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Abstract

This thesis explores the interface between quantum gravity and black hole physics

within the framework of asymptotic safety. The asymptotic safety scenario posits that

a quantum field theory of gravity may be ultraviolet complete if its renormalization

group flow is attracted to an interacting ultraviolet completion at high energies. Using

functional renormalization group techniques applied to a truncated gravitational

action, we provide a proof of principle of how the landscape of black hole-like

spacetimes can be mapped out from fundamental physics.

We focus on the Einstein-Weyl approximation — the simplest extension of general

relativity, where the Einstein–Hilbert term is complemented by the Weyl-square in-

variant — and we compute the effective action stemming from its corresponding

asymptotically safe ultraviolet completion. We use a first-principle calculation based

on beta functions, which encode the renormalization group flow of the theory, and

determine the unique ultraviolet-complete trajectory connecting this fixed point to

the infrared. Along this trajectory, the Wilson coefficient of the Weyl-squared term is

fixed to GC2 = 0.5092m−2
Pl .

We analyse the implications of the resulting effective field theory for the classically

derived phase diagram of black hole mimickers in Einstein–Weyl gravity. This diagram

maps the different solution families — including Schwarzschild and non-Schwarzschild

black holes, asymmetric wormholes, and naked singularities — as a function of the

object’s gravitational parameters, such as its mass M and the Wilson coefficient GC2 .

Inputting the quantum gravity-determined Wilson coefficient for the Weyl-squared

term constrains the phase diagram and the set of allowed solutions. We find in

particular that asymptotic safety disfavours Bachian naked singularities.

These results provide a concrete example of how quantum gravity can yield constraints

on black hole physics and offer a proof of concept for the strength and predictive

power of the asymptotic safety framework.
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1Introduction

The quest for a consistent and predictive theory of quantum gravity remains one of

the great open challenges in fundamental physics. While General Relativity (GR)

continues to match observations across the solar system and astrophysical scales with

remarkable precision, it is also clear that it must eventually give way to a quantum

description.

This is not just because singularities — such as those inside of black holes or at the

Big Bang — signal a breakdown of the theory, but because gravity is believed to be a

fundamental interaction alongside the strong and electroweak interactions; these are

known to be quantum and are described within the Standard Model (SM) of particle

physics.

From a theoretical perspective, the problem is clear: When treated as a quantum

field theory (QFT), GR is not perturbatively renormalizable. Because the Newton’s

coupling has a negative mass dimension, new divergences appear at each loop order,

requiring an infinite number of counterterms and rendering the theory non-predictive

in the ultraviolet (UV). Over the years, many proposals have aimed to address this

issue, ranging from string theory to loop quantum gravity. This will all be discussed

in Chapter 2. A more conservative approach — and the one we pursue in this thesis

— is known as asymptotically safe quantum gravity (ASQG). Originally proposed by

Weinberg in the 1970s [1], this scenario posits that gravity might be well-defined at

all energy scales and non-perturbatively renormalizable if its renormalization group

(RG) flow approaches a non-Gaussian — i.e. interacting — fixed point (NGFP) at high

energies.

In recent years, evidence for the existence of such a fixed point has steadily accumu-

lated, particularly through the use of the functional renormalization group (FRG) [2, 3,

4]. The FRG offers a powerful non-perturbative tool to study RG flows in theory space,

based on a scale-dependent effective action that evolves according to the Wetterich

equation. The earliest studies focused on the Einstein-Hilbert truncation [5, 6, 7] —

involving only Newton’s constant and the cosmological constant — and later works

have built upon this work by including matter fields and higher curvature terms [8, 9,

10, 11]. These efforts point toward a consistent picture: a finite-dimensional critical
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surface in theory space and the tantalising possibility of a UV-complete quantum

theory of gravity.

But the fixed point itself is only part of the story. If asymptotic safety is to describe the

real world, it must leave an imprint at macroscopic scales — in observables that are,

at least in principle, accessible. Black holes provide a natural testing ground. Their

strong gravitational fields — which are unlike anything we can hope to probe at Earth

— and their thermodynamic properties touch on quantum effects in curved spacetime,

and their internal structure — often hidden behind horizons — remains a mystery.

Classical GR predicts singularities inside black holes, which are — in the truest sense

of the word — unphysical; a quantum theory of gravity should resolve or reinterpret

them.

Independent of the specific approach to quantum gravity, researchers have tried

to incorporate, or at least parametrise, quantum corrections to classical black hole

spacetimes. Some modify the metric by hand, others use semiclassical arguments or

scale-dependent couplings inspired by RG flow. While these methods yield interesting

insights, also in the context of asymptotic safety [12], they often rely on heuristic

choices or specific model-building assumptions [13]. What has been missing is a

more systematic approach — one that derives modified black hole solutions from first

principles and, in particular, from a quantum effective action stemming from a given

UV completion — for instance, an asymptotically safe one. This thesis provides a

proof of principle for such a systematic study.

A key part of this thesis is devoted to building physical intuition for the underpinning

concepts of asymptotic safety — in particular, effective field theory (EFT), theory space,

and RG flow, which we will explore in Chapter 3. Starting from the Ising model and

coarse-graining procedures in statistical physics, we develop the conceptual machinery

that connects microscopic details to large-scale behaviour. This journey not only

clarifies why the framework of effective actions is a fundamental tool in theoretical

physics but also provides the natural language for exploring how gravity might flow

to a fixed point in the UV. These discussions are essential for interpreting the results

that follow — and for appreciating how something as abstract as the structure of

spacetime can be built from a language originally intended to describe something as

seemingly simple as water turning to ice [14].

After these preliminary chapters we will review the framework of ASQG in Chapter 4,

highlighting its key achievements and drawbacks, and introducing the concept of

“asymptotic safety landscape” which will be crucial for the scope of this thesis: con-

structing the “phase diagram” of all possible black hole-like solutions stemming from

asymptotic safety in the so-called Einstein-Weyl truncation. This truncation corrects
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GR by the inclusion of the Weyl-squared term. The solutions to the resulting field

equations span a rich landscape. The classically derived phase diagram of black hole

mimickers — characterised by the asymptotic mass and Yukawa charge — includes

Schwarzschild and non-Schwarzschild black holes, wormholes, and other exotic com-

pact objects [15], as reviewed in Chapter 5. However, the landscape of these solutions

depends on the Wilson coefficient of the Weyl-squared term. The key idea underlying

this thesis and developed in Chapter 6 is that this coupling ought to be fixed by

quantum gravity, and in particular, in ASQG, it can be feasibly computed.

Using beta functions derived elsewhere [8] from the FRG, in Chapter 6 we study the

RG flow in the Einstein-Weyl truncation. Crucially, we show that the requirement

of asymptotic safety selects a single, UV-complete RG trajectory that connects the

NGFP to the infrared (IR). Along this trajectory, the Wilson coefficient of the Weyl-

squared term is uniquely fixed. In other words: if asymptotic safety holds in this

truncation, the effective action no longer contains free parameters — it is uniquely

determined by the fixed point, namely, the UV-completion. After isolating the unique

UV-complete trajectory and following it to the IR, we compute the corresponding

Wilson coefficient. This thus places a constraint on which solutions can be physically

realised in a scenario where gravity is asymptotically safe. Among other things, we

find that Bachian naked singularities are disfavoured in asymptotic safety. These

results are derived in Chapter 6.

While this thesis does not claim to present the final word on quantum black holes, it

offers a proof of principle: a concrete way to connect the microscopic dynamics of

asymptotic safety to the macroscopic structure of spacetime. It will serve as an example

of how quantum gravity phenomenology — normally done via model building and

classical reasoning — can be guided by fundamental physics. Discussion on possible

drawbacks and extensions of our work are reported in Chapter 7 and 8.
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2Towards Quantum Gravity

2.1 Why Quantum Gravity?

The two most successful theories of modern physics — SM and GR — describe the

part of nature they individually govern with extraordinary precision. But they speak

fundamentally different languages: one describes the quantized matter and force-

carrying particles of the SM using QFT on a background of flat spacetime, while the

other treats spacetime itself as a classical, dynamical background where the matter

fields back-react dynamically with the background. The actors form the spacetime —

and the spacetime tells the actors how to act gravitationally. As a holistic argument,

this seems inconsistent — why would the “stage” the quantum “actors” act on, not

itself be quantum?

This divide is more than skin-deep. In any system where quantum matter significantly

affects the curvature of spacetime — such as in the early universe or near black hole

singularities — a hybrid framework of the two descriptions breaks down. A consistent

description of nature must treat both the stage and the actors quantum mechanically.

Semi-classical approaches like Gµν = ⟨Tµν⟩ are useful approximations, but they fail

when quantum fluctuations are large.

And then there are the singularities. GR predicts that spacetime simply ends inside

a black hole. Singularities are — in the truest sense of the word — unphysical, and

signal the failure of a theory at that specific point. Just as quantum mechanics resolved

the UV catastrophe of classical electromagnetism, we would expect a quantum theory

of gravity to resolve — or at least reinterpret — gravitational singularities.

All of this hints at the quantum nature of gravity. However, as we shall see in the fol-

lowing, when treated as a QFT, GR turns out to be perturbatively non-renormalizable.

This means that the theory develops divergences that cannot be reabsorbed in a finite

number of parameters. A quantum theory of gravity thus has to be developed, extend-

ing in some direction the well-established framework of perturbative QFT, which is

utilised to describe the other fundamental interactions of nature.

4



2.2 Perturbative Non-Renormalizability of
General Relativity

GR, as encoded in the Einstein-Hilbert action, faces a glaring problem when treated as

a QFT: it is perturbatively non-renormalizable. This is not just a technical annoyance

— it indicates that GR cannot be the “complete story” at high energies. Let us unpack

what this means, first mathematically, then physically.

The Einstein-Hilbert action is, in standard Lorentzian signature, given by:

SEH =
1

16πGN

∫
d4x

√
−g R , (2.1)

where GN is Newton’s constant, g is the determinant of the metric g = det(gµν) and

R is the Ricci scalar, which importantly contains second-order derivatives of the

metric. To quantize gravity perturbatively, one usually expands the metric around flat

spacetime:

gµν = ηµν + κhµν , with κ =
√
32πGN , (2.2)

where ηµν is the Minkowski metric, and the field fluctuating on the flat background

hµν represents the graviton. This expansion yields an infinite number of interaction

vertices due to the nonlinear structure of the action
√
−gR.

The graviton propagator, derived as the “inverse” of the quadratic part of the action,

behaves like:

∆(p) ∼ 1

p2
, (2.3)

which is similar to the massless photon in Quantum Electrodynamics (QED). However,

the crucial difference lies in the dimension of the coupling constant.

In four dimensions, Newton’s constant has mass dimension:

[GN] = −2 . (2.4)

This implies that the coupling κ has mass dimension [κ] = −1. In QFT, this signals

that the theory becomes strongly coupled at high energies. This is not a problem for

on-shell, tree-level Feynman diagrams. However, loop diagrams introduce integrations

over virtual momenta, which tear things apart. To see the problem, consider a generic

loop diagram. As in standard textbooks on QFT, we can, using power counting of the

2.2 Perturbative Non-Renormalizability of General Relativity 5



mass dimensions, find the superficial degree of divergence D. For a diagram with L

loops, I internal lines, and V vertices, D (in 4 spacetime dimensions) is given by

D ∼ 4L− 2I + 2V , (2.5)

where:

• 4L comes from the loop momentum integrals
∫
d4k,

• −2I accounts for the graviton propagators which go like ∼ 1/k2,

• +2V reflects the fact that each graviton vertex introduces two derivatives, i.e.,

two powers of momentum, due to second-order derivatives of the metric in the

Ricci scalar.

A diagram is (usually) UV divergent if D ≥ 0, and convergent if D < 0 [16]. Using

the topological identity L = I − V + 1, we can easily see that

D = 2L+ 2 , (2.6)

showing explicitly that divergences worsen at higher loops.

In standard perturbative QFT, one can renormalize by introducing counterterms to

counteract these divergences, such that “one infinity swallows another infinity”,

leaving us with something finite. In exchange for finiteness, the price is one more

parameter for each counterterm, and hence, a new observable that must be measured.

As an example, QED is a renormalizable quantum field theory in which the superficial

degree of divergence decreases with loop order. It has only three divergent diagrams,

each of which can be cancelled by introducing a corresponding counterterm. These

correspond to three physical input parameters: the mass and charge of the electron

are the two recognisable ones.1

In contrast, because the gravitational coupling κ has negative mass dimension and

every graviton vertex introduces momentum dependence, an infinite number of

counterterms are required to absorb all UV divergences in GR. This renders the theory

perturbatively non-renormalizable: it loses its predictive power at high energies,

such as near the centre of a black hole, where quantum gravitational effects become

significant.

1Photon field strength normalisation is the third one.
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And although we happily use GR in low-energy physics for planetary motion, gravi-

tational waves, cosmology and time dilation in satellites, as it is an excellent EFT2,

its breakdown in the UV makes it clear: GR is not the end of the story, and its

perturbatively quantized version cannot be a fundamental quantum theory of

gravity.

2.3 Beyond Quantum GR: Approaches to
Quantum Gravity

The non-renormalizability of GR, combined with the slew of other reasons for a

quantum theory of gravity, has compelled physicists to search for a UV-complete

theory of quantum gravity. Several approaches attempt this [4, 17], including:

• String theory, where gravity emerges from quantized strings, and UV diver-

gences are softened by the extended nature of strings.

• Loop quantum gravity, which quantizes the geometry of spacetime using

holonomies and weak constraints.

• ASQG, which retains the QFT framework based on a non-perturbative UV

completion given by an interacting fixed point of the RG flow.

In the following chapters, we will focus on and explore the last of these — asymptotic

safety. The reason is that the latter is the most conservative approach to quantum

gravity, and its formulation, which retains a QFT formalism, makes it feasible to

provide a proof of principle of how quantum black holes may be derived or constrained

by the requirement of UV completion. To explore these concepts and arrive at the

results of this thesis, we shall first introduce the Wilsonian RG and the concept of

asymptotic safety in quantum gravity.

2More on this in the next two chapters.

2.3 Beyond Quantum GR: Approaches to Quantum Gravity 7



3The Wilsonian Picture of
Renormalization

It is a counterintuitive fact that the physics of the large is often far simpler than the

physics of the small. Water freezes at 0◦C, iron becomes magnetised below a critical

temperature, and gases obey simple thermodynamic laws. It seems almost miraculous,

as these are all emergent laws, rising out of the mind-numbing complexity of the

microscopic. A glass of water contains roughly 1024 molecules. Each molecule is made

of atoms, whose electrons move around dense, quantum-fluctuating nuclei made of

protons and neutrons. In turn, these are bound states of quarks and gluons governed

by quantum chromodynamics. Dig even deeper, and you might find vibrating strings

or even more speculative structures beneath.

So, how can we even begin to understand the first thing about water, let alone

describe it with a few simple equations, without first solving all the deep mysteries of

beyond-standard-model physics and quantum gravity? The answer lies in the concept

of renormalization.

Although many textbooks would have you believe otherwise, renormalization is not

just a trick for taming infinities in QFT. It is, more fundamentally, the microscope
of theoretical physics. It provides a framework for understanding how microscopic

complexity gives rise to macroscopic simplicity; it tells us which details matter and

which can be safely ignored as we zoom out.

Statistical physics teaches us that concepts like temperature and pressure are not

properties of individual particles — there is no sense in defining the pressure of a single

atom floating about — they emerge from averaging over ensembles. Renormalization

tells us how those averages behave as we change the scale at which we observe a

system. It also explains why many microscopic systems exhibit the same macroscopic

behaviour near critical points, a phenomenon known as universality.

