentum at the ISCO, in the small mass
ratio limit and for nonspinning bodies, is given by

 LISCO � 2
���
3
p
M1M2: (3.18)

In Appendix B we show that the numerical results for the
angular momentum radiated after the ISCO are well fitted
by Eq. (B1), that we reproduce here:
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: (3.19)

Therefore the angular momentum of the final hole should
be well described by

 j � 2
���
3
p q

�1� q�2
� 2:029

q2

�1� q�4

� 3:464
q

�1� q�2
� 2:029

q2

�1� q�4
; (3.20)

which is remarkably close to the best fits (3.17).

3. Energy and angular momentum fluxes

The purpose of this section is to compare analytical PN
estimates of the energy and angular momentum flux for a
quasicircular, unequal mass inspiral against the corre-
sponding numerical calculations. To begin with, we sum-
marize how to compute these quantities in PN theory and in
numerical relativity.

The gravitational wave energy flux emitted by a binary
moving along an adiabatic sequence of circular orbits is
currently known analytically through 3.5PN order for non-
spinning BHs in circular orbits [30]. It reads
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(3.21)

where �E is Euler’s number and � denotes, as usual, the symmetric mass ratio. The numerical energy flux can be obtained
from the mode amplitudes Mr l;m�t� as
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FIG. 13 (color online). Angular momentum estimated from a
QNM fit and from wave extraction, and corresponding fits. Error
bars are estimated by Richardson extrapolation.
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 FE �
dE
dt
�
X1
l�2

FE;l �
X1
l�2

Xl
m��l

FE;lm �
1

16�

X
l;m

jDl;m�t�j
2;

(3.22)

whereDl;m�t� is a dimensionless first time integral of lm�t�
defined by

 Dl;m�t� �
1

M

Z t

0
dt0Mr l;m�t

0�: (3.23)

Each term in the sum (3.22) represents the multipolar
contribution of a different mode. A PN estimate for the flux
in each �l;m�mode can be obtained by using the expansion
of �4 in spin-weighted spherical harmonics. Using the
same approximation discussed in Sec. III A, namely, ne-
glecting the logarithmic term in the phase, we get the
following PN estimate for the �l;m� component of the
energy flux:

 FPNQC
E;lm �

dEl;m
dt
�

1

16�m2�2 jMr l;mj
2; (3.24)

where we use the best available PN expansions of Mr l;m,
as listed in Appendix A. The 2.5PN term in the l � m � 2
waveform suffers from the usual ambiguity in $ related
with the inclusion of radiation reaction terms [15]. For this
reason we only consider l � m � 2 corrections up to and
including 2PN terms.

For quasicircular orbits, the PN angular momentum flux
is simply

 FPNQC
J �

1

�
FPNQC

E : (3.25)

The numerical angular momentum flux FJ can be com-
puted using Eq. (2.5).

In Fig. 14 we compare the total energy flux (as computed
from our numerical simulations) with the PNQC energy
flux (3.21) evaluated at 2PN and 3.5PN. The 2PN, 3PN, and
3.5PN expansions are very close to each other, and to
improve readability we decided not to display the 3PN
results.6 At each different PN order we evaluate
Eq. (3.21) by using two different estimates of the orbital
frequency (!Dm and !c).

Some features of Fig. 14 should be quite familiar from
the discussion in Sec. III B. First of all, because of the
(small) orbital eccentricity, the numerical flux oscillates
around a ‘‘mean’’ value given by the PNQC estimate. The
numerical flux starts deviating quite clearly from the 2PN
and 3.5PN fluxes �20–40M before the ISCO, and the
agreement between numerical and analytical fluxes gets
slightly better for larger mass ratio. A remarkable feature
of the numerical flux is that it does not reduce to zero after
the exponentially decaying ringdown phase. We believe
this to be, at least in part,7 an artifact of the memory effect
discussed in Sec. II A.

In Fig. 15 we look at the dominant multipoles contrib-
uting to the total energy flux: l � m � 2 and l � m � 3.
The available analytical expansions of the mode ampli-
tudes Mr l;m are only 2.5PN accurate. Since the 2.5PN
term in the l � m � 2 waveform depends on our particular
choice of$, we dropped all terms of order higher than 2PN
in Eq. (3.24).
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FIG. 14 (color online). Total energy flux computed numerically (thick solid line), and substituting two different estimates of the
orbital frequency (!Dm and !c) into the 2PN and 3.5PN energy fluxes, i.e., keeping different numbers of terms in Eq. (3.21). The 2PN
and 3.5PN fluxes are so close they cannot be resolved ‘‘by eye’’ on the scale of this plot. The plots refer to runs D8. On the left we show
results for q � 2:0, on the right for q � 3:0.

6The 2.5PN expansion of the flux (not shown in the plots) has a
physically unreasonable zero crossing �20–40M before the
radiation peak. The poor quality of the 2.5PN flux is in agree-
ment with well-known results in the extreme-mass ratio limit
(see e.g. Fig. 1 in [16]).

7Some contribution to the nonzero flux at late times may come
from numerical noise.
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By comparing Figs. 14 and 15, we can easily check that
the l � m � 2 component carries almost half of the total
energy flux (as long as we compare numerical results with
numerical results, or consider the same truncation order in
the PN approximation). The agreement between the 2PN
estimate and the numerical flux is quite good for the
dominant (l � m � 2) component. However, the 2PN ap-
proximation seems to systematically overestimate the flux
in l � m � 3. Given the present accuracy of our numerical
code (and the poor convergence properties of the total
energy flux at 2.5PN), it is hard to tell whether this is an
artifact of eccentricity in the simulations, or a genuine
indicator of the convergence properties of the PN approxi-
mation for higher multipolar components.

Whether we consider numerical results or the PNQC
approximation, the relative contribution of higher-l multi-
poles to the flux can be seen to increase with mass ratio. It
also increases (for fixed mass ratio) as we get close to
merger. To leading order in a PNQC expansion, we can
show that the ratio of the dominant multipolar components
of the flux as a function of frequency (or alternatively, as a
function of time to coalescence) is given by
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where tc is the coalescence time.
In Fig. 16 we show the ratio of the integrated (numeri-

cal) energy flux in different multipolar components as a
function of time. This plot confirms that the relative con-
tribution of higher multipoles increases for large mass
ratio, and (for given mass ratio) it increases as we get close
to merger.

Finally, in Fig. 17 we compare the numerical angular
momentum flux with the PNQC prediction. The oscilla-
tions in the numerical flux seem to be a general feature:
compare e.g. Fig. 27 of BCP, where they are attributed in
part to improper initial conditions in the time integrals
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FIG. 15 (color online). Dominant multipolar components of the energy flux computed numerically (thick solid lines), and
substituting two different estimates of the orbital frequency (!Dm and !c) into the 2PN multipolar contribution to the energy flux,
Eq. (3.24). The plots refer to runs D8. On the left we show results for q � 2:0, on the right for q � 3:0.

-300 -200 -100 0 100

(t-tpeak)/M
10

-3

10
-2

10
-1

E l/E
2

l=3
l=4 q=2.0

2PN
3PN

-300 -250 -200 -150 -100 -50 0 50

(t-tpeak)/M
10

-3

10
-2

10
-1

E l/E
2

l=3
l=4 q=3.0

2PN
3PN

FIG. 16 (color online). Relative contribution of different multipolar components to the integrated energy flux as a function of time.
The plots refer to runs D8. On the left we show results for q � 2:0, on the right for q � 3:0.

INSPIRAL, MERGER, AND RINGDOWN OF UNEQUAL . . . PHYSICAL REVIEW D 76, 064034 (2007)

064034-19



required to obtain the flux from �4. Our results confirm
that, as remarked by BCP, Eq. (3.25) seems to hold on
average throughout the whole inspiral (possibly with larger
deviations close to merger). In addition we point out an
interesting correlation between the energy and angular
momentum fluxes. In Fig. 17, besides the angular momen-
tum flux, we also plot the energy flux FE (multiplied by 50
for scale). The plots clearly show that oscillations in FJ

have (roughly) the same period as oscillations in FE.
Perhaps this could be evidence that the observed oscilla-
tions are somehow related with the orbital eccentricity,
minima and maxima corresponding to periastron and apas-
tron. A detailed study of this correlation is beyond the
scope of this paper.

IV. THE MERGER-RINGDOWN TRANSITION

The goal of this section is to study the ringdown phase,
and to explore the properties of the final black hole formed
after merger. We will compare different fitting methods to
extract information from the ringdown waveforms. As
discussed in [17], such a comparison can help us resolve
real physical effects (such as, for example, time variations
of the ringdown frequencies) from systematic parameter
estimation errors due to the variance and bias of each
particular fitting algorithm. In particular, here we consider
two classes of fitting algorithms: the matrix pencil (MP)
and Kumaresan-Tufts (KT) methods, which are modern
variants of the so-called Prony linear-estimation algo-
rithms for damped exponentials in noise [33,34]; and a
standard nonlinear least-squares technique, the Levenberg-
Marquardt (LM) algorithm [35].

In [17] we pointed out that Prony methods have a
number of advantages with respect to standard nonlinear
least-squares techniques: (i) They do not require an initial
guess of the fitting parameters. (ii) They provide us with a
simple, efficient way to estimate QNM frequencies for the
overtones, and even to estimate how many overtones are
present in the signal. (iii) Statistical properties of Prony-

based methods in the presence of noise (such as their
variance and bias) are well studied and under control.
When compared with the LM algorithm, Prony methods
seem to have comparable variance but slightly smaller bias.

In BCP, the real and imaginary parts of  l;m were fitted
separately using standard nonlinear least-squares methods.
Prony-like methods allow us to fit the full, complex signal
by a function of the form

  fit
l;m �

X
l0m0n

Al0m0ne
�i�!̂l0m0n�j;Mfin��t�tpeak���l0m0n�; (4.1)

where !̂l0m0n�j;Mfin� denotes a complex QNM frequency.
In BCP the final black hole’s mass and spin �j;Mfin� are
taken as the independent fitting parameters, and the differ-
ent QNM frequencies !̂lmn are obtained, for given
�j;Mfin�, either by using fitting relations or by interpolating
numerical tables [36].

