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Abstract: Black branes and strings are generally unstable against a certain sector of

gravitational perturbations. This is known as the Gregory-La°amme instability. It has

been recently argued [1, 2] that there exists another general instability a®ecting many

rotating extended black objects. This instability is in a sense universal, in that it is triggered

by any massless ¯eld, and not just gravitational perturbations. Here we investigate this

novel mechanism in detail. For this instability to work, two ingredients are necessary: (i) an

ergo-region, which gives rise to superradiant ampli¯cation of waves, and (ii) “bound” states

in the e®ective potential governing the evolution of the particular mode under study. We

show that the black brane Kerr4 £R p is unstable against this mechanism, and we present

numerical results for instability timescales for this case. On the other hand, and quite

surprisingly, black branes of the form Kerrd £ R p are all stable against this mechanism

for d > 4. This is quite an unexpected result, and it stems from the fact that there are

no stable circular orbits in higher dimensional black hole spacetimes, or in a wave picture,

that there are no bound states in the e®ective potential. We also show that it is quite easy

to simulate this instability in the laboratory with acoustic black branes.
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1. Introduction

We are all painfully aware that exact, closed form solutions to physical problems are an

exception. The rule is that one must resort to all kinds of tricks and assumptions in order

to get a grip on the equations: this is why, despite their little insight into the physics,

numerical solutions are proliferating as problems become more and more complex. Exact

solutions are therefore most welcome. Exact solutions to Einstein equations are extremely

useful, especially if they describe simple yet physically attainable systems. Indeed, take for

example the famous Schwarzschild metric: with this exact solution at hand, describing the

geometry outside a spherically symmetric distribution of matter, one was able to compute

the de°ection of light as it passes near the Sun (and to match the theoretical prediction

against the observational data), thereby giving strong support to Einstein’s theory. We

now know that the outside geometry of many astrophysical objects is well described by the

Schwarzschild metric, and we can start studying them by investigating the properties of

this metric.

One of the most important things that one should study ¯rst is the classical stability

of a given solution: if a solution is unstable, then it most certainly will not be found in

– 1 –
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nature (unless the instability is secular) and the solution loses most of its power. What

does one mean by stability? In this classical context, stability means that a given initially

bounded perturbation of the spacetime remains bounded for all times. For example, the

Schwarzschild spacetime is stable against all kinds of perturbations, massive or massless [3].

Thus, if one considers small deviations from the Schwarzschild geometry (for instance

throwing a small stone into the black hole, this disturbs the geometry), stability means

that these small perturbations eventually fade away. They will never disrupt the spacetime.

The term “perturbations” means either small (metric) deviations in the geometry or small-

amplitude ¯elds in the geometry, for example scalar ¯elds or electromagnetic ¯elds (as such,

deviations in the geometry can be looked at as perturbations induced by gravitons). So,

the Schwarzschild geometry is indeed appropriate to study astrophysical objects.

Here we shall investigate an instability which is rotation-triggered, and which was

hinted at for the ¯rst time by Marolf and Palmer [1]. The mechanism has recently been

explained in [2], where it was shown that it could be triggered in many systems. However,

a detailed description is still lacking, and this is the main purpose of the present work.

The physical nature of this instability can be understood with the following facts: It is

known that the Kerr geometry displays superradiance [4]. This means that in a scattering

experiment of a wave with frequency ω < m­ (m is again the azimuthal wave quantum

number) the scattered wave will have a larger amplitude than the incident wave, the ex-

cess energy being withdrawn from the object’s rotational energy. Now suppose that one

encloses the rotating black hole inside a spherical mirror. Any initial perturbation will get

successively ampli¯ed near the black hole event horizon and re°ected back at the mirror,

thus creating an instability. This is the black hole bomb, as devised in [5] and recently

improved in [6]. This instability is caused by the mirror, which is an arti¯cial wall, but

one can devise natural mirrors if one considers massive ¯elds [7, 8]. Imagine a wavepacket

of the massive ¯eld in a distant circular orbit. The gravitational force binds the ¯eld and

keeps it from escaping or radiating away to in¯nity. But at the event horizon some of the

¯eld goes down the black hole, and if the frequency of the ¯eld is in the superradiant region

then the ¯eld is ampli¯ed. Hence the ¯eld is ampli¯ed at the event horizon while being

bound away from in¯nity. Yet another way to understand this, is to think in terms of wave

propagation in an e®ective potential. If the e®ective potential has a well, then waves get

“trapped” in the well and ampli¯ed by superradiance, thus triggering an instability. In

the case of massive ¯elds on a (four-dimensional) Kerr background, the e®ective potential

indeed has a well. Consequently, the massive ¯eld grows exponentially and is unstable. It

is the presence of a bound state that simulates the mirror, and without a bound state we

should never get an instability.

Now, consider for example the following rotating black-brane geometry

ds2 = ds2
Kerr + dxidxi , (1.1)

where Kerr stands for the usual Kerr geometry. It’s a known property, and we will show it

explicitly, that the propagation of a massless ¯eld (scalar, electromagnetic, or gravitational)

in this black-brane geometry, is equivalent to the propagation of a massive ¯eld in the

vicinity of the Kerr black hole. Thus, the particular black brane (1.1) is unstable.

– 2 –
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The instability argument applies to many rotating extended objects, and here we shall

study some of them, making an extensive analysis of the d¡dimensional case (1.1). We

show that for d = 4 they are unstable, and we present detailed results on the stability. For

d > 4 the black branes described by

ds2 = ds2
Kerrd

+ dxidxi , (1.2)

are stable, where Kerrd is the Myers-Perry [9] rotating black hole. This is due to the

non-existence of stable bound orbits for massive particles or, in terms of wave propagation,

there is no well in the e®ective potential for these systems. To conclude, we show that one

can mimic this instability in the laboratory using analogue acoustic black branes.

2. Rotating Kerr-like black branes

In this section we study in detail the black branes of the form (1.2). In higher dimen-

sions there are several choices for rotation axes of the Myers-Perry solution (labeled Kerrd

in (1.2)) and there is a multitude of angular momentum parameters, each referring to a

particular rotation axis [9]. We shall concentrate on the simplest case, for which there is

only one angular momentum parameter, denoted by a.