Fueled by the idea of asking the right questions at the right scale, in this chapter, we

lay the conceptual foundation for what follows. We begin with what seems like a

toy model — the Ising model — to develop the central ideas behind coarse-graining

and scale dependence. From there, we generalise to continuous fields and introduce

the Wilsonian view of renormalization. We will then put these concepts together

8



and use them to introduce the framework of asymptotic safety in quantum gravity in

Chapter 4.

3.1 The Ising Model and Zooming Out via
Coarse-Graining

Let us begin with a classic physics problem: the Ising model. While it does not

immediately bear any relevance for our system, its behaviour will be an intuitive

starting point for discussing the Wilsonian picture of renormalization.

Imagine two particles with spin in a magnetic field. The energy of this simple system

can be described by the Hamiltonian:

H = −B(s1 + s2)− J · s1s2 , (3.1)

where B is some external magnetic field, and J is an interaction constant. Throughout

this thesis, we will use actions, not Hamiltonians, which we use here for demonstration

purposes. However, the role of this Hamiltonian will be identical to the role of the

Lagrangians we will encounter.

We can generalise this system to a macroscopic system:

H = −B

N∑
i

si − J

N∑
⟨ij⟩

sisj , (3.2)

where we have made the simple assumption that particles only interact with their

immediate neighbour, denoted by the notation ⟨ij⟩. In standard statistical mechanics

fashion, we can calculate the probability of being in a specific configuration by using

the Boltzmann distribution

p(s) =
e−βH(s)

Z
, Z =

∑
s

e−βH(s) . (3.3)

Here Z is the partition function and β is the usual inverse temperature times the

inverse Boltzmann constant β = (kBT )
−1. We sum over s = {si}, which is a specific

configuration of the spins.

In principle, we now know all there is to know about our system — H governs

the microscopic description, and “induces” all the large-scale physics in Z. Indeed,

the latter can give us information on all the macroscopic thermodynamic quantities:

pressure, average energy, magnetisation and more.

3.1 The Ising Model and Zooming Out via Coarse-Graining 9
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FIGURE 3.1.
The procedure of coarse-graining. Left panel: a square lattice of spin-up (red) and spin-down
(blue) atoms. Middle panel: lattice sites grouped into l × l blocks. Right panel: each coarse-
grained block represented by a local magnetization m(x) ∈ [−1, 1].

There is a problem, however — it is almost impossible in practice.

Consider computing the average magnetisation of our system:

⟨m⟩ = 1

N
⟨

N∑
i

si⟩ =
1

N

∑
s

p(s)
N∑
i

si =
1

N

∑
s

e−βH(si)

Z

N∑
i

si =
1

Nβ

∂ logZ
∂B

, (3.4)

where m = 1
N

∑N
i si is the magnetisation of a specific configuration of spins s = {si}.

The issue is that the number of possible spin configurations grows exponentially with

N , i.e. 2N . This means that obtaining p or Z for any macroscopic object (say about

∼ 1023 particles) would be a tedious task to put it mildly. To access the large-scale

properties hidden in Z behind the enormous complexity of the microscopic description,

we need some kind of in-between description that connects microscopic interactions

to macroscopic behaviour.

3.1.1 Coarse-Graining

The following derivation is intentionally crude — our goal is to grasp the intuitive

idea of coarse-graining and not get lost in mathematical formalism.

Imagine a 2D square lattice of spins arranged with uniform spacing. We can divide

the system into blocks of side length l, thus encapsulating l × l = n spins in each. For

each block, we define the average/coarse-grained magnetisation:

m(x) =
1

l2

n∑
i

si , (3.5)

where x denotes the centre of the block. An example of this procedure with a 3× 3

block can be seen in Figure 3.1.

Although both m and x are technically discrete (since the system has a finite number

of particles with finite spacing), on macroscopic scales of something like a table made

10 Chapter 3 The Wilsonian Picture of Renormalization



from iron, we can safely treat them as continuous. This means that we have effectively

promoted m(x) to a continuous magnetisation field defined over position x. This leads

us to reformulate the p and Z in a continuous language:

p(s) → peff [m(x)] =
e−βHeff [m(x)]

Z
, Z → Z =

∫
Dme−βHeff [m(x)] . (3.6)

Here, Heff [m(x)] is some effective Hamiltonian that describes the coarse-grained

degrees of freedom,1 the probability p[m(x)] is a functional of the field m(x) and the

partition function Z is now a functional integral or path integral (which justifies the

introduction of the measure Dm).

This is a major conceptual leap. We now deal with far fewer degrees of freedom. For

example, with 3×3 blocks, each coarse-grained spin site has one spin value m ∈ [−1, 1]

instead of 9, in principle making our job of calculating the average magnetisation 29

times easier! A crucial point is that the partition function remains unchanged (hence

the lack of any subscript). We require it to encode the same macroscopic physics —

pressure, magnetisation, etc. — i.e., coarse-graining should not alter what we measure

at large scales; it rewrites the microscopic theory in a more convenient form.

We should stress at this point that we are transforming the description, not the physics.
If coarse-graining changed the value of Z, then observables like pressure or average

energy would also change, which would be unphysical. So no matter how we slice

and dice our theory, the partition function should remain unchanged Z → Z.

Of course, we are not limited to just one round of coarse-graining. The real power of

this procedure emerges when we iterate it: after coarse-graining into l × l blocks, we

can repeat the process by grouping the new blocks (which now function as a single

lattice site) into even larger l× l blocks, defining a new, smoother field at each step. By

repeatedly “zooming out” in this way, we systematically strip away microscopic detail,

flowing toward a description that captures only the long-wavelength, large-scale

behaviour. This is the essence of the RG: understanding how the effective description

of a system evolves as we successively change the scale at which we view it.

3.1.2 Splitting Up the Field

We now build a more robust description of coarse-graining by describing it as a

decomposition of our magnetisation field into low- and high-energy components.

1This Hamiltonian is analogous to a thermodynamic free energy [14].
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FIGURE 3.2.
Splitting the field into smooth background m̄(x) and fluctuations δm(x).

Imagine you are hovering in an aircraft just a couple of meters above the Pacific

Ocean. To pass the time, you focus your attention on the tidal motion of the surface:

massive swells threatening to engulf your ship, gentle mid-scale waves, and tiny

ripples scattered across the surface. As a sensing being — organic or robotic — you

are limited by some resolution, whichever way you want to perceive the world around

you. Just like a camera cannot take a picture with infinite pixels, you cannot see a

speck of dust on the moon or hear somebody whispering in Hawaii;2 nothing has

infinite resolution.

Sure enough, as you turn on your aircraft and ascend, detail is progressively lost.

From 10 meters above, the tiny ripples vanish. At 100 meters, the mid-scale waves

blur. At 1 km, only the deep blue remains. Thus, zooming out makes fine details

disappear. This is exactly what goes on in the RG equations. Just as the ocean’s surface

is a messy superposition of ripples and waves, our magnetisation field m(x) is a blend

of fluctuations across scales. We can formalise this by splitting m(x) into the sum of a

background field and a fluctuation field:

m(x) = m̄(x) + δm(x) , (3.7)

with some momentum scale k determining the split’s cutoff, as illustrated in Figure 3.2.

In the language of the ocean analogy, the background field m̄ contains the long-

wavelength modes (waves) which are still detectable, whereas δm encodes the short-

wavelength fluctuations (ripples) with fine structure undetectable at our current

resolution. Instead of simply stating that we have some “effective” Hamiltonian as

before, let us now formulate a real one.

By demanding locality, continuous translational and rotational invariance,3 analyticity,

and setting the external magnetic field to B = 0 so that the Hamiltonian respects a Z2

symmetry m(x) → −m(x), we can write down the most general local Hamiltonian as

an expansion in even powers of the magnetisation field m(x):

H[m(x)] =

∫
ddx

(
g2m

2(x) + g4m
4(x) + b2(∇m(x))2 + . . .

)
, (3.8)

2Under the assumption that you are neither on the moon nor in Hawaii.
3If we clenched to the discreteness of our system, it would only be invariant under discrete versions of

these symmetry transformations.
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where all odd powers of m(x) must go to zero due to the Z2-symmetry, and the

coefficients {gi, bi} generally depend on external parameters such as temperature,

external magnetic field B and, importantly, a renormalization scale k at which we

coarse-grain. The gradient term encodes spatial stiffness, which penalises sharp

fluctuations in m(x).

This form of the Hamiltonian, known as the Ginzburg–Landau Hamiltonian, is a

classic textbook example which models systems near criticality, such as ferromagnets,

superfluids, and superconductors [14].

We can now coarse-grain more formally by integrating out the high-momentum

fluctuations δm(x). Doing so modifies the Hamiltonian H and the effective couplings

{gi, bi}, which change with the cutoff scale k. More precisely, when m(x) → m̄(x),

then H[m(x)] → H̄[m̄(x)] and {gi, bi} → {ḡi, b̄i}. To track the inner workings of our

system, we focus on how the probability of a given field configuration changes with

scale. Specifically, what is the probability of observing a coarse-grained field m̄(x),

and how does that relate to the original probability distribution over m(x)? We require

the functional form of the distribution to remain unchanged under coarse-graining:

p[m(x)] =
e−H

Z
m→m̄−−−−→ p[m̄(x)] =

e−H̄

Z
, (3.9)

where we have omitted β, as it is not important for our calculations, and as before,

the partition function is kept unchanged under this procedure:

Z =

∫
Dme−βH[m(x)] =

∫
Dm̄ e−βH̄[m̄(x)] . (3.10)

Without delving too far into mathematical rigour, we can phrase it as such: The

probability of ending up in a specific coarse-grained configuration m̄ must be equal to

the total probability of all fine-grained configurations m that average to m̄ when we

coarse-grain. Formally,

p[m̄] ∼
∫
m→m̄

Dme−H[m] =

∫
δm

Dme−H[m̄+δm] = e−H̄[m̄] , (3.11)

where H̄[m̄] is the renormalized Hamiltonian describing the effective theory at scale

k. We can expand the Hamiltonian before and after integrating out δm to illustrate

the structure:

H[m] = H[m̄+ δm]

=

∫
ddx

(
g2(m̄+ δm)2 + g4(m̄+ δm)4 + b2(∇(m̄+ δm))2 + . . .

)
.

(3.12)
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FIGURE 3.3.
Decomposing the field and coarse-graining: small-scale details are averaged out, redefining
both m̄(x) and the couplings.

Doing this calculation, rearranging and matching terms of the same order of m̄(x)

such that H[m] keep the same structure as H̄[m̄], we can redefine terms containing

non-trivial combinations of {gi, bi} and δm to new couplings constants {ḡi, b̄i}. So,

introducing a cutoff scale changes the couplings {gi, bi} → {ḡi, b̄i} where the new

renormalized couplings are functions of (gi, bi, B, T, δm),

H[m+ δm]
integrate out δm−−−−−−−−−→ H̄[m̄] =

∫
ddx
(
ḡ2m̄

2 + ḡ4m̄
4 + b̄2(∇m̄)2

+ O(gi, bi, δm,∇δm, m̄6, . . . ) + . . .
)
.

(3.13)

In essence — as illustrated in Figure 3.3 — changing the cutoff frequency, which

separates “slow” and “fast” modes, is completely analogous to coarse-graining over

an l × l block — rising above the ocean. In all cases, small-scale fluctuations are

smoothed out, and the effective description evolves. As emphasised earlier, there is no

reason to stop at a single round of coarse-graining. The power of the formalism we

have just introduced — splitting the field into low- and high-momentum components

and integrating out the high-momentum modes — is that it naturally allows (almost

begs!) to be iterated. This allows us to smoothly zoom out little by little, peeling

away layers of microscopic detail, until we find ourselves in the macroscopic world,

where rich and often universal physics begins to emerge. We will return to discuss a

truncated toy model such as this in the next section.

3.2 Wilsonian Picture of Renormalization

So far, the Hamiltonians we have encountered have been described from a pragmatic,

“bottom-up” perspective: we write down the most general local action (or Hamiltonian)

allowed by symmetries and truncate by relevance. But this leaves (at least) two

questions unanswered: Why does this expansion structure emerge at all? And how

does the theory know which operators to keep and which to suppress?

These questions are tackled elegantly by the Wilsonian picture of renormalization,

as encoded, for instance, in the Wilson-Polchinski renormalization group equation

(RGE) [18]. The latter treats the scale dependence of the effective action in a

dynamical fashion, by successively integrating out momentum shells — just as we
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have seen in the toy model example when we split up the fields in slow and fast

modes. Using this method, we can define a flow on the space of all possible actions,

which gives a precise mechanism for the decoupling of higher-order terms. This can

also be done in a functional fashion, resulting in an exact RG equation alternative to

the Wilson-Polchinski one, which is called the Wetterich equation [19] and will be

introduced at the end of this Chapter.

3.2.1 Exploring Theory Space: Toy Model

In the last section, we introduced the intuitive notion of coarse-graining via the Ising

model. In this section, we build on that foundation by walking through a concrete,

worked example that brings several abstract ideas to life, which are key ingredients of

the Wilsonian RG. Our goal is to explore how a theory evolves as we progressively

integrate out high-energy degrees of freedom, giving a intuitive understanding of the

core concepts of RG flow, theory space, and fixed points along the way. Fixed points

in particular play a crucial role in relation to renormalization, as we shall see in the

next subsections.

We start by setting k to some high, but finite, arbitrary cutoff k = Λ. In the context of

QFT, a theory is well-defined if all its couplings remain finite in the limit Λ → ∞ — a

point which will become clear shortly — but for the purpose of this section, we will

simply start from a finite k = Λ. From there, we integrate out the high-momentum

fluctuations δm, leading to the transformation:

{H,m, gi, bi} −→ {H̄, m̄, ḡi, b̄i} .

Having set our high-scale cutoff, we now lower it slightly, k → Λ− δ, thereby splitting

the current background field m̄ once again into a new set of slow modes and fast

fluctuations:

m̄(x) = ¯̄m(x) + δm̄(x) . (3.14)

Wash, rinse, repeat — each step smooths out a little more detail, progressively reveal-

ing the long-distance physics. This recursive coarse-graining is the core mechanism

behind what makes the theory flow to different values at different scales — appropri-

ately dubbed the RG flow of the theory. We are gonna explore the intuition behind

this using an arbitrary Hamiltonian truncated to two terms:

H[m] =

∫
ddx

( ∑
n=even

[gnm
n(x) + bn(∇m)n]

)
→
∫

ddx
(
(g2m

2(x) + g4m
4(x)

)
.

Thus, we are focusing on a 2-dimensional subset of theory space. Theory space, simply

put, is the (often infinite-dimensional) coordinate space whose axes are spanned by
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the couplings multiplying every operator consistent with the spacetime dimension,

field content, regulator, and symmetries, such that each point specifies a distinct

QFT. By truncating up to a certain order, we thus consider an n-dimensional sub-

set of theory space, where n is the number of terms left in the Hamiltonian (or

Lagrangian/action).

We choose an initial theory by fixing the value for the two couplings {g2, g4}. This, we

can depict as a point in theory space, like the one in the left panel of Figure 3.4. Now

that we are seasoned in the process of splitting up the field and redefining our system,

we can do it in one fell swoop:

H[m] = H[m̄+ δm] =

∫
ddx

(
g2(m̄+ δm)2 + g4(m̄+ δm)4

)
(3.15)

integrate out δm−−−−−−−−−→ H[m̄] =

∫
ddx

(
ḡ2m̄

2 + ḡ4m̄
4
)
, (3.16)

where we omit the higher-order crossing terms between the different fields to keep

the truncation consistent.4 This process moves our theory to a new position in theory

space {ḡ2, ḡ4} — the couplings runs with cutoff scale k, so to speak. This is depicted

in the middle panel of Figure 3.4. If we keep reiterating the process of coarse-graining

and redefining (i.e., zooming more and more out by letting k → 0), we have two

outcomes:

1. The couplings of our theory keep growing in magnitude and go to infinity.

2. The couplings approach a specific value — we end up at a fixed point.

The second possibility is the one of physical interest, which will be backed up in the

context of fixed points and predictability in Section 3.2.3.

