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Abstract: Let (M3+1, g) be a real analytic, stationary and asymptotically flat spacetime
with a non-empty ergoregion E and no future event horizonH+. In Friedman (Commun
Math Phys 63(3):243–255, 1978), Friedman observed that, on such spacetimes, there
exist solutions ϕ to the wave equation �gϕ = 0 such that their local energy does not
decay to 0 as time increases. In addition, Friedman provided a heuristic argument that
the energy of such solutions actually grows to +∞. In this paper, we provide a rigorous
proof of Friedman’s instability. Our setting is, in fact, more general. We consider smooth
spacetimes (Md+1, g), for any d ≥ 2, not necessarily globally real analytic. We impose
only a unique continuation condition for the wave equation across the boundary ∂E of
E on a small neighborhood of a point p ∈ ∂E . This condition always holds if (M, g) is
analytic in that neighborhood of p, but it can also be inferred in the case when (M, g)
possesses a second Killing field� such that the span of� and the stationary Killing field
T is timelike on ∂E .We also allow the spacetimes (M, g) under consideration to possess
a (possibly empty) future event horizonH+, such that, however,H+∩ E = ∅ (excluding,
thus, the Kerr exterior family). As an application of our theorem, we infer an instability
result for the acoustical wave equation on the hydrodynamic vortex, a phenomenon
first investigated numerically by Oliveira et al. in (Phys Rev D 89(12):124008, 2014).
Furthermore, as a side benefit of our proof, we provide a derivation, based entirely on
the vector field method, of a Carleman-type estimate on the exterior of the ergoregion
for a general class of stationary and asymptotically flat spacetimes. Applications of this
estimate include a Morawetz-type bound for solutions ϕ of �gϕ = 0 with frequency
support bounded away from ω = 0 and ω = ±∞.
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1. Introduction

In the field of general relativity, stationary and asymptotically flat spacetimes (M, g)
arise naturally as models of the asymptotic state of isolated self-gravitating systems. In
this context, questions on the stability properties of such spacetimes as solutions to the
initial value problem for the Einstein equations

Ricμν(g) − 1

2
R(g)gμν = 8πTμν (1.1)
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(where Tμν is the stress-energy tensor associated to the matter fields, with Tμν = 0
in the vacuum case) are of particular importance, being directly related to the physical
relevance of the spacetimes themselves.

The stability of Minkowski spacetime (R3+1,η) as a solution to the vacuum Einstein
equations was established in the monumental work of Christodoulou–Klainerman [8].
Until today, Minkowski spacetime is the only stationary and asymptotically flat vac-
uum spacetime that is known to be non-linearly stable. A more complicated example of
a family of stationary and asymptotically flat spacetimes expected to be stable are the
subextremal Kerr exterior spacetimes (MM,a, gM,a), with mass M and angular momen-
tum a satisfying 0 ≤ |a| < M (for a detailed formulation of the Kerr stability conjecture,
see [10]). While the non-linear stability of the family (MM,a, gM,a) has not been estab-
lished so far, the linear stability of the Schwarzschild exterior (i.e., (MM,a, gM,a) for
a = 0) was recently obtained by Dafermos–Holzegel–Rodnianski (see [10]).

Owing to the fact that the wave equation

�gϕ = 0 (1.2)

can be viewed as a simple model of the linearised vacuum Einstein equations (1.1)
around (MM,a, gM,a), the stability properties of equation (1.2) in the case 0 ≤ |a| <

M had been extensively studied in the years preceding [10], culminating in the proof
of polynomial decay estimates for solutions ϕ to (1.2) on (MM,a, gM,a) in the full
subextremal case 0 ≤ |a| < M in [17,36]. For earlier results in the Schwarzschild case
a = 0 and the very slowly rotating case |a| � M , see [3,4,11–13,25] and [2,14–16,38]
respectively.

One important aspect of the geometry of (MM,a, gM,a) in the case a �= 0 is the
existence of an ergoregion (or “ergosphere”) E ; recall that E ⊂ MM,a is defined as

E
.= {p ∈ MM,a | g(Tp, Tp) > 0}, (1.3)

where T is the stationary Killing vector field on (MM,a, gM,a). The fact that E is
non-empty when a �= 0 gives rise to the phenomenon of superradiance for solutions
to (1.2) on (MM,a, gM,a), a �= 0: there exist solutions ϕ to (1.2) such that their T -
energy flux through future null infinity I+ is greater than their T -energy flux initially.
In general, superradiance poses a serious difficulty in obtaining stability results for Eq.
(1.2). In the case of (MM,a, gM,a), superradiance does not eventually render equation
(1.2) unstable, owing, partly, to the presence of the future event horizon H+, allowing
for part of the energy of solutions of (1.2) to “leave” the black hole exterior. Notice,
however, that superradiance-related mode instabilities do appear on (MM,a, gM,a) for
theKlein–Gordon equation (see [35]), or even for thewave equationwith a (well-chosen)
short-range non-negative potential (see [32]).

Stationary and asymptotically flat spacetimes (M, g) with a non-empty ergoregion
E but lacking a future event horizon H+ appear in the literature as models for rapidly
rotating self-gravitating objects, for instance, asmodels of self-gravitating dense rotating
fluids (see [5]). In [20], Friedman studied the instability properties of equation (1.2) on
such spacetimes, making the following observation: There exist smooth solutions ϕ to
(1.2) with negative T -energy flux initially, i.e.,∫

�

J Tμ (ϕ)nμ
� < 0 (1.4)

on a Cauchy hypersurface � of (M, g) (see Sect. 3 for our notations on vector field
currents), and, in view of the conservation of the T -energy flux, the absence of a future
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event horizon H+ and the non-negativity of J Tμ (·)nμ
�outside E , any such function ϕ

satisfies for all τ ≥ 0: ∫
�τ∩E

J Tμ (ϕ)nμ
�τ

≤
∫

�

J Tμ (ϕ)nμ
� < 0 (1.5)

(where �τ denotes the image of � under the flow of T for time τ). Therefore, the local
energy of ϕ cannot decay to 0 with time.

Based on the above observation, Friedman provided a heuristic argument suggesting
that, under the additional assumption that the spacetime (M, g) is real analytic, any
such solution ϕ satisfies

lim sup
τ→+∞

∫
�τ

J N
μ (ϕ)nμ

�τ
= +∞ (1.6)

for a globally timelike T -invariant vector field N . In view of the aforementioned connec-
tion between equation (1.2) and the Einstein equations (1.1), Friedman suggested that
such spacetimes cannot appear as the final state of the evolution of a self-gravitating sys-
tem (see [20] for more details).1 For a numerical investigation of Friedman’s instability,
see [6,9,39].

In this paper, we will provide a rigorous proof of Friedman’s instability for equation
(1.2). Our proof will in fact not require that (M, g) is real analytic, but we will assume,
instead, a substantially weaker unique continuation condition for equation (1.2) through
a subset of the boundary ∂Eext of the “extended” ergoregion Eext, where we define Eext
to be equal to the union of the ergoregion E with the connected components of M\E
which intersect neither H+ nor the asymptotically flat region of M.2 Note that, in the
case whenM\E is connected, Eext coincides with E . In particular, we will establish the
following result:

Theorem 1.1. Let (Md+1, g), d ≥ 2, be a smooth, globally hyperbolic, stationary and
asymptotically flat spacetime with a non-empty ergoregion E and a future event horizon
H+ which is either empty or satisfies E ∩ H+ = ∅. Assume, in addition, that the
following unique continuation condition through the boundary ∂Eext of the “extended”
ergoregion Eext holds:

Unique continuation condition: There exists a point p ∈ ∂Eext and an open neigh-
borhood U of p in M such that, for any solution ϕ to Eq. (1.2) on M with ϕ ≡ 0 on
M\Eext, we have ϕ = 0 also on Eext ∩ U .

Then, there exists a smooth solution ϕ to (1.2) with compactly supported initial data
on a Cauchy hypersurface � of (M, g), such that

lim sup
τ→+∞

∫
�τ

J N
μ (ϕ)nμ = +∞, (1.7)

where T is the stationaryKilling field of (M, g), N is a globally timelike and T -invariant
vector field on M, coinciding with T in the asymptotically flat region of M, and �τ is
the image of � under the flow of T for time τ.

1 In general, it is expected that rotating, self-gravitating compressible fluids satisfying the Einstein–Euler
system suffer (at the linearised level) from the so-called Chandrasekhar–Friedman–Schutz instability, see
[7,22]. In this case, the associated instability mechanism does not depend on the existence of an ergoregion.
However, in the presence of an ergoregion, the linearised Einstein–Euler system is also expected to exhibit an
instability similar to Friedman’s instability for Eq. (1.2), associated to the so-called w-modes (see [21,26,27]).
At the non-linear level, it is believed that the effect of the CFS instability will generally dominate the effect
of the w-mode instability in an astrophysical setting (see [26]).

2 Notice that ∂Eext ⊂ ∂E .
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Remark. Note that the assumption E ∩H+ = ∅ excludes the Kerr exterior family with
angular momentum a �= 0.

For a more detailed statement of Theorem 1.1 and the assumptions on the spacetimes
under consideration, see Sect. 2. For a comparison between the heuristics of Friedman
in [20] and the methods and results of this paper, see Sect. 9.

Let us remark that, in the detailed statement of Theorem 1.1, we will introduce an
additional restriction on the class of spacetimes (M, g) under consideration, namely the
condition that every connected component of M\E intersecting H+ also intersects the
asymptotically flat region of (M, g). However, our proof of Theorem 1.1 can be adapted
to the case when this condition does not hold.

We should also remark that the unique continuation condition through an open subset
of ∂Eext, appearing in the statement of Theorem 1.1, is always satisfied in the case when
(M, g) possesses an axisymmetric Killing field � such that the span of T,� on ∂Eext
contains a timelike direction, or in the case when the spacetime (M, g) is real analytic
in an open subset U ⊂ M such that U ∩ ∂Eext �= ∅; see the discussion in Sect. 2.3.
It would be natural to expect that this condition can be completely removed from the
statement of Theorem 1.1, but we have not succeeded so far in doing so.

The proof of Theorem 1.1, presented in Sect. 4, proceeds by contradiction. In partic-
ular, assuming that every smooth solution ϕ of equation (1.2) on (M, g)with compactly
supported initial data satisfies

lim sup
τ→+∞

∫
�τ

J N
μ (ϕ)nμ < +∞, (1.8)

it is shown that ϕ decays in time onM\E . This fact is then shown to lead to a contradic-
tion after a suitable choice of the initial data forϕ, combinedwith the unique continuation
assumption of Theorem 1.1. See Sect. 4 for more details. The decay of ϕ on M\E is
established through some suitable Carleman-type estimates, derived in Sect. 6. These
estimates could have been obtained by methods similar to the ones implemented in [30],
but we chose instead to provide an alternative proof, based entirely on the method of
first order multipliers for Eq. (1.2). For more details on this, see Sect. 2.5.

The instabilitymechanism proposed by Friedman is of interest not only in general rel-
ativity, but also in all areas of mathematical physics where stationary and asymptotically
flat Lorentzian manifolds (M, g), and the associated wave equation (1.2), arise. For
instance, in the field of fluid mechanics, the steady flow of a (locally) irrotational, invis-
cid and barotropic fluid on an open subset V of R

3 gives rise to a stationary Lorentzian
metric g on M = R × V , the so called acoustical metric, and the wave equation (1.2)
associated to g governs the evolution of small perturbations of the flow. In [33], the
authors investigate numerically the Friedman instability for the acoustic wave equation
on the hydrodynamic vortex (R × Vhyd,δ, ghyd), where Vhyd,δ = R

3\{r̄ ≤ δ} for some
δ � 1 (in the cylindrical (r̄ ,ϑ, z) coordinate system) and

ghyd = −(
1 − C2

r̄2
)
dt2 + dr̄2 − 2Cdtdϑ + r̄2dϑ2 + dz2, (1.9)

with suitable boundary conditions imposed for (1.2) at r̄ = δ. Note that the quotient of
(R × Vhyd, ghyd) by the group of translations in the z direction is asymptotically flat,
possesses a non-empty ergoregion E = {δ < r̄ ≤ C} (corresponding to the region where
the fluid velocity exceeds the speed of sound) and has no event horizon.

As a straightforward application of Theorem 1.1, we will establish a Friedman-type
instability for the acoustical wave equation on the hydronamic vortex:
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Corollary 1.1. For any δ < 1, there exist smooth and z-invariant solutionsϕD,ϕN to the
acoustical wave equation (1.2) on (R ×Vhyd,δ, ghyd), satisfying Dirichlet and Neumann
boundary conditions, respectively, on {r̄ = δ}, with smooth initial data at time t = 0
which are compactly supported when restricted on {z = 0}, such that (in the (t, r̄ ,ϑ, z)
coordinate chart on R × Vhyd,δ):

lim sup
τ→+∞

∫
{t=τ}∩{z=0}∩{r̄≥δ}

(|∂tϕD|2 + |∇R3ϕD|2) r̄dr̄dϑ = +∞ (1.10)

and

lim sup
τ→+∞

∫
{t=τ}∩{z=0}∩{r̄≥δ}

(|∂tϕN |2 + |∇R3ϕN |2) r̄dr̄dϑ = +∞. (1.11)

For a more detailed statement of Corollary 1.1, see Sect. 2.2.

Remark. While Corollary 1.1 provides an instability statement for both Dirichlet and
Neumann boundary conditions for ϕ on {r̄ = δ}, only the Neumann condition is relevant
for the case when {r̄ = δ} represents a physical boundary for the fluid flow, since in this
case the fluid velocity is only allowed to be tangential to {r̄ = δ}.

2. Statement of the Main Results

In this section, we will outline in detail the assumptions on the spacetimes (M, g) under
consideration, and we will state the main results of this paper.

2.1. Assumptions on the spacetimes under consideration. Let (Md+1, g), d ≥ 2, be a
smooth, globally hyperbolic Lorentzian manifold with piecewise smooth boundary ∂M
(allowed to be empty).Before stating ourmain results,wewill need to introduce a number
of assumptions on the structure of (M, g). In Sect. 2.4, we will present some explicit
examples of spacetimes (M, g) satisfying all the assumptions that will be introduced in
this section.

2.1.1. Assumption G1 (Asymptotic flatness and stationarity). We will assume that
(M, g) satisfies the following conditions:

• There exists a Killing field T on (M, g) with complete orbits which is tangential to
∂M, as well as a smooth Cauchy hypersurface �̃ ⊂ M, such that T |�̃ is everywhere
transversal to �̃\∂M and timelike outside a compact subset of �̃.

• The triad (�̃, g�̃, k�̃), where g�̃ is the induced (Riemannian) metric on �̃ and k�̃
its second fundamental form, defines an asymptotically flat Riemannian manifold
(possibly with boundary �̃ ∩ ∂M ), with a finite number of asymptotically flat ends
(possibly more than one); see also the definition in Section 2.1.1 of [30]. Let Ias be
the asymptotically flat region ofM (see [30] for the relevant definition). Expressed
in a polar coordinate chart of the form (t, r, σ) in each connected component of Ias,
g has the following form:

g = −
(
1+O4(r

−1)
)
dt2+

(
1+O4(r

−1)
)
dr2+r2·

(
gSd−1+OS

d−1

4 (r−1)
)
+O4(1)dtdσ,

(2.1)
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where OS
d−1

4 (ρ−1) is a symmetric (0, 2)-tensor field on the coordinate sphere
{r = ρ} 
 S

d−1 with O4(ρ
−1) asymptotics as ρ → +∞. See Sect. 3.7 for the

Ok(·), OS
d−1

k (·) notation and Sect. 3.6 for the σ notation on the angular variables of
a polar coordinate chart.

• Let H = ∂
(
J+(Ias) ∩ J−(Ias)

)
be the horizon of M, split as H = H+ ∪ H−,

withH+ = J+(Ias) ∩ ∂ J−(Ias) andH− = J−(Ias) ∩ ∂ J+(Ias). ThenH coincides
with ∂M, and H+ and H− are smooth null hypersurfaces with smooth boundary
H+ ∩ H−, with T �= 0 on H\H− (the case H+ = ∅ or H− = ∅ is also trivially
included in this condition).

See Assumption 1 in Section 2.1.1 of [30] for a detailed statement of these conditions
and their related geometric constructions, as well as their implications on the geometry
ofM. Notice that the domain of outer communications of the asymptotically flat region
Ias ofM is the whole ofM\H. In view of the remarks in Section 2.1.1 of [30],H+ and
H− are invariant under the flow of the stationary Killing field T .

Let � be a spacelike hypersurface intersecting H+ transversally (if H+ �= ∅) and
satisfying � ∩H− = ∅, such that � coincides with �̃ outside a small neighborhood of
H+. In view of the remarks in Section 2.1.1 of [30], our assumption on the structure of
(M, g) implies that � ∩ H+ is compact. Notice that, in case H+ �= ∅, � will not be a
Cauchy hypersurface ofM.

We will also fix a smooth spacelike hyperboloidal hypersurface S ⊂ M terminating
at future null infinity I+ as in Section 2.1.1 of [30], such that S|{r≤R1} ≡ �|{r≤R1} for
some fixed constant R1 � 1 (Fig. 1).

Remark. In view of the remarks of Section 2.1.1 of [30], the causal future sets
J+(�), J+(S) of �,S, respectively, in M coincide with the future domains of depen-

Fig. 1. The subextremal Kerr exterior spacetime (MM,a , gM,a) satisfies Assumptions G1 and G2, but not
Assumption G3. In the case of (MM,a , gM,a), the intersection of the hypersurfaces �̃, �, defined in Assump-
tion G1, with the 1 + 1 dimensional slice {θ = π/2, φ = 0} ⊂ MM,a are schematically as depicted above
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dence D+(�),D+(S) of �,S. Furthermore, the images of �,S under the flow of T
covers the whole of M\H−.

As in Section 2.1.1 of [30], we will extend the polar radius coordinate function
r : Ias → (0,+∞) as a non-negative, smooth and T -invariant function on the whole
of M\H−, such that r > 0 on M\H and r |H+\H− = 0, dr |H+\H− �= 0. We will also
define the function t : M\H− → R by the relations

t |� = 0 and T (t) = 1, (2.2)

as well as the function t̄ : M\H− → R by

t̄ |S = 0 and T (t̄) = 1. (2.3)

Note that t = t̄ on {r ≤ R1}.
We will introduce the reference Riemannian metric

gref
.= dt2 + g� (2.4)

on M\H− 
 R × �. We will denote the natural extension of gref on ⊕l1,l2∈N
(⊗l1

T (M\H−) ⊗l2 T ∗(M\H−)
)
also as gref.

2.1.2. Assumption G2 (Killing horizon with positive surface gravity). In the caseH+ �=
∅, we will assume that the Killing field T , when restricted toH+\H−, is parallel to the
null generators ofH+\H−. Furthermore, we will assume that there exists a T -invariant
strictly timelike vector field N on J+(�), which, when restricted on J+(�)∩H, satisfies

K N (ψ) ≥ cJ N
μ (ψ)Nμ (2.5)

for some c > 0 and any ψ ∈ C1(M) (see Sect. 3 for the notation on vector field
currents). We will extend N on the whole of M\H− by the condition [T, N ] = 0.

We will call the vector field N the red shift vector field. The reason for this name is
that a vector field of that form was shown to exist for a general class of Killing horizons
with positive surface gravity by Dafermos and Rodnianski in [13]. However, here we
will just assume the existence of such a vector field without specifying the geometric
origin of it.

Note that we can modify the vector field N away from the horizon H, so that in the
asymptotically flat region {r � 1} (i.e. Ias) it coincides with T , and still retain the bound
(2.5) on J+(�) ∩H.3 We will hence assume without loss of generality that N has been
chosen so that N ≡ T in the region {r � 1}.

Due to the smoothness of N , there exists an r0 > 0, such that (2.5) also holds (possibly
with a smaller constant c on the right hand side) in a neighborhood of H+\(H+ ∩ H−)

inM of the form {r ≤ r0}. For r � 1, since N ≡ T there, we have KT (ψ) ≡ 0. Hence,
due to the T−invariance of N and the compactness of the sets of the form {r ≤ R} ∩�,
there exists a (possibly large) constant C > 0 such that

|K N (ψ)| ≤ C · J N
μ (ψ)Nμ (2.6)

everywhere on M for any ψ ∈ C∞(M).

3 The convexity of the cone of the future timelike vectors over each point of M is used in this argument.
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Without loss of generality, we will also assume that r0 is sufficiently small so that

dr �= 0 (2.7)

on {r ≤ 3r0}. This is possible, since dr |H+\H+∩H− �= 0 and � ∩ H+ is compact.
In the case H+ = ∅, we will fix N to be an arbitrary T -invariant timelike vector

field on M\H−, such that N ≡ T for r � 1, and we will set r0 = 1
4 inf� r (which is

possible since r > 0 on � when H+ = ∅), so that {r ≤ 3r0} = ∅. In this case, (2.5),
(2.6) and (2.7) are trivially satisfied.

2.1.3. Assumption G3 (Non-empty ergoregion avoiding the future event horizon). We
will assume that the ergoregion of (M, g) is non-empty, i.e.

E
.= {g(T, T ) > 0} �= ∅, (2.8)

and furthermore
E ∩ H+ = ∅. (2.9)

Notice that the condition (2.9) is trivially satisfied when H+ = ∅. Note also that the
subextremal Kerr exterior family with a �= 0 has a non-empty ergoregion, but does not
satisfy (2.9).

In the case when H+ �= ∅, we will also assume that every connected component of
M\E that intersects H+ also intersects the asymptotically flat region Ias of (M, g).4

Remark. The assumption that every component ofM\E intersectingH+ also intersects
Ias is not necessary for the results of this paper, which can also be established without
this condition. The reason for adopting this assumption is that it leads to considerable
simplifications in the proof of the Carleman-type estimates in Sect. 6.

We will assume that T is strictly timelike on the complement of H ∪ E , i.e.:

g(T, T ) < 0 on M\(E ∪ H). (2.10)

Furthermore, we will assume that the boundary ∂E of E is a smooth hypersurface of
M.

The complementM\E of E might consist of more than one components. In view of
our assumption that every component of M\E intersecting H+ also intersects Ias, the
connected components ofM\E fall into two disjoint categories: The ones that intersect
the asymptotically flat region Ias and the future event horizon H+, and the ones that
intersect neither Ias nor H+. Let us call the union of the components of M\E falling
into the last category the enclosed region of M, and denote it by Menc.5 We will also
introduce the notion of the extended ergoregion of M defined by

Eext
.= E ∪ Menc. (2.11)

Note that, since Eext ∩ H+ = ∅, we have r > 0 on Eext. Thus, in view of the
T -invariance of Eext, we can assume without loss of generality that r0 has been fixed
sufficiently small so that {r ≤ r0} ∩ Eext = ∅. Note also that ∂Eext ⊆ ∂E .

4 Note that Ias andH+ might have several components.
5 The reason for callingMenc enclosed is because ∂Menc ⊂ ∂E , i.e.Menc is enclosed by the ergoregion.
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2.1.4. Assumption A1 (Unique continuation around p ∈ ∂Eext). We will assume that
there exists a point p on the boundary ∂Eext of Eext and an open neighborhood U of p in
M, such that for any ψ ∈ H1

loc

(M\H−)
solving the wave equation (1.2) and satisfying

ψ ≡ 0 onM\Eext, we also have ψ ≡ 0 on U . Since T is a Killing field ofM, the same
result also holds on any T -translate of U , and, for this reason, we will assume without
loss of generality that U is T -invariant. Furthermore, since ∂Eext ⊂ ∂E , we will assume
without loss of generality that U is small enough so that U ∩ Eext ⊂ E .

Remark. Assumption A1 is satisfied in the case whenM is axisymmetric with axisym-
metric Killing field �, such that [�, T ] = 0 and the span of {�, T } is timelike, or
in the case when there exists a point p ∈ ∂E such that g is real analytic on an open
neighborhood of p inM. See Sect. 2.3.

2.2. The main results. The main result of this paper is the following:

Theorem 2.1. Let (Md+1, g), d ≥ 2, be a globally hyperbolic Lorentzian manifold
satisfying AssumptionsG1,G2,G3 andA1, and let the vector field T , N and the spacelike
hypersurface � be as described in Assumptions G1-G2. Then, there exists a smooth
function ϕ : J+(�) → C solving the wave equation (1.2) on J+(�) with compactly
supported initial data on �, such that

lim sup
τ→+∞

∫
�τ

J N
μ (ϕ)nμ = +∞. (2.12)

The proof of Theorem 2.1 will be presented in Sect. 4.

Remark. The proof of Theorem 2.1 immediately generalises to the casewhen the bound-
ary of the spacetime (M, g) has a smooth, timelike and T -invariant component ∂timM,
such that � ∩ ∂timM is compact and ∂timM ∩H = ∅, assuming that Dirichlet or Neu-
mann boundary conditions are imposed for equation (1.2) on ∂timM. In this case, we
have to assume that the double (M̃, g̃) of (M, g) across ∂timM is a globally hyperbolic
spacetime satisfying Assumptions G1, G2, G3 and A1 (see Sect. 6.9 for the relevant
constructions).

Let us also note that we can readily replace the qualitative instability statement (2.12)
with the following quantitative statement: For any C > 0, there exists a solution ϕ to
equation (1.2) as in the statement of Theorem 2.1, such that

lim sup
τ→+∞

((
log(2 + τ)

)−C
∫

�τ

J N
μ (ϕ)nμ

)
= +∞. (2.13)

See the remark at the beginning of Sect. 4. However, we do not expect the logarithmic
rate of growth in (2.13) to be sharp.

As a straightforward application of Theorem 2.1, we will obtain the following instability
estimate for solutions to the acoustical wave equation on the hydronamic vortex (R ×
Vhyd,δ, ghyd), where Vhyd,δ ⊂ R

3 is the set {r̄ ≥ δ} (in the cylindrical (r̄ ,ϑ, z) coordinate
system on R

3) and ghyd is given by the expression (1.9):

Corollary 2.1. For any δ < 1, there exist smooth and z-invariant solutions ϕD,ϕN to
(1.2) on (R × Vhyd,δ, ghyd), satisfying the boundary conditions

ϕD|{r̄=δ} = 0 (2.14)
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and

∂r̄ϕN |{r̄=δ} = 0 (2.15)

and having smooth initial data at time t = 0 which are compactly supported when
restricted on {z = 0}, such that (in the (t, r̄ ,ϑ, z) coordinate chart on R × Vhyd,δ):

lim sup
τ→+∞

∫
{t=τ}∩{z=0}∩{r̄≥δ}

(|∂tϕD|2 + |∇R3ϕD|2) r̄dr̄dϑ = +∞ (2.16)

and

lim sup
τ→+∞

∫
{t=τ}∩{z=0}∩{r̄≥δ}

(|∂tϕN |2 + |∇R3ϕN |2) r̄dr̄dϑ = +∞. (2.17)

For the proof of Corollary 2.1, see Sect. 8.

2.3. Discussion on Assumption A1. There exists a class of natural geometric conditions,
such that spacetimes (M, g) satisfying these conditions (in addition to Assumptions
G1–G3) automatically satisfy Assumption A1. Examples of such conditions are the
following:

• Assumption A1 is always satisfied on spacetimes (M, g) having an axisymmetric
Killing field �, such that [�, T ] = 0 and the span of �, T on ∂Eext contains a
timelike direction. This is a consequence of Lemma 2.1 at the end of this section
(choosing U to be a suitable small neighborhood of a point p ∈ ∂Eext\{� = 0} and
S = ∂Eext ∩ U in the statement of Lemma 2.1).

• Assumption A1 is always satisfied on spacetimes (M, g) on which there exists
a point p ∈ ∂Eext and an open neighborhood U of p such that (U , g) is a real
analytic Lorentzian manifold and ∂Eext ∩ U is a real analytic hypersurface. This is
a consequence of Holmgren’s uniqueness theorem (see [24]).

On the other hand, we believe that Assumption A1 does not hold on all spacetimes
satisfyingAssumptions G1–G3. In particular, by adjusting the arguments of [1], wewere
able to construct a 3+1-dimensional spacetime (M, g), satisfying Assumptions G1–G3,
as well as a suitable T -invariant smooth potential V : M → C, so that Assumption A1
for equation

�gϕ − Vϕ = 0 (2.18)

in place of (1.2) is not satisfied.6 Note that such a construction is non-trivial, in view of
the requirement that T (V ) = 0; for instance, Assumption A1 always holds for equation
(2.18) on stationary spacetimes without an ergoregion (see [37]). We will not pursue this
issue any further in this paper.

Although we believe that Assumption A1 can be removed from the statement of
Theorem 2.1, we were not able to do so.

The following lemma can be used to establish that Assumption A1 always holds in
the presence of a second Killing field � on M such that the span of T,� is timelike:

6 In view of the requirement T (V ) = 0, this construction boils down to the adaptation of the construction of
[1] on the quotientM/T ofM by the orbits of T , with �g replaced by �g/T , where �g/T is obtained from
�g by dropping the terms involving T derivatives. Note that �g/T is hyperbolic in int (E )/T and elliptic on
(M\E )/T .
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Lemma 2.1. Let U be an open subset of a smooth spacetime (M, g) with two Killing
fields T,� such that [T,�] = 0, � �= 0 on U and the span of T,� contains a timelike
direction everywhere on U . Let also S ⊂ U be a T,�-invariant smooth hypersurface,
separating U into two connected components U1,U2, so that U2 lies in the domain of
dependence of U1. Then, any ψ ∈ H2

loc(U) solving (1.2) on (U , g) such that ψ ≡ 0 on
U1 must vanish everywhere on U .
Proof. Since [T,�] = 0 and � �= 0 on U , we can assume without loss of generality
(by shrinking U if necessary) that U is covered by a coordinate chart (t,ϕ, x2, . . . , xd)
such that:

1. T (ϕ), T (x2), . . . T (xd) = 0,
2. �(t),�(x2), . . . , �(xd) = 0,
3. T (t) = �(ϕ) = 1,
4. S = {x1 = 0}.

In view of the fact that the span of �, T contains a timelike direction everywhere
on U , the wave operator (1.2) in the (t,ϕ, x2, . . . , xd) coordinate system takes the form
(using the shorthand notation x = (x2, . . . , xd)):

�gψ = �xψ +
d∑
j=2

(
a(2)
t j (x)∂x j ∂tψ + a(2)

ϕ j (x)∂x j ∂ϕψ + a(1)
t j (x)∂tψ + a(1)

ϕ j (x)∂ϕψ
)

+ att (x)∂
2
t ψ + atϕ(x)∂t∂ϕψ + aϕϕ(x)∂2ϕψ, (2.19)

where the operator �x in the right hand side of (2.19) is a t,ϕ-invariant second order
elliptic operator in the x2, . . . , xd variables. Since the coefficients of (2.19) are inde-
pendent of t,ϕ and �x is elliptic, the proof of the Lemma follows readily by the unique
continuation result of Tataru [37]. ��

2.4. Examples of spacetimes satisfying Assumptions G1–G3 and A1. In this section, we
will examine some explicit examples of spacetimes satisfying all of the Assumptions
G1–G3 and A1.

