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Abstract: Let (M3*!] ¢) be areal analytic, stationary and asymptotically flat spacetime
with a non-empty ergoregion & and no future event horizon H*. In Friedman (Commun
Math Phys 63(3):243-255, 1978), Friedman observed that, on such spacetimes, there
exist solutions ¢ to the wave equation (g ¢ = 0 such that their local energy does not
decay to 0 as time increases. In addition, Friedman provided a heuristic argument that
the energy of such solutions actually grows to +0c0. In this paper, we provide a rigorous
proof of Friedman’s instability. Our setting is, in fact, more general. We consider smooth
spacetimes (M4*!, g), forany d > 2, not necessarily globally real analytic. We impose
only a unique continuation condition for the wave equation across the boundary 9& of
& on a small neighborhood of a point p € d&. This condition always holds if (M, g) is
analytic in that neighborhood of p, but it can also be inferred in the case when (M, g)
possesses a second Killing field ® such that the span of ® and the stationary Killing field
T is timelike on 0&". We also allow the spacetimes (M, g) under consideration to possess
a (possibly empty) future event horizon H*, such that, however, H*N & = & (excluding,
thus, the Kerr exterior family). As an application of our theorem, we infer an instability
result for the acoustical wave equation on the hydrodynamic vortex, a phenomenon
first investigated numerically by Oliveira et al. in (Phys Rev D 89(12):124008, 2014).
Furthermore, as a side benefit of our proof, we provide a derivation, based entirely on
the vector field method, of a Carleman-type estimate on the exterior of the ergoregion
for a general class of stationary and asymptotically flat spacetimes. Applications of this
estimate include a Morawetz-type bound for solutions ¢ of g = 0 with frequency
support bounded away from w = 0 and w = Fo00.
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1. Introduction

In the field of general relativity, stationary and asymptotically flat spacetimes (M, g)
arise naturally as models of the asymptotic state of isolated self-gravitating systems. In
this context, questions on the stability properties of such spacetimes as solutions to the
initial value problem for the Einstein equations

. 1
Ricuv(g) = S R(&)guy = 87Tjy (1.1)
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(where T, is the stress-energy tensor associated to the matter fields, with 7;,, = 0
in the vacuum case) are of particular importance, being directly related to the physical
relevance of the spacetimes themselves.

The stability of Minkowski spacetime (R3*!, 1)) as a solution to the vacuum Einstein
equations was established in the monumental work of Christodoulou—Klainerman [8].
Until today, Minkowski spacetime is the only stationary and asymptotically flat vac-
uum spacetime that is known to be non-linearly stable. A more complicated example of
a family of stationary and asymptotically flat spacetimes expected to be stable are the
subextremal Kerr exterior spacetimes (M 4, gm.q), With mass M and angular momen-
tum a satisfying 0 < |a| < M (for a detailed formulation of the Kerr stability conjecture,
see [10]). While the non-linear stability of the family (M 4, gm.4) has not been estab-
lished so far, the linear stability of the Schwarzschild exterior (i.e., (M1 4, gum.4) for
a = 0) was recently obtained by Dafermos—Holzegel-Rodnianski (see [10]).

Owing to the fact that the wave equation

e =0 (1.2)

can be viewed as a simple model of the linearised vacuum Einstein equations (1.1)
around (M 4, gMm.a), the stability properties of equation (1.2) in the case 0 < |a| <
M had been extensively studied in the years preceding [10], culminating in the proof
of polynomial decay estimates for solutions ¢ to (1.2) on (M4, gm.4) in the full
subextremal case 0 < |a| < M in [17,36]. For earlier results in the Schwarzschild case
a = 0 and the very slowly rotating case |a| < M, see [3,4,11-13,25] and [2,14-16,38]
respectively.

One important aspect of the geometry of (M4, gm.4) in the case a # O is the
existence of an ergoregion (or “ergosphere”) &’; recall that & C My 4 is defined as

& ={p e Mpmalg(Tp Tp) >0}, (1.3)

where T is the stationary Killing vector field on (M 4, gm.a). The fact that & is
non-empty when a # 0 gives rise to the phenomenon of superradiance for solutions
to (1.2) on (Mp.4, 8Mm.a), @ # 0O: there exist solutions ¢ to (1.2) such that their 7'-
energy flux through future null infinity Z* is greater than their 7-energy flux initially.
In general, superradiance poses a serious difficulty in obtaining stability results for Eq.
(1.2). In the case of (M 1.4, §m.4), superradiance does not eventually render equation
(1.2) unstable, owing, partly, to the presence of the future event horizon H*, allowing
for part of the energy of solutions of (1.2) to “leave” the black hole exterior. Notice,
however, that superradiance-related mode instabilities do appear on (M s 4, gm.q) for
the Klein—Gordon equation (see [35]), or even for the wave equation with a (well-chosen)
short-range non-negative potential (see [32]).

Stationary and asymptotically flat spacetimes (M, g) with a non-empty ergoregion
& but lacking a future event horizon H* appear in the literature as models for rapidly
rotating self-gravitating objects, for instance, as models of self-gravitating dense rotating
fluids (see [5]). In [20], Friedman studied the instability properties of equation (1.2) on
such spacetimes, making the following observation: There exist smooth solutions ¢ to
(1.2) with negative T-energy flux initially, i.e.,

/ Il (@nk <0 (1.4)
)

on a Cauchy hypersurface ¥ of (M, g) (see Sect. 3 for our notations on vector field
currents), and, in view of the conservation of the 7 -energy flux, the absence of a future
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event horizon H* and the non-negativity of Jlf (-)n‘goutside &, any such function ¢
satisfies for all T > O:

/ Tl (@)nk 5/ Il (@nk, <0 (1.5)
T NE b

(where X; denotes the image of X under the flow of T for time t). Therefore, the local
energy of ¢ cannot decay to 0 with time.

Based on the above observation, Friedman provided a heuristic argument suggesting
that, under the additional assumption that the spacetime (M, g) is real analytic, any
such solution ¢ satisfies

lim sup/ Jliv(cp)n;t = 400 (1.6)
T—>+00 J ¥,
for a globally timelike 7 -invariant vector field N. In view of the aforementioned connec-
tion between equation (1.2) and the Einstein equations (1.1), Friedman suggested that
such spacetimes cannot appear as the final state of the evolution of a self-gravitating sys-
tem (see [20] for more details).! For a numerical investigation of Friedman’s instability,
see [6,9,39].

In this paper, we will provide a rigorous proof of Friedman’s instability for equation
(1.2). Our proof will in fact not require that (M, g) is real analytic, but we will assume,
instead, a substantially weaker unique continuation condition for equation (1.2) through
a subset of the boundary &, of the “extended” ergoregion &,;, where we define &,
to be equal to the union of the ergoregion & with the connected components of M\ &
which intersect neither H* nor the asymptotically flat region of M.> Note that, in the
case when M\ & is connected, &, coincides with &. In particular, we will establish the
following result:

Theorem 1.1. Let (M, g), d > 2, be a smooth, globally hyperbolic, stationary and
asymptotically flat spacetime with a non-empty ergoregion & and a future event horizon
H* which is either empty or satisfies & N H* = &. Assume, in addition, that the
following unique continuation condition through the boundary 98,y of the “extended”
ergoregion &,y holds:

Unique continuation condition: There exists a point p € 0&,y and an open neigh-
borhood U of p in M such that, for any solution ¢ to Eq. (1.2) on M with ¢ = 0 on
M\ Epxs, we have ¢ = 0 also on iy NU.

Then, there exists a smooth solution ¢ to (1.2) with compactly supported initial data
on a Cauchy hypersurface X of (M, g), such that

lim sup / T (@) = +oo, (1.7)
=

T—>+00

where T is the stationary Killing field of (M, g), N is a globally timelike and T -invariant
vector field on M, coinciding with T in the asymptotically flat region of M, and %+ is
the image of X under the flow of T for time t.

U'n general, it is expected that rotating, self-gravitating compressible fluids satisfying the Einstein—Euler
system suffer (at the linearised level) from the so-called Chandrasekhar—Friedman—Schutz instability, see
[7,22]. In this case, the associated instability mechanism does not depend on the existence of an ergoregion.
However, in the presence of an ergoregion, the linearised Einstein—Euler system is also expected to exhibit an
instability similar to Friedman’s instability for Eq. (1.2), associated to the so-called w-modes (see [21,26,27]).
At the non-linear level, it is believed that the effect of the CFS instability will generally dominate the effect
of the w-mode instability in an astrophysical setting (see [26]).

2 Notice that 08ext C 065
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Remark. Note that the assumption & N H* = & excludes the Kerr exterior family with
angular momentum a # 0.

For a more detailed statement of Theorem 1.1 and the assumptions on the spacetimes
under consideration, see Sect. 2. For a comparison between the heuristics of Friedman
in [20] and the methods and results of this paper, see Sect. 9.

Let us remark that, in the detailed statement of Theorem 1.1, we will introduce an
additional restriction on the class of spacetimes (M, g) under consideration, namely the
condition that every connected component of M\ & intersecting H* also intersects the
asymptotically flat region of (M, g). However, our proof of Theorem 1.1 can be adapted
to the case when this condition does not hold.

We should also remark that the unique continuation condition through an open subset
of 9&,y, appearing in the statement of Theorem 1.1, is always satisfied in the case when
(M, g) possesses an axisymmetric Killing field ® such that the span of 7, ® on 9&,,
contains a timelike direction, or in the case when the spacetime (M, g) is real analytic
in an open subset U/ C M such that U N &, # O; see the discussion in Sect. 2.3.
It would be natural to expect that this condition can be completely removed from the
statement of Theorem 1.1, but we have not succeeded so far in doing so.

The proof of Theorem 1.1, presented in Sect. 4, proceeds by contradiction. In partic-
ular, assuming that every smooth solution ¢ of equation (1.2) on (M, g) with compactly
supported initial data satisfies

lim sup/ T (@)n"* < +oo, (1.8)
T—=>+00 J X,

it is shown that ¢ decays in time on M\&'. This fact is then shown to lead to a contradic-
tion after a suitable choice of the initial data for ¢, combined with the unique continuation
assumption of Theorem 1.1. See Sect. 4 for more details. The decay of ¢ on M\ & is
established through some suitable Carleman-type estimates, derived in Sect. 6. These
estimates could have been obtained by methods similar to the ones implemented in [30],
but we chose instead to provide an alternative proof, based entirely on the method of
first order multipliers for Eq. (1.2). For more details on this, see Sect. 2.5.

The instability mechanism proposed by Friedman is of interest not only in general rel-
ativity, but also in all areas of mathematical physics where stationary and asymptotically
flat Lorentzian manifolds (M, g), and the associated wave equation (1.2), arise. For
instance, in the field of fluid mechanics, the steady flow of a (locally) irrotational, invis-
cid and barotropic fluid on an open subset V of R? gives rise to a stationary Lorentzian
metric g on M = R x V, the so called acoustical metric, and the wave equation (1.2)
associated to g governs the evolution of small perturbations of the flow. In [33], the
authors investigate numerically the Friedman instability for the acoustic wave equation
on the hydrodynamic vortex (R x Vpya s, gnya), where Viyas = ]R3\{f < 3} for some
d < 1 (in the cylindrical (7, ¥, z) coordinate system) and

C2
1-—

I

Shya = —( )di? +di? — 2Cdtd9 + F*d 9> + dz?, (1.9)
with suitable boundary conditions imposed for (1.2) at 7 = 8. Note that the quotient of
(R X Viya, gnya) by the group of translations in the z direction is asymptotically flat,
possesses a non-empty ergoregion & = {8 < r < C} (corresponding to the region where
the fluid velocity exceeds the speed of sound) and has no event horizon.

As a straightforward application of Theorem 1.1, we will establish a Friedman-type
instability for the acoustical wave equation on the hydronamic vortex:
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Corollary 1.1. Foranyd < 1, there exist smooth and z-invariant solutions ©p, ¢y to the
acoustical wave equation (1.2) on (R X Viya s, &nya), satisfying Dirichlet and Neumann
boundary conditions, respectively, on {r = 3}, with smooth initial data at time t = 0
which are compactly supported when restricted on {z = 0}, such that (in the (¢t,7,9, 2)
coordinate chart on R X Vyya):

lim sup

f (18:@p|* + | Vpaop|?) Fdidy = +o0o (1.10)
1—+00 J{r=0n{z=0)n{7=3)

and

lim sup

/ (18 on1? + | Vpaon |?) Fdid§ = +oc. (1.11)
1—>+00 J{1=t}N{z=0}N{F>8}

For a more detailed statement of Corollary 1.1, see Sect. 2.2.

Remark. While Corollary 1.1 provides an instability statement for both Dirichlet and
Neumann boundary conditions for ¢ on {r = 3}, only the Neumann condition is relevant
for the case when {r = 3} represents a physical boundary for the fluid flow, since in this
case the fluid velocity is only allowed to be tangential to {r = 8}.

2. Statement of the Main Results

In this section, we will outline in detail the assumptions on the spacetimes (M, g) under
consideration, and we will state the main results of this paper.

2.1. Assumptions on the spacetimes under consideration. Let (/\/ld”, g),d >2,bea
smooth, globally hyperbolic Lorentzian manifold with piecewise smooth boundary d M
(allowed to be empty). Before stating our main results, we will need to introduce a number
of assumptions on the structure of (M, g). In Sect. 2.4, we will present some explicit
examples of spacetimes (M, g) satistying all the assumptions that will be introduced in
this section.

2.1.1. Assumption G1 (Asymptotic flatness and stationarity). We will assume that
(M, g) satisfies the following conditions:

e There exists a Killing field 7 on (M, g) with complete orbits which is tangential to
d.M, as well as a smooth Cauchy hypersurface ¥ C M, such that T'| 5 iseverywhere
transversal to \9.M and timelike outside a compact subset of 3.

e The triad (f), gs» ks), where g5 is the induced (Riemannian) metric on ¥ and ks
its second fundamental form, defines an asymptotically flat Riemannian manifold
(possibly with boundary ¥ N d.M ), with a finite number of asymptotically flat ends
(possibly more than one); see also the definition in Section 2.1.1 of [30]. Let Z,, be
the asymptotically flat region of M (see [30] for the relevant definition). Expressed
in a polar coordinate chart of the form (¢, r, o) in each connected component of 7,
g has the following form:

g = —(1+04(r_1)>dt2+<1+04(r_1))dr2+r2-(ggd—|+O§d_1 (r_l))+04(1)dtd0,
@2.1)
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where OEd_l(p_l) is a symmetric (0, 2)-tensor field on the coordinate sphere
{r = p} >~ 91 with O4(p™ 1) asymptotics as p — +00. See Sect. 3.7 for the

Or(4), OE‘H (-) notation and Sect. 3.6 for the ¢ notation on the angular variables of
a polar coordinate chart.

o LetH = 8(J+(Ias) N J_(Ias)) be the horizon of M, split as H = H* U H™,
with HY = J*(Zy) N 0J ~ (Lys) and H™ = J~ (Zys) N 3J T (Zys). Then H coincides
with d M, and H* and H~ are smooth null hypersurfaces with smooth boundary
H*NH™, with T # 0 on H\'H~ (the case H* = @ or H~ = & is also trivially
included in this condition).

See Assumption 1 in Section 2.1.1 of [30] for a detailed statement of these conditions
and their related geometric constructions, as well as their implications on the geometry
of M. Notice that the domain of outer communications of the asymptotically flat region
Zas of M is the whole of M\H. In view of the remarks in Section 2.1.1 of [30], H* and
‘H™ are invariant under the flow of the stationary Killing field T'.

Let ¥ be a spacelike hypersurface intersecting H* transversally (if H* # &) and
satisfying £ N’H~ = @, such that ¥ coincides with ¥ outside a small neighborhood of
H*. In view of the remarks in Section 2.1.1 of [30], our assumption on the structure of
(M, g) implies that ¥ N H* is compact. Notice that, in case H* # &, ¥ will not be a
Cauchy hypersurface of M.

We will also fix a smooth spacelike hyperboloidal hypersurface S C M terminating
at future null infinity Z* as in Section 2.1.1 of [30], such that S| <g,} = Z|(<r,) for
some fixed constant Ry > 1 (Fig. 1).

Remark. In view of the remarks of Section 2.1.1 of [30], the causal future sets
JH(X), J*(S) of X, S, respectively, in M coincide with the future domains of depen-

Fig. 1. The subextremal Kerr exterior spacetime (M 4. g ,4) Satisfies Assumptions G1 and G2, but not

Assumption G3. In the case of (M ps 4, gum,4). the intersection of the hypersurfaces $, ¥, defined in Assump-
tion G1, with the 1 + 1 dimensional slice {# = /2, ¢ =0} C My , are schematically as depicted above
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dence D*(X), D*(S) of X, S. Furthermore, the images of ¥, S under the flow of T
covers the whole of M\'H ™.

As in Section 2.1.1 of [30], we will extend the polar radius coordinate function
r 1 Zys — (0,+00) as a non-negative, smooth and 7 -invariant function on the whole
of M\'H™, such that r > 0 on M\'H and r|p+ - = 0, dr|y+\1~ # 0. We will also
define the function ¢ : M\'H™ — R by the relations

fly =0 and T(1) =1, 2.2)
as well as the function 7 : M\'H~ — R by
fls=0 and T() =1. 2.3)

Note that # =7 on {r < Ry}.
We will introduce the reference Riemannian metric

Sref = d1* + g5, (2.4)

on M\'H™ >~ R x X. We will denote the natural extension of g,.r on @y, 1,eN (®ll
T(M\H™) ®" T*(M\H™)) also as grer.

2.1.2. Assumption G2 (Killing horizon with positive surface gravity). Inthe case H* #
@, we will assume that the Killing field 7', when restricted to H*\H ™, is parallel to the
null generators of H*\’H ™. Furthermore, we will assume that there exists a T -invariant
strictly timelike vector field N on J*(X), which, when restricted on J*(X) N'H, satisfies

KN () = eqY ()N (2.5)

for some ¢ > 0 and any ¥ € C 1(M) (see Sect. 3 for the notation on vector field
currents). We will extend N on the whole of M\'H™ by the condition [T, N] = 0.

We will call the vector field N the red shift vector field. The reason for this name is
that a vector field of that form was shown to exist for a general class of Killing horizons
with positive surface gravity by Dafermos and Rodnianski in [13]. However, here we
will just assume the existence of such a vector field without specifying the geometric
origin of it.

Note that we can modify the vector field N away from the horizon H, so that in the
asymptotically flat region {r > 1} (i.e. Z,) it coincides with 7', and still retain the bound
(2.5) on J*(X) N"H.> We will hence assume without loss of generality that N has been
chosen so that N = T in the region {r > 1}.

Due to the smoothness of N, there exists anrg > 0, such that (2.5) also holds (possibly
with a smaller constant ¢ on the right hand side) in a neighborhood of H*\(H* NH™)
in M of the form {r < rg}. Forr > 1, since N = T there, we have KT(III) = 0. Hence,
due to the T —invariance of N and the compactness of the sets of the form {r < R} N X,
there exists a (possibly large) constant C > 0 such that

KN )| < C- 1Y ()N* (2.6)
everywhere on M for any {r € C*°(M).

3 The convexity of the cone of the future timelike vectors over each point of M is used in this argument.
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Without loss of generality, we will also assume that rq is sufficiently small so that
dr #0 2.7

on {r < 3ro}. This is possible, since dr |3+ 3+~ 7# 0 and X N H* is compact.

In the case H* = &, we will fix N to be an arbitrary T-invariant timelike vector
field on M\'H ™, such that N = T for r > 1, and we will set ro = %inf y r (which is
possible since r > 0 on ¥ when H* = @), so that {r < 3ryp} = &. In this case, (2.5),
(2.6) and (2.7) are trivially satisfied.

2.1.3. Assumption G3 (Non-empty ergoregion avoiding the future event horizon). We
will assume that the ergoregion of (M, g) is non-empty, i.e.

&E={g(T, T)>0}#03, (2.8)

and furthermore
ENH =0. (2.9)

Notice that the condition (2.9) is trivially satisfied when H* = &. Note also that the
subextremal Kerr exterior family with a # 0 has a non-empty ergoregion, but does not
satisfy (2.9).

In the case when H* # &, we will also assume that every connected component of
M\& that intersects H* also intersects the asymptotically flat region Z, of (M, g).*

Remark. The assumption that every component of M\ & intersecting H* also intersects
s 1s not necessary for the results of this paper, which can also be established without
this condition. The reason for adopting this assumption is that it leads to considerable
simplifications in the proof of the Carleman-type estimates in Sect. 6.

We will assume that 7 is strictly timelike on the complement of H U &, i.e.:
g(T, T) <0on M\(&UH). (2.10)

Furthermore, we will assume that the boundary & of & is a smooth hypersurface of
M.

The complement M\ & of & might consist of more than one components. In view of
our assumption that every component of M\ & intersecting H* also intersects Z;, the
connected components of M\ & fall into two disjoint categories: The ones that intersect
the asymptotically flat region Z,, and the future event horizon H*, and the ones that
intersect neither Z,; nor H*. Let us call the union of the components of M\& falling
into the last category the enclosed region of M, and denote it by M. We will also
introduce the notion of the extended ergoregion of M defined by

Eoxt = & U Mepe. (2.11)

Note that, since &,; N HY = &, we have r > 0 on &, Thus, in view of the
T -invariance of &y, we can assume without loss of generality that ro has been fixed
sufficiently small so that {r < ro} N &,y = @. Note also that 9&,,; C 385.

4 Note that Tus and ‘H* might have several components.
5 The reason for calling My enclosed is because d M e C 98, 1.e. Moy, is enclosed by the ergoregion.
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2.1.4. Assumption Al (Unique continuation around p € 9&,,). We will assume that
there exists a point p on the boundary 9, of &, and an open neighborhood I of p in
M, such that for any ¢ € H 11) . (M\H_) solving the wave equation (1.2) and satisfying
¥ = 0 on M\ &y, we also have ¢ = 0 on U. Since T is a Killing field of M, the same
result also holds on any 7'-translate of U/, and, for this reason, we will assume without
loss of generality that I/ is T -invariant. Furthermore, since &, C 96, we will assume

without loss of generality that I/ is small enough so that U/ N &,y C &.

Remark. Assumption Al is satisfied in the case when M is axisymmetric with axisym-
metric Killing field &, such that [®, 7] = 0 and the span of {®, T} is timelike, or
in the case when there exists a point p € d¢& such that g is real analytic on an open
neighborhood of p in M. See Sect. 2.3.

2.2. The main results. The main result of this paper is the following:

Theorem 2.1. Let (M1, g), d > 2, be a globally hyperbolic Lorentzian manifold
satisfying Assumptions G1, G2, G3 and Al, and let the vector field T, N and the spacelike
hypersurface ¥ be as described in Assumptions GI1-G2. Then, there exists a smooth
function ¢ : J*(X) — C solving the wave equation (1.2) on J*(X) with compactly
supported initial data on X, such that

lim sup / T (@)n"* = +oc. (2.12)
P

T—>+00

The proof of Theorem 2.1 will be presented in Sect. 4.

Remark. The proof of Theorem 2.1 immediately generalises to the case when the bound-
ary of the spacetime (M, g) has a smooth, timelike and T -invariant component 9y, M,
such that ¥ N dy;, M is compact and 9, M N'H = &, assuming that Dirichlet or Neu-
mann boundary conditions are imposed for equation (1.2) on 9, /M. In this case, we
have to assume that the double (M, g) of (M, g) across d;;;, M is a globally hyperbolic
spacetime satisfying Assumptions G1, G2, G3 and Al (see Sect. 6.9 for the relevant
constructions).

