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Quasinormal behavior of the D-dimensional Schwarzschild black hole
and the higher order WKB approach
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We study characteristi@uasinormal modes of aD-dimensional Schwarzschild black hole. It is shown that
the real parts of the complex quasinormal modes, representing the real oscillation frequencies, are proportional
to the product of the number of dimensions and inverse horizon radmsgl. The asymptotic formula for
large multipole numbel and arbitraryD is derived. In addition, the WKB formula for computing QN modes,
developed to the third order beyond the eikonal approximation, is extended to the sixth order here. This gives
us an accurate and economic way to compute quasinormal frequencies.
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[. INTRODUCTION WKB method of Schutz, Will, and lyer for computing QN
modes from the third to the sixth order beyond the eikonal
Within the framework of the brane world models the sizeapproximation(see Sec. Il and Appendix)Aln many physi-
of extra spatial dimensions may be much larger than th&al situations this allows us to compute the QNMs accurately
Planck length, and the fundamental quantum gravity scal@nd quickly without resorting to complicated numerical
may be very low (TeV). When considering models with methods. In Appendix B, QN modes bf=4 Schwarzschild

large extra dimensions the black hole mass may be of thBlack holes induced by perturbations of different spin are
order of 1 TeV, i.e., much smaller than the Planck massPPtained by the sixth order WKB formula, and compared
There is a possibility of production of such mini-black-holes With the numerical values and third order WKB values. Sec-

in particle collisions in colliders and in cosmic ray experi- ond, motivated by the above reasons, we apply the obtained

ments[1]. Estimations show that these higher dimensionalwi.<B formula to find the sgalar quasinormal modes Of. mul-
black holes can be described by classical solutions OIfldlmensmnaI Schwarzschild black hol€(§ec. . It IS

. : : . L shown that the real parts of the quasinormal frequencies are
vacuum Einstein equations. Thus the investigation of the . —1 . .

. . . a[:_)roportlonal to the produddr, -, wherer is the horizon

general properties of these black holes, including perturb Cadius andD is the dimension of space-time
tions and decay of different fields around them, has attracted” P '
considerable interegsee, for exampld,2,3] and references
therein.

It is well known that when perturbing a black hole it  The first semianalytical method for calculations of BH
undergoes damping oscillations which are characterized bg)NMs was apparently proposed by Bahram Mashhoon, who
some complex eigenvalues of the wave equations cglied  used the Poschl-Teller potential to estimate the QN frequen-
sinormal frequenciesTheir real parts represent the oscilla- cies [24]. In [25], there was proposed a semianalytical
tion frequencies, while the imaginary ones determine theanethod for computing QNM'’s based on the WKB treatment.
damping rates of the modes. The quasinormal mode$hen in[26] the first WKB order formula was extended to
(QNM'’s) of black holes(BH's) depend only on the black the third order beyond the eikonal approximation, and, after-
hole parameters and not on the way in which they were exwards, was frequently used in a lot of worksee, for ex-
cited. QNM's are called, therefore, the “footprints” of a ample,[9,28—34 and references therginThe accuracy of
black hole. Being a useful characteristic of black hole dy-the third order WKB formuldsee Eq(1.5) in [26]] is better
namics, quasinormal modes are studied also within differentvith a larger multipole number and a smaller overtone.
contexts now: in anti—de Sitter/conformal field the¢AdS/  For the Schwarzschild BH the results practically coincide
CFT) correspondencésee, for examplej4—15] and refer-  with accurate numerical results of Leay&6] at|=4 when
ences therein because of the possibility of observing quasi-being restricted by lower overtones for whi¢k-n. For
normal ringing of astrophysical BH&see[16] for a review,  fewer multipoles, however, the accuracy is worse, and may
when considering thermodynamic properties of black holeseach 10% at=0, n=0. The numerical approad35], on
in loop quantum gravity17—2(, in the context of a possible the contrary, is very accurate, but dealing with the numerical
connection with critical collapsgt,9,21,22. integration or systems of recurrence relations is very cum-

