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It is shown that a Schwarzschild singularity, spherically symmetrical and endowed with mass, will
undergo small vibrations about the spherical form and will therefore remain stable if subjected to a small

nonspherical perturbation.

I. INTRODUCTION AND SUMMARY

CHWARZSCHILD found long ago the solution of
the Einstein equations for the metric around a
fixed spherically symmetrical center-of-mass:

dst=— (1=2m*/r)dT*+ (1 —2m*/r)~1dr*
+72(d6*+-sin?0d ¢?) = g, dxtdxy, (1)

with 2°=T, x'=7, =0, 3= ¢. Here the quantity
m*(cm) =Gm/c*= (0.74X107% cm/g)m(g)  (2)

denotes the value of the mass as expressed in the
geometric units of length. A similar but more compli-
cated expression was found by Reissner and Nordstrom?
for the case where the system appears at a distance not
only as a spherically symmetrical center of gravitational
attraction but also as a spherically symmetrical center
of electric lines of force. Such a charge-like solution
permits interpretation in terms of a multiply connected
space.? The lines of force can be considered to emerge
from one mouth of a wormhole, the other end of which
is located somewhere else in space. This interpretation
has the following features: (1) There is no real charge
present anywhere in space. Lines of force never end.
The Maxwell field is free of singularity. However, the
lines of force are trapped in the topology of space so
that their number cannot change and the charge
remains constant. (2) The other wormhole mouth can
be supposed as far away as one pleases. We shall
assume it to be infinitely far away, so that it does not
disturb the spherical symmetry and dynamics of the
mouth under consideration. Then we can use the
Reissner-Nordstrom solution as an idealized represen-
tation of the metric down to the throat of the wormhole.
(3) The electric field, being divergence-free, has a
strength ¢/7* and an energy density ¢?/8m%. Translated
to the units of length, the charge has the value

¢*(cm) = (G*/c® g (electrostatic units). 3)

(4) The stress energy density of this electric field acts
as a source of gravitational field in Einstein’s field
equations. There is no other source of the gravitational

1H. Reissner, Ann. Physik 50, 106 (1916); G. Nordstrom,
Proc. Acad. Sci. Amsterdam 20, 1238 (1918).

2J. A. Wheeler, Phys. Rev. 97, 511 (1955); C. W. Misner and
J. A. Wheeler, Ann. Phys. (to be published); also A. Einstein and
N. Rosen, Phys. Rev. 48, 73 (1935).

field in the usual way of writing these equations.
However, the equations can be rearranged® in such a
way as to bring into evidence an additional production
of gravitational field by the stress energy tensor of the
gravitational field. On this account the geometrized
mass, m*, is not uniquely determined by the geome-
trized charge, ¢*; it only follows that #* is no less than
g*. (5) One can therefore think of the field energy—or
the mass and stress that goes with it—as in equilibrium
under its own gravitational attraction.

We have equilibrium, but is it stable? A sphere of
water held together by gravitational forces is stable
against small departures from sphericity. A sphere of
water surrounded by a spherical shell of liquid mercury
is also an equilibrium configuration for gravitational
forces, but a situation of unstable equilibrium. Initial
small departures from sphericity at the water-mercury
interface will grow exponentially, and the mercury
will concentrate with a rush at the center of the sphere.
Which situation will more closely correspond to the
behavior of a Schwarzschild singularity subjected to a
small initial perturbation?

We have investigated this question here up to terms
of the first order in the departures from sphericity.
In this approximation, as in every other kind of stability
problem in physics, the equations are linear and it is
possible to analyze the disturbance into proper modes
and find for each its frequency, real (stability) or
imaginary (instability). We have determined these
proper frequencies and find that the Schwarzschild
singularity is essentially stable because imaginary
frequencies would require a clearly unrealistic spatial
behavior of the initial perturbation.

We therefore conclude that the object in question,
built out of the mass-free Einstein field, is stable against
small departures from sphericity. A typical disturbance
from the equilibrium configuration will not grow with
time but will oscillate around equilibrium.