Let us also note that we can readily replace the qualitative instability statement (2.12)
with the following quantitative statement: For any C > 0, there exists a solution ¢ to
equation (1.2) as in the statement of Theorem 2.1, such that

T—>+00

lim sup ( (log(2 + r))‘Cf Y (@t ) = +oc. (2.13)
P

See the remark at the beginning of Sect. 4. However, we do not expect the logarithmic
rate of growth in (2.13) to be sharp.

As a straightforward application of Theorem 2.1, we will obtain the following instability
estimate for solutions to the acoustical wave equation on the hydronamic vortex (R x
Vhyd,s» 8hyd)> where Viya 5 C R3 is the set {7 > 8} (in the cylindrical (7, ¢, z) coordinate
system on R?) and &hyd 1s given by the expression (1.9):

Corollary 2.1. For any 3 < 1, there exist smooth and z-invariant solutions ¢p, ¢n to
(1.2) on (R x Viya s, 8hya), satisfying the boundary conditions

¢opliF=sy =0 (2.14)
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and
FoN|F=sy =0 (2.15)

and having smooth initial data at time t = O which are compactly supported when
restricted on {z = 0}, such that (in the (t, 7,9, z) coordinate chart on R x Vpyas):

lim sup (18;0p1* + | Vgs@p|?) Fdrdd = +00 (2.16)

T—>+00 /;t:r}ﬂ{z:ﬁ}ﬂ{fia}

and

lim sup

/ (18, on1? + | Vpaon [*) Fdid§ = +oc. (2.17)
400 J{r=1}N{z=0}N{F=5}

For the proof of Corollary 2.1, see Sect. 8.

2.3. Discussion on Assumption Al. There exists a class of natural geometric conditions,
such that spacetimes (M, g) satisfying these conditions (in addition to Assumptions
G1-G3) automatically satisfy Assumption Al. Examples of such conditions are the
following:

e Assumption Al is always satisfied on spacetimes (M, g) having an axisymmetric
Killing field @, such that [®, T] = 0 and the span of ®, T on d&,, contains a
timelike direction. This is a consequence of Lemma 2.1 at the end of this section
(choosing U to be a suitable small neighborhood of a point p € d&,;\{® = 0} and
S = 0&, NU in the statement of Lemma 2.1).

e Assumption Al is always satisfied on spacetimes (M, g) on which there exists
a point p € 0&, and an open neighborhood U/ of p such that (U, g) is a real
analytic Lorentzian manifold and 9&,,; N U is a real analytic hypersurface. This is
a consequence of Holmgren’s uniqueness theorem (see [24]).

On the other hand, we believe that Assumption Al does not hold on all spacetimes
satisfying Assumptions G1-G3. In particular, by adjusting the arguments of [ 1], we were
able to construct a 3+ 1-dimensional spacetime (M, g), satisfying Assumptions G1-G3,
as well as a suitable 7T'-invariant smooth potential V : M — C, so that Assumption A1l
for equation

Oep— V=0 (2.18)

in place of (1.2) is not satisfied.® Note that such a construction is non-trivial, in view of
the requirement that 7' (V) = 0; for instance, Assumption A1l always holds for equation
(2.18) on stationary spacetimes without an ergoregion (see [37]). We will not pursue this
issue any further in this paper.

Although we believe that Assumption Al can be removed from the statement of
Theorem 2.1, we were not able to do so.

The following lemma can be used to establish that Assumption A1l always holds in
the presence of a second Killing field ® on M such that the span of 7', ® is timelike:

6 Inview of the requirement 7' (V) = 0, this construction boils down to the adaptation of the construction of
[1] on the quotient M/ T of M by the orbits of T, with Og replaced by g /7, where Og /7 is obtained from
([/]{g/[t\)};@ ()i;opping the terms involving 7' derivatives. Note that (g /7 is hyperbolic in int(&)/ T and elliptic on

)/ T.
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Lemma 2.1. Let U be an open subset of a smooth spacetime (M, g) with two Killing
fields T, ® such that [T, ®] = 0, ® # 0 on U and the span of T, ® contains a timelike
direction everywhere on U. Let also S C U be a T, ®-invariant smooth hypersurface,
separating U into two connected components Uy, U, so that Uy lies in the domain of
dependence of Uy. Then, any € Hlic(l/l) solving (1.2) on (U, g) such that v = 0 on
Uy must vanish everywhere on U.

Proof. Since [T, ®] = 0 and ® # 0 on U, we can assume without loss of generality
(by shrinking I/ if necessary) that { is covered by a coordinate chart (¢, @, x>, ..., x%)
such that:

1. T(9),T(x?,...Tx% =0,
2. ®@), d(x32),...,p(x%) =0,
3. T()=%(9) =1,

4. S={x'=0}.

In view of the fact that the span of ®, T contains a timelike direction everywhere
on U, the wave operator (1.2) in the (z, ¢, x2, ..., xd) coordinate system takes the form
(using the shorthand notation x = (xz, e, xd)):

d

O = A+ Y (a7 (03,800 +al) ()3, 000 +a) ()3 +al)] (1))
j=2

+ a1 ()07 + a1 (X) 0, 0 s + g (X) D, (2.19)

where the operator Ay in the right hand side of (2.19) is a ¢, ¢-invariant second order
elliptic operator in the x2, ..., x% variables. Since the coefficients of (2.19) are inde-
pendent of 7, ¢ and A is elliptic, the proof of the Lemma follows readily by the unique
continuation result of Tataru [37]. O

2.4. Examples of spacetimes satisfying Assumptions GI-G3 and Al. In this section, we
will examine some explicit examples of spacetimes satisfying all of the Assumptions
G1-G3 and Al.

An example with H* = &. Our first example will be a simple spacetime with no event
horizon. Let M = R3*! and let us fix fix two smooth functions X7 : [0, +00) — [0, 1]
and ¥y : [0, t] — [0, 1], satisfying x; = 0 on [0, 3] U [6,+00), X7 = 1 on [4, 5],
X9 =0on[0, g]U [2X, w] and xy = 1 on (7 %]. We will also assume that X7, X9
have been chosen so that the set of zeros of the function

FF9) =1 — (X (F)xo(9)? (2.20)

is a smooth curve without self-intersections in the open rectangle (3, 6) x (%, ‘%“), and

the region {f < 0} C (3,6) x (g, %") is simply connected.
We will consider the following metric on M in the usual time-polar coordinate chart
(t, 7,9, ¢) on R3*:

g =—(1— (KF () xs(9))?)dr> — 1000%; (7) %6 (Vdtde + di* + 7> (d9* + sin® 9d ¢?).

(2.21)
Note that g is everywhere non-degenerate, and has Lorentzian signature. Furthermore,
(M, g) is a globally hyperbolic spacetime, with Cauchy hypersurface {# = 0}, satisfying
the following properties:
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1. The vector field T = 0, is a Killing field of (M, g). Furthermore, (M, g) is
asymptotically flat and satisfies Assumption G1. Notice that (M, g) has no event
horizon since every point in M can be connected with the asymptotically flat region

= {r = Ro > 1} through both a future directed and a past dlrected timelike
curve, by followmg the flow of the timelike vector fields 07 +C (8t+ 10 X7 (M) X9 (9) 3@)

and O C(8,+ 15 X (F) X9 (3)0 ), respectively (for some fixed C > 1). The function
: M — [0, +00), introduced in Assumption G1, can be chosen to be equal to
(1 +72)2,
2. The spacetlme (M, g) has no event horizon, and, thus, it trivially satisfies Assump-
tion G2.
3. The ergoregion & = {g(T', T) > 0} of (M, g) is non-empty, and satisfies

57

= e

3
{4sfss}ﬂ{%sﬂs%}cé”c{szsmﬂ{gsﬂs

Since H* = @, we have & N 'H* = &. Furthermore, since we assumed that the
region {f < 0} C (3,6) x (’g, 56“) for the function (2.20) is simply connected,
we can readily infer that M\ & is connected and, thus, &,,; = &. Furthermore, the
boundary d& of & is a smooth hypersurface of M and (2.10) is satisfied, in view
of our assumption on the set of zeros of the function (2.20). Therefore, (M, g)
satisfies Assumption G3.

4. The spacetime (M, g) possesses an additional Killing field, i.e. & = 9. The span
of T, ® contains the everywhere timelike vector field 7 + %x; () x9(3)P and,
thus, Lemma 2.1 implies that (M, g) satisfies Assumption Al. In particular, any
point p € &, € 9& and any open neighborhood U of p in M satisfy the unique
continuation property of Assumption Al.

Therefore, (M, g) satisfies all of the Asumptions G1-G3 and Al.

Remark. The hydrodynamic vortex (R X Vpyas, ghya) of Corollary 2.1 is not a glob-
ally hyperbolic spacetime, since its boundary 8(]R X Vhyd’g) = {r = 3} is a timelike
hypersurface. However, as we will show in the proof of Corollary 2.1, the double of
(R X Viya,s, ghya) across 8(R X Vhyd’g) is a globally hyperbolic spacetime without
an event horizon, satisfying Assumptions G1-G3 and Al. In addition, the double of
(R X Viya,s, &nya) is an example of a spacetime having two asymptotically flat ends,
with (R X Vpya s, grya)\& having two connected components.

An example with H* # @&. We will now proceed to construct a slightly more complicated
example of a spacetime satisfying Assumptions G1-G3 and A1, possessing in addition
a non-empty event horizon. Note that, as we mentioned in Sect. 2.1, the subextremal
Kerr exterior family (M 4, gm.4) does not satisfy G3, since the future event horizon
‘H* and the ergoregion & of (M .4, gm.4) have a non-empty intersection.

For any M > 0, let M, be diffeomorphic to R x (2M, +00) x S2. Let X7, X be as
before, assuming, in addition, that they have been chosen so that the set of zeros of the
function

2M
fu9) = (1- = - (P (M'F) ¥ (9))?) (2.23)

is a smooth curve without self—intersections in the open rectangle (3M, 6 M) x (%, %")

and the region { fyy < 0} C (3, 6) x (6, % 21 is simply connected.
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Let us consider the following metric in the (¢, 7, ¢, ¢) coordinate chart on M ;:

_ _ M _ _ —1= 2 2 _ _ —1=
gm =—(1 — — M D xa(®) )dt® — 1000M x (M~ F) y9 (9)dide

+(1 - ZTM)”df2 +72(d9? +sin® 9d¢?). (2.24)
The metric gy is everywhere non-degenerate, and has Lorentzian signature.

The spacetime (M, gar) is isometric to the Schwarzschild exterior spacetime
(M. sch» 8m.scn) outside the region {3M < 7 < 6M}N{g < ¢ < %“} and, thus,
it can be extended into a larger globally hyperbolic spacetime (/W v, &m). This exten-
sion can be chosen to be the Schwarzschild maximal extension across r = 2M (see
e.g. Section 2 [16]).8 Let us denote

My = i(Mpy) UdMy, (2.25)

where i : My — M m is the natural inclusion of (M, gu) into its extension and
My is the boundary of i (M) inside M. Note that, in view of the properties of
the maximally extended Schwarzschild spacetime, (MM, gum) 1s a smooth Lorentzian
manifold with piecewise smooth boundary d.M s, consisting of two intersecting smooth
null hypersurfaces. The functions 7, 9, ¢ can be smoothly extended on 9. My, with
Flom, =2M. o

The spacetime (M, gur) is globally hyperbolic, with ¥ = {# = 0} being a smooth
Cauchy hypersurface, and satisfies the following properties:

1. The vector field T = 9; on M, extends smoothly on 9. My, and is a Killing vector
field of (M, gar). Furthermore, the spacetime (M y, gar) is asymptotically flat
and satisfies Assumption G1. Note that the event horizon H of (M s, gar) coincides
with .My, since all the points in M, can be joined with the asymptotically flat
region Z,; = {r > Rp > 1} through both a future directed and a past directed
timelike curve, by following the flow of the timelike vector fields 97 + C (8, +
o7 XF (M 1) 9 (9)d) and 97 — C (3, + 1957 X7 (M ~17) X9 (8) ). respectively (for
some fixed C > 1). The function r : My — [0, +00), introduced in Assumption
G1, can be chosen to be equal to 7 — 2M.

2. Thereexistsa T-invariant neighborhood V of H = .My in My, so that (V, gar) is
isometric to a neighborhood of the event horizon H s, 5., of Schwarzschild exterior
spacetime. In particular, T is parallel to the null generators of H*\H~ and there
exists a T-invariant timelike vector field N on M s as in Assumption G2, satisfying
(2.5) (see [13,16]). In particular, (MM, gum) satisfies Assumption G2.

3. The ergoregion & = {g(T, T) > 0} of (M, g) is non-empty, and satisfies

_ b1 371 _
{4M§r§5M}m{Z§6§T}c£‘c{3M§r§6M}ﬂ{

Thus, & N H" = &, since 7 > 2M on &. Furthermore, since the function (2.23)
was assumed to have the property that the set { f); < 0} is simply connected, we

7 of course, the coordinate chart (¢, 7, 9, ¢) will not be regular up to the boundary of My in this extension.

8 Note that the 7 coordinate function on M Mm corresponds to the usual r coordinate function on
Schwarzschild exterior My s
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can readily infer that M\ & is connected. Thus, &,; = & and H™* lies in the
same connected component of M ;\& as the asymptotically flat region Z,. The
boundary 8¢ of & is a smooth hypersurface of M, and (2.10) is satisfied, in view
of our assumption on the set of zeros of the function (2.23). Therefore, (HM, M)
satisfies Assumption G3.

4. In view of the fact that (M, gyr) possesses an additional Killing field, namely
® = 9y, and the span of 7', ® contains the vector field T' + IOLMXF(M_IF)X@(G)CD

which is everywhere timelike on M ;, Lemma 2.1 implies that (/VM, gum) satisfies
Assumption Al. In particular, any point p € &,y = 94 and any open neighbor-
hood U of p satisty the unique continuation property of Assumption Al.

Thus, (M, gum) satisfies Assumptions G1-G3 and A1, and, in addition, (M, M)
has a non-empty future event horizon.

2.5. A remark on the Carleman-type estimates in the proof of Theorem 2.1. As we
discussed in the introduction, a crucial step in the proof of Theorem 2.1 consists of
showing that, under the assumption that

lim sup / TV (@n* < +oo (2.27)
PO

T—>+00

holds for every smooth function ¢ : J*(X) — C solving the wave equation (1.2)
on J*(X) with compactly supported initial data on ¥, we also have that ¢ decays on
MA\E&; see Sect. 4 for more details. This fact is inferred using some suitable Carleman-
type estimates on (M\&, g) for ¢ which are particularly useful when ¢ has localised
frequency support in time (see Proposition 6.1 in Sect. 6; for the technical details related
to the frequency decomposition of ¢, see Sect. 5).

The aforementioned estimates could have been established using the techniques of
our previous [30].9 However, we chose, instead, to provide an alternative proof, based
entirely on the use of first order multipliers for equation (1.2). As a consequence, we
obtain an alternative proof for the estimates of Section 7.1 of [30], as well as for the
Carleman-type estimates established in [34] for the inhomogeneous Helmholtz equation

Agu+o’u — Vu =G, (2.28)

0 < Im(w) K 1, Re(w) # 0, on an asymptotically conic Riemannian manifold (X, g),
where the potential V : ¥ — R satisfies some suitable decay conditions on the asymp-
totically conic end of X. An alternative approach based on the positive commutator
method and leading to similar Carleman-type inequalities on asymptotically flat back-
grounds with a uniformly timelike Killing field has also been implemented in the recent
[29]. For a more detailed statement of these results, see Sect. 6.

3. Notational Conventions and Hardy Inequalities

In this section, we will introduce some conventions on denoting constants and parameters
that will appear throughout this paper. We will adopt similar conventions as in [30].

9 Although the techniques of [30] can be modified to yield the required Carleman-type estimates on the
spacetimes under consideration, they can not be used as a black box in the current setting, since the geometry
of the spacetime in a neighborhood of & and the allowed range in the space dimension d (which includes the
case d = 2) differ from the setting of [30].
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3.1. Constants and dependence on parameters. We will adopt the following convention
for denoting constants appearing in inequalities: We will use capital letters (e.g. C)
to denote “large” constants, typically appearing on the right hand side of inequalities.
(Such constants can be “freely” replaced by larger ones without rendering the inequality
invalid.) Lower case letters (e.g. ¢) will be used to denote “small” constants (which can
similarly freely be replaced by smaller ones). The same characters will be frequently
used to denote different constants, even in adjacent lines.

We will assume that all non-explicit constants will depend on the specific geometric
aspects of (M, g) and we will not keep track of this dependence, except for some very
specific cases. However, since we will introduce a plethora of parameters throughout
this paper, we will always keep track of the dependence of all constants on each of
these parameters. Once a parameter is fixed (which will be clearly stated in the text), the
dependence of constants on it will be dropped.

3.2. Inequality symbols. We will use the notation f] < f for two real functions fi, f>
as usual to imply that there exists some C > 0, such that f; < Cf,. This constant C
might depend on free parameters, and these parameters will be stated clearly in each
case. If nothing is stated regarding the dependence of this constant on parameters, it
should be assumed that it only depends on the geometry of the spacetime (M, g) under
consideration.

We will denote fi ~ f> whenwe canbound f; < f>and f, < fi. The notation f; <«
/> will be equivalent to the statement that % can be bounded by some sufficiently small
positive constant, the magnitude and the dependence of which on variable parameters
will be clear in each case from the context. For any function f : M — [0, +00),
{f > 1} will denote the subset { f > C} of M for some constant C > 1.

For functions f1, f> : [x¢, +00) — R, the notation f; = o( f») will mean that % can
be bounded by some continuous function % : [xg, +00) — (0, +00) such that h(x) > 0
as x — +o00. This bound # might deppend on free parameters, and this fact will be clear
in each case from the context.

3.3. Some special subsets of M. The future event horizon of M will be denoted by H*,
and the past event horizon by H ™, i.e.
H+ = J+(Ias) N 8J—(Ias)a
H™ =J"u) N 8J+(Ias)'
For any 11 < 17, we will denote
R(ti, ) ={u <t <} C M\H™ 3.1
and
Ye={r=r1} (3.2)

where the function t : M\'H~ — R is defined in Assumption G1.

The ergoregion of M, defined by (2.8), will be denoted by &. The boundary of &
(which is smooth, according to Assumption G3) will be denoted by 94 .We will fix a
smooth T-invariant spacelike vector field ny,¢ in a small T -invariant neighborhood of
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0&, such that nye|,2 is the unit normal of 9&. We will denote with &, the extended
ergoregion of (M, g), defined by (2.11). Notice that & C &y, but 3&,,; C 9&.
For any 8 > 0, we will denote

& = {x € M\ |distg, (x, Guu) < 8. (3.3)

Note that &, C & for any 8 > 0, and N~ 85 = Epxr.

3.4. Notations on metrics, connections and integration. For any pseudo-Riemannian
manifold (N, hr) appearing in this paper, we will denote with dh o the natural volume
form associated with 4. Recall that in any local coordinate chart (xl, x2, .. .xk) on
N, dhyys is expressed as

dhp = V/\det(hpp)|dx' - - - dxF.

We will also denote with V- the natural connection associated to hnr. When (N, hy) =
(M, g), we will denote V, - simply as V. If &/ is Riemannian, | . | will denote the

har
associated norm on the tensor bundle of A/ .
For any integer / > 0, we will denote with (Vh/\f ) or Vfl » the higher order operator

Vin Vi - (3.4
—
[ times

Note that the product (3.4) is not symmetrised. We will also adopt the convention that we
will always use Latin characters to denote such powers of covariant derivative operators.
On the other hand, Greek characters will be used for the indices of a tensor in an abstract
index notation.

For any smooth and spacelike hypersurface S C M, gs will denote the induced
(Riemannian) metric on S, and ng the future directed unit normal to S.

Some examples of pseudo-Riemannian manifolds that will appear throughout this
paper are (M, g), (M, grf) and (X, gs.,), where g is the reference Riemannian
metric (2.4). We will raise and lower indices of tensors on M only with the use of g.

In some cases, we will omit the volume form dg or dgET_When integrating over
domains in M or the hypersurfaces X+, respectively.

In the case of a smooth null hypersurface 5# C M, the volume form with which
integration will be considered will as usual depend on the choice of a future directed null
generator n_y for 7. For any such choice of n 4, selecting an arbitrary vecor field X
on T M such that g(X, n_) = —1 enables the construction of a non-degenerate top
dimensional form on .7Z: dvol ;» = ixdg, which depends on the on the precise choice
of n y, but not on the choice for X. In that case, dvol ;» (or dvol, ,, ) will be the volume
form on 7 associated with n .

3.5. Coordinate charts on M\'H™. Using the function ¢ as a projection, we can identify
MA\H™ with R x . Under this identification, any local coordinate chart (x Lo x4 ) on
asubset )V of X can be extended to a coordinate chart (z, xt o, xd) onRxV CRxX,
and in this chart, we have d; = T. We will usually work in such coordinate charts
throughout this paper.

In view of the flat asymptotics of (M, g) and the fact that ¥ intersects " transver-
sally, the coarea formula yields that in the region J*(X), the volume forms dg and
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dt A dgs, are equivalent, i.e. there exists a C > 0, such that for any integrable
¢: M — [0,+00) and any 0 < 11 < 13 (identifying M\'H™ with R x X):

©
M edes [([etmag)arsc[ gl 69
R(t1.12) T z R(t1.12)

Similarly, for any 8 > 0, there exists a Cs > 0 so that for any integrable ¢ : M —
[0, +00) and any T; < T2 (not necessarily non-negative):

©

' | vig= [ ([ ewndes)ar=c | ods.
R(ti,t2)N{r=3} Tl ZN{r=3} R(t1,12)N{r=8} (3.6)

3.6. Notations for derivatives on SY~!. In this paper, we will frequently work in polar
coordinates in the asymptotically flat region of (M, g) or (X, gx). For this reason,
we will adopt the same shorthand o-notation for the angular variables in such a polar
coordinate, as we did in [30,31]. See Section 3.6 of [30] for a detailed statement of this
convention.

As an example of this convention, on subset I/ of a spacetime M covered by a polar
coordinate chart (uy, up,0) : U — Ry x Ry x S9-1 for any function 2 : U/ — C
and any symmetric (I, 0)-tensor b on S?~!, the following schematic notation for the

contraction of the tensor (Vggdf . )lh(ul, uy, -) with b will be frequently used:
b- 3(1511(141, uz, ) = bt1...t1(v{lng71 )L]...L/h(ulv uz, ')9 (37)

where gga-1 is the standard metric on the unit sphere S?~!. Furthermore, we will also
denote in this case

1 . 1
0, w2, | = |V, w2, (3:8)
Notice, also, the following commutation relation holds:
(L5, VS 1=0, (3.9)

where 0,, is the coordinate vector field associated to the coordinate function u;,i = 1, 2.
Therefore, we will frequently denote for any function 4 : i — C:

L4, V" = 3, 36h, (3.10)

and, in this notation, we will be allowed to commute 9, with 9, as if 9, was a regular
coordinate vector field. See Section 3.6 of [30] for more details.
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3.7. The O(-) notation. For any integer k > 0 and any b € R, the notation 7 = Oy "
for some smooth function 7 : M — C will be used to denote that, in the (¢, r, o)
polar coordinate chart on each connected component of the region {r > 1} of M (see
Assumption 1):

k
o> kol e < C (.11
J=0 ji+jp+jz=j
for some constant C > 0 depending on k and /. The same notation (omitting the 9,

derivatives) will also be used for functions on regions of manifolds cover by an (r, o)
polar coordinate chart.

Similarly, the notation & = Ofd_l (rb ) will be used to denote a smooth tensor field
h on M such that, in the (z, r, o) polar coordinate chart on each connected component
of the region {r > 1} of M, h is tangential to the {r = const} coordinate spheres
(i. e. h contracted with 9,, 9; or dr, do, depending on its type, yields zero), and satisfies
|h| 8ed—1 = O (r?). The type of the tensor & will always be clear from the context.

