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The gravitational quasi-normal frequencies of both stationary and 
rotating black holes are calculated by constructing exact eigensolutions 
to the radiative boundary-value problem of Chandrasekhar and Detweiler. 
The method is th a t employed by Jaffe in his determination of the 
electronic spectra of the hydrogen molecule ion in 1934, and analytic 
representations of the quasi-normal mode wavefunctions are presented 
here for the first time. Numerical solution of Jaffe’s characteristic 
equation indicates th a t for each Z-pole there is an infinite number of 
damped Schwarzschild quasi-normal modes. The real parts of the corre­
sponding frequencies are bounded, but the imaginary parts are not. 
Figures are presented th a t illustrate the trajectories the five least-damped 
of these frequencies trace in the complex frequency plane as the angular 
momentum of the black hole increases from zero to near the Kerr limit of 
maximum angular momentum per unit mass, =  where there is a 
coalescence of the more highly damped frequencies to the purely real 
value of the critical frequency for superradiant scattering.

1. I n t r o d u c t i o n

Complex resonant frequencies characteristic of the Schwarzschild geometry were 
first discovered in calculations of the scattering of gravitational waves by black 
holes (Vishveshwara 1970). Recent speculation as to the role th a t black holes might 
play in a variety of astrophysical processes has created considerable interest in 
methods of computing these resonant (or quasi-normal) frequencies. In this paper 
the problem of determining the gravitational quasi-normal frequencies is cast, after 
the manner of Zerilli (1970), Chandrasekhar & Detweiler (1975, 1976), and 
Detweiler (1977, 1980), in the form of a linearized boundary-value problem on a 
stationary black hole background. Specifically, Teukolsky’s equations describing 
small perturbations to the Kerr geometry are shown to be generalized spheroidal 
wave equations of the type solved by George J  affe (1934) in his classic determination 
of the electronic spectra of the hydrogen molecule ion. A solution of Jaffe’s form, 
as generalized by Baber & Hasse (1935), can be applied to the Chandrasekhar- 
Detweiler problem, and yields the complete scalar, electromagnetic, and 
gravitational quasi-normal frequency spectra of Kerr black holes. Jaffe’s 
representation defines the eigensolutions (quasi-normal mode functions) of
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Teukolsky’s equations analytically, and eliminates the tedious (and frequently 
inaccurate) numerical integrations th a t have characterized previous methods. 
Instead, the quasi-normal frequencies and angular separation constants are defined 
as the simultaneous roots of two characteristic continued fraction equations, and 
these may be solved numerically with high precision.

Present results may be summarized as follows: (i) for each Z-pole moment a 
Schwarzschild black hole possesses an infinity of distinct complex quasi-normal 
frequencies {o)n: n — 1 ,2...}; (ii) for fixed l and large n these frequencies become 
evenly spaced along an asymptote parallel the imaginary o) axis; (iii) this 
relationship among the higher-order (large n) modes changes markedly as the 
angular momentum of the black hole increases to the extreme Kerr limit. For 
non-zero azimuthal separation constant m, all but a possibly finite number of the 
high-order modes coalesce to one undamped mode. The frequency of this undamped 
coalescence mode is simply o)c = mcz/2GM, the critical frequency for superradiant 
scattering.

2. S c h w a r z s c h i l d  q u a s i -n o r ma l  m o d e s

In this section I review the Chandrasekhar-Detweiler radiative boundary-value 
problem, and produce the Schwarzschild quasi-normal modes as its eigenfunctions. 
The problem has been solved previously by Chandrasekhar & Detweiler (1975), who 
employed a numerical integration scheme to solve the separated partial differential 
equation with sufficient accuracy to allow the determination of the under-damped 
(i.e. |Re(a»)| > |Im (w)|) quasi-normal frequencies, and by Ferrari & Mashhoon 
(1984), who obtained approximate values for the fundamental (least damped) 
quasi-normal frequency via a potential inversion method th a t was amenable to 
W.K.B. analysis a t large values of the multipole moment l. Other im portant results 
were obtained by Press (1971) and Cunningham et al. (1978), who estimated 
quasi-normal frequencies after numerical integration of the time-dependent wave 
equation. Difficulties inherent to numerical integration methods are discussed by 
Detweiler (1979). The method presented here is similar to the original one of 
Chandrasekhar & Detweiler, but uses analytic solutions to the differential equation. 
I t  will be seen that this approach allows an essentially complete characterization 
of the quasi-normal frequencies both for static and for rotating black holes.