Thus it would be interesting to know, from a different bersome, and, often, requires modification to be applied to
standpoint, what happens to a black hole living indifferent effective potentials. At the same time, the WKB
D-dimensional space-time with a QN spectri#8,3]. The  approach lets us obtain QNM'’s for a full range of param-
subject of the present paper is twofold: First we extend theeters, thereby giving us the opportunity to examine the

physical behavior of a system. Even though the WKB for-
mula gives the best accuracylatn, it includes the case of
*Email address: konoplya@ff.dsu.dp.ua astrophysical black hole radiation where only lower over-
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tones are significantly excitd®6]. Both the advantages and 1ll. QUASINORMAL MODES OF THE D-DIMENSIONAL

the deficiencies of the WKB approach motivated us to extend SCHWARZSCHILD BLACK HOLE

the existent third order WKB formula up to the sixth order. . . .
The perturbation equations of a black hole can be reducegiol—geh;nsemg ?Ofr::e Schwarzschild black hole@ndimen-

to the Schrdinger wavelike equation

, ds?=f(r)dt?—f " 1(r)dr?+r2dQ3_,, 3
d%y
&+Q(x)¢//(x)=0, @D where
. . : ro|°3 16mGM
where “the potential”’— Q(x) is constant at the event hori- f(r)=1— (_0) =1— ) %)
zon (x=—») and at infinity k= +c0) and it rises to maxi- r (D—2)Qp_,rP3

mum at some intermediate=X,. Consider radiation of a

given frequencyw incident on the black hole from infinity Here we used the quantities
and letR(w) and T(w) be the reflection and transmission (D-1)2
amplitudes, respectively. Exteri®(w) to the complex fre- _ (27)
quency plane such that R§¢ 0, andT(z)/R(z) is regular. P72 Tr(D-1)/2)’
Then, the quasinormal modes correspond to the singularities

of R(z). We have a direct analogy with the problem of scat- The scalar perturbation equation of this black hole can be
tering near the pick of the potential barrier in quantum me-educed to the Schdinger wavelike equatioril) with re-
chanics, wher@? plays a role of energy, and the two turning SPect to the “tortoise” coordinatex: dx=dr/f(r), where
points divide the space into three regions at which bound-the potential” —Q(x) has the form

aries the corresponding solutions should be matched.

To extend the third order WKB formula ¢26], we used )
the technique of lyer and Will. We shall omit here the tech- QX)) =@
nicalities of this approach, which are described26]. The
only thing we should stress is that since the coefficidis D-2 )

[(1/2)=\m, T(z+1)=2z[(2).

I(I+D—-3) (D—-2)(D—-4)
r) + f

r? 4r2

(r)

that connect amplitudes near the horizon with those at infin- + z—f’(r) 6)
. r

ity depend only onv (related to the overtone numbaj,

they may be found at higher orders, simply by solving th
interior (between the turning pointproblem to higher or-
ders. Thus there is no need to perform an explicit match o
the solutions to WKB solutions in the exteri@utside turn-

ing points regions to the same order. The result has the form

€At some fixedD we can sery,=2 and measure in units
grgl. The quasinormal modes satisfy the boundary condi-
tions

d(X)~c.e T as x— *o. (6)

1 _
V2Q5

where the correction term&,,A5,Ag can be found in Ap-
pendix A. Note thatA , coincides with preliminary formula
(A3) of [26] in proper designations.

An alternative, pure algebraic approach to finding highery.,,
order WKB corrections was proposed by Zaslav§gif] us-
ing a quantum anharmonic oscillator problem where WKB
correction terms come from perturbation theory corrections
to the potential anharmonicity.

Thus we have obtained an economic and accurate formuli
for straightforward calculation of QNM frequencies. The
sixth order formula applied to th@ =4 Schwarzschild BHis ,|
as accurate already &t 1 as the third order formula is at
I=4. We show in Appendix B an example of QNM'’s corre- g
sponding to perturbations of fields of different spins: scalary| <"
(s=0), neutrino 6=3), electromagneticg=1), gravitino
(s=2), and gravitational§=2). In addition, looking at the
convergence of all sixth WKB values to some unknown true - D
QN mode, we can judge, approximately, how far from the ¢ 8 10 12 14
true QN value we are, staying within the framework of the FIG. 1. Rew for different dimension®; |=1 (bottom), 2,3,4
WKB method. (top); n=0.

