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A wave impinging on a Kerr black hole can be amplified as it scatters off the hole if certain
conditions are satisfied giving rise to superradiant scattering. By placing a mirror around the black
hole one can make the system unstable. This is the black hole bomb of Press and Teukolsky. We
investigate in detail this process and compute the growing timescales and oscillation frequencies as
a function of the mirror’s location. It is found that in order for the system black hole plus mirror
to become unstable there is a minimum distance at which the mirror must be located. We also
give an explicit example showing that such a bomb can be built. In addition, our arguments enable
us to justify why large Kerr-AdS black holes are stable and small Kerr-AdS black holes should be
unstable.

PACS numbers: 04.70.-s

I. INTRODUCTION

Superradiant scattering is known in quantum systems
for a long time, after the problems raised by Klein’s para-
dox [1, 2]. However, for classical systems superradiant
scattering was considered only much later in a paper by
Zel’dovich [3] where it was examined what happens when
scalar waves hit a rotating cylindrical absorbing object.
Considering a wave of the form e−iωt+imφ incident upon
such a rotating object, one concludes that if the frequency
ω of the incident wave satisfies ω < mΩ, where Ω is the
angular velocity of the body, then the scattered wave is
amplified. It was also anticipated in [3] that by surround-
ing the rotating cylinder by a mirror one could make the
system unstable.

A Kerr black hole is one of the most interesting ro-
tating objects for superradiant phenomena, where the
condition ω < mΩ also leads to superradiant scatter-
ing, with Ω being now the angular velocity of the black
hole [4, 5, 6]. Feeding back the amplified scattered wave,
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one can extract as much rotational energy as one likes
from the black hole. Indeed, if one surrounds the black
hole by a reflecting mirror, the wave will bounce back
and forth between the mirror and the black hole ampli-
fying itself each time. Then the total extracted energy
should grow exponentially until finally the radiation pres-
sure destroys the mirror. This is Press and Teukolsky’s
black hole bomb [7]. Nature sometimes provides its own
mirror. For example, if one considers a massive scalar
field with mass µ scattering off a Kerr black hole, then
for ω < µ the mass µ effectively works as a mirror [8, 9].

Here we investigate in detail the black hole bomb by
using a scalar field model. Specifically, the black hole
bomb consists of a Kerr black hole surrounded by a mir-
ror placed at a constant r, r = r0, where r is the Boyer-
Lindquist radial coordinate. We study the oscillation fre-
quencies and growing timescales as a function of the mir-
ror’s location, and as a function of the black hole rotation.
A spacetime with a “mirror” naturally incorporated in it
is anti-de Sitter (AdS) spacetime, which has attracted
a great deal of attention recently. It could therefore be
expected that Kerr-AdS black holes would be unstable.
Fortunately, Hawking and Reall [10] have given a simple
argument showing that, at least large Kerr-AdS black
holes are stable. As we shall show, this is basically be-
cause superradiant modes are not excited for these black
holes. Furthermore, we suggest it is not only possible but
in fact highly likely that small Kerr-AdS black holes are
unstable.
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II. THE BLACK HOLE BOMB

A. Formulation of the problem and basic equations

We shall consider a massless scalar field in the vicinity
of a Kerr black hole, with an exterior geometry described
by the line element:

ds2 = −
(

1 − 2Mr

ρ2

)

dt2 − 2Mra sin2 θ

ρ2
2dtdφ +

ρ2

∆
dr2

+ρ2dθ2 +

(

r2 + a2 +
2Mra2 sin2 θ

ρ2

)

sin2 θ dφ2 ,

(1)

with

∆ = r2 + a2 − 2Mr , ρ2 = r2 + a2 cos2 θ . (2)

This metric describes the gravitational field of the Kerr
black hole, with mass M , angular momentum J = Ma,
and has an event horizon at r = r+ = M +

√
M2 − a2. A

characteristic and important parameter of a Kerr black
hole is the angular velocity of its event horizon Ω given
by

Ω =
a

2Mr+
. (3)

In absence of sources, which we consider to be our case,
the evolution of the scalar field is dictated by the Klein-
Gordon equation in curved spacetime, ∇µ∇µΦ = 0. To
make the whole problem more tractable, it is convenient
to separate the field as [11]

Φ(t, r, θ, φ) = e−iωt+imφSm
l (θ)R(r) , (4)

where Sm
l (θ) are spheroidal angular functions, and the

azimuthal number m takes on integer (positive or nega-
tive) values. For our purposes, it is enough to consider
positive ω’s in (4) [4]. Inserting this in Klein-Gordon
equation, we get the following angular and radial wave
equations for R(r) and Sm

l (θ):

1

sin θ
∂θ (sin θ∂θS

m
l )

+

[

a2ω2 cos2 θ − m2

sin2 θ
+ Alm

]

Sm
l = 0 , (5)