Choose Schwarzschild coordinates and let xjr(t, r, 6 , (j>) denote a component of a 
perturbation to a massless spin s field. Understanding of wave equations obeyed 
by xjr has come from studies by Wheeler (1955), Regge & Wheeler (1957), Zerilli 
(1970), Bardeen & Press (1973), Chandrasekhar (1975), and Chandrasekhar & 
Detweiler (1975)- If r, 0 , 0) is Fourier analysed and expanded in spherical 
harmonics as

H ,  r> ° ’<I>) = L  J e" iWt ( s  7  H r ,  *>) Ylm(d, 0 ) ) d « ,  (1)

then it suffices to write the ordinary differential equation satisfied by ^ (r ,w ) in 
the form, where t and r are scaled such tha t =  =  2 =  1,

[" &>3r3 el
r(r-i)fi ,rr +  H r  +  \ j —[  ~W +1) +  - J ^  =  0. (2)



The index e is one less than the square of the field’s spin weight, and takes the 
values — 1,0, or 4- 3 depending on whether \Jr represents, respectively, a component 
of a scalar, electromagnetic, or gravitational field.

Equation (2) is a second-order ordinary differential equation with two regular 
singular points and one confluently irregular singular point. I t  belongs to a class 
of differential equations known as generalized spheroidal wave equations (Wilson 
1928). The regular singular points are a t r =  0 and a t =  1 (the event horizon). 
The irregular singularity is a t r =  00. The singular point a t =  0 has indices of 
l + (e+l)2, and the singular point a t r =  1 has indices +ia». The asymptotic 
solutions to (2) are ^q-^exp [ +  ia>(r +  lnr)] as r-*00. The boundary conditions for 
the exterior eigenvalue problem (the quasi-normal mode problem) are th a t 
x]rl ^ { r —\.)~10> as 1, and th a t ^qH>exp[k>(r +  lnr)] as r->00. These boundary 
conditions ensure th a t the field radiate only inward a t the horizon and only 
outward a t spatial infinity.

I t  is notationally convenient to introduce a new frequency variable by —
Then the boundary value problem may be expressed as the differential equation
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1) lAf, rr r

subject to boundary conditions

p2rz e
---- -  + l(l+  1) —r — 1 r \Jfi =  0

r-* 1
\Jrl-> (r—1)̂  and ty4q ->

(3)

(4)

A solution to equation (3) th a t has the desired behaviour a t the event horizon 
(r =  1) can be written in the form

00 / r — i
f t i  =  ( r - l ) p r 2pe p( x) S  a A  1 (5)

ra=0 \  r /

(Baber & Hasse 1935, p. 568). The sequence of expansion coefficients { :
n =  1,2 ...} is determined by a three-term recurrence relation starting with 1:

a o « i +  /?oa o =  °- (6)

®n+1 f in T n  a n — 1 = (7)

The recurrence coefficients ocn, fin, and y n are simple functions of n and the 
parameters of the differential equation:

a n = n2 +  (2p +  2) n + 2p +  1,

f in =  — (2n2 +  (8p +  2)n+8/»2 +  4p +  2(Z+1) —e),

y n = n2 + 4:pn + 4:p2—e— 1.
(8)

The boundary condition at spatial infinity will be satisfied for those values of 
(o = o)n (the quasi-normal frequencies) for which the series in (5) is absolutely 
convergent, i.e. for which S  an exists and is finite.

