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What joy it is, when out at sea the stormwinds are lashing the waters, to gaze from the
shore at the heavy stress some other man is enduring! Not that anyone’s afflictions
are in themselves a source of delight; but to realise from what troubles you yourself
are free is joy indeed. What joy, again, to watch opposing hosts marshalled on the
field of battle when you have yourself no part in their peril! But this is the greatest
joy of all: to stand aloof in a quiet citadel, stoutly fortified by the teaching of the wise,
and to gaze down from that elevation on others wandering aimlessly in a vain search
for the way of life, pitting their wits one against another, disputing for precedence,
struggling night and day with unstinted effort to scale the pinnacles of wealth and
power. O joyless hearts of men! O minds without vision! How dark and dangerous
the life in which this tiny span is lived away! Do you not see that nature is clamouring
for two things only, a body free from pain, a mind released from worry and fear for
the enjoyment of pleasurable sensations?

So we find that the requirements of our bodily nature are few indeed, no more
than is necessary to banish pain. To heap pleasure upon pleasure may height men’s
enjoyment at times. But what matter if there are no golden images of youths about
the house, holding flaming torches in their right hands to illumine banquets prolonged
into the night? What matter if the hall does not sparkle with silver and gleam with
gold, and no carved and gilded rafters ring to the music of the lute? Nature does
not miss these luxuries when men recline in company on the soft grass by a running
stream under the branches of a tall tree and refresh their bodies pleasurably at small
expense. Better still if the weather smiles upon them and the season of the year stipples
the green herbage with flowers. Burning fevers flee no swifter from your body if you
toss under figured counterpanes and coverlets of crimson than if you must lie in rude
home-spun.

Lucretius, De Rerum Natura, Book II
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Abstract / Abstrakt

The past decade has transformed our ability to observe the Universe. Via gravitational
waves, merging black holes and neutron stars can now be directly detected, offering
unprecedented opportunities to test General Relativity and explore astrophysics in a
fundamentally new way. Driven by this breakthrough, the next generation of detectors
is being developed to observe a wider range of sources with greater precision. This
marks the beginning of a new era in gravitational-wave astronomy: leveraging black
holes as probes of new physics.

Despite their reputation, black holes are remarkably simple macroscopic objects,
described by only a few parameters. This simplicity enables highly accurate predic-
tions of black hole mergers, with any deviation potentially signalling new physics –
from modifications to General Relativity to the presence of surrounding matter. Such
prospects motivate the study of black hole environments. As two black holes in a
binary spiral towards each other, they interact dynamically with their environment,
accreting material or experiencing drag forces that alter their motion and, in turn,
the gravitational waves they emit. Detecting these effects requires careful modelling
of both the binary and the environment. This thesis addresses various aspects of this
challenge, with implications for future detectors such as LISA or Einstein Telescope.

When one compact object is much lighter than the other, so-called extreme mass
ratio binaries, its motion becomes especially sensitive to the surrounding environment,
influencing the binary’s evolution from formation all the way to merger. While various
types of environments exist, in this thesis, I focus on the main ones: gaseous media
such as plasma and accretion disks, as well as dark matter structures. A particularly
striking scenario involves black hole superradiance, a process in which a black hole
transfers some of its energy and angular momentum to a bosonic field, forming a
dense “boson cloud”. These clouds occupy quantised bound states similar to those in
the hydrogen atom. The superradiant process, relevant for bosons with masses in the
range 10−20 to 10−10 eV, relies solely on gravitational interactions, offering a unique
opportunity to explore the weak-coupling and ultralight regime of particle physics.
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In the first part of this thesis, I investigate these ultralight bosons and their inter-
actions with the electromagnetic sector. I show that, as a boson cloud grows via su-
perradiance, its interaction with photons drives the system towards a stationary state,
where energy extracted from the black hole is steadily converted into monochromatic
electromagnetic radiation – a compelling observational channel. I also assess whether
this radiation can reach us, given the presence of matter throughout the Universe. I
find that astrophysical plasmas can significantly suppress the conversion from bosons
to photons, allowing light to propagate only for strong couplings.

I then turn to black hole binaries, focusing first on the ringdown phase. Plasma
may also play a role here if black holes carry charge. I demonstrate how plasma
can modify the fundamental quasi-normal mode, or even induce echoes in the
gravitational-wave signal. Similarly distinct signatures may occur in galactic dark
matter halos. To evaluate their relevance, I investigate whether such halos affect
the ringdown in a realistic data-analysis context. My findings suggest that, for both
present and upcoming detectors, the ringdown signal remains indistinguishable from
that in vacuum.

In contrast to the ringdown phase, the inspiral lasts much longer, allowing effects
from the environment to accumulate in the waveform. Returning to the study of boson
clouds, I examine the early inspiral, where resonances between bound states can occur.
A systematic exploration of the system’s “history” reveals that when the binary and
cloud are nearly counter-rotating, resonances are ineffective, and the cloud persists
into the late inspiral, where it may directly influence the waveform. For most orbital
configurations, however, the cloud is absorbed by the black hole, leaving imprints on
the binary’s eccentricity and inclination, thereby opening an indirect observational
window. I also explore the early inspiral phase in the context of accretion disks. Here
too, the environment shapes the orbital evolution by aligning the binary’s orbit with
the disk plane, while eccentricity may either increase or decrease. These effects are
crucial for accurately modelling gravitational-wave sources.

As the binary approaches merger, its motion becomes highly relativistic. In the
case of extreme mass ratio inspirals, the self-force approach offers the most suitable
framework for modelling this regime. I extend this method to account for environ-
ments and apply it to boson clouds, highlighting the limitations of Newtonian and
Schwarzschild approximations. This framework paves the way for studying generic
black hole environments in Kerr spacetime.

This thesis explores the rich observational signatures produced by black hole envi-
ronments, with implications for both gravitational physics and (astro)particle physics.
A key challenge lies in determining whether these signatures can be identified in realis-
tic data and how precisely the system parameters can be inferred. With this in mind,
gravitational waves may yet unlock some of the deepest mysteries of our Universe.
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Dansk oversættelse

Det seneste årti har transformeret vores evne til at observere Universet. Kollid-
erende sorte huller og neutronstjerner kan nu observeres direkte via gravitationsbøl-
ger, hvilket giver hidtil usete muligheder for at teste den generelle relativitetsteori
og udforske astrofysik på en fundamentalt ny måde. Drevet af dette gennembrud
udvikles den næste generation af detektorer til at observere en bredere vifte af kilder
med større præcision. Dette markerer begyndelsen på en ny æra inden for gravita-
tionsbølgeastronomi: udnyttelse af sorte huller som detektorer for ny fysik.

Trods deres ry er sorte huller bemærkelsesværdigt simple makroskopiske objekter,
beskrevet af kun få parametre. Deres simple beskrivelse muliggør meget nøjagtige
forudsigelser af kollisioner mellem af sorte huller, hvor enhver afvigelse potentielt sig-
nalerer ny fysik, såsom modificeringer af den generelle relativitetsteori eller tilstede-
værelsen af omgivende stof. Sådanne perspektiver motiverer studiet af sorte hullers
omgivelser. Når et binært system af to sorte huller er i bevægelse mod hinanden i
en spiral-bane, interagerer de dynamisk med deres miljø, tilegner sig materiale eller
oplever modstandskræfter fra omgivelserne, der ændrer deres bevægelse og dermed de
gravitationsbølger de udsender. Måling af disse effekter kræver præcis modellering af
både det binære system og miljøet. Denne afhandling undersøger forskellige aspekter
af denne udfordring, med implikationer for fremtidige detektorer såsom LISA eller
Einstein Telescope.

Når et kompakt objekt i et binært system er meget lettere end det andet, et såkaldt
extreme-mass-ratio binært system, bliver dets bevægelse særligt følsom over for om-
givelserne, hvilket påvirker det binære systems udvikling; fra dannelse og hele vejen
til kollision. I denne afhandling fokuserer jeg på de vigtigste typer af astrofysiske
miljøer: gasformige medier såsom plasma og akkretionsskiver, samt mørke stofstruk-
turer. Et særligt slående scenario involverer sorte hullers superradians, en proces, hvor
et sort hul overfører noget af sin energi og angulært moment til et bosonisk felt og dan-
ner en tæt “bosonsky”. Disse skyer indtager kvantiserede bundne tilstande svarende
til dem i hydrogenatomet. Superradiansprocessen, som er relevant for bosoner med
masser i intervallet 10−20 til 10−10 eV, er udelukkende afhængig af gravitationelle
interaktioner, hvilket giver en unik mulighed for at udforske partikelfysikkens svage
koblings- og ultralette regime.

I den første del af denne afhandling undersøger jeg disse ultralette bosoner og
deres interaktioner med den elektromagnetiske sektor. Jeg viser, at i processen hvor
en bosonsky vokser via superradians-fænomenet, driver dens interaktion med fotoner
systemet mod en stationær tilstand, hvor energi udvundet fra det sorte hul kontin-
uerligt omdannes til monokromatisk elektromagnetisk stråling – en brugbar observa-
tionskilde for fænomenet. Jeg undersøger også, om denne stråling kan nå os, givet
tilstedeværelsen af stof i hele Universet. Jeg konkluderer, at astrofysiske plasmaer
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kan undertrykke omdannelsen fra bosoner til fotoner betydeligt, hvilket gør, at lyset
kun kan udbredes ved stærke koblinger.

Derefter undersøger jeg sorte huller i binære systemer og fokuserer først på fasen
kaldet ringdown. Plasma kan også spille en rolle her, hvis sorte huller bærer ladning.
Jeg demonstrerer, hvordan plasma kan ændre den grundlæggende såkaldte kvasinor-
male tilstand eller endda inducere ekkoer i gravitationsbølgesignalet. Tilsvarende kan
forskellige signaturer forekomme i galaktiske mørkstofhaloer. For at evaluere deres
relevans undersøger jeg, om sådanne haloer påvirker ringdown fasen i en realistisk
dataanalysekontekst. Mine resultater tyder på, at ringdown-signalet, for både nu-
værende og kommende detektorer, forbliver umuligt at skelne fra signalet i vakuum.

I modsætning til ringdown fasen varer inspiralfasen, hvor de sorte huller bevæger
sig mod hinanden, meget længere, hvilket tillader effekter fra omgivelserne at akku-
mulere i bølgeformen. Jeg vender her tilbage til at studere boson skyer, hvor jeg
undersøger den tidlige inspiralfase, hvor resonanser mellem bundne tilstande kan
forekomme. En systematisk udforskning af systemets “historie” viser, at når det
binære system og boson-skyen er næsten modsat rotererende, er resonanserne ineffek-
tive, og skyen overlever ind i den sene inspiralfase, hvor den direkte kan påvirke bøl-
geformen. For de fleste orbitale konfigurationer absorberes skyen dog af det sorte hul,
hvilket efterlader aftryk på det binære systems excentricitet og hældning, hvilket åb-
ner et indirekte observationsvindue. Jeg udforsker også den tidlige inspiralfase i kon-
tekst af akkretionsskiver. Også her påvirker miljøet orbitaludviklingen af det binære
system, således at banen påvirkes i retning af at være sammenfaldende skiveplanet,
mens excentriciteten af systemet enten kan øges eller mindskes. Det er afgørende at
forstå disse effekter for at opnå en præcis modellering af gravitationsbølgekilder.

Efterhånden som det binære system nærmer sig kollision, bliver dens bevægelse
meget relativistisk. I tilfælde af extreme-mass-ratio systemer er den såkaldte selvkraft-
tilgang den mest passende metode til modellering af dette regime. Jeg udvider denne
metode til at tage højde for miljøer og anvender den på bosonskyer og påpeger be-
grænsningerne ved Newtonske og Schwarzschild-approksimationer af systemet. Denne
ramme baner vejen for at studere generiske sort-hul miljøer i Kerr-rumtiden.

Denne afhandling udforsker de rige observationssignaturer, der produceres af sorte
hullers miljøer, med implikationer for både gravitationsfysik og (astro)partikelfysik.
En central udfordring ligger i at bestemme om disse signaturer kan identificeres i
realistiske data, og hvor præcist systemparametrene kan udledes. Ved at løse disse
udfordringer har gravitationsbølger potentiale til at bidrage til opklaringen af nogle
af de dybeste mysterier i vores Univers.

Oversat af Asta Heinesen
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Prologue

It has always seemed arbitrary to me, the way the brain stores memories. Some make
sense – celebrating your birthday or going on vacation – while others feel inexplicably
preserved: flashes of a morning walk to school or home-made sandwiches from my
mom on a summer day. Why those memories? Were they more important than
others? Do I even control this process?

One of my fondest childhood memories is sitting on the couch with my dad, watch-
ing the Czech stop-motion animation Buurman & Buurman. I believe its popularity
never spread much beyond Czechia and the Netherlands. The show follows two men,
Pat and Mat, as they handle everyday problems in their own – let’s call it “practical” –
way. Everything always goes wrong, yet their spirit, optimism, and endurance carries
them through. It is something I hope I appreciated, even unconsciously, as a child. I
certainly do now.

In many ways, memories of Pat and Mat kept rushing back to me during my
PhD. Tackling problems I had no idea how to solve demanded all of the qualities
above: spirit, optimism and endurance. Talking to my collaborators, who often were
as confused as I was, became a constant. There were moments of relief when I thought
I’d finally cracked the problem, only to step back, apply a bit of common sense, and
realise it still doesn’t add up. Over time, I’ve come to understand that the dam always
bursts. It may resist for a long time, but enough energy, time and determination will
break it down.

Doing a PhD in gravitational physics, especially at this moment in time, has been
special. The pace at which this field is advancing is nothing short of extraordinary.
Since that landmark detection nearly a decade ago, gravitational-wave astronomy has
evolved from a hopeful concept into a weekly reality. These waves arrive to us as
cosmic messengers, carrying information from distant events we could never witness
before. Already, we test the known and challenge the expected, with our excitement
limited only by imagination. Gravity’s universal nature ensures that whatever is out
there will find its way to us through these waves. Our (not-so) simple task is to
decipher their message.
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Prologue

It is a great joy to be part of that whirlwind. It is a great pleasure to dedicate time
and energy to studying the Universe and becoming familiar with objects so humanly
unfamiliar. It is a great privilege to study objects with no opinions, no political
stances; things that simply are.

And yet, this experience is not just personal. Many others are deeply drawn to this
subject. Maybe it’s no surprise. While reading this, your body is vibrating through
the gravitational waves that pass by. You’re being bombarded by millions of neutrinos
from explosions of massive stars elsewhere in the Universe. There is, and always has
been, a unique connection between humans and the Cosmos. Our curiosity towards
it is only natural. It reflects a universal feature of human nature, regardless of race,
religion or belief: our desire to understand the outside world.

This drive has ultimately shaped my journey for the last three years, which, I’ve
learned, both gives and takes. It’s now, when I’ve reached my destination, that I can
make up the balance. In less than a decade, gravitational-wave astronomy has grown
from nonexistence into a thriving field. As with all rapid progress, it brings with it a
host of unsolved problems and challenges. Still, in the face of these obstacles – both
within science and beyond, in an increasingly uncertain world – I remain an advocate
for positivity. The future is bright. With this thesis, I hope to pass on some of that
excitement and positivity to you.

A Je To.

From the attic of the Niels Bohr Institute,

Copenhagen, Summer of 2025

Thomas
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1 Introduction

Mine is the migrating bird

Winging over perilous regions of the ocean

Ever tracing out the age-old path of the

Wandering waves

A Tuamotuan fangu

The power of theoretical physics lies in its ability to explore a world beyond our
reach. The quintessential example is the black hole. By definition, it marks a region
of spacetime that is causally disconnected from us: no one will ever venture inside
and return to tell the tale. When black holes were first predicted over a century
ago, they seemed little more than a mathematical curiosity, mere artefacts of General
Relativity. That scepticism, in retrospect, was misplaced. Not only do we now have
compelling evidence for their existence from multiple observational channels [13–18],
but it is also becoming increasingly clear that they drive some of the most powerful
phenomena in the Universe and play a crucial role in its evolution [19–23].

The observational triumph of black holes was crowned by the first detection of
gravitational waves in 2015 [16] – an achievement whose significance is hard to over-
state. These waves were produced by two black holes merging 1.4 billion years ago,
sending ripples through spacetime that, upon reaching Earth, displaced two mirrors
by just one hundredth the width of a proton. From this minuscule shift, their co-
alescence could be inferred – an extraordinary feat of experimental precision and
technological ingenuity. Though the physical disturbance has long passed, its scien-
tific reverberations persist. Until then, our understanding of the Universe had relied
entirely on light: photons travelling across space into our eyes and telescopes. This
detection fundamentally changed that paradigm: these waves are not light but ripples
of spacetime itself, offering a way to explore the dark Universe.
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1. Introduction

The last decade marked the dawn of a new era in gravitational physics, an era of
observations. During this time, LIGO and Virgo have detected gravitational waves
from over a hundred mergers of binary black holes and neutron stars [24–26]. These
detections have not only confirmed our theory of gravity, General Relativity, in the
strong-field, dynamical regime [27–29], but also serve as astrophysical messengers,
revealing events from across the Universe. A landmark event was the first detection of
a binary neutron star merger [30], accompanied by electromagnetic counterparts [31–
33], which marked a pivotal moment for the field of multi-messenger astronomy. It
provided compelling evidence that neutron star mergers forge heavy elements [34, 35],
enabled precise measurements of the speed of gravitational waves [36] and introduced
a new method for measuring the expansion rate of the Universe [37].

Building on this exciting potential, the next generation of gravitational-wave de-
tectors is being developed to extend the frequency range and enhance sensitivity.
While current detectors primarily observe compact-object mergers of nearly equal
mass, these are not the only sources of gravitational waves in our Universe. Of par-
ticular interest are extreme mass ratio inspirals (EMRIs), in which a small object
orbits a much larger one. Due to the disparity in masses, the smaller object moves
through spacetime like a rubber duck drifting along a river, slowly spiralling inwards
as it radiates gravitational waves. Whereas existing detectors catch only the final
moments of a binary coalescence – the crescendo of its “song” – EMRIs could remain
within a detector’s sensitivity band for years, allowing us to hear their entire melody.
Moreover, unlike the violent, waterfall-like mergers of equal-mass binaries, EMRIs are
more sensitive to disturbances along the way. Precisely tracking their motion could
reveal subtle effects from surrounding matter, turning them into powerful tools for
mapping their environment. Such matter distributions are ubiquitous around black
holes, especially in galactic centres [38], making EMRIs natural (astro)particle detec-
tors.

The Laser Interferometer Space Antenna (LISA) is one of the key detectors
planned to observe EMRIs. With its 2.5 million-kilometre-long laser arms, LISA will
operate in the millihertz regime [39]. Much like removing earplugs, LISA will reveal a
cacophony of cosmic signals, demanding major advances in theoretical modelling and
statistical analysis to disentangle them [40, 41]. Environments complicate this task by
modifying the waveform relative to vacuum, introducing additional parameters and
potential degeneracies into the analysis. On top of that, environments themselves
are dynamical: binary systems can disrupt or deplete them, even before entering a
detector’s sensitivity band. Addressing these challenges calls for careful modelling
of both the environment and the binary’s evolution, from formation to final merger.
Without this, gravitational-wave signals might be missed, parameters misinterpreted,
and opportunities lost to probe dark matter or new fundamental fields [9, 42].

2



Figure 1.1: Illustration of the central theme of this thesis: exploring black hole envi-
ronments. Black holes may drive some of the most energetic processes in our Universe
and offer a unique window into a regime of physics that is largely uncharted.

Most environments can be classified as either gaseous or composed of dark matter.
Gaseous environments, such as accretion disks and plasma, are extensively studied
through electromagnetic observations and offer exciting prospects for multi-messenger
astronomy. Accretion disks in active galactic nuclei, for example, may act as “nurs-
eries” for black hole binaries [43–47], capturing them and driving their inspiral by
aligning the orbit with the disk plane and shaping their eccentricity evolution [8].
Additionally, gaseous environments can influence fundamental fields near black holes,
particularly when those fields are coupled to the electromagnetic sector. Specifically,
while putative ultralight bosonic fields could give rise to powerful electromagnetic
radiation, surrounding plasmas can suppress the conversion of bosons to photons,
a phenomenon known as in-medium suppression [2]. As a result, only very strong
couplings can lead to detectable electromagnetic signatures [1]. Plasmas also play a
crucial role for charged black holes, especially in the final stages of binary coalescence,
where they may alter the characteristic “ringing” frequencies of the remnant black hole
or even generate echoes in the gravitational-wave signal [3].

Dark matter structures around black holes represent another important avenue for
exploration [48, 49]. The nature and properties of dark matter are among the most
important open issues in science, and black holes are key in probing it. On large scales,
simulations have provided a solid understanding of the behaviour of dark matter [50],
however, its impact on gravitational-wave astronomy is not well understood. For
relatively low-density environments, such as on galactic scales, the only detectable
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1. Introduction

effect, at least in the ringdown, is a redshift of the gravitational waves as they climb
the gravitational potential [4]. However, in regions with higher dark matter densities,
their impact may be more pronounced.

There are several ways in which such densities can build up around black holes.
If dark matter consists of cold, collisionless particles, adiabatic black hole growth can
lead to overdensities, or spikes [51, 52]. Alternatively, dark matter could be composed
of light bosonic fields such as axions [53–55], which may simultaneously offer solutions
to longstanding problems in the Standard Model [56–58]. Large quantities of such
particles can be generated around black holes through black hole superradiance [59–
63], a process which allows the boson to extract energy and angular momentum from
a rotating black hole, forming a dense cloud around it. For superradiance to be
effective, the Compton wavelength of the boson needs to match the black hole size,
requiring the putative field to be ultralight. Unlike high-energy collider experiments,
which are limited to particles with strong interactions, superradiance thus provides a
natural mechanism to probe particles at the weak-coupling frontier, relying solely on
gravitational interactions.

The presence of such clouds in binary systems leads to a rich phenomenology [5,
10, 64–66]. To fully characterise their observational signatures, it is crucial to study
the entire evolution of these systems, even before they enter the sensitivity band of
gravitational-wave detectors. A systematic exploration of this “history” shows that,
in many cases, the cloud is destroyed early in the inspiral, leaving strong imprints
on the binary’s configuration and providing an indirect observational channel [5, 6].
Should the cloud survive until close to merger, it becomes directly detectable through
effects like accretion or dynamical friction [10, 66]. In this regime, a fully relativistic,
self-consistent and generic approach to EMRIs and environments in Kerr spacetime is
essential. Such a framework, when applied to the boson cloud scenario, reveals large
deviations from Newtonian and Schwarzschild predictions [7].

The advent of next-generation detectors [39, 67] highlights the importance and
urgency of systematically studying the environments surrounding black holes. These
systems act as cosmic laboratories, generating unique physical phenomena and prob-
ing regimes inaccessible on Earth. This thesis embraces that opportunity, leverag-
ing all available observational tools to explore these systems. Figure 1.1 illustrates
this perspective. In doing so, the synergy between theoretical developments and
search strategies is essential, not only for detecting signals but also for guiding our
focus [9, 68]. The future of gravitational-wave and black hole physics is bright! From
formation to ringdown, black hole binaries shout out their presence to the Universe.
Only by tracing their evolution from the first note to the final fading chord, can we be-
gin to understand the cosmic symphony they compose. I hope this thesis contributes
to that effort.
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Outline of this thesis

This thesis is structured as follows. In Chapter 2, I introduce key aspects of
gravitational-wave astrophysics, covering black holes, gravitational waves, and cur-
rent and future gravitational-wave observatories. In Chapter 3, I discuss the various
environments that may be present around black holes, including dark matter halos,
boson clouds, plasmas, and accretion disks. After a general introduction, each case is
examined in detail, outlining the relevant theoretical background. The chapter con-
cludes by exploring how black holes can serve as probes of these environments, both
in isolation and in binary systems.

The remaining chapters present the main results of this thesis. The first two focus
on black holes in isolation. In Chapter 4, I investigate the evolution of superradiant
boson clouds coupled to the electromagnetic sector, showing that these systems can
lead to a stationary emission of light. I describe the observational prospects and
consider the impact of plasma on this emission. Chapter 5 further examines the
interactions between plasma and new fundamental fields. I demonstrate how plasma
can induce in-medium suppression, a mechanism that strongly inhibits the mixing
between ultralight bosons and the electromagnetic sector, with implications for both
superradiance and observations.

The following five chapters are focused on binary systems. In Chapter 6, I study
the ringdown of charged black holes in the presence of plasma. I show that plasma
can modify the fundamental quasi-normal mode in the black hole ringdown and,
when localised away from the black hole, may induce gravitational-wave echoes. In
Chapter 7, I investigate whether galactic dark matter halos can influence black hole
ringdown and, consequently, the black hole spectroscopy programme. From a data-
analysis perspective, I assess if future gravitational-wave detectors will be sensitive to
the presence of the halo and explore the role of spectral instabilities. In Chapters 8
and 9, I shift to the inspiral phase of black hole binaries, focusing on intermediate
to extreme mass ratio inspirals, where the larger black hole hosts a superradiant bo-
son cloud. In Chapter 8, I examine the inspiral in the Newtonian regime, far from
merger, exploring resonances between bound states of the cloud for eccentric and in-
clined orbits. I analyse the sequence of resonances encountered during the evolution
of the system and characterise their observational signatures, showing that the bo-
son cloud can imprint detectable effects on the binary. In Chapter 9, I develop the
first self-consistent, fully relativistic framework to study perturbations induced by an
inspiralling secondary in the Kerr geometry. Applying this to a superradiant boson
cloud reveals a rich wake structure, and computing scalar fluxes in Kerr shows signif-
icant deviations from the Schwarzschild case. In Chapter 10, I explore the evolution
of binaries captured by accretion disks in active galactic nuclei. I show that binaries
rapidly align with the disk plane, whereas the evolution of their eccentricity is more
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1. Introduction

complex and strongly dependent on other orbital parameters. Finally, in Chapter 11,
I summarise the main findings of this thesis and discuss future directions.

Several appendices contain technical details. In Appendix A, I detail the numerical
relativity simulations used in Chapter 4. In Appendix B, I expand on the Mathieu
equation, which explains some of the results from Chapter 4 analytically. In Ap-
pendix C, I provide an overview of black hole perturbation theory and describe the
numerical framework for evolving plunging particles. In Appendix D, I discuss ax-
ionic instabilities in the presence of electric fields in flat spacetime. In Appendix E, I
elaborate on the choice of basis for the dark photon. In Appendix F, I give additional
details on resonances in gravitational atoms. Finally, in Appendix G, I expand on the
relativistic perturbative framework introduced in Chapter 9.

Notation and conventions

Throughout this thesis, I adopt the “mostly plus” metric signature (−,+,+,+). The
black hole mass is denoted by M and, in the case of a binary system, refers to the more
massive object. The mass ratio of the binary is given by q, with q ≤ 1. Dimensionless
quantities, normalised by the black hole mass, are indicated with tildes, e.g., the
spin of the black hole is given by ã ≡ a/M . The covariant derivative associated
with the metric is denoted by ∇. Spacetime indices are represented by Greek letters
(µ, ν, . . .), while Latin letters (i, j, . . .) denote spatial indices. The shorthand

∑
ℓm ≡∑∞

ℓ=0
∑ℓ

m=−ℓ is adopted when summing over harmonics. Unless stated otherwise, I
use natural units where G = ℏ = c = 1.
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2 Gravity and Astrophysics

E eu que era triste

Descrente deste mundo

Ao encontrar você eu conheci

O que é felicidade meu amor

Antônio Carlos Jobim

In this thesis, I explore the interactions between black holes and their environments.
While Chapter 3 provides a broader discussion of the latter, this chapter lays the
theoretical groundwork necessary to understand key concepts related to black holes
and gravitational waves. Rather than taking a purely mathematical or theoretical
approach, I focus on these topics from an astrophysical and observational perspective.

I begin with an overview of General Relativity in Section 2.1, highlighting two of
its most significant predictions: black holes (Section 2.1.1) and gravitational waves
(Section 2.1.2). I then examine the dynamics of compact binaries in Section 2.2,
with a focus on two crucial stages of binary coalescence, which play a recurring role
in this thesis: the inspiral (Section 2.2.1) and the ringdown (Section 2.2.3). Finally,
in Section 2.3, I review the current state of gravitational-wave detectors and outline
proposals for next-generation observatories.

2.1 General Relativity

General Relativity (GR) stands as one of the most elegant and powerful theories in
all of physics. Formulated by Albert Einstein in 1915 [69], it extends the principles
of Special Relativity to incorporate gravity, describing it not as a conventional force
but as a manifestation of spacetime curvature.

7



2. Gravity and Astrophysics

A key insight that set the stage for GR stems from a simple yet profound ob-
servation, known since before Newton: objects of different masses fall at the same
rate. In other words, an object’s “inertial” mass (its resistance to acceleration) and
“gravitational” mass (its response to gravity) are equal. While this equivalence is
an unexplained coincidence in Newtonian gravity, GR promotes it to a guiding con-
cept: the weak equivalence principle (WEP). It implies that gravity acts in a universal
manner: any two particles, with the same initial position and velocity will follow the
same trajectory in a gravitational field, regardless of their mass or composition. This
universality stands in contrast to forces like electromagnetism, where a test-particle
with a different charge moves on a different trajectory.

The question then arises: if all objects fall the same way under gravity, how can
one tell whether a gravitational field is present at all? This question led Einstein
to propose one of his most famous gedankenexperiments. Imagine someone inside a
sealed elevator in free fall. From their perspective, everything inside appears weight-
less. Crucially, the same experience would occur if the elevator were in empty space,
being accelerated at a constant rate. This leads to an important insight: a uniform
gravitational field is indistinguishable from uniform acceleration. It forms the basis
of the Einstein equivalence principle, which extends the WEP by stating that, within
any sufficiently small region of spacetime, it is always possible to choose a coordi-
nate system in which the laws of physics reduce to those of Special Relativity. In
such a local inertial frame, the effects of gravity vanish and spacetime appears flat.
This suggests that gravity should be understood as a property of spacetime itself –
specifically, its curvature.

This geometric perspective naturally leads to the transition from the flat
Minkowski spacetime of Special Relativity to the curved spacetime of GR. In a curved
geometry, a fundamental quantity is the proper length between two distinct points,
which is expressed by the line element,

ds2 = gµν dxµ dxν , (2.1.1)

where xµ represents a choice of coordinate and gµν is the spacetime metric, encoding
the geometric structure of spacetime. In a local inertial frame, the metric reduces to
the flat Minkowski form, gµν = ηµν = diag(−1, 1, 1, 1).

The motion of free-falling test particles in curved spacetime follows the geodesic
equation:

dvµ

dτ + Γµ
αβv

αvβ = 0 . (2.1.2)

Here, τ represents the proper time of the particle, vµ ≡ dxµ/dτ is its four-velocity, and
Γµ

αβ = gµρ(∂αgρβ +∂βgρα −∂ρgαβ)/2 are the Christoffel symbols. While this equation
governs the motion in a given gravitational field, the field itself is determined by the
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2.1. General Relativity

Einstein field equations [69, 70]:

Rµν − 1
2gµνR = 8πTµν , (2.1.3)

where Rµν refers to the Ricci tensor, R = Rµ
µ is the Ricci scalar, and Tµν represents

the energy-momentum tensor. The left-hand side of (2.1.3) is known as the Einstein
tensor Gµν and encodes the geometry of the spacetime, while the right-hand side
describes the energy and matter content. Thus, this equation shows how matter
shapes the curvature of spacetime, which, in turn, dictates the evolution of matter
itself.

GR has superseded Newtonian gravity as our most accurate description of gravity,
successfully passing every experimental and observational test to date. Instead of at-
tempting a comprehensive review (see [71–73] for excellent textbooks), the remainder
of this chapter will focus on aspects of GR most relevant for this thesis: black holes
and gravitational waves.

2.1.1 Black Holes

One of the most striking predictions of GR is black holes (BHs). They correspond to
vacuum (Tµν = 0) solutions of the Einstein field equations (2.1.3). Initially regarded
as mere mathematical curiosities, their existence is now firmly established through
observational evidence [13–18]. It is only in recent years that we have begun to fully
appreciate their astrophysical and cosmological significance – BHs may be the engines
that drive some of the most energetic phenomena in the Universe [19, 22].

The first exact BH solution was discovered in 1916 by Karl Schwarzschild, shortly
after Einstein formulated his field equations. It describes a static, spherically sym-
metric BH and, in Schwarzschild-Droste coordinates (t, r, θ, φ) [74, 75], the metric
takes the form:1

ds2 = −
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1
dr2 + r2 (dθ2 + sin2 θ dφ2) , (2.1.4)

where M is the BH mass. Examining this solution (2.1.4), two special locations
immediately stand out: the metric appears singular at r = 0 and r = 2M . The singu-
larity at r = 2M is a coordinate singularity which can be removed by transforming to
a different coordinate system, such as Eddington-Finkelstein coordinates [76]. Still,
r = 2M marks a physically important surface, namely the event horizon. This is a

1Historical footnote: Schwarzschild originally derived his solution using a different radial coordi-
nate. This form of the metric (2.1.4) was first written down in 1917 by Johannes Droste, a student
of Hendrik Lorentz, who independently found the solution.
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2. Gravity and Astrophysics

three-dimensional null hypersurface that defines the boundary within which all tra-
jectories, even those of light, are irrevocably trapped. In other words, anything inside
the event horizon r < 2M can never escape to the exterior r > 2M . The singularity at
r = 0 instead, is a true singularity, where the spacetime curvature diverges, signalling
a breakdown in our current understanding of physics.

Besides its elegance and simplicity, the Schwarzschild metric (2.1.4) has far-
reaching implications. It is the unique spherically symmetric vacuum solution to
Einstein’s field equations, as stated by Birkhoff’s theorem [77, 78], which asserts that
any such solution must be static and asymptotically flat. This makes the Schwarzschild
metric (2.1.4) not only relevant to our understanding of BHs, but also applicable to
describing the outer regions of many astrophysical objects, where spherical symmetry
is often a good approximation. Indeed, it played a key role in the early observa-
tional evidence of GR: the Schwarzschild metric (2.1.4) correctly accounts for the
anomalous precession of Mercury’s perihelion [79] and successfully predicts the bend-
ing of starlight passing near the Sun, as famously confirmed during the solar eclipse
of 1919 [80].

Astrophysically, BHs are thought to form through the collapse of massive stars,
a process that would require them to possess angular momentum. Although the
Schwarzschild solution was derived soon after the formulation of Einstein’s equations,
its rotating counterpart was not discovered until nearly half a century later, when Roy
Kerr [81] derived it using the Newman-Penrose formalism [82]. In Boyer-Lindquist
coordinates [83], which we also denote by (t, r, θ, φ), the metric is:

ds2 = − ∆
ρ2 (dt−a sin2 θ dφ)2 + ρ2

∆ dr2 +ρ2 dθ2 + sin2 θ

ρ2 (adt− (r2 +a2) dφ)2 , (2.1.5)

which describes a rotating BH of mass M and angular momentum J . Here, a = J/M

is the spin parameter, bounded by 0 ≤ a ≤ M , and we define ∆ ≡ r2 − 2Mr + a2

and ρ2 = r2 + a2 cos2 θ. In the non-spinning limit a → 0, the Kerr solution correctly
reduces to the Schwarzschild metric (2.1.4). Unlike the Schwarzschild case, the Kerr
metric has two horizons: an inner and an outer horizon, given by the roots of ∆ and
located at r± = M ±

√
M2 − a2. The inner (or “Cauchy”) horizon is not accessible

for external observers, and thus not of interest for us.

Many other vacuum solutions to Einstein’s field equations exist (see, e.g., [84]).
However, the significance of the Schwarzschild and Kerr solutions is underscored by
the no-hair theorem [85–87], which states that all BHs in GR are fully characterised
by just three parameters: mass, spin, and charge.2 While we have not explicitly

2With “charge” we refer to an electric charge. In principle, if magnetic monopoles exist in the
Universe [88], BHs may also possess a magnetic charge, adding a fourth independent parameter for
BHs.
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2.1. General Relativity

introduced the charged extensions of the Schwarzschild and Kerr solutions3 – the
Reissner-Nordström [92, 93] and Kerr-Newman metrics [94], respectively – these four
solutions encompass the entire set of relevant BH spacetimes. This is a remarkable
result: it means that if a star collapses into a BH, almost all of the parameters that
described it vanish, leaving only its mass, spin and charge. This makes BHs the
simplest macroscopic objects in the Universe and ideal candidates for high-precision
observational studies. As Chandrasekhar put it [95]:

“The black holes of nature are the most perfect macroscopic objects there
are in the Universe: the only elements in their construction are our con-
cepts of space and time.”

Let us now examine the Kerr solution (2.1.5) in more detail. Different from the
Schwarzschild case, the Kerr metric contains an off-diagonal component, gtφ, which
gives rise to the Lense-Thirring effect [96]. It causes free-falling test particles on
purely radial trajectories to co-rotate with the BH, as seen by an observer at infinity.
When a particle approaches the event horizon (r → r+), it asymptotically acquires
the angular velocity of the BH:

ΩH = a

2Mr+
. (2.1.6)

While it could, in principle, be given a boost in the counter-rotating direction to
prevent it from co-rotating with the BH, there exists a region called the ergoregion,
where this is no longer possible: all observers – even light – must co-rotate with the
BH. This can be understood by examining the norm of the Killing vector associated to
the time translation invariance of the Kerr metric, Kµ

(t), which at the horizon satisfies
Kµ

(t)K
ν
(t)gµν |r=r+ = a2 sin2 θ/ρ2 ≥ 0. In other words, outside the outer horizon, Kµ

(t)
transitions from being timelike at infinity to spacelike. This transition point defines
the ergosphere, which is located at:

rerg = M +
√
M2 − a2 cos2 θ . (2.1.7)

Within the ergosphere (r+ < r < rerg), objects can still escape the BH’s gravity but
are forced to co-rotate with it. A schematic illustration of the ergoregion is shown in
Figure 2.1.

A crucial feature of the ergosphere is that a particle’s energy E = −Kµ
(t)pµ (where

pµ is its four-momentum), can be negative inside this region, as measured by an
3Astrophysical BHs are expected to be electrically neutral due to neutralisation by surrounding

plasmas, quantum discharge effects [89] or electron-positron pair production [19, 90, 91]. There may
still be ways to charge BHs by invoking beyond the Standard Model physics, which will be relevant
in Chapters 5 and 6.
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ErgoregionOuter horizon r+

Figure 2.1: Schematic illustration of a rotating (Kerr) BH, showing the event horizon
and the surrounding ergoregion, where spacetime is dragged by the BH’s rotation.
Within the ergoregion, all particles [blue] – regardless of their initial motion – are
forced to co-rotate with the BH. Here, the timelike Killing vector Kµ

(t) becomes space-
like, making it possible to extract energy and angular momentum from the BH.

observer at infinity. This observation, first made by Penrose [97], forms the basis
of the Penrose process, a mechanism by which a rotating BH can lose energy and
angular momentum. We will examine this phenomenon in Section 3.3.3 in more
detail. However, such energy extraction does not happen arbitrarily, and is limited
by the second law of BH thermodynamics [98]. In particular, the event horizon of the
BH ABH = 8πMr+ can never decrease. Consequently, the mass of a BH cannot fall
below the so-called irreducible mass [99]:

M2
irr = 1

2

(
M2 +

√
M4 − J2

)
. (2.1.8)

The extractable energy is thus M −Mirr, which may be interpreted as the rotational
energy of the BH. This fraction can be substantial – up to 29% of the total mass for
an extremal BH with J = M2 (2.1.8). Remarkably, as we shall see in Section 3.3.3,
energy extraction from rotating BHs is also possible through bosonic fields, via a
process known as black hole superradiance.

Since the discovery of the Schwarzschild solution in 1916, physicists have debated
whether BHs are real astrophysical objects or theoretical constructs. The first com-
pelling observational evidence came from X-ray binaries [100–102], which revealed
extremely compact objects with stellar masses. A major breakthrough followed from
long-term monitoring of stellar orbits near the centre of our galaxy. Tracking the
so-called “S-stars” led to the firm conclusion that an invisible, compact object with
a mass of 4.3 × 106 M⊙ [103] resides at the galactic centre, widely accepted to be a
supermassive BH. Today, there is strong evidence for the existence of such supermas-
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sive BHs (M > 105 M⊙) at the centres of most galaxies [104]. Notably, the Event
Horizon Telescope recently produced the first direct images of the luminous matter
surrounding the central BHs in the M87 galaxy and our own Milky Way (Sgr A∗),
using very long-baseline interferometry [17, 18]. Yet, the most direct probe of BHs
and strong-field gravity comes from gravitational waves – a topic we now turn to.
Together, these discoveries have ushered in a true observational era in BH physics.

2.1.2 Gravitational Waves

In the previous section, we examined exact solutions of the Einstein field equa-
tions (2.1.3) assuming vacuum and certain symmetries. Solving the full set of ten
coupled partial differential equations for a generic dynamical spacetime, by contrast,
is notoriously difficult. Fortunately, approximations can be made in certain regimes.
One particularly important case arises when the gravitational fields are weak, leading
to one of GR’s major observational predictions: gravitational waves (GWs). This sec-
tion establishes the theoretical foundation of GWs (see [105, 106] for comprehensive
textbooks), while later sections will discuss their role in compact binary systems and
their detection by current and future observatories.

To study the generation and properties of GWs, it is useful to consider the weak-
field approximation, where the metric is treated as a small perturbation around flat
spacetime, writing

gµν = ηµν + hµν , (2.1.9)

where ηµν is the Minkowski metric and |hµν | ≪ 1 represents the metric perturba-
tion. By consistently expanding the Einstein tensor (which involves derivatives of the
Christoffel symbols, which themselves involve derivatives of the metric), and keeping
only leading-order terms in hµν , the full Einstein equations (2.1.3) reduce to their
linearised form:

−2hµν + ∂α∂µhνα + ∂α∂νhµα − ∂µ∂νh− (∂α∂βhαβ − 2h)ηµν = 16π Tµν , (2.1.10)

where 2 = ∂α∂α is the flat-space d’Alembertian operator and h ≡ hα
α is the trace

of hµν . Although eq. (2.1.10) is still complicated, it also holds gauge dependencies
which can be exploited. By imposing the harmonic gauge (or de Donder gauge),
∂µhµν − ∂νh/2 = 0, the linearised field equations (2.1.10) reduce to

2h̄µν = −16π Tµν , (2.1.11)

where h̄µν = hµν −ηµνh/2 is the trace-reversed metric perturbation. Equation (2.1.11)
immediately shows how a matter distribution Tµν sources the metric perturbation hµν

in a wave-like manner.
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In vacuum (Tµν = 0), eq. (2.1.11) reduces to a homogeneous wave equation. A
natural class of solutions is that of plane waves, which take the form:

h̄µν = Re(Hµνe
ikσxσ

) = Re(Hµνe
ikixi

e−iωt) , (2.1.12)

where the polarisation tensor Hµν is constant and symmetric and kσ is the wave
vector with ω = −k0. Applying the d’Alembertian operator to (2.1.12) shows that
kσkσ = 0, which means that kσ is a null vector and GWs in vacuum propagate at the
speed of light. Enforcing the harmonic gauge condition further constrains the system,
as it requires the polarisation tensor to be transverse to the direction of propagation,
i.e., kµHµν = 0. This reduces the independent components of Hµν from ten to
six. However, the harmonic gauge condition alone does not completely fix the gauge
freedom in h̄µν . The residual freedom allows us to impose the transverse traceless
(TT) gauge, where we set H0µ = 0 and Hµ

µ = 0. This choice reduces the number
of independent components to two. For a wave propagating in the ẑ–direction, the
polarisation tensor takes the following form:

Hµν =


0 0 0 0
0 H+ H× 0
0 H× −H+ 0
0 0 0 0

 , (2.1.13)

where the components H+ and H× correspond to the two independent polarisation
modes of the GWs, namely the plus and cross polarisations.

We now turn to the emission of GWs from sources (Tµν ̸= 0). In the weak-field,
slow-motion regime, where the Newtonian potential Φ ≪ 1 and the source’s velocity
v ≪ 1, eq. (2.1.11) can be solved using a retarded Green’s function, analogous to
electromagnetism. For a source located at a large distance r, the solution takes the
form [107]:

h̄TT
ij (t, xk) = 2

r

d2

dt2 Iij(t− r) , (2.1.14)

where
Iij =

∫
d3x

(
xixj − 1

3r
2δij

)
T00 , (2.1.15)

is the reduced quadrupole moment. This expression, referred to as the quadrupole
approximation, shows that GWs are proportional to the second derivative of the
quadrupole moment of the energy density. This is in contrast with electromagnetism,
where radiation is sourced by changes in the dipole moment of the charge distribution.

The energy carried away by GWs can be determined by integrating the energy
flux across a sphere at large distances from the source

PGW ≡ −dE
dt = − lim

r→∞

∫
TGW

tr r2 dΩ , (2.1.16)
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2.2. Compact Binary Coalescences

where dΩ is the solid angle element and TGW
αβ = 1/(32π)⟨∂αh

TT
ij ∂βh

TT,ij⟩ is the
effective stress-energy tensor for GWs. Substituting eq. (2.1.14) into (2.1.16) yields
the total power emitted in GWs, known as the quadrupole formula [107]:

PGW = 1
5

〈
d3Iij

dt3
d3Iij

dt3

〉
. (2.1.17)

Although derived over a century ago, the validity of this formula remained uncertain
until the late 20th century.4 The breakthrough came with the discovery of the Hulse-
Taylor binary pulsar (PSR 1913+16) in 1974 [109]. By the early 1980s, long-term
radio measurements showed that its orbital decay matched the energy loss predicted
by eq. (2.1.17) [110], providing strong support for GW emission.

2.2 Compact Binary Coalescences

The quadrupole formula (2.1.17) reveals something remarkable: any object with a
time-varying quadrupole moment emits GWs. In practice, however, these waves are
extraordinarily weak, which is why you do not perceive their effects while reading this
thesis. Gravity is far weaker than any other fundamental force, making the detection
of GWs extremely challenging. To do so, we must focus on the “loudest” sources in
the Universe: compact binary coalescences. These systems consist of two compact
objects, typically neutron stars or BHs, that orbit each other, radiating energy and
angular momentum through GW emission. As a result, their orbit gradually shrinks,
and the objects spiral towards one another. To quantify the strength of GWs, it is
useful to introduce the strain, defined as the fractional change in distance between
two test masses, h ≡ ∆L/L. For a binary consisting of a central BH of mass M , and
a smaller companion with mass ratio q < 1, located at a distance r, the strain can be
estimated as

h ≃ (GM)5/3qf2/3

c4r
≃ 5 × 10−23

(
M

106M⊙

)5/3 ( q

10−5

)(1 Gpc
r

)(
f

10−3 Hz

)2/3
,

(2.2.1)
where f is the gravitational-wave frequency and we have temporarily restored units
for clarity. When two bodies spiral inwards, their motion becomes increasingly rela-
tivistic, yielding rapidly evolving quadrupole moments and stronger GW signals. As
astrophysical BHs are characterised by only a few parameters (see Section 2.1.1) –

4More generally, the existence of GWs was debated for decades due to gauge ambiguities and
the linear approximation, even by Einstein himself [108]. Moreover, there were many concerns on
whether GWs could carry any energy as their energy-momentum tensor is not gauge-invariant. This
is a consequence of the fact that locally, one can always choose an inertial frame where the metric
and its first derivative vanish. The resolution lies in averaging over a sufficiently large region of
spacetime, which does yield a gauge-invariant quantity.
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mass and spin – their dynamics can be modelled accurately. Therefore, the wave-
forms produced by compact binaries can be predicted to high precision, making them
powerful tools for probing both the binary’s evolution and the underlying physics.
Crucially for this thesis, any deviation from the expected (vacuum) waveform could
reveal new astrophysical effects influencing the binary.

A compact binary coalescence progresses through three stages: inspiral, merger,
and ringdown. During the inspiral, the two objects are relatively far apart, gradu-
ally spiralling inwards as they lose energy and angular momentum. Meanwhile, the
GW amplitude and frequency increase over time in a characteristic chirp. Though
this phase can last millions of years, current detectors can only capture its final mo-
ments. The inspiral takes place in the weak-field regime, and is well-described by
the post-Newtonian formalism (Section 2.2.1). This phase, central to Chapters 8, 9,
and 10, is particularly relevant for studying environments, as subtle effects from the
surrounding matter can accumulate over time, affecting the binary’s motion. As the
inspiral progresses, strong-gravity effects will dominate, leading to a brief merger
phase (Section 2.2.2), requiring numerical relativity to accurately describe the dy-
namics and emitted GWs. While this thesis does not focus on the merger phase,
Chapter 4 employs numerical relativity to explore strong-gravity effects. Finally, af-
ter the merger, the remnant object settles into a stationary state during the ringdown
phase (Section 2.2.3). This occurs through a characteristic set of frequencies called
the quasi-normal modes. The ringdown phase is typically modelled using BH pertur-
bation theory and will be relevant in Chapters 6 and 7.

One final remark is in order. Constructing gravitational waveforms always involves
approximations, whether from truncating perturbative expansions or numerical er-
rors. The key question from an observational standpoint is: to what precision must
waveforms be computed? The answer depends on the detector for which they are de-
signed. Ideally, a modelled waveform should be indistinguishable from the true signal
within the measurement accuracy of a given detector. This requirement is typically
quantified by the faithfulness, F , between two waveforms:

F <
O(1)
SNR2 , (2.2.2)

where SNR is the signal-to-noise ratio, set by detector’s sensitivity. This highlights
the challenge ahead: next-generation detectors will reach SNR values orders of magni-
tude higher than current ones, demanding significantly greater accuracy in waveform
modelling [111, 112].
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2.2.1 Binary Inspirals

The inspiral phase is the longest epoch in the evolution of a binary system. Consider
a binary system with component masses M and qM (with q < 1 denoting the mass
ratio), and orbital separation R ≫ M . As the binary emits GWs, it loses energy and
angular momentum according to the quadrupole formula (2.1.17), causing the orbit
to shrink. In the inspiral phase, the orbital frequency is well described by Kepler’s
law:

Ω =
√
M(1 + q)

R3 . (2.2.3)

For circular orbits, the rate of energy loss due to GW emission is

dEorb

dt = −PGW = −32
5
M5q2(1 + q)

R5 , (2.2.4)

where Eorb = M2q/(2R) is the total orbital energy, and PGW is found by substituting
the reduced quadrupole moment (2.1.15) into the quadrupole formula (2.1.17). Thus,
the orbital separation evolves as

R(t) = R0

(
1 − t

t0

)1/4
, (2.2.5)

where the inspiral timescale is

t0 = 5R4
0

256M3q(1 + q) ≃ 2 × 105 yrs
(

106M⊙

M

)3(10−5

q

)(
R0

10−3 pc

)4
. (2.2.6)

This description can be extended to eccentric binaries, in which the semi-major
axis a and the eccentricity ε evolve according to Peters’ equations [113, 114]:〈

da
dt

〉
= −64

5
M3q(1 + q)
a3(1 − ε2)7/2

(
1 + 73

24ε
2 + 37

96ε
4
)
,〈

dε
dt

〉
= −304

15 ε
M3q(1 + q)
a4(1 − ε2)5/2

(
1 + 121

304ε
2
)
,

(2.2.7)

which are time-averaged over one full orbit. The semi-major axis thus decreases faster
for larger eccentricity, meaning that highly eccentric binaries merge more quickly than
their circular counterparts. Moreover, GW emission gradually reduces the eccentric-
ity, resulting in nearly circular orbits by the time the binary enters the sensitivity
band of current detectors. However, next-generation detectors – capable of detecting
binaries earlier in the inspiral – may observe systems before circularisation is com-
plete, making the evolution of eccentricity an important factor to consider and one
we will return to later in this thesis.
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In the early stages of the inspiral, the gravitational field is weak, and the com-
ponents move slowly. As the binary spirals inwards, its orbital frequency increases,
and GW emission intensifies (2.2.4). Eventually, the assumption of weak-field and
slow-velocity dynamics breaks down, and more sophisticated methods are required
to describe the system’s evolution. A natural approach is to treat the dynamics of
GR as perturbations of the Newtonian limit. Two main frameworks are used for
this purpose, differing in their choice of expansion parameter. The post-Newtonian
(PN) expansion, which orders terms in powers of the orbital velocity v, and the post-
Minkowskian (PM) expansion, which uses Newton’s constant G. Specifically, in the
PN framework, the metric and energy-momentum tensor are expanded in terms of

ϵ ∼ v

c
∼
√
GM

c2r
, (2.2.8)

where we restored units for clarity. For bound systems, the virial theorem implies
that v2 ∼ GM/r, justifying v/c as a perturbative parameter. Terms of order ϵn are
referred to as (n/2)–PN corrections, with 0PN corresponding to the Newtonian limit.
The metric and orbital motion are then solved order by order. For non-spinning
binaries on circular orbits, the evolution is currently known up to 4.5PN order [115],
while eccentric, spinning, and precessing systems are known to lower orders.

When one of the binary components is much more massive than the other, the
gravitational effects of the heavier object dominate at leading order, and the back-
ground spacetime can no longer be approximated as Minkowski. In this regime, the
PN and PM expansions break down, requiring a different approach. Such systems,
known as extreme mass ratio inspirals (EMRIs), typically have mass ratios q < 10−4,
making q a natural perturbative parameter. This forms the basis of the self-force
programme.5 In this approach, the spacetime metric is expanded as

gµν = g(0)
µν + qh(1)

µν + q2h(2)
µν + · · · , (2.2.9)

where g(0)
µν is the metric of the heavier object, typically a Kerr BH. In the test par-

ticle limit (q → 0), the trajectory of the smaller object traces a geodesic in the
background spacetime [117]. However, for finite mass ratios, the smaller body per-
turbs the background, generating a gravitational self-force that alters its trajectory.
Thus, the trajectory of the smaller object is influenced both by the gravitational field
of the larger object and by the gravitational radiation it emits, which is called the
radiation-reaction [118–122]. Schematically, the geodesic equation (2.1.2) is modified
as

vα∇αv
µ = fµ

[
h

(1)
αβ , h

(2)
αβ , · · · ; g(0)

αβ , v
µ
]
, (2.2.10)

5Even for intermediate mass ratio inspirals, 10−4 < q < 10−2, this framework remains effec-
tive [116].
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where fµ is the self-force, which depends on the background metric, metric pertur-
bations and the small body’s motion. Extending this scheme to higher orders in q

is challenging. Estimates suggest that second-order (q2h
(2)
µν ) self-force corrections are

necessary for matched filtering searches of EMRIs [123, 124]. Such waveforms have
recently been computed for a subset of the relevant parameter space [116].

An alternative, highly efficient approach for modelling the inspiral exploits a key
result from Newtonian dynamics: the two-body problem can be mapped to a one-body
problem. This idea extends to GR via the effective one-body (EOB) approach, which
maps the conservative PN dynamics of a binary to an effective system describing
a test particle moving in a deformed Kerr metric [125, 126]. The EOB formalism
introduces free parameters, which must be calibrated against numerical relativity
simulations [127]. By doing so, the EOB approach provides an accurate description
of the binary in regimes where PN alone is insufficient.

The Newtonian, PN, PM, self-force, and EOB approaches each have their own
range of validity, depending on the stage of the inspiral and the mass ratio of the
binary. However, all of these methods break down as the system approaches merger,
at which point gravitational fields become extremely strong and nonlinear effects
dominate.

2.2.2 Binary Mergers

The final moments of a binary coalescence mark the onset of the merger phase, where
the two compact objects plunge together. This regime lies beyond the reach of per-
turbative techniques, and numerical relativity becomes essential to evolve the system
accurately. Numerical relativity aims to solve the field equations (2.1.3) directly
through computational methods and has become the most powerful tool for probing
highly dynamical and strong-gravity spacetimes (see, e.g., [128–130]).

Solving Einstein’s field equations (2.1.3) – a set of ten coupled, nonlinear partial
differential equations – presents several unique challenges. One difficulty arises from
the choice of coordinates. In GR, coordinates are arbitrary labels with no intrinsic
physical meaning, but numerically, a poor choice can lead to instabilities. This is-
sue becomes particularly pronounced near singularities, which may be either physical
(such as those inside BHs) or coordinate-dependent [such as the r = 2M singularity
in eq. (2.1.4)]. Physical singularities are problematic as curvature and energy densi-
ties diverge, which requires special techniques such as excising the singularity region
from the numerical domain. Additionally, computing gravitational waveforms has
its own set of complexities. Since GWs waves must be measured at large distances
from the binary, simulations require large computational domains. However, evolving
the system for long enough to allow the waves to reach the far-field region is com-
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putationally expensive. Numerical schemes must therefore be capable of handling
vastly different length and time scales. Finally, poorly chosen gauge conditions can
also introduce instabilities, leading to numerical errors that grow uncontrollably over
time. These are just a few examples of the many difficulties encountered in numerical
relativity simulations. Overcoming them requires a careful consideration of several
factors, including initial data construction, horizon tracking, and coordinate choices.

The evolution of the system is governed by Einstein’s equations (2.1.3), which not
only describe the dynamics but also impose constraints through the Bianchi identity,
∇µG

µν = 0. In the 3 + 1 ADM formalism [131], these manifest as the Hamiltonian
and momentum constraints, which must be enforced throughout the evolution and
serve as a consistency check on the simulation. Additionally, convergence tests are
essential to verify that the numerical solution approaches the continuum limit.

Despite all the challenges, numerical relativity offers a unique window into the
strong-field dynamics of BH mergers. This has proven indispensable for GW detec-
tions. The first stable simulations of binary BH mergers were achieved in 2005 [132–
134], and since then, various methods have been employed to perform these simu-
lations [135–139]. Due to their high computational cost, simulations typically cover
only the final ∼ 100 orbits before merger (see [140–142] for different catalogues).

2.2.3 Black Hole Ringdown

Following the merger of two compact objects, the newly formed remnant BH is in
a highly perturbed state. It relaxes to a stationary configuration by emitting GWs
in what is known as the ringdown phase. These GWs have characteristic frequencies
and damping times that encode information about the spacetime geometry and the
fundamental nature of gravity [143–145]. As such, the ringdown provides a remarkably
clean observational probe of GR.

The ringdown phase is best described within the framework of BH perturbation
theory, which treats the spacetime as a background solution perturbed by small fluc-
tuations (see Appendix C). The theoretical foundations of this approach were laid
down by Regge and Wheeler [146] and Zerilli [147, 148] for the Schwarzschild case,
and later extended to Kerr BHs by Press and Teukolsky [149–151]. Building on these
foundations, Vishveshwara demonstrated that a perturbed BH responds to an in-
coming pulse of radiation with a superposition of damped exponentials, each with
a discrete frequency and damping time, similar to the fading tones of a vibrating
bell [143]. This damping arises because BHs absorb gravitational radiation at the
horizon and emit it towards spatial infinity, making the problem inherently dissipa-
tive. These oscillation modes are therefore known as quasi-normal modes (QNMs),
in contrast with the normal modes of conservative systems [152–155].
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In linearised BH perturbation theory, each multipolar component of the waveform
can be accurately expressed as a sum of QNMs [156]. The GW strain takes the form6

h(t) ≃ Re
∑
ℓmn

Aℓmn(r)e−i(ωℓmnt+ϕℓmn)−t/τℓmn , (2.2.11)

where Aℓmn is the mode amplitude at a distance r, ϕℓmn is the phase, ωℓmn is the
characteristic oscillation frequency and τℓmn is the damping time. The time coordinate
t refers to the post-merger evolution when the system has entered the linear regime.
The indices (ℓ, m) define the angular distribution of the radiation, with |m| ≤ ℓ, while
n labels the overtones. For a given (ℓ,m), the QNMs form a “tower of modes” ordered
by their damping times, with the fundamental mode (n = 0) being the longest-
lived. Higher overtones (n > 0) decay more rapidly but can still play a role in the
early ringdown phase. The frequencies and damping times of the QNMs are known
to high precision even for large n [160]. In contrast, the amplitudes and phases
depend on the astrophysical processes that excite the perturbation as well as on
the observer’s orientation [161]. A detailed computation of QNMs in the frequency
domain is provided in Appendix C.

The study of QNMs, known as black hole spectroscopy [162–164], offers a powerful
tool for probing the nature of the remnant BH. Crucially, the fundamental QNM
frequency of a Kerr BH depends only on its mass and spin [165]. Measuring it thus
provides a direct test of GR [166–168]. Moreover, the detection of multiple QNMs
enables tests of the no-hair theorem (see Section 2.1.1) and the BH paradigm [169,
170].

2.3 Current and Future Observatories

In the previous sections, we discussed two remarkable predictions of GR: black holes
and gravitational waves. Until 2015, evidence for both was only indirect, such as
through X-ray binaries [13] or the Hulse-Taylor pulsar [109, 110]. This changed in
September 2015, when the LIGO observatories made the first direct detection of GWs
from a binary BH merger [16]. Since then, over a hundred GW events have been
detected, primarily from BH binaries, but also from neutron star binaries and BH-
neutron star systems [24–26]. In this section, we review the status of current detectors,
highlight key discoveries, and explore the prospects of future observatories.

Currently, four GW detectors are in operation: the two Advanced LIGO detec-
tors in the United States [172], the Advanced Virgo detector in Italy [173], and the

6Strictly speaking, the damped exponentials only describe the signal well at intermediate times,
after an initial transient phase, known as “the prompt response” and before a power-law decay, known
as “the tail”. These tails result from radiation backscattering off the spacetime curvature [156–159].
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Figure 2.2: The sensitivity curves of current (solid) and planned (dashed) GW detec-
tors. The characteristic strain for two types of sources is shown: extreme mass ratio
inspirals (EMRIs) and compact binary coalescences (CBCs). For comparison, the
first detected binary BH event, GW150914, is also displayed. The area between the
strain of the source and the sensitivity curve of the detector indicates the strength of
the signal, i.e., the signal-to-noise ratio. Data for these curves was taken from [171].

KAGRA detector in Japan [174]. These are L-shaped Michelson interferometers with
kilometre-scale arms, capable of detecting tiny variations in arm length caused by
passing GWs (2.2.1). Their peak sensitivity lies in the 10 − 1000 Hz range, mak-
ing them ideal for observing mergers of compact objects with nearly equal masses
between 1 − 100M⊙. Such signals typically last from milliseconds to seconds. Fig-
ure 2.2 shows the sensitivity curves of these detectors at their design sensitivity, along
with the strain of typical compact binary coalescences (CBCs) and the first detected
signal, GW150914.

Ground-based detectors have already enabled stringent tests of GR, including mea-
surements of BH QNM frequencies [27, 166], constraints on the speed of GWs [36],
and insights into the mass distribution of BHs [175]. A landmark event was the de-
tection of a binary neutron star merger, GW170817 [30], which was accompanied by
an electromagnetic counterpart. This event was precisely localised, leading to the
identification of a coincident short gamma-ray burst by the Fermi GBM telescope
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and a multi-wavelength follow-up that revealed a kilonova [31]. These observations
not only provided new insights into the internal structure of neutron stars [176] but
also confirmed that neutron star mergers are key sites for heavy-element nucleosyn-
thesis [34, 35] and enabled an independent measurement of the Hubble constant [37],
demonstrating the potential of GWs as a cosmological probe.

The detections from LIGO and Virgo mark only the beginning of GW astronomy.
Plans are underway to expand the global detector network with LIGO-India [177–179],
which will improve sky localisation and overall sensitivity. There are also proposals
to push into higher frequencies such as the Neutron star Extreme Matter Observatory
(NEMO) [180], designed to reach the kilohertz regime. Beyond these, a new generation
of GW observatories is on the horizon, promising a dramatic leap in sensitivity. The
Einstein Telescope [67, 181, 182], an underground interferometer featuring a triangular
configuration with 10 km arms, and Cosmic Explorer [183, 184], a L-shaped detector
with 40 km arms, are designed to broaden the accessible frequency range and increase
detection rates by orders of magnitude (see Figure 2.2). These advancements will
enable the observation of new sources and improve precision tests of gravity.

Space-based detectors will further revolutionise GW astronomy, with the recently
adopted Laser Interferometer Space Antenna (LISA) [39, 185] leading the way. LISA’s
2.5 million-kilometre-long laser beams will open up the millihertz frequency regime
10−4 − 10−1 Hz, granting access to an entirely new class of astrophysical sources
such as EMRIs, massive BH mergers at high redshifts, stochastic GW backgrounds
and compact galactic binaries [39]. Similar proposed space-based missions include
TianQin [186, 187] and Taiji [188], while proposals such as the Advanced Laser In-
terferometer Antenna (ALIA) or the Big Bang Observer (BBO) [189] are even more
ambitious.

To bridge the gap between the millihertz band of space-based detectors and the
hertz band of ground-based detectors, a new class of decihertz detectors has also been
proposed. These include the Decihertz Interferometer Gravitational Wave Observa-
tory (DECIGO) [190] and TianGO [191], aimed at detecting, e.g., primordial GWs or
measuring the Hubble constant. Finally, at very low frequencies, the global network of
pulsar timing arrays is sensitive to GWs in the nanohertz regime 10−10 −10−6 Hz, tar-
geting sources such as the stochastic GW background and supermassive BH binaries.
In 2023, the NANOGrav collaboration announced the first evidence of a stochastic
GW background [192].

Gravitational-wave astronomy is still in its infancy, yet it has already transformed
our understanding of the Universe. Although not all proposed detectors may come to
fruition, they highlight the immense potential for discovery. With greater sensitivity
and access to new frequency bands, the coming decades promise to uncover entirely
new astrophysical phenomena. Importantly, next-generation detectors will offer un-
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precedented opportunities to study matter configurations around BHs – the focus of
the next chapter.
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3 Black Hole Environments

The wonder is that we can see these trees and not wonder more

Ralph Waldo Emerson

Most of the discussion so far has focused on BHs and GW emission in vacuum. In
reality, however, GW sources are embedded in astrophysical environments, which take
many different forms and range from dilute to extremely dense. Understanding how
these environments influence BHs and how, in turn, BHs affect their environment is
the central theme of this thesis.

This chapter provides an overview of the astrophysical environments relevant to
GW astrophysics (Section 3.1), followed by a closer examination of those most perti-
nent to this thesis. I begin with dark matter (Section 3.2) followed by ultralight bosons
(Section 3.3), which not only serve as a promising dark matter candidate but may
also help resolve open questions in fundamental physics. Next, I turn to astrophysical
plasmas (Section 3.4) and their behaviour in curved spacetime under electromagnetic
perturbations. This is followed by a discussion of accretion disks and active galactic
nuclei (Section 3.5), some of the few BH environments with direct observational data.
Finally, I explore how BHs can aid in probing these environments (Section 3.6).

3.1 Taxonomy

Compact objects, such as BHs, are rarely isolated in the Universe. They interact
with their surroundings, which can include stars, gas or electromagnetic fields. In
fact, it was observations of these environments that provided the first evidence for
BHs. For instance, the motion of stars orbiting a weak radio source at the centre of our
galaxy offered strong evidence for a supermassive BH (Sgr A∗) residing there [14, 15].
More recently, this was confirmed by the image of the Event Horizon Telescope of

25



3. Black Hole Environments

100 200 300 400

10−6

10−4

10−2

100

102

104 Water

Radius [rs]

D
en
si
ty

[k
g
/m

3
]

Accretion disk

Dark matter spike

Boson cloud

Figure 3.1: Density profiles of various astrophysical environments surrounding a su-
permassive BH with a mass of 106M⊙. The accretion disk (Section 3.5) follows the
Sirko-Goodman model [193], with its inner region described by the α-disk prescrip-
tion of Shakura & Sunyaev [194], assuming a viscosity parameter αvisc = 0.01. The
dark matter spike (Section 3.2) is modelled as ρ = ρ6(r6/r)γsp with r6 = 10−6 pc,
ρ6 ∼ 1017M⊙/pc3 [9] and γsp = 7/3 [51]. The boson cloud (Section 3.3) is assumed to
occupy its dominant growing mode, with a total mass equal to 10% of the BH mass
and a boson mass parameter of µM = 0.2. For reference, the density of water is also
shown.

the luminous matter surrounding it [18]. The term “environment” can thus be taken
very broadly, but for the purposes of this thesis, a more precise working definition is
useful.

I will define “astrophysical environments” as matter distributions around BHs,
either gaseous or dark in nature. This definition is more restrictive than some found
in the literature, where any non-vacuum or beyond-GR effect that influences the
system’s dynamics is considered an “environmental effect”. Examples include third-
body interactions in BH triplets [195], tidal forces from a nearby companion [196], and
dynamics in dense stellar systems where multi-body encounters can play a significant
role [197–201], such as through Kozai-Lidov resonances [202, 203]. Other phenomena
sometimes labelled as “environmental” are Doppler shifts, gravitational lensing [204]
or spin-orbit couplings in triples [205].

While this thesis does not attempt to cover all possible environmental effects, a
comprehensive understanding of waveform modifications is essential for successful GW
astrophysics. Extracting signals from detectors like LISA requires accounting for all
potential sources of dephasing, rather than selectively modelling only certain effects.
Failing to do so could introduce biases in parameter estimation, misinterpreting data

26



3.2. Dark Matter

or even lead to missed detections [206]. Additionally, understanding degeneracies
between different environments, as well as those arising from beyond-GR effects [42],
is crucial. Nonetheless, the first priority is to understand the interplay between BHs,
the surrounding matter, and the resulting GWs, which forms the central focus of this
thesis.

Among astrophysical environments, gaseous structures such as accretion disks and
plasmas are particularly well studied through electromagnetic observations. Accre-
tion disks consist mainly of baryonic matter – gas and dust – accreted onto the BH
from a companion star or the interstellar medium. These disks can influence binary
BH dynamics in multiple ways: accretion onto the BHs alters their mass and spin,
while dynamical friction and planetary migration drive gradual inward motion. Fur-
thermore, the disk’s self-gravity can modify the binary’s orbital evolution. We will
return to accretion disks, particularly in active galactic nuclei, in Section 3.5.

Dark matter structures are another important class of astrophysical environments.
High dark matter densities can form around BHs in various ways. For example,
if dark matter consists of cold, collisionless particles, the adiabatic growth of BHs
leads to the formation of overdensities, known as “spikes” [51], discussed further in
Section 3.2. Alternatively, if dark matter is composed of light bosonic fields such as
axions – motivated by both particle physics [56–58] and astrophysics [53, 55] – it can
form a macroscopic Bose-Einstein condensate around the BH through a process called
“superradiance”. This structure, known as a boson cloud or “gravitational atom” [63],
can contain up to 10% of the BH’s mass [207–209]. We will explore these systems
in more detail in Section 3.3. To give a quantitative sense of scale, Figure 3.1 shows
their density profiles around a supermassive BH with a mass of 106M⊙.

3.2 Dark Matter

One of the greatest unsolved mysteries in modern physics is the nature of dark matter.
Astrophysical and cosmological observations have revealed that the visible matter in
our Universe accounts for only about 15% of the total matter content. The remaining
85% consists of an unknown, invisible component which is called dark matter (DM)
(see [48, 49] for reviews). Unlike ordinary matter, DM does not seem to interact with
the strong, weak, or electromagnetic force. However, by virtue of the equivalence
principle, it must interact gravitationally and indeed its gravitational influence has
been shaping galaxies, clusters, and the large-scale structure of the Universe.

The story of DM dates back to 1933, when Swiss astronomer Fritz Zwicky studied
a large collection of galaxies called the Coma Cluster [210]. He found that the velocity
dispersion of galaxies within that cluster was so high that, in order for the galaxies
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in the cluster to remain gravitationally bound, there had to be significantly more
mass than what was visible. Similar conclusions were drawn soon after by Holmberg
and Smith, who studied the galaxies and mass of the Virgo Cluster [211, 212]. By
now, the existence of DM is supported by a wide range of observations. One of the
most striking pieces of evidence comes from galaxy rotation curves. Observations
of spiral galaxies, including the Milky Way, show that their outer regions rotate at
nearly constant speeds rather than slowing down as expected from Keplerian motion
v =

√
M/r [213–219]. This suggests the presence of an extended, invisible mass dis-

tribution, now understood as a dark matter halo. Dark matter also plays a crucial
role on cosmological scales. The detailed structure of the cosmic microwave back-
ground (CMB) and its temperature anisotropies provide strong constraints on the
amount and nature of DM [220, 221]. Further support comes from large-scale galaxy
clustering, gravitational lensing observations [222, 223], and baryon acoustic oscilla-
tions [224, 225]. Taken together, these diverse lines of evidence paint a consistent
picture: DM is an important component of the Universe’s mass-energy budget and is
essential to our understanding of its evolution and large-scale structure formation.