∆∂r (∆∂rR) +
[

ω2(r2 + a2)2 − 2Mamωr + a2m2

−∆(a2ω2 + Alm)
]

R = 0 , (6)

where Alm is the separation constant that allows the split
of the wave equation, and is found as an eigenvalue of (5).
For small aω, the regime we shall be interested on in the
next subsection, one has [5, 12]

Alm = l(l + 1) + O(a2ω2) . (7)

Near the boundaries of interest, which are the horizon,
r = r+, and spatial infinity, r = ∞, the scalar field as

given by (4) behaves as

Φ ∼ e−iωt

r
e±iωr∗ , r → ∞ (8)

Φ ∼ e−iωte±i(ω−mΩ)r∗ , r → r+ , (9)

where the tortoise r∗ coordinate is defined implicitly by
dr∗

dr = r2+a2

∆ . Requiring ingoing waves at the horizon,
which is the physically acceptable solution, one must im-
pose a negative group velocity vgr for the wave packet.

Thus, we choose Φ ∼ e−iωte−i(ω−mΩ)r∗ . However, notice
that if

ω < mΩ , (10)

the phase velocity –ω−mΩ
ω will be positive. Thus, in this

superradiance regime, waves appear as outgoing to an
inertial observer at spatial infinity, and energy is in fact
being extracted. Notice that, since we are working with
positive ω, superradiance will occur only for positive m,
i.e., for waves that are co-rotating with the black hole.
This follows from the time and angular dependence of
the wave function, Φ ∼ ei(−ωt+mφ). The phase velocity
along the angle φ is then vφ = ω

m , which for ω > 0 and
m > 0 is positive, i.e., is in the same sense as the angular
velocity of the black hole.

Here we shall consider a Kerr black hole surrounded
by a mirror placed at a constant Boyer-Lindquist radial
r coordinate with a radius r0, so that the scalar field
will be required to vanish at the mirror’s location, i.e.,
Φ(r = r0) = 0. With these two boundary conditions,
ingoing waves at the horizon and a vanishing field at the
mirror, the problem is transformed into an eigenvalue
equation for ω.

The frequencies satisfying both boundary conditions
will be called Boxed Quasi-Normal frequencies (BQN fre-
quencies, ωBQN ) and the associated modes will accord-
ingly be termed Boxed Quasi-Normal Modes (BQNMs).
The quasi stems from the fact that they are not station-
ary modes, and that BQN frequencies are not real num-
bers. Instead they are complex quantities, describing the
decaying or amplification of the field. One expects that
for a mirror located at large distances, or for small black
holes, the imaginary part of the BQNs will be negligibly
small and thus the modes will be stationary, correspond-
ing to the pure normal modes of the mirror in the absence
of the black hole. The BQNMs are of course different
from the usual quasinormal modes (QNMs) in asymptot-
ically flat spacetimes, because the latter have no mirror
and satisfy outgoing wave boundary conditions near spa-
tial infinity, they describe the free oscillations of the black
hole spacetime. In the following we shall compute these
modes analytically in a certain limit, and numerically by
directly integrating the radial equation (6).
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B. The black hole bomb: analytical calculation of

the unstable modes

In this section, we will compute analytically, within
some approximations, the unstable modes of a scalar field
in a black hole mirror system. Due to the presence of a
reflecting mirror around the black hole, the scalar wave
is successively impinging back on the black hole, and am-
plified.

We assume that 1/ω ≫ M , i.e., that the Compton
wavelength of the scalar particle is much larger than
the typical size of the black hole. We will also assume,
for simplicity, that a ≪ M . Following [5, 13], we di-
vide the space outside the event horizon in two regions,
namely, the near-region, r − r+ ≪ 1/ω, and the far-
region, r − r+ ≫ M . We will solve the radial equation
(6) in each one of these two regions. Then, we will match
the near-region and the far-region solutions in the over-
lapping region where M ≪ r − r+ ≪ 1/ω is satisfied.
Finally, we will insert a mirror around the black hole,
and we will find the properties of the unstable modes.

1. Near-region wave equation and solution

In the near-region, r − r+ ≪ 1/ω, the radial wave
equation can be written as

∆∂r (∆∂rR) + r4
+(ω − mΩ)2 R − l(l + 1)∆R = 0 . (11)

To find the analytical solution of this equation, one first
introduces a new radial coordinate,

z =
r − r+

r − r−
, 0 ≤ z ≤ 1 , (12)

with the event horizon being at z = 0. Then, one has
∆∂r = (r+ − r−)z∂z, and the near-region radial wave
equation can be written as

z(1−z)∂2
zR + (1−z)∂zR + ̟2 1−z

z
R − l(l + 1)

1−z
R = 0 ,

(13)

where we have defined the superradiant factor

̟ ≡ (ω − mΩ)
r2
+

r+ − r−
. (14)

Through the definition

R = zi ̟(1 − z)l+1 F , (15)

the near-region radial wave equation becomes

z(1−z)∂2
zF +

[

(1 + i 2̟) − [1 + 2(l + 1) + i 2̟] z

]