The analysis proceeds in the following way: In Sec.
II we write down, following Komar and Eisenhart,
the linear differential equations for small first-order
departures from the Schwarzschild metric. These
equations ensure that the perturbed field will satisfy
the Einstein equations and represent a mass-free space

38S. N. Gupta, Phys. Rev. 96, 1683 (1954).
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of nearly spherical symmetry. We look for those solu-
tions of these differential equations which can be
expressed in the form of a product of four factors, each
depending upon a single one of the quantities T, 7, 8, o.

We find mathematical expressions for a complete
set of functions of this kind, by superposition of which
one can represent any arbitrary small first-order pertur-
bation that satisfies the appropriate boundary condi-
tions.

The typical mode of disturbance of the Einstein field
has the circular frequency w. Here the quantity w is an
eigenvalue parameter to be chosen so that the distur-
bance satisfies the radial wave equation with the
appropriate boundary conditions for small and large 7.

In Sec. IIT we formulate the boundary conditions for
this eigenvalue problem and analyze the radial de-
pendence of the functions involved in the problem by
way of the JWKB procedure. In this manner we can
avoid the problem of securing an exact solution of the
radial wave equation and still conclude that the proper
frequencies are real.

II. DIFFERENTIAL EQUATIONS IN POLAR CO-
ORDINATES FOR SMALL FIRST-ORDER
CHANGES AWAY FROM THE
SCHWARZSCHILD METRIC

General Equations

We shall indicate here the background metric with
gw» and the perturbation in it with 4,,. The quantity
gu» will be later specialized to be the ordinary Schwarzs-
child metric. The perturbations %,, are supposed to be
very small as compared with g,,. The contracted Ricci
tensor will be, as usual, called R,, if calculated from
guw and R,,+6R,, if calculated from g,,~+4,,. It is not
difficult to derive an expression for 8R,,. The calculation
has been made by Eisenhart and independently by
Komar.* We shall follow here Eisenhart’s point of view
as being more suitable for our kind of calculation. His
result can be expressed in the form

5Ruv = 5Pﬂw: 5+ 5Fﬁul3; 2] (4>

where the semicolons indicate covariant differentiation
and where we use the symbol

00 %y =38 (hgy; v, 6— Rpy; ). (5)

Although I'#4, is not a tensor, its variation is a tensor.
Putting (5) into (4), we get a second-order differential
equation on the /,, from the condition 8R,,=0. This
equation is a generalization in a curved space of the
known Schriédinger equation for a massless particle of
spin 2 in a flat space.® When the background metric is
given by (1), then of course R,,=0. Then the equation
dR,,=0 means that the perturbed space is also empty

*L. P. Eisenhart, Riemannian Geometry (Princeton University
Press, Princeton, 1926), Chap. VI; A. Komar, Ph.D. thesis,
Princeton, 1956 (unpublished).

® See for example T. Regge, Nuovo cimento 5, 325 (1957).
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of matter or distributed energy. These equations we
shall analyze and separate in polar coordinates.

Analysis into Spherical Harmonics

We first undertake to separate the solution into a
product of four factors, each a function of a single
coordinate. This separation is best achieved by general-
izing to tensors the well-known development in spherical
harmonics, already firmly established for vectors,
scalars, and spinors. For all four cases the symmetry of
the metric allows angular momentum to be defined.
The angular momentum is investigated by studying
rotations on the 2-dimensional manifold %= 7T=con-
stant, x'=r=constant. Under a rotation of the frame
around the origin, the ten components of the perturbing
tensor transform like 3 scalars (%o, ko1, #11), 2 vectors
(Ro2, hos; has, as), and a second-order tensor, when con-
sidered as covariant quantities on the sphere. For the
scalar and vector parts we know already how to develop
into spherical harmonics. A typical scalar function has
the form

oM =constV .M (xs,x3) =constV .M (6, ¢). (6)

This term belongs to a wave of parity (—)% and of
angular momentum L, whose projection on the z axis
is M. For vectors we have two distinct types with
opposite parity:

3
Y =const—Y M (xow5),  parity (=)f;  (7)

dx+

i)
VM (xsxs), parity (—)4. (8)
Xy

¢r¥ ,=conste,”

Here the labels 4 and » run over the values 2 and 3,
when x?=0, «*= ¢; and the ¢,” represent the quantities
e?=e’=0; = —1/sina?, es>=sinx? Similarly we shall
later introduce the quantities y2=1, v23=0="y3;
vs3=sin’s?. Both types of vector carry an angular
momentum L. For tensors similar properties hold. We
outline here only the results. There are three funda-
mental types of tensor of angular momentum L:

