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We are concerned with the pulse of gravitational radiation given off when a star falls into a “black hole”
near the center of our galaxy. We look at the problem of a small particle falling in a Schwarzschild back-
ground (“black hole”) and examine its spectrum in the high-frequency limit. In formulating the problem
it is essential to pose the correct boundary condition: gravitational radiation not only escaping to infinity
but also disappearing down the hole. We have examined the problem in the approximation of linear pertur-
bations from a Schwarzschild background geometry, utilizing the decomposition into the tensor spherical
harmonics given by Regge and Wheeler (1957) and by Mathews (1962). The falling particle contributes a
d-function source term (geodesic motion in the background Schwarzschild geometry) which is also decom-
posed into tensor harmonics, each of which “drives” the corresponding perturbation harmonic. The power
spectrum radiated in infinity is given in the high-frequency approximation in terms of the traceless trans-
verse tensor harmonics called “‘electric’” and “magnetic” by Mathews.

I. INTRODUCTION

T was pointed out by Dyson! that a pulse of gravita-
tional radiation will result from the capture of a star
by a black hole (that is, a collapsed star). We consider
the problem of a particle of mass m, falling along a
geodesic of a Schwarzschild geometry produced by a
larger mass m. The particle emits gravitational radiation
as it falls until it is absorbed through the Schwarzschild
surface at 2m. The question of boundary conditions is
interesting here. In a Euclidean topology we would
require outgoing waves at infinity and regularity at the
origin. In the Schwarzschild case there isno origin. How-
ever, the Schwarzschild surface at 2m has the property
that future timelike or null trajectories pass through it
only toward the interior region. Hence a natural
boundary condition to replace regularity at the origin
is to require that there are only ingoing waves at the
Schwarzschild surface, that is, nothing coming out of
the black hole.

Zel’dovich and Novikov? have considered the problem
of the radiation of gravitational waves by bodies moving
in the field of a collapsing star. They base their calcula-
tions on the formula, given by Landau and Lifshitz,?
for the gravitational power radiated in terms of the
third time derivative of the quadrupole moment of the
system. Unfortunately, such considerations can only be
valid for bodies which move at distances large compared
to the Schwarzschild radius of the central body. But a
substantial part of the radiation comes from the region
r near 2m. It is for this reason that we consider the field
produced by the falling particle as a perturbation on the
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background Schwarzschild geometry so that we are not
restricted to large distances from 2m. The source term
T, is given by an integral over the world line of the
particle, the integrand containing a four-dimensional
invariant 6 function. The source term is then guaranteed
to be divergence-free if the world line is a geodesic in
the background geometry.

Because of the spherical symmetry of the Schwarz-
schild field, the field equations for the perturbation A,,
are in the form of a rotationally invariant differential
operator on %,, set equal to the source term T',,. We use
this rotational invariance to separate the angular
variables in the field equations. The usefulness of scalar
harmonics Y1y in separating, for example, Laplace’s
equation lies in the fact that they transform under a
particular irreducible representation of the rotation
group. Thus a rotationally invariant operator on Y
gives a quantity which transforms under the same ir-
reducible representation and hence is a linear combina-
tion of ¥ of the same order L. When dealing with
tensor fields, we use tensor harmonics which transform
under a particular representation of the rotation group.

In Appendix G we discuss the solutions of the L=0
and L=1 equations. There is no L=0 odd-parity-type
(magnetic) harmonic. By suitable gauge transforma-
tions, it is possible to solve explicitly the partial differ-
ential equations in 7 and ¢ for the L=0 and L=1 even-
parity-type (electric) harmonics and the L=1 magnetic
harmonics. The L=0 electric equations give the ex-
pected result. Let R(f), ©(f), and ®(f) denote the
Schwarzschild coordinates of the falling particle at
Schwarzschild time f. Then inside the sphere r<R(?)
the perturbation from the background is zero, while
outside it simply represents an augmentation of the
Schwarzschild mass by mgye, the mass-energy of the
falling particle. The L= 1 magnetic equations give as a
solution zero perturbation for < R(f), but give an hoy
term outside of R(f) which goes as (sin%6/7) and which,
according to the criterion given in Landau and Lifshitz,3
represents a metric with angular momentum moae, where
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moa is the conserved angular momentum of the falling
particle. The L=1 electric equations also give zero
inside R(f) and a nonzero %,, outside R(¢) which can be
removed by a gauge transformation which is interpret-
able by a distant observer as a shift of the origin of the
coordinate system. When the particle is far from 2m,
thatis, R(f) is large, the shift looks like a transformation
to the center-of-momentum system where the particles
orbit each other with distances from the center of mo-
mentum which are in inverse proportion to their relativ-
istic masses.

For L>2 we cannot solve the equations explicitly.
We look at the Fourier transform in Schwarzschild time
¢ of the equations which results in ordinary differential
equations in 7. In the high-frequency limit we obtain
asymptotic expansions for the solutions of the homo-
geneous equations. The angular dependence is, of sourse,
given by the tensor harmonics; by a gauge transforma-
tion to a gauge in which the leading terms of the expan-
sion are traceless and divergenceless, the fields are
expressed in terms of the transverse traceless electric
and magnetic harmonics. We can write the expression
for the radiated energy using the Landau-Lifshitz
pseudotensor for  large compared to 2m. Isaacson? has
shown that this is a suitable expression everywhere, in
the high-frequency limit, provided it is suitably aver-
aged. Since we are dealing with Fourier transforms, this
averaging amounts to taking field amplitudes times
their complex conjugates. The stress tensor becomes
singular at r=2m. If we transform to Kruskal coordi-
nates, we observe that for outgoing waves the singu-
larity is at 2m but =+ o, while for ingoing waves it is
singular at 2m but at = — . This behavior agrees with
Trautman’s® result for the propagation of a discon-
tinuity in the Riemann tensor in a Schwarzschild field.
If we look at the leading terms of the correction to the
Riemann tensor for our solution, we see that it has the
same type of behavior as Trautman’s discontinuity,
and that the Riemann tensor is type IV or radiation type
in the Petrov-Pirani classification.

Using a Green’s function formed from the high-
frequency-limit solutions of the homogeneous equations,
we obtain amplitudes for the ingoing (at r=2m) and
outgoing (at r= ) radiation for a particle falling
radially into the black hole. We use what is basically the
saddle-point procedure to evaluate asymptotically the
integral expressions for these amplitudes. We give in
Appendix ] a rough estimate for the power spectrum,
which goes as a power of the frequency for low fre-
quencies, reaches a peak at w~3/16mm, and falls off
exponentially for high frequencies. We estimate the
total energy radiated to be (1/625) (m¢?/m) times a
factor of order 1.

4 R. Isaacson, Phys. Rev. 166, 1263 (1968); 166, 1272 (1968).
5 A. Trautman, Lectures on General Relativity, lecture notes,
Kings College, London, 1958 (unpublished).
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II. WAVE EQUATIONS FOR RADIATION
TREATED AS PERTURBATION

We write the metric in the form

Zas= (gap)Schwarzschild+Has ,
where

(8ap)schwarzschitadxdxP = — (1—2m/r)dt?
+ (1 —2m/7)"'dr*+r*(d62+sin%0 d ¢?).

The complete description in space and time of the
gravitational wave generated by the infalling particle
is provided by giving the perturbation in the metric,
the symmetric tensor h={/.s}, as a function of 7, 6,
¢, and ¢ This tensor is expanded in tensor harmonic
functions of angle az,»(0,¢), 2LV (0,¢), arar, brar'®,
b, cru®, Crar, A, Eour, and fru. These ten harmonics
are (a) complete over the space of symmetric tensor fields
on a two-sphere and (b) orthonormal. They have been
treated elsewhere®® and are listed for convenience in
Appendix A. Three of these harmonics are labeled
“magnetic” and the other seven are labeled “electric.”
There is some ambiguity in the terminology in the
literature. See Appendix B. The general first-order small
perturbation in the geometry (Appendix C) is given by
the following prescription: (a) Take each row in turn
in Table I; (b) multiply each factor in the first column
(tensor harmonic; function of 6 and ¢: details in Ap-
pendix A) by the factor in the second column (‘““coeffi-
cient in expansion in harmonics”; function of 7 and ¢);
(c) sum all ten such products (“totalized part of metric
perturbation of harmonic indes L, M”’); and (d) sum
over all L and M. This analysis presumes that one has a
way to get the ten radial factors in this expansion
directly as functions of # and ¢ For this purpose it
proves simplest to express these factors as Fourier
integrals, as, for example,

400
hora(r,t) = (21r)—1/2/ horar(w,r)e @,

-+o00
hory(w,r) = (2#)_1/2/ horu(rt)etdt

with similar expressions for the other nine coefficients.

We have chosen the form of the coefficient functions
to agree with the notation of Regge and Wheeler.® They
go on to specialize the gauge (choice of four coordinates;
see Appendix D for methods and options) so as to
annul the four radial factors hera(7,t), horar™(r,t),
b1 ™ (r,8), and G (r,f) (reduction from 3 to 2 in num-
ber of radial factors in “magnetic” part of perturbation;
and from 7 to 4 in number of radial factors in “elec-
tric” part). This choice of gauge simplifies the differ-

6T, Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).
7 J. Mathews, J. Soc. Ind. Appl. Math. 10, 768 (1962).

8. Zerilli, . Math. Phys. 11, 2203 (1970).

9 J. Stachel, Nature 220, 779 (1968).
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TaBLE I. Components in expression of perturbation of metric in terms of tensor harmonics. The first three terms describe the “mag-
netic” part of the perturbation, and the last seven terms describe the ‘‘electric” part. The coefficients in this expansion (‘“radial factors”)
are listed as functions of 7 and ¢, but for the Fourier analysis (see text) the same formulas apply except that now the typical factor, for
example, oz, is to be understood as a function of w and 7. The third column shows the special values of these factors (whether functions
of 7, t, or of w, 7) in Regge-Wheeler (RW) gauge. The fourth column applies only in the (w,r) representation; it gives the radial factors
in radiation gauge, insofar as they have been expressed explicitly (details in Appendix I) in terms of the radial factors in RW gauge, as
the latter may be evaluated from the differential equations given in the text. The outgoing radiation is governed exclusively by the third
and by the next to the last row in the table. The tensor harmonics that come into these two terms are the transverse traceless harmonics
dra(0,¢) and fra(8,¢), identical up to a sign with the harmonics T of Mathews.