Yet despite overwhelming indirect evidence, its fundamental nature remains un-
known. Two key arguments suggest that DM cannot be baryonic. First, Big Bang
nucleosynthesis constrains the baryon density, as the observed abundances of light
elements such as helium and deuterium would be drastically different if DM were
composed of baryons [226–230]. Second, the temperature fluctuations in the CMB
encode information about the density of baryons [231–233]. If DM were baryonic,
it would have influenced the acoustic peaks in the CMB spectrum in a way that
is inconsistent with observations [221]. These considerations support the view that
DM is cold and interacts only through gravity, a premise that underpins the ΛCDM
model [49, 234, 235]. This model successfully explains the formation of galaxies and
galaxy clusters, as well as the large-scale structure of the Universe and its accelerated
expansion driven by dark energy [221]. The name “ΛCDM” reflects these two primary
components: a cosmological constant Λ accounting for dark energy [234, 235] and a
pressureless cold DM component [48, 49]. Together with General Relativity, they
form a consistent theoretical framework that describes the large-scale behaviour of
the Universe [221].

Despite decades of effort, no particle with the required properties has been found,
suggesting the need for new physics. Given that most galaxies are thought to harbour
supermassive BHs at their centres [104], DM inevitably interacts with these strong-
gravity environments, making GW astronomy a unique tool for probing its nature. In
Section 3.2.1, I will first discuss how DM clusters on scales relevant for GW physics
and then, in Section 3.2.2, I will outline some of the most compelling candidates for
DM.
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3.2.1 Structures

While the distribution of DM on cosmological scales is well understood, this thesis
focuses on its detection through BHs and GWs. Accordingly, the emphasis is on
smaller scales – galactic and below – where DM may accumulate around BHs or
form compact objects, referred to as “dark compact objects”. In this section, we
will describe the distribution of DM on such scales, focusing progressively on smaller
length scales.

Our understanding of the DM distribution on large scales is guided by numerical
N-body simulations, which suggest a universal density profile for DM halos, exhibiting
similar characteristics across different halo masses, cosmic epochs, and initial density
fluctuations in the early Universe (the “input power spectra”) [50]. The density of DM
halos can be parameterised as

ρ(r) = ρH

(r/aH)γ [1 + (r/aH)α](β−γ)/α
, (3.2.1)

where aH is a scale length, ρH the central halo density and the parameters (α, β, γ)
depend on the choice profile, which remains a subject of debate. One of the most
popular models is the Navarro-Frenk-White (NFW) profile [50], which follows an r−1

power-law behaviour at small radii and transitions to an r−3 decay at large radii. The
observed density profiles of galactic bulges and elliptical galaxies are well-described
by the Hernquist profile [236], corresponding to (α, β, γ) = (1, 4, 1). Its density is
given by

ρ(r) = MHaH

2πr(r + aH)3 , (3.2.2)

where MH is the total mass of the halo. Within a radius r, the mass of the halo is

MH(r) =
∫ r

0
4πρ(r′) (r′)2 dr′ = 2πr2ρHa

3
H

(aH + r)2 . (3.2.3)

Taking the limit r → ∞, this expression yields the total mass: MH = 2πρHa
3
H. We

will encounter this profile again in Chapter 7. Other commonly used density profiles
are those of King [237], Einasto [238], Jaffe [239], Kravtsov et al. [240], and Moore et
al. [241].

All of these profiles predict an increasing DM density towards the inner regions of
the halo. However, both Newtonian and relativistic analyses show that when a BH
resides at the centre, the DM density vanishes at the horizon [38, 51]. This creates a
steep inner cusp whose length scale is set by the BH mass. The total mass contained
in this cusp is negligibly small, and at larger radii, the profile smoothly transitions to
one of the aforementioned halo models.
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The Einstein cluster

For the purposes of GW physics, we now turn to a self-consistent model of a BH
surrounded by a DM halo, following the approach outlined in [242, 243], and making
use of the so-called “Einstein Cluster”.

We assume a spherically symmetric spacetime with the line element

ds2 = −A(r) dt2 + dr2

1 − 2m(r)/r + r2 dΩ2 , (3.2.4)

where dΩ2 = dθ2 + sin θ2 dφ2, and m(r) is the mass function. The aim is to find a
geometry that describes a BH on small scales and a matter distribution following a DM
profile, such as the Hernquist model (3.2.2), on large scales. To achieve this, we extend
Einstein’s construction of a stationary system of gravitating masses, known as an
Einstein Cluster [244, 245], to include a central BH. In this framework, particles move
on circular geodesics, and the system is described using an averaged stress-energy
tensor given by ⟨Tµν⟩ = n/mp⟨pµpν⟩, where n is the number density of particles
with mass mp, and pµ is the four-momentum satisfying the geodesic equation. This
configuration is mathematically equivalent to modelling an anisotropic fluid with a
tangential pressure Pt and no radial pressure (Pr = 0), which leads to the stress-energy
tensor:

Tµν = (ρ+ Pt)vµvν + Pt(gµν − rµrν) , (3.2.5)

where ρ and vµ are the density and four-velocity of the fluid, respectively, gµν the
metric and rµ is a unit radial vector.

With this setup in place, we can assign a mass function to the system. A choice
inspired by the Hernquist profile (3.2.2) is given by

m(r) = M + MHr
2

(aH + r)2

(
1 − 2M

r

)2
. (3.2.6)

At small radii r ≪ aH, this profile is dominated by the BH gravity, while at large
radii, the mass profile aligns with the Hernquist profile (3.2.2), consistent with the
astrophysical scenario we have in mind. Although the Hernquist model serves as a
useful example, similar constructions can be applied to other DM profiles [246–248], all
of which share the same qualitative behaviour. In realistic astrophysical settings, DM
halos are significantly more massive than the central BH they host, with characteristic
scales satisfying aH ≫ MH ≫ M [50, 249].

Given the mass function (3.2.6), the metric functions can be solved to obtain an
analytical solution for the background spacetime. The full expressions are provided
in [242], but the key properties are summarised here. The spacetime features an
horizon at r = 2M and a singularity at r = 0. At large distances, the Newtonian
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potential matches that of the Hernquist profile, and the spacetime is asymptotically
flat with an ADM mass MADM = M + MH. Finally, in the vicinity of the BH, the
redshift factor goes as ∼ 1 − 2MH/aH.

Although idealised, the Einstein cluster offers a useful proxy for exploring the
dynamics of BHs in generic (dark) matter distributions and can serve as a stepping
stone toward more realistic models. In Chapter 7, we will explore how such a DM halo
affects BH ringdown signals and assess its potential implications for GW observations.

Dark matter around black holes

On smaller scales, DM can accumulate around BHs, forming overdensities that peak
close to the BH horizon [38, 51]. In the absence of any disruptive astrophysical
processes, such structures would evolve from an initial DM halo (3.2.1) into a profile
that is orders of magnitude denser. This process has been studied extensively for
supermassive BHs at the centres of galaxies [51, 250–255], as well as for intermediate-
mass BHs [256–258].

In particular, for BHs with masses ≤ 105M⊙ residing at the centre of a DM halo,
the BH gradually accretes matter onto a seed, which could originate from the direct
collapse of a supermassive star. The DM distribution evolves in response to the BH’s
adiabatic growth by forming a steep dark matter spike, with a density profile following
a power law [51]:

ρ ∼ r−γsp , where γsp = 9 − 2α
4 − α

. (3.2.7)

Here, γsp denotes the spike slope, which depends on the initial inner slope α of the
DM halo (3.2.1). For example, an initial NFW profile with α = 1 gives γsp = 7/3. A
representative example of this profile using fiducial parameters is shown in Figure 3.1.

However, as the growth of such spikes occurs over long astrophysical timescales,
various processes may disturb them. Baryonic feedback and DM self-annihilation
can significantly flatten the central profile [38, 52, 253], while their survival through
galactic mergers – especially those involving BHs of comparable masses – remains
uncertain [253, 259]. Several refinements and extensions to the spike model have been
proposed, including relativistic corrections [38, 52] and alternative structures such
as DM mounds [260], crests [255], and mini-spikes [256, 257]. In any case, the DM
density around BHs could still be much larger than the average DM density in our
Universe, making them promising targets for GW physics. A qualitatively different
form of DM overdensities arises when the surrounding matter consists of ultralight
bosonic fields rather than classical particles. This case will be examined in Section 3.3.
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Dark compact objects

If DM coalesces into objects of astrophysical size, it could form dark compact objects
(DCOs). These objects are of interest both as a potential form of DM and as a means
to test the BH paradigm.

One class of DCOs consists of exotic stars, which can arise from massive bosonic
fields – both real and complex – that are well-motivated DM candidates (as we will
discuss in Section 3.3.2). These fields can form ultra-compact, coherent solitonic con-
figurations bound by gravity or self-interactions. If the fields are complex, they form
boson stars [261–266], whereas real fields give rise to oscillatons [267–273]. Unlike bo-
son stars, oscillatons are inherently time dependent and gradually dissipate through
GW emission. The compactness C of these objects depends on the specific proper-
ties of the boson, but can reach values comparable to those of neutron stars, with
C ∼ 0.1 [176, 274]. They can form via gravitational collapse and evolve into ultra-
compact configurations through a process known as gravitational cooling [266, 275–
278], with self-interactions playing a crucial role in efficient formation. Additionally,
fermionic DM can give rise to fermion stars [279–282], where Fermi degeneracy pres-
sure counteracts gravitational collapse. However, without strong attractive interac-
tions, fermion stars tend to be less compact than boson stars.

A second category of DCOs is primordial black holes (PBHs) [283–285], which form
from highly overdense regions in the early Universe [286–288]. Unlike stellar-mass
BHs, PBHs are not subject to the Tolman–Oppenheimer–Volkoff lower mass bound
of ≳ 3M⊙ [289], as they do not originate from stellar collapse. Since the impact of non-
baryonic matter is already inferred from Big Bang Nucleosynthesis [230], PBHs must
have formed within the first second after the Big Bang to be viable DM candidates.
Furthermore, their initial mass must have been high enough to avoid complete evap-
oration through Hawking radiation. These two factors together limit their available
mass range. Constraints from astrophysical and cosmological observations, includ-
ing extragalactic gamma-ray backgrounds [290], gravitational microlensing [291–293],
supernova lensing [294], and imprints on the CMB [295, 296], significantly limit the
fraction of DM that PBHs can constitute.

A final category of DCOs includes black hole mimickers, which are horizonless
compact objects that closely resemble BHs at large distances and near the photon
ring (see [170] for a review). Many possibilities exist, such as gravastars [297, 298],
wormholes [299], anisotropic stars and compact objects composed of entirely different
fields or particles [300, 301].
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3.2.2 Candidates

Numerous candidates have been proposed for DM, sometimes collectively referred to
as the “DM zoo” [48]. A key contender is the weakly interacting massive particle
(WIMP), which interacts via the weak nuclear force (see [302] for a review). WIMPs
gained prominence through the so-called “WIMP miracle”, which refers to the fact
that their predicted thermal relic abundance matches the observed DM density when
their cross section is characteristic of the weak interaction [303, 304]. Efforts to detect
WIMPs typically involve two strategies. One focuses on directly observing nuclear
recoils from WIMP interactions in ultra-sensitive underground experiments [305, 306],
for example the XENONnT experiment [307, 308]. However, despite decades of re-
finement, no conclusive signal has been found, and searches are approaching the
“neutrino floor”, where backgrounds from solar and atmospheric neutrinos become
dominant [309]. The other strategy looks for indirect signals from WIMP annihi-
lation or decay products, which should generate Standard Model particles such as
photons or neutrinos in regions with high DM density, e.g., the Galactic centre. In
particular, gamma-ray emissions from WIMP annihilation could appear as an excess
in observational data. The lack of such a signal in Fermi satellite data imposes strong
constraints on the self-annihilating cross-section of WIMPs [310–312]. This had led
to an increased interest in alternative DM candidates.

Among these, axions and axion-like particles emerge as compelling candidates.
These are ultralight, feebly interacting particles which may solve various problems
in high-energy physics. Their motivation and potential will be further discussed in
Section 3.3.2. Another proposal is the sterile neutrino [313], which interacts with
standard neutrinos via the weak nuclear force and can remain stable over cosmological
timescales. Multiple mechanisms can produce them in the early Universe with the
appropriate abundance [313–316]. Although most sterile neutrinos must be long-lived
to serve as DM, some inevitably decay, emitting mono-energetic photons. An observed
3.55 keV X-ray line in galaxy clusters has been proposed as a possible signature of
this decay [317, 318], though this remains a subject of ongoing debate [319–321].

A particularly intriguing class of DM candidates – relevant to this thesis – are
particles with a small electric charge, known as millicharged dark matter [322–325].
Such particles arise naturally in extensions of the Standard Model featuring a hid-
den U(1)-gauge symmetry. Their charge is typically much smaller than the electron
charge and their coupling to the Maxwell sector is suppressed. This reduces the oth-
erwise large charge-to-mass ratio of the electron, allowing them to evade standard
discharge mechanisms and potentially charge BHs. This leads to an interesting phe-
nomenology, which is further explored in Chapters 5 and 6. Astrophysical searches
and collider experiments have constrained some of their parameter space [326–329].
A related proposal concerns dark photons, gauge bosons that kinetically mix with
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ordinary photons [330–332]. Denoting the dark photon by A′
µ, the relevant terms in

the Lagrangian are

LA′ ⊃ −1
4F

′
µνF

′µν − ϵ

2F
′
µνF

µν − 1
2µ

2
γ′A′

µA
′µ , (3.2.8)

where F ′
µν is the dark photon field strength, µγ′ its mass, and ϵ ≪ 1 is the kinetic

mixing parameter.1 Current constraints apply mainly to heavy dark photons, leaving
the ultralight regime largely unexplored [333] (see Figure 3.2).

The proposed candidates for DM span an enormous mass range, from ultralight
bosons at 10−22 eV to PBHs of O(10M⊙), reflecting the uncertainty and elusiveness
about its nature. Part of the challenge arises from its weak interactions with ordinary
matter. Gravity, however, acts as a universal messenger, which has prompted a
growing effort in recent years to explore how gravitational physics, especially GWs,
can be used to uncover the properties of DM.

3.3 Boson Clouds

While DM is one of the most important unresolved puzzles in physics and astronomy,
it is far from the only one. In what follows, I highlight several other open challenges
(Section 3.3.1) and introduce a class of particles that appear in some proposed solu-
tions (Section 3.3.2). I then present a mechanism capable of producing large numbers
of these particles around BHs (Section 3.3.3), before describing the resulting struc-
tures (Section 3.3.4).

3.3.1 Physics Beyond the Standard Model

Whereas Chapter 2 focused on the gravitational sector of our Universe as described
by General Relativity, all other forces are governed by the Standard Model (SM)
of particle physics. Though it has achieved remarkable experimental success [334–
336], it is still widely regarded as incomplete, with observational evidence pointing
strongly towards “physics beyond the SM”. For example, even when accounting for
DM, ordinary and dark matter together comprise only about 30% of the total energy
budget of the Universe. The remaining 70% is attributed to dark energy, which is
responsible for the observed acceleration of the Universe’s expansion [337, 338]. In the
ΛCDM model [221], dark energy is modelled as a cosmological constant – a constant
energy density that fills all of spacetime [234, 235]. A natural explanation involves

1While ϵ is used here for the kinetic mixing parameter, a different but equivalent notation is
adopted in Chapter 5. Additionally, Appendix E further explores different basis choices for the dark
photon.
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3.3. Boson Clouds

the vacuum energy predicted by quantum field theory. However, if quantum fluctu-
ations up to the Planck scale contributed to the cosmological constant, its expected
value would be about 120 orders of magnitude larger than the observed one. This
extreme discrepancy, known as the cosmological constant problem [339, 340], suggests
an extraordinary degree of fine tuning.

Similar fine-tuning problems appear elsewhere in the SM. A striking example is
the hierarchy problem, which stems from the huge difference between the electroweak
scale and gravity. The characteristic energy scale of gravity is set by the Planck mass,
MPl ∼ 1019 GeV, which is much larger than the electroweak scale, ΛEW ∼ 102 GeV,
the highest energy scale associated with the SM. As a result, a scalar field like the
Higgs receives quantum corrections from all energy scales up to MPl, so without a
stabilising mechanism, it would naturally be expected to be of order MPl, rather than
the observed mH = 125 GeV. This again represents a problem of fine-tuning: unless a
symmetry or other stabilising mechanism exists, the Higgs mass is extremely sensitive
to high-energy physics. In principle, ultraviolet physics could introduce counter-
terms that give the Higgs its “small mass”, yet this requires a fine-tuning on the
level ∼ (mH/MPl)2 ∼ 10−34.

A final example of fine-tuning lies in the strong sector. One of the parameters of
the SM is the vacuum angle of quantum chromodynamics (QCD) θQCD, which appears
in the CP-violating term of the Lagrangian:

LSM ⊃ θQCD
g2

s

32π2Gµν
∗Gµν , (3.3.1)

where gs is the strong coupling constant, Gµν is the gluon field strength and ∗Gµν

represents its dual. A priori, θQCD can take any value between 0 and 2π. Given
that most dimensionless parameters in the SM are naturally of order unity, one might
expect θQCD to be of a comparable size. However, measurements of the neutron electric
dipole moment indicate that θQCD is extremely small, i.e., |θQCD| < 10−10 [341, 342].
This absence of CP violation in the strong interaction is referred to as the strong CP
problem. In the next section, we will discuss a compelling resolution: promoting θQCD
to a dynamical field.

3.3.2 Ultralight Bosons

Despite a wealth of evidence pointing to physics beyond the SM, the search for new
degrees of freedom is challenging. For decades, this search has largely focused on the
high-energy frontier, where particle collisions at accelerators create heavy particles
from lighter ones. However, many extensions to the SM predict the existence of
particles that interact only weakly with ordinary matter, placing them beyond the
reach of collider experiments. This is where gravity comes into play. Unlike other
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3. Black Hole Environments

forces, gravity is universal; all particles, regardless of their interaction strength with
the SM, must couple to it, making it a powerful probe of new physics. In particular,
ultralight bosons stand out, as they arise naturally in extensions of the SM and could
help resolve other outstanding problems, such as the nature of dark matter.

The lack of CP violation in the strong interaction requires an extreme level of
fine-tuning. The most compelling resolution to this problem is the Peccei-Quinn (PQ)
mechanism [56–58], which proposes to eliminate the CP-violating parameter θQCD in a
dynamical manner. Specifically, θQCD is promoted to a dynamical field, the axion field
a, which is associated with a new global U(1)-symmetry that spontaneously breaks
at an energy scale fa, known as the axion decay constant. The resulting Nambu-
Goldstone boson, the axion, drives θQCD towards zero as it evolves to the minimum
of its potential, naturally explaining the smallness of θQCD and resolving the strong
CP problem. At low energies, the effective Lagrangian of the axion takes the form

La = −1
2∂µa ∂

µa+ a

fa

g2
s

32π2Gµν
∗Gµν + ∂µa

fa
jµ

a + 1
4gaγγ aFµν

∗Fµν , (3.3.2)

where jµ
a represents the axial current generated by the quarks [343], Fµν is the elec-

tromagnetic field strength and gaγγ ∝ f−1
a is the axion-photon coupling constant.

The properties of the axion are governed by the symmetry-breaking scale fa. Below
the PQ scale, the axion acquires a potential due to non-perturbative QCD effects,
causing it to oscillate around its minimum with an effective mass [57, 344]:2

µ ∼ 6 × 10−10 eV
(

1016 GeV
fa

)
. (3.3.3)

A larger decay constant thus results in a lighter axion. If fa approaches the Grand
Unified Theory scales ∼ 1016 GeV, the axion mass can be as low as ≲ 10−10 eV.

Currently, most experimental searches for the QCD axion target its coupling to
photons. Figure 3.2 summarises the relevant constraints for generic ultralight scalar
and vector fields, with the yellow band indicating the predicted mass-coupling rela-
tion for the QCD axion. While eq. (3.3.3) is well-defined, the precise width of the
mass-coupling relation is model-dependent [345–348]. Even if the interaction is weak,
sufficiently large quantities of axions could still produce detectable signals – a prospect
we will consider in Chapters 4 and 5.

Beyond the QCD axion, ultralight (pseudo-)scalar fields also naturally arise in
string theory and are referred to as axion-like particles (ALPs) [62, 349, 350].
When the extra dimensions predicted by string theory are compactified, they give

2Higher order terms in the axion potential give rise to self-interactions. They appear as powers of
the axion field, such as an, where n ≥ 3, and can affect the dynamics of axion oscillations, especially
at high field values.
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Figure 3.2: Schematic overview of the constraints on the axion (left panel) and
dark photon (right panel) from their coupling to the electromagnetic sector, realised
through the axion-photon coupling gaγγ and the kinetic dark photon-photon coupling
ϵ, respectively. The experiments contributing to these constraints are listed in [354].
The yellow diagonal band indicates the predicted parameter space for the QCD ax-
ion (3.3.3). It is evident that the weak-coupling and small-mass regime is largely
unconstrained.

rise to Kaluza-Klein zero modes [351–353], which can acquire masses through non-
perturbative effects, much like the QCD axion. Instead of a single field, string theory
typically predicts a whole spectrum of ALPs, a scenario known as the string axi-
verse [62]. Their masses span from sub-eV scales down to the Hubble scale. Although
their low-energy effective dynamics are still governed by parameters like µ and fa,
they do not follow the strict relation (3.3.3).

Axion-like particles also present a well-motivated candidate for DM [355]. They fall
into the category of wave dark matter or fuzzy dark matter [53]. Fuzzy DM specifically
refers to ultralight particles with masses in the range µ ∼ [10−22 − 10−20] eV, while
wave DM encompasses any form of DM that exhibits wave-like behaviour, generally
with masses up to µ ≲ 30 eV. Anything above that is generally considered particle-
like, such as the WIMP (see Section 3.2.2). The relevant length scale for wave DM is
set by the de Broglie wavelength:

λdB ≡ 2π
µv

≃ 10 kpc
(

10−21eV
µ

)(
120 km/s

v

)
, (3.3.4)

where v is the velocity dispersion in a galactic DM halo. As can be seen in eq. (3.3.4),
for ultralight masses, the field exhbitis a characteristic length scale on the order of
typical galaxies (≲ 10 kpc). On larger scales, the field behaves like a pressureless fluid
– just like cold DM – preserving the success of the ΛCDM model in describing the
formation of large-scale structure [355]. On smaller scales instead, where standard
cold DM models show tensions with observations [356], the wave-like nature of the
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field leads to distinct behaviour. In particular, fuzzy DM stabilises against collapse
on scales smaller than λdB, smoothing out inhomogeneities and suppressing struc-
ture formation [53]. This helps resolve typical small-scale issues faced by particle
DM models, such as the missing satellite [357], “too big to fail” [358], or cusp-core
problems [359]. Although Lyman-α forest constraints have limited the viability of the
lower mass window ≲ 10−22 eV [360, 361], fuzzy or wave DM remains an attractive
DM candidate due to its unique phenomenological features, such as the formation of
solitons, as discussed in Section 3.2.1.

While the focus so far has been on ultralight scalar fields, several extensions of the
SM predict bosons with different spins. In Section 3.2.2, we introduced dark photons,
an example of vector bosons. Current constraints on dark photons primarily arise
from their mixing with the electromagnetic sector, and are shown in Figure 3.2. Like
with scalar bosons, the low-mass, weak-coupling regime is difficult to constrain.

Throughout this thesis, we will explore scenarios in which these ultralight particles
either couple to the electromagnetic sector or interact purely gravitationally. In both
cases, large quantities of these particles are necessary for any observable effect to
manifest itself. The next section will discuss how spinning BHs facilitate that process.

3.3.3 Black Hole Superradiance

Ultralight bosons are of particular interest in BH physics due to superradiance, a
kinematic phenomenon that arises across various areas of physics (see [63, 362] for
reviews). The concept was first introduced by Dicke in 1954 in the context of coherent
emission in quantum optics [363]. Two decades later, in 1971, Zel’dovich showed that
rotating bodies can amplify incident waves through a dissipative process. Specifically,
when radiation scatters off a rotating cylinder with a conductive surface, the incoming
wave can extract energy and angular momentum from the cylinder – provided it is
spinning fast enough – resulting in a reflected wave with a larger amplitude [59, 60].
This phenomenon is what we refer to as “rotational superradiance”. More recently,
rotational superradiance has even been demonstrated experimentally by scattering
water waves off vortex flows in draining water tanks [364].

Remarkably, rotational superradiance is also triggered by spinning BHs [61, 365,
366]. In this case, the dissipative mechanism is provided by the event horizon, which
facilitates the transfer of energy and angular momentum. One of the powerful aspects
of BH superradiance is its purely gravitational nature: any bosonic field satisfying
the appropriate conditions can undergo superradiant amplification. Even quantum
vacuum fluctuations can spontaneously trigger superradiance [367].

Energy extraction from BHs relies on the presence of an ergosphere (see Figure 2.1).
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Within this region, objects are forced to co-rotate with the BH, yet still retain the
ability to escape to infinity. Crucially, the time Killing vector Kµ

(t) becomes spacelike
inside the ergosphere, allowing particles to attain negative energy states relative to
an observer at infinity, i.e., E = −Kµ

(t)pµ < 0, where pµ is the four-momentum of
the particle. This observation led Penrose to propose the following gedankenexperi-
ment [97]: consider a particle falling in from infinity with energy E, which then splits
into two particles, A and B, within the ergosphere, carrying energies EA and EB ,
respectively. If particle A acquires negative energy (EA < 0), it must fall into the
BH, while particle B can still escape. By energy conservation, the escaping particle
must satisfy EB = E − EA > E, meaning it emerges with more energy than the
original infalling particle. In this way, the particle extracts energy from the BH itself!
While the Penrose process is unlikely to play a major role in astrophysics, it illustrates
the remarkable fact that energy extraction from rotating BHs is indeed possible. This
principle has been instrumental in explaining relativistic jets powered by BHs through
e.g., the Blandford-Znajek process [19], magnetohydrodynamic Penrose process [368],
or modified Hawking radiation [369].

The wave analogue of the Penrose process is known as black hole superradiance.3

It naturally emerges in the context of scalar fields in a Kerr background (2.1.5). To
investigate this in more detail, we consider a massive, real scalar field Φ with mass µ,
minimally coupled to gravity. It satisfies the Klein-Gordon equation:(

gαβ∇α∇β − µ2)Φ = 0 . (3.3.5)

In Boyer-Lindquist coordinates, this equation is separable [370, 371] using the ansatz

Φ = R(r)S(θ)eimφe−iωt , (3.3.6)

which yields decoupled ordinary differential equations for the radial R and angular S
parts [150, 372]. Transforming to the tortoise coordinate r∗ (which maps the event
horizon at r = r+ to r∗ → −∞), the radial equation takes on a Schrödinger-like form:

d2R

dr2
∗

+ Veff(r∗)R = 0 , (3.3.7)

where Veff is an effective potential that depends on the specific scenario under con-
sideration.

To find the condition under which superradiance occurs, we consider a scattering
experiment involving monochromatic waves with frequency ω and azimuthal angular

3Black hole superradiance is an analogue rather than an exact counterpart of the Penrose process.
While the Penrose process demonstrates the possibility of energy extraction, superradiance involves
a field whose wavelength is larger than the size of the BH, meaning that it does not directly “see”
the ergoregion.
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momentum m [63]. The asymptotic solutions to eq. (3.3.7) take the form:

R(r∗) ∼

{
Ie−ik∞r∗ + Reik∞r∗ r∗ → ∞ ,

T e−ikHr∗ + OeikHr∗ r∗ → −∞ ,
(3.3.8)

where k2
H = Veff(r∗ → −∞) and k2

∞ = Veff(r∗ → ∞). Here, I represents an incoming
wave from infinity, which is partially reflected (R) and partially transmitted (T ).
The outgoing flux (O) vanishes due to purely ingoing boundary conditions at the BH
horizon. Using that the Wronskian (dR/dr∗)R∗ − (dR∗/dr∗)R is independent of r∗,
eq. (3.3.8) gives:

|R|2 = |I|2 − kH

k∞
|T |2 . (3.3.9)

Consequently, when kH/k∞ < 0, it follows that |R|2 > |I|2, meaning that the reflected
wave has a larger amplitude than the incoming one. In other words, these waves have
undergone superradiant amplification.

To identify the conditions under which kH/k∞ < 0, it is useful to evaluate the
radial Teukolsky equation (3.3.7) near the horizon r = r+, where it simplifies to

d2R

dr2
∗

+ (ω −mΩH)2R = 0 . (3.3.10)

Here, ΩH is the angular velocity of the horizon (2.1.6). On the other hand, since
k∞ =

√
ω2 − µ2 > 0 as r → ∞, it follows from (3.3.9) and (3.3.10) that superradiance

occurs whenever
ω

m
< ΩH . (3.3.11)

That is, Kerr BHs amplify waves whose angular phase velocity is smaller than the
angular velocity of the horizon. While the above reasoning applies to all bosonic fields,
it does not extend to fermionic fields. This is because superradiant amplification relies
on increasing the occupation number of a single quantum state, which is forbidden
for fermions due to Pauli’s exclusion principle.

While the superradiance process is intriguing, its direct astrophysical impact seems
modest at first glance. This is evident from the amplification factor, Z = |R|2/|I|2 −
1. For a massless scalar field scattering off a near-extremal Kerr BH, Z peaks at
only 0.4% (see, e.g., Figure 14 of [63]), and is even smaller for massive fields. This
suggests that superradiance, by itself, is not particularly efficient. However, Press
and Teukolsky [373] first pointed out that if the amplified field were reflected back,
the process could repeat, enabling sustained energy extraction from the BH. While
they envisioned a futuristic giant mirror, Nature itself provides a mechanism for such
reflection: if the scalar field has a mass, it becomes gravitationally bound to the BH,
forming a natural confinement. This leads to the requirement that the length scale
of the field, its Compton wavelength λc, should be comparable to the length scale
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of the BH, its gravitational radius rg. This is usually expressed in terms of α, the
gravitational fine-structure constant :

α ≡ rg

λc
= Mµ ≃ 0.2

(
M

106M⊙

)(
µ

3 × 10−17 eV

)
. (3.3.12)

When α is of order unity, superradiance operates at peak efficiency and the boson
field continuously extracts energy and angular momentum from the BH, allowing its
occupation number to grow exponentially, with all particles accumulating in the same
quantum state. The result is a macroscopic Bose-Einstein condensate around the BH.
We will refer to this structure as a “boson cloud”, and to the combined system of the
BH and its surrounding cloud as a “gravitational atom”. Its unique properties will be
the focus of the next section.

3.3.4 Gravitational Atoms

Superradiance shuts off when the bosonic field has spun down the BH sufficiently, such
that the condition (3.3.11) is no longer satisfied. At that point, a quasi-stationary
cloud of ultralight bosons surrounding the BH has formed. This BH-cloud system
resembles a hydrogen atom and is therefore often called a gravitational atom. Since
these systems appear frequently throughout this thesis, we introduce their properties
in detail here. Most of their qualitative features can be obtained by working in the
non-relativistic regime, which we will adopt in this section. However, in some cases,
such as those discussed in Chapters 4 and 9, a relativistic treatment will be necessary.
The relevant details are provided in Appendix A.1.

Schrödinger equation

To study gravitational atoms, we return to the Klein-Gordon equation (3.3.5) in a
Kerr background (2.1.5). When α ≪ 1, the boson cloud is localised far away from the
BH, allowing us to work in the non-relativistic regime. In this case, it is convenient
to adopt the ansatz [374],

Φ(t, r) = 1√
2µ
[
ψ(t, r)e−iµt + ψ∗(t, r)eiµt

]
, (3.3.13)

where ψ is a complex scalar field that evolves on timescales much longer than µ−1, re-
ferred to as the non-relativistic field. As a result, we can neglect the second derivative
with respect to time, i.e., |∂2

t ψ| ≪ µ|∂tψ|, and extract the slowly varying component
by substituting (3.3.13) into the Klein-Gordon equation (3.3.5). Expanding in powers
of α, the field ψ satisfies a Schrödinger equation:

i
∂ψ

∂t
=
(

− 1
2µ∇2 − α

r
+ · · ·

)
ψ . (3.3.14)
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The dominant term appearing in (3.3.14) is a Coulomb-like potential, while subleading
terms feature higher powers of α and 1/r.

Bound states

To leading order, eq. (3.3.14) is mathematically identical to the Schrödinger equation
for the hydrogen atom. Therefore, its bound state solutions are the familiar hydro-
genic eigenfunctions, characterised by three integers: the principal quantum number
n, orbital angular momentum number ℓ, and azimuthal angular momentum number
m, with n > ℓ, ℓ ≥ 0, and ℓ ≥ |m|. These solutions are given by

ψnℓm(t, r) = Rnℓ(r)Yℓm(θ, φ)e−i(ωnℓm−µ)t , (3.3.15)

where Yℓm denotes the spherical harmonics and Rnℓ are the hydrogenic radial func-
tions:

Rnℓ(r) =

√(
2µα
n

)3 (n− ℓ− 1)!
2n(n+ ℓ)!

(
2αµr
n

)ℓ

exp
(

−µαr

n

)
L2ℓ+1

n−ℓ−1

(
2µαr
n

)
,

(3.3.16)
where L2ℓ+1

n−ℓ−1(x) is the associated Laguerre polynomial. The radial profile peaks
around r ∼ n2rc, where rc ≡ (µα)−1 is the Bohr radius, and decays exponentially as
r → ∞.

Using a quantum mechanics analogy, the wavefunction (3.3.15) can be written in
bra-ket notation, i.e., |nℓm⟩, with the normalisation ⟨nℓm|n′ℓ′m′⟩ = δnn′δℓℓ′δmm′ .
The mass density of the cloud with wavefunction ψ(t, r) is given by ρ(t, r) =
2Mc|Re[ψ(t, r)]|2,4 where Mc is the total mass of the cloud. The resulting cloud densi-
ties can far exceed those typically found in other astrophysical environments, as shown
in Figure 3.1. An illustration of a gravitational atom in its dominant |nℓm⟩ = |211⟩
state is depicted in Figure 3.3.

The Schrödinger equation (3.3.14) also admits unbound (continuum) state solu-
tions, characterised by a positive, real-valued wavenumber k. While these solutions are
important for calculating effects like dynamical friction (see Appendix G.2 and [66]),
they are not relevant for the current discussion.

Spectrum

Although the hydrogen and gravitational atom share qualitative similarities, an im-
portant difference is that gravitational atoms exist in the presence of an event horizon,
which modifies the boundary conditions. Specifically, rather than being regular at the
origin as in the hydrogen case, the bosonic field must satisfy purely ingoing behaviour

4For a complex field, the mass density is ρ(t, r) = Mc|ψ(t, r)|2.
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Figure 3.3: Schematic illustration of the gravitational atom in its dipolar |211⟩ state
(left) and the eigenfrequency spectrum of the cloud for first few states (right). Dashed
lines [red] indicate decaying modes, while solid lines [green] correspond to the growing
modes that are naturally populated via superradiance. The |211⟩ state is highlighted
in [blue] to match the visual representation on the left. For each combination of n and
ℓ, there exists a multiplet of states spanning −ℓ ≤ m ≤ ℓ, with energies determined
by eq. (3.3.18). The energy splittings between different modes are indicated by brown
lines in a few example cases.

at the horizon and decay exponentially at infinity. These conditions can only be satis-
fied by a discrete and complex set of eigenfrequencies for the eigenstates of the boson
cloud,

ωnℓm = (ωnℓm)R + i(ωnℓm)I , (3.3.17)

which is why they are referred to as quasi-bound states. Here, the subscripts R
and I denote the real and imaginary parts of ωnℓm, respectively, and we assume
(ωnℓm)R > 0 without loss of generality. The real part determines the energy levels of
the bound states, i.e., ϵnℓm ≡ (ωnℓm)R, which to leading order follow the hydrogenic
spectrum [375]:

ϵnℓm = µ

(
1 − α2

2n2 − α4

8n4 − (3n− 2ℓ− 1)α4

n4(ℓ+ 1/2) + 2ãmα5

n3ℓ(ℓ+ 1/2)(ℓ+ 1) + O(α6)
)
.

(3.3.18)
Different types of energy splittings between two states are commonly referred to as
Bohr (∆n ̸= 0), fine (∆n = 0, ∆ℓ ̸= 0), or hyperfine (∆n = 0, ∆ℓ = 0, ∆m ̸= 0).
The imaginary part in (3.3.17) determines whether a certain mode grows or decays.
Using a matched asymptotic expansion, the growth (or decay) rate, Γnℓm ≡ (ωnℓm)I,
is given by [375, 376]

Γnℓm = 2r+

M
Cnℓm(mΩH − ωnℓm)α4ℓ+5 , (3.3.19)
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where

Cnℓm = 24ℓ+1(n+ ℓ)!
n2ℓ+4(n− ℓ− 1)!

(
ℓ!

(2ℓ)!(2ℓ+ 1)!

)2 ℓ∏
j=1

[
j2(1 − ã2) + (ãm− 2r+ωnℓm)2] .

(3.3.20)

Equation (3.3.19) clearly illustrates the superradiance condition (3.3.11): when it is
satisfied, eq. (3.3.19) is positive, causing the scalar mode to grow; otherwise, it is
negative and no amplification occurs. An illustration of the bound state spectrum is
shown in Figure 3.3.

Formation and saturation

In the relevant superradiance regime (α < 1), the growth timescale (3.3.19) dra-
matically increases with higher ℓ modes. Therefore, the fastest-growing superradiant
modes generally satisfy m = ℓ = n− 1. In a multiplet of states |nℓm′⟩ with m′ ≤ m,
this mode occupies the highest-energy state, as evident from (3.3.18). The “dominant”
growing mode is thus the dipolar one |nℓm⟩ = |211⟩ (see Figure 3.3), which we will
assume for the remainder of this section.5 For α ≪ 1, its growth timescale is given
by

Γ−1
c ≃ 10 yrs

ã

(
M

106M⊙

)(
0.2
α

)9
. (3.3.21)

Imposing the growth to take place on astrophysically relevant timescales ∼ O(Gyr)
sets a lower bound on α, while the superradiance condition mΩH > ω places an upper
bound. This yields

0.03
(

M

106M⊙

)1/9
≲ α < 0.5 . (3.3.22)

The viable range for α covers just one order of magnitude, making superradiance
astrophysically relevant only for specific “mass pairs” of the boson and the BH. Since
astrophysical BHs range in mass from M ∼ 10 to 1010M⊙, the corresponding boson
masses fall within µ ∼ 10−20 to 10−10 eV. In this way, superradiance turns BHs into
astrophysical probes of ultralight bosons.

As superradiance is ongoing, energy and angular momentum is transferred from
the BH to the cloud until the superradiance condition (3.3.11) is met. The BH spin
at that point is

ãs = 4m(Msωs)
m2 + 4(Msωs)2 , (3.3.23)

where quantities at saturation are indicated with a subscript s. Note that, at this
point, the frequency ωs is purely real. Conservation of mass and angular momentum

5The extension to higher modes such as |322⟩ is trivial. However, due to the strong dependence
of Γnℓm on ℓ (3.3.19), the growth timescales quickly exceeds astrophysical timescales.
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determines the cloud mass at saturation. Taking ωs ≈ µ in (3.3.11), and a BH with
initial mass Mi and spin ãi, this yields [208, 209, 377]:

Mc,s

Mi −Mc,s
=

2ãiαi −m

(
1 −

√
1 − 16α2

i (m−ãiαi)2

m4

)
2(m− ãiαi)

. (3.3.24)

The maximal value occurs at α ≈ 0.24 and ãi = 1, yieldingMc,s/(Mi−Mc,s) ≈ 10.78%
and a final spin ãs = 0.78 (for m = 1).

Gravitational-wave emission

The description above applies to both real and complex scalar fields. However, their
stability properties differ depending on the nature of the field. Specifically, when the
scalar field Φ is real, it is time-dependent and non-axisymmetric, inducing a time-
varying quadrupole moment.6 As a consequence, the cloud loses mass by emitting
GWs as [374, 378, 379]

Mc(t) = Mc,i

1 + t/τc
, (3.3.25)

where Mc,i is the initial mass of the cloud and τc its lifetime. The inverse of τc can
be interpreted as the “GW power”, given by

τ−1
c = Gnℓ

Mc,i

M2 α
4ℓ+10 , (3.3.26)

where the coefficient Gnℓ can be found in [378]. For α ≳ 0.1, nonlinear effects suppress
the emission power, making eq. (3.3.26) an upper bound [378, 379]. Comparing the
α-dependence in (3.3.26) with (3.3.19), it is clear that the cloud always forms faster
than it depletes through GW emission. Moreover, the timescale τc of a given mode
scales similarly to the instability rate of the next superradiant state, i.e., (n, ℓ,m) →
(n + 1, ℓ + 1,m + 1), ensuring that by the time the cloud depletes its initial state
(say, |211⟩), a new state has had sufficient time to grow (say, |322⟩). For all practical
purposes, it is thus a good approximation to assume the cloud occupies a single state.
For the dominant growing mode |211⟩, eq. (3.3.26) gives

τc ≃ 6 × 106 yrs
(

M

106M⊙

)(
0.1

Mc/M

)(
0.2
α

)14
, (3.3.27)

which is indeed much longer than its growth timescale (3.3.21) and demonstrates
that the cloud can persist over astrophysical timescales. While self-interactions could
affect this conclusion [380], they will be neglected throughout this thesis. The GW

6When the scalar field is complex instead, the time dependence in the stress-energy cancels out,
i.e., T00 ∼ Φ∗Φ ∼ eiµte−iµt. Hence, they do not emit GWs and are a form of “BH hair”.
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emission from the cloud is nearly monochromatic and continuous, with a frequency
set by the scalar field mass,

fc ≃ µ

π
= 483 Hz

( µ

10−12 eV

)
. (3.3.28)

These provide a direct observational probe of the boson cloud, a point we revisit in
Section 3.6.1.

As has hopefully become clear, gravitational atoms are unique objects with a rich
spectrum and high densities. Their distinctive properties have motivated various
searches, through the GWs they emit or the impact on the spin of the host BH. Such
isolated configurations are explored in Section 3.6.1 and form the focus of Chapter 4.
A promising new direction involves gravitational atoms in binary systems, where they
can leave detectable imprints on the orbital dynamics and resulting waveforms [381,
382]. This scenario is examined in Section 3.6.2 and is a key theme of this thesis
(Chapters 8 and 9).

3.4 Plasma

While ultralight bosons are an intriguing area of study, their existence is specula-
tive. Plasma, on the other hand, is a well-established component of the Universe,
making up roughly 99% of all visible matter. Stars, the interstellar medium, and
astrophysical jets are just a few examples of plasma-rich environments. Despite their
prevalence in astrophysics, they have received comparatively little attention in GW
astronomy and BH physics, especially regarding their interactions with fundamen-
tal fields. This section introduces key properties of plasmas (Section 3.4.1) before
exploring the propagation of electromagnetic waves through plasma (Section 3.4.2).

Plasma consists of ionised gas, where electrons are stripped from atoms, leaving
behind positively charged nuclei, or ions. However, not all ionised gas qualifies as
plasma; this is only the case if the gas satisfies the following conditions [383, 384]

(i) The number of charged particles is large enough for long-range Coulomb inter-
actions (∝ 1/r2) to dominate their dynamics, while remaining low enough for
short-range interactions between individual particles to be negligible.

(ii) The gas is quasi-neutral: electrons and ions are balanced in such a way that
the overall charge density is approximately zero, although local variations may
generate electric and magnetic fields.

Because of these properties, plasma exhibits collective behaviour, meaning that the
charged particles interact over large scales under the influence of long-range forces.
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3.4.1 Fundamental Properties

To better understand this collective behaviour, we outline some key plasma properties,
beginning with Debye shielding.

Debye shielding

Consider a plasma in thermal equilibrium, where the number densities of electrons
and ions are approximately balanced, ne ≃ Znion with Z = 1 for a hydrogen plasma.
In this state, the electrostatic potential ϕ vanishes. Introducing a test charge disturbs
the equilibrium and induces a nonzero electrostatic potential governed by Poisson’s
equation:

∇2ϕ = − e

ε0
(nion − ne) , (3.4.1)

where e is the elementary charge and ε0 the vacuum permittivity. Assuming the
electrons follow a Maxwell-Boltzmann distribution, their density takes the form

ne = nione
eϕ/(kBTe) , (3.4.2)

where kB is the Boltzmann constant, and Te the electron temperature. Since ions are
much heavier than electrons, their thermal velocities are smaller by a factor vion/ve =√
me/mion ≪ 1, making them nearly stationary on electron timescales. Under these

assumptions, solving eq. (3.4.1) yields:

ϕD = 1
4πε0

e−r/λD

r
, (3.4.3)

where λD, the Debye length,7 is defined as

λD =
√
ε0kBTe

nee2 = 74

√
Te

0.1 eV
10−3 cm−3

ne
m , (3.4.4)

where we normalised to typical values for the temperature and density of the inter-
stellar medium [385]. The Debye length thus characterises the scale over which a
test charge influences the plasma. At distances larger than λD, a point charge is
said to be shielded, leaving the bulk plasma free from any significant electric fields as
ne ≃ nion (3.4.1) [satisfying condition (ii) from earlier]. At this scale, the collective
plasma behaviour dominates over individual particle interactions [condition (i)]. It is
important to emphasise that this shielding is not a static condition but rather a dy-
namic response of the plasma. On smaller scales (sub-Debye), the small imbalance of
charges may still generate potentials on the order of kBTe/e, allowing electromagnetic
forces to play a role while maintaining quasi-neutrality.

7Historical footnote: during the writing of this thesis, I discovered that Peter Debye was born in
my hometown of Maastricht, making him our only Nobel Prize winner to date.
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Plasma frequency

It is insightful to explore this active response from the plasma in more detail. When
electrons in a plasma are displaced from equilibrium, the resulting charge separation
generates an electric field that pulls them back towards their original position. Due
to their inertia, the electrons overshoot, leading to oscillations at a characteristic
frequency known as the plasma frequency. As these oscillations occur on timescales far
shorter than the ion response time, the ions can be treated as a stationary background.
For a small displacement δx from the equilibrium position x0, the induced electric
field is E = −eneδx/ε0, and applying Newton’s second law gives

me
d2δx

dt2 = −eE = e2neδx

ε0
. (3.4.5)

This describes harmonic motion with a characteristic frequency:

d2δx

dt2 + ω2
p δx = 0 , where

ωp =

√
nee2

ε0me
≃ 1.8 × 10−5 s−1

√
ne

10−3cm−3 ≃ 10−12 eV
√

ne

10−3cm−3 ,

(3.4.6)

is the plasma frequency. Notably, as we will see later, these oscillations have zero
group velocity, meaning that they do not propagate.

Modelling choices

Plasmas are some of the most complex astrophysical systems, and there are a number
of possible modelling approaches depending on the length and time scales of interest.
Moreover, systems can be described with different degrees of approximation based on
the specific situation and the available computational power.

In principle, a plasma is a many-particle system whose full description requires
tracking the position and velocity of every particle. However, this is computationally
intractable for most practical applications. A more feasible approach is to adopt a
statistical framework, which marginalises over microscopic degrees of freedom. This
leads to kinetic theory, where the Boltzmann equation governs plasma dynamics.
Kinetic theory is particularly powerful for capturing short-timescale phenomena, such
as plasma oscillations at a frequency ωp (3.4.6). However, solving the Boltzmann
equation numerically often requires particle-in-cell methods [386, 387], which become
computationally prohibitive for large-scale or long-timescale problems.

A widely used alternative in astrophysics is magnetohydrodynamics (MHD) [388,
389], which treats the plasma as a single fluid under the assumption of quasi-neutrality,
ne = Znion. This restricts MHD to length scales much larger than the Debye length,
LMHD ≫ λD, while the single-fluid treatment limits its validity to timescales much
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longer than the plasma oscillation period τMHD ≫ ω−1
p . As a result, MHD sacrifices

important information about electron dynamics, particularly the plasma frequency,
which is important for the scenarios considered in this thesis.

To incorporate short-timescale effects while maintaining a computationally feasi-
ble model, we adopt the two-fluid formalism, where electrons and ions are treated as
separate fluids. Each obeys its own continuity and momentum equations while in-
teracting via the electromagnetic field. The governing equations can be derived from
kinetic theory [390, 391] and will be shown in the next section [see eqs. (3.4.10)].

3.4.2 Electromagnetic Wave Propagation

Understanding the propagation of electromagnetic waves in plasma is essential for
studying plasma-rich environments near BHs. Many key features can be captured
by examining a simple plane-wave scenario in a cold, collisionless plasma using the
two-fluid formalism. Denoting equilibrium quantities with a subscript b and assuming
the plasma is initially field-free (Eb = Bb = 0), we can write the electric field (E),
magnetic field (B), number density (n) and velocity (v) as

E = Ēe−iωt , B = B̄e−iωt , n = nb + n̄e−iωt , v = v̄e−iωt , (3.4.7)

where we adopt a harmonic time dependence and label perturbations with an overhead
bar. Given their much larger inertia, ions are assumed to remain stationary compared
to electrons. Under these assumptions, the first-order Maxwell equations in Lorentz-
Heaviside units reduce to:

∇ × B̄ = −iωĒ + enbv̄ ,

∇ × Ē = iωB̄ ,

iωv̄ = − e

me
Ē .

(3.4.8)

Assuming wave propagation along the ẑ–direction, these equations simplify in the
frequency domain to the form:ω2 − ω2

p − k2 0 0
0 ω2 − ω2

p − k2 0
0 0 ω2 − ω2

p

Ēx

Ēy

Ēz

 = 0 . (3.4.9)

The three independent solutions correspond to different wave behaviours. The first
two are transverse electromagnetic waves, with oscillations confined to the x−y plane.
Their dispersion relation follows ω2 = k2 + ω2

p, introducing a frequency cutoff: waves
with ω < ωp are unable to propagate and are reflected, making the plasma overdense.
In contrast, waves with ω > ωp propagate freely. This cutoff behaves similarly to a
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massive field, with the plasma frequency ωp acting as an effective mass. The third
solution corresponds to a longitudinal electrostatic mode, characterised by ω2 = ω2

p.
As advertised, this mode has zero group velocity vgr = ∂ω/∂k = 0, meaning it does
not propagate. This contrasts Proca theory, where the longitudinal mode shares the
same dispersion relation as the transverse ones, allowing it to propagate. While Proca-
like theories often serve as convenient approximations, they may thus not always be
reliable in realistic plasma scenarios.

Curved space

To account for plasma effects in curved spacetime without resorting to full numerical
simulations, we adopt the model from [392, 393], based on [394]. This framework
describes a cold, non-relativistic, collisionless electron-ion plasma. Extensions to in-
clude collisions or thermal effects [393] are generally unnecessary for the astrophysical
scenarios explored in this thesis. For instance, accretion disks can be treated as cold
plasmas [194, 395], and electron thermal velocities are typically much smaller than
the phase velocity of electromagnetic waves, ve ≡

√
2kBTe/me ≪ ω/k.

We model the plasma as a two-species system composed of electrons and ions.
The electrons are characterised by a number density ne and four-velocity uµ

e , while
the ions contribute a current jµ

ion. The evolution of this system in curved spacetime
is governed by the following set of equations:

∇νF
µν = eneu

µ
e + jµ

ion ,

uν
e ∇νu

µ
e = e

me
Fµ

νu
ν
e ,

∇µ(neu
µ
e ) = 0 ,

uµ
e ue,µ = −1 .

(3.4.10)

These represent Maxwell’s equations in presence of sources, the electron momen-
tum equation, the continuity equation, and the normalisation of the electron’s four-
velocity, in covariant form. Similar to before, we can study the linearised dynamics
by introducing small perturbations n̄, ūµ, F̄µν (and likewise for other quantities) and
neglect second-order terms, metric perturbations (as gravitational backreaction is
negligible), and ion perturbations, which are suppressed by a factor ∝ me/mion ≪ 1.
The effective metric tensor can then be introduced as

γµν = gµν + uµuν , (3.4.11)

which projects vectors and tensors onto hypersurfaces orthogonal to the electron four-
velocity. From the momentum and Maxwell’s equations, it is possible to derive an
evolution equation for the perturbed electromagnetic tensor F̄µν , incorporating the
effects of gravity and plasma motion [394]:

γα
β u

δ∇δ∇γF̄
βγ −ω2

pF̄
αβuβ +(ωα

β +ωα
L,β +θα

β +θµ
µγ

α
β + e

me
Eαuβ)∇γF̄

βγ = 0 . (3.4.12)
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Here, ωµν and θµν are the vorticity and deformation tensors, respectively, ωL,µν is the
Larmor tensor and Eµ = Fµ

ν u
ν is the electric field in the fluid frame.

Equation (3.4.12) is valid for any stationary background geometry, including a Kerr
BH surrounded by a cold, collisionless plasma. As shown in [392], in flat spacetime
it reproduces the expected dispersion relations: longitudinal modes with ω = ωp and
transverse modes with ω2 = |k|2 + ω2

p. The framework outlined above thus provides
a robust and tractable approach for studying plasmas in curved spacetime, which we
will use in Chapters 4, 5 and 6.

3.5 Accretion Disks and Active Galactic Nuclei

Accretion disks and active galactic nuclei (AGNs) are arguably the most well-known
astrophysical environments associated with BHs. In fact, they represent one of the
few BH environments for which there is direct observational evidence. These systems
are complex, and highly relevant to GW astrophysics, especially for future detectors
(see, e.g., [9, 396, 397]). While a full treatment lies beyond the scope of this thesis,
this section introduces the essential aspects of AGNs and accretion disks. We will
revisit this topic in Chapter 10.

An AGN refers to the entire region surrounding a supermassive BH (≥ 106M⊙) at
the centre of an active galaxy, where large amounts of gas are accreted and radiated
away (see [398, 399] for reviews). The inner AGN consists of an accretion disk,
where viscosity, primarily driven by the magnetorotational instability [400], transports
angular momentum outwards. This allows gas to spiral deeper into the gravitational
well, converting potential energy into heat (with temperatures reaching ∼ 105 K) and
radiation. This powers the AGN’s intense luminosity – up to ∼ 1048 erg/s – producing
emission across the entire electromagnetic spectrum and fuelling additional structures
such as relativistic jets and outflows [399]. Foundational work on this accretion process
was laid out by Zel’dovich [401] and Salpeter [402].

The disk itself can reach sub-parsec scales and is often surrounded by optically
thick material that further interacts with the disk. In some systems, the outer disk
may extend up to 1 − 10 pc [403], coupling with the surrounding interstellar medium.
However, not all accretion disks form AGNs; only those with sufficiently high accretion
rates can sustain the intense activity that defines them.

AGN disks are of interest in GW astronomy, not only due to dynamical effects
in a binary inspiral [9, 396, 397], but also because they are proposed as sites for
the formation and merger of compact binaries [45, 404–408]. This is partly due to
high escape velocities near supermassive BHs, which can trap stellar-mass BHs in the
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disk. Once embedded, these can interact with the dense gas, accelerating inspirals
or even leading to hierarchical mergers [409–412]. Understanding these processes is
crucial in modelling GW sources for current and future detectors. While the broader
AGN structure is relevant for interpreting electromagnetic observations, in the context
of GW astrophysics, the sub-parsec accretion disk is typically the main component
of interest. Early theoretical models of AGN accretion disks relied on simplified,
steady-state solutions, but computational advances have enabled more detailed studies
incorporating radiative transfer, magnetic fields, and GR (e.g., [413–418]). Despite
these developments, accretion disk physics remains highly uncertain, often requiring
expensive numerical simulations for realistic modelling (see, e.g., [419]). For our
purposes, a fully numerical approach is unnecessary, and we will rely on analytical
models. An example of the density profile of an accretion disk for fiducial parameters
is shown in Figure 3.1.

Shakura-Sunyaev

The Shakura-Sunyaev model provides a simplified yet powerful framework for describ-
ing accretion disks around BHs. It assumes a geometrically thin, optically thick disk
that is radiatively efficient and in steady-state flow [194]. Although initially formu-
lated in the Newtonian regime, it was later extended to incorporate GR [395, 420–422].
The model comes in the form of the well-known α and β-viscosity prescriptions, which
continue to be widely used for understanding the inner regions of accretion disks where
radiation pressure dominates [423].8

The key distinction between these viscosity prescriptions is how they parameterise
the turbulent stresses that are responsible for angular momentum transport. The α-
disk model relates the viscous stress to the total pressure, incorporating both gas and
radiation pressure ∝ αvisc(pgas+prad) [194]. In contrast, the β-disk model assumes the
stress depends only on the gas pressure ∝ αviscpgas [428]. Here, αvisc is the dimension-
less viscosity parameter, representing the efficiency of angular momentum transport
and thus encapsulates most of the complex magnetohydrodynamic processes. For
AGN disks, observational and theoretical studies indicate αvisc lies in the range 0.001
to 0.1 [419, 429–431].

The power of the Shakura-Sunyaev approach lies in its simplicity. By making a
few physically motivated assumptions – such as steady-state flow, radiative efficiency,
and the phenomenological viscosity prescription – it reduces the complex problem of
accretion onto BHs to a tractable set of algebraic equations, while still providing a ro-
bust first-order approximation for a wide range of astrophysical accretion disks. Even

8The stability of these disks remains an open question [419, 424–427]. In particular, β-disks
have been proposed to avoid thermal instabilities that appear in the analytical solutions of α-disks.
Despite these instabilities, the α-disk model is still the most widely used analytical approximation
for turbulent accretion flows in the radiation-dominated regime.
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if it does not capture all the nuances of MHD simulations [419], it provides valuable
insights into the disk’s structure and behaviour. For a comprehensive derivation and
discussion, see [423].

The disk’s properties can be characterised through its surface density Σ and scale
height H, which depend on the accretion rate relative to the Eddington rate (fEdd)
and the radiative efficiency (η). For α and β-disks, the surface density is given by

Σα ≈ 5.4 × 103 kg
m2

(
0.1
αvisc

)(
0.1
fEdd

η

0.1

)( r

10M

)3/2
,

Σβ ≈ 2.1 × 107 kg
m2

(
0.1
αvisc

)4/5( 0.1
fEdd

η

0.1

)−3/5(
M

106M⊙

)1/5 ( r

10M

)−3/5
.

(3.5.1)
The characteristic scale height of the disk, which sets its vertical extent, is expressed
as

H ≈ 0.78 rs

(
fEdd

0.1
0.1
η

)
≈ 2.3 × 109 m

(
fEdd

0.1
0.1
η

)(
M

106M⊙

)
. (3.5.2)

The thin-disk assumption requires that H ≪ r, and using the scale height, the mid-
plane density can be estimated as ρ = Σ/(2H). To describe the vertical structure, a
simple piecewise profile is usually adopted:

ρ(r, z) =
{
ρ(r) −H(r)/2 ≤ z ≤ H(r)/2 ,
0 otherwise .

(3.5.3)

Alternatively, a smoother and more physically motivated profile used in the literature
is a Gaussian distribution in the vertical direction:

ρ(r, z) = ρ(r) exp
(

− z2

2H2(r)

)
. (3.5.4)

To account for the high luminosities observed in AGNs [432], several models have
been developed that extend the Shakura-Sunyaev framework to larger radii. No-
table examples include the Sirko-Goodman [193] and Thompson et al. [433] models,
which offer more comprehensive treatments of AGN disks while maintaining analyt-
ical tractability. Figure 3.4 shows the disk height and density profiles for these two
models, which we now explore in more detail.

Sirko-Goodman

At larger radii, the gravitational pull in the vertical direction can cause the disk to
become unstable, leading to fragmentation and star formation. This process depletes
the gas supply necessary to sustain accretion onto the BH. The Sirko-Goodman model
resolves this by introducing an external heating mechanism that reduces the gas den-
sity in the outer regions, counteracting gravitational collapse [193]. While the exact
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Figure 3.4: Aspect ratio (top panel) and density profile (bottom panel) for AGN disk
models from Sirko-Goodman [193] and Thompson et al. [433], assuming a central BH
mass of M = 107M⊙, based on [434]. The inner region of the disk is modelled using
the standard α-prescription of the Shakura-Sunyaev model. For the Sirko-Goodman
case, we adopt αvisc = 0.01, an Eddington ratio fEdd = 0.5, radiative efficiency η = 0.1
and hydrogen fraction X = 0.7. The Thompson et al. model introduces additional
parameters, including a supernova feedback parameter χ = 1, an angular momentum
efficiency m = 2 and a star formation radiative efficiency ηstar = 0.001.

source of this heating is not explicitly defined, it is likely linked to stellar feedback –
such as supernovae or radiation from young stars – that injects energy into the disk
and helps maintain thermal support.

The model relies on the Toomre parameter [435] to characterise the stability of
the disk:

QT = Ω2
vel

2πρ , (3.5.5)

where Ωvel is its angular velocity. When QT < 1, the disk is gravitationally unstable
and prone to fragmentation. The Sirko-Goodman model enforces a marginally stable
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configuration in the outer regions by maintaining QT ∼ 1, thus suppressing fragmen-
tation without requiring detailed knowledge of the exact heating mechanism. The
disk is therefore divided into two regimes: (i) an inner region where QT ≫ 1 due to
high temperatures and angular frequencies, resembling the standard Shakura-Sunyaev
disk; (ii) an outer region, where QT ∼ 1 and the disk is maintained near marginal
stability. In this outer zone, the density follows ρ ∝ Ω2

vel ∝ r−3.

Thompson et al.

The Thompson et al. model builds on the Sirko-Goodman framework by specifying the
physical mechanism behind disk stabilisation and refining the treatment of angular
momentum transport [433]. Rather than relying on unspecified external heating,
vertical support in the outer disk is explicitly attributed to radiation pressure from
newly formed stars. Additionally, it replaces local viscous stresses with large-scale
gravitational torques as the primary driver of mass transport, and incorporates mass
loss due to star formation, leading to a radially varying accretion rate, Ṁ(r).

In this framework, the central BH is fed by material – such as interstellar gas –
flowing inwards from beyond an outer radius at a constant rate. As star formation
progresses, it gradually depletes this inflow, reducing Ṁ with decreasing radius. At
the same time, radiation pressure from these young stars provides the thermal support
needed to maintain the stability of the outer disk. Large-scale torques also modify
the rotation profile of the disk, so that the angular velocity deviates from a purely
Keplerian form:

Ωvel =
√
M

r3 + 2σ2

r2 , (3.5.6)

where σ denotes the velocity dispersion. Disk stability is still described by the Toomre
parameter (3.5.5). Similar to the Sirko-Goodman case, in the inner regions, where
QT ≫ 1, star formation is effectively suppressed. In contrast, the outer regions remain
near marginal stability with QT ∼ 1, where radiation pressure from stellar feedback
plays a crucial role in preventing gravitational collapse.

3.6 Black Holes as Cosmic Laboratories

Black holes are fascinating objects even in vacuum, but, as we have seen throughout
this chapter, they also host a wide range of astrophysical environments. This section
provides an overview of the various methods and tools available to study such systems
and highlights how BHs can act as natural laboratories for exploring new frontiers
in physics, offering opportunities to test theories of gravity, quantum mechanics, and
high-energy physics. Unlike traditional experiments, which are limited by techno-
logical and energy constraints, BHs naturally reside in regimes that are difficult to

55



3. Black Hole Environments

reproduce in particle accelerators or labs. Notably, the interaction between BHs and
their environment is a two-way street: while this thesis focuses on using BHs to probe
their environments, these same environments have long been central to uncovering
BH properties. Indeed, before the advent of GWs detectors, such indirect methods
were the only way to explore BHs [13–15].

We now consider how different environments may affect BH physics and give rise to
observational signatures. Section 3.6.1 examines isolated systems, while Section 3.6.2
focuses on binary systems.

3.6.1 Isolated Systems

Since the first detection of GWs in 2015, much attention has centred on BH pairs
in the dynamical regime. Nonetheless, even in isolation, BHs are powerful tools for
probing strong gravity and testing fundamental physics.

A recent breakthrough in observational techniques has been the high-resolution
imaging of BHs by the Event Horizon Telescope [17, 18], which opens a new channel for
testing gravity in the strong-field regime [436]. The shape and polarisation structure
of BH shadows can reveal deviations from the Kerr metric [437, 438], potentially
induced by DM distributions [439–444] or exotic forms of matter [445, 446]. Similarly,
precision measurements of stellar orbits around BHs – such as those performed by
the GRAVITY collaboration – have been used to constrain DM profiles and search
for ultralight fields [439, 447–455].

A particularly promising direction involves the interaction between BHs and new
fundamental fields. As discussed in Section 3.3, ultralight bosonic fields can extract
large amounts of energy from BHs, forming dense clouds around them. These clouds
give rise to a variety of observational signatures. For instance, as shown in eqs. (3.3.26)
and (3.3.28), real scalar fields can emit monochromatic GWs that could be detectable
through continuous wave searches [374, 379, 456–461]. Such searches have been per-
formed during the first three observation runs of Advanced LIGO and Virgo [462–465],
placing constraints on the scalar boson mass around 10−13 eV, depending on the as-
sumed BH spin and source distance. Future GW detectors, which can access different
frequency ranges, are expected to extend these constraints [379]. Additionally, spon-
taneous transitions between different bound states of the clouds could produce GW
bursts [456], offering yet another observational channel. Furthermore, the formation
of the cloud leads to BH spin-down, implying that the absence of rapidly rotating
BHs in certain mass ranges can serve as indirect evidence for ultralight bosons. Al-
though measuring BH spin is generally challenging, constraints on the scalar boson
mass have been placed around 10−13 − 10−12 eV and 10−19 − 10−18 eV [380, 456, 466–
473]. A similar approach has been used to place limits on the masses of the dark

56



3.6. Black Holes as Cosmic Laboratories

photon [474–476] and the graviton [477].

The discussion above ignores potential interactions between ultralight bosonic
fields and the Standard Model. While current bounds indicate that these couplings
are weak (see Figure 3.2), the large particle number in superradiant clouds may still
lead to observable effects. Particularly intriguing are interactions with the electromag-
netic sector. For the QCD axion and its axionic couplings [see eq. (3.3.2)], stimulated
decay into photon pairs becomes relevant for axion masses ≥ 10−8 eV, corresponding
to primordial BHs with masses ≤ 0.01M⊙. Such systems could produce powerful
electromagnetic radiation in the radio band [1, 478–480]. This presents a compelling
signature in which the environment acts as a portal channelling rotational energy
from the BH into electromagnetic radiation. We will revisit this phenomenon in de-
tail in Chapter 4. Similarly, spin-1 fields such as the dark photon naturally couple to
the electromagnetic sector (3.2.8). Their behaviour, particularly in the presence of
plasma, will be explored in Chapter 5.

There are many other observational channels that go beyond the scope of this
thesis, particularly those based on electromagnetic signals (see [481] for a recent re-
view). For example, tidal disruption events – where stars are torn apart by BHs
– offer a way of studying accretion physics and may serve as promising sources for
multi-messenger astronomy [482]. More broadly, the dynamics of accretion flows and
plasma around BHs can provide crucial insights into jet production and high-energy
electromagnetic emission. An exciting challenge for the future is to leverage the cen-
turies of experience with electromagnetic observations to better understand regions
of strong gravity, particularly by finding ways to correlate electromagnetic signatures
with GW detections. All in all, isolated BHs are far more than remnants of stellar
collapse; they are powerful testbeds for uncovering new physics.

3.6.2 Binary Systems

Irrespective of the nature of the environment, a binary system evolving within it
will be subject to various effects. These can subtly alter the orbital evolution of the
binary, imprinting a shift on the GW phase compared to vacuum. Since this shift
depends on the properties of the environment, it provides an opportunity to extract
information about them. Detecting such effects requires both identifying modifica-
tions to the gravitational waveform and distinguishing them from “standard” GW
signals. Two of the most prominent mechanisms affecting a BH moving through a
medium are accretion and dynamical friction, schematically shown in Figure 3.5.9

Accretion is straightforward: as a BH moves through the medium, it captures some

9In accretion disks, gas torques are in fact the dominant effect, driving planetary migration [396,
483–485].
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Accretion

v⃗

Drag

Figure 3.5: Schematic illustration of a BH moving through a medium. As the BH
moves, it creates an overdensity of matter behind it, which pulls it back – a process
known as dynamical friction. At the same time, some of the matter is accreted by
the BH. Both of these effects influence the motion of the BH and, in turn, modify the
GWs it emits when part of a binary system.

of the surrounding material. At the same time, it exerts a gravitational pull on the
medium, leading to a friction effect, which was first studied by Chandrasekhar [486–
488]. The precise impact of these processes depends sensitively on the nature of the
environment. For instance, the drag generated by collisionless DM [486–488] is dif-
ferent from that of ultralight scalar fields [10, 55, 489–492]. To study these processes
without solving the full system of equations governing both the binary and its envi-
ronment, effects such as accretion, dynamical friction, gravitational radiation, and the
self-gravity of the medium are typically treated individually, and then incorporated
sequentially according to their PN order. However, many existing approaches rely on
approximations or restrictive assumptions, such as neglecting the backreaction on the
environment. A systematic, fully relativistic method for studying environments will
be presented in Chapter 9.

Environments can also modify the structure of the compact objects themselves,
altering the waveform through so-called finite-size effects. A general astrophysical ob-
ject can be described by its multipolar structure [493–495]. For example, a spinning
object acquires a quadrupole moment, whose strength is quantified by the dimension-
less parameter κ, representing the degree of rotational deformation. Kerr BHs have
κ = 1 [494, 495], whereas superradiant boson clouds or boson stars can exhibit values
as large as κ ∼ 103 [381, 496]. These effects contribute at 2PN order. Moreover, tidal
interactions lead to a tidally-induced quadrupole moment, characterised by the Love
number λ. Famously, the Love numbers of BHs vanish [497–502], yet this is not case
when environments are present [64, 242, 496, 503–505]. Such effects enter at 5PN
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order.

So far, all GW detections and most analyses have been conducted on the premise
that binary coalescences occur in vacuum. This is generally well-justified for the cur-
rent LIGO-Virgo-KAGRA (LVK) data, which primarily involve stellar-mass BHs in
comparable mass ratio binaries.10 Several reasons support this assumption; (i) the
types of sources that LVK detectors are sensitive to are generally not ideal candidates
for detecting environmental effects. Apart from superradiance, which can occur for
BHs of any mass (given a suitable boson mass), environments like accretion disks or
DM spikes are more commonly associated with intermediate to supermassive BHs; (ii)
even when an environment is present, it may be swept away in an equal-mass binary
coalescence before the GW signal enters the detector’s sensitivity band;11 (iii) most
observed GW signals last only a few cycles, leaving little time for subtle environmen-
tal effects to accumulate while the system is in the detectors’ sensitivity band; (iv)
finally, LVK detectors are most sensitive to the final moments of coalescence, when
the gravitational field is strongest, making it more likely that gravitational effects
dominate over those from the environment.

This situation is expected to change with the advent of future GW observato-
ries, capable of tracking extreme mass ratio inspirals over long timescales. In par-
ticular, millihertz detectors such as LISA will track these binaries over many years,
enabling precise measurements of their motion and interactions with surrounding
matter. Moreover, these systems typically involve intermediate-mass or supermas-
sive BHs, which – unlike stellar-mass BHs – are typically found at galactic cen-
tres [104], where dense gas, accretion disks, and DM structures are common (see
Section 3.1). Given this potential, substantial efforts are being directed towards
modelling environmental effects. Studies of accretion disks [9, 42, 68, 194, 395–
397, 423, 484, 485, 512–525], active galactic nuclei [45–47, 526, 527], and DM struc-
tures [9, 42, 242, 243, 260, 490, 528–533, 533–540] – potentially consisting of ultralight
particles [491, 492, 508, 509, 509, 510, 541–546], bosonic clouds [5, 6, 9, 10, 64–
66, 68, 504, 547–553] or merging exotic compact objects [554–558] – suggest that GW
observations can provide unique insights into these environments, and with that help
probe the nature of DM or reveal new fundamental fields.

Environmental effects, however, present not only opportunities but also signif-
icant challenges. If not properly accounted for, they can bias inferred binary pa-
rameters or degrade the signal-to-noise ratio, potentially leading to missed detec-
tions [9, 68, 206, 559, 560]. Furthermore, distinguishing genuine environmental effects
from modifications to GR will be a key challenge for future GW astrophysics.

10Although efforts have been made to study environments using the available LVK data [206, 506].
11However, when the environment itself carries angular momentum, this is not necessarily true.

It is currently unclear how much of the environment is depleted in such cases (for scalar fields, see
e.g., [507–511]).
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This thesis explores a range of environments in the presence of binary systems. In
Chapters 6 and 7, we examine the ringdown in presence of plasma and galactic DM
halos, respectively, while in Chapters 8 and 9, we study the inspiral of scalar clouds
around BHs in the Newtonian and relativistic regime. In Chapter 10, we focus on the
evolution of binaries in AGN disks.
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4
Superradiance: Axionic
Couplings and Plasma

Effects

Don’t you know that I hold the sea and its ways in my hand,

and the heavens are my chart?

