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ABSTRACT

This thesis explores the complex dynamics, stability, and observational
signatures of compact objects within General Relativity, leveraging an-
alytical, perturbative, and numerical relativity techniques. Motivated
by theoretical challenges to the classical black hole paradigm, the dark
matter puzzle, and the advent of gravitational-wave astronomy, we in-
vestigate fundamental questions at the intersection of strong gravity,
field theory, and astrophysics.

We first examine the stability and potential for energy extraction
in horizonless geometries. By analyzing truncated Kerr spacetimes, we
precisely determine the threshold for the ergoregion instability, find-
ing it coincides with the equatorial ergosurface for large multipoles,
while finding no evidence for linear instabilities driven solely by light
rings on relevant timescales. Furthermore, we uncover potent energy
extraction mechanisms beyond standard superradiance, demonstrating
significant energy amplification via blueshift instabilities in dynamic
bouncing geometries and a “blueshift-like” energy exchange between
scattering states in time-periodic solitons like Q-balls.

Second, we investigate the interactions between black holes and bo-
son stars through fully nonlinear simulations. Simulating a black hole
piercing both mini-boson stars and solitonic boson stars reveals the
dominant role of tidal capture, often leading to the near-total accre-
tion of the boson star, even for disparate scales. A consistent outcome
is the formation of quasi-bound scalar field remnants—“gravitational
atoms”—around the final black hole, linking interaction dynamics to
fundamental scalar field properties in strong gravity and potentially
constraining bosonic dark matter models.

Third, we study novel observational probes using gravitational waves
and related phenomena. We characterize the late-time decay of gravi-
tational perturbations, identifying source-dominated tails generated by
matter or nonlinearities that can dominate over the standard inverse-
power-law decay, impacting our understanding of late-time signals. We
also demonstrate that dynamical gravitational lensing during black hole
ringdown encodes quasinormal mode oscillations in the light deflection
angle, presenting a new multi-messenger avenue to probe strong-field
dynamics.

These interconnected studies refine our understanding of compact
object stability, reveal complex dynamics in black hole-boson star in-
teractions, and identify new gravitational-wave and multi-messenger
signatures, offering pathways to test General Relativity, probe dark
matter candidates, and guide future observational strategies in the era
of precision gravitational-wave astronomy.
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mass approaches M., thus the BH ends up ac-
creting the entire BS. Bottom panel: accre-
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fects. The accretion rate is larger than expected
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Part I

NONLINEAR DYNAMICS AND STABILITY OF
COMPACT OBJECTS






1

INTRODUCTION

1.1 THE ENIGMA OF COMPACT OBJECTS: BLACK HOLES AND BEYOND

General Relativity (GR), our leading theory of gravity, describes the
gravitational force as a consequence of spacetime geometry dynamically
shaped by the distribution of mass and energy [1]. Among the most
profound predictions of GR are black holes (BHs) [2], objects whose
intense gravity warps spacetime to such an extent that not even light
can escape from within their event horizons. These enigmatic entities
serve as unique laboratories for testing GR in the strong-field regime,
leveraging increasingly precise gravitational-wave and electromagnetic
observations [3, 4]. Their astrophysical significance is undeniable; they
play critical roles in phenomena such as the evolution of galaxies, pow-
ering active galactic nuclei, and serving as primary sources for gravita-
tional waves (GWs) detected by observatories like Laser Interferometer
Gravitational-Wave Observatory (LIGO), Virgo, and Kamioka Gravi-
tational Wave Detector (KAGRA) [3, 5]. The study of BHs pushes the
boundaries of our understanding, connecting to fundamental questions
surrounding spacetime singularities, the information paradox [6, 7], and
the ultimate quest for a theory of quantum gravity.

However, the classical picture of BHs, while remarkably successful
in explaining observations across vast mass scales [8, 9], faces the-
oretical challenges, most notably the presence of singularities where
GR breaks down and the information loss paradox associated with
Hawking radiation [10]. Furthermore, the defining feature of a BH—
the event horizon—remains largely untested observationally. These is-
sues motivate the study of BH mimickers: horizonless ultracompact ob-
jects (UCOs) arising from physics beyond classical GR, incorporating
quantum effects, or considering alternative compact object models [11].
Quantum gravity phenomenology suggests that BHs might not be eter-
nal structures; collapse could be halted before a singularity forms, or
evaporation might leave behind a regular spacetime remnant. This leads
to the consideration of regular BHs or horizonless alternatives, such as
particle-like configurations of a complex scalar field. Such objects can
exhibit distinct general relativistic features not typically found in stan-
dard BH spacetimes, such as stable light rings, isolated ergoregions, or
super-extremal spins [11-14]. These features can lead to unique obser-
vational signatures: the absence of a perfectly absorbing horizon can
modify the late-time GW ringdown signal [15]; the presence of an er-
goregion without a horizon can trigger instabilities potentially leading
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to GW emission [16]; and super-spinning objects can alter binary inspi-
ral dynamics. The stability of these alternatives, particularly against
mechanisms like the ergoregion instability (whose threshold is precisely
located in Chapter 3), and the potential for novel energy extraction
processes in dynamic scenarios like bouncing geometries (shown to ex-
hibit significant energy amplification in Chapter 4), are central themes
explored in this thesis. These investigations, detailed in Part II, address
the implications of moving beyond classical BH descriptions and probe
potential quantum gravity effects.

1.2 THE DARK MATTER PUZZLE AND BOSONIC CANDIDATES

Parallel to the mysteries of strong gravity lies one of the most signif-
icant puzzles in modern cosmology: the nature of dark matter (DM)
[17]. Overwhelming astrophysical and cosmological evidence indicates
that the majority of matter in the Universe is non-luminous and inter-
acts primarily through gravity. While the Standard Model of particle
physics provides no suitable candidate, numerous theoretical extensions
propose new fundamental particles. Among the most compelling can-
didates, particularly motivated by solutions to outstanding problems
in particle physics and cosmology, are new ultralight bosonic particles
with masses < 1071%V. For instance, pseudo-scalar axion-like particles
can solve the strong CP problem of quantum chromodynamics (QCD)
while simultaneously constituting a significant fraction of DM [18, 19].

A fascinating possibility is that these ultralight bosonic fields con-
dense and form macroscopic, self-gravitating structures through gravi-
tational dynamics. Such objects, generically known as boson stars (BSs)
(when formed from scalar fields) [20] or Proca stars (when formed from
vector fields) [21], could potentially constitute a significant fraction of
the Universe’s dark matter content, perhaps seeding structure forma-
tion or residing in galactic halos. Depending on the specifics of the
boson’s potential (mass term and self-interactions), different types of
solitonic objects can exist. The simplest models involve a massive com-
plex scalar field with no self-interactions, leading to “mini-BSs”. In-
troducing self-interactions, such as a solitonic potential, gives rise to
solitonic boson stars (SBSs), which can exhibit different structures and
achieve higher compactness.

Among the various theoretical models for BH mimickers, BSs have
emerged as particularly useful testbeds [20, 22]. These are regular,
asymptotically flat, horizonless solutions sourced by self-gravitating
complex scalar fields. Crucially, certain classes of BSs can possess fea-
tures like ergoregions, stable light rings, super-extremal spins, and high
compactness, mimicking BHs [12—14]. Unlike many other exotic object
proposals, BSs arise from a well-defined evolution system (the Einstein-
Klein-Gordon equations), making them amenable to study using es-
tablished numerical relativity techniques [11]. This allows for detailed
investigation of their dynamics in isolation and in binaries, providing
insights into the potential phenomenology of horizonless objects in the
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strong-field, nonlinear regime and setting the stage for considering their
observational signatures.