The path the theory took in theory space as we renormalized it is called the trajectory of

the theory. If we imagine testing a slew of different theories with the same truncation

— i.e. same coupling terms {g2, g4} — but with different initial values, and mapping

their trajectories through theory space, a curious picture emerges. A flow diagram,

which shows how the theory flows through theory space as the RG scale k (i.e., the

cutoff frequency) is varied. The RG flow is exactly described by the coupled system of

beta functions, where each arrow represents the vector

β⃗(g2, g4) =

[
β2(g2, g4)

β4(g2, g4)

]
=

[
k∂kg2

k∂kg4

]
. (3.17)

4In reality, this is a much more involved process where we use the requirement of keeping the probability
on the same form like in (3.9) and then expanding in powers of δm.
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FIGURE 3.4.
Left panel: Some initial theory in a two-dimensional theory space. Middle panel: How coarse-
graining moves the theory in theory space. Right panel: Flow diagram of the theory, with the
IR fixed point (red). Arrows point towards k → 0.

As we see in the right panel of Figure 3.4, the flow from all of theory space converges

at one point — the IR fixed point of this particular theory.

Like pouring a bag of marbles down different slopes of a valley — they all end up

at the bottom. Such is the picture — two completely different theories describing

microscopic physics — the UV regime — can end up at the same stable fixed point5

in the macroscopic description — the IR regime — which means they end up at the

same effective Hamiltonian — their macroscopic physics behaves the same. In other

words, since the partition function Z must contain the same information no matter

the scale of the action, we get the exact same macroscopic quantities for two theories

describing different microscopical physical systems, because the RG flow took them to

the same fixed point. This concept is called IR universality.

Let us picture a slightly more involved theory, such as the one illustrated in Figure 3.5.

If we start with an initial microscopic theory in the region −1 ≤ g2 < 0, 0 < g4 < 1,

we find ourselves in familiar territory — the RG flow carries us safely down to the

fixed point on the left. However, stepping over the line g2 = 0, the story changes: we

are no longer in the basin of attraction of the left-hand IR fixed point. Instead, we

roll down into the IR fixed point on the right. The line g2 = 0 acts like a ridge in the

landscape, dividing two distinct valleys — each leading to a different macroscopic

theory — and destines the marble to roll down one or the other.

A much discussed concept in condensed matter physics, this is an example of a first
order phase transition — as we cross some line of critical value, our system undergoes

spontaneous symmetry breaking and ends up in a completely different IR fixed point,

5In the field of dynamical systems and chaos, this is called a sink.
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FIGURE 3.5.
RG flow in a simplified two-coupling theory space, where the arrows point towards k → 0.
The red dots indicate IR fixed points; the blue dot marks a UV fixed point. Trajectories flowing
into the IR fixed points represent distinct low-energy theories. Any trajectory starting at g4 > 1
is outside any IR fixed point basin of attraction, and will thus shoot out to infinity as k → 0.
The same is true for trajectories starting at g2 > 1 once we let k → ∞.

thereby suddenly completely changing its macroscopic properties. This is exactly the

kind of mechanism which describes how water turns to ice [14].

The blue point at the top of the diagram represents a UV fixed point. Unlike the red IR

fixed points at the bottom, where RG trajectories terminate in the IR, i.e. when k → 0,

the UV fixed point governs the behaviour of the theory at short distances or high

energies; it is where we end up if we let k → ∞, i.e. let the marble roll to a hilltop.

Theories that end up at this point as we let k → ∞ are said to be asymptotically safe —

they remain predictive and well-defined all the way up to arbitrarily high energies.

Crucially, only trajectories starting from a small subset of theory space can reach the

UV fixed point — this subset forms the UV critical surface, which will be elaborated

further in Section 3.2.3.

Venturing beyond the border at g4 = 1, letting k → 0 shoots the theory off to infinity;

the RG flow no longer leads to a fixed point. The exact same behaviour is displayed

if our initial theory has g2 > 1 and we let k → ∞ — the trajectory goes to infinity.

Physically, this signals an incomplete or ill-defined description of a system. The RG

flow tells us how our theory behaves at long or short distances; if it diverges off to

infinity when either k → 0 or k → ∞, it suggests that the theory does not settle into a

universal regime — we would need to step back and rethink the UV or IR description.

This discussion is already suggestive of the close relationship between fixed point and

renormalizability, which we will discuss in the next sections.
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3.2.2 Mass Dimension, Fixed Points, and

Renormalizability

To start this discussion, let us consider a generic scalar field theory with an interaction

expansion:

L = −1

2
ϕ(∂µ∂

µ +m2)ϕ−
∑
n

g̃n
n!

ϕn , (3.18)

where the couplings g̃n depend on the RG scale k. This is the most general form of a

scalar Lagrangian, and in general, all interaction couplings are retained. From an EFT

perspective, the expansion follows an ordering principle, such that the first few terms

are the most important — or, relevant — for low-energy physics. The Wilsonian RG

will allow us to understand, among other things, why EFTs work so well.

As discussed earlier, one glaring challenge in reconciling QFT with GR lies in the per-

turbative non-renormalizability of GR, and this issue is fuelled by the mass dimension
of couplings. The possibility of ASQG as a solution relies on the Wilsonian idea of

renormalization that we will introduce in this section.

Up until now, we have kept our treatment general and conceptual — agnostic to the

number of dimensions we work in (i.e. our actions have generally been of the form

S =
∫
ddxL[ϕ(x)]). From now on, in view of the physical applications in the next

chapters, we shall fix d = 4. Since we are working in natural units ℏ = c = 1, we

define all dimensions relative to mass: [m] = 1, which we appropriately call the mass
dimension.

Glancing at our Lagrangian, we see that ∂µ∂µ must have the same mass dimension as

m (since all terms must have the same dimension). From this, we deduce:

[∂µ] = 1 , [xµ] = −1 , [ddx] = −d .

In the path integral formalism, the action must be dimensionless for the exponential

to make mathematical sense, which gives:

[S] = 0 , ⇒ [L] = d = 4 .

Now, the dimension of a coupling g̃n is fixed by ensuring that every term in the

Lagrangian has dimension 4:

g̃n ·mn = m4 ⇒ dg̃n ≡ [g̃n] = 4− n . (3.19)
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This scaling explains why GR (with Newton’s constant GN ∼ m−2) is perturbatively

non-renormalizable — it corresponds to a coupling with negative mass dimension.

As discussed in Section 2.2, this causes the loops to generate divergences that re-

quire an infinite number of counterterms and, hence, an infinite number of physical

observables.

But here comes a trick — we can disentangle the trivial dimensional scaling from the

non-trivial running of the coupling by defining dimensionless couplings:

gn(k) ≡ g̃n(k) k
−dg̃n . (3.20)

This rescaling strips away the dimensionality and isolates the couplings’ behaviour

under RG flow. It allows us to focus directly on how couplings evolve with scale,

without being distracted by their dimension.

We can now rearrange the general beta function using these dimensionless cou-

plings:

βgn = k
dgn
dk

=
dgn

d log k
= (η[gn]− dg̃n) gn(k) , (3.21)

where

η[gn] ≡
d log g̃n
d log k

=
k

g̃n

dg̃n
dk

(3.22)

is the anomalous dimension, capturing how quantum corrections make the system

deviate from classical scaling. This is the n-dimensional version of Equation (3.17).

To derive (3.21), we note:

dgn
d log k

=
d

d log k

(
g̃n(k) · k−dg̃n

)
(3.23)

= k−dg̃n

(
dg̃n

d log k
− dg̃n g̃n

)
(3.24)

= gn (η[gn]− dg̃n) , (3.25)

which gives us the beta function (3.21).

We naturally expect to recover perturbation theory in the regime |gn| ≪ 1, i.e. when

the leading order term dominates, such that we recover the classical scaling be-

haviour:

gn(k) ≈ gn(k0)

(
k

k0

)−dg̃n

. (3.26)

Therefore, we expect the leading order term of η[gn] to be linear in gn, such that

η is negligible when |gn| ≪ 1. Thus, Equation (3.26) is consistent with (3.21). As

discussed in Section 3.1, in QFT, the process of renormalization introduces corrections
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due to integrating out high-energy modes — these are “hidden” in the anomalous

dimension. From this, we see why the name “anomalous dimension” is appropriate —

it quantifies the deviation from classical scaling due to quantum effects. In QFT, this

would show itself as:

⟨ϕ(x)ϕ(y)⟩ ∼ 1

|x− y|d−2+η
, (3.27)

instead of the classical ⟨ϕ(x)ϕ(y)⟩ ∼ |x−y|−(d−2), where d is the spacetime dimension

of the system.

The possibility of departure from classical scaling induced by the anomalous dimension

is not a minor detail, but a significant feature that leads to the development of

Wilsonian renormalization. In the perturbative picture, the fate of a coupling is

dictated entirely by its mass dimension, leaving only three possibilities:

• dg̃n > 0: The coupling decreases with energy, gn(k) → 0 as k → ∞; the coupling

is asymptotically free.

• dg̃n < 0: The coupling diverges at high energies, i.e. gn(k) → ∞ as k → ∞,

signalling perturbative non-renormalizability, as discussed in Section 2.2.

• dg̃n = 0: The coupling is classically scale-invariant (marginal), and thus remains

constant across all energy scales classically.

This classification, however, is an extrapolation from perturbation theory, and is thus

only valid as long as we remain in the perturbative regime |gn| ≪ 1. Beyond this

domain, quantum fluctuations coming from loop diagrams leave their non-trivial

imprint through the anomalous dimension η[gn]. These contributions can shift the

sign of the “effective scaling dimension”
(
η[gn] − dg̃n

)
in the beta function (3.21),

changing not only the rate but crucially the sign of the exponent in a more general

version of Equation (3.26). A coupling that would classically diverge may instead

saturate at a finite value, or a marginal coupling may turn divergent or convergent,

depending on the sign and magnitude of η[gn].

In this way, the anomalous dimension captures the genuinely non-perturbative effects

that allow for non-trivial fixed points. Such fixed points go beyond the case of asymp-
totic freedom and provide the foundation for asymptotic safety: the possibility that a

theory remains predictive and well-defined all the way to arbitrarily high energies.

Without the anomalous dimension, the only outcomes would be trivial scaling or

uncontrollable divergences. With it, new doors open to the non-perturbative regime,

where new fixed points and novel scaling behaviours can emerge. To familiarise
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ourselves with this regime more systematically, we now turn to a more formal analysis

of fixed points and their properties.

3.2.3 Fixed Points, Stability, and Predictivity

We previously introduced the idea of RG flow and fixed points through an intuitive

toy model in Section 3.2.1. Now, we turn to a more formal and quantitative analysis

of fixed points and their role in defining the UV and IR structure of a theory.

In some perturbatively renormalizable theories, the coupling constants flow to zero

at high energy — a property known as asymptotic freedom — with quantum chromo-

dynamics (QCD) being the most well-known example of such a theory. Asymptotic
safety generalises this idea by allowing for an interacting fixed point in the UV, where

theories can flow to a fixed but non-zero value, corresponding to an interacting UV

completion.

One can visualise the RG flow as motion of a marble rolling around in a mountainous

landscape, where the RG scale k plays the role of elevation and the beta functions

define a vector field pointing along the gradient of this potential. Dropping a marble

in this space, the flow will follow the steepest descent, tracing the RG trajectories,

exactly like we saw in the toy model in Section 3.2.1.

The tips and valleys of this correspond to equilibrium positions where the marble will

be at a standstill — this is where the RG flow stops and it is defined by the vanishing

of all beta functions:6

k∂kβn({g∗n}) = 0 , (3.28)

where {gn} = (g1, g2, g3, . . . ) are the set of all couplings as, generically, beta functions

are dependent on all couplings in the system. These special points are fixed points of

the RG flow. We can identify two types of fixed points:

• Gaussian Fixed Points (GFP) where for all couplings {g∗n} = 0. This corresponds

to a free or non-interactive action, i.e. only the kinetic part is non-zero.

• Non-Gaussian Fixed Point (NGFP) where at least one coupling g∗n ̸= 0 at the

fixed point.

6If only a subset of the beta functions vanish, we end up with a fixed hypersurface of dimension dn,
where dn is the number of beta functions that does not vanish.

22 Chapter 3 The Wilsonian Picture of Renormalization



To identify features of our landscape, we will analyse the behaviour of the RG flow in

the immediate vicinity of the fixed points. To do this, we linearise the flow around

them as:

β⃗ ≃ β⃗∗ + Jstab(g⃗ − g⃗∗) → g⃗ = g⃗∗ +
∑
i

cie⃗i

(
k

k0

)−θi

, (3.29)

where the stability matrix is a Jacobian matrix:

(Jstab)nm =
∂βn
∂gm

∣∣∣∣
gi=g∗i

. (3.30)

Here β⃗ and g⃗ are vectors of all beta functions and couplings, θi are the critical

exponents (minus the eigenvalues of the stability matrix), e⃗i are the associated

eigenvectors, and ci and k0 are integration constants.

The eigenvalues of the stability matrix determine the nature of the fixed point:

• If θi > 0, then gi(k) → g∗i as k → ∞. These are UV-attractive or IR-relevant

directions: small perturbations grow in the IR and thus influence long-distance

physics. The blue dot in Figure 3.5 represents an example of a fixed point with

two IR-relevant directions.

• If θi < 0, then gi(k) → g∗i as k → 0. These are UV-repulsive or IR-irrelevant

directions: perturbations die away in the IR and become invisible to low-energy

observers. The red dots in Figure 3.5 represent an example of fixed points with

two IR-irrelevant directions.

We can, on rare occasions, have θi = 0, in which instance e⃗i is called a marginal

direction and then generally requires further analysis. We will, however, not deal with

any marginal directions in the upcoming work. An example of RG flow displaying

both a saddle GFP and an UV-attractive NGFP is displayed in Figure 3.6.

Relevant directions correspond to parameters that must be fixed experimentally. Irrel-

evant directions, by contrast, are fixed by the UV theory itself — their IR values are

predictions rather than inputs to our theory. This division is what makes asymptotically

safe theories predictive despite potentially containing infinitely many couplings: Pro-

vided that the number of relevant directions is finite and small, only a few couplings

need to be externally fixed, while infinitely many others are predicted by the theory.

Let us build a bit of intuition for this point using our newfound language. Theory

space (or the mountainous landscape) is an infinite-dimensional space spanned by all

couplings, in which we, with this analysis, can identify subsets of space spanned by the

relevant eigenvectors e⃗i with θi > 0 of a particular UV fixed point. This subset is called
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FIGURE 3.6.
Depiction of RG flow in 3-dimensional theory space of a theory with a GFP (blue dot) and a
UV-completing NGFP (red dot). Arrows point toward k → ∞. The GFP has two IR-relevant
directions (g2, g3), forming a plane of asymptotically free trajectories (blue lines). The third
direction (g1) is IR-irrelevant for GFP. The NGFP also has attractive directions, giving rise to
asymptotically safe trajectories (red line). The UV-complete trajectory (green line) connects
the two fixed points. The blue region depicts the perturbative region, i.e. where couplings
{gn} ≪ 1. Inspired by [20].

FIGURE 3.7.
The critical surface. IR-relevant/UV-attractive (blue dashed arrows) directions flow on the
critical surface and approach the UV fixed point as k → ∞. These directions are renormalizable.
IR-irrelevant/UV-repulsive directions (grey and red arrows) leave the critical surface as k → ∞,
making them non-renormalizable. Inspired by [14].

the UV critical surface (also called the critical manifold and — more intuitively — the

basin of attraction) and are of particular interest to us, as the set of RG trajectories

that flow into a fixed point as k → ∞ lives in this subspace, and thus it defines the

subset of theory space for which the theory is asymptotically safe at high energies.7

The critical manifold is depicted in Figure 3.7.