An example with H+ = ∅. Our first example will be a simple spacetime with no event
horizon. LetM = R

3+1, and let us fix fix two smooth functions χr̄ : [0,+∞) → [0, 1]
and χϑ : [0,π] → [0, 1], satisfying χr̄ ≡ 0 on [0, 3] ∪ [6,+∞), χr̄ ≡ 1 on [4, 5],
χϑ ≡ 0 on [0, π

6 ] ∪ [ 5π6 ,π] and χϑ ≡ 1 on [π
4 , 3π

4 ]. We will also assume that χr̄ ,χϑ

have been chosen so that the set of zeros of the function

f (r̄ ,ϑ)
.= 1 − (χr̄ (r̄)χϑ(ϑ))2 (2.20)

is a smooth curve without self-intersections in the open rectangle (3, 6) × (π
6 , 5π

6 ), and
the region { f ≤ 0} ⊂ (3, 6) × (π

6 , 5π
6 ) is simply connected.

We will consider the following metric onM in the usual time-polar coordinate chart
(t, r̄ ,ϑ,ϕ) on R

3+1:

g = −(
1 − (χr̄ (r̄)χϑ(ϑ))2

)
dt2 − 1000χr̄ (r̄)χϑ(ϑ)dtdϕ + dr̄2 + r̄2

(
dϑ2 + sin2 ϑdϕ2).

(2.21)
Note that g is everywhere non-degenerate, and has Lorentzian signature. Furthermore,
(M, g) is a globally hyperbolic spacetime, with Cauchy hypersurface {t = 0}, satisfying
the following properties:
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1. The vector field T = ∂t is a Killing field of (M, g). Furthermore, (M, g) is
asymptotically flat and satisfies Assumption G1. Notice that (M, g) has no event
horizon, since every point inM can be connectedwith the asymptotically flat region
Ias = {r̄ ≥ R0 � 1} through both a future directed and a past directed timelike
curve, by following theflowof the timelike vector fields ∂r̄+C

(
∂t+ 1

10χr̄ (r̄)χϑ(ϑ)∂ϕ

)
and ∂r̄−C

(
∂t+ 1

10χr̄ (r̄)χϑ(ϑ)∂ϕ

)
, respectively (for somefixedC � 1). The function

r : M → [0,+∞), introduced in Assumption G1, can be chosen to be equal to(
1 + r̄2

)1/2.
2. The spacetime (M, g) has no event horizon, and, thus, it trivially satisfies Assump-

tion G2.
3. The ergoregion E = {g(T, T ) > 0} of (M, g) is non-empty, and satisfies

{4 ≤ r̄ ≤ 5} ∩ {π
4

≤ ϑ ≤ 3π

4
} ⊂ E ⊂ {3 ≤ r̄ ≤ 6} ∩ {π

6
≤ ϑ ≤ 5π

6
}. (2.22)

Since H+ = ∅, we have E ∩ H+ = ∅. Furthermore, since we assumed that the
region { f ≤ 0} ⊂ (3, 6) × (π

6 , 5π
6 ) for the function (2.20) is simply connected,

we can readily infer that M\E is connected and, thus, Eext = E . Furthermore, the
boundary ∂E of E is a smooth hypersurface of M and (2.10) is satisfied, in view
of our assumption on the set of zeros of the function (2.20). Therefore, (M, g)
satisfies Assumption G3.

4. The spacetime (M, g) possesses an additional Killing field, i.e. � = ∂ϕ. The span
of T,� contains the everywhere timelike vector field T + 1

10χr̄ (r̄)χϑ(ϑ)� and,
thus, Lemma 2.1 implies that (M, g) satisfies Assumption A1. In particular, any
point p ∈ ∂Eext ⊆ ∂E and any open neighborhood U of p inM satisfy the unique
continuation property of Assumption A1.

Therefore, (M, g) satisfies all of the Asumptions G1–G3 and A1.

Remark. The hydrodynamic vortex (R × Vhyd,δ, ghyd) of Corollary 2.1 is not a glob-
ally hyperbolic spacetime, since its boundary ∂

(
R × Vhyd,δ

) = {r̄ = δ} is a timelike
hypersurface. However, as we will show in the proof of Corollary 2.1, the double of
(R × Vhyd,δ, ghyd) across ∂

(
R × Vhyd,δ

)
is a globally hyperbolic spacetime without

an event horizon, satisfying Assumptions G1–G3 and A1. In addition, the double of
(R × Vhyd,δ, ghyd) is an example of a spacetime having two asymptotically flat ends,
with (R × Vhyd,δ, ghyd)\E having two connected components.

An example withH+ �= ∅.Wewill now proceed to construct a slightlymore complicated
example of a spacetime satisfying Assumptions G1–G3 and A1, possessing in addition
a non-empty event horizon. Note that, as we mentioned in Sect. 2.1, the subextremal
Kerr exterior family (MM,a, gM,a) does not satisfy G3, since the future event horizon
H+ and the ergoregion E of (MM,a, gM,a) have a non-empty intersection.

For any M > 0, letMM be diffeomorphic to R × (2M,+∞) × S
2. Let χr̄ ,χϑ be as

before, assuming, in addition, that they have been chosen so that the set of zeros of the
function

fM (r̄ ,ϑ)
.= (

1 − 2M

r̄
− (χr̄ (M

−1r̄)χϑ(ϑ))2
)

(2.23)

is a smooth curve without self-intersections in the open rectangle (3M, 6M) × (π
6 , 5π

6 )

and the region { fM ≤ 0} ⊂ (3, 6) × (π
6 , 5π

6 ) is simply connected.
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Let us consider the following metric in the (t, r̄ ,ϑ,ϕ) coordinate chart onMM :

gM = −(
1 − 2M

r̄
− (χr̄ (M

−1r̄)χϑ(ϑ))2
)
dt2 − 1000Mχr̄ (M

−1r̄)χϑ(ϑ)dtdϕ

+
(
1 − 2M

r̄

)−1
dr̄2 + r̄2

(
dϑ2 + sin2 ϑdϕ2). (2.24)

The metric gM is everywhere non-degenerate, and has Lorentzian signature.
The spacetime (MM , gM ) is isometric to the Schwarzschild exterior spacetime

(MM,Sch, gM,Sch) outside the region {3M ≤ r̄ ≤ 6M} ∩ {π
6 ≤ ϑ ≤ 5π

6 } and, thus,
it can be extended into a larger globally hyperbolic spacetime (M̃M , g̃M ).7 This exten-
sion can be chosen to be the Schwarzschild maximal extension across r̄ = 2M (see
e.g. Section 2 [16]).8 Let us denote

MM = i(MM ) ∪ ∂MM , (2.25)

where i : MM → M̃M is the natural inclusion of (MM , gM ) into its extension and
∂MM is the boundary of i(MM ) inside M̃M . Note that, in view of the properties of
the maximally extended Schwarzschild spacetime, (MM , gM ) is a smooth Lorentzian
manifold with piecewise smooth boundary ∂MM , consisting of two intersecting smooth
null hypersurfaces. The functions r̄ ,ϑ,ϕ can be smoothly extended on ∂MM , with
r̄ |∂MM = 2M .

The spacetime (MM , gM ) is globally hyperbolic, with � = {t = 0} being a smooth
Cauchy hypersurface, and satisfies the following properties:

1. The vector field T = ∂t onMM extends smoothly on ∂MM and is a Killing vector
field of (MM , gM ). Furthermore, the spacetime (MM , gM ) is asymptotically flat
and satisfiesAssumptionG1. Note that the event horizonH of (MM , gM ) coincides
with ∂MM , since all the points in MM can be joined with the asymptotically flat
region Ias = {r̄ ≥ R0 � 1} through both a future directed and a past directed
timelike curve, by following the flow of the timelike vector fields ∂r̄ + C

(
∂t +

1
10M χr̄ (M−1r̄)χϑ(ϑ)∂ϕ

)
and ∂r̄ −C

(
∂t + 1

10M χr̄ (M−1r̄)χϑ(ϑ)∂ϕ

)
, respectively (for

some fixed C � 1). The function r : MM → [0,+∞), introduced in Assumption
G1, can be chosen to be equal to r̄ − 2M .

2. There exists a T -invariant neighborhoodV ofH = ∂MM inMM , so that (V, gM ) is
isometric to a neighborhood of the event horizonHM,Sch of Schwarzschild exterior
spacetime. In particular, T is parallel to the null generators of H+\H− and there
exists a T -invariant timelike vector field N onMM as in Assumption G2, satisfying
(2.5) (see [13,16]). In particular, (MM , gM ) satisfies Assumption G2.

3. The ergoregion E = {g(T, T ) > 0} of (MM , gM ) is non-empty, and satisfies

{4M ≤ r̄ ≤ 5M} ∩ {π
4

≤ ϑ ≤ 3π

4
} ⊂ E ⊂ {3M ≤ r̄ ≤ 6M} ∩ {π

6
≤ ϑ ≤ 5π

6
}.

(2.26)

Thus, E ∩ H+ = ∅, since r̄ > 2M on E . Furthermore, since the function (2.23)
was assumed to have the property that the set { fM ≤ 0} is simply connected, we

7 Of course, the coordinate chart (t, r̄ , ϑ, ϕ)will not be regular up to the boundary ofMM in this extension.
8 Note that the r̄ coordinate function on MM corresponds to the usual r coordinate function on

Schwarzschild exteriorMM,Sch .
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can readily infer that MM\E is connected. Thus, Eext = E and H+ lies in the
same connected component of MM\E as the asymptotically flat region Ias. The
boundary ∂E of E is a smooth hypersurface ofMM and (2.10) is satisfied, in view
of our assumption on the set of zeros of the function (2.23). Therefore, (MM , gM )

satisfies Assumption G3.
4. In view of the fact that (MM , gM ) possesses an additional Killing field, namely

� = ∂ϕ, and the span of T,� contains the vector field T + 1
10M χr̄ (M−1r̄)χϑ(ϑ)�

which is everywhere timelike onMM , Lemma 2.1 implies that (MM , gM ) satisfies
Assumption A1. In particular, any point p ∈ ∂Eext = ∂E and any open neighbor-
hood U of p satisfy the unique continuation property of Assumption A1.

Thus, (MM , gM ) satisfies Assumptions G1–G3 andA1, and, in addition, (MM , gM )

has a non-empty future event horizon.

2.5. A remark on the Carleman-type estimates in the proof of Theorem 2.1. As we
discussed in the introduction, a crucial step in the proof of Theorem 2.1 consists of
showing that, under the assumption that

lim sup
τ→+∞

∫
�τ

J N
μ (ϕ)nμ < +∞ (2.27)

holds for every smooth function ϕ : J+(�) → C solving the wave equation (1.2)
on J+(�) with compactly supported initial data on �, we also have that ϕ decays on
M\E ; see Sect. 4 for more details. This fact is inferred using some suitable Carleman-
type estimates on (M\E , g) for ϕ which are particularly useful when ϕ has localised
frequency support in time (see Proposition 6.1 in Sect. 6; for the technical details related
to the frequency decomposition of ϕ, see Sect. 5).

The aforementioned estimates could have been established using the techniques of
our previous [30].9 However, we chose, instead, to provide an alternative proof, based
entirely on the use of first order multipliers for equation (1.2). As a consequence, we
obtain an alternative proof for the estimates of Section 7.1 of [30], as well as for the
Carleman-type estimates established in [34] for the inhomogeneous Helmholtz equation

�ḡu + ω2u − Vu = G, (2.28)

0 < Im(ω) � 1, Re(ω) �= 0, on an asymptotically conic Riemannian manifold (�, ḡ),
where the potential V : � → R satisfies some suitable decay conditions on the asymp-
totically conic end of �. An alternative approach based on the positive commutator
method and leading to similar Carleman-type inequalities on asymptotically flat back-
grounds with a uniformly timelike Killing field has also been implemented in the recent
[29]. For a more detailed statement of these results, see Sect. 6.

3. Notational Conventions and Hardy Inequalities

In this section,wewill introduce some conventions on denoting constants and parameters
that will appear throughout this paper. We will adopt similar conventions as in [30].

9 Although the techniques of [30] can be modified to yield the required Carleman-type estimates on the
spacetimes under consideration, they can not be used as a black box in the current setting, since the geometry
of the spacetime in a neighborhood of E and the allowed range in the space dimension d (which includes the
case d = 2) differ from the setting of [30].
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3.1. Constants and dependence on parameters. Wewill adopt the following convention
for denoting constants appearing in inequalities: We will use capital letters (e.g. C)
to denote “large” constants, typically appearing on the right hand side of inequalities.
(Such constants can be “freely” replaced by larger ones without rendering the inequality
invalid.) Lower case letters (e.g. c) will be used to denote “small” constants (which can
similarly freely be replaced by smaller ones). The same characters will be frequently
used to denote different constants, even in adjacent lines.

We will assume that all non-explicit constants will depend on the specific geometric
aspects of (M, g) and we will not keep track of this dependence, except for some very
specific cases. However, since we will introduce a plethora of parameters throughout
this paper, we will always keep track of the dependence of all constants on each of
these parameters. Once a parameter is fixed (which will be clearly stated in the text), the
dependence of constants on it will be dropped.

3.2. Inequality symbols. We will use the notation f1 � f2 for two real functions f1, f2
as usual to imply that there exists some C > 0, such that f1 ≤ C f2. This constant C
might depend on free parameters, and these parameters will be stated clearly in each
case. If nothing is stated regarding the dependence of this constant on parameters, it
should be assumed that it only depends on the geometry of the spacetime (M, g) under
consideration.

Wewill denote f1 ∼ f2 whenwe can bound f1 � f2 and f2 � f1. The notation f1 �
f2 will be equivalent to the statement that | f1|

| f2| can be bounded by some sufficiently small
positive constant, the magnitude and the dependence of which on variable parameters
will be clear in each case from the context. For any function f : M → [0,+∞),
{ f � 1} will denote the subset { f ≥ C} ofM for some constant C � 1.

For functions f1, f2 : [x0,+∞) → R, the notation f1 = o( f2)willmean that | f1|
| f2| can

be bounded by some continuous function h : [x0,+∞) → (0,+∞) such that h(x) → 0
as x → +∞. This bound h might deppend on free parameters, and this fact will be clear
in each case from the context.

3.3. Some special subsets ofM. The future event horizon ofMwill be denoted byH+,
and the past event horizon by H−, i.e.

H+ = J+(Ias) ∩ ∂ J−(Ias),
H− = J−(Ias) ∩ ∂ J+(Ias).

For any τ1 ≤ τ2, we will denote

R(τ1, τ2)
.= {τ1 ≤ t ≤ τ2} ⊂ M\H− (3.1)

and
�τ

.= {t = τ}, (3.2)

where the function t : M\H− → R is defined in Assumption G1.
The ergoregion of M, defined by (2.8), will be denoted by E . The boundary of E

(which is smooth, according to Assumption G3) will be denoted by ∂E .We will fix a
smooth T -invariant spacelike vector field n∂E in a small T -invariant neighborhood of
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∂E , such that n∂E |∂E is the unit normal of ∂E . We will denote with Eext the extended
ergoregion of (M, g), defined by (2.11). Notice that E ⊆ Eext, but ∂Eext ⊆ ∂E .

For any δ > 0, we will denote

Eδ = {x ∈ M\H− | distgref(x,Eext) ≤ δ}. (3.3)

Note that Eext ⊂ Eδ for any δ > 0, and ∩δ>0Eδ = Eext.

3.4. Notations on metrics, connections and integration. For any pseudo-Riemannian
manifold (N , hN ) appearing in this paper, we will denote with dhN the natural volume
form associated with hN . Recall that in any local coordinate chart (x1, x2, . . . xk) on
N , dhN is expressed as

dhN = √|det(hN )|dx1 · · · dxk .
Wewill also denotewith∇hN the natural connection associated tohN .When (N , hN ) =
(M, g), we will denote ∇hN simply as ∇. If hN is Riemannian,

∣∣ · ∣∣hN will denote the
associated norm on the tensor bundle of N .

For any integer l ≥ 0, we will denote with
(∇hN

)l or ∇l
hN the higher order operator

∇hN · · · ∇hN︸ ︷︷ ︸
l times

. (3.4)

Note that the product (3.4) is not symmetrised.Wewill also adopt the convention that we
will always use Latin characters to denote such powers of covariant derivative operators.
On the other hand, Greek characters will be used for the indices of a tensor in an abstract
index notation.

For any smooth and spacelike hypersurface S ⊂ M, gS will denote the induced
(Riemannian) metric on S, and nS the future directed unit normal to S.

Some examples of pseudo-Riemannian manifolds that will appear throughout this
paper are (M, g), (M, gref) and (�τ, g�τ), where gref is the reference Riemannian
metric (2.4). We will raise and lower indices of tensors on M only with the use of g.

In some cases, we will omit the volume form dg or dg�τ
when integrating over

domains inM or the hypersurfaces �τ, respectively.
In the case of a smooth null hypersurface H ⊂ M, the volume form with which

integration will be considered will as usual depend on the choice of a future directed null
generator nH for H . For any such choice of nH , selecting an arbitrary vecor field X
on TH M such that g(X, nH ) = −1 enables the construction of a non-degenerate top
dimensional form on H : dvolH

.= iXdg, which depends on the on the precise choice
of nH , but not on the choice for X . In that case, dvolH (or dvolnH ) will be the volume
form on H associated with nH .

3.5. Coordinate charts onM\H−. Using the function t as a projection, we can identify
M\H− withR×�. Under this identification, any local coordinate chart (x1, . . . , xd) on
a subset V of� can be extended to a coordinate chart (t, x1, . . . , xd) onR×V ⊂ R×�,
and in this chart, we have ∂t = T . We will usually work in such coordinate charts
throughout this paper.

In view of the flat asymptotics of (M, g) and the fact that � intersectsH+ transver-
sally, the coarea formula yields that in the region J+(�), the volume forms dg and
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dt ∧ dg� are equivalent, i.e. there exists a C > 0, such that for any integrable
ϕ : M → [0,+∞) and any 0 ≤ τ1 ≤ τ2 (identifying M\H− with R × �):

C−1
∫
R(τ1,τ2)

ϕ dg ≤
∫ τ2

τ1

( ∫
�

ϕ(t, x) dg�

)
dt ≤ C

∫
R(τ1,τ2)

ϕ dg. (3.5)

Similarly, for any δ > 0, there exists a Cδ > 0 so that for any integrable ϕ : M →
[0,+∞) and any τ1 ≤ τ2 (not necessarily non-negative):

C−1
δ

∫
R(τ1,τ2)∩{r≥δ}

ϕ dg ≤
∫ τ2

τ1

( ∫
�∩{r≥δ}

ϕ(t, x) dg�

)
dt ≤ Cδ

∫
R(τ1,τ2)∩{r≥δ}

ϕ dg.

(3.6)

3.6. Notations for derivatives on S
d−1. In this paper, we will frequently work in polar

coordinates in the asymptotically flat region of (M, g) or (�, g�). For this reason,
we will adopt the same shorthand σ-notation for the angular variables in such a polar
coordinate, as we did in [30,31]. See Section 3.6 of [30] for a detailed statement of this
convention.

As an example of this convention, on subset U of a spacetimeM covered by a polar
coordinate chart (u1, u2, σ) : U → R+ × R+ × S

d−1, for any function h : U → C

and any symmetric (l, 0)-tensor b on S
d−1, the following schematic notation for the

contraction of the tensor
(∇g

Sd−1

)l
h(u1, u2, ·) with b will be frequently used:

b · ∂ lσh(u1, u2, ·) .= bι1...ιl (∇l
g
Sd−1

)ι1...ιl h(u1, u2, ·), (3.7)

where gSd−1 is the standard metric on the unit sphere S
d−1. Furthermore, we will also

denote in this case

|∂ lσh(u1, u2, ·)| .= ∣∣∇l
g
Sd−1

h(u1, u2, ·)
∣∣
g
Sd−1

. (3.8)

Notice, also, the following commutation relation holds:

[L∂ui
,∇S

d−1 ] = 0, (3.9)

where ∂ui is the coordinate vector field associated to the coordinate function ui , i = 1, 2.
Therefore, we will frequently denote for any function h : U → C:

L∂ui
∇S

d−1
h

.= ∂ui ∂σh, (3.10)

and, in this notation, we will be allowed to commute ∂ui with ∂σ, as if ∂σ was a regular
coordinate vector field. See Section 3.6 of [30] for more details.
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3.7. The Ok(·) notation. For any integer k ≥ 0 and any b ∈ R, the notation h = Ok(rb)
for some smooth function h : M → C will be used to denote that, in the (t, r, σ)

polar coordinate chart on each connected component of the region {r � 1} of M (see
Assumption 1):

k∑
j=0

∑
j1+ j2+ j3= j

r j2+ j3 |∂ j1
σ ∂

j2
t ∂

j3
r h| ≤ C · rb (3.11)

for some constant C > 0 depending on k and h. The same notation (omitting the ∂t
derivatives) will also be used for functions on regions of manifolds cover by an (r, σ)

polar coordinate chart.
Similarly, the notation h = OS

d−1

k (rb) will be used to denote a smooth tensor field
h on M such that, in the (t, r, σ) polar coordinate chart on each connected component
of the region {r � 1} of M, h is tangential to the {r = const} coordinate spheres
(i. e. h contracted with ∂r , ∂t or dr, dσ, depending on its type, yields zero), and satisfies
|h|g

Sd−1 = Ok(rb). The type of the tensor h will always be clear from the context.

3.8. Vector field multipliers and currents. In this paper, we will frequently use the
language of Lagrangean currents and vector field multipliers for equation (1.2):
On any Lorentzian manifold (M, g), associated to the wave operator �g =

1√−det(g)
∂μ

(√−det(g)gμν∂ν

)
is a symmetric (0, 2)-tensor called the energy momen-

tum tensor Q. For any smooth function ψ : M → C, the energy momentum tensor
takes the form

Qμν(ψ) = 1

2

(
∂μψ · ∂νψ̄ + ∂μψ̄ · ∂νψ

)
− 1

2

(
∂λψ · ∂λψ̄

)
gμν. (3.12)

For any continuous and piecewise C1 vector field X onM, the following associated
currents can be defined almost everywhere:

J X
μ (ψ) = Qμν(ψ)Xν, (3.13)

K X (ψ) = Qμν(ψ)∇μXν. (3.14)

The following divergence identity then holds almost everywhere on M:

∇μ J X
μ (ψ) = K X (ψ) + Re

{
(�gψ) · Xψ̄

}
. (3.15)

3.9. Hardy-type inequalities. Frequently throughout this paper, we will need to control
the weighted L2 norm of some function u by some weighted L2 norm of its derivative
∇u. This will always be accomplished with the use of some variant of the following
Hardy-type inequality on R

d (which is true for d ≥ 1, although we will only need it for
d ≥ 2):

Lemma 3.1. For any a > 0, there exists some Ca > 0 such that for any smooth and
compactly supported function u : R

d → C and any 0 < R1 < R2 we can bound
∫
Rd∩{R1≤r≤R2}

r−d+a |u|2 dx +
∫

{r=R1}
R−(d−1)+a
1 |u|2 dg{r=R1}
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≤ Ca

∫
Rd∩{R1≤r≤R2}

r−(d−2)+a |∂r u|2 dx +
∫

{r=R2}
R−(d−1)+a
2 |u|2 dg{r=R2} (3.16)

and
∫
Rd∩{R1≤r≤R2}

r−d |u|2 dx +
∫

{r=R1}
R−(d−1)
1 log(R1)|u|2 dg{r=R1}

≤ C
∫
Rd∩{R1≤r≤R2}

r−(d−2)( log(r))2|∂r u|2 dx

+
∫

{r=R2}
R−(d−1)
2 log(R2)|u|2 dg{r=R}. (3.17)

In the above, r is the polar distance on R
d , dx is the usual volume form on R

d and
dg{r=R} is the volume form of the induced metric on the sphere {r = R} ⊂ R

d .

The proof of Lemma 3.1 is straightforward (see also Section 3.9 of [30]).

4. Proof of Theorem 2.1

The proof of Theorem 2.1 will proceed by contradiction: We will assume that all smooth
solutions ϕ to (1.2) on D(�) with compactly supported initial data on � satisfy

E[ϕ] .= sup
τ≥0

∫
�τ

J N
μ (ϕ)nμ < +∞, (4.1)

and we will reach a contradiction after choosing ϕ appropriately. To this end, we will
need to establish a decay without a rate result outside the extended ergoregion Eext for
solutions ϕ to (1.2), given the bound (4.1); see Proposition 4.1 in Sect. 4.2. This result
is highly non-trivial and actually lies at the heart of the proof of Theorem 2.1, with
Sects. 5–6 being devoted to the development of the necessary technical machinery for
the proof of Proposition 4.1. In fact, the proof of Proposition 4.1 will be postponed until
Sect. 7.

Remark. Instead of assuming (4.1), our proof of Theorem 2.1 also applies under the
weaker assumption:

sup
τ≥0

((
log(2 + τ)

)−C
∫

�τ

J N
μ (ϕ)nμ

)
< +∞ (4.2)

for an arbitraryC > 0. Furthermore, as a consequence of the discussion in Sect. 6.9 (see
also the remark below Proposition 4.1), the proof of Theorem 2.1 also applies without
any significant change in the case when (M, g) has a T -invariant timelike boundary
component ∂timM, with ∂timM ∩ � compact and ∂timM ∩ H = ∅, and ϕ is assumed
to satisfy either Dirichlet or Neumann boundary conditions on ∂timM (see Sect. 6.9 for
more details on the assumptions on the geometry of (M, g) in this case).

In Sects. 4.1–4.3, we will establish some auxiliary results concerning the behaviour of
solutionsϕ to (1.2), thatwill be used in the Sect. 4.4 to complete the proof ofTheorem2.1.
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4.1. Construction of initial data on� with negative higher order energy. In this section,
we will establish the following result:

Lemma 4.1. There exists a smooth initial data set (ϕ(0),ϕ(1)) : � → C
2 supported

in � ∩ U (where U ⊂ M is the set described in Assumption A1) so that the function
ϕ : D(�) → C, defined by solving

{
�gϕ = 0 on D(�),

(ϕ|�, Tϕ|�) = (ϕ(0),ϕ(1)),
(4.3)

satisfies ∫
�

J Tμ (Tϕ)nμ = −1. (4.4)

Remark. Notice that the initial value problem (4.3) is well posed, since the vector field
T , although not everywhere timelike, is everywhere tranversal to�. For the construction
of initial data sets (ϕ(0),ϕ(1)) satisfying

∫
�

J Tμ (ϕ)nμ = −1

instead of (4.4), see [19,20].

Proof. Since U is an open subset of M intersecting E (according to Assumption A1),
in view of the definition (2.8) of E we infer that there exists a point q ∈ U ∩ � and
a contractible open neighborhood V of q in M such that T is strictly spacelike on V .
Therefore, provided V is sufficiently small, there exists a vector field L on V satisfying

g(L , L) = 0, g(L , T ) > 0 and ∇L = 0. (4.5)

The condition ∇L = 0 on V implies that there exists a function w : V → R such that

∇w = L . (4.6)

Let us fix a smooth cut-off function χ : M → [0, 1] supported in V such that
χ(q) = 1. Then, for any l � 1, the function

ϕ̃l
.= χeilw (4.7)

on M is supported in V and satisfies [in view of (4.5) and (4.6)]

�gϕ̃l = χl2∂μw∂μweilw + O(l) = O(l). (4.8)

Furthermore, we compute:
∫

�

J T (T ϕ̃l)n
μ

=
∫

�

(
n(T ϕ̃l) · T 2ϕ̃l − 1

2
g(n, T )∂μT ϕ̃l∂

μT ϕ̃l
)
dg�

=
∫

�∩V

((
χl2(nw)(Tw)eilw + O(l)

)(
χl2(Tw)2eilw + O(l)

)
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− 1

2
g(n, T )

(
χl2(∂μw)(Tw)eilw + O(l)

)(
χl2(∂μw)(Tw)eilw + O(l)

))
dg�

=
∫

�∩V

(
χ2l4

(
g(n, L)(g(T, L))3 − 1

2
g(n, T )g(L , L)(g(T, L))2

)
+ O(l3)

)
dg�,

(4.9)

which, in view of (4.5) (and the fact that g(n, L) < 0), yields:

∫
�

J T (T ϕ̃l)n
μ = −c0l

4 + O(l3) (4.10)

for some c0 > 0.
Let us set

(ϕ(0),ϕ(1))
.= (ϕ̃l |�, T ϕ̃l |�). (4.11)

Note that (ϕ(0),ϕ(1)) is supported in V ∩ � ⊂ U ∩ �. Then, the function

ϕ̌
.= ϕ − ϕ̃l , (4.12)

where ϕ is defined by (4.3), satisfies (in view of (4.3), (4.8) and (4.11)):

{
�gϕ̌ = O(l) on D(�),

(ϕ̌|�, T ϕ̌|�) = (0, 0).
(4.13)

In view of the fact that ϕ̌|� = 0 and ∇ϕ̌|� = 0 (implying also that ∇2
g�

ϕ̌|� = 0 and
∇g�T ϕ̌|� = 0), the expression of the wave operator in a coordinate chart of the form
(t, x) on V readily yields

(�gϕ̌)|� = (
g00T 2ϕ̌

)|� = (
g0μ∂μ(T ϕ̌)

)|� = ( 1

g(n, T )
n(T ϕ̌)

)|�. (4.14)

Thus, from (4.13), (4.14) and the fact that �gϕ̌ is supported in V , we can readily bound
∫

�

J N
μ (T ϕ̌)nμ = O(l2). (4.15)

From (4.12), a Cauchy–Schwarz inequality implies:

∣∣∣
∫

�

J Tμ (Tϕ)nμ −
∫

�

J Tμ (T ϕ̃l)n
μ
∣∣∣ ≤ C

∫
�

J N
μ (T ϕ̌)nμ, (4.16)

and thus, in view also of (4.10) and (4.15):

∫
�

J Tμ (Tϕ)nμ = −c0l
4 + O(l3) < 0, (4.17)

provided l � 1. Multiplying (ϕ(0),ϕ(1)) with a suitable non-zero constant, we can
therefore achieve (4.4), and therefore the proof of the Lemma is complete. ��
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4.2. Decay outside the extended ergoregion. The following proposition, establishing
decay without a rate outside the ergoregion for solutions to Eq. (1.2), lies at the heart of
the proof of Theorem 2.1:

Proposition 4.1. Let ϕ : D(�) → C be a smooth function satisfying (1.2) with com-
pactly supported initial data on�, and let us setψ = Tϕ. Assume that the energy bound
(4.1) holds for ϕ, ψ, Tψ and T 2ψ,10 i.e.:

E[ϕ] + E[ψ] + E[Tψ] + E[T 2ψ] < +∞. (4.18)

Then for any 0 < ε < 1, any δ1 > 0, any R, τ∗ � 1 and any τ̄0 � 1, there exists a
τ
 ≥ τ̄0 + τ∗ depending on ε, δ1, R, τ∗, τ̄0, Elog[ϕ], Elog[ψ], Elog[Tψ] and E[T 2ψ] such
that

1∑
j=0

∫
(R(τ
−τ∗,τ
+τ∗)\Eδ1 )∩{r≤R}

(
J N
μ (T jψ)nμ + |T jψ|2) < ε (4.19)

(see (5.17) for the definition of the quantity Elog[·])
For the proof of Proposition 4.1, see Sect. 7.