YiM,,=constY ¥, ,,(covariant derivatives),
parity (—)%; (9)

oM, =consty,, Y, parity (—)%; (10)
xtMup=3% COUStEGuVLMM"'“ GVVLMMI
parity (=) (11)

Any one of these terms can obviously be multiplied by
an arbitrary function of » and T, without changing its
transformation properties under a rotation. It is clear
that term (10) is a simple combination of a scalar with
the metric tensor on the sphere, v,.,=g,,/7*. Term (8)
can be considered as a “pseudogradient” of ¥V 1™ (xzx3).
Similarly (9) and (11) can be obtained by operating
twice with gradients and pseudogradients. The trace
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of (11) is identically 0. The trace of (9) has the value
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gy M, =—L(L+1)Y 1M (,¢) X const.

From the results that we have just outlined, it follows that the most general perturbation belonging to a given

L, M, and parity (—)%* is of the form:

0 0 —ho(Tyr)(9/sinfd ) ¥ LM ho(T,r) (sindd/30) Y LM
. 0 0 —m(Tyr)(9/sinfd )V LM hi(T,r) (sinfd/00) ¥ .M
" Sym Sym hs(T,r)(8%/sin68600 ¢— cosfd/sin*0d o) ¥ LM Sym
Sym Sym 3he(T,r)(8?/sindd ¢d o+ cosfd/39—singd?/8090) Y L™  — ho(T,r) (sinf3%/ 309 o— cos6d/d o) ¥ LM

(12)

Here the rows and columns are numbered in the order 0, 1, 2, 3 (T, 7, 6, ¢). The symbol “Sym” indicates that
the missing components of %,, are to be found from the symmetry /,,=%,,. We shall refer to (12) as the “odd”

type of perturbation.

Even Waves

The grouping of the terms of even parity yields the “even” perturbation:

A—2m*/NHo(THY M Hy(T)¥ M

H\(Tn )Y ™ (A —2m*/r)'Ho(T)yr) Y LM
Sym Sym

Bay= Y Y
Sym Sym

Frequency Analysis; Specialization to M =0

Owing to the spherical symmetry of the background
metric, Egs. (4) and (5) cannot mix terms belonging to
different L and parity. To apply quantum language to
a classical problem, we can say that L, M, and the
parity are constants of the motion. The existence of
still another constant follows from the circumstance
that the background metric (1) is independent of the
cotime, T'=ct. On this account we can consider a
perturbation of a definite frequency, w=*kc, so that
every component of the perturbation %,, will have a
time dependence of the form exp(—iwt)=exp(—ikT).
We therefore proceed to determine completely the form
of the individual solution of specified parity, L and M
values, and frequency. The general solution will be a
superposition of these individual solutions with coeffi-
cients adjusted to fit the appropriate boundary condi-
tions and initial values.

In working out the typical individual solution, we
need not occupy ourselves with the angular dependence,
which is completely specified by (12) and (13). More-
over, there is no need to work with an arbitrary M.
For any specified choice of L, &, and partly all values
of M (M=—L, —L+1, ---L) will lead to the same
radial equation. We prefer to take M =0 with the

ho(T,r) (3/96)Y LM ho(Tyr)(8/0¢) Y LM
h(T,r)(3/00)Y LM h(T,r)(8/0p) ¥V LM
[ K(Ty) Sym
+G(T,r)(6°/06*) ¥ L™
7’G(T,r)(8%/900 ¢ [ K(T,r) sin?
—c0s0d/sinfd o) ¥ 1M +G(Tr)(9%*/9pd e
~+sinf cosfd/36) ]V LM

(13)

advantage that ¢ will completely disappear from the
calculations. We are still left with a considerable
amount of labor. An odd wave contains three unknown
functions of . Worse, an even wave contains seven
unknown functions. Here comes a fact which greatly
simplifies and illuminates the calculation.

