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ON THE MECHANISM OF ACCRETION BY STARS
H. Bondi and F. Hoyle
(Received 1944 October 7)

Summary

The mechanism of accretion is investigated in detail for the case in which
the interstellar material contains a sufficient proportion of molecules to ensure
that the temperature is everywhere small. It is found that there is no unique
steady-state solution and that the situation at any given time depends on the
perturbations suffered by the system. The gravitational interaction between
the interstellar material and the stars leads not only to an increase in the masses
of the stars but also to a decrease in their peculiar velocities. The importance
of these effects to stellar dynamics and to the evolutlon of the stars is briefly
discussed. ~

1. Introduction.—The importance to stellar astronomy of a large rate of accretion
of hydrogen by stars is well known. On the basis of certain physical and dynamical
assumptions a simple argument was given by Hoyle and Lyttleton * for a rate of accretion
according to the formula

4my? Mp
o (1)

where M is the mass of the star, y is the constant of gravitation, ¥V is the velocity of the
* cloud relative to the star, and p _ is the density of the cloud at very large distance from
. the star. The physical assumptions underlying this calculation were later shown to be
satisfied + provided an appreciable proportion of the cloud is in molecular form, for in
- this case the temperature of the cloud remains small throughout the accretion process
on account of the radiation of energy by the molecules. The existence of interstellar
~ molecules throughout large tracts of the galaxy has now been confirmed by observation’
" by McKellar and also by Adams.] Moreover, McKellar’s observations provided
- direct evidence that the temperature of the interstellar material is far lower than is
necessary to justify the assumptions of Hoyle and Lyttleton.t Thus there is important
observational confirmation that the accretion problem can be simplified by regarding
forces due to gas pressure as bemg in general small compared with gravitational forces.
The object of the present paper is to obtain a rigorous solution of the accretion problem
in this simplified form.

In section 2 an outline of the mechanism of accretion is g1ven and in section 3 the
“equations governing the steady state of accretion are formulated and discussed. It is
“found that the steady state equations together with the boundary conditions do not

determine a unique solution to the problem, since it can be shown that a group of solutions
“can be found all giving an accretion rate greater than half the value given by (1). This -
. remarkable property suggests that the situation at any given time must depend on the
_perturbations suffered by the system, and in section 4 a simple application of perturbation
theory shows that perturbations will prevent the rate of accretion dM/dt exceeding the
-value given by (1). It is concluded, therefore, that the accretion rate at any given time

* Proc. Cam. Phil. Soc., 35, 405, 1939.
t Proc. Cam. Phil. Soc., 36, 424, 1940.
T P.A.S.P, 52, 187, 1940; H.A.C., 526, 1940.

21

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

020z Jaquiejdas go uo Jesn 0o1uda | Jouadng onsul A 0S01L09Z/S22/S/P0 L /elonie/seiuw/woo dnooiwapese//:sdiy woly papeojumod


http://adsabs.harvard.edu/abs/1944MNRAS.104..273B

F9329NRAS. 104 “Z73B!

274 H. Bondi and F. Hoyle Vol. 104

must satisfy the inequality

2my"Mep , _dM _4my*Mip,
v dt v

the exact value depending upon the nature of previous perturbations. In section 5 the
extreme case of perturbation is considered in which the star initially in empty space
enters a cloud of uniform density possessing a plane boundary. The setting up of a
steady state in this case is considered, and it is shown that the accretion rate will tend to
a value close to
dM  2-5m2M?%p
- - s (2)

It is plausible to suppose that (2) gives a lower limit to the accretion rate since it refers to
a steady state set up after a particularly violent perturbation.

B
Fic. 1.

In section 6 the rate of change of 7 due to the drag of the cloud on the star is calculated.
The value of dV/dt is found to be so large that the drag due to the cosmical cloud would
appear to be of great importance in stellar dynamics, since it provides a mechanism
whereby the interstellar material can control the peculiar motions of the stars. Such a
mechanism introduces a stabilising influence into galactic dynamics that would appear tc
be of great significance. Moreover, the decrease of V' with time reduces the time-interval
required for the mass of a star to be increased by an appreciable factor. It is shown
that the mass of a star may be significantly increased in about 1/10th of the period
given in previous work.* This result implies that either the time-scale of the evolution
of the stars is shortened by a factor of about 10, or that a smaller density of the cosmical
cloud is sufficient to maintain the rate of evolution than was previously proposed.