∂zF

−
[

(l + 1)2 + i 2̟(l + 1)
]

F = 0 . (16)

This wave equation is a standard hypergeometric equa-
tion [14], z(1−z)∂2

zF + [c − (a + b + 1)z]∂zF − abF = 0,
with

a = l + 1 + i 2̟ , b = l + 1 , c = 1 + i 2̟ ,

(17)

and its most general solution in the neighborhood of z =
0 is Az1−cF (a− c + 1, b− c + 1, 2− c, z)+ B F (a, b, c, z).
Using (15), one finds that the most general solution of
the near-region equation is

R = Az−i ̟(1 − z)l+1F (a − c + 1, b − c + 1, 2 − c, z)

+B zi ̟(1 − z)l+1F (a, b, c, z) . (18)

The first term represents an ingoing wave at the horizon
z = 0, while the second term represents an outgoing wave
at the horizon. We are working at the classical level, so
there can be no outgoing flux across the horizon, and
thus one sets B = 0 in (18). One is now interested in
the large r, z → 1, behavior of the ingoing near-region
solution. To achieve this aim one uses the z → 1 − z
transformation law for the hypergeometric function [14],

F (a−c+1, b−c+1, 2−c, z) = (1−z)c−a−b

× Γ(2−c)Γ(a+b−c)
Γ(a−c+1)Γ(b−c+1) F (1−a, 1−b, c−a−b+1, 1−z)

+Γ(2−c)Γ(c−a−b)
Γ(1−a)Γ(1−b) F (a−c+1, b−c+1,−c+a+b+1, 1−z),

(19)

and the property F (a, b, c, 0) = 1. Finally, noting that
when r → ∞ one has 1 − z → (r+ − r−)/r, one obtains
the large r behavior of the ingoing wave solution in the
near-region,

R ∼ AΓ(1 − i 2̟)

[

(r+ − r−)−l Γ(2l + 1)

Γ(l + 1)Γ(l + 1 − i 2̟)
rl

+
(r+ − r−)l+1 Γ(−2l − 1)

Γ(−l)Γ(−l − i 2̟)
r−l−1

]

. (20)

2. Far-region wave equation and solution

In the far-region, r − r+ ≫ M , the effects induced by
the black hole can be neglected (a ∼ 0, M ∼ 0, ∆ ∼
r2) and the radial wave equation reduces to the wave
equation of a massless scalar field of frequency ω and
angular momentum l in a flat background,

∂2
r (rR) +

[

ω2 − l(l + 1)/r2
]

(rR) = 0 . (21)

The most general solution of this equation is a linear
combination of Bessel functions [14],

R = r−1/2
[

αJ l+1/2(ωr) + βJ−l−1/2(ωr)
]

. (22)

For large r this solution can be written as [14]

R ∼
√

2

πω

1

r

[

α sin(ωr − lπ/2) + β cos(ωr + lπ/2)

]

,

(23)
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while for small r it reduces to [14]

R ∼ α
(ω/2)l+1/2

Γ(l + 3/2)
rl + β

(ω/2)−l−1/2

Γ(−l + 1/2)
r−l−1. (24)

3. Matching the near-region and the far-region solutions

When M ≪ r−r+ ≪ 1/ω, the near-region solution and
the far-region solution overlap, and thus one can match
the large r near-region solution (20) with the small r far-
region solution (24). This matching yields

A =
(r+ − r−)l

Γ(l + 3/2)

Γ(l + 1)

Γ(2l + 1)

Γ(l + 1 − i 2̟)

Γ(1 − i 2̟)

(ω

2

)l+1/2

α,

(25)

β

α
=

Γ(−l + 1/2)

Γ(l + 3/2)

Γ(l + 1)

Γ(2l + 1)

Γ(−2l − 1)

Γ(−l)

Γ(l + 1 − i 2̟)

Γ(−l − i 2̟)

×
(ω

2

)2l+1

(r+ − r−)2l+1 . (26)

Using the property of the gamma function, Γ(1 +

x) = xΓ(x), one can show that Γ(−l+1/2)
Γ(1/2) = (−1)l2l

(2l−1)!! ,

Γ(l+3/2)
Γ(1/2) = (2l+1)!!

2l+1 , Γ(−2l−1)
Γ(−l) = (−1)l+1l!

(2l+1)! and Γ(l+1−i 2̟)
Γ(−l−i 2̟) =

i (−1)l+12̟
∏l

k=1(k
2 + 4̟2). Then, the matching con-

dition (26) yields

β

α
= i 2̟

(−1)l

2l + 1

(

l!

(2l − 1)!!

)2
(r+ − r−)2l+1

(2l)!(2l + 1)!