Gauge or Coordinate Transformations and the
Simplifications They Can Bring

Different waves can represent the same physical phe-
nomena viewed in different systems of coordinates. Con-
sider an infinitesimal coordinate transformation:

we=getie (FKx®). (14)

The infinitesimal displacements £* transform like a
vector. In the new frame we shall have:

8w+l = gurtEpsvt Evu bR (15)

Now ’,, is defined as the difference between the per-
turbed metric and the Schwarzschild metric written in
spherical coordinates. According to this definition, the
difference in the new frame will have the value

hwnew=hﬂvoxd+5u;v+$vm- (16)
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This result can be interpreted by saying that for
infinitesimal changes in the coordinates the %,, undergo
a ‘“‘gauge transformation” quite similar to the well-
known gauge transformation for the electromagnetic
field. We can now use this important circumstance in
order to simplify the description of the perturbation
and to make it unique.

The gauge transformation (16) can be performed on
any individual partial wave. Obviously no real simplifi-
cation will result unless the resulting wave still belongs
to the original eigenvalues. This requirement limits the
possible choices for £=. This vector turns out to be a
spherical harmonic of the same L and parity as the
partial wave in consideration. Such a gauge transfor-
mation allows us to impose additional simplifying
conditions on the perturbation, /%,,. We have therefore
chosen to eliminate those terms which contain the
derivatives of the highest order with respect to the
angles. Then the final radial equations simplify. More-
over, the desired gauge transformation £* can then be
found by the use of finite operations only, without
arbitrary constants and boundary conditions.

The gauge vector £* that simplifies the general odd
wave (12) must have the form

EOZO, 51:0; £“=A(T,r)e“"(6/6x') YLM(Oy‘p))

(u, v=2,3), (17)
according to the foregoing arguments. Moreover, the
radial function A can be adjusted to annul the radial

factor h2(T,r) or that component of the perturbation
h,» which has the form (11).

Canonical Form of Odd and Even Waves

The final canonical form for an odd wave of total
angular momentum L and projection M =0 is then

0 0 0 h

0 0 0 @
=

0 0 00

Sym Sym 0 O

Xexp(—ikT)(sindd/36) Pr(cos). (18)

In a similar way we write the gauge transformation

that simplifies even waves in the form
E=M(T)YY(0,0); E=M(T)YL*(0,0);
£2=M(T,f) (a/ao) YLM(07 (P) 5
£=M(T)(3/sin’00 )Y L™ (6, ¢).

(19)

We adjust the factors Mo, M3, and M to annul the
factors G, ko, and k; in expression (13), thereby ob-

T. REGGE AND J. A. WHEELER

taining the even wave in the canonical form

huy=exp(—1ikT)Pr(cost)

Hy(1—2m*/7) H, 0 0

H, Hy(1—2m*/r)"t 0 0

X 0 0 7K 0
72K sin%

0 0 0
' (20)

There are therefore two unknown functions of 7 in the
odd case (ko and %;) and four unknowns for the even
case (Ho, Hy, Hs, and K).

Radial Wave Equations

We now substitute the expressions (18) and (20) for
the first-order perturbation into the first variation of
the Einstein field equations,

8T8, 5— 8T 6, , =0. (21)

The resulting equations for the radial factors may be
derived and discussed separately for odd and even
waves.

For odd waves the variation éT',4f vanishes identi-
cally. Out of the 10 Einstein equations only 3 nontrivial
ones can be obtained:

(1 =2m*/r)kho+ (d/dr) (1 —2m* /7) =0,
from 6Rs3=0;
(1—2m*/r) "k (dho/dr— kh1— 2h/7)
+(L—1)(L+2)h/r*=0, from O6R;3=0;
(d/dr) (khy—dho/dr)+2khy/r=r"2(1—2m*/7)~*
X (dm*ho/r— L(L+1)ho), from §Re3=0.

(22)

The last equation is a consequence of the other two.
Define

0= {1—-2m*/r)hi/7,

eliminate %, and find for Q the second-order wave
equation,

(23)

@*Q/dr*? ket (r)Q=0. (24)
Here we have made the abbreviations
dr*=exp(3\—3%v)dr,
and
koti>=k?— L(LA-1)e’/r?*+-6m* e’ /7, (25)

where A and » are defined by the expression for the
metric,
ds’= —e’dT* e dr*-+r*(d6*+-sin®dd ¢*) ;  (26a)
thus,
e=e¢r=1-2m*/r.