Remark. The proof of Proposition 4.1 also applieswhenE = ∅. Furthermore, in view of
the discussion in Sect. 6.9, the proof of Proposition 4.1 in Sect. 7 also applies in the case
when (M, g) has a T -invariant timelike boundary component ∂timM, with ∂timM ∩ �

compact and ∂timM∩H = ∅, and ϕ is assumed to satisfy either Dirichlet or Neumann
boundary conditions on ∂timM.11 As a consequence, the proof of Theorem 2.1 will also
apply in this case as well (all the other steps in the proof of Theorem 2.1 immediately
generalise in this case without any change).

4.3. Limiting behaviour for solutions of (1.2). Wewill need the following lemma on the
behaviour of ψ asymptotically as t → +∞, following essentially from Proposition 4.1:

Lemma 4.2. Let ϕ,ψ : D(�) → C be as in the statement of Proposition 4.1, and let us
define, for any τ ≥ 0, the function ψτ : M\H− → C as follows:

ψτ(t, x)
.=

{
ψ(t + τ, x), t ≥ −τ,

0, t < −τ.
(4.20)

Then, there exists an increasing sequence {τn}n∈N of non-negative numbers and a func-
tion ψ̃ : M\H− → C with ψ̃, T ψ̃ ∈ H1

loc(M\H−), such that ψ̃ solves (1.2) on
M\H−, satisfying in addition

∫ +τ∗

−τ∗

∫
�τ

(
J N
μ (ψ̃) + J N

μ (T ψ̃)
)
nμ

)
dτ < +∞ for any τ∗ > 0, (4.21)

ψ̃ ≡ 0 on M\(Eext ∪ H−) (4.22)

10 Note that, since T is a Killing field of (M, g), the functions ψ, Tψ and T 2ψ also solve (1.2) with
compactly supported initial data on �.
11 In this case, we have to assume that the double (M̃, g̃) of (M, g) across ∂timM is a globally hyper-

bolic spacetime satisfying Assumptions G1–G3 (note that Assumption A1 is not necessary for the proof of
Proposition 4.1).



460 G. Moschidis

and (ψτn , Tψτn ) → (ψ̃, T ψ̃) weakly in H1
loc(M\H−)× H1

loc(M\H−) and strongly in
H1
loc(M\(Eext ∪ H−)) × H1

loc(M\(Eext ∪ H−)) and in L2
loc(M\H−) × L2

loc(M\H−)

in the following sense:

• For any compactly supported test functions {ζ j } j=0,1 ∈ L2(M\H−) and compactly
supported vector fields {X j } j=0,1 on M\H− such that |X j |gref ∈ L2(M\H−):

lim
n→+∞

1∑
j=0

∫
M\H−

Re
{
gref

(∇(T jψτn − T j ψ̃), X j
)
+ (T jψτn − T j ψ̃)ζ j

}
dg = 0.

(4.23)
• For any compact subset K ⊂ M\H− and any δ > 0:

lim
n→+∞

( 1∑
j=0

∫
K

|T jψτn −T j ψ̃|2 dg+
1∑

j=0

∫
K\Eδ

|∇(T jψτn )−∇(T j ψ̃)|2gref dg
)

= 0.

(4.24)

Proof. Let us fix four sequences of positive numbers {εn}n∈N, {δn}n∈N, {Rn}n∈N and
{τ∗

n}n∈N such that εn, δn → 0 and Rn, τ
∗
n → +∞ as n → +∞. We then define the

sequence {τn}n∈N inductively: Setting τ0 = 0, τn is defined for any n ≥ 1 as the value
τ
 > 0 from Proposition 4.1 for εn in place of ε, δn in place of δ, Rn in place of R, τ∗

n in
place of τ∗ and τn−1 in place of τ̄0 (notice that the last condition guarantees that τn is an
increasing sequence). Then, Proposition 4.1 applied for the pair (ψ, Tψ) implies that the
pair (ψτn , Tψτn ) (which is merely a τn-translate of (ψ, Tψ) in the region {t ≥ −τn})
satisfies the following estimate for any n ∈ N:

1∑
j=0

∫ +τ∗
n

−τ∗
n

( ∫
(�t\Eδn )∩{r≤Rn}

(
J N
μ (T jψτn )n

μ + |T jψτn |2
))

dt
)

< εn . (4.25)

In view of the bounds (4.18) and 4.25, as well as the Poincare-type inequality
∫
R(τ̄1,τ̄2)∩{r≤R}

|ψτn |2 ≤ CR2
∫
R(τ̄1,τ̄2)∩{r≤2R}

J N
μ (ψτn )n

μ

+C
∫
R(τ̄1,τ̄2)∩{R≤r≤2R}

|ψτn |2 (4.26)

holding for any τ̄1 ≤ τ̄2, we infer that, for any compact subset K of M\H−, setting

n0(K) = min
{
n ∈ N : K is contained in the set

{
max{−τn, −τ∗

n} < t < τ∗
n} ∩ {r ≤ Rn}

}}
,

(4.27)

there exists a C = CK such that:

sup
n≥n0(K)

( 1∑
j=0

∫
K

(
J N
μ (T jψτn )N

μ+|T jψτn |2
) ≤ CK(E[ψ]+E[Tψ])+ sup

n≥n0(K)

εn < +∞.

(4.28)
For any compactK ⊂ M\H−, Rellich–Kondrachov’s theoremyields that the embed-

ding H1(K) × H1(K) ↪→ L2(K) × L2(K) is compact. Thus, (4.28) implies that for
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any compact K ⊂ M\H− and any infinite subset A ⊆ N, there exists an infinite subset
BK,A ⊆ A such that the subsequence {(ψτn , Tψτn )}n∈BK,A of {(ψτn , Tψτn )}n∈N con-
verges weakly in the H1(K)×H1(K) norm and strongly in the L2(K)× L2(K) to some
limit pair (ψ̃K, ψ̀K) in H1(K) × H1(K). Note that in this case, we necessarily have
ψ̀K = T ψ̃K in the sense of distributions.

Let {Km}m∈N be a sequence of compact subsets of M\H− such that Km ⊂ Km+1
and ∪m∈NKm = M\H−. Then, setting A−1 = BK0,N, Am = BKm ,Am−1 form ∈ N, and
defining recursively

A = ∪m∈N
{
min

(
Am\{n : n < m})}, (4.29)

we infer that there exists a pair (ψ̃, T ψ̃) ∈ H1
loc(M\H−)× H1

loc(M\H−) such that the
subsequence {ψτn , Tψτn }n∈A satisfies (4.23) and, for any compact K ⊂ M\H− (after
permanently renumbering the indices of {ψτn }n∈A through a map N → A) :

lim
n→+∞

1∑
j=0

∫
K

|T jψτn − T j ψ̃|2 dg = 0. (4.30)

Since the functions ψτn solve (1.2) on {t > −τn}, ψ̃ also solves (1.2) on M\H−
in the sense of distributions, in view of (4.23). Furthermore, in view of (4.18), we can
bound for any τ∗ > 0

sup
n∈N

{ 1∑
j=0

∫ τ∗

max{−τ∗,−τn}

( ∫
�τ

J N
μ (T jψ)nμ

)
dτ

}
< +∞ (4.31)

and, thus, (4.21) holds. The identity (4.22) follows by letting n → +∞ in (4.25). Finally,
(4.24) follows from (4.22), (4.25) and (4.30). ��

4.4. Finishing the proof. Let us assume, for the sake of contradiction, that any smooth
solution ϕ to (1.2) on D(�) with compactly supported initial data on � satisfies (4.1).

Let ϕ : D(�) → C be as in the statement of Lemma 4.1, and let us set

ψ = Tϕ. (4.32)

In view of Lemma 4.1, (ψ, Tψ)|� is smooth and compactly supported in U ∩ �, and
moreover ∫

�

J Tμ (ψ)nμ = −1. (4.33)

Let {τn}n∈N be the sequence defined by Lemma 4.2, and let ψτn , ψ̃ : M\H− → C be
the functions defined by Lemma 4.2.

We will make use of the following identity, appearing also in [20], holding for any
acausal, inextendible and piecewise smooth hypersurface S ⊂ M\H− such that T is
everywhere transversal to S and any smooth function ϕ1 : M\H− → C such that
supp(ϕ1) ∩ S is compact and supp(ϕ1) ∩ S ∩ H+ = ∅:
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∫
S
J Tμ (ϕ1)n

μ

S =
∫
S
Re

{
nSϕ1 · T ϕ̄1 − ϕ1 · nS(T ϕ̄1)

}
dgS

−
∫
S
Re

{
ϕ1�gϕ̄1

}
g(nS , T ) dgS , (4.34)

where nS is the future directed unit normal to S.
Proof of (4.34).Oneway to obtain (4.34) is the following: Since supp(ϕ1)∩S is compact
and supp(ϕ1) ∩ S ∩ H+ = ∅, we can assume without loss of generality (by changing
ϕ1 away from S if necessary) that ϕ1 has compact support in M\(H+ ∪ H−). Then,
integrating the identity

−2Re
{
Tϕ1�gϕ̄1

} = −Re
{
Tϕ1�gϕ̄1 − ϕ1�g(T ϕ̄1) + T (ϕ1�gϕ̄1)

}
(4.35)

over J−(S), we readily obtain:

−2
∫
J−(S)

Re
{
Tϕ1�gϕ̄1

}
dg = −

∫
J−(S)

Re
{
Tϕ1�gϕ̄1 − ϕ1�g(T ϕ̄1)

}
dg

+
∫
S
Re

{
ϕ1�gϕ̄1

}
g(nS , T ) dgS . (4.36)

Using the identities

−2
∫
J−(S)

Re
{
Tϕ1�gϕ̄1

}
dg =

∫
S
J Tμ (ϕ)nμ

S (4.37)

and

−
∫
J−(S)

Re
{
Tϕ1�gϕ̄1 − ϕ1�g(T ϕ̄1)

}
dg

=
∫
S
Re

{
nSϕ1 · T ϕ̄1 − ϕ1 · nS(T ϕ̄2)

}
dgS

(holding because of the assumption that ϕ1 has compact support inM\(H+ ∪H−)), we
finally obtain (4.34).

We will also introduce the following (indefinite) inner product on the hypersurfaces
�τ: For any two functions ϕ1,ϕ2 : M\H− → C such that for any τ∗ > 0:

sup
τ∈[−τ∗,τ∗]

2∑
j=1

∫
�τ

(
J N
μ (ϕ j ) + J N

μ (Tϕ j )
)
nμ < +∞

and at least one of them has compact support in space (i.e. for any τ∗ > 0, its support in
{−τ∗ ≤ t ≤ τ∗} is compact), we will define for any τ ∈ R:

〈ϕ1,ϕ2〉T,τ = 1

2

∫
�τ

Re
{(
nSϕ1 ·T ϕ̄2 +nSϕ2 ·T ϕ̄1

)− (
ϕ1 ·nS(T ϕ̄2)+ϕ2 ·nS(T ϕ̄1)

)}
.

(4.38)
Note that, if both ϕ1 and ϕ2 solve equation (1.2) and at least one of them is supported
away from H+, then for any τ1 ≤ τ2 the following identity holds:

〈ϕ1,ϕ2〉T,τ1
= 〈ϕ1,ϕ2〉T,τ2

. (4.39)
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The equality (4.39) readily follows after integrating the identity

1

2
Re

{(
�gϕ1T ϕ̄2 + �gϕ2T ϕ̄1

) − (
ϕ1�g(T ϕ̄2) + ϕ2�g(T ϕ̄1)

)} = 0 (4.40)

over R(τ1, τ2).

Remark. Note that, in the case when ϕ1 and ϕ2 solve equation (1.2) and at least one of
them is supported away from H+, the expression (4.38) is the inner product of ϕ1,ϕ2
associated to the

∫
�τ

J Tμ (·)nμ “norm”, in view of (4.34). Thus, (4.39) is a consequence
of the conservation of the T -energy flux.

For any τ ≥ 0, the T -energy identity for ψ in the region R(0, τ) combined with (4.33)
yields: ∫

�τ

J Tμ (ψ)nμ +
∫
H+∩R(0,τ)

J Tμ (ψ)nμ

H+ = −1. (4.41)

Since T is causal onM\E , we can bound for any τ ≥ 0 and any δ > 0:∫
�τ\Eδ

J Tμ (ψ)nμ +
∫
H+∩R(0,τ)

J Tμ (ψ)nμ

H+ ≥ 0. (4.42)

Therefore, (4.41) and (4.42) imply that for any τ ≥ 0, δ > 0:∫
�τ∩Eδ

J Tμ (ψ)nμ ≤ −1. (4.43)

Since the functionsψτn satisfy (4.20), from (4.43) we obtain for any δ > 0, any τ > −τn ,
and any n ∈ N: ∫

�τ∩Eδ

J Tμ (ψτn )n
μ ≤ −1. (4.44)

Let χ : M\H− → [0, 1] be a smooth function of compact support such that χ ≡ 1
onR(−1, 2) ∩ Eδ0 for some 0 < δ0 < 1 and supp(χ) ∩H+ = ∅. Applying the identity
(4.34) for the function χψτn , and using the fact that ψτn solves (1.2), we obtain for any
n ∈ N and any 0 < τ0 ≤ 1:∫ τ0

0

( ∫
�s

J Tμ (χψτn )n
μ
)
ds

=
∫ τ0

0

( ∫
�s

Re
{
n(χψτn )T (χψ̄τn ) − (χψτn )nS(T (χψ̄τn ))

}
dg�

)
ds

−
∫ τ0

0

( ∫
�s

Re
{
χψτn (2∇μχ∇μψ̄τn + (�gχ)ψ̄τn

}
g(n, T ) dg�

)
ds. (4.45)

In view of (4.44) and the fact that χ ≡ 1 on R(−1, 2) ∩ Eδ0 , (4.45) yields:∫ τ0

0

( ∫
�s∩Eδ0

Re
{
nψτn T ψ̄τn − ψτn nS(T ψ̄τn )

}
dg�

)
ds

≤ −τ0 + C
1∑
j=0

∫
supp(χ)\Eδ0

(|∇T jψτn |2gref + |T jψτn |2
)
dg. (4.46)

Let us examine the properties of (4.46) as n → +∞.
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1. In view of (4.24) and the fact that supp(χ) is compact, the right hand side of (4.46)
converges to −τ0 as n → +∞.

2. For any compact subset K ⊂ M\H+ and any pair of sequences (ϕ
(1)
n ,ϕ

(2)
n )n∈N ∈

L2(K) × L2(K) such that supn ||ϕ(1)
n ||L2(K) < +∞, ϕ(1)

n → ϕ(1) weakly in L2(K)

and ϕ
(2)
n → ϕ(2) strongly in L2(K), one readily obtains that

lim
n→+∞

∫
K

ϕ(1)
n ϕ(2)

n dg =
∫
K

ϕ(1)ϕ(2) dg. (4.47)

Therefore, (4.18), (4.23) and (4.24) imply that:

lim
n→+∞

∫ τ0

0

( ∫
�s∩Eδ0

Re
{
nψτn T ψ̄τn − ψτn nS(T ψ̄τn )

}
dg�

)
ds

=
∫ τ0

0

( ∫
�s∩Eδ0

Re
{
nψ̃T ¯̃

ψ − ψ̃nS(T ¯̃
ψ)

}
dg�

)
ds. (4.48)

Thus, taking the limit n → +∞ in (4.46), we obtain for any 0 < τ0 ≤ 1:
∫ τ0

0

( ∫
�s∩Eδ0

Re
{
nψ̃T ¯̃

ψ − ψ̃nS(T ¯̃
ψ)

}
dg�

)
ds ≤ −τ0. (4.49)

According to Lemma 4.2, ψ̃ belongs to H1
loc(M\H−) and vanishes outside Eext, and,

thus, Assumption A1 implies that

ψ̃ ≡ 0 on U . (4.50)

Since (ψ, Tψ)|� is compactly supported in U ∩ � and U is open, in view of the finite
speed of propagation property of Eq. (1.2), there exists some 0 < τ0 ≤ 1 (depending on
the support of ψ on � ∩ U), such that for all 0 ≤ τ̄ ≤ τ0:

(ψ, Tψ) = (0, 0) on �τ̄\U . (4.51)

In view of the fact that U is translation invariant, (4.38), (4.50) and (4.51) imply that for
any τ ∈ R: ∫ τ0

0

〈
ψ,F∗

τ ψ̃
〉
T,τ̄

d τ̄ = 0 (4.52)

[the expression (4.52) is well defined, in view of (4.21)], where

F∗
τ ψ̃(t, x)

.= ψ̃(t + τ, x). (4.53)

In view of Assumption G3, we have Eext∩H+ = ∅. Thus, since ψ̃ vanishes outside Eext,
we have ψ̃ ≡ 0 onH+. This fact, combined with (4.52) and the identity (4.39) [applied
to a sequence of smooth approximations of ψ̃ in the norm defined by (4.21)] yields for
any s, τ ∈ R: ∫ s+τ0

s

〈
ψ,F∗

τ ψ̃
〉
T,τ̄

d τ̄ = 0. (4.54)

In view of the definitions (4.20) and (4.53), the identity (4.54) for s = τn and τ = −s
yields: ∫ τ0

0

〈
ψτn , ψ̃

〉
T,τ̄

d τ̄ = 0. (4.55)
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Thus, since ψ̃ is supported in Eext and R(0, 1) ∩ Eext is compact, (4.23) implies, after
letting n → +∞ in (4.55): ∫ τ0

0

〈
ψ̃, ψ̃

〉
T,τ̄

d τ̄ = 0 (4.56)

or, in view of (4.38):∫ τ0

0

( ∫
�s

Re
{
nψ̃T ¯̃

ψ − ψ̃nS(T ¯̃
ψ)

}
dg�s

)
ds = 0. (4.57)

The contradiction now follows after comparing (4.57) with (4.49) (using also the fact
that ψ̃ is supported in Eext). Thus, the proof of Theorem 2.1 is complete. ��

5. Frequency Decomposition

Aswe remarked in Sect. 4, Sects. 5–6 will be devoted to the development of the technical
machinery required for the proof of Proposition 4.1. In particular, in this section, we will
assume that we are given a smooth function ψ : M → C solving the wave equation
(1.2) on D(�) (i.e. the domain of dependence of �) with compactly supported initial
data on �, such that

E[ψ] .= sup
τ≥0

∫
�τ

J N (ψ)nμ < +∞. (5.1)

We will also introduce the frequency parameters ω+ > 1 and 0 < ω0 < 1, and we will
decompose the functionψ into components with localised frequency support (associated
to the t variable). We will always identify M\H− with R × � under the flow of T as
explained in Sect. 3.5. The constructions in this section will be similar to the associated
constructions in Section 4 of [30].

5.1. Weighted energy estimates for ψ. Before proceeding to cut off ψ in the frequency
space, we will first derive a few bounds for some suitable weighted energies of ψ.

In view of the finite speed of propagation for solutions to (1.2) and the fact that
(ψ, Tψ)|�0 is compactly supported, we infer that (ψ, Tψ)|�τ is also compactly sup-
ported for any τ ≥ 0. The following lemma is a straightforward application of the finite
speed of propagation property of Eq. (1.2):

Lemma 5.1. For any a > 0, any R � 1 (so that T is timelike in {r ≥ R}), any τ1 ≥ 0
and any τ ∈ R:∫

�τ∩D(�τ1∩{r≥R})
(
log(r)

)a
J Tμ (ψ)nμ

≤ Ca
(
log(2 + |τ − τ1|)

)a+1 ∫
�τ1∩{r≥R}

(
log(r)

)a
J Tμ (ψ)nμ (5.2)

and∫
�τ∩D(�τ1∩{r≥R})

ra J Tμ (ψ)nμ ≤ Ca
(
1 + |τ − τ1|

)a ∫
�τ1∩{r≥R}

ra J Tμ (ψ)nμ, (5.3)

where D(�τ1 ∩ {r ≥ R}) ⊂ {r ≥ R} is the domain of dependence of �τ ∩ {r ≥ R} and
Ca > 0 depends only on a and the geometry of (M, g).
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Proof. Let us define for any k ≥ 1 the sets

Ak = {2k ≤ r ≤ 2k+1} ⊂ M, (5.4)

and let us set
A0 = {r ≤ 1}. (5.5)

Then, in view of the asymptotics (2.1) of g in each connected component of the asymp-
totically flat region Ias, there exists a constant C > 0 depending on the geometry of
(M, g) such that for any τ1 ≥ 0, τ ∈ R and any k ∈ N:

�τ1 ∩
(
J+(Ak ∩ �τ) ∪ J−(Ak ∩ �τ)

)
⊂

k+log2(|τ−τ1|+1)+C⋃
n=max{0,k−log2(|τ−τ1|+1)−C}

An ∩ �τ1 . (5.6)

Applying for any k ∈ N the conservation of the T -energy flux in the spacetime region
J−(Ak ∩ �τ) ∩ D+(�τ1 ∩ {r ≥ R}), in the case τ ≥ τ1, or the region J+(Ak ∩ �τ) ∩
D−(�τ1 ∩ {r ≥ R}),12 in the case τ ≤ τ1, we readily obtain in view of (5.6)(using also
the fact that T is timelike for r ≥ R):

∫
Ak∩�τ∩D(�τ1∩{r≥R})

J Tμ (ψ)nμ ≤
k+log2(|τ−τ1|+1)+C∑

n=max{0,k−log2(|τ−τ1|+1)−C}

∫
An∩�τ1∩{r≥R})

J Tμ (ψ)nμ.

(5.7)
Multiplying (5.7) with ka and summing over k ∈ N, we obtain:

∞∑
k=0

ka
∫
Ak∩�τ∩D(�τ1∩{r≥R})

J Tμ (ψ)nμ

≤
∞∑
k=0

(
ka

k+log2(|τ−τ1|+1)+C∑
n=max{0,k−log2(|τ−τ1|+1)−C}

∫
An∩�τ1∩{r≥R})

J Tμ (ψ)nμ
)

≤ C
∞∑
k=0

(( k+log2(|τ−τ1|+1)+C∑
j=k

ja
) ∫

Ak∩�τ1∩{r≥R})
J Tμ (ψ)nμ

)

≤ Ca

∞∑
k=0

(
(k + log2(|τ − τ1| + 1) + C)a+1

∫
Ak∩�τ1∩{r≥R})

J Tμ (ψ)nμ
)
. (5.8)

Inequality (5.2) follows readily from (5.8). Inequality (5.3) follows in the same way,
after multiplying (5.7) with 2ka and summing over k ∈ N. ��
In viewof (5.1) and the conservation of the T -energyflux in the region {t− ≥ 0}∩{t ≤ 0},
we can bound:

sup
τ∈R

∫
�τ∩{t−≥0}

J N
μ (ψ)nμ ≤ E[ψ] (5.9)

12 Here,D+(B) is the future domain of dependence of the set B ⊂ M, whileD−(B) is the past domain of
dependence.
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(note that �τ ∩ {t− ≥ 0} = �τ when τ ≥ 0). Furthermore, in view of (5.2) for τ1 = 0
and the Hardy inequality (3.17), we can estimate:

sup
τ≤0

((
log(2 + |τ|))−3

∫
�τ∩{t−>0}

(1 + r)−2|ψ|2
)

≤ C
∫

�0

(
log(2 + r)

)3
J N
μ (ψ)nμ.

(5.10)

5.2. Frequency cut-off. Let us fix a constant R1 � 1 large in terms of the geometry of
(M, g), aswell as a smooth cut-off functionχ1 : [0,+∞) → [0, 1] satisfyingχ1(r) = 0
for r ≤ R1 and χ1(r) = 1 for r ≥ R1 + 1. As in Section 4 of [30], we will define the
following distorted time function onM\H−:

t− = t +
1

2
χ1(r)(r − R1). (5.11)

Note that {t = 0} ⊂ J+({t− = 0}).
We will also fix another smooth cut-off function χ2 : R → [0, 1], satisfying χ2 ≡ 0

on (−∞, 0] and χ2 ≡ 1 on [1,+∞), and we will define the function ψc : M\H− → C

as

ψc
.=

{
χ2(t−) · ψ, t− ≥ 0,
0, t− ≤ 0.

(5.12)

Since ψ solves (1.2), ψc solves

�gψc = F, (5.13)

where

F = 2∂μχ2(t−) · ∂μψ + �gχ2(t−) · ψ (5.14)

is supported in {0 ≤ t− ≤ 1}.
Noting that r � |τ| on {t = τ} ∩ {0 ≤ t− ≤ 1} for τ ≤ 0, combining (5.9) and

(5.10) (in each asymptotically flat end of �τ) with the Hardy-type inequality (obtained
after averaging (3.17) over R2, using also a Poincare-type inequality in the near region
{r � 1}):

∫
�τ\D(�0∩{r≥R})

(1 + r)−2|ψc|2 ≤ C
∫

�τ\D(�0∩{r≥2R})
(
log(2 + r)

)2
J N
μ (ψc)n

μ

+ C
∫

�τ∩D(�0∩{R≤r≤2R})
(1 + r)−2 log(r)|ψc|2

≤ C
(
log(2 + |τ|))2

∫
�τ

J N
μ (ψc)n

μ

+ C log(2 + |τ|)
∫

�τ∩D(�0∩{r≥R})
(1 + r)−2|ψc|2,

(5.15)

we obtain in view of (5.12):

sup
τ≥0

∫
�τ

J N (ψc)n
μ + sup

τ≤0

(
|τ|−2( log(2 + |τ|))−4

∫
�τ

J N
μ (ψc)n

μ
)
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+ sup
τ∈R

((
log(2 + |τ|))−4

∫
�τ

(
1 + r

)−2|ψc|2
)

≤ CElog[ψ], (5.16)

where

Elog[ψ] .= E[ψ] +
∫

�0

(
log(2 + r)

)3
J N
μ (ψ)nμ. (5.17)

Remark. In dimensions d ≥ 3, inequality (5.16), as well as most of the estimates of this
section, holds without the logarithmic loss (since (5.10) holds without a logarithmic loss
in this case).