2.1 Formalism

In Boyer-Lindquist-type coordinates the black branes we study in this section are de-

scribed by

ds2 = ¡¢¡ a2 sin2 µ

§
dt2 ¡ 2a(r2 + a2 ¡¢) sin2 µ

§
dtdϕ+

+
(r2 + a2)2 ¡¢a2 sin2 µ

§
sin2 µdϕ2 +

+
§

¢
dr2 + §dµ2 + r2 cos2 µd­2

n + dxidxi , (2.1)

where

§ = r2 + a2 cos2 µ , ¢ = r2 + a2 ¡Mr1¡n , (2.2)

and d­2
n denotes the standard metric of the unit n-sphere (n = d ¡ 4), the xi are the

coordinates of the compact dimensions, and i runs from 1 to p. This metric describes a

rotating black brane in an asymptotically °at, vacuum space-time with mass and angular

momentum proportional to M and Ma, respectively. Hereafter, M,a > 0 are assumed.

The event horizon, homeomorphic to S2+n, is located at r = r+, such that ¢|r=r+ = 0.

For n = 0, an event horizon exists only for a < M/2. When n = 1, an event horizon exists

only when a <
√
M , and the event horizon shrinks to zero-area in the extreme limit

a →
√
M . On the other hand, when n ¸ 2 , ¢ = 0 has exactly one positive root for

arbitrary a > 0. This means there is no bound on a, and thus there are no extreme Kerr

black branes in higher dimensions.

– 3 –



J
H
E
P
0
7
(
2
0
0
5
)
0
0
9

Consider now the evolution of a massless scalar ¯eld ª in the background described

by (2.1). The evolution is governed by the curved space Klein-Gordon equation

∂

∂xµ

(√¡g gµν ∂

∂xν
ª

)
= 0 , (2.3)

where g is the determinant of the metric. We can simplify considerably equation (2.3) if

we separate the angular variables from the radial and time variables, as is done in four

dimensions [10]. This separation was accomplished, for higher dimensions, in [11] for ¯ve

dimensional Kerr holes and also in [12] for a general 4 + n-dimensional Kerr hole. Since

we are considering only one angular momentum parameter, the separation is somewhat

simpli¯ed, and we can follow [13]. In the end our results agree with the results in [11, 12]

with only one angular momentum parameter in their equations.

We consider the ansatz Á = e¡iωt+imϕ+iµixiR(r)S(µ)Y (­), and substitute this form

in (2.3), where Y (­) are hyperspherical harmonics on the n-sphere, with eigenvalues given

by ¡j(j + n¡ 1) (j = 0, 1, 2, ¢ ¢ ¢ ). Then we obtain the separated equations

1

sin µ cosn µ

(
d

dµ
sin µ cosn µ

dS

dµ

)
+

+
[
a2(ω2 ¡ ¹2) cos2 µ ¡m2 csc2 µ ¡ j(j + n¡ 1) sec2 µ +A

]
S = 0 , (2.4)

and

r¡n
d

dr

(
rn¢

dR

dr

)
+

{[
ω(r2 + a2)¡ma

]2

¢
¡j(j + n¡ 1)a2

r2
¡ ¸¡ ¹2r2

}
R = 0 , (2.5)

where A is a constant of separation, ¸ := A ¡ 2mωa + ω2a2, and ¹2 =
∑
¹2
i . Interest-

ingly, note the important point that Equations (2.4)-(2.5) are just those that describe the

evolution of a massive scalar ¯eld, with mass ¹, in a d¡dimensional Kerr geometry.

The equations (2.4) and (2.5) must be supplemented by appropriate boundary condi-

tions, which are given by

R »
{

(r ¡ r+)¡iσ as r → r+ ,

r¡(n+2)/2ei
√
ω2¡µ2r as r →∞ ,

(2.6)

with

¾ ´
[
(r2

+ + a2)ω ¡ma
]
r+

(n¡ 1)(r2
+ + a2) + 2r2

+

. (2.7)

In other words, the waves must be purely ingoing at the horizon and purely outgoing at

the in¯nity. For assigned values of the rotational parameter a and of the angular indices

l , j ,m there is a discrete (and in¯nite) set of frequencies called quasinormal frequencies,

QN frequencies or ωQN , satisfying the wave equation (2.5) with the boundary conditions

just speci¯ed by eq. (2.6). Since the time-dependence of the mode is e¡iωt, unstable modes

will have frequencies with a positive imaginary part, and thus grow exponentially with

time.

– 4 –
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2.2 The physical nature of the instability

The equations presented in the previous section are amenable to numerical calculations

(infra), but don’t o®er much physical insight into the physics. To gain some more intuition,

and understand why we expected an instability to be triggered, we ¯nd it convenient to

make instead the following change of variables, following Furuhashi and Nambu [8]:

R = r¡n/2¡1ª , (2.8)

in which case the wave equation (2.5) is transformed into

d2ª

dz2¤
¡ Vª = 0 . (2.9)

Here, we have de¯ned the modi¯ed tortoise coordinate z¤ as dr
dz∗ = ¢

r2 . (Note that the usual

de¯nition of the tortoise coordinate r¤ is dr/dr¤ = ¢/(r2 + a2)).

The e®ective potential V is equal to

¡V =
1

r2

(
¡ ¸¡ a2¹2 ¡ n

2
¡ n2

4
¡ 2amω + 2a2ω2

)
+

+
a2

r4
(a2ω2 ¡ 2amω ¡ n2

2
¡ jn+m2 ¡ ¸¡ j2 + j + 2) +

+
a4

r6

(
2 + j ¡ j2 +

n

2
¡ nj ¡ n2

4

)
+
¹2M

rn+1
+

M

rn+3

(
¸¡ 1¡ n

2

)
+

+
M2

rn+4

(
1 + n+

n2

4

)
+
Ma2

rn+5

(
j2 ¡ j ¡ 3 + jn+

3n

2

)
+ ω2 ¡ ¹2 . (2.10)

Upon close inspection, this potential has two key ingredients which can trigger the

instability: superradiant ampli¯cation of scattered waves and the existence of bound states.