1 The sixth WKB order formula used here gives very accu-
Aa=Ag=Ay=As—Ag=n+ 2 @ rate results for low overtones. The previousgorders e}r/1able us
to see the convergence of the WKB valueswdfas a WKB
order grows to an accurate numerical result. Namely, we can
observe that fol=1,2,3,4... for thefundamental over-
tone, the sixth order values differ from its fifth order value by

3 L
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FIG. 2. Imw for different dimensiond; =1 (bottom, 2,3,4
(top); n=0.

fractions of a percent or less at not very lamDe(we are
restricted here bp=4,5, .. .,15).

This proves that if one takeg=2 for each giverD, then
the real parts ofv for differentD lie on a strict line. That is,
wge IS proportional to the produat,D (remember that

depends oD itself). Namely, for the fundamental overtone

we obtain the following approximate relations:

wre~0.24D(1y/2)7 L, 1=2, (7)
wre~0.27D(ry/2)" 1, 1=3, (8)
wre~0.29D(ry/2) L, 1=4. (9)

Here we takaw= wge— i 0, . Generally, the higher the mul-
tipole numbet, the larger is the coefficient before the prod-

uctDr, t. We observed the sameDr, * relation for higher
overtone but not higher thdn for which WKB treatment is

applicable. In Figs. 1 and 2 we presented the real and imag

nary parts ofo measured in le for different D. For real

parts ofl =1 modes we see the deviation from the strict line
at largeD. This, however, is stipulated by the bad accuracy
of the WKB approach, and we believe that the true frequen
cies will lie on a strict line again. Indeed, one can judge by 1

PHYSICAL REVIEW D 68, 024018 (2003
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FIG. 4. wg (top) and w,,, (bottom as a function of WKB order
of the formula with which it was obtained foe=0, n=0, D=12
modes.

looking at the convergence plot in Figs. 3—6, where the real
and imaginary parts ofv are shown as a function of the
WKB order. Generally, the accuracy of the WKB formula is
better the highekis and the lowen andD are. Note that the
dependenc®r, * for lower overtones can be recovered even
within the third order formula, providetis greater than 2,
andD is not very large.

Another point is thd =0 modes: in this case the lowest
overtone implied =n, and the WKB formula has consider-
able relative error. For a four-dimensional BH, for which the
accurate numerical results are known, the error is about 10%
for o, and 5% forwg. in the third WKB order, while in the
sixth order it reduces to 0% fabge and 3% forw,, (see
Appendix B. For greateD the error increases; the differ-
ence between the fifth and sixth order WKB values grows
and one cannot judge the true quasinormal behavior in this
case(see Figs. 3—b Fortunately, other field perturbations,
including gravitational, have the lowest overtone wlithn
and the WKB treatment is of good accuracy forlalh Table
|, we compare the third order WKB values bf0, n=0
modes for differentD [3] with those obtained through the
sixth order here.

For largel the well-known approximate formula reads
(see[27,38,39 for a prooj

1 1
wre=——=| 1+ =], on,2=—=|n+=]. 10
Rew, Imw Re 3\/§ 2 Im 3\/§ 2 ( )
0.55 ot _a sz A -
: R Rew, Imw
0.5
0.6
0.45
0.55
0.4
0.5
0.35
T 0.45
WKBorder
0.4
0. 0.35 Sl
- 5 "2 3 - WKBorder
FIG. 3. wge (bottom andw,;,, (top) as a function of WKB order 025 e Hereaaeee .

of the formula with which it was obtained fde=1, n=2, D=4

modes, and the corresponding numerical value. We see how the FIG. 5. wge (top) andw,,, (bottom as a function of WKB order
WKB values converge to an accurate numerical value as the WKBf the formula with which it was obtained fd=0, n=0, D=6

order increases.

modes.
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Rew, Imw TABLE |. Schwarzschild QN frequencies fo+=0, n=0 scalar
o8 \’\*’k%\‘ perturbations in varioub.
0.7 D Third WKB order Sixth WKB order Xy
0.6 4 0.1046-0.1152 0.1105-0.1008 0.5
6 1.0338-0.7133 1.1808-0.6438 1.28
0.5 8 1.9745-1.0258 2.3004-1.0328 1.32
0.4 10 2.7828-1.1596 3.2214-1.3766 1.25
12 3.4892-1.2020 3.9384-1.7574 1.17
R S N PR oo g "iBorder

FIG. 6. wge (top) and w,,, (bottom) as a function of WKB order
of the formula with which it was obtained fd=1, n=0, D=6 IV. CONCLUSION
modes.

