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ABSTRACT 
The vibrations of a black hole of mass M, perturbed from spherical symmetry, have been studied 

numerically. Initial perturbations of high spherical-harmonic index (/ > 1) which contain Fourier com- 
ponents of long wavelength (2ttM > X > 2irM/l) produce long-lasting vibrations. The vibrational 
energy is radiated away gradually as a long, nearly sinusoidal wave train of gravitational radiation with 
angular frequency co « (27)-1/2 l/M. 

A Schwarzschild black hole, perturbed from spherical symmetry, will radiate gravi- 
tational waves to restore sphericity. This fact follows from the recent work of Price 
(1971), which applied generally to perturbations of any integer-spin, zero-rest-mass 
field, including gravity. The exact dynamics of this process, for gravitational perturba- 
tions, is governed by equations due to Zerilli (1970a, b) (even-parity case) and to Regge 
and Wheeler (1957) (odd-parity). 

A priori, one might expect the black hole to divest itself of the unwanted perturba- 
tions in a single large belch, a burst of radiation of duration the hole’s mass or 
gravitational radius (units with G = c = 1). This Letter reports numerical computations 
which exhibit a totally different behavior: Initial perturbations of multipolarity /^> 1 
which contain Fourier components of wavelength 2ttM/1 <3C X < IttM are radiated only 
gradually, yielding a long and nearly sinusoidal wave train of gravitational radiation. 
The characteristic angular frequency co of the wave train depends on the mass of the 
black hole and on the multipolarity of the perturbation, but is otherwise independent of 
the form of the initial perturbation: co ~ (27)_1/2 l/M. Loosely speaking, the black hole 
vibrates around spherical symmetry in a quasi-normal mode, and the mode is slowly 
damped by gravitational radiation. 

The Zerilli and Regge-Wheeler equations governing black-hole perturbations have 
the form 

<pl,tt - <Pl,T*r* + Vl(r*)<Pl = o . (1) 

Here <pl is a, scalar quantity which describes the /-pole components of the gravitational 
radiation. (The components of the metric tensor are obtained by applying particular 
differential operators to <pl; see Price 1971 or Thorne 1971.) The radial coordinate r* is 
defined in terms of the Schwarzschild coordinate r by 

r-= r + 2U - l) . (2) 

Thus r = 2M corresponds to r* = — co 5 and r=+oo to r* = + 00. Vl(r*) = Ÿl{r) is 
the so-called curvature potential, 

2M\ (2A2(A + ly + 6A2Mr2 + 18AAf2f + 18AF) 
r ) rz{kr + 3M)2 

2M\ //(/ + 1) 6Af\ 

r r2 r3 ) 

even-parity (Zerilli) 

odd-parity (Regge-Wheeler) 
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where A = — 1)(¿ + 2). Asymptotically for large /, the even- and odd-parity poten- 
tials become identical. 

To study black-hole vibrations, we choose a set of initial conditions at time / = 0: 
<pl{r*, t — 0) and (pl,t(r*, ¿ = 0) for — «> < r* < -|_ oo. We then solve equation (1) nu- 
merically to determine the subsequent evolution. Solutions have been computed from 
a variety of initial conditions, and for various values of l. It is immediately clear that 
initial conditions containing predominantly short-wavelength Fourier components (e.g., 
a narrow peak or a high-frequency sine wave) are uninteresting: the potential term in 
equation (1) has only a slight dispersive influence, so the perturbation is radiated out- 
ward and inward with essentially its original profile (i.e., this case does yield a single 
belch). This expected behavior has been verified numerically. 

Initial perturbations of greater interest are broad, ííthick,, ones which contain long- 
wavelength Fourier components; these cannot propagate as free waves in the region of 
the potential. Two such initial conditions are shown in Figure 1. The curvature poten- 
tial Vl(r*) is indicated by the crosshatched curve. In general Vl(r*) is peaked at about 
r* = 2M and drops off exponentially in the inward direction (r*—> — oo), and as r*~2 

in the outward direction (r* —> °° ). In these examples, the initial time derivative of the 
perturbations is chosen zero. 