×
(

l
∏

k=1

(k2 + 4̟2)

)

ω2l+1 . (27)

4. Mirror condition. Properties of the unstable modes

If one puts a mirror near infinity at a radius r = r0,
the scalar field must vanish at the mirror surface. Thus,
setting the radial field (22) to zero yields the extra con-
dition between the amplitudes α and β, and the position
of the mirror r0,

β

α
= −

Jl+1/2(ωr0)

J−l−1/2(ωr0)
. (28)

This mirror condition together with the matching con-
dition (27) yield a condition between the position of the
mirror and the frequency of the scalar wave,

Jl+1/2(ωr0)

J−l−1/2(ωr0)
= i(−1)l+1 ̟

2

2l + 1

(

l!

(2l − 1)!!

)2

× (r+ − r−)2l+1

(2l)!(2l + 1)!

(

l
∏

k=1

(k2 + 4̟2)

)

ω2l+1 . (29)

The solution of (29) can be found in the approximation
that applies suitably to this problem, namely, ω ≪ 1,
and Re(ω) ≫ Im(ω). For very small ω, the r.h.s. of (29)
is very small and can be assumed to be zero in the first
approximation for ω. This yields

Jl+1/2(ωr0) = 0 , (30)

which has well studied (real) solutions [14]. We shall
label the solutions of (30) as jl+1/2,n:

Jl+1/2(ωr0) = 0 ⇔ ωr0 = jl+1/2,n , (31)

where n is a non-negative integer number. We now as-
sume that the complete solution to (29) can be written as

ω ∼ jl+1/2,n/r0 + iδ̃/r0, where we have inserted a small

imaginary part proportional to δ̃ ≪ 1. One then has,
from (29)

Jl+1/2(jl+1/2,n + iδ̃)

J−l−1/2(jl+1/2,n + iδ̃)
= i(−1)l+1 ̟

(

l!

(2l − 1)!!

)2

× 2

2l + 1

(r+ − r−)2l+1

(2l)!(2l + 1)!

(

l
∏

k=1

(k2 + 4̟2)

)

ω2l+1 .(32)

Now, we can use, for small δ̃ the Taylor expansion of the
l.h.s.,

Jl+1/2(jl+1/2,n + iδ̃)

J−l−1/2(jl+1/2,n + iδ̃)
∼ i δ̃

J ′
l+1/2(jl+1/2,n)

J−l−1/2(jl+1/2,n)
(33)

The quantities jl+1/2,n , J ′
l+1/2(jl+1/2,n) , J−l−1/2(jl+1/2,n)

are tabulated in [14], and can also easily be extracted
using Mathematica. Here it is important to note that
J ′

l+1/2(jl+1/2,n) and (−1)lJ−l−1/2(jl+1/2,n) always have

the same sign. Furthermore, for large overtone n,
jl+1/2,n ∼ (n + l/2)π. The frequencies of the scalar wave
that are allowed by the presence of the mirror located at
r = r0 (BQN frequencies) are then

ωBQN ≃
jl+1/2,n

r0
+ iδ , (34)

where n is a non-negative integer number, labelling the
mode overtone number. For example, the fundamental
mode corresponds to n = 0. In (34), δ = Im[ωBQN ] is
obtained by substituting (33) in (32),

δ ≃ −γ
(−1)lJ−l−1/2(jl+1/2,n)

J ′
l+1/2(jl+1/2,n)

jl+1/2,n/r0 − mΩ

r
2(l+1)
0

, (35)

where

γ ≡
(

l!

(2l − 1)!!

)2 r2
+(r+ − r−)2l

(2l)!(2l + 1)!

× 2

2l + 1

(

l
∏

k=1

(k2 + 4̟2)

)

[

jl+1/2,n

]2l+1
. (36)
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Notice that δ is very small for large r0 and thus satis-
fies the conditions that go with the approximation used,
Re(ω) ≫ Im(ω). Equations (34) and (35) constitute the
main results of this section. Two important features of
this system, black hole plus mirror, can already be read
from the equations above: first, from equations (34) and
(35) one has,

δ ∝ −(Re[ωBQN ] − mΩ) . (37)

Therefore, δ > 0 for Re[ωBQN ] < mΩ, and δ < 0 for
Re[ωBQN ] > mΩ. The scalar field Φ has the time de-

pendence e−iωt = e−iRe(ω)teδt, which implies that for
Re[ωBQN ] < mΩ, the amplitude of the field grows ex-
ponentially and the BQNM becomes unstable, with a
growth timescale given by τ = 1/δ. In this case, we
see that the system behaves in fact as a bomb, a black
hole bomb. Second,

Re[ωBQN ] =
jl+1/2,n

r0
, (38)

showing that the wave frequency is proportional to the
inverse of the mirror’s radius. As one decreases the dis-
tance at which the mirror is located, the allowed wave
frequency increases, and there will thus be a critical ra-
dius at which the BQN frequency no longer satisfies the
superradiant condition (10). Notice also that Re[ωBQN ]
as given by (38) is equal to the normal mode frequen-
cies of a spherical mirror in a flat spacetime [15]. In the
next subsection, when the numerical results will also be
available, we will return to this discussion.