We were interested here in the question of how dimen-
sionality effects the quasinormal behavior of black holes. Yet
several interesting points are beyond our consideration of
low-lying quasinormal modes of multi-dimensional black

Fma= 2P~ 4/C=3)(D-1)Y0~-3) D=454§... . holes. First of all, one would like to understand the origin of

(11  the relation~Dr5l in wge dependence. In this question it is
) ) ) possible to try to explain it from the interpretations of QN
Then let us make use of this valug,, when dealing with 1 5qes as Breit-Wigner type resonances generated by a fam-
the first order WKB formula. After expansion in terms of iy of surface waves propagating close to the unstable circu-
small values of 1/ for a fixedD in units of 2ry = we obtain |5, photon orbit[40]. Second, we do not know whether
Di2-3/ 2 \U0-3) [p_3 ~Dry ! dependence will be present for perturbations of
WR™ —(_) \ — (12)  other fields, and for more general backgrounds, such as mul-
4 D-1 D-1 tidimensional Reissner-Nordstroor Kerr backgrounds. We
hope further investigations will clarify these points.

To obtain its D-dimensional generalization we find a
valuer . at which the effective potentidf attains its maxi-
mum, provided is large,

(D-3)( 2 \YO=32n+1
om~ g (ﬁ) CEr
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WhenD =4, these formulas go over into Ed.1). We see
that whenl is much larger thab, the~Dr5l dependence of It is a pleasure to acknowledge stimulating discussions
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APPENDIX A: CORRECTION TERMS FOR WKB FORMULA

Here we shall use the following designatiorfd; means the value of the potenti@ at its peak, whileQ; is theith
derivative ofQ with respect to the tortoise coordinateThenQ! is the jth power of theith derivative ofQ.

1
Ay= 25369785 — 988627%),Q3Q,+ 531972M2Q3Qs — 225Q5Q5( — 4026 1Q5+ 968
*~ 597196809201 J0, 200 1% 0,Q5Qs @3Q3Qs— 22505Q3( ~ 4026103 + 96832, Q)

+324003Q3( — 1889Q,Qs + 220Q,Q7) — 729Q3[ 142503 — 14000,Q,Q¢+ 8Q,( — 12302+ 25Q,Q5) 1}
. (n+1/2)?
4976640/2Q1\/Q,

+108003Q3( — 489Q,Qs+ 52Q,Q;) — 27Q3[ 284503 — 2360,Q,4Qs + 56Q,( — 31Q2+5Q,Qg) 1}
(n+1/2)*

i 2488320/2Q35\/Q,
+1080Q3Q3( — 161Q,Qs5+ 12Q,Q;) — 27Q3[ 625Q3 — 440Q,Q,4Qs + 8Q,( — 63Q3+5Q,Q¢) 1} (A1)

{34842%)5 - 119992%),Q3Q, + 572765Q3Q5 — 45Q5Q5( — 2067195+ 45520,Q)

{19292%)3 - 58162%),Q3Q,+ 23436M35Q3Q5 — 45Q5Q5( — 831505+ 1448Q,Q5)
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5

5733089280Q;

(n+1/2) . 8 6 o5
1512768258,0Q; — 10786945783+ 535745490Q,Q3Q,4— 276858792Q3Q3Q5

+90Q5Q3(— 883336282+ 12760660,Q¢) — 4320Q3Q3( — 145142%),Q5+ 91928),Q,) — 27Q3[ 762852%R);

—938248M,Q5Q¢+ 64Q5(1927MQ2+ 3776495Q-) + 576Q,Q4( — 21572+ 2505Q,Q5) | + 540Q3Q3 65154783
—332479R,Q4Qq+ 16Q,(— 1264683+ 12679,Qg) ] — 432Q;Q4[ 55970785 Qs — 85416@,Q4Q;

n+1/2)3
+8Q,(—145410:Q6+ 6683}2Q9)]} + —( ) 10{31104310Q;— 42944825}3-1— 19310670Q2Q2Q4
47775744Q;

