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Fig. 1. Polarization and demagnetizing field in ellipsoid.

where ¢ is the charge enclosed in e.s.u.  This proof is
inapplicable to magnetism because the equivalent formula
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Page and Adams* deduce that the field outside a long
thin magnet with approximately point poles is inversely
proportional to ., but from the nature of the approxi-
mations it is unlikely that this result holds for other
shapes of magnet.

An illuminating example is provided by an ellipsoid
with uniform polarization J in the X direction, as shown
in Fig. 1. There is then a uniform demagnetizing field
H g inside the ellipsoid and using the Kennelly eonvention

B=J—pHq (3)

The field H at any external point and the demagnetizing
field Hy inside the cllipsoid can be caleulated by inte-
grating contributions from dipoles in small elements of
volume throughout the ollipsoid, although sometimes the
mathematics is simplified by using an equivalent distri-
bution of poles on elements of surface of the ellipsoid.
Whether the field is being calculated inside or outside the
ellipsoid, the correct result is given by the free space
formula independently of the relative permeability of the
ellipsoid.

Now the Kennelly formulation requires that the field
due to a point pole or dipole is inversely proportional to
ir, whon the ellipsoid is immersed in a medium. As &
constant, 1/u, can be taken outside the integral and
therefore applics to the whole ellipsoid. Thus at any
point outside the ellipsoid H is reduced by 1l/ur and
B=pourH is unchanged. In particular this is true for an
axial point @ and an equatorial point b. Now at an
equatorial point b, H is tangential to the surface of the
ellipsoid and is therefore continuous across the boundary.
Sh Hg is also reduced by the factor 1/u,. Inside the
ellinsoid Hy is uniform, so Hg is also reduced by the factor
1/ur ab the axial point @ just inside the ellipsoid. From
equation (8), therefore, if ./ is unchanged, as is certainly
possible in a hard magnetic material, B is increased by
Ha(l—1/u,). Because $ is normal to the surface of the
ellipsoid at o and is continuous across the boundary, B
is also increased outside the ellipsoid at a. Hence using
the Kennelly formulation and the continuity relations, two
contradictory results have been deduced. Outside the
ellipsoid at an axial point a: (i) B is unchanged by a
medium; (i) B is increased by a medium. A similar reduc-
tion ad absurdum can be applied to the Sommerfcld
convention.

The conclusion seems to be that we should not expect
to find that the B and H produced by a magnet in a
medinum are simple functions of w,. They are moro prob-
ably complicatod functions of y, and geometrical factors
depending on the shape of the magnet.

When a magnet is placed in a medium new dipoles arc
induced in the medium and those inside the magnet may
or may not be altered. In general B and H can be cal-
culated by taking account of all the macroscopic currents
and magnetic dipoles that are near enough to be effective,
using only the free space formulae.

This process would often be complicated, but the use of
a formula involving ur or 1/u, only as a simple coefficient
is justified only when it leads to the same result. For the
purpose of caleulating 5, H or magnotic forees (although
not. of course, for some phenomena such as gyromagnet-
ism), it does not matter whether magnetic dipoles are
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spinning clectrons or orbiting electrons. It is entirely
a matter of mathematical convenience whether we treat
them as dipoles or small current loops.

We may not, however, replace a magnet by a single
solenoid, when we are considering conditions inside the
magnet. These depend on the magnet consisting of many
interacting dipoles or current loops. This interaction is
lost if we postulate a single solenoid to represent the
magnet.

In conclusion, an explanation of the physical difference
between B and H in a magnetic material may be of
interest. The flux density B is measured by a coil encom-
passing the material and in general is due to three causes:
(i) external causes, such as a current in a solenoid sur-
rounding the material. (ii) The self-demagnetizing field
originating from discontinuities at the boundaries of the
material. (iii) The local polarization J.

The field H is that which influences J by altering the
orientation of the individual dipoles or current loops.
An individual dipole or current loop can exert no torque
upon itself, so that J does not contribute to H and

H=(B—J)u, (4)

I have constructed a model (yet to be published)
consisting of a cubic array of small parallel magnets
representing the atomic dipoles in a material. If one of
these magnets is free to rotate, it turns so that it points
in the opposite direction to the flux produced by the
array as a whole, that is in the direction of H not B.
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Scattering of Gravitational Radiation
by a Schwarzschild Black-hole

TuE discovery of pulsars and the general conviction that
they are neutron stars resulting from gravitational
collapsc have strengthcned the belief in the possible
presence of Schwarzschild black-holes—or Schwarzschild
horizons—in nature, the latter being the ultimate stage
in the progressive spherical collapse of a massive star.
The stability of these objeets, which has been discussed
in a recent report?, ensures their continued cxistence after
formation. Inasmuch as the infinite redshift associated
with it and its behaviour as a one-way membrane make the
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Fig. 1. »
waves of the lowest mode I =2 plotted against z*.
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Schwarzschild horizon at once elusive and intriguing, it is
important to explore theorctically all possible modes in
which the presence of such a black-hole manifests itself. In
what follows, we present a partial summary of some results
obtained from an investigation of the scattering of
gravitational waves by a Schwarzschild horizon.