Specialization Value of coefficient for case of
of coefficient radiation gauge expressed of
Tensor harmonic Coefficient to RW gauge coefficients for RW gauge
@O, (—1/)L2LEAD T Pharac ) same zero
cm (6,9) @/r)R2L(LA1) 1 2k (7 1) same Inra D (@) = — (L—1) (L+2) (wr)?
X (1—2m/r)liru(w,) (neglect at large wr)
—Tru®@= dru (@, ) Gr)[2L(L4+1) (L—1) (L+2) 1 2horm (7,1) ZEero horm @D (w,7) = (22 /w) hora (w,r)
aLv@0,0) (1—2m/r)Horm (r,5) same order of 1/w%? at large wr
arn® (0,¢) —2V2%H 11 (7,8) same order of 1/w%? at large wr
aru (0,) (A=2m/r) "Haorm (r,0) same order of 1/w*? at large wr
by (0,0) — @/r)[2L (L1 T 2horm ™ (r,8) Z€ro 7€ro
bru©@,0) A/r)[2L(LA4-1)] 2Ry 12 (7,8) Z€ero order of 1/w%? at large wr
Tra™ =1 (6,¢) LI+ (L—1) (L+2)1"2GLa (1) zero BL(L+1) (L—1) (L+2) 1121 /icor) Krar (@)
at large wr
g (6,0) V2K 1 (r,8) — 2712 L(L4-1)Grac (v,8) only K term order of 1/w?? at large wr

ential equations. However, it has the feature that the
perturbation in the metric increases with distance from
the center of attraction in the “electric” part of h;and in
the “magnetic” part it keeps an unchanging order of
magnitude. By contrast, for the calculation of the radi-
ation one needs a gauge in which the magnitude of the
perturbation falls off as 1/7. The quantities needed in
radiation gauge are expressed in Table I in terms of
the radial factors in the Regge-Wheeler (RW) gauge
because integrations seem easiest to do in the RW
gauge. Only for the odd waves is the gauge transforma-
tion given explicitly; for the even waves the gauge
transformation is spelled out only asymptotically in the
limit of large wr, the limit relevant for radiation (details
of gauge transformations in Appendix D).

The perturbation in the geometry is “driven” by the
source term in Einstein’s field equations, 87 times the
tensor of stress and energy, which tensor here—for a test
particle moving on a goedesic—takes the form

* dz* dz”
T*‘”=m0/- 5(4)(x—z(‘r))?-——dr

T ar

dT dz* dz’ 6(r—R(2t))
dr dt dt 72

where the notation is as follows: §® is the invariant &
function, defined by

[[f [oeigmmem,

7 is the proper time along the world line

g=g4(r) = (T'(7),R(),0(7),2(7)),

s&(Q=00), 1)

Q is an abbreviation for (6,¢), and 6 (Q) = 6(cos8)s(s).
The stress-energy tensor is expressed in spherical har-
monics in Appendix E and the procedure is given for
evaluating its Fourier transform.

Appendix F gives the ordinary differential equations
for the radial factors in the (w,) representation, RW
gauge. In the odd case, three coupled equations for
two radial factors are given; in the even case, where we
have specialized to the problem of a mass falling straight
in (and where in the absence of this specialization we
would have had seven coupled equations for four radial
factors), we have six interdependent equations for three
radial factors.

An exact solution for the L=0 and L=1 terms is
given in Appendix G. These terms describe the changes
in mass, velocity, and angular momentum of the center
of attraction produced by the arriving particle.

The harmonics of order L=2, 3, ... describe the
radiation. Asymptotically for large 7 in radiation gauge
the perturbation h in the metric is the sum of two
simple terms, each involving only one transverse trace-
less tensor harmonic:

+-00
h(1,0, 1) = (2mr)1/2 / h (7,0, o) e=itdes

[t 2

r\/(27|-)‘1/2|:/ _hOLM(OJ,f’)e‘iwtdwildLM(o, go)
— W

and

h(7,6, ¢,0)~ 2m) [ FLLA1)(L—1)(L+2)]"*

+o 1
Xl:/ '_—KLM<w;7)e_iwdw:|fLM(0, qo) .

e T
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Asymptotically for large 7, we find that radial factors
have the form

horae(w,r)~ —rA Ly (w) expicwr* 2)
and
Kru(wr)~A Ly () expior* (3)
for magnetic and electric waves, respectively, where
r*=r4+2mIn(r/2m—1). (4)

The coefficients 4 1, »(w) in these asymptotic expressions
are found by integrating the radial wave equation. In
terms of these coefficients, we can calculate intensity as
a function of angle and as a function either of time or of
frequency (case of pulse radiation; see Appendix H for
case of multiply periodic motion). Thus we have

d’E

> [LEZADEL-1)(LA+2)

327 LML M7
XL(L+1D)(L =D)L +2) ]
X{A 13 @* () A ar () Troar ©%: Trp
+Apar ¥ (@) AL () Troae ™*: Tra ™} (5)
and

dE 1
——=—3% LEZLADEL-1)(L+2)

dw 32w LM
X[ Az (@) |+ A ™ (w)|%]. (6)

To determine the distribution of the energy in time
rather than in frequency, we must form the Fourier
integrals for electric and magnetic waves, and construct
the stress-energy tensor from these time-dependent
fields. In a more extended account,!® a treatment is also
given for the amount of gravitational energy “going
down the black hole.”

The part of the radiation of more direct physical
interest, that goes to great distances, is evidently
determined completely by the coefficients A4 (w)
and Arx®(w) (“amplitudes of magnetic and electric
waves”). We find these coefficients by solving the wave
equations in the two cases, driven by the specified
sources, and comparing the asymptotic behavior of the
so obtained solutions with the asymptotic expressions
(2) and (3).

Appendix I gives the analysis in question for the
special case of a particle falling straight into the center
of attraction. There is no magnetic term, and all the
electric amplitudes also vanish, except for those with
M =0, for which we find in the limit of high frequencies

AL(out),\, _4m0(L+ %)1/26—41'"»(0[%\/28574'/8
XTD@) ()44 (a1, (D)

0 F, Zerilli Ph.D. thesis, Princeton University, 1969 (un-
published).
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From this result we find the radiation emitted in the
Lth mode to be

—(dE/dw) 1~ (1/32m) L(L+1)(L—1)(L+2)
X[4LCw)|* (8)

at high frequencies. Appendix J discusses the qualitative
behavior expected for this contribution at lower fre-
quencies, the total output, and its comparison with the
results of Zel’dovich and Novikov? based on the
formulas cited by Landau and Lifshitz.?

For a fuller treatment it will be necessary to solve the
radial equations for frequencies where an expansion
asymptotic in w is not appropriate. For this purpose it is
possible to use directly the coupled systems of equations
given in Appendix F. However, one gains insight into
the structure of the equations by transforming from
several dependent variables (coupled radial factors) to
a single function. It satisfies a second-order wave equa-
tion with an effective potential V(r) that lends itself
to ready visualization. It has a peak (‘“barrier summit”)
at an 7 value of the order »~3m and goes to zero both
at r= o and as r approaches 2m. “Large «” in the
asymptotic expansion previously employed means
WDV peak- When w? is comparable to or less than Ve,
standard JWKB or numerical methods are appropriate.
The details of the wave equation complete this paper.

For magnetic waves the new radial factor is
Ry (w,r). In terms of it, the two old radial factors
(RW gauge) are

hiLa=7*Rp ™ /(r—2m) 9)
and
1 d
horyr= ——(rRrx™)
w dr*
8ur(r—2m)
DLM(‘*’:”) ) (10)

WAL+ (L—1)(L+2)]

where Dy y(w,r) is the source term listed in Appendix E.
The new radial factor obeys the wave equation [in
terms of the new variable 7*=r+2m In(r/2m—1)]

dZRLM(m)
———— F =V () JR L ™
d7*2
8 r—2m
 BLEADE-DEA)TE
d
X {;[r(r—Zm)DLM:H—Z(r—2m)DLM
r .
=2~ DT+ use| . (D
where
2m\ (L(L+1) Om
VL<"“(r)=(1— ——)( — —) (12)
7 72 73
For electric waves the new radial factor is
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Rru®(w,r). In terms of it, the old radial factors are

AA+1)724-3Nmr+6m?

M= L@
72(\r+3m)
r—2m dRyy®
, (13)
r dr
A2 —3\mr —3m dRrm®
Hipy= —tw—————————Rpy®—iwr , (14)
(r—2m)(\r+3m) dr
N (r —2m) — o *+m(r—3m)
OLM == LM
(r—2m)(\r+3m)
m(A+1) —w?? _
. ILM—BLM, (15)
1r(\r+3m)
Hory=Hopy+16m7?
XGLELA)L~1)(L+2) T rar, (16)
where
A=3(L—1)(L+2),
and
8mr2(r —2m)
L= —————{Ay+[FL(LA+1) ] *Bru}
Ar—-3m
4nV2  mr
- —An®. (17)
M43m w
The new radial factor obeys the wave equation
dzR.LM (e)
——— F[? =V I Ru@=Sn, (18)

where the source term is

™

r—2m d (1'-—2m)2/ 172 _
Spar=—1 *[ 1LM+C2LM):|
r dr r()\r+3m)\r—2m
» (r—2m)? r)\()\+1)r2+3)\mr+6m2
v 3ml ,

2LM

Ar2—3N\mr—3m® _
+1 C lLMjl ,

r—2m
where

Vi@ ()= (1_ gj’.‘)

r

IN2(NH-1)73+4-6N2mr -+ 18N +18m3
X .

r3(\r+3m)? 19)

The quantities Cizyr and Cora are combinations of
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source coefficients:

8w

Cizm=——Aru®— -Bru, (20)
) r
g [ALIAHD T i
2LM= ——~—2————‘BLM(°)— Bru. (21)
1w r—2m r—2m
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APPENDIX A: TENSOR HARMONICS

If T is a symmetric second-rank covariant tensor, it
can be expanded in tensor harmonics®—8 as follows:

T= Z AruPary O4 A1 ParyV4+Arnary
LM

+BLM(O)bLM(0)+BLMbLM+QLM(0)cLM(0)+QLMCLM

+Grugrm+Drvdrn+-Frufra, (Al)
where
Yeur 0 0 O
0 0 0O
0 —
arm 0 O 0 0 ) (AZa)
0 0 0 0
0 g Yer 0 O
. Yiu 0 00
1) =
aru® = (i/V2) 0 o o ol (A2b)
0 0 00
0 0 00
07Y 0
aw=1y ¢" 8 ’ (A20)
0 0 00
bru® = 2L(L+1)]1/2
0 0 (3/00)Yrm (8/0¢)YLm
00 0 0
* 0 0 0
brw=r[2L(L+1) T2
00 0 0
0 0 (3/09)Yru (8/0¢)YLm
X1o « 0 0 , (A2e)
0 = 0 0

cLu©®=r[2L(L+1) ]2

0 0 (1/sinf)(9/8¢)Ym —sind(8/00)Y Lu
% 00 0 0

* 0 0 0 ’

* 0 0 0

(A2f)
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CLM—_—’L'i'[ZL(L-}—l)]"Uz
0 0 0 0
% 0 0 (1/sin6)(9/9¢)Y Ly —sind(8/00)V Ly
0 =* 0 0 ’
0 = 0 0
(A2g)
dry= —ir’[2L(LA1)(L—1)(L+2) ]2
0 0 0 0
00 0 0
X100 —(1/sinf)Xra sindWry|® B2
00 ¥ sind Xz
000 0
i 000 O
gn=0"N2)1 o 1 o Yiu, (A21)
0 0 O sin%
£130=7[2L(L+1)(L—1)(L+2) /2
00 0 0
00 0 0 )
Xlo o Wi Xuar |’ (A2)
00 * sin20 Wi

a9
XLM=2—<— —C0t0> Yiu,
3\ 98

a? 0 1 92

I/VLM= <— —cotf— — -—> Yiu.
96* a9  sin%) d¢?