—9003912@35Q3Q5+ 30Q5Q43( — 84762083 + 110256®),Q4) — 4320Q3Q3( — 41168,Q5+ 2312,Q-)
—9Q3[ 4458283~ 47288@,Q7 Qs+ 64Q5(829Q5 + 1836Q5Q7) +4032,Q4( — 1792+ 15Q,Q¢) ]

+180Q5Q3[ 5326183 — 2412243,Q,Qs + 16Q,( — 93525 + 799Q,Qg) ] — 144Q5Q4[ 392328 Qs

(n+1/2)°

_ _ _\nrUam 7_ 8
5160MQ,Q4Q7+8Q(—8855Q6+335Q,Q0) I} + 119439360@%0{10368;)1(@2 665782283

+272124300,Q5Q,— 11233656M5Q3Q5 + 9450Q5Q73( — 337783+ 36569,Q¢) — 15120M3Q3(— 1297Q,Q5
+56Q,Q7) — 27Q3[ 890750; — 83440,Q5Qs + 64Q7( 131Q5+ 396Q5Q7) +576Q,Q4( — 34305+ 15Q,Qs) ]
+540Q3Q3 1881283 — 71400Q,Q,Qs+ 16Q,( — 3052+ 177Q,Q5) ] — 432Q5Q5[ 11882%2Q5 — 1176(Q,Q.4Q;
+8Qa(—23035Q6+55Q2Qq) I} (A2)

—i
(—17146080@,,Q5+ 171460800Q,Q5Q;— 1026859680Q,4Q,Q3

© 2022633897984aD%%\2Q,

+97001066277Q3%+ 377213760Q,,Q5Q.,— 6262634175529,Q5Q,+ 137829831961305Q5Q5
—119541481258303Q3Q5 + 34491705774795Q3Q4 — 1445280590285Q3 + 335260218720Q5Q4Qs
—123007300920003Q5Q.4Q5+ 119941296048005Q3Q3Q5 — 26247886056005Q5Q3Q5
+25807696437603Q3Q2 — 34539097844105Q3Q,Q2+ 43844069707Q5Q2Q2+ 26052439795Q5Q,Q3
—14753064412803Q5Q, + 43296826104005Q4Q,Q¢ — 28651281724805Q5Q4 Q¢ + 2334438792005Q3Q5
—16601998049285Q3Q5Q¢+ 12817052962505Q5Q,Q5Qs — 87403857408 5Q2Q¢ + 23110587360Q5Q3Q32
—6841285920Q,Q,4Q%+ 55296870048Q5Q5Q,— 12317897491205Q3Q.Q- + 47072630304Q5Q;Q3Q;
+4139534004485Q3Q5Q,— 126242178048 5Q,Q5Q;— 9148930560Q,Q5Q6Q,+ 561971520Q5Q3
—17575229448Q5Q3Q5+ 27175965264Q5Q3Q,Q5 — 3973604040Q5Q5Q, — 73378363968 ,Q5Q5Q5
+977326560Q5Q4Q5+4710712608Q5Q3Q, — 4334529024Q5Q3Q4Qq+ 74002481285Q5Q,)

(n+1/2)%
687970713600Q3%\/2Q,

(— 4551558 ,,Q5+ 60279558),,Q5Q;— 42503616@,(Q5Q35+ 737271946203

+116743680,0Q5Q,— 443649208278 ,Q5Q,+ 90114410385Q5Q5Q4 — 71109672615Q3Q3Q3
+1821643067205Q32Q5 — 62896155785Q5 + 22246762440Q2Q5Q5— 74641844520Q3Q3Q,Q5
+65342390040Q5Q30Q2Q5— 12431967480Q5Q3Q5Q5 + 14398094304Q5Q4Q2— 16971252192Q05Q35Q,Q2
+1818818841@5Q35Q%+ 1124086118@5Q;Q3 — 9119820024Q3Q5Q,+ 24151373208Q5Q3Q4Qs
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—14003089704Q5Q3Q3Qs+ 920010312Q5Q3Q,— 8421869376Q5Q3Q5Qs + 552483866885Q:Q.4Q5Q6
—31730434505Q2Qs+ 10464952890 5Q3Q% — 2403421630 ,Q,Q2+ 3163774464Q5Q3Q;
—6264995328Q5Q3Q,Q+2040982272Q5Q;Q3Q, + 1886053248Q5Q2Q5Q, — 46933447681Q,Q5Q
—36257310725Q;Q5Q+ 1880547895Q3— 915563520Q05Q73Q5 + 1223802432Q5Q3Q.Q5
—140527872Q1Q3Q5— 286670016Q5Q3Q5Q5 + 3032951095Q,Q5 + 221070528Q5Q3Q,