Ru, people of Tupua’i

In Section 3.3.3, I discussed how spinning BHs can transfer a significant fraction
of their energy to ultralight bosonic fields via superradiance, condensing them in a
co-rotating structure or “cloud”. The precise development of this instability is well
understood in vacuum and in absence of couplings to the Standard Model. However,
BHs are surrounded by interstellar matter or accretion disks and couplings between
bosonic fields and the Standard Model may be non-vanishing (see Figure 3.2).

It was argued analytically and with numerical simulations, that axionic cou-
plings to the Maxwell sector might trigger parametric instabilities, whereby the scalar
cloud transfers energy to electromagnetic (EM) radiation [478–480, 561]. Addition-
ally, the presence of a surrounding plasma may quench the parametric instabil-
ity due to the high energy (large “effective mass”) of typical astrophysical environ-
ments [393, 562, 563]. The previous works left important gaps: (i) the parametric
instability was shown to give rise to periodic bursts of light, but its period and ampli-
tude were not studied. In fact, the effect of a superradiantly growing cloud was also
not understood properly. (ii) The role of plasmas in the development of EM instabil-
ities is known poorly, but could have a drastic effect (see e.g., recent works on dark
photon superradiance [564, 565]), since the plasma frequency is rather large in most
astrophysical circumstances.
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t

Aμ

Ψ Ψ

Ψ

Figure 4.1: Schematic illustration of our setup. Starting from a spinning BH of mass
M (left panel), a superradiant cloud of mass Mc is formed in the dominant (dipolar)
growing mode (centre panel). For sufficiently large couplings to the Maxwell sector,
the configuration is unstable: any small EM fluctuation will trigger emission of EM
radiation [black] (right panel). Some of these waves recombine to create axion waves
[green]. The blue background indicates the presence of a plasma.

In this chapter, I present the work done in [1], where these couplings were studied
using numerical relativity. By evolving the coupled axion-Maxwell system on a BH
background, taking into account the axionic coupling concurrently with the growth
of the cloud, a new stage emerges: that of a stationary state where a constant flux of
electromagnetic waves is fed by superradiance, for which accurate analytical estimates
are found. Moreover, I show how the existence of electromagnetic instabilities in
the presence of plasma is entirely controlled by the axionic coupling; even for dense
plasmas, an instability is triggered for high enough couplings.

The outline of this chapter is as follows. In Section 4.1, I set up the relevant
equations of motion and discuss the modelling of the cloud as well as the plasmic
environment. In Section 4.2, I study the evolution of the axion-Maxwell system in
the absence of superradiance, while in Section 4.3, I carry out a similar analysis, now
including superradiance. In Section 4.4, I describe the influence of a plasma on the
EM instability, and in Section 4.5, I explore possible observational signatures. Finally,
in Section 4.6, I provide a summary and outlook. Additional details are contained in
Appendices A and B. For the purposes of this chapter, I retain the explicit dependence
on ℏ, and thus work in geometric units where G = c = 1, while using rationalised
Heaviside-Lorentz units for the Maxwell equations. Finally, in this chapter, I use
the tilde to denote the Fourier transform, rather than its usual role as a marker for
dimensionless quantities elsewhere in the thesis. An illustration of the setup can be
seen in Figure 4.1.
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4.1 Setup

4.1.1 The Theory

We consider a real, massive (pseudo)scalar field Ψ with axionic couplings to the EM
field. In addition, the EM field is coupled to a cold, collisionless electron-ion plasma.
In this setup, the Lagrangian takes the following form:

L = R

16π − 1
4FµνF

µν − 1
2∇µΨ∇µΨ − µ2

2 Ψ2 − ka

2 Ψ ∗FµνFµν +Aµjµ + Lm . (4.1.1)

The mass of the scalar field Ψ is given by ma = µℏ, Aµ is the vector potential,
Fµν ≡ ∇µAν − ∇νAµ is the Maxwell tensor and ∗Fµν ≡ 1

2ϵ
µνρσFρσ is its dual. We

use the definition ϵµνρσ ≡ (1/√−g)Eµνρσ, where Eµνρσ is the totally anti-symmetric
Levi-Civita symbol with E0123 = 1. We define the Lagrangian for the plasma as Lm,
while ka quantifies the axionic coupling which we take to be constant.1 There exists a
wide variety of theories predicting axions and axion-like particles, and generically ka is
independent of the boson mass [unlike the case of the QCD axion (3.3.3)]. Therefore,
we take ka to be an additional free parameter of the theory. Notice that we do not
consider self-interactions, which could appear as an expansion of the axion’s periodic
potential. This corresponds to a region kafa ≥ O(1) predicted in models such as
clockwork axions [566, 567] and magnetic monopoles in the anomaly loop [568, 569],
where fa is the decay constant of the axion.2 In principle, a similar analysis could be
performed for scalar couplings (L ⊃ ksΨFµνFµν), at least when the coupling strength
is weak [479].

Finally, jµ is the plasma current, and captures both the contributions of the elec-
trons and the much heavier ions. We adopt a two-fluid formalism model for the
plasma, where electrons and ions are treated as two different fluids, coupled through
the Maxwell equations (see Section 3.4 for details). Hence, the plasma current is
given by jµ =

∑
s qsnsu

µ
s , where the index s represents the sum over the two different

species, electrons and ions, and qs, ns and uµ
s are the charge, number density and four

velocity of the fluids, respectively.

An axion cloud produced from superradiance can grow to be ≲ 10% of the BH
mass (3.3.24). We will consider the cloud’s backreaction on the geometry to be small
and thus evolve the system on a fixed background. The gravitational coupling µM
determines the strength of the interaction between the BH and the axion and is a
crucial quantity. In order for superradiance to be efficient on astrophysical timescales,

1This quantity corresponds to gaγγ in eq. (3.3.2), and the notation is chosen for consistency with
previous works [479, 480].

2The strong self-interaction regime was discussed in e.g., [380, 570–572], where transitions to
various cloud modes and distortion of bound state wave functions are expected.
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the gravitational coupling must be O(1) (3.3.22). For µM ≪ 0.1, the exponential
growth is too slow (3.3.19), while the instability is exponentially suppressed for µM ≫
1 [154, 573]. Consequently, we will perform simulations in the range µM ∼ 0.1 − 0.3.

From the Lagrangian of our theory (4.1.1), we obtain the equations of motion
for the scalar and EM field. In order to close the system, we also need to consider
the continuity and momentum equation of the fluids, which come from the conser-
vation of the energy-momentum tensor for the Maxwell-plasma sector. Ignoring the
backreaction of the fields in the spacetime, we obtain:(

∇µ∇µ − µ2)Ψ = ka

2
∗FµνFµν ,

∇νF
µν = jµ − 2ka

∗Fµν∇νΨ ,

uν
s ∇νu

µ
s = qs

ms
Fµ

νu
ν
s ,

∇µ(nsu
µ
s ) = 0 .

(4.1.2)

Finally, we impose the Lorenz condition on the vector field

∇µA
µ = 0 , (4.1.3)

thereby fixing our gauge freedom.

4.1.2 Modelling Superradiance

Even though we are interested in an axion cloud that grows through superradiance,
and thus requires a spinning BH described by the Kerr metric (2.1.5), we will in-
stead mimic superradiant growth without the need of a spinning BH. The reason
is of a practical nature: timescales to superradiantly grow an axion cloud are larger
than ∼ 106M [154, 574, 575], a prohibitively large timescale for numerical purposes.
Therefore, we mimic superradiant growth following Zel’dovich [59, 60, 576], by adding
a simple Lorentz-invariance-violating term to the Klein-Gordon equation,(

∇µ∇µ − µ2)Ψ = C
∂Ψ
∂t

+ ka

2
∗FµνFµν . (4.1.4)

Here, C is a constant, which in the absence of the axionic coupling gives rise to a
linear instability on a timescale of the order 1/C, where we can tune C to be within
our numerical limits. For further details, we refer to Appendix A.1.2.

4.1.3 Modelling Plasma

One of the most important characteristics of plasmas is their peculiar response to
external perturbations. As we discussed in Section 3.4, when plasma is perturbed by

64



4.1. Setup

an EM wave, electrons are displaced and start oscillating around their equilibrium
position at the so-called plasma frequency :

ωp =

√
neq2

e
me

≈ 10−12

ℏ

√
ne

10−3 cm−3 eV . (4.1.5)

Remarkably, the dispersion relation of the transverse modes of a photon propagating in
a plasma are modified by a gap which corresponds to the plasma frequency, i.e., ω2 =
k2 + ω2

p. For this reason, the plasma frequency acts as an effective mass for the
transverse polarisations of the photons. This effect is crucial to take into account when
studying parametric instabilities as the axion decay into photons could be suppressed
in a dense plasma, i.e., when ωp ≫ µ. Throughout this chapter, we work under the
following assumptions regarding the plasma.

(i) We neglect nonlinear terms in the axion-photon-plasma system. That is to say,
as long as the EM field remains small, it suffices to consider only the linear
response of the medium. Consequently, the backreaction of the EM field on the
axion field is omitted.

(ii) We ignore ion oscillations induced by the EM field. For non-relativistic plasmas,
this assumption is justified because the ions have much larger inertia than the
electrons, allowing them to be treated as a neutralising background. In the rel-
ativistic regime, however, this approximation breaks down when Γe ≫ mion/me
where Γe is the Lorentz factor of the electrons [577].

(iii) We assume the plasma to be locally quasi-neutral, i.e., Znion ≈ ne, where Z
is the atomic number. This results in a vanishing charge density. The global
neutrality of the plasma ensures the validity of this assumption at sufficiently
large length scales, particularly in systems where the length scales are much
larger than the Debye length (3.4.4).

(iv) We model the plasma as cold and collisionless. In principle, our formalism can
be extended to include thermal and collisional effects by adding appropriate
terms to the momentum equation [393]. Thermal effects can be incorporated by
introducing a non-negligible pressure and an equation of state, while electron-
ion collisions can be modelled by adding a term proportional to the relative
velocity of the two fluid species.

(v) We neglect the evolution of the fluid’s four-velocity relative to an Eulerian
observer3 due to gravity. The 3+1 decomposition of the momentum equa-
tion (A.3.36) shows that, after linearisation, the evolution is governed by a

3An Eulerian observer follows a worldline orthogonal to the spacelike hypersurface.

65



4. Superradiance: Axionic Couplings and Plasma Effects

gravitational term ai and an EM term Ei. In a Schwarzschild background, the
only nonzero gravitational component is ar = M/r2, representing the famil-
iar gravitational acceleration near a spherical object.4 Since the axion cloud
is localised around the Bohr radius, gravitational effects remain small on the
relevant timescales. For instance, for a cloud with µM = 0.1 at r = 200M ,
the acceleration is ar = 2.5 × 10−5M−1, which would only induce significant
velocity changes on a timescale t ∼ 105M , far exceeding the growth timescales
of the EM field. Additionally, the gravitational term is suppressed relative to
the EM term by a factor of me/qe ∼ 10−22. Neglecting gravity simplifies the
system in two ways. First, while the electron momentum equation retains its
EM term, the ionic momentum equation becomes trivial under assumption (ii),
as ions with initially zero velocity remain stationary. Thus, they serve as a neu-
tralising background without further evolution. Second, with the gravitational
term absent, the electron momentum constraint (A.3.40) reduces to uν∂νΓ = 0.
Since Γ = 1 to linear order, this constraint is automatically satisfied. As a
consequence, dropping the gravitational term simplifies our evolution scheme
considerably.

4.1.4 Numerical Procedure

To evolve the system, we numerically solve the equations of motion (4.1.2) around
a Schwarzschild BH of mass M (2.1.4). We introduce the spatial components of the
Maxwell field denoted by Ai, the electric field Ei, the magnetic field Bi, an auxiliary
field Z, and the conjugate momentum Π of the scalar field. By applying the 3+1
decomposition to the equations of motion, we derive the evolution equations for the
scalar field, the EM field, and the plasma. A detailed account of the formulation of
our system as a Cauchy problem can be found in Appendix A.3.

The 3+1 decomposition also yields a set of constraint equations, which are shown
explicitly in (A.3.10). The initial data we construct should satisfy these equations.
Following [479, 480], we assume the following profile for the electric field,:

Er = Eθ = Ai = 0 ,

Eφ = E0e
−( r−r0

σ )2

M ,
(4.1.6)

where Ei = F iµnµ (i = r, θ, φ), with nµ defined as the normal vector of the spacetime
foliation. Here, Eφ can be an arbitrary function of r and θ. In the profile (4.1.6),
E0, r0, and σ represent the typical amplitude, radius and width of the Gaussian,
respectively. The EM pulse is initialised at r0 = 40M with σ = 5M in all our

4At the horizon, this corresponds to the surface gravity.
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Run kaΨ0 µM 103CM 104E0M/Ψ0

I1 0.0 0.3 0.0 8.1
I2 0.0295 0.3 0.0 8.1
I3 0.147 0.3 0.0 8.1
J1 0.0737 0.2 4.0 100.0
J2 0.0737 0.2 4.0 1.0
J3 0.0737 0.2 4.0 0.01
J4 0.0737 0.2 4.0 0.0001
J5 0.0737 0.2 4.0 8.1
J6 0.0563 0.2 4.0 8.1
J7 0.0328 0.2 4.0 8.1
J8 0.00737 0.2 4.0 8.1
J9 0.0737 0.2 0.08 8.1
J10 0.0737 0.2 0.2 8.1
J11 0.0737 0.2 0.8 8.1
J12 0.0737 0.2 1.0 8.1
J13 0.0737 0.2 2.0 8.1
J14 0.0737 0.2 8.0 8.1

ωpM

K1 0.147 0.3 0.0 0.01
K2 0.147 0.3 0.0 0.1
K3 0.147 0.3 0.0 0.15
K4 0.147 0.3 0.0 0.2
K5 0.147 0.3 0.0 0.3
K6 0.147 0.3 0.0 0.4
K7 0.295 0.3 0.0 0.2
K8 0.590 0.3 0.0 0.2
K9 0.0737 0.1 2.0 0.02
K10 0.0737 0.1 2.0 0.07

Table 4.1: A summary of the simulations discussed in this chapter. Simulations
labelled Ii do not include plasma or superradiant growth. Simulations labelled Ji

include superradiant growth but still exclude plasma, while simulations labelled Ki

include the plasma. The parameters we consider include the axionic coupling kaΨ0,
the mass coupling µM , the artificial superradiance parameter C, and the ratio between
the initial amplitude of the electric field E0 (4.1.6) and the scalar field Ψ0 (A.1.6). For
simulations that include plasma (Ki), the initial EM amplitude is 104E0M/Ψ0 = 8.1
and we also report the plasma frequency ωp. In all our simulations, the EM pulse is
initialised at r0 = 40M with σ = 5M .

simulations. We have verified that our results do not depend on these parameters,
validating the generality of our findings. For the initial data of the scalar field, we
use a quasi-bound state constructed via Leaver’s method (see Appendix A.1.1). We
assume the cloud to occupy the dominant (dipolar) growing mode with an amplitude
Ψ0, whose normalisation is given by eq. (A.1.6). Finally, the constraint equation for
the plasma is trivially satisfied, as detailed in Appendix A.3.4, and for simplicity, we
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4. Superradiance: Axionic Couplings and Plasma Effects

take a constant density plasma as initial data.

To keep track of the scalar and EM field during the time evolution, we perform a
multipolar decomposition (see Appendix A.2). In the scalar case, we directly project
the field Ψ onto spheres of constant coordinate radius using the spherical harmonics
with spin weight sw = 0 to obtain Ψℓm (A.2.1). In the EM case, we track the evolution
of the field using the Newman-Penrose scalar Φ2, which captures the outgoing EM
radiation at spatial infinity. Analogous to the scalar case, we project these using
spherical harmonics, yet now using spin weight sw = −1 to obtain (Φ2)ℓm (A.2.5). In
most figures, we will show |(Φ2)ℓm| =

√
(Φ2)∗

ℓm(Φ2)ℓm. Since these are massless EM
waves, |(Φ2)ℓm| ∝ 1/r at large spatial distances.

Throughout this chapter, we will discuss various simulations. In Table 4.1, the spe-
cific parameters of these simulations are listed. Furthermore, a schematic illustration
of our setup can be seen in Figure 4.1.

4.2 Superradiance Turned Off

An axion cloud coupled to the Maxwell sector can give rise to a burst of EM radi-
ation. The first exploration of this phenomenon was presented in [478], while the
full numerical exercise followed in [479, 480]. In this section, our goal is to care-
fully perform a further analysis and, as we will see, find some new features of the
system. Throughout this section, we assume superradiant growth to be absent, as
in [479, 480]. Even though this is clearly an artificial assumption, as it means that
the cloud was allowed to grow without being coupled to the Maxwell sector, it allows
us to isolate and understand better some of the phenomena. The full case will be
dealt with afterwards.

As shown analytically in flat spacetime, but also numerically in a Kerr back-
ground [479, 480], upon growing the cloud to some predetermined value, an EM
instability is triggered depending on the quantity kaΨ0. In particular, there exist two
regimes, a subcritical regime and a supercritical regime. In the former, no instability
is triggered and some initial EM fluctuation does not experience exponential growth.
Conversely, in the supercritical regime, an instability is triggered and the axion field
“feeds” the EM field, which grows exponentially, resulting in a burst of radiation. The
threshold between these regimes is set by two competing effects: the parametric pro-
duction rate of the photon, ∝ µkaΨ0, and their escape rate from the cloud, ∝ µ2M .
The latter is approximated by the inverse of the cloud size. Similarly to previous
works, we find this threshold to be on the order kaΨ0 ∼ 0.1 − 0.4, for µM ∼ 0.2 − 0.3.
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4.2.1 The Process at Large

In the following, we explore these two regimes by evolving the coupled system describ-
ing a superradiant cloud of axions coupled to the Maxwell sector, while initialising it
with a small vector fluctuation E0.

Figure 4.2 summarises well the possible outcomes, which depend on the strength
of the coupling kaΨ0. For sufficiently small couplings, the axion field is left unaffected,
and remains in a bound state of (near) constant amplitude around the BH. For large
couplings however, in what we term the supercritical regime, the amplitude of the
axion field decreases. This transition signals a parametric instability whereby axions
are quickly converted into photons.

The bottom panel of Figure 4.2 shows the behaviour of the EM radiation during
this process (we show only the dipolar component ℓ = m = 1 of the Newman-Penrose
scalar, but we find that higher modes are also excited to important amplitudes, see
Appendix A.5). In the subcritical regime, any initial EM fluctuation decays on short
timescales. In contrast, in the supercritical regime a burst is initiated: these are the
photons that are created by the axion cloud. We find that the growth rate of this
instability follows earlier estimates [479] and can be approximated as the difference
between the photon production and escape rates: λ ∼ λ∗ − λesc, where λ∗ ∼ 1

2µkaΨ0
and λesc ∼ 1/d, with d the size of the cloud. This estimate is indicated by the blue
dash-dotted line in Figure 4.2.

At late times, the system settles to a final, stationary state. In the subcritical
regime, this final state is almost the same as its initial state since the axion cloud is
barely affected by the EM perturbation. Conversely, in the supercritical regime, the
parametric instability has driven the axion field to decrease to a subcritical value.
Therefore, in the absence of superradiant growth, no further instability can be trig-
gered and the axion cloud settles on a final state with a lower amplitude than its
initial value, while the created photons travel outwards.

4.2.2 Axion and Photon Emission

Although the axion is massive, EM waves are massless and allowed to travel freely
once outside the cloud. To study EM wave propagation, we monitor the system at
large radii. The top panel of Figure 4.3 summarises our findings for EM radiation,
where we align waveforms in time. Some features are worth noting: (i) we find that
Φ2 decays like the inverse of the distance to the BH, as might be expected for EM
waves; (ii) the pattern of the waveform is not changing as it propagates, typical of
massless fields. The radiation travels at the speed of light, as it should.

69



4. Superradiance: Axionic Couplings and Plasma Effects

−0.10

−0.05

0.00

0.05

0.10

Ψ
11

0 1000 2000 3000 4000

t/M

10−6

10−5

10−4

10−3

10−2

M
|(Φ

2
) 1

1
|

I2 (subcritical)

I3 (supercritical)

Figure 4.2: Top panel : The time evolution of the (real part of the) dipolar, ℓ =
m = 1, bound state component of an axion cloud around a Schwarzschild BH in two
scenarios: coupling is subcritical [red dashed] (simulation I2) or supercritical [green]
(simulation I3). As a consistency check, we also evolve with a vanishing coupling
to the Maxwell sector (simulation I1), which we find to be almost indistinguishable
from the subcritical case. Bottom panel : The time evolution of the absolute value of
the ℓ = m = 1 component of the Newman-Penrose scalar Φ2 for a subcritical and
supercritical coupling. Dash-dotted line [blue] shows the growth rate, λ = 0.0054/M ,
as estimated from eq. (77) of [479]. In both panels, the field is extracted at rex = 20M
and µM = 0.3.

Additionally, we observe an interesting morphology in the EM burst. It has a
high-frequency component slowly modulated by a beating pattern. While the high-
frequency component is set by the boson mass µ, with oscillation period ∼ 2π/(µ/2),
the beating frequency scales with 1/µ2 as its origin lies with the presence of the cloud.
Specifically, when the photons are produced inside the cloud, they have to travel
through it, allowing for further interactions. These photon echoes exhibit a symmetric
frequency distribution with respect to the primary photons, lying around ω ∼ µ/2.
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Figure 4.3: Top panel : The dipolar component |(Φ2)11| of the EM field in the super-
critical regime with µM = 0.3, for simulation I3. The alignment of the waveforms
shows that we are dealing with EM radiation. High-frequency oscillations are set by
the mass scale µ, whereas “beatings” (indicated by vertical dashed lines) are controlled
by 1/µ2. Bottom panel : Fourier transform of the signal (denoted by a tilde), taken
on the entire time domain, showing the dominant frequencies in the problem. Dashed
lines show N(ω0/2) for N = 1 [grey], or N = 3 [brown], where ω0 ≈ µ is the frequency
of the fundamental mode.

This can be seen in the Fourier transform in the bottom panel of Figure 4.3. The
frequency difference between these peaks, ∆ω, corresponds to the observed beating
timescale ∼ 2π/∆ω, indicated by the dashed lines in the top panel of Figure 4.3. In
addition to the bulk of photon frequencies near half the axion mass, there are other
peaks in the frequency domain, namely two around Mω ∼ 0.45. We believe these
higher order peaks do not originate from a parametric resonance, as one would expect
peaks for each integer N at Nµ/2, while we find the peaks at even N to be absent.
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Furthermore, the bandwidth of higher order parametric resonances is extremely small,
making it hard to trigger those. We instead attribute these additional peaks to result
from photon echoes as well, generated at later times, i.e., photons produced by the
parametric mechanism that are up-scattered by the axion cloud. These results are
different from a homogeneous axion background, where only echoes with the same
frequency are produced. The discrepancy is due to the large momentum tail of the
axion cloud.

Besides the expected EM radiation, the reverse process – two photons combining to
create an axion – may also provide a non-negligible contribution. In fact, this process
has been explored in the context of axion clusters [578], where energetic axions are
created that can not be stimulated anymore, hence they escape the cluster (so-called
sterile axions). Applying this scenario in the context of superradiant instabilities
leads to the creation of unbound axion states, with frequencies ω > µ, that are thus
able to escape to infinity. Such axion waves are indeed produced in our setup, as
can be seen in Figure 4.4. The large scalar field contribution far away from the
cloud is only present in the supercritical regime. Since these are massive waves, the
dependence with time and distance from the source is less simple due to dispersion.
As components with different frequencies travel with different velocities, the wave
changes morphology when travelling to infinity, which is apparent in the top panel of
Figure 4.4.

The Fourier transform of the axion waves is shown in the bottom panel of Fig-
ure 4.4. It indeed contains components with frequency ω > µ, showing that the field
is energetic enough to travel away from the source. The frequencies of the peaks
correspond to a group velocity v =

√
1 − µ2/ω2 = 0.036 and v = 0.18 for rex = 400M

and rex = 1000M , respectively. Note that this Fourier transform is taken over the
full time domain and thus dominated by the late signal of the axion waves, consisting
of larger amplitude, non-relativistic waves. This also explains why the peak for the
rex = 1000M curve is at higher frequency: the slower waves did not have time to
arrive yet at this larger radius. If we instead calculate the Fourier transform on only
the first part of the signal, we capture the (more) relativistic components. These
emitted axion waves can in principle be detected by terrestrial axion detectors if the
BH is close enough to Earth.

Besides the dipole component, higher order scalar multipoles are also created by
the photons. In fact, from our initial data, only scalar multipoles with odd ℓ can be
produced. This selection rule is detailed in Appendix A.6. The higher multipoles for
both the axion and photon radiation are shown in Appendix A.5, where it can also be
seen that excited photons can recombine to create axion waves with twice the axion
mass.
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Figure 4.4: Top panel : The dipolar component of the axion field in the supercriti-
cal regime (simulation I3). When extracted at large radii, the nonzero value of Ψ11
is only present in the supercritical regime and explained by the production of ax-
ion waves. Due to dispersion, the morphology of the wave changes while travelling
outwards. Bottom panel : The Fourier transform of the dipolar component, taken on
the entire time domain shown in the top panel. Dashed lines show the frequency of
the fundamental mode of the bound state [grey], and the frequencies of the signal
at rex = 400M [purple] and rex = 1000M [red], whose peaks are situated at ω > µ,
confirming these are axion waves.

4.3 Superradiance Turned On

The formation of an EM burst depends on whether the photon production via the
parametric instability exceeds the escape rate from the cloud, or vice versa. The
initialisation of the system in a supercritical state however, is artificial. Instead, it
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starts in the subcritical regime and potentially grows supercritical through superra-
diance. Previous works claimed that this process developed through a “burst-quiet
sequence”: a burst of EM and axion waves would deplete the cloud, which would then
grow on a superradiant timescale before another burst occurred [480]. We argue that
in fact bursts do not occur, and that the process is smoother than thought. As we
will show, the presence of superradiance introduces two important differences: (i) the
growth rate of the EM field is modified and (ii) the system is forced into a stationary
phase.

4.3.1 Numerical Results

We numerically evolve the coupled axion-photon system under the influence of a
superradiantly growing cloud. In these simulations, we start the system in the sub-
critical regime, and let it evolve to supercriticality via (artificial) superradiance, since
now C ̸= 0.

Figure 4.5 illustrates the behaviour of the system. We evolve different initial con-
ditions, corresponding to different seed EM fields E0/Ψ0 and different couplings kaΨ0,
and we see a saturation of the EM field, to a value which is independent of the initial
conditions. This stability is simply achieved by turning on superradiant growth like
in eq. (4.1.4). In contrast to the previous section, where the bound state solely loses
energy, the supplement to the axion cloud is dominant at first, resulting in exponential
growth. As the cloud approaches the critical value, parametric decay to the EM field
begins to compensate for the energy gain from the BH, ultimately reaching a phase
where energy gain and loss are balanced. As a result, the entire system consisting of
the axion cloud and the EM field is constantly pumped by superradiant growth, with
a steady emission of EM waves travelling outwards.

The saturation value of the EM field does depend on the superradiance parameter
C. This is simply due to the fact that the more axions that are created by superra-
diance, the more photons that can be produced through the parametric mechanism.
We find the saturation value to be proportional to

√
C, shown in the top panel of

Figure 4.6. This result is also supported by analytical estimates in Section 4.3.3, in
particular eq. (4.3.10). Additionally, our results demonstrate that the timescale re-
quired to reach saturation (at fixed initial field values), scales with

√
C as well. This

behaviour is explained in Section 4.3.2.

These simulations provide us with robust evidence that the saturation phase is (i)
independent of the initial data, and (ii) occurring for all tested values of C that span
two orders of magnitude, allowing for universal predictions. In the following, we
discuss various features related to the saturation phase.
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Figure 4.5: Time evolution of the dipolar component of the EM field including su-
perradiant growth for different strengths of the initial EM pulse (top panel) or the
initial coupling strength kaΨ0 (bottom panel) (see Table 4.1). The field is extracted
at rex = 20M and µM = 0.2. Notice how a stationary state is reached instead of a
burst of EM waves. Moreover, the final EM value is independent of initial conditions,
even though the timescale required to reach saturation does depend on how the fields
were initialised.

Evolution of the cloud’s morphology

When the system has just reached the critical threshold, the EM field starts growing
(super-)exponentially until it reaches the saturation value. When this happens, the
nonlinear backreaction in the Klein-Gordon equation becomes important (4.1.2). In
absence of superradiance, the EM field quickly decays in time after reaching its max-
imum and with that its backreaction onto the axion field, allowing the cloud to settle
back to a stable configuration at late times (see Figure 4.2). Conversely, in presence
of superradiance, the EM field settles to a large and constant value that continuously
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Figure 4.6: Dipolar component of the EM field (top panel, extracted at rex = 400M) or
the scalar field (bottom panel, extracted at rex = 20M) with superradiance turned on
and µM = 0.2. Dashed lines show the growth rate predicted by the standard Mathieu
equation [blue], the superradiant Mathieu equation (4.3.4) [black] and its first-order
expansion (4.3.5) [brown]. The value of C is varied for simulations Ji, see Table 4.1.
Both the horizontal and vertical axis are rescaled by

√
C, aligning all simulations with

J14. This reveals a clear and simple dependence on the superradiance rate, which we
investigate analytically in Sections 4.3.2 and 4.3.3.

backreacts onto the axion field. Consequently, it exhibits strong deviations from the
initial pure bound state configuration as overtones are triggered, i.e., it acquires a
beating-like pattern. This can be seen in Figure 4.6 (bottom panel), where around
t ∼ 700

√
CM3/2 the saturation phase ensues and there is no relaxation to the pure

quasi-bound state. We show a series of snapshots from the cloud’s evolution in the
two distinct scenarios in Figure 4.7.
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Figure 4.7: Snapshots of the axion profile during the evolution of the axion-photon
system. Top row shows the system in the supercritical regime (simulation I3), but
without superradiant growth. The cloud starts in its initial dipole state, and gets
disrupted by the parametric instability. Afterwards the configuration settles down
while axion waves propagate to infinity. On the bottom row, we show an initially
subcritical cloud, yet with superradiant growth turned on, C = 10−3M−1 (simulation
J12). Again, the cloud starts in its dipole mode, yet now it grows in amplitude due
to superradiance. Afterwards, the cloud is disrupted due to the EM instability, even-
tually settling down to a saturation phase during which axion waves are continuously
produced.

Angular structure of outgoing EM waves

During the saturation phase, there is a constant emission of EM waves. For obser-
vational purposes, we study the angular structure of the outgoing radiation. We do
this through the multipole components of Φ2, while up to now only the dipole was
considered. A subset of these multipoles is shown Figure 4.8. From the differences in
amplitude between different modes, we conclude that the radiation is not isotropic.
In fact, we find that the dominant radiation is on the equatorial plane (see inset of
Figure 4.8), where the density of the axion cloud is highest. To strengthen this result,
we also compute analytically the excitation coefficients of different multipoles given
our initial data. We report them in Appendix A.6.
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Figure 4.8: A subset of the multipoles of the EM field for simulation J12, extracted
at rex = 400M . The inset shows the angular structure of the outgoing EM waves in
the saturation phase (where all multipoles up to ℓ ≤ 8 are taken into account). The
vertical axis is reported in arbitrary units [a.u.]. Photons are predominantly produced
on the equatorial plane where the cloud’s density is highest.

4.3.2 Growth Rate

In previous work [479], it was shown that in absence of superradiance, the growth
rate of the EM field can be approximated by a simple, analytical expression. This
is a consequence of the fact that when the background spacetime is Minkowski and
the background axion field is a coherently oscillating, homogeneous condensate, the
Maxwell equations can be rearranged in the form of a Mathieu equation [479, 579].
The growth rate is then found by taking the production rate of the photons (∼ the
Floquet exponent of the dominant, unstable mode of the Mathieu equation) and
subtracting the escape rate of the photons from the cloud (∼ inverse of the cloud
size). While this approach yields accurate predictions in absence of superradiance
(see Figure 4.2), it breaks down in presence of superradiance (blue dashed line in
Figure 4.6). Remarkably, as we will show, a simple adjustment to the Minkowski toy
model restores its validity. Details are provided in Appendix B.1.

Let us consider the Maxwell equations in flat spacetime. We adopt Cartesian
coordinates and assume the following ansatz for the EM field,

Aµ(t,x) = αµ(t,p)ei(p·x−ωt) , (4.3.1)

where p is the wave vector which we assume to be aligned in the ẑ–direction without
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loss of generality, i.e., p = (0, 0, pz). To mimic the amplification of the axion field
via superradiance, we consider a homogeneous condensate that exponentially grows
in time:5

Ψ = 1
2(ψ0e

−iµt + ψ∗
0e

iµt)eCt . (4.3.2)

Adopting the field redefinition yk = eiωtαk, rescaling the time as T = µt and project-
ing along a circular polarisation basis e± such that y = yωe±, we obtain a “superra-
diant” Mathieu-like (SRM) equation:

∂2
T yω + 1

µ2

(
p2

z + 2pze
CT

µ ψ0ka(C cosT−µ sinT )
)
yω = 0 . (4.3.3)

Unsurprisingly, for C = 0, this equation reduces to the original Mathieu equation.6

From (4.3.3), two new features emerge: an extra oscillating term ∼ C cosT , and, most
importantly, an exponentially growing factor ∼ eCT/µ. By solving (4.3.3) numerically,
we find that, similar to the standard Mathieu equation, this equation admits insta-
bility bands, albeit with a larger growth rate. Fitting the exponent of the numerical
solution, we conclude that the solution to the superradiant Mathieu equation is well-
described by a super-exponential expression yω ∼ eλSRMt, with

λSRM = µ

2 kaψ0e
Ct/2 . (4.3.4)

In Appendix B.1, we compare this expression against the numerical solutions, and we
derive (4.3.4) analytically using a multiple-scale method.

We compare the growth rate of the EM field in the full axion-photon system on a
Schwarzschild background with the prediction from our toy model (4.3.4), as shown
in Figure 4.6. Here, the standard Mathieu growth rate [blue], the full solution [black]
and first-order expansion in C [brown] can be seen, where the latter is defined by

λSRMt ≈ µ

2 kaψ0

(
t+ Ct2

2

)
. (4.3.5)

In all curves, the time it takes for photons to escape the cloud has been taken into
account. Furthermore, we use the critical value for the coupling kaΨ0. As can be
seen, the SRM growth rate closely matches the numerical results. In addition, the
Ct2 term from (4.3.5) that appears at first-order, naturally explains why the timescale
to reach saturation scales as

√
C.

In summary, when considering the axion-photon system under the influence of
superradiance, a simple extension to Mathieu equation allows for elegant, analytic

5We adopt a different notation to distinguish the amplitude of the homogeneous axion field in
this toy model, ψ0, with the one of the axion cloud around the BH, Ψ0.

6Our result includes a sine instead of the cosine found in [479], which originates from a small sign
mistake in their derivation, see eq. (19). This has no consequences for the physics, as it only induces
a π/2 phase shift.
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predictions of our numerical results. Note that the true value for superradiance is
many orders of magnitude lower than the one considered in our simulations and
thus we expect the correction to be subdominant in realistic astrophysical scenarios.
Finally, our prediction neglects the backreaction onto the axion cloud. Hence, it
naturally breaks down when the rate of energy loss due to conversion to photons
becomes comparable to superradiant growth, i.e., when the saturation phase ensues.

4.3.3 Saturation Phase

As can be seen in Figures 4.5 and 4.6, turning on superradiant growth forces the
system into a stationary configuration. Here, the energy loss of the cloud due to
the parametric instability balances the superradiant pump sourced by the rotational
energy of the BH. A description of this phase is remarkably simple as we will show
below. A similar conclusion was found in [478].

For the photons to reach an equilibrium phase, it is required that the parametric
decay rate, λpd, equals the escape rate of the photon, λesc. Assuming that the former
can be approximated by the decay rate in the homogeneous condensate case [479, 579],
we have

λpd ≈ kaΨsatµ

2 ≈ 1
d

≈ λesc , (4.3.6)

where Ψsat is the average amplitude of the scalar field within the cloud at saturation.
In the non-relativistic regime, the size of the cloud is well-approximated by the stan-
dard deviation of the radius d = ⟨r⟩ ≈ 2

√
3rc = 4

√
3/(µ2M). This yields a relation

for which the cloud reaches saturation, namely

kaΨsat ≈ µM

2
√

3
. (4.3.7)

This is consistent with what we observe in the bottom panel of Figure 4.6, where
kaΨsat ≈ 0.2/(2

√
3) ≈ 0.06.

Additionally, we consider the equilibrium condition of the axion cloud. It is sourced
by the superradiance rate ΓSR, yet loses energy due to the parametric instability, ΓPI.
In our setup, these two rates are

ΓSR = C

2 and ΓPI ≈ 2ΓΨ → γγfγ , (4.3.8)

where ΓΨ → γγ = ℏk2
aµ

3/(16π) is the perturbative decay width of the axion-to-photon
conversion and fγ is the photon occupation number. When the dominant production
is in a narrow band around pγ = µ/2, we have [580]

fγ(pγ = µ/2) = 8π3nγ

4πp2
γ∆pγ

≈
2π2A2

γ

ℏkaΨsatµ2 , (4.3.9)
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where ∆pγ ≈ 2kaΨsatµ is the photon dispersion bandwidth, approximated to be the
resonant bandwidth at pγ = µ/2. Moreover, Aγ is the photon amplitude, which
relates to our measure of the EM field Φ2 via Aγ ∼ 2Φ2/ω, where ω ∼ µ is the
frequency of the axion field. Finally, nγ = 2ρ/(ℏω) is the photon number density,
with ρ = A2

γω
2/2 the energy density. Substituting these relations into (4.3.8), we find

that inside the cloud
A2

γ

Ψ2
sat

≈ 2C
πµkaΨsat

≈ C

πλesc
, (4.3.10)

where we used again (4.3.6). Hence, this simple analytical estimate shows that the
EM field stabilises to a value proportional to

√
C. This result is in excellent agreement

with our simulations (see Figure 4.6) and it allows us to consider a case in which C

coincides with the superradiant growth timescale.

The total energy flux of the photons with frequency µ/2 is defined as [478]

dE
dt = ℏµ

2 nγλesc χr
3
c , (4.3.11)

where χr3
c is the volume of the cloud. Here, χ is a numerical factor which in the

non-relativistic regime yields χ ≈ O(102).7 Assuming that the superradiance rate
ΓSR equals the decay rate ΓPI in the saturation phase (4.3.8), we obtain

dE
dt ≈ 7.6 × 1045

( χ

100

)(2.5 × 102M

τs

)(
0.2
µM

)2(10−13GeV−1

ka

)2

erg/s , (4.3.12)

where τs = C−1. To probe the superradiance regime, we tune C to match the well-
known superradiant growth rate (3.3.19) in the dominant growing mode [376]

ΓSR ≈ aJ (µM)9

24M , when µM ≪ 1 , (4.3.13)

where aJ is the spin of the BH. Substituting this into (4.3.12) yields

dE
dt ≈ 8.1 × 1040

( χ

100

)( aJ

M

)(µM
0.2

)7(10−13GeV−1

ka

)2

erg/s . (4.3.14)

Counterintuitively, lower couplings result in higher fluxes. This occurs because, for
lower couplings, the axion field reaches saturation at higher values. As the EM flux is

7To obtain χ, we introduce a threshold value ϵ for the absolute value of the scalar field, and define

χ =
∫ ∞

0
dr r2

∫
dΩ Θ (|Ψ| − ϵ) ,

where dΩ is the solid angle element, Θ is the Heaviside step function and ϵ ∼ 0.5 max (Ψ). We
checked that the order of χ does not strongly depend on ϵ.
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proportional to the axion field value, this leads to a higher flux.8 As a consequence,
the saturation phase opens a channel to constrain axionic couplings “from below”.
Finally, the divergence of (4.3.12) and (4.3.14) at small couplings indicates when
our model breaks down. In particular, the equilibrium condition (4.3.7) suggests a
minimum value for the coupling for which the cloud’s mass becomes larger than its
maximum of Mc = 0.1M . For example, for µM = 0.2, the minimum coupling for
which our description holds is ka > 3.8 × 10−18 GeV−1. Lower couplings then this
yield an unphysical situation and thus a breakdown of our description.

4.3.4 Implications for Superradiance

Using the scaling relation (4.3.10), we can explore the system in the superradiant
regime and thereby test the validity of (4.3.14) against our numerical simulations.
Before doing so, however, we must justify our ability to extrapolate beyond the pa-
rameter space directly probed for C.

Both ends of the explored C-range present numerical challenges. At high C, the
system exhibits large growth on short timescales, leading to numerical instabilities.
Conversely, at low C, the evolution timescales become prohibitively long, making
simulations computationally expensive. In addition to the simulations shown in Fig-
ure 4.6, we carried out two more simulations – J9 (low C) and J14 (high C) – to better
characterise the behaviour at the boundaries of our parameter space. For J14, corre-
sponding to high C, we observe signs that the saturation phase breaks down: the EM
field resumes growth after a transient saturation period. Physically, this behaviour is
expected. In the regime of extreme superradiant growth, the balance between photon
production and escape is disrupted: the photons simply do not have time to escape
the cloud while plenty of axions are produced. This imbalance could potentially lead
to a burst-like radiation pattern.9 Since our focus here is on the superradiance regime,
we do not investigate this scenario further.

The regime of low C is of interest as the superradiance rate is at significantly lower
values than what we can probe numerically (4.3.13). From the lowest C we probe, J9,
we find that even though there is an apparent decrease after the super-exponential
growth, the

√
C scaling is respected at late times. Physically, this behaviour is con-

sistent with the persistence of a saturation phase. When the growth rate is small,
the system becomes adiabatic; as the axions are slowly produced, the system steadily
approaches the critical value at which the system is in equilibrium and a saturation
phase ensues.

8A similar behaviour was found in the context of dark photons with kinetic mixings to the
Standard Model photon [564].

9Such behaviour might occur in a Bosenova-like collapse [570], where the axion density sharply
rises on short timescales.
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To extract the energy flux from our simulations, we exploit the properties of the
Newman-Penrose scalar. In particular, we can define

d2E

dtdΩ = lim
r→∞

r2

2π |Φ2|2 , (4.3.15)

where dΩ ≡ sin θdθdφ. Decomposing (4.3.15) in terms of spin-weighted spherical
harmonics, we obtain

dE
dt =

∑
ℓm

∫
dΩ 1

2π |(Φ◦
2)ℓm −1Yℓm|2 , (4.3.16)

where Φ2 = Φ◦
2/r. From our simulations, we extract (Φ2)ℓm,sim for a certain Csim

at large radii (r = rex) by averaging over a sufficient period in the saturation phase.
Then, we scale these multipoles to match their saturation value in the case of super-
radiance according to

(Φ2)ℓm,SR ≈ (Φ2)ℓm,sim√
Csim/(2ΓSR)

, (4.3.17)

where ΓSR is defined in (4.3.13). We do this for each multipole and sum them according
to (4.3.16) to obtain the total flux. As the contribution to the energy flux becomes
smaller for higher multipoles, we sum each multipole until the increment is less than
5%. In practice, this means summing over the first ∼ 8 values of ℓ. Following this
procedure, we find an estimate from our simulations for the total, nearly constant,
energy flux in the saturation phase:

dE
dt = 9.10 × 1040

(
10−13 GeV−1

ka

)2

erg/s , (4.3.18)

where we assumed µM = 0.2 and the BH to be maximally spinning. This matches
closely the theoretical prediction from (4.3.14).

Besides the photon production, the parametric instability also affects the axion
cloud. As we showed in eq. (4.3.7), the axion amplitude at saturation is independent of
C. By translating the amplitude of the axion field to the mass of the cloud, the impact
of coupling axions to photons becomes much more apparent [207]. In the purely
gravitational case, the cloud is able to obtain a maximum mass ofMc ≲ 0.1M (3.3.24).
As can be seen in Figure 4.9, through the coupling to the Maxwell sector, the cloud’s
mass can saturate significantly below this maximum. Note that this estimate assumes
a hydrogen-like profile for the cloud, which is strictly valid only in the no-coupling
case. As a result, when the cloud is disrupted by the strong backreaction on the
axion field in the saturation phase, this approximation breaks down. However, for
the (much) lower superradiant growth rate, the associated EM flux is weaker, leading
to less disruption of the cloud.
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Figure 4.9: Contour plot of the mass of the cloud (Mc) at saturation depending on the
axionic and mass coupling, kaΨsat and µM , respectively. The dark blue area at the
bottom denotes the maximum mass of 10% that the cloud can achieve in the purely
gravitational case.

Figure 4.9 has implications for existing constraints on the mass of ultralight bosons
derived from either GW searches [461–465] or BH spin measurements [207, 374, 379,
445, 456, 467–470, 472, 476]. Due to the reduced cloud mass, the backreaction on the
BH spin-down may become negligible, rendering current constraints – which typically
assume no couplings – potentially inapplicable. Additionally, the environmental im-
pact of the superradiant cloud on gravitational waveforms in BH binaries is expected
to be suppressed [5, 6, 9, 10, 64–66, 68, 504, 547–550, 550–553].

4.4 Surrounding Plasma

The presence of plasma affects the axion-to-photon conversion in the parametric in-
stability mechanism, as the transverse polarisations of the photon are dressed with
an effective mass (3.4.9), i.e., the plasma frequency ωp (4.1.5). Therefore, when
ωp > µ/2, the process Ψ → γ + γ is kinematically forbidden. Even though it is com-
mon lore to approximate the photon-plasma system with a Proca toy model, the full
physics is more involved: already in the simplest case of a cold, collisionless plasma,
the longitudinal degrees of freedom are electrostatic, unlike the Proca case (see Sec-
tion 3.4.2). In curved space, these transverse and longitudinal modes are coupled and
thus the Proca model cannot assumed to be correct a priori. Moreover, nonlinearities
provide additional couplings between the modes, and also the inclusion of collisions or
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thermal corrections create strong deviations from a Proca theory. Hence, a consistent
approach from first principles is imperative. In this section, we take a first step in
that direction by studying a linearised axion-photon-plasma system. The underly-
ing physical assumptions of our plasma model were discussed before in Sections 3.4
and 4.1.3, while the numerical implementation is detailed in Appendices A.3.4–A.3.6.

4.4.1 Without Superradiance

We start by studying the axion-photon-plasma system in absence of superradiance,
and initialise the axion cloud in a supercritical state with kaΨ0 ≪ 1. We evolve
the system on a BH background for different values of the plasma frequency (see
Table 4.1). Note that there is no backreaction onto the axion field in our linearised
setup.

Figure 4.10 summarises the main results. When ωp < µ/2, the plasma has little
impact on the system and the parametric instability ensues. When ωp ≥ µ/2 instead,
a suppression of the photon production is seen. We find the growth rate estimated in
eq. (19) of [561] to fit our simulations well, when taking into account the finite-size
effect of the cloud as λesc ∼ 1/d, i.e.,

λ ≈
µ2
√
µ2 − 4ω2

p

2µ2 − 4ω2
p

kaΨ0 − λesc . (4.4.1)

Moreover, the beating pattern in the EM radiation at larger radii (see bottom panel of
Figure 4.10) originates from the photons having to travel through the cloud, thereby
scattering of the axions.

Additionally, we show the Fourier decomposition of the signal at rex = 20M in
Figure 4.11. As we concluded from Figure 4.10, for low ωp, the parametric instability
is barely hindered and a clear peak arises at half the boson mass. However, when
ωp > µ/2, we observe the presence of modes with a frequency very close to ωp.
We find good agreement between these peaks and the plasma-driven quasi-bound
states computed in a similar setup [392]. Note however, that these bound states are
extremely fragile and geometry dependent, and may disappear if more realistic plasma
models are considered [581]. We conjecture the origin of the two additional peaks at
ωp ± µ to be up and down-scattering from the quasi-bound state photons with the
axion cloud. Due to the fact that modes with frequency ωp − µ are decaying, their
amplitude is highly suppressed compared to the up-converted ones.

We now focus on the high axionic coupling regime. In the toy model considered
in [561], it was shown that even when ωp ≥ µ/2, an EM instability could be triggered
for high enough kaΨ0. In Figure 4.12, we confirm this prediction numerically and
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Figure 4.10: Time evolution of the dipolar component |(Φ2)11| of the EM field in
the presence of plasma for µM = 0.3, extracted at rex = 20M (top panel) or rex =
400M (bottom panel). The plasma frequency ωp is progressively larger for simulations
K1 −K6, see Table 4.1. The exponential growth rate (dashed lines) is determined
from (4.4.1). The modulations at large radii arise from scattering of photons with the
axion cloud, similar to Figure 4.3.

show, for the first time, the presence of an instability in dense plasmas. This might
seem in tension with the kinematic argument that for ωp > µ/2 the axion decay
into two photons is forbidden. However, as we show in the inset of Figure 4.12, the
frequency centres at ω = µ instead of the usual ω = µ/2. This suggests the photon
production to be dominated by a different process, namely Ψ + Ψ → γ + γ.

To support this hypothesis, we revisit the connection to the Mathieu equation. As
detailed in Appendix B.1, in flat spacetime, the Maxwell equations in the presence of
a plasma can be recast into the form of a Mathieu equation, which exhibits instability
bands whenever ω2 = p2

z + ω2
p = n2 µ2/4, with n ∈ N. Consequently, when ωp > µ/2,

86



4.4. Surrounding Plasma

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mω

0.0

0.2

0.4

0.6

0.8

1.0

(Φ̃
2
) 1

1
[a

.u
.]

K2

K6

Figure 4.11: Fourier transform of (Φ2)11 extracted at rex = 20M for simulations
K2 (ωp < µ/2) and K6 (ωp > µ/2) with µM = 0.3. The vertical axis is shown in
arbitrary units such that both curves are visible on the same figure. Dashed lines
denote half the boson mass [grey] and the plasma-driven quasi-bound state frequency
for ωp = 0.4, given by Mω = 0.3887 − 0.0016i [orange].

the first instability band (n = 1), corresponding to ω = µ/2, is no longer accessible.
However, the second instability band (n = 2), located at ω = µ, remains viable. This
matches exactly the phenomenology observed in Figure 4.12, leading us to identify the
EM instability as arising from the second instability band of the Mathieu equation.
This band indeed corresponds to the process Ψ+Ψ → γ+γ, and remains kinematically
viable for ωp > µ/2 [579]. This analysis can, in principle, be extended to higher-order
bands. However, these bands become increasingly narrow, and thus exciting them
would likely require (extremely) high values of the axionic coupling.

4.4.2 With Superradiance

We now probe the axion-photon-plasma system starting from a subcritical regime,
yet letting it evolve to supercritical values via superradiance. Based on the previous
section, we expect the system to turn unstable at some point, as the axionic coupling
kaΨ0 grows indefinitely. Due the longer timescales associated with this process, we
anticipate assumption (v) of our plasma model, namely neglecting the gravitational
term, to be violated for the same parameter choices as before. Therefore, we evolve
the system with µM = 0.1, such that all the assumptions are still justified.

In Figure 4.13, we show two simulations, K9 (ωp < µ/2) and K10 (ωp > µ/2),
which capture well the two distinct outcomes. In the former, the usual instability
with ω = µ/2 ensues when the system has reached the supercritical threshold, yet in
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Figure 4.12: Time evolution of |(Φ2)11| extracted at rex = 20M for simulations K7
and K8 with µM = 0.3. Even though in both simulations ωp = 0.2 > 0.15 = µ/2, the
instability can be restored when kaΨ0 is high enough. The inset shows the Fourier
transform of both curves, with the solid line [grey] indicating the plasma frequency.
The dashed line [red] shows the frequency of the peak for K8, which is at Mω = 0.3,
indicating that the second instability band of the Mathieu solution is triggered.

the latter, the time to reach this threshold is longer as the axionic coupling must grow
sufficiently to trigger the second instability band. Note that, similar to the previous
section, there is no backreaction onto the axion field, which therefore merely acts as
a big reservoir for the EM field. This naturally explains the absence of a saturation
phase. Should the backreaction be included however, there is no physical reason to
expect that the saturation phase is ruined by the presence of plasma as it does not
interfere with the balance between the energy inflow from the BH and energy outflow
from the emitted photons. We therefore expect that the general outcome from the
analysis in Section 4.3.3 still holds, aside from minor modifications.10

By allowing the axionic coupling to take on arbitrarily high values, an instability
is thus always triggered, regardless of the plasma frequency. In practice however, it is
bounded by constraints on the coupling constant ka and the mass of the cloud (which
relates to Ψ0) when superradiant growth is saturated. We can estimate the maximum
axionic coupling, and therefore the maximum plasma frequency (= electron density)
for which an instability occurs. We do this using the flat space toy model detailed
in Appendix B.2. From eq. (B.2.3), it is immediately clear that the critical value to
trigger an instability in the presence of an overdense plasma (when ωp ≳ pz) is given

10For example, the presence of a plasma affects the escape rate, as photons will travel more slowly
through it, i.e., vγ < c.
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Figure 4.13: The dipolar component of EM radiation extracted at rex = 20M for
simulations K9 (ωp = 0.02) and K10 (ωp = 0.07) with µM = 0.1. Although initially
subcritical, superradiance drives the axionic coupling high enough such that an insta-
bility can occur, even when ωp = 0.07 > 0.05 = µ/2.

by

kaψ0 ≳
ω2

p + p2
z

2µpz
≈
ω2

p

µ2 . (4.4.2)

This condition corresponds to the requirement that the harmonic term in the Mathieu-
like equation dominates over the non-oscillatory one [cf. eq. (B.2.3)]. We have con-
firmed that this flat spacetime model closely matches the simulations in curved space-
time. Therefore, we can safely use the (flat spacetime) relation between the axion
amplitude and the mass of the cloud [63] to obtain

ka ≳ 8 × 102

(
ω2

p

µ2

)(
0.1

Mc/M

)1/2( 0.2
µM

)2
. (4.4.3)

Note that when ωp ≈ µ, this condition reduces to the one derived in [480], while in
the case ωp ≫ µ, stronger constrains on the coupling are imposed. We can translate
this into the following condition for when an instability is triggered

10−13 GeV−1

ka
≲ 8 × 105

(
10−3 cm−3

ne

)(
Mc/M

0.1

)1/2(1M⊙

M

)2(
µM

0.2

)4
. (4.4.4)

Since current constraints on the coupling constant are around 10−13 GeV−1 (see Fig-
ure 3.2), this means a plasmic environment can at least be a few orders of magnitude
higher than the interstellar medium (ne ∼ [10−3 − 1] cm−3) [385] and still an EM
instability would be triggered.
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4.5 Observational Prospects

Based on the previous section, there are two distinct outcomes for parametric photon
production in presence of plasma; (i) the dominant instability for ωp < µ/2, and (ii)
higher band instabilities in the regime of large axionic couplings, for ωp > µ/2. In
situation (i), the plasma frequency establishes a threshold for the frequency of the
emitted photons. In the case of the interstellar medium, characterised by an electron
density of approximately 1 cm−3 [385, 582], the value of ωp is estimated to be around
10−11 eV/ℏ (4.1.5), corresponding to a frequency of 7.6 kHz. This should be compared
to e.g., a BH with mass 5M⊙, which can effectively (µM = 0.4) accumulate an axion
cloud with the same frequency, i.e., µ ≈ 10−11 eV. In this case, the axion cloud would
decay into pairs of photons with a frequency of approximately 3.8 kHz, which is close
to the threshold value required for observation. For higher µ, the plasma-induced
effective mass can be considered negligible, and we anticipate that the primary photon
flux will exhibit a nearly monochromatic energy of µ/2 within the radio-frequency
band. Note however, that for higher µ, we need to invoke subsolar-mass BHs to grow
the cloud on astrophysically relevant timescales. Besides the total photon flux derived
analytically (4.3.14) and extracted from our simulations (4.3.18), we also demonstrate,
for the first time, the anisotropic emission morphology in the frame of the BH, see
Figure 4.8. Consequently, one expects varying observer inclination angles to result in
quantitatively distinct signals.

Situation (ii) presents an opportunity to observe photons produced by axion clouds
beyond stellar-mass BHs. Still, the typical frequency of these photons fall below the
MHz band, and thus poses a challenge for current Earth-based radio observations.
However, the forthcoming moon-based radio observatories can potentially detect these
signals [583]. Moreover, in the case of a rapidly spinning BHs resulting from binary
mergers, one can anticipate that the radio signals will follow strong GW emissions
with a delay determined by the superradiance timescale. Consequently, by employ-
ing multi-messenger observations between GW detectors and lunar radio telescopes,
constraints can be imposed on the axion-photon coupling.

Finally, the projected saturated value of kaΨsat can induce a rotation in the linear
polarisation emitted in the vicinity of BHs [584, 585]. This phenomenon has been
investigated in the context of supermassive BHs [586–588]. It should be noted however
that due to the significant hierarchy between the ultra-low superradiance mass window
and the plasma mass generated by a dense environment, higher-order instabilities are
not expected to occur in supermassive BHs. Consequently, the axion cloud outside a
supermassive BH remains robust against axion-photon couplings. A summary of our
findings in the presence of plasma can be found in Figure 4.14.
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Figure 4.14: Possible outcomes of the axion-photon-plasma system depending on the
boson’s mass and the axion-photon coupling. Above the threshold given by eq. (4.4.4),
EM emission is triggered [green], while below it, the system never turns supercritical
[red]. When the boson frequency is low, i.e., µ ≲ 2ωp, the EM instability can still
be triggered in the presence of plasma, given a high enough axionic coupling. This
happens when the system enters the second instability band, indicated by the dashed
line. In the future, Lunar-based radio observatories could probe a part of this pa-
rameter space, denoted by the arrow [blue]. Finally, we show two of the most robust
constraints on the axion-photon coupling, namely from the solar axion experiment
CAST [589] (darker region) and from measurements on supernova 1987A (lighter re-
gion) [590]. This data was collected from [354].

4.6 Summary and Outlook

The presence of ultralight bosons is ubiquitous in theories beyond the Standard Model.
Originally proposed as solutions to the dark matter puzzle or the strong CP problem,
they are of interest across various areas of physics (see Section 3.3.2). Detecting them
however, is notoriously hard, especially when their coupling to the Standard Model
is weak. Through superradiance, a new channel for detection opens up, turning BHs
into powerful particle detectors in the cosmos.

In this chapter, we presented a detailed numerical study of the dynamics of boson
clouds around BHs, focusing on axionic couplings to the Maxwell sector. We confirm
the existence of an EM instability, consistent with previous work. Crucially, whereas
earlier studies typically assumed that the boson cloud forms before turning on the
coupling, we relax this assumption. Instead, we consider the axionic coupling simul-
taneously with the growth of the cloud, conform to the superradiance mechanism. In
this more realistic setup, we find that the system reaches a stationary state in which
every axion produced by superradiance is immediately converted into photons that
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steadily escape the cloud. This leads to strong observational signatures: the nearly
monochromatic and constant EM signal could have a luminosity comparable with
some of the brightest sources in our Universe. Moreover, the depletion of the axion
cloud impacts current constraints on the boson mass.

We also investigated the impact of a surrounding plasma on the EM instability. In
the regime of small axionic couplings, we find the expected suppression of the insta-
bility when the plasma frequency exceeds half the boson mass. Surprisingly, however,
the instability can be restored for sufficiently strong couplings. By demonstrating
that the Maxwell equations in a plasma background reduce to a Mathieu equation,
we offer a natural explanation for this behaviour: higher-order instability bands be-
come accessible, allowing the instability to persist. This interpretation suggests that
even very dense plasmas do not necessarily quench the parametric instability; it de-
pends critically on the value of the axionic coupling. Since higher bands correspond
to higher-frequency photon emission, this mechanism may extend beyond the stellar-
mass BH regime, opening up new avenues for detection.

To make concrete observational predictions, two key challenges must be ad-
dressed: (i) the geometry of realistic plasmic environments and (ii) the nonlinear
dynamics of the axion-photon-plasma system. In this chapter, we assumed a con-
stant plasma density throughout space. However, astrophysical environments can be
nearly planar, for example in the case of thin disks (see e.g., [423]), which will impact
the resulting EM flux. Moreover, while our linearised framework accurately captures
the initial impact of plasma on the instability, understanding the long-term evolution
requires accounting for backreaction on the axion field. As we have shown, large ax-
ionic couplings may be required to trigger instabilities in dense plasmas. Therefore,
a natural extension of this study is to investigate the fully nonlinear dynamics of
the coupled axion-photon-plasma system. Indeed, the nonlinear propagation of large-
amplitude EM waves in dense plasma is known to exhibit rich and complex behaviour
(see e.g., [562, 591–593]).
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5
Ultralight Bosons near

Compact Objects: In-Medium
Suppression

Mirum est
It is remarkable

ut animus agitatione motuque corporis excitetur
how the mind is stimulated by the exercise and movement of the body

Pliny the Younger, Epistulae, Book I, Letter VI

In the previous chapter, I studied the interactions between ultralight scalars and the
electromagnetic sector, and how plasma affects their conversion rate. This chapter
extends those investigations by considering different and intriguing astrophysical sce-
narios in which spin-0 or spin-1 bosons couple to Standard Model photons. While such
couplings are typically weak (see Figure 3.2), large densities of the field – achievable,
for instance, through superradiance – can give rise to striking observational signatures.
In addition to the scenario explored in the previous chapter, other astrophysical en-
vironments offer promising opportunities to detect axion-like particles. For instance,
axion-photon mixing is enhanced in the presence of strong electromagnetic fields,
which are naturally found near neutron stars, making them compelling axion labora-
tories (see e.g., [594–599]). A striking phenomenology also occurs for charged BHs,
which are unstable under axion-photon couplings [479]. This results in the formation
of axionic hair on very short timescales, a process now well-understood in both the
perturbative and fully nonlinear regime [479, 600].

Crucially, many studies to date neglect the impact of environmental plasmas,
despite their widespread presence around compact objects [42, 423]. Plasmas can
strongly affect axion-photon conversion by endowing the transverse photon modes
with an effective mass, determined by the plasma frequency ωp (3.4.6). Whenever
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ωp ≫ µ (with µ the mass of the boson), the conversion is heavily suppressed, and
stronger couplings are necessary to achieve any observable signal [601–605]. This
phenomenon, known as in-medium suppression, effectively weakens the interaction
between bosons and photons in dense plasma environments.

In this chapter, I discuss the work of [2] and investigate the mixing between ul-
tralight bosons and Standard Model photons in the presence of plasma on BH space-
times. I focus on two relevant cases: (i) axionic instabilities in Reissner-Nordström
spacetimes and (ii) photon production from superradiant dark photon clouds around
Schwarzschild BHs. While astrophysical BHs are not expected to be charged due to
various discharge mechanisms [19, 89–91], case (i) serves as a useful proxy to study
axion dynamics around magnetised neutron stars. Moreover, the possibility that even
a small charge, achievable via various mechanisms [606–608], could lead to the for-
mation of axionic hair is appealing. Case (ii), concerning dark photon clouds, was
partially addressed in [564] using a plane-wave approximation. However, a complete
analysis in curved spacetime is still lacking. As highlighted in [564], plasmas could
play an important role in the evolution of superradiant instabilities, and prevent sig-
nificant interaction of the dark photon cloud with the Standard Model, especially for
small dark photon masses or weak couplings.

The rest of this chapter is organised as follows: in Section 5.1, I set up of the
theoretical framework. Then, in Section 5.2, I discuss the impact of plasma on the
boson-to-photon conversion in flat spacetime. In Section 5.3, I extend the discussion
to BH spacetimes, and finally, in Section 5.4, I present the conclusions. Additional
details are contained in Appendices C, D and E. The reader is reminded that quantities
with a tilde are dimensionless, e.g., the BH charge Q̃ = Q/M .

5.1 The Theory

We consider a general Lagrangian describing a massive axion field Ψ and a dark
photon field A′

µ, both coupled to the Standard Model electromagnetic field Aµ, which
is sourced by a cold, collisionless plasma. The dark photon sector is formulated in
the so-called interaction basis [609, 610].1 Other possible choices of basis are further
discussed in Appendix E. The Lagrangian then takes the form:

L = R

16π − 1
2∇µΨ∇µΨ − µ2

a
2 Ψ2 − ka

2 Ψ ∗FµνFµν + jµA
µ + Lm

− 1
4
(
FµνF

µν + F ′
µνF

′µν
)

−
µ2

γ′

2 A′µA′
µ − µ2

γ′ sinχ0A
′
µA

µ ,

(5.1.1)

1When redefining the fields in the interaction basis, we neglect terms of the order (sinχ0)2 [609].
Note that typical values of the coupling are in the range sinχ0 ≲ O(10−4) (see Figure 3.2).
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where µa and µγ′ are the axion and dark photon masses, Fµν = ∂µAν − ∂νAµ is
the Maxwell tensor with an equivalent definition for F ′

µν . Furthermore, ∗Fµν ≡
(1/2)ϵµνρσFρσ is the dual Maxwell tensor and R the Ricci scalar. The plasma La-
grangian and current are given by Lm and jµ = enevµ, respectively, where e is the
electron charge, ne the number density and vµ the four velocity. The couplings be-
tween the bosons and photons are realised through the axionic coupling ka and the
kinetic mixing term sinχ0.

We model the plasma using the Einstein cluster [242–245, 611], in which plasma
particles are assumed to be in circular orbits in all possible orientations around the
BH. We refer to Section 3.2.1 for details on this setup, while here we simply note that
the cluster is equivalent to an anisotropic fluid with only a tangential pressure Pt,
described by the following stress-energy tensor:

T p
µν = (ρ+ Pt)vµvν + Pt(gµν − rµrν) , (5.1.2)

where ρ = neme is the energy density of the fluid, gµν the metric of the underlying
spacetime and rµ a unit vector in the radial direction.

From the Lagrangian (5.1.1), we can infer the equations of motion for the scalar,
electromagnetic, dark photon and gravitational fields:(

∇µ∇µ − µ2
a
)

Ψ = ka

2
∗FµνFµν ,

∇νF
µν = jµ − 2ka

∗Fµν∇νΨ − sinχ0µ
2
γ′A′µ ,

∇νF
′µν = −µ2

γ′A′µ − sinχ0µ
2
γ′Aµ ,

Rµν − 1
2gµνR = 8π

(
TΨ

µν + TEM
µν + TDP

µν + T p
µν

)
,

(5.1.3)

where in the last line, we introduced the Ricci tensor Rµν , along with the stress-energy
tensors for the axionic, electromagnetic and dark photon sectors.

To close the system, we need the continuity and momentum equations, which we
infer from the conservation of the stress-energy tensor and the current:

∇νT p
µν = eneFµνv

ν , ∇µ(nev
µ) = 0 . (5.1.4)

As we model the dark photon in the interaction basis, the hidden field A′
µ is sterile,

meaning that it does not couple to the plasma directly.

5.2 Plasma Suppression in Flat Spacetime

Before studying the mixing in BH spacetimes, we first consider the impact of plasma
in flat spacetime. This simpler setting helps isolate and clarify key aspects of the
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dynamics. In flat space, the Einstein cluster model reduces to a plasma at rest, with
a vanishing tangential pressure. We can thus treat the plasma as pressureless dust,
with a momentum equation given by

vν∂νv
µ = e

me
Fµνvν , (5.2.1)

where me is the electron mass. In the presence of an external magnetic field, there is
mutual conversion between the axion and the propagating modes of the photon [601–
603, 612], which parallels the mixing of neutrinos. In contrast, dark photon-photon
mixing can arise even in the absence of background electromagnetic fields.

First, we consider the axionic case, setting sinχ0 = 0. As a background config-
uration, we take a static, homogeneous electron-ion plasma in a constant magnetic
field along the ŷ–direction. We then adopt linear perturbation theory to study the
propagation of plane waves. As detailed in [601], the conversion between axions and
photons requires a change in the azimuthal angular momentum. A longitudinal mag-
netic field would preserve azimuthal symmetry, thus stopping any conversion. Hence,
we consider the propagation of waves along the ẑ–axis without loss of generality.

We denote the components of the electromagnetic potential as parallel (Ay = A∥)
and perpendicular (Ax = A⊥) to the background magnetic field. As for the axionic
sector, we consider a vanishing axion background Ψ = 0, and denote its perturba-
tion by ψ. From parity considerations, one can readily see that the perpendicular
component of the electromagnetic field decouples from the axion. Indeed, the two
photon states A⊥ and A∥ are even and odd, respectively, under parity in the y − z

plane, while the axion plane wave state is odd. Thus, only the parallel component of
the electromagnetic field mixes with the axion [601]. Considering only the dynamics
along this direction, solving the momentum equation (5.2.1) yields

v∥ = − e

me
A∥ . (5.2.2)

Therefore, the current can be expressed in terms of the electromagnetic field. One
is then left with a coupled system involving the parallel component of the Maxwell
equations and the Klein-Gordon equation. In the frequency domain and assuming for
simplicity relativistic axions (ω ≫ µa), it can be expressed as2

(ω − i∂z + Maγ)
[
A∥
ψ

]
= 0 , (5.2.3)

where we introduced the axion-photon mixing matrix :

Maγ =
[
−ω2

p/2ω Byka
Byka −µ2

a/2ω

]
. (5.2.4)

2In the following, we neglect the effects of Faraday rotation. Although it can be important for
polarisation effects, it does not impact the conversion probability between axions and photons [603],
which is the relevant subject here.
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Here, the off-diagonal terms couple the two fields, and are thus responsible for the
mixing. Clearly, in the case ka = 0 or By = 0, i.e., when the matrix is diagonal, the
two fields are decoupled, and eq. (5.2.3) simply returns the dispersion relation of the
photon and the axion. To simplify the dynamics, we can perform a field redefinition
that diagonalises the matrix (5.2.4) through a rotation in the field basis, with the
rotation angle given by3

θ = 1
2 arctan

(
4ωByka

−ω2
p + µ2

a

)
. (5.2.5)

This angle is proportional to the off-diagonal terms in (5.2.4) and quantifies the cou-
pling between the modes. Specifically, the axion-photon conversion rate is propor-
tional to P (a → γ) ∝ sin2(2θ) [601, 603]. In the limits By → 0 or ka → 0, the proba-
bility naturally goes to zero and no conversion is possible. However, even in the pres-
ence of magnetic fields and couplings, a large plasma frequency, i.e., ωp ≫ µa, kaBy,
kinematically disfavours the conversion from axions to photons, as the mixing angle
drops to zero. This quenching is referred to as in-medium suppression. Moreover,
when µ = ωp, the conversion probability is maximised, which is termed a resonant
conversion between the two states.

In the dark photon case (ka = 0), a similar procedure yields the dark photon-
photon mixing matrix [615]:

Mγγ′ = 1
2ω

[
−ω2

p sinχ0 µ
2
γ′

sinχ0 µ
2
γ′ −µ2

γ′

]
. (5.2.6)

The same conclusions apply as in the axionic case: in the presence of a sufficiently
dense plasma, i.e., ωp ≫ µγ′ , the in-medium conversion angle goes to zero, suppressing
the conversion even for large couplings. When µγ′ = ωp instead, a resonant conversion
is triggered.

5.3 Plasma Suppression in Curved Spacetime

We now turn to a fully relativistic setup, studying the impact of plasma on the
mixing using BH perturbation theory (see Appendix C). In this context, we neglect
the backreaction of the plasma on the Einstein and Maxwell background equations [3].
This is justified because the plasma’s energy density is typically low in astrophysical
environments, and its source terms are further suppressed by the large charge-to-mass
ratio of the electron. In addition, we consider the presence of an oppositely charged

3This resembles redefining the fields in Reissner-Nordström spacetimes to decouple the gravito-
electromagnetic perturbations in terms of two master functions (see e.g., [95, 613, 614]).
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component in the plasma – ions – inducing a current with the opposite sign in the
Maxwell equations, neutralising the plasma background [1, 392, 393, 593].

5.3.1 Charged Black Holes: Axionic Instabilities

We start by analysing axionic instabilities around charged compact objects. Assum-
ing a spherically symmetric spacetime, the background geometry is described by the
standard Reissner-Nordström solution:

ds2 = −fdt2 + f−1dr2 + r2dΩ2 , with f = 1 − 2M
r

+ Q2

r2 , (5.3.1)

where M and Q are BH mass and charge respectively, and the background electro-
magnetic field is given by Aµ = (Q/r, 0, 0, 0).