We will now proceed to perform a cut-off procedure on ψc in the frequency domain.
Let 0 < ω0 < 1 be a (small) positive constant, and ω+ � ω0 a (large) positive constant,
and let us set

n = �log2
ω+

ω0
� (5.18)

and, for any integer 1 ≤ k ≤ n:

ωk = 2kω0. (5.19)

Fixing a third smooth cut-off function χ3 : R → [0, 1] satisfying χ3 ≡ 1 on [−1, 1]
and χ3 ≡ 0 on (−∞,−2] ∪ [2,+∞), we will define the following Schwartz functions
on R:

ζ0(t) =
∫ +∞

−∞
eiωtχ3(ω

−1
0 ω) dω,

ζk(t) =
∫ +∞

−∞
eiωt

(
χ3(ω

−1
k ω) − χ3(ω

−1
k−1ω)

)
dω, for 1 ≤ k ≤ n

ζ≤ω+(t) =
n∑

k=0

ζk(t). (5.20)

Notice that the Fourier transform of ζk is supported in {ωk−1 ≤ |ω| ≤ 2ωk} (setting
ω−1 = 0), while the frequency support of ζ≤ω+ is contained in {|ω| ≤ 4ω+}. Further-
more, the following Schwartz bounds hold for any integers m,m′ ∈ N and 0 ≤ k ≤ n:

sup
t∈R

∣∣ω−1−m′
k (1 + |ωk t |m)

( d
dt

)m′
ζk(t)

∣∣ ≤ Cm (5.21)

and

sup
t∈R

∣∣ω−1−m′
+ (1 + |ω+t |m)

( d
dt

)m′
ζ≤ω+(t)

∣∣ ≤ Cm . (5.22)

Using ζk, ζ≤ω+ , we will define, for 0 ≤ k ≤ n, the “frequency decomposed” compo-
nentsψk,ψ≤ω+ ,ψ≥ω+ : M\H− → C ofψ through the following relations (identifying
M\H− with R × � through the flow of T ):

ψk(t, ·) =
∫ +∞

−∞
ζk(t − s)ψc(s, ·) ds, (5.23)

ψ≤ω+(t, ·) =
∫ +∞

−∞
ζ≤ω+(t − s)ψc(s, ·) ds (5.24)
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and
ψ≥ω+(t, ·) = ψc(t, ·) − ψ≤ω+(t, ·). (5.25)

Note that the integrals (5.23) and (5.24) do not necessarily converge pointwise for all
(t, x) ∈ R×�, since the bound (5.1) does not suffice to exclude the pointwise exponential
growth ofψ in the t variable. Instead, in view of (5.16), (5.21) and (5.22), the restrictions
(ψk, Tψk)|�τ , (ψ≤ω+ , Tψ≤ω+)|�τ and (ψ≥ω+ , Tψ≥ω+)|�τ are only defined as finite
energy functions on �τ for any τ ∈ R, satisfying the following bound for any a > 0
(derived from (5.16), (5.21), (5.22) and Young’s inequality):

sup
τ≥0

(
(1 + ω−2−a

k )−1
∫
�

(|Nψk(τ, x)|2 + |∇g� ψk(τ, x)|2g�

)
dg�

)

+ sup
τ≤0

(
(1 + ω−2−a

k )−1|τ|−2( log(2 + |τ|))−4
∫
�

(|Nψk(τ, x)|2 + |∇g� ψk(τ, x)|2g�

)
dg�

)

+ sup
τ∈R

(
(1 + ω−a

k )−1( log(2 + |τ|))−4
∫
�

(1 + r)−2|ψk(τ, x)|2 dg�

)
≤ CaElog[ψ], (5.26)

sup
τ≥0

∫
�

(|Nψ≤ω+(τ, x)|2 + |∇g� ψ≤ω+(τ, x)|2g�

)
dg�

+ sup
τ≤0

(
|τ|−2( log(2 + |τ|))−4

∫
�

(|Nψ≤ω+(τ, x)|2 + |∇g� ψ≤ω+(τ, x)|2g�

)
dg�

)

+ sup
τ∈R

((
log(2 + |τ|))−4

∫
�

(1 + r)−2|ψ≤ω+(τ, x)|2 dg�

)
≤ CaElog[ψ] (5.27)

and

sup
τ≥0

∫
�

(|Nψ≥ω+(τ, x)|2 + |∇g�ψ≥ω+(τ, x)|2g�

)
dg�

+ sup
τ≤0

(
|τ|−2( log(2 + |τ|))−4

∫
�

(|Nψ≥ω+(τ, x)|2 + |∇g�ψ≥ω+(τ, x)|2g�

)
dg�

)

+ sup
τ∈R

((
log(2 + |τ|))−4

∫
�

(1 + r)−2|ψ≥ω+(τ, x)|2 dg�

)
≤ CaElog[ψ]. (5.28)

Defining, similarly Fk , F≤ω+ and F≥ω+ in terms of F as in (5.23)–(5.25) (replacing
ψc with F), in view of (5.13) we obtain the following relations (for any 0 ≤ k ≤ n):

�gψk = Fk, (5.29)

�gψ≤ω+ = F≤ω+ (5.30)

and

�gψ≥ω+ = F≥ω+ . (5.31)

5.3. Bounds for the frequency-decomposed components. In this section, we will estab-
lish some useful estimates for the energy of ψk,ψ≤ω+ ,ψ≥ω+ , as well as for the “error”
terms Fk, F≤ω+ , F≥ω+ , in terms of Elog[ψ].

We start with an estimate for weighted spacetime norms of the terms Fk, F≤ω+ , F≥ω+ .
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Lemma 5.2. We can bound for any 0 ≤ k ≤ n, any q, q ′ ∈ N and any 0 ≤ τ1 ≤ τ2:∫
R(τ1,τ2)

rq |Fk |2 ≤ Cqq ′(1 + ω
−q−2
k ) · (1 + ωkτ1)

−q ′Elog[ψ]. (5.32)

The same inequality also holds for F≤ω+ , F≥ω+ in place of Fk (with ω+ in place of ωk).

Proof. In view of (5.14) and the fact that

Fk(t, ·) =
∫ +∞

−∞
ζk(t − s)F(s, ·) dt, (5.33)

we can estimate (denoting with x the space variable in the splittingM\H− = R × �)
∫
R(τ1,τ2)

rq |Fk |2 ≤ C
∫

�

∫ τ2

τ1

rq
∣∣∣
∫ ∞

−∞
ζk(t − s)F(s, x) ds

∣∣∣2 dtdg�

≤ C
( ∫

�

rq
∫ τ2

τ1

∣∣∣
∫ 1− 1

2χ1(r)(r−R1)

− 1
2χ1(r)(r−R1)

ζk(t − s)F(s, x) ds
∣∣∣2 dtdg�

)
.

(5.34)

From the Schwartz bound (5.21) for m = q ′ + q + 5 and m′ = 0 (using also (5.14)), we
can estimate:

∫
�

rq
∫ τ2

τ1

∣∣∣
∫ 1− 1

2χ1(r)(r−R1)

− 1
2χ1(r)(r−R1)

ζk(t − s)F(s, x) ds
∣∣∣2 dtdg�

≤ Cqq ′
∫

�

rq
∫ τ2

τ1

∣∣∣
∫ 1− 1

2χ1(r)(r−R1)

− 1
2χ1(r)(r−R1)

ωk

(1 + ωk |t − s|)q ′+q+5 F(s, x) ds
∣∣∣2 dtdg�

≤ Cqq ′
∫

�

rq
∫ τ2

τ1

( ∫ +∞

−∞
ωk

(1 + ωk |λ|)q ′+q+5 dλ
)

( ∫ 1− 1
2χ1(r)(r−R1)

− 1
2χ1(r)(r−R1)

ωk

(1 + ωk |t − s|)q ′+q+5 |F(s, x)|2 ds
)
dtdg�

≤ Cqq ′
∫

�

rq
∫ τ2

τ1

( ∫ 1− 1
2χ1(r)(r−R1)

− 1
2χ1(r)(r−R1)

ωk

(1 + ωk |t − s|)q ′+q+5 |F(s, x)|2 ds
)
dtdg�

≤ Cqq ′
∫

�

rq
( ∫ τ2

τ1

ωk

(1 + ωk |τ + 1
2χ1(r)(r − R1)|)q ′+q+5 dτ

)

( ∫ 1− 1
2χ1(r)(r−R1)

− 1
2χ1(r)(r−R1)

|F(s, x)|2 ds
)
dg�

≤ Cqq ′
1 + ω

−q
k

(1 + ωkτ1)q
′

∫
�

(1 + ωkr)
−4

( ∫ 1− 1
2χ1(r)(r−R1)

− 1
2χ1(r)(r−R1)

|F(t, x)|2 dt
)
dg�

≤ Cqq ′
1 + ω

−q
k

(1 + ωkτ1)q
′

∫
�

(1 + ωkr)
−4

( ∫ 1− 1
2χ1(r)(r−R1)

− 1
2χ1(r)(r−R1)

(
J N
μ (ψ)nμ + |ψ|2) dt) dg�
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≤ Cqq ′
1 + ω

−q−2
k

(1 + ωkτ1)q
′

∫ 0

−∞
(1 + τ)−2

( ∫
�τ∩{0≤t−≤1}

(
J N
μ (ψ)nμ + (1 + r)−2|ψ|2)) dτ

(5.35)

(for the last inequality, we used the fact that t ∼ r on {0 ≤ t− ≤ 1}). Therefore, from
(5.34), (5.35), (5.9) and (5.10), we readily obtain (5.32).

The estimate for F≤ω+ and F≥ω+ follows in exactly the same way. ��
We will also need the following qualitative decay statement near spacelike infinity for
the functions ψk , ψ≤ω+ and ψ≥ω+ :

Lemma 5.3. For any q ∈ N, any τ ≥ 0 and any 0 ≤ k ≤ n:

lim sup
R→+∞

(
Rq

∫
�τ∩{R≤r≤R+1}

(
J N
μ (ψk)n

μ + |ψk |2
)) = 0. (5.36)

The relation (5.36) also holds for ψ≤ω+ , ψ≥ω+ in place of ψk .

Proof. The proof of Lemma 5.3 is a straightforward consequence of the compact support
of (ψ, Tψ)|� and the Schwartz bounds (5.21), (5.22).

Let R0(ψ) be sufficiently large, so that (ψ, Tψ)|� is supported in {r ≤ R0(ψ) − 1}.
Then, in view of the finite speed of propagation property of equation (1.2), there exists a
C > 0 (depending only on the geometry of (M, g), so that the function ψ is supported
in {r ≤ R0(ψ) + C |t |} ⊂ M. Thus,

ψ ≡ 0 on
{|t | ≥ C−1(r − R0(ψ)

)}
. (5.37)

Then, in view of (5.12), (5.23), (5.21) and (5.37), we can bound for any τ ≥ 0, R >

R0(ψ) + Cτ and 0 ≤ k ≤ n:
∫

�τ∩{R≤r≤R+1}
(
J N
μ (ψk)n

μ + |ψk |2
)

≤ C
∫

�∩{R≤r≤R+1}

1∑
j=0

∣∣∣
∫ +∞

−∞
ζk(τ − s)∇ jψc(s, x) ds

∣∣∣2
gref

dg�

≤ C
( ∫ ∞

−∞
|ζk(s)| ds

) 1∑
j=0

∫
�∩{R≤r≤R+1}

∫ +∞

−∞
|ζk(τ − s)|∣∣∇ jψc(s, x)

∣∣2
gref

dsdg�

≤ Cq

1∑
j=0

∫
�∩{R≤r≤R+1}

∫ +∞

−∞
ωk

1 + (ωk |τ − s|)q+4
∣∣∇ jψc(s, x)

∣∣2
gref

dsdg�

≤ Cq

1∑
j=0

∫
�∩{R≤r≤R+1}

∫ +∞

C−1(R−R0(ψ))

ωk

1 + (ωk |τ − s|)q+4
∣∣∇ jψ(s, x)

∣∣2
gref

dsdg�.

(5.38)

In view of the bounds (5.9) and (5.10), inequality (5.38) yields:
∫
�τ∩{R≤r≤R+1}

(
J Nμ (ψk)n

μ + |ψk |2
)
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≤ Cq R
2Elog[ψ]

∫
�∩{R≤r≤R+1}

∫ +∞
C−1(R−R0(ψ))

ωk

1 + (ωk |τ − s|)q+4
(
log(2 + |s|))3 dsdg�

≤ Cq
ω−1
k R2

1 +
(
ωk(C−1(R − R0(ψ)) − τ)

)q+2 Elog[ψ]. (5.39)

Thus, (5.36) readily follows from (5.39).
The relation (5.36) for ψ≤ω+ , ψ≥ω+ in place of ψk follows in exactly the same way,

using (5.22) in place of (5.21). ��
We will now proceed to obtain local in time estimates of the form

∫ ∞
−∞ |∂tψk |2 dt ∼

ω2
k

∫ ∞
−∞ |ψk |2 dt . Let us define the following Schwartz functions onR, similar to (5.20):

ξ0(t) =
∫ +∞

−∞
eiωtχ3(

1

2
ω−1
0 ω) dω,

ξk(t) =
∫ +∞

−∞
eiωt

(
χ3(

1

2
ω−1
k ω) − χ3(2ω

−1
k−1ω)

)
dω, for 1 ≤ k ≤ n. (5.40)

Notice that, for any 0 ≤ k ≤ n (setting ω−1 = 0), χ3(
1
2ω

−1
k ω) − χ3(2ω

−1
k−1ω) = 1 for

all ω ∈ R such that χ3(ω
−1
k ω) − χ3(ω

−1
k−1ω) �= 0, and thus:

ζ̂k = ξ̂k · ζ̂k, (5.41)

where ˆ denotes the Fourier transform operator on R. Moreover, the following Schwartz
bound holds for any integers m,m′ ∈ N and 0 ≤ k ≤ n:

sup
t∈R

∣∣ω−1−m′
k (1 + |ωk t |m)

( d
dt

)m′
ξk(t)

∣∣ ≤ Cm,m′ . (5.42)

The relation (5.41), as well as the definition (5.20), implies for any 0 ≤ k ≤ n the
following self reproducing formula for ψk :

ψk(t, ·) =
∫ ∞

−∞
ξk(t − s) · ψk(s, ·) ds, (5.43)

where, again, the integral in the right hand side of (5.43) converges with respect to the∫
�t

J N
μ (·)nμ norm (in view of (5.26), (5.42) and Young’s inequality).

For any 1 ≤ k ≤ n, we will also introduce the anti-derivatives of ξk , defined as

ξ̃k(t) =
∫ +∞

−∞
1

iω
eiωt

(
χ3(

1

2
ω−1
k ω) − χ3(2ω

−1
k−1ω)

)
dω, (5.44)

thus satisfying for any m ∈ N the Schwartz bound

sup
t∈R

∣∣(1 + |ωk t |m)ξk(t)
∣∣ ≤ Cm, (5.45)

as well as the frequency-domain identity:

ζ̂k = ˆ̃
ξk · iωζ̂k . (5.46)
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In view of (5.46), as well as the definition (5.20), we obtain for any 1 ≤ k ≤ n:

ψk(t, ·) =
∫ ∞

−∞
ξ̃k(t − s) · Tψk(s, ·) ds, (5.47)

where the integral in the right hand side of (5.47) converges with respect to the∫
�t

J N
μ (·)nμ norm.

We can now establish the following lemma:

Lemma 5.4. For any 1 ≤ k ≤ n, any 0 ≤ τ1 ≤ τ2, any T -invariant L∞
loc function

χ : M\H− → [0,+∞), any R ≥ 0 and any 0 < a < 1, we can bound

cω2
k

∫
R(τ1,τ2)∩{r≤R}

χ|ψk |2 − Caω
2
k(1 + ω−5−a

k ) sup
{r≤R}

χ · Elog[ψ]

≤
∫
R(τ1,τ2)∩{r≤R}

χ|Tψk |2 ≤ Cω2
k

∫
R(τ1,τ2)∩{r≤R}

χ|ψk |2

+Caω
2
k(1 + ω−1−a

k )
(
log(2 + τ2)

)4
R2 sup

{r≤R}
χ · Elog[ψ], (5.48)

and similarly for k = 0:∫
R(τ1,τ2)∩{r≤R}

χ|Tψ0|2 ≤ Cω2
0

∫
R(τ1,τ2)∩{r≤R}

χ|ψk |2

+Caω
2
0(1 + ω−1−a

0 )
(
log(2 + τ2)

)4
R2 sup

{r≤R}
χ · Elog[ψ].

(5.49)

Remark. Notice that the constant multiplying the error term in the right hand side of
(5.48) depends on R and τ2, while this is not the case in the left hand side.

Proof. For any 0 ≤ k ≤ n, from (5.43) and (5.42) (for m = 5, m′ = 1) we can estimate
for any τ ≥ 0:∫

�∩{r≤R}
χ(x)|Tψk(τ, x)|2 dg�

=
∫

�∩{r≤R}
χ(x)

∣∣∣
∫ +∞

−∞
ξ′
k(τ − s)ψk(s, x) ds

∣∣∣2 dg�

≤ C
∫

�∩{r≤R}
χ(x)

∣∣∣
∫ +∞

−∞
ω2
k

1 + |ωk(τ − s)|5ψk(s, x) ds
∣∣∣2 dg�

≤ Cω2
k

∫
�∩{r≤R}

χ(x)
( ∫ +∞

−∞
ωk

1 + |ωk(τ − s)|5 ds
)

( ∫ +∞

−∞
ωk

1 + |ωk(τ − s)|5 |ψk(s, x)|2 ds
)
dg�

≤ Cω2
k

∫
�∩{r≤R}

∫ +∞

−∞
ωk

1 + |ωk(τ − s)|5χ(x)|ψk(s, x)|2 dsdg�. (5.50)

Thus, integrating (5.50) over {τ1 ≤ τ ≤ τ2} we obtain:∫
R(τ1,τ2)∩{r≤R}

χ|Tψk |2
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≤ Cω2
k

∫ τ2

τ1

∫
�∩{r≤R}

∫ +∞

−∞
ωk

1 + |ωk(τ − s)|5χ(x)|ψk(s, x)|2 dsdg�dτ

≤ Cω2
k

( ∫ τ2

τ1

∫
�∩{r≤R}

∫ τ2

τ1

ωk

1 + |ωk(τ − s)|5χ(x)|ψk(s, x)|2 dsdg�dτ

+
∫ τ2

τ1

∫
�∩{r≤R}

∫
R\[τ1,τ2]

ωk

1 + |ωk(τ − s)|5χ(x)|ψk(s, x)|2 dsdg�dτ
)

≤ Cω2
k

(( ∫ +∞

−∞
ωk

1 + |ωkλ|5 dλ
) ∫

R(τ1,τ2)∩{r≤R}
χ|ψk |2

+
∫

�∩{r≤R}

∫ τ1

−∞
( ∫ τ2

τ1

ωk

1 + |ωk(τ − s)|5 dτ
)
χ(x)|ψk(s, x)|2 dsdg�

+
∫

�∩{r≤R}

∫ +∞

τ2

( ∫ τ2

τ1

ωk

1 + |ωk(τ − s)|5 dτ
)
χ(x)|ψk(s, x)|2 dsdg�

)

≤ Cω2
k

( ∫
R(τ1,τ2)∩{r≤R}

χ|ψk |2

+ sup
r≤R

χ ·
∫

�∩{r≤R}

∫
R\[τ1,τ2]

1

1 + (ωk min{|τ1 − s|, |τ2 − s|})4 |ψk(s, x)|2 dsdg�

)
.

(5.51)

From (5.26) we can readily estimate for any 0 < a < 1:∫
�∩{r≤R}

∫
R\[τ1,τ2]

1

1 + (ωk min{|τ1 − s|, |τ2 − s|})4 |ψk(s, x)|2 dsdg�

≤ Ca R
2
( ∫

R\[τ1,τ2]
1

1 + (ωk min{|τ1 − s|, |τ2 − s|})4
(
log

(
(2 + |s|))4 ds)(1 + ω−a

k )Elog[ψ]

≤ Ca R
2(1 + ω−1−2a

k )
(
log(2 + τ2)

)4Elog[ψ]. (5.52)

Thus, from (5.51) and (5.52) we readily infer the right “half” of inequality (5.48), as
well as inequality (5.49).

In order to establish the left “half” of inequality (5.48), we will work similarly, using
formula (5.47) in place of (5.43). In particular, from (5.47) and (5.45) (for m = 5) we
obtain for any τ ≥ 0 and any 1 ≤ k ≤ n:∫

�∩{r≤R}
χ(x)|ψk(τ, x)|2 dg�

=
∫

�∩{r≤R}
χ(x)

∣∣∣
∫ +∞

−∞
ξ̃k(τ − s)Tψk(s, x) ds

∣∣∣2 dg�

≤ C
∫

�∩{r≤R}
χ(x)

∣∣∣
∫ +∞

−∞
1

1 + |ωk(τ − s)|5 Tψk(s, x) ds
∣∣∣2 dg�

≤ Cω−2
k

∫
�∩{r≤R}

χ(x)
( ∫ +∞

−∞
ωk

1 + |ωk(τ − s)|5 ds
)

( ∫ +∞

−∞
ωk

1 + |ωk(τ − s)|5 |Tψk(s, x)|2 ds
)
dg�

≤ Cω−2
k

∫
�∩{r≤R}

∫ +∞

−∞
ωk

1 + |ωk(τ − s)|5χ(x)|Tψk(s, x)|2 dsdg�. (5.53)
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Integrating (5.53) over {τ1 ≤ τ ≤ τ2}, we obtain:∫
R(τ1,τ2)∩{r≤R}

χ|ψk |2

≤ Cω−2
k

∫ τ2

τ1

∫
�∩{r≤R}

∫ +∞

−∞
ωk

1 + |ωk(τ − s)|5 χ(x)|Tψk(s, x)|2 dsdg�dτ

≤ Cω−2
k

( ∫ τ2

τ1

∫
�∩{r≤R}

∫ τ2

τ1

ωk

1 + |ωk(τ − s)|5 χ(x)|Tψk(s, x)|2 dsdg�dτ

+
∫ τ2

τ1

∫
�∩{r≤R}

∫
R\[τ1,τ2]

ωk

1 + |ωk(τ − s)|5 χ(x)|Tψk(s, x)|2 dsdg�dτ
)

≤ Cω−2
k

(( ∫ +∞

−∞
ωk

1 + |ωkλ|5 dλ
) ∫

R(τ1,τ2)∩{r≤R}
χ|Tψk |2

+
∫

�∩{r≤R}

∫ τ1

−∞
( ∫ τ2

τ1

ωk

1 + |ωk(τ − s)|5 dτ
)
χ(x)|Tψk(s, x)|2 dsdg�

+
∫

�∩{r≤R}

∫ +∞

τ2

( ∫ τ2

τ1

ωk

1 + |ωk(τ − s)|5 dτ
)
χ(x)|Tψk(s, x)|2 dsdg�

)

≤ Cω−2
k

( ∫
R(τ1,τ2)∩{r≤R}

χ|ψk |2+

+ sup
r≤R

χ ·
∫

�∩{r≤R}

∫
R\[τ1,τ2]

1

1 + (ωk min{|τ1 − s|, |τ2 − s|})4 |Tψk(s, x)|2 dsdg�

)
.

(5.54)

From (5.26) we can estimate:∫
�∩{r≤R}

∫
R\[τ1,τ2]

1

1 + (ωk min{|τ1 − s|, |τ2 − s|})4 |Tψk(s, x)|2 dsdg�

≤ Ca

( ∫
R\[τ1,τ2]

(1 + max{0,−s})2( log(2 + max{0,−s}))4
1 + (ωk min{|τ1 − s|, |τ2 − s|})4 ds

)
(1 + ω−2−a

k )Elog[ψ]

≤ Ca(1 + ω−5−2a
k )Elog[ψ]. (5.55)

Thus, the left “half” of inequality (5.48) follows from (5.54) and (5.55). ��
We will also need the following estimate in the case when ψ is of the form Tϕ, where
ϕ is a smooth solution to the wave equation on D(�):

Lemma 5.5. Let ψ be of the form

ψ = Tϕ, (5.56)

where ϕ : D(�) → C is a smooth function solving (1.2) with compactly supported
initial data on �, such that E[ϕ] < +∞. Then, for any 0 ≤ τ1 ≤ τ2, any 0 < a < 1
and any R ≥ 0 we can bound:∫

R(τ1,τ2)∩{r≤R}
(
J N
μ (ψ0)N

μ + |ψ0|2
)

≤ Cω2
0

∫
R(τ1,τ2)∩{r≤R}

(
J N
μ (ϕ)Nμ + |ϕ|2)

+ Ca
(
ω2
0(1 + ω−1−a

0 )R2( log(2 + |τ2|
)4 + (1 + ω0τ1)

−1R2)Elog[ϕ]. (5.57)
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Proof. The bounds (5.9), (5.2) for ϕ in place of ψ (combined with the Hardy-type
inequalities (3.17) and (5.15)) imply that

sup
τ∈R

∫
�τ∩{t−≥0}

J N (ϕ)nμ + sup
τ∈R

((
log(2 + |τ|))4

∫
�τ∩{t−≥0}

(
1 + r

)−2|ϕ|2
)

≤ CElog[ϕ].
(5.58)

From (5.56), (5.12) and (5.23) we calculate:∫
�∩{r≤R}

∫ τ2

τ1

|ψ0(s, x)|2 dτdg�

=
∫
�∩{r≤R}

∫ τ2

τ1

∣∣∣
∫ +∞
−∞

ζ0(t − s)ψc(s, x) ds
∣∣∣2 dtdg�

=
∫
�∩{r≤R}

∫ τ2

τ1

∣∣∣
∫ +∞
−∞

ζ0(t − s)χ2(s +
1

2
χ1(r)(r − R1))∂tϕ(s, x) ds

∣∣∣2 dtdg�

=
∫
�∩{r≤R}

∫ τ2

τ1

∣∣∣ −
∫ +∞
−∞

d

ds

(
ζ0(t − s)χ2(s +

1

2
χ1(r)(r − R1))

) · ϕ(s, x) ds
∣∣∣2 dtdg�,

(5.59)

noting that the integrating by parts in the last step of (5.59) is possible in view of the
Schwartz bound (5.21) on ζ0 and (5.58).

In view of (5.21), the relation (5.59) yields:∫
�∩{r≤R}

∫ τ2

τ1

|ψ0(s, x)|2 dτdg�

≤ C
∫

�∩{r≤R}

∫ τ2

τ1

(∣∣∣
∫ +∞

−∞
ω2
0

1 + |ω0(t − s)|3χ2(s +
1

2
χ1(r)(r − R1)) · ϕ(s, x) ds

∣∣∣2

+
∣∣∣
∫ +∞

−∞
ω0

1 + |ω0(t − s)|3χ′
2(s +

1

2
χ1(r)(r − R1)) · ϕ(s, x) ds

∣∣∣2
)
dtdg�

≤ C
( ∫ +∞

−∞
ω0

1 + |ω0(t − s)|3 ds
)

{
ω2
0

∫
�∩{r≤R}

∫ τ2

τ1

∫ +∞

− 1
2χ1(r)(r−R1)

ω0

1 + |ω0(t − s)|3 |ϕ(s, x)|2 dsdtdg�

+
∫

�∩{r≤R}

∫ τ2

τ1

∫ 1− 1
2χ1(r)(r−R1)

− 1
2χ1(r)(r−R1)

ω0

1 + |ω0(t − s)|3 |ϕ(s, x)|2 dsdtdg�

}

≤ C

{
ω2
0

∫
�∩{r≤R}

∫
[τ1,τ2]∩[− 1

2χ1(r)(r−R1),+∞)( ∫ τ2

τ1

ω0

1 + |ω0(t − s)|3 dt
)
|ϕ(s, x)|2 dsdg�

+ ω2
0

∫
�∩{r≤R}

∫
[− 1

2χ1(r)(r−R1),+∞)\[τ1,τ2]( ∫ τ2

τ1

ω0

1 + |ω0(t − s)|3 dt
)
|ϕ(s, x)|2 dsdg�

+
∫

�∩{r≤R}

∫ 1− 1
2χ1(r)(r−R1)

− 1
2χ1(r)(r−R1)

( ∫ τ2

τ1

ω0

1 + |ω0(t − s)|3 dt
)
|ϕ(s, x)|2 dsdg�

}
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≤ C

{
ω2
0

∫
�∩{r≤R}

∫ τ2

τ1

|ϕ(s, x)|2 dsdg�

+ ω2
0

∫
�∩{r≤R}

∫
[− 1

2χ1(r)(r−R1),+∞)\[τ1,τ2]
1

1 + min{|ω0(τ1 − s)|2, |ω0(τ2 − s)|2} |ϕ(s, x)|2 dsdg�

+
∫

�∩{r≤R}

∫ 1− 1
2χ1(r)(r−R1)

− 1
2χ1(r)(r−R1)

1

1 + |ω0(τ1 − s)|2 |ϕ(s, x)|2 dsdg�

}
. (5.60)

From (5.58), we can estimate for any 0 < a < 1:

ω2
0

∫
�∩{r≤R}

∫
[− 1

2χ1(r)(r−R1),+∞)\[τ1,τ2]
1

1 + min{|ω0(τ1 − s)|2, |ω0(τ2 − s)|2} |ϕ(s, x)|2 dsdg�

≤ Caω
2
0(1 + ω−1−a

0 )R2( log(2 + |τ2|
)4Elog[ϕ] (5.61)

and

∫
�∩{r≤R}

∫ 1− 1
2χ1(r)(r−R1)

− 1
2χ1(r)(r−R1)

1

1 + |ω0(τ1 − s)|2 |ϕ(s, x)|2 dsdg�

≤ Ca(1 + ω−1−a
0 )(1 + ω0τ1)

−1R2Elog[ϕ]. (5.62)

Thus, from (5.60) we obtain for any 0 < a < 1:

∫
�∩{r≤R}

∫ τ2

τ1

|ψ0(s, x)|2 dτdg�

≤ Cω2
0

∫
�∩{r≤R}

∫ τ2

τ1

|ϕ(s, x)|2 dsdg�

+ Ca
(
ω2
0

(
log(2 + |τ2|

)4 + (1 + ω0τ1)
−1)(1 + ω−1−a

0 )R2Elog[ϕ]. (5.63)

Repeating the same procedure with Tψ0 and∇g�ψ0 in place ofψ0, we similarly obtain:

∫
�∩{r≤R}

∫ τ2

τ1

|Tψ0(s, x)|2 dτdg�

≤ Cω2
0

∫
�∩{r≤R}

∫ τ2

τ1

|Tϕ(s, x)|2 dsdg�

+ Ca
(
ω2
0

(
log(2 + |τ2|

)4 + (1 + ω0τ1)
−1)(1 + ω−1−a

0 )R2Elog[ϕ] (5.64)

and



478 G. Moschidis

∫
�∩{r≤R}

∫ τ2

τ1

|∇g�ψ0(s, x)|2g�
dτdg�

≤ Cω2
0

∫
�∩{r≤R}

∫ τ2

τ1

|∇g�ϕ(s, x)|2g�
dsdg�

+ Ca
(
ω2
0

(
log(2 + |τ2|

)4 + (1 + ω0τ1)
−1)(1 + ω−1−a

0 )R2Elog[ϕ]. (5.65)

Inequality (5.57) readily follows after adding (5.63), (5.64) and (5.65). ��
We will finally establish the following bound for the energy of the high frequency part
ψ≥ω+ of ψ:

Lemma 5.6. For any τ ≥ 0 and any m ∈ N such that

m∑
j=0

E[T jψ] < +∞, (5.66)

there exists a constant Cm > 0 depending only on m such that:

∫
{t=τ}

J N
μ (ψ≥ω+)n

μ ≤ Cm

ω2m
+

( m∑
j=0

E[T jψ] + Elog[ψ]
)
. (5.67)

Proof. We can assume without loss of generality that m ≥ 1, since the m = 0 case is
a direct consequence of (5.28). Let us introduce the function ξ̆m : R\{0} → C by the
formula

ξ̆m(t) =
∫ +∞

−∞
(iω−1

+ ω)−meiωt (1 − χ(ω−1
+ ω)) dω. (5.68)

Note that, when m = 1, the right hand side of (5.68) diverges when t = 0. In view of
the bound ∣∣∣

∫ +∞

1

1

ym
eiλy dy

∣∣∣ ≤
{
C

(| log(λ)| + 1
)
, m = 1

C, m > 1,
(5.69)

as well as the relation

t ξ̆m(t) = i
∫ +∞

−∞
eiωt

d

dω

(
(iω)−m(1 − χ(ω−1

+ ω))
)
dω

= −mω−1
+ ξ̆m+1(t) − iω−1

+

∫ +∞

−∞
eiωt (iω−1

+ ω)−mχ′(ω−1
+ ω)) dω, (5.70)

from (5.68) we infer that for any integer q ∈ N and any t �= 0:

|ξ̆m(t)| ≤ Cqmω+
| log(|ω+t |)| + 1

|ω+t |q + 1
. (5.71)

Defining the tempered distribution

ζ≥ω+
.= δD − ζ≤ω+ , (5.72)

where δD is Dirac’s delta function and ζ≤ω+ is defined by (5.20), the Fourier transforms
of ξ̆m and ζ≥ω+ satisfy the relation:

ζ̂≥ω+ = ω−m
+

̂̆
ξm · (iω)m ζ̂≥ω+ , (5.73)
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yielding the following relation for ψ≥ω+ in physical space:

ψ≥ω+(t, ·) = ω−m
+

∫ +∞

−∞
ξ̆m(t − s)Tmψ≥ω+(s, ·) ds, (5.74)

where, again, the integral in the right hand side of (5.74) converges in the
∫
�t

J N
μ (·)nμ

norm.
From (5.74) and (5.71) we can estimate for any τ ∈ R:

∫
�

(|Tψ≥ω+(τ, x)|2 + |∇g�ψ≥ω+(τ, x)|2g�

)
dg�

= ω−2m
+

∫
�

(∣∣∣
∫ +∞

−∞
ξ̆m(τ − s)Tm+1ψ≥ω+(s, x) ds

∣∣∣2

+
∣∣∣
∫ +∞

−∞
ξ̆m(τ − s)∇g�T

mψ≥ω+(s, x) ds
∣∣∣2
g�

)
dg�

≤ Cmω−2m
+

{ ∫
�

(∣∣∣
∫ +∞

−∞
ω+

| log(|ω+(τ − s)|)| + 1

|ω+(τ − s)|4 + 1
Tm+1ψ≥ω+(s, x) ds

∣∣∣2

+
∣∣∣
∫ +∞

−∞
ω+

| log(|ω+(τ − s)|)| + 1

|ω+(τ − s)|4 + 1
∇g�T

mψ≥ω+(s, x) ds
∣∣∣2
g�

)
dg�

}

≤ Cmω−2m
+

( ∫ +∞

−∞
ω+

| log(|ω+(τ − s)|)| + 1

|ω+(τ − s)|4 + 1
ds

)

×
( ∫

�

∫ +∞

−∞
ω+

| log(|ω+(τ − s)|)| + 1

|ω+(τ − s)|4 + 1

(|Tm+1ψ≥ω+(s, x)|2

+|∇g�T
mψ≥ω+(s, x)|2g�

)
dsdg�

)

≤ Cmω−2m
+

( ∫
�

∫ +∞

−∞
ω+

| log(|ω+(τ − s)|)| + 1

|ω+(τ − s)|4 + 1

(|Tm+1ψ≥ω+(s, x)|2

+|∇g�T
mψ≥ω+(s, x)|2g�

)
dsdg�

)
. (5.75)

In view of (5.25) and the Schwartz bounds (5.22), we readily obtain that for any
τ ∈ R:∫

�

(|Tm+1ψ≥ω+(τ, x)|2 + |∇g�T
mψ≥ω+(τ, x)|2g�

)
dg�

≤ C
∫ +∞

−∞
ω+

(1 + ω+|τ − s|)4
( ∫

�

(|Tm+1ψc(s, x)|2 + |∇g�T
mψc(s, x)|2g�

)
dg�

)
ds.