The symbol * denotes components derived from the
symmetry of the tensors. The above set of tensors is
orthonormal in the inner product

(T,S)E//T*:Sdﬂ,

T:S=n* " T 4uSr«

where

and 7, is the Minkowski metric. Thus Apu®
= (aLM“”,T), Bry®= (bLM(u),T), etc.
In place of f1. 3, Regge and Wheeler® use the harmonic

(up to a normalization factor)

exar=[2L(LA D=2 (L~ 1) (L+2)] s
(LA 2gL) -

Two of the harmonics in Eqs. (A2) are the transverse
traceless electric and magnetic harmonics given by
Mathews’:

(m) |

drw=—Tiu®, fou=Tru

Since our background metric is spherically symmetric,
Egs. (2.4) are in the form Q[h]= —16xT, where Q is a
rotationally invariant operator. We have denoted the
metric perturbation tensor by h and the source tensor
by T. Thus we can separate the angular variables 6, ¢
by expanding h and T in tensor harmonics.
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APPENDIX B: EVEN-ODD CONVENTION

Table II is a correlation of the even-odd convention
as used here and elsewhere.!!

TasirE II. Correlation between terminology used here for the
two types of harmonics and the terminology used elsewhere in the
literature.

Listed in Table I First three Last seven
Parity (—1L+ (—1DE
Number of such tensorial

harmonics 7

3
Regge and Wheeler (Ref. 6) Odd parity
Mathews (Ref. 7);

Zerilli (Ref. 8)

Thorne and Campolattaro
(Ref. 11)

Present paper

Emitted when mass falls
straight in to Schwarz-
schild geometry?

Name employed for vector
harmonic of same parity
in case of electromagnetic
radiation®

Emitted when charge falls
straight towards copper
sphere? No

Even parity
Electric Magnetic

Even or electric
Electric

Odd or magnetic
Magnetic

No Yes

Magnetic Electric

Yes

a Employing a definition of ‘‘magnetic’” and “‘electric’” such that “‘a vector
potential A equal to one of these harmonics yields electromagnetic fields
of precisely these types (magnetic or electric).”

APPENDIX C: PERTURBATIONS ON
SCHWARZSCHILD METRIC

In this appendix we discuss the equations for linear
perturbations from a background geometry that enables
us to treat the gravitational interaction of two systems
in an approximation which is good if the difference be-
tween the geometry of the base system (Schwarzschild
geometry) and that of the interacting systems (mass
falling in Schwarzschild geometry) is small. We will not
discuss the question of what constitutes a ‘“‘small”
perturbation since this would be most adequately
treated in the theory of “superspace,” the set whose
elements are three-dimensional Riemannian manifolds.!?
It will suffice to assume the norm in a particular co-
ordinate system to be ||guw||=sup X .| guw(x)|2, and we
will consider a perturbation M, small if there is a gauge
transformation to an admissible coordinate system in
which | [|gu+Miw|| = gull | — 0 as X —0.

Now let us consider linear perturbations!® on a metric.

1 K. Thorne and A. Campolattaro, Astrophys. J. 149, 591
(1967).

2], A. Wheeler, “Superspace and the Nature of Quantum
Geometrodynamics,” in Battelle Rencontres (Benjamin, New York,
1968); A. E. Fischer, Ph.D. thesis, Princeton University, 1969
(unpublished).

13 We use units in which G=c=1. We follow the convention pro-
posed by C. W. Misner, K. S. Thorne, and J. A. Wheeler in “An
Open Letter to Relativity Theorists,” 1968 (unpublished) : Latin
indices run from 1 to 3 and indicate spacelike coordinates; Greek
indices run from O to 2. The metric has signature 42 (spacelike
convention). The connection coefficients and Riemann tensor are
I‘)‘uv:%g)‘”(guu.v“l"gav,p'_guv,a) ‘and Ra)\m':Falv.p_raku,v+ravuralv
—I'%,,I'%,. The contracted Riemann tensor is R,, = R%,,, and the
Einstein equations are Gu (gap) =Ruw—3guwR=87T,,.
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Let gy, be a solution of the Einstein equations, and let
Zuvr=gurt+ Iy Then G,(8 o) = 871 1y, and h,, must satisfy

AGW(gaﬁ;haﬂ) EGW(gaﬁ“' haﬁ) _GMV(gaIS) = SW(TM— Tw)
=8rAT .

If T, 1s “small,” we can assume that /,,1s “small.” Now
AGM"(gaﬁ;haﬂ) = 5Gw(gaﬂ) (hpc) + O[:h,,,z:l,

where 8G,,(gqp) is a linear operator on %, [6Gur(gag) is
the derivative of the mapping which takes the tensor
gw Into the tensor G, . If k,, is small, then this linear
operator is a good approximation to AGu,(gas,as). We
thus consider solutions of

aGl"‘(gaﬂ) (hpv) = +87FAT“,,. (Cl)

The expression for 6G,”(ga,s) (h,,,) is straightforward to
calculate and has been given in several places.!* Let
the semicolon denote covariant differentiation in the
base metric g,,. Then

_5Ruv(gaﬂ) (hpo‘) h;&a;v;a_‘hva;p;a

+kaa; u;!') (CZ)

5w o —

and Eq. (C1) becomes

OR (8 ap) (Mps) — 58ur(lari 3™ —ha®\iY)

—%hm’R‘l‘ %guyhaﬂRaﬂ-_— + 81I'AT“,, .

Now by commuting covariant derivatives and denoting
huot = f., we write Eq. (C1) as

_“I: (24 o’ px— (fll V+fl' M)+2Rpu v pa+h a; By v—Rp hup
—RPV- "P] gl“'(f)\ aa; )\) h;wR
+ guhagRB=+167AT,,. (C3)

The part in square brackets is 26R,,. Finally, if the
background is Ricci flat, R,,=0, then

[hw; a; *— (fu;v+ fv; “)_!,_ZRp"dyhpa_l_haa; ® "]
+g#v(fa;a—hma;)\:)\) - - 167FAT“,; .

Consider now “gauge’ transformations. If we make
a coordinate transformation «'#=x*+4 ¢+, then the
transformed tensor field is &' .=Fu— 4. — & keeping
terms to first order in £,. We can assume g,/ = gu+ 4 s,
then %' u=rlu—&u.v— & - We note* that if R,,(gaps)=0,
it is consistent with (C4) to choose a gauge in which
hu’=0 and k,#=0.

We will now restrict our attention to a background
geometry which has spherical symmetry!® and whose
metric in a local coordinate system can be written

— e’ di?+ erdri+-r2(d62+sin20 do?) .

(C4)

(Cs)

In particular, for the Schwarzschild geometry, ¢=1
—2m/r and e*=¢. In this case the coordinate system
is singular at r=2m. However, we know that the mani-

14 C. Lanczos, Z. Physik 31, 112 (1925); E. Lifshitz, J. Phys.
USSR 10, 116 (1946); P. C. Peters, Phys. Rev. 146, 938 (1966).
15 For a discussion of spherically symmetric space-times, see
J. P.Vajk, Ph.D. thesis, Princeton University, 1968 (unpublished).
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fold is smooth at 2 since there are coordinate systems
which cover the region near = 2m which are nonsingular
and in which the metric tensor is analytic. In fact, the
maximal analytic extension of this manifold is covered
by one coordinate patch, that of Kruskal.’® The singu-
larity at #=0, however, is real and is a three-dimensional
manifold which is the boundary of the four-dimensional
space-time.l” All the physics dealt with in this paper
takes place in the region from 7=2m to r=
Expanding the perturbation %,, and the source tensor
AT,, in tensor harmonics, the field equations (C4)
become, in the case of magnetic-parity harmonics,

0% 0% 20 +l:4m L(L—{—l):l
JIr? ordt v Ot r? r r —2m
= —8mr[L(L+1)TV2Qru @, (C6a)
62h1 62}10 2 aho hl
L L )(EAD) —2m)—
a1? ardt  r Ot 73
=8mi(r—2m)[2L(L+1)T"Y2Qrs, (C6b)
2m\ 0y 2m\"10hy 2m
(=7)5 (=) S+
r / or 7 ot r?
=8rir L L(L+1)(L—1)(L+2)TY2Drs. (Céc)

For the electric harmonics, we have

2m\? 92K 2m Sm\1 0K

() - e

7 or? 7 r /r or
2m\?1 0H 2m\ 1

()1
7 r Or r /r?

2m\ 1
(1= ) s 0 =sn s, (€
r

7
0 aK L(L+1)
“‘( (K H,)— )-— H,
o\Nor r r(r—2m) 2r?
8w
= *“—ALM(I) y (C7b)
( 2m)‘2 02K  1—m/r 0K 2 0H, 19H,
1— — — - _ a4
7 a2 r—2m or r—2m Ot r Or
L(L+1)
———(H,—K)+ ———(K—H,)
r(r—2m) 2r(r—2m)
=8 ALy, (Cic)

16 M. D. Kruskal, Phys. Rev. 119, 1743 (1960) ; for a discussion
of the Kruskal picture, see R. Fuller and J. A. Wheeler, 7bid. 128,
919 (1962).

17 R. Geroch, J. Math. Phys. 9, 450 (1968).
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-l Zmes

= —8mir[$L(L+1) 2By @, (C7d)
6H1 2m\ 9
2 +(1— -)—(H0—K>
at r /or
2m 1—m/r
+ —Hy+ (H,—H,)
72 7
=—8r(r—2m)[$L(L+1) V2B, (CTe)

2m\~! 92K 2m\ 02K m\2 0K
O R e
r o2 r / 9r? r/r Or

2m\~! 0*H, 20%*H,
(-2
7 o4? aradt

2 m aHl 1 m aHz
)
r—2m r/ Ot 7 r/ Or

1 m aHo 1
- “<1+ ")"“‘ - 'Z_EL(L“f‘l)(Hz-—Ho)
7

2m>62H0
ar?

v

7 r/ dr
='—81r\/2—GLM, (C7f)
3(Ho—H>)
= =8 1L(LH+1)(L—1)(L+2) T 2F1s. (CTg)

These equations are written in the RW gauge. The
terms on the right-hand side are the “radial factors” in
the expansion of the source in tensor harmonics (see
Appendix A). We obtain, for each (L,M), three mag-
netic-parity equations for two unknown functions %, and
hi1, and seven electric-parity equations for four unknown
functions H,, Hi, H,, and K. Consistency is assured
for the vacuum equations since the Einstein equations
satisfy the Bianchi identities; in the case where we
have a nonzero source term, this implies that the
divergence of the source stress tensor T must be zero.
It may be verified that the divergence of the stress
tensor vanishes if and only if the source particle follows
a geodesic.