We model the plasma as non-relativistic, characterised by a macroscopic plasma
frequency satisfying Mωp ≳ 1. However, as we will show in the next chapter [see
eq. (6.1.8)], significant BH charge induces relativistic plasma motion, which in turn
reduces the photon’s effective mass via relativistic plasma transparency [3, 562, 591].
This effect arises through the Lorentz factor γe, which modifies the electron’s relativis-
tic mass me → γeme, thereby lowering the plasma frequency (3.4.6). Nevertheless,
several mechanisms – such as BH charge screening [611] and magnetic pressure –
can oppose this relativistic motion. Furthermore, this (non-relativistic) model is in-
tended as a proxy to study compact objects embedded in electromagnetic fields in
more realistic scenarios. A prime example is magnetised neutron stars, where sur-
rounding plasma is expected to dress the photon with a large effective mass (see
e.g., [597, 598, 616]). Although more work is needed to model realistic astrophys-
ical conditions, our approach represents the first consistent study of axion-photon
conversion in curved spacetime with plasma effects, using BH perturbation theory.

In electro-vacuum, background electromagnetic fields of charged BHs can trigger
axionic instabilities, leading to new “hairy” BH solutions [480]. Here, we investigate
whether such axion-photon dynamics persist in more astrophysically motivated setups
where BHs are surrounded by plasma. For intuition, Appendix D provides a simplified
flat spacetime analysis that, while analytically tractable, captures essential aspects of
the phenomenon.

To study the system in a Reissner-Nordström background, we linearise the field
equations (5.1.3) and perform a multipolar decomposition of the fields. As the geom-
etry is spherically symmetric, perturbations can be recasted in two decoupled sectors,
axial and polar, depending on their behaviour under parity transformations (see Ap-
pendix C) [146–148, 617]. Owing to its pseudo-scalar nature, the axion couples only
to the axial sector, which thus becomes the focus of our analysis. The polar sec-
tor instead, is described by the standard gravito-electromagnetic perturbations (in
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the presence of plasma). Details of the perturbation scheme and derivation of the
evolution equations are provided in Appendix C.2.1. In the axial sector, plasma per-
turbations can be solved analytically. As the pressure and density perturbation are
scalar quantities with a polar symmetry, they vanish identically. Meanwhile, the axial
fluid velocity – v4 – can be related to the axial electromagnetic mode – u4 – via the
linear relation

v4 = − e

me
u4 , (5.3.2)

similar to the flat spacetime case (5.2.2). The system is then described by three
variables: the gravitational Moncrief-like master variable Ψ, the electromagnetic axial
degree of freedom u4 and the axion multipole field ψ. These three functions obey a
set of coupled, second-order partial differential equations:

L̂Ψ =
(

4Q4

r6 + Q2(−14M + r(4 + λ))
r5 +

(
1 − 2M

r

)[
λ

r2 − 6M
r3

])
Ψ − 8Qf

r3λ
u4 ,

L̂u4 = f

(
ω2

p + λ

r2 + 4Q2

r4

)
u4 − (ℓ− 1)λ(ℓ+ 2)Qf

2r3 Ψ + 2λQfka

r3 ψ ,

L̂ψ = f

(
−2Q2 + r(2M + rλ+ r3µ2

a)
r4

)
ψ + 2Qfka

r2 u4 ,

(5.3.3)
where λ = ℓ(ℓ+1), the wave operator L̂ = ∂2/∂r2

∗ −∂2/∂t2 and the tortoise coordinate
is defined as dr∗/dr = f−1. In the limit Q → 0, the gravitational sector is described
by the Regge–Wheeler equation (C.2.2) and the axion completely decouples from
the system. In other words, in the absence of background electromagnetic fields, no
mixing with the photon is possible.

We evolve eqs. (5.3.3) in time with a two-step Lax-Wendroff algorithm that uses
second-order finite differences [618], following earlier work [618–622]. Our grid is
uniformly spaced in tortoise coordinates r∗, with the boundaries placed sufficiently
far away such that boundary effects cannot have an impact on the evolution of the
system at the extraction radius. Further details on our numerical scheme are reported
in Appendix C.4, including convergence tests. Analogous to [3], we initialise each
sector with a Gaussian, choosing its amplitude, frequency, width and location to be
A = 1, MΩ0 = 0.4, σ = 4.0M , r0 = 20M .

Figure 5.1 shows the evolution of the axion field for different values of the plasma
frequency. The two panels corresponds to different values of the BH charge Q̃ =
0.2, 0.4, where we denote dimensionless quantities with a tilde. As evident from the
figure, the system is unstable to axionic perturbations for ω̃p = 0, provided that the
BH charge or the axionic coupling is sufficiently high. We find a good agreement
with the instability condition found in [480] in this limit. Crucially, increasing ωp
progressively weakens the instability, quenching it altogether after a critical value.

99



5. Ultralight Bosons near Compact Objects: In-Medium Suppression

10−10

10−4

102

108
Q̃ = 0.2

ψ
ω̃p = 0.0

ω̃p = 0.4

ω̃p = 1.6

ka = 0

500 1000
10−13

1012

1037

Q̃ = 0.4

(t− rex)/M

ψ

ω̃p = 0.0

ω̃p = 1.0

ω̃p = 2.0

ω̃p = 2.8

ka = 0

Figure 5.1: Evolution of the axion sector ψ for Q̃ = 0.2 (top panel) and Q̃ = 0.4
(bottom panel), for various choices of the plasma frequency. We initialise with a
Gaussian in all sectors (gravitational, electromagnetic and axion) and choose ka = 20,
ℓ = 2, µ̃a = 0.2, while we extract at rex = 30M . In absence of plasma [blue] (ω̃p = 0),
the instability rates follow eq. (47) in [479]. For fixed couplings, the critical plasma
frequency necessary to quench the instability scales as ω̃crit

p ∝ Q̃3/2. When the photon
production is heavily suppressed (large ωp), the behaviour of the axionic sector limits
towards that of a free scalar [black].

This is similar to the flat spacetime analysis reported in Appendix D: large values of
ωp tend to stabilise the system, and higher values of Q or ka are needed to restore the
instability. Indeed, as shown in the bottom panel, for a higher value of Q, a larger ωp
is needed to quench the growth. Specifically, at fixed couplings ka the critical plasma
frequency necessary to quench the instability scales as ω̃crit

p ∝ Q̃3/2.

Finally, whenever the instability is quenched, the axion behaves as a free scalar
field in a Reissner-Nordström geometry: this is because plasma effectively decouples
it from the photon. This is also shown in Figure 5.1, where the axion field in the
regime ka ̸= 0, ωp ≫ µa matches that of an axion field with ka = 0, as indicated by
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the black line. This is in agreement with the discussion in the previous section and
Appendix D (see Figure D.1).

5.3.2 Dark Photon Clouds: Photon Production

Consider then dark photon-photon mixing in a BH background. Since no back-
ground electromagnetic fields are necessary for the mixing to occur, we stick to a
Schwarzschild spacetime (2.1.4). Similar to before, we consider a non-relativistic
background plasma.

Setting ka = 0, we linearise the field equations (5.1.3) and perform a multipolar
expansion using the ansatz reported in Appendix C.1. In contrast to the axion case,
dark photon perturbations appear in both the axial and polar sectors, and they cou-
ple directly to the electromagnetic perturbations. For simplicity, we still focus on the
axial sector, as fluid perturbations can be treated analytically here. In the absence
of a background charge, gravitational perturbations decouple from the system. As a
consequence, the dynamics reduce to two coupled master functions: the axial electro-
magnetic mode u4 and the dark photon mode u′

4. They satisfy the following system
of coupled partial differential equations:

L̂u4 = f

(
ω2

p + λ

r2

)
u4 + fµ2

γ′ sinχ0 u
′
4 ,

L̂u′
4 = f

(
µ2

γ′ + λ

r2

)
u′

4 + fµ2
γ′ sinχ0 u4 ,

(5.3.4)

where f = 1 − 2M/r in the Schwarzschild case. As evident from (5.3.4), the mixing
between modes is proportional to both the vacuum mixing angle sinχ0 and the dark
photon mass, in agreement with the flat spacetime result (5.2.6). Note that the present
analysis is carried out in the interaction basis. For completeness, the corresponding
form of (5.3.4) in the mass basis is provided in Appendix E.2. We now proceed to
evolve the equations of motion in time, initialising the system with perturbations
purely in the dark photon sector.

The results are presented in Figure 5.2. In the bottom panel, we show the evolution
of the dark photon field, which remains largely unaffected by the mixing due to the
small coupling. The dynamics are dominated by outwards-propagating waves and
the formation of a quasi-bound state (QBS) near the BH. The figure specifically
highlights the latter, as the field is extracted at rex = 50M , just beyond the peak
density of the bound state. We have explicitly verified that its frequency matches
that of the QBS (see the caption for details). In the top panel instead, we show
the electromagnetic field, which is clearly affected by the plasma. Its production
is peaked at ω̃p = µ̃γ′ = 0.3, where the conversion probability is expected to be
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Figure 5.2: Evolution of the electromagnetic (top panel) and dark photon (bottom
panel) field for various choices of the plasma frequency. We initialise purely in the
dark photon sector, and take sinχ0 = 0.0001, µ̃γ′ = 0.3 and ℓ = 1. In the top (bottom)
panel, we extract at rex = 400 (50)M . The dark photon field settles on a QBS, whose
frequency we have checked explicitly: ω̃R = 0.29564 (time domain) vs. ω̃R = 0.29598
(frequency domain).

resonantly enhanced. When increasing the plasma density, i.e., ωp ≫ µγ′ , the in-
medium suppression acts and the electromagnetic field decays. In this regime, the
two fields decouple more and more, resulting in less photons being produced. The rate
at which this happens has been studied analytically in flat spacetime [564, 623]. It was
found that for large plasma frequencies, the suppression factor should be ∝ µ2

γ′/ω2
p.

We verify this scaling numerically in a BH background in Figure 5.3, which shows
the electromagnetic field evolution for a fixed boson mass (µ̃γ′ = 0.3) and ω̃p = 1.5, 5.
Both cases correspond to a regime where ωp ≫ µγ′ , such that the scaling in [564, 623]
should hold. The two curves [blue and red] show remarkable agreement, particularly
in the early part of the signal. During this stage, the dynamics are dominated by
relativistic modes with ω ≫ ωp, such that dispersion effects are negligible. At later
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Figure 5.3: Similar setup as Figure 5.2 for ω̃p = 1.5, 5.0. The suppression goes as
∝ ω−2

p , which is the rescaling applied to the red curve.

times instead, the signal is “contaminated” by non-relativistic modes with ω ≳ ωp,
leading to mild deviations from the expected scaling due to dispersive corrections.

By validating the predicted scaling from [564, 623], we can estimate the strength
of the electric field generated by a superradiant dark photon cloud. In particular, we
find the ratio between the electromagnetic and dark photon field amplitudes to be

Aγ

Aγ′
= 10−17

(
sinχ0

10−7

)( µγ′

10−15 eV

)2
(

10−10 eV
ωp

)2

. (5.3.5)

Considering the scenario of a fully grown dark photon cloud [208, 624] (such that the
mass of the cloud is 10% of the BH mass), the strength of the observable electric field,
which will depend on the “in-medium suppression factor” (µγ′/ωp), is estimated to be

E0 ≃ 6.3
(

sinχ0

10−7

)(
µγ′/ωp

10−7

)(
µγ′M

0.2

)3(106M⊙

M

)
V
m . (5.3.6)

Note that, fixing µγ′M and M implies a value for the boson mass (3.3.12), e.g., for
µγ′M = 0.2 and M = 106M⊙, the mass of the boson is µγ′ = 2.6 × 10−17 eV. To
convert from an electronic density to the plasma frequency, one can then make use of
eq. (3.4.6).
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5.4 Summary and Outlook

Hypothetical new ultralight degrees of freedom are expected to couple weakly to the
Standard Model, making their detection inherently challenging. However, in regions
of strong gravity, such as those surrounding compact objects, ultralight fields may
accumulate or be amplified, allowing them to play an important role. This prospect
has driven considerable efforts to characterise possible observational signatures, with
many scenarios involving electromagnetic radiation.

Despite this, the role of plasma is often either entirely neglected or treated us-
ing oversimplified flat spacetime approximations. As a large fraction of astrophysical
compact objects is expected to be surrounded by plasma, e.g., in the form of accre-
tion disks, a more detailed analysis is imperative. In this chapter, we introduced a
fully relativistic and self-consistent framework to study how plasma affects the dy-
namics of ultralight bosons near compact objects. Two cases of interest are studied
explicitly: axion-photon mixing around charged BHs and dark photon-photon mix-
ing around neutral BHs. Both scenarios yield similar conclusions: the presence of
plasma strongly impacts the conversion rate and suppresses it in realistic regimes.
This effect, termed in-medium suppression, could have an impact on the observa-
tional signatures from such systems and thus on constraints that have been set on the
coupling constants. Moreover, in-medium suppression can stabilise superradiant sys-
tems by inhibiting the depletion of bosonic clouds into photons (see Figure 4.9). This
strengthens the prospects of detecting superradiant clouds via alternative channels,
e.g., through binary systems [5, 6, 9, 10, 64–66, 68, 504, 547–550, 550–553].

As an example, consider typical electron densities in the interstellar medium
ne ∼ [10−3 − 10] cm−3 [385], corresponding to plasma frequencies ωp ∼ [10−12 −
10−10] eV (3.4.6). These densities are already sufficient to suppress mixing across
much of the superradiant mass range µ ∼ [10−20 − 10−10] eV. In denser environments
– like accretion disks – the suppression becomes even more severe [42, 423]

A natural extension of this study would be to generalise the framework to magne-
tised neutron stars. Recent studies have shown that such systems can exhibit a rich
axion phenomenology, particularly in small, localised regions of the magnetosphere
known as polar caps, where strong electromagnetic fields may efficiently produce ax-
ions [625, 626]. These can then stream away and resonantly convert into photons, gen-
erating broadband radio fluxes. Alternatively, they could be bounded gravitationally
to the star, forming axion clouds with extreme densities [627]. Such clouds can gen-
erate an axion-induced electric field, leading to striking electromagnetic observables
like periodic nulling in the pulsar emission or complementary radio emissions [628].
Notably, the strength of this electric field scales with the in-medium suppression fac-
tor (µa/ωp), similar to the dark photon case (5.3.6). Applying this framework to
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Figure 5.4: Available mass-coupling parameter space for the dark photon. Below the
dashed lines, in-medium suppression is efficient and cannot be removed by nonlinear
effects. Typical densities of the interstellar medium

(
ne ∼ [10−3−10] cm−3) [385] are

sufficient to suppress the mixing in most of the unconstrained regions of the parameter
space. Shaded regions show constraints from cosmological nature [blue], experiments
on Earth [red] or haloscopes [grey], see [333, 354] and references therein.

such systems requires a careful modelling of the background system, in particular the
magnetic field geometry and the magnetosphere phenomenology. In addition, there
will be mixing between ℓ–modes in the presence of magnetic fields (see [629, 630]).

Finally, another interesting direction is nonlinear photon-plasma interactions in
the context of dark photon superradiance. It has been argued [564] that in-medium
suppression may be alleviated in a promising region of parameter space, specifically
for µγ′ ≳ 10−16 eV and sinχ0 ≳ 10−8 −10−7, due to relativistic transparency effects
induced by the dark photon cloud. A similar assumption was made in [565], which
argues that the dark photon field may generate a pair plasma via the Schwinger
mechanism. In that scenario, the plasma frequency is assumed to vanish shortly
after the plasma forms, due to the large ambient electric field. In particular, using
eq. (5.3.6), the critical field amplitude required to suppress the plasma frequency
can be estimated as ENL = meωp/e, at which point nonlinear plasma dynamics are
triggered [562, 593]. Figure 5.4 shows a lower bound on the mixing value above
which nonlinear effects can remove the in-medium suppression. As seen there, typical
densities of the interstellar medium are sufficient to suppress the mixing in most
of the unconstrained regions of the parameter space. In denser environments, such
as accretion disks, the required boson mass for nonlinear effects may lie entirely
outside the allowed superradiant range. Accounting for nonlinearities could therefore
refine our understanding of relativistic transparency and open the door to exploring
a broader range of potentially important plasma effects (see e.g., [593]).
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6
Impact of Plasma on the

Relaxation of Black Holes

Nothingness is being and being nothingness...

Our limited mind can not grasp or fathom this,

for it joins infinity

Azrael of Gerona

In the previous chapters, I explored the interplay between ultralight bosons, photons,
and plasma. I now turn to a different subject: over the next two chapters, I focus on
the impact of environments on the final stage of a binary coalescence – the ringdown.

Plasma may also play a role here, particularly if black holes carry electric charge.
While significant amounts of electromagnetic charge are not expected to survive long
for accreting systems (due to selective accretion, Hawking radiation or pair produc-
tion [89, 91, 608]), exceptions exist. For instance, a subset of primordial BHs formed
in the early Universe can carry a large amount of charge, suppressing Hawking ra-
diation and potentially allowing for electric or colour-charged BHs to survive to our
days [631, 632]. Additionally, BH mergers might be accompanied by strong mag-
netic fields pushing surrounding plasma to large radii, and preventing neutralisation
processes.

Beyond the realm of Standard Model physics, BHs could be charged in a variety of
models, by circumventing in different ways discharge mechanisms. These models in-
clude millicharged dark matter or hidden vector fields (see Section 3.2.2), constructed
to be viable cold dark matter candidates [323, 327, 608, 633–649]. Finally, some BH
mimickers are globally neutral while possessing a non-vanishing dipole moment, thus
emitting electromagnetic radiation. Examples include topological solitons in string-
theory fuzzballs scenarios [650, 651].
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Charge constraints via GW dephasing in the inspiral phase of two compact objects
or via BH spectroscopy, assume implicitly that photons propagate freely from source
to observer [608, 645, 647, 648]. But the Universe is filled with matter. Even if
dilute, the interstellar plasma prevents the propagation of electromagnetic waves with
frequencies smaller than the plasma frequency, which effectively behaves as an effective
mass (3.4.6).

In this chapter, I discuss the work of [3] and investigate the ringdown of charged
BHs in the presence of plasma. The emission of GWs and electromagnetic waves
during mergers of compact, charged objects is a coupled phenomenon. Hence, the BH
gravitational spectrum contains electromagnetic-driven modes [154, 652]. However, if
electromagnetic modes are unable to propagate, their impact on GW generation and
propagation could be important, affecting spectroscopy tests to an unknown degree.
In this chapter, I will show from first principles that (i) electromagnetic waves are
indeed screened by plasma, which filters out electromagnetic-led modes from GWs
and (ii) in certain plasma-depleted environments, GW echoes are triggered, serving
as a clear observational signature of plasmas surrounding charged BHs. A schematic
illustration of our setup is shown in Figure 6.1.

The structure of this chapter is as follows. In Section 6.1, I lay out the theoreti-
cal framework and governing equations. In Section 6.2, I present results for plasmas
localised near the light ring, while Section 6.3 considers plasmas positioned farther
away. Finally, I summarise the findings in Section 6.4. Additional details on pertur-
bation theory and the numerical methods are provided in Appendix C. Throughout
this chapter, I adopt Gaussian units for Maxwell’s equations, while dimensionless
quantities will be denoted with a tilde as usual, e.g., the charge Q̃ = Q/M .

6.1 Setup

As in the previous chapter, we consider an “Einstein cluster” – equivalent to an
anisotropic fluid – surrounding a charged BH [242–245] (see Section 3.2.1). Focusing
on a fluid consisting of electrons, the stress-energy tensor is given by eq. (5.1.2).1 We
then consider Einstein-Maxwell theory in the presence of this fluid. The relevant field
equations are (2.1.3)

Gµν = 8π
(
TEM

µν + T p
µν

)
, ∇νF

µν = jµ , (6.1.1)

1The following discussion also applies to millicharged DM. For clarity purposes, we focus on
electrons.
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Light ring

(M,Q)

Plasma

rcut

Gaussian

EM

Grav

Figure 6.1: Schematic illustration of our setup: a charged BH surrounded by plasma
is stimulated by external processes (an initial Gaussian wavepacket), emitting elec-
tromagnetic and gravitational radiation. While GWs are able to travel through the
plasma to distant observers, low frequency electromagnetic waves are not. Instead
they excite further GWs, echoes of the original burst.

where Gµν and Fµν are the Einstein and Maxwell tensor, respectively, jµ = enev
µ

the plasma current and TEM
µν the stress-energy tensor for the electromagnetic sector:

TEM
µν = 1

4π

(
gρσFρµFσν − 1

4gµνFρσF
ρσ

)
. (6.1.2)

Finally, to close the system, we use the momentum and continuity equation of the
charged fluid, as in eq. (5.1.4). Following the approach of Section 5.3, we neglect
the backreaction of the fluid in the Einstein and Maxwell equations. We also as-
sume the presence of ions in the plasma, which can be considered as a stationary,
neutralising background [1, 392, 393, 593]. Under these assumptions, eqs. (6.1.1)
yield the Reissner-Nordström solution (5.3.1), with the event horizon located at
r+ = M +

√
M2 −Q2 and the light ring at rLR = 3M/2 +

√
9M2 − 8Q2/2.

For a non-relativistic fluid, i.e., Pt ≪ ρ, eq. (5.1.2) reduces to T p
µν ≈ ρvµvν +

Pt(gµν − rµrν), and the left hand side of the momentum equation (5.1.4) resembles
the non-relativistic Euler equation. Solving the momentum equation (5.1.4) then
yields the tangential pressure

Pt = −ne(eQr
√
f + (Q2 −Mr)me)

Q2 − 3Mr + 2r2 . (6.1.3)

For the non-relativistic assumption Pt ≪ ρ = neme to hold, we must have ei-
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ther Q/M < me/e or r ≫ M . Given the large charge-to-mass ratio of electrons
(e/me ≈ 1022), the former condition is only satisfied for extremely weakly charged
BHs. Nevertheless, a number of effects can affect this outcome, such as magnetic
fields, the formation of a cavity in the plasma due to mergers [653, 653–659] or the
partial screening of the BH charge by plasma over a Debye length (3.4.4) [611, 660]. In
the following, we consider high values of Q as a proxy to model these scenarios, which
are too complicated to be included in a self-consistent way. Moreover, for millicharged
DM, the charge-to-mass ratio of the particles can be arbitrarily small.

Relativistic regime

In principle, one can extend this analysis to the relativistic regime by considering the
full momentum equation. Following the same approach as in the non-relativistic case,
we solve the background momentum equation, yielding:

Pt = −
ne
(
eQr

√
f + (Q2 −Mr)me

)
2fr2 . (6.1.4)

The axial component of the perturbed momentum equation gives the relationship
between the perturbed four-velocity and the electromagnetic axial mode:

v4 = 2er2f

eQr
√
f − (Q2 − 3Mr + 2r2)me

u4 . (6.1.5)

In the limit of large r, i.e., in the non-relativistic regime, this expression correctly
reduces to eq. (C.2.7), recovering en(0)

e v4 = −ω2
pu4. In contrast, in the strong field

regime where e ≫ me, the current entering Maxwell’s equations is:

en(0)
e v4 ≈ 2en(0)

e r
√
f

Q
u4 . (6.1.6)

This leads to an effective plasma frequency :

ω2
p = 2en(0)

e
√
f

A0
, (6.1.7)

where A0 = Q/r is the electromagnetic potential of the BH.

Compare this to a well-known result from plasma physics: in the presence of a
strong electromagnetic potential A, electrons are unable to oscillate due to their large
relativistic mass. In this scenario, the relativistic plasma frequency is given by [591]

ω2
p = nee

2

meγe
, (6.1.8)

where γe is the Lorentz factor of the electrons under the influence of an electromagnetic
field, while me and ne are the rest mass and rest-mass density, respectively. In our
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model, the Lorentz factor can be estimated by equating the (relativistic) centrifugal
force of the circular orbits of the electrons to the Coulomb attraction between the
electrons and the charged BH. This yields γe ≈

√
1 +A0e/me.

Crucially, if one uses eA0/me ≫ 1 and ne = ne/γe, eqs. (6.1.8) and (6.1.7) co-
incide (modulo a redshift factor). This reveals a relativistic transparency effect : the
background charge Q suppresses the plasma frequency in the vicinity of the BH. This
is the first time, to the best of our knowledge, that a consistent model of plasmas
around charged BHs leads to this effect. In the relativistic regime, we thus expect
the same phenomenology to hold as in the non-relativistic case, albeit with a largely
suppressed effective mass. To simplify the discussion, we will proceed in the non-
relativistic regime.

Evolution equations

Consider then the linearisation of the field equations (6.1.1) around the Reissner-
Nordström geometry (5.3.1), the background fields and fluid variables. Perturbations
can then be decomposed in two sectors – axial (or odd) and polar (or even) – depend-
ing on their behaviour under parity transformations. These two sectors decouple in
spherically symmetric geometries (see Appendix C) [146–148, 617].

The axial sector is completely determined by two functions, a Moncrief-like “master
gravitational” variable Ψ [661–663] and a “master electromagnetic” variable u4, which
obey a coupled set of second-order, partial differential wavelike equations,

L̂Ψ =
(

4Q4

r6 + Q2(−14M + r(4 + λ))
r5 +

(
1 − 2M

r

)[
λ

r2 − 6M
r3

])
Ψ − 8Qf

r3λ
u4 ,

L̂u4 = f

(
ω2

p + λ

r2 + 4Q2

r4

)
u4 − (ℓ− 1)λ(ℓ+ 2)Qf

2r3 Ψ ,

(6.1.9)
where λ = ℓ(ℓ + 1), L̂ = ∂2/∂r2

∗ − ∂2/∂t2 and the tortoise coordinate is defined as
dr∗/dr = f−1 (5.3.1). In the limitQ → 0, the equations decouple: the first one reduces
to the Regge–Wheeler equation (C.2.2) while the second one coincides with the axial
mode of an electromagnetic field in Schwarzschild in the presence of plasma [392].

The polar sector is more intricate, with electromagnetic and fluid perturbations
being coupled. As detailed in the Appendix C.2.1, at large radii and neglecting metric
fluctuations, we recover the dispersion relation (ω2 −k2 −ω2

p) δF12 = 0, where k is the
wave vector in Fourier space and δF12 the perturbed Maxwell tensor. Even in the polar
sector, the plasma frequency thus acts as an effective mass for the propagating degree
of freedom. As the dynamics emerging in the axial sector are precisely contingent upon
this fact, we expect the phenomenology to be similar [392, 393] and we hereafter focus
only on the axial sector.
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Initial conditions

The wavelike equations (6.1.9) are evolved in time using the same numerical scheme as
in the previous chapter (see Appendix C.4 for details). We consider a plasma profile
truncated at a radius rcut, smoothened by a sigmoid-like function:

ωp = ω(c)
p

1
1 + e−(r−rcut)/d

. (6.1.10)

Here, ω(c)
p is the (constant) amplitude of the plasma barrier and d determines how

“sharp” the cut is. We choose d = M , but we verified that the results are not sensitive
to this parameter.2 Profile (6.1.10) allows us to consider two distinct scenarios; (i)
plasmas that “permeate” the light ring (rcut < rLR), hence possibly affecting the
generation of quasi-normal modes (QNMs) and (ii) plasmas localised away from the
BH (rcut ≫ rLR), affecting at most the propagation of the signal. We consider the
initial conditions Ψ(0, r) = Ψ0, u4(0, r) = u40 with [562]

(Ψ0, u40) = (Ag, AEM) exp
[
− (r∗ − r0)2

2σ2 − iΩ0r∗

]
,

∂tΨ0 = −iΩ0Ψ0 , ∂tu40 = −iΩ0u40 ,

(6.1.11)

where (Ag, AEM) = (1, 0), (0, 1), (1, 1) for IDg, IDEM and ID2, respectively. Through-
out this chapter, we initialise at r0 = 20M and we extract the signal at rex = 300M .
We pick σ = 4.0M and wavepacket frequency Ω0 = 0.1, yet tested extensively that
our results are independent of these factors.

6.2 Impact of Plasma on Quasi-Normal Modes

When plasma permeates the light ring, BH relaxation is expected to change in the
electromagnetic channel. We indeed find a total suppression of the electromagnetic
signal at large distances for large ωp. However, we find something more significant,
summarised in Figure 6.2, which shows the gravitational waveform for Q̃ = 0.95 and
different plasma frequencies ω(c)

p . In absence of plasma, the signal [blue] is described
by a superposition of gravitational- and electromagnetic-led modes, clearly visible
(see inset) due to the high coupling Q. A best-fit to the signal shows the presence of
two dominant modes, with (complex) frequencies reported in Table 6.1. The plasma
suppresses propagation of electromagnetic modes when ωp exceeds the fundamental
electromagnetic QNM frequency. More importantly, our results show that the cou-
pling to GWs also affects the gravitational signal to an important degree. In fact, as

2As we will see, the outcome depends on a critical value for ωp (the fundamental electromagnetic
quasi-normal mode), making the density distribution after the barrier (r > rcut) or a tenuous plasma
before the barrier (r < rcut) unimportant for the phenomenology.
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Figure 6.2: Gravitational waves for IDEM and Q̃ = 0.95. For sufficiently dense plasmas
(when ω̃

(c)
p exceeds the electromagnetic QNM frequency), the electromagnetic mode

is screened. This is apparent in the inset: only one – gravitational-led mode – is
present at large plasma frequency [red]. Associated QNM frequencies can be found
in Table 6.1. At late times, long-lived modes are excited, in contrast to the usual
power-law tail in vacuum. These originate from the quasi-bound states formed in the
electromagnetic sector and are subsequently imprinted onto the GW signal.

apparent in Figure 6.2, GWs now carry mostly a single gravitational-led mode [red],
but with a shifted frequency, see Table 6.1. This shift is surprising, and it originates
from the coupling between gravity and electromagnetism. The presence of plasma

Q̃ = 0.95 ω̃QNM (time domain) ω̃QNM (frequency domain)

ω̃
(c)
p = 0.0

0.42170 (0.086647)

0.65475 (0.094609)

0.42169 (0.086659)

0.65476 (0.094605)

ω̃
(c)
p = 1.5 0.45902 (0.090143) 0.45902 (0.090146)

Table 6.1: Real (imaginary) part of the fundamental QNM frequencies as calculated
from a time- and frequency-domain approach. We consider: (i) no plasma (top row),
and we find two modes contributing to the signal and (ii) plasma (bottom row), for
which the electromagnetic mode is screened and only the gravitational one remains,
with a shifted frequency. We obtain similar results in the time domain, regardless of
the chosen ID.
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thus affects the QNM frequencies of the gravitational signal.

We confirm these results by frequency-domain calculations (where QNMs are ob-
tained by direct integration with a shooting method) in Table 6.1. Note that we
impose purely outgoing boundary conditions at infinity in vacuum, while in the pres-
ence of plasma, we consider exponentially decaying electromagnetic modes at large
distances, to account for quasi-bound states (QBS). Clearly, the results from time
and frequency domain are in good agreement.

As can be seen in Figure 6.2, on longer timescales, the gravitational signal is
“polluted”. This is due to electromagnetic QBSs that are formed in the presence of
plasma [581, 664]. These are long-lived states which are prevented from leaking to
infinity due to the plasma effective mass, and are thus similar to QBS of massive fun-
damental fields [63]. At late times, we indeed observe a signal ringing at a frequency
comparable (yet slightly smaller) than the plasma frequency ωR ≲ ωp. As the plasma
frequency is increased, the QBSs form at progressively late times, and thus at lower
amplitudes, unreachable for observations. This phenomenology is similar to the toy
model considered in [562], but here explored from first principles.

To study these late-time features in more detail, we consider the uncharged case
Q̃ = 0, such that the gravitational and electromagnetic sector decouple and the plasma
can only affect the latter. Initialising the system with ID2, while placing the plasma
away from the BH, we vary the plasma frequency to understand its impact on the
electromagnetic sector. In Figure 6.3, we show said system both at small (top panel)
and large radii (bottom panel). In both cases, the formation of long-lived modes can
be seen, yet these have a different origin. At small radii, there are modes that do
not decay in time and have frequency smaller than the plasma frequency. These are
electromagnetic waves that are trapped between the gravitational potential and the
plasma barrier [581, 664]. At large radii, we find modes with a frequency higher than
the plasma frequency, which confirms these are travelling waves. They originate from
the initial Gaussian, which has a tail with frequencies ω > ω

(c)
p . Indeed, by increasing

the plasma frequency, these modes become less and less prominent, as shown in the
bottom panel of Figure 6.3. This behaviour highlights the “filtering effect” of plasma,
which suppresses modes lying below a threshold determined by the plasma frequency.

6.3 Propagation Effects: Echoes in Waveforms

When the plasma is localised away from the BH, a new phenomenology emerges. BH
ringdown is associated mostly with light ring physics, hence prompt ringdown is no
longer affected [170, 665]. However, upon exciting the BH, both electromagnetic and
GWs travel outwards. While GWs travel through the plasma, electromagnetic waves
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Figure 6.3: We show the electromagnetic sector u4 with a plasma at rcut = 50M , while
initialising in both sectors (ID2) and varying the amplitude of the plasma barrier ω(c)

p .
In the top panel, u4 is extracted at rex = 30M and we see trapped waves in the cavity.
In the bottom panel, the electromagnetic component is extracted at rex = 300M . As
expected, while increasing the plasma barrier, less radiation is able to travel through.
In fact, we do not show ω̃

(c)
p = 4.5, as it reaches the noise level.

are reflected, interacting with the BH again and exciting one more stage of ringdown
and corresponding GW echoes. Such echoes have been found before in the context of
(near-) horizon quantum structures [665–668], exotic states of matter in ultracompact
or neutron stars [669–671] and modified theories of gravity [672–674] (see [170, 675]
for reviews). We find them in a General Relativity setting.

In the top panel of Figure 6.4, we show the GW signal for different values of
the BH charge. In contrast to vacuum (where exponential ringdown gives way to a
power-law tail), in the presence of plasma prompt ringdown is followed by echoes of
the original burst. For higher BH charge, the reflected electromagnetic signal is more
strongly coupled, increasing the amplitude of the GW echoes. The main features
of the echoing signal are simple to understand. For rcut ≫ rLR, the time between
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Figure 6.4: GW signal generated in the presence of a plasma localised away from
the BH. In the top panel rcut = 40M ; the amplitude of the echoes increases con-
currently with the coupling Q. Dotted line indicates the decay rate of the signal,
MΓ = −0.00133, as predicted from (6.3.2). Bottom panel illustrates how the echo
timescale depends on the position of the plasma barrier. The estimates from (6.3.1)
are indicated by vertical dashed lines. Both panels are initialised with IDg and
ω̃

(c)
p = 1.5.

consecutive echoes can be estimated as

∆t = 2
∫ rcut

rLR

dr
f(r) ≈ 2 rcut . (6.3.1)

This interval is shown by the vertical dashed lines in Figure 6.4 (bottom panel) and
clearly in good agreement with the numerics.

The echo amplitude decays in time, since the BH absorbs part of the reflected
waves, and part of the energy is carried to infinity by GWs. The amplitude A(t) of
trapped modes in a cavity of length ∼ rcut is expected to fall off as

A(t) = A0e
−Γt , with Γ ∼ A2

rcut
, (6.3.2)
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where A0 is the initial amplitude and A2 the absorption coefficient of the BH
(neglecting losses to GWs at infinity). For simplicity, we take the absorption co-
efficient of low-frequency monochromatic waves for neutral BHs, given by A2 ∼
256(MωR)6/225 [63, 366], where ωR is the frequency of the trapped electromagnetic
waves. As the BH absorbs high-frequency modes first, the decay rate decreases over
time, asymptoting to a QBS, while the trapped wavepacket broadens. Taking ωR as
the highest-frequency peak in the spectrum, we obtain a decay rate (6.3.2) in agree-
ment of O(1) for the first few echoes in Figure 6.4. We confirmed that at later times,
the high frequency components of the electromagnetic field are indeed lost and the
decay rate is decreased accordingly. A similar phenomenology can be found for any
mechanism that places a BHs in a confining box, e.g., AdS BHs where the AdS radius
is much larger than the horizon radius, or Ernst BHs immersed in a magnetic field
B ≪ 1/M [629].

6.4 Summary and Outlook

Plasmas are ubiquitous in the Universe, but their impact on our ability to do pre-
cision GW physics is poorly understood. We have studied plasma physics in curved
spacetime from first principles, capturing their impact on the ringdown of charged
BHs. Our results are surprising at first sight. We find an important impact of
plasma physics on the gravitational waves generated by charged BHs, changing BH
spectroscopy to a measurable extend. We see a ringing frequency going up, and the
lifetime of the ringdown going down, a behaviour that would be important to dissect.
We also find that plasmas may trigger measurable echoes in GWs. As the amplitude
of these echoes decays slowly, they could be in reach of current or future detectors.
A dedicated data-analysis study to uncover whether these effects can be detected in
a realistic setup would be valuable for future research.

In our studies, we focused on values of the plasma frequency ωp ∼ O(1/M). Note
however, that larger values yield similar outcomes. Specifically, a denser plasma
present at the light ring causes a greater shift in the gravitational QNM frequency,
while a denser plasma localised outside the light ring increases the height of the plasma
barrier, making the reflection of photons and thus the echoes, more prominent. Most
of our results would also apply to magnetic BHs, which share many similarities with
charged BHs in the ringdown phase [676, 677].
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7
Black Hole Spectroscopy in

Environments: Detectability
Prospects

Als ik zou willen dat je het begreep, had ik het wel beter uitgelegd

Johan Cruijff

The presence of matter around charged BHs can alter the fundamental QNM fre-
quency, an effect observed even in time-domain evolutions, as shown in the pre-
vious chapter. A comprehensive set of works have established that QNMs are
in general spectrally unstable under small perturbations in the underlying space-
time [42, 170, 243, 678–688], which might correspond to the one caused by astrophys-
ical environments. However, time-domain analyses in these same geometries suggest
that the prompt, early-time ringdown signal is not affected by spectral instabilities,
questioning its relevance for GW astronomy [686, 687, 689]. Despite these theoretical
insights, no quantification of the impact of realistic environments in BH spectroscopy
from a data-analysis point of view has ever been attempted.1

In this chapter, I present the work of [4], and examine the ringdown signal in
an astrophysically motivated environment: a DM halo surrounding a supermassive
BH at the centre of a galaxy. The focus is on understanding how astrophysical
environments influence BH spectroscopy. Do they affect the detectability of a signal?
Can they be distinguished from the pure-vacuum case? I specifically consider highly
asymmetric binaries, for which the environment is expected to survive the inspiral
phase. This is a conservative assumption, since environments of comparable mass

1This statement concerns the dominant mode and especially higher overtones, which are generi-
cally afflicted by stronger instabilities [686]. While data-analysis oriented studies exist [690–692], they
focus on ad hoc matter profiles, or accreting Vaidya spacetimes, less relevant from an astrophysical
viewpoint.
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binaries are significantly more depleted [510]. The taken approach intends to be
agnostic regarding the nature of a possible instability, using only the well-understood
vacuum waveform as a ruler to measure how well environmental effects in the ringdown
can be differentiated.

This chapter is organised as follows. In Section 7.1, I introduce the necessary
definitions and equations. In Section 7.2, I describe the methods for the time-domain
evolution and signal analysis. Then, in Section 7.3, I present the GW signal in the
time domain. In Section 7.4, I analyse its distinguishability from the vacuum case. In
Section 7.5, I address spectral instabilities from an observational viewpoint. Finally,
in Section 7.6, I summarise the findings. Additional details on perturbation theory
and the numerical evolution are provided in Appendix C.

7.1 Dirty Black Holes

As a proxy for a galactic environment, we consider a BH at the centre of some halo
matter distribution, following Section 3.2.1. The spacetime is taken to be spherically
symmetric spacetime, with line element

ds2 = −A(r)dt2 + dr2

1 − 2m(r)/r + r2dΩ2 , (7.1.1)

where A(r) is given explicitly in [242], dΩ2 = dθ2 + sin θ2dφ2 and m(r) is the mass
function of the system. The “Einstein cluster” approach provides, yet again, a con-
sistent way to construct stationary solutions [244, 245], and is characterised by the
energy-momentum tensor of an anisotropic fluid with vanishing radial pressure and a
tangential pressure Pt, which reads

Tµ
ν = diag(−ρ, 0, Pt, Pt) . (7.1.2)

The chosen mass function is inspired by the Hernquist halo profile (3.2.2), which is
commonly used to model elliptical galaxies and galactic bulges [236, 693]:

m(r) = M + MHr
2

(aH + r)2

(
1 − 2M

r

)2
, (7.1.3)

where MH and aH are, respectively, the mass and characteristic length of the halo.
We stress that M refers to the BH mass and not the total ADM mass of the system.
This profile is dominated by the BH gravity at r ≪ aH and at large distances recovers
the mass profile of the Hernquist model (3.2.2). We also define the compactness and
density of the halo as

C = MH

aH
and ρ ∼ C3

M2
H
, (7.1.4)
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respectively. Both quantities affect the GW-response of the system. Halos are ex-
pected to be much more massive than the central BH they host, i.e., M ≪ MH,
and have low compactness (C ≲ 10−4). Other astrophysical environments, such as
boson clouds composed by ultralight fields, can have much higher compactness (and
density, see Figure 3.1). The Hernquist profile is one of many possible choices, and
it is straightforward to repeat the same procedure to find generic stationary space-
times describing BHs dressed by matter [247, 248]. Yet, all of these exhibit the same
qualitative behaviour and therefore we focus on the mass function in eq. (7.1.3), treat
both MH and aH as free parameters, and take it as a proxy for generic distributions
of matter around a BH.

We consider a barotropic equation of state, for which changes in pressure, δPt,r
(tangential and radial), and density δρ, are related by the speed of sound:

δPt,r = c2
st,r
δρ , with cs,r =

(
2M + aH

r + aH

)4
. (7.1.5)

Small sound speeds lead to problems regarding the well-posedness of the system [694],
making it challenging to solve numerically. Following [243, 248, 695], we choose the ad
hoc profile in eq. (7.1.5), and from previous works we do not expect major qualitative
changes for other profiles.

7.2 Methods

We perturb the spacetime (7.1.1) by plunging a particle into the BH [121, 122, 146–
148, 242, 243, 552, 618]. Without loss of generality, the plunge is along the radial ẑ–
direction, exciting only axially symmetric polar modes. The corresponding waveform
is computed using recently developed techniques of BH perturbation theory in non-
vacuum (spherically symmetric) spacetimes [121, 122, 242, 243, 552]. Further details
are found in Appendix C.2.2. After the plunge, the GW signal is well-described by a
superposition of exponentially damped sinusoids (see Section 2.2.3):2

h+ = M

r
Re
[ ∞∑

n=0

∞∑
ℓ=2

Aℓ0n e
−i(ωℓ0nt−ϕℓ0n)

−2Yℓ0(θ, φ)
]
, (7.2.1)

where h+ = h+(t, r, θ, φ), −2Yℓ0(θ, φ) are spin-weighted spherical harmonics and
ωℓ0n = ωR,ℓ0n + iωI,ℓ0n are the QNM frequencies. For radial plunges and our choice
of axis, m = 0 in eq. (7.2.1). This signal corresponds to light-ring relaxation [170].
In vacuum, it eventually gives way, at late times, to power-law tails from curvature

2As the polarisation axes are oriented along the θ̂ and φ̂–direction, the cross-polarisation (h×) is
zero and the GW radiation is purely captured by h+.
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backscattering, either when considering vacuum perturbations [156–159] or infalling
particles [11, 696–698], but the structure in the presence of surrounding matter is
richer, as we will see below.

To understand if the ringdown of a BH surrounded by an astrophysical environ-
ment can be distinguished from its vacuum counterpart, we compute the faithfulness
between two waveforms h1 and h2, defined as

F ≡ max
tc,ϕc

(h1|h2)√
(h1|h1)(h2|h2)

, (7.2.2)

where tc and ϕc are, respectively, time and phase of the signal at the coalescence.
The inner product (h1|h2) is

(h1|h2) = 4 Re
∫ ∞

0

h̄1(f)h̄∗
2(f)

Sn(f) df , (7.2.3)

where the overhead bar indicates a Fourier transform and Sn(f) is the one-sided
power spectral density, which depends on the specific detector. For reference, we
consider the LISA sensitivity curve [699]. We maximise over time and phase, with
phase maximisation done by taking the absolute value instead of the real part in
eq. (7.2.2) [700]. We always take h2 to be the vacuum waveform, which serves as the
fiducial signal to compare against. Finally, we define the signal-to-noise ratio (SNR)
as

SNR2 = 4
∫ ∞

0

h̄∗(f)h̄(f)
Sn(f) df . (7.2.4)

If two waveforms fulfil the criterion:

1 − F <
D

2 SNR2 , (7.2.5)

for a certain choice of Sn(f) and respective SNR, they are classified as indistinguish-
able [111, 701–704] in the sense that the deviation between two waveforms δh satisfies
⟨δh|δh⟩ < 1 (see eqs. (8.1)–(8.2)–(8.13) in [701]). Here, D denotes the dimension
of the parameter space one considers, amounting to e.g., D ∼ 10 for a two damped
sinusoids analysis. Note that this criterion formally holds in the limit of high SNR
which, with increased sensitivity of future detectors, is a well-justified assumption.

We expect astrophysical setups with a hierarchy of scales M ≪ MH ≪ aH. These
scales and the need to extract the signal far away from the system due to the slow
polynomial decay of the halo mass [see eq. (7.1.3)], pose a numerical challenge and
restrict the range of halo mass and size that we can study. We thus focus on relatively
large halo compactnesses. As we will show, this choice leads to an overestimate of
the impact of the environment, which strengthens our conclusions. Specifically, we
take MH = [0.1, 0.3, 0.5, 1, 10]M , while varying aH, ensuring the GW signal is always
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extracted outside the halo, rex ≫ aH. In all our simulations, the particle starts the
plunge at rp(t = 0) = 100M , and we extract the signal at rex = [20, 40, 80, 100] aH.
At each radius, we locate the peak of the strain h+ and we truncate the waveform
roughly ∼ 10M before the peak until the tail sets in.3 Subsequently, the waveforms
are “rescaled” relative to the waveform extracted at the largest radius. In particular,
labelling the latter as h1, we allow the (to-be-shifted) waveform h2 to undergo a
stretching α and a time shift t0 according to

ĥ2 =
∫

dt eiω(t−t0)h2(αt) = e−iω̂αt0 h̄2(ω̂) , (7.2.6)

where an overhead bar denotes the Fourier transform and t = t̂/α and ω̂ = ωα.
The parameters α and t0 are then determined by maximising the faithfulness
F(ĥ2, h1) (7.2.2), i.e., maxα,t0 F . Since the waveforms are extracted at varying radii
but correspond to the same halo configuration, the deviations in α and t0 are min-
imal: typically α ∼ 1 and t0 ∼ 0. To avoid errors associated with finite extraction
radii, the waveform is then extrapolated to infinity by fitting a Chebyshev polynomial
rh(t) = h∞ + a1(1/r) + a2(1/r2) + · · · , where h∞ represents the waveform at future
null infinity. In our fit, we include the first two orders, yet an error estimate coming
from the first and third order will also be included.

With the waveforms extrapolated to infinity, we can now compare the ringdown
signal from different halo configurations. Conform to realistic GW searches, we again
apply the transformation from eq. (7.2.6), taking the reference waveform to be the
vacuum one. In this context, α acquires a clear physical meaning: it represents the
overall redshift induced by the presence of the halo.

7.3 Gravitational-Wave Signals

Consider a binary of mass ratio q = mp/M , where mp is the mass of the smaller body.
We excite the ringdown with a simple head-on collision. Figure 7.1 shows the time
evolution of the GW strain when a particle collides with a BH in the presence of a halo
with different compactnesses. The main features are: (i) the early-time, dominant
component is a prompt ringdown stage corresponding to light-ring excitation and
trapping. This stage is very similar for different halo compactnesses, but is affected
by the environment (for C = 0.1 the signal is noticeably different). By lowering
compactness, the signal tends towards the vacuum one (black line); (ii) after the
prompt ringdown, halo modes set in (on scales set by aH) and dominate the late-time

3As the trajectory of the particle depends on the “halo density” it encounters, i.e., dt/dτ ∝
1/
√
A(r) (see eq. (7.1.1), where τ is the proper time), the strain amplitude and instant at which

the waveform peaks do depend on the choice of compactness.
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Figure 7.1: Gravitational-wave signal h+ when a point-like particle collides with a
BH “dressed” by a halo of varying compactness and mass MH = 10M . Particle begins
from rest at rp = 100M and the signal is extracted at rex = 3000M . Vacuum signal is
shown in black. All waveforms are aligned in time and amplitude. The oscillations at
late times [orange and green] indicate the presence of a fluid-driven mode, imprinted
on the GW signal. Its period is well-approximated by T ∼ aH/cs,r (using eq. (7.1.5)
with r ∼ aH). Inset shows zoom-in of the prompt ringdown.

signal. This contribution is fluid-driven (seen before in [243]) and originates from
the coupling between the matter and gravity sector. The amplitude and frequency
of halo modes depend on the compactness. We find that they oscillate with period
T ∼ aH/cs,r [243] for all setups studied. For example, for MH = 10M and aH = 100M
(C = 0.1) [green], it corresponds to T ∼ 1500M , even when evolving the system for
longer timescales than shown in Figure 7.1. We expect a power-law tail on yet larger
timescales, which our current numerical infrastructure cannot probe; (iii) keeping halo
compactness fixed while varying halo mass and size, we find that compactness is the
dominant factor determining changes in the ringdown signal with respect to vacuum,
at least for the parameter space probed.

7.4 Faithfulness of Vacuum Templates

Figure 7.2 shows the faithfulness (7.2.2) for varying halo mass and compactness. It
approaches unity in the limit of zero compactness, even if the total halo mass is
large: the signal is simply redshifted to lower frequencies and a vacuum template
will bias the BH mass, which is confirmed in a frequency-domain approach [705].
Indeed, for e.g., MH = M , aH = 58M , our best match is achieved for a redshift
α = 0.978, compared to the “expected” redshift ∼ 1 − MH/aH = 0.982. For small C,
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Figure 7.2: SNR required to distinguish the ringdown signal from vacuum for different
compactnesses and a given value of halo mass, using the criterion (7.2.5) and D = 10.
For a given SNR (determining an horizontal line) and halo mass curve, only the region
of compactness right of the intersection between the horizontal line and the curve is
distinguishable from vacuum. The black horizontal line represents a putative signal
from Sgr A∗ with q = 10−5 (7.4.1). Given its SNR, the signal can be distinguished
from vacuum for high compactness, as indicated by the diagonal-line region for MH =
0.1M [blue] and MH = M [red]. The right axis shows the corresponding mismatch
value (without assuming a value forD). Coloured dash-dotted lines are a power-law fit
through the last few points. The error in the shaded regions comes from extrapolating
the waveform keeping 1/r and up to 1/r3 terms.

the mismatch 1 − F decreases as a power-law. While determining the precise scaling
analytically would be insightful, waveform stretching leads to some loss of information.
Nevertheless, it can be shown that when perturbations of the potential scale as Cn, the
faithfulness scales as C2n. Counterintuitively, lower halo masses allow to probe a larger
range of compactness. This can be explained from eq. (7.1.4): for fixed compactness,
lower halo masses actually increase the density of the halo close to the BH, making
the impact on the ringdown more severe. However, for low enough halo masses the
rise of the plateau (displayed by the curves at high compactness) will prevent the
environment discrimination, as intuitively expected. For large compactnesses, the
results showcase a complex behaviour: as we allow the template to redshift, the result
displays nontrivial features at large densities and compactnesses.

To understand whether the ringdown signal can be distinguished from vacuum,
the faithfulness should be compared against the expected SNR from astrophysical
events (7.2.5). Taking LISA as an example, using eq. (3.12b) in [163] and eq. (4.12)
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in [706], we find

SNR = 2.5 × 104
( q

10−5

)( M

4.3 × 106M⊙

)3/2(8.3 kpc
DL

)(
3.8 × 10−40 Hz−1

Sn(f)

)1/2

,

(7.4.1)
where we consider the fundamental mode Mω200 = 0.374, typical values for the
LISA sensitivity curve [699], and we take Sgr A∗ as reference, with mass MSgr A∗ =
4.3 × 106M⊙ and located at DL = 8.3 kpc [14, 707, 708].4 Using eq. (7.2.5) with
D = 10, we find that when 1 − F < 8.2 × 10−9 the signal cannot be distinguished
from vacuum for the benchmark parameters in (7.4.1). From Figure 7.2, we see that,
for e.g., MH = 0.1M , any halo with C ≲ O(10−3) is indistinguishable using ringdown,
even in the overly optimistic scenario of a signal from Sgr A∗. Note that mergers
of supermassive BHs are predicted to be exceptionally loud but also more distant,
resulting in similar or lower SNR [709]. As part of the surrounding environment could
be depleted in such mergers, the scenario we consider is expected to be conservative,
suggesting our conclusions hold even in this case.

There are two interesting applications of our results in the context of the Milky
Way. The GRAVITY Collaboration constrained the mass within the orbit of the S2
star (highly eccentric, we take it to have radius ∼ 104M) to be ≲ 10−3M , using a
Plummer profile or one appropriate for bosonic bound states [452, 708]. From the
MH scaling of our results, we find that for a collision at the centre of our galaxy to
discriminate an environment via ringdown, then aH ≲ 102M . In addition, at larger
scales, the Milky Way bulge stellar mass is of order (2.0 ± 0.3) × 1010M⊙ with a
redshift of order 10−6 [710]. Figure 7.2 leaves little room for doubt: BH spectroscopy
will not be able to inform us on physics at these scales.

Sources farther away will have a SNR too low to distinguish any value of the
compactness from the vacuum waveform. Since realistic galactic halos have C ≲
10−4 [50, 249], we conclude that environments cannot be distinguished with ringdown,
using currently planned detectors.

7.5 Spectral Instabilities

The QNM spectrum of BHs is unstable under small perturbations or couplings to
matter [678, 686]. Our case study contains instabilities for the fundamental mode,
and we concluded for their nonobservability. We now want to show parenthetically
that high-frequency, spectrally unstable perturbations are probably stable insofar as

4Equation (7.4.1) agrees with eq. (3.21) in [163] for equal-mass binaries and their (outdated) LISA
noise curve. Note however, that the dependence on mass ratio in (7.4.1) is q/(1+q)2, which becomes
relevant only for equal masses.
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Figure 7.3: Mismatch for various values of ϵ, which quantifies the modification to the
potential (7.5.1). 1 − F goes down exactly as ϵ2, showcasing that mode instabilities
do not affect observations to any significant degree. We use either “polynomial initial
data” [blue] from [681, 682, 711], or Gaussian initial data [orange] with a width M .
The inset shows the effective potential experienced by GWs, with ϵ = 0.1 (7.5.1).

observations go. We stray from the galactic geometry (7.1.3), and consider instead
the toy model of [681, 682], where the effective potential for GW propagation gets
deformed by

δV =
(

1 − 2M
r

)
ϵ

r2 sin
(

2πk 2M
r

)
, (7.5.1)

where we fix k = 10. Despite the presence of spectral instability (in high over-
tones) [681, 682], the faithfulness decreases with ϵ2 as shown in Figure 7.3: it is
spectrally stable. There will be no impact on observations.

7.6 Summary and Outlook

Black hole spectroscopy is an indispensable tool for studying astrophysical and fun-
damental properties of BHs. With the increased sensitivity of future GW detectors,
it will become possible to probe ringdown more accurately, and in different frequency
ranges. This opens the interesting possibility of using BH ringdown to probe environ-
ments, a prospect made even more exciting with the discovery that the BH spectrum
is unstable [42, 170, 243, 678–688].

In this chapter, we studied this possibility, using a model that resembles dark
matter densities in typical galactic environments. For realistic values of environmental
parameters, we find that the leading-order effect is simply a (gravitational) redshift
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of the fundamental frequency. This may be thought of as a propagation effect, as the
GW climbs out of the gravitational potential of matter. Our results are consistent
with a high-frequency approximation to QNMs [242], which can be used to argue that
the compactness controls the QNMs of BHs in environments [552].

We studied only nonspinning BHs, possibly a conservative approach, since spin
may add one more degeneracy knob on the search. At leading order and large SNR,
the error on the measurement of the BH mass yields [163]

σM

M
≈ 2

SNR , (7.6.1)

suggesting that, even if the BH mass is known a priori, e.g., from an inspiral-only
analysis or electromagnetic counterparts, SNR ∼ aH/MH is required to distinguish
an event from vacuum. For galactic environments, this requires unreasonably loud
events [712, 713]. The take-home message is that BH quality factors are too small for
environments to significantly impact spectroscopy.

Atomic and molecular spectroscopy in environments is well-understood. Among
others, the Stark effect contributes to a distortion of spectral Balmer lines in plas-
mas [714–716]. Environments can, in principle, also affect BH spectroscopy, but our
results suggest only those with extreme density or compactness could lead to de-
tectable effects with planned detectors. Nevertheless, if used in conjunction with
measurements of the inspiral, one may use this to our advantage to e.g., remove red-
shift degeneracies or obtain information on environmental properties through pre/post
merger consistency tests. As seen in Figure 7.1, environments do affect the very late
time behaviour of coalescences, possibly amplifying tail amplitudes [11, 696, 697], a
topic which deserves further scrutiny.
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8
Resonant History of Boson

Clouds in Black Hole
Binaries

My theory stands as firm as a rock;

every arrow directed against it will return quickly to its archer.

How do I know this? I have studied it...

I have followed its roots, so to speak,

to the first infallible cause of all created things

Georg Cantor

In the final three chapters of this thesis, I turn to the inspiral stage of a binary
coalescence, focusing on intermediate and extreme mass ratio inspirals. These sys-
tems will spend thousands to millions of cycles in the millihertz regime, making them
particularly sensitive to environmental effects that accumulate over time in the wave-
form [9, 42]. Future GW detectors, such as LISA [39, 185], will probe this frequency
range, underscoring the need for precise modelling of the interactions between the
binary and its surroundings. In this chapter, based on the work from [5, 6], I ex-
plore the early inspiral of a binary system where a boson cloud surrounds the heavier
primary object.

As detailed in Section 3.3, clouds of ultralight bosons may form around rotating
BHs via superradiance. Although this mechanism applies to bosons of any spin, I
focus here on scalars, both for their simplicity and stronger theoretical motivation.
In contrast to Chapters 4 and 5, the emphasis here is on bosons that interact purely
gravitationally or have extremely weak couplings. Thanks to its universal nature,
gravity – and in particular GWs – offers a rare probe of this largely unconstrained
region of parameter space (see Figure 3.2). Furthermore, the rich phenomenology of
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boson clouds in binary systems [7, 10, 64–66, 504, 547, 548, 550, 552], makes them
especially promising for precision tests of fundamental physics with GWs [717].

In particular, in previous works [64, 65] it was found that during a binary inspiral
the cloud induces not only secular effects, such as dynamical friction or accretion,
but also resonant behaviour. At certain resonance frequencies, where the orbital fre-
quency of the binary matches the energy difference between two eigenstates of the
cloud (3.3.18), the gravitational perturbation from the companion is resonantly en-
hanced and a full transfer from one state to another can be induced. The accompanied
change in the angular momentum of the cloud must then be compensated for by the
binary. Depending on the nature of the resonance, this leads to floating or sinking or-
bits, where the cloud releases or absorbs angular momentum from the binary, and as a
result, the inspiral is either stalled or sped-up. Consequently, a potentially detectable
dephasing is left in the GW signal. The orbital frequency at which these resonances
happen can be predicted, and thus they serve as a direct and unique probe of the
properties of the cloud. In addition to their floating or sinking nature, resonances
can be divided into three different types, depending on the energy difference between
the eigenstates involved. These are called hyperfine, fine, or Bohr resonances, which
occur in this chronological order (see Figure 3.3). The former two happen “early” in
the inspiral (at radii far larger than the cloud’s radius) and are all of the floating type.
These will thus only affect the GW signal indirectly : the binary frequency is too low
for GW detectors to pick up the signal, but the resonance can change the late-time
evolution of the system. Conversely, Bohr resonances happen “late” in the inspiral (at
radii comparable with the cloud’s radius) and can be either floating or sinking. As
these happen while the signal is in band, they can affect the GW signal directly.

Due to the exciting observational signatures, various works have studied these reso-
nances. However, to date, they have all made simplifying assumptions, which turn out
to crucially alter the behaviour of the system. This includes ignoring the backreaction
from the resonance [549], assuming a quasi-circular and equatorial orbit, or including
just the strongest multipole of the gravitational perturbation [547, 551, 718–720]. A
nonzero eccentricity was only considered in [721], yet at a time when the behaviour
of the resonances had still not been fully understood. In this chapter, all of the
aforementioned assumptions are relaxed to study resonances in gravitational atoms
in full generality. This is then used to determine the evolution of the cloud-binary
system throughout the inspiral. Crucially, by studying the nonlinear system, a criti-
cal threshold is found above which an adiabatic floating resonance is initiated. Below
the threshold, there is a negligible transfer, or a non-adiabatic resonance. Further-
more, mechanisms are uncovered that induce a resonance breaking, shutting down the
transition before it is complete: these are due to the decay of the state excited by the
resonance, or to a slow time variation of the parameters. Additionally, by allowing for
generically inclined and eccentric orbits, it is shown how resonances strongly impact
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the orbital parameters: while the eccentricity is forced towards fixed points, the incli-
nation angle is always tilted towards a co-rotating configuration. Finally, the impact
of ionisation [10, 66, 550] in the evolution of the system is taken into account as well
as all relevant multipoles.

Using these results, I lay out, for the first time, a systematic study of resonances
for realistic parameters, focusing on intermediate and extreme mass ratios. Starting
from states commonly populated by superradiance, the binary is evolved taking into
account energy losses from both GWs and ionisation. By doing so, the resonant evolu-
tion of the cloud and the impact of the resonances on the binary’s orbit is determined.
I find that, for generic orbital configurations, the cloud is often destroyed early in the
inspiral. This is due to floating resonances that transfer the cloud to states that decay
much quicker than the duration of the resonance. However, when the orbital inclina-
tion is within a certain interval centred around a counter-rotating configuration, all
hyperfine and fine floating resonances are either non-adiabatic or break prematurely,
allowing the cloud to survive until it enters the Bohr regime. Conversely, all sinking
resonances for typical parameters are found to have a negligible impact on the cloud.
A schematic illustration of these conclusions is given in Figure 8.1. This leads to
(i) direct observational signatures from the cloud, when it survives all resonances,
and (ii) new, indirect observational signatures, when the cloud is destroyed early on,
thereby leaving a legacy on the binary through its eccentricity and inclination.

The outline of this chapter is as follows. In Section 8.1, I briefly review the setup
and introduce necessary definitions and equations. Then, in Section 8.2, I study
resonances at the nonlinear level, determining when they are adiabatic and when they
break, and extending the framework to eccentric and inclined orbits. In Section 8.3,
I discuss the different types of resonances. Then, in Section 8.4, I turn to a realistic
setting and unveil the full history of the cloud and binary. In Section 8.5, I discuss the
observational signatures this leads to. I conclude in Section 8.6. Appendix F contains
technical details.

Due to the length of this chapter, it is useful to establish some notation. The mass
and radial distance of the smaller object are denoted by M∗ ≡ qM and R∗, where
q < 1 is the mass ratio, while the orbital frequency is Ω and the mass of the cloud
is Mc. The gravitational fine structure constant is α = µM , where µ is the mass
of the scalar field. Most of the results are written in an explicit scaling form, with
respect to the following set of benchmark parameters: M = 104M⊙, Mc = 0.01M ,
q = 10−3 and α = 0.2. The eigenstate of the cloud before encountering a resonance
will be denoted by |naℓama⟩, while any other eigenstate involved in the resonance by
|nbℓbmb⟩. The cloud’s wavefunction will then be expanded as a linear superposition
of energy eigenstates: |ψ⟩ = ca |a⟩ +

∑
b cb |b⟩.
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Figure 8.1: Illustration of the possible outcomes of the resonant history of the cloud-
binary system. The inspiral starts with the cloud in its initial state, either |211⟩ or
|322⟩. Only systems 1○– 2○ whose inclination angle is within intervals χ1 and χ2 from
the counter-rotating (β = 180◦) configuration can move past the hyperfine and fine
resonances with the cloud still intact (green vertical lines). These later give rise to
observational signatures in the form of ionisation and Bohr resonances. Others 3○– 4○
are destroyed by the hyperfine or fine resonances (red vertical lines). Binary systems
that form at small enough separations may be able to skip early resonances 5○.

8.1 Setup

The goal of this section is to lay down our framework. We closely follow an earlier
work [10], and thus we refer the reader there for more details.

Via BH superradiance, bosonic fields can extract energy and angular momentum
from rotating BHs. As we saw in Section 3.3.3, the key condition for this process
to occur is that the boson’s frequency ωB is smaller than the angular velocity of the
event horizon ΩH, i.e., ωB < mΩH, where m is the azimuthal quantum number in
the BH frame (3.3.11). If the boson is massive, then the superradiantly amplified
waves can get trapped around the BH, allowing their number to grow exponentially.
In this chapter, we will stay in the non-relativistic limit, and we thus refer to Sec-
tion 3.3.4 for the description of the cloud-BH system, specifically the hydrogenic
eigenfunctions (3.3.15) and the eigenenergy of different modes (3.3.18). A schematic
illustration of our setup is shown in Figure 8.2.

We work in the reference frame of the central BH with mass M , where r = {r, θ, ϕ}
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Figure 8.2: Schematic illustration of the cloud-binary system. The primary object
of mass M is surrounded by a superradiantly grown scalar cloud of mass Mc. The
secondary object of mass M∗ perturbs it through its gravitational potential, causing
a mixing between different states of the cloud. The blue and red regions are a faithful
representation of the mass densities of the states |211⟩ and |21 −1⟩ on the equatorial
plane, but the BH size is not to scale. In the box, we show the bound state spectrum
of the gravitational atom for the first few values of n.

and the coordinates of the companion with mass M∗ = qM are R∗ = {R∗, θ∗, φ∗}. In
our conventions, the gravitational perturbation from the companion in the Newtonian
approximation is defined as

V∗(t, r) = −
∞∑

ℓ∗=0

ℓ∗∑
m∗=−ℓ∗

4πqα
2ℓ∗ + 1Yℓ∗m∗(θ∗, φ∗)Y ∗

ℓ∗m∗
(θ, ϕ)F (r) , (8.1.1)

where

F (r) =


rℓ∗

Rℓ∗+1
∗

Θ(R∗ − r) + Rℓ∗
∗

rℓ∗+1 Θ(r −R∗) for ℓ∗ ̸= 1 ,(
R∗

r2 − r

R2
∗

)
Θ(r −R∗) for ℓ∗ = 1 .

(8.1.2)

On a generic orbit, the perturbation (8.1.1) induces a mixing between the cloud’s
bound state |nbℓbmb⟩ and another state |naℓama⟩ through the matrix element [64, 65]

⟨naℓama|V∗(t, r)|nbℓbmb⟩ = −
∑

ℓ∗m∗

4παq
2ℓ∗ + 1Yℓ∗m∗(θ∗, φ∗) Ir(t) IΩ(t) , (8.1.3)
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where Ir and IΩ are integrals over radial and angular variables, respectively. The
following selection rules need to be satisfied in order for IΩ to be nonzero

(S1) m∗ = mb −ma , (8.1.4)

(S2) ℓa + ℓ∗ + ℓb = 2p for p ∈ Z , (8.1.5)

(S3) |ℓb − ℓa| ≤ ℓ∗ ≤ ℓb + ℓa . (8.1.6)

Furthermore, we will often expand the spherical harmonic Yℓ∗m∗ appearing in (8.1.3)
in terms of the form Yℓ∗g(π/2, 0) (where g is a summation index), which is zero
whenever ℓ∗ and g have opposite parity.

8.2 Resonance Phenomenology

As first shown in [65], while the companion perturbs the cloud at a slowly increasing
frequency, transitions between modes are induced, analogous to the ones described
in quantum mechanics by Landau and Zener [722, 723]. This process can exert a
strong backreaction on the orbit, giving rise to “floating” and “sinking” orbits. In
this section, we study these transitions for generic orbits and at the nonlinear level,
by including the backreaction in the frequency evolution self-consistently. We do
not, however, worry about the astrophysically relevant range of parameters just yet,
nor about whether the phenomena we discover here can actually occur after well-
motivated initial conditions. Such “realistic” cases, to which we often refer to, will
only be defined and studied in Section 8.4, where the general results found here will
turn out to be crucial in determining the evolution of the cloud-binary system.

In Section 8.2.1 we review the setup and the well-known results, which we extend
to inclined and eccentric orbits in Section 8.2.2. Then, in Section 8.2.3 we include
the backreaction, thus coupling the resonating states to the evolution of the binary
parameters. The phenomenology of the resulting nonlinear system is explored in
Section 8.2.4 and Section 8.2.5, for the floating and sinking cases, respectively.

8.2.1 Two-State Resonances

The matrix element (8.1.3) of the gravitational perturbation V∗ between two states
|a⟩ = |naℓama⟩ and |b⟩ = |nbℓbmb⟩ is an oscillatory function of the true anomaly of
the orbit φ∗,

⟨a|V∗(t)|b⟩ =
∑
g∈Z

η(g)eigφ∗ . (8.2.1)

On equatorial co-rotating quasi-circular orbits, the only nonzero term is g = mb −
ma ≡ ∆m (on counter-rotating orbits, g has opposite sign), and the coefficients η(g)

134



8.2. Resonance Phenomenology

only depend on time through Ω(t). Restricting our attention to the two-state system,
the Hamiltonian is thus

H =
(

−∆ϵ/2 η(g)eigφ∗

η(g)e−igφ∗ ∆ϵ/2

)
, (8.2.2)

where ∆ϵ = ϵb − ϵa is the energy difference between |b⟩ and |a⟩. As in [65], it is
useful to rewrite (8.2.2) in a dressed frame, where the fast oscillatory terms eigφ∗

are traded for a slow evolution of the energies. This is done by means of a unitary
transformation, (

ca

cb

)
=
(
eigφ∗/2 0

0 e−igφ∗/2

)(
c̄a

c̄b

)
, (8.2.3)

where cj = ⟨j|ψ⟩ (with j = a, b) are the Schrödinger frame coefficients, while c̄a and
c̄b are the dressed frame coefficients. Because |ci|2 = |c̄i|2, we will drop the overhead
bar in the following discussion. In the dressed frame, the Schrödinger equation reads

d
dt

(
ca

cb

)
= −iHD

(
ca

cb

)
, HD =

(
−(∆ϵ− gΩ)/2 η(g)

η(g) (∆ϵ− gΩ)/2

)
. (8.2.4)

When Ω(t) ≡ φ̇∗ is specified, (8.2.4) determines the evolution of the population of the
two states.

Without including the backreaction of the resonance on the orbit, Ω(t) is exclu-
sively determined by external factors, such as the energy losses due to GW emission
or cloud ionisation, which induce a frequency chirp. These effects typically have a
nontrivial dependence on Ω itself, widely varying in strength at different points of the
inspiral. However, the resonances described by (8.2.4) are restricted to a bandwidth
∆Ω ∼ η(g). This is typically narrow enough to allow us to approximate the exter-
nal energy losses, as well as any other Ω-dependent function, with their value at the
resonance frequency,

Ω0 = ∆ϵ
g
. (8.2.5)

Around Ω0, we can linearise the frequency chirp and write Ω = γt. For concreteness,
in this section we will assume that external energy losses are only due to GW emission,
in which case

γ = 96
5
qM5/3Ω11/3

0
(1 + q)1/3 . (8.2.6)

It is particularly convenient to rewrite the Schrödinger equation in terms of dimen-
sionless variables and parameters:

d
dτ

(
ca

cb

)
= −i

(
ω/2

√
Z√

Z −ω/2

)(
ca

cb

)
, (8.2.7)

135



8. Resonant History of Boson Clouds in Black Hole Binaries

where the frequency chirp now reads ω = τ , and we defined

τ =
√

|g|γ t , ω = Ω − Ω0√
γ/|g|

, Z = (η(g))2

|g|γ
. (8.2.8)

The initial conditions at τ → −∞ we are interested in are those where only one state
is populated, say ca = 1 and cb = 0. The only dimensionless parameter of (8.2.7) is
the so-called “Landau-Zener parameter” Z, which determines uniquely the evolution
of the system and its state at τ → +∞. In fact, the populations at τ → +∞ can be
derived analytically and are given by the Landau-Zener formula:

|ca|2 = e−2πZ , |cb|2 = 1 − e−2πZ . (8.2.9)

For 2πZ ≫ 1 the transition can be classified as adiabatic, meaning that the process is
so slow that the cloud is entirely transferred from |a⟩ to |b⟩. Conversely, for 2πZ ≪ 1,
the transition is non-adiabatic, with a partial or negligible transfer occurring.1

There is one final remark to be made before we proceed. Dealing with two-state
transitions is a good approximation as long as the frequency width of the resonance,
∆Ω ∼ η(g), is much narrower than the distance (in frequency) from the closest res-
onance. The latter becomes extremely small for hyperfine resonances, especially
on generic orbits, where g can take values different from ∆m. In some cases for-
mula (3.3.18) can indeed return an exact degeneracy of two resonances, up to O(α5).
We have thoroughly checked, by numerical computation of the eigenfrequencies up
to O(α6), that in all realistic cases the resonances are indeed narrow enough for the
two-state approximation to hold.