3.8. Vector field multipliers and currents. In this paper, we will frequently use the
language of Lagrangean currents and vector field multipliers for equation (1.2):
On any Lorentzian manifold (M, g), associated to the wave operator [, =

WE)M («/—det(g)g“v8v> is a symmetric (0, 2)-tensor called the energy momen-

tum tensor Q. For any smooth function { : M — C, the energy momentum tensor
takes the form

1 - - 1, -
QW) = S (0w b+ 0 ) = (@MU P)g. (B12)

For any continuous and piecewise C! vector field X on M, the following associated
currents can be defined almost everywhere:

TXW) = QW) X”, (3.13)
KX () = Quu()V* X . (3.14)

The following divergence identity then holds almost everywhere on M:

VEIX W) = KX @) + Re[ @1 - X . (3.15)

3.9. Hardy-type inequalities. Frequently throughout this paper, we will need to control
the weighted L? norm of some function u by some weighted L? norm of its derivative
Vu. This will always be accomplished with the use of some variant of the following
Hardy-type inequality on R (which is true for d > 1, although we will only need it for
d>2):

Lemma 3.1. For any a > 0, there exists some C, > 0 such that for any smooth and
compactly supported function u : R — C and any 0 < Ry < R we can bound

_ —(d-—1
/ r d+“|u|2dx+/ Ry dg g
RIN{R | <r<R>} {r=Ri}
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< ca/ r_(d_2)+“|3ru|2dx+/ Ry dg,_p, (3.16)
RIN{R  <r <Ry} {r=R2}

and

_ —(d—1
/ r d|u|2dx+f Ry “"Dog(R)ul? dg (g,
RIN{R| <r<R»} {r=Ri}
< C/ r_(d_z)(log(r))2|8,u|2dx
RIN{R| <r<R>}

+ / Ry "V log(Ry) ul® g, _g). (3.17)
{r=Ra}

In the above, r is the polar distance on RY, dx is the usual volume form on RY and
dg(,—py is the volume form of the induced metric on the sphere {r = R} C R4,

The proof of Lemma 3.1 is straightforward (see also Section 3.9 of [30]).

4. Proof of Theorem 2.1

The proof of Theorem 2.1 will proceed by contradiction: We will assume that all smooth
solutions ¢ to (1.2) on D(X) with compactly supported initial data on ¥ satisfy

Ele] = sup/ TN (@) < +oc, 4.1)
D

>0

and we will reach a contradiction after choosing ¢ appropriately. To this end, we will
need to establish a decay without a rate result outside the extended ergoregion &, for
solutions ¢ to (1.2), given the bound (4.1); see Proposition 4.1 in Sect. 4.2. This result
is highly non-trivial and actually lies at the heart of the proof of Theorem 2.1, with
Sects. 5-6 being devoted to the development of the necessary technical machinery for
the proof of Proposition 4.1. In fact, the proof of Proposition 4.1 will be postponed until
Sect. 7.

Remark. Instead of assuming (4.1), our proof of Theorem 2.1 also applies under the
weaker assumption:

sup ((1og(2 +1) ¢ fz gy ((p)n“) < 400 4.2)

>0

for an arbitrary C > 0. Furthermore, as a consequence of the discussion in Sect. 6.9 (see
also the remark below Proposition 4.1), the proof of Theorem 2.1 also applies without
any significant change in the case when (M, g) has a T-invariant timelike boundary
component dy,, M, with 94, M N X compact and 9y, M N'H = &, and ¢ is assumed
to satisfy either Dirichlet or Neumann boundary conditions on dy;,, M (see Sect. 6.9 for
more details on the assumptions on the geometry of (M, g) in this case).

In Sects. 4.1-4.3, we will establish some auxiliary results concerning the behaviour of
solutions ¢ to (1.2), that will be used in the Sect. 4.4 to complete the proof of Theorem 2.1.
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4.1. Construction of initial data on X with negative higher order energy. In this section,
we will establish the following result:

Lemma 4.1. There exists a smooth initial data set (¢©, V) : £ — C? supported
in X NU (where U C M is the set described in Assumption Al) so that the function
¢ : D(X) — C, defined by solving

imgmzo on D(T), @3

(¢lz. Tols) = (9@, o),
satisfies

/ T (Ton* = —1. (4.4)
z

Remark. Notice that the initial value problem (4.3) is well posed, since the vector field
T, although not everywhere timelike, is everywhere tranversal to 2. For the construction
of initial data sets (9@, (1) satisfying

JT(@n* = —1
|
instead of (4.4), see [19,20].

Proof. Since U is an open subset of M intersecting & (according to Assumption Al),
in view of the definition (2.8) of & we infer that there exists a point g € &/ N ¥ and
a contractible open neighborhood V of ¢ in M such that T is strictly spacelike on V.
Therefore, provided V is sufficiently small, there exists a vector field L on V satisfying

g(L,L)=0, g(L,T) >0and VL =0. 4.5)
The condition VL = 0 on V implies that there exists a function w : VV — R such that
Vw = L. (4.6)

Let us fix a smooth cut-off function x : M — [0, 1] supported in V such that
¥ (¢q) = 1. Then, for any / >> 1, the function

e G (4.7)
on M is supported in )V and satisfies [in view of (4.5) and (4.6)]
O = xI28, wd*we'™ + 0(1) = 0(1). (4.8)
Furthermore, we compute:
[T aon
z
= [ 0750 720 = S0 T 750" T5) i

= / ((xﬂ(nw)(Tw)e”w +0M) (X (Tw)?e™ + 0())
=Ny
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1 : )
— 5g(n, T)(x*@uw)(Tw)e™ + 00) (k2 (3" w)(Tw)e™ + 0(1))) dgs,

1
= f (%% (sn. L)((T. 1)) = Jg(n. T)g(L. L)(E(T, L))?) + O dgss.
=Ny

4.9)
which, in view of (4.5) (and the fact that g(n, L) < 0), yields:
/ JT(Ten* = —col* + 0(1P) (4.10)
)
for some ¢g > 0.
Let us set
@2, o) = (@lz. Tqls). (4.11)
Note that (¢©, ¢(V) is supported in V N = C U N . Then, the function
o=0¢—q, (4.12)
where ¢ is defined by (4.3), satisfies (in view of (4.3), (4.8) and (4.11)):
e =0() on D(X), 4.13)

(@lz, Tolz) = (0,0).

In view of the fact that ¢|x = 0 and V¢|x = 0 (implying also that Vg): ¢|lx = 0 and
Ve T §lz = 0), the expression of the wave operator in a coordinate chart of the form
(t, x) on V readily yields

edls = (°7%9) Iz = (e™8.(TH)Ix = ( n(To)ls. (4.14)

1
gn,T)

Thus, from (4.13), (4.14) and the fact that [, ¢ is supported in V, we can readily bound
/ IN(Tpn* = 0. (4.15)
b
From (4.12), a Cauchy—Schwarz inequality implies:
‘/ JL (Tt —/ JJ(T@)n“‘ < C/ IV T pnt, (4.16)
b b b

and thus, in view also of (4.10) and (4.15):

/ JL(T " = —col* + 0(1%) <0, (4.17)
=

provided / > 1. Multiplying (¢, ¢) with a suitable non-zero constant, we can
therefore achieve (4.4), and therefore the proof of the Lemma is complete. 0O
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4.2. Decay outside the extended ergoregion. The following proposition, establishing
decay without a rate outside the ergoregion for solutions to Eq. (1.2), lies at the heart of
the proof of Theorem 2.1:

Proposition 4.1. Let ¢ : D(X) — C be a smooth function satisfying (1.2) with com-
pactly supported initial data on ¥, and let us set \p = T ¢. Assume that the energy bound
(4.1) holds for ¢, ¥, Ty and T*,10 i.e.:

El] + EMV] + E[T Y] + E[T2] < +oo. (4.18)

Then for any 0 < € < 1, any 81 > 0, any R, 14 > 1 and any 19 > 1, there exists a
T; > To+ T« depending on €, 81, R, T4, 10, Eiogl @], Eiogl V], Erog T V] and E[Tzllf] such
that

1
> (N @ TP < @19)
=0 Y (Rt =t u+t)\G NIr <R}

(see (5.17) for the definition of the quantity Ejog[-])
For the proof of Proposition 4.1, see Sect. 7.

Remark. The proof of Proposition 4.1 also applies when & = @. Furthermore, in view of
the discussion in Sect. 6.9, the proof of Proposition 4.1 in Sect. 7 also applies in the case
when (M, g) has a T-invariant timelike boundary component d;;, M, with 9, M N X
compact and 9;;, M N'H = &, and ¢ is assumed to satisfy either Dirichlet or Neumann
boundary conditions on imM. 1 As a consequence, the proof of Theorem 2.1 will also
apply in this case as well (all the other steps in the proof of Theorem 2.1 immediately
generalise in this case without any change).

4.3. Limiting behaviour for solutions of (1.2). We will need the following lemma on the
behaviour of {r asymptotically as t — +00, following essentially from Proposition 4.1:

Lemma 4.2. Let ¢, U : D(X) — C be as in the statement of Proposition 4.1, and let us
define, for any t > 0, the function U : M\'H™ — C as follows:

Y +1,x), t>-—1,

4.20
0, < —1. ( )

P (t, x) = {

Then, there exists an increasing sequence {'cn},,eN of non-negative numbers and a func-
tion  : M\H~ — C with \, T € (M\H™), such that | solves (1.2) on
MN\H™, satisfying in addition

Ioc

/+t* f (J}iv(qf) + JliV(TlT,r))nM) dt < 400 for any 1, > 0, (4.21)

U =0on M\ (& UHT) (4.22)

10 Note that, since 7' is a Killing field of (M, g), the functions {r, 7 and T2\|J also solve (1.2) with
compactly supported initial data on X.

1T In this case, we have to assume that the double (M, g) of (M, g) across 3, M is a globally hyper-
bolic spacetime satisfying Assumptions G1-G3 (note that Assumption Al is not necessary for the proof of
Proposition 4.1).
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and (Y, T,) — U, TlIf) weakly in loc(M\H ) X
loc(M\(éaext UH™)) x H, (M\(éoext UH™)) and in L2

in the following sense:

H} (M\H™) and strongly in
(M\H™) x L, (M\H™)

Ioc loc loc

e For any compactly supported test functions {C;} j—o,1 € L2(M\H ™) and compactly
supported vector fields {X j} j—o0,1 on M\'H™ such that | X lge € LA (M\H™):

nll){{loto gref V(lelfrn — T/, X; i)+ (T, — TJIU)CJ}dg =0.
(4.23)
e For any compact subset K C M\'H™ and any 8 > 0:

1 1
lim /|Tf¢rn—TfJf|2dg+ / V(T ,) = V(TP dg) = 0.
Hm(g K JZ=<:) i b >(4 24)

Proof. Let us fix four sequences of positive numbers {e;},eN, {8n}neN, {Rn}nen and
{t}}nen such that €,,3, — 0 and R,, Tf — +00 as n — +0o. We then define the
sequence {1, },en inductively: Setting 19 = 0, T, is defined for any n > 1 as the value
1y > 0 from Proposition 4.1 for ¢, in place of €, 3, in place of 3, R, in place of R, T, in
place of 1, and t,,— in place of Tp (notice that the last condition guarantees that 1, is an
increasing sequence). Then, Proposition 4.1 applied for the pair ({r, 7{r) implies that the
pair (¢, TP+,) (which is merely a t,-translate of (\r, T) in the region {r > —1,})
satisfies the following estimate for any n € N:

Z/ / (TN (T, )0 + |qu;1n|2)> dt) < e,. (4.25)
- (Z\ &5, )N {r<Ry}

In view of the bounds (4.18) and 4.25, as well as the Poincare-type inequality

/ e, |> < CR? / I (e,
R(T1,02)N{r<R} R(T1,02)N{r<2R}
v e 12 (4.26)
R(T1,T2)N{R<r<2R}

holding for any T; < T, we infer that, for any compact subset /C of M\H ™, setting

no(K) = min [n € N : K is contained in the set {max{—t,,, —Ul<t<TtlN{r=< Rn}}},

4.27)

there exists a C = Cy such that:

sup Z/ JN(TJIIIW)NM+|TJIIIT"| ) < Cx(E[VHEIT YD+ sup €, < +o0.
n>ngp (k) n=>no(KC)

(4.28)

For any compact K ¢ M\H ™, Rellich—-Kondrachov’s theorem yields that the embed-

ding H'(K) x H'(K) — L*(K) x L?*(K) is compact. Thus, (4.28) implies that for
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any compact K C M\’H™ and any infinite subset A C N, there exists an infinite subset
Bjc. 4 € A such that the subsequence {(Wr,, T ) neBic 4 Of {(Wr,, TUr,)}nen con-
verges Weakly in the H'! (IC) x H! (IC) norm and strongly in the L2(KC) x L?(K) to some
limit palr (Wi, 1!flc) in H'(K) x H'(K). Note that in this case, we necessarily have

x],r;C = Tllf]c in the sense of distributions.

Let {/C, }men be a sequence of compact subsets of M\H™ such that I, C [Cpi1
and U,,enKCyy = M\H ™. Then, setting A_| = B, ., Am = Bx,,.4,,_, form € N, and
defining recursively

A = Upen{min (Au\{n: n <m})}, (4.29)

we infer that there exists a pair U, TV) € H o C(./\/l \H™) x H, c(./\/l \'H ™) such that the
subsequence {\r,, T, }nca satisfies (4.23) and, for any compact I C M\H™ (after
permanently renumbering the indices of {\{/,},c4 through amap N — A):

1
lim Z/}C | T e, — T/ dg = 0. (4.30)

n—+00 £

Since the functions {, solve (1.2) on {t > —1,}, J; also solves (1.2) on M\'H™
in the sense of distributions, in view of (4.23). Furthermore, in view of (4.18), we can
bound for any t, > 0

sup{i/ ' (/ J@V(quf)n“) dt} < 400 431)
=0/ max{=t,~tu} *JT:

neN

and, thus, (4.21) holds. The identity (4.22) follows by letting n — +o0 in (4.25). Finally,
(4.24) follows from (4.22), (4.25) and (4.30). O

4.4. Finishing the proof. Let us assume, for the sake of contradiction, that any smooth
solution ¢ to (1.2) on D(X) with compactly supported initial data on X satisfies (4.1).
Let ¢ : D(X) — C be as in the statement of Lemma 4.1, and let us set

U =To. (4.32)

In view of Lemma 4.1, ({, T{)|x is smooth and compactly supported in &/ N X, and
moreover

f It = —1. (4.33)
)

Let {1, }nen be the sequence defined by Lemma 4.2, and let {,, U M\H™ — Cbe
the functions defined by Lemma 4.2.

We will make use of the following identity, appearing also in [20], holding for any
acausal, inextendible and piecewise smooth hypersurface S C M\H™ such that T is
everywhere transversal to S and any smooth function ¢; : M\H~ — C such that
supp(¢1) NS is compact and supp(@1) NS NHY = &
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/JJ(w)ng:/Re{nswl T — g1 - ns(Tdn) dgs
S S
—/SRe{WDg(pl}g(ng, T)dgs. (4.34)

where ngs is the future directed unit normal to S.

Proof of (4.34). One way to obtain (4.34) is the following: Since supp(¢1) NS is compact
and supp(¢1) NS N'H* = &, we can assume without loss of generality (by changing
@1 away from S if necessary) that ¢; has compact support in M\ (H* U H ™). Then,
integrating the identity

—2Re{T 10,01} = —Re{T 910,91 — 10,(T 1) + T (¢10,51) } (4.35)

over J ~(S), we readily obtain:
—2/ Re{T 10,91} dg = —/ Re{T 10,91 — @10,(T$1)} dg
J=(S) J=(S)

+/SR€{%Dg¢>1}8(nS, T)dgs. (4.36)
Using the identities
—2/ Re{T 10,1} dg = / Il (@)n's (4.37)
J=(S) S
and
_/ Re{T 10,91 — @10, (T 1)} dg
J=(S)
= /:SRe{nqul To1 — 91 -ns(T§) } dgs
(holding because of the assumption that ¢ has compact support in M\ (H*UH ™)), we

finally obtain (4.34).

We will also introduce the following (indefinite) inner product on the hypersurfaces
¥.: For any two functions ¢1, ¢z : M\H~™ — C such that for any 1, > O:

2
sup Z/ (Jp{v((pj) + .IIJ]LV(T<pj))npL < +00

TE[*T*,T*IJ-ZI P

and at least one of them has compact support in space (i.e. for any t, > 0, its support in
{—1« <t < 1.} is compact), we will define for any T € R:

1 _ ) ) )
(@1, ¢2) 7. = —/2 Re{(nscpl-Tcpz+ns<pz-T<pl)—(<pl -ns(Tcpz)+<pz~ns(T<p1))}-

2
(4.38)
Note that, if both ¢; and ¢> solve equation (1.2) and at least one of them is supported
away from H*, then for any t; < T, the following identity holds:

<(P17 (P2>T,-[] = <(\Dls (P2>T,-;2 . (439)
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The equality (4.39) readily follows after integrating the identity

1 ) ) ) _
ERe{(Dg(PI Tor+0e02T91) — (910, (T92) + (PZDg(T(Pl))} =0 (4.40)
over R(tq, 12).

Remark. Note that, in the case when ¢ and ¢; solve equation (1.2) and at least one of
them is supported away from H™*, the expression (4.38) is the inner product of ¢j, ¢
associated to the fzI JHT (-)n" “norm”, in view of (4.34). Thus, (4.39) is a consequence
of the conservation of the T -energy flux.

For any Tt > 0, the T-energy identity for { in the region R(0, t) combined with (4.33)
yields:

JT ()n* +f JT@Wnk, = —1. (4.41)
./ o HoRoD b
Since T is causal on M\ &, we can bound for any t > 0 and any 8 > 0:
/ Il )t + / I (ynly, = 0. (4.42)
T\& HHR(0,7)

Therefore, (4.41) and (4.42) imply that for any T > 0, 8 > 0:
/ It < —1. (4.43)
TNE

Since the functions \r, satisfy (4.20), from (4.43) we obtain forany 8 > 0,any T > —1,,
and any n € N:

f Ji (U )n < —1. (4.44)
SN&

Let x : M\H™ — [0, 1] be a smooth function of compact support such that x = 1
on R(—1,2) N &, for some 0 < 89 < 1 and supp(x) N H" = @. Applying the identity
(4.34) for the function ¥\, , and using the fact that {;, solves (1.2), we obtain for any
ne€Nandany 0 < 19 < 1:

/Ow (fz ]J(thn)n“) ds

10 _ _
=/0 (fz Re{n(xwrn)T(xdfxn)—(xdfxn)ns(T(xwrn))}dgz)ds

) ) )
_/0 </Z Re{x W, @V* XV, + Oy )V, f8 (. T) dg2>ds. (4.45)

In view of (4.44) and the fact that x = 1 on R(—1, 2) N &,, (4.45) yields:

10 _ _
/ ( / Re{mips, T, — e, (Th,)} gz ) ds
0o NEing,

1

<—-1+C Z/ (IVT s, |§r€f + T, %) dg. (4.46)
=0 7 supp OO\ S

Let us examine the properties of (4.46) as n — +o0.
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1. Inview of (4.24) and the fact that supp() is compact, the right hand side of (4.46)

converges to —tp as n — +00.

2. For any compact subset £ C M\H* and any pair of sequences (¢,§1>, cp,(,z))neN €

L*(K) x L*(K) such that sup,, [|o5" ||,2c) < +00, @) — ¢ weakly in L2(K)

and (p,(f) — @ strongly in L*(K), one readily obtains that

lim K@i”@ff)dg= /K oM o? dg. (4.47)

n—+oo

Therefore, (4.18), (4.23) and (4.24) imply that:

n—+oo

T0 _ _
im [ ([ Relme T, = o ns (i)} de)
0 Zsﬂé%o

o ~ = ~ =
- / (/ Re{n{TV — Yns(T)) dg2> ds. (4.48)
o s,
Thus, taking the limit n — 400 in (4.46), we obtain for any 0 < 19 < 1:
o . = - =
/ (/ Re{n{T Y — Yns(T)) dgz) ds < —1. (4.49)
0 Emé%,o

According to Lemma 4.2, \Tf belongs to H, 1 (M\H ™) and vanishes outside &, and,

l .
thus, Assumption Al implies that *

U =0onl. (4.50)

Since (Y, T)|x is compactly supported in &/ N X and U/ is open, in view of the finite
speed of propagation property of Eq. (1.2), there exists some 0 < tg < 1 (depending on
the support of ¥ on X NU), such that forall 0 < T < 102

(W, TU) = (0, 0) on Tz\U. 4.51)

In view of the fact that I/ is translation invariant, (4.38), (4.50) and (4.51) imply that for
any t € R:

10 ~
/ <q;, F;“xp> di=0 (4.52)
0 T,
[the expression (4.52) is well defined, in view of (4.21)], where
FAU(t, x) = Yz + 1, x). (4.53)

In view of Assumption G3, we have &,,; N'H* = &. Thus, since III vanishes outside &,
we have xI; = 0 on H*. This fact, combined with (4.52) and the identity (4.39) [applied
to a sequence of smooth approximations of  in the norm defined by (4.21)] yields for
any s, T € R:

/S o <¢, }'fﬂf>“ dz = 0. (4.54)

In view of the definitions (4.20) and (4.53), the identity (4.54) fors = 1, and T = —s
yields:

fo b <11;I”, J;)m di=0. (4.55)
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Thus, since J,r is supported in &,y and R(0, 1) N &, is compact, (4.23) implies, after
letting n — +o00 in (4.55):

/0 B <J;, J;>Ti di=0 (4.56)

or, in view of (4.38):

o . = - =
/ (/ Re{n{ TV — Yns(T))) dgzs> ds = 0. (4.57)
0 PR
The contradiction now follows after comparing (4.57) with (4.49) (using also the fact
that \s is supported in &,,). Thus, the proof of Theorem 2.1 is complete. O

5. Frequency Decomposition

As we remarked in Sect. 4, Sects. 5—6 will be devoted to the development of the technical
machinery required for the proof of Proposition 4.1. In particular, in this section, we will
assume that we are given a smooth function { : M — C solving the wave equation
(1.2) on D(X) (i.e. the domain of dependence of X¥) with compactly supported initial
data on X, such that

EMV] = sup/ IV W)n* < +o0. (5.1)

=>0J 3

We will also introduce the frequency parameters w; > 1 and 0 < wg < 1, and we will
decompose the function \ into components with localised frequency support (associated
to the ¢ variable). We will always identify M\H~ with R x X under the flow of T as
explained in Sect. 3.5. The constructions in this section will be similar to the associated
constructions in Section 4 of [30].

5.1. Weighted energy estimates for . Before proceeding to cut off { in the frequency
space, we will first derive a few bounds for some suitable weighted energies of .