The theory of three-term recurrence relations (Gautschi 1967) may by invoked 
to determine the conditions under which this sum of coefficients converges. Baber
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& Hasse’s analysis of the large n behaviour of the expansion coefficients an 
indicates

288

(2p)2 2 /0 -1
-> 1 +^T  ---ln+1 (9)

The series in (5) will converge uniformly only if the minus sign is obtained in (9), 
which will happen only for eigenvalues pcorresponding to quasi-normal frequencies. 
The an are then said to form a ‘solution sequence to the recurrence relation (7) 
that is minimal as n —> oo ’ (Gautschi 1967)* and the ratio of successive an will be 
given by the infinite continued fraction

ln+1

fi
a w+1

n+1

f i n+
d̂ re+2 7

~  ----

The usual notation for such a continued fraction is 

^n+ i_ y«+i m+2 ^w+2 y
a n fi 2 3

( 10)

Equation (10) may be thought of as an ‘n =  00 boundary condition’ on the 
sequence an. We obtain a characteristic equation for the quasi-normal frequencies 
by evaluating (10) a t n = 0, and using equation (6) as an 0 boundary
condition ’ on the ratio a J a Q. Specifically, we have two expressions th a t must be 
satisfied: n

^ 1  =  - ^  ( U )

and <h =  z h  îT
a 0 fix ~  fi 2

( 12)

We equate the right-hand sides of (11) and (12) to obtain the desired (implicit) 
characteristic equation for the quasi-normal frequencies:

<*o 71*17***79 (13)

The a ra, (3n, and y n are explicit functions of the frequency =  — and are given
by (8).

Equation (13) may be inverted an arbitrary number of times, n, to yield an 
equality between two continued fractions, one of infinite length, as in (13), and 
the other finite:

o _^ n - 1 ^ r a - ^ y n - l  __^0 7l _  7_w+1 ^ro+1 7

- n f in - i  ~  fin-2fio J \ - f in + i~
(14)

For every n > 0 , (13) and (14) are completely equivalent in th a t every solution 
to (13) is also a solution to (14), and vice versa. Either one may be taken as the 
defining equation for the Schwarzschild quasi-normal frequencies a>n, and the

(71=1,2. . . ) .
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determination of those frequencies is now reduced to the numerical problem of 
finding the roots of this equation. That equation (13) involves an infinite continued 
fraction whose elements are each a different function of the frequency, similar in 
form to the elements of the continued fraction th a t determines the spectra of the 
hydrogen molecule-like ions, leads to the suspicion th a t the equation should have 
an infinite number of roots. Although I have no formal proof of this infinity, I have 
calculated sixty roots for 1 = 2 and 1 = 3 gravitational fields. These are plotted in 
figure 1, and tend to support the idea of an infinity of quasi-normal frequencies 
th a t asymptotically approach the values (±0.15, 0.20) for 1 = 2, and
(±0.16, — \{n— 1) +  0.13) for / =  3. (More accurate computations will be necessary 
before better representations of these asymptotes can be deduced.)

Although each inversion of (14) has the same solutions as (13), the topology of 
the function on the right-hand side of the equation changes markedly with the 
number of inversions n. The nth  quasi-normal mode is usually found to be 
numerically the most stable root of the nth inversion.

The first ten lowest-order modes were computed for / =  4 to 12, and the 
frequencies plotted in figure 2. The values of the fundamental frequencies for the 
larger values of l approach the 2{ + l + \, —n —\)/(21)* asymptote obtained by 
Ferrari & Mashhoon (1984) through a W.K.B. argument. Some details of the root- 
search algorithm are presented in §4. Further discussion of the Jaffe represen­
tation of the quasi-normal mode wavefunctions and the three-term recurrence 
relation (7) tha t generates it will be found in Leaver (1985 a,
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3. K err  q u a s i -n o r m a l  m o d e s

The analysis of the preceding section may readily be generalized to the case of 
rotating black holes. The relevant partial differential equation is given by 
Teukolsky (1972). Coordinates are the Boyer-Lindquist t, r, 6 , and <f>. We again 
scale t and r such th a t c = O = 2M = 1. Teukolsky denotes the field quantities by 
xjr, and separates the wave equation by writing