APPENDIX D: GAUGE TRANSFORMATION

The general perturbation is expressed by

FRANK J.

ZERILLI 2

where the magnetic [(—1)Z+! parity ] terms are

hy ™= (i/r)[2L(L+ 1)1 [ikor m(r,8)cL m ™ (6,6)
“+hipu(rt)er u(0,6) —(i/2r%)
XL —=D(LA+2)]"2hor m(r,)dru(6,4)] (D2a)

and the electric [(—1)% parity ] terms are

hry@=_»1 —2m/r)HoLMaLM<“> —V2iH 1 yar
4 (1= 2m /)" Hap s —(1/P[2L(L+1) ]2
X (thor ™ Ly —har b 31)
+ELELA DL =D (LA+2) VG mfrme
+V2U[Ku—3L(L4+1)Grylgrm.

We have chosen the form of the coefficient functions to
agree with the notation of Regge and Wheeler.®

We can simplify (D2a) and (D2b) by using the free-
dom to choose a particular gauge. Since we can choose
four linearly independent vector fields £, we can elimi-
nate four of the ten coefficient functions (see Table I)
in (D2). Let V denote the covariant derivative in the
Schwarzschild geometry. Then the gauge-transformed
perturbation is

(D2b)

h'=h—-2[VE],,

where the subscript s denotes symmetrization.
There is one vector harmonic of order (LM) and
parity (—1)+Y viz., (O,LY ). Thus let

£Lu™ = (i/r)Arar(r,)(O,LY .2(8,9)) .
Then

[ VELu™ Jo= (i/r)[2L(L+1)1V2{i(dA L/ 8t)C L ®
+7%(8/0r)(Aru/r)eLu+(1/7)
XLL—-1)(ZA+2)]*Arud ).

Regge and Wheeler’s choice of gauge makes ksz i zero.
Thus

hra™ = (3/r)[2L(L~+1)1V2(thor mCL @+ haz mCr ) -

There are three vector harmonics of degree (LM)
and parity (—1)%; they are eVim, eYim, and
(0,v¥Lu) (e. and e, are unit vectors along ¢ and 7).
Thus let

ELM(8)= Mo(r,t) YLMCH'Ml(";t) Vi ue,

(D3)

h=3 [hry®@4hpy™], (D1) +My(r,1)(0,VY Lar) .
LM Then verify that
aMU m 6M1 aMo 2m
ZEVELM“)]S=2< — —(r—Zm)Ml)aLM(")—\/?il: + - Mo]aLM“)
ot 73 ot or r(r—2m)
oM, i oM, 1 M, 2
+2|: + '_“_—'—Ml:laLM— —EQL(L-FI)]”?( +M0)bLM(0)+ “{ZL(L‘FI)]W( - —M2+M1)bLM
or r(r—2m) r at 7 I r

V2 1
+ 7[2(1’—2m)M1—L(L+1)M2]gLM+ -—;[2L(L—I—1)(L— DELA+2)]1"2M f . (D4)
7 7
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We can choose the three functions Moz, ML, and
M to eliminate three of the coefficients in (D2b).
Regge and Wheeler choose the gauge so that

hry@=1—2m/r)HoLmaru® —V2iH1ryaru®

+(—2m/r) ' Hormaru+VZKLugrum.
The preceding considerations hold in general for L>2.
For L=0 and L=1, the situation is somewhat simpler
since there are fewer independent harmonics. For L=0,
it is clear that hgo=0 since czx?, ¢, and d 1y are
zero for L=0, while
hoo(e) = (1 —Zm/?)floaoo(o) —-\/Ql.Hlaoo(l)

+ (1 —ZM/r)—laoo—i‘\/ngoo s (DS)

since by @, bz, and f1.3r are zero for L=0. For L=1,
since d1 =0 and f; =0, we have

hy ™= (2i/r) (ihoClM(0)+hlc1M) , (D6)
while
hl M(e) = (1 —2m/r)H0a1M(°> —\/fiH1a1M(l)
+ (1 —2m/r) a1 — (20/7) "™ b1 3
+ @2/ b1+ V2Kgin. (D7)
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Thus our gauge transformations allow us to eliminate
one of the functions % or %y for the magnetic harmonics
and allow us to eliminate three of the six (instead of
seven for L>2) functions for the electric harmonics.

APPENDIX E: STRESS-ENERGY TENSOR
EXPRESSED IN TENSOR HARMONICS

The following prescription gives the stress-energy
tensor expressed in terms of tensor harmonics: (a)
Take each row in turn in Table IIT; (b) multiply the
factor in the first column (‘“coefficient in expansion in
harmonics”; a function of # and £) by the factor in the
second column (tensor harmonic; function of 6§ and ¢);
(c) sum all ten such products (“totalized part of stress
energy tensor of index L, M”); and (d) sum over all L
and M.

For the Fourier transforms of these radial factors in
the expansion of the source, we multiply by (2x)~1/2
and by e*“!dt and integrate from —o to 4. The
analysis is simplest when = R(#) is a monotonic func-
tion of time. Then we write di=dR/(dR/dt). The func-
tion 8(r—R(f)) integrates out immediately. The net

TasLE III. Components in expression of stress-energy tensor of test particle in terms of tensor harmonics. The symbol v is an abbrevi-
ation for the quantity v=dT (r)/dr. The first five and the last two terms drive the electric part of the perturbation in the geometry; the
remaining three terms drive the magnetic part. The arrangement of the terms is chosen to make more readily apparent the similarities
in form between one coefficient and another. In the table ¥z denotes the usual normalized spherical harmonic, X z.» and W 1y are func-
tions derived from ¥y as listed at the end of Appendix A, and * denotes complex conjugate.

Tensor harmonic
Description Dependence of “driving term” on 7 and ¢ (Appendix A)
2
Electric Arm(rt) =moy (‘fz—lf) (r—2m)26(r—R (1)) Y rar* (Q(2)) aru(6,0)
2
Electric Aru® =moy(1-—-z:?) 7 25(r—R ()Y La* Q1)) arm©® (6,4)
Electric ALy® =\Qimo'ydd'—lfr"26 —R(®))Ya*@()) arn® 0,¢)
Electric Brn©@=[3L (L+1)]—mimw(1—%'?)r—la(r—za(t) V¥ 1o @) /dt brar® @,6)
Electric Bru=[3L(L+ 1)]‘1’2ma'y(r—2m)_%§6(r—R(t))dYLM*(Q (®)/ds bra(6,0)
Magnetic Qua® =L (LADT iy (1-22 )13~ R () cru® (0,6)
1 Viu*d® . _3Viu*dd
[sin@ @ @ 958 7;]
Magnetic Quar=ALLAD T Himoy (r—2m) 56 —ROY cou(6,)
1 9Viu™* d_@_ . ®6 Yiu* @]
[sin@) o0 da "0 d
i - 1 109 I (39\? . dd\?
Magnetic, transverse, Dry=—[3L(L+1D)(L—1)(L+2) T 2imeys(r—R ()< ——) —(sin®)( —. drm(6,0)
traceless dt o dt
1 . . dod
X 5K 0 1-sin® LW a0 ]}
i 1 » d0O de
Electric, transverse, Fru=[3L(L+1)(L—1)(L+2)1meys(r—R ()2 - —-Xar*[Q (1) ] £14(0,9)
traceless o dt dt
a0\ . do\?
+%[ (ﬁ - (sm®)2( 717) ]WLM*[n(z)]}
2 2
Electric GLM='1%76(r—R(t))[(’%) + (sin®)2(%) :IYLM*EQ(t)] gru(0,6)
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result is to transform each radial factor in the table in
the following three respects: (a) Multiply by (2m)~1/2;
(b) replace et by e “T™ where T(r) is the function
inverse to R(f); and (c) replace the & function by
1/(dR/di). For example, in the case when the particle
falls from r= o to 2m starting at {= —o with zero
velocity, we have

AL07)= o/ )L+ B o/ 2m) (1 /),
A1 V()= —1i(mo/27)(2L+1)12(1/7?)

X (1 _ zm/y)——lein(r) s
3)(2m/r) ]

X (r—2m) 2T ()

(ED)
A p(w,r)= (mo/2m)[(L+

APPENDIX F: FOURIER-TRANSFORMED FIELD
EQUATIONS FOR RADIAL FACTORS
IN METRIC PERTURBATION

We write the Fourier transform of the field equations
listed in Appendix C. The magnetic equations are

twdhoryr  2iwhorar
whiLm—
dr 7
—(r—
=—8xi[ 1 L(L+1) T 2(r—2m)Qru(w,), (Fla)
Ahoryr  twdhiry  2iwhiry
(r—Zm)( >
dr? dr r
4m  L(L+1)
+[T - "'—"]}“’LM: —8a[3L(L+1)] 12
r 7
Xr*Qrar@(w,r), (Fib)
d/llLM iwrzkoLM thu,M
—(r—2m) - -
dr r—2m 7

=8ri[3L(L+1)(L—1)(L42) V% Di(wyr) . (F1c)

The electric parity equations are
2m\*d*’K 1 2m
() -2
r art r r
1 2m\*dH, 1 2m
- -(1— —) —_—— —(1— —)(HZ—K)
7 7 ar r? r

1 2m
—L(L-H)E—?(l — _)(H2+K)
r

¥

5m>dK
dr

=87 ALy (w,), (F2a)
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2m\ "2 1 2m\ 1
—w2(1— —-) K+ L(L+ 1)—2——2(1— ———) (K—H,)
7

4 s

1 21w 2m\ !
+—°—(H2~K)+—<1——> H,
7

r(r—2m) r

1 m 2m\~1dK
O
r 7 r dr r dr

=81Adru(w,),

5o )]

¥

1dH,

(F2b)

—L(L+1)< >H1——47T\/—1/ALM<D(L0 7), (FZC)

—[{[(1— E’—n—>Hl]+m(zarz+K)

dr 7

= —8ri[AL(LA1) T4 Bry (), (F2d)

2m 2m\ d
¥

4 7

1 m
n ~<1 _ —>(H2—Ho) — Sa[IL(LA1)T
Vs

7

X(r—2m)Bryu(w,y), (F2e)
2m\~1! d?
rzwz(l — ——) (Hy~+-K)~+7(r—2m)—(K —H,)
r dr?
21wr?dHy m 2m\ "1
_— —2iwr<1— ——>(1— ———) H,
dr 7 ¥
dH, dH,
+2(r— )— —7<1— ——>— —r(l—l— >
dr dr

72

GLM(w,r) 5 (FZf)
2

16
—3L(L+1)(H:—H,) = —

$(Horu—Hopar) = — 167 2L(L+1)(L—1)(L+2) /2
Xr2FLM(w,1’) . (F?.g)

These equations were first given by Regge and Wheeler
for the case of vacuum perturbations. There were some
minor errors in the magnetic-parity equations given
by Regge and Wheeler. A corrected version has been
given by Vishveshwara.!® The equations given here
differ from those of Regge-Wheeler-Vishveshwara only
in that we consider variations in G,, rather than R,,.
The sources terms are zero in (F2d)-(F2f) in the case
for motion without angular momentum along the 2

18 C. V. Vishveshwara, Ph.D. thesis, University of Maryland,
1968 (unpublished).
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axis. Also in this case, the solution of the magnetic-
parity equations which satisfies the boundary condi-
tions is the zero solution. Thus we will only have to
consider the electric equations for the case of the particle
falling straight in.