These objects can exist even in flat spacetime as Q-balls [23]. The
potential existence of these bosonic structures as astrophysical objects,
possibly linked to the DM puzzle, opens exciting avenues for probing
fundamental physics through gravitational interactions. Understanding
the interactions between these exotic objects and standard BHs, specif-
ically the dynamics of a BH piercing through a BS (which, as shown in
Part I1I, can lead to surprising tidal capture and near-total accretion,
potentially generating unique GW signatures), is crucial for assessing
their astrophysical relevance. Furthermore, the unique properties of
time-periodic solitons like Q-balls motivate the investigation of novel
energy extraction mechanisms (explored in Chapter 5), connecting the
DM puzzle to fundamental questions about energy conservation and
extraction in GR.

1.3 GRAVITATIONAL WAVES AND MULTI-MESSENGER ASTRONOMY

The dawn of gravitational-wave astronomy, initiated by the ground-
breaking detections of the LIGO-Virgo-KAGRA (LVK) collaboration,
has provided an entirely new window onto the cosmos [3, 5]. GWs, rip-
ples in spacetime itself, carry direct information about the most violent
and energetic events in the Universe, such as the mergers of BHs and
neutron stars. These observations allow us to probe gravity in its most
extreme regimes — highly dynamical, strong-field scenarios inaccessi-
ble through traditional electromagnetic (EM) astronomy alone. The
field was revolutionized by the first direct detection of GWs from a
binary BH merger (GW150914) by LIGO [24]. Since then, the global
network, the LVK collaboration, has observed numerous events, reveal-
ing a diverse population of sources including binary neutron stars (some
with electromagnetic counterparts [25]), neutron star-BH binaries [26],
and even intermediate-mass BHs [27]. These observations provide un-
precedented tests of GR and insights into astrophysics [28]. The future
promises even greater discovery potential with upgrades to current de-
tectors, next-generation ground-based observatories like the Einstein
Telescope [29] and Cosmic Explorer [30], the space-based Laser Inter-
ferometer Space Antenna (LISA) mission targeting lower frequencies
and sources like extreme mass-ratio inspirals (EMRIs) [31], and pulsar
timing arrays (PTAs) probing nanohertz waves [32].

Furthermore, the synergy between GW observations and EM counter-
parts, such as radio observations by the Event Horizon Telescope (EHT)
or timing observations from pulsars, marks the era of multi-messenger
astronomy. Combining information from different cosmic messengers al-
lows for a much richer understanding of astrophysical phenomena and
provides powerful tests of fundamental physics. For instance, observing
the EM counterpart of a GW event can help localize the source and
probe the environment surrounding the merging objects. Conversely,
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GWs can reveal details about the dynamics and nature of compact
objects that are otherwise hidden from EM view.

Other potential multi-messenger signatures include the lensing of
light by dynamically changing gravitational fields, particularly dur-
ing BH ringdown (shown in Chapter 9 to imprint quasinormal mode
(QNM) signatures on deflection angles), which presents another poten-
tial avenue for probing strong gravity. Moreover, the precise nature
of the late-time decay of gravitational perturbations following merger
events, which can deviate from simple models due to source effects
(leading to the source-driven tails (SoDTs) identified in Chapter 8) and
potentially reveal subtle aspects of strong-field dynamics, also warrants
detailed investigation. These observational frontiers, combined with the
theoretical puzzles surrounding quantum gravity alternatives and DM
candidates, provide the direct context and motivation for the specific
research questions addressed in this thesis.

1.4 RESEARCH QUESTIONS AND OBJECTIVES

The confluence of theoretical puzzles surrounding compact objects and
DM, coupled with the new observational capabilities offered by GWs
and multi-messenger astronomy, motivates the central research ques-
tions addressed in this thesis. We aim to explore the nonlinear dy-
namics, stability, and observational signatures of BHs and alternative
compact objects, particularly those arising from scalar field theories,
within the framework of GR. The primary objectives are:

1.4.1  Exploring Stability and Energy FExtraction

What determines the stability of horizonless compact objects or space-
times mimicking them? We investigate the linear stability of UCOs
modeled as truncated Kerr spacetimes [33], focusing on the ergoregion
instability [34-36] and establishing its threshold precisely at the equato-
rial ergosurface for large multipoles using a truncated Kerr model. Can
energy be extracted from non-rotating, non-translating objects? We ex-
plore energy extraction mechanisms in dynamic, horizonless scenarios,
such as bouncing geometries exhibiting blueshift instability at the inner
apparent horizon [37, 38| and time-periodic fundamental solitons like
Q-balls via mode-mixing effects [23, 39].

1.4.2  Inwvestigating Interactions

How do BHs interact with extended scalar field structures like mini-BSs
and SBSs? This involves simulating the “piercing” of a BS by a BH [40,
41] to understand the key dynamical outcomes, including the efficiency
of accretion, the role of dynamical friction, the possibility of tidal cap-
ture, and the characteristics of the emitted GWs. Does the presence of
self-interaction in solitonic BSs significantly alter these interaction dy-



1.5 THESIS SCOPE AND STRUCTURE

namics compared to mini-BSs? Can remnants like “gravitational atoms”
form, and what are their properties [36, 42, 43]7

1.4.3 Characterizing Dynamics and Signatures

How do perturbations evolve in realistic, dynamic spacetimes? Specif-
ically, what governs the late-time decay of waves? We investigate de-
viations from the standard Price’s law decay [44, 45], identifying and
characterizing SoDTs generated by point-like matter or nonlinear grav-
itational self-interactions, and determining when they might dominate
over initial data-led tails (IDTs) [46]. Can novel observational signa-
tures arise from strong-gravity dynamics? We examine dynamical grav-
itational lensing during the ringdown phase of a BH merger [47, 48],
assessing whether the time-dependent deflection of light, mimicking the
QNM oscillations, can provide a new observational probe of the QNM
structure and late-time behavior.

1.5 THESIS SCOPE AND STRUCTURE

This thesis delves into the complex and fascinating realm of nonlinear
dynamics and stability concerning compact objects, with a particular
focus on interactions involving BHs and scalar field configurations, as
well as the unique phenomena exhibited by horizonless geometries and
their potential observational signatures through GWs.

e Part I: Introduction to the theoretical concepts of GR and scalar
field dynamics, establishing the mathematical and numerical frame-
work used throughout the thesis (Chapter 2). This includes
the Einstein Field Equations (EFEs), Kerr spacetime properties,
scalar field descriptions, and numerical relativity techniques.

e Part II: Exploration of the stability of compact objects and
mechanisms for energy extraction beyond standard superradiance.
This involves examining the linear stability of horizonless UCOs
using a truncated Kerr model (Chapter 3, based on [33]) and
investigating energy extraction from dynamic, horizonless config-
urations like bouncing geometries (Chapter 4, based on [38])
and time-periodic Q-balls (Chapter 5, based on [39]).

o Part III: Investigation of the interactions and dynamics between
BSs and BHs through fully nonlinear numerical simulations. This
covers a BH piercing mini-BSs (Chapter 6, based on [40]) and
solitonic BSs (Chapter 7, based on [41]), analyzing accretion, dy-
namical friction, tidal capture, remnant formation (“gravitational
atoms”), and GW emission.

e« Part IV: Focus on potential observational probes using GWs
and related phenomena. This includes studying the late-time de-
cay of perturbations in sourced spacetimes, identifying SoDTs
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(Chapter 8, based on [46]), and exploring dynamical gravita-
tional lensing during BH ringdown as a novel observational sig-
nature (Chapter 9, based on [48]).

o Part V: Provides concluding remarks (Chapter 10), summa-
rizing the key findings of the research, discussing their broader
implications for astrophysics and fundamental physics, and out-
lining potential avenues for future investigation.