C. The black hole bomb. Numerical approach

1. Numerical procedure

In the numerical calculation for determining oscillation
frequencies of the modes, we use the same function as
that defined by Teukolsky [16] given by (see also [17])

Y = (r2 + a2)1/2R . (39)

Then, Teukolsky equation becomes a canonical equation,
given by

d2

dr2
∗

Y + V Y = 0 , (40)

where

V =
K2 − λ∆

(r2 + a2)2
− G2 − d

dr∗
G , (41)

with K = (r2 + a2)ω − am, and G = r∆(r2 + a2)−2.
For the separation constant λ = Alm + a2ω2 − 2amω, we
make use of a well known series expansion in aω, given
by

λ = a2ω2 − 2amω +

∞
∑

i=0

0f
lm
i (aω)i , (42)

where 0f
lm
i is the expansion coefficient (for the explicit

form, see, e.g., [12]). In this study, we keep the terms in
the expansion up to an order of (aω)2. As mentioned,
near the horizon, the physically acceptable solution of
equation (40) is the incoming wave solution, given by

Y = e−i(ω−mΩ)r∗ [y0 + y1(r − r+) + y2(r − r+)2 + · · ·] ,(43)

where yi is the expansion coefficient determined by ω and
y0. Here, we do not show explicit expression for the yi’s
because it is straightforward to derive it.

In order to obtain the proper solutions numerically, by
using a Runge-Kutta method, we start integrating the
differential equation (40) outward from r = r+(1+10−5)
with the asymptotic solution (43). We then stop the in-
tegration at the radius of the mirror, r = r0, and get the
value of the wave function at r = r0, which is considered a
function of the frequency, Y (r0, ω). If Y (r0, ω) = 0, the
solution satisfies the boundary condition of perfect re-
flection due to the mirror and the frequency ω is a BQN
frequency, which we label as ωBQN . In other words, the
dispersion relation of our problem is given by the equa-
tion Y (r0, ωBQN) = 0. In order to solve the algebraic
equation Y (r0, ωBQN ) = 0 iteratively, we use a secant
method. Here, it is important to note that if the mode
is stable or Im(ωBQN ) < 0, the asymptotic solution (43)
diverges exponentially and another independent solution,
which is unphysical, damps exponentially as r∗ → −∞.

2. Numerical results

Our numerical results are summarized in Figs. 1-7. As
we remarked earlier, we only show the data correspond-
ing to the unstable BQNMs. We have also found the
stable modes, but since they lead to no bomb we refrain
from presenting them. ¿From the figures we confirm the
analytical expectations. In addition we can discuss grow-
ing timescales, oscillation frequencies, energy extracted
and efficiencies with great accuracy. Figure 1 plots the
imaginary part of the BQN frequency for the fundamen-
tal BQNM as a function of the mirror’s location r0 and
the rotation parameter a. In figure 2, we show the real
part of the BQN frequency for the fundamental BQNM
also as a function of r0 and a. Supporting the analytical
results, figure 1 shows that: (i) The instability is weaker
(the growing timescale τ = 1

Im[ωBQN ] is larger) for larger

mirror radius, meaning that Im[ωBQN ] decreases as r0 in-
creases. This is also expected on physical grounds, as was
remarked in [7], if one views the process as one of succes-
sive amplifications and reflections on the mirror. (ii) As
one decreases r0 the instability gets stronger, as expected,
but surprisingly, suddenly the BQNM is no longer unsta-
ble. The imaginary component of ωBQN drops from its
maximum value to zero, and the mode becomes stable at
a critical radius rcrit

0 . Physically, this happens because
superradiance generates wavelengths with λ > 1/Ω. So
the mirror at a distance r0 will “see” these wavelengths
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FIG. 1: The imaginary part of the fundamental (n = 0) BQN
frequency (ωBQN ) as a function of the mirror’s location r0 is
plotted. The plot refers to a l = m = 1 wave. It is also shown
the dependence on the rotation parameter a. One sees that
for r0 greater than a critical value, rcrit

0 , depending on a, there
is the possibility of building a bomb. Moreover, the imaginary
component of the BQN frequency decreases abruptly from its
maximum value to zero at rcrit

0 . For r0 < rcrit
0 the BQNM

is stable. Tracking the mode to yet smaller distances shows
that indeed it remains stable (the imaginary part of ωBQN is
negative).

if r0 > rcrit
0 ∼ λ ∼ 1/Ω. One can improve the esti-

mate for rcrit
0 using equations (10), (37), and (38), yield-

ing rcrit
0 ∼ jl+1/2,n

mΩ . This estimate for the critical radius
matches very well with our numerical data, even though
the analytical calculation is a large wavelength approx-
imation. In fact, to a great accuracy rcrit