We shall brie°y explore and describe these features in what follows.

2.2.1 Superradiant scattering

In a scattering experiment (with ω > ¹ so that plane waves at in¯nity are possible),

equation (2.9) has the following asymptotic behavior:

ª1 »
{
T (r ¡ r+)¡iσ as r → r+ ,

Rei
√
ω2¡µ2r + e¡i

√
ω2¡µ2r as r →∞ .

(2.11)

where ¾ was de¯ned in the previous section, equation (2.7).

These boundary conditions correspond to an incident wave of unit amplitude from

+∞ giving rise to a re°ected wave of amplitude R going back to +∞ and a transmitted

wave of amplitude T at ¡∞ (as before, the boundary conditions we impose do not allow for

waves emerging from the horizon). Since the potential is real, the complex conjugate of the

solution ª1 satisfying the boundary conditions (2.11) will satisfy the complex-conjugate

boundary conditions:

ª2 »
{
T ¤(r ¡ r+)iσ as r → r+ ,

R¤e¡i
√
ω2¡µ2r + ei

√
ω2¡µ2r as r →∞ .

(2.12)

– 5 –
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Now, these two solutions are linearly independent, and standard theory of ODE tells us

that their wronskian is a constant (independent of r). If we evaluate the wronskian near

the horizon, we get

W = ¡2i¾A|T |2 (2.13)

where the constant A is de¯ned by

A =
¢

r2(r ¡ r+)
, r → r+ , (2.14)

and is positive de¯nite. Evaluating the wronskian at in¯nity we get

W = 2i
√
ω2 ¡ ¹2(|R|2 ¡ 1) . (2.15)

Equating the two we get

|R|2 = 1¡ ¾A√
ω2 ¡ ¹2

|T |2 . (2.16)

Now, in general |R|2 is less than unity, as is to be expected. However, for

ω ¡ ma

r2
+ + a2

< 0 , (2.17)

we have that ¾ is negative, and therefore in this regime (which will be referred to as the

superradiant regime) |R|2 > 1. This means that one gets back more than one threw in. Of

course the excess energy comes from the hole’s rotational energy, which therefore decreases.

As a ¯nal remark, we notice that we have been assuming without loss of generality ω > 0,

and thus superradiance only exists for m > 0, which are modes co-rotating with the black

hole.

2.2.2 The potential well

The e®ective potential in four dimensions, d = 4, as given by (2.10) is plotted in ¯gure 1, for

a » 0.5 (in units of M), ¹ = 0.7 and ω = 0.6878. As can be seen from ¯gure 1 the potential

has, in the four-dimensional situation, two extremum between the event horizon and spatial

in¯nity. The local minimum creates a “well”-like structure, which will be so important to

trigger the instability. The potential is asymptotic to (¹2 ¡ ω2) at spatial in¯nity. That a

well must necessarily arise in four dimensions can be seen from the asymptotic nature of

the potential. In fact, for n = 0 and for large r, the potential in (2.10) behaves as

V » ¹2 ¡ ω2 ¡ ¹2Mr¡1 , r →∞ , n = 0 . (2.18)

Thus, the derivative is V ′ » µ2M
r2 , which is positive. Thus a well necessarily arises.

The instability can now be easily explained: the waves get “trapped” inside the po-

tential well and ampli¯ed by superradiance. Thus, an exponential growth of any initial

perturbation is inevitable, and therefore an instability arises. This simple picture is accu-

rate enough that it will allow us to predict if and when an instability is triggered.

– 6 –
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Figure 1: A typical form for the effective potential, here shown for l = m = 1 modes. We have

set M = 1, so the rotation parameter a varies between 0 (Schwarzschild limit) and 1/2 (extremal

limit). Here we plot the effective potential for the near extreme situation, a ∼ 0.5 and for µ = 0.7

and ω = 0.6878.

2.3 The numerical search technique

The problem we have to solve numerically is a simple boundary value problem of a second-

order ordinary di®erential equation. However, this is not easy to solve with the usual

techniques of direct integration, because of di±culties related to the absence of incoming

radiation at the boundaries [14]. A standard technique to overcome the di±culties is the

so-called Leaver’s method [14], which we employ in this paper. In fact, this seems to be

the ¯rst attempt at trying to ¯nd instabilities using this method, and it works well, as we

shall see. In what follows, we shall describe the four dimensional (n = 0) case thoroughly,

for concreteness. The method is easily adapted to any number of dimensions n, but the

equations get much lengthier, so we refrain from presenting them here. We pick units

such that M = 1. First, let us consider the radial equation. Following Leaver, the radial

function R can be expanded around the horizon as

R = (r ¡ r+)¡iσ(r ¡ r¡)¡1+iσ+iµ2(2ω1)−1+iω1eiω1r
∞∑

k=0

bk

(
r ¡ r+

r ¡ r¡

)k
, (2.19)

where ¾ and ω1 are de¯ned by

¾ =
(r2

+ + a2)ω ¡ma
a2 + 3r2

+

r+ , ω1 =
√
ω2 ¡ ¹2 . (2.20)

Here, b0 is taken to be b0 = 1, and r+ and r¡ are, respectively, the coordinate radius of the

event and the Cauchy horizon of the Kerr black hole, given by r§ = (1 § b)/2, where b =

(1¡4a2)1/2. Note that the branch of
√
z has been chosen such that ¡¼/2 < arg

√
z · ¼/2.