7We already familiarised ourselves with an IR basin of attraction in Section 3.2.1.
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In other words — a theory is asymptotically safe if its RG trajectory remains within

the UV critical surface of a fixed point — typically a NGFP — such that the couplings

approach finite values as k → ∞.

The number of relevant directions — i.e., the dimension of the UV critical surface

— determines the number of free parameters in the theory. Thus, if this number is

finite, the theory is said to be predictive: only a finite number of measurements

are needed to determine the finite number of couplings, and thus, the RG trajectory

is fully determined. The remaining infinitely many (irrelevant) directions are then

simply determined by the requirement of UV safety.

In the context of quantum gravity, this is a remarkable possibility. Despite GR being

non-renormalizable in the “traditional” sense of perturbative QFT, the asymptotic

safety scenario suggests that the theory space spanned by the infinitely many couplings

in a generic theory of gravity may contain a non-trivial fixed point with only a finite

number of relevant directions. If such a fixed point exists, gravity becomes UV-

complete and predictive at high energies — not by being perturbatively renormalizable,

but by lying within a well-behaved RG trajectory. We will discuss the asymptotic safety

scenario in detail in Chapter 4.

The Wilsonian viewpoint sets us up for practical computations using non-perturbative

versions of the RG. This will be introduced in Section 3.3.

3.2.4 Wilsonian Picture and Naturalness of EFT

As we have hinted at in this chapter, the central idea behind EFT is deceptively simple:

when studying physics at a particular energy scale E (equivalent to a high momentum

scale), we do not need to know the full microscopic structure of the universe. If we

expect new physics first enters above some much higher energy scale Λ ≫ E, then

its details are largely irrelevant to low-energy phenomena. This formulation of EFT

might seem suspiciously loose. Physics is usually not the kind of science where a mere

expectation that some higher-dimensional operator will scale as the order of 1 over

some arbitrary cutoff is enough reason to justify discarding infinite towers of terms in

a Lagrangian.

The Wilsonian picture of renormalization provides a perspective which makes the

notion of EFTs much more natural. It considers the space of all couplings allowed by

physical principles such as symmetry — see e.g. Equation (3.18) — and asks how a

theory evolves as we change the scale at which it is probed [21, 22, 23]. Through

formal arguments and examples, we have learned that the answer to this question
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lies in the RG flow of the theory. In particular, its UV and IR behaviour are fully

determined by the fixed points of the theory and their stability properties.

Starting from a UV fixed point, which defines a possible bare action for the theory,

the idea of the Wilsonian approach is to integrate out momentum shells step by step,

gradually removing high-energy modes and redefining the action in the process. This

generates a flow in theory space — the space of all couplings — and under this flow,

irrelevant operators are dynamically suppressed, which at the bottom rung of the

scale ladder leaves us with an effective action Γ, in which the leading-order terms

govern the IR dynamics. The leading-order terms of the full effective action match

those that we expect from an EFT perspective.

The resulting rather simple EFT with only a few terms does not come from a hand-

waving argument. It arises because the RG flow erases details that no longer affect

observables: The low-energy effective theory is not just an approximation — it is a

natural outcome of scale-dependent dynamics. EFTs are not assumptions — they are

consequences of the RG.

It is, however, important to make a distinction between EFTs and effective actions. The

former can only describe low-energy physics and cease to be valid beyond a certain

cutoff Λ, denoting the scale of new physics. The latter can be valid at all energy scales,

provided that it admits a UV completion within a QFT framework. Effective actions

are thus more general and reduce to EFTs in the limit of low physical momenta.

More concretely, an EFT organises interactions in a systematic expansion of oper-

ators [16], justified by the way RG works. A generic scalar EFT could be written

as

SEFT[ϕ] =

∫
d4x

[
1

2
ϕ(−∂2 +m2)ϕ+

∞∑
n=3

gn
n!

ϕn

Λn−4

]
, (3.31)

where we have included the renormalizable terms (operators of dimension ≤ 4

in four spacetime dimensions), and higher-dimension operators are suppressed by

powers of the cutoff Λ. The couplings gn define the Wilson coefficients of the theory.

This expansion is analogous to a Taylor series in energy: each higher-dimension

operator contributes corrections of order (E/Λ)n−4, and thus becomes irrelevant at

low energies. In this way, EFT can be seen as a method for “organising ignorance”.

An EFT breaks down beyond the scale of new physics Λ. However, if there is no new

physics, an EFT may stem from a UV completion within a QFT framework, which we

may generally write down as an infinite tower of operators,

Γ[ϕ] =

∫
d4x

∑
n

CnOn(ϕ), (3.32)
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where O is a set of operators to the n-th order in the given expansion scheme, and

Cn are interaction couplings. When varying EFTs, UV-complete effective actions are

valid at all energy scales, encode the momentum dependence of couplings via form

factors, and the corresponding running couplings are not limited to parametrically

small values. As we shall see shortly, the concept of an effective action is crucial for

the formulation of non-perturbative, functional versions of the Wilsonian RG.

In the next section, we are going to formalise the concepts we learned so far, from

coarse-graining to non-perturbative RG flows, beta functions, and fixed points, intro-

ducing the powerful techniques of the FRG, which make use of the concept of effective

actions to describe a theory from the UV to the IR.

3.3 Functional Renormalization Group

Having introduced the Wilsonian picture of renormalization — where coarse-graining

leads to scale-dependent couplings and flow trajectories in theory space — we now

move to a modern framework that implements this logic at the level of the full effective

dynamics: the FRG [3].

Conceptually, the FRG applies the same stepwise integration of momentum modes

used in the Ising model or scalar field theory examples, but instead of tracking a

few running couplings, it follows the flow of the entire effective action as quantum

fluctuations are progressively included. The effective dynamics at each scale reflect

the cumulative effect of integrating out modes above that scale, while lower modes

are still “frozen out”. The result is a scale-dependent action that evolves continuously

from the microscopic theory in the UV to the full quantum effective action in the IR.

Fixed points of this flow correspond to scale-invariant regimes, just as in the Wilsonian

RG, but the FRG allows us to study them beyond perturbation theory, even in strongly

interacting or gravitational settings. It is this ability to capture non-perturbative

behaviour, while remaining grounded in the coarse-graining logic introduced earlier,

that makes the FRG a central tool in modern QFT.

To build this formalism, we will start by introducing the mathematical definition of

the effective action, and then proceed to describe the shell-by-shell integration process

more explicitly. We will work using the Euclidean signature, as is common in RG

computations.
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3.3.1 Legendre Transforms and the Effective Action

To define the effective action more precisely, we use the Legendre transform. We start

from a generic bare (Euclidean) action, defined at the UV cutoff scale Λ (which we

will eventually remove, by sending Λ → ∞):

SΛ[ϕ] =

∫
d4x

(
1

2
ϕ(−∂2 +m2)ϕ+

∑
n

g̃n
n!

ϕn

)
, (3.33)

where the tilde over g̃n indicate dimensionful couplings. Restricting to field configura-

tions with Fourier modes satisfying |p| ≤ Λ, we can define the generating functional:

Z[J ] =

∫ Λ

Dϕ e−SΛ[ϕ]+
∫
Jϕ . (3.34)

The source term J is, for our purposes, merely a practical bookkeeping tool used to

generate correlation functions and does not affect the RG structure directly. This is the

QFT counterpart to the partition function from statistical mechanics — it contains all

information of our theory and crucially generates all correlation functions possible for

our theory — i.e. it generates both connected and non-connected Feynman diagrams.

We then define the generating functional of exclusively connected diagrams:

W [J ] = logZ[J ] , (3.35)

and the vacuum expectation value (or “classical”) field:

ϕc(x) = ⟨0|ϕ(x)|0⟩ = δW [J ]

δJ(x)
. (3.36)

The effective action Γ[ϕc] is then the Legendre transform of W [J ], where ϕc and

J now are conjugate Legendre variables, — just like momentum and velocity for

Hamiltonians and Lagrangians:

Γ[ϕc] =

∫
d4xJ(x)ϕc(x)−W [J ] . (3.37)

This object generates the 1PI (one-particle irreducible) correlation functions and

encodes the full quantum dynamics of the theory — it “hides” all the quantum.

In the FRG framework, one modifies this definition to include a scale-dependent

regulator, leading to an effective average action (EAA) Γk[ϕ] that evolves with the

RG scale k and implements the feature of integrating out fast fluctuating modes

shell-by-shell.
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3.3.2 Shell-by-shell Integration

As we did in the treatment of the Ising model, we now split the field into low- and

high-momentum modes like ϕ(x) = ϕ̄(x) + δϕ(x):

ϕ(x) =

∫
|p|≤Λ

d4p

(2π)4
eip·x ϕ̃(p)

=

∫
|p|≤k

d4p

(2π)4
eip·x ϕ̃(p) +

∫
k<|p|≤Λ

d4p

(2π)4
eip·x ϕ̃(p)

= ϕ̄(x) + δϕ(x) .

(3.38)

The path integral measure correspondingly factorises as

Dϕ = Dϕ̄Dδϕ .

With this decomposition, the generating functional (3.34) becomes:

Z[J ] =

∫
|p|≤Λ

Dϕ e−SΛ[ϕ]+
∫
Jϕ (3.39)

=

∫
|p|≤k

Dϕ̄

∫
k<|p|≤Λ

Dδϕ e−SΛ[ϕ̄+δϕ]+
∫
J(ϕ̄+δϕ) . (3.40)

To proceed, we split the bare action into:

SΛ[ϕ̄+ δϕ] = S0[ϕ̄] + S0[δϕ] + Sint[ϕ̄, δϕ] , (3.41)

where S0 contains the free (quadratic) part of the action, and Sint contains non-trivial

interaction terms, cross-terms between ϕ̄ and δϕ. This decomposition is crucial, as

it isolates the part of the action that allows integration over the high-momentum

fluctuations. Doing this allows us to split Z up into a low and high momentum part:

Z[J ] =

∫
|p|≤k

Dϕ̄e−S0[ϕ̄]

∫
k<|p|≤Λ

Dδϕe−S0[δϕ]−Sint[ϕ̄+δϕ]+
∫
J [ϕ̄+δϕ] . (3.42)

We now focus on the second path integral in this term, which we will call a k-dependent

partition function

Zk[J ] =

∫
k<|p|≤Λ

Dδϕe−S0[δϕ]−Sint[ϕ̄+δϕ]+
∫
J [ϕ̄+δϕ] . (3.43)

As the interactions allow for quantum fluctuations, this is where all the “quantum

stuff” is kept.8

8This is what one needs to renormalize in usual perturbative renormalization.

3.3 Functional Renormalization Group 29



However, performing this integration directly is highly nontrivial. Instead, we follow

Polchinski’s insight [18]: regulate the path integral smoothly rather than sharply

cutting off momenta. This leads to the introduction of a momentum-dependent

regulator Rk(p
2), and we define a scale-dependent deformation of the action:

∆Sk[ϕ] =
1

2

∫
d4p

(2π)4
ϕ(−p)Rk(p

2)ϕ(p) . (3.44)

A good regulator function Rk(p
2) should satisfy:

• IR suppression: Rk(p
2) ≫ p2 for p2 ≪ k2, so low-momentum modes are

effectively frozen.

• UV transparency: Rk(p
2) → 0 for p2 ≫ k2, and when k → 0 . This ensures that

high-energy modes are unaffected, and we obtain the effective action once all

modes are integrated out.

• Microscopic limit condition limk→Λ→∞Rk(p
2) → ∞. This ensures that we

regain the microscopic action in the UV.

An example of a regulator (and the one we will use in our analysis later) would be

Rk = k2e−
p2

k2 . (3.45)

With the regulator in place, the k-dependent generating functional becomes:

Zk[J ] =

∫ Λ

Dϕ e−SΛ[ϕ]−∆Sk[ϕ]+
∫
Jϕ , (3.46)

and using the Legendre transformation as in Section 3.3.1, we arrive at an expression

for the average effective action:

Γk[ϕc] =

∫
d4xJ(x)ϕc(x)−Wk[J ]−∆Sk[ϕc] . (3.47)

If the regulator is implemented correctly, Zk in (3.46) functionally identical to Zk

in (3.43). As e−S[ϕ]−∆Sk[ϕ] = e−S[ϕ]e−∆Sk[ϕ] the regulator suppresses the contribution

from low-momentum modes p2 ≪ k2, so that the path integral effectively only includes

fluctuating modes with p2 ≳ k2. As k → 0, the regulator vanishes, all the modes get

integrated out and Γk[ϕ] → Γ[ϕ], the full quantum effective action. As k → Λ, all

fluctuations are included and Γk[ϕ] → SΛ[ϕ]. This is illustrated in Figure 3.8. This

construction now allows us to track how the effective action evolves as we gradually

integrate out small-scale physics. Remember: we are not just simplifying the theory —

we are tracing a trajectory through a space of possible theories, where the trajectory
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FIGURE 3.8.
FRG illustrated — both the bare action SΛ and the effective action Γ in infinite-dimensional
theory space. FRG drives SΛ → Γ via the average effective action Γk. The arrows point
towards k → 0.

defines the effective action at each scale. In the next section, we introduce the FRG

and the Wetterich equation, which encodes the exact RG flow of Γk[ϕ].

3.3.3 Wetterich Equation

We now derive the FRG flow equation for the EAA Γk[ϕ], first derived in [19], using a

momentum-dependent regulator to suppress IR modes. We will end up with the RG

flow equation in terms of the logarithmic scale derivative,

k∂kΓk[ϕ] ≡ ∂τΓk[ϕ], with τ = log

(
k

Λ

)
.

As this is not essential to the physical intuition of the project, the derivation will not

be as fleshed out as other points in the thesis. We start by using the chain rule and the

Legendre transformed structure of Γk,

k∂kΓk[ϕ] = −k∂kWk[J ]− k∂k∆Sk[ϕ] , (3.48)

and from the definition of Wk[J ] = logZk, we compute:

k∂kWk[J ] = − 1

Zk

∫
Dϕ (k∂k∆Sk[ϕ]) e

−S[ϕ]−∆Sk[ϕ]+
∫
Jϕ (3.49)

= −1

2

∫
ddp

(2π)d
k∂kRk(p

2)⟨ϕ(p)ϕ(−p)⟩J . (3.50)

Now, recalling that Wk is the generator of connected correlators,

⟨ϕ(p)ϕ(−p)⟩J =
δ2Wk[J ]

δJ(p)δJ(−p)
+ ϕ(p)ϕ(−p) . (3.51)
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Legendre transforming and inverting the first term on the right, we get:

δ2Wk[J ]

δJδJ
=
(
Γ
(2)
k [ϕ] +Rk

)−1
. (3.52)

Using this, the two-point function decomposes as

⟨ϕ(p)ϕ(−p)⟩J =
(
Γ
(2)
k [ϕ] +Rk

)−1

p,−p
+ ϕ(p)ϕ(−p) .

Therefore, we get

k∂kWk[J ] = −1

2
Tr
[(

Γ
(2)
k [ϕ] +Rk

)−1
k∂kRk

]
+

1

2

∫
ddp

(2π)d
ϕ(−p)k∂kRk(p

2)ϕ(p) .

(3.53)

Substituting back into (3.48) and noting that the disconnected part from ⟨ϕϕ⟩J cancels

out k∂k∆Sk[ϕ] =
1
2

∫
ϕ(−p)k∂kRk(p

2)ϕ(p), we arrive at:

k∂kΓk[ϕ] =
1

2
Tr

[(
Γ
(2)
k [ϕ] +Rk

)−1
k∂kRk

]
. (3.54)

This equation governs the exact flow of the EAA Γk[ϕ] as the cutoff scale k changes,

and thus, it serves as a starting point for non-perturbative analysis of QFTs using

FRG.