2. In earlier work it was shown that provided the density p , is sufficiently large for
the mean free path of the particles to be small compared with yM/V2, then the proces:
must be treated as a gas problem. The importance of the collisions between the particles
can be seen by comparing the hypothetical case in which the collision cross-section i
assumed to be negligibly small with the actual situation where the mean free path is smal
compared with yM/V2. - The former case is illustrated in Fig. 1, in which the trajectorie:
AB and CD are intended to represent the paths of particles just avoiding collision witt
the surface of the star. Then the paths AB and CD together with all similar trajectorie:
divide space into three regions marked as I, IT and III in Fig. 1. All particles moving

* Proc. Cam. Phil. Soc., 36, 325, 1940.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

020z Jaquiejdas go uo Jesn 0o1uda | Jouadng onsul A 0S01L09Z/S22/S/P0 L /elonie/seiuw/woo dnooiwapese//:sdiy woly papeojumod


http://adsabs.harvard.edu/abs/1944MNRAS.104..273B

F9329NRAS. 104 “Z73B!

No. 35, 1944 " On the Mechanism of Accretion by Stars 275

in region I strike the surface of the star. Region II is a single-stream region since there
is only one trajectory passing through any point in the region, whilst region III is a
multi-stream region since there are two trajectories passing through any point not on the
accretion axis 0o’ and there is an infinity of paths passing through any point on the axis.

If now the collision cross-section of the particles is restored to the gas-kinetic value,
then owing to the fact that the temperature of the gas is small there will be no change in
the properties of regions I and II since there is only one trajectory through every point
in these regions. On the other hand, in region III particles will collide even though the
temperature is small, and these collisions will tend to prevent the occurrence of two
streams of material passing through each point not on the axis. Indeed it is clear that the
multi-stream region cannot possess a dimension of much more than the mean free path
in a direction measured along the trajectories. Now owing to the high density of material
near the axis oo’, the mean free path * will then be much shorter than in regions where
. the density is comparable with p . It follows, therefore, that the extension of the
- multi-stream region in a direction perpendicular to the axis must be very small compared
with yM/V2 The multi-stream region must exist, however, since the stream-lines of
the material cannot be diverted by gas pressure. Accordingly the mechanism of the

A Ma

F1c. 2.

" accretion process is determined by the four regions I, II, IIIa and 1116 shown in Fig. 2,
: where the region IIla is a double-stream region with a thickness of the order of the mean
" free path and I, II and IIIb are all single-stream regions. The thickness of IIla is
. clearly determined by the value of p _, and for large p  this region is effectively a
. surface of discontinuity. In region I1Ib although the temperature is low the pressure is
nevertheless high on account of the very high density in this region. This pressure
" supplies an outward force on region IIla that must balance the component of momentum
transverse to oo’ of material entering I1la from II. Indeed the transverse dimension of
- IT1d must adjust itself to make these two forces equal and opposite. The transverse
dimension of 1115 accordingly depends on the temperature of the material in ITI5 which,
* although small, is important in determining the size of the region.
. 3. If the temperature of the material is neglected and the collision cross-section of the
. particles of the material supposed to be negligibly small, then it is easy to show that the
' mass of material crossing the axis per unit length per unit time is

M ,
A=2mp 5 (3)

“whilst at the time the material crosses the axis the component of velocity parallel to the
axis is V. Now since the transverse dimension of the region IIIb is small compared with
vM/V? (this must be the case on account of the low temperature due to radiation of energy

. by the molecules in the material), it is permissible to suppose that when gas-kinetic

* It can be shown that for distances from the axis small compared with yM/V?% the mean free
path is proportional to the distance from the axis provided the temperature of the material can be
: neglected.
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collisions take place the amount of material entering the region IIIb is still 4 per unit
length per unit time and that the velocity of this material parallel to the axis is still V.
Thus since A and V are independent of 7, the only condition impressed on region 1115
that varies with 7 is the gravitational attraction of the star. The following equations can
be set up if we assume that the pressure gradient parallel to the axis can be neglected
compared with gravitational forces, and that the velocity v of material in I1I5 is uniform
over any cross-section and directed parallel to the axis.

d N
d—r(m'v) =4 (conservation of mass), (4)

