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ABSTRACT
Using time-dependent linear perturbation theory, we evaluate the dynamical friction force on a

massive perturber traveling at velocity V through a uniform gaseous medium of density andM
p

o0sound speed This drag force acts in the direction and arises from the gravitational attractionc
s
. [VŒ

between the perturber and its wake in the ambient medium. For supersonic motion the(M4 V /c
s
[ 1),

enhanced-density wake is conÐned to the Mach cone trailing the perturber ; for subsonic motion
(M\ 1), the wake is conÐned to a sphere of radius centered a distance V t behind the perturber.c

s
t

Inside the wake, surfaces of constant density are hyperboloids or oblate spheroids for supersonic or sub-
sonic perturbers, respectively, with the density maximal nearest the perturber. The dynamical drag force
has the form We evaluate I analytically ; its limits are I]M3/3 for M> 1,FDF\ [I] 4n(GM

p
)2o0/V 2.

and for M? 1. We compare our results to the Chandrasekhar formula for dynamicalI] ln (V t/rmin)friction in a collisionless medium, noting that the gaseous drag is generally more efficient when M[ 1,
but is less efficient when M\ 1. To allow simple estimates of orbit evolution in a gaseous protogalaxy
or protoÈstar cluster, we use our formulae to evaluate the decay times of a (supersonic) perturber on a
near-circular orbit in an isothermal o P r~2 halo, and of a (subsonic) perturber on a near-circular orbit
in a constant-density core. We also mention the relevance of our calculations to protoplanet migration
in a circumstellar nebula.
Subject headings : hydrodynamics È ISM: general È shock waves

1. INTRODUCTION

The process of dynamical friction (DF), deÐned as
momentum loss by a massive moving object due to its
gravitational interaction with its own gravitationally
induced wake, arises in many astronomical systems. Exam-
ples of systems in which such e†ects are known to be impor-
tant include stars in clusters or galaxies, galaxies in galaxy
clusters, and binary star cores in the common envelope
phase of evolution. In the Ðrst two examples, the surround-
ing background medium in general consists of a com-
bination of collisionless matter (stars, galaxies, dark matter)
and gas, while in the third example the surrounding
medium is entirely gaseous. In all these cases, as a corollary
to the DF process, the background medium is heated at an
equal and opposite rate to the energy lost by the perturber.

The analytic theory for the gravitational drag in colli-
sionless systems was developed by Chandrasekhar (1943),
and over the decades since, it has enjoyed widespread
theoretical application, extensive veriÐcation by numer-
ical experiments, and well-documented embodiment in
observed astronomical systems. The variety of important
consequences of gravitational drag in collisionless astrono-
mical systems includes mass segregation in star clusters,
sinking satellites in dark matter galaxy halos, orbital decay
of binary supermassive black holes after galaxy mergers,
etc. ; see, e.g., Binney & Tremaine (1987).

Less well developed is the corresponding theory of DF in
a gaseous (i.e., collisional) medium.1 For supersonic motion,
analytic linear theory estimates of the gravitational drag

1 Instead, most studies of the gravitational interaction between a
moving massive body and the surrounding gaseous medium have focused
on the problem of accretion, following on the analysis of Hoyle & Lyttle-
ton (1939), Bondi & Hoyle (1944), and the early numerical work of Hunt
(1971).

under assumption of a steady state were obtained by Doku-
chaev (1964), Ruderman & Spiegel (1971), and Rephaeli &
Salpeter (1980). The resulting estimates for the drag force in
the steady supersonic case take the form

FSS\
4n(GM

p
)2o0

V 2 ln
Armax
rmin

B
, (1)

where and correspond, respectively, to the e†ectivermax rminlinear sizes of the surrounding medium and the perturbing
object, similar to the drag formula obtained for a collision-
less medium. Although there is some ambiguity in the deÐ-
nition of and the estimate (eq. [1]) appears consis-rmax rmin,tent with calculations of the gravitational drag that are
obtained as a by-product of numerical hydrodynamic inves-
tigations focused on the Bondi-Hoyle-Lyttleton accretion
problem; see, e.g., Shima et al. (1985), Shankar, Kley, &
Burkert (1993), and Ru†ert and collaborators (see Ru†ert
1996, and references therein).