For the magnetic-parity waves we have three equa-
tions. Equation (F1b) is a consequence of (Fla) and
(Fic), provided that the source term satisfies the di-
vergence condition. Thus we have a system of two first-
order linear equations. The two first-order equations
(Fla) and (F1c) can be expressed as a simple second-
order Schrodinger-type equation (see text).t

For the electric-parity waves we have six equations
and three unknown functions. Three of the first-order
equations are sufficient to determine a solution provided
the divergence conditions on the source term are satis-
fied. Further, as noted by Regge and Wheeler,® we
obtain an algebraic equation relating the three unknown
functions. Let us take (F2c)-(F2e) as our basic equa-
tions and solve them for the first derivatives of K, Ho,
and H as follows:

dKk 1 3m 2m\ 1! 1

=i —(1— —>(1_ _> K— -1,

dr 7 r 7 7
472

1
+L(ILA)——H = — — A1V, (F3a)

2iwr? 12

3m 2m\~1
1— _)<1_ ~) K
7 r
1 4m 2m\ !
e
r 7 7

+|:iw<1 - gﬁ>_l+L(L+1)—1——:|H1

7 27wr?

dH, 1(
dr 7

4mV2
ALM(I) —8777[%L(L+1)]—”2BLM

+16x[ 3 L(L+1)(L—1)(L+2) ] V2
r—3

T F F3b)
r(—72m) LM] >

dH, 2m\ ™! 2m 2m\~1!
——+iw<1———> (K+H,)+ ——2—<1—~—> H,
7

dr 7 r

d
X[_(rZFLIW) -
ar

8ir?
=— __2—[%L(L+1>}1/213LM<0>. (F3¢)
r—asm

If we substitute these in (F2a), we obtain a relation be-
tween the source terms which is the divergence condi-
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tion. If we substitute (F3) into (F2b), we obtain

8aV2m
F(r)=161rr(r~—2m)ALM—— ALM(l)
1677 (r —2m) ¢
—————— Bru—16x[(L—1)(L+2)+6m/7]
FL(L+1)]2
XEL(LAH1)(L—1)(L4+2) T Y% 13, (F4)
where
6m
Fo)= | +HE-0@4) [t @-E+2)
r

2m\~! 2m 3m 2m\~1!
e ) )
r 7 r r

+[2W+L(L+1)_—"—2]H1.

wr

A straightforward way of showing the consistency of
(F3) and (F4) is to eliminate one of the functions H,
Hj, and K from two of the equations (F3) and use the
divergence condition to show that the third equation is
satisfied identically. Thus we reduce our original system
to a system of two first-order equations for two un-
known functions. We can proceed to write this as a
single second-order equation,'® given in the text [Eq.

(18)].
APPENDIX G: SOLUTIONS OF
L=0,1 EQUATIONS

The fact that for L=0 and L=1 there are fewer
independent tensor harmonics makes it possible for us
to give exact solutions of the perturbation equations
in these cases. We have noted previously that the L=0
magnetic-parity harmonic is identically zero. Thus we
are left with the L=1 magnetic equations and the L=0
and L=1 electric equations. We will, for these three
cases, give the solutions to the homogeneous equations
and the solutions for the case where there is a source
term which is produced by a point mass m, falling on a
geodesic of the background.

A. Monopole (Mass) Perturbation

Let us consider, first, the L=0 electric-parity equa-
tions. The general form of the perturbation is given by
Eq. (D5). Making a gauge transformation £ = M ¥ ge:
+M1Y ge,, we can choose Mo(r,t) and M(r,t) so that
Hy(r,t)=K(r,t)=0. Since by @=bo=£0=0, the only
trivial magnetic equations for L=0 are Egs. (C7a)-
(C7¢) and (C7f). Equation (C7f) is satisfied identically
by a solution of the other three provided that the source
term satisfies the divergence condition. In the source-
free case, Egs. (C7a) and (C7b) give

Ho=2(4m)Y%/(r—2m) ,

19 F, Zerilli, Phys. Rev. Letters 24, 737 (1970).
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where ¢ is a constant, while (C7c) gives
Ho=H»+ (1),

where f is an arbitrary function of time. A gauge trans-
formation of the form £(¢)=Me.Y oo allows us to elimi-
nate f(#). From Eq. (D4) ,we see that if

o) =3a=2m/7) [ 10,
then in the new gauge we have

Hoy=Hy=2(4w)'%/(r—2m), (G1)

and so

oot = (16m) /2cr1agg @+ (1 —2m/r) 2
4 (16m) 2%crtag, (G2)

and up to the linear approximation in which we are
dealing, this is simply

Zoo= goo+hoo=1—2m/r+2c/r,
Zu=guthu=1—-2m/r+2c/r)~ .

Thus we obtain the result which we would expect: The
L=0 perturbation, being spherically symmetric, repre-
sents only a change in the Schwarzschild mass, a result
required by Birkhoff’s theorem. Regge and Wheeler®
stated this result by explicitly assuming the solutions
to be time independent.

Now let us consider the case where there is a point
mass m falling along the geodesics of the Schwarzschild
geometry. From Eq. (C7) we have

(8/3r)[(r—2m)H )= — (167)2myy(1 —2m/7)
Xé(r—R(®),

(G3)

and integrating we obtain
(r—2m)H=0, r<R(})

= —(16m) 2mo[ 1 —2m/R() 1dT/ds , r> R(f).
But [1—2m/R(t) ]dT/ds=o, and v, is a constant of the
motion which is an energy parameter; for example,

yo=1if the particle falls from infinity starting with zero
velocity dR/ds=0 at r= . Thus

Hy(r)=0, r<R()
= —2(4m) Pmyyo/ (r—2m) ,
From Eq. (C7c) we obtain
Hy(r)=0, r<R(®)
= —2(4m) Pmoyo/ (r—2m)+ f(£), r>R() (GS)

r>R(f). (G4)

where
(dR/dt)?

[1—2m/ROTRG)

As in the vacuum case, f(f) is eliminated by a gauge
transformation and, referring to Eqs. (G1)-(G3), we
see that the solution is that of a Schwarzschild field of
mass m inside the two-sphere of radius R(f) and is a

J(&) =2(4m) >moy
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Schwarzschild field of mass m+mgy, outside the sphere
of radius R(?).

B. Magnetic Dipole (Angular Momentum) Perturbation

Now we discuss the L= 1 magnetic-parity equations.
Equation (D6) gives the general form of the perturba-
tion. We perform a gauge transformation &;x™
= (1/7) A1 (7,8)(0,LY 12r), which makes /(7,f) =0. Then

hy™ = 2i/r)hi(r,f)cim.

Since d1=0, the only nontrivial electric equations for
L=1 are (C6a) and (C6b). Thus, in the source-free
case, (C6a) gives hn(r,t)= f(r)t+g(r), where f and g are
arbitrary functions of 7. Then (C6b) gives f'(r)
+(2/7) f(r)=0, whose solution is f(r)=3c/r* where ¢
is a constant. The function g(r) is entirely arbitrary.
However, g(r) can be eliminated by a guage transforma-
tion; at the same time we will transform to a gauge
in which the perturbation is easily interpretable. We
choose the gauge function

£
A(rt)=— il +r2/g(r)r"2dr.
7

Then in the new guage, #;=0 while ko= —09A/dt=c/r.
Thus

th('")l‘ (ZiC/Tz)ClM(O) . (G6)

This metric has only 08 and 0¢ components. We will
see that this perturbation can be interpreted as adding
angular momentum to the background metric. If we
transform this perturbation to Kruskal coordinates, we
find that it is singular at 2m. However, Vishveshwara!®
has shown that a suitable gauge transformation brings
it to a form which is regular everywhere in Kruskal
coordinates.

Landau and Lifshitz® show that, for a weak field, the
coefficients of the 1/7% terms of the dédx* components of
the metric tensor are related to the angular momentum
tensor (in a Cartesian frame at infinity):

3 2Mm;
hoi=2

=1 r

, =123 (GT)

2

where #; are the components of e, in Cartesian coordi-
nates: #,=sinf sing, #,=sinfd cos¢, #,=cosh. Trans-
forming (G7) to spherical coordinates, we obtain

o =0,
hoo=(2/7)(lz sing—1, cos¢) ,
hos= (2/r)[—1. sin204 (I, cos¢+1, sing)sind cosb ],

(G8)

where l,=M,, l,=M,,, and l,=M,,. We now note
that (G8) can be written as a sum of the tensor har-
monics €1 ® as follows:

h=(4i/r?) (§m) 2@ +1Le10 O+l 1c11®), (G9)
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where l.1= F3V2(l,+1l,). We see that the solution (G6)
gives a perturbation which has angular momentum.

Let us now proceed to the case where there is a source
term due to a particle orbiting in the Schwarzschild
field. Since the motion lies in a plane, assume that
O(t) =% and then from (C6b) we obtain

1 92 3\ a
——(72k1)=87rmo(—) 8(r—R()— ,
72 Otor 4o R2

where a=R?d®/ds is the z component of angular mo-
mentum per unit mass of the orbiting particle. Since
©=13m, the z component is the only nonzero component
(and the only nonzero source terms Qiu and Q1u®
have the index M =0). Integrating with respect to 7,
we obtain

h(r)=0, r<R(@)

=8x(3/4m) 2meat/r?, r>R(). (G10)

As in the homogeneous case, if we perform a gauge
transformation with

A(r,))=0, r<R()

= —2mea(3/4m)2%/r, r>R()

we obtain, in the new gauge,

hm™=0, r<R()

= (2/r)(4n/3)122moa/P)c1®, r>RE). (G11)

Referring to Eq. (G9), we see that this perturbation is
zero inside the sphere < R(¥) while it has, for > R(?),
angular momentum

l,=moa,

which is precisely the conserved angular momentum of
the orbiting particle.