BCP allow for general mode mixing due to the expan-
sion of spherical harmonics in terms of spheroidal har-
monics. We will assume that each spherical �l;m� mode is
well described by a single �l; m� ringdown mode. Another
difference is that BCP include overtones in the QNM
expansion. Adding overtones provides a good fit of the
strong-field phase by effectively increasing the number of
fitting parameters (mode amplitudes Almn and phases
�lmn of the overtones). This idea is perfectly consistent
with QNM expansions in the context of linear black hole
perturbation theory. An obvious drawback of the idea is
that it assumes the validity of linear perturbation theory to
extend the QNM fit before the peak of the radiation.
Another potential problem is that, by using many fitting
parameters, we can always get very good agreement with
the numerical waveforms, but we do not necessarily get a
better physical description of QNM excitation. For sim-
plicity, in this paper we do not attempt to include overtones
in the fit, but we only assess the accuracy of fits of the
fundamental QNM. In [17] we have shown that the QNM
frequency and damping time evolve quite rapidly right
after merger. This evolution could be interpreted as a
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FIG. 17 (color online). Total angular momentum flux computed numerically (solid line) and substituting two different estimates of
the orbital frequency, !Dm and !c, into Eq. (3.25). We overplot the energy flux (multiplied by 50) for run D8 with q � 2:0, to show
that zero crossings of the angular momentum flux correspond (roughly) to local extrema of the energy flux.
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bias in the fitted frequencies induced by the omission of
higher overtones; or, alternatively, it could mean that the
mass and angular momentum of the newly formed, dy-
namical black hole spacetime really are evolving on time
scales much smaller than the QNM time scales, producing
an effective redshift in the QNM frequencies [37,38].
Issues such as the inclusion of overtones and the detailed
study of nonlinearities will be addressed in the future.

A. Choice of the fitting window

Independently of the chosen fitting method, there is
some arbitrariness in choosing the time interval �t0; tf� to
perform the fit. A well-known problem with the merger-
ringdown transition is that we do not know a priori when
the ringdown starts [1,18,39]. This problem is discussed at
length in Sec. IV D below. Ideally, the starting time for the
fit t0 should be determined by a compromise between the
following requirements: (i) t0 should be small enough to
include the largest possible number of data points: in
particular, we do not want to miss the large amplitude,
strong-field part of the waveform after merger; (ii) t0
should be large enough that we do not include parts of
the waveform which are not well described by a superpo-
sition of complex exponentials: the inclusion of inspiral
and merger in the ringdown waveform would produce a
bias in the QNM frequencies.

A judicious choice of tf is also necessary. Usually we
would like the time window to be as large as possible, but
Figs. 1 and 2 clearly show that the low amplitude, late-time
signal is usually dominated by numerical noise (mainly
caused by reflection from the boundaries). This noise can
reduce the quality of the fit, especially for the subdominant
components with l > 2 and for large values of t0. A prac-
tical criterion for the choice of tf is suggested by a look at
Fig. 2. If the ringdown waveform were not affected by
noise from boundary reflections, jMr l;mj should decay
linearly on the logarithmic scale of the plots.8 At low signal
amplitudes, we see boundary noise-induced wiggles super-
imposed to this linear decay. The first occurrence of these
wiggles is a good indicator of the time tf at which numeri-
cal results cannot be trusted anymore. To test the robust-
ness of fitting results to late-time numerical noise, while at
the same time keeping the largest number of data points in
the waveform, we decided to use two different ‘‘cutoff
criteria’’:

(1) ‘‘Relative’’ cutoff: remove from the waveforms all
data for times t > tf � trel, where trel is the time
when the amplitude of each multipolar component

jMr l;mj becomes less than some factor  cutoff times
the peak amplitude j l;m�tpeak�j (values of tpeak for
l � m � 2 are listed in Table II):

 

jMr l;m�trel�j

jMr l;m�tpeak�j
< cutoff : (4.2)

(2) ‘‘Absolute’’ cutoff: remove from the fit all data with
t > tf � tabs, where tabs is the time at which the
absolute value of the amplitude jMr l;mj<
 cutoff=10.

The choice of the cutoff amplitude is somewhat arbi-
trary. We chose  cutoff � 10�3 for low resolution, and
 cutoff � 10�4 for high resolution.

For each chosen tf, we compare the different fitting
routines as we let t0 vary in the range �tpeak; tf�. By moni-
toring the convergence of the QNM frequencies to some
‘‘asymptotic’’ value as t0 ! 1, we can tell if the black hole
settles down to a stationary Kerr state, or if, on the contrary,
nonlinearities and mode coupling are always present.
Notice that as t0 grows the signal amplitude decreases
exponentially, and we effectively reduce the signal-to-
noise ratio (SNR) in our fitting window. Robust fitting
methods should give reasonable results even for large
values of t0 (that is, modest values of the SNR).

B. From ringdown frequencies to black hole
parameters

In [17] we fitted the frequency! and quality factor9Q of
the l � m � 2 fundamental mode of the newly formed
black hole as a function of t0. The results show that the
QNM frequencies evolve quite rapidly in the first
10M–20M after merger: see, in particular, the bottom
panels of Fig. 7 in [17], where a rapid decrease of Q�t0�
is clearly visible for simulation times 240 & t0=M &

260M. Assuming linear perturbation theory to be valid,
the real and imaginary parts of each QNM frequency are
unique functions of the mass Mfin and of the (dimension-
less) angular momentum j � Jfin=M2

fin of the final black
hole: say, Mfin!lmn � flmn�j�, Mfin�lmn � Mfin=	lmn �
glmn�j� [36]. The quality factor of the oscillations Qlmn,
being dimensionless, must be a function of j only. A
numerical calculation shows that for the dominant modes
(l � m � 2, 3, 4) this function is monotonic and invertible
(see e.g. Fig. 5 in Ref. [36]). Therefore we can easily invert
Qlmn�j� to compute j�t0�, either by using fitting relations or
by interpolating QNM tables.

The results of this inversion for the fundamental l �
m � 2 mode of the black hole formed as a result of
inspirals with q � 1:5 and q � 3:0 are shown in Fig. 18.
As the origin of the time axis, we choose the time tpeak at

8With larger resolution and longer running times, eventually
the exponential decay should turn into the well-known power-
law tail induced by backscattering of the radiation off the space-
time curvature [40]. In the simulations we consider, noise
produced by boundary effects is large enough that this effect is
not visible.

9We recall that the quality factor Q � j!=�2��j, where � �
1=	 is the imaginary part of the QNM frequency, i.e. the inverse
of the damping time.
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which the l � m � 2 amplitude has a maximum (see
Table II). Solid lines refer to the absolute truncation crite-
rion, and dashed lines to the relative truncation criterion
(see Sec. IVA). On the scale of these plots, different
truncation criteria affect the estimated parameters only
for low-resolution simulations and at relatively late starting
times (t0=M * 50), when the signal amplitude becomes
comparable to numerical noise. Not surprisingly, there is
remarkable agreement between KT and MP methods. The
main difference when we use the nonlinear least-squares
LM method is a systematic time shift in the angular mo-
mentum: the blue lines would be in excellent agreement
with the prediction from Prony methods if shifted back-
wards in time by �t0 � 2–3M. This time shift can easily be
understood. In the nonlinear least-squares fit we are ignor-
ing the imaginary part of the waveform. Since the real and
imaginary parts of the waveforms are essentially time-
shifted copies of each other, this produces a constant
dephasing in the predicted physical parameters of the final
black hole.

In the absence of numerical errors and mode coupling
j�t0� should monotonically decrease, approaching a con-
stant as t0 ! 1. Figure 18 clearly shows that this is not the
case. All fitting routines consistently predict nontrivial
time variations (roughly of order a percent) in j.

Increasing the resolution reduces the amplitude of these
variations, and produces a flattening of j�t0� for 40 &

t0=M & 60. The angular momentum increase that can be
seen for q � 1:5 and �t0 � tpeak� * 45M, and the oscilla-
tions in j for q � 3:0 in the same time range, are clearly
artifacts of insufficient resolution. We tried to perform a
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FIG. 18 (color online). Estimate of the angular momentum from a fit of the l � m � 2 waveform using different methods. Top
panels refer to a merger with q � 1:5, bottom panels to a merger with q � 3:0. Results on the left were obtained from low-resolution
D7 runs, and those on the right from high-resolution D7 runs.
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FIG. 19 (color online). Richardson extrapolation of the esti-
mated angular momentum for l � m � 2 and q � 1:5, assuming
second-order (thick line) and fourth-order (thin line) conver-
gence.
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Richardson extrapolation of the results assuming second-
order and fourth-order convergence, to determine if angu-
lar momentum oscillations (which could be a sign of
‘‘new’’ physics) disappear in the limit of infinite resolution.
Our results are shown in Fig. 19. They are compatible with
the possibility that oscillations disappear in the limit of
infinite resolution, but more simulations and better control
of the errors are required to reach a firm conclusion.

Figure 18 clearly illustrates that resolution plays a role in
the accuracy with which we can estimate black hole pa-
rameters from ringdown fits, especially at late times, when
the signal is very weak and affected by numerical noise
(likely caused by reflections off refinement and outer
boundaries). Fortunately, changing the extraction radius
does not affect the quality of the fits. We checked this by
fitting the l � m � 2 and l � m � 4 modes for equal mass
(q � 1), large separation (D10) binary mergers with differ-
ent extraction radii rext � 30, 40, and 50. The functional
form of j�t0� is exactly the same at different extraction
radii. Changing rext only produces a trivial shift of the time
axis by �t0 ’ �rext, due to the finite propagation speed of
the waves.

Estimates of the angular momentum as a function of t0,
obtained by fitting the dominant mode (l � m � 2) for
different values of q, are shown in Fig. 20. The angular
momentum is constant within about �1%, but the quality
of the estimates rapidly degrades with mass ratio. Even
with high-resolution runs, the estimated angular momenta
have errors �10% for q * 3. In the next section we will
show that improved estimates are possible if we cross
correlate information from different multipoles of the
radiation, making use of the no-hair theorem of general
relativity.

C. Cross correlating information from different
multipoles to determine the black hole parameters

We already pointed out that the quality factor of each
QNM Qlmn, being dimensionless, must be a function of j
only; and for the dominant modes (l � m � 2, 3, 4) this

function is monotonically increasing, so we can easily
invert Qlmn�j� to compute j�t0� by using fitting relations
or by interpolating QNM tables [36]. If linear perturbation
theory were an exact description of the final black hole’s
dynamics, the value of the angular momentum obtained
from different QNMs—that is, from different values of
�l;m; n�—should be the same for all modes and all values
of t0. In practice this is only approximately true. First of all,
nonlinear effects should be present close to merger, so that
linear perturbation theory provides only an approximation
to the true oscillation frequencies (if the definition of
QNMs makes sense at all in the nonlinear regime).
Second, mode mixing induced by the use of spin-weighted
spherical harmonics with some given �l; m� rather than
spin-weighted spheroidal harmonics, will produce addi-
tional QNM frequencies10 with different l’s and the same
m. Finally, numerical error and the omission of overtones
will inevitably produce some bias in the estimation of the
frequencies, whatever fitting routine we use to extract
them.

All of these effects should be reasonably small, espe-
cially at late times, since linear perturbation theory can be
expected to be a good approximation once the final black
hole is ‘‘reasonably close’’ to a Kerr state (where reason-
ably close is here a loosely defined concept that can be
made more precise, for example, through the use of quan-
tities such as the ‘‘speciality index’’ S [41]). Conversely, if
we estimate angular momenta by fitting different multi-
polar components of the radiation, we can determine when
perturbation theory is a good description of the system by
looking for points (or intervals) in time when the angular
momenta obtained from different fits agree with each other.