For steady state, subsonic motion of the perturber, the
front-back symmetry of the perturbed density distribution
about the perturber led Rephaeli & Salpeter (1980) to argue
that gravitational drag is absent in the subsonic, inviscid
case. Considering that the drag force for the supersonic case
increases proportionally to V ~2 with decreasing perturber
speed V , it seems counterintuitive for the dynamical drag to
become exactly zero when V becomes inÐnitesimally
smaller than the sound speed. In this paper, we reconsider
the linear-theory drag as a time-dependent rather than a
steady state problem, and we arrive instead at a nonzero
value for the DF for the subsonic case while still verifying
that the drag force is maximized for perturbers with V B c

s
.

In ° 2 we derive results for the perturbed density distribu-
tions created by, and dynamical drag on, a massive per-
turber on a constant-velocity trajectory through a uniform,
inÐnite medium. In ° 3 we relate our results to the classical
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(collisionless) DF formula, and we brieÑy consider applica-
tions to a few astronomical systems.

2. ANALYSIS

2.1. W ave Equation and Formal Solution using
GreenÏs Functions

We begin with the linearized equations for the perturbed
density t)] and velocity t) of ano 4o0[1] a(x, ¿4 c

s
b(x,

adiabatic gaseous medium that is subject to an external
gravitational potential t) :'ext(x,

1
c
s

La
Lt

] $ É b \ 0 , (2)

and

1
c
s

Lb
Lt

] +a\ [ 1
c
s
2 +'ext , (3)

where is the unperturbed density, is theo0 c
s
4 (LP0/Lo0)1@2sound speed, and the perturbation amplitudes a, o b o> 1. By

substituting equation (2) in the divergence of equation (3),
we have

+2a [ 1
c
s
2

L2a
Lt2 \ [ 1

c
s
2 +2'ext 4 [4nf (x, t) , (4)

where t)]/G is the mass density of theoext(x, t)4 [c
s
2 f (x,

perturber.
In the absence of any disturbance prior to the action of

the solution to equation (4) is found using the retarded'ext,GreenÏs function G` for the three-dimensional wave equa-
tion (° 6.6 of Jackson 1975) as

a(x, t)\
P P

d3x@ dt@
d[t@[ (t[ ox[x@ o/c

s
)] f (¿@, t@)

ox[x@ o
. (5)

2.2. Perturbed Density Distributions for Constant-V elocity
Perturbers

We now specialize to the case of a point mass on aM
pstraight-line trajectory with velocity passing at timeV zü ,

t \ 0 through x \ 0. If H(t) describes the time over which
the perturber is active, then f (x, t)\ (GM

p
/c

s
2)d(z [

V t)d(x)d(y)H(t). We deÐne s 4 z[ V t as the distance along
the line of motion relative to the perturber, w4 z@[ z, and

as the Mach number ; w[ 0(\ 0) corresponds toM4 V /c
sthe perturbation from a backward (forward) propagating

wave. Then,

a(x, t)\GM
p

c
s
2
P
~=

=
dw

]
d[w] s ]M(R2] w2)1@2]H((w] z)/V )

(R2] w2)1@2 . (6)

Here R\ (x2] y2)1@2 is the cylindrical radius.
To evaluate the integral (eq. [6]), one expands the argu-

ment of the d-function about its possible roots :

w
B

\ s ^M[s2] R2(1[M2)]1@2
M2 [ 1

; (7)

for M\ 1, only is a valid root, whereas for M[ 1 bothw
`roots are valid as long as s \ 0 and o s o /R[ (M2[ 1)1@2,

and neither otherwise. Using d((w [ w
B

)A)\ d(w [
for and substitutingw

B
)/ oA o A\ 1 ]Mw

B
/(R2] w

B
2 )1@2

the solution given by equation (7), the result is

a \ GM
p
/c

s
2

[s2] R2(1[M2)]1@2 ;
roots w0

H
A(z] w0)

V
B

. (8)

For a purely steady solution over all time, H is unity for
all arguments, with the result that

a
S
\ GM

p
/c

s
2

[s2] R2(1[M2)]1@2

]
q

r

s

t

t

1 if M\ 1,
2 if M[ 1 and s/R\ [(M2[ 1)1@2 ,
0 otherwise.