3.3.4 Truncation Schemes

With the machinery available to us in FRG — particularly the Wetterich equation (3.54)

derived in Section 3.3.3 — we in principle have the exact, non-perturbative, functional

integro-differential equation for the EAA Γk, independent of the type of theory consid-

ered. However, as Γk in principle contains information on infinite terms of interaction

couplings, we need some kind of approximation. Depending on the expansion scheme
(with the vertex and derivative expansions being two examples [4]), we will have

to approximate Γk by choosing a truncation order, i.e. cutting off the expansion of

Γk to some order in the chosen expansion. We already saw an example of this in

Section 3.2.1, where we truncated to four orders in the magnetisation field m(x).

Truncations are necessary approximations in order to solve the flow [4].
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3.3.5 Closing Remarks

One of the revolutionary aspects of Wilson’s formulation is that it makes no assump-

tions about the “true” microscopic action. There is no privileged bare action. Instead,

the space of all couplings allowed by symmetry is treated democratically, and the

RG flow tells us how theories evolve across scales. Think of theory space like a

mountainous landscape of possible actions. In the view of the Wilsonian philosophy

of renormalizaton, we do not pick a trail beforehand and hike down — we study how

water flows across the whole terrain as the elevation (the RG scale k) lowers, and,

crucially which mountain top the water emerges from (k going to infinity). The shape

of the land (symmetries, dimensions) determines which paths are smooth, stable,

or inaccessible. Thus, the Wilsonian view provides the sound underlying logic that

explains what renormalization more intuitively does and why EFTs work.
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4Asymptotic Safety in
Quantum Gravity

We now have a full suite of tools to describe how QFTs evolve with scale. Coarse-

graining, integrating out high-energy modes, and following RG trajectories in theory

space have led us to a dynamic view of QFT. As we saw in Chapter 3, renormalization is

more than a computational trick — it is a conceptual paradigm shift that reframes our

understanding of scale and complexity. Having laid the groundwork in the previous

chapters, we are now ready to put it all to work — to climb up and down the UV/IR

ladder and explore asymptotic safety in quantum gravity. This is the theory we will

use in Chapter 6 to make predictions on black holes in Einstein-Weyl gravity, and we

review it in the following.

4.1 Gravitational Effective Field Theories

Despite its UV troubles, we know that GR works beautifully as an EFT. We can see this

by writing this simplified general expansion:

Γgravity =

∫
d4x

√
−g

[
m2

Pl
2

R+ c1R2 +
c2
m2

Pl
R3 +

c3
m4

Pl
R4 + · · ·

]
. (4.1)

where the first term represents the Einstein-Hilbert action known from GR, and

{R2,R3,R4, ...} represent general 2nd, 3rd, 4th (and so forth) order terms. Higher-

order curvature terms are suppressed by powers of the Planck mass mPl ∼ G
−1/2
N .

These corrections first become relevant when E ∼ mPl, which is far above any

gravitational interaction we would encounter on Earth.1

Thus, we can safely use GR in low-energy physics such as cosmology, motion of

astronomical objects and gravitational waves — because it is the leading term in an

expansion.

The physical reason EFTs work so well is that quantum fluctuations at high momenta

(short distances) decouple from low-energy observables — they smooth out as the

magnetisation field in the Ising model. When we compute loop diagrams, the contribu-

1The Ricci scalar is on the order of R ∼ 10−33m2
Pl on Earth.
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tions from virtual particles with momenta much greater than E manifest as corrections

of higher-derivative terms suppressed by powers of 1/mPl.

Thus, this is not just a calculational trick which makes our lives easier when calculating

low-energy physics; rather, it reflects a physical structure. This insight is what justifies

the use of EFTs, as discussed in Section 3.2.4.

Yet, GR ceases to work at high energies and needs to be replaced by a UV-complete

theory of quantum gravity. Vice versa, starting from a given quantum gravity UV-

completion, we can “flow down to IR” and see which specific EFTs are allowed, or, in

other words, what are the bounds imposed on the Wilson coefficients by quantum

gravity. In the following, we are going to focus on one such UV-completing proposal:

ASQG.

4.2 Asymptotic Safety as a Fundamental
Theory

Asymptotic safety promises a UV completion of gravity. It suggests that a gravitational

theory can be UV-complete — not because it is perturbatively renormalizable, but

because it flows to a non-trivial fixed point under the RG: it is non-perturbatively

renormalizable.

There are two philosophical routes one can take when probing high-energy physics:

• A top-down approach, where one starts with a UV-complete theory (e.g., string

theory) and flows downward to recover familiar low-energy physics. This is in

principle “the ideal one” — it is long and tedious, but would (if successfully

done) lead to physical predictions from first principles.2

• A bottom-up approach, where we build EFTs valid at low energies and test

them. This is more of an “engineering approach”. The found theories work in

the regimes we would like them to, but do not promise anything about being

fundamental.

Asymptotic safety — first proposed by Weinberg [1] — is a top-down approach built

within the QFT framework, which naturally leads to EFT at low energies. It is based

on the Wilsonian picture we discussed in the previous chapter: We need not assume
2From first principles: from fundamental theoretical assumptions, without relying on empirical models,

phenomenological input, or approximations valid only in specific regimes.
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anything about the UV or bare action — the RG flow encodes the information on

which UV completions are possible. At the same time, it also has elements of the

bottom-up approach, since its field content and spacetime dimensionality are taken to

be as those we observe. In the following, we shall review the key achievements of the

asymptotic safety program.

4.3 Evidence for the “Reuter Fixed Point”

The asymptotic safety scenario for quantum gravity is based on the possibility of

defining gravity as a QFT, based on an interacting fixed point of the RG flow. The

existence of such a UV completion for gravity — named the Reuter fixed point — can

be systematically tested using the FRG, as outlined in the previous chapter. The idea

is to start from a simple truncation and increase the truncation order step-by-step to

test the stability of the results.

The simplest of such truncations is one where we essentially “stop at GR” and only

include the Einstein-Hilbert term and the cosmological constant Λ:

Γk ≃ 1

16πGN(k)

∫
d4x

√
g [2Λ(k)−R] , (4.2)

which means we have two couplings which run with the RG scale k. A milestone in

the development of the asymptotic safety program was the discovery of the Reuter

fixed point in the Einstein-Hilbert truncation [5]. This NGFP was obtained through

the FRG analysis of the dimensionless counterparts of the couplings in (4.2) and is

located at

g∗ ≈ 0.541 , (4.3)

λ∗ ≈ 0.064 . (4.4)

Linearisation around the fixed point reveals a pair of complex critical exponents,

θ1,2 ≈ 2.667± 0.958i , (4.5)

with a positive real part. This implies that the fixed point is UV-attractive and can

serve as a UV completion of gravity. The existence of such a fixed point ensures that

the gravitational RG flow remains finite and well-defined at all energy scales, thereby

realising Weinberg’s vision of a QFT of gravity based on asymptotic safety.

Expanding the truncation scheme, i.e. including more terms in the EAA Γk, has been

of natural interest since the discovery of the Reuter fixed point. A lot of legwork
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has been put into FRG analysis of more and more sophisticated truncations over the

last 25 years [24, 25, 8, 26], with numerous studies indicating the existence of a

non-trivial gravitational fixed point with 2 or 3 relevant directions [4]. Thus, this

fixed point would give 1 or 2 free parameters, i.e. 1 or 2 observables needed to be

measured for the theory to make physical predictions. More on this will be discussed

in Section 4.6.1.

4.4 Connections to Standard Model

With the framework of ASQG, gravity is treated as a QFT, and therefore, testing its

connections and compatibility with the SM is within reach. Intriguingly, coupling the

SM to ASQG may modify the running of SM couplings near the Planck scale. This

interplay opens several key avenues (see [9] for a review). For instance, gravity tends

to screen gauge couplings in the UV, potentially leading to UV fixed points even for

non-asymptotically free sectors (e.g., U(1)Y ). Secondly, the top Yukawa and the Higgs

quartic couplings may be driven to fixed points by gravity, suggesting a resolution

to the triviality and hierarchy problems. Thirdly, gravitational corrections to the RG

flow can render previously free parameters calculable. For instance, the top and Higgs

masses have been argued to emerge as a prediction [10, 27]. Finally, quantum gravity

may induce a combined asymptotically safe UV completion for the SM [11].

4.5 Open Questions — Causality, Unitarity,
and Existence in Lorentzian Signature

The vast majority of work done in ASQG has been in the Euclidean signature. Simply

put, calculations done in the Lorentzian signature contain an imaginary unit, i, in the

exponent of the path integral, rendering it oscillatory and calculations more difficult.

The underlying assumption is that physical results can be recovered by Wick rotating

back to Lorentzian signature at the end of the calculation, thereby saving the existence

of a fixed point found in Euclidean signature [4]. Some of the work in this direction

currently points to the fact that even in a Lorentzian signature, the Reuter fixed point

exists and has similar properties as in the Euclidean [28].

The mere existence of a gravitational fixed point (both in Lorentzian and Euclidean

signature) does not ensure ASQG to be unitary and causal. Although truncated

EAAs used in practical computations sometimes show ghost poles, these are generally

considered to be truncation artifacts [29]. Their residues decrease with higher-order
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truncations, and they are expected to vanish in the full theory [29]. Moreover,

recent literature suggests the absence of ghost modes in ASQG, once the momentum

dependence of the propagator is resolved [28, 30]. Yet, more work is necessary to

test unitarity and causality in asymptotic safety. In particular, as we shall discuss later,

positivity bounds need to be checked.

4.6 Climbing Down the Ladder —
Landscapes in Quantum Gravity

The existence of the fixed point is a cornerstone in ASQG, but what does this mean for

the physics far below the UV regime? This is a natural question to ask, and the answer

is almost “built in” to the machinery of asymptotic safety, where we let k → 0 and end

up with an effective action. Even more picturesque, we end up in the asymptotic safety
landscape.

The terminology of “landscape” and “swampland” originally emerged in the context of

string theory [31], where the vast number of low-energy EFTs seemingly compatible

with quantum gravity are separated into those that can be consistently UV-completed

(“landscape”) and those that cannot (“swampland”). In recent years, this language has

been adopted in the context of ASQG [20, 32, 33] to describe the space of effective

actions generated by RG flows from a UV fixed point, as depicted in Figure 4.1.

The idea is conceptually similar: only certain combinations of Wilson coefficients

correspond to consistent, UV-complete theories. This motivates introducing the notion

of an “asymptotic safety landscape”, which we now describe.

4.6.1 Landscapes in Asymptotic Safety

As discussed in Section 4.1, the effective action encodes an infinite tower of curvature

terms, each accompanied by a Wilson coefficient. Within a given UV completion, some

Wilson coefficients will be fixed by the underlying theory. For instance, in ASQG, the

Wilson coefficients are determined via the RG flow emerging from the NGFP in the

UV. The space of all effective actions that are reachable via asymptotically safe RG

flows defines the asymptotic safety landscape. Each point in this landscape corresponds

to an EFT. In practical calculations, each EFT in the landscape is associated with the

k → 0 limit of an FRG trajectory starting from the fixed point, with the corresponding

Wilson coefficients given by the IR values of the running couplings Gi(k) [20, 32].
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Bounds

Positivity Bounds
Asymptotic Safety
Landscape

NGFP

E

FIGURE 4.1.
Sketch of the idea behind the concept of asymptotic safety landscape. The asymptotic
safety landscape (red set) emerges from UV-complete trajectories ending up at the NGFP,
thus mapping out the viable EFTs of ASQG. Bounds such as positivity bounds (blue set) or
observational bounds (green set) may further constrain the landscape of physically viable
EFTs.

If a fixed point has N relevant directions, it gives rise to an (N − 1)-dimensional

sub-landscape from that fixed point — the dimension is reduced by one because

the RG scale can always be absorbed by fixing a unit of mass (e.g., GN, as we will

do in Chapter 6). The total asymptotic safety landscape is then the union of these

sub-landscapes across all viable UV fixed points. This also indicates the landscape

emerging from the gravitational fixed point discussed in Section 4.3 would have 1 or

2 free parameters, therefore needing 1 or 2 observables to be measured for the theory

to be completely determined.

In this thesis, we will see a concrete realisation of this idea. As we shall see in

Chapter 6, the NGFP of Einstein-Weyl gravity has 1 relevant direction, and is therefore

a 0-parameter theory. The Wilson coefficient of the Weyl-squared term, GC2 , thus

becomes a derived quantity once asymptotic safety is imposed.

These concepts connect to our discussion in Section 3.2.3 and Section 4.1. Just as

higher-order operators in gravity are suppressed by powers of the cutoff scale, the

EFTs within the asymptotic safety landscape inherit constraints from their UV origin.

Only those combinations of Wilson coefficients that come from an asymptotically safe
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RG trajectory (or from another UV completion of gravity) are physically allowed —

all others lie in the swampland of inconsistent EFTs [31].

4.6.2 Intersection with Positivity Bounds and

Additional Consistency Constraints

Beyond the requirement of UV completion, not every EFT in the landscape is auto-

matically physically viable and additional consistency constraints must be checked.

One prominent example is positivity bounds, which originate from the fundamental

principles of unitarity, locality, analyticity and Lorentz invariance [34, 35]. These

bounds constrain the signs and magnitudes of Wilson coefficients in the effective

action and can rule out large classes of EFTs that otherwise appear consistent.

Other criteria, such as causality, analyticity of correlation functions and compatibility

with black hole thermodynamics [36], can also impose nontrivial restrictions on the

effective action. These bounds further constrain the asymptotic safety landscape

(and perhaps other quantum gravity landscapes) on top of the positivity bounds [32].

Finally, observational bounds may also constrain quantum gravity landscapes. These

ideas are illustrated in Fig. 4.1.

4.6.3 From Landscapes to Quantum Spacetime

The power of the asymptotic safety landscape program [20, 32] lies not only in the

possibility of identifying consistent EFTs, but also in providing a direct bridge between

fundamental microphysics and the macroscopic structure of quantum spacetime. By

computing the RG flow from first-principle calculations, one can find which quantum-

corrected spacetimes are physically realisable within a UV-complete theory of gravity.

A central goal of this thesis is to demonstrate the power of this idea by illustrating

how the requirement of UV completion can constrain, and in some cases — like the

results of this thesis — uniquely determine, the form of gravitational solutions in the

IR.
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5Classical Einstein-Weyl
Gravity Phase diagram

In this chapter, we will discuss higher-derivative corrections to Einstein gravity and

how they impact black hole physics. Specifically, we shall review the classical “phase

diagram” of Einstein-Weyl gravity [15], which maps out the set of possible static,

spherically symmetric black hole solutions which arise when quadratic corrections are

added to the Einstein-Hilbert truncation. Importantly, this analysis is purely classical

and does not treat the action as a QFT; we are temporarily setting aside quantum

effects to understand the space of classical solutions beyond GR. This knowledge will

then be used in combination with the asymptotic safety analysis in the next chapter to

determine which black hole-like solutions can stem from an asymptotically safe UV

completion in the Einstein-Weyl approximation.

5.1 Interlude: Quadratic Gravity

Before diving into the specific solutions of Einstein-Weyl gravity and the resulting

phase diagram, it is worth taking a step back to motivate our setup. As discussed

in Section 2.2, the Einstein-Hilbert action on its own is famously perturbatively

non-renormalizable when treated as a QFT, due to the need for infinitely many

counterterms, making the theory unpredictive in the UV. One natural way to try to fix

this is by expanding the action to include higher-order terms; indeed, historically, this

was one of the first attempts to consistently quantize gravity, going beyond quantum

GR [37]. The first such corrections are the second-order curvature terms, leading to a

theory known as quadratic gravity. The general action reads:

S =

∫
d4x

√
−g

[
1

16πGN
R+ αR2 + βRµνR

µν

]
, (5.1)

where we have ignored the topological Gauss–Bonnet term, which does not contribute

to the equations of motion in four dimensions. This action can be rewritten in terms

of the Weyl tensor as:

S =

∫
d4x

√
−g

[
1

16πGN
R+

1

2λ
C2 − ω

3λ
R2

]
, (5.2)
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with the square of the Weyl tensor C2 = CµνρσC
µνρσ capturing the traceless part of

the Riemann tensor. This action represents the most general, local, diffeomorphism-

invariant modification to GR up to second order in derivatives.