In Fig. 21 we plot the angular momenta estimated by
fitting the dominant multipolar components of the radiation
emitted in a q � 1:5, D7 merger. Angular momenta from

10 20 30 40 50 60

(t0-tpeak)/M

0.40

0.50

0.60

0.70

j

l=m=2
10 20 30 40 50 60

(t0-tpeak)/M

0.40

0.50

0.60

0.70

j

l=m=2, High resolution

FIG. 20 (color online). Angular momentum estimated applying the MP method (thick lines) and the LM method (thin lines) to the
l � m � 2 waveforms. Lines from top to bottom refer to different mass ratios: q � 1:0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0.

10This mode mixing was actually observed by BCP: when
fitting the l � 3, m � 2 waveform they also found the l � m �
2 QNM frequency.
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l � m � 2 and l � m � 3 are generally in good agree-
ment, but they display oscillations around some mean
value. The magnitude of the oscillations is larger for l �
3, and it also gets larger for coarse resolutions. However,
there are discrete points in time when the angular momenta
predicted by different multipolar components agree with
each other.

In Fig. 22 we use QNM fits of different multipoles to
extract the final black hole mass Mfin. From Mfin we can
estimate the radiated energy as a function of t0 by comput-
ing �M�Mfin�=M. The plots provide a remarkable con-
sistency check of the results in Fig. 21: whenever results
from numerical relativity are in agreement with linear
black hole perturbation theory for the angular momentum,
they are also in agreement for the radiated energy. In other
words: when angular momenta from l � m � 2 and l �
m � 3 agree, also the masses do. In our opinion this result
is nontrivial, and it lends support to choosing this ‘‘pertur-
bation theory time’’ (marked by arrows in the plots) as our
best guess to estimate the final black hole’s parameters.

In Fig. 23 we show the performance of the MP method in
estimating angular momenta for different mass ratios: q �
1:0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0. Increasing the resolution
produces a flattening of all curves, the effect being more
pronounced for large mass ratios. Remarkably, we find that
the angular momenta and masses predicted from fitting
different multipolar components agree at some well-
specified time for all mass ratios. Now, in linearized theory
different multipoles should be consistent with a single
linearly perturbed Kerr black hole. This means that the
predictions for M or j from one multipole should agree
with the corresponding predictions from any other multi-
pole: lines in Fig. 22 or Fig. 23 corresponding to different
multipoles should lie on top of each other. Accordingly, we
will take the latest (in time) of these points as our ‘‘best
guess’’ to estimate the parameters of the final black hole,
since by then the background dynamical spacetime is as
close as possible to a stationary Kerr solution. In Table V
we list the final angular momenta and radiated energies
extracted from a QNM fit at this optimal time, comparing
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FIG. 21 (color online). Consistency in the radiated angular momentum, as predicted by different multipoles, for a q � 1:5, D7 run.
Thick lines use the MP method, thin lines use the LM method. Solid lines are obtained by removing all points for which the absolute
amplitude drops below 10�4, and dashed lines by removing all points for which the relative amplitude drops below 10�3 the peak
value. The choice of fitting method and truncation criterion has negligible influence on the results. Arrows mark the last point in time
when the fit can still be considered reliable, and different multipoles agree with linear perturbation theory of Kerr black holes.
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FIG. 22 (color online). Consistency in the energy radiated, as predicted by different multipoles, for a q � 1:5, D7 run. Linestyles are
the same as in Fig. 21.
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results against the corresponding estimates from wave-
extraction techniques. The values thus obtained from the
two independent methods agree within the error estimates,
indicating that QNM fits facilitate estimates of the radiated
energy and the final spin accurate to within a few percent or
better.

D. Criteria to determine the ringdown starting time

There are important motivations to try and define the
ringdown starting time and to isolate, in a nonambiguous
way, the energy radiated in the ringdown phase. For in-
stance, from a detection-based point of view, the SNR of a
ringdown signal scales with the square root of the energy in
the signal [36,42]. To define the energy in ringdown waves
we must somehow define the ringdown starting time. Being
able to define the ringdown starting time is also important
when comparing numerical simulations with PN estimates
of the energy, angular, and linear momentum. In fact, it has
been suggested that the discrepancy between PN estimates
and numerical results for black hole recoil is due to ne-
glecting the ringdown in the former [3]. To check the
validity of this statement we must, again, define the starting
time of the ringdown phase.

Unfortunately, early studies in quasinormal ringing have
established that there is no such thing as ‘‘the’’ ringdown
starting time (see e.g. [39] and references therein). In fact,
the waveform can never be exactly described as a pure
superposition of damped sinusoids: it is always contami-
nated by noise or by other contributions (such as prompt
response or tails). This is essentially a consequence of the
incompleteness of QNMs. However, from a practical view-
point the signal is indeed dominated by ringdown at some
stage, and this is the reason why we can use ringdown
waves to estimate black hole parameters [36]. The time
span of the ringdown phase can be defined in different
ways, depending on context. In the following we will
discuss and implement three possible alternatives, two of
which have already been proposed in the past [18,19].

1. A least-squares approach

A natural way to determine the QNM content of a given
signal would be to perform a nonlinear fit of the data to an
exponentially decaying sinusoid. Here the unknown pa-
rameters are usually found in a least-squares sense, by
minimizing some functional of the form

P
t�ti�h�t� �

hQNM�t; f�g��2. In our specific case h would be the numeri-
cal data, sampled at instants t � ti, and hQNM�t; f�g� is the
model waveform (an exponentially damped sinusoid).

The model depends on a set of unknown parameters f�g
over which the functional should be minimized. It is of
course very tempting to treat the starting time as one of
those parameters. This is a possible way to determine the
ringdown starting time, and it served as the basis for the
proposal in [18]. There it was shown that the quality of a
QNM fit can be monitored by using some suitably defined
norm. In particular, Ref. [18] proposed to use

 kNk�	0� �

Rtf
	0 j l;m�t� �  

l;m
fit jdtRtf

	0 j l;m�t�jdt
; (4.3)

where  l;mfit has been defined in Eq. (4.1). Clearly kNk ! 0
when the fit is very close to the numerical waveform. The
idea is that the norm should have a local minimum when
the ‘‘trial’’ starting time 	0 tends to the true starting time,
	0 ! t0.

This idea works well for the classical perturbation theory
problem of Gaussian pulses scattered off a Kerr back-
ground [18], but unfortunately it does not provide a very
clear answer when tested on binary black hole merger
waveforms. The norm kNk�	0� for a binary with q � 2:0
is shown in Fig. 24, where it is computed in two slightly
different ways. The simplest way treats the QNM frequen-
cies as known: their values can be obtained once and for all
by using Prony methods or nonlinear fits [17], and kept
fixed as we change 	0. The second method achieves a
marginal reduction of the norm by fitting for the QNM
frequency at each starting time 	0.
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FIG. 23 (color online). Angular momentum estimated applying the method to l � m � 2 waveforms (thick lines) and to l � m � 3
(l � m � 4 in the case q � 1:0) waveforms (thin lines). Hollow circles mark the ‘‘perturbation theory time’’ for each mass ratio (see
text). From top to bottom, different linestyles refer to q � 1:0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0, respectively.
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From Fig. 24 we see that the norm has some of the
desired properties. First of all, it grows as the quality of
the QNM fit degrades: for example, it is larger for the
subdominant �l;m� components. In addition the norm
grows, as it should, when we try to extend the fit to
encompass the merger region, i.e. when �	0 � tpeak� & 10.

We find that the functional (4.3) has a minimum for
most, but not all of the waveforms. Even when it does
have a minimum (as in the case of Fig. 24) this minimum is
very broad. In addition, the norm oscillates with a period
which is basically the QNM period, and it has a series of
local minima and maxima. The broad minimum and the
oscillations make it very hard to locate the starting time. Of
course, the functional (4.3) is by no means the only possi-
bility. We experimented with some alternative functional
forms of the norm, but with no success. On a positive note,
the situation seems to improve when the waveform is
computed at large extraction radii [43].

2. Nollert’s energy maximized orthogonal projection
(EMOP)

A physically motivated notion of ringdown starting time
was introduced by Nollert [19]. He realized that the prob-
lems with defining the starting time arise immediately at
the onset: QNMs are not complete and not orthogonal with
respect to any inner product, so a quantification of the
energy (and therefore of the starting time) going into
each mode, using standard ‘‘basis expansion’’ methods,
is difficult (if not impossible). The lack of orthogonality
can be circumvented by formally defining an orthogonal
decomposition of the waveform into the contribution of
one (or more) QNMs, and some orthogonal remainder

[19]:

 h � hk � h?: (4.4)

Here, hk and h? are the part of h parallel and perpendicu-
lar, respectively, to a given QNM or a finite number p of
QNMs. We therefore write

 hk �
Xp
i�1

a�i�
k
h�i�QNM; (4.5)

where

 h�i�QNM �

�
0 if t < t0
e�!it sin�!rt��� if t > t0

(4.6)

is the QNM, assumed to start at some time t0. The decom-
position is achieved using a standard orthogonal projection

 hhk; h?i � 0; (4.7)

where the inner product, following arguments by Nollert
[19], is defined in an energy-oriented way:

 h�;�i �
Z

_�
 _�dt: (4.8)

One can show that the energy ‘‘parallel to the QNM
component of the signal’’ is given by

 Ek �
��������
Z

_h�i�
QNM
_hdt
��������2
�Z

_h�i�
QNM
_h�i�QNMdt

�
�1
: (4.9)

It is now meaningful to talk about (say) ‘‘the fraction of
energy going into the first QNM.’’ This fraction obviously
depends on the starting time t0 in Eq. (4.6). Nollert ob-
serves that the ratio of the energy ‘‘parallel to the QNM
component’’ to the total energy in the signal, Ek=Etot, has a
maximum as a function of t0. We can define the ringdown
starting time as the time t0 corresponding to this energy
maximized orthogonal projection (EMOP). In other words,
according to Nollert’s criterion, the ringdown starting time
t0 � tEMOP is chosen by looking for11

 

max
t0;�

Ek
Etot
� max

t0;�

���������Z _h�i�
QNM
_hdt
��������2
�Z

_h�i�
QNM
_h�i�QNMdt

�
�1

	

�Z
_h
 _hdt

�
�1
�
: (4.10)

The previous integral is evaluated separately for each
polarization component. To avoid memory effects, when
we integrate �4 we fix the integration constant so that _h �
0 at the end of the simulation. We denote by EEMOP the
maximized energy parallel to the QNM component of the
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FIG. 24 (color online). Norm (4.3) as a function of the trial
starting time for the dominant components �l; m� � �2; 2�, (3, 3),
(4, 4) in a merger with q � 2:0 (we consider a D7 run here).
Thick lines are obtained by fitting the frequency each time we
change 	0. Thin lines use the following fixed values for the QNM
frequency: M!R � 0:516 77, M!I � 0:085 86 for l � m � 2,
M!R � 0:822 10, M!I � 0:085 71 for l � m � 3, M!R �
1:121 52, M!I � 0:085 77 for l � m � 4.