8.2.2 Resonances on Eccentric and Inclined Orbits

We now extend the treatment of Section 8.2.1 to orbits with nonzero eccentricity
or inclination, explaining what changes for the resonant frequencies and the overlap
coefficients η(g).

Let us start with eccentric co-rotating orbits. In the quasi-circular case, eq. (8.2.1)
manifestly separates a fast and a slow motion: the former originates from φ∗ varying
over the course of an orbit, while the latter is due to the dependence of the coefficients
η(g) on Ω(t) (and can be safely neglected). It will be helpful to work with a variable
that performs the same trick on eccentric orbits: the mean anomaly

φ̂∗(t) =
∫ t

Ω(t′) dt′ . (8.2.10)

1The adiabaticity of a resonance is not related to the adiabaticity of the orbital evolution, which
is always assumed to hold throughout this chapter.
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Because φ∗ itself is an oscillating function of φ̂∗, we can write

⟨a|V∗(t)|b⟩ =
∑
g∈Z

η̂(g)eigφ̂∗ , (8.2.11)

where the coefficients η̂(g) only depend on time through Ω(t). For simplicity, in the
following discussion we will drop the hats, with the different definition of η(g) for
nonzero eccentricity left understood.

For a given eccentricity ε ̸= 0, multiple terms of (8.2.11), each corresponding to a
different value of g, can be nonzero. As a consequence, a resonance between two given
states can be triggered at different points of the inspiral, at the frequencies Ω(g)

0 =
∆ϵ/g, for any integer g (provided that it has the same sign as ∆ϵ). The numerical
evaluation of the coefficients η(g) requires to Fourier expand V∗ in the time domain,
at the orbital frequency Ω = Ω(g)

0 . This can be done with techniques similar to [10],
where the same matrix element was evaluated between a bound and an unbound state.
The coefficient η(∆m) is special because it is the only one with a finite, nonzero limit
for ε → 0, where it reduces to its circular-orbit counterpart. For all other values of
g, instead, η(g) vanishes for ε → 0. Even at moderately large ε, the coefficient η(∆m)

remains significantly larger than all the others

Let us now look at circular but inclined orbits. Here, the Fourier coefficients η(g)

acquire a dependence on the inclination angle β, where β = 0 and β = π correspond
to the co-rotating and counter-rotating scenarios. The functional dependence can be
readily extracted by evaluating the perturbation (8.1.1) using the identity [724]

Yℓ∗m∗(θ∗, φ∗) =
ℓ∗∑

g=−ℓ∗

d(ℓ∗)
m∗,g(β)Yℓ∗g

(π
2 , 0

)
eigΩt . (8.2.12)

Here, d(ℓ∗)
m∗,g(β) is a Wigner small d-matrix and is responsible for the angular depen-

dence of the coupling, η(g) ∝ d
(ℓ∗)
m∗,g(β). Its functional form takes on a simple expression

in many of the physically interesting cases, as we will discuss explicitly in Section 8.3.
We thus see that inclined orbits also trigger resonances at Ω = Ω(g)

0 = ∆ϵ/g, but this
time g can only assume a finite number of different values. Similar to the eccentric
case, g = ∆m is special, because it is the only case where d(ℓ∗)

m∗,g(β) does not vanish
for β → 0, as the resonance survives in the equatorial co-rotating limit. Similarly, in
the counter-rotating case β → π, the only surviving value is g = −∆m.

Similar techniques can be applied in the eccentric and inclined case, where the
overlap can be expanded in two sums, each with its own index, say gε and gβ . We do
not explicitly compute η(g) in the general case, as the understanding developed so far
is sufficient to move forward and characterise the phenomenology in realistic cases.
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8.2.3 Backreaction on the Orbit

We now include the backreaction on the orbit, allowing for generic nonzero eccentric-
ity and inclination. During a resonance, the energy and angular momentum contained
in the cloud change over time: this variation must be compensated by an evolution of
the binary parameters, the (dimensionless) frequency ω, eccentricity ε and inclination
β. In turn, this backreaction impacts the Schrödinger equation (8.2.7), which directly
depends on ω. The result is a coupled nonlinear system of ordinary differential equa-
tions, describing the co-evolution of the cloud and the binary, which we derive in this
section.

To describe the evolution of ω, ε, and β we need three equations. These are the
conservation of energy and of two components of the angular momentum: the projec-
tion along the BH spin and the projection on the equatorial plane. The conservation
of energy reads

d
dt (E + Ec) = −γf(ε) qM5/3

3(1 + q)1/3Ω1/3
0

, (8.2.13)

where γ is defined in (8.2.6) and the binary’s and cloud’s energies are

E = −qM5/3Ω2/3

2(1 + q)1/3 , Ec = Mc

µ
(ϵa|ca|2 + ϵb|cb|2) . (8.2.14)

The function

f(ε) =
1 + 73

24ε
2 + 37

96ε
4

(1 − ε2)7/2 , (8.2.15)

quantifies the dependence of GW energy losses on the eccentricity [113, 114]. Similarly,
the conservation of the angular momentum components requires

d
dt (L cosβ + Sc) = −h(ε)γ qM5/3

3(1 + q)1/3Ω4/3
0

cosβ , (8.2.16)

d
dt (L sin β) = −h(ε)γ qM5/3

3(1 + q)1/3Ω4/3
0

sin β , (8.2.17)

where

L = qM5/3

(1 + q)1/3

√
1 − ε2

Ω1/3 , Sc = Mc

µ
(ma|ca|2 +mb|cb|2) , (8.2.18)

and

h(ε) =
1 + 7

8ε
2

(1 − ε2)2 . (8.2.19)

Before proceeding, there are two issues the reader might worry about. First, depend-
ing on the resonance, the spin of the cloud during the transition might also have
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equatorial components, and should thus appear in (8.2.17). Second, the BH spin
breaks spherical symmetry, therefore the equatorial projection of the angular momen-
tum should not be conserved. Clearly, in the Newtonian limit this is not a problem,
but one might still question whether it is consistent to treat within this framework hy-
perfine resonances, whose very existence is due to a nonzero BH spin in the first place.
We address both these issues in Appendix F.1, where we justify our assumptions, and
proceed here to study the dynamics of the previous equations.

Equations (8.2.13), (8.2.16) and (8.2.17) can be put in a dimensionless form as
follows:

dω
dτ = f(ε) −B

d|cb|2

dτ , (8.2.20)

C
d
dτ
√

1 − ε2 =
√

1 − ε2
(
f(ε) −B

d|cb|2

dτ

)
+B

∆m
g

d|cb|2

dτ cosβ − h(ε) , (8.2.21)

C
√

1 − ε2 dβ
dτ = −B∆m

g

d|cb|2

dτ sin β , (8.2.22)

where we defined the dimensionless parameters

B = 3Mc

M

Ω4/3
0 ((1 + q)M)1/3

qα
√
γ/|g|

(−g) , C = 3Ω0√
γ/|g|

. (8.2.23)

The Schrödinger equation (8.2.7) remains unchanged, but it should be kept in mind
that Z now depends on ε and β through η(g) (instead, the dependence on ω can still
be neglected if the resonance is narrow enough).

The parameter B controls the strength of the backreaction. As can be seen
from (8.2.20), a positive B > 0 (i.e., g < 0 and ∆ϵ < 0) will slow down the fre-
quency chirp, giving rise to a floating orbit and generally making the resonance more
adiabatic. Conversely, B < 0 (i.e., g > 0 and ∆ϵ > 0) induces sinking orbits and
makes resonances less adiabatic. By extension, we will refer to floating resonances
and sinking resonances to denote the type of backreaction they induce. A summary
of the main variables used to describe the resonances and their backreaction is given
in Appendix F.5.

8.2.4 Floating Orbits

Backreaction of the floating type (B > 0) turns out to be the most relevant case for
realistic applications, so we make a detailed study of its phenomenology here. When
the backreaction is strong, the evolution of the system exhibits a very well-defined
phase of floating orbit. We are then concerned with three aspects.
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1. Under what conditions is a floating resonance initiated? We answer this question
with a simple analytical prescription, derive and discussed below.

2. How does the system evolve during the float? This is addressed later in the
section, where we study the evolution of the eccentricity and inclination.

3. When does a floating resonance end? We show that several phenomena can break
(and end) the resonance before the transition from |a⟩ to |b⟩ is complete, and
we compute accurately the conditions under which this phenomenon happens.

Adiabatic or non-adiabatic

From Section 8.2.1, we know that if B = 0, then a fraction 1 − e−2πZ of the cloud
is transferred during the resonances. For 2πZ ≫ 1, this value is already very close
to 1. Adding the backreaction does not change this conclusion: the resonance stays
adiabatic and a complete transfer from |a⟩ to |b⟩ is observed. Assuming, for simplicity,
quasi-circular orbits (ε = 0), the duration of the floating orbit can be easily read
off (8.2.20):

∆tfloat = B√
|g|γ

= 3Mc

M

Ω4/3
0 ((1 + q)M)1/3

qαγ
(−g) . (8.2.24)

This is independent of the strength of the perturbation η(g), and corresponds to the
time it takes for the external energy losses to dissipate the energy of the two-state sys-
tem. For nonzero eccentricity instead, one must integrate f(ε) over time to determine
the duration of the float.

The situation for 2πZ ≪ 1 is, in principle, much less clear: with B = 0 the
resonance would be non-adiabatic, but backreaction tends to make it more adiabatic.
Let us once again restrict to quasi-circular orbits for simplicity. By careful numerical
study of eqs. (8.2.7) and (8.2.20), we find that the long-time behaviour of the system
is predicted by the parameter ZB alone. Depending on its value, two qualitatively
different outcomes are possible:

if 2πZ ≪ 1 and


ZB < 0.1686 . . . −→ very non-adiabatic,

ZB > 0.1686 . . . −→ very adiabatic.
(8.2.25)

In the upper case, a negligible fraction of the cloud is transferred and the time evo-
lution of ω is almost exactly linear. Conversely, in the bottom case, the cloud is
entirely transferred from |a⟩ to |b⟩ and ω is stalled for an amount of time ∆tfloat
given by (8.2.24), during which it oscillates around zero. Intermediate behaviours
are not possible, unless the value of ZB is extremely fine-tuned. Numerical solutions
of (8.2.7) and (8.2.20) are shown in Figure 8.3, choosing parameters in such a way to
illustrate the two cases in (8.2.25).
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Figure 8.3: Numerical solution of the nonlinear system (8.2.7)–(8.2.20). In both
panels we set Z = 0.001, whereas we choose the values of B to be 169 (left panel) and
170 (right panel), slightly below or above the adiabaticity threshold (the limit value of
ZB differs slightly from the one given in (8.2.25), due to finite-Z corrections). In the
left panel, a non-adiabatic transition is observed. Conversely, in the right panel, we
find an adiabatic transition and the consequent formation of a floating orbit, whose
duration matches the predicted ∆tfloat = B/

√
|g|γ. The dotted lines represent the

evolution of ω in absence of backreaction.

We can give an approximate derivation of the previous result as follows. As long
as |cb|2 is small enough, the backreaction term in (8.2.20) is negligible, hence ω

evolves linearly and the final populations approximate the Landau-Zener result (8.2.9),
giving |cb|2 ≈ 2πZ. As the unbackreacted transition happens in the time win-
dow |τ | ≲ 1, we see from (8.2.20) that the backreaction becomes significant when
1 ≲ B · 2πZ =⇒ ZB ≳ 1/(2π) ≈ 0.159 . . . Given the minimal numerical difference
between this coefficient and the one given in (8.2.25), for simplicity we will often
write the relevant condition for an adiabatic resonance simply as 2πZB ≷ 1. The
slow-down effect on the evolution of ω(τ) enjoys a positive-feedback mechanism: the
slower ω evolves, the more the transition is adiabatic, meaning that |cb|2 is larger,
which further slows down ω(τ), and so on. This explains why no intermediate be-
haviours are observed: once the backreaction goes over a certain critical threshold,
the process becomes self-sustaining.

The picture outlined so far changes slightly when the eccentricity is nonzero. First,
if the binary had a constant eccentricity ε0, we could simply replace γ → γf(ε0) to
conclude that the critical threshold for adiabaticity becomes

2πZB ≷ f(ε0)3/2 . (8.2.26)
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Figure 8.4: Floating (left panel) and sinking (right panel) resonances on eccentric
orbits, with ∆m/g = 1. We display the value of the frequency ω, the eccentric-
ity ε, and the populations |ca|2 and |cb|2 as function of τ , obtained by solving
eqs. (8.2.7), (8.2.20), and (8.2.21) with β = 0 numerically. The parameters used
for the floating case are Z = 0.03, B = 250, C = 1000, while for the sinking case we
used Z = 0.01, B = −10000, C = 100. The dotted lines represent the evolution of
ω and ε in absence of backreaction. Even though the impact of the resonance on the
eccentricity might look mild, the effect is actually dramatic when seen as a function
of ω, as shown in Figure 8.5.

When the eccentricity is allowed to vary starting from the initial value ε0, eq. (8.2.26)
still correctly predicts whether the system enters a floating orbit phase. However, the
transfer might no longer be complete, as the resonance might break. This aspect will
be discussed in Section 8.2.4.

Evolution of eccentricity and inclination

The left panel of Figure 8.4 shows a numerical solution of the coupled nonlinear
equations (8.2.7), (8.2.20), (8.2.21) and (8.2.22), for an equatorial co-rotating (β = 0)
but eccentric (ε ̸= 0) system, undergoing a floating orbit with g = ∆m. The state
dynamics is largely similar to what we described in Section 8.2.4. The most interesting
new effect concerns the evolution of the eccentricity, which can be seen to decrease
during the float, at a rate faster than the circularisation provided by GW emission.
The same numerical solution is shown as function of frequency in Figure 8.5.

The evolution of the eccentricity during a float can be studied analytically by
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Figure 8.5: Same resonances as in Figure 8.4, but now the evolution of eccentricity is
shown as a function of the frequency, for floating (left panel) and sinking (right panel)
orbits. The dashed lines represent the vacuum evolution.

plugging dω/dτ ≈ 0 into eqs. (8.2.21) and (8.2.22), which become

C
d
dτ
√

1 − ε2 = ∆m
g
f(ε) cosβ − h(ε) , (8.2.27)

C
√

1 − ε2 dβ
dτ = −∆m

g
f(ε) sin β . (8.2.28)

For resonances with β = 0 and g = ∆m, such as the one shown in Figures 8.4 and 8.5,
a small-ε expansion leads to the following solution:

ε(t) ≈ ε0 e
− 22

18 γt/Ω0 . (8.2.29)

This result should be compared to the GW-induced circularisation in absence of back-
reaction,

ε(t) ≈ ε0 e
− 19

18 γt/Ω0 . (8.2.30)

Therefore, not only is the orbit stalled at Ω(t) ≈ Ω0 for a potentially long time, given
in (8.2.24), during which the eccentricity keeps reducing; but it also goes down at a
faster rate than in the vacuum, as can be seen comparing (8.2.29) with (8.2.30). The
longer the resonance, the more the binary is circularised.

This result holds for co-rotating resonances with g = ∆m, which are the only
ones surviving in the small-ε limit and usually have the largest coupling η(g) even at
moderately large eccentricities. The dynamics are different in other cases. Remaining
in the equatorial co-rotating case (β = 0), eccentric binaries can also undergo (usually
weaker) resonances where g ̸= ∆m. In this case, (8.2.27) has a different behaviour: if
|∆m/g| < 1, then there is a fixed point ε̄ > 0 such that if ε < ε̄ then ε increases,
while if ε > ε̄ then ε decreases. For example, for ∆m/g = 1/2, we have ε̄ ≈ 0.46 and
the eccentricity approaches the fixed point according to

ε(t) ≈ 0.46 + (ε0 − 0.46)e−3.49γt/Ω0 . (8.2.31)
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Figure 8.6: Flow in the eccentricity-inclination plane (ε, β) determined by eqs. (8.2.21)
and (8.2.22) under the assumption that the system is on a floating orbit, i.e.,
d|cb|2/dτ = f(ε)/B, for two different values of ∆m/g. The highlighted arrow [red]
roughly depicts the trajectory followed by the system in Figure 8.7.

Floating resonances with |∆m/g| > 1 will instead circularise the binary even quicker
than (8.2.29). As ε decreases, however, so does Z: eventually, the perturbation be-
comes too weak and the resonance stops, generically leaving the cloud in a mixed
state as the inspiral resumes. This aspect will be discussed in Section 8.2.4.

The possibilities described so far are a particular case of the general dynamics,
which includes the evolution of the inclination β. The flow induced by eqs. (8.2.27)
and (8.2.28) in the (ε, β)-plane is shown in Figure 8.6, where the dynamics on
the horizontal axis are described by eqs. (8.2.29) (left panel) and (8.2.31) (right
panel). Perhaps the most striking feature of Figure 8.6 is the fact that the sys-
tem is violently pulled away from inclined circular orbits (vertical axis). In fact,
dε/dτ diverges for ε → 0 and finite β, meaning that the validity of eqs. (8.2.27)
and (8.2.28) must somehow break down in that limit. The explanation for this be-
haviour is that it is inconsistent to assume that the system undergoes an adiabatic
floating resonance on inclined circular orbits: eccentricity must increase before the
onset of the resonance. This is precisely the behaviour observed in Figure 8.7, where
eqs. (8.2.7), (8.2.20), (8.2.21) and (8.2.22) are solved numerically starting from ε0 = 0
and β0 ̸= 0. If 2πZB > f(ε0)3/2, then the system enters the floating orbit and starts
to follow the trajectories shown in Figure 8.6. The total “distance” in the (β, ε) plane
travelled by the system by the time the transition completes depends on a single
dimensionless “distance parameter”,

D ≡ B

C
= γ∆tfloat

Ω0
. (8.2.32)

However, it is also possible that the transition stops before fully completing, as shown
in Figure 8.7 (right panel). This is the subject of Section 8.2.4.
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Figure 8.7: Numerical solution of eqs. (8.2.7), (8.2.20), (8.2.21) and (8.2.22) with
parameters Z = 0.001, B = 1000, D = 4/3 and g = ∆m. For simplicity we ignore
that in realistic cases Z depends on the eccentricity, and we keep it constant instead.
The system is initialised with eccentricity ε0 = 0. A complete transition is achieved
when the initial inclination is β0 = 115◦ (left panel), while a “broken resonance” is
observed when β0 = 120◦ (right panel), with the float abruptly ending when (8.2.39)
is satisfied. In both cases, the system follows the trajectories indicated in Figure 8.6
until the resonance ends or breaks.

Resonance breaking

When some parameters are allowed to vary with time, the floating orbit dynamics de-
scribed in Section 8.2.4 and 8.2.4 feature a new phenomenon, which we call resonance
breaking, and has been shown already in Figure 8.7 (right panel). The goal of this sec-
tion is to determine analytically under which conditions a floating resonance breaks.
Three different cases of parameter variation are encountered in realistic scenarios.

1. The binary eccentricity ε changes with time, as seen in Figure 8.7. The eccentric-
ity is the only binary parameter that appears explicitly in (8.2.7) and (8.2.20),
while a change in β only acts through a variation of Z.

2. As a consequence of changing ε and β, the strength of the perturbation η(g),
and thus the Landau-Zener parameter Z, changes as well.

3. The total mass of the cloud changes with time if state |b⟩ has (ωnℓm)I ̸= 0: as
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8. Resonant History of Boson Clouds in Black Hole Binaries

a consequence, the Schrödinger equation (8.2.7) is modified to

d
dτ

(
ca

cb

)
= −i

(
ω/2

√
Z√

Z −ω/2 − iΓ

)(
ca

cb

)
, (8.2.33)

where Γ ≡ (ωnℓm)I/
√
γ|g|, and care must be paid in the definition of B.

All three effects come with two possible signs, one of which weakens the resonance
and potentially breaks it, while the other reinforces it: in the first category we have
the increase of eccentricity, the decrease of Z and the cloud decay (Γ < 0).2

To understand under what conditions a resonance breaks, it is insightful to study
the evolution of ω during the float. To zeroth order, ω is identically zero, but Fig-
ures 8.3, 8.4, and 8.7 hint towards a nontrivial dynamics to higher order, with small
oscillatory features of varying frequency. Let us try to find an equation of motion
for the sole ω, in the vanilla case with dε/ dτ = dZ/ dτ = Γ = 0, where no reso-
nance break is expected. By taking the derivative of (8.2.20) and repeatedly using
Schrödinger’s equation, we find

d2ω

dτ2 = −B d|cb|2

dτ2 = −2ZB(1 − 2|cb|2) +
√
ZB(c∗

acb + cac
∗
b)ω . (8.2.34)

Remarkably, the equation of motion obeyed by ω closely resembles a harmonic oscil-
lator whose (squared) frequency is −

√
ZB(c∗

acb + cac
∗
b). It is thus natural to study

this quantity: by directly applying Schrödinger’s equation, we find

√
Z

d
dτ (c∗

acb + cac
∗
b) = ω

d|cb|2

dτ . (8.2.35)

We notice that eqs. (8.2.34) and (8.2.35) form a closed system of ordinary differential
equations (because in the vanilla case |cb|2 = (τ −ω)/B), through which it is possible
to prove mathematically a number of interesting properties of the system, such as
the fact that at small Z the evolution is entirely determined by ZB, as thoroughly
described in Section 8.2.4.

For the scope of this section it is, however, sufficient to assume that the quantity
c∗

acb + cac
∗
b evolves slowly during a float, with a timescale of ∆tfloat, similar to |cb|2.

Equation (8.2.34) can then be solved in a WKB approximation as

ω ≈ 2
√
Z(1 − 2|cb|2)
c∗

acb + cac∗
b

+ AZ−1/8B−1/4

(−c∗
acb − cac∗

b)1/4 cos
(
Z1/4B1/2

∫ τ

0

√
−c∗

acb − cac∗
b dτ ′ + δ

)
,

(8.2.36)

2The superradiant amplification of state |b⟩, that is, Γ > 0, is never encountered for floating
resonances anyway.
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where A is a constant and δ is a phase. As the fast oscillations average out, we
can plug the first, non-oscillatory, term of (8.2.36) into (8.2.35) and integrate to find
c∗

acb + cac
∗
b ≈ −

√
1 − (1 − 2|cb|2)2. The resulting solution for ω,

ω ≈ − 2
√
Z(1 − 2|cb|2)√

1 − (1 − 2|cb|2)2
+ oscillatory terms , (8.2.37)

is well-behaved for the entire duration of the float, only diverging before (|cb|2 = 0)
or after (|cb|2 = 1) the resonance.

The same analytical approach can be applied to the cases mentioned above, with
varying ε or Z, or Γ ̸= 0. A “master equation”, where all three effects are turned
on at the same time, is derived and shown in Appendix F.2. Here, we find it more
illuminating to study them one at a time. The outcome in realistic cases may then
be approximated by only retaining the strongest of the three effects.

When the eccentricity is not a constant, the time derivative of (8.2.20) contains the
additional term df(ε)/ dτ . As a result, the equation of motion for ω and the expression
of c∗

acb + cac
∗
b are both modified. The final result, which has been thoroughly checked

against numerical solutions of the full system (8.2.7)–(8.2.20)–(8.2.21)–(8.2.22), is

ω ≈
df(ε)

dτ − 2ZB(1 − 2|cb|2)√
ZB2(1 − (1 − 2|cb|2)2) − (f(ε)2 − f(ε0)2)

+ oscillatory terms . (8.2.38)

If ε increases from its initial value ε0, then the denominator can hit zero before the
transition is complete, and the resonance breaks. The population remaining in state
|a⟩ and the binary eccentricity at resonance breaking satisfy

4ZB2(|ca|2 − |ca|4) = f(ε)2 − f(ε0)2 , (8.2.39)

which can be compared with the numerical solution in Figure 8.7 (right panel). De-
spite the simplicity of (8.2.39), a numerical integration is still needed, in principle, to
determine ε as function of |ca|2, and so whether a resonance will break. We can, how-
ever, make a simple conservative estimate by noting that the left-hand side can be at
maximum ZB2. If the system follows a trajectory in the (ε, β)-plane (cf. Figure 8.6)
that significantly increases its eccentricity, such that

f(ε) >
√
ZB , (8.2.40)

the resonance must necessarily break.

If, instead, Z is allowed to vary while ε is kept constant, then new terms appear
when taking the time derivative of the Schrödinger equation [used in the second
equality of (8.2.34)], and (8.2.36) becomes a damped harmonic oscillator. Similar to
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Figure 8.8: Numerical solution of eqs. (8.2.7) and (8.2.20) with (initial) parameters
Z = 0.001 and B = 1000. A Z-breaking occurs when Z is slowly reduced over time,
with the resonance ending when (8.2.41) is satisfied (left panel). A Γ-breaking is
observed when Z is kept fixed but state |b⟩ is given a nonzero decay width Γ = 1.2,
with the resonance ending when (8.2.45) is satisfied (right panel).

the previous case, the resonance breaks when c∗
acb + cac

∗
b = 0, which is equivalent to

4ZB2(|ca|2 − |ca|4) = f(ε)2
(

1 − Z

Z0

)
. (8.2.41)

We illustrate this phenomenon in Figure 8.8 (left panel), by solving numerically (8.2.7)
and (8.2.20) while Z slowly reduces over time. Analogous considerations as before
can be applied to extract from (8.2.41) the approximate point of resonance breaking
without performing a numerical integration.

Taking into account a nonzero decay width Γ, while keeping ε and Z constant,
requires more care. Because |ca|2 + |cb|2 is no longer a constant, eq. (8.2.20) is now
written as

dω
dτ = f(ε) − B

∆ϵ

(
ϵa

d|ca|2

dτ + ϵb
d|cb|2

dτ + 2Γϵb|cb|2
)

= f(ε) +B
d|ca|2

dτ , (8.2.42)

where the constant parameter B is computed according to (8.2.23), using the value
of the mass of the cloud before the start of the resonance. Furthermore, due to the
modified Schrödinger equation, formula (8.2.35) becomes

√
Z

d
dτ (c∗

acb + cac
∗
b) = −ωd|ca|2

dτ − Γ
√
Z(c∗

acb + cac
∗
b) . (8.2.43)

As we will show later (cf. Figure 8.10), in almost all realistic cases state |b⟩ decays
much faster than the duration of the resonance, i.e., τdecay ≡ (2Γ)−1 ≪ B. As a
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consequence, its population |cb|2 during a floating orbit stays approximately constant,
at a value |cb|2 = f(ε)/(2ΓB), where the state decay is balanced by the transitions
from |a⟩ to |b⟩. As this saturation value is typically very small, we will neglect it.
Under this assumption, we can solve (8.2.43) as

c∗
acb + cac

∗
b ≈

√
f(ε)(2ZB|ca|2 − f(ε)Γ)

ΓZB2 , (8.2.44)

and conclude that the resonance breaks when the remaining population in the initial
state is

|ca|2 ≈ f(ε)Γ
2ZB . (8.2.45)

This result is confirmed by a numerical solution of (8.2.7) and (8.2.20) with nonzero
Γ, as shown in Figure 8.8 (right panel). Resonances where this quantity is larger than
1 do not exhibit a floating orbit at all, showing an “immediate” breaking.

We refer to the three types of resonance breaking as ε-breaking, Z-breaking and
Γ-breaking. A summary of the respective conditions is given below.

ε-breaking Z-breaking Γ-breaking
f(ε) ≳

√
ZB Z/Z0 ≲ 1 − ZB2/f(ε)2 |ca|2 ≲ f(ε)Γ/(2ZB)

8.2.5 Sinking Orbits

Let us now turn our attention to sinking orbits, corresponding to B < 0, where
backreaction tends to make the resonance less adiabatic. This case turns out to not
be as dramatically relevant as floating orbits for the resonant history of the system.
However, it is important for direct GW signatures. For this reason, we will only study
the aspects of it with observational consequences.

All the observable sinking resonances have 2πZ ≪ 1. In this case, the final popu-
lation in state |b⟩, as predicted by (8.2.9), is very small, and this quantity is further
reduced by the backreaction. In the regime where this correction is dominant, we
can find a rough approximation for the total population transferred by only keeping
the backreaction term in (8.2.20). Further assuming |ca|2 ≈ 1 and ċb ≈ 0, we can
substitute in the second component of (8.2.7) and obtain |cb|2 ≈ (Z/B2)1/3, where we
assumed, for simplicity, quasi-circular orbits.3 This result is confirmed by numerical
tests, modulo a multiplicative factor:

B ≪ − 1
Z
, |cb|2 ≈ 3.7

(
Z

B2

)1/3
. (8.2.46)

3The validity of the assumption will become clear in Section 8.4.
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This formula is accurate for 2πZ ≪ 1 and provides a slight underestimate of the final
population for moderately large Z.

Sinking orbits backreact on the orbit by increasing both the orbital frequency
and the binary eccentricity, as shown in Figure 8.4 and 8.5 (right panels). At the
same time, both Ω and ε feature long-lived oscillations after the resonance. These
oscillations slowly die out, so that a “jump” in the Ω and ε is the only mark left after
a long time. The non-monotonic behaviour of Ω was already observed in [65], where
it was also speculated that sinking orbits could yield large eccentricities (becoming
“kicked orbits”). Our results confirm that the oscillations are not an artefact of having
considered quasi-circular orbits and further show that the increase of the eccentricity
is also not monotonic. However, for the realistic cases analysed in Section 8.4, the
increase in eccentricity due to sinking orbits turns out to be negligible.

8.3 Three Types of Resonances

Resonances can be divided in three distinct categories, depending on the energy split-
ting between the two states, as computed from (3.3.18) and illustrated in Figure 3.3.
Hyperfine resonances occur between states with same n and ℓ but different m; they
have the smallest energy splitting and thus occur the earliest in the inspiral, as the
corresponding resonant orbital frequency is smallest (8.2.5). Then, fine (same n,
different ℓ) and Bohr resonances (different n) follow, the latter having the largest
splittings. The tools developed in Section 8.2 apply to all of them: the character of a
resonance is only determined by the parameters 2Z and B; its impact on eccentricity
and inclination is quantified by D, and its duration (in case it is a floating resonance)
is ∆tfloat. In principle, the recipe to determine the co-evolution of the binary and
the cloud is clear: (i) pick the earliest resonance, (ii) determine its character and
backreaction by computing Z, B, D, and ∆tfloat, (iii) update the state of binary and
cloud accordingly, and (iv) move to the next resonance and repeat. We will indeed
execute this algorithm in Section 8.4. To be as generic as possible and explore a wide
parameter space, it will prove useful to find the scalings of the relevant quantities
with M , Mc, q, α, and ã. Different types of resonances have different scalings, so we
analyse them here systematically.

8.3.1 Hyperfine Resonances

Let us start with hyperfine resonances. From (3.3.18), we see that the energy split-
ting (and thus the resonant frequency) scales as Ω0 ∝ M−1α6ã. The corresponding
orbital separation is R0 ∝ Mα−4ã−2/3. This strong α-dependence places hyperfine
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8.3. Three Types of Resonances

resonances at distances parametrically much larger than the cloud’s size. At such
large orbital separations, the cloud’s ionisation is very inefficient, and thus the only
significant mechanism for energy loss is the GW emission. As this too is a very
weak effect, other phenomena might potentially be relevant, including astrophysical
interactions connected to the binary formation mechanism. We will postpone the dis-
cussion of these complications to Section 8.4 and assume for now that formula (8.2.6)
applies, giving a chirp rate of γ ∝ qM−2α22ã11/3. This information is already enough
to determine the scaling of three key quantities:

B ∝ Mc

M
q−3/2α−4ã−1/2 , ∆tfloat ∝ Mcq

−2α−15ã−7/3 , D ∝ Mc

M
q−1αã1/3 .

(8.3.1)

The scaling of the Landau-Zener parameter Z depends instead on the overlap
coefficient η(g). Given the hierarchy of length scales, R0 ≫ rc, the “inner” term
in (8.1.2) dominates the radial integral Ir. At fixed ℓ∗ ̸= 1, we thus have

η(g) ∝ qα d
(ℓ∗)
∆m,g(β) Ir = qα d

(ℓ∗)
∆m,g(β)

∫ ∞

0

rℓ∗

Rℓ∗+1
0

Rnℓ(r)2r2 dr

∝ M−1qα2ℓ∗+5ã2(ℓ∗+1)/3d
(ℓ∗)
∆m,g(β) ,

(8.3.2)

and so

Z ∝ qα4ℓ∗−12ã(4ℓ∗−7)/3
(
d

(ℓ∗)
∆m,g(β)

)2
. (8.3.3)

The dipole ℓ∗ = 1 is an exception for two reasons: (a) its inner term in (8.1.2) vanishes,
(b) its “outer” term is not simply rℓ∗/Rℓ∗+1

∗ . However, hyperfine resonances connect
states with same ℓ: from the selection rule (8.1.5), only even values of ℓ∗ contribute.
We can thus safely ignore the dipole. The rest of the multipole expansion can be seen
as a power series in the small parameter rc/R0, the smallest ℓ∗ giving the strongest
contribution. Because selection rules require ℓ∗ ≥ |g| = −g,4 a resonance with a given
value of g will be dominated by ℓ∗ = −g. The only two cases we will encounter in
Section 8.4 are

g = −2 Z ∝ qα−4ã1/3
(
d

(2)
∆m,g(β)

)2
, (8.3.4)

g = −4 Z ∝ qα4ã3
(
d

(4)
∆m,g(β)

)2
. (8.3.5)

Furthermore, the assumption ℓ∗ = −g allows us to write the explicit expression for
the angular dependence of Z as

d
(−g)
∆m,g(β) ∝ sin∆m−g(β/2) cos−∆m−g(β/2) . (8.3.6)

4Strictly speaking, this constraint only applies on circular orbits. In general, the same inequality
applies to gβ instead.
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8.3.2 Fine Resonances

Most of the assumptions made for hyperfine resonances work in the fine case too. The
resonant frequency now scales as Ω0 ∝ M−1α5 and, similar to before, we arrive to

B ∝ Mc

M
q−3/2α−7/2 , ∆tfloat ∝ Mcq

−2α−38/3 , D ∝ Mc

M
q−1α2/3 . (8.3.7)

The scaling of the overlap coefficient reads η(g) ∝ qM−1α(4ℓ∗+13)/3, and we get

Z ∝ qα(8ℓ∗−29)/3
(
d

(ℓ∗)
∆m,g(β)

)2
. (8.3.8)

The main difference with the previous case resides in the possible values of ℓ∗. Fine
resonances connect states with different values of ℓ, and most of the cases we will study
in Section 8.4 will have odd values of ℓ∗. For g = −3, all the previous arguments
apply and the octupole ℓ∗ = 3 is the dominant contribution. For g = −1, the
extreme weakness of the dipole at large distances again leaves the octupole as the
most important term; because now ℓ∗ ̸= −g, however, the angular dependence will
have a form different from (8.3.6), which we will describe on a case-by-case basis in
Section 8.4. There is one further exception to this: if ℓa + ℓb = 1, then the selection
rule (8.1.6) forbids all ℓ∗ ≥ 2. Only in this case (corresponding to the |211⟩ →
|200⟩ resonance) the dipole is entirely responsible for the coupling between the two
states. Its anomalous expression (8.1.2) endows η(g) (and thus Z) with a non-power-
law dependence on α: given the peculiarity of this case, we will treat it explicitly in
Appendix F.4.

8.3.3 Bohr Resonances

Bohr resonances are a different story. States with different principal quantum number
n have different energies to leading order, meaning that the resonant orbits are placed
at distances comparable to the cloud’s size. There is no parametric separation between
the two, as now R0 ∝ Mα−2 ∝ rc. At these orbital distances, the cloud’s ionisation is
generally a more effective mechanism for energy loss than GWs. We prove this point
in Figure 8.9, where the position of several Bohr resonances is shown on top of the
ionisation-to-GWs power ratio, computed as in [10, 66, 550] on circular orbits. This
latter quantity scales as

Pion

Pgw

∣∣∣∣
R∗=R0

∝ Mc

M
α−5 . (8.3.9)

With the possible exception of transitions to |100⟩, as they happen extremely late
in the inspiral, Bohr resonances and ionisation thus happen at the same time. This
observation raises two points.
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Figure 8.9: Position of a few selected Bohr resonances, compared to Pion/Pgw, i.e.,
the ratio of the ionisation power to the power emitted in GWs, shown here for a
circular counter-rotating orbit and for a cloud in the |211⟩ (left panel) or |322⟩ (right
panel) state. We assumed Mc/M = 0.01 and α = 0.2, but the relative position of the
resonances and the shape of the curve do not depend on the parameters.

1. Formula (8.2.6) for the chirp rate γ is no longer accurate, as ionisation must
now be included.

2. The derivation of the expression for Pion laid down in [66] assumes that the
system is away from bound-to-bound state resonances.

In Appendix F.3 we extend the framework of [66] to describe the ionisation of a system
actively in resonance. Although this requires the addition of new terms, their effect is
generally negligible for realistic parameters. It is thus a good approximation to simply
adjust the value of γ by a factor 1 + Pion/Pgw ≈ Pion/Pgw, where Pion is computed
as in [10, 66, 550]. The last approximation holds whenever Pion ≫ Pgw and is always
satisfied, unless the resonance involves |100⟩ or the value of α is exceptionally large.

Under these assumptions, we arrive to

B ∝
√
Mc

M
q−3/2 , ∆tfloat ∝ Mq−2α−3 , D ∝ Mc

M
q−1 . (8.3.10)

These quantities now also have a β-dependence, due to Pion having different values
for different inclinations. However, we will see in Section 8.4 that this detail is not
relevant, so we neglect it here. As for the overlap η(g), there is now no clear hierarchy
of multipoles. Luckily, R0 has the same α-scaling as the argument of the hydrogenic
wavefunctions Rnℓ: with an appropriate change of variable, we can show that

η(g) ∝ M−1qα3d
(ℓ∗)
∆m,g(β) . (8.3.11)

The β-dependence in (8.3.11) can be written in terms of a Wigner small d-matrix
only when there is a single value of ℓ∗ that contributes. As this is the case for many
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of the Bohr resonances we will encounter in Section 8.4, we keep that factor explicit
here. Finally, the Landau-Zener parameter scales as

Z ∝ M

Mc
q
(
d

(ℓ∗)
∆m,g(β)

)2
. (8.3.12)

One particularly interesting aspect of Bohr resonances is the disappearance of any α-
dependence from the Landau-Zener parameter Z and from the backreaction B. This
is in contrast with the steep power-laws found for hyperfine and fine resonances, and
it means that the character of Bohr resonances is much more universal.

8.4 Resonant History of the Cloud

In this section we draw a consistent picture of the co-evolution of the cloud and the
binary, using the tools developed in Sections 8.2 and 8.3. Assuming a well-motivated
initial state of the cloud (generally |211⟩ or |322⟩), an astrophysically relevant range
for α [see eqs. (8.4.3) and (8.4.11)], and small q, the plethora of phenomena described
in Section 8.2 only occur in recognisable and relatively simple patterns. These con-
stitute the “realistic” cases, which we systematically explore in this section, with the
goal of understanding the state of the system by the time it becomes observable: for
example, when it enters the LISA band. First, we discuss the generic behaviour of
the different types of resonances in Section 8.4.1; then, in Section 8.4.2 and 8.4.3, we
study explicitly the history for a cloud initialised in the state |211⟩ or |322⟩.

8.4.1 General behaviour

The initial state |a⟩ = |naℓama⟩ of the cloud, populated by superradiance, generally
hasma = ℓa = na−1. Within the multiplet of states |naℓam⟩ withm ≤ ma, this is the
one with highest energy, as can be readily seen from (3.3.18). Hyperfine resonances,
which occur the earliest in the inspiral, thus necessarily have ∆ϵ < 0 and are of the
floating type. To understand their behaviour, it is important to keep in mind a few
key points.

Adiabaticity. The first question to answer is whether a given hyperfine resonance
is adiabatic or not. We can apply the results of Section 8.2.4. If 2πZB >

f(ε)3/2 then the resonance is adiabatic: the binary starts evolving as described in
Section 8.2.4 until the transition completes after a time ∆tfloat, or the resonance
breaks due to any of the conditions derived in Section 8.2.4. Almost all hyperfine
resonances turn out to be adiabatic in the entire parameter space, except in a
narrow interval of almost counter-rotating inclinations, say π − δ1 < β ≤ π,
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where δ1 is the size of the interval. This is because, on floating orbits, the
resonance condition Ω(g)

0 = ∆ϵ/g forces g to be negative; on the other hand,
∆m = m − ma < 0, and from (8.3.6) we see that for β → π the parameter
Z goes to zero as a (high) power of cos(β/2). The explicit determination of
the angle δ1 as function of the parameters will be performed in Sections 8.4.2
and 8.4.3.

Cloud’s decay and Γ-breaking. After saturation of the dominant superradiant
mode |naℓama⟩, all states of the multiplet |naℓam⟩ with m ̸= ma have
ℑ(ω) < 0, meaning that they decay back in the BH with an e-folding time
tdecay ≡ |2ℑ(ωnaℓam)|−1. It is thus necessary to compare ∆tfloat and tdecay.
One of the most important results of this work is the following: for intermediate
or extreme mass ratios, and typical values of Mc and α, the decay timescale
tdecay is many orders of magnitude smaller than floating timescale, ∆tfloat. It
is not easy to prove this statement in full generality, due to the complicated
dependence of tdecay on the parameters. Nevertheless, for small α and ã, using
the Detweiler approximation (3.3.19) and the results from Section 8.3.1, we have

tdecay

∆tfloat
∝ M

Mc
q2α10−4ℓa ã4/3 , (8.4.1)

where ã ∝ α at the superradiant threshold. For α → 0 and small enough values
of ℓa, this ratio becomes very small. In fact, for small q, any possible value of α
results in tdecay ≪ ∆tfloat. A more detailed comparison is given in Figure 8.10,
where tdecay is computed numerically through Leaver’s [154, 574, 575, 725] (see
also Appendix A.1.1) and Chebyshev’s [375] methods for various values of α,
and the spin ã is set to correspond to the boundary of the BH superradiant
region.

This result has a dramatic consequence: hyperfine transitions are never able to
change the state of the cloud. Instead, the portion that is transferred to state
|b⟩ decays immediately back into the BH.5 The analysis of Section 8.2.4 then
applies, and the resonance Γ-breaks when the fraction of the cloud remaining
in state |a⟩ falls below the threshold determined in (8.2.45). In a relatively
large portion of parameter space, generally around counter-rotating orbits, that
formula returns |ca|2 > 1, meaning that the resonance Γ-breaks immediately.
The outcome is effectively similar to a non-adiabatic resonance, that never even
starts the floating phase. Similar to before, we will define an angular interval
π − χ1 < β ≤ π, within which the resonance is not effective. The ε-breaking
and Z-breaking are instead less relevant for realistic parameters.

5As a consequence, the mass and spin of the BH change. Our framework is not able to capture
this effect, which we accordingly ignore in this chapter.
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Figure 8.10: Floating timescale ∆tfloat (solid lines), compared to the decay timescale
tdecay (dashed lines) of the final state, for some selected resonances. We use benchmark
parameters and determine the decay rate independently through Leaver’s continued
fraction method [154, 574, 575, 725] and the Chebyshev method in [375]. Two reso-
nances for a |211⟩ initial state are shown (left panel), namely |211⟩ → |210⟩ [blue] and
|211⟩ → |200⟩ [orange]. Similarly, three resonances for a |322⟩ initial state are shown
(right panel), namely |322⟩ → |320⟩ [blue], |322⟩ → |311⟩ [orange] and |322⟩ → |211⟩
[green]. The thick, normal and thin lines indicate hyperfine, fine or Bohr resonances
respectively. Note the Bohr resonance falling outside of the ionisation regime for
large α, changing the scaling of ∆tfloat from α−3 to α−8, as predicted by (8.3.10)
and (8.3.9).

The strongest resonance. As shown in Section 8.2.2, on eccentric and inclined
orbits a resonance between two given states is excited at many different orbital
frequencies, depending on the value6 of |g| = 1, 2, 3, . . . The strength of the
coupling also depends on ε and β. Keeping track of so many different resonances
would be very complicated. However, the hierarchy tdecay ≪ ∆tfloat implies
that as soon as an adiabatic floating resonance is encountered (and does not
break early), the cloud is destroyed. This means that studying the “strongest”
resonance (the one that destroys the cloud in the largest portion of parameter
space) actually suffices to determine the fate of the cloud.

Up to moderate values of the eccentricity, the coupling η(g) that remains nonzero
in the limit of circular orbit is much larger than all the others. We can then
approximate the “strongest resonance” by ignoring eccentricity altogether. Re-
garding inclined orbits instead, we observe that higher values of g require con-
tributions from higher values of the multipole index ℓ∗: at the separations of

6As briefly mentioned in Section 8.2.2, two separate indices, say gε and gβ are necessary when both
eccentricity and inclination are not zero. However, this technicality is not crucial in understanding
the history of the system.

156



8.4. Resonant History of the Cloud

hyperfine resonances, the lowest value of ℓ∗ (typically the quadrupole ℓ∗ = 2)
produces the strongest coupling. Given two states, we will then study the reso-
nance with the smallest value of |g|.

Applying the previous considerations to each possible hyperfine resonance, we
are able to determine whether the cloud is destroyed in the process or survives to
later stages of the inspiral. However, the binary might be able to “skip” hyperfine
resonances for other reasons. This is because some of them are placed at extremely
large binary separations: typically R∗/M ≳ O(103) for a |211⟩ initial state, and
R∗/M ≳ O(104 −105) for |322⟩. These distances are large enough that not only other
kinds of astrophysical interactions may play a role, but their presence is in some cases
necessary, in order to bring the binary close enough for the merger to happen within a
Hubble time. Rewriting eq. (2.2.6), the initial separation for a quasi-circular inspiral
as function of the time-to-merger t0 is given by

R∗

M
= 2.3 × 104

(
t0

1010 yrs

)1/4(104M⊙

M

)1/4 ( q

10−3

)1/4
. (8.4.2)

In other words: if we want the binary to merge within a Hubble time, we might be
forced to assume that it “starts” its evolution too close for hyperfine resonances to be
encountered, especially for a cloud initialised in the |322⟩ state. This can be achieved
by a variety of formation mechanisms, including dynamical capture [726, 727] and
in-situ formation [43, 44, 727–729].

If the system is able to skip through hyperfine resonances because they are either
all non-adiabatic, or they Γ-break early, or the binary is formed at small enough sep-
arations, then the cloud can be present when fine resonances are encountered. Their
phenomenology is largely similar to hyperfine ones, as they too are all of the float-
ing type. We defer the discussion of some state-dependent aspects to Sections 8.4.2
and 8.4.3. For the purpose of the present general discussion, it suffices to say that,
once again, the cloud can survive this stage if π − δ2 < β ≤ π (for some angle δ2 to
be determined), if the resonance Γ-breaks early in an interval π − χ2 < β ≤ π, or if
the binary is formed in situ at very small radii.

Finally, if the cloud makes it to this point, it becomes potentially observable: the
“Bohr region” can be in the LISA band and is rich of signatures of the cloud. These
come in the form of ionisation and Bohr resonances, the vast majority of which are
sinking and non-adiabatic. State-dependent details will be discussed in Sections 8.4.2
and 8.4.3 and a summary of the observational signatures will be given in Section 8.5.
A diagrammatic representation of the three stages of the resonant history is shown in
Figure 8.1.

As a concluding remark, we note that the results derived here and in Section 8.2
are specific to resonances involving two states only. We have explicitly checked that
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8. Resonant History of Boson Clouds in Black Hole Binaries

this is the case for the resonances discussed in the next sections, so we apply the
results of Section 8.2 without further modification.

8.4.2 Evolution from a |211⟩ Initial State

The |211⟩ state is the fastest-growing superradiant mode and represents therefore
a natural assumption for the initial state of the cloud. As we saw in eq. (3.3.22),
the requirements that the superradiant amplification takes place, and does so on
timescales no longer than a Gyr, set a constraint on α:

0.02
(

M

104M⊙

)1/9
≲ α < 0.5 . (8.4.3)

Once grown, the cloud will decay in GWs with a rate roughly proportional to M2
c α

14,
assuming the scalar field is real [see eqs. (3.3.25)-(3.3.26)]. The resulting decay of Mc
is polynomial, rather than exponential in time (3.3.25); as such, we will not impose a
further sharp bound on α, and treat Mc/M as an additional free parameter.

There are two possible hyperfine resonances, with the states |210⟩ and |21 −1⟩.
Following the line of reasoning laid down in Section 8.4.1, we ignore the fact that the
same resonances can be triggered at multiple points if the orbit is eccentric. Both
resonances are then mediated by g = −2 and they are positioned at

|211⟩ g=−2−→ |210⟩ R0

M
= 8.3 × 103

(
0.2
α

)4(0.5
ã

)2/3
, (8.4.4)

|211⟩ g=−2−→ |21 −1⟩ R0

M
= 5.2 × 103

(
0.2
α

)4(0.5
ã

)2/3
, (8.4.5)

where the value of the spin should be set equal to the threshold of superradiant
instability of |211⟩ (3.3.23). Both resonances become non-adiabatic in an interval
π−δ1 < β ≤ π, with the strongest constraint on δ1 given by |211⟩ → |210⟩. The value
of δ1 is determined from (8.2.26): this means setting 2πZB = f(ε0)3/2, where ε0 is
the eccentricity at the onset of the resonance, and solving for β as function of the
parameters. Making use of the relations (8.3.1), (8.3.4) and (8.3.6), and evaluating
numerically the overlap η(2) between the two states, we find

δ1 = 7.5◦
(

10−2

Mc/M

)1/6 ( q

10−3

)1/12 ( α

0.2

)4/3
(
ã

0.5

)1/36
f(ε0)1/4 . (8.4.6)

Although |211⟩ → |210⟩ is also non-adiabatic in a neighbourhood of β = 0, such a co-
rotating binary would still encounter the adiabatic floating resonance |211⟩ → |21 −1⟩
later, so that the only “safe” inclinations are in the neighbourhood of counter-rotating
determined in (8.4.6).
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Figure 8.11: Mass of the cloud Mbr
c at resonance Γ-breaking, as a function of α and

β, for the two hyperfine resonances from the initial state |211⟩. The mass of the cloud
decreases during the resonance from its initial value Mc, and the resonance breaks
when the value Mbr

c is reached. Values Mbr
c > Mc indicate that the resonance breaks

immediately as it starts. The contours [blue] are calculated on circular orbits, as this
gives a good approximation for the strongest constraint on Mbr

c even when overtones,
due to orbital eccentricity, (i.e., higher values of |g| for the resonance between two
given states) are taken into account. Due to the inaccuracy of the analytical ap-
proximations for the decay width (ω211)I, especially at large α, we have determined
the contours with Leaver’s [154, 574, 575, 725] and Chebyshev [375] methods. The
dashed lines [red] are analytical approximations to the blue contours in the proximity
of β = π, based on (8.4.7).

Having determined when hyperfine resonances can be adiabatic, we now calculate
where they break, using the results of Section 8.2.4. As anticipated in Section 8.4.1,
the Γ-breaking is the most relevant mechanism of resonance breaking. To assess its
impact, we observe that, because B ∝ Mc, eq. (8.2.45) can be written as a relation
for the final mass of the cloud at resonance breaking, Mbr

c = Mc|ca|2, which can be
computed as a function of α and β. If Mbr

c > Mc is found, then the resonance breaks
immediately as it starts, as if it was non-adiabatic. The value of Mbr

c as function of
α and β is shown in in Figure 8.11. Note that, in principle, the resonance always Γ-
breaks before the cloud is completely destroyed, but its observational impact becomes
negligible when Mbr

c is too small.

The combined constraints due to the Γ-breaking of |211⟩ → |210⟩ and |211⟩ →
|21 −1⟩ imply that the cloud survives in a neighbourhood of β = π, say π − χ1 <

β < π, similar to what we found for the adiabaticity of the resonances. An analytical
approximation of χ1 for |211⟩ → |210⟩ based on Detweiler’s formula (3.3.19) is

χ1 ≈ 38◦
(

10−2

Mbr
c /M

)1/6 ( α

0.2

)7/6
(

0.5
ã

)5/18
f(εbr)1/6 , (8.4.7)

where εbr is the eccentricity at resonance breaking. Formula (8.4.7) significantly
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underestimates the result for large α, as shown in Figure 8.11. Because χ1 > δ1, this
angular interval overwrites (8.4.6) as the portion of parameter space where the cloud
survives hyperfine resonances.

Finally, we check whether hyperfine resonances can ε-break or Z-break. Both ε

and Z can vary significantly during the float, so we use the relation (8.2.39) as an
order-of-magnitude estimate. For generic values of the inclination, both hyperfine
resonances have

√
ZB ∼ 106

(
Mc/M

10−2

)(
10−3

q

)(
0.2
α

)6(0.5
ã

)1/3
. (8.4.8)

The resonances ε-breaks if f(ε) =
√
ZB, which is only satisfied at very high eccen-

tricities, not smaller than 0.95 for typical parameters. Such extreme eccentricities are
only reachable if the initial inclination is very close to β = π, as can be seen from
Figure 8.6. But, as proved in (8.4.6) and (8.4.7), near-counter-rotating binaries do
not undergo floating orbits at all, due to the resonances being either non-adiabatic
or Γ-breaking immediately. As for the Z-breaking, one can conservatively ignore the
term Z/Z0 in (8.2.41), falling back to the same relation as (8.2.39).

We conclude that the survival of the cloud to later stages of the inspiral is exclu-
sively determined by the Γ-breaking. If the binary is outside the regions coloured in
Figure 8.11, and computed in (8.4.7), it encounters the only possible fine resonance:

|211⟩ g=−1−→ |200⟩ R0

M
= 3.4 × 102

(
0.2
α

)10/3
, (8.4.9)

whose angular dependence is determined through (8.3.6) as usual. This resonance,
however, has anomalous behaviour for two reasons:

1. it is entirely mediated by the dipole ℓ∗ = 1;

2. depending on the value of α, it may fall inside the ionisation regime (Pion ≳ Pgw)
despite not being a Bohr resonance.

As a consequence, its Landau-Zener parameter Z does not scale as a pure power-law
in α (nor Mc), and must be computed numerically. The explicit result is reported
in Appendix F.4. Similar to hyperfine resonances, we can compute angular intervals
δ2 and χ2 where the resonance is non-adiabatic and Γ-breaks, respectively. The
extremely large decay width of |200⟩ (as all states with ℓ = 0), however, makes χ2 as
large as to correspond with the whole possible range of inclinations, from 0◦ to 180◦.
Fine resonances are thus effectively never excited for a cloud in a |211⟩ state.

Finally, if the binary arrives to the Bohr region with the cloud still intact, then it
encounters the Bohr resonances, all of which are of the sinking type and fall inside
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Figure 8.12: Strongest sinking Bohr resonances on a counter-rotating orbit for a cloud
in the |211⟩ or |322⟩ state. The percentages next to each resonance are the values of
|cb|2 for benchmark parameters, and they scale with Mc and q according to (8.4.10),
while the red numbers below are the resonant orbital separations R0, in units of M .

the ionisation regime (with the exception of |211⟩ → |100⟩). No extra circularisation
is provided by the hyperfine resonances, if they do not significantly destroy the cloud.
Nevertheless, by the time the binary arrives to the Bohr regime, not only has it
presumably evolved for a long time under the circularising effect of GW radiation,
but it also starts to ionise the cloud, further suppressing the eccentricity [10]. We
will therefore assume that quasi-circular orbits are a good approximation by this
point. The final population after each sinking resonance can be found using the
approximation (8.2.46), which together with the scaling relations (8.3.10) and (8.3.12),
implies

|cb|2 ≈ 3.7
(
Z

B2

)1/3
∝ M

Mc
q4/3 . (8.4.10)

For the benchmark parameters, the values of |cb|2 for the strongest sinking resonances
(which are typically with states of the form |n00⟩) are summarised in Figure 8.12,
where we have assumed for simplicity a perfectly counter-rotating configuration (β =
π). This is generally a good approximation, due to the relative smallness of the angle
χ1. We see that all resonances are very non-adiabatic, in total transferring less than
1% of the cloud to other states. Hence, ionisation of |211⟩ happens with minimal
disturbance from Bohr resonances.

The only floating Bohr resonance is |211⟩ → |100⟩. It is worth noting that this
is also the only Bohr resonance falling outside the ionisation regime (see Figure 8.9)
and that recent numerical studies [7, 504] have shown that it has a resonance width
much larger than all other resonances (cf. Figure 9.2). This last observation means
that the resonance might partially evade the analysis of the present chapter, due to
the nonlinear dependence of Pgw on R∗ playing an important role. In any case, we
expect the extremely large decay width of |100⟩ to Γ-break the resonance in most or
all realistic cases, preventing the float from happening.
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8.4.3 Evolution from a |322⟩ Initial State

The second-fastest growing mode is |322⟩. In this case, the constraint on α – imposing
that the superradiance timescale is shorter than a Gyr – is

0.09
(

M

104M⊙

)1/13
≲ α < 1 , (8.4.11)

while the rate of cloud decay in GWs is proportional to Mcα
18.

Compared to Section 8.4.2, a larger number of hyperfine resonances are possible,
with any state of the form |32mb⟩, with −2 ≤ mb ≤ 1. All of these can happen with
g = −4, in which case the hexadecapole ℓ∗ = 4 is entirely responsible for the mixing
of the states. However, the cases mb = 0 and mb = 1 can also resonate, at different
separations, with g = −2: these are dominated by the quadrupole ℓ∗ = 2 instead,
which makes these resonances much stronger than the others. Their positions are

|322⟩ g=−2−→ |321⟩ R0

M
= 5.4 × 104

(
0.2
α

)4(0.5
ã

)2/3
, (8.4.12)

|322⟩ g=−2−→ |320⟩ R0

M
= 3.4 × 104

(
0.2
α

)4(0.5
ã

)2/3
, (8.4.13)

which should be evaluated at ã ≈ 2α/(1+α2) (3.3.23). The most stringent constraint
on δ1 is given by |322⟩ → |321⟩ and equals

δ1 = 5.4◦
(

10−2

Mc/M

)1/6 ( q

10−3

)1/12 ( α

0.2

)4/3
(
ã

0.5

)1/36
f(ε0)1/4 . (8.4.14)

The angle χ1, within which the same resonance Γ-breaks, is instead

χ1 ≈ 4.8◦
(

10−2

Mbr
c /M

)1/6 ( α

0.2

)11/6
(

0.5
ã

)5/18
f(εbr)1/6 , (8.4.15)

also more accurately numerically computed and shown in Figure 8.13 (left panel).
Similar to the resonant history of |211⟩, some resonances (such as |322⟩ → |321⟩)
become weak around β = 0, yet other resonances (such as |322⟩ → |320⟩) do not,
thereby eliminating any possible “safe interval” around a co-rotating configuration.

Differently from Section 8.4.2, there is no clear hierarchy between δ1 and χ1.
Which one is largest depends not only on α, but also on the chosen value of Mbr

c .
The angular interval that leads to the survival of the cloud in appreciable amounts
is, however, generally dominated by the Γ-breaking, as even very light clouds, say
Mbr

c /M < 10−4, are able to give clear signatures in the Bohr region [66].
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Figure 8.13: Same as Figure 8.11, for the strongest hyperfine (left panel) and fine
(right panel) resonances from a |322⟩ state. The analytical approximations of the
contours are not shown in the latter case, as they quickly become inaccurate for
moderate values of α.

As in the |211⟩ case, the ε-breaking and Z-breaking prove to not be relevant for
the resonant history: the value

√
ZB ∼ 107

(
Mc/M

10−2

)(
10−3

q

)(
0.2
α

)6(0.5
ã

)1/3
, (8.4.16)

requires extremely high eccentricities (ε ≳ 0.98) to give rise to a resonance breaking.
The corresponding initial inclinations are extremely close to β = π and would fall in
the interval (8.4.14), where the resonance is not adiabatic.

A cloud in the |322⟩ state can experience fine resonances with states with ℓ ̸= 0.
Their decay width is smaller than those of the states with ℓ = 0: as a consequence,
fine resonances can destroy a significant portion of the cloud before they Γ-break.
The fine resonance that gives the most stringent constraints on δ2 and χ2 is

|322⟩ g=−1−→ |311⟩ R0

M
= 2.3 × 103

(
0.2
α

)10/3
. (8.4.17)

Analytical approximations for β ≈ π give7

δ2 = 3.2◦
(

10−2

Mc/M

)1/4 ( q

10−3

)1/8 ( α

0.2

)31/24
f(ε0)3/8 , (8.4.18)

and

χ2 ≈ 9◦
(

10−2

Mbr
c /M

)1/4 ( α

0.2

)3/2
f(εbr)1/4 , (8.4.19)

7For α ≳ 0.5, this resonance may marginally fall inside the ionisation regime. However, the value
of Pion never becomes much larger than Pgw. We therefore ignore this detail, which only slightly
increases the value of δ2 compared to the one presented in (8.4.18).
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while a more accurate numerical determination of the mass of the cloud at resonance
breaking is given in Figure 8.13 (right panel). It is worth noting that the strength of
the |322⟩ → |311⟩ resonance has a complicated β-dependence, due to the octupole ℓ∗ =
3 ̸= −g being the dominant term. Consequently, this resonance becomes weak not
only around β = 180◦, but also around β = 41◦ and 95◦ (as visible from Figure 8.13).
However, other fine resonances remain strong at these intermediate inclinations and
so, once again, the cloud can only reach the Bohr region if the inclination is in a
narrow interval around the counter-rotating configuration.

In the Bohr region, the system encounters several sinking resonances, the strongest
of which are with states of the form |n11⟩. The final populations |cb|2 are displayed in
Figure 8.12. For benchmark parameters, about 2% of the cloud is lost in the process.
None of the floating resonances, with n = 1 or n = 2 states, becomes adiabatic within
the interval of inclinations discussed above.

Finally, in case the binary is formed at radii small enough to avoid constraints on
the inclination coming from fine resonances, an interesting scenario opens up. The
strongest floating Bohr resonance is |322⟩ g=−1−→ |211⟩, which becomes adiabatic, for
benchmark parameters, for β < 155◦.8 Among all possible scenarios we considered
in Sections 8.4.2 and 8.4.3, this is the only case where the binary’s evolution in
the Bohr region features a new phenomenon, beyond ionisation and non-adiabatic
sinking resonances: namely, an adiabatic floating resonance. The companion’s motion
continues to ionise the cloud while this resonance takes place, potentially changing Mc
significantly before its end. This is also the only floating resonance with the actual
potential to partially move the cloud to a different state, rather than merely destroying
it: as can be seen in Figure 8.10 (right panel), the hierarchy ∆tfloat ≫ tdecay is not
valid in the entire parameter space. Hence, depending on the parameters, when the
resonance ends, the inspiral can either continue without the cloud, or with a cloud in
a (decaying) |211⟩ state and a reduced value of Mc. In the latter case, the discussion
in Section 8.4.2 applies from this point onwards.

8.5 Observational Signatures

The dynamics of the cloud-binary system are intricate and depend on the parameters.
In Section 8.4, we determined when the cloud is entirely destroyed in the early inspiral,
when it loses some of its mass upon resonance breaking, and when it remains intact
until the binary enters the Bohr region. There are thus two main ways the cloud can

8Due to the weakness of the resonance compared to most the (hyper)fine ones, it is not possible
to expand around β = π and get a simple formula for the upper limit on the angle as function
of the parameters. Nevertheless, a good approximation is given by the following cubic equation:
(π − β)4 + 2.8(π − β)6 > 0.056 × (105Mcq/M)1/2.

164



8.5. Observational Signatures

leave an imprint on the gravitational waveform: (i) modifications of the waveform due
to interaction with the cloud, in case it is still present in the late stages of the inspiral
(Section 8.5.1); (ii) permanent consequences on the binary parameters left by a cloud
destroyed early in the inspiral (Section 8.5.2). A partially destroyed cloud, left by a
broken resonance, may be able to combine both kinds of signatures.

8.5.1 Direct Signatures of the Cloud

As discussed extensively in Section 8.4, the requirement that the cloud survives the
hyperfine and fine resonances forces either the inclination angle to be within O(10◦) of
a counter-rotating configuration or the binary to form at radii too small to ever excite
those resonances. Then, most phenomena producing direct observational evidence of
the cloud happen when the binary reaches the Bohr region. Here, ionisation takes over
GW radiation as the primary mechanism of orbital energy loss. When Pion ≫ Pgw,
the evolution of the GW frequency fgw approximately follows a universal shape [550],

fgw(t) = α3

M
f

(
Mcqα

3

M2 t

)
, (8.5.1)

where the function f can be explicitly determined from the shape of Pion. This
universal behaviour of fgw(t) constitutes a direct evidence of the presence of the
cloud.

On top of this, sinking resonances can cause non-negligible upward “jumps” of
fgw due to their backreaction,9 even if they are strongly non-adiabatic. For a Bohr
resonance |naℓama⟩ → |nbℓbmb⟩, they are located at

f res
gw = 26 mHz

g

(
104M⊙

M

)( α

0.2

)3
(

1
n2

a

− 1
n2

b

)
, (8.5.2)

where g = mb −ma, and thus fall inside the LISA band for benchmark parameters.10

The amplitude of the jump can be computed explicitly from (8.2.20) (assuming
quasi-circular orbits):

∆fgw = 0.61 mHz
∆m1/3

(
104M⊙

M

)(
Mc/M

0.01

)(
10−3

q

)( α

0.2

)3
(

1
n2

a

− 1
n2

b

)4/3( |cb|2

10−3

)
,

(8.5.3)

9In this chapter, we only study the backreaction on the orbital parameters. When including the
backreaction on the geometry as well, the cloud’s transitions could cause “resonant” features in the
emitted GWs, see e.g., Figure 1 of [552].

10Formula (8.5.2), with nb → ∞, also describes the position of the g-th “kink” of the function f

appearing in (8.5.1), corresponding to the g-th discontinuity of Pion (see Figure 8.9).
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where the values of |cb|2 and their dependence on the parameters are given in Fig-
ure 8.12 and eq. (8.4.10). The increase in frequency comes with smaller, long-lived
oscillations of the frequency, and with a slight increase of the eccentricity; both these
effects have been shown in the right panels of Figure 8.4 for example parameters. The
dephasing introduced by a single sinking resonance on top of the one coming from
ionisation is ∆Φgw ≈ πf res

gw∆fgw/γ. This is of the order of thousands of radians,
although the exact number can vary by a few orders of magnitude in different regions
of the parameter space. Not only is this well above the expected LISA precision of
∆Φgw ∼ 2π, but such a dephasing would happen in a very narrow frequency range,
in contrast to most other environmental effects, including ionisation. This unique
behaviour would aid parameter estimation by directly linking the cloud’s parameters
with ∆Φgw via (8.5.2) and (8.5.3), especially if multiple jumps are observed within
one signal.

As discussed in Sections 8.4.2 and 8.4.3, the only cases where a floating resonance
can be observed in the Bohr region require a binary formation at very small radii, so
that all early resonances are skipped without a strict requirement on the inclination
angle. Resonances of the type |naℓama⟩ → |100⟩ happen very late in the inspiral
(see Figure 8.9), where relativistic corrections are expected to be more important [7,
504] (as we will show in the next chapter). The only other floating Bohr resonance
encountered in Section 8.4 is |322⟩ → |211⟩. This is an interesting case because it
may not entirely destroy the cloud. The expected GW signal is a constant frequency
fgw given by eq. (8.5.2), for a total floating time of11

∆tfloat = 5.8 yrs
(

M

104M⊙

)(
10−3

q

)2(0.2
α

)3
. (8.5.4)

Although the cloud’s mass is continuously reduced by ionisation while the resonance
takes place, the value given in (8.5.4) remains independent of Mc as long as it is large
enough to guarantee Pion ≫ Pgw.

8.5.2 Indirect Signatures: Impact on Binary Parameters

For sufficiently small orbital inclinations, as seen in Figures 8.11 and 8.13, the cloud
can be destroyed during one of the floating resonances in the early inspiral, to a level
where it no longer affects the binary dynamics in an observable way. Then, by the
time the system enters in band, its evolution is expected to follow the rules of vacuum
General Relativity. Nevertheless, the binary still carries the marks of the previously
existing boson cloud, and of the resonance that destroyed it. These are due to the

11This value assumes a quasi-circular co-rotating orbit. Moderate nonzero values of eccentricity
or inclination introduce O(1) variations in ∆tfloat.
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ε̄ = 0.0

∆m/g ≥ 1

ε̄ = 0.29

∆m/g = 3/4

0.35

2/3

0.46

1/2

0.58

1/3

0.65

1/4

Figure 8.14: Example values of the fixed point ε̄ depending on ∆m/g. Numbers can
be found by solving eqs. (8.2.21) and (8.2.22) on a floating orbit.

backreaction on the orbit from that floating resonance, and come in the form of a
change in the eccentricity and tilt of the inclination angle.

While in Section 8.4 we could simplify the analysis by studying only the strongest
resonance, the impact on the orbital parameters strongly depends on which over-
tone (i.e., which value of g) mediated the last adiabatic resonance encountered by
the system.12 As shown in Figure 8.6, the orbital parameters follow specific sets of
trajectories on the (ε, β)-plane, until the resonance breaks or completes. While float-
ing orbits always tilt the inclination angle towards a co-rotating configuration, the
eccentricity is forced towards a fixed point, whose value depends on ∆m/g. Some
examples of the value of this fixed point are shown in Figure 8.14 for different values
of ∆m/g.

Assuming that the resonance does not break prematurely, the distance travelled
by the binary in the (ε, β)-plane depends on the parameter D alone, introduced
in (8.2.32), given by

D = D0

(
−g
2

)2/3(
Mc/M

10−2

)(
10−3

q

)( α

0.2

)( ã

0.5

)1/3
. (8.5.5)

For the two strongest hyperfine resonances from |211⟩ (|322⟩), the parameter D0 as-
sumes the values 3.30 and 4.16 (1.28 and 1.62). Very roughly, the system gets eD

times closer to the eccentricity fixed point than it was before the resonance started.
Due to D being inversely proportional to q, mainly intermediate or extreme mass ra-
tio binaries change significantly their orbital parameters during a floating resonance.
Examples of variations of the parameters during a floating orbit are reported in Fig-
ure 8.15 for the resonances |211⟩ → |21 −1⟩ and |322⟩ → |320⟩.

Starting from generic initial conditions, we show in Figure 8.16 the possible values
of ε and β at the end of a floating resonance, as functions of D and for two values
of ∆m/g. The float brings the orbit significantly close to the equatorial plane, even
for large initial inclinations. An abundance of quasi-planar inspiral events can thus
be indirect evidence for boson clouds. Whether the formation mechanisms of the

12If the system undergoes multiple floats, for example, because broken resonances leave a cloud
massive enough to excite other adiabatic resonances, then the evolution of the eccentricity follows
several nontrivial steps. Here, however, we focus on the last of those as it has the most direct
observational consequences.
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|211⟩ → |21−1⟩

ε0 = 0.5
β0 = 90◦

ε = 0.01
β = 1.5◦

g = −2, D = 4.16

∆tfloat = 1.9× 108 yrs

ε0 = 0.5
β0 = 90◦

ε = 0.35
β = 2.0◦

g = −3, D = 5.45

∆tfloat = 1.1× 108 yrs

ε0 = 0.5
β0 = 90◦

ε = 0.46
β = 2.3◦

g = −4, D = 6.61

∆tfloat = 7.5× 107 yrs

|322⟩ → |320⟩

ε0 = 0.5
β0 = 90◦

ε = 0.15
β = 19◦

g = −2, D = 1.62

∆tfloat = 7.1× 1010 yrs

ε0 = 0.5
β0 = 90◦

ε = 0.40
β = 21◦

g = −3, D = 2.13

∆tfloat = 4.1× 1010 yrs

ε0 = 0.5
β0 = 90◦

ε = 0.51
β = 22◦

g = −4, D = 2.58

∆tfloat = 2.8× 1010 yrs

Figure 8.15: Examples of backreaction on the eccentricity ε and inclination β during
floating orbits that destroy the cloud entirely. We show the strongest resonance
(∆m/g = 1) and two overtones in each scenario, using the benchmark parameters.
Each case is initialised with ε0 = 0.5 and β0 = 90◦ for illustrative purposes, but the
final values of ε and β are very robust against the choice of different initial conditions.
The final values of ε and β, as well as ∆tfloat, are computed integrating numerically
eqs. (8.2.7), (8.2.20), (8.2.21), and (8.2.22). For benchmark parameters, the floating
time of resonances from |322⟩ exceeds the Hubble time; however, it strongly depends
on the parameters, as shown in (8.3.1).

binary, or other astrophysical processes, also lead to a natural preference for small
inclinations is still subject to large uncertainties [46, 516, 726].