C. Electric Dipole (Coordinate) Perturbation

Proceeding now to the last of the nonradiative cases,
we discuss the L=1 magnetic-parity equations. Equa-
tion (D7) gives the general form of the perturbation.
Using our gauge freedom, we can make K;=0. Since
f1=0, there are six field equations: (C7a)-(C7f).
Three of the equations determine a solution, and con-
sistency is assured by the divergence condition on the
coefficients A1 @, A1, etc. Looking at the homo-
geneous case, we see by substitution that any solution
which satisfies (C7a) and (C7b) automatically satisfies
(C7d). Also (C7e) and (C7d) imply (C7f). To show this,
differentiate (C7¢) with respect to » and (C7d) with
respect to £. Finally, from (C7e) and (C7c) we obtain

3mH0=mH2—r26H1/6t. (G12)

Thus the system is reduced to (C7a)-(C7c) and (G12).
But it is easily verified that any solution of (C7a),
(C7b), and (G12) identically satisfies (C7). In the homo-
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geneous case, the solution of (C7a) is

Hy(rt)= f()/(r—2m)*,

where f is an arbitrary function of ¢. Then (C7b) and
(G12) give, for Ho and Hy,

Hy(rt)= —rf'(8)/(r—2m)*,
Ho(rt)= f(t)/3(r—2m)*+73f"(£) /3m(r—2m)*.

This will also be the form of the solution to the inhomo-
geneous equations, where the function f(£) will be deter-
mined by the source term.

We will now see that this perturbation can be removed
entirely by a guage transformation which we will
attempt to interpret as a translation to the c.m. system
of the two bodies. Thus we find a vector field &
=Moe:YV1u+Mie,Y1m+M:VY 1y such that

Ve ©Te=hyu®.
In fact, let
My=r*g(t)/(r—2m),
Mi=r*g(t)/(r—2m)*,
Mo=—r%'(t)/(r—2m),

where g(f)= — f(f)/6m. Thus the L=1 magnetic per-
turbations are strictly removable by a gauge transfor-
mation.

Now we give an interpretation of this gauge transfor-
mation. In the limit of large r (»>>2m), we can write

Eu@~—gu' (OreYViutgu(t)e.Vin
+gu(®rV¥1n.

Just for the purposes of the following discussion, let ¥V
denote the operator whose covariant components are
(—a/at, 3/0x, 9/dy, 0/92) in a Cartesian coordinate
system; and since we consider 7 large, we will raise and
lower indices with the Minkowski metric (+1,"—1,
—1, —1). Then (G13) may be written compactly

E1 O~V gu(O)rY1m(0,0)].

But #YViy=(3/4m) %y, where wxo=2, xy1=F3V2
X (x==1y). For example, in contravariant components,

10~ — (3/4m) 11254 ()5,0,0,80(9)

Thus we identify this with a displacement along the z
axis by po(f) = (3/4m)/%go(¢). That is, &'#=x#+£* or

?=t—pd )z,
y'=y, #—z=pil).

This is a Lorentz transformation along the z axis; po' ()
is the velocity v. The factor of (1 —9?)'/2 does not appear
here since we are dealing with linear perturbations and
this factor is of quadratic rather than linear order.
Similarly, £, £1,-1¢9 represents a translation in the
(x,9) plane by (p:(t),04($)), where py=—(3/8m)
X (gr1—g-1) and p,=—1i(3/87)"*(g11+g-1). Thus we
identify the gauge transformation as the analog, in the

(G13)

*=x,
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Schwarzschild geometry, of a Lorentz transformation in
flat space since this is what it looks like to the distant
observer.

Now let us consider the inhomogeneous equations.
The solution of Eq. (C7a) is

Hou(r,)=0, r<R()

= fu(®/(r—2m)*, r>R(1)

where
Fu(@®)=—8mmroy () Vi (UOLR(E) —2m ]/ R(D).
Now from (C7b) we obtain
Hiu(rt)=0, t<R(r)
= —rful O/ (r—=2m)*, 7>R().

Note that the source terms contribute only a 6 function
on the surface 7= R(f) to Hya. The same is true for Ho,
and using (G12), we obtain
Hou(rt)=0, r<R()
=L @O+ @*/m) fr" )1/ 3(r—2m)*,
r>R().

Thus the solution is of the same form as that for the
homogeneous case, and fu(f) is determined by the
source term. Now define p(f) by

p() = (mo/m)y(OLR(#) —2m J*/R(1).

Then [y () = —8wmp(t) V12*(Q(2)), and the gauge trans-
formation which eliminates this perturbation is (co-
variant components in spherical coordinates)

0
fo=— —a;[fz(r—2m)‘1p(t)a(t,0,¢)],

a=[(1 _ ?)Azpow,o,w]
fam %[r(l— 2—:”~)_1p<t>a<z,e,¢>} ,
fi= %@(1— Z-r—m)_lpa)a(t,e,@} ,

where o(t,0,¢) =41 > » Viar*(Q())YV12(0,0). But 7p(t)
Xo(t0,0) =x- £(f), where &)= (o(t),0(),®(t)). Thus
for r large compared with 2m, we can write

E~VLEQD)-x],

where V is defined as above in the discussion after Eq.
(G13). We see that this represents the Lorentz trans-
formation

(G14)

U=t—x-¥(1),
x'=x— E(t) ’
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since, in contravariant components,
VLE®)-x]=—[€®)-x,E0)].

Thus we identify the gauge transformation as an
“analog” Lorentz transformation to a moving frame
given by the displacement

€(t) = {mo/m)y(OLR(W) —2m /R(1), ©), (D)} .

When the falling particle m, is far from the central mass
m, that is, R(f)>>2m, then

&)~ [mo(/m)y(OR(®),00),2(1) ],

which is the usual classical mechanical transformation
to the center-of-momentum frame of the two bodies.
Thus we are tempted to interpret the gauge transfor-
mation (G14) as the analog of a “transformation to the
center-of-momentum system.”

APPENDIX H: RADIATION IN MULTIPLY
PERIODIC MOTION

The present investigation is concerned with the pulse
of gravitational radiation given out when a small mass
myo plunges into the black hole associated with a much
larger mass m. In this connection we analyze the
mechanical quantities descriptive of the motion of #.,
and analyze the gravitational radiation itself into
Fourier integrals. The results of such an analysis for
radiation emitted in a hyperbolic orbit are already
known not to be at all complicated when the departure
of the space from flatness is so slight that the geometry
can be idealized as nearly Lorentzian. In that limit,
the familiar textbook formula for the rate of radiation,

dE 1 d*Qre(t) d3Qre(y)
dt 45 A ap

in terms of the quadrupole moment

()= ¥

all masses

m(3xPx?—§7%%°)
lends itself readily to Fourier analysis:

o0
Ova(t) = (212 / 0i(w)e-ioids,

+-00
Orilay= (e [ Qretge.

The amount of energy emitted per unit interval of
frequency » (=w/2m), integrated over the entire time
of the pulse, is

—dE/dv= (4m/45)Q?"*(w)Q?%(w) .

This expression reduces at low frequencies (w small
compared to the reciprocal of the time required for the
orbit to undergo the major part of its change in direc-
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tion) to?0

dE

2
- = Z [ Z m(sa’;p:tq_aqu:ax's) bt;fol‘ea'ftm‘_ﬁ_'2
dll 4:5 »,Q masses f ’

where the dot means differentiation with respect to &.
We expect the formulas given in the present text to
reduce to these simple expressions in the appropriate
limit. However, the present analysis should by no
means be considered to be confined to the case of
aperiodic motion and pulse radiation. On the contrary,
we have in atomic physics (see, for example, Born’s
Atommechanik) an example of the analysis of multiply
periodic motion, and of the radiation given out in such
motion, which can be taken over practically without
change to the present problem. The energy of the system
is expressed as a function of three action variables,

E=E(]f:]97']¢) )

of which the last two measure total angular momentum
and angular momentum about the z axis. The circular
frequencies associated with the three modes of motion
are

w,=9E/dJ,,

wo=93E/d]s, w,=dE/d],.

In the limit of nearly flat space, where Cartesian co-
ordinates are appropriate, one has

= 2 Xumgn, €xp —i(nw,Fnowe+n,0,)],

nr,ng,neg

and similar Fourier series for the other two coordinates
and for the third time rate of change of the quadrupole
moment as well. The rate of emission of quadrupole
gravitational radiation at the circular frequency
W= 1,0+ Mews+New, 1S

dE 2 dsQret Qe
( df >w=n“w,4_ 45( dt3 >nr,n5,n¢< dt3 >n1,‘n9,n¢.

The generalization of this formula to the Schwarzschild
geometry allows itself in principle to be read out of the
present work, once the determination of the appro-
priate Fourier coefficients in the multiply periodic
motion has been carried through.

APPENDIX I: AMPLITUDES FOR SPECIAL
CASE OF PARTICLE FALLING
STRAIGHT IN

We do a standard asymptotic expansion in the param-
eter w for large w. This simultaneously gives us an
asymptotic expansion for large r. First consider the
magnetic equations, in particular, the homogeneous
case.

2 R. Ruffini and J. A. Wheeler, “Cosmology from Space
Platforms,” European Space Research Organization report
(unpublished).
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Let e=+1 for outgoing waves and e=—1 for in-
coming waves; then we may write

hi~r(1=2m/r) "1 — (e/icwr) (\+1—3m/2r)
+0(1/w?) ] exp(eiwr®)
ho~ —er[ 1 —(e/iwr) A +m/7)+ O(1/w?) ] exp(eiwr™) .

Now we notice that for large » these functions go as
O(r). If we transform the perturbation to a Cartesian
coordinate system, this implies that the perturbation
goes as O(1). We can easily see this by looking at Eq.
(D2a).

Now in order to apply the usual pseudotensor criteria
for energy and momentum radiated, we must have a
perturbation that goes as O(1/7) in order that the space
be asymptotically flat. We remedy the difficulty by a
gauge transformation. This gauge transformation does
several things. It makes the new %,‘Y’=0 and the new
7™M =0(1/wr) and thus these functions do not contrib-
ute in the radiation field since 4= 0(1/wr) implies that
the perturbation is O(1/wr?). At the same time, it intro-
duces a nonzero %,¥ in the new gauge which is O(r) and
hence, as can be seen by looking at Eq. (D2a), the per-
turbation is then O(1/7), which enables us to use the
pseudotensor to calculate the energy or momentum radi-
ated. Note that the angular dependence of the radiation
term is given by Mathews’s electric harmonic and that
in this gauge the perturbation is divergenceless and
traceless to O(1/7). The form of the gauge transforma-
tion which does all this is easily found. From Eq. (D3)
we see that setting Az yr=—(1/1w) ko makes koY) zero.
Also, using Eq. (Fla), we see that

hlLM(N) = — (2)\/(,021’2) (1 -—2m/1')h1ML y
which is O(1/7). Finally,

hor ™ =2Ap = —(2/10) oL -

(I1)

We will then denote the canonical solution of the
homogeneous magnetic equations by hz " (w,7,¢) and

hp ™ ©~(e/2i0r) exp(eior™)
X2L(LA 1) (L—1)(L+2) 2
XT L (0,0)+0(1/w?).