11Another conceivable definition would not use the total energy
in the waveform Etot, but the energy in the waveform for t > t0.
It turns out that this quantity does not have a well-defined
maximum. It is also possible to use a variable frequency in
(4.10), in which case one could possibly obtain a larger maxi-
mum. This method would be equivalent to matched filtering,
which is discussed below.
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signal:

 EEMOP � Ek�t0 � tEMOP�: (4.11)

Using Prony methods or nonlinear fits [17], we first
determine the QNM frequency and the damping time (for
simplicity we consider a single QNM). Then we compute
tEMOP and EEMOP by maximizing (4.10) over both t0 and�.

Our results for l � m � 2 and run D7 are presented in
Table VI and Fig. 25. In the plots, 
�;	 is the fraction of
energy radiated at t > t0 in each of the two polarization
components, normalized to the total energy radiated in the
simulation, and computed for the value of the phase max-
imizing the EMOP. The first thing to notice is that there is a
sharp maximum of the fractional energy going into ring-
down. As seen from Fig. 25, �42% of the total energy in
the l � 2 merger waveform goes into ringdown. The re-
sults differ (very) slightly depending on the chosen polar-
ization state.

In Table VI we measure the ringdown starting time
tEMOP relative to the peak in jMr 22j, i.e., we compute
�tEMOP � tpeak � tEMOP. We see that �tEMOP is basically

constant for all mass ratios and for all runs, corresponding
to different initial separation of the binary. This is an
important consistency test on the results. Notice also that
tEMOP is located before the peak location.

EMOP times for the two polarizations are displaced by
about 3M for run D7. To define a unique ringdown starting
time, we take the average of both polarizations (in
Table VI, an average over the two polarizations is denoted
by angular brackets). Using this average starting time, we
can define an energy radiated in ringdown, also shown in
Table VI. We find the following formula to be a good fit for
the energy in the l � 2 mode:

 

EEMOP

M
� 0:271

q2

�1� q�4
; l � 2: (4.12)

Results for l � 3 follow the same pattern (see
Table VII). The average htEMOPi for l � 3 is located about
6M–7M after the average htEMOPi for l � 2. The following
formula provides a good fit for the energy in the l � 3
mode:

TABLE VI. Data for EMOP for l � 2. Numbers separated by a comma correspond to the � and 	 polarizations, respectively. The
fraction of the total energy in the l � 2 mode is about 42% for all mass ratios. We find that, independently of mass ratio, the value of
tEMOP for a given polarization is generally at a fixed position relative to the maximum of the waveform’s amplitude tpeak. We measure
this relative difference by �tEMOP � tpeak � tEMOP, which turns out to be roughly independent of q.

q Run EEMOP

Etot

htEMOPi
M

�tEMOP

M
h�tEMOPi

M
102EEMOP

M
h102EEMOPi

M

1.0 D7 0.41, 0.42 225.5 10.0, 7.0 8.5 1.9, 1.7 1.8
1.5 D7 0.41, 0.43 227.2 10.8, 7.4 9.1 1.8, 1.5 1.6
2.0 D7 0.42, 0.42 227.0 9.9, 6.9 8.4 1.4, 1.2 1.3
2.5 D7 0.41, 0.43 229.2 10.6, 7.1 8.8 1.2, 0.98 1.1
3.0 D7 0.41, 0.43 230.2 11.2, 7.8 9.5 0.95, 0.82 0.88
3.5 D7 0.40, 0.43 232.0 12.5, 8.5 10.5 0.80, 0.69 0.75
4.0 D7 0.39, 0.42 233.5 13.3, 9.3 11.3 0.68, 0.59 0.64

2.0 D8 0.40, 0.41 453.0 10.6, 6.6 8.6 1.4, 1.2 1.3
3.0 D8 0.40, 0.41 408.8 11.0, 7.6 9.3 0.95, 0.81 0.88
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FIG. 25 (color online). EMOP for l � 2 computed using run D7 (and high resolution). In the left panel we overplot 
� and the actual
waveform, marking tEMOP by a vertical dashed line. In the right panel we show that results are quite insensitive to q: each line
corresponds to a different mass ratio, and linestyles are the same as in Fig. 23.
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EEMOP

M
� 0:104

q2�q� 1�2

�1� q�6
; l � 3: (4.13)

If we take tEMOP for l � 2 as the fiducial ringdown
starting time, we can compute the energy, angular, and
linear momentum radiated during the ringdown phase (as
described by the EMOP). The results of this calculation are
listed in Table I, and fitting formulas are provided in
Appendix B (see, in particular, Table XII).

3. A detection-based approach: Energy deposited in
matched filters

As we already stated, QNMs do not form a complete set,
so the signal will always comprise quasinormal ringing
plus some other component (such as prompt response or
tails). However, in most practical applications we are only
interested in some ‘‘fairly good approximation’’ to the
ringdown waveform. The notion of ‘‘fairly good’’ must
be defined according to the specific context.

A possible definition, based on theoretical considera-
tions, was introduced in the previous section. Here we
propose an alternative, practical definition of the ringdown
phase from a detection perspective. Detection of ringdown
waves is likely to be achieved through matched filtering
[36,42]. The technique works by cross correlating the
detector’s output against a set of theoretical templates. It
can be shown that the maximum SNR is achieved when the
template is equal in form to the detector’s output (hence the
name matched filtering). Matched filtering is the method of
choice to search for ringdown waves: it is quasioptimal and
inexpensive, in the sense that it achieves the maximum
SNR with a relatively small number of templates or filters.

Now, for the purpose of a matched-filtering detection,
the ringdown definition must be related to the use of ring-
down templates. The relevant question is therefore: what is
the maximum SNR attainable through the use of a filter
which is a pure damped sinusoid? By definition, given the
numerical waveform h�t�, the SNR � is

 

� � max
f�g;t0

�T�f�g; t0�jh������������������������������������������
�T�f�g; t0�jT�f�g; t0�

p ;

�h1jh2� � 2
Z 1

0

h
1�f�h2�f� � h1�f�h
2�f�
Sh�f�

;

(4.14)

where the template T�f�g; t0� is

 T�f�g; t0� �
�
e�!

T
i �t�t0� sin�!T

r t��
T�; if t � t0;

0 if t < t0:

(4.15)

Sh�f� is the noise spectral density of the detector and f�g is
a set of parameters characterizing the templates. The pro-
cedure is now simple: we ‘‘slide’’ this template backwards
(starting at large t0 and decreasing it progressively) across
the numerical waveforms, and determine the maximum of
the convolution (4.14). A good initial guess for the tem-
plate parameters f�g � �!T

i ; !
T
r ;�T� can be obtained with

Prony methods [17].
As expected t0 will depend on the observer, i.e., on the

detector being used, through the noise spectral density
Sh�f�. In practice, however, the dependence on the detector
is usually very weak, since in general the largest contribu-
tion to the convolution integral is near the resonant fre-
quency !r. Thus, for all practical purposes, the detectors
behave as if the noise were white: the spectral density Sh�f�
can be approximated as constant and moved out of the
integral. This assumption also allows one to sidestep the
computation of the Fourier transform of the waveforms: by
Parseval’s theorem, the frequency integral can be turned
into a time integral. A more complete analysis, taking into
account the full structure of the detector’s noise, is in
preparation.

A possible notion of effective ringdown starting time tMF

according to a matched filter, which is useful to make
contact with previous SNR calculations [36], can be given
simply as follows.12 Define the effective starting time tMF

as the instant for which

 � �
���������������������
�htMF

jhtMF
�

q
; htMF

�

�
T�f�g; tMF� if t � tMF;
0 if t < tMF;

(4.16)

where � is computed from Eq. (4.14). Notice that, in
general, tMF does not coincide with the instant at which
the convolution between the signal and the template has a
maximum. By using Eq. (4.16) the SNR can be expressed
in terms of energy in the actual signal. This is a common

TABLE VII. EMOP data for l � 3. In this table, by ‘‘peak’’ we
mean the peak in the amplitude of the l � 3 mode. Numbers
separated by a comma correspond to the � and 	 polarizations,
respectively. The fraction of the total energy in the l � 3 mode is
about 44% for all mass ratios.

q Run EEMOP

Etot

htEMOPi
M

�tEMOP

M
h�tEMOPi

M
104EEMOP

M
h104EEMOPi

M

1.5 D7 0.44, 0.45 233.0 4.4, 6.4 5.4 3.5, 3.9 3.7
2.0 D7 0.45, 0.45 230.5 7.4, 5.4 6.4 7.7, 6.9 7.3
2.5 D7 0.44, 0.45 232.5 8.2, 6.2 7.2 9.6, 8.6 9.1
3.0 D7 0.44, 0.45 234.0 8.4, 6.4 7.4 10, 9.1 9.6
3.5 D7 0.43, 0.45 238.2 4.8, 7.3 6.0 7.8, 9.2 8.5
4.0 D7 0.43, 0.45 240.2 4.8, 7.3 6.0 7.5, 8.8 8.1

2.0 D8 0.44, 0.45 456.5 7.1, 5.1 6.1 7.6, 6.8 7.2
3.0 D8 0.45, 0.44 412.7 4.8, 7.3 6.1 8.8, 10 9.4

12Nollert’s ‘‘theoretical’’ definition, explained in the previous
section, is not too dissimilar from a ‘‘detection-oriented’’ defi-
nition. Indeed, expression (139) in [19] can be interpreted as the
fitting factor between actual waveforms and ringdown templates
(for white noise). If we take the ringdown frequencies as
unknown parameters and choose them to maximize the EMOP
(4.10), the results we get are very close to the present matched-
filtering criterion.
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approach in engineering, introduced in the context of
gravitational wave detection by Flanagan and Hughes
[42] (see also [36]).

The detection-based criterion, when applied to the
merger waveforms considered in this paper, yields the
results shown in Table VIII. From the above discussion,
it is clear that the values we list for the energy radiated
during ringdown are effective energies measured by the
detector. These correspond to the values used in data
analysis (see for instance [36]). From the table we see
that the effective energy radiated in ringdown for an equal
mass merger is �3%, in very good agreement with the
‘‘guesstimate’’ by Flanagan and Hughes [42], which has
often been used in the literature to compute SNRs and
measurement errors. We also note that this value is much
larger than the energy estimated by the EMOP, typically
twice as large. This happens because the filter is looking
for the maximum correlation, usually implying that the
best-match parameters (!r and !i) will differ significantly
from the true signal parameters.