In view of the finite speed of propagation for solutions to (1.2) and the fact that
(, T)|x, is compactly supported, we infer that (\, T{)|x, is also compactly sup-
ported for any t > 0. The following lemma is a straightforward application of the finite
speed of propagation property of Eq. (1.2):

Lemma 5.1. For any a > 0, any R > 1 (so that T is timelike in {r > R}), any 11 > 0
and any T € R:

/ (log()“ J] ()n*
ND(E, N{r=R})

< Cu(log@ + [t —u)™! / (log(r)“ 7} (n* (5.2)
g, N{r=R}
and

/ FOT Rt < Ca(1+ T — m)“/ rIl At (5.3)
<ND(Er, N{r=R}) Zq N{r=R}

where D(X¢, N {r > R}) C {r = R} is the domain of dependence of ¥ N {r > R} and
C, > 0 depends only on a and the geometry of (M, g).
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Proof. Let us define for any k > 1 the sets
A =02F <r <2y cMm, (5.4)

and let us set
Ao ={r <1}. (5.5)

Then, in view of the asymptotics (2.1) of g in each connected component of the asymp-
totically flat region Zq, there exists a constant C > 0 depending on the geometry of
(M, g) such that for any t; > 0, T € R and any k € N:

k+log, (|[t—1( [+1)+C
£, N (J*(Ak NS UJ (AN 21)) c U A NZe,. (5.6)
n=max{0,k—log, (|t—11|+1)—C}

Applying for any k£ € N the conservation of the T -energy flux in the spacetime region
J7 (A N Z) N DH(Z, N{r = R}), in the case T > 1y, or the region J* (A N T;) N
D™ (2 N{r > R}),'? in the case T < 11, we readily obtain in view of (5.6)(using also
the fact that T is timelike for r > R):

k+log, (|t—11|+1)+C

Il n < >

n=max{0,k—log, (]t—11|+1)—C}

Ji (.

/Akm;rm(zt1 N{r=R}) /,‘4,,0211 N{r=R})

(5.7)
Multiplying (5.7) with k% and summing over k € N, we obtain:

oo
> f o
k=0 ANEND(Z, Nfr=R})

k+log, (|[t—1( [+1)+C

(v )y

n=max{0,k—log, (]t—11|+1)—C}

Nk

< / g (q;)n“)
AN, N{r=RY)

x~
Il

IA
Q
2~
—~

k+log, (J[t—1( [+1)+C

- JT V8
( Z / )/AkﬂE”ﬂ{rzR}) w (0 )

k=0 Jj=k
o
= Ca ) (K +logy(lt =] + 1)+ O)*! f Knt). 58)
k=0 AN N{r=R})

Inequality (5.2) follows readily from (5.8). Inequality (5.3) follows in the same way,
after multiplying (5.7) with 2%¢ and summing over k e N. O

In view of (5.1) and the conservation of the 7'-energy flux in the region {r_ > 0}N{r < 0},
we can bound:

sup / N Wnt < ENY) (5.9)
1eR J X N{r_>0}

12 Here, D*(B) is the future domain of dependence of the set B C M, while D~ (B) is the past domain of
dependence.
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(note that ¥ N {r_ > 0} = ¥; when t > 0). Furthermore, in view of (5.2) forty =0
and the Hardy inequality (3.17), we can estimate:

sup ((1og(2 + 1)~ / a +r)*2|\|;|2) < c/ (log2 + 1)’ JY (.
<0 X N{r—>0} ) (5.10)

5.2. Frequency cut-off. Let us fix a constant Ry >> 1 large in terms of the geometry of
(M, g), as well as a smooth cut-off function x ; : [0, +o0) — [0, 1]satisfying x1(r) =0
forr < Ry and x1(r) = 1 forr > Ry + 1. As in Section 4 of [30], we will define the
following distorted time function on M\H~:

1 =t+%x1(r)(r—R1). (5.11)

Note that { = 0} Cc J*({t— = 0}).

We will also fix another smooth cut-off function x> : R — [0, 1], satisfying x» =0
on (—o0, 0] and x2 = 1 on [1, +00), and we will define the function ¢, : M\'H~™ — C
as

e = {(’)‘f(t‘) A igj (5.12)
Since {r solves (1.2), V. solves
OeWe = F, (5.13)
where
F = 20" xa(12) - 8y + Oy xa(r-) - (5.14)

is supported in {0 <r_ < 1}.

Noting that » 2 |t/ on {t = 1} N {0 < ¢t < 1} for t < 0, combining (5.9) and
(5.10) (in each asymptotically flat end of ;) with the Hardy-type inequality (obtained
after averaging (3.17) over R», using also a Poincare-type inequality in the near region

{r < 1h:

A+ 22 < C f (log@ + )2 I (n®

‘LI\D(ZOO{rZR}) ZA\D(ZoN{r=2R})

L / (1+7) 2 log(r) [ |?
= ND(ZoN{R<r<2R})

< C(log2 + 1))’ /E IN Wt

+Clog2+ 1)) (1+r) 2.,
2ND(ZpN{r=R})
(5.15)

we obtain in view of (5.12):

sup f TN ent + sup (1717 (log@ +1¢) ™" / 2 @ont)
=<0

=>0J % < e
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wsup ((tog2+1eh) ™ [ (147) 7 Iel) = Coulid. 10
1eR o
where
Euoci) = €001+ [ (log2-+n) s (' 517
0

Remark. In dimensions d > 3, inequality (5.16), as well as most of the estimates of this
section, holds without the logarithmic loss (since (5.10) holds without a logarithmic loss
in this case).

We will now proceed to perform a cut-off procedure on s, in the frequency domain.
Let0 < wo < 1 be a (small) positive constant, and w; > wq a (large) positive constant,
and let us set

n = Mlog, :’;—;1 (5.18)

and, for any integer 1 < k < n:
o = 2% wo. (5.19)

Fixing a third smooth cut-off function x3 : R — [0, 1] satisfying x3 = 1 on [—1, 1]
and x3 = 0 on (—o0, —2] U [2, +00), we will define the following Schwartz functions
on R:

o) = / e300y 'w) do,

—00

+00 X
(1) = / ¢ (x3(wp '®) — x3(0p ' w)) dw, forl <k <n

—00

n
G (1) = ) Gk (). (5.20)
k=0
Notice that the Fourier transform of ¢ is supported in {wx—1 < |®| < 2w} (setting

w—1 = 0), while the frequency support of {<,, is contained in {|w| < 4w,}. Further-
more, the following Schwartz bounds hold for any integers m, m’ € Nand 0 < k < n:

e’ d .
sup o ' (1 +|0)kt|m)(d—)n§k(t)| <Cp (5.21)
teR t
and J
sup oy 7" (1 + |w+t|’”)(d—)m Ccw, (D] < Cp. (5.22)
teR t

Using G, {<w, . we will define, for 0 < k < n, the “frequency decomposed” compo-
nents Uy, U<w,, Usw, : M\H™ — C of ¥ through the following relations (identifying
M\H™ with R x X through the flow of T'):

Vet ) = / Gt — $)We(s, ) ds, (523)
Voot ) = / Ceon, (1 — $)Ue(s. ) ds (524)
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and
Ilem+(l‘, ) = llfc(ts ) - ¢§w+(l, ) (525)

Note that the integrals (5.23) and (5.24) do not necessarily converge pointwise for all
(t, x) € Rx X, since the bound (5.1) does not suffice to exclude the pointwise exponential
growth of { in the ¢ variable. Instead, in view of (5.16), (5.21) and (5.22), the restrictions
Wi Tz, Wzo,. Tz, and (Y=o, T=0,)|x, are only defined as finite
energy functions on X for any T € R, satisfying the following bound for any a > 0
(derived from (5.16), (5.21), (5.22) and Young’s inequality):

sup (10 277" [ (N Wer 0P+ 1V e 0, ) des)

>0
+sup ((l + o 272 (log2 + Itl))—“/E (IN Yk (T, )2 + [ Vgy Wi (T 012 dgz)
=
+ sulré ((1 + ;)7 (log2 + ITI))—4 /2(1 +1) 72 [ (x, ) dgz) < Ca&logl¥], (5.26)
s
SU%/ (lef‘”*(r’x)lz‘L|Vg:¢5m+(r,x)|§z)dg2
+ sup (Itlfz(log(2+ III))*“/ (INV <o, (T, x)|2 Vg Vo, (3. x)|§):) dg2>
<0 >
+ sup ((log(2+ Irl))—4/ (1 +1) 2 Yen, (1. 0)2 dg2> < CaioglV] 527
eR 5

and

sup /E (INV 20, (T 1) + | Vep Vo, (1. 05, ) dgs

>0

+sup (772 (1og@ + <)~ /E (INV 20, (T P + Vs Wz, (1,012, de )

<0

+sup ((log-+ <) ™ fE (47 s, (0 dgs ) < Cablpgl¥]. (5.28)

Defining, similarly Fy, F<,, and F>,, in terms of F as in (5.23)—(5.25) (replacing
V. with F), in view of (5.13) we obtain the following relations (for any 0 < k < n):

Og Wk = Fi, (5.29)
Dgl’fﬁm+ - F5m+ (530)

and
OgUsw, = Foo, - (5.31)

5.3. Bounds for the frequency-decomposed components. In this section, we will estab-
lish some useful estimates for the energy of Yy, U<w, , U>w,, as well as for the “error”
terms Fi, F<q,, F>w,, in terms of Eye[P].

We start with an estimate for weighted spacetime norms of the terms Fy, F<,, , F>q,.
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Lemma 5.2. We can bound for any 0 < k < n, any q,q' € Nand any 0 < 1| < 12:
—g—2 L
f rF? < Cagr(1+ 0 77 (14 wpt1) ™ Epog U], (5.32)
R(t1,12)

The same inequality also holds for F<,, , F>, in place of Fy (with o, in place of o).

Proof. In view of (5.14) and the fact that
+00

Fit, ) = / Gt — $)F (s, ) dr, (5.33)
—00

we can estimate (denoting with x the space variable in the splitting M\H~™ =R x X)

/ rq|Fk|2<Cf/
R(t,t2)
elfof]
( ) T

From the Schwartz bound (5.21) for m = ¢’ + ¢ + 5 and m’ = 0 (using also (5.14)), we
can estimate:

L)
*Xl(f)(” Ry)

=3 %1 () —R) o

— Cfﬂ// rq/ 1 1 _ q'+q+5
~Ixime—=ry I+ ot —s))

'[2 o)
qq/rq/ / )
0o (14 g |N]a+a+s

1=2x1 ) =R ok 5
( s Fs, 0 ds) drdgy
—Ixime—=ry I+ ot —s)T+e

w , pl=gxi (=R o1
< qu// rq/ (/ : 5|F(s,x)|2ds) drdgs;
s Jy ~Ixame—=ry I+ ot —sparar

©
< [ ([ oy
z o (L+op|t+ 3% — R[4+

1-$x1()—Ry)
(/ |F (s, x)|2ds) dgs.

Ck(f —s)F(s,x)ds

dtdgz

*§X1(r)(r*R1) 2
G (r — 5)F (s, x)ds‘ dtdgz).

(5.34)

I E=Ry)

— 1) —Ry) 2
Ck(t—s)F(s,x)ds’ drdgs,

2
F(s, x) ds‘ didgs,

IA

~Lxime-Rry)
l+w,? 1- 5310 —Ry)
< Cpp—h / (A +opr)™ / |F (2, x) dt) dgs.
(1 +wt))? X1 =Ry

1+, 1=2x () —RD)
Lo / (1+awpr) ™ / (4 Wyt + 12 dr ) degs

4@’ (1+wxt)? X1 r—=Ry)
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Hw—k -2 N n )
=G (meﬂ/ e </m0<, U O L)) e
(5.35)

(for the last inequality, we used the fact that t ~ r on {0 < r_ < 1}). Therefore, from
(5.34), (5.35), (5.9) and (5.10), we readily obtain (5.32).
The estimate for F<,,, and F~,, follows in exactly the same way. O

We will also need the following qualitative decay statement near spacelike infinity for
the functions Y, P<y, and P>, :

Lemma 5.3. Forany q € N, any t > 0and any 0 < k < n:
lim sup (Rq / (Jf(wk)n“ + |¢k|2)) =0. (5.36)
R—+00 X:N{R<r<R+l1}

The relation (5.36) also holds for V<,,, U=, in place of y.

Proof. The proof of Lemma 5.3 is a straightforward consequence of the compact support
of (I, T{)|x and the Schwartz bounds (5.21), (5.22).

Let Ro({) be sufficiently large, so that (\, 7V )|y is supported in {r < Ro({) — 1}.
Then, in view of the finite speed of propagation property of equation (1.2), there exists a
C > 0 (depending only on the geometry of (M, g), so that the function { is supported
in {r < Ro(\) + C|t]} € M. Thus,

¥ =0on{|t|>C'(r— Ro()}. (5.37)

Then, in view of (5.12), (5.23), (5.21) and (5.37), we can bound for any t > 0, R >
Ro(W)+Ctand 0 <k < n:

/ (Y o + 1)
S.A{R<r<R+1}

1

+00 ) 2
< c/ > ][ G (T — )V e(s, x) ds
SN{R<r<R+1} =0 —00 8

< C(/_ [k ()] ds Z/zm porro) f |Ck(T—S)||lelic(s x)| dsdgz

dgs.

ref

+00 ok

<Cy / / IPe(s, x) dsdg
Z SN{R<r<R+1} J—o0 1+ (wgt — s+ | ‘ | >

<G, f / I (s, x) dsdg .
Z SN{R<r<R+1} JC-1(R=Ro(y)) 1 + (wr|T — SI)‘”“’ ‘ >

(5.38)
In view of the bounds (5.9) and (5.10), inequality (5.38) yields:

/ N o + 1)
S.N{R<r<R+1}
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< CyR2E 1y, (V] /m — Ok (log2+]s])’ dsdg
- 8 SN{R<r<R+1} JC-1(R—Ry(1)) | + (wk|T — s[4+ =
w;1R2
=< Cq glog[qfl (5.39)
1+ (0 (C~1(R = Ro(b) — )7+

Thus, (5.36) readily follows from (5.39).
The relation (5.36) for V<, , V>, in place of Y follows in exactly the same way,
using (5.22) in place of (5.21). O

We will now proceed to obtain local in time estimates of the form ffooo ERARE S
w% f fooo RUy3 |2 dt. Let us define the following Schwartz functions on R, similar to (5.20):

+00 . 1 h
Eo(1) = / a5y o) do,

—00

o it 1 —1 —1
Ex(t) = e (X3(§‘Dk ) — X3(203k,1‘1))) dw, forl <k <n. (5.40)

—00

Notice that, for any 0 < k < n (setting w_; = 0), m(%w,:lw) - X3 (Zw,:_llw) = 1 for
all » € R such that x3(w, '®) — x3(w; ' ®) # 0, and thus:

& = & - &1, (5.41)

where ~ denotes the Fourier transform operator on R. Moreover, the following Schwartz
bound holds for any integers m, m’ € Nand 0 < k < n:

I B, d 4
sup oo " (1 Joogt ") ()" €] < o (5.42)
teR t

The relation (5.41), as well as the definition (5.20), implies for any 0 < k < n the
following self reproducing formula for {r:

Y (t, -) =/ it —s) - (s, ) ds, (5.43)

where, again, the integral in the right hand side of (5.43) converges with respect to the
fEt Jp{v (-)n" norm (in view of (5.26), (5.42) and Young’s inequality).
For any 1 < k < n, we will also introduce the anti-derivatives of &, defined as

z O e, Lo -1
En(r) = / N (1305 ') — 3o @) do, (5.44)

—00

thus satisfying for any m € N the Schwartz bound

sup (1 + ot [")Ek (1)] < C, (5.45)
teR
as well as the frequency-domain identity:

G = ék - wiy. (5.46)
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In view of (5.46), as well as the definition (5.20), we obtain for any 1 < k < n:

Ui(t, ) = / Ex(t —5) - TUk(s, ) ds, (5.47)

where the integral in the right hand side of (5.47) converges with respect to the
I J (-)n* norm.
We can now establish the following lemma:

Lemma 5.4. For any 1 < k < n, any 0 < 11 < 1, any T-invariant L;’(f’c
X : M\H™ — [0, +00), any R > 0 and any 0 < a < 1, we can bound
cop Wk l* = Caop(1+ ;™) sup X - Eiggl W]
R(t1,t2)N{r<R} {r<R}

function

<

XIT Wil < Cw%/ xIWel?

/;Q(letz)ﬂ{rfR} R(t1,12)N{r<R}

+Cawi(1+wp ") (log(2 + 1)) ' R? sup .- Elogl V], (5.48)
r<R

and similarly for k = 0:
XITwol* < Cw%f Xkl

R(t1,12)N{r<R} R(t1,12)N{r<R}

—1- 4
+Ca0f(1+wy ' ™) (1og(2 + 1)) R? sup X - EiglW].
{r<R)

(5.49)

Remark. Notice that the constant multiplying the error term in the right hand side of
(5.48) depends on R and 1, while this is not the case in the left hand side.

Proof. Forany 0 < k < n, from (5.43) and (5.42) (form = 5, m’ = 1) we can estimate
for any t > 0:

X COIT Ve (t, x)1? dg
XN{r<R}

+00 2
:/ X(X)‘/ E;((‘E—s)llfk(s,x)ds‘ dgs.
N{r<R} —00

+00 0\)% 2
<cC (x)‘/ S S (s,x)ds( d
/;:m{rgR} * —oo L+ ]wp(t =) e &z

+00

Wk
ngZ/ x(x)f - = s
“Jsnu<r) ( oo L |og(t—9)P )

</+°° s, x)lzds> dgs,

oo I+ |wp(t=5)
= C(”Z/ / N - X () Wi (s, x)|* dsdg (5.50)
= I —— ks, . .
“Jenp<r) J—oo T+ lor(x—5) x

Thus, integrating (5.50) over {t; < T < 12} we obtain:

f X T Wi
R(t1,12)N{r<R}
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| /\

/ /m R}/ mx(x)lwk(s x)|? dsdgs.dt
/ '/;m{ R}/ mX(x)Wk(S,x)lzdsdgzdr
B A
2tk SR\ T+ or (@ — ) 00 85
Co? / TR / )
- wk(( oo L+ ]opr]? ) R, 12m{KR}xI*Jka
2
/Eﬂ{r<R}/ / 1+|03k('t BE T)X(X)ka(s,x)l dsdgsy,
Ok 2
/Em{r<R},/; / 1+ |wr(t — S)|5 T)X(x)|1|fk(S,x)| dsdg2>

=cof( [ Xl
R(t1,2)N{r<R}

1
+sup x - / / -
r<R SN{r<R) JR\[11,0] 1 + (0 min{|T; — 5], [t2 — 5|})

|/\
w-m

31 Gs, 0 dsdgss ).
(5.51)

From (5.26) we can readily estimate forany 0 < a < 1:

1 2
. [V (s, x)|” dsdg
./Zm{rgR} ./JR\[H,IZ] 1+ (wg minf{|t] — 5], |12—s|})4 z

2 1 4 —a
= Cak </R\[n,m e e e TR G K S

< CaR*(1+0p 72 (log(2 + 12))4510g[¢]. (5.52)

Thus, from (5.51) and (5.52) we readily infer the right “half” of inequality (5.48), as
well as inequality (5.49).

In order to establish the left “half” of inequality (5.48), we will work similarly, using

formula (5.47) in place of (5.43). In particular, from (5.47) and (5.45) (for m = 5) we
obtain for any t > O and any 1 < k < n:

/ X Wk (T, 1)1 dgx
N{r<R}

+00 - 2
= / X(x)‘/ Ek(T—S)Tllfk(s,x)ds‘ dgy,
XN{r<R} —00

SC/ (x)\f S k(s,x)ds\ d
e YO T o= ¥ &z

+00

_ W
<Cw 2/ (x) / ——ds
k zm{rgR}x ( oo 1+ ]op(T—9)P )

(/ T (s, 1) ds) dgx

—oo 1+ ]o(t—15)

_ Wk 2
< Coi? / f X ®)|TUi(s, x)Pdsdgs.  (5.53)
K Jsnp<ry Joso T+ (= s)P >
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Integrating (5.53) over {11 < 1 < 12}, we obtain:

/ Xl
R(t1,12)N{r<R}

< c(,Jk—Z/Q/ /+OO (@I k(s. 0 dsdgzdr
1 JEN{r<R}J-c0 I+ |wg(t — )]
= Co?( / b / / YO I 0P dsdgpd
o Jenpr<ryJu 1T+ |op(t —s)|
2
+ f / / KT (s ) dsdgs )
o JEnir<r) JR\[t, ] | + ok (T —5)]
+00 wk
< Co? f W f T U2
k (( —oo 1H|oph]? ) R(t1,1)N{r <R}
T T2 ok 5
+ — dT)X ()| Tk (s, x)|* dsdg
/zmr<R}/ (/ 1+ |ox(t — )P ) >
W
d)x ()| Tk (s, x)|* dsdg
fzmr<RL / 1T+ |or(t— ) ) 2)

<co( XUk P
R(t,)N{r<R}

1
+sup y - / / .
r<R S{r<R} JR\[t1,12] | + (g min{|Ty — 5], |12 — 51}

Tt )P dsdg ).
(5.54)
From (5.26) we can estimate:
1
/zm{rgR} fR\[u,rz] 1 + (g min{|t; — 5|, T2 — 5]}

e (/ (1 +max{0, —s})?(log(2 + max{0, —s}))*
~ Nr\m 1+ (@emin{|t —s|, [ — s|h?

TG, )| dsdgy,

ds) (1 + 0 ™) g ]

< Ca(1+ 0 2 E g1 (5.55)
Thus, the left “half” of inequality (5.48) follows from (5.54) and (5.55). O

We will also need the following estimate in the case when s is of the form 7 ¢, where
¢ is a smooth solution to the wave equation on D(X):

Lemma 5.5. Let \r be of the form

V=T, (5.56)

where ¢ : D(X) — C is a smooth function solving (1.2) with compactly supported
initial data on %, such that E[¢] < +00. Then, forany 0 < 11 < 1o, any0 <a < 1
and any R > 0 we can bound:

/ (N (Wo)N™ + [Wol?)
R(t1,12)N{r<R}

<Co? / (1N (@N" + o)
R(t1,12)N{r<R}

+ Ca(@3(1+ 05 ™ R (log2 + [tal) + (1 + wot) ' R?)Eelel.  (5.57)
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Proof. The bounds (5.9), (5.2) for ¢ in place of | (combined with the Hardy-type
inequalities (3.17) and (5.15)) imply that

sup/ IN (@)n* + sup ((log(Z + |‘IZ|))4/
Erﬂ{t—ZO} 1eR

-2
(147) ?19P) = Cinglo].
teR ZN{r-=0}

(5.58)
From (5.56), (5.12) and (5.23) we calculate:

2
/ [ [Wo (s, x)|* didgs,
2N{r<R} J1

T +00 2
= / / / Cot — s)We(s, x)ds| didgs,
XN{r<R}J7u —00
o 00 1 5
= / / / S0t = )x2(s + X1 = R s, x)ds’ ddgy,
SN{r<R)
f / f (co(t = )xa s + > X1(r)(r — R1) - 65, x)ds\ didgss,
EN{r<R}J7 00 d
(5.59)

noting that the integrating by parts in the last step of (5.59) is possible in view of the
Schwartz bound (5.21) on ¢y and (5.58).
In view of (5.21), the relation (5.59) yields:

1%
/ / o (s, x) P dvdgs
N{r<R} J1u

2
Wq
<szm<R}/t (f 1+|w0(t_s>|%“(” X~ R)) - (s x)ds|

T —ap kbt ~R d ‘ )dtd
‘f 1+|<D0(t s)|3X2( Xl(r)(r D) - (s, x) ds 5
+00
< C(/ Lds)
oo L+ ]wo( — )3
%) +00
2 o) ’
@ 319, x)|” dsdidg
{ O/;Q{VSR} /;1 /;Xl(r)(r Ry 1+ |wo(t —5)3 z
1-3%1 () (r—Ry)
/ / / Lglw(s,x)lzdsdtdgz}
<Ry Ju J-bame—ry 1+ oo = s)]
<cloi [l
=n{r=R} J[1,wIN[=3x10) (= R1),+00)
0
—dt) (s, x)2 dsd
</r1 1+ oo (t — 5)]3 @ |* dsdgy

r ol / f
E0{r=R} J[— %1 () (r—R1),+00)\[11,T2]

173 w0 5
_——dt s, x)| dsd
(/ oy i) (s, ) e

1**X|(r)(r Ry)
/ f ( / *dt)m(s,xnzdsdgz}
slr<R} J=1x () —Ry) n L+t —s)
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1%
< c{m% / / lo(s, x)|? dsdgy,
N{r<R} Ju

‘o f /
ZN{r<R} **Xl(”)(’ Ry),+o0)\[11,72]

lo(s, x)|* dsdgs,

1 + min{|wo(t| — s)|2 lwo(t2 — 5)[%}

/ /l—z)u(r)(r Ry1) 1 )
—— (s, x)| dsdgz}-
2N{r<R} e—Ry 1+ loo(tr —$)[?