= f e - “  £  2  e1”** «,„,(«)/?,„,(»•) d«. (15)
J H*l m— l

The separated differential equations for R lm and S lm are

[(1 — u2) S lTJl' U]'U + (m + su)2~\
l - u 2 J'a2a>2u2 — 2 +  A lm

which is Teukolsky’s equation 8, but with u = costf, and

A R im,rr + {8+ l ) W r - \ . ) R lm r + V(r)Rlm = 0,

’lm 0,

where

(16)

(17)

V(r) = {[{r2 + a2)2(i)2 — 2am(or + a2m2 + is{am(2r—l) — a)(r2 — a2))]A~1
+ [2i s(or-a2o)2- A lm]},

which is Teukolsky’s equation 7. The rotation parameter a is the angular 
momentum per unit mass (0 ^  a< £), and The field spin-weight
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parameter 0 takes the values 0, - 1 ,  - 2 ,  respectively, for outgoing scalar, 
electromagnetic, and gravitational fields. Alm is the angular separation constant 
for (16), and reduces to 1(1+  l ) - « ( « + 1) a t the Schwarzschild limit (see below).

Boundary conditions for (16) are th a t Slm be finite a t the regular singular points 
u = +1 and u =  — 1, where the indices are +\{m  + s) and + \(m — respectively. 
A solution to (16) may be expressed as

00

8  1 tu)  =  e ao)U{ i + u ) $ m- sl{ l - u f i m+slS  a n { \ + u ) n (1 8 )
im n=0

(Baber & Hasse 1935, equation 34). The expansion coefficients are related by a 
three-term recurrence relation, and the boundary condition at =  +1 will be 
satisfied only by its minimal solution sequence. The recurrence relation is

+  =  ° ’ |  (19)

a n+ l fin an d" Vn a n-l 1 > 2 . . .  J
where the superscript 6 is used to denote association with the ‘ angular ’ equation, 
and the recurrence coefficients are, with =  | |  |and  = \  \m-\-s\,

<xen = — 2(w+ 1) (w +  2 ^ 4 -1),

fin = n(u — 1) +  2 n(k1 + k2 + 1 — 2<wi>)
-  [2aw(2^1 + srf 1) -  + k2) ( kx +  +  1)] -  [«W  1)4- A lm\,

(20)

y en =  2 ao)(n + k 1 + k2 +  s).

For a given a, m, a), and s the minimal solution sequence will satisfy (19) if the 
separation constant Alm is a root of the continued fraction equation

0 = /?0*
f i t -  P I -

(21 )

or any of its inversions (cf. equation (14)). Note th a t a t the Schwarzschild limit 
(a = 0) the y n are zero for all n, and the recursion will stop whenever Alm is such 
tha t Pn is zero for some n. This will happen when Alm =  n(n+  1)— 1), th a t
is, when n = l(Teukolsky 1972).

A solution Rlm{r) to (17) may be found in a manner similar to our solution to 
(2) since both are generalized spheroidal wave equations with similar boundary 
conditions. Teukolsky defines the regular singular points r+ and r_ as the roots of 
A, so tha t A = r2— r + a2 = (r— r_)(r—r+). I t  is useful to define an auxiliary
rotation parameter b = (1—4a2)*, so tha t b ranges from 1 to 0 as a ranges from 
0 to |  (Kerr limit). Then r± =  2(1 +  ̂ )- The event horizon is a t the larger of 
these values, r = r+.The indices a t r — r+ are i<r+ and — where
ct+ = (< or+ — a m ) /b .It  is the second index th a t corresponds to in-going radiation.