In 1977, Stelle showed that this theory is not just better-behaved than GR — it is

perturbatively renormalizable [37]. The reason is simple: the higher-derivative terms

improve the UV behaviour of the propagator, which was the driving force behind the

superficial degree of divergence being D > 0. Instead of falling off like 1/p2, it now

falls off like 1/p4, which tames the divergences that plague quantum GR. With this,

quadratic gravity became the first known QFT of gravity that satisfies power-counting

renormalizability. However, this gain of perturbative renormalizability comes at a
serious cost.

When linearised around flat space, the theory propagates with more degrees of

freedom than GR. In addition to the usual massless graviton of Einstein-Hilbert gravity,

the spectrum includes:

• A massive spin-0 scalar (coming from the R2 term),

• A massive spin-2 mode (from the R2
µν or Weyl-squared term).

The scalar mode is not necessarily problematic. The issue lies with the massive spin-2

field. Its kinetic term carries the wrong sign, making it a ghost — a particle with

negative norm. This induces a violation of unitarity and leads to instabilities, as the

vacuum could decay into ghost–normal particle pairs, and the vacuum energy is not

bounded from below anymore.

Summarising, on one hand, quadratic gravity is a rare example of a quantum gravity

theory that is well-behaved in the UV. On the other hand, it is haunted by a funda-

mental problem — lack of unitarity — which makes the theory physically unviable.

Despite this, the quadratic extension of GR is the only one so far where it was possible

to map out the set of possible black hole-like solutions at a classical level. From a

fundamental physics perspective, such a quadratic extension may be regarded as a

truncation of the full effective action stemming from a unitary and UV-complete

theory — which would remove the ghost from the spectrum, e.g., via a non-trivial

momentum dependence of the propagator [29]. This is, for instance, the case in

ASQG [28, 30], and this is the philosophy we are using in our work.
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5.2 Vacuum Solutions and the Gravitational
Phase Space

In the following, we review the results of [15], which constructed the classical phase

diagram of static, spherically symmetric vacuum solutions in Einstein–Weyl gravity.

We work within the quadratic truncation, using the philosophy underlined in the

previous section and setting the R2 and cosmological constant terms to zero. This

reduces the action to:

Γ =
1

16πGN

∫
d4x

√
−g

(
R− 1

2
GC2 CµνρσCµνρσ

)
, (5.3)

where Cµνρσ is the Weyl tensor. Note that we are using the notation Γ instead of S

because in the next chapter we shall interpret it as a truncation of the full effective

action; yet, in [15] the action above is used as a classical action. Varying this action

with respect to the inverse metric as

δΓ

δgµν

yields the equations of motion, which we now set out to analyse following the

procedure of [15].

5.2.1 Long Distance Solutions

Just like if we were to derive the Schwarzschild solution of the Einstein-Hilbert action

(i.e. the Weyl-squared term turned off), we consider vacuum solutions of Einstein-Weyl

gravity with a static, spherically symmetric geometry described by the metric:

ds2 = −h(r)dt2 +
dr2

f(r)
+ r2dΩ2 , (5.4)

where the functions h(r) and f(r) are determined by solving the equations of motion

arising from the Einstein-Weyl action. As we look for asymptotically flat solutions at

large distances, we express the metric far away from a black hole solution using the

weak field limit:

h(r) = 1 + ϵV (r), f(r) = 1 + ϵW (r) , (5.5)
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which leads to the solutions at large distances:

h(r) ∼ 1− 2GNM

r
+ 2S−

2

e−m2r

r
,

f(r) ∼ 1− 2GNM

r
+ S−

2

e−m2r

r
(1 +m2r) ,

(5.6)

where M is the ADM mass, m2 = 1/
√
GC2 is the mass of the spin-2 mode introduced

by the Weyl-squared term, and S−2 is an integration constant — the so-called Yukawa

charge. In this solution, 2 terms were omitted. One term is ∼ S+
2 e

m2r, and goes

away due to the assumption of asymptotic flatness, while the other one gets absorbed

into the definition of the ADM mass [38, 39]. Note that GC2 is now referred to as

some mass, rather than a coupling/Wilson coefficient. It may seem obvious — if we

are abandoning the notions of QFT, it seems natural not to denote it as a coupling.

However, something deeper is going on. A glaring weakness of quadratic gravity

is the massive “ghost” particles the quadratic terms bring with them. We are not

immediately worried, as quadratic gravity in the eyes of an effective field theorist or

an asymptotic safety practitioner is merely a truncation of higher-order gravity. Thus,

the ghost particles are expected to be artefacts of this specific truncation scheme and

will cease to exist in a full expansion of gravity, where the Wilson coefficient still will

be retained [4, 29].

The gravitational field is thus characterized by M and S−2, once GN and m2 are fixed.

These parameters define a two-dimensional phase space, in which different classes

of solutions occupy distinct regions. This yields the phase diagram of Einstein-Weyl

gravity. But for now, m2 is still a free parameter.

5.2.2 Close-Up Solutions and Frobenius Analysis

To formulate finite radius solutions, one can expand the metric functions near finite or

vanishing radius using a generalised Frobenius method [38, 15] — the generalisation

of a Taylor expansion for non-regular expressions (which black hole solutions famously

are):

h(r) = (r − r0)
t

[
N∑

n=0

ht+ n
∆
(r − r0)

n
∆ +O

(
(r − r0)

N+1
∆

)]
,

f(r) = (r − r0)
s

[
N∑

n=0

fs+ n
∆
(r − r0)

n
∆ +O

(
(r − r0)

N+1
∆

)]
.

(5.7)

Solutions are classified by their exponents (s, t)∆r0 , and a complete catalogue is avail-

able in Table I in [15]. For instance:

• (1, 1)1rH corresponds to black holes,
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• (−1,−1)10 to repulsive naked singularities,

• (−2, 2)10 to attractive naked singularities,

• (1, 0)2rT to non-symmetric wormholes.

A version of this was first done in 2015 [38]. The Frobenius expansion near r = 0

(centre) or r = rH , rT (horizon/throat radius) of a black hole-like solution provides

not only the classification of the different families, but also a starting point for

numerical integration.

5.2.3 The Shooting Method

To bridge the large-distance expansion (5.6) with the Frobenius-based close-up ex-

pansion, a numerical shooting method has been employed in the literature [40, 41,

42, 38, 39, 15]. Starting from the weak-field expansion at large r, and using the

Frobenius series as an inner boundary condition near r = 0 or the throat/horizon

radius r0, a boundary value problem emerges. The shooting method uses numerical

integration to stitch together the ends of the solutions, thereby mapping the landscape

of input parameters of the large-distance solutions of the metric (M and S−2) to

the corresponding families of black hole-like solutions, i.e. black hole mimickers.

Further details on this are found in [15].

5.3 Structure of the Phase Diagram

The space of solutions can be organised into the discussed distinct families [15], each

corresponding to a qualitatively different gravitational structure:

• Black holes: Given by the (1, 1)1rH expansion. These include both Schwarzschild

and non-Schwarzschild black holes and form a one-dimensional manifold in the

phase space. Turning off the Weyl-squared term GC2 = m−2
2 → 0 turns off the

Yukawa term S−
2 e

−m2r → 0, which takes us to the Schwarzschild solutions and

lands us on the dashed line of the phase diagram.

• Type I (Naked Singularities): Characterized by divergent h(r) near r = 0, these

solutions are approximated by the (−1,−1)10 Frobenius family. They dominate

large parts of the phase diagram and have curvature invariants which scale

as RµνR
µν and RµνρσR

µνρσ diverging as ∼ r−6. This is also the solution of

negative-mass black holes in classic GR, which can intuitively be seen by “going
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left” from the Schwarzschild black hole solutions (dashed line) into the negative

ADM mass regime in the phase diagram, where we land in the Type I region.

It attracts (∂rh(r) < 0) in the regime r > 2M like a standard black hole, but

the divergent nature near r = 0 shifts the sign (∂rh(r) > 0) such that it acts

repulsively when r < 2M .

• Type II (Bachian Singularities): These vanish at the origin and belong to the

(−2, 2)10 family. They feature strong attractive potentials and curvature invariants

diverging like r−8. Like the Type I solution, they are horizonless solutions with

singularities, with the added feature that the Bach tensor diverges as we tend to

r → 0, and are therefore only meaningful objects in quadratic gravity.1

• Geometric asymmetry of Type III wormholes: By far the most exotic of the

black hole mimickers, these solutions belong to the (1, 0)2rT Frobenius family

and resemble wormholes, which are connecting two regions of spacetime. Like

normal wormholes, the throat is defined by f(rT ) = 0, but 0 < |h(rT )| < ∞, im-

plying the absence of a horizon and the possibility of traversing it and appearing

on the other side. However, unlike standard wormholes, they are not symmetric

across the throat. One side of the geometry is asymptotically flat, while the

other asymptotes to a rapidly decaying (and going to a singular) geometry. In

standard traversable wormholes, the geometry is symmetric across the throat:

Both sides are asymptotically flat as the metric functions smoothly approach

Minkowski space as r → ±∞ [44]. By contrast, Type III wormhole solutions in

Einstein-Weyl gravity are asymmetric: One side of the throat is asymptotically

flat for r ≫ rT , mimicking Schwarzschild or Minkowski behaviour, while the

other side does not approach flat space. Instead the metric functions decay

exponentially as r → ∞:

h(r) ∼ e−r ,
1

f(r)
∼ e−r

and “funnels” the geometry into a compressed region of spacetime, which leads

to a singularity. The lack of symmetry implies a directional nature: signals

and geodesics can pass through from one side but experience drastically dif-

ferent conditions depending on which side they enter. This asymmetry means

the wormhole connects one familiar, extended universe to a highly curved or

even singular region, unlike symmetric wormholes, which connect two mirror

asymptotic regions.

1The Bach tensor is a traceless fourth order tensor:Bµν ≡
(
∇α∇β + 1

2
Rαβ

)
Cµανβ . In conformal

gravity, the Bach tensor plays the role the Einstein tensor does in GR [43].
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FIGURE 5.1.
Classical phase diagram of Einstin-Weyl gravity, where m2 is a free parameter, as seen in [15].
The families of solutions are mapped as a function of the ADM mass M and Yukawa charge
S−
2 . Type I: Naked Singularities. Type II: Bachian naked singularities. Type III: asymmetric

Wormholes. Red and Blue lines: Non-Schwarzschild black holes. Dashed line: Schwarzschild
black holes. Flat Minkowski space is at the origin.

Figure 5.1 [15] shows these families mapped according to the parameters (M,S−2),

with “real” black hole solution2 lines and triple points marking transitions between

families, analogous to phase diagrams/flow diagrams in condensed matter physics.

The Minkowski vacuum sits at the origin, while the massive triple point occurs at

M ≈ 0.623, S−
2 ≈ 0.102, indicating a secondary non-Minkowski vacuum.

The phase diagram also suggests that most generic vacuum configurations (M = 0)

correspond to naked singularities or wormholes as the S−
2 -axis spans these solution

families almost exclusively. It is important to stress that this is not a “real” phase

diagram where, for instance, triple points indicate a scale-independent theory with

second-order transition and critical behaviour — it is merely a great (and fitting for

this thesis) analogy.

In the next chapter, we will, after painstakingly deriving the Weyl-squared Wilson

coefficient — which determines m2 — feed this quantum gravity determined value

into this diagram, identifying how asymptotic safety constrains the set of possible

black hole-like solutions in the Einstein-Weyl approximation.

2“Real” as in having a horizon.
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6Black hole Mimickers from
Asymptotically Safe
Einstein-Weyl Gravity

After traversing the ideas behind ASQG, we now apply them to a concrete setting —

the Einstein-Weyl truncation — with the ultimate goal of providing a proof of principle

for the construction of the landscape of quantum black holes stemming from a given

UV completion of gravity.

6.1 Idea: Black Holes from Quantum
Gravity

As we have seen, the simple addition of the Weyl-squared term massively enriches

the space of black hole solutions with much more exotic objects. This is true in

general: higher-derivative corrections add on more solutions to the field equations; the

Einstein-Weyl approximation is the simplest correction to GR and the only one where

the classical phase diagram of solutions has been completely traced out [15]. Contrary

to what the 2-dimensional depiction of the phase diagram might communicate at first

glance, it needs 3 input parameters to identify the allowed gravitational object — M ,

S−
2 and m2, the latter “pointing out of the page” in Figure 5.1, and essentially setting

the scale of the diagram. This thesis is based on the cornerstone idea that quantum

gravity, and in particular ASQG, is expected to predict some of the Wilson coefficients

in the low-energy EFT. Since m2 = 1/
√
GC2

1, we can now use the machinery of the

RG to compute the asymptotic safety landscape to fix the value of GC2 , and hence

m2. Indeed, as we shall see, the Einstein–Weyl truncation admits an asymptotically

safe UV completion, and the corresponding landscape is a 0-parameter theory. What

was previously treated as a free parameter is thus determined from first principles,

allowing us to identify the correct slice of phase space selected by asymptotic safety and

constrain the space of possible solutions compatible with a UV-complete gravitational

theory.

1This is defined as m2
2 = γ

2α
in the original paper [15].
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6.2 Fixed Points of Einstein-Weyl Gravity

The analysis in this section is based on the β-functions derived in [8]. We will use

these beta functions to derive the flow in the Einstein-Weyl subspace and to extract a

prediction for the corresponding Wilson coefficient.

6.2.1 Dimensionless Couplings and Beta Functions

Einstein-Weyl gravity can be viewed as a special case of higher-derivative gravity.

The beta functions for the full quadratic theory have been computed in detail in [8].

The Einstein-Weyl truncation is a 2-dimensional subset of the 4-dimensional theory

space of full quadratic gravity, in which only the Weyl-squared coupling GC2 is kept

nonzero:

Γ =
1

16πGN

∫
d4x

√
g

(
R− 1

2
GC2 CµνρσCµνρσ

)
.

Contrary to Chapter 5, the sign in front of the determinant of the metric g is now

positive, as the FRG analysis is carried out in an Euclidean signature.

In four dimensions, both the Newton coupling GN and the Weyl-squared coupling

GC2 have mass dimension [GN] = [GC2 ] = −2. To study their flows, these couplings

must be rendered dimensionless by rescaling them with the RG scale k with the mass

dimension [k] = −1:

g(k) := GN(k) k
2 , gC2(k) := GC2(k) k2 . (6.1)

We also introduce the logarithmic RG “time”:

τ(k) := log

(
k

k0

)
(6.2)

for later convenience. The quantity k0 is an integration constant setting the scale

of reference of our flow, τ(k0) = 0. The RG flow is then described by two beta

functions:

βg[g, gC2 ] :=
dg

dτ
, βC2 [g, gC2 ] :=

dgC2

dτ
. (6.3)

As a first step of our analysis, we need to understand whether these beta functions

possess any fixed points that could serve as a UV completion for the truncated theory.
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FIGURE 6.1.
Flow of Einstein-Weyl gravity with one GFP (red) and one interacting NGFP (purple). The
flow of the arrows points towards decreasing RG scale k.