Also notice that different polarizations yield slightly
different energies and starting times. For instance, for
equal mass mergers, we get tMF � 205 and tMF � 208 for
the plus and cross polarizations, respectively. If we average
over polarization states, this yields an effective radiated
energy of �2:8%.

We also point out that the amount of energy depends on
the parameter space to be searched. In principle, the corre-
lation (4.14) is to be maximized over all possible values of
!r, !i. In practice this would lead to a very large number
of filters, so we must choose reasonable cutoffs on the
parameters. For instance, in black hole ringdown searches
one looks for modes with a quality factor typically smaller
than �20. It may be possible to increase the SNR and the
amount of effective energy in ringdown by enlarging the
parameter search (this would also allow us to search for
ringdown modes of other objects, such as neutron stars or
boson stars). A discussion of these issues will be presented
elsewhere.

To conclude this section, we point out that a fit of the
total effective energy radiated in ringdown, according to a
matched-filtering criterion, is

 

EMF

M
� 0:44

q2

�1� q�4
: (4.17)

V. CONCLUSIONS AND OUTLOOK

The present study of binary black hole waveforms is, in
many ways, only preliminary. The following is a partial list
of important open problems.

A. Using ‘‘hybrid’’ waveforms in data analysis

The present study explored the physical properties of
numerical waveforms and their relation with analytical
methods. Our focus has been on providing analytical in-
sight into the structure of the waveforms. For this reason,
we deliberately avoided problems at the interface between
numerical relativity and data analysis (see Ref. [44] for
some steps in this direction). We strongly believe that an
analytical understanding of the numerical simulations will
be useful, or even necessary, to bridge the gap between the
(daunting) numerical task of generating waveforms, and
the injection of these waveforms into a data analysis
pipeline.

The PNQC approximation studied in this paper provides
a concrete example. We showed that the physical content
of any given simulation can be reproduced quite accurately
by substituting the orbital frequency � in the dominant
waveform amplitudes, Eqs. (3.7). These hybrid PNQC
waveforms can be used to create simple but accurate
templates, and to interpolate between numerical wave-
forms with different physical parameters.

Despite the recent progress in numerical relativity, simu-
lations are still computationally expensive. Hybrid tem-
plate families could be injected in LIGO, or used in
connection with LISA simulators in future rounds of the
mock LISA data challenges [45]. Semianalytical wave-
forms may significantly reduce the number of simulations
needed for detection and parameter estimation, and they
should be particularly useful when spins are included in the
model.

B. Removing spurious eccentricity and including
additional physical parameters

Our study clearly shows that the simulations have some
small, but non-negligible, eccentricity. The eccentricity
shows up as a typical modulation of all physical quantities
of interest: the punctures’ orbital velocity (Fig. 6), the
binary’s orbital frequency (Fig. 7), the energy and angular
momentum fluxes (Figs. 14 and 17), and so on. Measuring
this spurious eccentricity, and possibly removing it by
fine-tuning initial data, is an important open problem
[10,27,28]. Incidentally, the study of truly eccentric bi-

TABLE VIII. Estimated, polarization-averaged effective start-
ing times tMF and energy radiated in ringdown from a matched-
filter detection perspective, as functions of mass ratio. The listed
energies should be taken as rough estimates, depending on the
number of filters one is willing (and able) to use. We list also
�tMF, which is the ‘‘effective’’ starting time as measure from the
peak of the l � m � 2 waveform: �tMF � tpeak � tMF.

q htMF=Mi h�tMF=Mi hEMF=Mi

1.0 207 27.0 0.028
1.5 208 28.4 0.026
2.0 209 26.4 0.021
2.5 209 29.1 0.018
3.0 210 29.8 0.015
3.5 211 31.5 0.012
4.0 212 32.8 0.011
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naries could be relevant for massive black hole binaries to
be observed by LISA [21].

In the present study we completely neglect spins. There
is mounting evidence, based, for example, on recent stud-
ies of binary black hole recoil, that spins will have a
dramatic effect on the inspiral-merger-ringdown transition.
An extension of our study to spinning, precessing black
hole binaries is urgently needed.

C. Stitching numerical and analytical waveforms

For reasons of space, we decided not to address the
important problem of comparing the PN phase evolution
with the numerical phase evolution. This problem is central
to connect the early inspiral phase with the merger phase,
and it is a topic of active investigation. Since numerical
evolutions show signs of eccentricity, comparisons of the
phase evolution may benefit from the inclusion of eccen-
tricity in the PN models as well.

Another active research field concerns the problem of
‘‘stitching’’ PN and numerical waveforms. For the purpose
of this stitching, do we need the full PN waveforms, or does
the restricted PN approximation (including PN corrections
in the phase, but not in the amplitude) work well enough?
Does the number of cycles to be simulated numerically
depend on the mass ratio and other physical parameters
(e.g. the spins)? We plan to return to these problems in the
future.

D. Bridging the gap with black hole perturbation
theory

Computational resources and resolution limitations re-
duce the accuracy of numerical simulations for large mass
ratios. Unfortunately, many astrophysical black hole bi-
naries could have mass ratio q � 10 or larger (see e.g. [21]
and references therein). It is important to determine the
maximum value of q that should be simulated in numerical
relativity, or equivalently, the smallest value of q for which
black hole perturbation theory can be considered adequate
for detection and/or parameter estimation. In Appendix C
we collect some results that may be useful in this context.

E. Astrophysics and gravitational wave detection

The most interesting applications of our results should
be in astrophysics and gravitational wave detection. For

example, the multipolar analysis of the radiation per-
formed in this paper can be used to determine the cosmo-
logical distance at which we can test the no-hair theorem
with LISA, LIGO, or Virgo. Future extensions of this
analysis to spinning binaries could also predict the parame-
ter range (mass ratio, spin magnitudes, and directions) in
which the recoil velocity is astrophysically relevant, and
the probability for these regions of the parameter space to
be populated in astrophysical scenarios.
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APPENDIX A: MULTIPOLAR DECOMPOSITION
OF THE POST-NEWTONIAN WAVEFORMS

Here we list the spin-weighted spherical harmonic com-
ponents of a PN expansion of the Weyl scalar �4. For
l � 2:
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For l � 3:
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For l � 4:
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For l � 5:
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For l � 6:
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For l � 7:
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Our � is the same as the inclination angle � in Blanchet
et al. [13]. We recall that

 ei ~� � eim�
R

�dt�2M� ln�=�0�; (A7)

and therefore the phase ~� is defined up to an additive term
mc, with c a constant factor. By fixing the constant to be
c � �=2, we recover, in the limit �! 0, Poisson’s results
from perturbation theory. If we include radiation reaction
terms in the waveform by using Eq. (27) of [15], we find

$ � �24. If we neglect those terms by redefining the
phase and using their Eq. (32), then $ � �8=7.

The spin-weighted spherical harmonic components of
h�; h	 can be obtained from the corresponding compo-
nents of �4, Eqs. (A1)–(A6), as

 �h� � ih	�l;m � �
1

m2�2  l;m: (A8)

The resulting expressions do include the logarithmic cor-
rections to the phase. They are valid up to 2.5PN, with the

TABLE IX. Energy, angular momentum, and linear momentum emitted after the estimated time of CAH formation, as listed in
Table II. The CAH formation time is measured relative to the peak of the l � m � 2 waveform: �tCAH � �tpeak � tCAH�=M.

q Run �tCAH=M ECAH=M JCAH=M2 ECAHM=JCAH 104Px;CAH=M 104Py;CAH=M 104PCAH=M

1.0 D7 19.0 0.0259 0.1261 4.869 0 0 0
1.5 D7 18.2 0.0232 0.1193 5.142 �2:56 �0:28 2.58
2.0 D7 17.9 0.0193 0.1004 5.202 �3:98 �0:15 3.98
2.5 D7 17.1 0.0156 0.0852 5.462 �5:01 �0:20 5.01
3.0 D7 16.6 0.0128 0.0716 5.594 �5:38 �0:53 5.41
3.5 D7 15.7 0.0105 0.0580 5.524 �5:62 �1:34 5.78
4.0 D7 14.3 0.0086 0.0442 5.139 �5:78 �2:30 6.22

2.0 D8 17.7 0.0192 0.1055 5.495 4.15 �0:23 4.16
3.0 D8 15.2 0.0125 0.0493 3.944 0.28 �5:90 5.91
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only exception of the l � m � 2 component, which is
given in Eq. (3.4).

APPENDIX B: ESTIMATES OF THE POST-PLUNGE
ENERGY, ANGULAR MOMENTUM, AND LINEAR

MOMENTUM

In this section we give estimates of the energy, angular
momentum, and linear momentum radiated in the last
phases of a binary black hole inspiral.

Table IX lists the energy, angular momentum, and linear
momentum radiated after the time of CAH formation,
estimated as the point where the ratio of the radial and
tangential puncture velocities vr=vt > 0:3 (see Sec. III).

Given the uncertainties in our estimate of the CAH
formation, we also consider another useful (if somewhat
conventional) indicator of the regime of validity of PN
expansions: the innermost stable circular orbit (ISCO).
The ISCO is defined by the condition that the energy of
the two-body system E, which is a function of the orbital
frequency �, has a minimum: dE=d� � 0. Since E is only
known as a PN series in �, the location of the ISCO
depends on the PN order [32].

In Tables X and XI we list the orbital frequency at the
ISCO M�ISCO computed by including terms in the energy
function up to 2PN and 3PN, respectively. Notice that 3PN

corrections lower the ISCO frequency for all mass ratios,
the reduction being larger for larger mass ratios.13 We also
list the time location of the ISCO (relative to the peak in the
amplitude of the l � m � 2 mode). We identified this time
location as the instant when the ISCO frequency equals the
orbital frequency from our simulations, as estimated from
the gravitational wave emission of the dominant multipolar
component l � m � 2 (see Sec. III B): M�ISCO � M!D2.
The 3PN ISCO absolute location in terms of the total
simulation time is also shown in Table II, and it should
be compared with the CAH formation estimates in the
same table. As q! 1 the CAH formation time is very
close to the 3PN ISCO time. For large mass ratios, when
one of the holes is very small, the difference is larger, as
expected on physical grounds.