(9)

This conÐrms the analytic linear theory results of previous
authors for completely steady Ñow created by a point mass
on a straight-line, constant-speed trajectory :

1. A subsonic perturber generates a density distribution
centered on the perturber at s \ 0, with contours of con-
stant density corresponding to similar ellipses in the s-R
plane with eccentricity e\M, and the short axis along the
line of motion of the perturber (i.e., the three-dimensional
density distribution consists of concentric similar oblate
spheroids). The density contrast is unity for ano1/o04 a
elliptical section with semiminor axis the lineariza-GM

p
/c

s
2 ;

tion is sensible only outside of this elliptical section. This
density distribution is a generalization of the far-Ðeld limit
of the hydrostatic envelope thato/o0 \ exp[GM

p
/(c

s
2 r)]

surrounds a stationary perturber.2
2. A supersonic perturber generates a density wake only

within the rear Mach cone of half-opening angle sin h \ 1/
M deÐned by s/R\ [(M2[ 1)1@2 ; the surfaces of constant
density within the wake correspond to hyperbolae in the
s-R plane, with eccentricity e\M.

Now consider the case where the perturber is ““ turned
on ÏÏ at t \ 0, so that H is a Heaviside function. For a
subsonic perturber M\ 1, the only root is (eq. [7]).w

`Algebraic calculation shows that for M\ 1, z] w
`

[ 0
when Thus the region of perturbation isR2] z2\ (c

s
t)2.

the sphere centered on the original position of the per-
turber, within which a sound wave has traveled in time t.
Within this region of perturbation, the density distribution
has reached the value given by the steady solution (eq. [9]) ;
outside the causal region for sound waves, the density
remains unperturbed.

For a supersonic perturber, any density disturbance must
be conÐned within the rear Mach cone s/R\
[(M2[ 1)1@2. Algebraic calculation shows that within the
sphere andR2] z2\ (c

s
t)2, z] w

`
[ 0 z] w~\ 0 ;

hence only contributes in equation (8). Within the Machw
`cone and to the right [R\ o z[Mc

s
t o /(M2[ 1)1@2, z[

of this sphere both andc
s
t/M] [R2] z2[ (c

s
t)2], z ] w

`

2 We note that for subsonic Ñow, the far-Ðeld density enhancement from
eq. (9) is within 10% of HuntÏs (1971) M\ 0.6 numerical solution outside
of Also, the rms anisotropy of 7% from the far-Ðeld steadyr \ GM

p
/c

s
2.

solution (eq. [9]) with M\ 0.6 is comparable to the 5% mean anisotropy
cited for HuntÏs (1971) near-Ðeld numerical solution.
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are real and positive, and hence contribute in equa-z] w~tion (8).
The results for the perturbed density for this Ðnite-time

perturbation are summarized as follows :3

a(t)\ GM
p
/c

s
2

[s2] R2(1[M2)]1@2

]

q

r

s

t

t

1 if R2] z2\ (c
s
t)2,

2 if M[ 1, R2] z2[ (c
s
t)2,

s/R\ [(M2[ 1)1@2, and z [ c
s
t/M,

0 otherwise.

(10)

The region of perturbed density has the shape of a loaded
ice cream cone dragged by its point by the perturber M

p
;

3 These results appear to have been obtained previously by Just &
Kegel (1990) via an alternative mathematical formalism; the two calcu-
lations serve as independent checks of the formulae.

only contributes in the ice cream region (region 1), whilew
`both contribute in the cone region (region 2). The conew
Bshrinks in size as M decreases for M[ 1, and is nonexistent

for M\ 1. Figures 1 and 2 show examples of the perturbed
density distributions for subsonic and supersonic per-
turbers, respectively. Because of the linear-theory assump-
tions made at the outset, we note that equation (10) is
properly valid only for a > 1 ; i.e., s2] R2(1 [M2)?
(GM

p
/c

s
2)2.