The expansion coe±cients bk in equation (2.19) are determined via the ¯ve-term recurrence

relation, given by

®0b1 + ¯0b0 = 0 , ®1b2 + ¯1b1 + °1b0 = 0 , ®2b3 + ¯2b2 + °2b1 + ±2b0 = 0 ,

– 7 –
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®kbk+1 + ¯kbk + °kbk¡1 + ±kbk¡2 + ²kbk¡3 = 0 , k = 3, 4, 5, . . . , (2.21)

where

®k = (1 + k)(1 + k + h0) , ¯k = ¡4k2 + h1k + o1 , °k = 6k2 + h2k + o2 ,

±k = ¡4k2 + h3k + o3 , ²k = k2 + h4k + o4 . (2.22)

Here, the coe±cients appearing in equation (2.22) are given by

h0 = ¡ib¡1{¡2am+ ω(1 + b)} ,
h1 = ¡2¡ 8iamb¡1 + i{4ωb¡1(1 + b) + ¹2ω¡1

1 + 2ω1(1 + b)} ,
h2 = ¡i(bω1)¡1[6ω1(ω ¡ 2am) + 4b2ω2

1 + 3b{¹2 + 2ω1(ω + ω1 ¡ i)}] ,
h3 = 10¡ 8iamb¡1 + i{4ω(1 + b¡1) + 3¹2ω¡1

1 + 2ω1(3 + b)} ,
h4 = ¡i(bω1)¡1[ω1(ω ¡ 2am) + b{¹2 + ω1(ω + 2ω1 ¡ 4i)}] , (2.23)

and

o1 = (4bω2
1)¡1

[
b3ω4

1 + 2(2am¡ ω){¡2ω2(i+ ω + ω1) + ¹2(2i + 2ω + ω1)} ¡
¡ 2b2ω2

1{¹2 ¡ 2(ω2 + iω1(i+ ω))}+

+ b{¹4 + ¹2(4 + 4Alm ¡ 4iω ¡ 8ω2 ¡ 2iω1 + 8amω1 ¡ 6ωω1)

+ ω2(¡4¡ 4Alm + 4iω + 7ω2 + 4iω1 ¡ 8amω1 + 8ωω1)}
]
,

o2 = (4bω2
1)¡1

[
¡ 2b3ω4

1 ¡ 4b2{¹4 ¡ ¹2(3ω2 + 2iω1 + 2ωω1) +

+ 2(ω4 + iω2ω1 + ω3ω1 ¡ 2iω3
1)} ¡

¡ 6(2am¡ ω){¹2(2i+ 2ω + ω1)¡ 2(ω3 ¡ 2iω2
1 + ω2(i+ ω1))} +

+ b{¡3¹4 ¡ 2¹2(6 + 4Alm ¡ 6iω ¡ 10ω2 ¡ 10iω1 + 8amω1 ¡ 7ωω1) +

+ 2(¡9ω4 + 12iωω2
1 + 12iω3

1 ¡ 2ω3(3i + 5ω1) +

+ ω2(6 + 4Alm ¡ 8iω1 + 8amω1))}
]
,

o3 = (4bω2
1)¡1[b3ω4

1 + b{3¹4 + 15ω4 ¡ 32iωω2
1 ¡ 16ω2

1(1 + 3iω1) + 4ω3(3i+ 4ω1)¡
¡ 4ω2(3 +Alm ¡ 5iω1 + 2amω1) +

+ 2¹2(6 + 2Alm ¡ 6iω ¡ 8ω2 ¡ 17iω1 + 4amω1 ¡ 5ωω1)}+

+ 2b2{¹4 ¡ ¹2(3ω2 + 2iω1 + 2ωω1) + 2(ω4 + iω2ω1 + ω3ω1 ¡ 4iω3
1)}+

+ 2(2am¡ ω){3¹2(2i+ 2ω + ω1)¡ 2(3ω3 ¡ 8iω2
1 + 3ω2(i+ ω1))}

]
,

o4 = (4bω2
1)¡1

[
¡ 2(2am¡ ω){¹2(2i+ 2ω + ω1)¡ 2(ω3 ¡ 3iω2

1 + ω2(i+ ω1))}+

+ b{¡¹4 ¡ 4(ω4 + ω2(¡1 + 2iω1)¡ 3iωω2
1 ¡ 3ω2

1(1 + 2iω1) +

+ ω3(i+ ω1)) + 2¹2(¡2 + 2ω2 + 8iω1 + ω(2i+ ω1))}
]
, (2.24)

Using gaussian elimination twice, one can reduce the ¯ve-term recurrence relations (2.21)

to three-term recurrence relations, which can be written as

®′0b1 + ¯′0b0 = 0 , ®′kbk+1 + ¯′kbk + °′kbk¡1 , k = 1, 2, . . . (2.25)

– 8 –
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Since the gaussian elimination is straightforward, we do not show an explicit procedure

for the gaussian elimination (see, e.g., [15]). An eigenfunction satisfying the quasinormal

mode boundary conditions behaves at the event horizon and in¯nity as

ª »
{

(r ¡ r+)¡iσ as r→ r+ ,

r¡1+iµ2(2ω1)−1+iω1eiω1r as r→∞ .
(2.26)

Therefore, one can see that the expanded wave function (2.19) satis¯es the quasinormal

mode boundary conditions if the expansion in (2.19) converges at spatial in¯nity. This

convergence condition for the expansion (2.19), namely the quasinormal mode conditions,

can be written in terms of the continued fraction as [16, 14]

¯′0 ¡
®′0°

′
1

¯′1¡
®′1°

′
2

¯′2¡
®′2°

′
3

¯′3¡
¢ ¢ ¢ ´ ¯′0 ¡

®′0°
′
1

¯′1 ¡
α′1γ
′
2

β′2¡
α′

2
γ′
3

β′3−···

= 0 , (2.27)

where the ¯rst equality is a notational de¯nition commonly used in the literature for in¯nite

continued fractions. Here, we shall adopt this convention.

Next, we turn ourself to the angular equation. In order to determine the separation

constant Alm, a similar technique to that used for the radial equation can be applied.