From (5.58), we can estimate for any 0 < a < 1:

/;fiﬂ{r<R /—x1(r)(r Ry),+00)\[11,12]

1+ min{|wo(ty —s)|2 lwo (T2 — 5)I2)
< Cowd(1+ w0y ") R (log(2 + al) * Eingl ]

(s, x)|* dsdgs,

and
/‘ /1—2X1(r)(r R1) 1 )
——————|¢(s, x)|" dsdgyx
SN{r<R} ue—ry L+ loo(tr —9)I?

< Ca(1+ 0y ™ (1 + 00t1) " R*Eingl 0]

Thus, from (5.60) we obtain forany 0 < a < 1:

©
/ / Wo(s, )P didgs
XN{r<R} J1

%)
< Ce? / / (o(s. )2 dsdgs
XN{r<R} J1

+ Ca(wd(log2 + [tal)* + (1 + wot) ™) (1 + w5 ' ") R2Eel .

477

(5.60)

(5.61)

(5.62)

(5.63)

Repeating the same procedure with Trg and Vg in place of rg, we similarly obtain:

©
/ / T Wo(s, ) dvdgs
E2N{r<R} Juy

©
< Cwd / f T (s, x)|* dsdgs,
=n{r<R} J1u

+Cy (w3 (log2 + |r2|)4 +(1+wot) ™)1+ wp ) R*Epglie]

and

(5.64)
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L]
/ / |Vgs Wos. )3, drdgs
N{r<R} J1u

©
< Cw%/ / [Ves @(s, x)|§Z dsdgs,
XN{r<R} J1

4 _ _
+ Ca(wd(log2 +Ital)” + (1 + wot) ™) (1 + @y ' ™) R2 g . (5.65)
Inequality (5.57) readily follows after adding (5.63), (5.64) and (5.65). O

We will finally establish the following bound for the energy of the high frequency part
llfz(lh of ‘l!j:

Lemma 5.6. For any T > 0 and any m € N such that
m .
Z EITI Y] < +o0, (5.66)
j=0

there exists a constant C,, > 0 depending only on m such that:

Con (N gpri
| st < S (2 e+ Egli). (567
=) 0" N

Proof. We can assume without loss of generality that m > 1, since the m = 0 case is
a direct consequence of (5.28). Let us introduce the function &,, : R\{0} — C by the
formula

+00 .
En(t) = / (o o)™ (1 — x(w] 'w)) do. (5.68)
—00
Note that, when m = 1, the right hand side of (5.68) diverges when ¢ = 0. In view of
the bound
‘/‘ 1oy ) |log(>\)|+l) m=1 (5.69)
- m>1, ’

as well as the relation

& _ oo iwti Lo N—mq -1
1E (1) _1/_00 e doo((lw) (1 — x(0; ') dw
- —mw;1§m+1(r)—iw;1/ ooe"‘”’(z’w;lw)—mx/(w;lw))dm, (5.70)

—0o0
from (5.68) we infer that for any integer ¢ € N and any ¢ # 0:

. [log(|w4 )] + 1
| <C _ 5.71
[Em @) < qm W+ l0rt]d + 1 ( )

Defining the tempered distribution
{>w, = 0D — §<q,, (5.72)

where 8 p is Dirac’s delta function and <, is defined by (5.20), the Fourier transforms
of £, and >, satisfy the relation:

Eow, = 07"Ey - ()" T, , (5.73)
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yielding the following relation for >, in physical space:

+00

En(t —$)T™ V=0, (5, -) ds, (5.74)

Vzo, ) = ‘”:mf

where, again, the integral in the right hand side of (5.74) converges in the | 5, Jlf’ ()yn*
norm.
From (5.74) and (5.71) we can estimate for any t € R:

/); (|T\U2w+(t’ x)|2 +[Vgz Uzo. (T, x)|§):) dgs

:wﬁ'"/z ()/m ém(t—s)Tm“lleer(s,x)ds‘z

—00

2
) dgs,
gs

—2m T log(Jws(t =)D+ 10 2
< Cho {/};()/ on or(t— )+ 1 T 1!120,+(s,x)ds‘

—00

+00
[ log(lws(t — $)P)| + 1 . )
* Vo T , d‘ J }
‘/;oo ot lwy(t— )4+ 1 gx T V=0, (s, X) ng) g5

<c —2m</ w+|10g(|w+(T—S)|)I+1ds>

w
T s (T — )[4 +1

x(/E/ LEGEIIES (T e (5, 01

o (T —5)[* +1

+( /m £ (T — $) Vg T™ o, (5. 1) ds

Vs Tz, (5, 02, ) dsdgs)

+00 1 — l
< Cmm:zm(/ / w+| og(lw(t—s)DI+ (1T o, (5. )2
¥ J—o0

lop(t—9)*+1
HV s TV, (5, 012, dsdgz). (5.75)

In view of (5.25) and the Schwartz bounds (5.22), we readily obtain that for any
teR:

\/Z (le+1¢ZLO+(T, x)|2 + |Vg): Tmlllz(,o+ (T’ x)lzfz) dgz

oo W4 m+ m
< C/—oo m(/z(w We(s, )P+ [Vey T tlfc(s,x)|§,2)dgz)ds.
(5.76)

In view of the definition (5.12) of Y, (5.76) yields

/;J (|Tm+1‘1f2w+ ('E, x)|2 + |Vg): mei‘m-(‘[’ x)|§’2) dgz
m +00 o i+1 2
—c / T / 775, 2)| 7
jg;) —o0 (1+®+|T—S|)4{ zm{z,zo}( 77

+ Vs T/ Ui (s, XI5, ) des +/

(s, 0 dgs | ds.
N{0<t_<1}
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Thus, (5.75), (5.77), (5.10), and (5.66) (combined with the conservation of the 7 -energy
flux in the region {r— > 0} N {r < 0}) imply:

fz (T W20, (5 ) + Vg Uz, (4, 1) 2, ) dgy
2,,,,(/+°° log(lws (x — )+ 1

¥ oo ot =)+ 1

<Chw

(1+1s%)(log(2 + |s|))4ds>
(D2 err7 w1+ Euglin). (5.78)
j=0
from which (5.67) readily follows. O

6. A Carleman-Type Estimate Outside the Extended Ergoregion

In this section, we will establish the following estimate for solutions ¢ to the inhomo-
geneous wave equation
e =G (6.1)

on (M, g):

Proposition 6.1. For any s, R > 1 sufficiently large in terms of the geometry of (M, g)
and any 0 < €y < 1, there exists a smooth T -invariant function f : M\H™ — (0, +00)

satisfying

f= (6.2)

estR +eZszI)R’ r <R,
9
Co(% — fyloe®) r=R,
where the functions wg, wg : {r < R} — R satisfy

l.wg=wgon{r < %ro} U U {r > %Ro},
2. SUP(, <R} WR — inf(,<gy wg + SUP( <R} wg — inf<gywr < C661R3€0for some
absolute constant C > 0,
3. inf{%roerR}\gzg WR > maxg Wr+cs R and inf{%roerR}\gzg WR > Maxg Wr+
csR73 forany 0 < § <« 1,
4 ; P
4. Zj:l (|V'/wR|gref + |V'/wR|gref) = C’
so that the following statement holds: For any 0 < 3§, €y < 1, any s, R > 1 satisfying
€SR™0 > 1, any 0 < 11 < 1 and any smooth function ¢ : M\H~ — C solving
(6.1) with compact support on the hypersurfaces {t = t} for any 11 < 1 < 13, we can
estimate:

/ (f+ inf f){sR*-*fowgz(p@Z—casR*360|T<p|2+s3R*9EO|(p|2}dg
R(t1,12)N{r<Ro}\&%s {r=troh\&

+
/R(rl,rszosrs%R}

{SR_3“’r_% (|8,-(p|2 + r_2|80(p|2) + sR_3("r_2|Tcp|2 + e()s3R_9("r_4|cp|2} dg

_35 2 —_ _ _
+/ f:r 2(|r0|” +r7%18591%) + R3,wr(cR™*s|T¢|* — CR 4s3|(p|2)}dg
R(t11,12)N{3 R<r<R}
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_5 2 _ _ 1 —
+/ f(R)!r (|8, 9|” +r21:01*) +r 2T @l* = CR'r 3\@\2}@
R(t1,12)N{r=R}

<G f PRV GE 45t RT201g ) dg
R(t1,12)NEs

2

+c‘/ G(V* fV,p+ O(Z(l+r)j_2|ij|gmf)¢)dg‘
R(t1,w2) j=l1

2 3
+CY /Z (|Vf\gm,|w§,e, +(D_a+n/7vi flg,.d)lwz) dgs. (6.3)
j=17%1 j=1

The proof of Proposition 6.1 will be given in Sect. 6.7. It will be based on the
construction of a suitable multiplier for the inhomogeneous wave equation (6.1), which
will be presented in Sects. 6.2—6.3, as well as an intricate integration-by-parts procedure,
that will be performed in Sect. 6.4.

Remark. In fact, Proposition 6.1 also holds in the case when & = @. We should also
remark that Proposition 6.1 applies in the case when (M, g) has a T-invariant timelike
boundary component 9y, M, with 9, M N X compact and 9;;,, M N'H = &, and ¢
is assumed to satisfy either Dirichlet or Neumann boundary conditions on 9y, M (see
Sect. 6.9 for more details).

Furthermore, the proof of Proposition 6.1 applies without any change after replacing
equation (6.1) with

U9 — Vo =G, (6.4)

for any smooth and T-invariant function V : M — R satisfying either 9,V < 0
and V — 0 asr — +oo in the asymptotically flat region of (M, g), or sup 4 ((1 +

)y |) < +oo for some n > 0. In the later case, the constants in the analogue of (6.3)

can be chosen to depending only on n and sup x4 ((1 + r)2+"|V|). In view of the fact
that the proof of Proposition 6.1 also applies for equation (6.4), the degeneracy of (6.3)
in the frequency regime {|w| < 1} can not be fully removed without some additional
argument depending on the fact that V' = 0 in equation (6.1), or yielding an estimate
depending qualitatively on V (see also the discussion in [34]). However, this degeneracy
does not cause any problem in the proof of Theorem 2.1.

Finally, let us remark that the estimate (6.3) can be readily used to show that any
smooth solution ¢ to equation (1.2) on M of the form ¢ = e~ !¢, with ® € R\{0},
T (¢y) = 0and

lim (Igol* +Veul?) =0 (6.5)
=400 Jir=p}n{r=0}

vanishes identically on M\ &,,;.

As acorollary of Proposition 6.1, given w; > land0 < wg < 1, we will establish the
following estimate for the frequency localised components 1\ of any solution { to the
wave equation (1.2) on (M, g) satisfying the bound (5.1) (see the relevant constructions
in Sect. 5):
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Corollary 6.1. For any smooth solution s to (1.2) satisfying (5.1), any integer 1 < k <
n, any 0 < 81,92,€90 < 1, any Ry > 0, any 0 < 11 < 13 we can bound:

/ (7 Con® + 102
R(t1,)N{r<Ri}\és,

<% / (A Qon + 1) (6.6)
R(t1,12)N,

¥ Cegpy iy (1+ w19 (10g(2 + 1)) - eCeonr max {lonllonl 0. —logba} g, )

where Ceys,R, depends only on €o, 81, R1 and the geometry of (M, g), while Cs,
depends only on €y, 31 and the geometry of (M, g).

The proof of Corollary 6.1 will be presented in Sect. 6.8.

Finally, let us sketch an additional application of Proposition 6.1 in the Riemannian
setting. Let (2)‘1, g), d > 3, be an asymptotically conic Riemannian manifold, with the
asymptotics described in [34], and let us consider the unique solution u € L?(X) of the
inhomogeneous Helmholtz equation

Agu+0*u—Vu=G 6.7)

on (X, g) for a suitably decaying source term G : ¥ — C, with 0 < Im(w) < 1,
Re(w) # 0 and a potential V : ¥ — R satisfying either 9,V < 0 in the asymptotically
conic region of (X, g) and V — 0 asr — +oo (where r is the radial coordinate function
in the asymptotically conic region of X, extended to a positive function everywhere on
), or

sup (271 + |wlr TN V]) < +oo. (6.8)
D)

Then, applying Proposition 6.1 on the product spacetime (R x X, g = —dr? + g) for
the function ¢ = e~y solving (in view of (6.7))

O — Vo =e "G, (6.9)

and using the charge estimate

1m(w2)/ |u|2d§:/1m(Gﬁ)dg (6.10)
D) )

(combined with elliptic estimates for (6.7), as is done, for instance, in [34]) one readily
obtains the (quantitative in V') global Carleman-type estimates of [34], albeit with a
worse dependence on w as Re(w) — 0. Thus, the proof of Proposition 6.1 yields a proof
of the Carleman-type estimates used in [30,34] based entirely on the method of first
order multipliers.

Remark. A multiplier-based proof of a similar set of Carleman-type estimates for equa-
tion (6.7) restricted, however, to the high frequency regime  >> 1 was obtained previ-
ously in [18].



A Proof of Friedman’s Ergosphere Instability for Scalar Waves 483

6.1. Parameters and cut-off functions in the proof of Proposition 6.1. Let Ry > 1
be large in terms of the geometry of (M, g), such that {r > %Ro} C Zus (Rp will be
considered fixed and, thus, we will not use any special notation to denote the dependence
of constants on Rp). In addition to the parameters 3, gg, s, R appearing in the statement
of Proposition 6.1, we will introduce the parameters R > Ry and 0 < 39, 81, 82 < 1.
We will assume without loss of generality that 0 < g9 < 1. These additional parameters
will be fixed in the proof of Proposition 6.1.

In the region {r > %Ro}, the vector field 9, will simply denote the associated coor-
dinate vector field in the (¢, r, o) coordinate chart in each connected component of this
region.

Fixing a smooth function ¥4 : R — [0, 1] satisfying x4(x) = 0 for x < % and
¥X4(x) = 1 for x > 1, we will define the following smooth cut-off functions:

X=Ry(r) = X4(RL), (6.11)
0
. R

X<r(r) = X4(7). (6.12)

Remark. Note that y<g = 1 forr < Rand x<g =0 forr > %R, while x>g, = 1 for
r > Roand x>g, =0forr < %Ro.

6.2. Construction of the auxiliary functions wg, wg. In this section, we will construct
the pair of functions wg, wg : M\'H~™ — R appearing in the statement of Propo-
sition 6.1, depending on the parameters J9, 81, €0, s, R. These functions will be used
extensively in the next sections.

First, we will establish the following lemma:

Lemma 6.1. There exists a smooth and T -invariant function w : M\'H — R satisfying
the following properties:

1. The restriction w|x of w on X is a Morse function on X\ &,y, with no critical points
on 08,y. Furthermore, none of the (at most finite) critical points {xj}']‘-:1 of w|x on
Y\ &yt is a point of local maximum of w|yg.

2. In the region {0 < r < %ro},13 w is a function of r and satisfies

VRV > 0. (6.13)

3. In the region {r > %Ro}, w is a function of r, and satisfies (6.13).

4. 0n (M\&ppy U Hi\(R X Ulj‘.:]{xj}) we have

VFwVyw > 0. (6.14)
5. Forany 0 < d < 1, we have
inf  w > maxw. (6.15)
{r=4roN\és &

13 Recall that {r < %"O} N ¥ is a neighborhood of H* N X in X.
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Proof. The proof of Lemma 6.1 will be based on ideas from [30,34].

Let Ry > 1 be a fixed constant large in terms of the geometry of (M, g). For any
0<y<lletwy: (E N {%ro <r< ;llRo})\ﬁm — R be the (unique) smooth solution
of the elliptic boundary value problem:

Agswy =y on (E N {%ro <r< A—I‘Ro})\é‘le,
u_)y|r=1 =2,

ako (6.16)

wV'r:% = 1’

wyh’(g;ext = 1 °

1o

Let us extend wy on the whole of {éro <r< %Ro}\éi,x, C M\'H™ by the requirement
that Tw|, = 0.

Since gx is smooth, w, depends smoothly on y (see [23]). In view of the fact that
every connected component of M\ & intersecting H* also intersects Z,; (see Assumption
G3), when y = 0, the maximum principle and Hopf’s lemma (see [23]) imply that for
any 8 > 0

inf (V*rVyuwg), inf (V*rVywo), inf (ngs (o)), (  inf o — maxwg) > 0
r=4Ro r=¢ro b eu {r=1r00\&s 3ben

(6.17)

(see Sect. 3.3 for the definition of nys). Therefore, there exists a yg € (0, 1) and a
co > 0, such that:

inf  (V*rV,ay,), inf (V*rV,y,), ging (ngs(yy)) =co >0  (6.18)

r:lRO rzgro (4)) ext

and, for all 0 < § < 1 (and some fixed ¢; > 0):

inf Wy, — max wy, > c1d > 0. (6.19)
{r=4r00\& 0eu

In view of 6.18 and (6.19), we can extend wy, as a T'-invariant function on the whole
of M\'H™ in such a way, so that

1
inf (V*rVpiy,) = —co > 0, (6.20)
{fgro<r<¢ro}u{} Ro<r=Ro} 10
inf (V”rvuﬂ)yo) >c@®) >0, (6.21)
{d<r<gro}
1
inf Wy, > Max W, + —c1d (6.22)
{r=3r0N\&s v & 2

forall 0 < 3 « 1 (where c(3) is a positive function of > 0) and, in addition, w,, is a

function o_f r in the region {r < %ro} U{r > %Ro}. Notice also that, since wy,lsg,, =1

and ny g (Wyy)lyes,, = co, we have

(V™ Vi iy, )| > Lo (6.23)

vo Vv )lag,, = 50 :
With w,,, constructed as above, we can thus readily choose w so that it satisfies the

following conditions:
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1. w|s and Wy, |5 satisfy

- - .
|w|2 - wy0|2|cz(2) < mmm{yo, co}- (6.24)

2. w|y is a Morse function on an open neighborhood of (Z N {éro <r< %Ro})\é’m.
3. |y = Wy,lx in the region & U {r < tro} U {r = 1R}
4. Tw=0.

Remark. Note that the compatibility of conditions 1 and 2 follows from the density
of the set of Morse functions on (TN {%ro <r< %Ro})\@“’m in C?

(BN o =r = {Ro})\Euu)-
In view of (6.16), (6.20), (6.21) and (6.24), w satisfies

Ags |z > 0 (6.25)
on {éro <r< iRo}\éam and
inf (V*rvyw) > ico >0, (6.26)
{Hsr0=r=tro}utr=1 Ro) 10
inf  (V*rv,w) = c(d) > 0. (6.27)
{3<r<gro}

Therefore, none of the critical points of w|y on X\&,y is a point of local maximum.

Furthermore, Conditions 2 and 3 imply that w|y is a Morse function on X\ &,. Since
T (w) = 0and T is strictly timelike on M\ (&,,; UH), in view of (6.23) and Condition 1
we have

VF Vi > 0 on (M\& UH)\(R x u’;zl{x,-}), (6.28)
where {x j}l;:1 are the (at most finite) critical points of w|y on X\&,,;, none of which

lies on 0&,y; (in view of (6.23) and Condition 1). Finally, in view of (6.18), (6.22) and
(6.24), inequality (6.15) holds forall0 < § < 1. O

Lemma 6.2. For any 0 < 39 < 1 small in terms of the geometry of (M, g), there exists
a pair of smooth and T-invariant functions w, w : M\'H™ — R, as well as a finite
number of points {xj}ljzl, {)Ej}ljzl exXnN{r=< %Ro +430}\ &8sy, such that the following
statements hold:

1. Defining for any p > 0 the subsets
Berir(p) =R x (U_; Bgy (x), 0)), (6.29)
Berit(p) =R x (Uj_ Bgy (%, p)) (6.30)

of M\'H™, where Bys (xj, p) C (2, gx) is the closed Riemannian ball of radius p
centered at x j, we have:

Berit(80) C Berir (430), (6.31)
Berit(80) C Berir (430), (6.32)
Berit (80) N Berir (30) = . (6.33)
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2. The functions w, w coincide outside B.yi; (48¢):
w =W on M\ (Berir (430) UH™). (6.34)

3. The functions w, w satisfy the following non-degeneracy conditions for some absolute
constant cy > 0 (independent of 8):

inf VEVYwV, wVyw > ¢ > 0, (6.35)
{rZ%rO}\(éaextUBcrit (0))
inf VEVYROV, 0V, > ¢o > 0. (6.36)

{r=ro)\(EuxtUBeris (80))

4. For any T -invariant vector fields X, X on {r > %ro}\(éam U Brit (80)) such that
X(w) = 0and X () =0, the following one sided bounds hold:

VIV wV,wV
VoV XP XY >~ DUy X, (6.37)
gref(dw, dw)
~ VEVYDV, wV,w ~ -
Vu Vo XK > —8g WY % %), (6.38)
gref(dw, dw) '
where gef is the reference Riemannian metric (2.4).
5. The functions w, w satisfy
max w < min w, (6.39)
Bcrit(BO) Bcrit(SO)
max W < min w. (6.40)
Bcrit(BO) B('rit(BO)
6. Forany 0 <3 <« 1:
inf  w > maxw, (6.41)
{r=3r0N\é» &
inf W > maxw (6.42)
{r=4roN\éx %
and
inf w > max w, (6.43)
{r=3r0)\Eexr {r<gro}
inf W > max w (6.44)
{r=2r0N\Eext {r<iro}

Proof. Let w : M\'H™ — R be as in the statement of Lemma 6.1, and let {x j}’;:1 be
the (at most finite) critical points of w|y in X\&,y. According to Lemma 6.1, none of
these points lies on d&,,; or on {r < %ro} Ufr > %RO} and, thus, provided 8y < 1, we
have

1 1
Cejfjmr € 0 {gro <7 < S RoN\Sie,- (6.45)

Let [ > 0 be large in terms of 3y, and let us define the 7T'-invariant function w :
M\H™ — Ras
w =", (6.46)
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Then, the one sided bounds (6.35) and (6.37) readily follow from the properties of w
(see Lemma 6.1), as well as the identities

Vow = [(Vyw)e™” (6.47)

and
Vo Vow = (I2(Vy ) (Vyi0) + 1V, Vyb)e' ™, (6.48)
provided [ is sufficiently large in terms of 3. Inequality (6.41) follows readily from
(6.15).
Since the points {x; }];:1 satisfy (6.45) and none of them is a point of local maximum

for w|y (see Lemma 6.1), for any 0 < 8y < 1, there exists a diffeomorphism X' : ¥ —
Y such that X = Id on X\ U';zl Bgs (xj,430) and forall 1 < j < k:

280 < distgy (xj, X(x;)) < 43¢, (6.49)
X (Bgs (xj, 80)) = By (X (x;), 30), (6.50)
X(Bgz (X(x)), 60)) = By (x}, 30), (6.51)
and
max w < min w. (6.52)
Bgs (x}.80) Bgy (X(x),%)
Setting X; = X' (x;) for j = 1, ..., k, provided 3 is sufficiently small in terms of the

geometry of (M, g), we have:
1
FY_eznir< 5 Ro+480)\ ks, - (6.53)