Mmy - (conservation of component of momentum in
2 direction parallel to axis oo’), (5)

d
2= AV
lr(m'v V=4

where mdr is the mass of material in 1115 lying between 7 and 7 +dr.
The step of neglecting the longitudinal component of the gas-pressure gradient can
be justified by noting that equation (4) integrates to give

mo=A(r ~1,), | (6)

where 7, is a constant of integration that is later shown to be of order yM/V2. Equation
(6) shows that the material flows inwards towards the star for » < 7, and outwards to
infinity for » > r,. Now since V is the parabolic velocity corresponding to a distance
r=2yM|V?, it follows that the time taken for material to move inward to the star from
the neighbourhood of 7, must be of order yM/V3, so that the value of m at 7 =0-5 7,, say,
must be of order AyM/V3. The pressure P in IIIb is to good approximation given by
the equation
A4  [2yM
P=— La ’ (7)

2ms r

where s is the radius of the cross-section of 1115 at distance 7. The equation (7) gives the
first-order approximation to the condition that the region IIIa remains in a fixed position
owing to the outward pressure from region IIIb being balanced by the momentum of

particles with transverse velocity V/2yM/r entering I1la from II. To compare the
longitudinal gas-pressure gradient with the gravitational force of the star, consider a
region bounded by the cross-sections of IIIb at distances 7 and 7 +dr, and by the inner
surface of IIla. Then the force acting on the material in this region due to the
longitudinal pressure gradient is ' ‘

d(ms?P) = AV yM]2 d(s|V'7),

which is of order AVyM/2.sdr[r3? since ds/s is of the same order as dr/r, whilst the|
gravitational force is myMdr[r? and is of order Ay2M?3dr[r?V3. Thus since r is of order
yM|V? and s/r is small compared with unity, the ratio of the force due to gas-pressure
gradient to the gravitational force is seen to be << 1.

The second assumption used in deriving (4) and (5) is that v is constant over any
cross-section of 1115 and directed parallel to the axis. This is seen to be the case since
the ratio s/r << 1, so that a velocity of circulation of material transverse to the axis and
small compared with ¥ will produce this uniformity in a time yM/V3. The equations
(4) and (5) are more conveniently treated by introducing the non-dimensional variables
defined by .

M M M\?2
r=y—x, v="y, m=Az%=z.2rrpw<y—VE> .
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Then we have
dy 1 _y(1-Y) ‘
dx x* x—-a’
yz=%-a, J
where o —ron/'yM Since the velocity is towards the star for ¥ < a, it follows that the
rate of accretion is given by the amount of material entering the portion of 111 lying
between x=a and the star. This gives

M 2M?
ol A=a.2mp, T (9)

(8)

for the accretion rate. ~'The determination of the parameter a is accordingly of great
importance. The conditions on y are y — 1 as ¥ — o since the velocity must tend to V'
at great distances from the star, y =0 at ¥ =a and y must be bounded in any finite range
of » not including x=o. It should be noticed that the above equations break down near
the star as transverse motion of the material will become important for values of ¥ << 1.
But even if the motion of the material could be followed up to the surface of the star it
would still not be possible to impose any further condition on y, for it seems certain that
near the star the inward velocity of material in IIIb will be greater than the velocity of
sound so that no influence from the star could travel outwards through the material.
Now the above conditions on y can be satisfied for any value of a, so that the steady state
equations (8) are not sufficient to define a unique solution to the problem. In fact these
conditions permit an infinity of solutions for every value of a. If it is assumed that y is
monotonic with x (that is, the magnitude of y increases with decreasing x from x=a to
the surface of the star, and y increases with increasing x from x=a to infinity), which
would seem to be an essential physical requirement, then it can be shown from (6) that.
amust be > 1. Thus for all values of a > 1 both the mathematical and physical require-
.ments are satisfied and a unique solution cannot be determined. This means that the
system may satisfy any one of a range of solutions, the particular solution satisfied at a
given time being determined not only by the equations (8) and the boundary conditions
‘but also by the perturbations experienced by the system. It is interesting to notice that
all solutions for which 1 < a < 2 satisfy (dy/dx) =, =1/a®.