Imposing regularity on the symmetry axis, we can expand the angular function as

S = eaω1u(1¡ u2)
|m|
2

∞∑

k=0

dk(1 + u)k , (2.28)

where u = cos µ, and d0 = 1. The expansion coe±cients dk in equation (2.28) are deter-

mined via the three-term recurrence relation, given by

®̃0d1 + ˜̄
0d0 = 0 , ®̃kdk+1 + ˜̄

kdk + °̃kdk¡1 = 0 , k = 1, 2, 3, . . . , (2.29)

where

®̃k = ¡2(1 + k)(k + |m|+ 1) ,

˜̄
k = k(k ¡ 1) + 2k(|m|+ 1¡ 2aω1)¡ (2aω1 ¡ |m|)(|m|+ 1)¡ (a2ω2

1 +Alm) ,

°̃k = 2aω1(k + |m|) . (2.30)

Note that in the four dimensional case, we have to set j = 0 in equations (2.5) and (2.6).

If the expansion in equation (2.28) converges for ¡1 · u · 1, the angular function satis¯es

the regularity conditions at u = §1. This condition is equivalent to the continued fraction

equation, given by [16, 14]

˜̄
0 ¡

®̃0°̃1

˜̄
1¡

®̃1°̃2

˜̄
2¡

®̃2°̃3

˜̄
3¡
¢ ¢ ¢ = 0 , (2.31)

Now that we have two continued fraction equations of the frequency ω and the sepa-

ration constant Alm (2.27) and (2.31), we can obtain the frequency ω and the separation

constant Alm solving equations (2.27) and (2.31) simultaneously. These coupled algebraic

equations (2.27) and (2.31) can be solved numerically (see, e.g., [17, 18]).
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Figure 2: Details for the instability in the four dimensional case. We have set M = 1, so the

rotation parameter a varies between 0 (Schwarzschild limit) and 1/2 (extremal limit). In the left

panel we plot the imaginary part of the unstable modes as a function of a for nine values of µ,

and for l = m = 1. The same quantities are plotted in the right panel, but now we focus on the

maximum instability region, for values of µ near unity. The instability is stronger for larger values

of a and for µ ∼ 1. In fact, our results suggest that the imaginary part of the unstable modes

attains its maximum value, 10−6 × Re[ω] for µ = 0.9 and a = 0.497. Notice finally that as one

decreases a (going right on the x axis in the left panel), there is a critical a below which there is no

instability. Although there are an infinity of unstable modes, we only show here the most unstable

one.

2.4 The instability for the d = 4 case

Some numerical results for d = 4 were given by Furuhashi and Nambu [8] and also by

Strafuss and Khanna [8], in the context of massive ¯eld instability of the Kerr metric which

as we saw, translate immediately to our situation. Nevertheless, we have performed an

independent extensive numerical search, which allow us to have a more complete picture and

understanding of the situation. Our numerical results were obtained using the technique

just described supra, and are summarized in ¯gures 2–3. There is more than one frequency

with a positive imaginary part, corresponding to unstable modes. We only show the most

relevant one which is the one having a larger imaginary part, and therefore corresponds to

the most unstable mode.

In ¯gure 2 we plot the imaginary part of the (unstable) mode as a function of a for

several values of ¹ and for l = m = 1. The instability timescale is given by ¿ » 1
Im[ω] . We

can see that:

(i) The instability gets stronger (the typical timescale decreases) as the rotation a in-

creases. This is expected, since we know that the superradiant ampli¯cation gets

stronger as a increases [6, 19].

(ii) The instability also gets stronger as ¹ increases. This has a very simple explanation:

the depth of the potential well in ¯gure 1 is larger for larger values of ¹, and therefore

– 10 –
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Figure 3: More details of the instability in the four dimensional case. Here we plot the superradiant

factor Re[ω]− ma
a2+r2

+
as a function of a for l = m = 1 and for several values of µ. Again, we have set

M = 1 and so the superradiant factor is, in four dimensions, Re[ω]− ma
r+

. the instability disappears

for a below a certain critical point, which is given by setting the superradiant factor to zero. On

the right panel we make the same plot but on a logarithmic scale, for better visualization. Notice

that the superradiant factor is negative, as it should for the instability to be triggered.

the waves get more e±ciently trapped. Our results suggest that the imaginary part of

the unstable modes attains its maximum value, 10¡6 £Re[ω] for l = m = 1, ¹ = 0.9

and a = 0.497.

(iii) For a ¯xed ¹ and as one decreases a the unstable modes disappear below a certain

critical value of a. This is because the superradiance condition Re[ω]¡ ma
a2+r2

+
< 0 is

not satis¯ed for very low rotation parameter a. This is best seen in ¯gure 3.

In ¯gure 3 we plot the real part of the (unstable) mode as a function of a for several

values of ¹ and for l = m = 1. Two important features are the following:

(i) As shown in both plots of ¯gure 3, the superradiant factor Re[ω]¡ ma
a2+r2

+
is negative,

and one is therefore in the superradiant regime. Thus, this is indeed a superradiant

instability.

(ii) The instability occurs only for ω < ¹. Otherwise, the waves would not be trapped

in the potential well, but they would rather escape to in¯nity, and the perturbation

would be damped.

Detweiler [8] ¯nds (in four dimensions), in the limit of small ¹, that the characteristic

frequencies of the unstable modes are, in our units,

ω » ¹+ i¹
a

M

(¹M)8

3072
. (2.32)

Our numerical results ¯t this prediction very well. For near-extremal black holes, and

¹ » 0.1 Detweiler’s formula (2.32) predicts ω » 0.1 + 10¡13i, which checks very well with

our numerics (see ¯gure 2 and 3).
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Although of no direct interest for this work, we found also stable modes. Our results

for stable modes will be published elsewhere [22], and compared with the existing analytical

ones [23].

2.5 No instability for higher dimensional rotating Kerr-like black branes

We have also performed a numerical search for the instability in the d = 5 , 6 , 7 case. We

found no trace of unstable modes, and we justify this in a rigorous analysis presented in

appendix A. We now turn to explain why higher dimensional Kerr-like branes should be

stable against this particular mechanism.

We saw that the instability arises because of superradiantly ampli¯ed trapped modes,

in the potential well. But does a well exist for general d? It doesn’t, and to understand

this, we have to look at the asymptotic behavior of the e®ective potential (2.10). If the

derivative of this potential is positive near spatial in¯nity, we are guaranteed to have a well,

and therefore an instability. If the derivative is negative, the modes should all be stable.