The subsequent evolution of the perturbations, as computed numerically, can be 
described and understood as follows. At any given r*, the perturbation initially oscil- 
lates (no propagation leftward or rightward!) with angular frequency approximately 
[Vl(r*)]l/2. Since Vl(r*) varies with r*, the oscillations soon become out of phase from 
point to point, and the initially smooth perturbation builds up components of ever 
shortening wavelength. When wavelengths as short as the critical value 2t[V1(t*)]~1/2 

have developed, the perturbations begin to propagate as free waves out of the region of 
the potential. For small l (say 2 or 3 or 4), the potential is low and the free propagation 
is almost immediate (single belch) ; but for large l the shortening process is gradual, and 

Fig. 1.—Two interesting perturbations of a Schwarzschild black hole. The initial radial “wave 
forms” of the perturbations are shown in I and II. Their initial time derivatives are assumed zero, and 
their angular dependence is a spherical harmonic of order /. The perturbations are spread out broadly 
over the region of strong “curvature potential” Vl(r*), so spacetime curvature prevents them from prop- 
agating until they have developed a wave form containing wavelengths shorter than the characteristic 
length 27r[F*(r*)]”1/2 (see text for discussion). 
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long wave trains are emitted, of characteristic angular frequency 

l 
co « [Vi(r*)l 1/2 

(27)1/2M * 
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(4) 

Figure 2 shows the profile of the propagating gravitational wave trains at large t for 
the two inital conditions of Figure 1 and the two multipolarities l = 20 and l = 40. The 
estimate of equation (4) is seen to be approximately correct. The length of the wave 
train depends somewhat on the precise initial conditions chosen, but seems to be rather 
independent of l. These characteristics are typical of our numerical results in general; 
but we are able to give no analytic estimate for the train length. 

How much of the perturbation radiates down the hole instead of off to infinity? A 
simple rule of thumb summarizes all our numerical calculations: The quantity 

© = i^i2+ kz^i2+ no Mi2 (5) 

is a mathematical energy density which is exactly conserved by the evolution of equation 
(1). Measured in terms of @, that long-wavelength energy initially located outside the 
potential maximum is typically radiated outward; that energy initially inside the po- 
tential maximum goes down the hole. Thus, the offset of initial conditions I and II from 
the potential maximum results in most of the energy radiating outward (^80 or 90 
percent). 

We emphasize that the phenomenon here exhibited, the “free oscillation of a black 

Fig. 2.—Wave forms (pl{r , t) of gravitational radiation at large r* and fixed t, as produced by the 
initial perturbations 1 andTI of Fig. 1 for / = 20 and l = 40. The waves are propagating rightward, away 
from the region of strong “curvature potential,” where they originated. Since “wavelength shortening” 
in the region of the potential+proceeds gradually, the waves have the form of a long sinusoidal train of 
angular frequency co ^ [Vl(r )max]1/2— (27)-1/2 l/M. This frequency can be interpreted as the “vibra- 
tion” frequency of the black hole (see text). 
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hole,” is distinct from the curvature-potential effect studied by Price (1971) and Fack- 
erell (1971) in which the potential acts as a high-pass filter of gravitational radiation. 

The free oscillations of a bell are initiated by a mechanical blow; the Earth’s free 
oscillations are excited by large earthquakes. What processes can induce a black hole 
to oscillate, i.e., can supply the initial perturbation which we have supplied by fiat in 
our numerical calculations? Recent calculations by Davis et al. (1971) show that vibra- 
tional modes are excited—though weakly for high l—by a test particle falling radially 
into a black hole. (In fact, the entire calculated spectrum can be understood qualitatively 
as a superposition of such vibrations.) Whether high-/ vibrations can be excited prefer- 
entially by some other pattern of infalling matter is a problem—presently unsolved—of 
considerable astrophysical relevance. In some cases symmetry considerations can at 
least inhibit low multipole radiation. For example, the turbulent influx of matter into 
a black hole might produce perturbations whose dominant multipolarity is determined 
by the size L of the turbulent cell / ^ 2ttM/L y> 1. 

The essential point of this Letter is that a black hole can be a dynamical entity rather than 
merely an arena for dynamics. This new point of view suggests new directions of research: 
How does the rotation of a black hole affect its vibrations? Are black-hole vibrations 
excited significantly by natural astrophysical processes? Might they play a significant 
role as sources of gravitational radiation? 

If Weber’s (1969, 1970a, b) observed gravitational radiation is verified and found to 
have a highly oscillatory wave form (indicating vibrations of large / as a possible source), 
black-hole vibrations will become a strong candidate for explaining the observations. 
Vibration is a mechanism by which “short’’-wavelength gravitational radiation can be 
emitted by a black hole of large mass, so there is no limit in principle on the mass of a 
black hole which radiates at the frequency of Weber’s detection apparatus. 
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