Through these interconnected studies, this thesis aims to contribute
to our understanding of the fundamental physics governing compact
objects in the strong gravity regime, bridging theoretical modeling with
potential observational consequences in the era of gravitational-wave
and multi-messenger astronomy.



2

THEORETICAL AND NUMERICAL FRAMEWORK

In this chapter, we present the theoretical and numerical framework
needed for the rest of the thesis.

2.1 GENERAL RELATIVITY ESSENTIALS
2.1.1 FEinstein Field Fquations

GR describes gravity as a manifestation of spacetime geometry, deter-
mined dynamically by the distribution of matter and energy. The fun-
damental equations governing this interaction can be derived from the
principle of least action applied to the total action of gravity coupled
with matter fields.

The total action S is the sum of the Einstein-Hilbert action Sgg for
the gravitational field and the action Spatter for the matter content
within the spacetime M:

S = SEH + Smatter ) (21)

The Einstein-Hilbert action Sgy, describing the dynamics of space-
time geometry itself, is given by [1]

1
= — [ dizy— 2.2
SEH 167r/M r/—gR, (2.2)

where ¢ is the determinant of the metric gqp, R is the Ricci scalar cur-
vature constructed from the metric and its derivatives, and the integral
is taken over the 4-dimensional spacetime manifold M.

The matter action Spatter depends on the specific types of matter
and energy present. Generally, it can be written as

Smatter :/ d4=/1: -9 Ematter7 (23)
M

where Liatter 1S the Lagrangian density for the matter fields. This den-
sity typically depends on the matter fields, their derivatives, the metric
Jgap and its derivatives.

The equations of motion for the gravitational field are obtained by
varying the total action S with respect to the inverse metric g® (or
equivalently, g.») and demanding that the variation vanishes, §S/6g® =
0. The variation of the Einstein-Hilbert action yields

0SEH 1
= /= 24
§gab 167 9Gab (24)
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where G, = Ryp — %Rgab is the Einstein tensor.
The variation of the matter action Spatter With respect to the metric
gap defines the energy-momentum tensor 7% of the matter fields:

_ 2 6Smatter
V=g d9ab .

Setting the total variation 65 = dSgg 4+ 6Smatter t0 zero yields the
EFEs

T% = (2.5)

Gap = 8Ty, . (2.6)

These equations elegantly relate the curvature of spacetime, encoded
in the Einstein tensor Gg, to the distribution of matter and energy,
encoded in the energy-momentum tensor 7.

A crucial property of the Einstein tensor is that it is automatically
divergence-free due to the contracted Bianchi identities:

V.G* =0. (2.7)

Substituting the EFEs (2.6) into this identity immediately implies the
local conservation of energy and momentum for the matter fields:

VT =0. (2.8)
2.1.2  Kerr Spacetimes

While the Schwarzschild solution describes the spacetime geometry out-
side a static, spherically symmetric mass distribution, astrophysical ob-
jects such as stars and BHs typically possess intrinsic angular momen-
tum. The Kerr spacetime, derived by Roy Kerr in 1963 [2], represents
the unique asymptotically flat, stationary, and axisymmetric vacuum
solution to the EFEs that characterises the exterior geometry of a rotat-
ing, uncharged BH [49]. This solution is paramount for understanding
astrophysical BHs, as gravitational collapse is expected to preserve an-
gular momentum. Consequently, the Kerr metric underpins theoretical
models of phenomena intimately associated with rotating compact ob-
jects, including accretion disks, relativistic jets, and the gravitational
wave signals emitted during binary BH mergers.

Departing from the spherical symmetry of the Schwarzschild case, the
Kerr spacetime’s inherent rotation introduces axial symmetry around
the rotation axis while retaining stationarity. This geometry is uniquely
defined by two parameters: the gravitational mass M and the specific
angular momentum a = J/M, where J denotes the total angular mo-
mentum. The weak cosmic censorship conjecture generally imposes the
constraint 0 < a/M < 1 to preclude the formation of a naked singu-
larity, ensuring the singularity remains hidden behind an event hori-
zon [50].
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The Kerr metric is most commonly expressed using Boyer-Lindquist
(BL) coordinates (t,,6,¢), which adapt naturally to the spacetime’s
symmetries [51, 52]. The line element in these coordinates is given by:

oM 4aMr sin?
ds? — (1_27“> dﬁ_%&“dtd(b

>
+ L dr® + do? (2.9)

2 2
+ (7‘2 4 g2 4 2MaTrsinTo ;Sln 9) sin? 0dg?

where the auxiliary functions ¥ and A are defined as

¥ =72 +a’cos? ), (2.10)
A=r?—2Mr+a?. (2.11)

The Kerr spacetime manifests several distinctive features absent in its
non-rotating counterpart. Central to its structure is the nature of the
curvature singularity, which is not point-like but forms a ring located
at 7 = 0 within the equatorial plane (# = 7 /2). This is confirmed by
the divergence of curvature invariants, such as the Kretschmann scalar
RabcdRade, as 2 — 0.

Furthermore, the Kerr geometry possesses distinct horizon structures.
Coordinate singularities arising from the divergence of the g,, compo-
nent occur where A = 0. This quadratic equation yields two solutions:

re =M=+ VM?—a2, (2.12)

provided a < M. These correspond to the outer event horizon (r;)
and the inner Cauchy horizon (r_). While the event horizon is a sta-
ble feature, the Cauchy horizon is generally considered unstable under
generic perturbations, potentially collapsing into a curvature singular-
ity, thus limiting its physical relevance within realistic astrophysical
scenarios [53, H4].

A region unique to rotating spacetimes, the ergosphere, exists be-
tween the outer event horizon and the ergosurface. The ergosurface is
defined as the surface where the stationary Killing vector £* becomes
null (gap&®€% = 0). In the Boyer-Lindquist coordinates, the ergosurface
is given by

rE(0) = M + VM2 — a2 cos2 6. (2.13)

The ergosphere occupies the space 74 < r < 77;(#). Within this region,
the dragging of inertial frames by the BH’s rotation is so extreme that
no observer can remain static relative to observers at infinity; all trajec-
tories are inevitably forced into co-rotation with the BH. Despite this,
particles entering the ergosphere can still escape to infinity. This prop-
erty enables mechanisms like the Penrose process, theoretically allow-
ing for the extraction of rotational energy from the BH [50]. The outer

11
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boundary r7 () touches the event horizon r; at the poles (§ = 0,7)
and extends furthest in the equatorial plane (6 = 7/2).

Finally, the Kerr spacetime features unstable spherical photon orbits.
In contrast to the singular photon sphere found in Schwarzschild space-
time, these orbits occupy a range of radii determined by the photon’s
angular momentum and the BH’s spin parameter a. The collection of
all such unstable orbits constitutes a “photon shell”. Light rays that
complete multiple orbits within this shell before escaping to infinity
are responsible for the characteristic photon ring structure observed in
theoretical images of BHs [55, 56]. Within the equatorial plane, two
specific circular photon orbits exist: a prograde orbit and a retrograde
orbit. Their radii are given by

2 +
ry =ry |1+ cos (3 arccos M)] . (2.14)

M

2.2 SCALAR FIELDS IN CURVED SPACETIME

Scalar fields represent a fundamental type of matter source frequently
considered in cosmological models and theoretical physics. The nota-
tion adopted in this section will be ® for real scalar fields and ¥ for
complex scalar fields. Their dynamics play a crucial role in several top-
ics explored later in this thesis.