Extending X" on the whole of M\’H™ by the requirement that it commutes with the
flow of T', i.e.:
LroX=XoLy, (6.54)

and defining the function w : M\'H~™ — R as
W=wolX, (6.55)

we infer that, in view of (6.47), (6.48) and the properties of &, the relations (6.34), (6.36)
and (6.38) hold, provided / is sufficiently large in terms of 8 and the precise choice of X.
Furthermore, in view of (6.52), inequalities (6.39) and (6.40) hold. Finally, inequalities
(6.41) and (6.42) follow trivially from (6.15) and the fact that X = Id on & for 3 < 43,
while (6.43) and (6.44) follow from (6.13). 0O

Lemma 6.3. Forany Ry > 1,0 <3 < L0 <3 < 1L, s > 1,0 < ¢ K 1 and
R > max{Ry, eal}, there exists a pair of smooth and T -invariant function wg, WR :
{r < R} ¢ M\'H™ — R satisfying the following properties:

1. In the region {r < Ry}:
wg = R (6.56)

and
Wr = R0, (6.57)

where w, w are the functions from Lemma 6.2.
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2. In the region {Rg < r < R}, wg is a function of r and wg = wg. The following
bounds are also satisfied for some constants depending only on Ry and o (and the
precise choice of w):

0 <cR% < g.wg <C, (6.58)
2 -1 —3¢ —1.2 _3
0 wr+r~ 9,wr > cR °+|r 28,wR|+|r 20, wg/|, (6.59)
07wl 10wl 18} wg| < C. (6.60)
3. In the region {R® <r < %R}.‘
wg = g = cleo—l(%)éo +C 6.61)

for some constants C1, C> depending only on Ry, 8¢ (and the precise choice of wy).
4. In the region {%R <r <R}:

wr = g = vs(%) +C3 (6.62)

for some constant C3 depending on Ry, 8¢, 81 (and the precise choice of w), where
the function vy : [%, 1] — Rdepends on s, €y, 89, d1 and satisfies (for some constants
¢sy. Csy > 0 depending on 3¢, Ry and the precise choice of w):

dv _
d—xs > cho8 1, (6.63)
d2vs _1.dvg
|dx2 | < Cs (315 +3] )dx (6.64)
d*vg, dPvg,  d*us _
| dx2 |’ | dx3 i’ | dxt | = C3081 (6.65)
and, for x € [%, 1]:
vs (%) 110( 91o()) (6.66)
X) = — X — — X)). .
s 25 BV T 08
Remark. Notice that we can bound on {R® < r < %R}
Pwg+r 1 9wr > cosgR™ - r 20 4 172 92wg| + Ir=38,wl, (6.67)
d,wg > coR™E0p1*e0, (6.68)
4 .
> 1ol wr| < CoR™*0r%. (6.69)

j=1

Proof. The construction of wg (and, similarly, wg) can be readily performed in view of
the following observations:

e In view of Condition 1 and the properties of the function w, for r = Ry we have:
drwr(Ro) ~ry R, (6.70)
97 wgr(Ro). 1~ ', wr(Ro) ~gy R, (6.71)
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6.3.

while Condition 3 requires that, for r = R®0:
B wr(R®) = C\R™20%% > 9wk (Ro), (6.72)
2wr(R) = Cy(sg — 1) R0 (6.73)

2wr(R) +r 19, wr(R) > cegR™0*%0 + |r=292wg (R)| + [r~ 2 d,wg (R%)|.
(6.74)

Therefore, we can readily construct the function 9, wg (as a function of r) on the
interval { Ry < r < R®} (and then integrate in order to obtain w g and the constant C»
in (6.61)), so that (6.58)—(6.60) are satisfied. In particular, 9, wg can be constructed
as an increasing function of r (i.e. with a,zw g > 0)up tor = R® — 1, while for
r € [R® — 1, R®], 9, wp is constructed a smooth function of r extending (6.61)
from {r > R®} under the requirement that it satisfies the one sided bound

Zwr(r) > —(1+€)|02wr(RY)|. (6.75)

Letv : [%, 1] — R be a smooth and strictly increasing function such that v(x) =

—(x—12—10forx € [%, ]7—0] and v(x) = log (x - 19—0 log(x)) forx € [%, 1]. Then,
provided s > 1 and 8; < 1, it can be readily inferred that there exists a C3 and
piecewise C° function 7 : [%, 1] — R, which is smooth on [%, 1]\{%}, satisfying

o > Loy, Z, 1|””“A < 10C37 " and

C1£51x80+C2—C3 forx € [%,%]
Ug(x) = { =81(x — ) — L((x = D?+10)  forx €[22, D)
2 0(x), forx € [2, 1]

for a suitable constant C3 > 0 depending on Cy, C>. The function vy is then con-
structed by mollifying v5 around x = 5. O

The seed functions f, f, h and h. In this section, we will construct (using the

auxiliary functions from the previous section) the seed functions for the multipliers that
will be used in the proof of Proposition 6.1.
We will assume without loss of generality that 0 < 8p,8; < 1,5 > 1,0 <gy < 1

and

R > max{Ry, 80_1}. Let wg, wg : {r < R} — R be the functions from Lemma 6.3

(associated to the parameters s, R, €9, 80, d1). We define the smooth and T -invariant
functions f, f : M\'H™ — (0, +00) as follows:

and

eZSwR7 on {I" < R} (6 76)
F= e (- fvoe®). ontr= g |
~ €2SIDR, on {7" = R} (6 77)
f - CA%S‘ . <% _ ?_Olog(%))’ on {V > R}v '

where C4 > 0 is chosen so that f and f are smooth at » = R [which is possible in view
of (6.66)].

Let h : M\'H™ — R be a smooth and T -invariant function satisfying the following
conditions (provided 31, 3, < 1):
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1. Inthe region {r < %‘R}:

VHV\)U)RVMU)RV“U)R S2WR

3
Yore(rV=rT2)a. £, (6.78)
gref(dwpg, dwg) =0 rf

h = _XS%ROSBI

where
) Ro
xs%Ro = X4(5)- (6.79)

2. In the region {%R <r< 82_1 R}, h is a function of r, satisfying

cf(R)r2 <h <min{(r—" —r= )8, f, (1 — r2)0%f} (6.80)

and
~Ogh < CR™*f(R) (6.81)

for some absolute constants C, ¢ > 0.
3. Inthe region {r > 8, 'R}:

1 2
h=20lf. (6.82)

Notice that & can indeed be defined as above on the interval {(1+282)R <r <3, ! R}
(provided &, is smaller than an absolute constant), in view of the fact that

min{d? £, r "9, f} 2 f(R)r 2, (6.83)
Ogh = (1+ 00" )2+ ((d — Dr~ "+ 0(™2))d,h (6.84)
and 4 ‘
Do f1 < CRTF(R) (6.85)
j=1

on that interval, while (r—! — r—%)a, f < 8,2 fforR<r< %‘R (provided R > 1) and
r7 19, f > 8rzf for r > SEIR (provided 8, < 1).

We also define 7 : M\H~ — R in the same way as %, but with g and f in place
of wg and f, respectively.

6.4. The integration-by-parts scheme. In this section, we will establish a general identity

obtained from Eq. (6.1) and a suitable first order multiplier, after successively integrating

by parts over R(t1, 12). This identity will lie at the core of the proof of Proposition 6.1.
Let f, h be as in Sect. 6.3. We introduce the following multiplier for equation (6.1)

VM f Ve + O f - . (6.86)

Multiplying (5.29) with the complex conjugate of (6.86) and integrating by parts over
R(t1, t2), we obtain:

1
/ Re{ZV“V"fVMpV\,(p — O3 flel*}dg
R(x1,72) 2

= _/R( )Re{G(ZV“fVMQ)+(Dgf)(p)}dg
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2
S0 [ R @V VLT Qe oVid - Vo TV
i=1 Xy

1
—5 (W@ MleP)ny, | des,

_/ Re{(zvufvu‘_ﬁ)vv@+(Dgf)(PV\)(P_vaVM(PVMﬂ_D
HNR(t1,72)

1
—5 (V@ MNI9P )y} dvolyyy.

2
(6.87)
Let us split the left hand side of (6.87) as
1
/ Re[2V”V"fVM(pV\,QJ - —D§f|<p|2} dg
R(t1,12) 2
1
:+/ XSRRe{ZV”V‘JfVMchv(p— 5D§f|<p|2}dg
R(t1,12)
1
[ R 29V 9,000 - 50 1o
R(t1,12)
(6.88)

Using the identity

VoV = £ VW (F2Q) Vo (f2§)

| _ _ |
=L (VS oVG+ Vo f@Vue) = 1 [TV VoSl (689)
and integrating by parts in the ¢V ¢ terms, we have:
1
[ renRe2v v V.09 - 50 plol dg
R(ti,12) 2
_ e vl R va 1 1_ e vl R va
— [ rerRe2r VY VLA R D+ (T )
R(ti,12)
| 1
—S VIV VPV f =S4 ) ol dg

. f Voker - IV £V, flof dg
R(t1,12)

2
+3 (=1 / Xz [TV VY floPny, dgx,
. PO .
Jj=1 i

+/ X<R* f_lvuv\)fvufkﬂzl’l);_ﬁ dVOl'H+.
H*NR(t1,7t2)

(6.90)

Thus, in view of (6.90), the identity (6.88) yields:
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TR VAl = l 2 2
Rey2VEVY VoV @ — S0, flel”  dg
R(t1,12) 2
1 1_ -
= /R Re{2x5Rf_1V“V“fVu(f2<P)Vv(f2<0) +2(1— XsR)V“V“fVuWw} dg
(t1,72)
1 B 1
v / Xk V(I £V ) = 2 kerf VIV P fOf — ST Tl dg
R(t1,12) 2 2
N / (Voxzr - £IV0V" £V, £) ol dg
R(t1,12)
2 .
0 [ e f TS floPny, de,
j:l er J J

+/ X<k - [TV VY flolPnd . dvolyr. (6.91)
HNR(t1,12)

Adding to (6.91) the identity

1
0= / (— ZXEROXSRr_lf_l(arf)yar(fj@)}z +2XZR0X§RV_1(3rf)|8r(P|2
R(t1,72)
1 1
Hxzrok=rr T @ (0P * Shzr X<k 2(arf>3|q>|2) dg  (6.92)

(recall that 9, is the coordinate vector field in the (¢, r, 6) coordinate chart in each
connected component of the region {r > %Ro}) and integrating by parts in the 8, (|¢|%)
term, we obtain:

v - 1 2 2
Re{ZV“V FVuoVep — s02 flgl }dg
R(t1,12) 2
_ 1 1_ _ _ 1 2
= [ Reloxar(r VOV D) — e @ Pl o)
R(t1,12)
20 = AR VY V00 + 20 mxzrr ™ @ DI o + AP 1| dg
2 .
30 [ e f TS floPny, de,
" .. J J
j=1 K
+/ X<k - [TV F VY FlolPnd . dvoly, (6.93)
HNR(t1,12)
where

AR =y gV (ST VL) - %fof_QV“V"fVusvf - %D§f+
— X=ro X<k (F T FTN@ 1)) — Y=o X<rr T f 0 £)div(d,)
+ S xzrnsrr 20
+Vox<r - STV VL = 0 (s rox<R)F T T ) (6.94)
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Thus, (6.87) and (6.93) yield:
— 1 1_ —1 ,— 1 2
/R Re{ 21 (f 7V VLTV 1D~ xrr T T O Do (700 )
(t1,712)

4201 = X <RV V" [V 0Vod + 25z ke~ @ )10, + AP 62 de

= / Re{G(2V" f V4 + (O /)$)} dg — B [g: 11, 12, (6.95)
R(t1,12) ’
where
2
Bl t = Y [ Re| (29 19,5900+ O oV = Vo V09,5
j=1 T

—1 n 1 2\ v
(kS TV VI = S (W@ )0l )y, des,
+f Re{<2V“fVM(pV\)(p+ e HoVod — Vo fV* 0V, §
HNR(t1,72)

1
+(X=r S T VUV VI f = S (V0@ )61 )y | dvolye. (6.96)

Finally, forh : M\'H™ — R asin Sect. 6.3, adding to (6.95) the Lagrangean identity

/ (—2hV"* oV, o+ (Ogh)|gl?) dg = / Re{G - 2h¢} dg
R(t1.12) R(t1,12)

2
+Z(—1)i/E Ref{ (2hVyop — V\,hl(p|2)n‘§tj}dg21j
j=1 M

+ / Re{(2hVy9p — Vyh|o*)n}y. | dvolys,
H*NR(t1,12)
6.97)
we obtain:
_ 1 1_
[ reloxers O vt ona e
R(t1,12)
_ _ 1 2
—2%<rX=Ro" T @O )|0-(F29)]
+2(1 = X <R V* V' F VoV + 2% =Ry X <r? ™ (B )10r 0
- R
—ZhVHQpVM(p+.A;J2|(p|2} dg
= _/ Re{G(2V* [V, 6+ (O f — 2h)3)} dg — B;f",j[w; 1, ©l,
R(t1,12)
(6.98)
where
. _ 1 _ 1
AT =0h+ 3k V(7 VIV FILf) = S VIV F Vo f = 50 f

— X=Rro X<k (r T @ 1)) = Xzrox<rr T TN, 1) div(3))
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1 o
+ 5 X=RoX<R" Lr2@, 1)°

+VoX<r - fIVEVYEVLF = 8 (XoryX<R)T T TN 0 )P (6.99)
and

B¢ 1.l

2
=Y [ R (290 Ot — 2V - Vol TV
j=1 Xy

1
+(XerS T VUV Y+ Vo = S (V@ )0 )k, | des,
+/ Re{ (ZV“fVM(bV\,qJ + g f — 20 Vo — Vy [V @V,
H*NR(t1,12)

_ 1
+(XzrS T VUV V4 Voh = (V@ )01 g | dvolie.
(6.100)
In the next sections, we will establish a number of estimates for the left hand side of
(6.98) that will lead to the proof of Proposition 6.1.

6.5. Estimates for the zeroth order term. In this section, we will establish some bounds
for the coefficient AS{? of the zeroth order term appearing in the left hand side of (6.98).

In view of the choice of the functions f, & in Sect. 6.3, we can readily calculate that
on {r < R} (where ¥ g = 1), the quantity .AS!;? in (6.99) has the form

A(flf}z = {AwR,3s3 +AwR,2s2 +.AwR,1s}e2“”R, (6.101)

where

VAR Vawpr

Augs = (4~ b — R ) OV Vg
wg,3 XS%RO lgref(dwRadwR) WRVpWRVywR

1
+axzryr (14067 D) (0,wg)?, (6.102)
»AwR,Z = 4VvVMvaRVHwR — 4V\,V“V”wRVHwR
—4VH (Ogwr)Vywg — 2(0gwg)?
1 1
taxsRor (14007 )07 wrdrwr +4x=por > (1+ 007 2))(Brwp)?
1
2+j 2—j
FOBDK1 gy 2 1V R V™ 0kl gy
j=0
+ O(IVX <Ry lgrs + |vx§%Ro|gmf)(|v2wR|§,mf +IVugl, ). (6.103)
1
Awpp1 = —DéwR +2X2R0r_1(1 + O(r_f))ar?’w
) _1 )
+2(d —3)xsgryr (1+ 007 2))37 wg
1
—2(d = 3)X=ryr - (1+0(2))8,wg
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2
+OGDA 1R, D

Jitia+j3=1

2+j 1+ 1+
VSN wR g, | VT2 WR g, | VT B wR | g,

|VwR|§mf
_ VwgrVewpg
+2(0gx<r))r ' drwg — 81(Dgx<%RO)V“V“wRVMwRV\,wR7&] o “dwR)
< " ,

2
. 4 )
+0(2:1(|V/X§Ro|gmf+|V]x§%R0|gmf))(|V WRlgns + [VWRlgy)  (6.104)
]:

(with the constants implicit in the O(-) notation depending only on the geometry of

(M, g)).

Remark. Notice the cancellation of the O(s*) terms that were expected to apper in
(6.101).

6.5.1. Bound on {r < Rp}. In view of (6.101)—(6.104), the properties of the function
wpr (see Lemma 6.3) and the form (2.1) of the metric g in the region » >> 1 imply that
in the region {r < Rp}:

A = {30 R5057 4 03y (DR™052 4 05y (DR [ %, (6.105)
where
ViwVew
Ay s :(4— 8—)V”V“ Y wV
w,3; Ro XS%RO lgref(dw,dw) wvwvyw
+axs gy 1+ 0 )) Bw)’, (6.106)

w is the function from Lemma 6.2 and the constants implicit in the Os,(1) notation
depend only on Ry, 8.

6.5.2. Bounds on {Ry <r < R}. Inthe region {Rg < r < R}, the expressions (6.102),
(6.103) and (6.104) simplify as follows, in view of (2.1) and the fact that wg is a function
of r forr > Ry:

Appz =41+ 00~ ) 2wr@wr)® + 4~ (14 06~ D)) @wr)’, (6,107
Appo = —4(1+ O(r—%))a,wRaEwR —2(1+ 0(r—%))(a,2wR)2

+4—8d — 1) (1+067)d2wrd wr

+(4d —2) —2(d — DHr2(1+ 06 ) Brwg)?, (6.108)
Appr = —(1+ 00" ))0%wg — 2(d — Dr~ ' (1+ 007 2)) 3w

—d =) 1+ 00 )2wg + (d — 323 (1+ 00 2))d,we.
(6.109)

Therefore, the properties of the function wg (see Lemma 6.3) imply the following
relations for A(fRz on {Ryp < r < R} (provided Ryis sufficiently large in terms of the
geometry of (M, g)):



496 G. Moschidis

1. Inthe region {Rg < r < R}, (6.58)—(6.60) yield:
A > {CSOR_980S3 — Cyys? — Cgos}eZSwR (6.110)

for some constants c3,, Cs, > 0 depending on 3¢, Ry.
2. Inthe region {R* <r < %R}, (6.67)—(6.69) yield:

R _ _ _ _ Cen
AR > [CBOSOR 300, =300 g3 _ Cs, R 260 —4+280 2 _ Cyy R™50r 4o | 2swr

f.h
(6.111)
3. In the region {%R <r < R}, (6.62)—(6.65) yield:
A > —CBOR*“[U;(%)S3 + 524 s}ez“‘““?, (6.112)

where Cj5, > 0 depends only on 3¢, Ry.

6.5.3. Bound on {r > R}. In the region {R < r < BEIR}, (6.76), (6.78) and (6.81)
yield:
AT ) = —CR™F(R) (6.113)

for some absolute constant C > 0, while for r > 8 'R we have (provided 8; <« 1):

AL = - @ 5 D1+ 00)ads - W;’_Z(l + 0012 f
Lua-bd-3 1)2(d - 3)r—3(1 +OG))d, f

1
= %(d — et Ry (A - 2D % +0G71))
= RS = D@ - DR (14 007h) +er) 6110

for some absolute constant ¢ > 0.

6.6. Estimates for the first order terms. In this Section, we will establish various bounds
for the quantity

—1 W7V 1 1_ 1 ,—1 1 2
Re|2x<r f TV VY IV (RO VU 19) = 2xer a0 D)0 (20

+2(1 = X =RV V' V0V + 25 R X <rr (B 1D 01 — 2hV“<pvu(<‘g s
appearing in the integral in left hand side of (6.98). Thus, combined with the bounds of
Sect. 6.5 for the zeroth order term ASJRZ ||? in left hand side of (6.98), the results of this
section will provide all the necessary’estimates leading to the proof of Proposition 6.1.

Let us denote with g~! the natural extension of the metric (2.1) on the cotangent
bundle 7*M of M. Since we have identified M\H~ with R x X under the flow of T,
g~ ! splits naturally in any local coordinate chart (¢, x', ..., x) on R x ¥ as

1 o y
¢ ' =TT+ Ego‘(T ®8,i+3i ®@T)+(g Loy ® ), (6.116)
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where (g7!)y is a symmetric (2, 0)-tensor on X. In view of Assumption G3, the expres-
sion (6.116) and the fact that g ! is non-degenerate and has Lorentzian signature imply
that (¢~ !)x has Riemannian signature on ¥\(& U H*) and Lorentzian signature on
¥ Nint (&), while (g~')y degenerates on ¥ N (& UH™). Using the tensor (g~ 1)y, we
can conveniently bound for any ¢ € C!'(M\H ™) (for some constant C > 0 depending
only on the geometry of (M, g)):

V¥ oV, d > (8715090, — ClVes 9lgs | Tl — CIT oI, (6.117)

where the indices 7, j in the abstract index notation (g_l)g 0; d; @ run over the variables
{xf }?:1 in any local coordinate chart on (M\H ") of the form (¢, x!, ..., x%).

6.6.1. Bound on &, U {r < %ro}. For any 0 < 11 < 13, we can readily bound from
above on R(ty, 12) N (@@m Ufr < %ro}) in view of (6.76) and (6.78):

/Rm,rzm(&x,uvsiro})

Re|2x<r f IV VY IVL (PO VU2 D) = 2aerpzne T T O D)0 (R0
+2(1 = X <) V*V° F V0 @Vud + 2x =Ry X<k (0 )13, 0
—ZhV“(pVMQ)+ASf2|(p|2} dg

< CgO/ XU ((R_és‘)sz + 1)Vl +(R—12€0s4+1)|<p|2) dg.
R(Tl,Tz)ﬂ(@”eer{rfiro}) .

(6.118)

6.6.2. Bound on {{rg < r < YRo}\&y. In the region {1ro < r < 1Ro}, in view of
(6.37) and (6.76), we can estimate (using a Cauchy—Schwarz inequality):

Re{2f7'VHV FYL(f 1) Vu(f29))
= ZSWR {8s2|V”wRVM<p|2 + l6s3V”wRVMwRRe{<p - VYwgrVyo}
+85*(VFwrVywg) |l + sV VVwrV, oV
+8sVHV wpV, wrRe(o - Vo) +4s3vuv“vauvava|<p|2}

> estR{8s2|vlleVMgp+szvuwRVuwR - :

YV wrV, wr V.
_ Cs3y wRrV WR va|v 2
gref(dwg, dwg) Bref
+3s3vuv“vauvava|<p|2} (6.119)

for some absolute constant C > 0. Thus, (6.119), (6.78) and (6.117) imply that we can
bound from below on the region R(ty, t2) N {é—ltro <r< %Ro}\é”ex,:
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— 1 1_ —
L RV - 209 69,5 dg
R(t1,02)N{370=r <5 Ro}\Eext

>

/R(tl,12)0{1r0<r<;RO}\éam
ezsz { V”V“wRVMwRvaR

gref(dwg, dwg)

(es31(67) %000, + o5 gry(dwr, dwp)lel)

2 2

= Cs( DIV wrlgy) ey @lex Tl — Cs( D |Vju)R|gmf)|Tcp|2} dg. (6.120)
Jj=1 j=I1

for some absolute constants ¢, C > 0.

6.6.3. Bound on {%Ro <r < Rp}. Inthe region {r > %RO}, the functions f, h depend
only on r. In particular, we compute in the (¢, r, o) coordinate system in each connected
component of the region {r > %Ro} for any function | € C'(M):

VAV £V 0Vl = ((L+ O )82 f + 0 ™2)d, f) 18, W]
+ 31+ 00N, flacF + 0™ Hd, FITY?. (6.121)

Therefore, (6.76) and (6.78) yield the following lower bound:

/;3(T1,12)0{5R0<r<R0}
_ 1 1_ S 1 2
Re{2x<rf TV IVL (S 20V D) = 2xsrazry T O D] (20
201 = R VT VL 0VG 4 20z r X zrr ™ O )10 01 — 259" 09, ) dg

o
R(t1.12)N{} Ro<r=Ro}
2
2SR { (s*(Bwr)* + O(1)s Z IV wg g, )e 2"k |3, (e R )|

j=1

2

_3 _ _
+5@rwr) (X=ry (2 + 0 H)) + 0G| Vwrly) [V wrlg,) 18- ¢
-3 —4 -1 -3
+s(3rwR)(r +O0F )+ YR (r 2 —=1"")
+ 0DVl V2 wrlg,) 3¢l
_ _3 _
+50,wr) (Y=g, r ' + O z)>+0(61>|VwR|g,jf|v2wR|g,ef)|T<p|2}dg

(6.122)
for some ¢ > 0 depending on the geometry of (M, g).