Tables X and XI also list the energy, angular momentum,
and linear momentum emitted after the ISCO, with the
ISCO location estimated by PN methods. While the energy

TABLE X. ISCO data using the 2PN Taylor expansion of the energy. The ISCO time is measured relative to the peak of the l �
m � 2 waveform: �tISCO � �tpeak � tISCO�=M.

q Run M�ISCO �tISCO=M EISCO=M JISCO=M2 EISCOM=JISCO 104Px;ISCO=M 104Py;ISCO=M 104PISCO=M

1.0 D7 0.137 19.6 0.0256 0.1243 0.206 0 0 0
1.5 D7 0.136 19.2 0.0232 0.1181 0.196 �2:29 �0:40 2.32
2.0 D7 0.136 18.6 0.0192 0.0994 0.193 �3:79 �0:07 3.79
2.5 D7 0.134 18.2 0.0156 0.0853 0.183 �4:53 �0:33 4.54
3.0 D7 0.134 17.9 0.0129 0.0727 0.177 �4:83 �0:60 4.86
3.5 D7 0.133 17.9 0.0108 0.0619 0.174 �4:73 �1:24 4.89
4.0 D7 0.132 17.6 0.0092 0.0524 0.176 �4:48 �1:75 4.81

2.0 D8 0.136 18.8 0.0197 0.1068 0.184 �3:65 �0:00 3.65
3.0 D8 0.134 17.9 0.0130 0.0551 0.236 �4:63 �0:40 4.65

TABLE XI. ISCO data using the 3PN Taylor expansion of the energy. The ISCO time is measured relative to the peak of the
l � m � 2 waveform: �tISCO � �tpeak � tISCO�=M.

q Run M�ISCO �tISCO=M EISCO=M JISCO=M2 EISCOM=JISCO 104Px;ISCO=M 104Py;ISCO=M 104PISCO=M

1.0 D7 0.129 22.1 0.0266 0.1231 0.216 0 0 0
1.5 D7 0.126 22.8 0.0245 0.1165 0.210 �1:74 �1:08 2.05
2.0 D7 0.120 23.8 0.0208 0.0985 0.211 �2:86 �1:37 3.17
2.5 D7 0.116 24.9 0.0172 0.0850 0.202 �3:11 �1:97 3.68
3.0 D7 0.112 26.5 0.0146 0.0737 0.198 �3:05 �2:46 3.92
3.5 D7 0.109 27.5 0.0123 0.0645 0.191 �2:70 �2:78 3.88
4.0 D7 0.107 28.1 0.0106 0.0568 0.187 �2:28 �3:07 3.82

2.0 D8 0.120 23.6 0.0210 0.0940 0.223 �2:75 �1:26 3.02
3.0 D8 0.112 25.8 0.0146 0.0872 0.167 �3:10 �1:86 3.62

13For comparison, the ISCO for point particles is at r0 � 6M,
or equivalently at an orbital frequency of M� � 6�3=2 ’ 0:068.
Corrections to this point-particle limit were worked out by Clark
and Eardley [46], yielding a simple analytical estimate for large
but finite mass ratios: r0=M � 6q=�1� q�, M� � r�3=2

0 . For
q � 4 this yieldsM� ’ 0:095, not too far from the 3PN estimate
of 0.107.
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emitted is a robust quantity, with very weak dependence on
the PN order, angular and linear momenta are very sensi-
tive to a variation of the PN order from 2PN to 3PN (i.e.,
they are very sensitive to small variations in the starting
time of the integration). The reason for this behavior is
apparent from an inspection of Figs. 14 and 17. While the
energy flux is a smooth function, even in the strong-field
region, the angular momentum flux is a strongly oscillating
function of time.

The functional dependence of energy and angular mo-
mentum on mass ratio q can be inferred by combining
the multipolar decomposition of the PN expansion
(Appendix A) with Eq. (3.24). We find that good fits to
the total angular momentum, energy, and multipolar en-
ergy distribution in the dominant modes for times t > t0 �
t3PN
ISCO are

 JISCO=M
2jt>t0 � jtot

q2

�1� q�4
; (B1)
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q2

�1� q�4
;
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2
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�1� q�4
;
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3
q2�q� 1�2

�1� q�6
;

(B2)

with the fitting coefficients listed in Table XII.

In the same table, for comparison, we also list the
corresponding coefficients for t > t0 � tEMOP. The ring-
down and plunge phase are strongly related with each
other, and the numbers are roughly proportional.
According to the EMOP criterion ringdown always starts
after the ISCO. Therefore the post-EMOP radiation of
energy, angular, and linear momentum is always smaller
than the corresponding radiation after the ISCO.

The PN expansion breaks down after the ISCO. An
estimate of the linear momentum emitted after the ISCO,
within PN theory, was obtained in [20] by integrating the
PN linear momentum flux along a plunge geodesic of the
Schwarzschild metric. In [20], the integration is performed
all the way from the ISCO (r ’ 6M) to the Schwarzschild
horizon (r ’ 2M). The energy and angular momentum
radiated after the ISCO can be computed using the same
method, and they were kindly provided to us by Clifford
Will [47].

Results of a 2PN estimate of the energy and angular
momentum radiated after the ISCO are shown in Fig. 26
for different mass ratios, along with different estimates of
the corresponding quantities from our numerical simula-
tions. In particular, we show numerical estimates of the
energy and angular momentum radiated after the 2PN and
3PN ISCO, and after the CAH formation, as functions of
the mass ratio. To check the robustness of our results
against initial conditions we also considered two runs
starting at larger initial separations (namely, D8 simula-
tions with q � 2:0 and q � 3:0).

Some comments are in order. The radiated energy from
the simple PN estimate is in surprisingly good agreement
with numerical results, the agreement getting better as we
increase the PN order used to estimate the ISCO location.
The agreement is particularly good when we consider
radiation emitted after the 3PN estimate of the ISCO and
relatively large mass ratios. The agreement in the radiated
angular momenta is much worse. This seems to be a
general feature when comparing PN estimates against nu-

TABLE XII. Fitting coefficients for the energy and angular
momentum emitted after the ISCO and EMOP times.

t0 jtot 
tot 
2 
3

3PN ISCO 2.029 0.421 0.397 0.168
EMOP 1.173 0.295 0.271 0.104
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FIG. 26 (color online). Energy and angular momentum radiated in the plunge using the 2PN and 3PN definitions of the ISCO are
compared against the simple estimate by Blanchet et al. [20] (BQW in the legend). All estimates were computed using the D7 runs
(except for the inverse triangles, which refer to D8 runs).
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merical simulations. For example, Figs. 2 and 3 in [27]
show that the eccentricity required to match PN predictions
for a binary’s angular momentum against numerical calcu-
lations in quasiequilibrium is significantly larger than the
eccentricity required to match the corresponding energies.
In the present case, the disagreement is partially affected
by the strongly oscillating functional dependence of the
angular momentum flux (see e.g. Fig. 17). This is con-
firmed by the fact that a relatively small change in the
initial separation (using D8 runs instead of D7 runs) pro-
duces a significant change in the numerical estimate of the
angular momentum radiated after plunge. Given the large
uncertainties associated with both numerical and analytical
estimates, we cannot draw reliable conclusions from the
observed disagreement.

It may be tempting to attribute the observed differences
in the angular momentum to the fact that the PN estimates
of [20] neglect the ringdown phase. We can naively try to
correct for this effect by integrating the energy and angular
momentum fluxes from the ISCO up to the CAH only.
However, this will result in serious disagreement for both
the radiated energy and angular momentum: they turn out
to be extremely small, especially for mass ratio q! 1 (in
this limit the CAH formation time and the ISCO are very
close, see Table II). Thus, ringdown alone cannot explain
the disagreement. A more detailed analysis, possibly com-
bining the PN approach and the close-limit approximation,
is necessary.

An interesting possibility is that the agreement between
PN estimates and numerical results could improve if the
PN integration is truncated at the light ring, instead of
integrating all the way to the horizon (as originally done
in [20]). The physical argument for truncating at the light

ring is that most of the radiation emitted after r ’ 3M
would be filtered by the potential barrier surrounding the
black hole, and that this potential barrier (for
Schwarzschild black holes) has a peak at the light ring
[23]. Figure 27 shows that truncating at the light ring
sensibly improves the estimate of the linear momentum
radiated after plunge, correspondingly improving the esti-
mate of the total kick velocity. Given the uncertainties
involved in the extrapolation, this may be little more than
a coincidence. In any case this problem is worth investi-
gation, given the potential astrophysical relevance of recoil
velocities.

APPENDIX C: MULTIPOLAR DISTRIBUTION OF
RADIATION FOR EXTREME-MASS RATIOS

In this Appendix we collect the main results for the
energy, angular momentum, and linear momentum radi-
ated by particles falling into (rotating or nonrotating) black
holes. Our purpose is to provide a quick reference for the
extreme-mass ratio limit of numerical relativity simula-
tions, to be compared with present and future numerical
relativity calculations of binaries with large mass ratio (and
possibly spin). Research in this direction is already under
way: for example, evolutions of large mass ratio binaries
using finite element methods can be found in [48].

1. The energy radiated by plunging particles:
Nonrotating black holes

The first investigations of particles plunging into black
holes began with Zerilli [49], who laid down the perturba-
tion formalism to analyze gravitational radiation from a
pointlike particle with mass mp around a Schwarzschild
black hole with mass M� mp. His analysis was com-
pleted by Davis, Ruffini, Press, and Price [50] (hereafter
referred to as DRPP), who numerically computed the
gravitational radiation generated when a small particle at
rest falls from infinity into a Schwarzschild black hole.
DRPP found that the total energy emitted in the process (in
geometrized units) is given by

 Etot � 0:0104�m2
p=M�: (C1)

Detweiler and Szedenits [51] and Oohara and Nakamura
[52] generalized DRPP’s results to particles plunging into a
Schwarzschild black hole with nonzero orbital angular
momentum. In the perturbation framework under consid-
eration, the particle’s trajectory as it plunges down the
hole, with zero velocity at infinity, is described by

 � � �=2;
dt
d	
�

1

1� 2M=r
;

d�
d	
�
Lz
r2 ; (C2)

 

dr
d	
� �

�
1� �1� 2M=r�

�
1�

L2
z

r2

��
1=2
: (C3)
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FIG. 27 (color online). The kick velocity accumulated after
plunge using the 2PN and 3PN definitions of the ISCO is
compared against the corresponding estimates by Blanchet
et al. [20] (BQW in the legend). In the two BQW estimates
the integration is truncated at the horizon or at the light ring,
respectively.
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The particle has an orbital angular momentum Jp � mpLz.
When Lz � 0 the particle falls straight into the black hole.
For Lz between zero and 4M, the particle spirals a finite
number of times around the hole before crossing the event
horizon. For Lz � 4M, the particle spirals an infinite num-
ber of times around the marginally bound circular orbit at
r � 4M. For Lz > 4M the particle never falls into the black
hole, so we discard this case.

In Table XIII we show results from [52] for the total
energy radiated in the first three multipoles (l � 2, 3, 4) as
a function of Lz. From the table it is apparent that the total
energy output grows with Lz, and so does the energy in
each multipole l. The relative energy output in each mode
behaves somewhat differently: as Lz grows, the percentile
energy going into l � 2 decreases. The opposite happens
for all other modes.