2.3. Gravitational Drag Formulae
To compute the gravitational drag on the perturber, we

need to evaluate the gravitational force between the per-
turber and its wake,

FDF\ 2nGM
p
o0
P P

ds dRR
a(t)s

(s2] R2)3@2 . (11)

To perform the volume integral, it is convenient to trans-
form to a spherical polar coordinate system (r, h) centered
on the massive perturber, with R4 r sin h and s 4 r cos h.

FIG. 1.ÈDensity perturbation proÐles for subsonic perturbers with M\ 0.1, 0.5, 0.75, and 0.9 (as indicated at upper right). Contours show isosurfaces of
in intervals of 0.1. Density increases toward the perturber ; the heavy contour indicates the surface with The pluslog(a8 )\ log(a) [ log[GM

p
/(tc

s
3)] a8 \ 1.

symbol indicates the initial position of the perturber.
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FIG. 2.ÈDensity perturbation proÐles for supersonic perturbers with M\ 1.01, 1.5, 2, and 10 (as indicated at upper right). Contours show isosurfaces of
in intervals of 0.1. Density increases toward the perturber at the apex of the Mach cone. The heavy contour indicates thelog(a8 )\ log(a) [ log[GM

p
/(tc

s
3)]

surface with There is a density jump with * log a \ log 2 \ 0.301 at the surface The plus symbol indicates the initial position of thea8 \ 1. R2] z2\ (c
s
t)2.

perturber.

DeÐning k \ cos h, we havex 4 r/c
s
t,

FDF\ [FI, F4
4n(GM

p
)2o0

V 2 , (12)

where

I\ [1
2
P dx

x
P

dk
kM2S

H
(1[M2] k2M2)1@2 . (13)

Here represents the sum in equation (8).S
HFor the purely steady state density perturbation given in

equation (9), in the subsonic case everywhere inS
H

\ 1
space, and front-back antisymmetry in the angle integral
(due to the symmetric spheroidal density distribution)
argues that there is zero net force on the perturber. For the
steady state, supersonic case, for all k between [1S

H
\ 2

and (the boundary of the Machk
M

4[(M2 [ 1)1@2/M
cone), so that This is consistentI\ / dx/x 4 ln (rmax/rmin).

with previous results and yields an identical formula to that
representing the DF force in a collisionless medium when V
is much larger than the background particle velocity disper-
sion (see, e.g., eq. [7-18] of Binney & Tremaine 1987).

For the Ðnite-time case based on the perturbed density
distribution in equation (10), there is nonzero contribution
to the integral I only from a Ðnite region in space : region 1,
in which and region 2, in which Region 2 isS

H
\ 1, S

H
\ 2.

nonexistent for subsonic perturbers. For the subsonic case,
the perturber is surrounded by a concentric distribution of
similar ellipsoids and is displaced by V t forward from the
center of the sonic sphere (radius surrounding its initialc

s
t)

position. The nearby, complete ellipsoids exert no net force
on the perturber, but the larger, cut-o† ones with semiminor
axes between and lag behind the per-(c

s
[ V )t (c

s
] V )t

turber (see Fig. 1) and exert a gravitational drag. Thus the
radial integral in equation (13) has upper/lower limits
x \ 1 ^M, and the angular integral has limits k \ [1, k

C
,
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FIG. 3.ÈSolid lines : DF force in a gaseous medium as a function of
Mach number Curves correspond to 6, 8, . . . ,M\ V /c

s
. ln(c

s
t/rmin)\ 4,

16. Dashed lines : Corresponding DF force in a collisionless medium with
particle velocity dispersion andp \ c

s
rmax 4V t \Mc

s
t.

with The integrals are straight-k
C
4 (1 [M2[ x2)/(2xM).

forward ; the result is

Isubsonic \ 1
2

ln
A1 ]M

1 [M

B
[M . (14)