0 is given by
the root of Re[ω(rcrit

0 )] − mΩ = 0, as is shown in fig-
ure 3. Also supporting the analytical results, figure 2
shows that Re[ωBQN ] behaves as 1

r0
, which is consis-

tent with equation (34). This means that it is indeed
the mirror which selects the allowed vibrating frequen-
cies. The results for higher mode number n is shown
in figures 4 and 5, and the behaviour agrees with the
picture provided by the analytical approximation. The
agreement between the analytical and numerical results
is best seen in Table I, where we show the lowest BQN
frequencies obtained using both methods. In figures 6
and 7 we show the numerical results referring to different
values of the angular number l and m. Our numerical

results indicate that 1
Im[ωBQN ] ∼ r

−2(l+1)
0 , in agreement

with the analytical result, equation (35). The numeri-
cal results also indicate that the oscillating frequencies
(Re[ωBQN ]) scale with l, more precisely, Re[ωBQN] be-
haves as Re[ωBQN] ∼ π/r0(n + l/2). This behavior is
also predicted by the analytical study.

FIG. 2: The real part of the fundamental (n = 0) BQN fre-
quency (ωBQN ) as a function of the mirror’s location r0 is
plotted. The plot refers to a l = m = 1 wave. There is
no perceptive a-dependence (as matter of fact there is a very
small a-dependence but too small to be noticeable). Thus,
the oscillation frequency basically depends only on r0, and
for large r0 goes as 1/r0, as predicted by the analytical for-
mula (34). The dots indicate rcrit

0 (cf. Fig. 1).

TABLE I: The fundamental BQN frequencies for a black
hole with a = 0.8M and a mirror placed at r0 = 100M . The
data corresponds to the l = m modes, and the frequency
is measured in units of the mass M of the black hole. We
present both the numerical (ωN

BQN ) and analytical (ωA
BQN )

results. Notice that the agreement between the two is very
good, and it gets better as l increases. Also, we have checked
that for very large r0 the two yield basically the same results.

a = 0.8M , r0 = 100M

l ωN
BQN : ωA

BQN :

1 8.75 × 10−2 + 1.19 × 10−7i 8.99 × 10−2 + 1.41 × 10−7i

2 1.13 × 10−1 + 6.77 × 10−12i 1.15 × 10−1 + 6.89 × 10−12i

3 1.37 × 10−1 + 2.45 × 10−16i 1.39 × 10−1 + 2.26 × 10−16i

Let us now take Press and Teukolsky example of a
black hole with mass M = 1M⊙ [7]. We are now in a
position to make a much improved quantitative analy-
sis. We take a = 0.8 M , a large angular momentum so
that we make a full use of our results. In addition, to
better take advantage of the whole process, one should
place the mirror at a position near the point of maxi-
mum growing rate, but farther. Thus, for the example,
r0 ∼ 22M ∼ 33 Km (see Fig. 1). This gives a grow-
ing timescale of about τ ∼ 0.6 s (see also Fig. 1), which
means that every 0.6 s the amplitude of the field gets ap-
proximately doubled. This means that at the end of 13
seconds the initial amplitude of the wave has grown to
107 of its initial value, and that thus the energy content is
1014 times greater than the initial perturbation. We con-
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FIG. 3: This figure helps in understanding why the instability
disappears for r0 smaller than a certain critical value. The
condition for superradiance is ω − mΩ < 0. Since ω goes as
1/r0 (check Fig. 2), then it is expected that the condition will
stop to hold at a critical r0. This is clearly seen here. Note
that the critical value of r0 is in excellent agreement with that
shown in Fig. 1.

FIG. 4: The imaginary part of the BQN frequency as a func-
tion of r0, for a = 0.4 and for the three lowest overtones n,
for l = m = 1. As expected from the general arguments pre-
sented, higher overtones get stable at larger distances, and
attain a smaller maximum growing rate.

sider there are no losses through the mirror and assume
the process to be adiabatic. Using the first law of ther-
modynamics one can then set ∆M ∼ Ω∆J , where ∆M
and ∆J are the changes in mass and angular momentum
of the black hole in this process, respectively. Now, the
black hole is losing angular momentum in each superra-
diant scattering. Thus a decreases. If we go to figure 1

FIG. 5: Same as Fig. 4, but for the real part of ωBQN .