For Lz � 4M the total energy is obviously infinite: the
particle spirals an infinite number of times around r � 4M
and therefore radiates for an infinite time. The energy
radiated as a function of l is well approximated by a simple
function: El � ae�blm2

p=M, where the coefficients a, b
(which are functions of Lz) are listed in Table XIII. The
total energy radiated is well approximated by Etot �

ae�2b�1� e�b��1m2
p=M [52]. Remarkably, the relative

contribution of the l � 3 mode is always larger than
10%, and that of the l � 4 mode is always larger than
1%. As usual the l � 2 mode dominates, with a relative
contribution always larger than �50%.

Also shown in Table XIII is the number of spirals the
particle completes before entering the horizon. This num-
ber is useful for two reasons. The first reason is that, if the
particle falls with angular momentum very close to the
marginal value 4M, it will complete many revolutions and

radiate a huge amount of radiation. In this case the pertur-
bation expansion would no longer be valid, and therefore
we must make sure that N is not much larger than 1. The
second reason is that N gives us an estimate of how much
of the output energy is due to the actual, almost radial
plunge motion (see e.g. Fig. 6), and how much of it comes
from the particle circling around the black hole.

2. The energy radiated by plunging particles:
Rotating black holes

The standard formalism for small perturbations of Kerr
black holes was formulated by Teukolsky [53]. The equa-
tions decouple and separate, reducing to two coupled
ordinary differential equations with a source term. In the
case of gravitational waves emitted by particles plunging
into the hole the source term diverges at the boundaries, so
this is not the most convenient formalism (but see [51] for a
way to get around these difficulties). Using the alternative
formalism developed by Sasaki and Nakamura [54], a
series of papers by Nakamura and co-workers (see e.g.
[52,55–57] and references therein) examined the gravita-
tional radiation emitted by point particles moving in the
vicinities of a Kerr black hole.

The results for the total energy, as well as the energy
radiated in each mode, are summarized in Tables XIV and
XV. These tables refer to particles falling along the equator
of the black hole. Starting with particles falling from
infinity with zero orbital angular momentum, Table XIV
shows a familiar pattern. The total energy increases with
increasing j. For near-extremal black holes (j � 0:99) the
total energy radiated is almost 5 times the Schwarzschild
value. Again, the total energy going into each multipole l

TABLE XIII. Energy radiated in each of the three lowest multipoles for a particle with mass mp and angular momentum mpLz
falling from infinity into a Schwarzschild black hole (from [52]). We show the percentage radiated in each mode relative to the total
energy radiated (as extrapolated from the data, which typically yields an error of less than 5%). We also show the number N �
j��j=�2�� of ‘‘laps’’ the particle performs before plunging. The coefficients a and b are defined in the text.

Lz=M a b N Etot E2 % E3 % E4 %

0 0.44 2 0 0.010 9:1	 10�3 88 1:1	 10�3 10 1:5	 10�4 1.4
1 0.21 1.5 0.15 0.013 1	 10�2 78 2:3	 10�3 18 5	 10�4 4
2 0.22 1.1 0.32 0.036 2:4	 10�2 67 8:1	 10�3 22 2:7	 10�3 7.5
3 0.36 0.86 0.55 0.112 6:4	 10�2 57 2:7	 10�2 24 1:2	 10�2 10.7
3.5 0.53 0.76 0.75 0.218 1:2	 10�1 55 5:4	 10�2 25 2:5	 10�2 11.5
3.9 1.0 0.71 1.15 0.485 2:4	 10�1 49 1:2	 10�1 25 5:8	 10�2 11.9

TABLE XIV. Energy radiated in each of the three lowest multipoles for a particle with zero angular momentum falling from infinity
into a Kerr black hole along the equator, as a function of j � J=M2. Taken from Fig. 3 in [56].

j Etot E2 % E3 % E4 %

0.0 1:0	 10�2 9:1	 10�3 88 1:1	 10�3 10 1:5	 10�4 1.4
0.7 1:8	 10�2 1:5	 10�2 83 2:2	 10�3 12 3:9	 10�4 2.2
0.85 2:3	 10�2 1:9	 10�2 83 3:4	 10�3 15 7:3	 10�4 3.2
0.99 4:7	 10�2 3:3	 10�2 70 9:6	 10�3 20 2:7	 10�3 5.7
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increases. As previously pointed out, the relative contribu-
tion of each mode increases with j for l > 2, but it de-
creases for l � 2. The l � 3 mode always contributes more
than 10% of the total energy, and the l � 4 mode always
contributes more than 1%.

Table XV shows results for a j � 0:85 black hole, for
several values of orbital angular momentum Lz. The total
energy varies by 2 orders of magnitude between Lz �
2:6M and Lz � �0:8M. The energy emitted is larger
than 10% for l � 3, and larger than 1% for l � 4. We
also list the number of spirals before plunge. This number
is always smaller than unity, so the results can in principle
be interpreted as a plunging motion and applied to the
merger phase.

Not shown here is the contribution of differentm’s to the
total energy. For large black hole rotation and large posi-
tive values of Lz most of the energy goes into l � m
modes. Negative-m modes emit a negligible amount of
radiation in this regime. For negative Lz the situation is
different: all modes seem to be excited to comparable
amplitudes. See [55] for more details.

3. Linear and angular momentum radiated by plunging
particles

Computing the linear momentum carried by gravita-
tional waves is of great astrophysical importance.
Coalescing binary black hole systems may abound in
galactic disks and in the centers of galactic nuclei.
Because of the emission of gravitational radiation the final
black hole receives a ‘‘kick,’’ i.e., it acquires a nonzero
recoil velocity because of momentum conservation.
Depending on the momentum emitted, the recoil velocity
may be large enough to release black holes from the host
galaxy. If so, gravitational radiation effects will have con-
siderable observable consequences for astrophysics and
cosmology, such as the depletion of black holes from
host galaxies, the disruption of active galactic core ener-
getics, and the ejection of black holes and stellar material
into the intergalactic medium. In the following we briefly
review some perturbative calculations of the recoil
velocity.

a. Linear momentum

In a Schwarzschild background, the linear momentum
carried by gravitational waves when a zero angular mo-
mentum point particle falls into the black hole is j�Pj �
8:73	 10�4m2

p=M [57]. This leads to a recoil velocity v�
2:63�10mp=M�2 km=s. For the general case of a particle
plunging with nonzero angular momentum, the linear mo-
mentum carried by gravitational waves is well approxi-
mated by
 

j�Pj � 9	 10�6

�
4
�
Lz
M

�
2
� 5

Lz
M
� 10

�
2
m2
p=M;

0<
Lz
M
< 3:4; (C4)

 � 4:5	 10�2m2
p=M; 3:4<

Lz
M
< 4: (C5)

This leads to a recoil velocity of
 

v� 2:7
�

2

5

�
Lz
M

�
2
�

1

2

Lz
M
� 1

�
2
�10mp=M�

2 km=s;

0<
Lz
M
< 3:4; (C6)

 � 130�10mp=M�
2 km=s; 3:4<

Lz
M
< 4: (C7)

These results are not very sensitive to the rotation of the
black hole (see e.g. Fig. 6 in [55]). A hint to extrapolate
recoil velocities to mass ratios close to unity comes from
the Newtonian result: replace 
=M by f�q� [58], where

 f�q� � q2 q� 1

�q� 1�5
: (C8)

The function f�q� has two extrema at
 

q �
3�

���
5
p

2
� 0:38;

f
�
3�

���
5
p

2

�
� �

1

25
���
5
p � fmin�q�;

(C9)

TABLE XV. Energy radiated in each of the three lowest multipoles for a particle with angular
momentum mpLz falling from infinity into a Kerr black hole with j � 0:85, along the equator.
Taken from Fig. 5 in [55].

Lz=M Etot N E2 % E3 % E4 %

2.6 1.2 0.97 5:0	 10�1 42 3:0	 10�1 25 1:8	 10�1 15
1.3 1:0	 10�1 0.2 6:5	 10�2 61 2:5	 10�2 23 9:0	 10�3 8.4
0.65 4:8	 10�2 0.06 3:5	 10�2 73 8:7	 10�3 18 2:5	 10�3 5.2
0.0 2:3	 10�2 0.05 1:9	 10�2 81 3:4	 10�3 15 7:3	 10�4 3.2
�0:8 9:1	 10�3 0.17 8:0	 10�3 88 9:0	 10�4 10 1:3	 10�4 1.4
�2:25 1:4	 10�2 0.38 1:2	 10�2 81 1:8	 10�3 12 3:5	 10�4 2.3
�4:5 7:7	 10�2 1.02 5:5	 10�2 71 1:3	 10�2 17 5:0	 10�3 6.4
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We then get
 

v� 4:8
�

2

5

�
Lz
M

�
2
�

1

2

Lz
M
� 1

�
2 f�q�
fmax�q�

km=s;

0<
Lz
M
< 3:4; (C11)

 � 232
f�q�
fmax�q�

km=s; 3:4<
Lz
M
< 4: (C12)

b. Angular momentum

Radiation of angular momentum demands either a non-
zero orbital angular momentum of the particle, or a non-
zero angular momentum of the black hole. For
Schwarzschild black holes, Oohara and Nakamura [52]
found that, even though both the radiated energy Etot and
angular momentum �J diverge in the limit Lz=M ! 4,
their ratio is to a good approximation independent of Lz:

 

��������MEtot

�J

��������� 0:15; for jLz=Mj * 1: (C13)

For rotating black holes, the angular momentum radiated
depends on the relative sign between the rotation of the
black hole and Lz. We denote by x the ratio of radiated
energy to radiated angular momentum:

 x�j; Lz� �
MEtot

�J
: (C14)

This quantity is listed in Table XVI (after Table I in [55])
for some values of Lz and j.

4. Perturbation theory as a guide to numerical results
for comparable-mass ratios

One of the most prominent features borne out of binary
black hole simulations seems to be the absence of strong
nonlinearities: the potential barrier close to the black hole

horizon acts as a very effective cloak, filtering out many
nonlinear features of the dynamics [59]. For this reason
results from perturbation theory (i.e., q� 1) can usually
be extrapolated to the equal mass ratio case, yielding very
good agreement with full blown numerical simulations. To
quote Smarr, ‘‘the agreement is so remarkable that some-
thing deep must be at work’’ [60]. This was also found to
be the case for the head-on collision of two black holes.
The perturbation theory result Etot � 0:0104�M2

1=M2�,
with M1 � M2 [50] can be compared to the full numerical
result for q � 1: Etot � 0:0013M � 0:001	 16�2M �
0:0104	 �2M��2 (see [59]). Simple scaling arguments
applied to perturbative results work surprisingly well.

On this basis, a natural conjecture is that particles plung-
ing with large but subcritical orbital angular momentum
should describe reasonably well the final stages of a binary
black hole inspiral [51]. Indeed, some of the results dis-
cussed in the main text suggest that the merger of two equal
mass black holes can be described by extrapolating results
from perturbation theory. For instance, the final spin of the
black hole can be predicted by using the small mass ratio
approximation: see Eq. (3.20) and the related discussion.