Asymptotic solutions to (17) are

lim Rim{r) ~  r-i-i<oe-i<oran(j jjm ~  r_1_2s+io> e+1&'r
r-̂ oo 00

(Teukolsky 1972), the latter being outgoing according to the sign convention of
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(15). The radial equation boundary conditions for the quasi-normal mode problem
are then

r->r+
R , J r ) ( r - r +)-’- “'+

Our solution may be expressed as 

=  e1Awri

S ,J r )  -  r - ‘- “ +‘«e‘- . (22)

00 / y Y \  ̂
(23)

where the expansion coefficients are again defined by a three-term recursion 
relation:

< < + / ? £ <  =  ° ’
< d n+l + f rndn + y rndn_1 = 0 , 1 ,2 ...

(24)

The recursion coefficients are

otrn =  n2 +  (c„ + l)n  +  c„,

/)'n = - 2n° + (cl +  2)n + c3,

Yn =

and the intermediate constants cn are defined by

^x / ftl \
1 — s — ia> ——

2i (o) \

, 4i (d) \
cx =  -4-t-2iw(2 + 6) + - ^ ( - - a m j ,

. 2i (a) \
c2 =  8 + 3 —3iw - — I -  I,

(25)

(26)

w2(4 +  26 — a2) — 2amd) — s — 1 + (2 +  — A lm 4
4&> + 2i /  

b \2
— arnj,

C4 8+1 — 2d)2 — (28 +  3) \d)
4o> + 2i 

b /

The series in (23) converges and the r =  oo boundary condition (22) is satisfied if, 
for a given a, m, A lm, and s, the frequency w is a root of the continued fraction 
equation

0 = PI <71^x72^273
P I -  PI-PI- "

(27)

or any of its inversions.
I t  can be shown that in the limit as a->0, the /?£ of (25) equal the /?„ of (8), and 

that the product ccrny rn+x of (25) equals the product ocny n+1 of (8). Since 
Aim^’ld + 1) — 8(8+ 1) as 0, we have the necessary result th a t (27) reduces to 
(13) a t the Schwarzschild limit.

Equations (21) and (27) are two equations for the unknowns Alm and d>. They 
may be solved simultaneously by standard nonlinear root-search algorithms. I



292 E. W. Leaver

used Argonne Laboratory’s minpack subroutine h y b r d . The continued fractions 
were evaluated by Steed’s algorithm (Barnett el 1974), with the Numerical 
Algorithm Group’s sequence accelerator subroutine c06baf used to speed conver- 
gence of the approximants.

I t  is interesting to note tha t the apparently singular nature of the recursion 
coefficients (25) at the Kerr limit can be avoided if lim which
in the normalized units used here corresponds to the critical frequency ojc for 
the superradiant scattering of an incident wave of spheroidal multipole m 
(Detweiler 1977; Chandrasekhar & Detweiler 1976). We should not be surprised 
to find that as 6-^0 the value o)c = mis indeed a root of (21) and (27), a t least 
for m ̂  1 (see figure 3). In fact, the numerical results suggest th a t in the Kerr limit 
the number of damped low-order modes may become finite (although some quite 
imaginative extrapolation would be necessary to infer the exact number from the 
present data), and the frequencies of the highest order modes coalesce to the single 
undamped frequency (oc. Detweiler (1980) has given an analytic proof th a t ojc is 
an accumulation point for quasi-normal frequencies a t the Kerr limit. The present 
study suggests the likelihood tha t each of the infinity of frequencies clustered near 
ojc can be mapped to one of the infinity of Schwarzschild quasi-normal frequencies 
as the rotation parameter decreases from to =0.

Jaffe’s method can express the quasi-normal mode wavefunctions for all values 
of the rotation parameter a less than the Kerr limit but fails when a =  \
because there r+ = r_ and the sum h d n[(r — r_)]w becomes useless as a 
solution to differential equation (17). As athe regular singular points r = r+ 
and r = r_of (17) coalesce to form an irregular (confluent) singular point. Analytic 
solutions to the differential equation in this case do exist, and are described in 
Leaver (1985 a, b).