4. In considering perturbations acting on the system discussed in section 3 we shall
consider only disturbances that preserve axial symmetry. The forms of the differential
equations are changed since 4 and ¥ are functions of time in the disturbed state. The
modification of (8) to include this change is simple, however, for we have

om 0 3(mv)

E+a—r(mv)=A, o 6r( o2 =AV, (10)
in place of (7). Eliminating m gives the equation
0 AV -v) 0 Av(V -v)
5t (o]0t + voo)or +y1r) * r (Gojet+vou)er + g7 o (11)

Again introducing the non-dimensional variables , y and writing ¢ =yMr/V®the equation
(10) becomes, at the point x=a,

&y 39 2(2 a) _ I 04 ‘y 1
ot atar T T YA ar (8&0 a?)’ (12)

where A4 represents the mass per unit length added to 1115 from II at the point x =a. By
restricting attention to disturbances for which (0y/0x),_q = 1/a?, it is easy to show from (11)
that the system is stable only if a < 2. This result together with that of the previous
section limits the value of a to the range 1 < a < 2. The value that a will have at any
particular time will depend on the perturbations suffered by the system at previous
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times. Accordingly to calculate a unique value of o it is necessary to consider the
precise form of the disturbances experienced by the system. An investigation of this
kind js attempted in the following section, where the steady state set up after a star passes
into a uniform cloud of material possessing a plane boundary perpendicular to the
direction of the relative velocity V is considered.

5. The boundary of the cloud is supposed plane when the star is at great distances,
but will become distorted as the star approaches. The form of the boundary at any
time is easily calculated. Thus consider the trajectory of a particle lying at the surface
of the cloud with angular momentum pV about the star. The particle moves in a hyper-
bolic path which is given by the following equation until it crosses the accretion axis:—

2 .

%=I+COS 9+§ sin 0, (13)

where [=yM|V? and r, 0 are polar co-ordinates with axis along the accretion axis (the
equation of the path is normally referred to the line joining the star to the vertex of the
hyperbolic path, but the present procedure of .choosing the line through the star parallel
to the accretion axis is more convenient here). The distance of the star from the vertex

of the path is7, =Vp2+ 12 e l, and if ¢, is the time at Wthh the particle is at the vertex,
then it is easy to show that

V(t-t)=V7+2lr —p+1log

r+l-Vritar—pt -
VELp fi>n
r+l—-Vr2+aly —p? )
VEp ift< t;
If the particle were at distance 7, at time £, <?;, then it follows immediately from (1
p 0 0 4

that
I-V7 r2lr—p?
V(t_t"):’“m”{lﬂogﬁ — P}
0

(14)

V(t-t)= —\/r‘-"+2lr—p2—yllog

t>1t, ty<t; (135)
provided 7, is very large. Now define ¢, by means of the equation
V(t,—ty) =7y +1+1log (I/27,), , (16)

so that (Z, — £,) is the time taken by a particle with p =o to fall to the star from distance 7,,.
Thus we have

[—V7%+aly —p?
V(t—ts)=\/r2+2lr—p2+llogr+ rl+27‘ P, (7)

where (¢£-1,) is the difference between the times taken by a particle with angular
momentum p¥ to fall to distance 7, and by a particle with zero angular momentum to fall
to the star, both particles starting from distance 7, (which is very large) Accordingly,
the form of the boundary of the cloud for ¢ > #; (this condition is easily seen to be
equivalent to tan 6 < p/l, » > [(1] cos 0 — 1)) is given by

I-V7r2 42l —p?
V12+zlr—p2+llogr+ rl 2vop
p2—rpsin 0 —rl(1 +cos B) =o.

= V(t _~ts), (18)

Solving for p from the second of these equations and substituting in the first equation

gives, after some reduction,
2

0
V(t-t,) =r<1 - Z) + higher terms in 6 (19)

for the equation of the boundary near § =o.
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It follows, therefore, that the point at which the boundary intersects the accretion axis
moves with velocity 7, and that the tangent plane to the boundary at this point is per-
pendicular to the axis. Behind this point collisions between the particles will tend to
build up a column of the type discussed in section 3, this process being governed by
equation (11), which can be written in the following non-dimensional form:—

4 L) 0 y(1-y)
52 (ByTor Ty o+ 1) B (GlBr 1.y 2w T 1) (20)

where 7=1V3/yM and x <. Equation (2) has the interesting property that, although
a second-order equation, the single boundary condition that y=1 at x =7 is sufficient
to determine a solution, since it can be seen from the nature of the problem that y=1,
. x=ris a characteristic of the equation which is of the parabolic type.*

A solution of (20) of the form

y=1+ 2( — )3 ()

has been tried and the first few coefficients determined. The form of the power series is

_1—~\/ ~(r - x)_iu \/;{4 12;5790 4;}( —x)3/2

_T23 1 —x _I_\/f 1429 2671 431
+ 7-441% T8 (=)’ 3116.490.441x 8.70.441x2 7.480x°
(7—%)52+..- (21)

which converges so well for ¥ > 1-5, (7 —x) < 1, that it seems sufficient to regard y as
being given to good approximation by (21). In the following table the values of y
corresponding to a series of values of (7 —x) are given for x=2 and x=3.