(26b)

For even waves the 10 Einstein field equations give
7 nontrivial conditions: one algebraic relation; 3 first-
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order differential equations; and 3 of the second order.
We use one relation,

H,=H,=H, (27a)
to eliminate H, from the other 6 equations:
dK/dr+r(K+H)— L(L+1)H,/2kr*

— (1—2m*/r)"'m*K /r*=0, (27b)

(d/dr)(1 —2m*/r)Hi=k(K—H), (27¢)

RH\— (1—2m*/7) (d/dr) (K+H) — 2m* /) H=0; (27d)

(d/dr)(1—2m*/7)(2rH+- (d/dr)r*K)— L(L+1)K
—2krH 1+ k72 (1—2m*/r) 'K =0;

(1 —2m*/7) (dH,/dr) + 2km*H o+ B H
— (1 =2m*/r)2[ (d/r*dr) (r*dH /dr)
1+-2(d/rdr) (PdK Jdr) ]— (1 — 2m* /O [ L(L+1)H /7
+4m*(d/r*dr) H+ 2m* (d/r*dr)K]=0; (27f)

(1 —=2m*/7r)2d*H /dr*+ (2/r) 1 —2m* /7)dH /dr— B*H
—L(LA-1) (1 —2m*/r) (H/r?) — 2km*H /7
—2k(1—2m*/7) (d/r*dr)r*H,+2k*K

+2(1—2m*/r) (m*/r*)dK /dr=0.

(27e)

(27g)

We are facing a system of 6 equations in 3 unknowns.
One will expect that the 3 first-order Egs. (27b,c,d)
will suffice to determine the solutions, apart from the
boundary conditions. Actually the second-order Egs.
(27e,i,g) contain an additional nontrivial piece of infor-
mation about the solution that is consistent with
(27b,c,d). Specifically, a rather elaborate investigation
shows that (27e,f,g) can all be deduced from (27b,c,d)
plus the algebraic relation

[6m* /r+ (L— 1) (L+2) JHA+[ 2kr — L(L-+1)m* /rkH,
+L(2m*/r)+ (L—1) (L+2)
—2(1=2m*/r)"\(m*/rP4-E?) ]JK=F=0; (28)

and conversely, (27b,c,d) and (28) follow from (27e,f,g),
provided that the frequency % is nonzero. The static
case will be discussed separately.

It is remarkable that (28) is an algebraic relation
consistent with (27b,c,d). It can properly be called a
“first integral.” Thus, let Kf, Ht, H,! be any solution
of (27b,c,d) and let Ft be the corresponding function

constructed from (28). We have the following identity:
dFt/dr+ (m*/r*) (1 —2m* /r)"'F1=0. (29)

If now Ft vanishes at one point—as is possible by an
appropriate choice of the arbitrary constants—then
Ft=0 everywhere.

Static Case and Its Physical Interpretation

In the static case where £=0 it follows from (27b,c)
that H, vanishes. The other two radial factors can be
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shown to satisfy the relations
@/dr)(K+H)+ 2m*/v*) (1 —2m*/r) " H=0,
(@¢H/dr)+ 2m*/r?) 1 —2m*/r)*H+2H /r
+(L—1)(L+2)(K+H)/2m*=0.

For L=0 the solution is trivial. We get the difference
between the Schwarzschild metrics for the two reduced
masses m* and m*+om*. For L=1 we expect to find a
solution that corresponds to a displacement of the
center of attraction by the amount éz:

6—0—sinboz/7;
e—e; T-T.

This transformation is not acceptable (1) because it
assumes Euclidean rather than Schwarzschild geometry
for the displacement and (2) because it leads to a
change %,, in the metric which does not have the
diagonal form of (20). The correct infinitesimal coordi-
nate transformation has the form

(30)

wr—xh+he

(31

r—r-+coshdz;

r—7r+cosbéz,
6—0+ (sinfdz/2m*) In(1—2m*/r),

and the two radial factors that satisfy (30) have the
values

32)

Hy=H,=H=— (2m*/r*)éz/ (1 —2m*/r);
K= (8z/m™)[ 2m*/r)+1n(1—2m*/7)].
For L>1 we eliminate (K+H) from Egs. (30) and
obtain an equation for the quantity M =r(r—2m*)H :
(&M /dr®)—[r4 (r—2m*) ] (dM /dr)
' —(L—=1)(L+2)M /7 (r—2m*)=0. (34)