~To begin with, a spherically symmetric mass distribu-
tion is assumed to have collapsed into its Schwarzschild
surface in the infinitely remote past. The scattering of
gravitational waves by this configuration can be examined
employing the perturbation techniques developed by
Regge and Wheeler?2. Retaining the notation of the
authors and concentrating on the odd-parity waves, the
perturbed Schwarzschild exterior line element in the
Regge—Wheeler canonical gauge can be written as

ds?= —(1—2m/r)d¢*+ (1 — 2m/r)-1 dr? + r2(d9% 4 sin%0 dp?)
+ (ho(r) dt dp + Ry (r) dr do) exp(—iwt) sin 6 % I cos 8)

wherc  is the frequency of the gravitational waves. The
Einstein empty-space field equations computed to first
order in the perturbations® yield the following differential
equations for the radial functions h, and A

12
((chz + (k2 — Ver)@ =0 with Verr=
(1= 1/z) (I + 1)j2? — 3/a?)
and i d
hy == o @@

where we have defined
x=7r/2m, x*=x+In(x—1), k=2mw, and @=(1—1/x)h,/x

The exterior from »=2m to o« corresponds to the range of
»* from — o to 4 0. The motion of the gravitational
waves in this space is governed by the effective potential
I'ete produced by the collapsed mass. The cffective poten-
tial for the lowest possible mode 1=2 is plotted against
x* in Fig. 1, and the general behaviour of the potential
for any higher value of [ is the same, it is positive and goes
to zero asymptotically as z* approaches + o and attains
a maximum in between. From the Schrédinger form of
the wave cquation for @ and from the shape of the poten-
tial, it is evident that the scattering problem here is
formally the same as that encountered in quantum
mechanies for a one-dimensional potential barrier. A
wave coming from spatial infinity is partially reflected by
the effective potential, so that at large values of x we have
both incoming and outgoing waves. On the other hand,
as the Schwarzschild horizon acts as a sink for the radia-
tion, there will be only waves entering the r=2m surface.
Consequently the suitable asymptotic boundary condi-
tions are Q=4 (k)e-ks* + B(k)etlke* and Qo =C(k)e-ikz*
for a* approaching + oo respectively. In analogy with
the quantum mechanical problem wo can define the
reflexion and transmission coefficients R=|B/4{* and
T=|CJ/A}2. A fraction R of the incident wave escapes to
spatial infinity and is accessible to a distant observer,
whereas a fraction T' of the radiation is absorbed by the
black-hole and thereby lost in the process. An analytical
integration of the equation for @ leading to the computa-
tion of B and T has been impossible in practice and
recourse had to be taken to numerical integration. This
has been carried out—as have further computations to be
discussed later--for the lowest mode =2 using a com-
puter. Fig. 2 shows the plot of R against k% In the limit
of zero frequency the reflexion coefficient approaches the
limit 1 independent of the scattering mass, and so in this
limit no information about the latter is forthecoming.
Novertheloss, the rate at which the reflexion amplitude
BJA, and so R, decrcases as a function of the frequency
should be perceptible when a sufficient range of frequencies
is included and, because this rate clearly depends on the
scattering mass, the presence of the latter is ‘“‘coded” into
the outgoing radiation. This leads us at once to the
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Fig. 2.
physically more interesting phenomenon of the scattering
of wave packets. By lincar superposition we obtain an
incoming wave packet at infinity with the spatial profile

bn(@) = | fUe)eke dk

and the corresponding outgoing or reflected packet
+ o

Pout(®)

— @

The latter travels out without spreading and is received
by the distant observer. We choose the Gaussian funetion