(5.76)
In view of the definition (5.12) of ψc, (5.76) yields∫

�

(|Tm+1ψ≥ω+(τ, x)|2 + |∇g�T
mψ≥ω+(τ, x)|2g�

)
dg�

≤ C
m∑
j=0

∫ +∞

−∞
ω+

(1 + ω+|τ − s|)4
{ ∫

�∩{t−≥0}
(|T j+1ψ(s, x)|2

+ |∇g�T
jψ(s, x)|2g�

)
dg� +

∫
�∩{0≤t−≤1}

|ψ(s, x)|2 dg�

}
ds.

(5.77)
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Thus, (5.75), (5.77), (5.10), and (5.66) (combined with the conservation of the T -energy
flux in the region {t− ≥ 0} ∩ {t ≤ 0}) imply:

∫
�

(|Tψ≥ω+(τ, x)|2 + |∇g�ψ≥ω+(τ, x)|2g�

)
dg�

≤ Cmω−2m
+

( ∫ +∞

−∞
ω+

| log(|ω+(τ − s)|)| + 1

|ω+(τ − s)|4 + 1
(1 + |s|2)( log(2 + |s|))4 ds)

( m∑
j=0

E[T jψ] + Elog[ψ]
)
, (5.78)

from which (5.67) readily follows. ��

6. A Carleman-Type Estimate Outside the Extended Ergoregion

In this section, we will establish the following estimate for solutions ϕ to the inhomo-
geneous wave equation

�gϕ = G (6.1)

on (M, g):

Proposition 6.1. For any s, R � 1 sufficiently large in terms of the geometry of (M, g)
and any 0 < ε0 < 1, there exists a smooth T -invariant function f : M\H− → (0,+∞)

satisfying

f =
{
e2swR + e2sw̃R , r ≤ R,

Cs

(
r
R − 9

10 log(
r
R )

)
r ≥ R,

(6.2)

where the functions wR, w̃R : {r ≤ R} → R satisfy

1. wR ≡ w̃R on {r ≤ 1
4r0} ∪ Eext ∪ {r ≥ 1

2 R0},
2. sup{r≤R} wR − inf{r≤R} wR + sup{r≤R} w̃R − inf{r≤R} w̃R ≤ Cε−1

0 R3ε0 for some
absolute constant C > 0,

3. inf{ 14 r0≤r≤R}\E2δ wR ≥ maxEδ
wR+cδR−3ε0 and inf{ 14 r0≤r≤R}\E2δ w̃R ≥ maxEδ

w̃R+

cδR−3ε0 for any 0 < δ � 1,
4.

∑4
j=1

(|∇ jwR |gref + |∇ j w̃R |gref
) ≤ C,

so that the following statement holds: For any 0 < δ, ε0 � 1, any s, R � 1 satisfying
ε0sR−9ε0 � 1, any 0 ≤ τ1 ≤ τ2 and any smooth function ϕ : M\H− → C solving
(6.1) with compact support on the hypersurfaces {t = τ} for any τ1 ≤ τ ≤ τ2, we can
estimate:

∫
R(τ1,τ2)∩{r≤R0}\E δ

( f + inf
{r≥ 1

4 r0}\E
f )

{
sR−3ε0 |∇g� ϕ|2g�

− CδsR
−3ε0 |Tϕ|2 + s3R−9ε0 |ϕ|2

}
dg

+
∫
R(τ1,τ2)∩{R0≤r≤ 1

2 R}
f

{
sR−3ε0r− 5

2
(∣∣∂rϕ∣∣2 + r−2|∂σϕ|2) + sR−3ε0r−2|Tϕ|2 + ε0s

3R−9ε0r−4|ϕ|2
}
dg

+
∫
R(τ1,τ2)∩{ 12 R≤r≤R}

f

{
r− 5

2
(∣∣∂rϕ∣∣2 + r−2|∂σϕ|2) + R∂rwR

(
cR−2s|Tϕ|2 − CR−4s3|ϕ|2)

}
dg
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+
∫
R(τ1,τ2)∩{r≥R}

f (R)

{
r− 5

2
(∣∣∂rϕ∣∣2 + r−2|∂σϕ|2) + r−2|Tϕ|2 − CR−1r−3|ϕ|2

}
dg

≤ Cδ

∫
R(τ1,τ2)∩E δ

f
{
s2R−6ε0 |∇ϕ|2gref + s4R−12ε0 |ϕ|2

}
dg

+ C
∣∣∣
∫
R(τ1,τ2)

G
(∇μ f ∇μϕ̄ + O

( 2∑
j=1

(1 + r) j−2|∇ j f |gref
)
ϕ̄
)
dg

∣∣∣

+C
2∑
j=1

∫
�τ j

(
|∇ f |gref |∇ϕ|2gref +

( 3∑
j=1

(1 + r) j−3|∇ j f |gref
)|ϕ|2

)
dg�. (6.3)

The proof of Proposition 6.1 will be given in Sect. 6.7. It will be based on the
construction of a suitable multiplier for the inhomogeneous wave equation (6.1), which
will be presented in Sects. 6.2–6.3, as well as an intricate integration-by-parts procedure,
that will be performed in Sect. 6.4.

Remark. In fact, Proposition 6.1 also holds in the case when E = ∅. We should also
remark that Proposition 6.1 applies in the case when (M, g) has a T -invariant timelike
boundary component ∂timM, with ∂timM ∩ � compact and ∂timM ∩ H = ∅, and ϕ

is assumed to satisfy either Dirichlet or Neumann boundary conditions on ∂timM (see
Sect. 6.9 for more details).

Furthermore, the proof of Proposition 6.1 applies without any change after replacing
equation (6.1) with

�gϕ − Vϕ = G, (6.4)

for any smooth and T -invariant function V : M → R satisfying either ∂r V < 0
and V → 0 as r → +∞ in the asymptotically flat region of (M, g), or supM

(
(1 +

r)2+η|V |) < +∞ for some η > 0. In the later case, the constants in the analogue of (6.3)
can be chosen to depending only on η and supM

(
(1 + r)2+η|V |). In view of the fact

that the proof of Proposition 6.1 also applies for equation (6.4), the degeneracy of (6.3)
in the frequency regime {|ω| � 1} can not be fully removed without some additional
argument depending on the fact that V = 0 in equation (6.1), or yielding an estimate
depending qualitatively on V (see also the discussion in [34]). However, this degeneracy
does not cause any problem in the proof of Theorem 2.1.

Finally, let us remark that the estimate (6.3) can be readily used to show that any
smooth solution ϕ to equation (1.2) on M of the form ϕ = e−iωtϕω with ω ∈ R\{0},
T (ϕω) = 0 and

lim
ρ→+∞

∫
{r=ρ}∩{t=0}

(|ϕω|2 + |∇ϕω|2) = 0 (6.5)

vanishes identically on M\Eext.

As a corollary of Proposition 6.1, givenω+ > 1 and 0 < ω0 < 1, wewill establish the
following estimate for the frequency localised components ψk of any solution ψ to the
wave equation (1.2) on (M, g) satisfying the bound (5.1) (see the relevant constructions
in Sect. 5):
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Corollary 6.1. For any smooth solution ψ to (1.2) satisfying (5.1), any integer 1 ≤ k ≤
n, any 0 < δ1, δ2, ε0 < 1, any R1 ≥ 0, any 0 ≤ τ1 ≤ τ2 we can bound:

∫
R(τ1,τ2)∩{r≤R1}\E2δ1

(
J N
μ (ψk)n

μ + |ψk |2
)

≤ δ2

∫
R(τ1,τ2)∩Eδ1

(
J N
μ (ψk)n

μ + |ψk |2
)

+ Cε0δ1R1(1 + ω−10
k )

(
log(2 + τ2)

)4 · eCε0δ1 ·max
{
|ωk |,|ωk |−ε0 ,− log δ2

}
Elog[ψ],

(6.6)

where Cε0δ1R1 depends only on ε0, δ1, R1 and the geometry of (M, g), while Cε0δ1

depends only on ε0, δ1 and the geometry of (M, g).

The proof of Corollary 6.1 will be presented in Sect. 6.8.
Finally, let us sketch an additional application of Proposition 6.1 in the Riemannian

setting. Let (�d , ḡ), d ≥ 3, be an asymptotically conic Riemannian manifold, with the
asymptotics described in [34], and let us consider the unique solution u ∈ L2(�) of the
inhomogeneous Helmholtz equation

�ḡu + ω2u − Vu = G (6.7)

on (�, ḡ) for a suitably decaying source term G : � → C, with 0 < Im(ω) � 1,
Re(ω) �= 0 and a potential V : � → R satisfying either ∂r V < 0 in the asymptotically
conic region of (�, ḡ) and V → 0 as r → +∞ (where r is the radial coordinate function
in the asymptotically conic region of �, extended to a positive function everywhere on
�), or

sup
�

(
(r−2−η + |ω|r−1−η)|V |) < +∞. (6.8)

Then, applying Proposition 6.1 on the product spacetime (R × �, g = −dt2 + ḡ) for
the function ϕ = e−iωt u solving (in view of (6.7))

�gϕ − Vϕ = e−iωtG, (6.9)

and using the charge estimate

Im(ω2)

∫
�

|u|2 dḡ =
∫

�

Im(Gū) dḡ (6.10)

(combined with elliptic estimates for (6.7), as is done, for instance, in [34]) one readily
obtains the (quantitative in V ) global Carleman-type estimates of [34], albeit with a
worse dependence onω as Re(ω) → 0. Thus, the proof of Proposition 6.1 yields a proof
of the Carleman-type estimates used in [30,34] based entirely on the method of first
order multipliers.

Remark. Amultiplier-based proof of a similar set of Carleman-type estimates for equa-
tion (6.7) restricted, however, to the high frequency regime ω � 1 was obtained previ-
ously in [18].
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6.1. Parameters and cut-off functions in the proof of Proposition 6.1. Let R0 � 1
be large in terms of the geometry of (M, g), such that {r ≥ 1

8 R0} ⊂ Ias (R0 will be
considered fixed and, thus, we will not use any special notation to denote the dependence
of constants on R0). In addition to the parameters δ, ε0, s, R appearing in the statement
of Proposition 6.1, we will introduce the parameters R � R0 and 0 < δ0, δ1, δ2 � 1.
We will assume without loss of generality that 0 < ε0 � 1. These additional parameters
will be fixed in the proof of Proposition 6.1.

In the region {r ≥ 1
2 R0}, the vector field ∂r will simply denote the associated coor-

dinate vector field in the (t, r, σ) coordinate chart in each connected component of this
region.

Fixing a smooth function χ4 : R → [0, 1] satisfying χ4(x) = 0 for x ≤ 3
4 and

χ4(x) = 1 for x ≥ 1, we will define the following smooth cut-off functions:

χ≥R0(r)
.= χ4(

r

R0
), (6.11)

χ≤R(r)
.= χ4(

R

r
). (6.12)

Remark. Note that χ≤R ≡ 1 for r ≤ R and χ≤R ≡ 0 for r ≥ 4
3 R, while χ≥R0 ≡ 1 for

r ≥ R0 and χ≥R0 ≡ 0 for r ≤ 3
4 R0.

6.2. Construction of the auxiliary functions wR, w̃R. In this section, we will construct
the pair of functions wR, w̃R : M\H− → R appearing in the statement of Propo-
sition 6.1, depending on the parameters δ0, δ1, ε0, s, R. These functions will be used
extensively in the next sections.

First, we will establish the following lemma:

Lemma 6.1. There exists a smooth and T -invariant function w̄ : M\H → R satisfying
the following properties:

1. The restriction w̄|� of w̄ on � is a Morse function on �\Eext, with no critical points
on ∂Eext. Furthermore, none of the (at most finite) critical points {x j }kj=1 of w̄|� on
�\Eext is a point of local maximum of w̄|� .

2. In the region {0 < r ≤ 1
8r0},13 w̄ is a function of r and satisfies

∇μr∇μw̄ > 0. (6.13)

3. In the region {r ≥ 1
2 R0}, w̄ is a function of r , and satisfies (6.13).

4. On
(M\Eext ∪ H)\(R × ∪k

j=1{x j }
)
we have

∇μw̄∇μw̄ > 0. (6.14)

5. For any 0 < δ � 1, we have

inf
{r≥ 1

4 r0}\E2δ
w̄ > max

Eδ

w̄. (6.15)

13 Recall that {r ≤ 1
8 r0} ∩ � is a neighborhood ofH+ ∩ � in �.
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Proof. The proof of Lemma 6.1 will be based on ideas from [30,34].
Let R0 � 1 be a fixed constant large in terms of the geometry of (M, g). For any

0 ≤ γ < 1, let w̄γ : (
� ∩ { 16r0 ≤ r ≤ 1

4 R0}
)\Eext → R be the (unique) smooth solution

of the elliptic boundary value problem:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�g� w̄γ = γ on
(
� ∩ { 16r0 < r < 1

4 R0}
)\Eext,

w̄γ|r= 1
4 R0

= 2,

w̄γ|r= 1
6 r0

= 1,

w̄γ|∂Eext = 1.

(6.16)

Let us extend w̄γ on the whole of { 16r0 < r < 1
4 R0}\Eext ⊂ M\H− by the requirement

that T w̄|γ = 0.
Since g� is smooth, w̄γ depends smoothly on γ (see [23]). In view of the fact that

every connected component ofM\E intersectingH+ also intersectsIas (seeAssumption
G3), when γ = 0, the maximum principle and Hopf’s lemma (see [23]) imply that for
any δ > 0

inf
r= 1

4 R0

(∇μr∇μw̄0
)
, inf

r= 1
6 r0

(∇μr∇μw̄0
)
, inf

∂Eext

(
n∂E (w̄0)

)
,
(

inf
{r≥ 1

4 r0}\Eδ

w̄0 − max
∂Eext

w̄0
)

> 0

(6.17)

(see Sect. 3.3 for the definition of n∂E ). Therefore, there exists a γ0 ∈ (0, 1) and a
c0 > 0, such that:

inf
r= 1

4 R0

(∇μr∇μw̄γ0

)
, inf

r= 1
6 r0

(∇μr∇μw̄γ0

)
, inf

Ec0\Eext
(
n∂E (w̄γ0)

) ≥ c0 > 0 (6.18)

and, for all 0 < δ < 1 (and some fixed c1 > 0):

inf
{r≥ 1

4 r0}\Eδ

w̄γ0 − max
∂Eext

w̄γ0 > c1δ > 0. (6.19)

In view of 6.18 and (6.19), we can extend w̄γ0 as a T -invariant function on the whole
ofM\H− in such a way, so that

inf
{ 1
16 r0≤r≤ 1

6 r0}∪{ 14 R0≤r≤R0}
(∇μr∇μw̄γ0

) ≥ 1

10
c0 > 0, (6.20)

inf
{δ≤r≤ 1

6 r0}
(∇μr∇μw̄γ0

) ≥ c(δ) > 0, (6.21)

inf
{r≥ 1

4 r0}\E2δ
w̄γ0 > max

Eδ

w̄γ0 +
1

2
c1δ (6.22)

for all 0 < δ � 1 (where c(δ) is a positive function of δ > 0) and, in addition, w̄γ0 is a
function of r in the region {r ≤ 1

8r0} ∪ {r ≥ 1
2 R0}. Notice also that, since w̄γ0 |∂Eext = 1

and n∂E (w̄γ0)|∂Eext ≥ c0, we have

(∇μw̄γ0∇μw̄γ0

)∣∣
∂Eext

≥ 1

2
c20. (6.23)

With w̄γ0 constructed as above, we can thus readily choose w̄ so that it satisfies the
following conditions:
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1. w̄|� and w̄γ0 |� satisfy

∣∣w̄|� − w̄γ0 |�
∣∣
C2(�)

<
1

100
min{γ0, c0}. (6.24)

2. w̄|� is a Morse function on an open neighborhood of
(
� ∩ { 16r0 ≤ r ≤ 1

4 R0}
)\Eext.

3. w̄|� = w̄γ0 |� in the region E ∪ {r ≤ 1
6r0} ∪ {r ≥ 1

4 R0}.
4. T w̄ = 0.

Remark. Note that the compatibility of conditions 1 and 2 follows from the density

of the set of Morse functions on
(
� ∩ { 16r0 ≤ r ≤ 1

4 R0}
)\Eext in C2((

� ∩ { 16r0 ≤ r ≤ 1
4 R0}

)\Eext
)
.

In view of (6.16), (6.20), (6.21) and (6.24), w̄ satisfies

�g� w̄|� > 0 (6.25)

on { 16r0 < r < 1
4 R0}\Eext and

inf
{ 1
16 r0≤r≤ 1

6 r0}∪{r≥ 1
4 R0}

(∇μr∇μw̄
) ≥ 1

10
c0 > 0, (6.26)

inf
{δ≤r≤ 1

6 r0}
(∇μr∇μw̄

) ≥ c(δ) > 0. (6.27)

Therefore, none of the critical points of w̄|� on �\Eext is a point of local maximum.
Furthermore, Conditions 2 and 3 imply that w̄|� is a Morse function on �\Eext. Since
T (w̄) = 0 and T is strictly timelike onM\(Eext ∪H), in view of (6.23) and Condition 1
we have

∇μw̄∇μw̄ > 0 on
(M\Eext ∪ H)\(R × ∪k

j=1{x j }
)
, (6.28)

where {x j }kj=1 are the (at most finite) critical points of w̄|� on �\Eext, none of which
lies on ∂Eext (in view of (6.23) and Condition 1). Finally, in view of (6.18), (6.22) and
(6.24), inequality (6.15) holds for all 0 < δ � 1. ��
Lemma 6.2. For any 0 < δ0 � 1 small in terms of the geometry of (M, g), there exists
a pair of smooth and T -invariant functions w, w̃ : M\H− → R, as well as a finite
number of points {x j }kj=1, {x̃ j }kj=1 ∈ � ∩{r ≤ 1

2 R0 +4δ0}\E8δ0 , such that the following
statements hold:

1. Defining for any ρ > 0 the subsets

Bcri t (ρ) = R × ( ∪k
j=1 Bg� (x j , ρ)

)
, (6.29)

B̃cri t (ρ) = R × ( ∪k
j=1 Bg� (x̃ j , ρ)

)
(6.30)

of M\H−, where Bg� (x j , ρ) ⊂ (�, g�) is the closed Riemannian ball of radius ρ

centered at x j , we have:

Bcri t (δ0) ⊂ B̃cri t (4δ0), (6.31)

B̃cri t (δ0) ⊂ Bcri t (4δ0), (6.32)

Bcri t (δ0) ∩ B̃cri t (δ0) = ∅. (6.33)
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2. The functions w, w̃ coincide outside Bcri t (4δ0):

w ≡ w̃ onM\(Bcri t (4δ0) ∪ H−)
. (6.34)

3. The functionsw, w̃ satisfy the following non-degeneracy conditions for someabsolute
constant c0 > 0 (independent of δ0):

inf
{r≥ 1

8 r0}\(Eext∪Bcri t (δ0))

∇μ∇νw∇μw∇νw ≥ c0 > 0, (6.35)

inf
{r≥ 1

8 r0}\(Eext∪B̃cri t (δ0))

∇μ∇νw̃∇μw̃∇νw̃ ≥ c0 > 0. (6.36)

4. For any T -invariant vector fields X, X̃ on {r ≥ 1
8r0}\(Eext ∪ Bcri t (δ0)) such that

X (w) = 0 and X̃(w̃) = 0, the following one sided bounds hold:

∇μ∇νwXμXν > −δ0
∇μ∇νw∇μw∇νw

gref(dw, dw)
gref(X, X), (6.37)

∇μ∇νw̃ X̃μ X̃ν > −δ0
∇μ∇νw̃∇μw̃∇νw̃

gref(dw̃, dw̃)
gref(X̃ , X̃), (6.38)

where gref is the reference Riemannian metric (2.4).
5. The functions w, w̃ satisfy

max
Bcri t (δ0)

w < min
Bcri t (δ0)

w̃, (6.39)

max
B̃cri t (δ0)

w̃ < min
B̃cri t (δ0)

w. (6.40)

6. For any 0 < δ � 1:

inf
{r≥ 1

4 r0}\E2δ
w > max

Eδ

w, (6.41)

inf
{r≥ 1

4 r0}\E2δ
w̃ > max

Eδ

w̃ (6.42)

and

inf
{r≥ 1

2 r0}\Eext
w > max

{r≤ 1
4 r0}

w, (6.43)

inf
{r≥ 1

2 r0}\Eext
w̃ > max

{r≤ 1
4 r0}

w̃ (6.44)

Proof. Let w̄ : M\H− → R be as in the statement of Lemma 6.1, and let {x j }kj=1 be

the (at most finite) critical points of w̄|� in �\Eext. According to Lemma 6.1, none of
these points lies on ∂Eext or on {r ≤ 1

8r0} ∪ {r ≥ 1
2 R0} and, thus, provided δ0 � 1, we

have

{x j }kj=1 ∈ � ∩ {1
8
r0 ≤ r ≤ 1

2
R0}\E16δ0 . (6.45)

Let l > 0 be large in terms of δ0, and let us define the T -invariant function w :
M\H− → R as

w = elw̄. (6.46)
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Then, the one sided bounds (6.35) and (6.37) readily follow from the properties of w̄

(see Lemma 6.1), as well as the identities

∇μw = l(∇μw̄)elw̄ (6.47)

and
∇μ∇νw = (

l2(∇μw̄)(∇νw̄) + l∇μ∇νw̄
)
elw̄, (6.48)

provided l is sufficiently large in terms of δ0. Inequality (6.41) follows readily from
(6.15).

Since the points {x j }kj=1 satisfy (6.45) and none of them is a point of local maximum
for w̄|� (see Lemma 6.1), for any 0 < δ0 � 1, there exists a diffeomorphism X : � →
� such that X = I d on �\ ∪k

j=1 Bg� (x j , 4δ0) and for all 1 ≤ j ≤ k:

2δ0 < distg� (x j ,X (x j )) < 4δ0, (6.49)

X (
Bg� (x j , δ0)

) = Bg� (X (x j ), δ0), (6.50)

X (
Bg� (X (x j ), δ0)

) = Bg� (x j , δ0), (6.51)

and
max

Bg� (x j ,δ0)
w̄ < min

Bg� (X (x j ),δ0)
w̄. (6.52)

Setting x̃ j
.= X (x j ) for j = 1, . . . , k, provided δ0 is sufficiently small in terms of the

geometry of (M, g), we have:

{x̃ j }kj=1 ∈ � ∩ {r ≤ 1

2
R0 + 4δ0}\E8δ0 . (6.53)

Extending X on the whole of M\H− by the requirement that it commutes with the
flow of T , i.e.:

LT ◦ X = X ◦ LT , (6.54)

and defining the function w̃ : M\H− → R as

w̃
.= w ◦ X , (6.55)

we infer that, in view of (6.47), (6.48) and the properties ofX , the relations (6.34), (6.36)
and (6.38) hold, provided l is sufficiently large in terms of δ and the precise choice ofX .
Furthermore, in view of (6.52), inequalities (6.39) and (6.40) hold. Finally, inequalities
(6.41) and (6.42) follow trivially from (6.15) and the fact thatX = I d on Eδ for δ ≤ 4δ0,
while (6.43) and (6.44) follow from (6.13). ��
Lemma 6.3. For any R0 � 1,0 < δ0 � 1, 0 < δ1 � 1, s � 1, 0 < ε0 � 1 and
R � max{R0, ε

−1
0 }, there exists a pair of smooth and T -invariant function wR, w̃R :

{r ≤ R} ⊂ M\H− → R satisfying the following properties:

1. In the region {r ≤ R0}:
wR = R−3ε0w (6.56)

and
w̃R = R−3ε0w̃, (6.57)

where w, w̃ are the functions from Lemma 6.2.
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2. In the region {R0 ≤ r ≤ Rε0}, wR is a function of r and w̃R = wR. The following
bounds are also satisfied for some constants depending only on R0 and δ0 (and the
precise choice of w):

0 < cR−3ε0 ≤ ∂rwR ≤ C, (6.58)

∂2r wR + r−1∂rwR ≥ cR−3ε0 +
∣∣r− 1

2 ∂2r wR
∣∣ + ∣∣r− 3

2 ∂rwR
∣∣, (6.59)

|∂2r wR |, |∂3r wR |, |∂4r wR | ≤ C. (6.60)

3. In the region {Rε0 ≤ r ≤ 1
2 R}:

wR = w̃R = C1ε
−1
0 (

r

R
)ε0 + C2 (6.61)

for some constants C1,C2 depending only on R0, δ0 (and the precise choice of wl ).
4. In the region { 12 R ≤ r ≤ R}:

wR = w̃R = vs(
r

R
) + C3 (6.62)

for some constant C3 depending on R0, δ0, δ1 (and the precise choice of w), where
the function vs : [ 12 , 1] → R depends on s, ε0, δ0, δ1 and satisfies (for some constants
cδ0 ,Cδ0 > 0 depending on δ0, R0 and the precise choice of w):

dvs

dx
≥ cδ0s

−1, (6.63)

∣∣d2vs
dx2

∣∣ ≤ Cδ0(δ1s + δ−1
1 )

dvs

dx
(6.64)

∣∣d2vs
dx2

∣∣, ∣∣d3vs
dx3

∣∣, ∣∣d4vs
dx4

∣∣ ≤ Cδ0δ
−1
1 (6.65)

and, for x ∈ [ 34 , 1]:
vs(x) = 1

2s
log

(
x − 9

10
log(x)

)
. (6.66)

Remark. Notice that we can bound on {Rε0 ≤ r ≤ 1
2 R}

∂2r wR + r−1∂rwR > c0ε0R
−ε0 · r−2+ε0 + |r− 1

2 ∂2r wR | + |r− 3
2 ∂rwR |, (6.67)

∂rwR > c0R
−ε0r−1+ε0 , (6.68)

4∑
j=1

|r j∂
j
r wR | < C0R

−ε0r ε0 . (6.69)

Proof. The construction of wR (and, similarly, w̃R) can be readily performed in view of
the following observations:

• In view of Condition 1 and the properties of the function w, for r = R0 we have:

∂rwR(R0) ∼R0 R−3ε0 , (6.70)

∂2r wR(R0), r
−1∂rwR(R0) ∼R0 R−3ε0 , (6.71)
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while Condition 3 requires that, for r = Rε0 :

∂rwR(Rε0) = C1R
−2ε0+ε20 � ∂rwR(R0), (6.72)

∂2r wR(Rε0) = C1(ε0 − 1)R−3ε0+ε20 (6.73)

∂2r wR(Rε0) + r−1∂rwR(Rε0) ≥ cε0R
−3ε0+ε20 +

∣∣r− 1
2 ∂2r wR(Rε0)

∣∣ + ∣∣r− 3
2 ∂rwR(Rε0)

∣∣.
(6.74)

Therefore, we can readily construct the function ∂rwR (as a function of r ) on the
interval {R0 ≤ r ≤ Rε0} (and then integrate in order to obtainwR and the constantC2
in (6.61)), so that (6.58)–(6.60) are satisfied. In particular, ∂rwR can be constructed
as an increasing function of r (i.e. with ∂2r wR > 0) up to r = Rε0 − 1, while for
r ∈ [Rε0 − 1, Rε0 ], ∂rwR is constructed a smooth function of r extending (6.61)
from {r ≥ Rε0} under the requirement that it satisfies the one sided bound

∂2r wR(r) ≥ −(1 + ε20)|∂2r wR(Rε0)|. (6.75)

• Let ṽ : [ 35 , 1] → R be a smooth and strictly increasing function such that ṽ(x) =
−(x−1)2−10 for x ∈ [ 35 , 7

10 ] and ṽ(x) = log
(
x− 9

10 log(x)
)
for x ∈ [ 34 , 1]. Then,

provided s � 1 and δ1 < 1, it can be readily inferred that there exists a C5 and
piecewise C6 function ṽs : [ 12 , 1] → R, which is smooth on [ 12 , 1]\{ 35 }, satisfying
d ṽs
dx ≥ 1

10s C1,
∑4

j=1

∣∣ d j ṽs
dx j

∣∣ ≤ 10C1δ
−1
1 and

ṽs(x) =

⎧⎪⎨
⎪⎩
C1ε

−1
0 xε0 + C2 − C3 for x ∈ [ 12 , 11

20 ]
−δ1(x − 3

5 )
6 − 1

2s

(
(x − 1)2 + 10

)
for x ∈ [ 2340 , 3

5 )

1
2s ṽ(x), for x ∈ [ 35 , 1]

for a suitable constant C3 > 0 depending on C1,C2. The function vs is then con-
structed by mollifying ṽs around x = 3

5 . ��

6.3. The seed functions f , f̃ , h and h̃. In this section, we will construct (using the
auxiliary functions from the previous section) the seed functions for the multipliers that
will be used in the proof of Proposition 6.1.