Near in¯nity, the dominant terms in the e®ective potential (2.10) are

V ′ » ¡ 2

r3

(
Alm + a2¹2 +

n

2
+
n2

4
¡ a2ω2

)
+ (n+ 1)¹2Mr¡2¡n , (2.33)

where we have already substituted for the separation constant ¸ = Alm ¡ 2amω + a2ω2.

It is immediately apparent that the four dimensional case is a special one: if n = 0, the

dominant term in the derivative is (n + 1)¹2Mr¡2¡n, which is positive and we therefore

are guaranteed to have a bound state. Thus, this case should be unstable, and it is, as we

just described in the previous subsection.

When n > 0 the other terms dominate. In fact, for n > 1 they are positive. For n > 1

the dominant terms are

V ′ » ¡ 2

r3

(
Alm + a2¹2 +

n

2
+
n2

4
¡ a2ω2

)
. (2.34)

Since ω < ¹, this is negative (the separation constant Alm can be shown to be positive).

Thus, for d > 5 there is no potential well, no bound states and therefore no instability,

even though there is still superradiance. The situation for n = 1 is not as clear, because

there is the extra term (n + 1)¹2Mr¡2¡n. In principle it should be possible to have, for

certain very speci¯c parameters, a potential well. But to do that, one would have to require

that ¹ be very large, and this makes it very hard to study the problem numerically (the

imaginary part is expected to be extremely small in this regime, as shown by Zouros and

Eardley [8], and this prevents any numerical treatment).

There is another, perhaps more physical, explanation of the fact that higher dimen-

sional rotating black branes should be stable. We know that the a massless ¯eld propagating

in the background of these rotating black branes is equivalent to a massive ¯eld propagating

in the background of a Myers-Perry black hole. Imagine now a wavepacket of the massive

¯eld in a distant circular orbit. In the four-dimensional situation, the gravitational force

binds the ¯eld and keeps it from escaping or radiating away to in¯nity. But at the event

horizon some of the ¯eld goes down the black hole, and if the frequency of the ¯eld is in
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the superradiant region then the ¯eld is ampli¯ed. Hence the ¯eld is ampli¯ed at the event

horizon while being bound away from in¯nity. We should thus have an instability, as we

do. However, for d > 4, there are no stable orbits,1 and thus the ¯eld escapes to in¯nity,

no instability is triggered. This complements the previous view point. Escaping to in¯nity

is equivalent to not having a potential well to bound the ¯eld.

3. Acoustic black branes

In 1981 Unruh [24] introduced the notion of “dumb holes”, which is an example of analogue

black holes. While not carrying information about Einstein’s equations, the analogue black

holes devised by Unruh do have a very important feature that de¯nes black holes: the

existence of an event horizon. The basic idea behind these analogue acoustic black holes

is very simple: consider a °uid moving with a space-dependent velocity, for example water

°owing throw a variable-section tube. Suppose the water °ows in the direction where the

tube gets narrower. Then the °uid velocity increases downstream, and there will be a point

where the °uid velocity exceeds the local sound velocity, in a certain frame. At this point,

in that frame, we get the equivalent of an apparent horizon for sound waves. In fact, no

(sonic) information generated downstream of this point can ever reach upstream (for the

velocity of any perturbation is always directed downstream, as a simple velocity addition

shows). This is the acoustic analogue of a black hole, or a dumb hole. We refer the reader

to [25] for a review of these objects.

3.1 The wave equation for a general space-dependent density

We can also model acoustic black branes easily, and we can thus look for the instability dealt

with here in the laboratory. For simplicity, let us consider the following black brane. First

build a 2+1 dimensional acoustic black hole [25], modelling a draining bathtub. Consider a

°uid having (background) density ½(x). Assume the °uid to be locally irrotational (vorticity

free), barotropic and inviscid. From the equation of continuity, the radial component of

the °uid velocity satis¯es ½vr » 1/r. Irrotationality implies that the tangential component

of the velocity satis¯es vθ » 1/r. We shall keep both ½ and the sound velocity c as

position-dependent quantities, thus generalizing the treatment in [25, 26]. We then have

vr =
A

½r
, vθ =

B

r
, (3.1)

where A , B are constants. The acoustic metric describing the propagation of sound waves

in this “draining bathtub” °uid °ow is [25]:

ds2 = ¡
(
c2 ¡ A2/½2 +B2

r2

)
dt2 +

2A

½r
drdt¡ 2BdÁdt+ dr2 + r2dÁ2 . (3.2)

1Tangherlini [20], who discovered the higher dimensional Schwarzschild solution, also proved there are

no stable circular geodesics in these spacetimes for d > 4. There is, to our knowledge, no proof of this

statement for higher dimensional Kerr black holes, but it was shown in [21] that the five-dimensional Kerr

solution doesn’t have stable circular geodesics, along the equatorial plane. It seems very likely that stable

orbits do not exist in the general case.
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It is however better to work with a more transparent metric. Some physical properties of

this draining bathtub metric are more apparent if we cast the metric in a Kerr-like form

performing the following coordinate transformation (see [26, 27]):

dt → dt̃ = dt¡ Ar/½

r2c2 ¡A2/½2
dr (3.3)

dÁ → dÁ̃ = dÁ¡ BA/½

r(r2c2 ¡A2/½2)
dr , (3.4)

Then the e®ective metric takes the form

ds2 = ¡
(

1¡ A2/½2 +B2

c2r2

)
c2dt̃2 +

(
1¡ A2

½2c2r2

)¡1

dr2 ¡ 2BdÁ̃dt̃+ r2dÁ̃2 . (3.5)

As explained in [26], this metric and the Kerr metric di®er in an important aspect, in that

whereas the rotation for the Kerr black hole is bounded from above, here it is not, at least

in principle. Thus, B could be as large as desired.