Additionally, the eccentricity is suppressed by the main tones (g = ∆m) and
brought close to, or above, a nonzero fixed point by overtones (g > ∆m). The latter
scenario is especially interesting for binaries that are not dynamically captured, such
as in the case of comparable mass ratios, because they are generally expected to be on
quasi-circular orbits. The past interaction with a cloud can overturn this prediction.
The float-induced high eccentricities are mitigated by the subsequent GW emission,
but the binary will remain more eccentric than it would have been otherwise, even in
late stages of the inspiral. The cloud-binary dynamics thus leave a unique mark on
the binary parameters and opens up the possibility of performing a statistical test of
the parameters of a large number of binary inspirals, and comparing them with the
ones predicted from a suitable model of their formation channels.

Lastly, we note that the extremely long floating time associated with some hyper-
fine or fine resonances can stop many binaries from getting in band at all, reducing
the merger rate. For example, for our choice of benchmark parameters, the hyperfine
resonances from the |322⟩ state, shown in Figure 8.15, float for longer than the Hubble
time.
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Figure 8.16: The shaded regions show the possible values of eccentricity ε and inclina-
tion β at the completion of a floating resonance, starting from any initial values ε0 and
β0, for different values of D. The values used, from the outermost to the innermost
region, are D = 1, 1.5, 2, 2.5, 3 (left panel) and D = 1.8, 2.6, 3.4, 4.2, 5 (right panel);
cf. (8.5.5). When the initial inclination is required to satisfy the conditions necessary
to sustain the float, a smaller portion of each region is reachable. We enclosed in solid
lines the reachable portions for β0 ≤ 128◦ (left panel) and β0 ≤ 142◦ (right panel),
which are the thresholds for |211⟩ → |21 −1⟩ and |211⟩ → |210⟩, for the reference
parameters used in (8.4.7).

8.6 Summary and Outlook

In the context of GW astronomy, binary BH environments have long been proposed
as a laboratory for fundamental physics. One such example are gravitational atoms,
or clouds of ultralight bosons produced by superradiance around spinning BHs. Com-
pared to other kinds of environments, the phenomenology of gravitational atoms is
extremely rich. The two most striking types of interaction between the binary and
the cloud are resonant phenomena [64, 65, 547] and friction effects [10, 66, 548, 550],
both of which leave very distinct signatures on the emitted gravitational waveform.
This complexity is a blessing for the potential detection and identification [9] of such
systems. However, it is a curse for the achievement of a complete characterisation of
their evolution.

Previous studies have described the effects on the waveform as function of the
state of the cloud and of the binary configuration at the time of observation. These
are, however, the final products of a complex series of cloud-binary interactions
that characterise former phases of the inspiral. Despite a number of relevant stud-
ies [547, 549, 551, 718–720, 730, 731], the combinations of cloud states and binary
configurations compatible with this kind of evolution have not yet been determined.

In this chapter, we finalise such a programme by systematically studying the
chronological sequence of resonances encountered during the binary inspiral. We
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do so in the most general possible set of assumptions: we allow for any value of the
initial eccentricity, inclination and separation of the binary; at the same time, we
keep the scaling with the cloud’s parameters explicit, so to apply our results to the
entire parameter space. Furthermore, we take into account the backreaction of the
resonances on the orbit, and study how this impacts the behaviour of the resonances
themselves. This aspect, as well as the impact of inclination and eccentricity on res-
onances (and vice versa), have never been studied before, and each of these novel
results turns out to play a crucial role in our analysis. Finally, we perform explicitly
the exercise of “following” the evolution of the system from the initial states most
likely to be populated by superradiance, |211⟩ and |322⟩, until the merger, and then
summarise the GW signatures compatible with the scenarios studied.

In principle, one might have expected the evolution of the system to be extremely
complicated. The S-matrix approach developed in [65] suggests a tree of populated
states branching more and more, every time a new resonance is encountered. In prac-
tice, however, we find that the hierarchy between the floating and decay timescales
simplifies the picture dramatically.13 During every hyperfine or fine adiabatic reso-
nance, the cloud loses mass until the resonance breaks, often to the point where it is
no longer directly observable. The conclusion is then remarkably simple, and similar
among the two cases studied explicitly. Only binaries close enough to a counter-
rotating configuration, where these early resonances are very weak, are able to carry
the cloud up to the point where it becomes observable through the effects of ionisation
and a large number of weak resonances. Our detailed study of the nonlinear behaviour
of resonances allows us to precisely quantify the angular interval of inclinations where
this scenario is realised, see eqs. (8.4.7), (8.4.15), and (8.4.19), as well as Figures 8.11
and 8.13.

The early disappearance of the cloud for generic orbital configurations may seem
to suggest that the chances of detecting ultralight bosons using binary systems is
slim after all. It is certainly true that our work puts strict conditions for the direct
observation of the cloud-binary interaction. To avoid all early resonances, either the
initial separation must be small enough, or the orbital angular momentum must be
approximately anti-aligned (within a tolerance interval whose size depends on the
parameters) with the central BH’s spin. The likelihood of either scenario depends on
the astrophysical processes governing the formation of the binary system and is subject
to large uncertainties (though see [727, 729, 732, 733] and [734, 735] for the two cases,
respectively). We note, however, that the event leading to the cloud destruction
– an adiabatic floating resonance – necessarily exerts a strong backreaction on the
binary’s inclination and eccentricity, forcing them to evolve towards a fixed point.
The possibility of inferring the past existence of a cloud from its legacy left on the

13As shown in Figure 8.10 and eq. (8.4.1), the separation of timescales is larger for smaller mass
ratios. For equal-mass ratios q ∼ 1, the timescales could become comparable.
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binary parameters is a new and exciting observational prospect for both ground-based
GW detectors, such as LIGO-Virgo or the Einstein Telescope, and space-borne ones,
such as LISA. Proper population studies will be needed to turn this prediction into a
test of fundamental physics with the available and future data.

The present chapter answers the main remaining open questions left on the phe-
nomenology of gravitational atoms in binaries, within a certain set of assumptions.
We neglected a number of subleading effects. Some of them, like the accretion onto
the secondary [66] and the cloud’s self gravity [541, 736] can be straightforwardly
included in the binary’s evolution, and do not change qualitatively the picture drawn
here. Others, like the backreaction of the cloud’s decay in GWs [737], the non-resonant
overlap between growing and decaying states [730, 731], and the change in the BH’s
mass and spin due to the absorption of the cloud during a resonance (see footnote 5)
can potentially introduce new relevant features. But perhaps most importantly, we
stuck to a non-relativistic analysis; an assumption that will be relaxed in the next
chapter.
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9
Extreme Mass Ratio

Inspirals: Perturbing the
Environment in Kerr

Je n’aurai pas le temps, pas le temps

Même en courant

Plus vite que le vent

Plus vite que le temps

Même en volant

Je n’aurai pas le temps, pas le temps

De visiter toute l’immensité

D’un si grand univers

Même en cent ans

Je n’aurai pas le temps de tout faire

Michel Fugain, Je n’aurai pas le temps

The previous chapter explored how the cloud and the binary interact during the
early phases of the inspiral – well before the system enters the sensitivity band of
GW detectors. The main conclusion is that resonances typically destroy the cloud,
except when the binary is nearly counter-rotating relative to it [see Figure 8.1 and
eqs. (8.4.7), (8.4.15), and (8.4.19)]. In such cases, the cloud can survive until the later
stages of the inspiral, when the binary enters the strong gravity regime. At that point,
relativistic effects become important, and modelling the dynamics of both binary and
its environment requires a different set of tools.

In this chapter, I present the work of [7], which introduces the first self-consistent,
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fully relativistic calculation of a perturbation to a BH environment induced by an
inspiralling secondary in the Kerr geometry. The framework is general and allows
environmental effects to be incorporated in EMRI modelling in a fully relativistic way.
As a representative and simple example, I consider again a superradiantly grown scalar
cloud and analyse the response of the scalar field due the perturbation induced by the
secondary. As will be shown, the field develops a distinctive spiralling wake trailing
the secondary. Moreover, the fluxes emitted to infinity and through the horizon
exhibit substantial deviations compared to the Newtonian and Schwarzschild case,
with relative differences of tens of percent, even at relatively large binary separations.
These results underscore the necessity of modelling environments relativistically, as
well as relaxing the assumption of spherical symmetry and using the Kerr geometry
as a background. Neglecting these aspects could lead to significant biases in data
analysis with upcoming detectors.

The structure of this chapter is as follows. In Section 9.1, I establish the relativistic
framework for generic environments, followed by Section 9.2, where I specialise to
scalar fields. In Section 9.3, I solve for the field and examine the wake structure, while
in Section 9.4, I analyse the fluxes to infinity and through the horizon, comparing them
to the Schwarzschild and Newtonian cases. I conclude in Section 9.5, with additional
technical details provided in Appendix G.

9.1 Field Equations with Environments

We focus on astrophysical systems whose geometry is dominated by the Kerr space-
time, with perturbations arising from the (small) binary companion (or “secondary”)
and surrounding matter. We first outline our perturbation scheme for generic matter
fields.

The action for generic matter fields minimally coupled to gravity in the presence
of a perturber with mass mp is given by

S =
∫

d4x
√

−g
(

R
16π + Lenv[Ψ]

)
−mp

∫
dτ
√

−gµνuµuν , (9.1.1)

where Lenv is the Lagrangian of the matter field Ψ and the action of the point-
particle encodes the curvature of the secondary BH using the skeletonised source
approach [738, 739]. Here, uµ denotes the four-velocity of the secondary on some
effective, regularised metric. Bold quantities denote fully nonlinear terms.

By varying the action (9.1.1) with respect to the matter field and metric, we obtain
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the field equations:

Q[Ψ,g] = 0 , (9.1.2)

Gµν [g] = T env
µν [Ψ,g] + T p

µν [γ] , (9.1.3)

where γ is the world-line of the secondary and Q is a generic nonlinear operator
involving Ψ and g.

At leading order, the surrounding matter (henceforth, “the environment”) is treated
as a stationary solution on top of the Kerr geometry and is characterised by a total
mass M env and typical length Lenv. The stress-energy tensor of the matter field scales
with the energy density as

T env
µν ∼ ρenv

0 ∼ M env

(Lenv)3 . (9.1.4)

The natural expansion for the matter field then follows the characteristic density ratio,
i.e.,

ϵn = ρenv
0
ρBH

0
= M env

(Lenv)3
L3

M
= η

(
L

Lenv

)3
, (9.1.5)

where M and L denote the mass and length scale of the primary (Kerr) BH, respec-
tively, and η ≡ M env/M . In most astrophysical scenarios, this parameter is expected
to be small. For example, taking ρBH ∼ 108 (106M⊙/M

)2 kg/m3 and referring to
Figure 3.1, accretion disks around supermassive BHs typically have ϵn ∼ 10−12.

The exponent n corresponds to the leading-order power of Ψ in the matter La-
grangian. For instance, Lenv = |∂Ψ|2|Ψ|2 + |Ψ|6 implies n = 4. When ϵ ≪ 1, the
matter field is then naturally expanded as Ψ = ϵψ+ · · · where ψ satisfies the matter
field equations on Kerr (9.1.2). As usual, we define the mass ratio between the sec-
ondary and primary BH as q ≡ mp/M . Finally, besides q ≪ 1 and ϵ ≪ 1, we do not
require any scaling relation between q and ϵ: they act as independent perturbative
parameters. To track this dual expansion, we label quantities of some perturbative
order S(n,m) as being associated with a perturbative coefficient ∼ O(ϵnqm).

In this framework, the gravitational and matter fields are expanded as follows:

gµν = gµν + ϵnh(n,0)
µν + qh(0,1)

µν + ϵnqh(n,1)
µν + ϵnq2h(n,2)

µν + q2h(0,2)
µν + · · · , (9.1.6)

Ψ = ϵψ(1,0) + ϵqψ(1,1) + ϵq2ψ(1,2) + · · · , (9.1.7)

where h(0,1)
µν is the metric perturbation arising from a vacuum point-particle source.

From the equations of motion, we can then generically expand the nonlinear operators
as

Gab[gµν + hµν ] = Gab[gµν ] + δGab[hµν ] + δ2Gab[hµν , hµν ] + · · · , (9.1.8)
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where we defined:

δmGab[hµν ] = 1
m!

dm

dλm
G[gµν + λhµν ]|λ=0 . (9.1.9)

Similarly, we expand Q as

Q[ψ + ψ̄, gµν + hµν ] = Q[ψ, gµν ] + δ(1,0)Q[ψ̄, gµν ]
+ δ(1,1)Q[ψ̄, hµν ] + δ(2,1)Q[ψ̄, ψ̄, hµν ]
+ δ(1,2)Q[ψ̄, hµν , hµν ] + · · · ,

(9.1.10)

where

δ(n,m)Q[ψ̄, hµν ] = 1
n!m!

dn+m

dκndλm

{
Q[ψ + κψ̄, gµν + λhµν ]

}
|λ=0,κ=0 . (9.1.11)

Substituting the perturbed fields (9.1.6)–(9.1.7) into the expansions of eqs. (9.1.2)–
(9.1.3), the O(ϵq) perturbation to the environment satisfies:

δ(1,0)Q[ψ(1,1), gµν ] = −δ(1,1)Q[ψ(1,0), h(0,1)
µν ] . (9.1.12)

This expression captures the leading-order dynamical perturbation from the secondary
BH to the environment. While the formulation above focuses on a single matter
field, our framework naturally extends to multiple matter fields, enabling a direct
application to more complex systems such as spin-1 fields or fluid environments. For
example, consider a plasma described by an electromagnetic field Aµ = ϵA

(1,0)
µ +

ϵqA
(1,1)
µ + · · · and a fluid four-velocity Uµ = ϵU

(1,0)
µ + ϵqU

(1,1)
µ + · · · In this case, a

similar structure of equations arises (in a slight abuse of notation):

δ(1,1,0)Wµ[A(1,1)
µ , U (1,0)

µ , gµν ] = −δ(1,1,1)Wµ[A(1,0)
µ , U (1,0)

µ , h(0,1)
µν ] ,

δ(1,1,0)Pµ[U (1,1)
µ , A(1,0)

µ , gµν ] = −δ(1,1,1)Pµ[U (1,0)
µ , A(1,0)

µ , h(0,1)
µν ] .

(9.1.13)

Applying our formalism to such scenarios is an exciting direction for future research.

9.2 Scalar Fields

The above framework is general and applies to any non-vacuum spacetime with a
stress-energy tensor T env

µν satisfying known equations of motion, provided that pertur-
bations to the surrounding medium remain in the linear regime. We now specialise to
the case of a massive scalar field around a Kerr BH, where superradiance has led to the
formation of a bosonic cloud – also known as a gravitational atom (see Section 3.3.4
for a discussion of its properties). The cloud is assumed to be in a quasi-stationary
state with a spin given by (3.3.23) and residing in its dominant dipolar ground state,
|nbℓbmb⟩ = |211⟩.
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We consider the gravitational atom to be perturbed by a point-particle on an
equatorial, circular orbit in the Kerr geometry. The matter Lagrangian for a massive
scalar is given by

Lenv[Φ] = ∇νΦ∇νΦ∗ − µ2|Φ|2 , (9.2.1)

yielding n = 2 and the equation of motion (9.1.2):

Q[Φ,gµν ] = 1√
−g∂µ(

√
−g ∂µΦ) − µ2Φ . (9.2.2)

Following the previous section, we expand the scalar field as

Φ = ϵϕ(1,0) + ϵqϕ(1,1) + ϵq2ϕ(1,2) + · · · (9.2.3)

We take the background solution ϵϕ(1,0) to be that of a superradiant cloud, whose
normalisation is set such that its total mass is given by Mc. The characteristic length
scale of the cloud is given by its Bohr radius Lenv = (µα)−1 = α−2M , yielding,
ϵ = α3

√
Mc/M (9.1.5). This expression defines our perturbative parameter and

imposes the condition ϵ ≪ 1, provided that both α and Mc/M are sufficiently small.
The expansions of the scalar equation of motion at leading dynamical order ∼ O(ϵq),
yields the following expressions:

δ(1,0)Q[ϕ(1,1), gµν ] = 1√
−g

∂µ(
√

−g∂µϕ(1,1)) − µ2ϕ(1,1) =
(
2 − µ2)ϕ(1,1) , (9.2.4)

δ(1,1)Q[ϕ(1,0), h(0,1)
µν ] = −hµν

(0,1)∇µ∇νϕ
(1,0) − h(0,1)

2 δ(1,0)Q[ϕ(1,0), gµν ]

−
(

∇µh̄
µν
(0,1)

)(
∇νϕ

(1,0)
)
. (9.2.5)

Here, h̄µν is the trace-reversed metric perturbation and from now on, all covariant
derivatives and d’Alembertian operators are defined with respect to the background
metric. As ϕ(1,0) is a test-field solution on Kerr, the second term on the right-hand
side of eq. (9.2.5) vanishes. Moreover, as we solve for the O(q) metric perturbation
in Lorenz gauge, i.e., ∇µh̄

µν
(0,1) = 0 (see [740, 741] and Appendix G.1), the final term

in eq. (9.2.5) also vanishes, resulting in the expression:

δ(1,1)Q[ϕ(1,0), h(0,1)
µν ] = −hµν

(0,1)∇µ∇νϕ
(1,0) . (9.2.6)

Thus, from eqs. (9.1.12), (9.2.4) and (9.2.6), the leading-order dynamical perturbation
from the secondary to the scalar field is governed by(

2 − µ2)ϕ(1,1) = hµν
(0,1)∇µ∇νϕ

(1,0) . (9.2.7)

The specialisation to Lorenz gauge results in a source that diverges as 1/|r⃗ − r⃗p| at
the position of the secondary. At the level of spheroidal harmonics, this leads to a
source that is C0 continuous, which makes it particularly well-suited for producing
extended solutions across the entire domain.
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9.3 Scalar Field Wake

Figure 9.1 shows the wake profile of the matter field due to a secondary perturber
on a prograde equatorial circular orbit.1 The system parameters are chosen deep
in the relativistic regime, with orbital radius rp = 3.5M , a = 0.88M and α = 0.3
(corresponding to a cloud whose density peaks at r ∼ 20M). We solve eq. (9.2.7) by
decomposing in a spheroidal harmonic basis and find a full solution that constitutes a
rich wake structure in the azimuthal and equatorial planes. As the secondary scatters
matter through the transfer of angular momentum, a low-density trail is formed and
a spiralling outwash causes matter flux to infinity.

We also analysed configurations at larger separations, where certain modes tran-
sition from radiative to bound configurations. At these radii, we observe complex
changes in the cloud’s morphology, including configurations where a low-density re-
gion forms in front of the secondary, with a high-density region in its wake. As we
always stay in a regime where Ωp < ωc, this contrasts the picture presented in studies
on linear motion of BHs in homogeneous media [491, 492, 544–546, 742, 743], where a
trail of over-density is found to form in front of the secondary due to its relative veloc-
ity with respect to the background. Consequently, applying results from such studies
to the binary case would yield incorrect conclusions, highlighting the importance of
addressing the full binary problem directly.

9.4 Radiative Energy Loss

As the secondary orbits the central BH, its perturbation induces a transfer of energy
and angular momentum to the scalar field and into GWs. These will in turn determine
how the secondary evolves. It is clear from eqs. (9.1.6)–(9.1.7) that many dissipative
and conservative effects will contribute to the change in orbital energy. We now
derive the explicit form of the flux formulae in the case of boson clouds. For clarity,
we suppress most of the perturbative indexing, though the order of each quantity
should be clear from context.

The (orbit-averaged) energy fluxes of the perturbed field to infinity and through

1An observant reader may note that this configuration is, strictly speaking, unrealistic. As dis-
cussed in Chapter 8, co-rotating inspirals disrupt the cloud early in the evolution through orbital
resonances. Nevertheless, we consider co-rotating orbits here for simplicity and as an initial step,
since the qualitative dynamical behaviour remains largely unchanged in the counter-rotating case,
as established in a Newtonian analysis [66].
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Figure 9.1: The absolute value of the perturbed scalar field |ϕ(1,1)| for ℓ ≥ 2, taking
α = 0.3, a = 0.88M and rp = 3.5M . In the top panel, we show an equatorial slice
of the field solution, in which the Ẑ–axis is aligned with the BH spin. In the bottom
panel, we show an azimuthal slice of the field, where the secondary moves “into the
plane”.

the horizon can be calculated, respectively, as [150, 372]

ĖΦ,∞ = − lim
r→+∞

r2
∫

dΩTΦ
µrK

µ
(t) ,

ĖΦ,H = lim
r→r+

2Mr+

∫
dΩTΦ

µνK
µ
(t)l

ν ,

(9.4.1)

where
TΦ

µν = 2∇(µΦ∇ν)Φ∗ − gµν(∇σΦ∇σΦ∗ + µ2|Φ|2) . (9.4.2)

Here, dΩ is the area element of the 2–sphere, lµ = ∂/∂t + ΩH∂/∂φ is a null vector
normal to the horizon, with ΩH given in (2.1.6) and Kµ

(t) ≡ ∂/∂t, Kµ
(φ) ≡ ∂/∂φ
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are the Killing vectors of the Kerr metric (2.1.5). Analogous expressions for angular
momentum fluxes are obtained by swapping Kµ

(t) → Kµ
(φ) in eq. (9.4.1). We define the

mass of the background boson cloud to be given by the volume integral on a spacelike
slice of the time component of the stress-energy tensor. In particular, we define

Mc = −
∫ ∞

r+

∫
S2
T t

t [ϕ(1,0), gKerr] (r2 + a2 cos2 θ)dr dΩ . (9.4.3)

We decompose ϕ(1,1) in a spheroidal harmonics basis,

ϕ(1,1) =
∑
ℓm

ϕ
(1,1)
ℓm (r)Sℓm(θ, φ, γmg)e−i(Ωmg +ωc)t , (9.4.4)

where γmg = a
√

(Ωmg + ωc)2 − µ2 and for circular orbits Ωmg = (m − mb)Ωp ≡
mgΩp. The above equations yield expressions for the energy fluxes of individual
modes:

ĖΦ,∞
ℓm = lim

r→+∞
r2
{

2 |ωc + Ωmg | Re
[√(

Ωmg + ωc
)2 − µ2

]
|ϕ(1,1)

ℓm |2
}
,

ĖΦ,H
ℓm = lim

r→r+
2Mr

{
2
(
ωc + Ωmg

) (
ωc + Ωmg −mΩH

)
|ϕ(1,1)

ℓm |2
}
.

(9.4.5)

Here, we have set the frequency at the superradiant threshold, i.e., ω = ωc and we
remind the reader that at leading-order ϕ(1,1)

ℓm ∝ 1/r, when r → ∞.

Similarly, the angular momentum fluxes are given by

L̇Φ,∞
ℓm = lim

r→+∞
r2
{

2msmgRe
[√(

Ωmg + ωc
)2 − µ2

]
|ϕ(1,1)

ℓm |2
}
,

L̇Φ,H
ℓm = lim

r→r+
2Mr

{
2m
(
ωc + Ωmg −mΩH

)
|ϕ(1,1)

ℓm |2
}
,

(9.4.6)

where smg ≡ sgn
(
ωc + Ωmg

)
. While ĖΦ, ∞/H (9.4.5) can be truly associated as a

“scalar flux”, the scalar perturbations also affect the cloud, which in turn impacts the
evolution of the secondary.

For small mass ratios q, the secondary evolves adiabatically, meaning that the
energy dissipated over one orbit is much smaller than the total orbital energy. Con-
sequently, the evolution of the secondary can be constructed with a sequence of
geodesics [116, 121, 744–746]. As a first step towards understanding how the sec-
ondary moves from one geodesic to the next, we can consider the leading-order flux
balance of the system:

Ėorb + Ṁc = −ĖGW,∞ − ĖGW,H − ĖΦ, ∞ − ĖΦ,H ,

L̇orb + Ṡc = −L̇GW,∞ − L̇GW,H − L̇Φ,∞ − L̇Φ,H ,
(9.4.7)
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where Sc is the spin of the cloud. This balance equation allows one to evolve orbital
parameters due to energy emission from the secondary and the environment. Impor-
tantly, this formula excludes the effects of conservative energy transfer between the
orbit and bound states of the cloud. As such, it should be used with some caution
until all contributions up to order O(ϵ2q2) (e.g., h(2,1)) are fully understood. Even so,
in the absence of a complete understanding, this equation provides a useful starting
point for time-domain evolutions and generating relativistic waveforms for EMRIs
with environments. Some insights into how such conservative transfer might occur in
a relativistic setting have been studied in [747].

To compute the rate at which the mass and spin of the cloud changes, we make use
of the global U(1)-symmetry of the (complex) scalar field, whose conserved current
implies the existence of a Noether charge Q:

Q =
∫

Σ
d3x

√
−g j0

Φ , (9.4.8)

where Σ is a space-like hypersurface and

jΦ
µ = −i (Φ∗∂µΦ − Φ∂µΦ∗) . (9.4.9)

The mass and spin of the cloud are then related to the cloud’s Noether charge, i.e.,
Mc = ωcQ and Sc = mbQ, respectively. The rate of change of the scalar charge is

Q̇Φ,∞ = − lim
r→+∞

r2
∫

dΩ jΦ
r ,

Q̇Φ,H = lim
r→r+

2Mr

∫
dΩ jΦ

µ l
µ ,

(9.4.10)

leading to:

Q̇Φ,∞
ℓm = − lim

r→+∞
r2
{

2 smg Re
[√(

Ωmg + ωc
)2 − µ2

]
|ϕ(1,1)

ℓm |2
}
,

Q̇Φ,H
ℓm = − lim

r→r+
2Mr+

{
2
(
ωc + Ωmg −mΩH

)
|ϕ(1,1)

ℓm |2
}
.

(9.4.11)

Through the Noether charge, we can then define the scalar energy and angular mo-
mentum power as

Ės,∞/H = ĖΦ,∞/H + ωcQ̇
Φ,∞/H ,

L̇s,∞/H = L̇Φ,∞/H +mbQ̇
Φ,∞/H .

(9.4.12)

Plugging in eqs. (9.4.5), (9.4.6) and (9.4.11) in the balance equation (9.4.7), we find:

Ės,∞
ℓm = lim

r→+∞
r2
{

2 Ωmgsmg Re
[√(

Ωmg + ωc
)2 − µ2

]
|ϕ(1,1)

ℓm |2
}
,

Ės,H
ℓm = lim

r→r+
2Mr

{
2Ωmg

(
ωc + Ωmg −mΩH

)
|ϕ(1,1)

ℓm |2
}
.

(9.4.13)
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Figure 9.2: The total flux to infinity (solid lines) and through the horizon (dotted
lines) considering a prograde orbit and α = 0.2 (left panel) or α = 0.3 (right panel).
Note that the horizon fluxes are negative on the entire radial domain. The sharp
features in the infinity flux in the right panel, computed using eq. (9.4.18), are marked
by vertical dashed lines. Note the Schwarzschild results stop at the innermost stable
circular orbit (ISCO) (rp = 6M). We sum up to ℓ = 6 (5) for the infinity (horizon)
fluxes.

Finally, for the angular momentum, we have

L̇s,∞
ℓm = lim

r→+∞
r2
{

2mgsmg Re
[√(

Ωmg + ωc
)2 − µ2

]
|ϕ(1,1)

ℓm |2
}
,

L̇s,H
ℓm = lim

r→r+
2Mr

{
2mg

(
ωc + Ωmg −mΩH

)
|ϕ(1,1)

ℓm |2
}
,

(9.4.14)

which satisfy

Ės,∞/H = ΩpL̇
s,∞/H . (9.4.15)

Consequently, the backreaction from the leading-order scalar fluxes onto the secondary
evolves circular orbits into circular orbits, justifying the quasi-circular limit studied
in this chapter. Furthermore, because of this relation (9.4.15), it is sufficient to look
at the energy fluxes only.

In a slight abuse of terminology, we define the scalar flux of the environment as

F s,∞/H ≡ ϵ−2q−2
(
ĖΦ, ∞/H + Ṁ∞/H

c

)
, (9.4.16)

and calculate its emission to infinity and through the horizon. In Figure 9.2, we show
the scalar fluxes for α = 0.2 (left panel) and α = 0.3 (right panel), corresponding to
highly spinning BHs with a = 0.69M and a = 0.88M , respectively. For comparison,
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Figure 9.3: The relative error ∆F in the total flux to infinity (solid lines) and through
the horizon (dotted lines), taking our Schwarzschild data as a reference. We consider
a prograde orbit and α = 0.2 (left panel) or α = 0.3 (right panel). The comparison is
between our Kerr and Schwarzschild results [red], as well as our Schwarzschild results
with those from an earlier work [504] [purple], which used a different gauge. In the
inset, we show the actual flux F s,∞ in Schwarzschild/Kerr from our data [blue/orange]
compared to the one from [504] [black dashed]. The horizontal axis in the inset is
the same as in the main plot.

we also include the fluxes obtained in Schwarzschild2 and in the Newtonian regime [10,
66, 550] (see Appendix G.2).

The main features in Figure 9.2 are:

1. As the orbital separation between the binary components grows, effects re-
lated to spin of the primary become small for the flux to infinity, and the
Schwarzschild and Kerr results become similar. At the same time, the New-
tonian treatment converges towards the relativistic cases at large radii. It is
worthwhile to compare two cases in more detail: Kerr versus Schwarzschild, and
“our” Schwarzschild results versus those from an earlier work [504], which used
a different method and gauge. We show the relative differences in the fluxes
at infinity and at the horizon in Figure 9.3, using our Schwarzschild results
as the reference. As expected, at large radii, the relative differences between
the Schwarzschild and Kerr flux becomes small, dropping to a few percent at
rp = 50M . Closer to the ISCO, the differences increase, reaching approxi-
mately 50%. This emphasises the need to perform calculations in Kerr and not
in Schwarzschild. When comparing our Schwarzschild results to those in [504],

2In Schwarzschild, massive scalar fields still settle on quasi-bound states, even though spin is essen-
tial for superradiance to occur. These states are decaying (MIm[ωc] < 0) however, due to absorption
at the horizon, preventing the cloud from achieving a stationary configuration. Following [504], we
explicitly ignore this, setting MIm[ωc] = 0.
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we find relative differences up to 20%, due to gauge ambiguities, as we will dis-
cuss at the end of this section. In addition, mode-by-mode comparisons reveal
notable differences between our results and [504], particularly in the quadrupole.

Importantly, the scalar flux we calculate (9.4.16) does not describe the complete
flux at O(ϵ2q2). This is due to the fact that there are two additional gravita-
tional contributions to the energy fluxes which we do not consider. One is due
to the expansion of the Einstein operator, δ2G[h(2,1), h(0,1)], and arises as an
additional term in the integrand of F s,∞/H

(2,2) , which we do not calculate. The

other terms comes from the O(ϵ2) correction to the orbital frequency, Ω(2,0)
p ,

from the background matter field. Thus, to calculate the full gauge invariant
flux at O(ϵ2q2) one requires the expression:

F∞/H
(2,2) ≡ F s,∞/H

(2,2) +
dFGW,∞/H

(0,2)

dΩKerr
p

Ω(2,0)
p , (9.4.17)

where F s,∞/H
(2,2) should be corrected to include the term arising from the expansion

of the Einstein operator and FGW,∞/H
(0,2) is the first-order vacuum flux due to the

secondary. Moreover, ΩKerr
p is the frequency in Kerr for a given orbital radius.

The calculation of the h(2,0) and h(2,1) metric perturbations is necessary to
calculate these additional terms and is still an open problem.

2. The horizon flux exceeds the infinity flux across most of the shown radial do-
main. It is dominated by the (ℓ,m) = (0, 0) mode and always negative, indi-
cating that the binary’s orbit gains energy. This is due to a resonance between
bound states of the cloud: the initial |211⟩ state resonates with |100⟩, which
has lower energy and angular momentum. This surplus is fed back into the
orbit, potentially giving rise to a floating orbit [5, 6, 65], where the binary’s
evolution is slowed down or even stalled for a period of time. For α = 0.3, the
(ℓ,m) = (2, 2) mode becomes significant around rp ∼ 50M , nearly overtaking
the (0, 0) contribution. Unlike the (0, 0) mode, it produces a positive horizon
flux, inducing a sinking orbit : a period of accelerated inspiral. Such resonances
are key observables for probing the cloud’s properties, yet they are also efficient
at depleting the cloud itself, as we saw in Chapter 8.

3. The right panel reveals a sharp feature in the flux to infinity, consistent with ear-
lier studies [10, 66, 504, 550]. These arise when a new mode starts contributing
to the flux, specifically, occurring when

r∗,m
p =

(
m−mb

(µ− Re[ωc])M − ã

)2/3
M . (9.4.18)
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Using eq. (9.4.18) and calculating ωc with Leaver’s method [575, 725], we find
for α = 0.3 that r∗,2

p /M = 41.01, 41.66, 44.44 in the Schwarzschild, Kerr and
Newtonian case, respectively, in precise agreement with Figure 9.2 (vertical
dashed lines). Notably, sharp features are absent in the α = 0.2 case as they
occur at larger radii (e.g. r∗,2

p ∼ 100M). The physical origin of these features lies
in the long-range nature of the gravitational potential, as detailed in Appendix
D of [66]. Close to r∗,m

p , the wavelength of the modes becomes extremely large,
which requires the flux to be extracted far out. The small dip in the flux
preceding the feature is thus merely a numerical artefact. In Figure 9.4, we show
an equatorial slice of the field solution just before (top panel) and after (bottom
panel) r∗,2

p (9.4.18). Indeed, the morphology of the cloud changes completely
“in a short time”. The reason being that (ℓ,m) = (2, 2) mode of the field
solution transitions from a radiative configuration – with ∼ 1/r decay – to a
bound configuration that decays exponentially. This sharp transition in the field
profile arises due to the single harmonic state configuration of the boson cloud
background and will not be as prominent in environments with a more general
harmonic dependence.

4. Consistent with previous studies [66, 504, 550, 552], we observe that scalar fluxes
tend to dominate over gravitational fluxes during the early inspiral stage. As
the gravitational and scalar fluxes rely on independent perturbative parameters,
i.e., q and ϵ, a general comparison with the results in Figure 9.2 should not be
made. However, an example case for a given value for q and ϵ is shown in
Figure 9.5. Since both the GW and scalar flux scale as q2, this factor cancels
out in their ratio. We show a case for which the cloud has obtained a maximum
mass η = Mc/M = 0.1 (3.3.24), with a typical EMRI mass ratio q = 10−6

and α = 0.3. The results show that scalar horizon fluxes dominate over the
gravitational horizon fluxes in most of the inspiral, while the scalar fluxes to
infinity will probably overtake the gravitational fluxes at larger radii. Finally,
we note that the horizon flux is less relevant in spherically symmetric structures
that were studied before [504, 552]. A possible reason is that for spherical
structures the (ℓ,m) = (0, 0) mode does not contribute to Ės,H, unlike for
dipolar clouds. Since there is no angular barrier for (ℓ,m) = (0, 0) modes, those
are more “easily” absorbed at the horizon.

(Thomas: UPDATE)As can be seen in Figure 9.3, our results for the scalar flux
in Schwarzschild are not in full agreement with previous work [504], which used a
different gauge. We find a discrepancy of up to ∼ 10%. A plausible source of this
discrepancy lies in the nature of the background solution in Schwarzschild, which
includes an exponentially decaying term ∼ e−Im[ωc]t, where Im[ωcM ] is ∼ 1−10% the
value of the unnormalised flux. This decaying behaviour makes the background ill-
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Figure 9.4: The absolute value of the perturbed scalar field |ϕ(1,1)| for ℓ ≥ 2, taking
α = 0.3, a = 0.88M . In the top panel, we show an equatorial slice of the field solution
at rp = 41.6M , in which the Ẑ–axis is aligned with the BH spin. In the bottom panel,
we show an equatorial slice at rp = 41.8M .

suited as a stationary state to perturb around in frequency domain. To address this,
we follow [504] and set Im[ωcM ] = 0 by hand, which means the background solution is
not an exact solution of the homogeneous Klein-Gordon equation. This approximation
introduces gauge dependence in the asymptotic values of the perturbed scalar field
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Figure 9.5: Fluxes to infinity and through the horizon for the scalar and gravitational
case, including the perturbative prefactors and considering q = 10−6, ϵ2 = 0.1α3,
α = 0.3. In the inset, we show the ratio between the two, i.e., Fs/FGW. The horizontal
axis of the inset is the same as in the main plot.

and violates the conservation laws underpinning eq. (9.4.7). This issue does not arise
in Kerr where a stationary background solution can be found.

9.5 Summary and Outlook

In this chapter, we developed a framework to study BH environments in EMRIs. As
an example case, we apply it to boson clouds and, for the first time, self-consistently
compute the perturbation of an EMRI to the environment in the Kerr geometry.
We have demonstrated the importance of performing these calculations in Kerr, by
comparing them with fluxes in Schwarzschild. For less relativistic environments (α =
0.2), where the density peaks at ∼ 50M , we find relative differences of around 10%,
increasing to 50% near the ISCO. In more relativistic environments (α = 0.3), these
differences are even more significant, attaining 30−100% throughout the region where
EMRIs are expected to enter the LISA band.

Additionally, we solved for the field perturbations across the entire domain, reveal-
ing a rich wake structure induced by the secondary. Our results demonstrate how the
morphology of the environment changes with the position of the secondary, highlight-
ing the intricate and rich dynamics of these systems, which are linked to striking obser-
vational signatures with future GW detectors [5, 6, 9, 10, 64–66, 68, 504, 550, 552, 553].
These results raise important questions about existing studies that use linear motion
of BHs in a homogeneous medium as a proxy for dynamical friction in a binary in-
spiral (e.g., [490, 532, 533, 748, 749]). Such approximations, or using Schwarzschild
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as a background are clearly inadequate and will lead to significant errors. Instead,
the correct approach in perturbation theory is to use the framework developed in this
chapter.

We expect this work to serve as the starting point for self-consistent modelling of
EMRIs and environments in Kerr. There are several directions that warrant further
exploration in the future. For instance, applying our framework to the Navier-Stokes
system would provide a crucial step towards understanding EMRI dynamics in accre-
tion disks in the fully relativistic regime. Another key challenge still lies in calculating
the conservative and dissipative effects of all field perturbations, and the slow-time
contributions inherent to these systems have yet to be explored. A two-timescale
analysis (see [123, 750]) will be necessary to understand how all of these contributions
affect the binaries’ orbital parameters.
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10
In the Grip of the

Disk: Dragging the
Companion through an AGN

Considerate la vostra semenza:

fatti non foste a viver come bruti,

ma per seguir virtute e canoscenza.

Dante Alighieri, Inferno, Canto XXVI

Much of this thesis has explored how BHs can act as powerful probes of new, “exotic”
physics. But even if such physics does not exist, environments will still play a critical
role in GW astrophysics. In this final chapter, I turn to one particularly compelling
example – an environment with direct observational support: accretion disks in active
galactic nuclei (AGN) (see Section 3.5). These disks may prove essential to GW
observations, not only by imprinting themselves on the waveforms of compact-object
binaries [45–47, 396, 397, 484, 485, 512, 514–518, 523, 525–527], but also by helping
to form the binaries in the first place. In the standard “loss-cone” scenario, EMRIs
form when stellar-mass objects are scattered onto tightly bound orbits via multi-
body interactions with a surrounding stellar cluster [726, 735, 751]. An alternative
channel has emerged in gas-rich AGN environments, where the disk facilitates the
capture of a compact objects, potentially increasing the EMRI formation rate by
orders of magnitude [46, 47, 516, 752]. The captured secondary typically follows a
highly eccentric, generically inclined orbit, that intersects the disk twice per cycle.
Over time, repeated interactions with the disk gradually align the orbit with the disk
plane [408, 753–755], where subsequent gas-driven migration accelerates its inward
drift [396, 397, 483, 512, 524, 756, 757]. In some cases, compact objects may even
form directly within the disk; a process known as in-situ formation [47].
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AGN disks have also been proposed as “nurseries” for BH binaries in the LIGO–
Virgo–KAGRA band [43–45, 407, 655, 728, 758]. Realistic disk models suggest the
existence of migration traps: regions where the torque exerted by the disk changes
sign [759]. In such regions, objects at larger radii migrate inwards, while those at
smaller radii migrate outwards, leading to a natural accumulation of compact objects.
This process can facilitate hierarchical mergers within AGN disks [406, 409, 728, 760–
762]. Notably, this mechanism has been invoked to explain events like GW190521,
where one of the merging BHs lies in the pair instability gap [763, 764].

The rich phenomenology of BHs in AGN disks highlights the need for a precise
description of the drag forces acting on compact objects in generic orbits. While disk-
satellite interactions in EMRIs have been studied extensively [408, 753–755, 765–768],
several key aspects remain underexplored or require more accurate modelling. Many
previous works approximate the orbital evolution by considering two scatterings at
most and extrapolating those results over long timescales. Additionally, these studies
often assume circular or highly symmetric orbits, which can obscure more complex
behaviour and have led to conflicting conclusions in the literature.

In this chapter, I present the results of [8], which introduces a novel framework for
consistently tracking the evolution of a secondary through an arbitrary number of disk
crossings. This approaches enables (i) the identification of regions in parameter space
where the disk drags the secondary to align with it within realistic timescales and
(ii) the characterisation of the orbit at the end of the drag process, as the secondary
has aligned. This can serve as important input for source modelling with LISA. For
example, in vacuum, EMRIs are expected to have moderate eccentricity when entering
the LISA band [726, 735, 769]. As it turns out, the presence of a disk changes this
outcome. The framework developed here also reveals new dynamical behaviours for
initially highly eccentric binaries and enables a systematic comparison with previous
studies, clarifying existing discrepancies in the literature.

This chapter is organised as follows. In Section 10.1, I describe the setup, and
introduce the orbital parameters necessary to describe the secondary. In Section 10.2,
I describe the hydrodynamic drag and accretion in the disk. I then present the main
results and comparisons with previous work in Section 10.3. Finally, I conclude in
Section 10.4.

10.1 Binary System

We consider a binary system consisting of two BHs: a non-spinning primary of mass
M and a secondary of mass mp, such that the mass ratio q ≡ mp/M ≪ 1. The
primary is surrounded by the AGN disk, which we define as the equatorial plane.
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ẑ

x̂

ŷ
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Figure 10.1: Schematic illustration of our setup. The system features an accretion
disk in the equatorial plane, while the orbital plane [blue] is inclined by an angle
ι and follows an eccentric trajectory with semi-major axis a. The angle between
the secondary (with mass mp) and the semi-major axis is the true anomaly θ. The
primary (with mass M) resides at one of the focal points of the ellipse. The axes are
oriented such that the secondary interacts with the disk – thereby accreting matter
or experiencing a drag – at the designated scattering points, located at r = (0, y, 0),
and marked by green dots.

The secondary follows a generic orbit characterised by an inclination ι1 relative to
the disk, an eccentricity ε, and a semi-major axis a. A schematic illustration of this
configuration is shown in Figure 10.1. Throughout this chapter, we use Cartesian
coordinates, identifying the ẑ–axis as orthogonal to the equatorial plane.

We focus on the binary just after capture, when the secondary is far away from the
primary and follows a Keplerian orbit. The corresponding orbital energy and angular
momentum are given by

Eorb = −Mmp

2a , Lorb = mp
√
Ma(1 − ε2) . (10.1.1)

The separation between the secondary and the primary, with the latter located at a

1In this chapter, we denote the inclination by ι, rather than the β used in Chapter 8 to avoid
confusion with the β-disk model of the Shakura–Sunyaev disk.
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focal point of the ellipse, reads

R(t) = a(1 − ε2)
1 + ε cos θ(t) . (10.1.2)

Here, θ denotes the true anomaly, defined as the angle between the semi-major axis
and the position of the secondary as it moves along the orbit (see Figure 10.1). In what
follows, we will focus exclusively on the secondary’s position at either the ascending or
descending node. Consequently, we omit the explicit time dependence in (10.1.2) and
refer to R and θ simply as the radial distance and true anomaly evaluated at these
nodes. Note that the true anomaly at the ascending node is commonly identified
with the argument of periapsis (modulo a minus sign). Inverting relation (10.1.2) and
using eq. (10.1.1), we find:

cos θ = 1
ε

(
L2

orb
m2

pMR
− 1
)
. (10.1.3)

Conservation of mechanical energy determines the orbital velocity of the secondary:

vorb =

√
M

(
2
R

− 1
a

)
. (10.1.4)

Finally, the eccentricity can be expressed as

ε =
√

1 + 2L2
orbEorb

m3
pM

2 . (10.1.5)

The above relations will be used later to update the orbital parameters after interac-
tions between the disk and the secondary.

10.2 Scattering Process

Each time the secondary crosses the equatorial plane, its dynamics are influenced
by two main effects. First, the secondary accretes matter from the disk, resulting
in an exchange of energy and linear momentum that alters its orbit. Second, the
disk exerts a gravitational drag on the secondary, commonly referred to as dynamical
friction [486]. We will account for both effects and develop a framework to determine
(i) the orbital changes after each crossing and (ii) the location of the subsequent
crossing, iterating this process self-consistently.

Without loss of generality, we align the ŷ–axis in the equatorial plane with the
position of the first scattering point (marked by the green dot in Figure 10.1). In
Cartesian coordinates, this scattering occurs at rd = (0, y, 0). Since the particles in
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the disk follow circular Keplerian orbits in the equatorial plane,2 their velocity at this
point is vd = (vd, 0, 0), where

vd =
√
M

R
. (10.2.1)

At the moment of scattering, the secondary’s position coincides with that of the fluid,
i.e., rp = rd = (0, y, 0). To fully specify the scattering conditions, we also need the
secondary’s velocity, which we denote as vs = (vs,x, vs,y, vs,z). The change in the
orbit due to the scattering are then determined by imposing conservation of angular
momentum and energy.

10.2.1 Single Crossing

We start by describing the effects of a single crossing of the secondary through the
disk. First, we examine accretion, followed by dynamical friction, and finally the
backreaction on the orbit. This provides the basis for understanding the cumulative
effect of multiple crossings.

Accretion

As the secondary crosses the disk, it accretes mass and momentum. We model this
interaction as a perfectly inelastic collision. Quantities associated with the secondary
after the disk passage are denoted with primes. Consider first the change in linear
momentum. Since the disk lies in the x−y plane and the fluid rotates in circular orbits,
its velocity and position are orthogonal. Given that the position of the scattering point
lies along the ŷ–axis, the fluid velocity aligns with the x̂–axis. The momentum of a
fluid element is then given by

Pd = mdvd = md(vd, 0, 0) , (10.2.2)

where md is the mass of the fluid element. For the secondary, the momenta before
and after the interaction are expressed as

Pp = mp(vs,x, vs,y, vs,z) ,
P′

p = mp(vs,x, vs,y, vs,z) + ∆m(vd, 0, 0) ,
(10.2.3)

where ∆m represents the accreted mass. Consequently, the secondary’s mass increases
as

m′
p = mp + ∆m. (10.2.4)

2In some accretion disk models, the motion may not be strictly Keplerian, e.g., in the Thompson
et al. model (3.5.6). However, deviations from Keplerian motion do not affect our results appreciably.
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Before specifying ∆m, we note that accretion effects can alternatively be described
using an effective force. Rearranging eq. (10.2.3) yields

P′
p − Pp = ∆Pp = ∆mvd = ṁp∆tvd , (10.2.5)

where the overhead dot denotes a time derivative and ∆t is the crossing time. Us-
ing the impulse-momentum theorem, which relates the change in momentum to the
applied force over time, we can define an effective force:

Facc = ṁpvd . (10.2.6)

This expression coincides with the one used in [513].

To calculate the accretion rate of the secondary as it passes through the disk, we
consider Bondi-Hoyle accretion, which describes the spherical accretion of material
onto a BH that is moving through a medium. The effective accretion cross-section is
given by the Bondi-Hoyle-Lyttleton formula [770, 771]:

σBHL =
4πm2

p

(c2
s + v2

rel)2 . (10.2.7)

Here, vrel = vd −vp denotes the relative velocity between the disk and the secondary,
and cs is the sound speed in the disk. Using eq. (10.2.7), the mass accreted by the
secondary during a single disk passage is given by

∆m =
∫
ṁp dt =

∫
ρ σBHL

√
c2

s + v2
rel dt . (10.2.8)

For simplicity, we first consider a perpendicular crossing, such that ι = π/2 and the
radius r remains constant. From eq. (10.2.8), the accreted mass is expressed as

∆m =
∫
ρ(r, z)σBHL

√
c2

s + v2
rel dz dt

dz =
∫ H/2

−H/2
ρ(r)

4πm2
p

(v2
rel + c2

s )3/2vz
dz , (10.2.9)

where we use the piecewise profile from eq. (3.5.3) and dz/dt = vrel,z = vz, since the
disk velocity has no ẑ–component. The total accreted mass is then

∆m = H(r)ρ(r)
4πm2

p

(v2
rel + c2

s )3/2
1
vz
. (10.2.10)

This result agrees with that of [754].3

Consider then the secondary crossing the disk at a generic angle with a velocity
V in the y − z plane. The angle between the “vertical” ẑ–direction and the “non-
perpendicular” ẑ′–direction of the secondary, is given by ξ (i.e., ξ = 0 corresponds to

3If the disk’s vertical profile is modelled using a Gaussian (3.5.4) instead of a piecewise func-
tion (3.5.3), the results differ by a factor of

√
2π.
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the perpendicular case). It is important to note that ξ is not the inclination of the
orbit. The velocity component along the ẑ–axis is vz = V cos ξ. The mass accreted
during the passage is then given by

∆m =
∫
ρ(r, z)

4πm2
p

(v2
rel + c2

s )3/2 dt =
∫
ρ(r, z)

4πm2
p

(v2
rel + c2

s )3/2
1
V

dz′ , (10.2.11)

while the secondary travels a distance H(r)/ cos ξ in the ẑ–direction. We can thus
write:

∆m =
∫ H/ cos ξ

0
ρ(r, z)

4πm2
p

(v2
rel + c2

s )3/2
1
V

dz′ . (10.2.12)

Rotating back to the original plane, where z′ = z cos ξ − y sin ξ, we obtain:

∆m =
∫ H

0
ρ(r, z)

4πm2
p

(v2
rel + c2

s )3/2
1
V

cos ξ dz

+
∫ H sin ξ/ cos ξ

0
ρ(r, z)

4πm2
p

(v2
rel + c2

s )3/2
1
V

sin ξ dy .
(10.2.13)

In the special case of ξ = 0, the second integral vanishes, recovering the result from
the perpendicular crossing case (10.2.10). On the other hand, when the orbit becomes
equatorial, i.e., ξ = π/2, the path in the disk becomes “infinite”, and the integral in
eq. (10.2.13) indeed diverges.

Analytically solving eq. (10.2.13) is generally challenging due to the spatial de-
pendence of the fluid density. However, assuming the arc of the orbit inside the disk
to be small, we can approximate the density to be constant. In this case, the integral
above admits a simple analytical solution:

∆m =
4πm2

pρH

(v2
rel + c2

s )3/2

(cos ξ
V

+ sin2 ξ

V cos ξ

)
=

4πm2
pρH

(v2
rel + c2

s )3/2
1
vz
, (10.2.14)

where in the last equality, we used V = vz/ cos ξ. Remarkably, this expression matches
the result for the perpendicular crossing (10.2.10). The actual accreted mass, however,
will differ because the relative velocity between the secondary and the disk changes
whenever the crossing is non-perpendicular. Finally, the result remains unchanged
even if the secondary’s velocity has a component along the x̂–axis. In this case, the
calculation only requires an additional rotation in the x− y plane, which again leads
to the same result.

Dynamical friction

Dynamical friction arises from the interaction between the secondary and the wake
of particles affected by its motion, but not accreted by it. While one could model
this using partially inelastic scatterings, we find it more convenient to adopt the
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force description introduced by Ostriker [742], based on the impulse theorem. In this
framework, the change in the secondary’s momentum is given by

P′
p = Pp + FDF∆t ,

FDF =
4πm2

pρ

v3
rel

vrel I (vrel/cs) ,
(10.2.15)

where I (vrel/cs) is a dimensionless factor that depends on the Mach number, M =
vrel/cs. This factor is defined as

I(M) =


1
2 ln

(
1 − 1

M2

)
+ ln Λ M > 1 ,

1
2 ln

(
1 + M
1 − M

)
− M M < 1 .

(10.2.16)

When the secondary is far from the primary, the Mach number is large (M ≫ 1), and
I becomes nearly independent of M. To avoid the divergence at M = 1, we adopt
the following regularised form:

I(M) =


ln Λ M ≥ 1 ,

min
[
ln Λ , 1

2 ln
(

1 + M
1 − M

)
− M

]
M < 1 .

(10.2.17)

Here, ln Λ is the Coulomb logarithm [772], which serves as a regulator that defines the
effective size of the medium contributing to the gravitational drag on the secondary.
Without this cutoff, the medium would generate an infinitely extended wake, leading
to a divergent drag force. While the precise value of ln Λ depends on the properties
of the medium and the secondary, numerical simulations of gas accretion onto BHs
suggest that ln Λ ≈ 3 provides a good fit [773].

Two important considerations are worth highlighting.

1. Both accretion and friction act as effective forces that modify the secondary’s
velocity after scattering. In principle, these forces would also cause a displace-
ment of the secondary’s position. However, while the change in velocity scales
as ∝ F∆t, the change in position scales as ∝ F∆t2. Since we always assume the
arch of the orbit inside the disk to be small, the crossing time satisfies ∆t ≪ 1.
Consequently, under the impulsive force approximation, the displacement is a
next-to-leading order effect in ∆t and can thus be safely neglected.

2. Both Bondi accretion and our model for dynamical friction implicitly assume
an infinite medium. If the Bondi radius becomes comparable to the medium
size, these effects may be reduced [774, 775]. In our analysis, we rigorously
verified that the disk’s thickness remains significantly larger than the Bondi
radius, thereby validating our assumptions.
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Backreaction on the orbit

Once the linear momentum of the secondary after scattering is determined, using ei-
ther eq. (10.2.3) or (10.2.15), the corresponding angular momentum can be calculated
as

L′
p = rp × P′

p , (10.2.18)

where rp = (0, R, 0) = (0, y, 0). The updated orbital energy is then given by

E′
orb =

|P′
p|2

2m′
p

−
Mm′

p

|R|
. (10.2.19)

After each scattering event, we verify that the orbital energy is negative, ensuring the
orbit remains bound.

We then update the orbital parameters. The inclination is determined using

ι′ = arccos
(

−L′
s,z

|L′
p|

)
, (10.2.20)

where L′
s,z and |L′

p| denote the z–component and the magnitude of the updated
angular momentum vector (10.2.18), respectively. The orbital eccentricity is updated
using the relation

ε′ =

√
−|L′

p|2 + a′m′ 2
p M

a′Mm′ 2
p

, (10.2.21)

where the updated semi-major axis a′ is obtained by inverting the vis-viva equa-
tion (10.1.4):

a′ = MR

2M −R|v′
p|2

, (10.2.22)

with the magnitude of the secondary’s velocity given by |vp| =
√
v2

x + v2
y + v2

z . Fi-
nally, the true anomaly is updated using

θ′ = arccos
(
a′(1 − ε′ 2) −R

ε′R

)
. (10.2.23)

10.2.2 Multiple Crossings

After the scattering, the secondary follows a new orbit in vacuum with the updated
orbital parameters, starting from the first crossing point until it intersects the disk
again. While one could numerically evolve the orbit to locate the next scattering
point, we exploit the symmetry of the problem to determine it analytically. From
Figure 10.1, it follows that the next crossing point occurs at θ′′ = π − θ′, where
double primes denote the quantities at the subsequent scattering point.
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By definition, the next crossing point must lie on both the disk and orbital planes.
These planes intersect along the ŷ–axis, where both the primary, located at the origin,
and the “previous” scattering point are.4 Using eqs. (10.1.2) and (10.1.4), we compute
the updated separation |R′′| and velocity magnitude |v′′|. Since the components of
the angular momentum must be conserved individually, we use the conservation along
the x̂–axis (ẑ–axis) to find v′′

z (v′′
x) as

v′′
z = Rp′

z

R′′m′
p
, v′′

x = Rp′
x

R′′m′
p
. (10.2.24)

The final component, v′′
y , is then found as

v′′
y =

√
|v′′|2 − v′′ 2

x − v′′ 2
z . (10.2.25)

With all the updated quantities in hand, the new crossing position and velocity are
given by rnew = (0,−|R′′|, 0) and vnew = (v′′

x , v
′′
y , v

′′
z ). This process is then repeated

for subsequent crossings.

10.2.3 Initialisation

At each step of our algorithm, the position rp and velocity vp of the secondary are
updated, fully characterising the orbit. However, directly specifying the initial velocity
vector vp,0 is not intuitive. To address this, we initialise the orbit using the standard
orbital elements, from which we derive the initial velocity of the secondary.

The position of the secondary is given by eq. (10.1.2). From this, we compute the
radial and transverse velocities as

vr =
√

M

a(1 − ε2) ε sin θ , vθ =
√

M

a(1 − ε2) (1 + ε cos θ) . (10.2.26)

The velocity of the secondary in the orbital plane is then:

vp,orb = (vr cos θ − vθ sin θ, vr sin θ + vθ cos θ, 0) . (10.2.27)

To transform this velocity into the original coordinate system, we apply the rotation
matrix:

R = RΩRωRι , (10.2.28)

where RΩ, Rω and Rι are the rotation matrices for the longitude of the ascending
node (Ω), the argument of the periapsis (ω) and the inclination, respectively. Since

4Including the displacement induced by hydrodynamic drag would introduce a minor x̂–axis
component to the updated position. However, as discussed before, this effect is subleading and can
be neglected.
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we are only concerned with the position of the secondary as it crosses the equatorial
plane, and we have aligned our axes accordingly, the longitude of the ascending node is
given by Ω = π/2. Thus, the first rotation matrix required for eq. (10.2.28) simplifies
to:

RΩ =

cos Ω − sin Ω 0
sin Ω cos Ω 0

0 0 1

 =

0 −1 0
1 0 0
0 0 1

 . (10.2.29)

Furthermore, since the first scattering point occurs at the ascending node, the ar-
gument of the periapsis is given by ω = −θ. The corresponding rotation matrix is
then:

Rω =

cosω − sinω 0
sinω cosω 0

0 0 1

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (10.2.30)

Finally, the rotation matrix for the inclination takes the form:

Rι =

1 0 0
0 cos ι − sin ι
0 sin ι cos ι

 . (10.2.31)

The initial velocity is then given by vp,0 = Rvp,orb, making use of eqs. (10.2.26)–
(10.2.28). As a result, the initialisation of the algorithm requires the following pa-
rameters: (i) the semi-major axis, a0; (ii) the eccentricity ε0; (iii) the true anomaly
θ0; (iv) the inclination ι0 and (v) the initial position r0.

10.3 Results

We are now equipped to evolve the system over an arbitrary number of orbits. To
understand the total time evolution of the orbit, we can estimate the effect of GW
radiation reaction, which drives the system towards the plunge, ending the inspiral.
The inspiral and orbital timescales can be approximated as

tinsp ≈ r4

qM3 and torb ≈
√
r3

M
, (10.3.1)

leading to an approximate number of orbits:

Norbits ≈ 1
q

√( r

M

)5
. (10.3.2)

Thus, the number of orbits is inversely proportional to the mass ratio, i.e., Norbits ∼
q−1. The precise number of orbits over an EMRI lifetime is highly uncertain [39, 776],
especially in the presence of astrophysical environments. Therefore, we will consider
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Benchmark system
Symbol Meaning Value
M BH mass 107M⊙

q Mass ratio 10−4

a Semi-major axis 106M

ι Inclination
ε Eccentricity
θ True anomaly

αvisc Viscosity 0.01
fEdd Luminosity ratio 0.5
η Radiative efficiency 0.1
X Hydrogen abundance 0.7

Table 10.1: Benchmark system of parameters when using the Sirko-Goodman model
(see Section 3.5) [193, 434]. We will always model the inner disk according to the
α-prescription of the Shakura-Sunyaev disk (3.5.1).

a conservative scenario where Norbits = q−1 and the secondary located at very large
separations, such that we can adopt the adiabatic approximation and neglect the GW
radiation reaction.

In the following, we primarily focus on dynamical friction and the Sirko-Goodman
AGN model (see Section 3.5), using a set of benchmark parameters listed in Table 10.1.
A comparison of the Sirko-Goodman prescription with the Thompson et al. model
(see Figure 3.4) is presented in Section 10.3.4. We show that both models yield
qualitatively similar results, suggesting that our conclusions are robust to the choice
of disk model. Furthermore, in Section 10.3.4, we examine the distinction between
dynamical friction and accretion-driven drag. While both processes influence the
orbital evolution in a similar manner, friction is typically slightly larger in magnitude.
In fact, in the supersonic regime – relevant for most of our parameter space – the main
difference arises from the Coulomb logarithm, which is an O(1) factor. Consequently,
the influence of accretion is generally more adiabatic and less abrupt than that of
friction.

10.3.1 Evolution of the Inclination and Semi-Major Axis

Initial inclination

First, we examine how the disk influences the inclination and semi-major axis as
functions of the initial inclination ι0. We consider both prograde (ι0 < π/2) and ret-
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Figure 10.2: The impact of dynamical friction from repeated disk crossings on the
evolution of the inclination, eccentricity and semi-major axis, for various initial in-
clinations. We use the benchmark parameters from Table 10.1, setting ε0 = 0.5,
a0 = 106M (∼ 0.5 pc) and θ0 = π/3. Increasing either the primary’s mass M or the
semi-major axis enhances the magnitude of the effect.

rograde (ι0 > π/2) orbits. Figure 10.2 shows the evolution of the orbital parameters.
The setup uses the Sirko-Goodman model with M = 107M⊙, ε0 = 0.5, a0 = 106M

and θ0 = π/3. As illustrated, interactions with the disk generally lead to a decrease
in both the inclination and semi-major axis. The evolution of eccentricity is more
complex and will be discussed in detail in the next section. The closer the initial
inclination is to alignment with the disk (ι0 → 0), the more pronounced the reduction
in inclination is. For instance, a prograde orbit with ι0 = π/6 is fully dragged into
the equatorial plane and circularised in fewer than 1000 orbits, while an orbit with
ι0 = π/3 achieves alignment in approximately 4000 orbits. Using Kepler’s third law
and the updated semi-major axis after each orbit, we find that this corresponds to
an alignment timescale of Talign ≃ 105 and 106 yrs, respectively. At higher inclina-
tions, the effect diminishes: while an orbit with ι0 = π/2 still experiences a noticeable
change after 104 orbits, the effect becomes negligible for ι0 ≳ 2π/3. Interestingly,
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the decrease in the semi-major axis does not follow the same trend and remains rel-
evant for all different values of ι0, while the ordering between the curves changes. A
possible explanation involves the two competing effects that influence the energy lost
during each interaction with the disk: (i) how much is the secondary immersed in the
disk (which is maximised when the orbit is nearly co-planar, i.e., ι ≈ 0 or ι ≈ π)
and (ii) if the motion is aligned or anti-aligned with the disk’s rotation, i.e., whether
the secondary moves with or against the flow of the gas in the disk. For example,
consider the case of a nearly retrograde orbit with ι0 = 5π/6 [blue]. The secondary is
almost fully embedded in the disk, maximising the interaction and thus the potential
for energy loss. However, because it is moving against the direction of the disk, the
relative velocity is large, which leads to a smaller drag force and thus less efficient
energy extraction. Now compare this to a slightly less inclined orbit, e.g., ι0 = 2π/3
[orange]: the secondary is less immersed in the disk, reducing the duration and inten-
sity of each scattering event, but the alignment with the disk flow is more favourable
for transferring energy. The resulting decrease in semi-major axis is thus determined
by the interplay between these two factors.

Initial eccentricity and true anomaly

We now investigate a similar setup, this time varying the initial eccentricity ε0 and the
true anomaly θ0. These two parameters are closely linked, and the system’s evolution
depends strongly on their interplay. Since there is no physically motivated choice for
the initial true anomaly, we will explore a range of values to characterise its influence.
Together, ε0 and θ0 determine the relative positioning of the ascending and descending
nodes with respect to the BH, effectively controlling how symmetric or asymmetric
the two disk crossings per orbit are, as illustrated in Figure 10.1. When θ0 = π/2, the
nodes are equidistant from the BH, ensuring that each scattering happens in regions
of the disk with the same density and local velocity. In contrast, for θ0 = 0 and ε0 ̸= 0,
the scatterings take place in highly asymmetric regions of the disk [see eq. (10.1.2)].

We begin by varying ε0, fixing the inclination at ι0 = π/3 (solid lines) or ι0 = 2π/3
(dotted lines), and setting θ0 = π/3. The results are shown in Figure 10.3. As
seen in the top panel, the evolution of the inclination is strongly influenced by the
initial eccentricity. Lower values of ε0 lead to a more rapid decrease in inclination,
while larger eccentricities (e.g., ε0 = 0.8 [blue]) result in significantly longer alignment
timescales. In contrast, the decay rates of the eccentricity and semi-major axis exhibit
a weaker dependence on ε0, especially for prograde orbits.

Crucially, this behaviour can be completely reversed by changing the initial
anomaly θ0. Figure 10.4 shows the fractional change in inclination as a function
of θ0 for two eccentricities, ε0 = 0.4 and ε0 = 0.8. When θ0 ≲ π/4, higher eccentricity
leads to larger decrease in inclination – the opposite trend compared to the previous
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Figure 10.3: Similar configuration as in Figure 10.2, but now varying the initial
eccentricity. We take ι0 = π/3 (solid) and ι0 = 2π/3 (dotted).

setup. This highlights the intricate relationship between ε0 and θ0, making it diffi-
cult to draw general conclusions about either one independently. For completeness,
Figure 10.4 also shows the evolution of the eccentricity. While the inclination consis-
tently decreases, we observe regions where the eccentricity actually increases, as also
evident in the centre panel of Figure 10.2. A detailed explanation of this behaviour
will be provided in the next section.

So far, we have examined how orbital evolution depends on the initial conditions.
It is crucial, however, to consider how this evolution behaves dynamically. The incli-
nation and eccentricity do not decay linearly with the number of orbits. As shown
in Figures 10.2 and 10.3, their rates of change experience a sharp transition when
the inclination falls below a critical threshold – approximately ι ≈ π/12 for the pa-
rameters used here. This behaviour can be attributed to the increasing relevance of
dynamical friction, FDF ∝ v−2

rel , as the orbit aligns with the disk and becomes more
circular. These results underscore the importance of a self-consistent framework for
modelling the system’s evolution, rather than relying on timescale estimates based
solely on the initial conditions.
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Figure 10.4: Fractional change in inclination and eccentricity after 1000 orbits, for
ι0 = 5π/6 and either ε0 = 0.8 (solid) or ε0 = 0.4 (dashed). The benchmark parameters
used are listed in Table 10.1.

Masses

The dependence of the system’s evolution on the masses of the primary and secondary
is more straightforward. We find that the variation of the orbital parameters is
inversely proportional to the mass of the secondary. However, since the number of
orbits scales inversely with the mass ratio (10.3.2), the overall change in the orbital
parameters over the entire inspiral remains independent on the secondary’s mass.
In contrast, increasing the mass of the primary increases the number of orbits, while
simultaneously decreasing the disk’s density. In this case, the former effect dominates,
making the overall impact of the scatterings more significant for larger values of the
primary’s mass.

10.3.2 Evolution of the Eccentricity

Thus far, our results have revealed a complex and often non-intuitive evolution of
the eccentricity. In particular, Figures 10.2 and 10.4 highlight specific conditions
under which the eccentricity can temporarily increase—a phenomenon we refer to
as eccentricity pumping. Similar behaviour has been observed in other astrophysical
environments, such as circumbinary disks [777–780] and superradiant boson clouds [5,
6, 10].

To better understand when eccentricity pumping occurs in our context, we study
its dependence on the true anomaly. Figure 10.5 presents a contour plot of the
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Figure 10.5: Contour plot of the fractional change in eccentricity, ∆ε, after just 25
orbits in the Sirko-Goodman model with M = 107M⊙. The left, centre, and right
panels correspond to initial values of the true anomaly of θ0 ≈ 0, θ0 = π/4, and θ0 ≈
π/2, respectively. Black contours mark regions of positive ∆ε = 0, 0.25, 0.5, 0.75,
with decreasing line thickness. In reality, the secondary continues to interact with
the disk even after its orbit aligns with the disk plane. However, our model is no
longer valid beyond this point. As a result, the total eccentricity reduction over the
full inspiral due to the disk is much greater than what is shown in this figure.

fractional change in eccentricity, ∆ε, after just 25 orbits. The three panels correspond
to different initial values for the true anomaly: θ0 ≈ 0 (left), θ0 = π/4 (centre), and
θ0 ≈ π/2 (right). These plots show that eccentricity pumping is most prominent when
the nodes are maximally asymmetric relative to the disk, i.e., when θ ≈ 0. In this
regime, large portions of parameter space experience a net increase in eccentricity.
As θ increases, the pumping region shrinks (centre panel), and it disappears entirely
when the nodes are symmetric with respect to the BH, i.e., θ ≈ π/2 (right panel).
Notably, eccentricity pumping occurs predominantly at large inclinations.

To explore the time evolution more directly, Figure 10.6 shows the eccentricity
evolution for three representative cases, corresponding to the same true anomaly val-
ues as the contour plots. For θ0 ≈ 0 [blue], the eccentricity increases monotonically
throughout the evolution up until the point where the secondary is nearly aligned and
it starts decreasing rapidly. In contrast, for θ0 ≈ π/2 [green], the eccentricity always
decreases. The most intricate behaviour arises for θ0 = π/4 [orange]: the system ini-
tially undergoes a slight decrease in eccentricity, but as it evolves, it enters a pumping
region (as seen in the corresponding contour plot), causing ε to increase before ulti-
mately decaying again as the secondary comes close to alignment. This demonstrates
that eccentricity can dynamically switch behaviour over time, depending on how the
system evolves through phase space. The underlying mechanism behind this evolution
involves two competing effects: while a decrease in inclination generally forces the sys-
tem towards region of eccentricity decrease, a decrease in the true anomaly widens the
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Figure 10.6: Using the same initial true anomaly values as in the contour plots, we
show the evolution of a system with ε0 = 0.8 and ι0 = 5π/6. The results reveal a clear
and strong dependence of the eccentricity evolution on the initial choice of the true
anomaly (centre panel). In contrast, the inclination consistently decreases regardless
of θ (top panel). While the eccentricity behaviour can be complex and highly sensitive
to initial conditions, the overall trend remains: the system ultimately tends towards
circularisation. Benchmark parameters are listed in Table 10.1.

available parameter space for eccentricity pumping (see Figure 10.5). Importantly,
we find that once the inclination drops below a critical threshold, the impact of the
inclination becomes dominant and eccentricity always decreases (see Figure 10.6).
Consequently, the system always evolves towards a circular, prograde orbit as its final
state. Lastly, as we discussed in the previous section, alignment happens faster in
regions of large eccentricity and small true anomaly. As shown in Figure 10.6, in
many cases the system is pushed dynamically towards such a configuration, with a
rapid alignment as a result of it.

At first glance, it may seem that interactions with the disk should always lead to
circularisation of the orbit. After all, drag dissipates orbital energy, which typically
shrinks the orbit and reduces eccentricity. However, as we have seen, this intuition
does not always hold: under certain conditions, the orbit can instead become more
eccentric. An intuitive explanation can be found by considering the geometry of the
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orbit and the direction and strength of the drag force at key points along it.

The change in eccentricity depends critically on where the drag is strongest, which
in turn is determined by two factors: (i) the local density of the disk at the scattering
points, and (ii) the relative velocity between the secondary and the gas in the disk.
In our setup, the orbit intersects the disk at two points: the ascending and descending
nodes. The positions of these nodes relative to periapsis and apoapsis are set by the
true anomaly θ. When θ ≈ 0, the periapsis is close to one node and the apoapsis close
to the other. If the density of the disk is asymmetric between these two points (i.e.,
when ε ̸= 0), the resulting drag forces can differ significantly. In particular, when the
drag is stronger near periapsis, the energy loss is concentrated there, leading to the
apoapsis shrinking more rapidly than the periapsis, i.e., the system is circularising.
Conversely, if the drag is stronger near apoapsis, the opposite occurs and the periapsis
shrinks faster, causing the orbit to undergo eccentricity pumping. In addition, the
orientation of the orbit with respect to the disk plays a role. For prograde orbits,
the secondary moves with the disk. At periapsis, it is faster than the gas in the disk,
so drag points backward and strongly damps the orbit, leading to circularisation.
For retrograde orbits, the secondary moves opposite to the disk and drag acts in the
prograde direction. But crucially, the magnitude of the drag is not symmetric: it
is weaker at periapsis (due to the high relative velocity) and stronger at apoapsis,
leading to eccentricity pumping.