TaBLE I
T-X x =2/ x =3
o0 4 I
025 0-7827 0-8603
0-49 0-7144 o-8054 -
0-64 0-6773 0-7788
0-81 0-6417 0-7530
1-00 0-6078 0-7280
1:1025 0-5910 0-7156

- Table I shows that y tends to a steady value as (7 — x) increases to a value near unity. If
Yim(*¥ =2) and yyn,(x =3) denote these steady values of y, then a unique solution of the
steady-state equation (8) can be obtained giving these values of y at x=2 and x=3
- respectively. Thus for any given value of a there is one solution of (8) satisfying the
~ condition y=o0, x=a; Yy=Yu(x=2); y—>1as x— o . There is, however, only one
- value of a for which the solution so determined also satisfies the additional condition
¥ =Yim(*=3), #=3. This may be illustrated by the following numerical case, in which
We put Yum(X¥ =2)=0-5, Yym(¥ =3)=o0-6. (It is important to notice that these part1cu1ar
~ numerical values of yy(* =2) and ¥y, (% = 3) have been chosen for the sake of definiteness,
and that the present argument would be equally applicable if somewhat different values
" had been chosen.) The following three numerical solutions satisfy the conditions y=o,
Xx=a; y=0§,8=2; Yy—>I1asx¥—>®. '

* Hadamard, Probléme de Cauchy, Hermann et Cie, 19-32.
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TasrLe II /

x . a=1-15 a=1-23 a=1-3
20 0-500 " 0-500 0-500
21 0-508 0515 0:541
2-2 0-5145% 0-523 0-570
2:35 0-523 0537 0-603
2-5 0-530 0-549 0-625
275 0:541 0-564 o-650
3-00 0-55I 0577 0-667

It is clear from Table II that a value of a close to 1-25 will give a solution satisfying the
additional condition y=0-6, x=3. Accordingly it is to be expected that a steady state
will be set up giving an accretion rate close to

2-5my* M,
V3

It should be noticed that these considerations give an estimate for a only for the steady
state set up after a special form of perturbation. The perturbation considered above is of
a particularly violent character, and it would seem that for smaller perturbations a could
hardly be less than the value obtained above.

6. The Rate of Change of V.—It is easy to show from (8) that for any steady-state
solution y ~ 1—-logx/x as x—x. Now in any steady state the mass of material
crossing the section of II1b at distance x > a is given by

2M2

yM Y
A(x - a}ﬁ =(x—a).27mp ~J7s_ grams per sec. .

This material before approaching the star is moving with velocity V relative to the star,

1
whilst after passing the star the velocity is modified to V( I- ﬂi_i") provided x >> a.
Accordingly the momentum of the star relative to the cloud must be reduced by

y2M? log x y2 M2 1
e (x—a) .~ ~2TP o, ;5 log x grams per sec.,

2mp ,

due to the gravitational action of the star on material striking the axis between a and
x >>.a.
The equation of conservation of momentum is therefore given by

d M2

jt(MV) = —2mp Zﬁ— log x. (22)
The right-hand side of (22) — « as x— «© on account of the term in log x, but for
astronomical reasons an upper limit can be assigned to x. The presence of neighbouring
stars will introduce a cut-off effect analogous to that which arises in the calculation of the
collision cross-section of a charged particle in an ionised gas. It is important to notice
that since dV/dt depends only on log x the cut-off value of x need not be known at all
accurately. Indeed it is clear that the average interstellar distance may be used as the
cut-off value of (x.yM/V?) without introducing any appreciable error in d¥V/dt. 'The
average interstellar distance is about 3.101® cm., and yM/V?2is of order 101® cm. for stars
of large mass and is of order 10!® cm. for stars of small mass. It follows, therefore, that
log x lies between 5 and 15 for almost all stars. The equation (22) may be solved in
conjunction with equation(9), which gives

dM S22
.—E=a'2WP°° s .
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The solution for M, V at time ¢ is given by

a 3
M |V, \ee vV 6mp ., v2M,
]Tl;_<V> , 70—[1— Vg logx.2 |, (23)

where V=V, M =DM, at time ¢=o.
From (23) it is seen that M increases significantly in a time given by

Ve
6mp . y2M,

This formula may be compared with the estimate of V®/(47p  y2M,) given by Hoyle
and Lyttleton.* It is seen from this comparison that the time-scale of the evolution of
the stars due to accretion is shortened below earlier estimates by a factor of 1-5log x,
which, as seen above, is of order 10. This is an important result, since it would seem
that the dynamical evolution of the stars can be achieved in a period of less than 1010 years.
For example, if we take

log x.