Now, we are free to add an extra dimension z to this e®ective geometry, as explained

by Visser [25], resulting in the following black brane geometry

ds2 = ¡
(

1¡ A2/½2 +B2

c2r2

)
c2dt̃2 +

(
1¡ A2

½2c2r2

)¡1

dr2 ¡ 2BdÁ̃dt̃+ r2dÁ̃2 + dz2 . (3.6)

The propagation of a sound wave in a barotropic inviscid °uid with irrotational °ow, which

is assumed to be the case, is described by the Klein-Gordon equation ∇µ∇µ© = 0 for a

massless ¯eld ª in a lorentzian acoustic geometry. Separating variables by the substitution

©(t̃, r, Á̃) =
√
rª(r)ei(µz+mφ̃¡ωt̃) , (3.7)

implies that ª(r) obeys the wave equation

d2ª

dr2¤
+

(
(ω ¡ Bm

r2
)2 ¡ V

)
ª = 0 . (3.8)

Here

V = f

(
¹2c+

4m2c¡ c
4r2

+
5A2

4cr4½2
+
c′

2r
+

A2

2cr3½2
(
c′

c
+

2½′

½
)

)
, (3.9)

and the tortoise coordinate r¤ is de¯ned as

dr

dr¤
= c(1 ¡ A2

c2½2r2
) ´ f . (3.10)

Notice that for constant ½ , c one recovers the equations in [26, 27], as one should. Now, it

is quite easy to present an example of background °ow for which the instability is triggered:

take for instance a °ow for which ½ is almost constant at in¯nity (almost means that it

asymptotes to a constant value more rapidly than the sound velocity). Assume also that,

near in¯nity, c = c1 + c2
r . Then, we get that near in¯nity the e®ective potential behaves as

2c1c2k
2

r
. (3.11)
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For this to have a positive derivative, one requires c2 < 0 (c1 must be positive, as it is

the asymptotic value of the sound velocity). We thus have one example of °ow for which

the instability is active. There are many others, of course, and there are also instances

for which the system is stable. But the important point here, is that we can build this

e®ective geometry in the lab, and thus observe this instability.

4. The endpoint of the instability

We have shown that many rotating black objects are unstable against the instability dis-

played here. We have also shown that, for a ¯xed mass term ¹, the instability disappears for

a rotation parameter a below a certain value, for which the superradiant factor Re[ω]¡ ma
a2+r2

+

is zero. Now, as the unstable mode grows, rotational energy is being extracted from the

black brane, and thus its rotation decreases (the same phenomenon happens for the black

hole bomb [6]). This means that eventually the instability stops growing, when the rotation

is in the critical point, for which the superradiant factor is zero. It looks very tempting and

reasonable to assume that the system will settle down to a low-rotation black brane plus

some radiation around it. Eventually, all this radiation will escape to in¯nity. The total

angular momentum of the system is conserved, so this radiation carries the extra angular

momentum. This is also clear from the fact that only co-rotating modes are unstable. This

is one possibility. But bearing in mind that these are bound modes, it seems plausible

that one other thing could happen, before the radiation escapes to in¯nity: since we are

dealing with higher dimensional objects, the end product could be an object with two or

more components for the angular momentum, that is to say, there could be a transfer of

angular momentum from one dimension to the other.

5. Conclusions

We have shown that there is a large class of extended rotating black objects which are

unstable against massless ¯eld perturbations. The instability is caused by superradiant

ampli¯cation of waves trapped inside the potential well, or from a di®erent view-point, it

is caused by superradiant ampli¯cation of wave packets bound by the gravitational force.

This mechanism is very similar to other superradiant mechanisms in the presence of black

holes [5, 6, 8], or other rotating objects such as stars [28]. The important point here is

that the extra dimensions work as an e®ective mass for any massless ¯eld. Thus, the

evolution of a massless scalar ¯eld in, for example, the black brane (1.2) is equivalent to

the evolution of a massive ¯eld in the background of a Myers-Perry rotating black hole.

In four dimensions, the black hole displays superradiance and has bound states due to the

mass term, thus the geometry is unstable. In higher dimensions, the spacetimes dealt with

here have no stable circular geodesics (the mass term does not give rise to a potential well

in the wave description) and therefore these spacetimes are stable. This simple reasoning

implies that general four dimensional extended rotating black objects (more general than

the one described by (1.1)) will be unstable. It also seems to imply that general higher

dimensional rotating black objects are stable. Moreover, following Zel’dovich [4], it is
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known that not only the Kerr geometry, but any rotating absorbing body for that matter

displays superradiance. Thus, this instability appears also in analogue black hole models,

as we have shown.

Here, we have derived the instability timescale for a scalar ¯eld, and not for geometry

(metric) perturbations, since Teukolsky’s formalism for higher dimensional rotating objects

is still not available. Still, the argument presented above makes it clear that the instability

should be present for metric perturbations as well. Indeed, the presence of the potential

well, in four dimensions, is due only to the mass term, and not to the geometry proper-

ties themselves, and since metric modes also scatter superradiantly [19] then everything

we discussed here translates immediately to metric perturbations. We also expect that

the instability will be stronger for metric modes, because of the following simple reason-

ing. Superradiance is responsible for this instability, and thus the larger the superradiant

e®ects, the stronger the instability. Now, we know that in the four dimensional Kerr geom-

etry scalar ¯elds have a maximum superradiant ampli¯cation factor of about 2%, whereas

gravitational modes have maximum superradiant ampli¯cation factor of about 138% [19].

Thus, we expect the instability timescale to be almost two orders of magnitude smaller

for gravitational modes, which means that the instability is two orders of magnitude more

e®ective for metric modes. For general black branes, the Gregory-La°amme instability

seems to be stronger than the one displayed here, but it is known that certain extremal

solutions should not exhibit the Gregory-La°amme instability [29], whereas the instabil-

ity dealt with here should go all the way to extremality. So eventually it takes over the

Gregory-La°amme instability. Moreover, recent studies [30] seem to indicate that black

strings in a Randall-Sundrum inspired 2-brane model do not exhibit the Gregory-La°amme

instability, but they should be unstable against this mechanism.