1
k = -, T 4_]‘:2/4“
7 2v °

™

(BJA) f(k)eik dk

in order to obtain a simple model for an incoming wave
packet, that is, Yin=e-". As the parameter a, which
measures the width of the wave packet, is varied, some
interesting features emerge. For low values of a (a5 0-01),
that is, for very broad incoming packets or equivalently for
f(k) sharply peaked at zero frequency, the reflected packet
is practically unaffected. But, as the parameter a is gradu-
ally increased, Yoyt develops distinet maxima and minima
that increase in number progressively, while their relative
spacing undergoes a continuous change. As the parameter
a, however, approaches approximately the value 1, that is.
for a width of about the Schwarzschild radius, the process
reaches a limit. Beyond this value of a, as the packet is
made thinner, the outgoing packet will cease to develop
new peaks and the relative spacing of these peaks will
remain unaltered. In other words, any higher frequencies
added to the original packet will have negligible effect
on tho scattercd packet owing to their almost total
absorption by the black-hole. As long as the incoming
packet is spatially sharp enough, the reflected packet
will manifestly carry information about the scattering
mass. TFig. 3 shows an example of the “saturated’ pattern
corresponding to a=1. The spacing between consecutive
peaks and, consequently, the lag in their arrival times are
meastres of the scattering mass, as the spacing in the
actual radial distance is given by Ar=2mAg.

The total energy carried by a wave packet d(x) at spatial
infinity can be computed by adapting a method used by
Tdelstein®. The result of this computation is that, for
any mode [, the energy of the wave packet is given by

E=(c3/32=G) (- DI+ 1) 1+2) J($(x))? dew

where the integration is carried over the spatial extent
of the wave packet. So the fraction of incident radiation

scattered by the black-hole and reaching spatial infinity
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is the ratio of the energies carried by the incoming and the
outgoing wave packets and is readily computed as

ou 2 d 2 1/2
N I}—‘({l;ni;z—d—z = <_:> / [(Pout)?® dur

In Fig. 4 the fraction F is plotted as a function of the
width-parameter a. For an incident wave packet, the
width of which is about a Schwarzschild radius (a~1)
approximatety half the total energy is scattered and the
rest absorbed by the black-hole.

We have confined ourselves so far to some results con-
cerning the scattering of odd-parity gravitational waves
of angular momentum [ =2 by a Schwarzschild black-hole.
The mathematical and nuinerical details omitted here, as
well as the scattering of higher I modes, even-parity wavos,
scalar gravitational waves and finally electromagnetic
waves, will be discussed elsewhere in a separate and more
detailed paper.
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Phase Change in the Upper Mantle
above 350 km

BurLeEn!? has used the Adams-Williamson relation in
region I3 (upper 400 km in the mantle) to relate the rate
of change of density in the Earth’s interior to the rate
of change of seismic velocity. The Adams-Williamson
relation implicitly assumed that phase changes are
absent. Recent interpretations of the velocity gradient
in the mantle’ have re-emphasized the importance of
phase changes in region C (between 400 and 900 km).
Region B is often treated as a homogeneous layer. but
1 present here some evidence to show that phase change
may also occur in this region.

A number of empirical equations which relate densities
of common rocks and minerals with velocities of com-
pressional waves*-¢ show that velocity is linearly pro-
portional to density

Vp=A+Bg (1)

where B has a value of about 3 (km/s)/(g/cm?). This
relation has been applied to the calculation of density
in various regions of the Earth from known seismic
velocities?™®.  For common rocks and minerals, bulk

4
sound velocity, C, which is defined as (V,,z——g I7s2)%,

was also found to be lincarly proportiona to density.
This relation may be expressed as

C=a+bp (2)

where, for rocks and minerals with mean atomic weight
about 21, b has a value of 2:36 (km/s)/(g/cm?) (ref. 10).
This empirical relation was shown to follow closely the
C versus g relation for a single material under large
compression!®!2,  Anderson!® gavo a seismic equation of
state relating the seismic parameter ¢ (which is identical
to O?) and p

o/oa=(p/po)" (3)

Fitting this equation to data for thirty-one selected
rocks and minerals, the value for n is found to be about 3.

With increasing depth, both temperature and pressure
rise. The implicit assumption in the application of any
one of the empirical density velocity relations to the
prediction of density in the upper mantle is that the
offect of an increase of temperature and pressure with
depth might change density and velocity In approxi-
mately the same ratio as that represented by the empirical
relations. I have found that, in regions of high
temperature gradient such as the upper mantle, this
asswmption is violated for the relation bhetween I'p
and p but is obeyed for equations 2 and 3. These relations
are used to estimate the density differences at various
depths in the upper mantle, corresponding to a given
distribution of seismic velocities.

As noted by Anderson!?, the seismic cquation of state
tonds to predict smaller change of density than does
Birch’s equation of state at a given change of o. In
Tig. 1, ¢/ po is plotted against ¢/, for tho following equa-
tions: equation 6, with b=2-36 (km/s)/(g/em?*) and
Cofoo=18 (kin/s)/(g/em?) as for most rocks and minerals
(@ is adjusted such that C=0C, when ¢ = p,). equation 3
(n=3), and finally Birch’s equation®®

®/Po=3(p/00) [ 7(p/p0)s ~ 5] (4)
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