In summary, the geometry of the system – the inclination, eccentricity, and loca-
tion of the periapsis (set by θ) – together determine whether eccentricity is damped or
pumped. The results in Figure 10.5 confirm the intuitive picture outlined above: ec-
centricity pumping is most efficient for orbits with high inclinations and small values
of the true anomaly.

10.3.3 Dynamics of Highly-Eccentric Orbits

EMRIs are expected to form with extremely high eccentricities, potentially reaching
values as large as ε ≳ 0.9999 [726]. As discussed in previous sections, orbits with high
eccentricity and asymmetric nodes (θ ≈ 0) can experience significant changes in both
inclination and eccentricity. In Figure 10.7, we explore such a scenario, revealing an
intriguing evolution of the system. For a surprisingly large number of orbits (≈ 8000),
the eccentricity remains nearly constant while the inclination undergoes a dramatic
shift, transitioning from a nearly counter-rotating configuration to a co-rotating one.
Meanwhile, the semi-major axis decreases significantly. This highlights the complex
interplay between the eccentricity and inclination evolution in astrophysically realistic
systems, and how their evolution can differ significantly.

Note that in the highly-eccentric regime, GW emission can become significant.
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Figure 10.7: Evolution of the orbital parameters for an initially high eccentricity
ε0 = 0.999, and a nearly counter-rotating orbit ι0 = 5π/6, with θ0 ≈ 0. While
the eccentricity remains approximately constant, the orbit flips on relatively short
timescales. Disk and binary parameters follow Table 10.1.

While our current setup neglects radiation reaction, this effect could, in principle, be
included to extend the validity of the algorithm. That said, for the semi-major axis
and eccentricity values considered here (specifically, ε0 < 0.999 and a0 = 106M), the
periapsis remains at radii larger than 1000M , corresponding to inspiral timescales of
millions of years for typical EMRI systems. As such, ignoring GW emission will not
significantly impact the results in the parameter space we explore.

10.3.4 Comparisons

AGN models

So far, we have exclusively focused on the Sirko-Goodman model. This choice is
motivated by the fact that, despite differences in disk structure and velocity profiles,
both models yield comparable effects on the orbital parameters, with the magnitude of
these effects being sensitive to specific parameter choices. To highlight their differences
more clearly, Figure 10.8 illustrates the behaviour of the two models in the context
of dynamical friction.
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Figure 10.8: Comparison of the Sirko-Goodman (solid) and Thompson et al. (dashed)
models. We use ε0 = 0.5, θ0 = π/3 and ι0 = 2π/3 [blue] or ι0 = π/3 [orange]. The
benchmark parameters for the Sirko-Goodman model are taken from Table 10.1, while
the Thompson et al. parameters are the same as in Figure 3.4.

As discussed in Section 3.5, the Thompson et al. model incorporates non-Keplerian
angular velocities (3.5.6). However, we explicitly verified that this modification has
only a marginal impact on the orbital evolution. In general, the Sirko-Goodman
model tends to produce stronger effects, mainly due to its larger scale heights at the
orbital separations we are interested in. Moreover, the gas density in the Thompson
et al. model is generally lower at smaller radii, as seen in Figure 3.4.

Accretion versus friction

In the previous analysis, we neglected accretion in order to streamline the discussion.
As illustrated in Figure 10.9, both accretion and dynamical friction act in qualita-
tively similar ways on the secondary’s orbit, exerting drag forces that alter its motion
over time. While the overall impact of accretion is generally weaker compared to that
of dynamical friction, it does introduce one qualitatively distinct effect: the gradual
increase in the mass of the secondary. Although this mass growth is typically subdom-
inant in terms of its direct impact on orbital evolution, it can become significant near
the point of alignment, as shown in Figure 10.9 (bottom panel). In such cases, the
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Figure 10.9: The impact of dynamical friction (solid) and accretion (dashed) on the
evolution of inclination, eccentricity, and semi-major axis for ι0 = 2π/3 [blue] or
ι0 = π/3 [orange]. All other parameters follow Figure 10.8.

evolving mass of the secondary may feed back into the dynamical process, modifying
the inspiral rate and potentially influencing the final configuration of the system.

Previous work

Our framework enables, for the first time, a self-consistent evolution of the orbital
parameters during the early inspiral phase of an EMRI interacting with an AGN disk.
Previous studies typically considered only a few scatterings, extrapolating timescales
to infer long-term evolution, or applied restrictive assumptions (see e.g., [408, 753–
755, 765–767]). As a result, these studies often reported contradictory results.

We find that the interactions between the secondary and the disk can significantly
influence the evolution of the binary across a broad parameter space. This stands
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in contrast to earlier studies that argued dynamical friction and accretion would be
negligible for compact objects [765–767]. The discrepancy is likely attributable to
their assumption of extremely thin disks. Our findings align more closely with recent
studies [408, 753–755].

Nevertheless, key differences remain even among these more recent works. While
in [408, 753], circular orbits were assumed, our results suggest that eccentricity plays
a crucial role in the alignment process, significantly affecting timescales. We thus con-
sider the assumption of circular orbits in these studies to be unrealistic. Furthermore,
in [753] a critical inclination angle was proposed beyond which the secondary would
align into a fully retrograde orbit. Our simulations do not support this claim; instead,
we consistently find circular, prograde orbits as the final outcome. Eccentricity was
included in [754], which found that it can grow for retrograde orbits but is always
damped in the prograde case. Our results partly challenge this picture: eccentricity
growth can occur even for prograde orbits across a significant portion of the parame-
ter space (see Figure 10.5). Similar to their study, we account for both accretion and
dynamical friction, and we confirm their conclusion that accretion can be as impor-
tant as friction, altering timescales by an O(1) factor. Our general conclusions share
some qualitative similarities with the estimates in [755], particularly regarding the
evolution of the eccentricity with respect to the true anomaly. In line with their pre-
dictions, we observe that for highly asymmetric crossing points (θ ≈ 0), eccentricity
increases across a large parameter space before quickly damping once the inclination
reaches a critical value. Additionally, we independently confirm their prediction that
for highly symmetric crossing points (θ ≈ π/2), eccentricity never grows, even for
retrograde orbits.

10.4 Summary and Outlook

In this chapter, we developed a new framework to study the orbital evolution of EM-
RIs embedded in AGN disks. Unlike previous approaches, our method enables the
evolution of the system to be tracked over an arbitrary number of orbits, captur-
ing both short-term interactions and long-term orbital changes in a computationally
efficient way.

Our simulations show that AGN disks strongly influence the evolution of EMRIs.
As a general outcome, the secondary always aligns with the disk plane, usually in
relatively short timescales. While the evolution of eccentricity is more intricate, we
find that it, too, eventually damps as the system aligns. These results provide insight
into the expected configuration of EMRIs once they enter the sensitivity band of
GW detectors and raise questions about the possibility of using residual eccentricity
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as a diagnostic for identifying EMRIs in accretion disks [524, 781–785]. We also
uncover previously unexplored dynamics for highly eccentric binaries and perform a
comparison with existing literature.

This study opens new avenues for a comprehensive investigation of disk-satellite
interactions in EMRIs. There are several directions that warrant further exploration
in the future.

• Our framework can be readily adapted to track the evolution of stars embed-
ded in AGN disks, where disk interactions are expected to be even more pro-
nounced [408, 753, 754].

• By computing the semi-major axis at the end of the alignment process, our
framework enables a systematic study of populations of massive stars and BHs
in AGN disks.

• Integrating our model with EMRI formation scenarios and gas-driven migration
models would enable a coherent and chronological picture of EMRIs before they
enter the LISA band – from initial capture, through alignment to the onset of
GW emission in the LISA band.

Ultimately, the strength of this framework lies in its versatility and computational
efficiency, offering a powerful tool to explore the rich and complex dynamics of EMRIs
in gas-rich environments. It can serve both as a cross-check for full numerical simu-
lations and as a guide for identifying the most relevant regions of parameter space,
aiding GW source modelling for future detectors.
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The first principles of the Universe are atoms and empty space;

everything else is merely thought to exist.

Diogenes Laërtius, Democritus (Δημόκριτος), Book IX

The detection of gravitational waves has ushered in a new era of astrophysics. Gravity,
once testable only in the weak-field regime, is now explored in its most extreme form.
Black holes, once visible only through indirect electromagnetic observations, are now
directly observed. And gravitational waves, once confined only to theory, are now
tools for precise measurement.

These developments are not just technological: they are conceptual. Gravity is
the one universal language of the Universe, and we finally have access to its dictio-
nary. This has sparked excitement across gravitational, astro, and high-energy physics
communities, in part driven by the question: can gravitational waves reveal the fun-
damental constituents of the Universe? The environments surrounding black holes
may hold part of the answer. With next-generation detectors pushing the boundaries
of sensitivity and frequency coverage, there is an increasing interest in how these en-
vironments imprint themselves on gravitational-wave signals. This thesis contributes
to that ongoing effort.

One particularly striking scenario involves an environment black holes can generate
through superradiance. This process enables ultralight bosonic fields to “tap” energy
and angular momentum from rotating black holes, forming a dense cloud around them.
In Chapters 4 and 5, I explored the interactions between such clouds and the electro-
magnetic sector. While previous studies suggested the possibility of electromagnetic
bursts of radiation, evolving the joint dynamics of the boson and electromagnetic field
reveals a different outcome: rather than bursts, a stationary emission of light arises,
where the black hole’s rotational energy sustains continuous, monochromatic radia-
tion. The detectability of this signal, however, depends on its ability to reach Earth.
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By studying astrophysical plasmas on curved spacetime, I concluded that even low-
density plasmas can prevent most of the radiation from propagating – a phenomenon
known as in-medium suppression. This alters the expected observational signatures
from these systems and emphasises the importance of considering multiple, potentially
coexisting matter configurations around black holes.

In binary systems, environments can shape the dynamics and leave distinctive
features in the emitted gravitational waves. In vacuum, the final stage of a binary co-
alescence – the ringdown – provides a powerful probe of the properties of the remnant
black hole. This naturally raises the question whether environments influence this
outcome. One compelling scenario involves the interaction between charged black
holes and astrophysical plasmas. In Chapter 6, I showed that two key effects can
arise: (i) when plasma extends to the light ring, it alters the fundamental gravita-
tional quasi-normal mode of the remnant; (ii) when plasma is localised further out –
as may occur if a binary decouples from its circumbinary disk late in the inspiral [786–
788] – electromagnetic ringdown modes can reflect off the plasma barrier, producing
gravitational-wave echoes. While such scenarios yield distinct observational signa-
tures, the question of their detectability still needs to be addressed. In Chapter 7, I
examined this issue in the context of dark matter halos. Focusing on the projected
sensitivity of future detectors and adopting realistic astrophysical parameters, I found
that the ringdown signal is effectively indistinguishable from that in vacuum. As a
result, analyses based solely on the ringdown phase remain reliable for inferring the
remnant’s mass and spin, which can, in turn, help identify any environmental effects
that may have influenced the earlier stages of the coalescence.

Although the ringdown can offer a clean probe of new physics, its duration is short-
lived. In contrast, the inspiral phase lasts much longer – particularly for extreme mass
ratio binaries, which are key targets for next-generation detectors. These systems can
remain in-band for years, allowing even subtle influences to accumulate to a detectable
level. Consequently, much of the focus on black hole environments has centred on this
phase. A remarkably rich phenomenology arises in the case of superradiant boson
clouds. To fully understand the cloud-binary system in the late inspiral, when it enters
the detector’s sensitivity band, it is necessary to track its evolution from formation
onwards and construct a coherent picture of the system’s history. A crucial mechanism
shaping this evolution is the occurrence of orbital resonances between different bound
states of the cloud. In Chapter 8, I generalised the framework of resonances to fully
generic orbits, revealing a strong dependence on the binary’s orbital parameters. In
particular, if the binary is nearly counter-rotating, resonances are weak, and the
cloud remains intact throughout the inspiral. This enables more accurate predictions
of the system’s configuration when it enters the sensitivity band of detectors, aiding
parameter estimation in the analysis of the gravitational-wave signal. Conversely,
for binaries that are not close to counter-rotating, resonances lead to a complete

214



absorption of the cloud by the central black hole. As this happens, the binary is
driven towards a co-rotating configuration, while the eccentricity settles towards an
attractor value that may be nonzero. Consequently, the cloud leaves a lasting imprint
on the binary and the resulting gravitational-wave signal.

Should the cloud survive its early interaction with the binary, it eventually enters
the relativistic regime. At this stage, new modelling techniques are required. In
the vacuum case, the self-force method [121, 122] offers the most effective approach
for extreme mass ratio systems. In Chapter 9, I extended this framework to non-
vacuum spacetimes, making it possible to account for generic environments. Applying
it to the cloud-binary system in the Kerr geometry, I explored its behaviour deep in
the relativistic regime. As expected, Newtonian approximations and linear-motion
estimates lead to large deviations. Perhaps surprisingly, even the differences with the
Schwarzschild case prove significant, highlighting the critical role of black hole spin.

Understanding the dynamics between binaries and their environment is crucial
for characterising gravitational-wave signals, but it also raises questions about their
formation. In particular, the origin of extreme mass ratio binaries remains largely
uncertain [726]. One proposed mechanism involves the capture of compact objects in
the accretion disks of active galactic nuclei. Once captured, the object typically follows
a high-eccentricity orbit with a generic inclination, undergoing frequent scatterings
with the disk well before reaching the sensitivity band of detectors. In Chapter 10,
I introduced a new framework to model these scatterings and explored the system
across a wide variety of initial conditions. The results showed that the disk always
drives the binary into the disk plane on relatively short timescales. The evolution
of the eccentricity is more complex: while it typically decreases, certain regions of
parameter space allow it to grow. This intricate behaviour provides valuable insights
into the binary’s dynamics during the early inspiral, and could shed light on its
formation.

Outlook

The study of black hole environments is broad. Addressing every open question re-
garding their modelling or impact on gravitational-wave astronomy is neither feasible
nor particularly insightful. Instead, the following points represent, in my view, the
key next steps for future research.

Modelling.

• Decades of research have produced a variety of models describing structures
around black holes, particularly in the context of dark matter (see Section 3.2.1).
With LISA on the horizon [39], a systematic assessment of these models is timely.
This includes evaluating their stability, such as in the presence of hierarchical
black hole mergers [253, 259], and ensuring their consistency with astrophysical
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and cosmological constraints (see, e.g., Figure 3.2).

• Different environments may interact not just with the black hole and the binary,
but also with each other. One instance of this was discussed in Chapter 4, where
boson clouds generate electromagnetic radiation, but surrounding plasma sup-
presses its propagation. Another example involves accretion disks, which can
spin up black holes, potentially facilitating the formation of boson clouds [789].
While modelling individual environments is already challenging, real astrophysi-
cal systems – especially in galactic centres – are likely to host multiple coexisting
environments. Understanding how these influence each other requires a suffi-
ciently flexible modelling framework.

Formation. The process by which extreme mass ratio binaries form is still not
well understood [726]. In vacuum, various mechanisms have been proposed, such as
successive two-body encounters [726] or the Hill mechanism [790]. Environments may
influence the formation process by providing an additional channel for energy loss.
This has been studied extensively for accretion disks and active galactic nuclei (see
Chapter 10 and references therein), but other environments, like boson clouds, can
play a similar role [10]. A promising direction for future work is to better understand
how environments shape binary formation and how they influence the expected EMRI
rate for next-generation detectors.

Dynamics. The evolution of binaries within astrophysical environments is a central
focus of current research. Accurately modelling their dynamics requires a detailed
understanding of effects such as accretion and dynamical friction in various matter
configurations. Recently, increasing attention has been directed towards how envi-
ronments influence the orbital parameters of binaries.

• As discussed in Chapters 8 and 10, environments can dramatically impact the
eccentricity and inclination of binaries. While those studies were conducted in
the Newtonian regime, extending binary evolution to include generically inclined
and eccentric orbits in the relativistic regime remains an open challenge. Even
for vacuum Kerr, this problem has not been fully solved for extreme mass ratio
binaries, making it a crucial avenue for future research.

• Extending to generic orbits is not only necessary for a consistent evolution of
the system, but it also opens the possibility of using orbital parameters as a
probe of the environment itself; for example, through a measurable residual
eccentricity in the waveform [781–783]. Various mechanisms, such as pertur-
bations from third bodies [791, 792], circumbinary disks [777–780], and boson
clouds [5, 6, 10, 553] (see Figures 8.6–8.16) all induce eccentricity, with the lat-
ter two even admitting nontrivial equilibrium points. While eccentricity alone
may not suffice to distinguish between environments [784], orbital inclination
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provides an additional diagnostic. Identifying a statistically significant prefer-
ence for a particular inclination angle or eccentricity among detected sources
could offer compelling evidence for the presence of an environment. Population
studies aimed at uncovering such trends represent a promising area for further
exploration.

Waveforms.

• Numerical relativity can play an important role in the study of environments
for two main reasons: (i) it provides an essential cross-check for waveform com-
putations, and (ii) it enables the evolution of systems in a regime where the
full nonlinear nature of Einstein’s equations becomes important, such as during
merger.1 Due to prohibitively long timescales, numerical relativity is impractical
for systems with small mass ratios. However, in vacuum, second-order self-force
calculations have been successfully compared against numerical relativity for
binaries with mass ratios in the range ∼ 0.01 − 0.1 [116]. A similar comparison
including environmental effects would be an important validation step. That
said, numerical relativity in non-vacuum spacetimes still faces challenges related
to the well-posedness of some systems and the ability to generate sufficiently
accurate waveforms for detectors like LISA or Einstein Telescope [111, 798].

• For extreme mass ratio inspirals in vacuum, second-order self-force corrections
are expected to be necessary to meet LISA’s precision requirements [123, 124].
When extending the self-force framework to include environmental effects, as
outlined in Chapter 9, additional contributions arise. While we computed the
leading-order perturbation to the scalar field, a fully self-consistent treatment
requires incorporating all terms up to order q2, such as the ϵ2q–term (9.1.6)
of the metric perturbation. This would pave the way for constructing the first
fully self-consistent waveforms for EMRIs in astrophysical environments – an
exciting prospect for upcoming work.

Data analysis. With accurate waveforms in hand, the signal must be properly
interpreted. Three key aspects need to be considered: (i) whether the signal is loud
enough to be detected, that is, if its signal-to-noise ratio is high enough; (ii) whether
it is distinguishable from vacuum signals; and (iii) whether the parameters of the
system can be accurately extracted. In the context of environments, the following
points deserve extra care.

1For extreme mass ratio inspirals, the secondary simply plunges into the primary black hole,
which can be modelled in vacuum using semi-analytic techniques [793–797]. However, whether these
can – or need to – be extended to include environments is unclear. Furthermore, numerical relativity
could still be important for the (pre)-merger stage of intermediate mass ratio systems.
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• Although a range of environments have been shown to influence gravitational-
wave emission, comparisons are often made against vacuum only. To determine
whether properties of the environment can be extracted from data, it is nec-
essary to distinguish between different environments, not just between vacuum
and non-vacuum scenarios. Preliminary Newtonian studies suggest this may be
feasible [9], but a more realistic (and relativistic) analysis is needed.

• Additionally, various astrophysical phenomena can mimic environmental effects
in gravitational-wave signals. This could introduce significant parameter biases
and even lead to the misidentification of the compact object. A data-analysis-
driven study is essential to understand to what degree all these effects are im-
portant. Some examples are:

– Possible modifications to General Relativity at high curvature scales, such
as in dynamical Chern-Simons or Einstein-Gauss-Bonnet gravity. These
could induce “beyond-GR” effects, which alter binary mergers in the strong-
field regime [168, 799–802], and can produce waveform deviations resem-
bling those induced by matter configurations [803]. Distinguishing be-
tween these scenarios may require systematic tests, such as inspiral-merger-
ringdown consistency checks, as beyond-GR deviations often become most
pronounced during the merger and ringdown phases, where gravity is
strongest. That said, small effects can also accumulate during the inspiral,
particularly in long-lived systems such as EMRIs.

– Third-body interactions, especially in galactic centres, where additional
objects are likely present [520, 785, 804–806].

– Nonzero tidal Love numbers induced by environments, which impact wave-
forms at 5PN order [64, 242, 496, 503–505]. Early studies have shown that
neglecting these can indeed lead to significant biases [807].

• Instrumental effects in detectors such as LISA further complicate parameter
inference. Systematic uncertainties due to data gaps [713, 808–810] and calibra-
tion inaccuracies may affect the precision with which astrophysical parameters
can be extracted [40, 41, 811, 812].

Beyond the specific points outlined above, realistic gravitational-wave source mod-
elling requires going beyond toy models and crude approximations. Recent years
have seen a promising shift from Newtonian models to fully relativistic treat-
ments [7, 68, 504, 552, 813]. Looking ahead, it is crucial to develop a systematic
and flexible framework capable of capturing a variety of environments. Chapter 9
marks an important step in this direction. The real challenge now lies in applying this
framework to more complex scenarios, such as accretion disks, which will undoubtedly
introduce various complications. Equally important is maintaining a strong focus on

218



data-analysis considerations, not only to account for parameter degeneracies but also
to avoid overly complex models that risk making the analysis impractical.

We are fortunate to be working in an era of gravitational physics where data is
present, guiding us towards the next phase. The excitement surrounding this field
continues to grow, with the study of black hole environments attracting attention not
only within gravitational physics but also from other fields like high-energy physics.
Realising its full potential, however, requires a careful approach: astrophysics is in-
herently messy, while gravitational-wave physics demands precision. With proposals
for new detectors moving forward [39, 67], now is the time to set up a robust pipeline
for modelling EMRIs in astrophysical environments and integrating these efforts into
waveform packages [744–746]. This will maximise the scientific return and ensure that
the most astrophysically plausible scenarios are prioritised.

Achieving this goal is undoubtedly a herculean task, but the rewards are undeni-
able: gravitational waves have the potential to illuminate regions of the Universe that
were once in the dark. The present thesis has sought to explore the wealth of obser-
vational signatures astrophysical environments may bring and to lay the groundwork
for future exploration. Above all, I hope to have conveyed this message: gravitational
waves are cosmic messengers, carrying insights from some of the most enigmatic re-
gions of our Universe. The challenge ahead is great – but so too is the opportunity it
presents.
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Epilogue

Thousands of years ago, the first man† discovered how to make fire. He was probably
burned at the stake he had taught his brothers to light. He was considered an evildoer
who had dealt with a demon mankind dreaded. But thereafter men had fire to keep
them warm, to cook their food, to light their caves. He had left them a gift they had
not conceived and he had lifted darkness off the earth. Centuries later, the first man
invented the wheel. He was probably torn on the rack he had taught his brothers to
build. He was considered a transgressor who ventured into forbidden territory. But
thereafter, men could travel past any horizon. He had left them a gift they had not
conceived and he had opened the roads of the world.

That man, the unsubmissive and first, stands in the opening chapter of every legend
mankind has recorded about is beginning. Prometheus was chained to a rock and torn
by vultures—because he had stolen the fire of the gods. Adam was condemned to
suffer—because he had eaten the fruit of the tree of knowledge. Whatever the legend,
somewhere in the shadows of its memory mankind knew that its glory began with one
and that that one paid for his courage.

Throughout the centuries there were men who took first steps down new roads
armed with nothing but their own vision. Their goals differed, but they all had this in
common: that the step was first, the road new, the vision unburrowed, and the response
they received—hatred. The great creators—the thinkers, the artists, the scientists, the
inventors—stood alone against the men of their time. Every great new thought was
opposed. Every great new invention was denounced. The first motor was considered
foolish. The airplane was considered impossible. The power loom was considered
vicious. Anesthesia was considered sinful. But the men of unborrowed vision went
ahead. They fought, they suffered and they paid. But they won.

Howard Roark

by Ayn Rand, The Fountainhead

†It could just as well have been a woman – the sentiment applies equally.
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A
Numerical Relativity

Simulations

This appendix provides additional details on the numerical relativity simulations dis-
cussed in Chapter 4. Section A.1 covers aspects specific to scalar fields, while Sec-
tion A.2 explains the wave extraction process. Section A.3 describes the formulation
of our problem as an initial-value problem. Section A.4 presents numerical conver-
gence results, followed by Section A.5, which examines higher multipole contributions
to the scalar and electromagnetic flux. Finally, Section A.6 outlines the selection rules
that determine which multipoles are excited.

A.1 Benchmarks for Evolution of Scalar Fields

The purpose of this appendix is to study in some detail the time evolution of free
massive scalar fields in the vicinity of a Schwarzschild BH. Even though superradiance
requires a spinning BH and thus the use of the Kerr metric, timescales are prohibitively
large. Nevertheless, the main focus of Chapter 4 is on physics related to the existence
of scalar clouds, more than to what caused them in the first place.

As such, we mimic superradiant growth without the need of a spinning BH (see
Section A.1.2 below) and therefore we consider a Schwarzschild spacetime for simplic-
ity. We still need to guarantee that, on the required timescales, a bound state exists,
so that it can mimic well the true superradiant clouds. Fortunately, massive scalars
around non-spinning BHs do settle on quasi-bound states which, while not unstable,
have extremely large lifetimes. Thus, we want to show first of all that our numerical
framework reproduces well such states.
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A.1.1 Bound States

The initial data whose time evolution we will study, are the quasi-bound states of a
massive scalar field, which are solutions localised in the vicinity of the BH and prone
to become unstable in the superradiance regime (if the BH is allowed to spin). There
exist various methods to find such quasi-bound solutions, either by direct numerical
integration or using continued fractions [154, 574, 575, 725]. We will use Leaver’s
continued fraction approach [725]. It is crucial to have accurate solutions describing
pure quasi-bound states, as deviations from such a pure state may trigger excitations
of overtones, resulting in a beating pattern [814].

In Boyer-Lindquist (BL) coordinates (tBL, rBL, θBL, φBL), the scalar field bound
state is given by [cf. eq. (3.3.6)]1

Ψℓm = e−iωtBLe−imφBLSℓm (θBL)Rℓm (rBL) , (A.1.1)

where Sℓm(θBL) are the spheroidal harmonics. In a Schwarzschild geometry, the angu-
lar dependence is fully captured by the familiar spherical harmonics Yℓm(θBL, φBL) =
Sℓm(θBL)eimφBL . The radial dependence is given by

Rℓm (rBL) = (rBL − rBL,+)−iσ (rBL − rBL,−)iσ+χ−1
erBLq

∞∑
n=0

an

(
rBL − rBL,+

rBL − rBL,−

)n

, (A.1.2)

where

σ = 2MrBL,+ (ω − ωc)
rBL,+ − rBL,−

, q = ±
√
µ2 − ω2 , χ = M

µ2 − 2ω2

q
. (A.1.3)

Here, rBL,± = M ±
√
M2 − a2

J are the inner (−) and outer (+) horizon, ωc = mΩH =
maJ/(2MrBL,+) is the critical superradiance frequency (3.3.11), aJ is the spin of the
BH and to obtain quasi-bound states, one should consider the minus sign in the
expression for q. Since all the terms in these expressions are known in closed form,
we only need to solve for the frequency of the mode of interest, ω. This is found by
solving the following condition for ω:

β0 −
α0γ1

β1 −
α1γ2

β2 −
α2γ3

β3 − . . .

= 0 , (A.1.4)

where all the coefficients can be found in e.g., [575]. In (A.1.2), the amplitude of the
scalar field is defined arbitrarily (as long as one neglects the backreaction of the field

1We include spin here for generality, although we evolve the scalar field in a Schwarzschild back-
ground.
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on the background geometry). Hence, we must choose a suitable normalisation. We
will normalise the field by assigning a predetermined value to the maximum of the
radial wave function. In previous works [479, 480], the hydrogenic approximation was
used instead, where the wave function is defined as

Ψ = Ψ0rBLMµ2e−rBLMµ2/2 cos (φBL − ωRt) sin θBL , (A.1.5)

where ωR is the real part of the eigenfrequency. In order to allow for a direct com-
parison with those works, we relate our normalisation, the maximum value of the real
part of the field, (Rℓm)max, to this parameter Ψ0. They are related by

(Rℓm)max = 4Ψ0
√

2π/3
e

, (A.1.6)

where the factor
√

2π/3 comes from the normalisation of the spherical harmonics
ℓ = 1 modes, and should be adapted accordingly for higher multipoles. We will
introduce relevant quantities in terms of Ψ0.

For numerical purposes, BL coordinates are not ideal due to the coordinate sin-
gularity at the horizon. Therefore, we employ Kerr-Schild coordinates, which are
horizon penetrating-coordinates [814]. The coordinate transformation from BL to
Kerr-Schild (KS) coordinates is given by

dtKS = dtBL + 2MrBL

∆ drBL , drKS = drBL , dθKS = dθBL , dφKS = dφBL + aJ

∆ drBL , (A.1.7)

where ∆ ≡ r2 − 2Mr + a2
J . Using this coordinate transformation in (A.1.1), we can

construct the bound state scalar field as

Ψℓm = e−iωtKS (rKS − rKS,+)P (rKS − rKS,−)Q

(
rKS − rKS,+

rKS − rKS,−

)R

Yℓm (θKS, φKS)Rℓm(rKS) ,

(A.1.8)
where P = 2iωMrKS,+/(rKS,+ − rKS,−), Q = −2iωMrKS,−/(rKS,+ − rKS,−), R = imaJ/(rKS,− −
rKS,+). From now on, we use KS coordinates without the subscript unless otherwise
stated. In our non-spinning BH case, Q = R = 0. The remaining extra term instead
cancels exactly the divergence of the field at the BH horizon. We test our numerical
setup by constructing the bound state initial configuration for scalar fields with mass
couplings µM = 0.1 and µM = 0.3 and evolving them in a Schwarzschild background.

In Figure A.1, we show the non-vanishing multipolar component of the field for
µM = 0.1 and µM = 0.3, where we only display a fraction of the time evolution such
that individual oscillations are visible. For µM = 0.1, the scalar field is exceptionally
stable on timescales longer than 5000M . For µM = 0.3, there is a decrease in the
amplitude of a few percent on those timescales, which does not have severe conse-
quences. In fact, this problem can be resolved by increasing the spatial resolution.
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Figure A.1: Top panel : The ℓ = m = 1 component of a scalar field around a
Schwarzschild BH. Figure shows fraction of the time evolution of the initial con-
ditions from (A.1.8). The field is extracted at rex = 100M and µM = 0.1. Inset
shows δΨ11, which is the difference between the numerical output and the theoreti-
cally predicted fundamental mode ΨFund

11 ∼ cos (ωRt)e−ωIt, where ωR, ωI are the real
and imaginary part of the eigenfrequency, respectively. These were independently
computed using Leaver’s method. Bottom panel : Same for µM = 0.3 and extraction
radius rex = 40M . There is an apparent decay of the field on timescales shorter than
those implied by the quasi-bound state decay. This effect is due to finite resolution,
and its magnitude is small enough such that we can ignore it in our study.

As a last check, in Figure A.2 the Fourier transform for both µM = 0.1 and µM =
0.3 is shown, and compared with the real part of the eigenfrequency of the fundamental
mode. They are in excellent comparison, ensuring that we are not triggering any
overtones.
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Figure A.2: Fourier transform of the dipole component of the scalar field for µM = 0.1
and µM = 0.3 when the field is extracted at rex = 100M and rex = 40M , respectively.
Fourier transform is taken on the entire time evolution of Figure A.1. Dashed lines
indicate the (real part of the) frequency of the fundamental mode for µM = 0.1 and
µM = 0.3. Clearly, we are not triggering any overtones.

A.1.2 Artificial Superradiance

Studying superradiance for scalars is numerically challenging, since timescales for
superradiant growth are very large. Fortunately, an effective superradiance-like in-
stability can be introduced by adding a simple C∂Ψ/∂t term to the Klein-Gordon
equation as shown in (4.1.4). This “trick” was first used by Zel’dovich [59, 60, 576]
and it can mimic the correct description of many superradiance systems. The addi-
tion of this Lorentz-invariance-violating term causes an instability on a timescale of
the order 1/C, where we can tune C to be within our numerical limits. For reference,
we report the relevant timescales in our problem.

Normal superradiance:

tSR ∼ 48
( aJ

M
(µM)−9

)
M , when µM ≪ 1 . (A.1.9)

Artificial superradiance:

tASR ∼ 1
C
M . (A.1.10)

Electromagnetic (EM) instability :

tEM ∼ 10k−1
a

(
M

Mc

)1/2
(µM)−3 = 5(µM)−1M , (A.1.11)

which is the EM instability timescale that was found in [480] and we used ka ≥
2
√
M/Mc(µM)−2M−1.
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Figure A.3: The time evolution of Ψ11 extracted at rex = 100M with C = 5 ×
10−4M−1 and µM = 0.1. We show the growth of the scalar field from the initial
conditions (A.1.8), using Zel’Dovich trick described in Chapter 4.

Accordingly, for a reasonable mass coupling of µM = 0.1, and while optimising
superradiant growth with a maximally spinning BH, normal superradiance timescales
are on the order of tSR ∼ 1010M . This should be compared to the EM instability,
which is on tEM ∼ 50M .

To test whether we implemented the artificial superradiant growth in the correct
way, we set C = 5 × 10−4M−1 and evolve the scalar field. From Figure A.3, we can
see that artificial superradiance is correctly implemented in the code, as it leads to
the desired exponential evolution of the field.

A.2 Wave Extraction

From the simulations, we extract the radiated scalar and vector waves at some radius
r = rex. For the scalar waves, the field Ψ and its conjugated momentum Π are
projected onto spheres of constant coordinate radius using the spherical harmonics
with spin weight sw = 0:

Ψℓm(t) =
∫

dΩ Ψ(t, θ, φ) 0Y
∗

ℓm(θ, φ),

Πℓm(t) =
∫

dΩ Π(t, θ, φ) 0Y
∗

ℓm(θ, φ) .
(A.2.1)

To monitor the emitted EM (vector) waves, we use the Newman-Penrose formal-
ism [82], in which the radiative degrees of freedom are given by complex scalars. For
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EM, these are defined as contractions between the Maxwell tensor and vectors of a
null tetrad (kµ, ℓµ,mµ, m̄µ), where kµℓµ = −mµm̄µ = −1. The null tetrad itself
is constructed from the orthonormal timelike vector nµ and a Cartesian orthonor-
mal basis

{
ui, vi, wi

}
on the spatial hypersurface. Asymptotically, the basis vectors{

ui, vi, wi
}

behave as the unit radial, polar and azimuthal vectors, respectively. For
our purposes, the quantity of interest is the gauge-invariant Newman-Penrose scalar
Φ2, which captures the outgoing EM radiation at infinity and is defined as

Φ2 = Fµνℓ
µm̄ν , (A.2.2)

where ℓµ = 1/
√

2 (nµ − uµ) and m̄µ = 1/
√

2 (vµ − iwµ). Decomposing the Maxwell
tensor gives

Fµν = nµEν − nνEµ +DµAν −DνAµ , (A.2.3)

where Eµ = Fµνn
ν and Aµ is the spatial part of the vector field Aµ. The real and

imaginary components of Φ2 are then given by

ΦR
2 = − 1

2
[
ER

i v
i + uivj

(
DiAR

j −DjAR
i

)
+ EI

iw
i + uiwj

(
DiAI

j −DjAI
i

)]
,

ΦI
2 = 1

2
[
ER

i w
i + uiwj

(
DiAR

j −DjAR
i

)
− EI

iv
i − uivj

(
DiAI

j −DjAI
i

)]
.

(A.2.4)

Similar to the scalar case, we obtain the multipoles of Φ2 at a certain extraction
radius rex, by projecting Φ2 onto the sw = −1 spin-weighted spherical harmonics:

(ΦR
2 )ℓm(t) =

∫
dΩ
[
ΦR

2 (t, θ, φ) −1Y
R

ℓm(θ, φ) + ΦI
2(t, θ, φ) −1Y

I
ℓm(θ, φ)

]
,

(ΦI
2)ℓm(t) =

∫
dΩ
[
ΦI

2(t, θ, φ) −1Y
R

ℓm(θ, φ) − ΦR
2 (t, θ, φ) −1Y

I
ℓm(θ, φ)

]
.

(A.2.5)

In Chapter 4, we often show |(Φ2)ℓm| =
√

(Φ2)∗
ℓm(Φ2)ℓm .

A.3 Formulation as a Cauchy Problem

We continue by formalising our equations of motion (4.1.2) as an (initial value) Cauchy
problem and discussing the initial data.

A.3.1 3+1 Decomposition

The equations of motion of our axion-photon-plasma system are given by (4.1.2).
We ignore the dynamics of gravity and solve the Klein-Gordon, Maxwell and plasma
equations on a fixed spacetime background. In order to evolve the system in time,
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we use the standard 3+1 decomposition of the spacetime (see e.g., [129]). The metric
then takes the following generic form:

ds2 = −α2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)
, (A.3.1)

where α is the lapse function, βi is the shift vector and γij is the 3-metric on the
spatial hypersurface. Furthermore, we introduce the scalar momentum as

Π = −nµ∇µΨ , (A.3.2)

where nµ is the unit normal vector to the spatial hypersurface, which takes on the
form nµ = (1/α,−βi/α). The vector field Aµ can be decomposed as

Aµ = Aµ + nµAφ , (A.3.3)

where
Ai = γj

iAj and Aφ = −nµAµ . (A.3.4)

We also introduce the EM fields

Ei = γi
jF

jνnν and Bi = γi
j

∗F jνnν , (A.3.5)

which are defined with respect to an Eulerian observer.3 As for the plasma quantities,
the fluids’ four velocities are decomposed as [128]

uµ
e = Γe(nµ + Uµ) , uµ

ion = Γion(nµ + Vµ) , (A.3.6)

where Uµ and Vµ are also defined with respect to an Eulerian observer. From the
normalisation of the four velocities, the Lorentz factor is then:

Γe = −nµu
µ
e = 1√

1 − UµUµ
, Γion = 1√

1 − VµVµ
. (A.3.7)

Note that even though in (A.3.6) and (A.3.7) the ion quantities are included for
generality, we do not actually use them in Chapter 4 as we ignore the oscillations of
the ions [assumption (ii) in Section 4.1.3]. Finally, we introduce the charge density
as seen by an Eulerian observer as

ρ = −nµj
µ . (A.3.8)

Since jµ is the sum of the currents of the two fluids, we can express (A.3.8) also as
ρ = ρe + ρion.

Using the above definitions, we obtain the following evolution equations for the
full axion-photon-plasma system (for the decomposition of the momentum equation,
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we refer to Appendix A.3.6; for the EM part, see e.g., [815]):

∂tΨ = −αΠ + LβΨ ,

∂tΠ = α
(
−D2Ψ + µ2Ψ +KΠ − 2kaE

iBi

)
−DiαDiΨ + LβΠ ,

∂tAi = −α (Ei +DiAφ) −AφDiα+ LβAi ,

∂tE
i = αKEi − αDj

(
DjAi −DiAj

)
−
(
DiAj −DjAi

)
Djα+ α

(
DiZ − ji

)
+ 2kaα

(
BiΠ + ϵijkEkDjΨ

)
+ LβE

i ,

∂tAφ = −AiDiα+ α
(
KAφ −DiAi − Z

)
+ LβAφ ,

∂t(ΓeUi) = α

(
qe

me
Ei + ϵijkU jBk − Γeai − U jDj (ΓeUi)

)
+ LβΓeUi ,

∂tρe = −Di(αji) + αρeK + Lβρe ,

∂tZ = α
(
DiE

i + 2kaB
iDiΨ − ρ

)
− καZ + LβZ ,

(A.3.9)
where Lβ is the Lie derivative and we have introduced a constraint damping vari-
able Z to stabilise the numerical time evolution. Furthermore, we define Di as
the covariant derivative with respect to γij , the extrinsic curvature as Kij =
1

2α [−∂tγij +Diβj +Djβi] and K as its trace. Note that due to assumption (ii),
the evolution equations for the ions are absent.

Finally, we get the following constraints:

DiB
i = 0 ,

DiE
i = ρ− 2kaBiD

iΨ ,

(nµ + Uµ)∇µΓe = Γe U iU jKij − Γe U iai − qe

me
EiUi .

(A.3.10)

Upon ignoring the gravitational term in the momentum evolution equation [assump-
tion (v) in Section 4.1.3], this last constraint is trivially satisfied on the linear level.

A.3.2 Background Metric

As discussed in Appendix A.1.1, we employ Kerr-Schild coordinates in our numerical
setup to avoid the coordinate singularity at the horizon. These are related to Cartesian
coordinates by

x = r cosφ sin θ − aJ sinφ sin θ ,
y = r sinφ sin θ + aJ cosφ sin θ ,
z = r cos θ .

(A.3.11)

In these coordinates, the metric takes the following form:

ds2 = (ηµν + 2Hlµlν)dxµdxν , (A.3.12)
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where

H = r3M

r4 + a2
J z

2 ,

lµ =
(

1, rx+ aJy

r2 + a2
J
,

−aJx+ ry

r2 + a2
J
,
z

r

)
,

r =
[

1
2

(
x2 + y2 + z2 − a2

J +
√

(x2 + y2 + z2)2 + 4a2
J z

2
)]1/2

.

(A.3.13)

Furthermore, we define

α = 1√
1 + 2H

,

βi = 2Hli ,
γij = δij + 2Hlilj ,

Kij = ∂i (Hlj) + ∂j (Hli) + 2H(l∗)k∂k (Hlilj)√
1 + 2H

,

(A.3.14)

which are the lapse function, shift vector, spatial metric, and the extrinsic curvature,
respectively.

A.3.3 Evolution Without Plasma

Since the simulations with and without plasma have a slightly different structure,
we separate these clearly in the following sections. First, we consider the full set of
equations in the absence of plasma. These belong to the simulations Ii and Ji from
Sections 4.2 and 4.3. They are

∂tΨ = −αΠ + LβΨ ,

∂tΠ = α
(
−D2Ψ + µ2Ψ +KΠ − 2kaE

iBi

)
−DiαDiΨ + LβΠ ,

∂tAi = −α (Ei +DiAφ) −AφDiα+ LβAi ,

∂tE
i = αKEi − αDj

(
DjAi −DiAj

)
−
(
DiAj −DjAi

)
Djα+ αDiZ

+ 2kaα
(
BiΠ + ϵijkEkDjΨ

)
+ LβE

i ,

∂tAφ = −AiDiα+ α
(
KAφ −DiAi − Z

)
+ LβAφ ,

∂tZ = α
(
DiE

i + 2kaB
iDiΨ

)
− καZ + LβZ .

(A.3.15)

These are the same as in [479, 480].

Initial data

To construct the initial data for our simulations, we must solve the constraint equa-
tions (A.3.10). By doing so on the initial time-slice, the Bianchi identity will ensure
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they are satisfied throughout the evolution. As explained in Appendix A.1.1, we use
Leaver’s method to construct the scalar field bound state. For the electric field, we
use initial data analogous to [479, 480]. In particular, we choose the Gaussian profile
defined in (4.1.6).

A.3.4 Evolution With Plasma

In the simulations with plasma, we linearise the axion-photon-plasma system due to
the complexity of the problem, and we neglect ion perturbations. We express the
perturbed quantities with an overhead bar, such that

Ai = Ai
b + ϵĀi , Ei = Ei

b + ϵĒi , Aφ = Ab,φ + ϵĀφ ,

U i = U i
b + ϵ Ūi , Γe = 1 , ρ = ρb,e + ρb,ion + ϵρ̄e ,

(A.3.16)

where we denote background quantities with a subscript b and ϵ is the arbitrarily
small parameter in the perturbation scheme. For simplicity, we consider a quasi-
neutral, field-free background plasma, i.e., Ei

b = Ai
b = Ab,φ = 0, and ρb,e = −ρb,ion.

The problem at hand naturally introduces two distinct reference frames: the Eulerian
observer rest frame and the plasma rest frame. The relative velocity between the two
is the background quantity U i. We consider a plasma co-moving with the Eulerian
observer, such that the plasma is static in the spacetime foliation. Since the back-
ground field of the electron charge density does not vanish, according to (A.3.9) it
should evolve as

∂tρb = αρb,eK + Lβρb,e . (A.3.17)

We are mainly interested in the evolution of this variable in a localised region of space-
time far away from the BH, i.e., the axion cloud, and thus the evolution of (A.3.17)
due to strong gravity terms is extremely slow compared to the linear system. There-
fore, we neglect its evolution similarly to the gravitational influence on the evolution
of the background velocity [assumption (v) in Section 4.1.3].

Before proceeding, there is one other subtlety. The plasma response to the perturb-
ing EM field is proportional to the electron charge-to-mass ratio, which is extremely
large qe/me ≈ 1022. Nevertheless, as we are linearising the system, and therefore
neglecting the backreaction of the EM field onto the axion field, the amplitude of the
former is arbitrary in our scheme. If we were to consider the full problem including
backreaction instead, the amplitude of the axion field would clearly introduce a scale.
Due to this freedom, we rescale the EM variables as

Êi = qe

me
Ēi , Âi = qe

me
Āi , Ẑ = qe

me
Z . (A.3.18)
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Then, we can write down the full set of equations including the plasma as

∂tΨ = −αΠ + LβΨ ,

∂tΠ = α
(
−D2Ψ + µ2Ψ +KΠ

)
−DiαDiΨ + LβΠ ,

∂tÂi = −α
(
Êi +DiÂφ

)
− ÂφDiα+ LβÂi ,

∂tÊ
i = αKÊi − αDj

(
DjÂi −DiÂj

)
−
(
DiÂj −DjÂi

)
Djα+ α

(
DiẐ − ω2

pŪ i
)

+ 2kaα
(
B̂iΠ + ϵijkÊkDjΨ

)
+ LβÊ

i ,

∂tÂφ = −ÂiDiα+ α(KÂφ −DiÂi − Ẑ) + LβÂφ ,

∂tŪi = αÊi + LβŪi ,

∂tω̄
2
p = −Di(αω2

pŪ i) + αω̄2
pK + Lβω̄

2
p ,

∂tẐ = α
(
DiÊ

i + 2kaB̂
iDiΨ − ω̄2

p

)
− καẐ + LβẐ ,

(A.3.19)
where ω2

p is the plasma frequency, and ω̄2
p its perturbation:

ω2
p = qe

me
ρb,e , ω̄2

p = qe

me
ρ̄e . (A.3.20)

Note that due to the rescaling, there is no charge-to-mass ratio of the electrons and the
field equations are written only in terms of the plasma frequency, which is O(1/M).

As we detail in the following subsection, including a linearised fluid model in
the equations of motion, causes the system (A.3.19) to become ill-posed upon using a
damping variable.2 However, this damping variable is essential in constraining Gauss’
law and without it, the simulations diverge for large EM values. As a resolution, we
slightly adjust our equations by not including the perturbed plasma frequency, ω̄p, in
the evolution equation of the damping variable Z, i.e.,

∂tẐ = α
(
DiÊ

i + 2kaB̂
iDiΨ

)
− καẐ + LβẐ . (A.3.21)

This is a minimal change as the perturbed plasma frequency does not enter any other
evolution equation of the system in the linearised regime, yet it does restore the well-
posedness of our setup. We justify this approach in two ways; (i) we evolve the system
with and without the damping variable for large plasma frequencies (where the EM
values remain small) and we find excellent agreement between the two, and (ii) for
small plasma frequencies, where the EM field is allowed to grow, the effects of the
plasma are negligible, and therefore ignoring ω̄p leads to a subleading error compared
to the EM values.

2The ill-posedness originates from the linearisation of the fluid equation, whereas the fully non-
linear system of equations is strongly hyperbolic and thus well-posed [816, 817]
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Initial data

For the plasma part, we assume quasi-neutrality [assumption (iii) in Section 4.1.3],
i.e., ρ = −nµ(eneu

µ
e − Zenionu

µ
ion) = ene − Zenion = 0. As shown in (A.3.10),

the constraint equation for the plasma is trivially satisfied on the linear level, and
thus the initial data listed in the previous section solves all of our constraints. As
for the electronic density, in principle, depending on the specific environment we are
interested in, we can assume different spatial profiles [423, 581, 818], which correspond
to a space-dependent effective mass for the photon. However, the length scale of
interest to us, i.e., the size of the axion cloud, is typically much shorter than length
scale on which the effective mass varies. Hence, for simplicity, we assume a constant
density plasma.

A.3.5 Hyperbolicity of Fluid Model

The evolution equations (A.3.19) are not strongly hyperbolic and therefore do not
form a well-posed system. Consequently, the existence of a unique solution that
depends continuously on the initial data is not guaranteed and any numerical approach
is bound to fail. We now show explicitly that our system is not strongly hyperbolic.

Based on [819], we introduce an arbitrary unit vector si and consider the principal
part of the system, i.e., we consider only the highest derivative terms from (A.3.19):

∂t[∂2
sψ] ∼ −α∂s

(
∂sÂφ

)
+ βs∂s[∂2

t ψ] ,

∂t(∂sÂA) ∼ −α∂sÊA + βs∂s(∂sÂA) ,
∂t(∂sÂφ) ∼ βs(∂sÂφ) − α∂s[∂2

sψ] ,
∂tÊA ∼ −α∂s(∂sÂA) + βs∂sÊA ,

∂tÊs ∼ α∂sẐ + βs∂sÊs ,

∂tẐ ∼ α∂sÊ
s + βs∂sẐ ,

∂tŪs ∼ βs∂sŪs ,

∂tŪA ∼ βs∂sŪA ,

∂tω̄
2
p ∼ −αω2

p∂sŪs + βs∂sω̄
2
p ,

(A.3.22)

where the index A denotes the component projected into the surface orthogonal to
si, and [∂2

sψ] can be written as

[∂2
sψ] = ∂sÂs + Ẑ . (A.3.23)

Defining the principal symbol of ([∂2
sψ], Âφ), (Ẑ, Es), (∂sĀA, ÊA) and (Ūs, ω̄

2
p) as PG ,
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PC , PP , and PF , respectively, we get:

PG =
(
βs −α
−α βs

)
, PC =

(
βs α

α βs

)
,

PP =
(
βs −α
−α βs

)
, PF =

(
βs 0

−αω2
p βs

)
.

(A.3.24)

We see that the eigenvalue for PF is degenerate with βs and the eigenvector is (0, b)T ,
where b is an arbitrary value. Therefore, the principal symbol does not have a com-
plete set of eigenvectors, and the system is not strongly hyperbolic. If we ignore ω̄2

p in
Z, it becomes decoupled from Maxwell’s equations, and the only relevant variable for
the fluid part that remains, is the linearised four velocity Ūi. As is shown in (A.3.22),
the principal part for Ūi is just canonical the advection term.

A.3.6 Momentum Equation

In order to include a plasma in our numerical setup, we need to apply the 3+1
decomposition to the momentum equation (4.1.2). Even though this has been done
before, e.g., in [820], it is not part of standard literature. Therefore, we do the
decomposition explicitly here. Our starting point is the momentum equation for
the electrons, given by (we drop the subscript “e” here, since we only consider the
momentum equation for the electrons)

uν∇νu
µ = q

m
Fµνuν . (A.3.25)

The four-velocity can be written as uµ = Γ(nµ + Uµ), where Ui is tangent to Σt, the
spatial hypersurface, such that nµUµ = 0 and uµuµ = −1. Although we are interested
in linear effects and therefore Γ = 1, we will derive the 3+1 equations in full generality
and including this factor.

If we project (A.3.25) using the projector operator ha
b = δa

b +nanb we obtain the
evolution equation, if we project it onto na we get the constraint equation. Let us
start with the former.

Evolution equation

We start with the left-hand side (LHS) of (A.3.25):3

hρ
µ (nν + Uν) ∇ν [Γ (nµ + Uµ)] =

Γaρ + nν∇ν (ΓUρ) − ΓUµaµn
ρ︸ ︷︷ ︸

I

+ ΓUν∇νn
ρ︸ ︷︷ ︸

II

+hρ
µUν∇ν (ΓUµ)︸ ︷︷ ︸

III

, (A.3.26)

3We avoid writing the overall Γ coming from uµ on both sides of (A.3.25).
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where aµ = nν∇νnµ is the acceleration of the Eulerian observer. Since this a pro-
jection onto the hypersurface and thus orthogonal to nµ, we focus on ρ = i, i.e., the
spatial part. To write (A.3.26) in a more convenient form, we work out parts I, II and
III separately in (A.3.28), (A.3.29), (A.3.30). First, we define the useful relations [820]:

Dτ U i = nµ∇µU i − niaµUµ ,

LtU i = α(Dτ U i +Ki
jU j) + LβU i ,

(A.3.27)

where Lt = Lαn+β . For part I, we then have

nµ∇µ

(
ΓU i

)
− ΓniaµUµ = 1

α

[
Lt

(
ΓU i

)
− Lβ

(
ΓU i

) ]
− ΓKi

jU j , (A.3.28)

for term II, we find

ΓUν∇νn
i = ΓUν

(
−ainν −Ki

ν

)
= −ΓKi

jU j , (A.3.29)

and finally, for term III, we have

hi
µUν∇ν (ΓUµ) = hi

µh
ν
αUα∇ν (ΓUµ) = UαDα

(
ΓU i

)
. (A.3.30)

Combining these, we can write the LHS as

Γai + 1
α

[
Lt

(
ΓU i

)
− Lβ

(
ΓU i

)]
− ΓKi

jU j − ΓKi
jU j + UαDα

(
ΓU i

)
. (A.3.31)

For the right-hand side (RHS) of the momentum equation (A.3.25), we first write out
the standard form of the decomposition of the Maxwell tensor (see, e.g., [815]) and
then project it onto the spatial hypersurface using the projector operator:

hρ
µ

q

m
Fµν(nν + Uν)

= hρ
µ

q

m
(ϵαµνσnαBσUν + nµEνUν + Eµ)

= q

m

(
(3)ϵρνσUνBσ + Eρ

)
,

(A.3.32)

where we used Eνnν = 0, ϵαµνσnαnν = 0, and ϵαµνσnα =(3) ϵµνσ.

We can then piece together (A.3.31) and (A.3.32) to obtain

Lt

(
ΓU i

)
− Lβ

(
ΓU i

)
+ αU jDj

(
ΓU i

)
= α

( q
m

(
Ei + ϵijkUjBk

)
− Γai + 2ΓKijUj

)
.

(A.3.33)
Finally, we apply the 3-metric tensor γij to the above equation to lower the index.
To do so, we use the following identities [820]:

γijLt

(
ΓU j

)
= Lt (ΓUi) − ΓU jLtγij ,

ΓU jLtγij = −2αΓU jKij + ΓU jLβγij ,
(A.3.34)
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from which we obtain:

∂t (ΓUi) − Lβ (ΓUi) + αU jDj (ΓUi) = α
( q
m

(
Ei + ϵijkU jBk

)
− Γai

)
. (A.3.35)

As explained in Appendix 4.1.3, we simplify the plasma to make it more suitable to
our numerical setup. By linearising this equation, which also implies Γ ∼ 1, we are
left with

∂tUi = α
( q
m
Ei − ai

)
+ LβUi . (A.3.36)

Finally, we also neglect gravity, which brings us to our final equation:

∂tUi = α
q

m
Ei + LβUi . (A.3.37)

Constraint equation

By projecting the momentum equation (A.3.25) onto the timelike unit vector, nµ, we
obtain the constraint equation. Again, we first show the LHS:

nµ (nν + Uν) ∇ν [Γ (nµ + Uµ)] = −ΓaµUµ−ΓUνUµ∇νnµ−nν∂νΓ−Uν∂νΓ , (A.3.38)

where we used that nµ∇νn
µ = 0. For the RHS, we have

q

m
nµ(ϵαµνσnαBσUν + nµEνUν + Eµ) = − q

m
EνUν . (A.3.39)

Thus we end up with the following constraint equation:

nν∂νΓ + Uν∂νΓ + ΓaµUµ + ΓUνUµKµν = q

m
EνUν . (A.3.40)

The fourth and fifth term are second-order and thus drop out in our linearised setup
[assumption (i) in Section 4.1.3]. Furthermore, we can neglect the third term since
we ignore the gravity term [assumption (v)]. As Γ depends quadratically on the four-
velocity, it must be 1 in the linear theory, and therefore the constraint is trivially
satisfied.

A.4 Numerical Convergence

In our numerical framework, we employ the method of lines, where spatial derivatives
are approximated by a fourth-order accurate finite-difference scheme and we integrate
using a fourth-order Runge-Kutta method. Furthermore, Kreiss-Oliger dissipation is
applied to evolved quantities in order to suppress high-frequency modes that come
from the boundaries between adjacent refinement regions. The numerical simulations
are performed using the open source Einstein Toolkit [136, 821]. For the evolu-
tion of the scalar and vector field, we extent the ScalarEvolve [507, 822, 823] and
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Figure A.4: Convergence analysis of the ℓ = m = 1 multipole of Ψ, extracted at
rex = 20M for µM = 0.2 and C = 10−3. We show the expected result for third-order
convergence [green] (Q3 = 5.64), and fourth-order convergence [purple] (Q4 = 7.85).

ProcaEvolve thorns [824, 825], respectively. We use Multipatch to interpolate
between different grids in our numerical domain [826, 827]. In particular, to con-
nect the central Cartesian grid with the spherical wave zone. Additionally, Carpet
communicates between refinement levels with second-order and fifth-order accuracy
in time and space, respectively. The Courant number in all our simulations is 0.2,
such that the Courant–Friedrichs–Lewy condition is satisfied. To check whether our
numerical results respect the required convergence, we evolve the same configuration
with a coarse (hc), medium (hm) and fine (hf) resolution. The convergence factor can
then be calculated according to

Qn = fhc − fhm

fhm − fhf

= hn
c − hn

m
hn

m − hn
f
, (A.4.1)

where n is the expected convergence order. In our case, we take as the coarsest level
hc = 1.8M , then hm = 1.2M and hf = 1.0M . As can be seen in Figure A.4, we obtain
a convergence order between 3 and 4. We have performed similar tests for the other
simulations (with or without C and with or without the plasma) and we find similar
conclusions.

A.5 Higher Multipoles

In Chapter 4, we have shown the dominant contribution coming from the dipole
ℓ = m = 1 mode (cf. Figures 4.2–4.4). In general however, higher order multipoles are
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Figure A.5: Top panel : Time evolution of various multipole modes of the scalar field
in the supercritical case (simulation I3). The field is extracted at rex = 400M and
µM = 0.3. Interestingly, even ℓ modes are not excited, while odd ℓ modes are,
which we explain in Appendix A.6. Bottom panel : Fourier transform of the multipole
modes shown in the top panel. Dashed line denotes the frequency of the fundamental
mode (ω0) [grey], while the peaks around ω = 2ω0 [brown] (seen in the inset) originate
from interactions between “up-scattered” photons (ω = 3ω0/2) with “normal” photons
(ω = ω0/2).

also produced. In Figures A.5 and A.6, we show a subset of those from the scalar and
vector field, respectively. In both figures, we consider simulation I3 (see Table 4.1),
where superradiance is turned off and we start in the supercritical regime. Three
features are worth noting; (i) only axion modes with odd ℓ can be produced from our
initial data. An explanation for this selection rule is provided in Appendix A.6; (ii)
the Fourier transform of the vector field shows additional peaks with a frequency
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Figure A.6: Top panel : Time evolution of various multipole modes of the Newman-
Penrose scalar |(Φ2)ℓm| in the supercritical regime. Considered simulation is I3. Field
is extracted at rex = 400M and µM = 0.3. Bottom panel : Fourier transform of the
multipole modes shown in the top panel. Dashed lines indicate the frequencies at ω0/2
[brown] and 3ω0/2 [grey].

slightly lower than µ/2 and two near 3µ/2. As discussed in Chapter 4, these should
be interpreted as photon echoes created by outwards travelling photons that interact
with the axion cloud; (iii) in Figure A.5, we observe that some of these up-scattered
photons can recombine with “normal” photons (ω ∼ µ/2) to form axion waves with a
frequency of twice the boson mass.
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A.6 Selection Rules

Using spherical harmonics, the equations of motion can be decomposed, and, as we
will show, allow us to predict which modes are excited from the axionic coupling. This
approach yields a consistency check of our simulations in the case where superradiant
growth is absent. Using the electric field Ei and the magnetic field Bi, the Maxwell
equations can be written as

∂tE
i = αKEi + βj∂jE

i − Ej∂jβ
i − ϵijkDj(αBk) + 2kaα

(
ϵijkEkDjΨ +Binα∂αΨ

)
,

∂tB
i = βj∂jB

i −Bj∂jβ
i + αKBi + ϵijkDj(αEk) ,

(A.6.1)
where ϵijk = − 1√

γE
ijk and Eijk is the totally anti-symmetric tensor with E123 = 1.

We focus on a Schwarzschild BH which has the following metric:

ds2 = −f(r)dt2 + 1
f(r) (r)dr2 + r2γ̂ABdxAdxB , (A.6.2)

where f(r) = 1 − 2M/r, and γ̂ABdxAdxB = dθ2 + sin2 θdφ2. From the spacetime
symmetry, the electric and magnetic field can be decomposed using the scalar spher-
ical harmonics Yℓm(θ, φ) and the vector spherical harmonics ∇̂AYℓm and Vℓm,A =
ϵ̂BA∇̂BYℓm. Here, ϵ̂AB is the anti-symmetric tensor with ϵ̂θφ = sin θ. Using these
harmonics functions, we expand the electric, magnetic, and scalar field as follows:

Er =
∑
ℓm

Eℓm,rYℓm + c.c. ,

EA =
∑
ℓm

{
Eℓm,S

∇̂AYℓm√
ℓ(ℓ+ 1)

+ Eℓm,V Vℓm,A + c.c.
}
,

Br =
∑
ℓm

Bℓm,rYℓm + c.c. ,

BA =
∑
ℓm

{
Bℓm,S

∇̂AYℓm√
ℓ(ℓ+ 1)

+ Bℓm,V Vℓm,A + c.c.
}
,

Ψ =
∑
ℓm

ΨℓmYℓm + c.c. ,

(A.6.3)

where A = {θ, φ} and Eℓm,r, Eℓm,S , Eℓm,V , Bℓm,r, Bℓm,S , Bℓm,V , and Ψℓm are all coef-
ficients that depend on t and r only. Time or space derivatives are denoted with a dot
or prime, respectively. Since both the scalar and vector spherical harmonics are or-
thogonal functions, the Maxwell equations with axionic coupling can be decomposed.
To simplify the notation, we define Λ = (ℓm, ℓ′m′, ℓ′′m′′), so that the coefficients for
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the electric field can be written as

Ėℓm,r = −ℓ(ℓ+ 1)
r2 Bℓm,V − 2ka√

fr2

∑
ℓ′m′

ℓ′′m′′

4∑
I=1

C
(r,I)
Λ X(I),Λ ,

Ėℓm,S = −
√
ℓ(ℓ+ 1)

2 (f ′Bℓm,V + 2fB′
ℓm,V ) − 2ka

√
ℓ(ℓ+ 1)

∑
ℓ′m′

ℓ′′m′′

4∑
I=1

C
(S,I)
Λ X(I),Λ ,

Ėℓm,V = −fBℓm,r +
f ′Bℓm,S + 2fB′

ℓm,S

2
√
ℓ(ℓ+ 1)

− 2ka
∑
ℓ′m′

ℓ′′m′′

4∑
I=1

C
(V,I)
Λ X(I),Λ .

(A.6.4)
Then, we proceed with the coefficients for the magnetic field:

Ḃℓm,r = ℓ(ℓ+ 1)
r2 Eℓm,V ,

Ḃℓm,S =
√
ℓ(ℓ+ 1)

2
(
f ′Eℓm,V + 2fE ′

ℓm,V

)
,

Ḃℓm,V = fEℓm,r −
f ′Eℓm,S + 2fE ′

ℓm,S

2
√
ℓ(ℓ+ 1)

,

(A.6.5)

and the coefficients for the scalar field:

Ψ̈ℓm = −f
(

2
r

+ f ′
)

Ψ′
ℓm − f2Ψ′′

ℓm + f

(
ℓ(ℓ+ 1)
r2 + µ2

)
Ψℓm − 2kaf

×
∑
ℓ′m′

ℓ′′m′′

4∑
I=1

C
(Ψ,I)
Λ X(I),Λ ,

(A.6.6)

where X(I),Λ is found by

X(1),Λ =
∫

d2ΩY ∗
ℓmYℓ′′m′′Yℓ′m′ ,

X(2),Λ =
∫

d2ΩY ∗
ℓmY

∗
ℓ′′m′′Yℓ′m′ ,

X(3),Λ =
∫

d2ΩY ∗
ℓm∇̂AYℓ′′m′′Vℓ′m′,A ,

X(4),Λ =
∫

d2ΩY ∗
ℓm∇̂AY ∗

ℓ′′m′′Vℓ′m′,A .

(A.6.7)

Upon defining the prefactor

Qℓℓ′ℓ′′ = ℓ(ℓ+ 1) + ℓ′(ℓ′ + 1) − ℓ′′(ℓ′′ + 1)
2 , (A.6.8)
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we find for C(r,I):

C
(r,1)
Λ = Qℓ′′ℓ′ℓEℓ′′m′′,V Ψℓ′m′ − r2Bℓ′′m′′,rΨ̇ℓ′m′ ,

C
(r,2)
Λ = Qℓ′′ℓ′ℓE∗

ℓ′′m′′,V Ψℓ′m′ − r2B∗
ℓ′′m′′,rΨ̇ℓ′m′ ,

C
(r,3)
Λ = Eℓ′′m′′,SΨℓ′m′√

ℓ′′(ℓ′′ + 1)
,

C
(r,4)
Λ =

E∗
ℓ′′m′′,SΨℓ′m′√
ℓ′′(ℓ′′ + 1)

,

(A.6.9)

for C(S,I):

C
(S,1)
Λ = −Qℓ′′ℓℓ′

(
fEℓ′′m′′,V Ψ′

ℓ′m′ + Bℓ′′m′′,SΨ̇ℓ′m′√
ℓ′′(ℓ′′ + 1)

)
,

C
(S,2)
Λ = −Qℓ′′ℓℓ′

(
fE∗

ℓ′′m′′,V Ψ′
ℓ′m′ +

B∗
ℓ′′m′′,SΨ̇ℓ′m′√
ℓ′′(ℓ′′ + 1)

)
,

C
(S,3)
Λ = fEℓ′′m′′,rΨℓ′m′ − f√

ℓ′′(ℓ′′ + 1)
Eℓ′′m′′,SΨ′

ℓ′m′ + Bℓ′′m′′,V Ψ̇ℓ′m′ ,

C
(S,4)
Λ = fE∗

ℓ′′m′′m,rΨℓ′m′ − f√
ℓ′′(ℓ′′ + 1)

E∗
ℓ′′m′′,SΨ′

ℓ′m′ + B∗
ℓ′′m′′,V Ψ̇ℓ′m′ ,

(A.6.10)

for C(V,I):

C
(V,1)
Λ = −Qℓ′ℓℓ′′fEℓ′′m′′,rΨℓ′m′ +Qℓ′′ℓℓ′

(
f√

ℓ′′(ℓ′′ + 1)
Eℓ′′m′′,SΨ′

ℓ′m′ − Bℓ′′m′′,V Ψ̇ℓ′m′

)
,

C
(V,2)
Λ = −Qℓ′ℓℓ′′fE∗

ℓ′′m′′,rΨℓ′m′ +Qℓ′′ℓℓ′

(
f√

ℓ′′(ℓ′′ + 1)
Eℓ′′m′′,SΨ′

ℓ′m′ − Bℓ′′m′′Ψ̇ℓ′m′

)
,

C
(V,3)
Λ = −

(
fEℓ′′m′′,V Ψ′

ℓ′m′ + Bℓ′′m′′,SΨ̇ℓ′m′√
ℓ′′(ℓ′′ + 1)

)
,

C
(V,4)
Λ = −

(
fE∗

ℓ′′m′′,V Ψ′
ℓ′m′ +

B∗
ℓ′′m′′,SΨ̇ℓ′m′√
ℓ′′(ℓ′′ + 1)

)
,

(A.6.11)
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and finally for C(Ψ,I):

C
(Ψ,1)
Λ = fEℓ′m′,rBℓ′′m′′,r + Qℓ′′ℓ′ℓ

r2

(
Eℓ′m′,SBℓ′′m′′S,√
ℓ′ℓ′′(ℓ′ + 1)(ℓ′′ + 1)

+ Eℓ′m′,V Bℓ′′m′′,V

)
,

C
(Ψ,2)
Λ = fEℓ′m′,rB∗

ℓ′′m′′,r

Qℓ′′ℓ′ℓ

r2

(
Eℓ′m′SB∗

ℓ′′m′′,S√
ℓ′ℓ′′(ℓ′ + 1)(ℓ′′ + 1)

+ Eℓ′m′,V B∗
ℓ′′m′′,V

)
,

C
(Ψ,3)
Λ = 1

r2

(
Eℓ′m′,V

Bℓ′′m′′,S√
ℓ′′(ℓ′′ + 1)

Eℓ′m′S√
ℓ′(ℓ′ + 1)

Bℓ′′m′′V

)
,

C
(Ψ,4)
Λ = 1

r2

(
Eℓ′m′,V

B∗
ℓ′′m′′,S

r2
√
ℓ′′(ℓ′′ + 1)

Eℓ′m′S√
ℓ′(ℓ′ + 1)

B∗
ℓ′m′V

)
.

(A.6.12)
In our simulations, we monitor the Newman-Penrose variable Φ2, which has decom-
posed coefficients defined by

(Φ2)ℓm =
√
ℓ(ℓ+ 1)

2r

{
−

(
Bℓm,V + Eℓm,S√

ℓ(ℓ+ 1)

)
+ i

(
−Eℓm,V + Bℓm,S√

ℓ(ℓ+ 1)

)}
.

(A.6.13)
The non-vanishing components of our initial data (see Appendix A.3.3) are

Ψ1,±1 ∼ Ψ0 ,

E10,V (t = 0, r) = 1
2

√
π

3E
φ(r) ,

(A.6.14)

where Eφ(r) is defined in (4.1.6). Since this is a perturbative approach, we focus on
the subcritical regime and assume Eφ(r) is order O(ϵ). Using the above equations,
we can obtain the order of each mode of (Φ2)ℓm as

(Φ2)1,0 ∼ O(ϵ) ,
(Φ2)1,±1 ∼ O(kaΨ0ϵ) ,
(Φ2)2,±1 ∼ O(kaΨ0ϵ) ,
(Φ2)2,±2 ∼ O((kaΨ0)2ϵ) ,
(Φ2)3,±3 ∼ O((kaΨ0)3ϵ) .

(A.6.15)

In Figure A.7, we show |(Φ2)ℓm| in the subcritical regime (I2), and rescale all multi-
poles according to (A.6.15). As can be seen, using the rescaling, all curves are on the
same order, demonstrating that our simulations show consistent behaviour.

As alluded to in Section 4.2, from our initial data only odd ℓ scalar multipoles
can be produced. We can now proof this. From Yℓm(π − θ, φ+ π) = (−1)ℓYℓm(θ, φ),
we find that X(1),Λ and X(2),Λ are nonzero when ℓ+ ℓ′ + ℓ′′ is an even number, and
X(3),Λ and X(4),Λ are nonzero when ℓ+ ℓ′ + ℓ′′ is an odd number.
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Figure A.7: The time evolution of various multipole modes of the Newman-Penrose
scalar Φ2 in the subcritical regime. The considered simulation is I2, where the field
is extracted at rex = 20M and µM = 0.3. Each of the curves has been rescaled
according to the order found in (A.6.15).

Then, eqs. (A.6.9)–(A.6.11) show that the non-vanishing modes of our initial data,
Ψℓm and Eℓm,V (A.6.14) with odd ℓ can only excite Eℓm,r and Eℓm,S with even ℓ, while
it excites Eℓm,V with odd ℓ. Next, (A.6.5) implies that the non-vanishing component
of Eℓm,r and Eℓm,S with even ℓ excites Bℓm,V with even ℓ, while the non-vanishing
component of Eℓm,V with odd ℓ excites Bℓm,r and Bℓm,S with odd ℓ.