Gauge transformations of a similar nature have been
discussed by Edelstein?** and by Price and Thorne.?
By looking at (I1), we see that the second term of the
asymptotic expansion is less than the first term when
2mw>N+1. Thus we can expect the asymptotic
expansion to be a good approximation for 4mw
> L(L+1). This means that the approximation is good
if w? is above the peak of the effective potential V(r)
given by Regge and Wheeler.

Now let us turn to the magnetic-parity equations.
Again we look at the homogeneous equations.

(12)

2 L. Edelstein, Ph.D. thesis, University of Maryland, 1969
(unpublished).
22 R. Price and K. Thorne, Astrophys. J. 155, 163 (1969).
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Letting e=-+1 denote outgoing waves and e=—1
denote ingoing waves, we have the result

3m 1rA(A+1)
)+ —[ +
2iwr? Wl 272

m?

m(2\—1)
2r3

K©~ [1+e(

+ 18 ]+0(1/w3)} exp(eiwr™®),

74

HO~ — e, ©+0(1/o?),

2m\~! e /N 3m
Hl(f)fv—iwr(l—————) {1—-—(——{———-)
r iw\r 22

13)

1Ira(z+1)  m(\+1) 3m?
- —[ + - —-—]—f—O(l/w:")}
wil. 27?2 273 8rt
Xexp(eiowr™).

The perturbation given by (I3) is O(r) as r —=, as
can be seen by looking at Eq. (D2b). Again we must
find a suitable gauge transformation so that the
perturbation is O(1/7) as r — . This means that in the
new gauge all the coefficient functions in (D2b) must
be O(1/7) except for o and k1, which must be O(1)
in order for hz ' ~0(1/7).

We will be able to find a gauge transformation which
makes /(=0 and which makes the perturbation diver-
genceless, traceless, and proportional to Mathews’s
transverse traceless magnetic harmonic, at least up to
the order of the radiation terms. Most important of all,
it gives the proper asymptotic dependence for the
perturbation as # — . From (D2b) and (D4) we obtain
seven equations relating Mo, M1, M,, H, Hy, and K
to the transformed coefficient functions [denoted with
a superscript (). Since K is O(1) and we want K
to be O(1/7), we must require

M= —3r(1=2m/r) [ 14 pa(r) feot-pa(r) /7]
X exp(etwr®),

where u(r) =0(1/7), u2(r) =0(1/7%) are still free to be
chosen. The requirement H ¥ = H,™ fixes M yin terms
of M1, and it follows also that H1¥M) = —eH ™ +-0(1/w?).
The condition /%, M=0 fixes Mo=(1/iw)M1. We can
then choose ui(r) and ua(r) so that H® and H,®
are O(1/w?) [and hence also O(1/7%)]. Then G®™ and
7@ are fixed by the remaining relations: K™
—3L(L+1)GM=0(1/w??), 1/r)h@M=0(1/w¥?),
and finally

€ e2Nr+m)
KM@= — (41| 1— — +O(1/w272):|
i 2472

24

Xexp(eiwr®). (14)
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Thus

€
hpy@= — exp(eiwr*)
2iwr

X[2L(LA-1) (L —1)(L42)JH2T 1.3 ™
+0(1/w??).

The trace of hrx®@ is O(1/w¥?) and div(hz @)
=0(1/w?).

Using these results, we construct a high-frequency-
limit Green’s function, and, applying the boundary
condition of outgoing waves at r= « and ingoing waves
at r=2m, we obtain amplitudes for the ingoing and
outgoing radiation fields as integrals. One of these inte-
gralsis evaluated in an asymptotic expansion in w by the
method of saddle points in a beautiful procedure given
by van der Waerden.?® The other integral is evaluated
in an asymptotic expansion using a theorem given by
Copson.? First we discuss the stress tensor for radia-
tion and some pecularities of the wave solutions of the
homogeneous equations.

Isaacson* shows that in the high-frequency limit
(wavelength of the radiation short compared with the
curvature of the background space) for small perturba-
tions a suitable stress tensor for gravitational radiation
is

(Is)

le = (3 27")-1 { hp o; uhw: v} avt0 (hg) )

where { }., denotes an average over several wave-
lengths of the radiation. The expression (I6) is valid
in the gauge where tr(h) and div(h) are zero. The
result (I6) is also equivalent to using the Landau-
Lifshitz?® pseudotensor in the limit of large r. Since we
are dealing with the Fourier transforms of the fields,
averaging corresponds to taking the field amplitudes
times their complex conjugates; that is,

Tw= (327r)_1h*pa;nhw;v .

(16)

We are interested in the energy density and flux given
by the components of T, with u and » equal to zero or
one. If we keep only the leading terms in w, we can
replace the covariant derivative with respect to ¢ by
—iw and the covariant derivative with respect to r by
eiw(1—2m/r)~1. Now let

h(wyr)07¢> = Z {ALM(G)(w)hLM(e)(w77707¢)
LM
+Arm (m) (w)hLM (m)(w,r,e,qs)} )

where hr»® and hry™ are solutions which, in the
absence of sources, are given asymptotically by (I5)
and (I2). Let us consider the energy flux for large 7.
Then the power per unit solid angle per unit frequency

% B. L. van der Waerden, Appl. Sci. Res. B2, 33 (1960); also
discussed by H. A. Lauwerier, Asymptotic Expansions (Math-
ematisch Centrum, Amsterdam, 1966).

#E. T. Copson, Asymptotic Expansions (Cambridge U. P.,
New York, 1965), p. 21.
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for a particular electric or magnetic LM multipole is

dS1u(w,Q)
T = (32n)AL(LH1)(L—1)(L+2)

aQ
X | Apau(w)|2Toar*: Toar, (U7)

while the total power per unit frequency is

lim 2 Re[rszTlon}
or
S(w)=e(32m)"1 3. L(L+1)(L—1)(L42)

Ly

X{| ALu@ ()| *+Aru™(@)]2}. (18)

By appealing to conservation of energy,?® we can say
that this expression also gives the energy flux through
the Schwarzschild surface r=2m; that is, to find the
power radiated into the 2m surface by some source,
we take the ingoing wave solution of the homogeneous
equations which has the same amplitude as that of the
solution with the source term. Then we can calculate
the power flowing inward by looking at the amplitude
of the homogeneous solutions at large » where energy
has a well-defined meaning and where a well-defined
method of calculating the energy exists. Price and
Thorne?? discuss the polarization of waves described
by tensor harmonics and also discuss the linear and
angular momentum carried by these waves.

Let us look at the 00, 01, and 11 components of the
stress tensor T, for a particular harmonic. Let

Uru(0,9)= (64m)1L(L+1)(L—1)(L+2)
XTLM(m)*;TLM(m) .
Then
To=7r"UL M(0,¢) )

Tou=—ea*(1—2m/r) " ULu(8,9),
Tu= (r—2m)"*ULxu(0,0) -

If we transform this tensor to Kruskal coordinates, we
obtain
TKoo‘—“— 16m2r‘2(u—ev)‘2ULM(0,¢) ,

TEn= —eTEKy, TEy=TEy.

Thus we see that the stress tensor is singular along u=1v
(that is, r=2m, t= ) for outgoing waves (e=--1)
while the stress tensor is singular along »= —v (that is,
r=2m, t=—cw) for ingoing waves (e=—1). This
singularity is a manifestation of the fact that the per-
turbation 4,, is singular in just this manner at r=2m.
This shows up in the higher-order terms which we
ignored in our asymptotic expansions, that is, in the
functions H¥ and H,;®™. Doroshkevich, Zel’dovich,
and Novikov? arrive at a similar result and argue,

% C. W. Misner (private communication); this argument is due
to L. Edelstein.

26 A. Doroshkevich, Ya. Zel’dovich, and I. Novikov, Zh. Ek-

sperim. i Teor. Fiz. 49, 170 (1965) [Soviet Phys. JETP 22, 122
(1966)].
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therefore, that, in gravitational collapse, the higher
moments of the gravitational field must be attenuated
with collapse.

Vishveshwara!® has shown that the solutions of the
time-independent perturbation equations for L>2
cannot be nonsingular at r=2m. He points out that
these singularities pose no problem: It is possible to
build wave packets which stay bounded away from

= —y for ingoing waves or %=+ for outgoing waves,
and hence no singularity appears. For example, one
way of producing a packet bounded in the manner
described is to hold a particle at constant distance 7,
and then release it at a certain time, let it fall for a
while (during this time it radiates), and then keep it
at constant distance 7 less than 7.. It has also been
pointed out? that because of the sinusoidal behavior
of the perturbations, energy pours out (say, for the
outgoing waves) forever toward 7= o at a uniform rate,
and thus in the Kruskal picture there must be an in-
finite amount of radiation in the region 0<u—v<em
for any €>0. In any case we will show that the singular
behavior of the perturbations is not unexpected. Traut-
man® has examined the propagation of a discontinuity
in the Riemann tensor for a Schwarzschild geometry.
The result, if expressed in an orthonormal tetrad basis
along the ¢, 7, 6, ¢ directions, is that

AR (y % () 8 () = AR () ) (o0 (8 (70) (ro—2m) / (r —2m) .

This is radiationlike, that is, O(1/7), for large 7, but is
singular at r=2m. Now compare the leading term of the
Riemann tensor for our asymptotic solutions with this
result. The first-order correction to the Riemann tensor
is

Rapys V= —5{hay.pst s, av—Npy,as—Has pr} -

If we keep only the leading terms in w [let us consider
the electric solution (I5)] and if we transform Ryyap
to the orthonormal tetrad components and use the
correspondence

{A} {1 2 3 4 5 6
e8] 123 31 12 o1 02 03}’

then we can write R (a) ) (y) 9 as the 6 X6 matrix:

1
[[Rag||~— 5 exp(eiwr™)

0 0 0 0 0 0
0 —o —7 0 €T —€o
0 — 7 o 0 —er —er

X (19)
0 0 00 0
0 er —er O T T
WO —e —er O T — 0J

27 K. Thorne (private communication).



2158

We recognize precisely the same 1/(r—2m) behavior
that occurred in the shock-front propagation, and we
also see that this tensor is type N in the Petrov-Pirani
classification? and corresponds to a gravitational wave
propagating in the (e) direction.

Denote the outgoing and ingoing wave solutions of
the homogeneous electric equation by Your and Vin,
where ¢ is the column vector

i
\dRpu@/d*)

Then let ¥ () = (Wous|¥in), Wwhere the notation means the
matrix whose columns are Yous and yin, respectively.
Then the required solution to the inhomogeneous
system is

Y= / V)T )s () dpnom(r)

)= (S(L)M>

and where Ynom(7) is a solution of the homogeneous
system chosen so that ¥(r) satisfies the ingoing wave
condition at 27 and the outgoing wave condition at .