2.2.1 Real Scalar Field

The dynamics of a real scalar field ® minimally coupled to gravity and
governed by a potential V(@) are described by the Lagrangian density:

1
Lo = —igabvacpvb@ — V(D). (2.15)

The equation(s) of motion (EOM) for the scalar field is derived us-
ing the principle of least action, by varying the corresponding action
Se = [ d*x\/—gLe with respect to ® and setting the variation to zero
(6S3/0® = 0). This yields the Klein-Gordon equation in curved space-
time:

ViV.® - V'(®) =0, (2.16)

where V2V, = ¢V, V,; is the d’Alembert operator. The energy-momentum

tensor 7%, which sources the gravitational field via Einstein’s field
equations, is obtained by varying the scalar field action Sg with re-
spect to the metric ggp:

1
T% = VoVl — g% <QngVC<I>Vd(I> + V(cb)) . (2.17)

This tensor describes the energy density, pressure, and momentum flux
associated with the scalar field configuration.
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2.2.2  Complex Scalar Field

Similarly, a complex scalar field ¥ with a potential V (|¥|?) that de-
pends only on the modulus squared |¥|? = U*V is described by the
Lagrangian density:

1
Ly = —igabva\p*vap — V(. (2.18)

Note the factor of 1/2 is conventional and sometimes omitted as here,
depending on the field normalization. Varying the action Sy = [ d*z\/—gLy
with respect to ¥* (or ¥) yields the EOM:

VoV.T — V(95T =0. (2.19)

It is important to note that the prime in V/(|¥|?) denotes the derivative
with respect to |¥|2. The energy-momentum tensor for the complex
scalar field is:

1
7% = Vg vy — g <2ngVc\IJ*Vd\I/ + V(|\I/|2)) . (2.20)

Complex scalar fields admit a conserved Noether current J¢ = %(\II*VQ\I/—
UVe¥*) associated with the global U(1) symmetry ¥ — "W satisfy-
ing V,J% = 0. The associated conserved charge Q = [ d*z+/—gJ° plays

a crucial role in the stability of configurations like BSs and Q-balls.






Part 11

STABILITY AND ENERGY EXTRACTION
MECHANISMS






INSTABILITIES OF HORIZONLESS ULTRACOMPACT
OBJECTS

3.1 INTRODUCTION

The special properties of BH horizons, and the failure of classical GR in
their interior calls for outstanding observational evidence for BHs [11,
57]. In parallel, theoretical arguments constraining the universe of al-
ternatives are welcome. Stability arguments are a robust indicator for
the feasibility of the equilibrium solutions of a given theory. In fact, the
very existence of structure — galaxies, planets, stars — is due to a wide
array of instability mechanisms, such as Jeans’ [58, 59]. In the context
of the gravitational physics of very compact objects, two mechanisms
can play a role, and they are tied to the distinctive features of hori-
zons, or the absence thereof. These mechanisms hinge on fundamental
aspects of GR, specifically the existence of ergoregions and regions of
the spacetime where lensing is so strong that photon orbits can “close,”
and which therefore work as trapping regions.

The vacuum Kerr spacetime possesses an ergoregion, a region within
which static timelike observers don’t exist and “negative energy” states
are allowed. The existence of the ergoregion allows for efficient extrac-
tion of energy from spinning BHs [36, 60-63]. In the absence of horizons,
ergoregions give rise to a linear instability: any small negative-energy
fluctuation within the ergoregion must trigger a positive-energy state
upon traveling to the exterior of the ergoregion (where only positive-
energy states are allowed). Energy conservation then implies that the
negative energy states inside must grow in amplitude, triggering an
exponentially growing cascade [34, 36, 64-67]. This mechanism was
shown to be effective for spinning compact objects, with timescales
which are astrophysically relevant [35, 68-76]. Thus, spinning objects
whose exterior is close to Kerr, but which do not have horizons should
be spinning down and emitting copious amounts of gravitational waves.
A stochastic gravitational-wave background from spin loss has not been
detected yet, thus excluding classes of horizonless compact objects via
observations [16].

In addition to the ergoregion instability, it was argued that even
non-spinning objects should be unstable, if compact enough to develop
light rings, against a nonlinear mechanism. Schwarzschild BHs have a
single, unstable photon surface. However, in the absence of horizons,
stable photon surfaces necessarily appear [77-79]. In these spacetimes,

17
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linearized fluctuations decay extremely slowly, leading to the conjecture
that nonlinear effects might cause either a collapse to a BH or dispersion
of star material [77, 78]. Unlike the ergoregion instability, this “trapping
instability” is nonlinear in nature. Therefore, estimation of timescales
or even the verification that the instability is present is a formidable
problem.

Nevertheless, it was recently reported that the trapping instability
was observed in two different classes of objects made of fundamental
fields, i.e. boson and Proca stars [80]. The objects all were spinning
stars and the instability timescale was always relatively short, raising
the possibility that the mechanism observed is not a trapping instabil-
ity in nature, and possibly not even nonlinear, but rather something
else (for example, as we discuss in the main text, the stiffness of the sys-
tem under study could introduce artificial effects). The work reported
in Ref. [80] motivated us to understand in finer detail the ergoregion
instability of Kerr-like objects, studied in the literature but not exhaus-
tively [11, 35, 75, 76]. In particular, Refs. [75, 76] studied the instability
when the surface sits deep in the gravitational well (in fact, close to
the horizon). A study on the ergoregion instability threshold was done
in a fluid setup [81], where strong evidence was found that the critical
surface is indeed the ergosurface (see also Ref. [82] where zero modes —
a property of special interest in Kerr-like geometries, as we will show —
were investigated).

Here, we aim to explore further the ergoregion instability in the ex-
terior Kerr spacetime (truncated at a finite radius outside the hori-
zon), and to understand at which surface the instability is quenched
(do we find numerical evidence that it coincides with the ergosurface?)
and whether new (linear) instabilities — related to the presence of light
rings — set in even when the surface sits outside the ergosurface. We
note that the interplay between ergoregions and light rings is made
all the more interesting since stationary, axisymmetric, and asymptot-
ically flat spacetime in 3 + 1 dimensions with an ergoregion must have
at least one light ring on its exterior [83].

3.2 SETUP
3.2.1 The spacetime, coordinates and dynamical equations

In BL coordinates, the metric of Kerr spacetime can be written as

2Mr 4aMrsin? 6
2 2
ds® = —(1— 12 )dt —Tdtdtp
2M
+ [(7‘2—1—612) sin? 0 + ,rzra2 sin® 0| dp?
TQ
+ —dr® 4+ YT2%d6?. (3.1)

A

where

A:T2_2M7ﬂ+a2’ T2:T2+GQCOSQG- (32)
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The horizons of this geometry are located at r4- = M £+ M? — a2, i.e.
the outer event and Cauchy horizons, respectively. These will be absent
in our construction. The ergosurface is defined by the zeros of g4, which
is the torus rergo = M ++v M? — a? cos? §. On the equator and the poles,
Tergo = 2M, M + v/ M? — a?, respectively. The ergoregion is the chief
responsible for a linear instability, which is governed by the angular
velocity

i a
- 2M’I”+.

(3.3)

The spacetime also has unstable light rings at rpg = 2M (1 + cos ( 2 arccos(Fa/M )))

When a = v/2M /2 ~ 0.707, the co-rotating light ring sits at the same
radius than the ergoregion, in the equatorial plane (r = 2M).