We will assume without loss of generality that 0 < δ0, δ1 � 1, s � 1, 0 < ε0 � 1
and R � max{R0, ε

−1
0 }. Let wR, w̃R : {r ≤ R} → R be the functions from Lemma 6.3

(associated to the parameters s, R, ε0, δ0, δ1). We define the smooth and T -invariant
functions f, f̃ : M\H− → (0,+∞) as follows:

f =
{
e2swR , on {r ≤ R}
C2s
4 ·

(
r
R − 9

10 log(
r
R )

)
, on {r ≥ R}, (6.76)

and

f̃ =
{
e2sw̃R , on {r ≤ R}
C2s
4 ·

(
r
R − 9

10 log(
r
R )

)
, on {r ≥ R}, (6.77)

where C4 > 0 is chosen so that f and f̃ are smooth at r = R [which is possible in view
of (6.66)].

Let h : M\H− → R be a smooth and T -invariant function satisfying the following
conditions (provided δ1, δ2 � 1):
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1. In the region {r ≤ 4
3 R}:

h = −χ≤ 1
2 R0

sδ1
∇μ∇νwR∇μwR∇νwR

gref(dwR, dwR)
e2swR + χ≥R0(r

−1 − r− 3
2 )∂r f, (6.78)

where

χ≤ 1
2 R0

.= χ4(
R0

2r
). (6.79)

2. In the region { 43 R ≤ r ≤ δ−1
2 R}, h is a function of r , satisfying

c f (R)r−2 < h ≤ min{(r−1 − r− 3
2 )∂r f, (1 − r− 1

2 )∂2r f } (6.80)

and
−�gh ≤ CR−4 f (R) (6.81)

for some absolute constants C, c > 0.
3. In the region {r ≥ δ−1

2 R}:
h = 1

2
∂2r f. (6.82)

Notice that h can indeed be defined as above on the interval {(1+2δ2)R ≤ r ≤ δ−1
2 R}

(provided δ2 is smaller than an absolute constant), in view of the fact that

min{∂2r f, r−1∂r f } � f (R)r−2, (6.83)

�gh = (
1 + O(r−1)

)
∂2r h +

(
(d − 1)r−1 + O(r−2)

)
∂r h (6.84)

and 4∑
j=1

r j−4|∂ j
r f | ≤ CR−4 f (R) (6.85)

on that interval, while (r−1 − r− 3
2 )∂r f < ∂2r f for R ≤ r < 4

3 R (provided R � 1) and
r−1∂r f > ∂2r f for r ≥ δ−1

2 R (provided δ2 � 1).
We also define h̃ : M\H− → R in the same way as h, but with w̃R and f̃ in place

of wR and f , respectively.

6.4. The integration-by-parts scheme. In this section,wewill establish a general identity
obtained fromEq. (6.1) and a suitable first order multiplier, after successively integrating
by parts overR(τ1, τ2). This identity will lie at the core of the proof of Proposition 6.1.

Let f, h be as in Sect. 6.3. We introduce the following multiplier for equation (6.1)

2∇μ f · ∇μϕ + �g f · ϕ. (6.86)

Multiplying (5.29) with the complex conjugate of (6.86) and integrating by parts over
R(τ1, τ2), we obtain:∫

R(τ1,τ2)

Re
{
2∇μ∇ν f ∇μϕ∇νϕ̄ − 1

2
�2

g f |ϕ|2} dg

= −
∫
R(τ1,τ2)

Re
{
G

(
2∇μ f ∇μϕ̄ + (�g f )ϕ̄

)}
dg
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−
2∑
j=1

(−1) j
∫

�τ j

Re
{(
2∇μ f ∇μϕ̄∇νϕ + (�g f )ϕ∇νϕ̄ − ∇ν f ∇μϕ∇μϕ̄

−1

2
(∇ν(�g f ))|ϕ|2)nν

�τ j

}
dg�τ j

−
∫
H+∩R(τ1,τ2)

Re
{(
2∇μ f ∇μϕ̄∇νϕ + (�g f )ϕ∇νϕ̄ − ∇ν f ∇μϕ∇μϕ̄

−1

2
(∇ν(�g f ))|ϕ|2)nν

H+

}
dvolH+ .

(6.87)

Let us split the left hand side of (6.87) as

∫
R(τ1,τ2)

Re
{
2∇μ∇ν f ∇μϕ∇νϕ̄ − 1

2
�2

g f |ϕ|2
}
dg

= +
∫
R(τ1,τ2)

χ≤RRe
{
2∇μ∇ν f ∇μϕ∇νϕ̄ − 1

2
�2

g f |ϕ|2
}
dg

+
∫
R(τ1,τ2)

(1 − χ≤R)Re
{
2∇μ∇ν f ∇μϕ∇νϕ̄ − 1

2
�2

g f |ϕ|2
}
dg.

(6.88)

Using the identity

∇μϕ∇νϕ̄ = f −1∇μ( f
1
2 ϕ)∇ν( f

1
2 ϕ̄)

−1

2
f −1(∇μ f ϕ∇νϕ̄ + ∇ν f ϕ̄∇μϕ

) − 1

4
f −2∇μ f ∇ν f |ϕ|2 (6.89)

and integrating by parts in the ϕ∇ϕ terms, we have:

∫
R(τ1,τ2)

χ≤RRe
{
2∇μ∇ν f ∇μϕ∇νϕ̄ − 1

2
�2

g f |ϕ|2
}
dg

=
∫
R(τ1,τ2)

χ≤RRe
{
2 f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) +

(∇ν( f
−1∇μ∇ν f ∇μ f )

−1

2
f −2∇μ∇ν f ∇μ f ∇ν f − 1

2
�2

g f
)|ϕ|2

}
dg

+
∫
R(τ1,τ2)

∇νχ≤R · f −1∇μ∇ν f ∇μ f |ϕ|2 dg

+
2∑
j=1

(−1) j
∫

�τ j

χ≤R · f −1∇μ∇ν f ∇μ f |ϕ|2nν
�τ j

dg�τ j

+
∫
H+∩R(τ1,τ2)

χ≤R · f −1∇μ∇ν f ∇μ f |ϕ|2nν
H+ dvolH+ .

(6.90)

Thus, in view of (6.90), the identity (6.88) yields:
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∫
R(τ1,τ2)

Re
{
2∇μ∇ν f ∇μϕ∇νϕ̄ − 1

2
�2

g f |ϕ|2
}
dg

=
∫
R(τ1,τ2)

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) + 2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄

}
dg

+
∫
R(τ1,τ2)

(
χ≤R∇ν

(
f −1∇μ∇ν f ∇μ f

) − 1

2
χ≤R f −2∇μ∇ν f ∇μ f ∇ν f − 1

2
�2

g f
)
|ϕ|2 dg

+
∫
R(τ1,τ2)

(∇νχ≤R · f −1∇μ∇ν f∇μ f
)|ϕ|2 dg

+
2∑
j=1

(−1) j
∫

�τ j

χ≤R f −1∇μ∇ν f ∇μ f |ϕ|2nν
�τ j

dg�τ j

+
∫
H+∩R(τ1,τ2)

χ≤R · f −1∇μ∇ν f ∇μ f |ϕ|2nν
H+ dvolH+ . (6.91)

Adding to (6.91) the identity

0 =
∫
R(τ1,τ2)

(
− 2χ≥R0χ≤Rr

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2 + 2χ≥R0χ≤Rr

−1(∂r f )|∂rϕ|2

+χ≥R0χ≤Rr
−1 f −1(∂r f )

2∂r (|ϕ|2) + 1

2
χ≥R0χ≤Rr

−1 f −2(∂r f )
3|ϕ|2

)
dg (6.92)

(recall that ∂r is the coordinate vector field in the (t, r, σ) coordinate chart in each
connected component of the region {r ≥ 1

4 R0}) and integrating by parts in the ∂r (|ϕ|2)
term, we obtain:

∫
R(τ1,τ2)

Re
{
2∇μ∇ν f ∇μϕ∇νϕ̄ − 1

2
�2

g f |ϕ|2
}
dg

=
∫
R(τ1,τ2)

Re
{
2χ≤R

(
f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − χ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2)

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2 +A(R)

f |ϕ|2
}
dg

+
2∑
j=1

(−1) j
∫

�τ j

χ≤R f −1∇μ∇ν f ∇μ f |ϕ|2nν
�τ j

dg�τ j

+
∫
H+∩R(τ1,τ2)

χ≤R · f −1∇μ∇ν f ∇μ f |ϕ|2nν
H+ dvolH+ , (6.93)

where

A(R)
f

.= χ≤R∇ν

(
f −1∇μ∇ν f ∇μ f

) − 1

2
χ≤R f −2∇μ∇ν f ∇μ f ∇ν f − 1

2
�2

g f +

− χ≥R0χ≤R∂r
(
r−1 f −1(∂r f )

2) − χ≥R0χ≤Rr
−1 f −1(∂r f )

2div(∂r )

+
1

2
χ≥R0χ≤Rr

−1 f −2(∂r f )
3−

+ ∇νχ≤R · f −1∇μ∇ν f ∇μ f − ∂r (χ≥R0χ≤R)r−1 f −1(∂r f )
2. (6.94)



A Proof of Friedman’s Ergosphere Instability for Scalar Waves 493

Thus, (6.87) and (6.93) yield:
∫
R(τ1,τ2)

Re
{
2χ≤R

(
f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄)−χ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2)

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2 +A(R)

f |ϕ|2
}
dg

= −
∫
R(τ1,τ2)

Re
{
G

(
2∇μ f ∇μϕ̄ + (�g f )ϕ̄

)}
dg − B(R)

f [ϕ; τ1, τ2], (6.95)

where

B(R)
f [ϕ; τ1, τ2] =

2∑
j=1

(−1) j
∫

�τ j

Re
{(

2∇μ f ∇μϕ̄∇νϕ + (�g f )ϕ∇νϕ̄ − ∇ν f ∇μϕ∇μϕ̄

+
(
χ≤R f −1∇μ∇ν f ∇μ f − 1

2
(∇ν(�g f ))

)|ϕ|2
)
nν

�τ j

}
dg�τ j

+
∫
H+∩R(τ1,τ2)

Re
{(

2∇μ f ∇μϕ̄∇νϕ + (�g f )ϕ∇νϕ̄ − ∇ν f ∇μϕ∇μϕ̄

+
(
χ≤R f −1∇μ∇ν f ∇μ f − 1

2
(∇ν(�g f ))

)|ϕ|2
)
nν
H+

}
dvolH+ . (6.96)

Finally, for h : M\H− → R as in Sect. 6.3, adding to (6.95) the Lagrangean identity

∫
R(τ1,τ2)

( − 2h∇μϕ∇μϕ̄ + (�gh)|ϕ|2) dg =
∫
R(τ1,τ2)

Re
{
G · 2hϕ̄

}
dg

+
2∑
j=1

(−1) j
∫

�τ j

Re
{(
2h∇νϕϕ̄ − ∇νh|ϕ|2)nν

�τ j

}
dg�τ j

+
∫
H+∩R(τ1,τ2)

Re
{(
2h∇νϕϕ̄ − ∇νh|ϕ|2)nν

H+

}
dvolH+ ,

(6.97)

we obtain:∫
R(τ1,τ2)

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄)

−2χ≤Rχ≥R0r
−1 f −1(∂r f )

∣∣∂r ( f 1
2 ϕ)

∣∣2
+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr

−1(∂r f )|∂rϕ|2
−2h∇μϕ∇μϕ̄ +A(R)

f,h |ϕ|2
}
dg

= −
∫
R(τ1,τ2)

Re
{
G

(
2∇μ f ∇μϕ̄ + (�g f − 2h)ϕ̄

)}
dg − B(R)

f,h [ϕ; τ1, τ2],
(6.98)

where

A(R)
f,h

.= �gh + χ≤R∇ν

(
f −1∇μ∇ν f ∇μ f

) − 1

2
χ≤R f −2∇μ∇ν f ∇μ f ∇ν f − 1

2
�2

g f

− χ≥R0χ≤R∂r
(
r−1 f −1(∂r f )

2) − χ≥R0χ≤Rr
−1 f −1(∂r f )

2div(∂r )
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+
1

2
χ≥R0χ≤Rr

−1 f −2(∂r f )
3

+ ∇νχ≤R · f −1∇μ∇ν f ∇μ f − ∂r (χ≥R0χ≤R)r−1 f −1(∂r f )
2 (6.99)

and

B(R)
f,h [ϕ; τ1, τ2]

=
2∑
j=1

(−1) j
∫

�τ j

Re
{(

2∇μ f ∇μϕ̄∇νϕ + (�g f − 2h)ϕ∇νϕ̄ − ∇ν f ∇μϕ∇μϕ̄

+
(
χ≤R f −1∇μ∇ν f ∇μ f + ∇νh − 1

2
(∇ν(�g f ))

)|ϕ|2
)
nν

�τ j

}
dg�τ j

+
∫
H+∩R(τ1,τ2)

Re
{(

2∇μ f ∇μϕ̄∇νϕ + (�g f − 2h)ϕ∇νϕ̄ − ∇ν f ∇μϕ∇μϕ̄

+
(
χ≤R f −1∇μ∇ν f ∇μ f + ∇νh − 1

2
(∇ν(�g f ))

)|ϕ|2
)
nν
H+

}
dvolH+ .

(6.100)
In the next sections, we will establish a number of estimates for the left hand side of

(6.98) that will lead to the proof of Proposition 6.1.

6.5. Estimates for the zeroth order term. In this section, we will establish some bounds
for the coefficientA(R)

f,h of the zeroth order term appearing in the left hand side of (6.98).
In view of the choice of the functions f, h in Sect. 6.3, we can readily calculate that

on {r ≤ R} (where χR ≡ 1), the quantity A(R)
f,h in (6.99) has the form

A(R)
f,h =

{
AwR ,3s

3 +AwR ,2s
2 +AwR ,1s

}
e2swR , (6.101)

where

AwR ,3 =
(
4 − χ≤ 1

2 R0
δ1

∇αwR∇αwR

gref(dwR, dwR)

)
∇μ∇νwR∇μwR∇νwR

+ 4χ≥R0r
−1(1 + O(r− 1

2 )
)
(∂rwR)3, (6.102)

AwR ,2 = 4∇ν∇μ∇νwR∇μwR − 4∇ν∇ν∇μwR∇μwR

− 4∇μ(�gwR)∇μwR − 2(�gwR)2

+ 4χ≥R0r
−1(1 + O(r− 1

2 )
)
∂2r wR∂rwR + 4χ≥R0r

−2(1 + O(r− 1
2 )

)
(∂rwR)2

+ O(δ1)χ≤ 1
2 R0

1∑
j=0

|∇2+ jwR |gref |∇2− jwR |gref

+ O(|∇χ≤R0 |gref + |∇χ≤ 1
2 R0

|gref)
(|∇2wR |2gref + |∇wR |2gref

)
, (6.103)

AwR ,1 = −�2
gwR + 2χ≥R0r

−1(1 + O(r− 1
2 )

)
∂3r w

+ 2(d − 3)χ≥R0r
−2(1 + O(r− 1

2 )
)
∂2r wR

− 2(d − 3)χ≥R0r
−3(1 + O(r− 1

2 )
)
∂rwR
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+ O(δ1)χ≤ 1
2 R0

2∑
j1+ j2+ j3=1

|∇2+ j1wR |gref |∇1+ j2wR |gref |∇1+ j3wR |gref
|∇wR |2gref

+ 2(�gχ≤R0 )r
−1∂rwR − δ1(�gχ≤ 1

2 R0
)∇μ∇νwR∇μwR∇νwR

∇αwR∇αwR

gref(dwR, dwR)

+ O
( 2∑

j=1

(|∇ jχ≤R0 |gref + |∇ jχ≤ 1
2 R0

|gref)
)(|∇2wR |gref + |∇wR |gref

)
(6.104)

(with the constants implicit in the O(·) notation depending only on the geometry of
(M, g)).

Remark. Notice the cancellation of the O(s4) terms that were expected to apper in
(6.101).

6.5.1. Bound on {r ≤ R0}. In view of (6.101)–(6.104), the properties of the function
wR (see Lemma 6.3) and the form (2.1) of the metric g in the region r � 1 imply that
in the region {r ≤ R0}:

A(R)
f,h =

{
Aw,3;R0 R

−9ε0s3 + Oδ0(1)R
−6ε0s2 + Oδ0(1)R

−3ε0s
}
e2swR , (6.105)

where

Aw,3;R0 =
(
4 − χ≤ 1

2 R0
δ1

∇αw∇αw

gref(dw, dw)

)
∇μ∇νw∇μw∇νw

+ 4χ≥R0r
−1(1 + O(r− 1

2 )
)
(∂rw)3, (6.106)

w is the function from Lemma 6.2 and the constants implicit in the Oδ0(1) notation
depend only on R0, δ0.

6.5.2. Bounds on {R0 ≤ r ≤ R}. In the region {R0 ≤ r ≤ R}, the expressions (6.102),
(6.103) and (6.104) simplify as follows, in view of (2.1) and the fact thatwR is a function
of r for r ≥ R0:

AwR ,3 = 4
(
1 + O(r− 1

2 )
)
∂2r wR(∂rwR)2 + 4r−1(1 + O(r− 1

2 )
)
(∂rwR)3, (6.107)

AwR ,2 = −4
(
1 + O(r− 1

2 )
)
∂rwR∂3r wR − 2

(
1 + O(r− 1

2 )
)
(∂2r wR)2

+ (4 − 8(d − 1))r−1(1 + O(r− 1
2 )

)
∂2r wR∂rwR

+ (4(d − 2) − 2(d − 1)2)r−2(1 + O(r− 1
2 )

)
(∂rwR)2, (6.108)

AwR ,1 = −(
1 + O(r− 1

2 )
)
∂4r wR − 2(d − 1)r−1(1 + O(r− 1

2 )
)
∂3r wR

− (d − 3)2r−1(1 + O(r− 1
2 )

)
∂2r wR + (d − 3)2r−3(1 + O(r− 1

2 )
)
∂rwR .

(6.109)

Therefore, the properties of the function wR (see Lemma 6.3) imply the following
relations for A(R)

f,h on {R0 ≤ r ≤ R} (provided R0is sufficiently large in terms of the
geometry of (M, g)):
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1. In the region {R0 ≤ r ≤ Rε0}, (6.58)–(6.60) yield:
A(R)

f,h ≥
{
cδ0 R

−9ε0s3 − Cδ0s
2 − Cδ0s

}
e2swR (6.110)

for some constants cδ0 ,Cδ0 > 0 depending on δ0, R0.
2. In the region {Rε0 ≤ r ≤ 1

2 R}, (6.67)–(6.69) yield:

A(R)
f,h ≥

{
cδ0ε0R

−3ε0 · r−4+3ε0s3 − Cδ0 R
−2ε0r−4+2ε0s2 − Cδ0 R

−ε0r−4+ε0s
}
e2swR .

(6.111)
3. In the region { 12 R ≤ r ≤ R}, (6.62)–(6.65) yield:

A(R)
f,h ≥ −Cδ0 R

−4
{
v′
s(

r

R
)s3 + s2 + s

}
e2swR , (6.112)

where Cδ0 > 0 depends only on δ0, R0.

6.5.3. Bound on {r ≥ R}. In the region {R ≤ r ≤ δ−1
2 R}, (6.76), (6.78) and (6.81)

yield:
A(R)

f,h (r) ≥ −CR−4 f (R) (6.113)

for some absolute constant C > 0, while for r ≥ δ−1
2 R we have (provided δ2 � 1):

A(R)
f,h = − (d − 1)

2
r−1(1 + O(r− 1

2 )
)
∂3r f − (d − 1)(d − 3)

2
r−2(1 + O(r− 1

2 )
)
∂2r f

+
(d − 1)(d − 3)

2
r−3(1 + O(r− 1

2 )
)
∂r f

= 1

2
(d − 1)r−4 f (R)

(
(d − 3)(

r + O(r
1
2 )

R
) +

9

5
+ O(r− 1

2 )
)

≥ f (R)
(1
2
(d − 1)(d − 3)R−1r−3(1 + O(r− 1

2 )
)
+ cr−4

)
(6.114)

for some absolute constant c > 0.

6.6. Estimates for the first order terms. In this Section, we will establish various bounds
for the quantity

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+ 2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2 − 2h∇μϕ∇μϕ̄

(6.115)
appearing in the integral in left hand side of (6.98). Thus, combined with the bounds of
Sect. 6.5 for the zeroth order termA(R)

f,h |ϕ|2 in left hand side of (6.98), the results of this
section will provide all the necessary estimates leading to the proof of Proposition 6.1.

Let us denote with g−1 the natural extension of the metric (2.1) on the cotangent
bundle T ∗M ofM. Since we have identifiedM\H− with R × � under the flow of T ,
g−1 splits naturally in any local coordinate chart (t, x1, . . . , xd) on R × � as

g−1 = g00T ⊗ T +
1

2
g0i (T ⊗ ∂xi + ∂xi ⊗ T ) + (g−1)

i j
�∂xi ⊗ ∂x j , (6.116)
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where (g−1)� is a symmetric (2, 0)-tensor on�. In view of Assumption G3, the expres-
sion (6.116) and the fact that g−1 is non-degenerate and has Lorentzian signature imply
that (g−1)� has Riemannian signature on �\(E ∪ H+) and Lorentzian signature on
� ∩ int (E ), while (g−1)� degenerates on � ∩ (∂E ∪H+). Using the tensor (g−1)� , we
can conveniently bound for any ϕ ∈ C1(M\H−) (for some constant C > 0 depending
only on the geometry of (M, g)):

∇μϕ∇μϕ̄ ≥ (g−1)
i j
�∂iϕ∂ j ϕ̄ − C |∇g�ϕ|g� |Tϕ| − C |Tϕ|2, (6.117)

where the indices i, j in the abstract index notation (g−1)
i j
�∂iϕ∂ j ϕ̄ run over the variables

{xi }di=1 in any local coordinate chart on (M\H−) of the form (t, x1, . . . , xd).

6.6.1. Bound on Eext ∪ {r ≤ 1
4r0}. For any 0 ≤ τ1 ≤ τ2, we can readily bound from

above on R(τ1, τ2) ∩ (
Eext ∪ {r ≤ 1

4r0}
)
in view of (6.76) and (6.78):

∫
R(τ1,τ2)∩

(
Eext∪{r≤ 1

4 r0}
)

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2

−2h∇μϕ∇μϕ̄ +A(R)
f,h |ϕ|2

}
dg

≤ Cδ0

∫
R(τ1,τ2)∩

(
Eext∪{r≤ 1

4 r0}
) e2swR

(
(R−6ε0s2 + 1)|∇ϕ|2gref+(R−12ε0s4+1)|ϕ|2

)
dg.

(6.118)

6.6.2. Bound on { 14r0 ≤ r ≤ 1
2 R0}\Eext. In the region { 14r0 ≤ r ≤ 1

2 R0}, in view of
(6.37) and (6.76), we can estimate (using a Cauchy–Schwarz inequality):

Re
{
2 f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄)

}
= e2swR

{
8s2

∣∣∇μwR∇μϕ
∣∣2 + 16s3∇μwR∇μwRRe{ϕ · ∇νwR∇νϕ̄}

+ 8s4
(∇μwR∇μwR

)2|ϕ|2 + 4s∇μ∇νwR∇μϕ∇νϕ̄

+ 8s∇μ∇νwR∇μwRRe{ϕ · ∇νϕ̄} + 4s3∇μ∇νwR∇μwR∇νwR |ϕ|2
}

≥ e2swR
{
8s2

∣∣∇μwR∇μϕ + s2∇μwR∇μwR · ϕ
∣∣2

− Csδ0
∇μ∇νwR∇μwR∇νwR

gref(dwR, dwR)

∣∣∇ϕ
∣∣2
gref

+ 3s3∇μ∇νwR∇μwR∇νwR |ϕ|2
}

(6.119)

for some absolute constant C > 0. Thus, (6.119), (6.78) and (6.117) imply that we can
bound from below on the region R(τ1, τ2) ∩ { 14r0 ≤ r ≤ 1

2 R0}\Eext:
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∫
R(τ1,τ2)∩{ 14 r0≤r≤ 1

2 R0}\Eext
Re

{
2 f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2h∇μϕ∇μϕ̄

}
dg

≥
∫
R(τ1,τ2)∩{ 14 r0≤r≤ 1

2 R0}\Eext

e2swR

{∇μ∇νwR∇μwR∇νwR

gref(dwR, dwR)

(
csδ1(g

−1)
i j
�∂iϕ∂ j ϕ̄ + cs3gref(dwR, dwR)|ϕ|2

)

− Cs
( 2∑
j=1

|∇ jwR |gref
)|∇g�ϕ|g� |Tϕ| − Cs

( 2∑
j=1

|∇ jwR |gref
)|Tϕ|2

}
dg. (6.120)

for some absolute constants c,C > 0.

6.6.3. Bound on { 12 R0 ≤ r ≤ R0}. In the region {r ≥ 1
2 R0}, the functions f, h depend

only on r . In particular, we compute in the (t, r, σ) coordinate system in each connected
component of the region {r ≥ 1

2 R0} for any function ψ ∈ C1(M):

∇μ∇ν f ∇μψ∇νψ̄ = (
(1 + O(r−1))∂2r f + O(r−2)∂r f

)|∂rψ|2
+r−3(1 + O(r−1))∂r f |∂σψ|2 + O(r−2)∂r f |Tψ|2. (6.121)

Therefore, (6.76) and (6.78) yield the following lower bound:

∫
R(τ1,τ2)∩{ 12 R0≤r≤R0}

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+ 2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2 − 2h∇μϕ∇μϕ̄

}
dg

≥ c
∫
R(τ1,τ2)∩{ 12 R0≤r≤R0}

e2swR

{(
s2(∂rwR)2 + O(1)s

2∑
j=1

|∇ jwR |gref
)
e−2swR

∣∣∂r (eswRϕ)
∣∣2

+ s(∂rwR)
(
χ≥R0(r

− 3
2 + O(r−2)) + O(δ1)|∇wR |−1

gref |∇2wR |gref
)|∂rϕ|2

+ s(∂rwR)
(
r−3 + O(r−4) + χ≥R0(r

− 7
2 − r−3)

+ O(δ1)|∇wR |−1
gref |∇2wR |gref

)|∂σϕ|2

+ s(∂rwR)
(
χ≥R0(r

−1 + O(r− 3
2 )) + O(δ1)|∇wR |−1

gref |∇2wR |gref
)|Tϕ|2

}
dg

(6.122)
for some c > 0 depending on the geometry of (M, g).

6.6.4. Bound on {R0 ≤ r ≤ R}. In the region {R0 ≤ r ≤ R}, in view of (6.76), (6.78)
and (6.121), we can readily estimate from below:
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∫
R(τ1,τ2)∩{R0≤r≤R}
Re

{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2 − 2h∇μϕ∇μϕ̄

}
dg

≥ c
∫
R(τ1,τ2)∩{R0≤r≤R}

e2swR
{(
s2(1 + O(r−1))(∂rwR)2 + s(∂2r wR + O(r−2)∂rwR)

)
e−2swR

∣∣∂r (eswRϕ)
∣∣2

+s(∂rwR)
(
r− 3

2 + O(r−2)
)|∂rϕ|2 + s(∂rwR)

(
r− 7

2 + O(r−4)
)|∂σϕ|2

+cs(∂rwR)
(
r−1 + O(r− 3

2 )
)|Tϕ|2

}
dg (6.123)

for some c > 0 depending on the geometry of (M, g).