6.6.4. Bound on {Ry < r < R}. Inthe region {Ry < r < R}, in view of (6.76), (6.78)
and (6.121), we can readily estimate from below:
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/;z(TI’TZ)ﬁ{ROS"SR}
— 1 1 1 = 1 2
Re{2x<r fTI VIV fVL(F OV 78) = 2xrizrr ™ TN O D0 (f10)]

201 = YRV FI9Vp + 20y X O P9l — 269" 0¥, 5] dg

=cf
R(t1,12)N{Ro<r<R}
e2“”R{(s2(1 + 0™ @wr)? +5(02wr + 00 H)d,wr))e >k |d, (k)|
+5@wr)(r2 + 000,02 + s@wr) (r7 + 0 ) 1050
+cs(8,wR)(r71 + O(rfg))|T(p|2} dg (6.123)
for some ¢ > 0 depending on the geometry of (M, g).

6.6.5. Bound on {r > R}. Inthe region {r > R}, we can estimate in view of in view of
(6.121):

'/R(TI»TZ)D{"ZR}
_ 1 1_ S 1 2
Re|2x<r f TV VY IVL (RO VU 19) = 2xerpzrr T T O D]0 (2 9)
21 = Y= VV F @V + 20y Kkr ™ 8 IO, 0 — 209" 9V, 5} dg

>

/R(tlﬂz)ﬂ{rZR}

{ng(za OGN =207 = 2+ 0670 ) F o (f1 )|
+(20 = x=r) (1 + 002 + 00, f) = 2(1+ 0~ )h) 13, ¢l
+(2r—3(1 L0 YO, f — 202 + O(r_3))h)|80(p|2

+(2h + O(r*2)8,f)|T(p|2} dg. (6.124)

6.7. Proof of Proposition 6.1.
1. Inview of (6.105), (6.106), (6.120) and Lemma 6.2, we can bound:

/R(Il,12)ﬁ{%r()SrS%Ro}\5m
— 1 1_ 1 = 1 2
Re[2x<r /' VIV SV (P OV 2 9) = 2xcrxzr T T O 0|0 (20
W v - —1 2 n = (R)| 12
2(1 = X <) VEVI VL OV + 2% =gy X<rr ™ (0, 10,017 = 2hVE @V 0 + AL ¢ }dg

>

/R(n N ro<r=d RO (8 enUBerir (30))

e>S R {cgog,lsR_SE“ (8 HY8i03;6 — CsRT%| Vs @lgs I Tl
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—CsR73£°|T(p|2 + (650‘93R79€0 - Cgos2R76EO - CgOSR73SO)|(p|2} dg

—Cy, / 2R {SR_3£“|V(p|§mf +s3R_98°|(p|2} dg. (6.125)
R(t1,72)NBerir (30)

Repeating the same procedure for f in place of f, / in place of & and W in place
of wg (see Lemma 6.3), from (the analogues of) (6.105), (6.106), (6.120) for wg
in place of wx we obtain:

/’R(n,rzm{irosrs;Ro}\ézn

Rel2x<r T IVEVY Y (FROVUT D) — 2x<rxzryr T T 0 Do (PR
+2(1 = X<R)V* VY [V oV + 2% gy X< (0 )I0r @I
—2ﬁv%vu¢+A(f’2|<@|2} dg

>

fR(n,rz>ﬂ{iro<r<;Ro}\(&nul%c,,v,(sm)

Bk {CaoalsR_38° (67130109;% = CsR | Vgy ¢lgs T

—CsR™IO|T @ + (55 R0 — Cys? R0 — CgOSR_SSO)ltplz} dg

—C;)O/ o ULV + PR dg (6.126)
R(z1,t2)NBerit (30) '

Adding (6.125) and (6.126) and using (6.39) and (6.40), we obtain provided s is
large in terms of 3¢:

/R(n,rzm(%msrs%koh&n
Re{2x<r /7' VH VY 1YL OVA(S 1B = 2xzrnarer ™ F T @ D] (2 )
201 = X=R) VIV SV @Vif + 20z X (O 0ol
—2hV 99,5+ A6l | dg

>

/Rm,rzm{%msrs%Re]\&ﬂ

Rel2x<r f VY FVL(FT OV @) = 20 srnzrer ™ T 0 Do (P10
+2(1 = X <R VH V" FV V0B + 25 ro X <7 (8 PId ol
—2i V" 9,5+ AL 02} dg

>

/ (ezsz +e2sz)
R )N r0=r <3 RoN\Eeui

{CBOBISR_%O((S'_I)I)%ai(Pajq) — CsR™| Vg5 ¢lg5 1Tl

—CsRT|T @ + (c3,5 R0 — Cyps2 R7O0 — C&OSR_%O)\(MZ} dg.  (6.127)
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2. Inview of (6.105), (6.106), (6.122) and Lemma 6.2, we can estimate

/73<n,rz)m{5m<r<ko}
Re|2x<r f VAV FYLF IOV D) = 2xcrxzrer ™ ST O D[ (f 0
21 = LR VY V0V + 20y Kk~ (O Dl ol
—2hV* oV, p+ A}?;W] dg

>

./R(rl,tz)ﬂ{éR()SrSRo}

2SR [(C8052R7690 _ CBOsR’“”)e’%wR ’ar (SR (p)‘z
£ SRy X ry (3 + 0(r2) = Cagd1) 1o, 0l

+sRT(c5, (r 2+ 0™ + ek (r? — r7)) = Caodi) ol

— Cays R T @2 + (395 R0 — Cyys2R™6%0 — CsosR_SE")l(Plz}d&

(6.128)
Provided s R~3% is sufficiently large in terms of 8y, we can estimate

(CaoszR—()E() _ CSOSR_3EO)6_2“DR ‘ar (esz (p)‘z _ CS()B]SR_3EO |ar(p|2
> 3,015 R 10, ¢|> — Cyyd15° R ] (6.129)
and thus (6.128) yields:

/R<r1,rz>m{;Ro<r<Rol
Re|2x<rf VIV UL OV 2 D) — 2x iz T T O N[0 (PR
+2(1 = X<R) V'V [V Vo + 2= Ry X<k (0, )00
_ZhV”(leL(_p+A§.n12|(p|2} dg

>

fR(Tlﬂz)ﬁ{;RoSrSRo}
) _7
eHWR {C3081SR_3£0 |8rcp|2 + R0 (csor™2 — C5081)|86(p|2

—CaosRT|T g + ((cs — Cs,51)s> R0

—Cys2 R0 — CgOsR_38°)|(p|2} dg. (6.130)
3. Inview of (6.110), (6.123) and Lemma 6.3, we can bound:

/R(Tl,w)ﬂ{RoirsRﬁo}
Rel2x<r f7IVEV FULF IOV 10 = 2x<rxzry T £ O D] (2
+2(1 = X<R) VM VY FVL@Vof +2X 5 Ry X<RT (0 /)13y 0l
—2hV" oV, + A 1612 dg
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>

/R(tl,rz)ﬂ{RoSrSREO}
_ _ 2
estR{(CBUSZR 6go _CBOS)e 2sz|8r(esz(p)‘
3 7
+c§0sR_380r_7 |8,cp|2 +030sR_380r_7 |80<p|2

+C50sR_380r_1 ITol? + (CgOR_9EOS3 - Cgos2 - Cg)os)l(plz} dg. (6.131)

4. Inview of (6.111), (6.123) and (6.67)—(6.69), we can bound:

/Rm,rz)m{RSOsrs;R}
Ref2x<p f IV PV IOV R D) — 2x sk Xz ry T T @ N[0 (20
201 = X =RV VP Vg + 20z Ry X<k B )10, 0
—2hV' oV + A6 | dg

>

/R(n,rz)m{Rmsrf;R}

estR {r—Z(CaorZSOSZ R—ZEO _ CSOS(VEO R0 4 r28() R—ZEO))e—stR ‘ar (ewa (P)‘Z
5 9

+egyr 2TOSRTE 19 | + cyyr 205 RTE0 |95 9|2 + Caor_2+SOSR_EO T

+r74(cé\,otsorkoajR*380 - Cgor2sos2R7280 - CgorsosR7€°)|<p|2} dg. (6.132)

5. Inview of (6.112), (6.123) and (6.63)—(6.65), we can bound:

/R(rl,xz)m{;R<r<R}
Re[2x<r /7' VH VY PVL(FEQVA(S19) — 2xzrnery ™ T O 0[0 (T
+2(1 = X<R) V'V VL@V + 20 =Ry X <k7 ™ (3r £)]9, 0]
—2hVM¢VM@+A;§;|@|Z} dg

>

/R(n,rz)ﬂ{;RSrsR}

e2sz{R—2(C80 _ CSO(BI +S_18171))e_2mR|ar(esz(p)‘2
_3 2 ) 2

+C80R 2|ar(P| +C30R 2|30(P|

+cBOR_2v;(%)s|T(p|2 — CgOR_4(v;(%)s3 +52 4+ 5) } dg. (6.133)

6. Inview of (6.113), (6.124), (6.76), (6.78) and (6.80), we can estimate:

/R(n,rz)m{Rsrséz'R}
Re[2x§Rf71V”V"fVu(f%<P)Vv(f%@) —2x<rxzr T @ D[0P
+2(1 = x<R) V'V VY @Vi§ + 2x= Ry X<k (B, )10, 0
—2hV oV, 5+ A0} dg
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2

R 9 I
> [2rers G = DR2F®) - o

/R(t] J)N{R<r<8;'R}

_s R? r 9 _ _5
+((1 = x=m FRIE = 2x2r(S5 (5 = 1) R+ OR™D)FB)) 1,0

9 _ _

+ef (R)r 3105912 + ¢f (R)r |9 = CR™ £ (R) o[} dg. (6.134)
Remark. Notice that the positivity of the coefficient of |8r f %@) |2 in the right hand
side of (6.134) follows from the fact that, in view of (6.76), provided R is sufficiently

large in terms of the geometry of (M, g), we can bound for R < r < %R (i.e. on
supp(x<r) N{r > R}):

Pf+r 30, f > +00 )0 f+00 )2 f + f(R)(g — %)R—Z. (6.135)

Applying the product rule and a Cauchy—Schwarz inequality on the first term of the right
hand side of (6.134), we obtain:

R?> 9
ry (5~ %)R‘zf(R) e ()
R?2 9 r

1
> 2% cp—(= — — — —)RZF(R)|9, 0> — Cx<rR™*F(R)|o|* (6.136
> XSRr2(5 R lOO) FR)[3, ¢l X<rRf(R)|gl” ( )

for some absolute constant C > 0. Thus, (6.134) yields (provided R >> 1):

/Rm,rz)n{Rsrss;'R}
_ 1 1_ _ _ 1 2
Re|2x<r VIV fVL(FE@VU(f79) = 2z T @ D0 (F2 )]
+2(1 = X <R V* V' F VoV + 2% =Ry X <k7 ' (B F)I0r 0

—2hV' oV, 5+ A6l | dg

>

/ FR)
R(1,)N{R<r<b;'R)

[er=31a, 0 + e o504 er 2T o> — CR*|l?} dg. (6.137)

7. Inview of (6.114), (6.124), (6.76) and (6.82), we can bound:

fR(n,rz)m{rzs;lR}
— 1 1_ 1 = I
Re[2x<r f7 VAV SV 2OV 19 = xRz ryr T ST @ D] (7 0)]

+2(1 = X<R)V* VY VL @Vuf +2X 5 Ry X <RT L (0 )|yl
- R
—20 V' Vg + A 6| dg

>

/ L®
R(t1,2)N{r=8; R}

{cr_2|3r(p|2 + R 3000 + er 2| To? — CR_lr_3|(p|2} dg. (6.138)
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In view of (6.118), (6.127), (6.130), (6.131), (6.132), (6.137), (6.138), as well as
the fact that f = f and h = h on on M\(ch(480) U H‘), we obtain from (6.98)
(provided 8¢, 3 > 0 are sufficiently small in terms of Ry and the geometry of (M, g),
d1 > Ois sufficiently small in terms of 8 and Ry, s is sufficiently large in terms of 8¢, 8
and gos R™9%0 is sufficiently large in terms of 8¢, 81):

/ (f + )
Rt )N {tro<r <1 Ro\Eow

{CsoalsR_38° (g HY8;0d; 9 — CSR™¥0|Vyy ¢lgs IT @] — CsR™|T g|?

+ C50S3R_9E° |<p|2} dg

v [ L UeD
R(t1,12)N{r=5Ro}

—3¢9 —3gp,.—3 —£0,.—3+€0
{X{;RoerRo}SlsR  KiRosr<RO) RO 4 X o <y gy SR

_3 2 2 -2 2
+X{%R5r§aglR}r 2+x{r28;1R}r }(|8,(p| +r 7|050| )dg

«f f+ )
R(t1, ) {3 Ro<r<3R}

{X{éR0§V§R0}< - CEOSR_SE()'T(NZ + CSOSSR_980|‘P|2)
+c;,ox{Rogsm}(sR*-*EOr*1 T +s3R*9€0|<p|2)
+ X{REUSrS%R}<SR_EOF_2+£O|T(P|2 + 0608053R_3E0”_4+380|(P|2) } dg

ool -2 2 —4.3, 2
+ (f + Hvg(S)(eso R “sITol” — CsyR™7s7| @™ ) dg
Rt )N L R<r <R} R

«f (F(R)+ F R (er21Tgl> — CR™r 1P ) dg
R(t1,0)N{r=R}

< Czso/ (f + f){s2R7680|V(P|§,mf+S4R71280|(p|2] dg
RﬁlﬂZ)m(&xN{rS%ro})

_/ Re{G (V" f +V* P)Vu§+ Oy f + 0o f = 20 = 20)§)} dg
R(ti,t2)

R R
— BYle: 1l - B‘(f’,%[@; T, T2l

(6.139)
where, for any set A C M, we denote with x 4 the characteristic function of A.
In view of the fact that (g~!)y is positive definite on M\ & U H, we can estimate on
M\E U {r > %ro} for any 8 > O:

s SRT0(g7 18108, — CsR™%| Vs ¢l gy Tl
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> Cogn SR Vg @lgs — Css R0 T |2 (6.140)

Furthermore, if ¥, : M\H™ — [0, 1] is a smooth T-invariant function supported in
{r <ro}suchthatx,, =1lon{r < %ro}, then, after integrating by parts in the identity

[ RN 0| de
R(t1,12)

- /R Re{N(xro(p)(xroG + 2V, Vi + Dgxro(p)} dg, (6.141)
(t1,72)

using also the bounds (2.5) and (2.6) from Assumption G2 (as well as a Poincare-type
inequality), we readily obtain the red-shift-type estimate

c JN(<p)nIL + |cp|2 dvoly+ +c/ |V<p|2 +|<p|2 dg
/;'erﬂR(‘[],tz)( " T ) R ( 8ref )

(v, w)Nfr=iro)
<c / (IVol2,, +10P) dg
R(u.w)N{tro<r<ro}

+C/ |V<p|§mf—/ Re{me(xm(p)-G}dg. (6.142)
e N{r=ro} ‘ R(t1,12)

Therefore, in view of (6.140), (6.142) and the fact that

25Wg 25WR
sup{rg%ro}(e te ) 6‘csR_kO (6143)

i 2 25w
lnf{rz%ro}(e SWR 4 ¢ ewR)

(following from (6.43), (6.44), (6.76) and (6.77)), (6.139) yields (provided s R73%0 > 1):

(f+f+ sup f)

1
{r<zro}

/R(Tl )Nr<iRONG

{casoalsR“wvgch@E — CssR™™|To|* + csos3R98°|<p|2} dg

s | F+ P
R(t1,12)N{r= 4 Ro}

| 815 R0 + w0y s R30,73 4 | sRE0, 340
K{§Ro=r=Ro}°! K{Ro<r=R0} K(Reo<r<iR)

_3 L 2 m
R idrer<sy R P Xz Ry }(|3MP| +r77|9:9]%) dg
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f+h

+

/Rm,rz)m{;Rosrs;R}

{X{§R0<r<RO}( - CBOSR_3SO Tl + CSOS?’R_%O |‘P|2)
+eso K Rozr ko) (SR T + 3R g]2)

+X{R80§rS%R}<SR€0r2+EO|T(P|2+C§)0€OS3R380r4+380|@|2)}dg

~ r _ —
v (f + DV (e R2SIT o2 = Cog R™45% 0P dg
R(t1, N3 R<r<R) R

v (R + R (er 2T o = R 16 dg
R(t1,12)N{r=R}
< Ciys / (f + f"){szR—%wﬁmf + s4R—12€0|<p|2} dg
R(t1, )N '
—/ Re{G(2(V* f+ V* )V o+ (O f +Og f — 20 — 20)§) ) dg
R(t1,12)
+CBY) - loi 11, o), —BY) e 1. 1l — B}R;l[w; T, 2]

fihi foh
+C sup f |v(p|§mf, (6.144)
{r=groy I TuNlr=ro}

where

B;Rh).f o, el

/ Re{ <2V“fVH(pV\,(p + (g f — 2h) eV — Vo fV* @V, 5

1
Uk VRISV + Tk = S (W@ f0)l6l ), e,

i

2

+)

j=1

~ ~ ~ ~ 1 ~
+(xr ST VUV 4 Vi = (0@ D)l s, | des,

/ Re{ (2v“fvu¢>vv(p +(Og f — 21V — Vy, f V"0V, 0
Se,
J

+ sup f |V<p|§mf
{r<grop /I Nir=ro}

(6.145)

(note that the boundary terms on H*in the right hand side of (6.139) where absorbed
by the term in the left hand side of (6.142)). Inequality (6.3) now readily follows from
(6.144) in view of (6.76), (6.77). O
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6.8. Proof of Corollary 6.1. Forany 1 < k <n and 0 < 31, 8,89 < 1, let us choose
the parameters R, s to be sufficiently large in terms of 31, 8, €9 and the geometry of
(M, g), satisfying in addition:

1 1
R > Cy o max{l, o %0, (—logdy) =0}, (6.146)
1 —1
Cy ey max {(1+wp) R, —logds} <'s < Cy 3 R, (6.147)

for some constant Cy,¢, > 1 large in terms of 31, e and the geometry of (M, g) (notice
that the bound (6.146) guarantees that an s satisfying (6.147) exists).

By approximating the functions {t, 1 < k < n, by smooth solutions to (1.2) with
compact support in space and using Lemma 5.3 on the decay of {ix as r — +00, we
infer that Proposition 6.1 also applies for the functions ;. Therefore, using the values
of s, R chosen above, we obtain forany 0 < 1y < tpandany | <k <n:

f (f+ inf
R(t1,)N{r<RoN&, {r=4r0N\&

{sR—“Owgzwuﬁz — Coy SR Ty +s3R—98°|¢k|2} dg

+/
R(t1, 1) {Ro<r<}R}

{sR—%Or—?(|arwk|2+r—2|8511fk|2)+sR‘3€°r‘2|Tufk|2 + 8OS3R_980”_4|‘II1<|2} dg

+
/R(n,rz)n{;R<r<R}

{r—3(|arwk|2 + 772|060k ?) + RO, wr (R s T |* — CR—4s3|w|2)}dg

+ / F(R)
R(t1,)N{r=R}

5
{r—z(|8r\bk|2 + 723Uk |2) + 2 Ty | — CR_lr_3|1!fk|2} dg

< cslf flsQR*6€°|wk|§,ef+s“R*”EOW]dg
R(t1,12)NE,

2

+q / Fe(V £V + O( Y1+ ) 21V flg, )i d
R(t1,12) ot
2 3 . -
CY [ (V190 + (000U flg )P ds.
Jj=1 Vi j=1

(6.148)
In view Lemma 5.4, the bound (6.148) implies:
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/ (f+ inf f)
R(t1,2)Nr <Ro}\&3, {(r=4ron\e&

{sR”S“Wgzxuk@E +SRTT Yy + (°RT0 — Cy, wzswow} dg

+/
R(t1,2)N{Ro<r<1R}

S
{sR—“Or—f ([0 we | + 2100 l?) + s R0 T 2 + 80s3R—9E°r—4|¢k|2} dg

+/ f
R(11.12)N (3 R<r<R}

{r*%(|a,x|fk|2 +r 2 ool

+R7's9,wr| T Ui |* + R™'sd, wr(cwf — CR—2s2)|¢k|2} dg

. )
R(t1,12)N{r=R}

{r’%(|3r\pk|2+r72|3c\lfk|2)+C" Tl + (cof — CR™ )72"”'2}"5?

<oy f FIP RN st R0 de
R(ty Tz)ﬁc%l ’

+c‘/ Fe(V* V0 + O( Z(l+r)f 2197 £l Uk dg‘
R(t1,12)

3

2
sy /E (9 Lo V02, + (3001 419 Fl, ) l?) diss
J=1"77%

Jj=1

+C/ IV Flonrd N oty + (3°C 412197 flg YWl dvolys.
R(ty, 1)NH* ( ¢ / " Z ¢ /) )

j=1

+Cop(l+wp )(10g(2+12)) R3 sup f - Eiogl V]
{r<Ro}

+Cof(l+og°) sup f - gl (6.149)

In view of the bound (6.147) for the parameters R, s, as well as the properties of the
function (6.2), inequality (6.149) yields [using also (5.26) and Lemma 5.2, combined
with a Cauchy—Schwarz inequality, to estimate the second and third terms in the right
hand side of (6.149)]:

/ (73190, + @2+ r ) de
R(t1,12)\é2,

< Y (IV wrlgey + V7R g,)
—
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Cs, - . —(SR™) |V o Iel”) dg
i, 1 gy, (€270 +€27) RN\, i

4SUP|, <) (62sz + eZSIZ)R

+Cy, (1+ 0, 9 (log(2 + =
5]( k )( g( 2)) inf{rSR} (62swk +62swk)

In view of the properties of the function 6.2, we can estimate

sup wg — inf wg+ sup wg — inf wg < Cg; 1R380 (6.151)
{(r<R} {r<R} {(r<R} {r<R}
inf  wg > max wg +cs, R9, (6.152)
{4r0<RN\&s, &,
inf g > max wg + cs, R0 (6.153)
{$ro<r<R\é&, &,
and
4
Z (IV/wgl g,y + |V gl g,,) < C. (6.154)
j=1

Therefore, inequality (6.6) readily follows from 6.150, provided Cj,¢, in (6.147) is
sufficiently large in terms of 81, e9. O

6.9. Proof of Proposition 6.1 in the case of Dirchlet or Neumann boundary conditions.
In this section, we will briefly sketch how the proof of Proposition 6.1 can be applied
to the case when the boundary dM of (M, g) is allowed to have a non-trivial time-
like component 9y;,,M and equation (6.1) is supplemented with Dirichlet or Neumann
boundary conditions for ¢ on 9y, M.