Now denote
1(p)
w1 =(| (")) ,
2(p

)= <SLJZ(p)) ’

S being the source term given in Eq. (18). Then

where

where

vor={ [ oo oul0)+ | / o) v
" " o).

Thus to ensure outgoing waves for large » and ingoing
waves for 7 near 2m we choose

l!/hom=—{ / Cz(p)dp]'//in(7)

m

and then, up to terms of O(1/w), we have the result
(1) = AL (0, )out(r)+ A L0 (0,)¢i(r), (110)

where

AL<°u°><w,r>=—2mo<L+%>”2/

2m

r

exp{iw[ T'(p) —p*]}

X Z1(p) No+3m)~1(1—2m/p)~*dp,
28 F. Pirani, Phys. Rev. 105, 1089 (1957).
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0

AL (@) =2mo(LA3)1? | explia[T(p)+p*]}

X Ta(p) (\p+-3m)~dp,
and
culp) =1+ 2m/p)*]{1+(1/iwp) 1/ 2p
+ (\o+V2m 2p1 24 m) (p+3m/N) 1]},
Ca(p) =[1+ Q2m/p) 1217 — 1+ (1/iwp)[m/ 2p
+ (\o—V2Zm2p 2 +-m) (p+3m/N) 1]},
T(p)= —4m(p/2m)'12—4m(p/2m)*'*
~In[(o/2m)"2—1]+1n[ (o/2m)"/*+1].

These are, in the high-frequency limit, the amplitudes
for the outgoing and ingoing waves. We have

AL(out)(w) =lim AL("““)(w,r) (111)
and . i
AL(‘n)(w) = 111’2I1 AL(m) (“’7") . (112)

Equations (I7) and (I8) then give us the power radi-
ated in a unit frequency interval. In principle one can
calculate the field ¥(r) to any order in 1/w and thus
obtain integrals for the amplitudes A©" and A%,
These integrals can also be expanded in an asymptotic
expansion. Let us first consider A;©. We note that
the integral is not absolutely convergent, the integrand
going like 1/p times an oscillatory factor for p— 4
while going to a constant times an oscillatory factor for
p¥ — — o (thatis, p — 2m). This behavior is indicative
of a & function in w for w=0. Since our approximation is
valid for large w, we will ignore this contribution, and
this will be done in a natural manner in the procedure
to be discussed. Let us make the transformation x?=p/
(2m) followed by e+ 1=x and let k= 2mw. Then (I111)
becomes
AL (w) = —2mo(L+3)PI(k,N)

where

(k)= / £ Dg(y kN dy,

fy)=—3x*—a—2x—2y,
(3, \) = a2 (Na?-H-3) -1 1+ (1 /ika?)
X[Ea 24 A(2Ax24-3)~ 1 (2 w2425+ 1) ]
+01/k%)}.

Thus we have an integral which is in a suitable form for
asymptotic expansion by the saddle-point method. Now
f'(»)=0 implies e»o= —1, which implies yon= 2n+1)ir
for any integer 7. Thus the saddle points are at
(2n+1)iw, where # is an integer. We see that a singu-
larity of g(v,k,\) coincides with the saddle points. How-
ever, van der Waerden? has shown that we can still
use the saddle-point method. Using van der Waerden’s
method, we make the transformation w= —if(y)
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[assume w>0; for w<0, 4(w)=A*(—w)]. Then
—+1%0
1) = f ety (), k) (dy/ dw)d.

The saddle points in the y plane become branch points
in the w plane. These branch points are at wn
=2(2n+1)7 for » an integer. Now make branch cuts
along the real axis between the branch points, and de-
form the contour C'=(—1i%,i») into the contour C
by pushing it to the right as far as possible without
passing any branch points. The contour C comes in from
+ « below the positive real axis, goes around wo= 2,
and goes back out to + « above the positive real axis.
Clearly C is reached from C’ by going downhill on the
real part of e7**. This at most eliminates contributions
to the integral from the infinite parts of the contour
which, as we noted above, we expect to give a §-function
type of behavior near w=0. In an asymptotic expansion
of the integral the most important contribution comes
from the left-most branch point we= 2, the other points
giving exponentially smaller terms (that is, asymptotic
to zero compared with the contributions from wo=2m).
We obtain for the outgoing wave amplitude

AL(out)N _4m0(L+%)1/26—41rmw{%\/7651ril81‘|(%) (Mw)—3/4
() ). (113)

The dominant feature of this amplitude is that it
decreases exponentially with increasing frequency.

Now let us turn to the asymptotic evaluation of
A1 (w) given in Eq. (I12). Here the integrand is
well behaved near 2m (that is, as p*— — ) but goes
as 1/p for p— with an oscillatory factor whose ex-
ponent is

T(p)+p*= —4m(p/2m)!1*—4m(p/2m)**+p
+4m In[ 14 (o/2m) V1% ].

The method of evaluation is again an example of the
method of steepest descents, but in this case it is the
end point of the contour which is most important. To
evaluate the integral, we use a theorem of Copson? on
asymptotic expansions which is just the analog, for
integrals along the imaginary axis, of the result that
the asymptotic behavior of the Laplace transform of a
function depends on the behavior of the function near
the origin. Let us go back to (I12) and make the sub-
stitution 2= p/(2m); then

AL (w) =2mo(L+%)1/2/ eH @ g, k,\)dx
1
where

flx)= —2x—2x%+ 2242 In(1+2) ,
g(x) = 4?22+ 3) " (14-2) " — 14 (1/ikx?)
X (2o 24 N2\ 4-3) "1 (22 — 25+ 1) ]
+O0(1/k%)} .
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We evaluate the terms to O(1/k%) and obtain
AL () = —2mo(LA-3) 2ie2miBo( 20+ 3)~ ()1
X[A+3i(\+5/4) (mw)'4+0(1/w?) ], (114)

where 8=5/3—2 In2.

APPENDIX J: SOME QUALITATIVE
CONSIDERATIONS

Although the low-frequency part of the spectrum has
not been adequately described in the preceding calcu-
lations, we will give here some estimates of a very
qualitative nature which have been suggested in a con-
versation with John Wheeler.

We have seen [Eq. (I13)] that the amplitude
A (w) for outgoing waves at o goes like 2mol/2
X (mw)~3l4¢~4mm_ From Eq. (I8), the power per unit
frequency is then

S1(w) ~0.01kLA| A 1,(w) | 2~ k0.04mg2L5
X (Wv)—3l2e—81rmw ,

(Jv

where % is a numerical factor of order 1. We have also
seen that the asymptotic approximation is good if
8mw> L2 Thus, for a fixed frequency w, we expect that
the power as a function of the degree L first goes up as
L3, reaches a peak, and starts falling off rapidly with
increasing L at the ‘“barrier” 8mw~Lg2 Thus the
power per unit w, summed over all L’s, is approximately

S(w)'\ff BSL(w)dL

or
S(w) ~dm*(mw)?I2e8mmek,

J2)

As a function of w, this looks like a power law for small
w, reaches a peak at w=3/16mm. and decreases exponen-
tially thereafter. Further, we may integrate this power
spectrum over w and obtain an estimate for the total
energy radiated. Thus we obtain

E= / S(w)deo~A(8T)ST(3) (ma?/m)k
’ ~£0.0016mq?/m. (J3)

Compare this with a calculation using the linearized
theory of Landau and Lifshitz?; they give

dE 1 3 dsD»ij 2
S
dt  4545=1\ 43

D= f f f () Bavaxs— 8:r2) dPs.

For the case of radial motion starting at = « with zerq
velocity, we have

where

1 — 2 (2gmy) 112
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for r>2m. Thus

dE/dt= —(1/30)(mo/m)2(2m/r)5= —(1/30)
X (1mo/m)?(2m/3t)1013,

Integrating this expression, we obtain the energy radi-
ated in falling from « to 7:

E(r)= (1/70) (mo/m)2(2m/3)10/37/3
= (1/105) (me%/m) (2m/r)7'2. (J4)

Thus the energy radiated in falling to ten Schwarzschild
radii (it is reasonable to expect that the linearized ap-
proximation is fairly good up to this ponit) is

AE(20m)=2(1/330000) (mq2/m) ,

which is less than 0.39, of the total radiation given by
(J3). If we use (J4) to calculate the radiation up to four
Schwarzschild radii, we obtain

AE(8m)=2(1/14000) (mq2/m) ,

which is less than 6% of the total given by (J3). Thus
all indications are that a substaintal portion of the
radiation comes from the part of the particle’s trajectory
which is between one and four Schwarzschild radii.

APPENDIX K: TIME-INDEPENDENT
PERTURBATIONS FOR L>2

The case where the perturbation is assumed time
independent, 9%/8t=0, has been discussed by Regge
and Wheeler® and by Vishveshwara.!® We present here
the solutions of the electric time-independent equations
which can be given in terms of hypergeometric functions
(for the homogeneous equations).

Setting the terms in (C7) which contain derivatives
with respect to time equal to zero, we obtain the follow-
ing equations:

H,=0, (K1)
d 2m\~1
——(H——K)—{—Zmr—?(l———) H=0, (K2)
dr r
m 2m\—1dK dH
-2y -2
7 r dr dr

—3(L—=1)(L+2)(r—2m)"(K—H)=0. (K3)
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From these equations we obtain

d?H d[2 m 2m\ 1
e -2
dr?  drlr 7 r

—(L—=1)(L+2)r ' (r—2m)"H=0, (K4)

or, letting M =r(r—2m)H and x=r/2m, we have

am

aM
(1—a)— +2x—1)— +(L—1)(L+2)M =0. (K5)
dx? dx

This is a form of the hypergoemetric equation, and a
particular solution is?

M(x)+2?F(L+1, —L; 3; x). (X6)

This is a polynomial in 7 of degree L+2 and goes to
as 7 —oo, The other solution of the equation is

M=r"THF(L+1, L—1; 20+2; 2m/7).  (K7)

This solution, however, goes as (r—2m)~Z as r — 2m.
Vishveshwara interprets these results as showing that
there cannot exist any time-independent perturbations
(for L>2) on the Schwarzschild metric. Similar results
hold for the electric-parity equations. We give the
expressions for the hypergeometric functions in the
above solutions:

F(—L,L+1; 3; %)
L T(LAn)T(L+n+1)T(3) z»

= —. (K8)

=0 T(LI(LF+1)T(n+3) n!

The polynomial (K8) is the Jacobi polynomial
GUADEZA)TPLeP(1-22).  (K9)

Also,?0

(2L+1)!
F(LH1, L—1;2L042;1/3)=—

(LY)LA+-2)1(L—2)!
A+ rin(1—)
l: 12 ]}t—zl/z. (K10

* Handbook of Mathematical Functions, edited by M. Abramo-
witz and 1. Stegun (Dover, New York, 1965), Chap. 15, p. 562.

% Higher Trancendental Functions, edited by A. Erdélyi et al.
(McGraw-Hill, New York, 1953), Vol. I, Chap. 2.
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