6.6.5. Bound on {r ≥ R}. In the region {r ≥ R}, we can estimate in view of in view of
(6.121):∫

R(τ1,τ2)∩{r≥R}
Re

{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2 − 2h∇μϕ∇μϕ̄

}
dg

≥
∫
R(τ1,τ2)∩{r≥R}{
χ≤R

(
2(1 + O(r−1))∂2r f − 2(r−1 − r− 3

2 + O(r−2))∂r f
)
f −1

∣∣∂r ( f 1
2 ϕ)

∣∣2
+
(
2(1 − χ≤R)

(
(1 + O(r−1))∂2r f + O(r−2)∂r f

) − 2(1 + O(r−1))h
)
|∂rϕ|2

+
(
2r−3(1 + O(r−1))∂r f − 2(r−2 + O(r−3))h

)
|∂σϕ|2

+
(
2h + O(r−2)∂r f

)|Tϕ|2
}
dg. (6.124)

6.7. Proof of Proposition 6.1.

1. In view of (6.105), (6.106), (6.120) and Lemma 6.2, we can bound:∫
R(τ1,τ2)∩{ 14 r0≤r≤ 1

2 R0}\E ext

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2 − 2h∇μϕ∇μϕ̄ +A(R)

f,h |ϕ|2
}
dg

≥
∫
R(τ1,τ2)∩{ 14 r0≤r≤ 1

2 R0}\
(
E ext∪Bcri t (δ0)

)

e2swR

{
cδ0δ1 sR

−3ε0 (g−1)
i j
�∂iϕ∂ j ϕ̄ − CsR−3ε0 |∇g� ϕ|g� |Tϕ|
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−CsR−3ε0 |Tϕ|2 + (
cδ0 s

3R−9ε0 − Cδ0 s
2R−6ε0 − Cδ0 sR

−3ε0
)|ϕ|2

}
dg

−Cδ0

∫
R(τ1,τ2)∩Bcri t (δ0)

e2swR
{
sR−3ε0 |∇ϕ|2gref + s3R−9ε0 |ϕ|2

}
dg. (6.125)

Repeating the same procedure for f̃ in place of f , h̃ in place of h and w̃R in place
of wR (see Lemma 6.3), from (the analogues of) (6.105), (6.106), (6.120) for wR
in place of w̃R we obtain:

∫
R(τ1,τ2)∩{ 14 r0≤r≤ 1

2 R0}\Eext
Re

{
2χ≤R f̃ −1∇μ∇ν f ∇μ( f̃

1
2 ϕ)∇ν( f̃

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f̃ −1(∂r f̃ )
∣∣∂r ( f̃ 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f̃ ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f̃ )|∂rϕ|2

−2h̃∇μϕ∇μϕ̄ +A(R)

f̃ ,h̃
|ϕ|2

}
dg

≥
∫
R(τ1,τ2)∩{ 14 r0≤r≤ 1

2 R0}\
(
Eext∪B̃cri t (δ0)

)

e2sw̃R

{
cδ0δ1sR

−3ε0 (g−1)
i j
�∂iϕ∂ j ϕ̄ − CsR−3ε0 |∇g� ϕ|g� |Tϕ|

−CsR−3ε0 |Tϕ|2 + (
cδ0s

3R−9ε0 − Cδ0s
2R−6ε0 − Cδ0sR

−3ε0
)|ϕ|2

}
dg

−Cδ0

∫
R(τ1,τ2)∩B̃cri t (δ0)

e2sw̃R
{
sR−3ε0 |∇ϕ|2gref + s3R−9ε0 |ϕ|2

}
dg. (6.126)

Adding (6.125) and (6.126) and using (6.39) and (6.40), we obtain provided s is
large in terms of δ0:∫

R(τ1,τ2)∩{ 14 r0≤r≤ 1
2 R0}\Eext

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2

−2h∇μϕ∇μϕ̄ +A(R)
f,h |ϕ|2

}
dg

≥
∫
R(τ1,τ2)∩{ 14 r0≤r≤ 1

2 R0}\Eext

Re
{
2χ≤R f̃ −1∇μ∇ν f ∇μ( f̃

1
2 ϕ)∇ν( f̃

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f̃ −1(∂r f̃ )
∣∣∂r ( f̃ 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f̃ ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f̃ )|∂rϕ|2

−2h̃∇μϕ∇μϕ̄ +A(R)

f̃ ,h̃
|ϕ|2

}
dg

≥
∫
R(τ1,τ2)∩{ 14 r0≤r≤ 1

2 R0}\Eext

(e2swR + e2sw̃R )

{
cδ0δ1sR

−3ε0 (g−1)
i j
�∂iϕ∂ j ϕ̄ − CsR−3ε0 |∇g� ϕ|g� |Tϕ|

−CsR−3ε0 |Tϕ|2 + (
cδ0 s

3R−9ε0 − Cδ0 s
2R−6ε0 − Cδ0 sR

−3ε0
)|ϕ|2

}
dg. (6.127)
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2. In view of (6.105), (6.106), (6.122) and Lemma 6.2, we can estimate∫
R(τ1,τ2)∩{ 12 R0≤r≤R0}

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+ 2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2

− 2h∇μϕ∇μϕ̄ +A(R)
f,h |ϕ|2

}
dg

≥
∫
R(τ1,τ2)∩{ 12 R0≤r≤R0}

e2swR
{(
cδ0s

2R−6ε0 − Cδ0sR
−3ε0

)
e−2swR

∣∣∂r (eswRϕ)
∣∣2

+ sR−3ε0
(
cδ0χ≥R0(r

− 3
2 + O(r−2)) − Cδ0δ1

)|∂rϕ|2

+ sR−3ε0
(
cδ0

(
r−3 + O(r−4) + χ≥R0(r

− 7
2 − r−3)

) − Cδ0δ1
)|∂σϕ|2

− Cδ0sR
−3ε0 |Tϕ|2 + (

cδ0s
3R−9ε0 − Cδ0s

2R−6ε0 − Cδ0sR
−3ε0

)|ϕ|2
}
dg.

(6.128)
Provided sR−3ε0 is sufficiently large in terms of δ0, we can estimate

(
cδ0s

2R−6ε0 − Cδ0sR
−3ε0

)
e−2swR

∣∣∂r (eswRϕ)
∣∣2 − Cδ0δ1sR

−3ε0 |∂rϕ|2
≥ cδ0δ1sR

−3ε0 |∂rϕ|2 − Cδ0δ1s
3R−9ε0 |ϕ|2 (6.129)

and thus (6.128) yields:∫
R(τ1,τ2)∩{ 12 R0≤r≤R0}

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2

−2h∇μϕ∇μϕ̄ +A(R)
f,h |ϕ|2

}
dg

≥
∫
R(τ1,τ2)∩{ 12 R0≤r≤R0}

e2swR
{
cδ0δ1sR

−3ε0
∣∣∂rϕ∣∣2 + sR−3ε0

(
cδ0r

− 7
2 − Cδ0δ1

)|∂σϕ|2

−Cδ0sR
−3ε0 |Tϕ|2 + (

(cδ0 − Cδ0δ1)s
3R−9ε0

−Cδ0s
2R−6ε0 − Cδ0sR

−3ε0
)|ϕ|2

}
dg. (6.130)

3. In view of (6.110), (6.123) and Lemma 6.3, we can bound:∫
R(τ1,τ2)∩{R0≤r≤Rε0 }
Re

{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2

−2h∇μϕ∇μϕ̄ +A(R)
f,h |ϕ|2

}
dg



502 G. Moschidis

≥
∫
R(τ1,τ2)∩{R0≤r≤Rε0 }

e2swR
{(
cδ0s

2R−6ε0 − Cδ0s
)
e−2swR

∣∣∂r (eswRϕ)
∣∣2

+cδ0sR
−3ε0r− 3

2 |∂rϕ|2 + cδ0sR
−3ε0r− 7

2 |∂σϕ|2

+cδ0sR
−3ε0r−1|Tϕ|2 + (

cδ0 R
−9ε0s3 − Cδ0s

2 − Cδ0s
)|ϕ|2

}
dg. (6.131)

4. In view of (6.111), (6.123) and (6.67)–(6.69), we can bound:∫
R(τ1,τ2)∩{Rε0≤r≤ 1

2 R}
Re

{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2

−2h∇μϕ∇μϕ̄ +A(R)
f,h |ϕ|2

}
dg

≥
∫
R(τ1,τ2)∩{Rε0≤r≤ 1

2 R}
e2swR

{
r−2(cδ0r2ε0s2R−2ε0 − Cδ0s(r

ε0 R−ε0 + r2ε0 R−2ε0 )
)
e−2swR

∣∣∂r (eswRϕ)
∣∣2

+cδ0r
− 5

2 +ε0sR−ε0 |∂rϕ|2 + cδ0r
− 9

2 +ε0sR−ε0 |∂σϕ|2 + cδ0r
−2+ε0sR−ε0 |Tϕ|2

+r−4(cδ0ε0r3ε0s3R−3ε0 − Cδ0r
2ε0s2R−2ε0 − Cδ0r

ε0sR−ε0
)|ϕ|2

}
dg. (6.132)

5. In view of (6.112), (6.123) and (6.63)–(6.65), we can bound:∫
R(τ1,τ2)∩{ 12 R≤r≤R}

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2

−2h∇μϕ∇μϕ̄ +A(R)
f,h |ϕ|2

}
dg

≥
∫
R(τ1,τ2)∩{ 12 R≤r≤R}

e2swR
{
R−2(cδ0 − Cδ0(δ1 + s−1δ−1

1 )
)
e−2swR

∣∣∂r (eswRϕ)
∣∣2

+cδ0 R
− 5

2 |∂rϕ|2 + cδ0 R
− 9

2 |∂σϕ|2
+cδ0 R

−2v′
s(

r

R
)s|Tϕ|2 − Cδ0 R

−4(v′
s(

r

R
)s3 + s2 + s

)}
dg. (6.133)

6. In view of (6.113), (6.124), (6.76), (6.78) and (6.80), we can estimate:∫
R(τ1,τ2)∩{R≤r≤δ−1

2 R}

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2

−2h∇μϕ∇μϕ̄ +A(R)
f,h |ϕ|2

}
dg
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≥
∫
R(τ1,τ2)∩{R≤r≤δ−1

2 R}

{
2χ≤R

R2

r2
(
9

5
− r

R
)R−2 f (R) · f −1

∣∣∂r ( f 1
2 ϕ)

∣∣2

+
(
(1 − χ≤R) f (R)r− 5

2 − 2χ≤R
( R2

r2
(
r

R
− 9

10
)(R−2 + O(R− 5

2 )) f (R)
)
|∂rϕ|2

+c f (R)r− 9
2 |∂σϕ|2 + c f (R)r−2|Tϕ|2 − CR−4 f (R)|ϕ|2

}
dg. (6.134)

Remark. Notice that the positivity of the coefficient of
∣∣∂r ( f 1

2 ϕ)
∣∣2 in the right hand

side of (6.134) follows from the fact that, in view of (6.76), provided R is sufficiently
large in terms of the geometry of (M, g), we can bound for R ≤ r ≤ 4

3 R (i.e. on
supp(χ≤R) ∩ {r ≥ R}):

∂2r f + r− 3
2 ∂r f > (r−1 + O(r−2))∂r f + O(r−1)∂2r f + f (R)(

9

5
− r

R
)R−2. (6.135)

Applying the product rule and a Cauchy–Schwarz inequality on the first term of the right
hand side of (6.134), we obtain:

2χ≤R
R2

r2
(
9

5
− r

R
)R−2 f (R) · f −1

∣∣∂r ( f 1
2 ϕ)

∣∣2

≥ 2χ≤R
R2

r2
(
9

5
− r

R
− 1

100
)R−2 f (R)|∂rϕ|2 − Cχ≤R R

−4 f (R)|ϕ|2 (6.136)

for some absolute constant C > 0. Thus, (6.134) yields (provided R � 1):
∫
R(τ1,τ2)∩{R≤r≤δ−1

2 R}

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2

−2h∇μϕ∇μϕ̄ +A(R)
f,h |ϕ|2

}
dg

≥
∫
R(τ1,τ2)∩{R≤r≤δ−1

2 R}
f (R)

{
cr− 5

2 |∂rϕ|2 + cr− 9
2 |∂σϕ|2 + cr−2|Tϕ|2 − CR−4|ϕ|2

}
dg. (6.137)

7. In view of (6.114), (6.124), (6.76) and (6.82), we can bound:∫
R(τ1,τ2)∩{r≥δ−1

2 R}
Re

{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) − 2χ≤Rχ≥R0r

−1 f −1(∂r f )
∣∣∂r ( f 1

2 ϕ)
∣∣2

+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr
−1(∂r f )|∂rϕ|2

−2h∇μϕ∇μϕ̄ +A(R)
f,h |ϕ|2

}
dg

≥
∫
R(τ1,τ2)∩{r≥δ−1

2 R}
f (R)

{
cr−2|∂rϕ|2 + cR−1r−3|∂σϕ|2 + cr−2|Tϕ|2 − CR−1r−3|ϕ|2

}
dg. (6.138)
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In view of (6.118), (6.127), (6.130), (6.131), (6.132), (6.137), (6.138), as well as
the fact that f̃ ≡ f and h̃ ≡ h on on M\(Bcri t (4δ0) ∪ H−)

, we obtain from (6.98)
(provided δ0, δ2 > 0 are sufficiently small in terms of R0 and the geometry of (M, g),
δ1 > 0 is sufficiently small in terms of δ0 and R0, s is sufficiently large in terms of δ0, δ1
and ε0sR−9ε0 is sufficiently large in terms of δ0, δ1):

∫
R(τ1,τ2)∩{ 14 r0≤r≤ 1

2 R0}\Eext
( f + f̃ )

{
cδ0δ1sR

−3ε0(g−1)
i j
�∂iϕ∂ j ϕ̄ − CsR−3ε0 |∇g�ϕ|g� |Tϕ| − CsR−3ε0 |Tϕ|2

+ cδ0s
3R−9ε0 |ϕ|2

}
dg

+ cδ0

∫
R(τ1,τ2)∩{r≥ 1

2 R0}
( f + f̃ )

{
χ{ 12 R0≤r≤R0}δ1sR

−3ε0 + χ{R0≤r≤Rε0 }sR−3ε0r− 3
2 + χ{Rε0≤r≤ 1

2 R}sR
−ε0r− 5

2 +ε0

+ χ{ 12 R≤r≤δ−1
2 R}r

− 5
2 + χ{r≥δ−1

2 R}r
−2

}(∣∣∂rϕ∣∣2 + r−2|∂σϕ|2) dg

+
∫
R(τ1,τ2)∩{ 12 R0≤r≤ 1

2 R}
( f + f̃ )

{
χ{ 12 R0≤r≤R0}

(
− Cδ0sR

−3ε0 |Tϕ|2 + cδ0s
3R−9ε0 |ϕ|2

)

+ cδ0χ{R0≤r≤Rε0 }
(
sR−3ε0r−1|Tϕ|2 + s3R−9ε0 |ϕ|2

)

+ χ{Rε0≤r≤ 1
2 R}

(
sR−ε0r−2+ε0 |Tϕ|2 + cδ0ε0s

3R−3ε0r−4+3ε0 |ϕ|2
)}

dg

+
∫
R(τ1,τ2)∩{ 12 R≤r≤R}

( f + f̃ )v′
s(
r

R
)
(
cδ0 R

−2s|Tϕ|2 − Cδ0 R
−4s3|ϕ|2

)
dg

+
∫
R(τ1,τ2)∩{r≥R}

( f (R) + f̃ (R))
(
cr−2|Tϕ|2 − CR−1r−3|ϕ|2

)
dg

≤ Cδ0

∫
R(τ1,τ2)∩

(
Eext∪{r≤ 1

4 r0}
)( f + f̃ )

{
s2R−6ε0 |∇ϕ|2gref + s4R−12ε0 |ϕ|2

}
dg

−
∫
R(τ1,τ2)

Re
{
G

(
2(∇μ f + ∇μ f̃ )∇μϕ̄ + (�g f + �g f̃ − 2h − 2h̃)ϕ̄

)}
dg

− B(R)
f,h [ϕ; τ1, τ2] − B(R)

f̃ ,h̃
[ϕ; τ1, τ2],

(6.139)
where, for any set A ⊂ M, we denote with χA the characteristic function of A.

In view of the fact that (g−1)� is positive definite onM\E ∪H, we can estimate on
M\Eδ ∪ {r ≥ 1

4r0} for any δ > 0:

cδ0δ1sR
−3ε0(g−1)

i j
�∂iϕ∂ j ϕ̄ − CsR−3ε0 |∇g�ϕ|g� |Tϕ|



A Proof of Friedman’s Ergosphere Instability for Scalar Waves 505

≥ cδδ0δ1sR
−3ε0 |∇g�ϕ|g� − CδsR

−3ε0 |Tϕ|2. (6.140)

Furthermore, if χr0 : M\H− → [0, 1] is a smooth T -invariant function supported in
{r ≤ r0} such that χr0 ≡ 1 on {r ≤ 1

2r0}, then, after integrating by parts in the identity

∫
R(τ1,τ2)

Re
{
N (χr0 ϕ̄)�g(χr0ϕ)

}
dg

=
∫
R(τ1,τ2)

Re
{
N (χr0 ϕ̄)

(
χr0G + 2∇μχr0∇μϕ + �gχr0ϕ

)}
dg, (6.141)

using also the bounds (2.5) and (2.6) from Assumption G2 (as well as a Poincare-type
inequality), we readily obtain the red-shift-type estimate

c
∫
H+∩R(τ1,τ2)

(
J N
μ (ϕ)nμ

H+ + |ϕ|2) dvolH+ + c
∫
R(τ1,τ2)∩{r≤ 1

2 r0}
(|∇ϕ|2gref + |ϕ|2) dg

≤ C
∫
R(τ1,τ2)∩{ 12 r0≤r≤r0}

(|∇ϕ|2gref + |ϕ|2) dg

+ C
∫

�τ1∩{r≤r0}
|∇ϕ|2gref −

∫
R(τ1,τ2)

Re
{
χr0N (χr0 ϕ̄) · G

}
dg. (6.142)

Therefore, in view of (6.140), (6.142) and the fact that

sup{r≤ 1
4 r0}(e

2swR + e2sw̃R )

inf{r≥ 1
2 r0}(e

2swR + e2sw̃R )
> ecsR

−3ε0 (6.143)

(following from (6.43), (6.44), (6.76) and (6.77)), (6.139) yields (provided sR−3ε0 � 1):

∫
R(τ1,τ2)∩{r≤ 1

2 R0}\Eδ

( f + f̃ + sup
{r≤ 1

4 r0}
f )

{
cδδ0δ1sR

−3ε0 |∇g�ϕ|2g�
− CδsR

−3ε0 |Tϕ|2 + cδ0s
3R−9ε0 |ϕ|2

}
dg

+cδ0

∫
R(τ1,τ2)∩{r≥ 1

2 R0}
( f + f̃ )

{
χ{ 12 R0≤r≤R0}δ1sR

−3ε0 + χ{R0≤r≤Rε0 }sR−3ε0r− 3
2 + χ{Rε0≤r≤ 1

2 R}sR
−ε0r− 5

2 +ε0

+χ{ 12 R≤r≤δ−1
2 R}r

− 5
2 + χ{r≥δ−1

2 R}r
−2

}(∣∣∂rϕ∣∣2 + r−2|∂σϕ|2) dg
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+
∫
R(τ1,τ2)∩{ 12 R0≤r≤ 1

2 R}
( f + f̃ )

{
χ{ 12 R0≤r≤R0}

(
− Cδ0sR

−3ε0 |Tϕ|2 + cδ0s
3R−9ε0 |ϕ|2

)

+cδ0χ{R0≤r≤Rε0 }
(
sR−3ε0r−1|Tϕ|2 + s3R−9ε0 |ϕ|2

)

+χ{Rε0≤r≤ 1
2 R}

(
sR−ε0r−2+ε0 |Tϕ|2 + cδ0ε0s

3R−3ε0r−4+3ε0 |ϕ|2
)}

dg

+
∫
R(τ1,τ2)∩{ 12 R≤r≤R}

( f + f̃ )v′
s(

r

R
)
(
cδ0 R

−2s|Tϕ|2 − Cδ0 R
−4s3|ϕ|2

)
dg

+
∫
R(τ1,τ2)∩{r≥R}

( f (R) + f̃ (R))
(
cr−2|Tϕ|2 − CR−1r−3|ϕ|2

)
dg

≤ Cδ0δ

∫
R(τ1,τ2)∩Eδ

( f + f̃ )
{
s2R−6ε0 |∇ϕ|2gref + s4R−12ε0 |ϕ|2

}
dg

−
∫
R(τ1,τ2)

Re
{
G

(
2(∇μ f + ∇μ f̃ )∇μϕ̄ + (�g f + �g f̃ − 2h − 2h̃)ϕ̄

)}
dg

+CB̄(R)

f,h; f̃ ,h̃[ϕ; τ1, τ2],−B(R)
f,h [ϕ; τ1, τ2] − B(R)

f̃ ,h̃
[ϕ; τ1, τ2]

+C sup
{r≤ 1

4 r0}
f
∫

�τ1∩{r≤r0}
|∇ϕ|2gref , (6.144)

where

B̄(R)

f,h; f̃ ,h̃[ϕ; τ1, τ2]

.=
2∑
j=1

∣∣∣∣
∫

�τ j

Re
{(

2∇μ f ∇μϕ̄∇νϕ + (�g f − 2h)ϕ∇νϕ̄ − ∇ν f ∇μϕ∇μϕ̄

+
(
χ≤R f −1∇μ∇ν f ∇μ f + ∇νh − 1

2
(∇ν(�g f ))

)|ϕ|2
)
nν

�τ j

}
dg�τ j

∣∣∣∣

+
2∑
j=1

∣∣∣∣
∫

�τ j

Re
{(

2∇μ f̃ ∇μϕ̄∇νϕ + (�g f̃ − 2h̃)ϕ∇νϕ̄ − ∇ν f̃ ∇μϕ∇μϕ̄

+
(
χ≤R f̃ −1∇μ∇ν f̃ ∇μ f̃ + ∇νh̃ − 1

2
(∇ν(�g f̃ ))

)|ϕ|2
)
nν

�τ j

}
dg�τ j

∣∣∣∣
+ sup

{r≤ 1
4 r0}

f
∫

�τ1∩{r≤r0}
|∇ϕ|2gref

(6.145)

(note that the boundary terms on H+in the right hand side of (6.139) where absorbed
by the term in the left hand side of (6.142)). Inequality (6.3) now readily follows from
(6.144) in view of (6.76), (6.77). ��
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6.8. Proof of Corollary 6.1. For any 1 ≤ k ≤ n and 0 < δ1, δ2, ε0 � 1, let us choose
the parameters R, s to be sufficiently large in terms of δ1, δ2, ε0 and the geometry of
(M, g), satisfying in addition:

R ≥ Cδ1ε0 max{1,ωk
− 1

1−9ε0 ,
( − log δ2

) 1
1−9ε0 }, (6.146)

C
1
3
δ1ε0

max
{
(1 + ωk)R

9ε0 ,− log δ2
} ≤ s ≤ C

− 1
3

δ1ε0
Rωk, (6.147)

for some constant Cδ1ε0 > 1 large in terms of δ1, ε0 and the geometry of (M, g) (notice
that the bound (6.146) guarantees that an s satisfying (6.147) exists).

By approximating the functions ψk , 1 ≤ k ≤ n, by smooth solutions to (1.2) with
compact support in space and using Lemma 5.3 on the decay of ψk as r → +∞, we
infer that Proposition 6.1 also applies for the functions ψk . Therefore, using the values
of s, R chosen above, we obtain for any 0 ≤ τ1 ≤ τ2 and any 1 ≤ k ≤ n:

∫
R(τ1,τ2)∩{r≤R0}\Eδ1

( f + inf
{r≥ 1

4 r0}\E
f )

{
sR−3ε0 |∇g�ψk |2g�

− Cδ1sR
−3ε0 |Tψk |2 + s3R−9ε0 |ψk |2

}
dg

+
∫
R(τ1,τ2)∩{R0≤r≤ 1

2 R}
f

{
sR−3ε0r− 5

2
(∣∣∂rψk

∣∣2+r−2|∂σψk |2
)
+sR−3ε0r−2|Tψk |2 + ε0s

3R−9ε0r−4|ψk |2
}
dg

+
∫
R(τ1,τ2)∩{ 12 R≤r≤R}

f

{
r− 5

2
(∣∣∂rψk

∣∣2 + r−2|∂σψk |2
)
+ R∂rwR

(
cR−2s|Tψk |2 − CR−4s3|ψk |2

)}
dg

+
∫
R(τ1,τ2)∩{r≥R}

f (R)

{
r− 5

2
(∣∣∂rψk

∣∣2 + r−2|∂σψk |2
)
+ r−2|Tψk |2 − CR−1r−3|ψk |2

}
dg

≤ Cδ1

∫
R(τ1,τ2)∩Eδ1

f
{
s2R−6ε0 |∇ψk |2gref + s4R−12ε0 |ψk |2

}
dg

+ C
∣∣∣
∫
R(τ1,τ2)

Fk
(∇μ f ∇μψ̄k + O

( 2∑
j=1

(1 + r) j−2|∇ j f |gref
)
ψ̄k

)
dg

∣∣∣

+ C
2∑
j=1

∫
�τ j

(
|∇ f |gref |∇ψk |2gref +

( 3∑
j=1

(1 + r) j−3|∇ j f |gref
)|ψk |2

)
dg�.

(6.148)
In view Lemma 5.4, the bound (6.148) implies:
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∫
R(τ1,τ2)∩{r≤R0}\Eδ1

( f + inf
{r≥ 1

4 r0}\E
f )

{
sR−3ε0 |∇g� ψk |2g�

+ sR−3ε0 |Tψk |2 + (s3R−9ε0 − Cδ1ω
2
ksR

−3ε0)|ψk |2
}
dg

+
∫
R(τ1,τ2)∩{R0≤r≤ 1

2 R}
f

{
sR−3ε0r− 5

2
(∣∣∂rψk

∣∣2 + r−2|∂σψk |2
)
+ sR−3ε0r−2|Tψk |2 + ε0s

3R−9ε0r−4|ψk |2
}
dg

+
∫
R(τ1,τ2)∩{ 12 R≤r≤R}

f

{
r− 5

2
(∣∣∂rψk

∣∣2 + r−2|∂σψk |2
)

+R−1s∂rwR |Tψk |2 + R−1s∂rwR
(
cω2

k − CR−2s2
)|ψk |2

}
dg

+
∫
R(τ1,τ2)∩{r≥R}

f (R)

{
r− 5

2
(∣∣∂rψk

∣∣2 + r−2|∂σψk |2
)
+ cr−2|Tψk |2 +

(
cω2

k − CR−2)r−2|ψk |2
}
dg

≤ Cδ1

∫
R(τ1,τ2)∩Eδ1

f
{
s2R−6ε0 |∇ψk |2gref + s4R−12ε0 |ψk |2

}
dg

+C
∣∣∣
∫
R(τ1,τ2)

Fk
(∇μ f ∇μψ̄k + O

( 2∑
j=1

(1 + r) j−2|∇ j f |gref
)
ψ̄k

)
dg

∣∣∣

+C
2∑
j=1

∫
�τ j

(
|∇ f |gref |∇ψk |2gref +

( 3∑
j=1

(1 + r) j−3|∇ j f |gref
)|ψk |2

)
dg�

+C
∫
R(τ1,τ2)∩H+

(
|∇ f |gref J N

μ (ψk)n
μ

H+ +
( 3∑
j=1

(1 + r) j−3|∇ j f |gref
)|ψk |2

)
dvolH+ .

+Cω2
k(1 + ω−2

k )
(
log(2 + τ2)

)4
R2
0 sup

{r≤R0}
f · Elog[ψ]

+Cω2
k(1 + ω−6

k ) sup
{r≤R}

f · Elog[ψ]. (6.149)

In view of the bound (6.147) for the parameters R, s, as well as the properties of the
function (6.2), inequality (6.149) yields [using also (5.26) and Lemma 5.2, combined
with a Cauchy–Schwarz inequality, to estimate the second and third terms in the right
hand side of (6.149)]:

∫
R(τ1,τ2)\E2δ1

(
(1 + r)−

5
2 |∇ψk |2gref + (ω2

kr
−2 + r−4)|ψk |2

)
dg

≤
4∑
j=1

(|∇ jwR |gref + |∇ j w̃R |gref
)
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{
Cδ1

supEδ1

(
e2swR + e2sw̃R

)
inf{r≥ 1

4 r0}\E2δ1
(
e2swR + e2sw̃R

) (sR−3ε0)

∫
R(τ1,τ2)\Eδ1

(|∇ψk |2gref + |ψk |2
)
dg

+ Cδ1(1 + ω−10
k )

(
log(2 + τ2)

)4 sup{r≤R}
(
e2swR + e2sw̃R

)
inf{r≤R}

(
e2swR + e2sw̃R

) Elog[ψ]
}
. (6.150)

In view of the properties of the function 6.2, we can estimate

sup
{r≤R}

wR − inf{r≤R} wR + sup
{r≤R}

w̃R − inf{r≤R} w̃R ≤ Cε−1
0 R3ε0 , (6.151)

inf
{ 14 r0≤R}\E2δ1

wR ≥ max
Eδ1

wR + cδ1R
−3ε0 , (6.152)

inf
{ 14 r0≤r≤R}\E2δ1

w̃R ≥ max
Eδ1

w̃R + cδ1R
−3ε0 (6.153)

and
4∑
j=1

(|∇ jwR |gref + |∇ j w̃R |gref
) ≤ C. (6.154)

Therefore, inequality (6.6) readily follows from 6.150, provided Cδ1ε0 in (6.147) is
sufficiently large in terms of δ1, ε0. ��

6.9. Proof of Proposition 6.1 in the case of Dirchlet or Neumann boundary conditions.
In this section, we will briefly sketch how the proof of Proposition 6.1 can be applied
to the case when the boundary ∂M of (M, g) is allowed to have a non-trivial time-
like component ∂timM and equation (6.1) is supplemented with Dirichlet or Neumann
boundary conditions for ϕ on ∂timM.

We will first describe the class of Lorentzian manifolds with such a boundary compo-
nent on which Proposition 6.1 will apply. Let (Md+1, g), d ≥ 2, be a smooth Lorentzian
manifold with piecewise smooth boundary ∂M splitting as

∂M = ∂horM ∪ ∂timM, (6.155)

where ∂horM has the structure of a piecewise smooth null hypersurface and ∂timM is
a smooth timelike hypersurface, with ∂horM ∩ ∂timM = ∅. For the discussion of this
section, we will assume that ∂timM �= ∅, but ∂horM will be allowed to be empty. Let
(M̃, g̃) be the double of (M, g) across ∂timM, which is defined as the disjoint union of
two copies of (M, g) glued along ∂timM (for the relevant definitions, see e.g. [28]). Let
i1, i2 : M → M̃ be the two natural isometric embeddings of (M, g) into (M̃, g̃). Note
that M̃ = i1(M) ∪ i2(M) and i1(∂timM) = i2(∂timM). Furthermore, M̃ is a smooth
manifold, and the metric g̃ is continuous and piecewise smooth on M̃ and smooth on
M̃\i1(∂timM).14 We will always identifyM with i1(M) ⊂ M̃.