It seems plausible to assume that the instability will keep growing until the energy and

angular momentum content of the ¯eld approaches that of the black brane, when back-

reaction e®ects become important. The rotating brane will then begin to spin down, and

gravitational and scalar radiation goes o® to in¯nity carrying energy and angular momen-

tum. The system will probably be asymptotic to a static, or very slowly rotating, ¯nal state

consisting of a non-rotating black p-brane and some outgoing radiation at in¯nity. The end

product could also be an object with two or more components for the angular momentum,

that is to say, there could be a transfer of angular momentum from one dimension to the

other.
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A. Factorized potential analysis

We now present a full description of our search for bound states in general (4 + n)-

dimensions. We conclude that no unstable bound states exist for n ¸ 5. The massive

scalar ¯eld equation in 4+n dimensional spacetime is given by

¢r¡n
d

dr

(
¢rn

dR

dr

)
+ V0R = 0 , (A.1)

where V0 is the e®ective potential, given by

V0 = {ω(r2 + a2)¡ am}2 ¡¢

{
¹2r2 +Alm ¡ 2mωa+ ω2a2 +

j(j + n¡ 1)a2

r2

}
. (A.2)

For simplicity, let us assume Alm to be Alm = l(l + 1). Note that this assumption is only

valid in the limit of a2(ω2 ¡ ¹2) → 0. Introducing a new variable r¤ and a normalized

function ©, de¯ned as

dr¤ =
r2 + a2

¢
dr , R = {(r2 + a2)rn}¡ 1

2 © , (A.3)

we can reduce equation (A.2) to
d2©

dr2¤
+ V © = 0 , (A.4)

where

V =
V0

(r2 + a2)2
¡G2 ¡ dG

dr¤
, G =

d

dr¤
log[(r2 + a2)rn]

1
2 . (A.5)

Since V is, due to the simpli¯ed Alm, a quadratic function of ω, it can be factorized as

V = ®(ω ¡ V+)(ω ¡ V¡) , (A.6)

where V+ ¸ V¡ and ® is a positive function, given by

® =
(r2 + a2)2 ¡¢a2

(r2 + a2)2

=
(r2 + a2)2 ¡ a2(r2 + a2 ¡ r1¡n)

(r2 + a2)2

=
(r2 + a2)r2 + a2r1¡n

(r2 + a2)2
> 0 . (A.7)

Note that ® also satis¯es

lim
r→r+

® = lim
r→∞

® = 1 . (A.8)

The factorized potentials V§ have the following properties:

lim
r→r+

V§ =
ma

r2
+ + a2

= m­ , lim
r→∞

V§ = §¹ , (A.9)

where ­ is the rotation frequency of the black hole at the horizon. Note that V+ = V¡ is

satis¯ed at the horizon.
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Figure 4: The factorized potentials V± as a function of r−1. The potentials are characterized by

n = 0, l = m = 1, j = 0, µ = 0.7, and a = 0.4999.

The factorized potentials are quite useful to see how a solution behaves when the

frequency ω is given. First, let us consider the four dimensional case, i.e. the n=0 case.

Taking the case of l = m = 1, j = 0, ¹ = 0.7, and a = 0.4999 as an example, we plot the

typical behavior of the factorized potentials for the four dimensional case in ¯gure 4. Since

® is positive de¯nite, the ¯eld © has propagative (evanescent) character when ω > V+ or

ω < V¡ (V¡ < ω < V+) because ©¡1d2©/dr2
¤ < 0 (©¡1d2©/dr2

¤ > 0) there. In other words,

the region where ω > V+ or ω < V¡ (V¡ < ω < V+) is a classically allowed (forbidden) one.

By a factorized potential diagram, we can then see where is the propagative or evanescent

zone once the frequency ω is given.

Next, let us consider bound states for our problem. To have a bound state, we need

a propagative zone between evanescent zones. That is to say, unless V+ (V¡) does have a

local minimum (maximum), there are no bound state in the potential. We can therefore

expect from the behavior of dV§/dr whether bound states are possible or not. In ¯gure 5,

we display the dV+/dr = 0 curve on the r¡1 — ¹ plan for the case of l = m = 1, j = 0, and

a = 0.4999. From the ¯gure, we can con¯rm that V+ as a function of r have two extremes

for 0 · ¹ < 1.321. From ¯gure 4, we can indeed see that V+, in which ¹ = 0.7, has a local

minimum near r¡1 = 0.15 and that there is a potential bound state if we take ω » 0.6878,

which is a correct eigenfrequency of the bound states. Another important thing is that

ω » 0.6878 is below m­, which can be easily seen from the factorized potential diagrams.

This means that this bound state is an unstable mode because it satis¯es the condition of

the superradiant instability.

Now, let us move on to higher dimensions, taking n = 1 to be speci¯c. Consider the

case of l = m = 1 and j = 0 as an example. We are interested in ¯nding out whether or

not there can be bound states in the ¯ve dimensional case. In order to see the distribution

of extremes of V+, which give us a criterion for nonexistence of the bound states, a curve

– 18 –
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Figure 5: The curve of dV+/dr(r
−1, µ) = 0 for the parameter n = 0, l = m = 1, j = 0, and

a = 0.4999.

of dV+/dr(r, ¹) = 0 on the r¡1 — ¹ plan is sketched in ¯gure 6, where the black hole

characterized by a = 0.9 is taken. In the ¯gure, it is found that if the mass ¹ satis¯es

1.658 · ¹ < 1.784, dV+/dr as a function of r has two zeros; one corresponds to a local

maximum of V+ and the other a local minimum of V+. It should be emphasized that

contrary to the four dimensional case, there is a critical mass below which no potential

bound state exists. Therefore, there is the possibility that a bound state exists in the

¯ve dimensional case. A distribution of V+ for the case of ¹ = 1.75 is shown in ¯gure 7.

We can conclude from the ¯gure that all the frequencies for potential bound states are

always above m­. Therefore, those potential bound states must not be unstable against

the superradiance instability even if they exist. For other sets of the parameters, we have

found similar behavior of the factorized potential. This means that in the ¯ve dimensional

case, there might be bound states but all the potential bound stats are stable. This analysis

is consistent with our numerical studies, in which we have not found any unstable modes.

For general n > 5 the trend is the same, there are no unstable bound states.
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