4. Co m p l e x  c o n j u g a t e  s y m m e t r y  a n d  d i s c u s s i o n  op  r e s u l t s

Consideration of quasi-normal frequencies as the poles of the Green function th a t 
propagates the perturbations requires the quasi-normal modes to appear as 
complex conjugate pairs of the frequency variable =  — for the only way a real 
perturbation can excite a complex mode characterized by a complex frequency to 
give purely real radiation is if tha t real perturbation simultaneously excites a 
symmetry mode tha t is complex conjugate to the first. Ferrari and Mashhoon 
(1984) attain this requirement by treating the quasi-normal frequencies as the poles 
of the reflection amplitude of radiation scattered by the Regge-Wheeler potential. 
For the Schwarzschild geometry this symmetry is explicit in (14) since the con­
tinued fractions are real when p is real. The complex conjugate symmetry of the 
roots is then assured by the Schwartz reflection principle.

The symmetry of the Schwarzschild quasi-normal frequencies about the im­
aginary a>-axis is shown explicitly in figure 1 for l =  2 and =  3. I include both 
branches in this figure to illustrate the crossings the branches make of the 
imaginary oj-axis (for example, a t (0, — 3.998) for 1 = 2). The values of some of these 
frequencies are listed in table 1. Only the right-hand frequency branches (for l 
values 4 to 12) are plotted in figure 2.
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Re (to)

Figure 1. F irst 60 Schwarzschild quasi-norm al frequencies for and The odd-order
frequencies are prom inently m arked ; a few-even order frequencies are indicated as short 
bars perpendicular to  the curves connecting the points.

Table 1. R epresentative Schwarzschild gravitational quasi-normal 
FREQUENCIES FOR l 2 AND 1 = 3

(Note the near-coincidence of the nin th  l = 2 and the forty-first l = 3 frequencies w ith the 
‘algebraically special’ values \(l — 1) 1(1 + l)(l + 2 )discussed by Chandrasekhar (1984).)

1 = 2 1 = 3
n

1 (0.747343, -0 .177925) (1.198887, -0 .185406)
2 (0.693422, -0 .547830) (1.165288, -0 .562596)
3 (0.602107, -0 .956554) (1.103370, -0 .958186)
4 (0.503010, -1 .410296) (1.023924, -1 .380674)
5 (0.415029, -1 .893690) (0.940348, -1 .831299)
6 (0.338599, -2 .391216) (0.862773, -2 .304303)
7 (0.266505, -2 .895822) (0.795319, -2 .791824)
8 (0.185617, -3 .407676) (0.737985, -3 .287689)
9 (0.000000, -3 .998000) (0.689237, -3 .788066)

10 (0.126527, -4 .605289) (0.647366, -4 .290798)
11 (0.153107, -5 .121653) (0.610922, -4 .794709)
12 (0.165196, -5 .630885) (0.578768, -5 .299159)
20 (0.175608, -9 .660879) (0.404157, -9 .333121)
30 (0.165814, -14 .677118) (0.257431, -14 .363580)
40 (0.156368, -19 .684873) (0.075298, -19 .415545)
41 (0.154912, -20 .188298) (-0 .000259 , -20 .015653)
42 (0.156392, -20.685530) (0.017662, -20 .566075)
50 (0.151216, -24 .693716) (0.134153, -24 .119329)
60 (0.148484, -29 .696417) (0.163614, -29 .135345)
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F igure 2. First 10 Schwarzschild gravitational quasi-normal frequencies for =  2 to =  12.

The equations for the Kerr geometry ((16) and (17)) are more complicated than 
the equation (2) for Schwarzschild’s geometry, but still contain, in a slightly less 
direct form, the desired symmetry for the quasi-normal frequencies. If  
— i o)n m and At m are a quasi-normal frequency and corresponding angular 
separation constant for azimuthal index m then _m p* m and _m Af̂  m 
are a quasi-normal frequency and angular separation constant for azimuthal 
index — m .This satisfies the requirement of complex conjugate pairing since the 
sum in expression (15) is over both positive and negative values of m.