The implicit assumptions in deriving this equation are that
exceeds the e†ective size of the perturber and(c

s
[ V )t (rmin),that is smaller than the e†ective size of the sur-(c

s
] V )t

rounding gaseous medium Under these conditions,(rmax).the dynamical drag is time independent and nonzero. The
steady state result that zero net force results from the front-
back symmetry of the density distribution is misleading ;
because of the long-range nature of the Coulomb potential,
the total drag force at any time depends on the unchanging
ratio between the(c

s
t ] vt)/(c

s
t [ vt)\ (1]M)/(1 [M)

semiminor axes of the furthest and closest perturbing partial
spheroids. The gravitational drag is always dominated by
the far Ðeld, and at any time the perturber is located ahead
of center of the sonic sphere. Physically, we can associate
the energy loss arising from the drag force with the rate at
which the expanding sound wave does work on the back-
ground medium. In the limit of a very slow perturber
M> 1, so that the drag force is pro-Isubsonic]M3/3,
portional to the perturberÏs speed V .

For the supersonic case, the whole of the perturbed
density distribution lags the perturber. The angular integra-
tion limits are k \ [1, for to (M2[ 1)1@2,k

M
x \ rmin/(cs t)and k \ [1, for x \ (M2[ 1)1@2 to M] 1 ; takes onk

C
S
Hvalues 2 and 1 in regions 2 and 1. The result of the integra-

tion is

Isupersonic \ 1
2

ln
AM] 1
M[ 1

B
] ln

AM[ 1
rmin/cs t

B

\1
2

ln
A
1 [ 1

M2
B

] ln
A V t
rmin

B
. (15)

We have assumed that and that the e†ec-V t[ c
s
t [ rmin,tive size of the background medium exceeds InV t] c

s
t.

the limit M? 1, we have withIsupersonic ] ln (V t/rmin) ;this recovers the steady state result.4V t ] rmax,In Figure 3, we plot the DF force as a function of the
Mach number for several values of c

s
t/rmin.

3. DISCUSSION

The main formal result of this paper is the evaluation, in
linear perturbation theory, of the gravitational drag force

on a massive perturber moving on a straight-lineFDF M
ptrajectory through an inÐnite, homogeneous, gaseous

medium of density and sound speed Together with theo0 c
s
.

deÐnition in equation (12), equations (14) and (15) give the
DF drag forces on subsonic and supersonic perturbers,
respectively. Figure 3 presents the same results graphically,
showing how the drag force varies with the Mach number
M of the perturber, and the time over which the perturber
has been moving with Ðxed speed V \ c

s
M.

For comparison, we have also included in Figure 3 the
result for the gravitational drag on a particle of mass M

pmoving through a collisionless medium with the same
density as the gaseous medium we have considered, ando0with a Maxwellian distribution of particle velocities with

From equation (7-18) of Binney & Tremaine (1987),p \ c
s
.

the collisionless DF drag force is given by equation (12)
with

Icollisionless\ ln
Armax
rmin

BC
erf (X) [ 2X

Jn
e~X2D , (16)

where From Figure 3, it is clear that (1) forX 4 V /(pJ2).
M? 1, the collisionless and gaseous DF forces are identical
(as has been previously noted) ; (2) for M\ 1, the drag force
is generally larger in a collisionless medium than in a
gaseous medium, because in the latter case pressure forces
create a symmetric distribution in the background medium
in the vicinity of the perturber ; (3) the functional form of the
gaseous DF drag is much more sharply peaked near M\ 1
than it is for the collisionless DF dragÈperturbers moving
at speeds near Mach 1 resonantly interact with the pressure
waves that they launch in the background medium; and (4)
for a given value of the peak value ofln(") 4 ln(rmax/rmin),the gaseous DF force is much larger than the corresponding
peak value of the collisionless DF force ; at MB 1, there is a
factor of 4 di†erence in the force between the two cases. We
explore some potential consequences of these results in a
variety of astronomical systems below.