On the Kerr background, a single master equation governs perturba-
tions of massless fields ¥ [47]

(r* + a2)2
A

— a2 sin? 9] 0P — A0, (A*+10,0)

4Mar a? a(r — M)
00U+ LY~ D — 25— 0,V (3-4)
2 _ 2
—2s []\/‘[(TAG) —r— iacosH] oV =0,

where W is a field with spin s, D, is the spin-weighted spherical Lapla-
cian given by

1 2
Ds = .1 a(sin98>+<s_( Za@‘f’SCOSQ) )

sin? 6

We will focus for simplicity on scalar fields, s = 0. We find no reason
why scalars should have special properties in this context, so we expect
similar results for other massless fields. Following Ref. [84], we briefly
review and introduce the horizon penetrating, hyperboloidally compact-
ified coordinates {r, p, 6, ¢}, which is a natural choice for studying BH
perturbations [85]. First of all, the ingoing coordinates {v,r,0, ¢} are
given by

Mr

2 a

The hyperboloidal time variable 7 is defined as

4AM
dr =dv — (1 + ) dr, (3.6)
r
and the compactified radial coordinate p as
1

By applying the separation of variables, setting
V(7. p, 0. 9) = e “Te™?S(0)R(p) , (3.8)
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Eq. (3.4) is separated into two equations

CaR"(p) + C1R'(p) + (Co — 0Aun(c)) R =0,

(3.9)
—1 i < in@ds)
sing do \>""” dp
2.2 2 m?
+ |a*w”cos® O — e~ + oA (c) | S=0, (3.10)

where ¢ = aw is the oblateness parameter, oAz, (c) is the angular sep-
aration constant and

Co = —p*(1 —2Mp+ a?p?), (3.11)
C1 =2iw—2p+2i {am + a?w — M(3i + 8Mw)} p°
+ 4a*(2iwM —1)p3, (3.12)

Co = w(2am + a*w — 16M>w)
+ 2(i + 4wM) (am + a*w — M (i + 4Mw))p
+ 2a%(i 4 2wM) (i + 4dwM) p* . (3.13)

Notice that in the zero-rotation limit, g Az, (c) = £(€+ 1) where £ is the
angular integer number used to label the harmonics. In this limit, scalar
spheroidal harmonics are simply the standard spherical harmonics [86].

3.2.2  Boundary conditions

We will deal only with the exterior Kerr spacetime, by imposing bound-
ary conditions at the surface of the ultracompact object, which we
parametrize as

ro=r+(1+e€). (3.14)

In particular, we enforce Dirichlet boundary conditions on the radial
function,

R(1/ro) =0, (3.15)

which means that W also vanishes at the surface.

We will not deal with the interior region, and instead assume that it
is composed of a material where condition (3.15) holds. Our main goal
is to understand the ergoregion instability and possible linear instability
mechanisms associated with the existence of light rings. Therefore, we
assume that the matter content of the object is such that scalar waves
are totally reflected !. Dirichlet boundary conditions are also intended

This procedure is akin to studying reflection of electromagnetic waves off a perfect
conductor [87]. In reality, a formal analysis would require one to provide the con-
ductivity and permeability of the material, but the correct calculation in the perfect
conductor limit allows one to simply impose boundary conditions at the surface of
the conductor and to forget about the conductor itself.
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to mimic the regularity conditions in the interior of the object. We do
not expect any new qualitative feature to arise from the introduction
of the interior itself, but parameters describing the interior (e.g., the
equation of state of matter, etc.) could possibly mask the physics we
want to explore and bring in new unwanted complications. The physics
we want to understand is related to features that are found in the
exterior vacuum spacetime already.

The above setup has two necessary ingredients that we require: an
ergoregion and a trapping region. There is no stable light ring, instead
the trapping is caused by the Dirichlet conditions at the boundary,
which confine perturbations in the region between the surface and the
unstable light ring. This feature can be more easily seen in non-spinning
geometries, which are governed by a wavelike equation with a potential
peaked at close to the r = 3M surface [88]. We have confirmed numer-
ically that large ¢ modes are extremely long-lived when a = 0, as in
Ref. [78]. Note also that the non-spinning geometry of compact stars
is stable, hence putative new features — if there are any at the linear
order — should be associated with rotation and trapping, both present
in our setup.

3.2.3  Toy model justification for boundary conditions

§<0,c<l §>0,c=1 &§=0,c=1

A\ 4

|
|
0 ] o

Figure 3.1: Two-dimensional star model with different sound speed, ¢, and
Lorentz-violating factor, S, in different intervals. * < z; is the
interior of the star, z; < z < x4y is the ergoregion mimicker, and
x > xo is the vacuum case.

To understand the effects of allowing the scalar wave to probe the in-
terior, we discuss a simple two-dimensional toy model, where we imple-
ment superradiance via a Lorentz-violating term in the Klein-Gordon
equation (following the original work by Zel’dovich [61, 62]) and we
mimic the star interior assigning a sound speed different from unity in
its interior. To be specific, we consider the second order partial differ-
ential equation

1 02 0? 0
===+ =—=+S8=— | ®(t,z)=0, 3.16
<&W+mﬂ‘m>(@ (3.16)
in the half-line x > 0, where x = 0 stands for the star center. The
speed of propagation is ¢ < 1 in the interior of the star x < x1, and we
assume that the star is an absorber, with S < 0. Between z; < x < 2
there is an ergoregion, which we model by adding a Lorentz-violating
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parameter § > 0. For « > x5 we have vacuum and ¢ = 1,§ = 0. By
assuming an harmonic ansatz,

O(t,x) = x(x)e ™", (3.17)
we can get
w2
X' (x) + <02 - iSw) x(z) =0. (3.18)

The generic solution is

(i) exp<<—1)ix\/m@>

X =C
c
(3.19)

+ ¢

(0) exp (_ (—1)%x\/iw + CQS\@>
c 9

where cgi) and cg) are constants in ¢-th interval, which is determined
by the boundary condition x(0) = 0, the outgoing boundary condition
X(x > x2) ~ exp(iwz) and connection conditions (x(x) and x'(z) is
continuous) at x1 and .

Results are summarized in Fig. 3.2, where for now we let S = 0 in
the star interior, i.e., the star is not absorbing. The top panel shows
the dependence of the characteristic ringing frequency and the instabil-
ity timescale on the speed of waves inside the star. We show the first
10 most unstable modes, labeled by different colors. The star material
in this model is slowing the back-and-forth process of negative-energy
waves, thus delaying the growth. This explains why the frequency de-
creases when ¢ decreases inside the star, and also why Mw; decreases
too. The only exception concerns purely imaginary modes, the insta-
bility rate of which remains roughly constant when the sound speed
changes. These are modes which damp out very quickly inside the star
and therefore are not affected by sound speed. In fact, and because
of this property, we will see below that such modes reduce to modes
calculated with Dirichlet conditions at the surface. There is no new fea-
ture appearing when the sound speed varies, the structure of the modes
only changes at the qualitative level. The bottom panel on the other
hand, shows the dependence of the instability on the location of the
surface of the star. There are two noteworthy features here: when z; —
the location of the surface — varies, the main features of the instability
remain, lending support to our procedure of simply imposing Dirich-
let conditions at the surface. The second noteworthy feature is that
when x1 — x9 the instability disappears, since there is no ergoregion
anymore.