For inspiralling binaries evolving through quasicircular
orbits, the plunge (‘‘merger’’) happens when the smaller
body crosses the ISCO, even though this notion is not well
defined for comparable-mass bodies. We argue that the
merger phase should be reasonably well described by a
particle plunging with an orbital angular momentum Lz
only slightly smaller than the marginal value Lz � 4M
(corresponding to a radius equal to 4M). In this case the
trajectory resembles that of a particle going through the
merger phase: a quasicircular orbit followed by a plunge. It
is important to specify how close Lz should be to the
marginal value. We look for orbits that complete barely
less than one lap before plunging. This guarantees that the
energy output is due only to a plunge trajectory; it also
guarantees that the orbit was quasicircular before the
plunge. We therefore argue that, as seen from the table,
Lz ’ 3:9M is a near-optimal value. An obvious objection is
that the ISCO for point particles is not at r � 4M (the
location of the marginally bound orbit), but rather at r �
6M. Fortunately, for more massive bodies an approximate
ISCO can be defined, and it is usually closer to r � 4M.
We can thus try to extend these perturbative results to
understand the merger phase.

Extrapolating the point-particle results presented in the
previous subsections we get, for nonrotating holes:

 

E
M
� 0:485

q2

�1� q�4
;

ME
�J
� 0:15;

vrecoil � 232
f�q�
f�q�max

km � s�1:

(C15)

For instance, the value 0:485q2=�1� q�4 for the energy
is found extrapolating the last row in Table XIII by the
substitution m2

p=M2 ! q2=�1� q�4. From fits of the cor-

TABLE XVI. The factor x�j; Lz� � MEtot=�J for some values
of Lz and j (from Table I in [55]).

j � 0 j � 0:7 j � 0:85 j � 0:99
Lz=M x Lz=M x Lz=M x Lz=M x

�4 0.15 �4:4 0.03 �4:5 0.04 �4:7 0.07
�3 0.15 �3:3 0.04 �3:375 0.05 �3:5 0.13
�1 0.15 �2:2 0.04 �2:25 0.06 �2:35 0.15
1 0.15 1.5 0.19 1.3 0.21 1 0.30
2 0.15 2.25 0.20 1.95 0.22 1.5 0.30
3 0.15 3.0 0.22 2.6 0.24 2 0.34
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responding numerical quantities at the 3PN ISCO (which
should work as a good reference point, for lack of a better
guess) we get

 

EISCO

M
� 0:421

q2

�1� q�4
;

MEISCO

�JISCO
� 0:19;

vISCO
recoil � 120

f�q�
f�q�max

km s�1:

(C16)

The two sets of values are reasonably consistent. The
largest disagreement refers to the linear momentum radi-
ated, and therefore to the recoil velocity of the final hole.

APPENDIX D: POLARIZATION OF THE
WAVEFORMS

Getting information about the polarization content of a
waveform is simple in the presence of a monochromatic
wave. In more general settings, making statements about
the polarization state is easier in Fourier space. Methods to
compute the polarization content of a waveform solely
from a time-domain analysis were presented in [61].
Here we shall adapt these techniques for the case at hand.

From the (real) polarization components h��t�, h	�t�
14,

we can define the so-called analytic signal H�, H	 in the
following way:

 H� � h��t� � iH��t�; (D1)

 H	 � h	�t� � iH	�t�: (D2)

The imaginary part of the analytic signal is the Hilbert
transform H �t� of the signal h�t�, defined as

 H �t� �
1

�

Z �1
�1

h�	�
t� 	

d	; (D3)

where the integral is taken as the Cauchy principal value.
For reference we note that the Hilbert transform of sint is
� cost and the transform of cost is sint.

From the analytic signal we define a covariance matrix
C as

 C �
H�H



� H�H



	

H	H
� H	H
	

� �
; (D4)

where an asterisk stands for complex conjugation. We
note that the covariance matrix is Hermitian, and thus its
eigenvalues �0, �1 are real and positive. Without loss of
generality, we assume �0 > �1. It can be shown that the
normalized eigenvector v � �x0; y0� (jvj � 1) associated
with �0 points in the direction of the largest amount of

polarization [61]. One can define an elliptical component
of polarization PE as

 PE �

���������������
1� X2
p

X
; (D5)

where

 X � max
�

���������������������������������������������������
Re�ei�x0�

2 � Re�ei�y0�
2

q
: (D6)

The quantity PE � 1 for circular polarization, and PE � 0
for linear polarization. For illustration, consider the wave-
form h� � sint, h	 � cost. This is a good approximation
to a typical inspiral waveform at large orbital separation, as
viewed from the normal to the orbital plane, and it is
obviously circularly polarized. For this waveform we have

 C �
1 �i
i 1

� �
; (D7)

and v � ��i=
���
2
p
; 1=

���
2
p
�. This implies X � 1=

���
2
p

and
PE � 1, as expected. For h	 � 0 (linear polarization) we
would have X � 1 and PE � 0. Thus PE is a good indica-
tor of the degree of circular or linear polarization. We can
also define a polarization strength as follows:

 PS � 1�
�1

�0
: (D8)

PS � 1 means that the waveform is entirely linearly polar-
ized or circularly polarized (there is only one polarization
component), and PS � 0 means that the two polarization
states have comparable magnitude.

In Fig. 28 we show the result of computing PE using the
dominant (l � jmj � 2) component of a binary black hole
merger waveform with q � 2:0. This plot clearly shows
that the polarization is circular for both inspiral and ring-
down, with the exception of the unphysical portions of the
wave: the initial data burst and the final, noise-dominated
part of the ringdown waveform.
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FIG. 28 (color online). Top: jRe�Mr 22�j and jIm�Mr 22�j for
q � 2:0, D8 (top). Bottom: the degree of elliptic polarization PE
for the l � 2 waveform as viewed from the normal to the orbital
plane.

14In practice we do not use the gravitational wave amplitudes,
but the real and imaginary components of �4, in order to avoid
problems with the integration constants and to sidestep the
memory effect discussed in Sec. II A. This should have no
influence on the final results.
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[22] M. Ansorg, B. Brügmann, and W. Tichy, Phys. Rev. D 70,

064011 (2004).
[23] A. Buonanno and T. Damour, Phys. Rev. D 62, 064015

(2000).
[24] J. G. Baker, M. Campanelli, C. O. Lousto, and R.

Takahashi, Phys. Rev. D 65, 124012 (2002).
[25] M. Koppitz, D. Pollney, C. Reisswig, L. Rezzolla, J.

Thornburg, P. Diener, and E. Schnetter, Phys. Rev. Lett.
99, 041102 (2007).

[26] R. J. Gleiser and A. E. Dominguez, Phys. Rev. D 68,
104018 (2003).

[27] E. Berti, S. Iyer, and C. M. Will, Phys. Rev. D 74, 061503
(2006).

[28] M. A. Miller, Phys. Rev. D 69, 124013 (2004).
[29] P. C. Peters, Phys. Rev. 136, B1224 (1964).

[30] L. Blanchet, T. Damour, G. Esposito-Farese, and B. R.
Iyer, Phys. Rev. Lett. 93, 091101 (2004).

[31] E. Poisson, Phys. Rev. D 47, 1497 (1993); H. Tagoshi and
M. Sasaki, Prog. Theor. Phys. 92, 745 (1994).

[32] A. Buonanno, Y. b. Chen, and M. Vallisneri, Phys. Rev. D
67, 024016 (2003); 74, 029903(E) (2006).

[33] D. W. Tufts and R. Kumaresan, Proc. IEEE 70, 975 (1982).
[34] Y. Hua and T. K. Sarkar, IEEE Trans. Acoust. Speech

Signal Process. 38, 814 (1990).
[35] K. Levenberg, Q. Appl. Math. 2, 164 (1944); D.

Marquardt, SIAM J. Appl. Math. 11, 431 (1963).
[36] E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73,

064030 (2006).
[37] P. Papadopoulos, Phys. Rev. D 65, 084016 (2002).
[38] Y. Zlochower, R. Gomez, S. Husa, L. Lehner, and J.

Winicour, Phys. Rev. D 68, 084014 (2003).
[39] E. Berti and V. Cardoso, Phys. Rev. D 74, 104020 (2006).
[40] R. H. Price, Phys. Rev. D 5, 2419 (1972).
[41] J. G. Baker and M. Campanelli, Phys. Rev. D 62, 127501

(2000).
[42] E. E. Flanagan and S. A. Hughes, Phys. Rev. D 57, 4535

(1998).
[43] N. Dorband and M. Tiglio (private communication).
[44] T. Baumgarte, P. Brady, J. D. E. Creighton, L. Lehner,

F. Pretorius, and R. DeVoe, arXiv:gr-qc/0612100.
[45] K. A. Arnaud et al., arXiv:gr-qc/0701139; K. A. Arnaud

et al., arXiv:gr-qc/0701170.
[46] J. P. A. Clark and D. M. Eardley, Astrophys. J. 215, 311

(1977).
[47] C. M. Will (private communication).
[48] C. F. Sopuerta and P. Laguna, Phys. Rev. D 73, 044028

(2006).
[49] F. J. Zerilli, Phys. Rev. Lett. 24, 737 (1970); Phys. Rev. D

2, 2141 (1970).
[50] M. Davis, R. Ruffini, W. H. Press, and R. H. Price, Phys.

Rev. Lett. 27, 1466 (1971).
[51] S. L. Detweiler and E. Szedenits, Astrophys. J. 231, 211

(1979).
[52] K. Oohara and T. Nakamura, Prog. Theor. Phys. 70, 757

(1983); Phys. Lett. 94A, 349 (1983).
[53] S. A. Teukolsky, Astrophys. J. 185, 635 (1973); Phys. Rev.

Lett. 29, 1114 (1972).
[54] M. Sasaki and T. Nakamura, Phys. Lett. A 89, 68 (1982);

Prog. Theor. Phys. 67, 1788 (1982).
[55] Y. Kojima and T. Nakamura, Prog. Theor. Phys. 71, 79

(1984).
[56] Y. Kojima and T. Nakamura, Phys. Lett. A 96, 335 (1983).
[57] T. Nakamura and M. P. Haugan, Astrophys. J. 269, 292

(1983).
[58] M. J. Fitchett and S. Detweiler, Mon. Not. R. Astron. Soc.

211, 933 (1984).
[59] P. Anninos, R. H. Price, J. Pullin, E. Seidel, and W-M.

Suen, Phys. Rev. D 52, 4462 (1995).
[60] L. Smarr, Phys. Rev. D 15, 2069 (1977).
[61] J. E. Vidale, Bull. Seismol. Soc. Am. 76, 1393 (1986).

EMANUELE BERTI et al. PHYSICAL REVIEW D 76, 064034 (2007)

064034-40