The general solution of this equation can be expressed
in terms of the associated Legendre functions:

M=aP1®(1—r/m*)+BQL® (1—r/m*),

(33)

(35)
where

P®@(x)=3(1—2a?; Ps@@x)=15x(1—2a?); ---;

0:@ (x) = (1 —2) (&*/dx*)[3 (3x2—1) arc tanha— (3x/2) ],

03 (x) = (1—4?) (d?/dx*)[3 (54*— 3x) arc tanhx
—(52%/2)+(2/3) ],

By way of comparison with the solution (32),
consider the expression,

V=0/r4+ (arur*+Braur )V 12 (8,0), (36)

for electrostatic potential in flat space. Here the a terms
represent the asymmetries in the potential due to re-
mote sources and the B terms are due to asymmetries
in the distribution of internal sources. The origin of
the two kinds of terms in (35) is a little more subtle.
We interpret them both as asymmetries in the metric
arising from remote masses, as follows: (1) masses in
the present region of space, and (2) masses in the region



1068

of space which unfolds from the other end of the
wormhole. Naturally motions of both kinds of sources
will be_demanded by the field equations themselves.
In contrast, the field equations of electrostatics are
linear and are not sufficient in and by themselves to
give the equations_of motion. On this account, in the
expression (36) for the electrostatic potential one is
content to consider the o’s and B’s as constants. In
contrast, one might well ask how the « and 8 in (35)
can be constant if they represent the effect of remote
masses that will inevitably be set in motion. However,
we deal always with the metric interior to these remote
masses. Therefore there is no obvious reason for a
change with time in these coefficients. Moreover, the
equations themselves say that the solution (35) is static.

Static solutions of odd type also exist. To analyze
these solutions, we annul the frequency parameter & in
Eqgs. (22), note that the radial factor #; must vanish,
and find for the other radial factor the second-order
equation

@ho/dr*+ (1—2m*/r)" 1 (dm* /7
—L(L+1)/™ho=0. (37)

Here again the general solution is a linear combination
of two terms which reduce at large r to the form »—~
and 1. These terms are interpreted as before as the
effect of asymmetrically distributed masses which are
very remote and located on the one side or the other
of the wormhole. That solution which behaves asymp-
totically as rZ*! allows itself to be expressed as a
hypergeometric function that reduces to a polynomial
in z=r/2m*:
ho=2*F(L+2,1—L, 4, 2)
=2+ (L+2)1—-L)/41#
HLLA2)(LA3)(1-L)(2—L)/214X5 s+ - -
+HLLAD (LA - D) 1= D)(2—L) -
X(—=1)/(L—1)14X5--- (L+2)Jz™ 1. (38)

We shall not investigate further the behavior of
static perturbations. We interpret them as the effect of
distant masses, producing inhomogeneous external
gravitational fields, and thereby deforming the mouth
of the wormhole that would otherwise be spherically
symmetric. These perturbations have nothing directly
to do with the dynamics or stability of the Schwarzs-
child metric itself.

III. BOUNDARY CONDITIONS AND STABILITY OF
THE SCHWARZSCHILD SINGULARITY

Regularity Conditions; Odd Waves Analyzed Via
the Concept of Effective Potential

A physically acceptable dynamic variation away
from the background metric must be represented by
functions which have at the starting instant a reason-
ably regular behavior both at the point 7=2m* and at
infinity.

\
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It is simplest to analyze first the odd dynamic
disturbances, as they are governed by the single
relatively simple differential Eq. (24). The general
solution behaves so:

Q,\, cleiﬁ (r/zm*_ 1)2ikm*+616—i5(r/2m*_ 1)-—2ikm*
for r—2m*,
for r—eo.

(39)
Q~cy sin(kr+n)

Between these two extreme values of 7 the behavior of
Q can be found by interpreting kes? in (24) in terms of
an effective potential or effective refractive index
encountered by gravitational waves. There is little
difference in equations between the analysis here and
that given previously for electromagnetic waves® and
for neutrinos” moving under the influence of a spheri-
cally symmetric metric of the form (26b):

ko (neutrinos) = k2— k%e? /7= (kr—2e"—

—kret0—Nde? /dr),  (40a)
kot (light) =k2— L(L+1)e?/7*, (40b)

ket (gravitational waves)
=k— L(L+1)e’/r*+6m*e’ /7. (40c¢)

The %* factor on the right-hand side of each expression
plays the part of the energy in the Schrodinger wave
equation, and the quantity subtracted from k% can be
given the name of effective potential.