(n+1/2)%4
2006581248Q3%\/2Q,

—168552576Q5Q3Q.4Q,+ 2354883805Q5Q,) — (—66528),,Q5+ 1245888 ,,Q5Q;

—1115856@,,Q,Q3+ 46688045283+ 211680@,Q5Q, — 25898331378,Q5Q,+ 4795923265Q5Q5Q3

—3386192775Q3Q3Q; + 745476322835Q3Q4 — 1849884783Q5+ 1189191780Q5Q4Q5
—3610546380Q3Q35Q,Q5+2795366700Q5Q35Q3Q5 — 445771620Q5Q5Q3Q5 + 628585524Q05Q73Q3
—64717561493Q3Q.4Q%+ 565259688 5Q3Q2 + 3809393285Q;Q3 — 437525116Q3Q5Q5
+1031701860Q5Q3Q,Qs— 511381332Q5Q3Q5Q, + 23888844M5Q3Q, — 320387155235Q3Q5Q5
+175868582850Q;Q.4Q5Q5— 88566918 ,Q2Q,+ 33546643D5Q5Q3 — 55073088 5Q,Q2+ 135129456 Q5Q3Q
—234144288035Q3Q,4Q, + 62654256M5Q5Q2Q- + 61952083D5Q35Q5Q, — 1235243505Q,Q5Q-
—96574468)Q,Q4Q,+40487005Q3—3411601205Q4Q5+ 38621016M5Q3Q,Qs — 3083724M;Q2Q,
—78073638)5Q3Q5Q5+ 58484165QQ5+ 7041552@5Q3Q4 — 4342464M35Q3Q4Qs

(n+1/2)8i
300987187200Q3%/2Q,

+525571205Q5Qq) — (—725780,,Q3+ 188697®1,Q5Q;— 2213568@M;4Q5Q3

+ 274635383703+ 290304®@,Q5Q,— 141448688329 ,Q5Q, + 24065576535Q5Q5Q3 — 15290715825Q3Q3Q3
+287244798785Q3Q4 — 41366902835Q5 + 5905807320Q35Q Q5 — 16426420920Q3Q3Q4Q5
+11365469640Q3Q3Q;Q5— 1516634280Q5Q3Q3Qs+2606119488Q3Q3Q% — 2387623392Q5Q35Q,Q%
+176718931Q5Q5Q% + 12924334085Q;Q% — 1890216552Q3Q5Q; + 40256 77320Q3Q3Q4Q6
—1711697400Q5Q35Q2Q,+ 48358296(M5Q3Qs — 1138415040Q5Q3Q5Q¢ + 52850568985Q5Q,Q5Qs

— 2469035505Q2Q, + 99277920@5Q3Q2 — 1018604105Q,Q3 + 49668595201Q3Q, — 76616064003Q3Q,4Q;
+16830374405Q5Q5Q,+ 18615744005Q3Q5Q,316141050,5Q,Q5Q,— 235146240 5Q;Q4Q + 8895744Q5Q3
—104237280Q3Q3Qs+ 101678976Q5Q5Q,4Qs— 5243616@,Q5Qs — 18906048@,Q5Q5Qs

+921715R5Q4Qs+ 1751904005Q3Qe— 8781696@;Q3Q,4Qq+ 103783685Q5Qy). (A3)

All six WKB corrections printed inMATEMATICA are available from the author in electronic form upon request.