FIG. 6: The imaginary part of the fundamental ωBQN for an
a = 0.4 black hole, as a function of the mirror’s location r0

here shown for some values of l, m. Furthermore, as is evident
from this figure and also as could be anticipated, the larger
m the smaller r0 can be, still displaying instability. Note
however that the maximum instability is larger for the m = 1
mode. This is a general feature. The imaginary part of the

frequency seems to behave as Im[ωBQN ] ∼ r
−2(l+1)
0 , which

agrees with the analytical prediction (35).

we see that rcrit
0 increases with decreasing a. At a cer-

tain stage rcrit
0 coincides with the position of the mirror

at r0, at which point there is no more possibility of su-
perradiance. The process is finished. Thus from figure 1,
or more accurately from our numerics, one can find ∆ a,
and thus ∆J . Then ∆M follows from ∆M ∼ Ω∆ J .
In the example this gives a total amount ∆M ∼ 0.01M
of extracted energy before the bomb stops functioning.
The process has thus an efficiency of 1%, about the same
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FIG. 7: Same as Fig. 6 but for the real part. Note that
there is an l-dependence of the real part of the frequency.
On the other hand, there is no noticeable m-dependence, in
accordance with the analytical result (34).

order of magnitude as the efficiency of nuclear fusion of
hydrogen burning into helium (∼ 0.7%). If, instead, the
mirror is placed at r0 ∼ 200M ∼ 300Km one still gets
a good growing timescale of about 15 min. This means
that at the end of 6 hours the initial amplitude of the
wave has grown to 107 of its initial value. In this case
∆ M ∼ 0.1 M , with a 10% efficiency, and one can show
that the efficiency grows with mirror radius r0. Since the
cost of mirror construction scales as r2

0 , we see that small
mirrors are more effective. One can give other interesting
examples. For a black hole at the center of a galaxy, with
mass M ∼ 108M⊙, a = 0.8M , and r0 = 22 M , the max-
imum growing timescale is of the order of 2 years. An-
other interesting situation happens when the black hole
has a mass of the order of the Earth mass. In this case,
by placing the mirror at r0 = 1 m one gets a growing
timescale of about 0.02 s. At the other end of the black
hole spectrum one can consider Planck size black holes.

D. Zel’dovich’s cylinder surrounded by a mirror

As a corollary, we discuss here electromagnetic super-
radiance in the presence of a cylindrical rotating body,
a situation first discussed by Zel’dovich [3]. He noted
that by surrounding this rotating body with a reflect-
ing mirror one could amplify the radiation, much as the
black hole bomb process just described. Bekenstein and
Schiffer [19] have recently elaborated on this. An inde-
pendent analytical approximation, similar in all respects
to the one we discussed earlier in the black hole bomb
context, can also be applied here for finding the BQN
frequencies of this system (conducting cylinder plus re-
flecting mirror), and leads to almost the same results as

for the black hole bomb. The imaginary component of
ωBQN is δ ∝ −(Re[ωBQN ] − mΩ). The electromagnetic

field has the time dependence e−iωt = e−iRe(ω)teδt and
thus, for Re[ωBQN ] < mΩ, the amplitude of the field
grows exponentially with time and the mode becomes
unstable, with a growth timescale given by τ = 1/δ.
Second, Re[ωBQN ] ∝ 1/r0, i.e., the wave frequency is
proportional to the inverse of the mirror’s radius, as it
was for the black hole bomb. Therefore, as one decreases
the distance at which the mirror is located, the allowed
wave frequency increases, and again there will be a crit-
ical radius at which the frequency no longer satisfies the
superradiant condition (10). If one tries to use the sys-
tem as it is, it would be almost impossible to observe
superradiance in the laboratory. Take as an example a
cylinder with a radius R = 10 cm, rotating at a frequency
Ω = 2π × 102 s−1, and a surrounding mirror with radius
r0 = 20 cm. For the system to be unstable and experi-
mentally detectable, the minimum mirror radius is given
by rcrit ∼ c

mΩ (where we have reinstated the velocity of
light c), which yields rcrit ∼ 1000 Km, for a m = 1 wave.
It seems impossible to use this apparatus to measure su-
perradiance experimentally. A way out of this problem
may be the one suggested in [19]: to surround the con-
ducting mirror by a material with a low velocity of light.
In this case the critical radius would certainly decrease,
although further investigation is needed in order to as-
certain what kind of material should be used.

III. ARE KERR-ADS BLACK HOLES

UNSTABLE?

A spacetime with a naturally incorporated mirror in
it is anti-de Sitter (AdS) spacetime, which has attracted
a great deal of attention recently due to the AdS/CFT
correspondence and other matters. As is well known,
anti-de Sitter (AdS) space behaves effectively as a box,
in other words, the AdS infinity works as a mirror wall.
Thus, one might worry that Kerr-AdS black holes could
behave as the black hole bomb just described, and that
they would be unstable. Hawking and Reall [10] have
shown that, at least for large Kerr-AdS black holes, this
instability is not present. The stability of large Kerr-
AdS black holes in four and higher dimensions can be
understood in yet another way, using the knowledge one
acquired from the black hole bomb study. The black hole
rotation is constrained to be a < ℓ, where ℓ is the AdS
radius [10]. Large black holes are the ones for which
r+ >> ℓ. In this case the angular velocity of the horizon
Ω = a