Let us now turn the absorption on, in the star interior. In parallel
with conducting materials in electromagnetism, one could infer that
dealing with the star interior is equivalent to simply imposing Dirichlet
conditions at its surface. This is also the underlying rationale behind
the simple model in the main text. To understand if this is true, we
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Figure 3.2: QNMs of the two-dimensional model with x5 = 1 and § = 100
for z1 < © < x5. The star is not absorbing, so we set S = 0 in
its interior z < x1. We show the 10 most unstable modes, labeled
by different colors. Top panel: QNM frequencies as a function
of the sound speed ¢ with z; = 0.4. The black dashed lines are
purely imaginary QNMs. Bottom panel: QNM frequencies as a
function of the surface location 1 when ¢ = 0.1. Notice that when
x1 approaches xo, the instability vanishes. Although not included
in this bottom panel, the instability rate of the purely imaginary
modes also vanishes when x; approaches .
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Figure 3.3: QNMs of the two-dimensional model with ;1 = 0.4, zo = 1 and
S =100 for 1 < x < x3. We vary § = &7 in the star interior
x < x1. These modes are pure imaginary modes, and the imaginary
parts are 9.50, 6.12, 3.61, 1.81, 0.64 and 0.07 in the limit S; — —oo
for labels 1 to 6, respectively. In this limit, the modes converge to
modes obtained by imposing Dirichlet boundary conditions at 1,

x(z1) =0.
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calculate the characteristic frequencies imposing boundary conditions
at x = 0, and compare them with the spacetime with no star, where
Dirichlet conditions are imposed instead at the surface, x = x1. Results
are summarized in Fig. 3.3. The figure shows the relative difference
in w; when calculating the modes imposing boundary conditions at
the center of the star (x = 0) or at its surface (z = ;) for a very
absorbing material, as a function of the Lorentz-violating factor in the
star interior. The figure shows, in the first place, that no new qualitative
feature arises when imposing conditions at the star surface. But it also
shows that, in the limit where absorption is very large, S| — —oo, the
QNM frequencies of the two problems are the same. This justifies well
our usage of the exterior Kerr spacetime in the main body of this work,
with Dirichlet conditions at its surface.

3.3 NUMERICAL APPROACH
3.3.1 Frequency-domain calculations of the spectra

A robust method to deal with the eigenfrequencies of Kerr BHs — stable,
well-tested and widely used in the computation of Kerr QNMs — con-
sists on a continued-fraction representation of the problem, also known
as Leaver method [89, 90]. Unfortunately, the method is well suited
for BH spacetimes, but not for the problem at hand, where we need to
enforce boundary condition (3.15) at a finite radius 9. We use instead
the approach by Ripley [84], which discretizes the radial equation us-
ing a Chebyshev pseudospectral method, and use the Cook-Zalutskiy
spectral approach [91] to solve the angular sector. The spin-weighted
spheroidal harmonics are related to the angular spheroidal function of
the first kind when s = 0 and ¢ = 0, see Refs. [86, 92-94] for an exten-
sive discussion. For ¢ = 0, 9.4, (0) increases monotonically with ¢, but
for ¢ # 0, the /-th eigenvalue is not defined uniquely. In Ref. [91], the
{-th eigenvalue is identified via continuity along some sequence of solu-
tions connected to the well-defined value of .44, (0). In our case, since
we do not study extreme spin parameters, we find that the ¢-th small-
est eigenvalue is same as previous one. For a more detailed explanation,
please refer to Ref. [91].

Furthermore, due to the rapid change of the eigenfunction as the
boundary approaches the horizon, we made the following improvements
to Ripley’s method. First of all, the matrix given by Chebyshev pseu-
dospectral method with Dirichlet boundary condition (3.15) is very
ill-conditioned, so we replace the Chebyshev pseudospectral method
with ultraspherical or Olver-Townsend spectral method [95], which
gives sparser and better conditioned matrices and was incorporated
into chebfun [96] and ApproxFun.jl [97] package. Especially, in one
dimensional cases, the condition number of the matrix is bounded by
a constant [95].

To further confirm the correctness of our results, we also use a di-
rect integration method to check our results. For given parameters, we
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need to search the dominant mode and overtones. To avoid missing the
modes we are interested in, we use the global complex root and pole
finding algorithm [98-100] to search multiple modes. In addition, we
also perform an adaptive sampling in the complex plane region using
adaptive package [101] to be further sure we are not missing some
related modes.

3.3.2  Time-domain analysis

To further validate our results in the frequency domain, we also perform
a time domain analysis following using the 1+ 1 approach of Ref. [102].
Our procedure is almost identical, except that we use Dirichlet bound-
ary condition (3.15) at the left boundary and an outgoing boundary
condition at the right boundary (typical r ~ 1000M/) [103]. The de-
composition of the scalar field can be written as

U= Y G )Yim0), (3.20)
j=Im|

where Yj,,(6) is the spherical harmonic of degree j and order m. To
specify initial data, we first define a tortoise coordinate as

dr., 2 +a?

= (3.21)
or, after fixing the constant of integration,

Ty =T+ Tfjwr <r+ In 7“2—]\;+ —7r_1In 7“2—]\/‘7;, D . (3.22)
Our initial condition is a time-symmetric Gaussian,

Yi=m = €xp (—T*Z;QTC> s Yism = 0= 0w, (3.23)

with r. = 10M and o = 2M. We extract the dominant modes from the
time series data using the Prony method [104] and compare them with
the results in the frequency domain.

STIFFNESS AND NUMERICAL INSTABILITY For some surface locations,
the time-domain evolutions can become very challenging: the modes are
extremely long-lived and the system becomes stiff, leading to the ap-
pearance of numerical instabilities. Unlike physical instabilities, which
we find and discuss below when ergoregions are present, numerical in-
stabilities are not robust against grid settings and in particular when
the resolution increases. Nevertheless, they are important to identify
as they set a limit on the region of the parameter space we are able to
probe. We can estimate the stiffness of our system since the signal (as
we will see below in more detail) has the late-time form

n

Yo (t, 1) = Z e~ Wite;(r), (3.24)

J=0
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where wy is the dominant mode and w;(j > 0) are the j-th overtones.
Normally there are infinite terms, but in the following we ignore the
terms with ¢; < 1. Then the stiffness ratio at some fixed radius is given
by [105]

_ [Tm(wn)|

S (3.25)

[Tm (wo)| *
The ratio above is a measure of stiffness of the system; differential
equation systems with larger stiffness ratio can be considered more stiff.
From the frequency domain data in Table 3.1, we have that |Im(wp)| <
1 and decreases as £ = m increases, thus stiffness becomes more and
more important. Accordingly, evolving the system for large timescales is
challenging. Thus, in this work we limit ourselves to excluding possible
instabilities with timescales 7 < 10°M only.

Table 3.1: QNMs for a = 0.5M, { = m and a surface at rg = 2M. Notice
that modes with very small imaginary parts may have considerable
relative error.

{=m Mw 0Awm(c)
1 —0.338 — 7.47 x 10724 1.98 —1.02 x 1072
2 —0.444 — 2.24 x 1072 5.97 — 2.86 x 1073
3 —0.532 — 3.44 x 10734 12.0 — 4.09 x 10~%;
4 —0.600 — 1.79 x 10~%i 20.0 — 1.96 x 107%
5
6
7

—0.652 — 4.06 x 10755 30.0 — 4.09 x 10774
—0.696 — 5.62 x 10~8; 42.0 — 5.24 x 1079
—0.734 — 4.95 x 107195 56.0 — 4.29 x 10115

Table 3.2: Dominant unstable QNMs for ¢ = 0.99M and a surface at e = 1073.