As a consequence of the stronger gaseous DF force than
collisionless DF drag force for supersonic motion, massive
objects may make their way more rapidly to the center of a
star cluster or galaxy if they arrive at the outer edge before,
rather than after, the gas is turned into stars. For a particu-
lar example, we consider the decay of a massive perturberÏs
near-circular orbit in a spherical density distribution with a
singular isothermal sphere proÐle soo(r) \ c

s
2/(2nGr2),

(here denotes the sound speed or theM(r) \ 2c
s
2 r/G c

svelocity dispersion for a gaseous or stellar distribution,
respectively). For this density proÐle, the circular speed is
constant, By equating the rate of decrease ofV \ c

s
J2.

angular momentum to the torqued(M
p
V r)/dt qDF \ rFDF,

4 As pointed out by the referee S. Tremaine, the notion that the
maximum impact parameter increases as V t was earlier introduced
by Ostriker & Davidsen (1968) in a time-dependent analysis of stellar
relaxation.
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one Ðnds that the time for the perturberÏs orbit to decay
from to is given approximately byrinit r > rinit

tDF(rinit)
torb(rinit)

B
M(rinit)

4nM
p
ln(r/rmin)

(17)

for gaseous DF. This time is a factor of 0.428 shorter than
the corresponding decay time under stellar DF (see, e.g.,
eq. [7È25] of Binney & Tremaine 1987). For galactic appli-
cations, the implication is that condensed objects that form
early (e.g., globular clusters) could spiral into the galactic
center from a factor of 1.5 farther in a galaxy than would be
predicted by stellar DF theory (Tremaine, Ostriker, &
Spitzer 1975), within the epoch over which the baryonic
distribution remains gaseous. For star cluster applications,
the shorter DF time for gaseous distributions may help
explain why young, embedded stellar clusters like the Orion
nebular cluster (Hillenbrand 1997 ; Hillenbrand & Hart-
mann 1998) appear signiÐcantly more relaxed than
expected from stellar DF alone ; e.g., for the Orion nebular
cluster, n-body simulations show that stellar DF would
require a time a factor of 3È4 longer than the best estimate
of the cluster age to establish the observed mass segregation
(Marshall, Ostriker, & Teuben 1999).

As mentioned above (see Fig. 3), the gaseous DF force is
strongly depressed for subsonic perturbers. For modeling
the global evolution of combined star-gas systems in which
the particle velocity dispersion and gas sound speed are
comparable, the strong cuto† of for subsonic per-FDFturbers implies that setting for (see, e.g.,FDF\ 0 V \ c

sSaiyadpour, Deiss, & Kegel 1997) should yield realistic
results. However, in other circumstances it is interesting to
inquire how the small, but nonzero, DF drag on subsonic
perturbers (computed in this paper) can a†ect their orbit
evolution.

As a model problem, we consider the decay of a sub-
sonically moving mass on a near-circular orbit embed-M

pded within a constant-density gaseous sphere of radius r0.
For constant background density, the angular orbit fre-
quency and orbital period are)\ (4nGo0/3)1@2 torb\ 2n/)
independent of the distance r from the center. If this
constant-density region represents the core of a nonsingular
isothermal sphere with core radius and sound speedr0 c

s
,

then thus the Mach number for a circularr0)/c
s
\ 31@2 ;

orbit at r is Just as above for decay in aM\ 31@2r/r0.
power-law density proÐle, we can compute the time for the
perturberÏs orbit to decay from to asrinit\ r0/31@2 r

f

t(r
f
)

torb
\ Mcore

n35@2M
p

P
Mf/S3rf@r0

1 MdM
Isubsonic(M)

; (18)

the numerical coefficient equals 0.0204.
Figure 4a shows how the decay of the orbital radius

depends on time and on the mass of the perturber relative to
the whole core. In Figure 4b, we verify that the assumption
of a near-circular orbit is valid provided M

p
/Mcore > 1,

since

v
r

vr
\ 35@2M

p
2Mcore

Isubsonic(M)
M3 , (19)

which has the limit for M> 1. In arriving at2.598M
p
/Mcorethe results shown in Figure 4, we have used equation (14).

Its validity depends, however, on the size of the uniform-
density core exceeding that of the perturbed-density region.

FIG. 4.È(a) Decay in time of radial distance r of massive perturber M
pon near-circular orbit about the center of uniform-density core of mass

radius and sound speed (b) Radial-to-Mcore, r0, c
s
\ [GMcore/(3r0)]1@2.azimuthal velocity ratio for the same situation, as in (a).