We will assume that (M̃, g̃) is a globally hyperbolic Lorentzian manifold (with the
regularity of g̃ as described before), satisfying Assumptions G1, G2 and G3 of Sect. 2
(for the discussion of this Section, we can also allow the case E = ∅). Additionally,
we will assume that the stationary Killing field T of M̃ (defined by Assumption G1)

14 The metric g̃ is continuous across i1(∂timM), but fails to be C1 at all the points of i1(∂timM) on which
the second fundamental form of i1(∂timM) is non-zero.
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is tangent to i1(∂timM). Let also �M̃,SM̃,H±
M̃ ⊂ M̃, tM̃ : M̃\H−

M̃ → R and

rM̃ : M̃\H−
M̃ → [0,+∞) be as defined under Assumption G1. We will assume

without loss of generality that �M̃,SM̃ intersect i1(∂timM) transversally, and that
�M̃ ∩ i1(∂timM),SM̃ ∩ i1(∂timM) are compact. Note that the restriction of HM̃ on
M coincides with ∂horM.

Remark. We will use the notation �,S,H±, t and r for the restriction of the hypersur-
faces �M̃,SM̃,H±

M̃ and the functions tM̃, rM̃ on M 
 i1(M).

For any F ∈ C∞(M) and any (ϕ0,ϕ1) ∈ C∞(�)×C∞(�), the initial-boundary value
problem ⎧⎪⎨

⎪⎩
�gϕ = G on {t ≥ 0}
(ϕ, Tϕ) = (ϕ0,ϕ1) on {t = 0}
ϕ = 0 on ∂timM

(6.156)

is well posed on {t ≥ 0} ⊂ M. This follows from the assumption that (M̃, g̃) is
globally hyperbolic. The Dirichlet boundary condition ϕ|∂timM = 0 in (6.156) can also
be replaced by the Neumann boundary condition

n∂timM(ϕ)|∂timM = 0, (6.157)

where n∂timM is the unit normal vector field on ∂timM, pointing towards the interior of
M.

On a spacetime (M, g) as above, we will extend Proposition 6.1 as follows:

Proposition 6.2. Let (M, g) be a Lorentzian manifold with boundary as above. For any
s, R � 1 sufficiently large in terms of the geometry of (M, g) and any 0 < ε0 < 1, there
exists a a smooth T -invariant function f : M\H− → (0,+∞) as in Proposition 6.1,
so that (provided ε0sR−9ε0 � 1), for any 0 < δ � 1 , any 0 ≤ τ1 ≤ τ2 and any smooth
function ϕ : M\H− → C with compact support on the hypersurfaces {t = const}
solving (6.1) and satisfying on ∂timM either the Dirichlet condition ϕ = 0 or the
Neumann condition n∂timM(ϕ) = 0, the estimate (6.3) holds.

Proof. The proof of Proposition 6.2 follows in almost exactly the same way as the proof
of Proposition 6.1, the only difference being the following: When using the multiplier
(6.86) for equation (6.1) as in Sect. 6.4 and after performing the same integration-by-parts
procedure, one obtains instead of (6.98) the following relation:

∫
R(τ1,τ2)

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄)

−2χ≤Rχ≥R0r
−1 f −1(∂r f )

∣∣∂r ( f 1
2 ϕ)

∣∣2
+2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr

−1(∂r f )|∂rϕ|2
−2h∇μϕ∇μϕ̄ +A(R)

f,h |ϕ|2
}
dg

= −
∫
R(τ1,τ2)

Re
{
G

(
2∇μ f ∇μϕ̄ + (�g f − 2h)ϕ̄

)}
dg

−B(R)
f,h [ϕ; τ1, τ2] − B(b)

f,h[ϕ; τ1τ2], (6.158)
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where

B(b)
f,h[ϕ; τ1τ2] =

∫
∂timM∩R(τ1,τ2)

Re
{(

2∇μ f ∇μϕ̄∇νϕ + (�g f − 2h)ϕ∇νϕ̄ − ∇ν f ∇μϕ∇μϕ̄

+
(
f −1∇μ∇ν f ∇μ f + ∇νh − 1

2
(∇ν(�g f ))

)|ϕ|2
)
nν

∂timM
}
dg∂timM, (6.159)

g∂timM being the induced (Lorentzian) metric on ∂timM. Notice that (6.158) differs from
(6.98) only by the term (6.159) in the right hand side.

Let us assume, without loss of generality, that the function w̄ of Lemma 6.1 has
been chosen so that it additionally satisfies n∂timM(w̄) > 0, with w̄ being constant on
∂timM (it can be readily checked that Lemma 6.1 can be established under this additional
assumption). In the case when ϕ satisfies the Dirichlet boundary condition ϕ|∂timM = 0,
it is straightforward to check that this choice of w̄ implies (in view of the choice of the
functions f, h in Sect. 6.3) that the term (6.159) is non-negative, and in particular∫

∂timM∩R(τ1,τ2)

Re
{(

2∇μ f ∇μϕ̄∇νϕ + (�g f − 2h)ϕ∇νϕ̄ − ∇ν f ∇μϕ∇μϕ̄

+
(
f −1∇μ∇ν f ∇μ f + ∇νh − 1

2
(∇ν(�g f ))

)|ϕ|2
)
nν

∂timM
}
dg∂timM

≥ c
∫

∂timM∩R(τ1,τ2)

n∂timM( f )
∣∣n∂timM(ϕ)

∣∣2 dg∂timM ≥ 0 (6.160)

for some c > 0. Thus, the term (6.159) can be dropped from the right hand side of
(6.158) (thus yielding (6.98)) and one can proceed as before to establish (6.3).

In the case when ϕ satisfies the Neumann boundary condition n∂timM(ϕ)|∂timM = 0,
(6.159) is not necessarily non-negative, since the term

n∂timM( f )∇μϕ∇μϕ̄

in (6.159) does not necessarily have a sign (as is the case when ϕ|∂timM = 0). In order
to absorb this term, we proceed as follows: Let U ⊂ M be a (small) T -invariant tubular
neighborhood of ∂timM (so thatU∩(H∪Bcri t (8δ0)

) = ∅), split asU 
 [0, 1)×∂timM,
where the projection onto the factor [0, 1) is given by a smooth function r̄ : U → [0, 1)
such that∇μr̄ |∂timM = nμ

∂timM, and the projection onto ∂timM is given by a smooth map
σ̄ : U → ∂timM. We will extend n∂timM on the whole of U by the relation

nμ

∂timM = ∇μr̄ . (6.161)

Let χc : [0, 1) → [0, 1] be a smooth function satisfying χc ≡ 1 on [0, 1
4 ] and χc ≡ 0

on [ 12 , 1), and let us define the function f̆ : M → R by the relation

f̆ (r̄ , σ̄)
.= χc(r̄) · (

n∂timM( f )
)|∂timM(σ̄) on U 
 [0, 1) × ∂timM

(where
(
n∂timM( f )

)|∂timM is the value of n∂timM( f ) on {r̄ = 0}) and
f̆ ≡ 0 on M\U .
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Adding to (6.158) the identity
∫
R(τ1,τ2)

Re
{
2∇μ( f̆ nν

∂timM)∇μϕ∇νϕ̄ − ∇ν( f̆ n
ν
∂timM)∇μϕ∇μϕ̄

}
dg

= −
∫
R(τ1,τ2)

Re
{
G · 2 f̆ n∂timM(ϕ̄)

}
dg

−
∫

∂timM∩R(τ1,τ2)

Re
{(
2 f̆ n∂timM(ϕ̄)∇νϕ − f̆ (n∂timM)ν∇μϕ∇μϕ̄

)
nν

∂timM
}
dg∂timM

(6.162)

and using the Neumann condition n∂timM(ϕ)|∂timM = 0, we thus infer:

∫
R(τ1,τ2)

Re
{
2χ≤R f −1∇μ∇ν f ∇μ( f

1
2 ϕ)∇ν( f

1
2 ϕ̄) + 2∇μ( f̆ nν

∂timM)∇μϕ∇νϕ̄

− 2χ≤Rχ≥R0r
−1 f −1(∂r f )

∣∣∂r ( f 1
2 ϕ)

∣∣2
+ 2(1 − χ≤R)∇μ∇ν f ∇μϕ∇νϕ̄ + 2χ≥R0χ≤Rr

−1(∂r f )|∂rϕ|2
− (

2h + ∇ν( f̆ n
ν
∂timM)

)∇μϕ∇μϕ̄ +A(R)
f,h |ϕ|2

}
dg

= −
∫
R(τ1,τ2)

Re
{
G

(
2∇μ f ∇μϕ̄ + (�g f − 2h)ϕ̄

)}
dg

− B(R)
f,h [ϕ; τ1, τ2] − B̆(b)

f,h[ϕ; τ1τ2],
(6.163)

where

B̆(b)
f,h[ϕ; τ1τ2]
=

∫
∂timM∩R(τ1,τ2)

(
f −1∇μ∇ν f ∇μ f + ∇νh − 1

2
(∇ν(�g f ))

)|ϕ|2
)
nν

∂timM dg∂timM.

(6.164)

Notice that, if sR−3ε0 � 1, the term (6.164) is non-negative (in view of the properties
of the functions f, h, see Sect. 6.3), and thus it can be dropped from the right hand
side of (6.163). Furthermore, if l � 1 in Lemma 6.1 and sR−3ε0 � 1, the terms
2∇μ( f̆ nν

∂timM)∇μϕ∇νϕ̄ and ∇ν( f̆ nν
∂timM)

)∇μϕ∇μϕ̄ in the left hand side of (6.163)
(restricted to the complement of Eext) can be absorbed into the right hand side of 6.120.
Thus, following exactly the same steps as we did in order to obtain (6.3) from (6.98) in
the case ∂timM = ∅, we can also obtain (6.3) from (6.163) in the case when ∂timM �= ∅

and n∂timM(ϕ)|∂timM = 0. ��

7. Proof of Proposition 4.1

Let us introduce the parameters 0 < ω0 � 1, ω+ � 1 and τ1 ≥ τ̄0 + ε−2τ∗ depending
on ε, δ1, R, τ∗, τ̄0, Elog[ϕ], Elog[ψ], Elog[Tψ] and E[T 2ψ] in the statement of Proposi-
tion 4.1 (we will fix ω0, ω+ and τ1 later), and, for n = �log2(ω+

ω0
)�, let us decompose
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ψ and Tψ into their frequency localised components {ψk}nk=0, ψ≥ω+ and {(Tψ)k}nk=0,
(Tψ)≥ω+ , respectively, as in Sect. 5.2 (notice that (5.1) is satisfied in view of (4.18)).

In view of Lemma 5.5, (4.1) (and (4.18)), as well as a Hardy-type inequality (of the
form (5.15)), we obtain for any τ ≥ 2τ∗ and any 0 < a � 1:

∫
R(τ−τ∗,τ+τ∗)∩{r≤R}

(
J N
μ (ψ0)n

μ + |ψ0|2
)

≤ Cω2
0

∫
R(τ−τ∗,τ+τ∗)∩{r≤R}

(
J N
μ (ϕ)nμ + |ϕ|2)

+ Ca

(
ω2
0

(
log(2 + τ)

)4 + (1 + ω0τ)
−1

)
(1 + ω−1−a

0 )R2Elog[ϕ]
≤ Ca

{
ω2
0R

2τ∗
(
log(2 + τ)

)4 + ω2
0

(
log(2 + τ)

)4
(1 + ω−1−a

0 )R2

+ (1 + ω0τ)
−1(1 + ω−1−a

0 )R2
}
Elog[ϕ]. (7.1)

From Lemmas 5.4 and 5.6, we obtain for any τ > 0 and any δ > 0:

# δ−1−1
2 $∑

j=0

∫
R(τ+2 jτ∗,τ+2( j+1)τ∗)∩{r≤R}

(
J N
μ (ψ≥ω+)n

μ + |ψ≥ω+ |2
)

≤
∫
R(τ,τ+δ−1τ∗)∩{r≤R}

(
J N
μ (ψ≥ω+)n

μ + |ψ≥ω+ |2
)

≤ Cδ−1τ∗ω−2
+

(Elog[ψ] + E[Tψ]) + CElog[ψ]. (7.2)

We will assume that ω+ is sufficiently large in terms of ε, τ∗, Elog[ψ], E[Tψ] so that
τ∗ω−2

+

(Elog[ψ] + E[Tψ]) � ε. (7.3)

Let us also use the ansatz

ω0 = ω̄0(
log(2 + τ1)

)8 , (7.4)

and let us assume that ω̄0 is sufficiently small in terms of ε, R, τ∗, Elog[ϕ], and τ1 is
sufficiently large in terms of ε, R, Elog[ϕ], ω̄0, so that for any τ1 ≤ τ ≤ 100τ1 (having
fixed an a ∈ (0, 1):

(
ω2
0R

2τ∗
(
log(2 + τ)

)4 + ω2
0

(
log(2 + τ)

)4
(1 + ω−1−a

0 )

R2 + (1 + ω0τ)
−1(1 + ω−1−a

0 )R2)Elog[ϕ] � ε (7.5)

(later, we will also need to assume that τ1 is also sufficiently large in terms ofω+). Then,
(7.1), (7.2), (7.5) and (7.3) imply that for any τ ≥ 0:

# δ−1−1
2 $∑

l=0

∫
R(τ+2lτ∗,τ+2(l+1)τ∗)∩{r≤R}

(
J N
μ (ψ0)n

μ + J N
μ (ψ≥ω+)n

μ + |ψ0|2 + |ψ≥ω+ |2
)

≤ 1

20
εδ−1 + CElog[ψ]. (7.6)
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Repeating the same procedure for Tψ in place of ψ and adding the result
to (7.6), we obtain for any δ > 0 (provided ω̄0 is fixed sufficiently small
in terms of ε, R, τ∗, Elog[ϕ], Elog[ψ], τ1 is fixed sufficiently large in terms of
ε, R, Elog[ϕ], Elog[ψ]ω̄0 and ω+ is fixed sufficiently large in terms of ε, τ∗, Elog
[ψ], Elog[Tψ], E[T 2ψ]):

# δ−1−1
2 $∑

l=0

1∑
j=0

∫
R(τ+2lτ∗,τ+2(l+1)τ∗)∩{r≤R}

(
J N
μ ((T jψ)0)n

μ + J N
μ ((T Jψ)≥ω+)n

μ + |(T jψ)0|2 + |(T jψ)≥ω+ |2
)

≤ 1

10
εδ−1 + C

1∑
j=0

Elog[T jψ]. (7.7)

In view of Corollary 6.1, for any 1 ≤ k ≤ n, any 0 < δ1, δ2 < 1, any 0 < ε0 < 1
and any τ̄ ≥ τ1, we can bound:

∫
(R(τ1,τ̄)\Eδ1 )∩{r≤R}

(
J N
μ (ψk)n

μ + |ψk |2
)

≤ CRδ2

∫
R(τ1,τ̄)∩Eδ1/2

(
J N
μ (ψk)n

μ + |ψk |2
)

+ Cε0δ1Rω−10
0

(
log(2 + τ̄)

)4
eCε0δ1ω+ max{ω−ε0

0 ,− log δ2}Elog[ψ].

(7.8)

Let us set
δ2 = ω3

0ω
−1
+ δ̄2, (7.9)

where δ̄2 is sufficiently small in terms of ε, ε0, R, τ∗, Elog[ψ]. Assuming also that ω̄0 in
(7.4) has been fixed sufficiently small in terms of ε, ε0, R, τ∗, Elog[ψ], from (7.8), (5.26),
(4.18) and the Poincare inequality

∫
R(τ1,τ̄)∩Eδ1

|ψk |2 ≤ C
∫
R(τ1,τ̄)∩{r≤R}

J N
μ (ψk)n

μ + C
∫

(R(τ1,τ̄)\Eδ1 )∩{r≤R}
|ψk |2,

(7.10)
we obtain after summing over all k ∈ {1, . . . , n} provided δ̄2 is sufficiently small in
terms of ε, ε0, R, τ∗, Elog[ψ] (recall that n ∼ log(ω−1

0 ω+)):

n∑
k=1

∫
(R(τ1,τ̄)\Eδ1 )∩{r≤R}

(
J N
μ (ψk)n

μ + |ψk |2
)

≤ Cε0R(τ̄ − τ1)δ2ω
−2
0 log(ω−1

0 ω+)Elog[ψ]
+ Cε0δ1Rω−10

0

(
log(2 + τ̄)

)4
eCε0δ1ω+ max{ω−ε0

0 ,− log δ2}Elog[ψ]
≤ 1

40τ∗
ετ̄ + C1

(
log(2 + τ̄)

)14
eC1

(
log(2+τ1)

)8ε0
, (7.11)

where C1 depends on ε, ε0, δ1, R, τ∗, Elog[ψ],ω+.
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Repeating the same procedure for Tψ in place ofψ, we obtain the following analogue
of (7.11):

n∑
k=1

∫
(R(τ1,τ̄)\Eδ1 )∩{r≤R}

(
J N
μ ((Tψ)k)n

μ + |(Tψ)k |2
)

≤ 1

40τ∗
ετ̄ + C2

(
log(2 + τ̄)

)14
eC2

(
log(2+τ1)

)8ε0
, (7.12)

where C2 depends onε, ε0, δ1, R, τ∗, Elog[Tψ],ω+.
From (7.11) and (7.12) we obtain for any δ > 0 (setting τ̄ = τ1 + δ−1τ∗)

# δ−1−1
2 $∑

l=0

{ n∑
k=1

1∑
j=0

∫
R(τ1+2lτ∗,τ1+2(l+1)τ∗)\Eδ1 )∩{r≤R}

(
J N
μ ((T jψ)k)n

μ + |(T jψ)k |2
)}

≤ 1

20τ∗
ε(τ1 + δ−1τ∗) + C3

(
log(τ1 + δ−1τ∗)

)14
eC3

(
log(2+τ1)

)8ε0
, (7.13)

where C3 = C1 +C2. Adding (7.7) (for τ = τ1) and (7.13), we therefore obtain for any
δ > 0:

# δ−1−1
2 $∑

l=0

{ 1∑
j=0

∫
R(τ1+2lτ∗,τ1+2(l+1)τ∗)\Eδ1 )∩{r≤R}

(
J N
μ (T jψ)nμ + |T jψ|2

)}

≤ 1

10
εδ−1 + C

1∑
j=0

Elog[T jψ] + 1

20τ∗
ε(τ1 + δ−1τ∗)

+ C3
(
log(τ1 + δ−1τ∗)

)14
eC3

(
log(2+τ1)

)8ε0
. (7.14)

Applying the pigeonhole principle on (7.14) (assuming that δ � 1), we infer that
there exists some l0 ∈ {0, . . . , # δ−1−1

2 $} such that

1∑
j=0

∫
R(τ1+2l0τ∗,τ1+2(l0+1)τ∗)\Eδ1 )∩{r≤R}

(
J N
μ (T jψ)nμ + |T jψ|2

)

≤ #δ−1 − 1

2
$−1(1

5
εδ−1 +

1

20
ετ−1∗ τ1 + C

1∑
j=0

Elog[T jψ]

+ C3
(
log(τ1 + δ−1τ∗)

)14
eC3

(
log(2+τ1)

)8ε0 )

≤ ε

2
(1 + τ−1∗ δτ1) + Cδ

1∑
j=0

Elog[T jψ] + C3δ
(
log(τ1 + δ−1τ∗)

)14
eC3

(
log(2+τ1)

)8ε0
.

(7.15)

Thus, provided

δ = δ̄

τ1
, (7.16)
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where δ̄ is small in terms of ε, τ∗, Elog[ψ], Elog[Tψ] and the precise choice of the con-
stants C1,C2, and that τ1 is chosen sufficiently large in terms of ε, ε0, τ∗ and the precise
choice of C1,C2 (assuming also that ε0 has been fixed so that 0 < ε0 < 1

8 ), from (7.15)
we infer:

1∑
j=0

∫
R(τ1+2l0τ∗,τ1+2(l0+1)τ∗)\Eδ1 )∩{r≤R}

(
J N
μ (T jψ)nμ + |T jψ|2

)
< ε. (7.17)

Settingτ
 = τ1+(2l0+1)τ∗ (and thusτ1+2l0τ∗ = τ
−τ∗ andτ1+2(l0+1)τ∗ = τ
+τ∗),
(7.17) yields (4.19). ��

8. Proof of Corollary 2.1

The proof of Corollary 2.1 follows immediately fromTheorem2.1 applied to the quotient
of (R × Vhyd,δ, ghyd) by the translations in the z-direction, i.e. the 2 + 1 dimensional
spacetime (R × V̄hyd,δ, ḡhyd), where V̄hyd,δ = R

2\{r̄ ≤ δ} (in the polar (r̄ ,ϑ) coordinate
system) and

ḡhyd = −(
1 − C2

r̄2
)
dt2 + dr̄2 − 2Cdtdϑ + r̄2dϑ2 (8.1)

(see also the remark below Theorem 2.1, as well as Sect. 6.9, regarding the Dirichlet or
Neumann boundary conditions on {r̄ = δ}).

In particular, in the language of Sect. 6.9, (R × V̄hyd,δ, ḡhyd) is a smooth Lorentzian
manifold with smooth timelike boundary

∂tim
(
R × V̄hyd,δ

) = {r̄ = δ}. (8.2)

The double (˜
R × V̄hyd,δ, g̃hyd) of (R× V̄hyd,δ, ḡhyd) across the boundary ∂tim

(
R× V̄hyd,δ

)
is diffeomorphic to R × R × S

1, with the metric g̃hyd in the (t, r̄ ,ϑ) coordinate chart of
R × R × S

1 having the form:

g̃hyd = −(
1 − C2

(|r̄ − δ| + δ)2

)
dt2 + dr̄2 − 2Cdtdϑ + (|r̄ − δ| + δ)2dϑ2 (8.3)

Notice that (R̃ × Vhyd,δ, g̃hyd) is a globally hyperbolic spacetimewithout boundary, with

Cauchy hypersurface {t = 0}. Let i1, i2 : (R × V̄hyd,δ, ḡhyd) → (˜
R × V̄hyd,δ, g̃hyd) be

the two natural inclusions (see Sect. 6.9). Then, in the coordinate charts (t, r̄ ,ϑ) on

R × [δ,+∞) × S
1 
 R × V̄hyd,δ and R × R × S

1 
 ˜
R × V̄hyd,δ, we have i1

(
(t, r̄ ,ϑ)

) =
(t, r̄ ,ϑ) and i2

(
(t, r̄ ,ϑ)

) = (t, δ − r̄ ,ϑ).
Note that g̃hyd is smooth everywhere except on i1

(
∂tim

(
R×V̄hyd,δ

)) = {r̄ = δ}. Notice
also that (˜

R × V̄hyd,δ, g̃hyd) has no event horizonH (and thus, trivially,H∩ i1
(
∂tim

(
R×

V̄hyd,δ
)) = ∅), and i1

(
∂tim

(
R×V̄hyd,δ

))∩{t = 0} is compact. Thus, in view of the remark
below Theorem 2.1 on spacetimes with timelike boundary, it only remains to verify that

(˜
R × V̄hyd,δ, g̃hyd) satisfies Assumptions G1–G3 and A1, and that i1

(
∂tim

(
R × V̄hyd,δ

))
is invariant with respect to the stationary Killing field of (˜

R × V̄hyd,δ, g̃hyd).
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1. The vector field ∂t (in the (t, r̄ ,ϑ) coordinate system for (˜
R × V̄hyd,δ, g̃hyd) is

Killing, and the metric (8.1) is asymptotically flat (with the asymptotically flat
region Ĩas = {r̄ ≥ R0 � 1} consisting of two connected components) and satisfies
Assumption G1. Furthermore, ∂tim

(
R × V̄hyd,δ

)
is ∂t -invariant.

2. The spacetime (˜
R × V̄hyd,δ, g̃hyd) has no event horizonH, and thus Assumption G2

is trivially satisfied.

3. The spacetime (˜
R × V̄hyd,δ, g̃hyd) has a non empty ergoregion Ẽ = {2δ − C <

r̄ ≤ C}. The boundary ∂Ẽ = {r̄ = 2δ − C} ∪ {r̄ = C} of Ẽ is a smooth hyper-

surface of ˜
R × V̄hyd,δ, and

˜
R × V̄hyd,δ\Ẽ consists of two connected components,

each containing one asymptotically flat end of ˜
R × V̄hyd,δ (and, thus, Ẽext = Ẽ ). In

particular, Assumption G3 is satisfied.

4. Assumption A1 is readily satisfied in view of the fact that (˜
R × V̄hyd,δ, g̃hyd) is also

axisymmetric, with axisymmetric Killing field ∂ϑ such that [∂ϑ, ∂t ] = 0 and the
span of ∂ϑ, ∂t contains a timelike direction (see the discussion in Sect. 2.3).

Thus, the proof of Corollary 2.1 is complete.

9. Aside: Discussion on Friedman’s Heuristic Argument

In this Section, we will briefly sketch the heuristic arguments developed by Friedman in
[20], and we will discuss their connections with the methods used in this paper.

9.1. Friedman’s argument. As we already explained in the introduction, on any glob-
ally hyperbolic, stationary and asymptotically flat spacetime (M, g) with a non-empty
ergoregion E and no future event horizonH+, Friedman constructed, in [20], a class of
smooth solutions ψ to the wave equation (1.2) satisfying∫

�

J Tμ (ψ)nμ = −1, (9.1)

where� is a Cauchy hypersurface of (M, g), T is the stationary Killing field of (M, g)
and n is the future directed unit normal to�. In view of the conservation of the T -energy
flux for solutions to (1.2) on (M, g) and the fact that J Tμ (ψ)nμ ≥ 0 on M\E , from
(9.1) Friedman inferred that for any τ ≥ 0:∫

�τ∩E
J Tμ (ψ)nμ ≤ −1, (9.2)

where �τ is defined as in Sect. 3 (i.e. the image of � under the flow of T for time τ).
Proceeding to study the consequences of the bound (9.2) on the (in)stability properties

of equation (1.2), Friedman first noted the following dichotomy for the energy flux
through the future null infinity I+ of any solution ψ to (1.2), satisfying (9.1)15: Either∫

I+
J Tμ (ψ)nμ

I+ = +∞, (9.3)

15 See [31] for the definition of the Friedlander radiation field and the energy flux of ϕ through I+ on general
asymptotically flat spacetimes.
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in which case (in view of (9.1) and the conservation of the J T -flux) there exists a
sequence of hyperboloidal hypersurcases Sτn terminating at I+ such that

lim sup
n→+∞

∫
Sτn

J Tμ (ψ)nμ

Sτn
= +∞, (9.4)

or ∫
I+

J Tμ (ψ)nμ

I+ < +∞. (9.5)

In case the first scenario (9.4) holds, one immediately obtains an energy instability
statement for equation (1.2). In case the second scenario (9.5), Friedman argued (see
[20]) that ψ “settles down” to a “non-radiative state” ψ̃, which is to be interpreted as a
solution to (1.2) such that ∫

I+
J Tμ (ψ̃)nμ

I+ = 0. (9.6)

Furthermore, in view of (9.2), Friedman argued that ψ̃ should also satisfy for all τ ≥ 0:
∫

�τ∩E
J Tμ (ψ̃)nμ ≤ −1. (9.7)

Assuming that (M, g) is globally real analytic and that the metric g has a proper
asymptotic expansion in powers of r−1 in a neighborhood of I+, Friedman inferred from
(9.6) (using an adaptation of Holmgren’s uniqueness theorem for analytic linear partial
differential equations, see [24]) that

ψ̃ ≡ 0 (9.8)

on (M, g). Thus, (9.7) and (9.8) yield a contradiction, implying that the scenario (9.5)
should not occur on such spacetimes.

9.2. Comparison with the proof of Theorem 2.1. In general terms, the proof of Theo-
rem 2.1 (see Sect. 4) follows the roadmap of the heuristic arguments of Friedman. In
particular, our proof proceeds by contradiction, assuming the energy bound (4.1) on the
{t = τ} hypersurfaces, which is a slightly stronger assumption than the energy bound
(9.5) on I+ in the second scenario considered by Friedman.

In Lemma 4.2, we show that, under the assumption (4.1), a function ψ solving (1.2)
with compactly supported initial data indeed “settles down” to a function ψ̃ (in a well
defined way), such that ψ̃ vanishes identically outside the extended ergoregion Eext. This
result makes use (through Proposition 4.1) of the Carleman-type estimates of Sect. 6,
as well as the bound (4.1). Here, assuming merely the bound (9.5) on I+ would not
be enough. Note that, in the argument of [20], no justification is provided (even at the
heuristic level) of why a function ψ solving (1.2) and satisfying (9.5) is expected to
“settle down” to a non-radiating solution ψ̃ of (1.2).

The fact that ψ̃ vanishes outside Eext follows from the estimates of Sect. 6, without
any need to impose a real analyticity assumption on (M, g) or a complete asymptotic
expansion for g on I+. In general, however, it can not be inferred that ψ̃ vanishes also
on E .16 Thus, a contradiction can not be reached following the argument of Friedman

16 We can in fact construct spacetimes (Md+1, g), d ≥ 3, with a smooth solution ψ̃ to an equation of the
form �gψ̃ + V ψ̃ = 0, such that T (V ) = 0, ψ̃ ≡ 0 onM\E and ψ̃ not identically 0 in E .
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in this setting. Instead, after restricting ourselves to spacetimes (M, g) satisfying the
unique continuation assumption A1, which guarantees that ψ̃ vanishes on (M\Eext)∪U ,
we reach the desired contradiction by exploiting our freedom to choose the initial data
forψ appropriately: We choose (ψ, Tψ)|� to be supported in� ∩U , so that the support
of (ψ, Tψ)|� will be disjoint from M\U , where the support of all the time translates
of (ψ̃, T ψ̃)|� is contained. Therefore, ψ and all the time translates of ψ̃ are orthogonal
with respect to the (indefinite) T -inner product (4.38). This fact leads to relation (4.57),
from which a contradiction follows readily in view of (4.49).
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