{=m Mw oA (c)
1 0.339 +2.29 x 1024 1.64 — 2.61 x 107%
2 0.757 + 1.16 x 1072 5.91 — 2.55 x 10764
3 1.18 +4.82 x 1079 11.8 —1.29 x 1079
4 1.60 4 1.84 x 1075 19.8 —5.52 x 10774
5 2.02 +6.69 x 10774 29.7 —2.17 x 10774

3.4 RESULTS

We have searched for the complex eigenfrequencies, which we write as

w=wpr+iwr, (3'26)
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Figure 3.4: QNMs of a spacetime with a = 0.99, ¢ = 1072 for the six lowest

multipoles with £ = m. The figure includes both stable and un-
stable modes. Top panel: the dashed lines mark the superradiant
condition wr = mf2, which is the onset of the instability. Unstable
modes are barely visible on this scale. Bottom panel: zoom of
the top panel, showing only unstable modes with positive wgr. The
next mode, with larger wr would be stable and would therefore
fall below to the negative w; plane.



3.4 RESULTS

for different spacetime spin parameter a and surface location ry (or
€). We focus solely on the modes with ¢ = m, for which there is an
infinity of solutions, called overtones. The modes with £ = m have
instability rates higher than the modes with ¢ > m, so we can proceed
focusing only on ¢ = m modes, safe since we are concerned with the
disappearance of instability.

Fig. 3.5 shows some unstable modes with different m and ¢. We can
see that the £ = m modes are more unstable than the £ > m modes
since their imaginary part is larger, thus their instability timescale is
shorter. Furthermore, the £ > m modes become stable for smaller values
of €, as highlighted by the dashed vertical lines. Fig. 3.6 shows that
the surface location of the zero-frequency mode always decreases as £
grows with fixed m. This means that modes with £ > m always become
stable before modes with ¢ = m as the surface location ry increases.
This ensures that when considering superradiance instability, we do
not need to consider the modes with £ > m.

T T T
_ 1 1
1076 00}:4:000.....i... i
10_10_ .... | : ...‘ :
I .$... ' @ m=11(=

I I o I ,
= 1071 | ! ° | ® m=1¢=
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Figure 3.5: Dominant QNMs for @ = 0.99M as a function of e. The figure
shows that the modes eventually become zero-frequency modes, in
this case at e = 0.096, 0.062, 0.042, 0.20, 0.15, marked by dashed

lines.

Although not the focus of this work, we also verified that in the spin-
less a = 0 limit, large ¢ modes are extremely long-lived, as in Ref. [78]
(but in the latter work boundary conditions are imposed at the origin).
In fact, we find that all modes are stable but their lifetime increases
exponentially with ¢. This finding lends support to the claim that the
geometry is a trapping geometry as we discussed in the introduction.

Our results are summarized in Figs. 3.4-3.7 and Table 3.2, and are
always expressed in units of the spacetime mass, or equivalently, we set
M = 1. We first focus on 7 close to r4 (e < 1) so we recover previous
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Figure 3.6: The surface locations of zero-frequency modes with a = 0.99M as
a function of ¢ for different m.

results in the literature [75, 76]. Fig. 3.4 shows a few tens of modes
for the first six multipoles. There are a few aspects worth highlighting.
The first is that there are both stable and unstable modes, and that
the transition from stability to instability is well marked by the super-
radiant threshold wgr = m&Q: modes for which |wg| < mf) are unstable,
whereas the other modes are stable. The dominant unstable mode is
shown in Table 3.2. Our results are consistent and in excellent agree-
ment with the analytical and numerical results reported in Ref. [76] for
ek 1.

The threshold varies with ro (or €, cf. Eq. (3.14)). Fig. 3.7 illustrates
how the unstable modes converge to marginally stable modes when €
varies. These results, complementary to those in Refs. [75, 76], indicate
that all unstable modes pass through zero frequency modes before they
become stable [36, 76]. When € < 1, our results are consistent with
those of Refs. [75, 76]. We complemented the frequency-domain analy-
sis with the evolution in time of the wave equation subjected to Dirich-
let boundary conditions (3.15) at the surface of the object. Figure 3.8
shows the evolution for a rapidly spinning object with a = 0.99M and
surface at € = 1073, 1072, An initial transient is followed by a rapid ex-
ponential growth, with a growth rate which we extracted using Prony
techniques. The results of the time-evolution are in very good agree-
ment with the frequency-domain calculation of the dominant mode.
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Figure 3.7: QNMs for a = 0.99M and ¢ = m = 1 as a function of e. We select
five unstable modes at € = 1072 and follow them as e increases.
The figure shows that the modes eventually become zero-frequency
modes, in this case at ¢ = 0.0019, 0.0047, 0.012, 0.031, 0.096,
marked by dashed lines. Our results indicate that all the unstable
modes pass through zero frequency modes before becoming stable.
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Figure 3.8: Time series data for the evolution of the field for a = 0.99M and
£ =m =1, up to t = 105M. The instability rate agrees well with
frequency domain predictions. In particular, using a Prony method
in the time-domain data we find a dominant unstable mode with
w ~ 0.339 4+ 2.32 x 1075 for € = 1072, to be compared with the
frequency-domain prediction in Table 3.2. The field is extracted
at r, = —28.83, —47.25 for € = 1072, 1073, respectively. The in-
stability details are independent on the extraction radii within
numerical error.
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3.4.1 The zero-frequency modes

Our numerical study indicates that, at fixed overtone, the transition
from stability to instability occurs via a zero-frequency mode. A similar
feature had been observed numerically in analogue fluid geometries [81]
and used to explore analytically the transition from stability to insta-
bility [82]. The existence of zero-frequency modes is — to our knowledge
— far from trivial or obvious. Nevertheless, as we show below, they exist
and we find simple analytical expressions requiring regularity at the
boundaries. These modes provide a clean discriminator to understand
better when our spacetime becomes linearly stable, so they merit a
more detailed analysis (see also Ref. [106], where the investigation of
zero-modes in this setup was initiated). When w = 0, 9.4, (0) = £(£+1)
and one finds a simple solution to the Klein-Gordon equation, in Boyer-
Lindquist coordinates:

—ima [y — M —ima [y — M
T (LA (e
I = VvM?—-a?, (3.27)

where P/ (z) and Q},(2) are generalized associated Legendre functions
(type 2) of first kind and second kind [107]. We will continue with
units M = 1 and focusing only on £ = m modes. Requiring regularity
at infinity, we find a1/as = —7/(2i). A zero-frequency mode appears
when, and if, the surface at r¢ coincides with a zero of the function W.
To analyze the zeros of ¥, we define an auxiliary function

P iam (z) 2§

Qm (x) m
where m € ZT and
a
a= Nt a € (0,+00). (3.29)
-1
r=— 2 € (1, +00). (3.30)

V1 —a?

The function F(a, m, x) has the same zeros as ¥. Next, we analyze the
zeros of the function analytically and numerically. We will keep F as a
function of z(r) although we will impose the boundary condition at 7.

For convenience of the analysis, we replace m with a continuous
variable p in F(a, p, z) where p € [1,400) is a real number. Fig. 3.9
shows how F(a, u,x) varies with r. We can see that the asymptotic
behavior of the function depends on the surface location, namely it
separates into three cases, 1 < z < V1+a? (ry < r < 2) in the top
three panels of Fig. 3.9, z = v1+ «a? (r = 2) in the fourth panel of
Fig. 3.9, and # > v1+ «a? (r > 2) in the last panel of Fig. 3.9. We
deal with these cases separately and we use the asymptotic expansion
of F(a,p,z) for p — +oc given in Ref. [108]2.