The functional dependence of A lmon the rotation parameter a is shown in tables 2 
and 3 for l = 2, m =  0, and 1 =  2 , m =  1. Figure 3 plots the trajectories the five
lowest gravitational quasi-normal frequencies trace as the rotation of the black 
hole increases from the Schwarzschild limit to near the Kerr limit, and illustrates 
the degree to which the (21+  l)-fold azimuthal degeneracy is lifted by the rotation 
for 1 = 2 . To save space both the right (Re (u>) > 0) branch and the left (Re (u>) <  0) 
branches were plotted on the same graph, the values of the real parts of the left 
branches being replaced by their absolute magnitudes. Thus the right branch 
appears to the right of the Schwarzschild limit (indicated by the broken line), and 
the values for the left branches typically appear to the left. The exception here 
is the case of m =  0, where, as in the Schwarzschild limit, the quasi-normal 
frequencies are symmetric about the imaginary <t>-axis and the left branch 
superimposes the righ t: what appear in each of the figures are the images of the 
left branches as they reflect through the imaginary axis. The values for all the Kerr 
frequencies as plotted are again reflected through the imaginary axis when m is 
replaced by —m. Comparison of the tabulated values for the 2, 0 and the
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Table 2. K err quasi-normal frequencies and angular separation constants
FOR THE FUNDAMENTAL MODE CORRESPONDING TO AND 0

a

0.0000
0.1000
0.2000
0.3000
0.4000
0.4500
0.4900
0.4999

0.0000
0.1000
0.2000
0.3000
0.4000
0.4500
0.4900
0.4999

(Values are p lotted in figure 3a.)

Aim
(4:00000, 0.00000) 
(3.99722, 0.00139) 
(3.98856, 0.00560) 
(3.97297, 0.01262) 
(3.94800, 0.02226) 
(3.93038, 0.02763) 
(3.91269, 0.03152) 
(3.90770, 0.03227)

(4.00000, 0.00000) 
(3.99722, -0 .00139) 
(3.98856, -0 .00560) 
(3.97297, -0 .01262) 
(3.94800, -0 .02226) 
(3.93038, -0 .02763) 
(3.91269, -0 .03152) 
(3.90770, -0 .03227)

oji

(0.747343, -0 .177925) 
(0.750248, -0 .177401) 
(0.759363, -0 .175653) 
(0.776108, -0 .171989) 
(0.803835, -0 .164313) 
(0.824009, -0 .156965) 
(0.844509, -0 .147065) 
(0.850233, -0 .143646)

(-0 .7 4 7 3 4 3 , -0 .177925) 
(-0 .7 5 0 2 4 8 , -0 .177401) 
(-0 .7 5 9 3 6 3 , -0 .175653) 
(-0 .7 7 6 1 0 8 , -0 .171989) 
(-0 .8 0 3 8 3 5 , -0 .164313) 
(-0 .8 2 4 0 0 9 , -0 .156965) 
(-0 .8 4 4 5 0 9 , -0 .147065) 
(-0 .8 5 0 2 3 3 , -0 .143646)

Table 3. K err quasi-normal frequencies and angular separation constants
FOR THE FUNDAMENTAL MODE CORRESPONDING TO Z =  2 AND 1

(Values are p lo tted  in figure 36.)

a

0.0000 (4.00000, 0.00000)
0.1000 (3.89315, 0.02520)
0.2000 (3.76757, 0.05324)
0.3000 (3.61247, 0.08347)
0.4000 (3.40228, 0.11217)
0.4500 (3.25345, 0.11951)
0.4900 (3.07966, 0.10216)
0.4999 (3.02131, 0.07903)
0.0000 (4.00000, 0.00000)
0.1000 (4.09389, 0.02224)
0.2000 (4.17836, 0.04150)
0.3000 (4.25579, 0.05767)
0.4000 (4.32786, 0.07049)
0.4500 (4.36229, 0.07547)
0.4900 (4.38917, 0.07868)
0.4999 (4.39573, 0.07935)