r2
+

+a2 (1 − a2/ℓ2) goes to zero and one expects that

the rotation plays a neglecting role in this regime, with
the results found for the non-rotating AdS black hole
[20, 21] still holding approximately when the rotation is
non-zero. The characteristic quasinormal frequencies for
large, non-rotating AdS black holes were computed in
[20, 21] showing that the real part scales with r+. Now,
since Ω → 0 for large black holes and the QNMs have a
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very large real part, one can understand why there is no
instability: superradiant modes are simply not excited,
as the condition for superradiance, ω < mΩ, cannot be
fulfilled. We could try to evade this by going to higher
values of m, but then l has also to be large (l ≥ m).
However, for large l’s, the real part of the QNMs is known
to scale with l [22], thus the condition for superradiance is
never fulfilled. What about small Kerr-AdS black holes,
r+ << ℓ ? Considering the case a small, a << r+ say, is
enough for our purposes. In this situation the horizon’s
angular velocity scales as the inverse of r+, and it can be
made arbitrarily large. Although the effect of rotation
cannot be neglected in this case, the results of the QNM
analysis for non-rotating AdS black holes give some hints
on what may happen. For small non-rotating AdS black
holes, the QN frequencies have a real part that goes to a
constant, independent of r+, whereas the imaginary part
goes to zero [21]. If we add a small angular momentum
per unit mass a to the black hole, we do not expect the
real part of the QN frequency to grow significantly. But,
since Ω is very large anyway, the superradiance condition
ω < mΩ will most likely be fulfilled. Therefore we expect
to be possible to excite the superradiant instability in
these spacetimes.

IV. CONCLUSIONS

To conclude, we have investigated the black hole bomb
thoroughly, by analytical means in the long wavelength
limit, and numerically. We have provided both analytical
and numerical accurate estimates for growing timescales
and oscillation frequencies of the corresponding unstable
Boxed Quasinormal Modes (BQNMs). Both results agree
and yield consistent answers. An important feature born
out in this work is that there is a minimum distance at
which the mirror must be located in order for the system
to become unstable and for the bomb to work. Basi-
cally this is because the mirror selects the frequencies
that may be excited. For distances smaller than this, the
system is stable and the perturbation dies off exponen-
tially. This minimum distance increases as the rotation
parameter decreases. We have given an explicit example
where such a system works yielding a reliable source of
energy. By using appropriately this extracted energy one
could perhaps build a black hole power plant. Although
we have worked only with zero spin (scalar) waves, we
expect that the general features for other spins will be
the same. Moreover, it is known that a charged black
hole, even in the absence of rotation, provides a back-
ground for superradiance, as long as the impinging wave
is a bosonic charged wave (fermions do not exhibit su-
perradiance). In this case, the critical radius should be
of order rcrit ∼ 1

eΦ , where e is the charge of the scalar
particle and Φ is the black hole’s electromagnetic poten-
tial.

We have also shown that a mirror surrounding
Zel’dovich’s rotating cylinder leads to a system that dis-

plays the same instabilities as the black hole bomb. How-
ever, for the instability to be triggered in an Earth based
experiment, some improvments must be made. In par-
ticular the cylinder should be surrounded by a material
with a low light velocity, since otherwise it would require
huge mirror radius or huge rotating frequencies.

The study of the black hole bomb, and of the associated
instabilities allows one to better understand the absence
of superradiance in large Kerr-AdS black holes [10] and
moreover to expect that small Kerr-AdS black holes will
be unstable.

Finally, it seems worth investigating whether or not
this kind of black hole bomb is possible in TeV-scale
gravity. In these scenarios, one has four non-compact di-
mensions and n extra compact dimensions. It might be
possible that these extra compactified dimensions work
as a reflecting mirror, and therefore rotating black holes
in 4 + n dimensions could turn out to be unstable.

We would also like to make a remark on a possible as-
trophysical application of this black hole-reflecting wall
system. It has been proposed in [23], and further dis-
cussed in [24], that the superradiant amplification pro-
cess might provide the energy necessary to feed the highly
energetic gamma-ray burst. Magnetosonic plasma waves,
generated in the accreting plasma around an astrophys-
ical black hole, might enter in the waveguide cavity lo-
cated between the gravitational potential barrier of the
black hole and the inner edge of the accretion disk. Once
there, the inner boundary of the accretion disk might
act as a reflecting wall, and waves can then suffer mul-
tiple reflection and superradiant amplification, increas-
ing their energy. This energy increase will continue un-
til the magnetosphere that surrounds the system is no
longer capable of supporting the energy pressure in the
waveguide cavity. The wave energy would then be re-
leased in a burst, and collimated into a relativistic jet
by, e.g., the Blandford-Znajek process [25], and finally
transferred into the observed γ -ray photons, as described
by the Fireball model [26]. In order to better compare
the energy and timescales derived from the superradiant
model with the observational data taken from gamma-ray
bursts, it is appropriate to apply the methods of this pa-
per to superradiant cavities that have an accreting matter
configuration of a torus or disk.
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