This assumption must fail, and the DF drag force conse-
quently decrease, when the forward wave deÐning the
disturbed-density region (e.g., Fig. 1) reaches a distance Dr0ahead of the perturber.5 The position of the perturberr(tfw)at this time is plotted as a function of in Figure 5.M

p
/McoreBased on this Ðgure, only perturbers of mass M

p
[ 0.2Mcoreare predicted to reach within 1/10 of a core radius before the

DF drag decreases. For lower mass perturbers, this implies
that the decay of orbits to very small radii may stall if the
DF drag is sharply reduced after the time This resulttfw.
may have relevance for models of QSO evolution (Silk &
Rees 1998) in which primordial black holes are formed
away from the centers of galaxies to later be driven there by
DF during mergers. If, as assumed in this scenario, these
events occur before the advent of star formation, then the
relevant DF drag is the gaseous DF examined in this paper.

FIG. 5.ÈFor the same situation as in Fig. 4, perturberÏs radial distance
from the center at time when the forward wave disturbance has propagated
ahead of the perturber by (see text).r0

5 Because the perturber follows a circular rather than straight-line orbit,
the DF drag at late times should still be nonzero : since the direction of VŒ
changes by n/2 four times per orbit, the forward-wave propagation e†ec-
tively ““ restarts ÏÏ as well. When over each quarter-orbit each newr > r0,expansion wave propagates to just over much of the quarter-orbit anDr0 ;
unbalanced trailing density enhancement will remain within the core. Thus
we expect that the DF drag will still be some fraction of the value found
using eq. (14), although a more reÐned calculation is needed to predict the
fraction quantitatively.
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If the DF drag becomes inefficient when the orbit reaches
the protogalaxy core and becomes subsonic, then these
massive black holes may have more time to grow by accre-
tion before they Ðnally sink to the centers of their host
galaxies.

Finally, we comment on the applicability of our results to
the interaction of protoplanets with a gaseous circumstellar
nebula in which they may grow. Protoplanets orbit faster
than the surrounding gaseous nebula, with the Mach
number of the drift speed (whereM4 vrel/cs B c

s
/()K r)> 1

is the local Kepler angular rotation frequency and r is)Kthe protoplanetÏs semimajor axis). Drag forces occur as a
result of this relative motion, which leads to inward radial
migration of protoplanets as they lose angular momentum
to the surrounding nebula (see, e.g., Ward 1997 and refer-
ences therein). Using parameters based on solid bodies
in the protosolar nebula, it can be shown that the nominal
DF drag from equations (12) and (14), FDF B

exceeds the(4n/3)(GM
p
)2o0/(cs )K r)B (2n/3)(GM

p
)2&/(c

s
2 r),

large Reynolds number aerodynamic drag Faer B(° 45 of Landau & Lifshitz 1987) for proto-(1/4)vrel2 nR
p
2 o0planets of radius greater than a few hundred km.R

pIt is sometimes argued that gravitationally enhanced
drag on protoplanets (see, e.g., Takeda et al. 1985 ; Ohtsuki,
Nakagawa, & Nakazawa 1988, but note the di†erent

scaling from our results) may enhance migration rates over
those predicted to arise from di†erential resonant torques
(Goldreich & Tremaine 1980) between the protoplanet and
the surrounding nebula. In fact, provided that the di†erence
of gas orbits from Kepler orbits is included so that the
perturber does not corotate with the nebular gas at the
same radial distance, then the DF drag is automatically
incorporated in the net resonant torque. Indeed, calcu-
lations show that the net resonant torque from a thin disk
(see, e.g., Korycansky & Pollack 1993 ; Ward 1997), taking
this velocity di†erence into account, is of the same magni-
tude (and scaling) as the DF drag estimated above. Thus,
while the gaseous DF drag may have implications for the
late stages of planet formation, its e†ects are naturally
incorporated within a full resonant formalism. Although
such a calculation has not yet been performed in three
dimensions, it is reassuring that our simple estimate of the
dragÈwhich neglects gradients of velocity, density, and
temperature in the diskÈand the estimates from two-
dimensional resonant torque di†erencesÈwhich neglect the
disk thicknessÈnevertheless yield comparable answers.

The author is grateful to the referee, Scott Tremaine, for
helpful comments on the manuscript.
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