6.2.2 Flow Diagram and Fixed Point Analysis

As we discussed in Chapter 3, the beta functions predict how the theory flows through

theory space, like how a marble rolls around in a mountainous landscape. The fixed

points — i.e. where the marble will be at a standstill — are defined by the vanishing

of both beta functions:

βg[g
∗, g∗C2 ] = 0 , βC2[g

∗, g∗C2 ] = 0 . (6.4)

Solving these equations yields two fixed points:

• A GFP at {g∗, g∗C2} = {0, 0}, corresponding to a free theory in the deep IR.

• A NGFP at {g∗, g∗C2} = {1.0053, 0.7277}, corresponding to an interacting theory

in the UV.

These fixed points shape the dynamics of the RG flow, as illustrated in the RG flow

diagram in Figure 6.1. Glancing at this flow diagram, it seems entirely possible to

reach the GFP if one just drops a marble immediately below the NGFP.
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FIGURE 6.2.
Flow near the NGFP with eigendirections overlaid. The purple line denotes the IR-relevant
direction; the orange line denotes the IR-irrelevant direction. The arrows point towards k → 0.

Note: The eigenvectors (6.5) are stacked as e⃗i =
[
g
gC2

]
, why the axes may appear flipped.

To characterise the behaviour near the NGFP, we linearise the flow around it and

diagonalise the Jacobian stability matrix to compute the critical exponents and corre-

sponding eigenvectors:

θ1 = 2.617 , e⃗1 =

[
−0.865

−0.501

]
, θ2 = −0.937 , e⃗2 =

[
−0.257

−0.966

]
. (6.5)

Referring to Equation (3.29), these results show that the NGFP has:

• One IR-relevant direction (θ1 > 0) — perturbations grow as k → 0 and affect

low-energy physics.

• One IR-irrelevant direction (θ2 < 0) — perturbations shrink as k → 0 and

become unobservable at low energies.

In other words, any trajectory flowing out of the NGFP along the IR-relevant direction

corresponds to a UV-complete theory — but only one such trajectory exists. This

behaviour is evident if we zoom in on the NGFP, as visualised in Figure 6.2, where

the eigendirections have been plotted along with the RG flow. When placing an

initial condition exactly on the IR-irrelevant (orange) direction, the RG trajectories

flow towards the NGFP as k → 0. The opposite is true for the IR-relevant (purple)

eigendirection: the NGFP is reached as k → ∞.

The fixed point data are summarised in Table 6.1. This shows that the NGFP provides

a unique direction for constructing a UV-complete theory — one which flows toward
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g∗ g∗C2
θi

GFP 0 0 {−2,−2}
NGFP 1.0053 0.7277 {−0.937, 2.617}

TABLE 6.1.
Table summarising the fixed point analysis.

the IR along the relevant direction while suppressing deviations along the irrelevant

one.

6.2.3 Finding the Ultraviolet Complete Trajectory

As previously speculated, it is quite easy to make the marble go to the IR valley of the

GFP — just place it below the orange line, and it will roll safely to the IR. However,

we are not just searching for some EFT which works reasonably well, we are looking

for one coming from a UV-complete theory — this presents a far greater challenge. As

the NGFP has only one relevant direction, we need to push the ball up the mountain

in exactly the right direction and make sure it ends at the very top of it, hitting the

NGFP. Landing at the top, we have found asymptotic safety.

The unique RG trajectory that flows from the NGFP in the UV down to the GFP in the

IR is the so-called separatrix. Since there is only one IR-relevant direction, the NGFP

defines a 0-parameter theory:2 Once the trajectory is fixed, the corresponding RG

running is uniquely determined. Solving the beta functions as a non-linearly coupled

system of differential equations gives us the exact flow of the theory from the far UV

(τ → ∞) to the IR (τ → −∞).3 The challenge is to find the right initial conditions of

the flow corresponding to the only asymptotically safe trajectory of our system.

By perturbing around the NGFP in theory space ever so slightly along the IR-relevant

direction, we get an initial coupling point {g(τ0), gC2(τ0)}, from which we numerically

integrate “upwards” (letting τ → ∞). If we choose the wrong direction, the trajectory

diverges — “rolling off into infinity”. Then we can take steps around the NGFP and

reiterate the process of integrating upwards until we hit the NGFP. Once we choose

the correct initial condition, we land (up to numerical precision) on the one true

separatrix and connect the NGFP to the IR. This will be our strategy.

This procedure is depicted in Figure 6.3. The computed separatrix remains stable

over a range τ − τ0 = 100, corresponding to more than 43 orders of magnitude in

scale: k/k0 > e100 ∼ 1043. This provides strong numerical evidence that it is the

2The number of parameters of a theory is N − 1 due to one setting the scale of the system [4], as
explained in Section 4.6.1.

3Note that τ → ∞ is equivalent to k → ∞, and τ → −∞ is equivalent to k → 0.

52 Chapter 6 Black hole Mimickers from Asymptotically Safe Einstein-Weyl Gravity



FIGURE 6.3.
Illustration of the method of finding the unique UV-complete RG trajectory. Starting from a
slightly wrong initial condition (dark blue dot), the RG trajectory misses the NGFP and shoots
off to infinity. Starting on the right trajectory (light blue dot), the RG flow connects to the
NGFP in the UV.

FIGURE 6.4.
RG flow of the theory overlaid by the unique UV-completing trajectory connecting the NGFP
and the GFP.

“right” UV-complete trajectory. We thus end up with the only UV asymptotically safe

trajectory as shown in Figure 6.4. Since the UV-complete RG trajectory is unique, it

yields a 0-parameter theory: once we are on the right separatrix, there is no freedom

left — the RG flow will carry us up and down the k scale ladder and safely land us in

the UV or IR in a completely determined fashion. In the next section, we will use this

UV-complete trajectory to extract the Wilson coefficient of the Weyl-squared term.
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FIGURE 6.5.
Plot of the two couplings in the Einstein-Weyl truncation. For k → ∞, they approach their
NGFP value. As k → 0, they scale according to their mass dimension + some logarithmic
running for gC2,IR. As both have the same mass dimension, the logarithmic running explains
why they do not run parallel to each other as k → 0.

6.3 Determining the Wilson Coefficient
from Asymptotic Safety

As we make our way down the RG scale ladder, we go toward the IR or EFT regime

— all quantum fluctuations have been filtered out, and we are left with an EFT

description of our theory determined by the Wilson coefficients — i.e., how it would

look like for someone living on earth in a low gravity/coupling regime.

6.3.1 Infrared Limit and Logarithmic Running

As k → 0, the dimensionful couplings tend to their Wilson coefficient. By that

logic, we would expect the dimensionless couplings to scale as their mass dimension

[GN(k)] = [GC2(k)] = −2, like

{GN(k), GC2(k)} → constant ⇒ g(k) ∝ k2 , gC2(k) ∝ k2 . (6.6)

As both couplings have the same mass dimension, we would expect them to be parallel

in a logarithmic plot in the IR regime k → 0. However, looking at Figure 6.5, we see

that this is not the case — almost, but not quite.

As it turns out, the culprit causing this non-parallel behaviour is graviton fluctuations.

As described in [20, 32], the presence of massless fluctuations (i.e. the graviton) gen-

54 Chapter 6 Black hole Mimickers from Asymptotically Safe Einstein-Weyl Gravity



erates a logarithmic IR running in gC2(k). We should therefore update our expectation

of the running near k = 0 to fit the generic ansatz:

g(IR)(k) ≃ gIR

(
k

k0

)2

, g(IR)
C2 ≃ gC2,IR

(
k

k0

)2 [
1− b log

(
k

k0

)]
, (6.7)

where {gIR, gC2,IR, b} are constants. This is leaving us in a bit of a pickle; due to the

properties of logarithms and the arbitrary nature of k0,

log

(
k

k0

)
= log

(
k

k̃0

k̃0
k0

)
= log

(
k

k̃0

)
+ log

(
k̃0
k0

)
. (6.8)

This means that we can always come up with some redefinition k̃0 = k0 · k1 which

keeps us from filtering out the logarithmic running and finding the constant IR-value

of gC2,IR. If we make such redefinitions, the IR-value gC2,IR changes while keeping the

term gC2,IR · b constant — our 0-parameter theory has, in the blink of an eye, seemed

to turn into a 1-parameter theory with an arbitrary, unphysical scale as our parameter.

However, using some physical value from our real world to hold onto, we can get rid

of this pesky new parameter and separate the wheat from the chaff.

As we approach the IR, we know that the Newton coupling must approach Newton’s

constant GN:

GN = lim
k→0

GN(k) = lim
k→0

g(IR)(k)k−2 = gIRk
−2
0 . (6.9)

This can be used as an input parameter to fix the scale k0 such that

g(IR)(k) = gIR

(
k

k0

)2

= GNk
2 ⇔ k20 = G−1

N , where gIR = 1 . (6.10)

Doing this, we have chosen GN to fix the arbitrary scale/integration constant k0, which

in terms of gravitational RG flow has the interpretation of the transition scale to the

quantum gravity regime. Since k0 is arbitrary but the same in the whole system, we

can rewrite gC2(k) in the IR as

g(IR)
C2 (k) = gC2,IR

(
k

k0

)2 [
1− b log

(
k

k0

)]
,

fix k0−−−→ g(IR)
C2 (k) = gC2,IRGNk

2
[
1− b log

(√
GNk

)]
.

(6.11)

Using our scale-fixed IR-expressions for the couplings, we can now consider the ratio

g(IR)
C2 (k)

g(IR)(k)
= gC2,IR

[
1− b log

(√
GNk

)]
= gC2,IR[1− bτ ] , (6.12)

where now we have chosen k0 such that τ(1/
√
GN) = 0, namely the RG time vanishes

at the Planck mass, since GN = m−2
Pl in natural units. Once the scale k0 is specified, we
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FIGURE 6.6.
Fit which determines the Wilson coefficient. After fixing the parameter k0 = 1√

GN
, the slope

of g(IR)
C2 (k)/g(IR)(k) determines the Wilson coefficient of the Weyl-squared term GC2 at the

intersect
√
GNk = 1 ⇔ τ = 0.

have a well-defined prescription to single out the value of gC2,IR, just by subtracting

the logarithm present in Equation (6.12). This means that the only remaining task is

to determine the slope b. To do this, we use the fit function in Mathematica to fit to

the linear (linear in τ) function (6.12)

gC2,IR = lim
k→0

[
gC2(k)

g(k)
− k

∂

∂k

(
gC2(k)

g(k)

)
log
(√

GNk
)]

, (6.13)

where k ∂
∂k

(
gC2 (k)

g(k)

)
= −b. Now the Wilson coefficient of the Weyl-squared coupling in

the Einstein-Weyl action is given simply by:

GC2 = gC2,IR GN . (6.14)

Doing the calculation in Mathematica, the Wilson coefficient given in Planck units is

found:

gC2,IR = 0.5092 =⇒ GC2 = 0.5092 m−2
Pl . (6.15)

This process is demonstrated in Figure 6.6.

6.3.2 Interpreting the Fit and Fixing the Scale

It is easy to get lost in the mathematical details when subtracting the logarithm, so let

us create some intuition for this process. A helpful way to visualise the determination

of the Wilson coefficient is through the ratio
g(IR)

C2

g(IR)(k)
. From Equation (6.12), we see

that the ratio is an affine function which depends linearly on the RG time τ , and its

intercept at τ = 0 (i.e. k
k0

= eτ=0 = 1 on the logarithmic plot in Figure 6.6) gives

56 Chapter 6 Black hole Mimickers from Asymptotically Safe Einstein-Weyl Gravity



us gC2,IR. However, there is a subtlety: the location of the axis τ = 0 is arbitrary

due to the arbitrariness of k0. This means that we can shift the entire plot along the

horizontal axis, depending on how we define the quantum gravity scale k0 — or, in

other words, scale the values on the horizontal axis.

By fixing the RG time to vanish at the Planck scale, τ(1/
√
GN) = 0, we effectively

centre the plot such that k
k0

= 1 when k = 1/
√
GN. In this frame, the fit intersects the

vertical axis precisely at the physical Wilson coefficient we seek. In physical terms,

this means identifying the quantum gravity scale k0 with the Planck mass.

On a more practical level, when numerically solving the coupled system of differential

equations in Mathematica, we use the FRG time τ and specify initial conditions

{g(τ0), gC2(τ0)} = {g0, gC2,0} (where we have made sure that we pick a point from

the UV-complete trajectory). Changing the value of k0 → k̃0 = αk0 (with α being an

arbitrary dimensionless number) is equivalent to shifting the RG time origin:

τ0 → τ0 + c , with {g(τ0 + c), gC2(τ0 + c)} = {g0, gC2,0} . (6.16)

This shift modifies the value of gC2,IR, but preserves the physical content of the

theory:

g̃C2,IR · k̃−2
0 = (α2gC2,IR) · (αk0)

−2 = gC2,IR · k−2
0 = gC2,IR ·GN = GC2 . (6.17)

As expected, √
gC2,IR must vary inversely with k0 to maintain this relation. This

has been checked numerically and holds across all choices of k0, confirming that

the extracted Wilson coefficient is well-defined. This will also become clearer in

the following section, where we shall add more details on the numerical analysis

performed.

6.4 Interlude: Numerical Improvement

As already mentioned, the system we have worked with, whose beta functions are

provided in [8], is solved numerically. This comes with a set of challenges and pitfalls

which one should be aware of. In this section, we will go into several of the factors

which have been considered and improved, focusing on the details that matter for our

scope.
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6.4.1 How Mathematica Handles Numbers

Mathematica works with different types of numbers, which broadly can be put into

two categories:

• Exact numbers — numbers such as intergers, fractions, irrational numbers like

π,
√
2 and e are all examples of this. These are known down to infinite decimals

and used in symbolic calculations, where they pose no rounding errors

• Floats — these are inexact and only known down to some decimal point as a

number of bits (usually 16 decimal places which requires 53 bits4) are used to

store the information. As an example, if we ask Mathematica to store a number

with 3 decimal places, 0.834 ̸= 0.834000 — Mathematica does not know about

the information after the 3 first decimals.

This is something we should take into account when we make numerical calculations

in Mathematica. When we solve the system of differential equations, Mathematica is

(according to some method it chooses — e.g., Euler’s method) numerically integrating

once for every minuscule step in the trajectory. This is iterated many times over, which

maps out a trajectory like the one in Figure 6.4. As numerical methods utilise floats,

Mathematica needs to allow some error for every calculation, i.e. every small step in

the trajectory.

This motivates us to discuss accuracy and precision in Mathematica:

• Precision — The number of correctly significant digits — e.g., 2.65, 0.00538

and 402 · 109 are all numbers with precision of 3.

• Accuracy — The number of correct digits after the decimal point — e.g.

1543.794 and 0.001 are both numbers with accuracy of 3.

For every calculation/step in the trajectory, Mathematica will try to achieve a number

within some error tolerance called AccuracyGoal and PrecisionGoal. It stops and goes

onto the next calculation/step when either goal is satisfied, meaning the least stringent

of the two conditions determines the actual error tolerance [45]. Imagine working

with AccuracyGoal and PrecisionGoal both set to 6. When working with numbers ∼ 1,

this is no problem, as the result of each calculation is within 0.001%. But going down

to numbers ≪ 1 (e.g., result = 2 · 10−6), the result fulfils the accuracy requirement;

thus, Mathematica stops and goes on to the next calculation. This error suddenly

4As bits work in binary, 16 decimals require 1016 = 2nb → nb = log2(10
16) ≈ 53.15 number of bits
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(A) Normal accuracy: Well-behaved down to
10−10.

(B) Improved accuracy: Well-behaved down to
10−103.

FIGURE 6.7.
Comparison of trajectories before and after improving accuracy. Around the origin, which
is the region where we have extracted the Wilson coefficient GC2 , the accuracy has been
improved by over 90 orders of magnitude.

makes a substantial difference proportionally, as the uncertainty of the calculation is

now within the same order of magnitude as the actual result. As our work concerns

the IR, we are in the regime around these small numbers ≪ 1.