‘We will first describe the class of Lorentzian manifolds with such a boundary compo-
nent on which Proposition 6.1 will apply. Let (M?*!, ¢), d > 2, be a smooth Lorentzian
manifold with piecewise smooth boundary 9 M splitting as

OM = OporM U 0 M, (6.155)

where 9dp,,M has the structure of a piecewise smooth null hypersurface and 9y;,, M is
a smooth timelike hypersurface, with 9,-M N 9, M = @. For the discussion of this
section, we will assume that 9, M # @, but dp,,M will be allowed to be empty. Let
(M, g) be the double of (M, g) across dy;;, M, which is defined as the disjoint union of
two copies of (M, g) glued along 9y, M (for the relevant definitions, see e.g. [28]). Let
i1, i : M — M be the two natural isometric embeddings of (M, g) into (M, g). Note
that M = i; (M) U ir(M) and i1 (3 M) = i2(0sjmM). Furthermore, M is a smooth
manifold, and the metric g is continuous and piecewise smooth on M and smooth on
M\i1 (BimM).* We will always identify M with iy (M) C M.

We will assume that (M, g) is a globally hyperbolic Lorentzian manifold (with the
regularity of g as described before), satisfying Assumptions G1, G2 and G3 of Sect. 2
(for the discussion of this Section, we can also allow the case & = ). Additionally,
we will assume that the stationary Killing field T of M (defined by Assumption G1)

14 The metric g is continuous across i1 (s, M), but fails to be C Lat all the points of i1 (94, M) on which
the second fundamental form of i1 (9yj;;, M) is non-zero.
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is tangeEE to i1(9smM). Let also EM,SM,H}Z C Mt M\H/T\;( — R and
vk M\’Hh — [0, +00) be as defined under Assumption G1. We will assume
without loss of generality that X vt S J intersect i1(dy, M) transversally, and that
X 51 N i1(0imM), S g7 M i1(3imM) are compact. Note that the restriction of H 7 on

M coincides with 9y, M.

Remark. We will use the notation T, S, H*, r and r for the restriction of the hypersur-
faces X 4, S 4 H% and the functions 7 g7, r o7 on M 2= i1 (M).

For any F € C°°(M) and any (¢q, ¢1) € C*(X) x C*°(X), the initial-boundary value
problem

Lo =G on {t > 0}
(9, To) = (9o, 1) on{r =0} (6.156)
=0 on dip M

is well posed on {t > 0} C M. This follows from the assumption that (/\7, g) is
globally hyperbolic. The Dirichlet boundary condition |, A4 = 0 in (6.156) can also
be replaced by the Neumann boundary condition

35 M (D)3, = 0, (6.157)

where 1y, A4 is the unit normal vector field on 9y, M, pointing towards the interior of
M

On a spacetime (M, g) as above, we will extend Proposition 6.1 as follows:

Proposition 6.2. Let (M, g) be a Lorentzian manifold with boundary as above. For any
s, R > 1 sufficiently large in terms of the geometry of (M, g) and any 0 < €9 < 1, there
exists a a smooth T -invariant function f : M\H~ — (0, +00) as in Proposition 6.1,
so that (provided egs R > 1), forany 0 < 8 < 1, any 0 < 1 < 13 and any smooth
Sfunction ¢ : M\H~™ — C with compact support on the hypersurfaces {t = const}
solving (6.1) and satisfying on 0, M either the Dirichlet condition ¢ = 0 or the
Neumann condition ny, am(@) = 0, the estimate (6.3) holds.

Proof. The proof of Proposition 6.2 follows in almost exactly the same way as the proof
of Proposition 6.1, the only difference being the following: When using the multiplier

(6.86) forequation (6.1) asin Sect. 6.4 and after performing the same integration-by-parts
procedure, one obtains instead of (6.98) the following relation:

[ reforcer oo rvirtonaste
R(z1.12)

_ _ 1 2
2% <rRX=Ry" T @ )]0 (F20)
+2(1 = X<R)V* VY f V@ Vi@ + 2% 5 Ry X <r7 ' B )13, 0
—ZhV“chMQ)+A%2|(p|2] dg
= —/ Re{G(2V" [V o+ (O f —2h)¢)} dg
R(t1,12)

—BE) g 1. ] = BY ) [gs tital, (6.158)
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where

b
B(,-,Z[(p; T2l = /
’ BimMNR(t1,72)

Re| (29" £ V,0Vue+ @p f = 209Vid — Vo f V¥,
- 1
+ (ST VL + Vo = S (@) 0P s, af degne. (6159)

8, being the induced (Lorentzian) metric on 9y, M. Notice that (6.158) differs from
(6.98) only by the term (6.159) in the right hand side.

Let us assume, without loss of generality, that the function w of Lemma 6.1 has
been chosen so that it additionally satisfies ny, aq(w) > 0, with w being constant on
dsimM (it can be readily checked that Lemma 6.1 can be established under this additional
assumption). In the case when ¢ satisfies the Dirichlet boundary condition ¢|y, A1 = 0,
it is straightforward to check that this choice of w implies (in view of the choice of the
functions f, & in Sect. 6.3) that the term (6.159) is non-negative, and in particular

/‘t;rimMﬂR(Tl,Tz)
Re| <2V“fvu(_pv\)cp + (g f — 2h)@Vyd — Vy fV* @V, &

_ 1
+ (F VUV Y+ Vo = S (@) l0 )y, a8
2
= f B ) Mot (9] i 01 = 0 (6.160)
BimMNR(11,12)

for some ¢ > 0. Thus, the term (6.159) can be dropped from the right hand side of
(6.158) (thus yielding (6.98)) and one can proceed as before to establish (6.3).

In the case when ¢ satisfies the Neumann boundary condition ny,, a1(9) g, M = 0,
(6.159) is not necessarily non-negative, since the term

N, M(IVF OV P

in (6.159) does not necessarily have a sign (as is the case when @[3, r¢ = 0). In order
to absorb this term, we proceed as follows: Let i/ C M be a (small) T-invariant tubular
neighborhood of 9;;,, M (so that /N (’HUBcr,-,(880)) = @), splitasif >~ [0, 1) X 34, M,
where the projection onto the factor [0, 1) is given by a smooth function 7 : &/ — [0, 1)
such that V*7 |y A = ngﬁm - and the projection onto 9, M is given by a smooth map
0 : U — 3imM. We will extend ny,, ¢ on the whole of U by the relation

ny = VI (6.161)

Let x¢ : [0, 1) — [0, 1] be a smooth function satisfying x. = 1 on [0, }t] and x, =0
on [%, 1), and let us define the function f : M — R by the relation
FF.5) = xelF) - (M3 M) (©) o0 U 2 [0, 1) X ByimM

(where (ny,, M(f)) |3, is the value of ny, a4(f) on {¥ = 0}) and

9

f =0on M\U.



512 G. Moschidis
Adding to (6.158) the identity
/R L Re[2 wVi i — a0V V8] de
LR}

R(x1,7t2)

‘/3timMmR(TlsT2)
Re[ 210 M@V — F 13, OV 0V @)3, 0] i, 01
(6.162)

and using the Neumann condition ny, a1(¢)ls,, M = 0, we thus infer:

/R Rt T UG N 27 g 0T
—2rXzrer T @D
+2(1 = X<R) V'V V@V + 20 = Ry X <7 (0 10
= 20+ Vulfnl, w0) V0V + AT 0} dg

- _f Re(G(2V" [V o+ (Do f —20)7)} dg
R(t1,12)

- Bﬁ)[w; T, 2] - B}{’Z[cp; T2l
(6.163)
where

(b
B e ]

1
(F IV Vuf VI f 4 Voh = S (V@ D)0 )3, g A 00

(6.164)

/3:meﬂR(Tl ,T2)

Notice that, if s R=320 >> 1, the term (6.164) is non-negative (in view of the properties
of the functions f, i, see Sect. 6.3), and thus it can be dropped from the right hand
side 0{ (6.163). Furthermore, if lu > 1 in Lemma 6.1 and sR™3% >» 1, the terms
ZV”(fn‘a’ﬁmM)Vu(pV\)(p and V\)(fngan))V“(pVM(b in the left hand side of (6.163)
(restricted to the complement of &) can be absorbed into the right hand side of 6.120.
Thus, following exactly the same steps as we did in order to obtain (6.3) from (6.98) in
the case 9y, /M = &, we can also obtain (6.3) from (6.163) in the case when 9;;,, M # &

and natimM ((P)lan'mM = O o

7. Proof of Proposition 4.1

Let us introduce the parameters 0 < wp < 1, wy > land 11 > 79 + £ 21, depending
on e, 81, R, Ts, 10, Eloglel, Eiogl V], Eiog T Y] and S[Tzlll] in the statement of Proposi-
tion 4.1 (we will fix wg, w,; and t; later), and, for n = [logz(‘(f)—;ﬂ, let us decompose
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r and T\ into their frequency localised components {Urx}}_, U=, and {(TY)i}}_»
(TV¥)>w,, respectively, as in Sect. 5.2 (notice that (5.1) is satisfied in view of (4.18)).

In view of Lemma 5.5, (4.1) (and (4.18)), as well as a Hardy-type inequality (of the
form (5.15)), we obtain for any t > 21, andany 0 < a < 1:

/ (4N (wo)n™ + [Wrol?)
R(t—14, t+T)N{r<R}

<o} / (Y @ + lol?)
R(T—T4,1+1:)N{r<R}
+Co(10g@+ 1)+ (1 + 000~ ) (1 + 05 ™) R:Eingl 0]
< Cuwd Rt (log2 + 1) + W (log@ + 1) (1 + w5 ™) R?
+(1+we0 '+ w(;l*“)Rz}&og[@]. (7.1)
From Lemmas 5.4 and 5.6, we obtain for any T > 0 and any 3 > O:

=

2

o
/ (Y W) + Wz, )
i—0 R(t42j T4, T+2(j+ 1) T)N{r <R}

<

/ (Y Wz + V2o, )
R(t, =+~ 1t )N{r<R}

< C5 1,07 (Eiogl] + EIT 1) + C g1, (12)

We will assume that w, is sufficiently large in terms of €, Ty, Ejog[W], E[T ] so that

T (Eiog W1 + EITV]) < e. (7.3)
Let us also use the ansatz
0 (7.4)
wyg=—"H——o4, .
(log2+11))°

and let us assume that wq is sufficiently small in terms of €, R, Ty, Epgl@l, and 11 is
sufficiently large in terms of €, R, [ @], wo, so that for any vy < v < 1007 (having
fixed ana € (0, 1):

(02 R?t.(log2 + D))" + i (log2 + ) (1 + wy %)
R%+ (1 +wo0) ' (1 + 0y ™) R?) Englo] < & (1.5)

(later, we will also need to assume that t; is also sufficiently large in terms of w..). Then,
(7.1), (7.2), (7.5) and (7.3) imply that for any t > 0:

LB

(1Y @Won™ + 1Y (W= )n" + [Wol* + V2w, %)

71’1J
2
2
=0

1
< %ga Lt CEogl W] (7.6)

~/7.€(t+2lt*,‘c+2(l+])t*)r‘\{rfR}



514 G. Moschidis

Repeating the same procedure for T in place of { and adding the result
to (7.6), we obtain for any 8 > 0 (provided wo is fixed sufficiently small
in terms of e, R, Ty, Elogl@l, ElogW], T1 is fixed sufficiently large in terms of
&, R, Eogl @], Elog[Wlwo and w, is fixed sufficiently large in terms of e, Ty, &g

(W1, Eog[T W1, EIT2V):

==y

=0 — /;2(t+211*,T+2(l+1)‘r*)ﬂ{r§R}

1
(BN (T T Wn* + 1N (T 420 )n" + (T )0 + [(T7 ) 20,1%)

1
1 .
=% by C?_Oj Eiog T 1. (7.7)

In view of Corollary 6.1, forany 1 <k <n,any 0 < 81,8 < l,any 0 < gg < 1
and any T > 11, we can bound:

| (7 on® + 102
(R(t1,9\& N{r=R}

< Cgrd f (J,LN (Won™ + |wk|2) (7.8)
R, DN /2

+ ooy R0 "0 (Tog(2 + 1)) e Croprons maxleng * ~logbol gy

Let us set
8y = wpw; 182, (7.9)

where 8, is sufficiently small in terms of e, g9, R, T+, Elog[V]. Assuming also that g in
(7.4) has been fixed sufficiently small in terms of €, €9, R, T, Ejog[ V], from (7.8), (5.26),
(4.18) and the Poincare inequality

/ l? < c/ Y Qont + C/ el2,
R1,9NG, Rt 9N(r=R) (R(1.9\& N(r=R)

_ (7.10)
we obtain after summing over all k € {1, ..., n} provided 3, is sufficiently small in
terms of €, €9, R, T, Ejog[ V] (recall that n ~ log(wal wy)):

n
f (4 Qon + 1)
=1 (R, D\ N{r<R)

< Copr(T — 1) > log(g ' 004) Eigg [ W]

+ Copy 0y 0 (log(2 + 7)) eCrotron max(og . —logba) g 1)
1 8e()
< ——eT+ Cl(log(Z + f))MeC' (log@”l)) , (7.11)
4071,

where C; depends on g, €9, 31, R, Ty, Ejog[ V], 04
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Repeating the same procedure for 7 in place of s, we obtain the following analogue
of (7.11):
n
X (WO + [(TWxP?)

P -/(R(tl,f)\é%l)ﬂ{rfR} (

(7.12)

8¢,
< lt eT+ Ca(log(2+ %))14602(1og(2+11)) 07
*

where C; depends one, €9, 31, R, Ty, Epg[T V], 0.
From (7.11) and (7.12) we obtain for any 8 > 0 (setting T = 11 + 871ty

=

_Z_IJ n 1 ' '
2 { >y (7Y (@ pyon* + |<Tf¢>k|2)}
=0 R(t1+20t,, 1 +20+ DT )\G N(r <R}

k=1 j=0

(7.13)

8¢
e(t1 +87'1,) + C3(log(t; + S_Ir*))me@(l"g(z”l)) ,

*

where C3 = C1 + C;. Adding (7.7) (for T = 1) and (7.13), we therefore obtain for any
d>0:

E=C I

BTt 41T W)}

=0 {j=0 /R(r]+21t*,tl+2(1+1)t*)\£5|)ﬂ{rSR}(

1
1 1 : 1
8~ J -1
T ch_:Oslog[T Y+ sge(n 48w
8g(
+ Cy(log(ny + 571 5,) eCr(lozCrmn) (7.14)
Applying the pigeonhole principle on (7.14) (assuming that § < 1), we infer that

. —1_
there exists some [y € {0, ..., L8 5 L1} such that

1
N j j 2
/ (4 @it +1770P)
=0 R(t1+2lo v, 1+2(lo+DT:)\ & N{r<R}
5=l —1 1 1 !
B —1 —1 —1 j
<1 5 | (585 gt Tt Cjé_o&og[TJqf]

8¢,
+Ca(log(ur + 6*11*))]4ec3(‘°g(2+‘1>) 0)
1 8¢,
=< %(1+1;]81:1)+C8 E 510g[Tj\lf]+C38(10g(‘cl +87]T*))14e(j3(log(2+rl)) '

j=0
(7.15)

Thus, provided
(7.16)
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where § is small in terms of ¢, T, Elogl W], E10g[T V] and the precise choice of the con-
stants C1, C3, and that 17 is chosen sufficiently large in terms of ¢, €g, T« and the precise
choice of C1, C> (assuming also that gy has been fixed so that 0 < gy < %), from (7.15)
we infer:

1
/ (J@’(quf)n“ + |Tf¢|2) <& (117)
120 Y R+t u+20o+ DT\ NIr<R)
Setting 1y = T1+(2lp+1) T4 (and thus T1+2/p T, = Ty— T4 and Ty +2(lp+1) Ty = Tp+T4),
(7.17) yields (4.19). O

8. Proof of Corollary 2.1

The proof of Corollary 2.1 follows immediately from Theorem 2.1 applied to the quotient
of (R X Vhya,s, &nya) by the translations in the z-direction, i.e. the 2 + 1 dimensional
spacetime (R X Vyya s, 8hya), Where Viya s = Rz\{f < 8} (in the polar (7, $) coordinate
system) and
C2
8iya = —(1 — =3 )dt* + dF* — 2Cdtd9 + F>dy* (8.1)
r
(see also the remark below Theorem 2.1, as well as Sect. 6.9, regarding the Dirichlet or
Neumann boundary conditions on {r = 8}). B
In particular, in the language of Sect. 6.9, (R X Va5, gnya) is a smooth Lorentzian
manifold with smooth timelike boundary

dim(R x Viyas) = {7 = 8}. (8.2)
The double (R x fihyd,g, 8hyd) of (R x I_Jhyd,g, 8hya) across the boundary 9y, (]R X l}hyd,g)
is diffeomorphic to R x R x S!, with the metric 8hya in the (¢, 7, ¥) coordinate chart of
R x R x S! having the form:

C2

———)dt* +di? = 2Cdtdd + (|F — 8] + 8)%d9? 8.3
(|F—8|+8)2) +dF +(|F — 8] +3) (8.3)

ghyd = _(1

—~—

Notice that (R X Vjya 5, rya) is a globally hyperbolic spacetime without boundary, with

Cauchy hypersurface {t = 0}. Let i1, i2 : (R x fihyd,g, &hya) —> (R x l_ihyd,g, 8hya) be
the two natural inclusions (see Sect. 6.9). Then, in the coordinate charts (¢, 7, %) on
R x [3,+00) x S! > R x Vjygs and R x R x S > R x Vjya 5, we have iy (7, 7, 9)) =
(t,7,9) and iz((t, 7, 19)) =(t,8—7r,9).

Note that gjyq is smooth everywhere except on i (3yim (R x Viyas)) = {F = 8}. Notice

also that (R x ]_/hyd,g, 8hya) has no event horizon H (and thus, trivially, H N1y (3n‘m (IR{ X
Viya,s)) = @), and i1 (3yim (R x Viya3)) Nt = 0} is compact. Thus, in view of the remark
below Theorem 2.1 on spacetimes with timelike boundary, it only remains to verify that

—_~—

(R X Viya,s. 8nya) satisfies Assumptions G1-G3 and A1, and that i1 (3 (R X Viyas))

is invariant with respect to the stationary Killing field of (R x fihyd,g, 8hyd)-
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1. The vector field 9, (in the (¢,7,®) coordinate system for (R x Dhyd,g, 8hyd) 18
Killing, and the metric (8.1) is asymptotically flat (with the asymptotically flat
region fas = {r > Rop > 1} consisting of two connected components) and satisfies
Assumption G1. Furthermore, 9;;, (R X Vhyd,g) is d;-invariant.

2. The spacetime (R x ]_}hyd,z,, 8hya) has no event horizon H, and thus Assumption G2
is trivially satisfied.

3. The spacetime (R x f/hyd’g, 8hya) has a non empty ergoregion E={-C <
r < C}. The boundary & = {r = 25 — C} U {r = C} of & is a smooth hyper-
surface of R x Dhyd,g, and R x )_/hyd,g\éz consists of two connected components,

each containing one asymptotically flat end of R x ]_/hyd’g (and, thus, ééx, = éz'). In
particular, Assumption G3 is satisfied.

4. Assumption Al is readily satisfied in view of the fact that (R x ]_/hyd’g, 8hya) 1s also
axisymmetric, with axisymmetric Killing field 9y such that [dy, ;] = O and the
span of dy, d; contains a timelike direction (see the discussion in Sect. 2.3).

Thus, the proof of Corollary 2.1 is complete.

9. Aside: Discussion on Friedman’s Heuristic Argument

In this Section, we will briefly sketch the heuristic arguments developed by Friedman in
[20], and we will discuss their connections with the methods used in this paper.

9.1. Friedman’s argument. As we already explained in the introduction, on any glob-
ally hyperbolic, stationary and asymptotically flat spacetime (M, g) with a non-empty
ergoregion & and no future event horizon H*, Friedman constructed, in [20], a class of
smooth solutions \{r to the wave equation (1.2) satisfying

/ It = —1, 9.1)
>

where ¥ is a Cauchy hypersurface of (M, g), T is the stationary Killing field of (M, g)
and n is the future directed unit normal to X. In view of the conservation of the T -energy
flux for solutions to (1.2) on (M, g) and the fact that JMT (W)n* = 0 on M\&, from
(9.1) Friedman inferred that for any t > O:

/ Ji (Wt < —1, 9:2)
2.NE

where X is defined as in Sect. 3 (i.e. the image of ¥ under the flow of T for time t).
Proceeding to study the consequences of the bound (9.2) on the (in)stability properties

of equation (1.2), Friedman first noted the following dichotomy for the energy flux

through the future null infinity Z* of any solution s to (1.2), satisfying (9.1)'%: Either

/ I ()nl, = +o0, 9.3)
I+

15 See [31] for the definition of the Friedlander radiation field and the energy flux of ¢ through Z* on general
asymptotically flat spacetimes.
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in which case (in view of (9.1) and the conservation of the J”-flux) there exists a
sequence of hyperboloidal hypersurcases Sy, terminating at Z* such that

lim sup / Tl (Wnls = +o0, (9.4)
n—+00 . n
or
/I ) I ()nlp, < +oo. 9.5)

In case the first scenario (9.4) holds, one immediately obtains an energy instability
statement for equation (1.2). In case the second scenario (9.5), Friedman argued (see
[20]) that { “settles down” to a “non-radiative state” III, which is to be interpreted as a
solution to (1.2) such that

/ Il (n', =0. (9.6)
I+

Furthermore, in view of (9.2), Friedman argued that  should also satisfy for all T > O:
/ It < —1. 9.7)
NE

Assuming that (M, g) is globally real analytic and that the metric g has a proper
asymptotic expansion in powers of 7 ~! in a neighborhood of Z*, Friedman inferred from
(9.6) (using an adaptation of Holmgren’s uniqueness theorem for analytic linear partial
differential equations, see [24]) that

B =0 9.8)
on (M, g). Thus, (9.7) and (9.8) yield a contradiction, implying that the scenario (9.5)
should not occur on such spacetimes.

9.2. Comparison with the proof of Theorem 2.1. In general terms, the proof of Theo-
rem 2.1 (see Sect. 4) follows the roadmap of the heuristic arguments of Friedman. In
particular, our proof proceeds by contradiction, assuming the energy bound (4.1) on the
{t = 1} hypersurfaces, which is a slightly stronger assumption than the energy bound
(9.5) on Z* in the second scenario considered by Friedman.

In Lemma 4.2, we show that, under the assumption (4.1), a function { solving (1.2)
with compactly supported initial data indeed “settles down” to a function s (in a well
defined way), such that s vanishes identically outside the extended ergoregion &,y;. This
result makes use (through Proposition 4.1) of the Carleman-type estimates of Sect. 6,
as well as the bound (4.1). Here, assuming merely the bound (9.5) on Z* would not
be enough. Note that, in the argument of [20], no justification is provided (even at the
heuristic level) of why a function { solving (1.2) and satisfying (9.5) is expected to
“settle down” to a non-radiating solution ITI of (1.2).

The fact that ﬂ,r vanishes outside &,; follows from the estimates of Sect. 6, without
any need to impose a real analyticity assumption on (M, g) or a complete asymptotic
expansion for g on Z*. In general, however, it can not be inferred that  vanishes also
on &.'0 Thus, a contradiction can not be reached following the argument of Friedman

16 We can in fact construct spacetimes (ML g), d > 3, with a smooth solution \ to an equation of the
form Ogr + VA = 0, such that T (V) = 0, { = 0 on M\& and s not identically 0 in &.
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in this setting. Instead, after restricting ourselves to spacetimes (M, g) satisfying the
unique continuation assumption A1, which guarantees that Jf vanishes on (M\ &,y) UU,
we reach the desired contradiction by exploiting our freedom to choose the initial data
for s appropriately: We choose (r, T{)|x to be supported in X N, so that the support
of (U, TV)|x will be disjoint from M\U, where the support of all the time translates
of (s, T)|x, is contained. Therefore, r and all the time translates of s are orthogonal
with respect to the (indefinite) 7 -inner product (4.38). This fact leads to relation (4.57),
from which a contradiction follows readily in view of (4.49).
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