(Dl
(0.747343, -0 .177925) 
(0.776500, -0 .176977) 
(0.815958, -0 .174514) 
(0.871937, -0 .169128) 
(0.960461, -0 .155910) 
(1.032583, -0 .139609) 
(1.128310, -0 .103285) 
(1.162546, -0 .076881)

(-0 .747343 , -0 .177925) 
(-0 .7 2 5 4 7 7 , -0 .177871) 
(-0 .7 0 9 2 6 5 , -0 .176968) 
(-0 .697821 , -0 .175132) 
(-0 .690712 , -0 .172007) 
(-0 .688717 , -0 .169730) 
(-0 .6 8 7 8 4 5 , -0 .167425) 
(-0 .6 8 7 7 2 4 , -0 .166772)
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l =  2, m =  1 Kerr quasi-normal frequencies (tables 2 and 3) with their respective 
graphs in figures 3a, b should indicate how the graph was done. Figure 3d is a detail 
of figure 36 and illustrates explicitly the symmetry between the positive m branch 
and the negative m branch for 1 =  2 and +  1.

Detweiler (1980) has previously published trajectories for the fundamental 
quasi-normal frequencies as a function of the rotation parameter. The lowest curve 
in each of figures 3a, 6 and c correspond to the curves plotted in Detweiler’s 
figure la . (Similar plots for 1 =  3 and Z =  4, corresponding to Detweiler’s 
figures 16,c can be found in Leaver (1985 a).) Comparison of my figures with 
Detweiler’s reveals th a t the m =  — 1 trajectory th a t Detweiler followed does 
indeed correspond to the least-damped (fundamental) frequency a t the 0 
Schwarzschild limit, but, owing to the clustering of the (formerly) higher order 
modes a t the undamped o)c accumulation point (derived by Detweiler in the same 
paper), does not correspond to the least-damped of the modes a t the Kerr limit.

The presence of unstable high-order modes for rotating black holes has been 
suggested by Detweiler & Ove (1983). Ferrari & Mashhoon (1984) point out th a t 
any perturbation resulting in the excitation of an undamped mode will result in 
the black hole losing rotational energy into th a t undamped mode until the black 
hole’s angular momentum equilibrates beneath the limit a t which the mode again 
becomes damped, or disappears. My results suggest, but do not prove, th a t this 
limit is always the Kerr limit and th a t every quasi-normal mode of a physically 
realizable black hole possesses a t least some small amount of damping. I stress th a t 
this is conjecture: although I found no modes tha t exist a t the Schwarzschild limit 
tha t become undamped before the Kerr limit, I followed only a few low-order 
modes for small values of the multipole l, and have not ruled out the possibility 
of modes, stable or otherwise, for rapidly rotating black holes th a t cannot be 
connected with a mode at the Schwarzschild limit.

Exact calculations of the possible degree of excitation of undamped or minimally 
damped modes (say in the collapse of rapidly rotating massive stars) have not yet 
been done, so the rate a t which the rotation is equilibrated cannot yet be assessed. 
Ferrari & Mashhoon (1984) argue th a t undamped modes cannot be excited a t the 
Kerr limit, and presumably can only be weakly excited near th a t limit. Current 
theory maintains th a t while supermassive rotating black holes may exist with 
a «  0.499 (Bardeen 1970; Thorne 1974), an object with =  is in fact a naked 
singularity, and is unlikely to form a t all (Penrose 1969). Thorne (1974) has shown 
that a «  0.4992 is probably an upper limit to the rotation realizable by an 
accreting astrophysical black hole; whether or not a black hole can form via stellar 
collapse with an a greater than this value (and still less than §) remains an open 
question.

In a forthcoming paper I will present a solution to the problem of computing 
the excitation of quasi-normal modes a t the Schwarzschild limit, and demonstrates 
the significance of modes other than the fundamental. The method to be described 
can in principle be generalized to the Kerr geometry, and the prospects for 
calculating the excitation of the clustered modes and obtaining reliable numeric 
answers to questions concerning black hole stability appear good.

The quasi-normal modes of Kerr black holes
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