6.4.2 Increased Accuracy in the Infrared Regime

To mitigate these problems, AccuracyGoal and PrecisionGoal were adjusted. We can

see the significance of these adjustments in the before and after plots of the trajectory

around the GFP/origin of theory space in Figure 6.7.

From the IR behaviour in expression (6.7) we know that this trajectory should not be

able to cross any of the axes and venture into negative couplings — the beta functions

should simply not allow it. Thus, any trajectory which wanders off into negative cou-

plings can only be a result of numerical inaccuracy within the error tolerance. Surely

enough, increasing AccuracyGoal lowers the magnitude of these “origin fluctuations”

as we would like — over 90 orders of magnitude in the Figure 6.7.

These origin fluctuations cause mathematical singularities in the ratio (6.12) (due to

the coupling g(k) in the denominator approaching and crossing 0), which are essential

for the calculation of the slope b via a fitting function that allows us to filter out the

logarithmic running and thereby determine GC2 . The effect of this increase in accuracy

can be seen in Figure 6.8.
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(A) Normal accuracy: The lack of accuracy around
the origin creates numerical “singularities” when
extracting the Wilson coefficient.

(B) Improved accuracy: The ratio now behaves
smoothly.

FIGURE 6.8.
Comparison of the ratio gC2/g. After improving the accuracy, there are no more numerical
“singularities” — therefore, we can trust the function fitted to the slope and the value of GC2 .

FIGURE 6.9.
Scatterplot of obtained values for the Wilson coefficient GC2 as a function of the initial FRG
time τ0. The found values are centred around a constant value of GC2 , confirming a consistent
subtraction of the logarithmic running. The orange dots represent unaltered accuracy in
Mathematica, whereas the purple ones represent improved accuracy.

6.4.3 Accuracy of the Result

As discussed in Section 6.3.2, we can use a sanity check on the fit function to confirm

that we have found the correct Wilson coefficient of this truncation.

Doing the calculations for a slew of different τ0 = [−100, 100], our sanity check

confirms the method, as we get the same result (within some uncertainty), as depicted

by the orange dots in Figure 6.9. Improving the accuracy, we see how the result

converges to be (almost) on one line (purple dots) — the uncertainty has been

decreased significantly.
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Summarising the calculations, the analysis and numerical improvements outlined in

this section yield the Wilson coefficient:

Gnacc
C2 = 0.5093± 3.2 · 10−4mPl ,

Improve accuracy−−−−−−−−−−−→ Gacc
C2 = 0.509248283± 1.8 · 10−9mPl .

(6.18)

The numerical uncertainty could have been improved even further, but this machinery

is a proof of concept — the exact number down to, e.g., 30 decimal places is not

necessarily more interesting to us.

Having discussed numerical improvement and found the prediction on the Wilson

coefficient GC2 , we are now ready to see how this result impacts the classical analysis

in [15]. Before that, an interlude on the validity of the analysis in [15] is in order.

6.5 Interlude: Domain of Validity of the
Classical Phase Diagram

In addition to our ASQG computation, which sets the value of the Weyl-squared Wilson

coefficient GC2 , we re-examine the derivations in [15], identifying additional con-

straints on its validity. These constraints will appear in the ASQG-induced slices of the

3D phase diagram in the form of blurred-out regions, as we will see in Section 6.6.

It is a striking fact that adding just a single term to the Einstein–Hilbert action

massively enriches the space of solutions with exotic objects as naked singularities

and asymmetric wormholes. But to make real sense of what this enrichment tells us

— and which parts of it might actually correspond to physical solutions — we need

to constrain the allowed gravitational parameters and carefully select the regions of

validity of the analysis in [15].

The weak-field solution (5.6) used in [15] to derive the classical phase diagram (cf.

Chapter 5) assumes that all contributions to the metric are small and of comparable

order:
GNM

r
∼ S−

2 e
−m2r

r
∼ S−

2 m2e
−m2r ≪ 1 . (6.19)

These assumptions imply two facts:

• The expansion is valid for r ∼ 1/m2

• GNM ∼ S−
2 ≪ 1/m2
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However, since the Schwarzschild metric is an exact solution of the full equations, we

could argue that this constraint can be relaxed when studying configurations near the

Schwarzschild (dashed) line of M ≥ 0, S−
2 = 0. This slightly extends the region of

validity, which can then be represented pictorially as a blurred-out region, rather than

a sharp constraint.

A more refined approach would be to expand around the Schwarzschild background

for Yukawa perturbations:

h(r) ∼ 1− 2GNM

r
+ ϵV (r) ,

f(r) ∼ 1− 2GNM

r
+ ϵW (r) ,

(6.20)

This would enable a consistent treatment of solutions close to Schwarzschild:

h(r) ∼ 1− 2GNM

r
+ ϵ
∑
n

V (n)(r) , f(r) ∼ 1− 2GNM

r
+ ϵ
∑
n

W (n)(r) . (6.21)

Performing a Frobenius type analysis (like in Chapter 5) on V and W , we get a

solution which reduces to (5.6) after a redefinition of the ADM mass M with one

subtle difference: now the M does not come from a linear expansion, and is therefore

not subject to a constraint — but we still impose that the (5.6) are valid for r ∼ 1/m2

and S−
2 ≪ 1/m2.

This formalism ensures that Schwarzschild solutions remain within the valid domain,

and the magnitude of Yukawa corrections controls the deviations. The key takeaway is

that the phase diagram is most reliable near the Schwarzschild region, and therefore,

we do not impose a cutoff on the phase diagrams as we go along the M -axis, rather

only as we deviate orthogonally from it. If one deviates significantly, higher-order

corrections become essential to the analysis, and the confidence in the mapping of the

families of solutions decreases.

6.6 Einstein-Weyl Phase Diagram from
Asymptotic Safety

By applying the framework of ASQG to Einstein-Weyl gravity, we have extracted a

Wilson coefficient directly from first-principle calculations. This gives us the ability to

overlay our quantum gravity input onto the classically derived phase diagram, thus

modifying it and constraining the solution space.
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FIGURE 6.10.
Modified (M,S−

2 ) phase diagram with the asymptotic safety value m2 = 1.4013mPl. This is
a rescaled version of the diagram discussed in Chapter 5, now scaled to a quantum gravity-
determined value. Type I (naked singularities) and Type III (non-symmetric wormholes)
dominate. Type II (Bachian singularities) occupy a suppressed region.

Previously, in [15] and in the previous chapter, the parameter m2 had been fixed to

some convenient value in Planck units. But in reality, the original diagram is just a 2D

slice of a fully three-dimensional phase space (M,S−
2 ,m2), where the m2 would be

the axis “pointing out of the paper”. With our quantum gravity-derived value of GC2 ,

we can now replace that arbitrary choice with a physically selected value:

m2 =
1√
GC2

=
√
1.9637mPl = 1.4013mPl . (6.22)

Importantly, in constructing the new phase diagrams, we will also account for the

new constraints we derived in Section 6.5. These, as anticipated, will translate into

blurred-out regions in the ASQG-induced phase diagram.

We begin by inserting the above value of m2 into the original (M,S−
2 ) diagram. Since

m2 essentially sets the scale, the resulting ASQG diagram, seen in Figure 6.10, is a

zoomed-out version of Figure 5.1. This is more properly interpreted as the asymptotic

safety-determined slice through the 3D phase space. To understand the impact more

clearly, we examine slices of the full diagram from different orientations. Figure 6.11

shows the phase diagram projected into the (m2, S
−
2 ) plane — i.e. turned on its side —

at fixed ADM mass M = mPl. Here, we can clearly see the slice our asymptotic safety

analysis has predicted, depicted by the vertical magenta line representing a fixed m2.

This clearly intersects the Type I and Type III regions, which heavily dominate, while

almost completely avoiding Type II altogether.
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FIGURE 6.11.
Phase diagram slice in the (m2, S

−
2 ) plane at M = mPl. The magenta line marks the asymptot-

ically safe value m2 = 1.4013mPl, which intersects the Type I and III regions and disfavours
the Type II branch.

FIGURE 6.12.
Phase diagram slice in the (m2,M) plane at fixed S−

2 = −ℓPl/2. The asymptotic safety line
intersects Type I and III regions, suggesting that these solutions are consistent with the UV-
completion of Einstein-Weyl gravity.

Looking at the original diagram from the bottom (and rotated 90 degrees in a counter-

clockwise position), we examine the (m2,M) plane. Figure 6.12 fixes the Yukawa

charge at S−
2 = −ℓPl/2. Once again, Type I and III regions dominate in the asymptotic

safety slice, although not as heavily as in Figure 6.11. Finally, Figure 6.13 shows the

same (m2,M) plane at S−
2 = ℓPl/2. In this case, the asymptotic safety value lands in a

region where only type I is a valid family of solutions.
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FIGURE 6.13.
Phase diagram slice at S−

2 = +ℓPl/2. Here, the asymptotically safe value lies squarely in the
Type I region, reinforcing the conclusion that asymptotic safety disfavors Type II geometries.

These diagrams suggest that within the constraints of a UV-complete trajectory, only

a limited class of black hole mimickers survives, depending on the gravitational

parameters {M, S−
2 } of the object.
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7Discussion

This chapter rounds out the analysis by reflecting on what has been achieved, what

its implications are, and what limitations or open questions remain. While much of

the work done in this thesis can be seen as a proof of concept rather than a definitive

physical prediction, it still offers a concrete case study of how FRG methods and, hence,

the asymptotic safety framework can be applied to make predictions in gravitational

settings.

7.1 Physical Implications

Let us start with what the results suggest, if taken at face value. We found that a

unique UV-complete RG trajectory connects the UV-completing NGFP to the GFP, which

fixes the Wilson coefficient of the Weyl-squared term GC2 in the IR. This constrains

the phase diagram of gravitational solutions to those compatible with this unique RG

trajectory — and excludes other regions of the phase diagram.

However, the interpretation of the physical meaning of these results is not immediately

clear. The ADM mass M is no longer just the mass of the black hole, as terms in the

expansion explored in Section 6.5 have been reabsorbed into the mass. Furthermore,

there is no physical intuition (yet) behind the Yukawa charge S−
2 , even though it

is a parameter which distinguishes a black hole mimicker. What then does S−2

represent physically? It seems to encode information about the gravitational field’s

short-distance structure, but whether it corresponds to a real, observable charge is

speculative. These issues do not invalidate the RG results, but they do complicate

their interpretation.

There is also the question of the magnitude of the corrections. The quantum grav-

itational effects extracted here become significant only at or near the Planck scale.

Observing Planckian black holes, or even Planck-scale corrections to astrophysical

black holes, is far beyond the reach of current (or foreseeable) technology in observa-

tional astrophysics. While this limits the short-term observability of these predictions,

it does not lessen their conceptual importance.
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Importantly, this work is grounded in a truncation — we have kept only a limited

subset of possible couplings. Nonetheless, as a thesis concerned primarily with

demonstrating a machinery and not necessarily with the final form of a "correct”

theory of quantum gravity, it is valuable to ask: if the Einstein-Weyl truncation were

the “right one”, what would it imply about the structure of gravity — and how we

would we specifically observe it as black hole and black hole mimickers?

7.2 Challenges

Having discussed the physical interpretation of our analysis, it is mandatory to discuss

some of its drawbacks and challenges.

First of all, most of the FRG computations are done in Euclidean signature even

though gravity is a Lorentzian theory. The Wick rotation between these leaves the

calculations much more manageable, but at the expense of some physical principles

and predictability — although work has been done in computing asymptotic safety

amplitudes using a Lorentzian signature [11].

As a second drawback, while certain combinations of Wilson coefficients are gauge-

invariant and scheme-independent quantities, approximations made in the FRG anal-

ysis may slightly impact their precise values. Nonetheless, it is expected that the

qualitative features of our analysis, and in particular the sign and order of magnitude

of GC2 , will stay the same in extended truncations.

Overall, our analysis is situated in a larger “landscape” of challenges faced by quantum

gravity research. The most obvious critique of all things quantum gravity is the lack of

experimental access. For example, the corrections found here to black hole structure

— though interesting and conceptually important — occur at the Planck scale, which

remains far out of reach observationally.

From the side of ASQG, and in a broader context, a deeper question emerges: is it

fundamental, or is it yet another effective description of some deeper UV-complete

theory? Whether or not it is fundamental, the asymptotic safety framework provides a

powerful conceptual toolbox for discussing the implications of quantum gravity, and

could lead to the next big step in understanding quantum gravity — or even a grand

unified theory.
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7.3 Outlook

The natural next step is to go beyond the Einstein-Weyl truncation. Including the

full quadratic theory terms as in [8] would allow for a broader exploration of the

gravitational theory space. Even more ambitious would be to include cubic curvature

terms, which have been shown to resolve the pesky singularities inside Schwarzschild

black holes, although with the price of a second horizon[46]. Such extensions would

test whether the predictions seen here persist under more complete truncations.

The methods and perspective discussed in the thesis — grounded in the FRG and

Wilsonian reasoning — remain valid and useful regardless of the truncation. As such,

they offer a flexible and powerful approach to the ongoing challenge of understanding

quantum gravity.
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8Conclusion

Mapping out the set of black hole-like solutions stemming from ultraviolet (UV)-

complete theories of quantum gravity remains an outstanding open challenge, but

this thesis offers a small yet concrete step forward within the asymptotic safety

framework.

We began by outlining some of the motivations for quantizing gravity: the pres-

ence of singularities in classical general relativity (GR) and the perturbative non-

renormalizability of GR as a quantum field theory (QFT). In response to these chal-

lenges, the asymptotic safety scenario offers a compelling and minimalistic proposal:

that gravity might be well-defined at all energy scales and non-perturbatively renor-

malizable if its renormalization group (RG) flow approaches a non-Gaussian — i.e.

interacting — fixed point (NGFP) in the UV.

Our work began by summarising the conceptual foundations of the RG and effective

field theory (EFT). Through pedagogical analogies like the Ising model and coarse-

graining arguments, we developed the intuition and machinery behind how QFTs

evolve with scale and how asymptotic safety proposes to tame the UV divergences

that plague GR in perturbative QFT. These ideas were formalised using the functional

renormalization group (FRG), which allows for the non-perturbative exploration of

gravity or other systems in the regime of strong coupling.

We then applied this framework to a specific model: Einstein-Weyl gravity. This is a

simple extension of GR that includes a Weyl-squared curvature term. The philosophy

is to regard this as a truncation of the full effective action stemming from asymptotic

safety. Using beta functions derived from previous work, we identified an NGFP at

(g∗, g∗C2) = (1.0053, 0.7277), and extracted the unique UV-complete RG trajectory that

flows from this fixed point to the Gaussian fixed point (GFP) in the infrared (IR). Along

this trajectory, the Wilson coefficient of the Weyl-squared term was then determined

to be GC2 = 0.5092m−2
Pl . Using this quantum gravity-determined value, we placed

constraints on the classical phase diagram of black hole mimickers in Einstein-Weyl

gravity. In addition to Schwarzschild black holes, this phase diagram includes exotic

objects encoded by the addition of the higher-order Weyl-squared term, like non-

Schwarzschild black holes, asymmetric wormholes and naked singularities. But only a

subset of this landscape is compatible with asymptotic safety. The determined value
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of the Wilson coefficient selects a unique region in phase space — disfavouring, in

particular, Bachian singularities. These results provide a concrete example of how

quantum gravity can yield constraints on black hole physics and offer a proof of

concept for the strength and predictive power of the asymptotic safety framework.

Overall, this thesis highlighted how computing quantum gravity landscapes — within

asymptotic safety or beyond — can help us not only test theories at a theoretical level,

but also bridge microscopic quantum dynamics and macroscopic spacetime geometry,

shedding new light on the nature of quantum black holes.
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