APPENDIX B: QNMS OF A FOUR-DIMENSIONAL SCHWARZSCHILD BLACK HOLE

“The potential” Q(x) in case of a Schwarzschild black hole has the form

(B1)

_ 2
Q(X):wz_(l_%) |(|+21)+1 35),

r r
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TABLE Il. Schwarzschild QN frequencies for perturbations of different spin.

s=0 Numerical Third order WKB Sixth order WKB

0.1105-0.1049
0.2929-0.0977
0.2645-0.3063

0.1046-0.1152
0.2911-0.0980
0.2622-0.3074

0.1105-0.1008
0.2929-0.0978
0.2645-0.3065

=2,n= 0.4836-0.0968 0.4832-0.0968 0.4836-0.0968
=2,n= 0.4639-0.2956 0.4632-0.2958 0.4638-0.2956
=2,n= 0.4305-0.5086 0.4317-0.5034 0.4304-0.5087
s=1/2 Numerical Third order WKB Sixth order WKB
I=1,n=0 0.2803-0.0969 0.2822-0.0967
I=1,n=1 0.2500-0.3049 0.2525-0.3040
|=2,n=0 0.4768-0.9639 0.4772-0.0963
|=2,n=1 0.4565-0.2947 0.4571-0.2945
|=2,n=2 0.4244-0.5016 0.4231-0.5070
I=3,n=0 0.6706-0.0963 0.6708-0.0963
|=3,n=1 0.65570.2917 0.6560-0.2917
|=3,n=2 0.6299-0.4931 0.6286-0.4950
=3, n=3 0.5970-0.6997 0.5932-0.7102
s=1 Numerical Third order WKB Sixth order WKB
I=1,n=0 0.2483-0.0925 0.2459-0.0931 0.2482-0.0926
I=1,n=1 0.2145-0.2937 0.2113-0.2958 0.2143-0.2941
|=2,n=0 0.4576-0.0950 0.4571-0.0951 0.4576-0.0950
|=2,n=1 0.4365-0.2907 0.4358-0.2910 0.4365-0.2907
|=2,n=2 0.4012-0.5016 0.4023-0.4959 0.4009-0.5017
I=3,n=0 0.6569-0.0956 0.6567 0.0956 0.6569-0.0956
|=3,n=1 0.64170.2897 0.6415-0.2898 0.64170.2897
|=3,n=2 0.6138-0.4921 0.6151-0.4901 0.6138-0.4921
|=3,n=3 0.5779-0.7063 0.5814-0.6955 0.5775-0.7065
s=3/2 Numerical Third order WKB Sixth order WKB
|=1,n=0 0.18170.0866 0.1739-0.08357
I=1,n=1 0.1354-0.2812 0.1198-0.2813
|=2,n=0 0.42310.926 0.4236-0.0925
|=2,n=1 0.4000-0.2842 0.4007-0.2838
|=2,n=2 0.3636-0.4853 0.3618-0.4919
I=3,n=0 0.6332-0.0945 0.6333-0.0944
|=3,n=1 0.6173-0.2864 0.6175-0.2863
|=3,n=2 0.5898-0.4846 0.5884-0.4868
=3, n=3 0.55470.6882 0.5505-0.7000
s=2 Numerical Third order WKB Sixth order WKB
I=2,n=0 0.3737#0.0890 0.3732-0.0892 0.3736-0.0890
|=2,n=1 0.3467+0.2739 0.3460-0.2749 0.3463-0.2735
|=2,n=2 0.301%+0.4783 0.3029-0.4711 0.2985-0.4776
=3, n=0 0.5994-0.0927 0.5993-0.0927 0.5994-0.0927
I=3,n=1 0.5826-0.2813 0.5824-0.2814 0.5826-0.2813
|=3,n=2 0.55170.4791 0.5532-0.4767 0.5516-0.4790
I=3,n=3 0.5120-0.6903 0.5157-0.6774 0.5111-0.6905
|=4,n=0 0.8092-0.0942 0.8091-0.0942 0.8092-0.0942
|=4,n=1 0.7966-0.2843 0.7965-0.2844 0.7966-0.2843
|=4,n=2 0.77270.4799 0.7736-0.4790 0.7727-0.4799
|=4,n=3 0.7398-0.6839 0.7433-0.6783 0.7397-0.6839
|=4,n=4 0.7015-0.8982 0.7072-0.8813 0.7006-0.8985
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wheres=0 corresponds to scalar perturbatioss: 3, neutrino perturbationss=1, electromagnetic perturbations= 3,
gravitino perturbationss= 2, gravitational perturbations. The quasinormal frequencies at third and sixth WKB orders and in
comparison with numerical resulf85] are presented in Table II.
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