Finally, (A.6.12) shows that the non-vanishing component of Eℓm,r, Eℓm,S , and
Bℓm,V with even ℓ, and Eℓm,V , Bℓm,r, and Bℓm,S with odd ℓ only excites Ψℓm with
odd ℓ. Therefore, the non-vanishing components of the simulation starting from
initial data (A.6.14), only excite Ψℓm with odd ℓ. These results are consistent with
our simulations, see Figure A.5.
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B Mathieu Equation

Most of the results in Chapter 4 can be interpreted through the Mathieu equation.
In its simplest form, the Mathieu functions are solutions to

d2y

dx2 + (a+ b cos 2x)y = 0 ,

where a and b are real-valued constants. A striking feature of these solutions is the
presence of instabilities whenever a = n2/4 for n ∈ N and b ̸= 0 [828]. Notably, in
Lorenz gauge, the Maxwell equations for the coupled axion-photon system (4.1.2) in
flat spacetime reduce to a Mathieu-like form. In this appendix, I show that this struc-
ture persists even when accounting for a superradiantly growing cloud (Section B.1)
or a background plasma (Section B.2). Consequently, the well-understood proper-
ties of Mathieu functions can provide valuable insights into the dynamics of the full
system in curved spacetime.

B.1 Superradiant Mathieu Equation

By solving the superradiant Mathieu equation (4.3.3) numerically for different val-
ues of C, we were able to find a growth rate (4.3.4) for the electromagnetic field in
flat spacetime, while assuming a homogeneous axion condensate. Remarkably, this
estimate is accurate in describing the super-exponential growth of the electromag-
netic field in presence of superradiance, even when considering the full setup on a
Schwarzschild background (including the finite-size effects of the cloud with λesc). In
this appendix, we show a few examples of the numerical solutions to (4.3.3) and we
use a multiple-scale method to derive the growth rate analytically.

Figure B.1 shows various numerical solutions to the superradiant Mathieu equa-
tion (4.3.3). For C = 0, the solution is well-described by the standard Mathieu
growth rate (red dashed line). For nonzero values of C instead, the standard Math-
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Figure B.1: Numerical solutions to the superradiant Mathieu equation (4.3.3) for
different values of C. Horizontal axis shows the rescaled time T = µt. Dashed
lines show the “standard” Mathieu growth rate [red], and the analytic growth rate
from (4.3.4) [black]. Chosen parameters are µ = 0.2, pz = 0.1, kaψ0 = 0.1.

ieu prediction becomes inaccurate and the numerical solutions are well fitted by the
super-exponential growth rate (4.3.4) (black dashed lines).

Multiple-scale analysis

Regular perturbation theory fails to describe certain problems at late times due to
the appearance of secular terms, which introduce non-uniformities between consecu-
tive orders of the perturbation series. An example is the Mathieu equation, where a
multiple-scale analysis provides a more suitable framework (see, e.g., [828]). In the
following, we demonstrate its effectiveness in solving the superradiant Mathieu equa-
tion and thereby provide an analytical explanation for the numerically fitted growth
rate (4.3.4).

Consider the superradiant Mathieu equation (4.3.3), where we expand the expo-
nential as

d2y

dT 2 + (b+ 2δ(1 + CT ) cosT ) y = 0 , (B.1.1)

assuming δ is small. We introduce two timescales, a fast timescale T , and a slow
timescale T = δT , treated as independent variables. Promoting the solution to depend
on both, i.e., y(T ) → y(T, T ) and expanding as y = y0(T, T ) + δy1(T, T ), with
b = b0 + δb1, the additional freedom from T allows us to eliminate secular terms,
extending the solution’s validity to longer times compared to a standard perturbative
approach. Assuming the superradiant term to be small as well, i.e., C = δC, we
introduce yet another timescale, the very slow one, T = δ2T . Expanding further,
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b = b0 + δb1 + δ2b2, we obtain:

d2y

dT 2 +
(
b+ δ(b1 + 2 cosT ) + δ2(b2 + 2CT cosT )

)
y = 0 . (B.1.2)

In the spirit of the multiple-scale method, we promote y to depend on all the
timescales as independent variables and then expand, i.e., y(T, T ,T) = y0(T, T ,T) +
δy1(T, T ,T) + δ2y2(T, T ,T).

We can now consider (B.1.2) order by order. At zeroth order, we have:

∂2
T y0 + b0y0 = 0 , (B.1.3)

where b0 = 1/4 at the inset of the first unstable Mathieu band. At this order, we
obtain the solution: y0 = A(T ,T)eiT/2 + c.c. Hence, the solution at the fast timescale
T just describes the harmonic behaviour. At first-order, we have

∂2
T y1 + 1

4y1 = −2∂T∂T y0 − (b1 + 2 cosT ) y0 . (B.1.4)

The right-hand side contains secular terms. However, we can use the extra depen-
dence of y0 on the slow timescale to remove it, namely by requiring i∂T A(T ,T) =
−b1A(T ,T) + A∗(T ,T). Solving this leads to the dependence of the zeroth-order
solution on the slow timescale, i.e., y0 = A(T)e

√
1−b2

1T eiT/2 + c.c. Similarly, the de-
pendence on the very slow timescale can be used to eliminate secular terms in the
second-order equation.1 Following this procedure, we obtain for the zeroth-order
solution:

y0 ≈ e
√

1−b2
1T eiT/2eCTT + c.c. (B.1.5)

At sufficiently large times (T ≫ 1/C), the growth rate is thus dominated by eCTT =
eδCT 2

.

Finally, by comparing (B.1.1) with (4.3.3), we identify δ = pzψ0ka/µ
2 and pz =

µ/2, such that, after rescaling the physical time t = T/µ, the growth rate reads

eλt , with λt = µ

2 kaψ0Ct
2 , (B.1.6)

which is the dominant growth rate at late times we found in (4.3.5) (up to a factor
of 2).

The multiple-scale method thus produces a solution with three timescales; (i) the
fast timescale that corresponds to the harmonic oscillations with a frequency at half
the boson mass, (ii) the slow timescale belonging to the standard Mathieu growth
rate, and (iii) the very slow timescale which originates from the super-exponential
growth induced by superradiance and becomes dominant at late times. In conclusion,
the Mathieu equation provides us, once again, with a simple analytical explanation
to the behaviour of the full system.

1As these computations become quite cumbersome, we do not report them here.
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B.2 Plasma Mathieu Equation

We continue by studying the axion-photon-plasma system in flat spacetime. This
analysis closely follows [561], yet now in the context of a Mathieu-like equation. Fur-
thermore, we generalise their work by including a momentum equation rather than
assuming Ohm’s law.

The starting point is the equations of motion (4.1.2) in Minkowski. As in Sec-
tion 4.3.2, we take the wave vector to point along the ẑ–direction, i.e., p = (0, 0, pz),
adopt the electromagnetic ansatz (4.3.1), and consider a homogeneous axion conden-
sate defined as

Ψ = 1
2(ψ0e

−iµt + ψ∗
0e

iµt) . (B.2.1)

By linearising (4.1.2), one can straightforwardly solve the momentum equation and
find the velocity of the electrons with respect to the electromagnetic field. Once again,
due to their large inertia, we neglect the perturbations of the ions and treat them as a
neutralising background. Since the longitudinal and transverse modes are decoupled
in linear photon-plasma theory in flat spacetime, we focus on the transverse sector,
and obtain

uk = − qe

me
αkei(p·x−ωt) , (B.2.2)

where k = x̂, ŷ denote the transverse directions. This expression can now be inserted
into the current on the right-hand side of Maxwell’s equations, namely jk = qeneu

k
e ,

leading to two decoupled equations for the transverse polarisations αk. To proceed,
we redefine the fields as yk = eiωtαk, rescale time via T = µt, and project onto a
circular polarisation basis e± so that y = yωe±. In this form, we recover the Mathieu
equation in the presence of plasma as [579]

∂2
T yω + 1

µ2

(
p2

z + ω2
p − 2µpzψ0kasinT

)
yω = 0 . (B.2.3)

One can readily see that in the absence of plasma, i.e., ωp = 0, the vacuum Mathieu
equation is recovered [479].

The top panel of Figure B.2 shows numerical solutions to the plasma Mathieu
equation (B.2.3) for different values of the plasma frequency. For ωp = 0, the solution
develops an instability that is well-described by the analytic solution of the vacuum
Mathieu equation [red dashed]. By increasing ωp, the growth rate of the instability
becomes smaller as the interval of the momentum corresponding to the instability
shrinks until the solution becomes stable when ωp ≥ µ/2. We find good agreement
with the instability interval predicted in eq. (19) from [561], by exploring a wide
region of the parameter space. Interestingly, even when ωp ≥ µ/2, the instability
band can be widened by increasing the value of kaψ0, making it possible to restore
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Figure B.2: Top panel : Solutions of the plasma Mathieu equation (B.2.3) for different
values of the plasma frequency. We take µ = 0.2, pz = 0.1 and kaψ0 = 0.2. Bottom
panel : Similar setup as above, yet now the axionic coupling is varied and ωp = 0.15 >
µ/2. The other parameters are the same as above. As can be seen, for large values
of kaψ0 the instability is restored.

the instability even for dense plasmas. This effect can be seen in the bottom panel of
Figure B.2: when fixing ωp = 0.15 (with µ = 0.2), the instability is restored for large
enough values of kaψ0.

Band analysis

In [561], the maximum growth rate in the low-coupling regime is found when the
condition p2

z+ω2
p = µ2/4 holds. Although this result lacks an immediate interpretation

in [561], our reformulation of the system in terms of the Mathieu equation offers a
straightforward explanation. From (B.2.3), it follows directly that the instability
bands are located where

p2
z + ω2

p = n2 µ
2

4 , with n ∈ N . (B.2.4)
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Figure B.3: The Fourier transforms of three numerical solutions to the plasma Math-
ieu equation (B.2.3) with µ = 0.3 and pz = 0.15. The peaks have been arbitrarily nor-
malised and we revert t = µ−1T for the Fourier transform. The considered parameters
for the plasma frequency and the axionic coupling for n = 1, 2, 3 are ωp = 0, 0.2, 0.43
and kaψ0 = 0.02, 2, 2.8, respectively. The dashed lines indicate nµ/2 and show that
each of the solutions lies in a different instability band.

Thus, the maximum growth rate found in [561] can be interpreted as the first, dom-
inant instability band, corresponding to n = 1. As long as the couplings are suffi-
ciently low, the photon dispersion relation remains unaffected by the condensate, so
that ω2 ≈ p2

z + ω2
p, with ω the photon frequency. Therefore, similar to the vacuum

case, the instability bands correspond to frequencies that are multiples of µ/2.

For sufficiently large plasma frequencies, specifically when ωp ≥ µ/2, the con-
dition (B.2.4) can no longer be satisfied for n = 1. However, crucially, it remains
possible to satisfy this condition for n > 1, corresponding to the excitation of higher
instability bands and thereby restoring the instability.2 Figure B.3 illustrates this be-
haviour. We numerically solve (B.2.3) and take its Fourier transform. The dark-blue
curve, peaking at µ/2, corresponds to ωp = 0 and moderate couplings kaψ0 = 0.02,
and exhibits the typical parametric resonance of the first band. When the plasma
frequency is increased to ωp = 0.2 > µ/2, the first instability band can no longer
be excited. However, by increasing the axionic coupling to kaψ0 = 2, the instability
reappears in the second band at frequency µ [blue]. This pattern continues for even
larger plasma frequencies: for example, with ωp = 0.43 and kaψ0 = 2.8, the third
instability band is excited at ω = 3µ/2 [turquoise]. In all three cases, the chosen
values of ωp approximately satisfy condition (B.2.4) for n = 1, 2, and 3, respectively.

2Higher-order bands of the Mathieu equation are narrower than the first, reducing the available
parameter space for an instability. Nonetheless, these bands broaden at large couplings kaψ0, making
it possible to trigger an efficient instability even for n > 1.
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C
Black Hole Perturbation

Theory

Understanding BHs and their dynamics requires a variety of theoretical tools, each
suited to different aspects of the problem. A particularly successful approach involves
describing the spacetime as a small deviation from a known exact solution, an ap-
proach referred to as black hole perturbation theory. This framework has been widely
applied in modelling systems such as EMRIs [121, 122] and in studying the QNMs of
BHs [152–155].

This appendix establishes the theoretical foundation for BH perturbation theory
in stationary, spherically symmetric spacetimes at the linear level. This approach
has been central to the analyses in Chapters 5, 6, and 7. Section C.1 introduces
the perturbative setup. Section C.2 presents the evolution equations governing BH
perturbations in vacuum, outlines how QNMs are extracted from these equations,
and highlights specific considerations in different environments. Section C.3 then
addresses various choices of initial data for time-domain evolutions, and Section C.4
describes the numerical framework, and includes convergence tests for the code.

C.1 Perturbations

Black hole perturbation theory offers a framework for studying small deviations from
exact solutions of Einstein’s field equations (2.1.3). The goal is to understand how
small disturbances – such as a passing wave, a falling particle, or a companion star –
evolve in a given background metric.

The main idea is to expand relevant quantities as

X = X(0) + ϵ δX + O(ϵ2) , (C.1.1)

where X can represent tensorial quantities such as the metric gαβ , as well as vector
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or scalar quantities. Here, the superscript (0) denotes background quantities and ϵ

is a bookkeeping parameter controlling the perturbation order. Given the spherical
symmetry of the background, all perturbations can be decomposed into irreducible
representations of the rotation group SO(3). This allows us to express the angular
dependence of the perturbations through a multipolar expansion.

The study of gravitational perturbations begins by expanding the metric:

gµν = g
(0)
αβ + ϵ δgαβ , (C.1.2)

where δgαβ ≪ 1 is the metric perturbation. Since δgαβ is a rank–2 tensor, it has
ten independent components. The key to simplifying the analysis lies in separat-
ing the angular dependence of δgαβ , which was first done by Regge and Wheeler in
1957 [146]. For a Schwarzschild background, this can be done using tensor spherical
harmonics [829], reducing the problem to a set of perturbation functions that depend
only on the radial coordinate r and time t.

These perturbations fall into two distinct classes based on their transformation
under parity (θ → π − θ, φ → φ+ π):

• Axial (or odd-parity) perturbations, which acquire a factor of (−1)ℓ+1,

• Polar (or even-parity) perturbations, which acquire a factor of (−1)ℓ.

This classification simplifies the equations significantly, as perturbations of different
parity decouple. The ten metric components then fall into seven (three) independent
functions for polar (axial) perturbations. Furthermore, perturbations with different
harmonic indices ℓ are independent, meaning that for each ℓ, we are left with two
separate sets of equations – one for each parity sector – which completely charac-
terise the linear response of the system. The gravitational perturbations can thus be
decomposed as

δgαβ(t, r, θ, φ) = δgaxial
αβ (t, r, θ, φ) + δgpolar

αβ (t, r, θ, φ) . (C.1.3)

The explicit expressions for these components in terms of tensor spherical harmonics
are lengthy and can be found in e.g., [830].

The diffeomorphism invariance of General Relativity allows for infinitesimal coor-
dinate transformations,

x̄α = xα + ξα(x) , δgαβ → δg′
αβ = δgαβ − 2∇(αξβ) , (C.1.4)

where the four functions composing ξα(x) can be used to eliminate certain components
of the metric perturbations. A common and convenient choice is the Regge–Wheeler
gauge, which removes specific components involving higher-order angular derivatives,
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reducing the number of independent functions to two for the axial sector and four
for the polar sector. It is then possible to derive a decoupled wave equation for a
“master variable”, which encapsulates all the dynamics. In the Regge–Wheeler gauge,
the metric perturbation (C.1.3) takes the form

δgαβ =
∑
ℓm


Hℓm

0 Y ℓm Hℓm
1 Y ℓm hℓm

0 Sℓm
θ hℓm

0 Sℓm
φ

Hℓm
1 Y ℓm Hℓm

2 Y ℓm hℓm
1 Sℓm

θ hℓm
1 Sℓm

φ

∗ ∗ r2KℓmY ℓm 0
∗ ∗ 0 r2 sin2 θKℓmY ℓm

e−iωt . (C.1.5)

Here, the red and blue blocks correspond to the axial (δgaxial
αβ ) and polar part

(δgpolar
αβ ), respectively. To keep the notation streamlined, we omit explicit de-

pendence on (t, r, θ, φ) and define the axial vector harmonics as (Sℓm
θ , Sℓm

φ ) =
(−∂φY

ℓm/ sin θ, sin θ∂θY
ℓm).

Throughout this thesis, we frequently consider the presence of additional funda-
mental fields, which can be decomposed into spherical harmonics of the appropriate
type. For example, a generic vector field vα can be expanded in terms of vector
spherical harmonics as

δvα = 1
r

4∑
i=1

∑
ℓm

civ
ℓm
i Z(i)ℓm

α e−iωt , (C.1.6)

where the coefficients c1 = c2 = 1 and c3 = c4 = 1/
√
ℓ(ℓ+ 1). The vector spherical

harmonics Zℓm
α are defined in e.g., [831]. Similarly, scalar quantities such as P are

expanded as
δP =

∑
ℓm

P ℓmY ℓme−iωt , (C.1.7)

where Yℓm denote the standard scalar spherical harmonics.

C.2 Evolution Equations

Inserting the decomposed perturbations [eqs. (C.1.5)–(C.1.7)] into the linearised field
equations leads to a system of coupled second-order differential equations. Through
an appropriate field redefinition, one can obtain a single master equation governing
the evolution of perturbations. For the axial gravitational sector, that is is the Regge–
Wheeler equation with the vector-type gravitational variable ΨRW [146] that consists
of the axial perturbation functions h0 and h1. For the polar sector, it is the Zerilli
equation [147, 148] with the scalar-type gravitational variable ΨZ that consists of the
polar perturbation functions H0, H1, H2 and K. The evolution equations take the
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C. Black Hole Perturbation Theory

form of a wave equation with an effective potential that depends on the background
metric, i.e., (

− ∂2

∂t2
+ ∂2

∂r2
∗

− VRW/Z

)
ΨRW/Z = SRW/Z , (C.2.1)

where r∗ is the tortoise coordinate and SRW/Z are source terms that depend on the
energy-momentum tensor. The potentials in eq. (C.2.1) are given by

VRW =
(

1 − 2M
r

)[
ℓ(ℓ+ 1)
r2 − 6M

r3

]
,

VZ = 2
r3

(
1 − 2M

r

)
9M3 + 3Λ2Mr2 + Λ2(1 + Λ)r3 + 9M2Λr

(3M + Λr)2 ,

(C.2.2)

where Λ = (ℓ−1)(ℓ+2)/2. Despite their different forms, the Regge–Wheeler and Zerilli
equations are isospectral, meaning they share the same QNM frequencies [95, 145].

The source term SRW/Z describes the object that excites the spacetime perturba-
tions. One of the widely-used approaches is that of a “point-particle” that represents
e.g., a much smaller, secondary BH. This secondary can be assumed to move along
geodesics with its gravitational backreaction accounted for by the energy and angular
momentum loss due to GWs [118–120]. This is the central objective of the self-force
programme (see Section 2.2.1).

Quasi-normal modes

Another key application of BH perturbation theory is modelling the ringdown phase
of a BH coalescence (see Section 2.2.3). Here, we briefly outline how QNM frequencies
are computed in the frequency domain.

As shown in (C.2.1), perturbations of the background spacetime satisfy a wave
equation for a master variable Ψ, which encodes the radiative degrees of freedom of
the gravitational field [95, 146, 147, 372]. Equation (C.2.1) can be solved either in the
time domain, by evolving wavepackets scattered off the BH potential [143], or in the
frequency domain, where one extracts the characteristic modes of the system [145,
156]. Written in terms of the “standard” radial coordinate r and using again Ψ in a
slight abuse of notation, the master equation for the Regge–Wheeler potential (C.2.2)
in the frequency domain reads:

r(r − r+)d2Ψ
dr2 + dΨ

dr −
[
ℓ(ℓ+ 1) − 3

r
− ω2r3

r − r+

]
Ψ = 0 , (C.2.3)

where in Schwarzschild r+ = 2M . QNMs correspond to solutions of this equation
satisfying boundary conditions of purely ingoing waves at the BH horizon and purely
outgoing waves at infinity:

Ψ ∼

{
e−iωr∗ ∼ e−iω ln (r−r+) ∼ (r − r+)−iω r → r+ ,

eiωr∗ ∼ eiω(r+ln r) ∼ riωeiωr r → ∞ .
(C.2.4)
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Similar to constructing the bound states of scalar fields around BHs (see Ap-
pendix A.1.1), one of the most effective methods for solving this problem and com-
puting the QNM frequencies, is Leaver’s continued fraction method [156, 725, 832].
It begins by expanding the solution as

Ψ = (r − r+)−iωr2iωeiω(r−r+)
∞∑

n=0
bn

(
r − r+

r

)n

, (C.2.5)

where the prefactor is chosen to incorporate the QNM boundary conditions (C.2.4).
Substituting this ansatz into eq. (C.2.3) leads to a three-term recurrence relation for
the expansion coefficients:

α0b1 + β0b0 = 0 ,
αnbn+1 + βnbn + γnbn−1 = 0 , n = 1, 2, . . . ,

(C.2.6)

where αn, βn, γn depend on ℓ and ω. Given any initial values b0 and b1, one can
iteratively solve (C.2.6) for bn and thereby find a solution for Ψ. In general, for
arbitrary ω, the series divergences as n → ∞. However, QNM frequencies correspond
to special values of ω for which the recurrence relation (C.2.6) admits a minimal
solution. Pincherle’s theorem [833, 834] ensures that such minimal solutions exist
(i.e., that the series is convergent and the QNM boundary conditions are satisfied) if
ω satisfies a continued fraction equation (A.1.4). This method is particularly powerful
because it converges rapidly, even for high overtones, and has been successfully applied
to Schwarzschild and Kerr spacetimes [835–838].

Having outlined the theoretical framework of BH perturbation theory, we now
turn to the specific cases considered in this thesis.

C.2.1 Specifics for Plasma

In Chapters 5 and 6, we study plasmas surrounding BHs using perturbation theory.
Given their shared features, we outline the core features of the framework here. For
clarity, the discussion focuses on plasmas around charged BHs. Extensions to cases
involving couplings to a scalar field (Section 5.3.1) or uncharged BHs (Section 5.3.2)
follow straightforwardly and are omitted here to avoid unnecessary distractions.

Starting from the background Reissner-Nordström metric (5.3.1), we linearise the
field equations [eqs. (5.1.3) or (6.1.1)] to first-order perturbations. Unlike vacuum
Reissner-Nordström [147, 148], where one only the gravitational and electromagnetic
field are perturbed, the presence of plasma requires us to account for perturbations in
the fluid quantities. Given the large hierarchy between the mass of the electrons and
ions, we ignore perturbations on the latter and treat them as a stationary, neutralising
background.
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C. Black Hole Perturbation Theory

Axial sector

As we will see, the evolution of the perturbations in the axial sector can be written
as a set of two coupled wave equations. This procedure is aided by the existence
of a simple relation between the axial components of the plasma velocity and the
electromagnetic field, found by perturbing the angular components of the momentum
equation (5.1.4):

v4 = − e

me
u4 , (C.2.7)

where vi are the coefficients in the expansion of the four-velocity of the electrons while
ui are the coefficients from the electromagnetic field (C.1.6). The above equation
simply corresponds to the conservation of the generalised transverse momentum of
a charged particle with impulse P in an electromagnetic field A, i.e., ∂t(P + eA) =
0. Given that the axial sector is composed solely of transverse modes [459], this
very simple relation holds for our purposes. Moreover, by considering only axial
quantities, the continuity equation (5.1.4) and the radial component of the momentum
equation show that nℓm

e = P ℓm
t = 0, which is a consequence of variations in the fluid

density and pressure being longitudinal – and thus strictly polar – degrees of freedom.
Fluctuations of the fluid’s stress-energy tensor affect the axial Einstein equations via
terms proportional to ωpme/e and ω2

pm
2
e/e

2. Given that in astrophysical systems of
interest ωp = O(1/M), the large charge-to-mass ratio of the electron (e/me ≈ 1022)
drastically suppresses the impact of the fluid on the gravitational sector, which we
thus neglect.

This leaves us with three degrees of freedom, h0, h1 and u4, for which there are
three coupled equations (two of which are gravitational and one that is electromag-
netic). The first gravitational equation comes from the t−θ and t−φ components
of Einstein equation, while the second one can be derived from the r−θ and r−φ
components. The Einstein equations are not modified by plasma and one can solve
the latter to obtain:1

∂h0

∂r
= 2h0

r
− 4Qu4

λr2 +
i
(

− 2 + λ− r2ω2/f
)

rω
ΨRW , (C.2.8)

where f is the gtt component of the metric (5.3.1), λ = ℓ(ℓ + 1), and we defined the
Regge–Wheeler “master variable” ΨRW = fh1/r. We can then use this expression in
the first gravitational equation, which reduces to a simple relation between h0 and
ΨRW:

h0 = f

−iω
∂(rΨRW)

∂r
. (C.2.9)

1In some of the computations below, it is convenient to perform computations in the frequency
domain by assuming a sinusoidal time dependence, and switch back to the time domain once the
master equations are obtained. Note that, as the system is stationary, it is possible to go back and
forth between them simply through ∂/∂t ↔ −iω.
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As h0 is now decoupled from the system, we are able to obtain two coupled equations
for the “master variables” ΨRW and u4 as

∂2ΨRW

∂r2 − 2(Q2 −Mr)
r3f

∂ΨRW

∂r
− 4iQω
r3λf

u4 +
(
ω2

f2 − r2λ− 6Mr + 4Q2

r4f

)
ΨRW = 0 ,

∂2u4

∂r2 − 2(Q2 −Mr)
r3f

∂u4

∂r
+ iQλ(λ− 2)

r3ωf
ΨRW +

r4ω2 − (4Q2 + r2λ+ ω2
pr

4)f
r4f2 u4 = 0 .

(C.2.10)
As advertised, the full system has thus reduced to a set of coupled ordinary differential
equations for ΨRW and u4. To study the dynamics emerging from these equations,
we transform them back to the time domain. Furthermore, to acquire a wave-like
form of the equations, we consider the Moncrief master variable ΨM instead of the
Regge–Wheeler one. They are related through [661–663]:

ΨM = 2iΨRW

ω
. (C.2.11)

Using this substitution, we can rewrite (C.2.10) as wave equations:

L̂ΨM =
(

4Q4

r6 + Q2(−14M + r(4 + λ))
r5 +

(
1 − 2M

r

)[
λ

r2 − 6M
r3

])
ΨM − 8Qf

r3λ
u4 ,

L̂u4 = f

(
ω2

p + λ

r2 + 4Q2

r4

)
u4 − (ℓ− 1)λ(ℓ+ 2)Qf

2r3 ΨM ,

(C.2.12)
where the differential operator is defined as L̂ = ∂2/∂r2

∗ − ∂2/∂t2, with the tortoise
coordinate satisfying dr∗/dr = f−1. In the limit where the charge Q → 0, the system
decouples: the equation for ΨM simplifies to the Regge–Wheeler equation (C.2.2),
while the equation for u4 matches the axial electromagnetic mode in a Schwarzschild
background with plasma [392].

Polar sector

In contrast to the axial sector, fluid and electromagnetic perturbations are coupled
in the polar sector. This is due the presence of longitudinal, electrostatic modes as
well as gravitational fluctuations in the momentum equation (5.1.4). Additionally, the
polar density and pressure fluctuations δnℓm

e , δP ℓm
t do not vanish, while the perturbed

velocity does not decouple trivially. There is thus no equivalent to eq. (C.2.7), which
complicates the procedure.

In order to study the polar sector consistently, one should evolve the fluid variables
along with the gravitational and electromagnetic fields and close the system with a
suitable equation of state, as done in e.g., Chapter 7. We do not undertake that
exercise here yet rather show that, similar to the axial sector, electromagnetic modes
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in the polar sector are dressed with an effective mass given by ωp. Since the results
of Chapters 5 and 6 are centred around the presence of such a mass, there is no need
to repeat the same detailed study in the polar sector as we did in the axial sector.

In the following, we briefly sketch the procedure to show the presence of an effec-
tive mass ωp, in the polar sector. To obtain the electromagnetic master equation, one
should consider the perturbation of the normalisation of the four velocity, δ(vµv

µ) = 0
and solve for v1 in terms of metric perturbations. This relation can then be substituted
in the t − r component of the Einstein equations, which gives v2 in terms of metric
perturbations. Finally, from the angular components of the momentum equation, one
can obtain v3 in terms of metric, electromagnetic and density perturbations. Next,
consider the polar Maxwell’s equations, and in particular the radial one – which we
shall denote Mr – and a combination of the angular ones, given by Mθ + Mφ/sin2θ.
In analogy to previous work [147, 670], the electromagnetic master relation can be
derived from these equations. Following Zerilli, we find it convenient to use perturba-
tions of the field strength δFµν = ∂µ δAν − ∂ν δAµ, rather than the electromagnetic
potential δAµ, as a dynamical variable. We choose a gauge such that u3 = 0, while
the other components of the potential are expressed as

u1 = r δF̄02 , u2 = rf δF̄12 ,

∂u1

∂r
= r δF̄01 + δF̄02 − irω δF̄02 ,

(C.2.13)

where δF̄µν is the angle-independent part of δFµν . Using this relation, one can solve
Mr and Mθ + Mφ/sin2θ to obtain δF̄01 and δF̄02, respectively. These solutions can
then be used in the homogeneous Maxwell equation,

δF̄01 = ∂ δF̄02

∂r
+ iω δF̄12 , (C.2.14)

to obtain a second-order differential equation for δF̄12. At large radii and neglecting
the coupling with metric and density perturbations induced by the fluid, one finds
the standard dispersion relation of a transverse electromagnetic mode in a plasma
dressed by an effective mass given by the plasma frequency ω2 = k2 + ω2

p.

C.2.2 Specifics for Galactic Environments

In Chapter 7, we investigate the ringdown of BHs within a galactic environment
using perturbation theory for non-vacuum spacetimes [121, 122, 242, 243, 552]. This
involves perturbing the metric and the anisotropic fluid characterising the halo at
linear order in the small mass ratio q = mp/M . As the background is again spherically
symmetric, the perturbations for the axial and polar sector decouple. Our focus here
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lies on the polar sector, where the matter and gravitational perturbations are coupled,
potentially giving rise to a richer dynamics.

Details on the derivations of the equations of motion governing the evolution of
the perturbations can be found in [243]. Schematically, they are given by a set of 3
wave-like equations

L̂ϕ = Âϕ,r∗
+ Âϕ + Sp , (C.2.15)

where ϕ = (S,K, δρ), S and K are functions representing perturbations of the metric
and δρ is the perturbation of the matter density profile. Moreover, Lv = v2∂2/∂r2

∗ −
∂2/∂t2 is a wave operator and L̂ϕ =

(
L1ϕ1,L1ϕ2,Lcsr

ϕ3
)
. The coefficient matrices

of the homogeneous part Â and B̂ are the same as in [243], with the difference in the
setup being the source term Sp, representing the radial plunge of the small body.

From the evolved variables ϕ (C.2.15), we can construct the Zerilli-Moncrief [148]
function in the near-vacuum region as

Zℓm = r

n+ 1

[
K(r) + A(r)

n+ 3(M +MH)/r

(
H2(r) − r

∂K

∂r

)]
, (C.2.16)

where n = ℓ(ℓ+ 1)/2 − 1 and H2(r) can be found in eq. (47) in [243]. This function
controls the radiative degrees of freedom of the gravitational field and is related to
the GWs polarisations by

(h+ − ih×)ℓm = 1
r

√
(ℓ+ 2)!
(ℓ− 2)!Zℓm −2Yℓm(θ, φ) + O

(
1
r2

)
, (C.2.17)

where −2Yℓm(θ, φ) are the spin-weighted spherical harmonics with s = 2. For the
radial plunges we consider in Chapter 7, the cross-polarisation h× is zero and the
GW radiation is fully determined by h+.

C.3 Initial Data

Historically, the first study of BH perturbations in the time domain was carried out
by Vishveshwara, who examined the scattering of Gaussian wavepackets at BHs [143].
This approach remains relevant in cases where the specific nature of the perturbation
is not of interest, and one simply seeks to understand how the system evolves once
initialised. The clear advantage of this method is the absence of a source term on
the right-hand side of the evolution equation (C.2.1). We have used this approach in
Chapters 5 and 6. However, a more physically realistic setup involves perturbations
induced by a plunging particle, which we describe below.
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A plunging particle

In Chapter 7, we studied the response of the BH immersed in a halo by having a
secondary BH plunging into the primary one. The secondary is represented by a
point-particle with world-line xµ

p(τ), four-velocity uµ
p = dxµ

p/dτ and stress-energy
tensor:

Tµν
p = mp

∫
uµ

pu
ν
p
δ(4) (xµ − xµ

p(τ)
)

√
−g

dτ , (C.3.1)

where τ is the proper time related to coordinate time via
dt
dτ = Ep√

A(rp)
. (C.3.2)

Here, Ep is the energy of the point-particle [243] and A(r) the gtt component of the
metric, see eq. (7.1.1). We do not consider backreaction on the orbit due to GW
emission, i.e., we assume the particle follows geodesic radial motion, determined by

drp

dt = −
√
A(rp)B(rp)

√
1 − A(rp)

E2
p

, (C.3.3)

where B(r) = 1−2m(r)/r. Since we take the plunge to be along the radial ẑ–direction,
such that θp = φp = 0, only m = 0 modes are excited.

Following the same procedure as [243], we find Sp = q (Sp
1 , S

p
2 , S

p
3 ) with coefficients:

Sp
1 = −8

√
π

Ep

√
2ℓ+ 1A

r3

(
E2

p −A
)√

AB δ(r − rp(t)) ,

Sp
2 = −4

√
π

Ep

√
2ℓ+ 1A

r2

√
AB δ(r − rp(t)) ,

Sp
3 = −2

√
π

Ep

√
2ℓ+ 1ρ+ 2Pt

r2

(
2E2

p −A
)√

AB δ(r − rp(t)) ,

(C.3.4)

where we suppressed dependencies on r. Numerically, the Dirac delta representing
the point-particle is approximated by a smoothed Gaussian-like distribution.

δ(r − rp(t)) =
exp

[
−(r − rp(t))2/2λ2

p
]

√
2πλp

, (C.3.5)

where λp needs to be sufficiently small to ensure numerical convergence as λp → 0.
Finally, when initialising with a point-particle, we typically apply a window function
to Sp to start the particle smoothly, and reduce the initial junk radiation.

C.4 Numerical Framework

The evolution equations of the master variables described above are too complex to
admit analytic solutions. Consequently, we rely on numerical methods. In Chap-
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ters 5, 6 and 7, we employ the two-step Lax-Wendroff algorithm with second-order
finite differences, a well-suited approach for solving “wave-like” partial differential
equations in the time domain [243, 618–622, 839]. We will first provide an overview
of the algorithm and the implementation in Section C.4.1 and then show a convergence
test of our code in Section C.4.2.

C.4.1 Implementation

The first step is to discretise the continuous evolution equations. Assuming spherical
symmetry, we expand in spherical harmonics, which removes the angular dependence
and reduces the problem to a single spatial dimension. Let t denote the time co-
ordinate and x the radial coordinate. Under these assumptions, the homogeneous
component of the equation takes the general form of a second-order partial differen-
tial equation:

∂2
t Ψ =

[
Atx∂t∂x +Axx∂2

x +Bt∂t +Bx∂x + C
]

Ψ , (C.4.1)

where the coefficients Aij , Bk and C have been normalised by dividing through −Att.
These coefficients depend solely on the radial coordinate x, and their values can be
read off from the equations of motion. This formulation can be straightforwardly
generalised to systems involving two or more coupled wave equations by promoting
the coefficients to matrices.

To favour a stable numerical evolution, it proves useful to rewrite the second-
order equation as a system of two coupled first-order equations [619]. This is done by
introducing an auxiliary variable, often referred to as the conjugate momentum. It is
defined as

Π ≡ (∂t + b ∂x)Ψ , where b ≡ −
Atx +

√
(Atx)2 + 4Axx

2 . (C.4.2)

Including a source term T , the evolution equation (C.4.1) can then be written in a
first-order matrix form as

∂tu + M · ∂xu + A · u = T , (C.4.3)

where the solution vector is:

u ≡ {ΨR,ΨI,ΠR,ΠI} . (C.4.4)

Here, R and I represent the real and imaginary parts of the field, respectively. The
structure of the matrices M and A is:

M =


b 0 0 0
0 b 0 0
m31 m32 −b 0

−m32 m31 0 −b

 , A =


0 0 −1 0
0 0 0 −1
a31 a32 a33 a34

−a32 a31 −a34 a33

 . (C.4.5)
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The coefficients entering these matrices depend on the specific evolution equations (for
e.g., the Teukolsky equation, see [619, 839]). In our case, these coefficients are gen-
erally quite simple, or even zero, as they have already been extensively manipulated
[see, e.g., (C.2.12)].

We employ a time-explicit numerical scheme based on the Lax–Wendroff finite-
difference method. To apply this scheme, we first recast eq. (C.4.3) in the form of an
advection equation:

(∂t + D · ∂x)u = S , (C.4.6)

where

D = diag(b, b,−b,−b) and S = −(M − D) · ∂xu − A · u + T . (C.4.7)

Here, the matrices M , A, and D do not depend on time. This equation is then dis-
cretised on a uniform one-dimensional grid with spatial resolution δx. Each time step
proceeds in two stages: first, an intermediate solution is computed at the midpoints
between grid cells

u
n+1/2
i+1/2 = 1

2
(
un

i+1 + un
i

)
− δt

2

[
1
δx

Dn
i+1/2

(
un

i+1 − un
i

)
− Sn

i+1/2

]
, (C.4.8)

where δt denotes the time step. Radial derivatives are approximated using second-
order centred differences evaluated at grid points i and i + 1. The algebraic terms
in Dn

i+1/2 and Sn
i+1/2 are computed by averaging the corresponding values at i and

i + 1. In the second stage, the intermediate solution is used to advance the solution
to the next time step:

un+1
i = un

i − δt

[
1
δx

D
n+1/2
i

(
u

n+1/2
i+1/2 − u

n+1/2
i−1/2

)
− S

n+1/2
i

]
. (C.4.9)

Here, the centred radial differences and averages are taken on the values u
n+1/2
i+1/2 and

u
n+1/2
i−1/2 .

Simulations in Schwarzschild coordinates (t, r, θ, φ) present numerically difficulties
because of the coordinate singularity at the BH horizon. To get around this, we use
the tortoise coordinate r∗ (defining x = r∗), which effectively sends the horizon to
r∗ → −∞. The computational domain is then extended far enough outwards, such
that any artificial effect from the boundary cannot influence the dynamics at the
radius of extraction. This allows us to make an arbitrary choice for the boundary
conditions on Ψ and Π, which we take to be zero.

The numerical grid is uniformly spaced in the tortoise coordinate, and we typically
choose λp ≈ 4δx (C.3.5). To avoid divergences near the horizon, we excise any matter
distribution in that region and verify that the qualitative behaviour of the solution
remains unaffected.
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Figure C.1: Convergence order as measured with dx/M = {0.1, 0.05, 0.025}. The
result is consistent with the expected second-order convergence rate.

C.4.2 Convergence Test

To validate the implementation of our numerical scheme, we perform a convergence
test. In Figure C.1, we show the Cauchy convergence order, defined as

n = log2

(
||Ψ2h − Ψh||2
||Ψh − Ψh/2||2

)
, (C.4.10)

where a moving average is applied to smooth the resulting curve. The observed conver-
gence rate is consistent with the second-order accuracy of the finite-difference scheme
employed. Most simulations are performed using the resolution Ψh, corresponding to
a spatial grid spacing of dx = 0.05M . The time step is set to dt = 0.5dx, ensuring
the Courant–Friedrichs–Lewy condition is satisfied throughout.
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D
Axionic Instabilities in Flat

Spacetime

Background electromagnetic fields in electro-vacuum charged BHs can give rise to
axionic instabilities. However, the presence of plasma may significantly modify this
behaviour, as discussed in Chapter 5. To support that discussion, this appendix
presents a simplified analysis in flat spacetime.

Consider eqs. (5.1.3) with sinχ0 = 0 and a background (b) system with a constant
electric field along the ẑ–direction:

Ab
µ = (zEz, 0, 0, 0) . (D.1)

Moreover, we assume the presence of ions, such that the plasma is globally neutral.
Under the influence of the electric field (D.1), electrons are subject to a constant
acceleration. From the momentum equation (5.1.4), one can easily infer the four
velocity, which reads

vb
µ =

(√
m2

e + e2E2
z t

2

me
, 0, 0, eEzt

me

)
, (D.2)

such that vb
µv

b,µ = −1. Likewise, ions feel a force in the opposite direction along the
ẑ–axis. From the continuity equation (5.1.4), one can then infer the density profile of
the fluid:

nb = n(0)√
m2

e + e2E2
z t

2
, (D.3)

where n(0) is an integration constant. Given the time dependence of the four-
velocity (D.2), the system is not stationary. To obtain a full solution, one should
thus perform a consistent evolution in the time domain. However, by assuming that
the electric field is weak with respect to the particle’s inertia, i.e., eEz ≪ me, we
can approximate the plasma as static on timescales t ≈ O(me/eEz) and use standard
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frequency-domain methods. Moreover, in this approximation, the density is station-
ary and constant in space (D.3). Finally, as the ion’s inertia is much larger than the
electron’s one, the same considerations hold.

We now perturb the fields in the frequency domain as

Ψ ∼ ϵψ̄e−i(ωt−kixi) ,

Aµ ∼ Ab
µ + ϵĀµe

−i(ωt−kixi) ,

vµ ∼ vb
µ + ϵv̄µe

−i(ωt−kixi) ,

ne ∼ nb + ϵn̄e−i(ωt−kixi) ,

(D.4)

where ki is the wave vector in Fourier space and perturbed variables are marked with
an overhead bar. Jointly solving the Maxwell and momentum equations in terms of
ψ̄ and Āz then yields

Ā0 = − Āzω

kz
,

Āx = kxĀz

kz
+ 2iEzkykaψ̄

ω2
p + k2 − ω2 ,

Āy = kyĀz

kz
− 2iEzkxkaψ̄

ω2
p + k2 − ω2 ,

v̄0 = 0 ,

v̄x = − 2iEzkyekaψ̄

me(ω2
p + k2 − ω2) ,

v̄y = 2iEzkxekaψ̄

me(ω2
p + k2 − ω2) ,

v̄z = 0 ,

(D.5)

where k2 = kik
i and we defined the plasma frequency of the background plasma

ω2
p = e2nb/me. Since kµv̄

µ = 0, the electromagnetic perturbation is purely transverse.
As a result, the continuity equation implies that density perturbations, which are
longitudinal quantities, vanish identically, i.e., n̄ = 0.

Finally, we plug these relations back in the Klein-Gordon equation. As the latter
is sourced by the combination kyĀx −kxĀy, it follows from eq. (D.5) that Āz vanishes,
and we are left with a decoupled expression for ψ̄, which reads(

−ω2 + k2 + µ2
a −

4E2
z (k2

x + k2
y)k2

a

−ω2 + k2 + ω2
p

)
ψ̄ = 0 . (D.6)

The dispersion relation is then found as

ω2 = 1
2

(
2k2 + µ2

a + ω2
p ±

√
(µ2

a − ω2
p)2 + 16E2

zk
2k2

a

)
. (D.7)

268



0

0.05

0.1

0.15
ω2 = k2 + µ2

a

R
e
(ω

)

0 0.5 1.0 1.5 2.0
0

0.2

0.4

ωp

Im
(ω

)

Ez = 10

Ez = 40

Ez = 80

Figure D.1: Spectrum of the axionic modes as a function of the plasma frequency
for three different choices of the electric field strength. Increasing the plasma fre-
quency stabilises the system, as modes turn from imaginary to real, and the fre-
quency approaches the axion vacuum dispersion relation. The parameters in this plot
are ka = 0.01, k2 = 0.1 and µa = 0.1 in arbitrary units.

Clearly, the electric field has a critical threshold above which an instability arises.
This threshold is given by

Ecrit
z =

√
k2 + µ2

a

√
k2 + ω2

p

2kak
. (D.8)

When Ez > Ecrit
z , the system admits purely imaginary, unstable modes. For ωp → 0,

one correctly obtains the vacuum threshold as found in [479]. Importantly, in the limit
ωp ≫ µa, the threshold increases, as the axion-photon conversion angle drops (5.2.5).

Figure D.1 shows the real and imaginary part of the axionic frequency as a function
of the plasma frequency for different values of the electric field. In all three cases, the
electric field is above the threshold value for low plasma frequencies, and the modes
are purely imaginary. By increasing the plasma frequency, the system stabilises as the
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D. Axionic Instabilities in Flat Spacetime

modes become purely real while they approach the vacuum dispersion relation of the
axion. This is exactly the impact of in-medium suppression, as in the limit ωp ≫ µa
the axion effectively decouples from the photon. For small electric fields [blue], this
happens precisely at the threshold ωp = µa.
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E Dark Photon Basis

In Chapter 5, I studied the dark photon in the interaction basis. Depending on the
context, however, other choices – such as the mass basis – can be more convenient.
This appendix is devoted to that purpose. In Section E.1, I derive the relevant
equations of motion in the mass basis, while in Section E.2, I discuss how to apply
black hole perturbation theory in that basis.

E.1 Basis Choices

Kinetic mixing between the Standard Model and dark photon is described by the
Lagrangian (similar to Chapter 5, dark photon quantities are denoted with a prime):

L = LEM + LProca + 1
2 sinχ0F

′
µνF

µν . (E.1.1)

To make the equations more tractable, the mixing term can be removed through a
field redefinition. Two different choices are possible. Redefining A′

µ → A′
µ + sinχ0Aµ

leads to the interaction basis, in which the Lagrangian takes the form:

Linter = −1
4
(
FµνF

µν + F ′
µνF

′µν
)

−
µ2

γ′

2 A′µA′
µ − µ2

γ′ sinχ0A
′
µA

µ + jµAµ . (E.1.2)

In this basis, the fields are directly coupled, as clearly shown in (5.1.3), while only
the visible field Aµ couples with the Standard Model current jµ. This is the basis we
use in Chapter 5.

An alternative choice is Aµ → Aµ + sinχ0A
′
µ, which removes the kinetic mixing is

and leads to the mass basis with a Lagrangian:

Lmass = −1
4
(
FµνF

µν + F ′
µνF

′µν
)

−
µ2

γ′

2 A′µA′
µ + jµ(Aµ + sinχ0A

′
µ) . (E.1.3)
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E. Dark Photon Basis

The corresponding field equations are given by

∇νF
µν = jµ ,

∇νF
′µν = −µ2

γ′A′µ + sinχ0j
µ ,

(E.1.4)

while the momentum equation in the Einstein cluster setup reads:

∇νT p
µν = ene(Fµν + sinχ0F

′
µν) . (E.1.5)

In this case, the two fields are not directly coupled, yet both of them are coupled
to the electrons. Note that, in this basis Aµ is not the visible photon, i.e., the
one accelerating charged particles. Instead, that role is played by the combination
Aobs = Aµ + sinχ0A

′
µ.

As it should, the physics in the two bases is equivalent, and one can simply choose
a preferred basis depending on the problem at hand.

E.2 Black Hole Perturbation Theory in the Mass
Basis

For completeness, we briefly outline the computations presented in Chapter 5, now
performed in the mass basis. This also facilitates the comparison with previous
work [564]. By performing the multipolar decomposition of the momentum equation,
we obtain the following relation between the axial four-velocity and the electromag-
netic and dark photon axial fields:

v4 = − e

me
(umb

4 + sinχ0u
mb
4

′) , (E.2.1)

where the superscript “mb” refers to mass basis quantities. From eq. (E.2.1), it is
immediately clear that, in this basis, the dark photon field affects the motion of
charged particles. Expanding Eq (E.1.4) yields a set of coupled partial differential
equations:

L̂umb
4 = f

(
ω2

p + λ

r2

)
umb

4 + fω2
p sinχ0 u

mb
4

′ ,

L̂umb
4

′ = f

(
µ2

γ′ + λ

r2

)
umb

4
′ + fω2

p sinχ0 u
mb
4 .

(E.2.2)

The visible photon is then given by u4 = umb
4 +sinχ0u

mb
4

′. Thus, one can perform the
same computations as in Chapter 5 in the mass basis, comparing the results through
this linear combination.
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F
Resonances in Gravitational

Atoms

This appendix presents additional results related to the study of resonances in boson
clouds from Chapter 8. Section F.1 discusses the assumption of total angular momen-
tum conservation, while Section F.2 provides a more general treatment of resonance
breaking. In Section F.3, I show that the contribution from ionisation at resonance
frequencies can be safely neglected. Section F.4 examines a special resonance me-
diated solely by the dipole of the gravitational perturbation. Finally, Section F.5
summarises the variables used throughout Chapter 8.

F.1 Hyperfine Resonances and Angular Momentum

A nonzero BH spin is responsible for the existence of the hyperfine energy split-
ting (3.3.18), as it breaks the spherical symmetry of the background spacetime. At
the same time, we study the backreaction of resonances (hyperfine or not) on the or-
bit in the Newtonian approximation, assuming the conservation of the total angular
momentum, which leads to eqs. (8.2.20), (8.2.21), and (8.2.22). This methodology
might appear as fundamentally inconsistent, so let us inspect it more closely.

The weak-field approximation of the Kerr metric, which is valid at large distances,
reads

ds2 = −
(

1 − 2M
r

)
dt2 +

(
1 + 2M

r

)
dr2 +r2(dθ2 +sin2 θ dϕ2)− ãM 4M

r
sin2 θ dtdϕ .

(F.1.1)
The last term is known to give rise to the Lense-Thirring precession, as the equation
of motion of a scalar particle can be put in the form

d2r
dt2 = −M

r3 r + 4dr
dt × B , (F.1.2)
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where the gravito-magnetic field B is related to the BH spin as

B = ∇ × A , A = −J × r
2r3 , J = ãM2ẑ . (F.1.3)

The corresponding Hamiltonian is

H = (p − 4µA)2

2µ − µM

r
≈ p2

2µ − α

r
+ 2ãM2

r3 Lz , (F.1.4)

where µ = α/M is the mass of the particle. We can immediately check that the last
term in (F.1.4) gives rise to the expected hyperfine splitting,

⟨nℓm|H|nℓm⟩ = 2ãM2m

〈
nℓm

∣∣∣∣ 1
r3

∣∣∣∣nℓm〉 = 2ãM2m
(µα)3

n3ℓ(ℓ+ 1/2)(ℓ+ 1) , (F.1.5)

which perfectly matches the last term in (3.3.18).

The orbital angular momentum L = r × p evolves as

dL
dt = i[H,L] = 2

r3 J × L , (F.1.6)

which is the expected Lense-Thirring precession. Applying this equation to the cloud-
binary system gives rise to two additional terms on the right-hand sides of (8.2.16)
and (8.2.17), corresponding to the Lense-Thirring precession of the cloud (which van-
ishes in most cases, as Sc ∥ J even during a transition, as we will see below) and
of the binary. This precession is, however, parametrically small. None of the other
terms in (8.2.16) and (8.2.17) depend on the BH spin ã, even in the case of hyperfine
resonances, where the energy splitting is proportional to ã. Not only for realistic pa-
rameters is this precession extremely slow, but it also does not disrupt the approach
in Chapter 8, as (8.2.17) can be simply replaced by the analogous equation for the
(precessing) equatorial projection of the angular momentum.

Having justified the use of the conservation of total angular momentum, there is
another potentially worrying aspect of the breaking of spherical symmetry, that has
to do with the spin of the cloud when it is in a mixed state, for example during a
transition. As long as the Hamiltonian is spherically symmetric, |nℓm⟩ are guaran-
teed to be eigenstates of the scalar field’s orbital angular momentum L. Its matrix
elements are given by Lz |nℓm⟩ = m |nℓm⟩ and, in the Condon-Shortley convention,
L± |nℓm⟩ =

√
ℓ(ℓ+ 1) −m(m± 1) |nℓ,m± 1⟩, where L± = Lx ± iLy. If the cloud is

in a mixed state of the form |ψ⟩ = ca |naℓama⟩+cb |nbℓbmb⟩, then the z–component of
its angular momentum is ma|ca|2 + mb|cb|2, while the equatorial components vanish
unless ℓa = ℓb and |ma −mb| = 1.

Remarkably, all the previous results still hold for the Hamiltonian (F.1.4). That
is because the perturbation ∼ Lz/r

3 is diagonal on the basis |ℓm⟩, only mixing states
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with different n. Even though the spacetime is not spherically symmetric, the angular
structure of the eigenstates is unchanged. The equations in Chapter 8 then do not
need any modification, except for the case of hyperfine transitions with |∆m| = 1. For
a hyperfine transition with mb = ma − 1, careful computation (in the Schrödinger,
not dressed, frame) of the equatorial components of Sc shows that eq. (8.2.17) would
need to be corrected with a term

dSc,x

dτ ∼ B

g

√
ℓ(ℓ+ 1) −ma(ma − 1)

√
Z(|cb|2 − |ca|2) sin(Cτ/3) . (F.1.7)

This is a fast oscillating term that averages to zero on timescales much shorter than
the evolution of the orbital parameters and the duration of the resonance. We can
thus safely ignore it in Chapter 8.

F.2 General Resonance Breaking

The phenomenon of resonance breaking was discussed in Section 8.2.4 in the simplified
scenario where only one of the following quantities is allowed to vary at a time: the
eccentricity ε, the Landau-Zener parameter Z, or the cloud’s mass Mc. We derive
here the result in the general case. Taking the time derivative of (8.2.42), we find

d2ω

dτ2 = df(ε)
dτ +B

d2|ca|2

dτ2 = df(ε)
dτ +B

(
d2c∗

a

dτ2 ca + 2dc∗
a

dτ
dca

dτ + c∗
a

d2ca

dτ2

)
= df(ε)

dτ − 2ZB(|ca|2 − |cb|2) +
(

1
2Z

dZ
dτ − Γ

)(
dω
dτ − f(ε)

)
+ ω

√
ZB(c∗

acb + cac
∗
b) ,

(F.2.1)

where the second and third line are obtained by repeated use of the Schrödinger
equation (8.2.33) together with (8.2.42). Under the assumption that all coefficients
appearing above evolve slowly during a floating orbit, eq. (F.2.1) has the structure of
a damped harmonic oscillator, with solution

ω =
df(ε)

dτ − f(ε)
2Z

dZ
dτ + Γ − 2ZB(|ca|2 − |cb|2)

−
√
ZB(c∗

acb + cac∗
b)

+ damped oscillatory terms . (F.2.2)

The resonance breaks whenever c∗
bca + c∗

acb = 0. By direct application of the
Schrödinger equation, we find

√
Z

d
dτ (c∗

acb + cac
∗
b) = −ωd|ca|2

dτ − Γ
√
Z(c∗

acb + c∗
bca) . (F.2.3)
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Substituting the non-oscillatory term of (F.2.2) in eq. (F.2.3), we arrive at an equation
for the sole unknown c∗

acb + c∗
bca:

ZB

2

(
d
dτ + 2Γ

)
(c∗

acb + c∗
bca)2

=
(

df(ε)
dτ − f(ε)

2Z
dZ
dτ + f(ε)Γ − 2ZB(|ca|2 − |cb|2)

)
d|ca|2

dτ .

(F.2.4)

Remarkably, the evolution of the eccentricity, the variation of the Landau-Zener pa-
rameter and the decay of the cloud contribute additively to (F.2.4), each with its own
term. In realistic cases, Γ is large enough to force the population of state |b⟩ to reach
a saturation value |cb|2 = f(ε)/(2ΓB), which is usually small enough to be neglected
in (F.2.4). The point of resonance breaking, then, only involves the population left
in the initial state, |ca|2.

F.3 Ionisation at Resonance

The expressions for the ionisation rate and power derived in [66] are valid under the
assumption that the frequency Ω of the perturbation is away from any bound-to-
bound state resonance. Here, we relax this assumption by computing the new term
contributing at resonance and showing that its effect is ultimately negligible. To allow
for an easy match with the notations of [66], we denote the state initially populated
by |b⟩ and any other bound state by |a⟩.

Ignoring couplings between different continuum states (as justified in Appendix A2
of [66]), the Hamiltonian of the gravitational atom reads,

H =
∑

b

ϵb |b⟩⟨b| +
∑
a̸=b

ηab(t) |a⟩⟨b| +
∑
K

ϵK |K⟩⟨K| +
∑
K,b

[ηKb(t) |K⟩⟨b| + h.c.] ,

(F.3.1)
where |K⟩ ≡ |kℓm⟩ is a continuum state multi-index, ϵK ≈ k2/(2µ), and the couplings
ηab(t) and ηKb(t) are the matrix elements of the perturbation (8.1.1). As in [66], by
integrating out the continuum the Schrödinger equation can be recast in the following
form:1

i
dcb

dt = Ebcb(t) +
∑
a ̸=b

[
ηba(t)ei(ϵb−ϵa)t + Eba(t)

]
ca(t) , (F.3.2)

where we define the induced couplings,

Eba(t) ≡ −i
∫ t

−∞
dt′
∑
K

η∗
Kb(t)ηKa(t′)e−i(ϵK−ϵb)t+i(ϵK−ϵa)t′

, (F.3.3)

1All quantities here depend on time, either through fast oscillatory terms, due to the evolving
phase φ∗, or through the slow frequency chirp. For ease of notation, we will only explicitly write the
time dependence of terms falling in the first class.
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and the induced energies Eb ≡ Ebb. The first term in (F.3.2) controls the ionisation
of state |b⟩, while the first term in the parenthesis is responsible for the |b⟩ → |a⟩
resonance. The last term, which is the focus here, is a coupling between |b⟩ and |a⟩
induced via the interaction with the continuum. Because Eba(t) oscillates very rapidly
unless (mb −ma)φ̇∗ = ϵb − ϵa, the parenthesis in (F.3.2) can be neglected altogether
whenever the system is not actively on resonance.

Let us study what happens when this is the case instead. The same saddle-point
approximation done in [66] can be applied to the case a ̸= b, arriving to

Eba(t) = ei(ϵb−ϵa)t−i(mb−ma)φ∗(t)
∑
ℓm

[
−
iµ η

∗(gb)
Kb η

(ga)
Ka

2k(ga)
∗

Θ
(
(k(ga)

∗ )2)] . (F.3.4)

Here, we defined ga = m − ma, evaluated |K⟩ at k(ga)
∗ =

√
2µ((m−ma)φ̇∗ + εa),

and expanded the bound-continuum coupling in its Floquet components, ηKa =
η

(ga)
Kae

i(m−ma)t (and similarly for a ↔ b). To understand the effect of the induced
coupling Eba, we can temporarily set ηba = 0 and write (F.3.2) as

d|cb|2

dt =
∑

a

∑
ℓm

µ

k
(ga)
∗

Θ
(
(k(ga)

∗ )2)ℜ
[
ei(ϵb−ϵa)t−i(mb−ma)φ∗(t)η

∗(gb)
Kb η

(ga)
Kac

∗
b(t)ca(t)

]
.

(F.3.5)
Here, the term with a = b reproduces the ionisation term Ebcb(t) in (F.3.2). Moreover,
the evolution of state |a⟩ is determined by the same formula, swapping b ↔ a. For
a ̸= b, however, this operation transforms the term in brackets into its complex
conjugate, so its real part stays unchanged. We thus see that the induced coupling Eba

does not contribute to a |b⟩ → |a⟩ transition alongside ηba, as one might have expected
from (F.3.2) and as was speculated in [66]. Instead, both |cb|2 and |ca|2 experience
an identical depletion (in addition to ionisation) or recombination, depending on the
sign of the real part appearing in (F.3.5); both cases are possible.

We have validated the previous results by comparing them to an explicit numeri-
cal integration of the Schrödinger equation, with the continuum states modelled as a
large set of discrete states, quadratically spaced in energy. By tuning the parameters
to make the impact of the induced coupling clearly visible, we found that (F.3.5)
gives, indeed, a very accurate description of the evolution of the populations around
the resonance. In Chapter 8, in particular for Bohr resonances, we are mainly con-
cerned with the correction from the induced coupling to a naive approach where the
contributions of ionisation and the resonance are simply summed up. To determine
its importance, we assume for simplicity that ηab = 0, |cb|2 = 1 and |ca|2 = 0 at
t = −∞ and employ a (further) saddle-point approximation in (F.3.2) around the
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time t0 such that φ̇∗ = Ω0 = (ϵb − ϵa)/(mb −ma). The population at t = +∞ is then

|ca|2 = 2π
|mb −ma|γ

∣∣∣∣∣∑
ℓm

µ η
∗(gb)
Kb η

(ga)
Ka

2k(gb)
∗

Θ
(
(k(gb)

∗ )2)∣∣∣∣∣
2

, (F.3.6)

where the couplings and k(gb)
∗ have to be evaluated at Ω = Ω0. Similar to an argument

already developed in [66], this quantity |ca|2 is O(q3α4), and it has to compete with
the η2/γ ∼ O(qα2) contributions due to the direct coupling |ηba|2/γ. Once again,
we have validated (F.3.6) by comparing it to a direct numerical integration of the
Schrödinger equation and evaluated it for a typical Bohr resonance, finding a final
population of O(10−11). We conclude that simply adding the steady deoccupation
introduced by ionisation on top of the resonant transition studied in Chapter 8 is a
good approximation for our purposes.

F.4 |211⟩ → |200⟩ Resonance

The strength of the fine resonance |211⟩ → |200⟩ has anomalous scaling with param-
eters, due to the dipole ℓ∗ = 1 being entirely responsible for the coupling and the
binary separation falling partially inside the region where ionisation dominates over
GW emission. We therefore determine the angle δ2, such that for π− δ2 < β ≤ π the
resonance is non-adiabatic, as

δ2 = 6.7◦
(

10−2

Mc/M

)1/4 ( q

10−3

)1/8 ( α

0.2

)7/8
f(ε0)3/8F (α,Mc) , (F.4.1)

where the formula holds for small δ2, and the function F (α,Mc) is calculated numer-
ically and shown in Figure F.1.
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Figure F.1: Function F (α,Mc) appearing in eq. (F.4.1), which defines the angular
interval δ2 around a counter-rotating orbit where the resonance |211⟩ → |200⟩ is not
adiabatic.

F.5 Summary of Resonance Variables

Symbol Meaning Reference

ε Binary eccentricity
β Binary inclination
g Overtone number (8.2.1)
γ Frequency chirp rate induced by GWs/ionisation (8.2.6)
τ Dimensionless time (8.2.8)
ω Dimensionless frequency (8.2.8)
Z Landau-Zener parameter (8.2.8)
B Backreaction of a resonance (8.2.23)
C Inertia of ε and β w.r.t. resonance backreaction (8.2.23)
D Distance parameter, D = B/C (8.2.32)
Γ Dimensionless decay width of the final state (8.2.33)
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G
Perturbation Theory with

Environments

In Chapter 9, the perturbation of a secondary BH on an environment in the Kerr
geometry was studied. In this appendix, I report on some of the technical details
related to the gauge choice (Section G.1), the scalar fluxes in the Newtonian regime
(Section G.2) and the numerical procedure (Section G.3).

G.1 Lorenz Gauge Metric Perturbations

Diffeomorphism invariance of General Relativity becomes gauge freedom in perturba-
tion theory. Under a change of coordinates xµ → xµ +ϵXµ(x), the linear perturbation
of a tensor T transforms as δT → δT − £XT , where £XT is the Lie derivative of T
on the background; consequently, the linear metric perturbation (9.1.6) transforms as
hµν → hµν − 2∇(µXν).

For many calculations, it is convenient to exploit this gauge freedom by working
in Lorenz gauge, defined by

∇µh̄(n,m)
µν = 0 , (G.1.1)

where h̄µν = hµν − 1
2gµνh is the trace-reversed metric perturbation, and h ≡ hα

α is
the trace (indices (n,m) omitted for clarity). The covariant derivative ∇µ is defined
on the background spacetime gµν . Then the perturbed Einstein equations become a
system of hyperbolic equations,

2h̄(n,m)
µν + 2Rα β

µ ν h̄
(n,m)
αβ = S(n,m)

µν , (G.1.2)

where the source term S
(n,m)
µν depends on metric and field perturbations of lower

orders.

Recent work [740, 741, 840] has developed a prescription for constructing the
Lorenz-gauge metric perturbation on the Kerr background (2.1.5) from scalar vari-
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ables that satisfy decoupled, separable equations; more specifically, sourced Teukolsky
equations of spin-2, spin-1 and spin-0 types [150]. In Chapter 9, we make use the im-
plementation from [740] to compute the metric perturbation of a point-like body on
a circular equatorial orbit around a rotating BH in Lorenz gauge.

G.2 Scalar Fluxes in the Newtonian Regime

As a consistency check of our results in Section 9.4, we compared the relativistic
scalar fluxes with those in the Newtonian regime. In the latter case, the study of
dynamical friction in gravitational atoms in the Newtonian regime has been referred
to as ionisation [66], due to analogy with atomic physics (see [10] for a thorough
comparison between “classic” dynamical friction and ionisation). Below, we briefly
summarise the ionisation process and refer to [66] for details.

In the language of quantum mechanics, ionisation describes the transfer of the
cloud from its bound state |nbℓbmb⟩ (3.3.15), to any unbound state |kℓm⟩, where
k represents the wavenumber. This process is governed by the coupling strength
between these states, defined by the matrix element:

η = ⟨kℓm|V |nbℓbmb⟩ , (G.2.1)

where V is the gravitational perturbation of the secondary, which is expressed as a
multipole expansion of the Newtonian potential (8.1.1).

The ionisation power is then found by summing over all the unbound states. On
circular, equatorial orbits, it is given by

Pion = Mc

µ

∑
ℓm

Ωmg |η(k∗)|2Θ(k2
∗) , (G.2.2)

where k∗ = −µα2/(2n2
b) ± Ωmg and Θ is the Heaviside step function. This quantity

is equivalent to the energy flux to infinity, Pion ≡ Ės,∞, and the quantity shown in
Figure 9.2.
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G.3 Numerical Procedure and Validation

Solving eq. (9.2.7) in Chapter 9 is a nontrivial task. Here, we outline the key steps
involved, along with the consistency checks we performed.

Metric data

To construct the metric perturbation h
(0,1)
µν in Lorenz gauge, we adapt the Mathe-

matica notebook developed in [740, 741, 840] to a modular Mathematica package
suitable for exploring large parameter spaces. The package outputs spin-weighted
spherical harmonic data on a tortoise coordinate grid. The data is then summed over
ℓ–modes up to ℓmax = 18, constructing m–mode data on a two-dimensional (r∗, θ)
grid. This step is essential for generating the source term in eq. (9.1.12), as it cir-
cumvents the problem of infinite mode couplings, which would otherwise require a
solution such as outlined in [841].

To check our results, the two-dimensionalm–mode components of h(0,1)
µν are numer-

ically reprojected onto spin-weighted spherical harmonics in the Schwarzschild limit.
The resulting data is then compared against the first-order Schwarzschild Lorenz-
gauge data used by the Multiscale Self-Force collaboration [116, 842]. We
find agreement at the level of machine precision across all modes and radii, with one
exception: the (ℓ,m) = (1, 0) mode. This discrepancy is well-understood and origi-
nates from different completion choices between the two approaches. The correction
term, given by eqs. (D3a)–(D3b) in [750], resolves this discrepancy, achieving machine
precision for all m–modes. Importantly, the difference in the (ℓ,m) = (1, 0) mode only
affects the m = 1 modes of the perturbed scalar field. As the background field is in a
single-state configuration with (ℓb,mb) = (1, 1), this mode cannot contribute to the
fluxes at infinity.

Background field

The background scalar field ϕ(1,0) is constructed using Leaver’s method [575, 725].
For a given value of the boson mass µ, we construct the radial profile at the threshold
frequency ωc of a pure (ℓb,mb) = (1, 1) harmonic state. We then build the field profile
on the same (r∗, θ) grid as the m–mode h(0,1) data.

Derivatives

To calculate the derivatives of the scalar field, i.e., ∇µ∇νϕ
(1,0), we build a two-

dimensional covariant derivative operator using the method of splines. As a consis-
tency check, we contract this quantity with the background metric and confirm that
gµν
Kerr∇µ∇νϕ

(1,0) = µ2ϕ(1,0) within machine precision.
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In the Schwarzschild case, the absence of a stationary threshold configuration of
the cloud leads to oscillatory behaviour at the horizon, where the field oscillates as
e−iωr∗ . This contrasts the Kerr case, where the field goes to a constant at the horizon
(as ω → ΩH). To ensure the robustness of our Schwarzschild results, we recompute
all quantities using ingoing Eddington-Finkelstein coordinates, which do give regular
derivatives at the horizon. We find that our results remain unchanged.

Source construction

With the m–mode tensors hµν
(0,1) and ∇µ∇νϕ

(1,0) validated, we contract them to form
them–mode source term for eq. (9.1.12). This source term is projected onto spheroidal
harmonics (or spherical harmonics in the Schwarzschild case) using the same projec-
tion routines applied earlier.

Finding solutions

Using the radial source functions, we solve the radial Klein-Gordon equation using a
variation of parameters approach. We first build the “In” and “Up” solution numer-
ically as those which solve the homogeneous Klein-Gordon equation with boundary
conditions given by

lim
r→r+

RIn = e−i(Ωmg +ωc−mΩH)r∗
,

lim
r→∞

RUp = eikmg r∗
r

iµ2
kmg

√
a2 + r2

,

(G.3.1)

where kmg =
√

(Ωmg + ωc)2 − µ2. Taking the spheroidal projection of the source,
S

(1,1)
ℓm , we directly solve for the scalar field perturbations as,

ϕ
(1,1)
ℓm (r) = CIn

ℓm(r)RIn
ℓm(r) + CUp

ℓm(r)RUp
ℓm(r) , (G.3.2)

where

CIn
ℓm(r) =

∫ ∞

r

RUp
ℓmS

(1,1)
ℓm

W0
dr′ ,

CUp
ℓm(r) =

∫ r

r+

RIn
ℓmS

(1,1)
ℓm

W0
dr′ ,

(G.3.3)

and W0 is the constant Wronskian coefficient given by

W0

∆ = RIn
ℓm

dRUp
ℓm

dr −RUp
ℓm

dRIn
ℓm

dr . (G.3.4)

Here, ∆ = r2 − 2Mr+ a2 is the standard Kerr quantity. We explicitly verify that the
behaviour of the solution at both boundaries aligns with the boundary conditions of
the homogeneous In and Up solutions. To cross-check our code, we insert our source
data in a solver from an independent implementation [504], finding consistent results.
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Figure G.1: Contributions from different ℓ–modes of the flux to infinity in Kerr for
α = 0.3, with the secondary on a prograde orbit at rp = 20M . Due to selection rules,
modes with opposite parity are zero, i.e., when ℓ is odd and m is even or vice versa.
Additionally, all m = 0 and m = 1 modes do not contribute to the flux to infinity.
The different sized diamonds show the contribution from the modes that are not zero,
where the higher the m, the larger contribution. For example, for ℓ = 8, we show
m = 8, 6, 4, 2. Fluxes through the horizon follow a similar trend.

The solution of the Klein-Gordon equation gives ϕ(1,1)
ℓm , which we sum over ℓ and

m to reconstruct the field profile, which is shown in Figures 9.1 and 9.4. The asymp-
totes of these extended solutions are then extracted to obtain the input of the flux
formulae (9.4.13), generating the results shown in Figure 9.2. In that figure, we sum
up to ℓ = 6, ensuring that the flux increment remains below 1% across the considered
radial domain. In the Newtonian case instead, the computational cost is much lower,
allowing us to easily sum up to ℓ = 10, which pushes the flux increment below 0.01%.
At larger radii than we are showing in this Chapter 9, more modes might be required
to obtain accurate results, which poses a computational challenge in the relativistic
regime. Therefore, to compute the total flux across a large radial domain, e.g., for
waveform modelling in packages like FEW [744–746], a smooth interpolation between
both approaches might be required.

In Figure G.1, we show the amplitude of the fluxes mode-by-mode. They follow
the expected trend: the main ℓ = m contribution decays exponentially with increasing
ℓ. Interestingly, Figure G.1 also shows that subleading modes with ℓ ̸= m can have a
non-negligible contributions. For example, the (ℓ,m) = (4, 2) mode is larger than the
(ℓ,m) = (8, 8) mode.

We show a similar plot in Figure G.2, where we define ϕ(1,1)
ℓ =

∑ℓ
m=−ℓ ϕ

(1,1)
ℓm and

extract the field at the position of the secondary (the point at which the field is most
irregular). We find that the field perturbation is finite and continuous at the particle
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Figure G.2: We show the contribution from different ℓ–modes of the scalar field
perturbation evaluated on the orbital radius of the secondary (rp = 20M). They fall
off with the expected rate, ℓ−2, indicated by the black dashed line.

with the ℓ–modes of the perturbation constituting a convergent sequence decaying as
ℓ−2.
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