Vo=5km.[sec., p_ =10722 grm. per cm.3, My=2.10% grm.

as representing a typical star of Class B, then putting log x =10, the time required for
the mass of the star to increase by an appreciable factor is about 2-5. 10° years.

The analysis given above neglects the temperature of the interstellar material. The
observations of McKellar } indicate that the average thermal velocity # of interstellar
hydrogen is of order 10% cm./sec. It will be realised that the analysis breaks down for
material that passes the star at distances of the order of, or greater than, yM/u?, and a
much more complicated investigation is required to describe the motion in this case since
the effects of gas pressure can no longer be neglected. For u=10% cm./sec., M =2.10%
grm., the distance yM/u? is 1-33.10'% cm., which is of the same order as the average
" interstellar distance. Thus for values of  of order 10 cm./sec. the effect of gas pressure
on the motion of material at large distances from the star can have no appreciable effect
on the value of dV/dt. Moreover, it is clear that since dV/dt depends only on log x,
~ the value of # could be appreciably in excess of 10* cm./sec.”! without any possibility
. of a change in the order of magnitude of dV/dt arising.

7. The process discussed in section 6 would appear to be of considerable Irnportance
* and it seems desirable to conclude the present paper with a few general remarks concerning
* this question. The problem of the resistance experienced by a gravitating body moving
~ through a gas was considered by Jeffreys I who drew attention to the fact that the
~ characteristic linear dimension occurring in the problem is yM/V? and not the radius of
~ the body (except of course when the mass of the body is so small that yM/V? is com-
parable or less than the radius). Jeffreys regarded the drag due to the cloud as being
' capable of rounding up the initially elliptic orbits of the planets into approximately
circular paths, and also of introducing a stabilising influence into the planetary system.
This application of the process is analogous to the investigation of section 6, since the
reduction of the velocities V of the stars relative to the interstellar material means that the
. peculiar motions of the stars are being continually reduced and that their paths are being
rounded up into circular orbits.
' The evolution of a star is dominated by a struggle between opposing forces. On the
one hand we have the resistance of the interstellar material constantly tending to reduce
the value of V, whilst on the other hand the perturbing force due to the changing gravi-
tational field of the galaxy as a whole tends to increase the value of 7 (the exact nature of
' the changing gravitational field is a question that is outside the scope of the present

* Proc. Cam. Phil. Soc., 358, 592, 1939.
1 P.A.8.P., 52, 187, 1940.
I The Earth, Cambridge, 1929.
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paper, and the detailed discussion of this matter has to be left over for investigation in
future work). The evolution of the star depends on the outcome of the struggle between
these opposing tendencies. Thus if the changing gravitational field should become the
dominating effect, then the orbit of the star in the galaxy will become elliptic and the star
will cease to increase in mass on account of the large value of V" that must arise; whilst if
the opposing tendency should become predominant and. the resistance of the interstellar
material reduces V" to small values, then the mass and luminosity of the star will increase
to large values. Indeed it would appear that the question of whether the rate of accretion
of hydrogen by a star is sufficient to balance the hydrogen destroyed by the energy genera-
tion in its interior is determined by the battle between the opposing forces mentioned
above. Thus it would appear that the physical evolution of the stars is directly associated
with the dynamical considerations governing the variation of V' with time.

Although it is outside the scope of the present paper to discuss in any detail the
problems of stellar dynamics, it is of interest that the interaction described above between’
the interstellar material and the stars may have an important bearing on stellar dynamics.
Thus by assuming that an appreciable proportion of the mass of the galaxy is in the form
of interstellar material (the existence of large tracts of interstellar hydrogen is known from
observation; the observational data, however, are not at present sufficiently complete to
enable an estimate to be given for the fraction of the mass of the galaxy in diffuse gaseous
form), the whole subject of stellar dynamics would appear to be greatly simplified. This
simplification is due to the fact that the interaction between the interstellar material and
the stars enables the stellar system to be controlled by the diffuse gaseous material in the
galaxy.
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