The effective potential starts from 0 at the Schwarzs-
child radius, rises to a maximum and then falls off
again to zero at very large r. Therefore there are three
regimes to be considered. In case 1, the quantity &2
exceeds the height of the barrier and the solution is
everywhere oscillatory. In case 2, the quantity %2 is
still positive, but less than the height of the barrier.
The critical barrier height, k2, is given by the
equation

zm*rcrit:‘%_*_%(lz—i-%)_z—l— oo ;
kcrit = (2598)( Zm*)"ll: (L—-‘—-%)
—(9/8) (L+1)1+---],

when L is large. This case 2 recalls the problem of
binding photons in the gravitational field of a geon.
The interesting wave either falls off or rises exponenti-
ally in the barrier region. The one case, case 2a, corre-
sponds to gravitational waves which never escape to
large 7. Such waves are of interest for the theory of
gravitational geons: geons which derive all their mass
and energy from gravitational waves trapped in the
metric. Case 2b corresponds to waves which are large
outside the barrier. These solutions like the case 1
solutions represent freely running gravitational waves
disturbed to a greater or lesser extent by the gravita-
tional field of the mass that they encounter.

(41)

6 J. A. Wheeler, Phys. Rev. 97, 511 (1955).
7 D. Brill and J. A. Wheeler, Revs. Modern Phys. 29, 465(1957).



STABILITY OF A SCHWARZSCHILD SINGULARITY

Waves that Go through the Wormhole

The behavior of the waves will be affected by the
conditions they encounter at small ». The metric acting
on the gravitational wave in the present problem is
multiply connected, whereas the metric acting on the
neutrinos and electromagnetic waves in the published
examples was topologically equivalent to Euclidean
space. In those examples there was a definite origin at
which the wave amplitude had to go to zero. By that
condition the phase of the wave was uniquely deter-
mined, as showed up most readily in the JWKB
approximate representation of the solution. The con-
trary will be the case for the present metric. The phase
is not determined as it was for electromagnetic and
neutrino geons, and as it would be for a gravitational
geon. The ambiguity in phase has a clear physical
significance. The ingoing wave need not equal in
strength the outgoing wave. The Schwarzschild space
is to be visualized as not inwardly bounded.? Instead,
it can be considered as one mouth of a wormhole, the
other mouth of which emerges elsewhere. Gravitational
waves must be able to propagate through this tunnel
as they propagate anywhere in space. The undetermined
phase of this wave gives one the freedom that one can
and must demand for a complete description of such
“waves through the wormhole.”

Space Behavior Unacceptable for Waves
of Imaginary Frequency

Regime 3 corresponds to negative values of k2. The
analysis of the space dependence of such solutions shows
that the radial part is uniquely determined by the
requirement that it shall not go to infinity at large 7.
The solution that is acceptable because it falls off for
large 7 proves, however, to fall off also at the Schwarzs-
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child radius. Therefore there is no possibility to join it
smoothly to a solution ““in the other half of the tunnel”’
which will be acceptable. Consequently we conclude
that there are no unstable solutions for odd waves.

There remains the discussion for the even waves.
Here we have to examine the system (27b,c,d) supple-
mented by the condition (28). Unfortunately, owing to
the complication of the equations involved, we were
not able to establish a convenient “effective potential”
picture. However, as far as stability is concerned there
is no difficulty in recognizing that the same arguments
used for odd waves are still valid.

We cannot avoid pointing out the essential impor-
tance of condition (28) in this analysis. It eliminates
spurious solutions which do not have the correct be-
havior on the singular sphere. This can be clearly
shown by a power series analysis near »=2m*. Indeed
to have the correct “wave through the tunnel”’ behavior
it proves essential that the radial factor K be small for
r~2m* as compared with the other unknowns. This is
plainly a consequence of (28). Curiously enough the
same equation (28) also demands that the same factor
K has to be negligible for large 7, insuring the correct
behavior at . The discussion is then the same as
for the odd waves. Consequently we conclude that
Schwarzschild’s solution of the gravitational field
equations is stable.
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