Note that the definition of the generalized associated Legendre function in Ref. [108]
is different from ours, as we take into account when expressing asymptotic properties.
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0.99 and fixed r as a func-
tion of u, which is an asymptotically periodic function with pe-

riod given by Eq. (3.40). We define AFgr = Re{}'— ﬁ} and

AF; = Im{F +i2}. As r gradually approaches 2M, the zero
points of F gradually disappear. For r = 2M, we derived analyt-
ically the result lim,_, o F(a,p,r) = 2l see discussion

2
V3r )
around (3.41). For r > 2M, we have lim,_, » F(a,p,7) = 0 (ex-
cept in the neighbourhood of » = 2M). Therefore, we conclude

that there is no zero point for » > 2M.
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When 1 < 2 < V14 «o? (corresponding to a surface within the er-
goregion, r4 < r < 2), we can see that F(a, u,x) is an asymptotically
periodic function of p at fixed @ and x. In particular, at large p

21 21
F— — 3.31
m=2nfifofsfafs w (3:31)
—iaA+A—1
fr=(a2+1)" " (3.32)
—ia\
fa= (x2 - 1) : (3.33)
fs=(z+ife)™>, (3.34)
fa=fo+ 1z, (3.35)
fs = (fo + az)¥** | (3.36)
fo=Var—22+1, (3.37)
and has infinite zeros
tan=1 (L)
— e/
= Togp(ar, 1) +nP(a,z), (3.38)
where n € Z,
2 1 2 1 @ _
p(a7$) — (a + ) (a:. 5 ) e?tan 1 f?ﬁ , (339)
(f6 + ax)
and its period P(a, x) is
2
= -, .4
Ple,e) log p(av, ) (340)

It is easy to verify that %—7; >0, p > 0 and % > 0, so the period P
increases as x increases, consistently with Fig. 3.9.

For x = 1, we have P(a,1) = 0. Thus, for surfaces placed close to
the horizon at ry there are a large number of zeros, and hence a large
number of unstable modes. For x = 1 + 0 and § < 1, we obtain the
asymptotic expansion of F(a, i, z) near the horizon. If we keep only
the leading term in J, then we find a periodic function of log(é) with
period 27/(am) and zero points at

2
logd + T
am

i 27mp(1 — jam)T(iam +m + 1)
I'(1+iam)I'(—iam +m+1) ’

am

where n € Z and § — 07 corresponds to n — +o0o. Thus, as we bring
the Dirichlet condition closer to the horizon, there are more zero fre-
quency modes, i.e. we can get an infinite number of superradiant modes
in this way. This result is consistent with the findings in Ref. [106] and
Ref. [76] (c.f. Eq. (29) with ¢ = 2n where n =1,2,...).

On the other hand, for x = V14 o2, we have p(a, V1+ a?) = 1,
then we can get P — +oo for p — 1. Thus, the number of zero modes
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Figure 3.10: The surface location of zero-frequency modes with a = 0.99M as
a function of £ = m. As discussed in the main text, the outermost
zero mode is always at r < 2M in the limit m — oo. If we
consider m € Z* as pu € [1,+00), then each zero-mode family
is a continuous line as function of p. We use different colors to
distinguish the zero points connected by different lines.
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dashed lines are obatined by using the inverse function of
Eq. (3.38) with n = 1.
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vanishes asymptotically when the surface approaches the equatorial er-
goregion boundary at ro = 2M. This zero-frequency behavior is shown
in Fig. 3.9.

In summary, our analytical results show that there exist zero modes
for objects with ergoregions — as had also been previously discussed [106]
— and their existence is precisely delimited by the equatorial ergoregion.
An example of this behavior is shown in Figs. 3.10, 3.11. Figure 3.10
shows the surface location of the various zero-modes, for different £ = m
modes. As discussed before, at fixed m there are several solutions sus-
taining zero modes. The outermost solution (i.e., the largest ro, blue
dots in Fig. 3.10) are shown in Fig. 3.11 but now for the first 2000
multipoles. We also show the corresponding modes for ¢ = 0.5M. In
other words, these results strongly suggest that as long as the surface is
placed within the ergoregion, there will be zero-modes and hence linear
instabilities. Thus, our findings are consistent with the generic proofs
that asymptotically flat, horizonless spacetimes with ergoregions are
unstable [34, 36, 64, 66, 67].

When the surface location is at the outermost boundary of the ergo-
sphere (x = vV1+ a? or r = 2M), then two saddle points coalescence
(i.e. Eq. (4.3) and Eq. (4.4) in Ref. [108]). Then,

lim F(a,u \/1+oz2):i—ﬁ (3.41)
p——+00 T V3r  m’
a limit which is well captured by our numerics at a = 0.99 (cf. panel 4
in Fig. 3.9).

The third case where the radius is greater than the outermost bound-
ary of the outer ergosphere (x > /14 a2 or r > 2) (except in the
neighbourhood of the v1 + a?), we have

/,LE)I:IFIOO Fla,p,x) =0. (3.42)
Combining Fig. 3.9, we conclude that there are no zero-frequency modes
when z > 1+ a? (r > 2). Especially, x = vV1+ a? (r = 2) is not a
zero point even in the limit m — oo. This indicates that all superradiant
modes disappear before reaching the outermost boundary of the outer
ergosphere. Note that when restricting u € [1,400) to m € ZT, the
zeros of F(a,m,r) may even disappear earlier when x — /1 + 2.

3.4.2 Is there a new family of modes?

Our results are a strong indication that zero-frequency modes do not
exist when rg > 2M. Thus, the ergoregion family of modes cannot
be the explanation for the findings of Ref. [80]. However, we are still
left with the possibility that a linearized instability exists, not associ-
ated with any zero-frequency mode. In particular, it is possible that
a new instability mechanism sets in for spinning spacetimes without
ergoregions but with light rings. To investigate this possibility, we did
a thorough search of unstable modes in the spectrum of the problem
when r9 > 2M and a = 0.5M (as discussed above, for a < V2M /2 the
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Figure 3.12: Time series data for the evolution of a scalar field in the geome-
try of an object with ¢ = 0.5M and a surface at rg = 2M. The
field is extracted at r, = —3.69, but the overall behavior is in-
dependent of the extraction radii. Top Panel: Evolution of the
multipoles m = 1,2,3, up to t = 103M. Using a Prony method,
we estimate a dominant mode with Mw = —0.338 — 7.48 x 10724,
—0.444 — 2.24 x 1072 and —0.532 — 3.44 x 107 3i for m = 1,2,3
respectively. These estimates compare well with the frequency-
domain data in Table 3.1. Bottom Panel: Same as top panel,
for multipoles m = 4,5 which are longer-lived, up to ¢t = 10*M.
A Prony method now yields Mw ~ —0.600 — 1.78 x 10~% and
—0.652 — 2.65 x 10757 for m = 4, 5, which are still in good agree-
ment with frequency-domain predictions, despite the rather large
timescales now involved.
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unstable equatorial light ring lies outside the ergoregion). We found
no unstable mode. The evolution of initial data, using time-domain
methods, also shows no hints of a physical instability, but it does show
clearly the dominance of long-lived modes. Typical examples are shown
in Fig. 3.12.

3.5 DISCUSSION

Our results establish that there are exponentially growing modes in a
horizonless Kerr geometry, when it contains ergoregions. The instabil-
ity is connected continuously to zero-frequency modes which cease to
exist for surface locations outside the ergoregion, i.e., for rg > 2M. An
important point for the context at hand is that the ergoregion insta-
bility has timescales 7 > 10° M 3. One of our main motivations was to
understand possible new linear mechanisms in the absence of an ergore-
gion but when light rings are present, possibly explaining the findings
of Ref. [80] and the relatively short timescales reported in that work
(possibly too short for a nonlinear mechanism). We found no evidence
of new instabilities on timescales < 10°M.

3 For a/M = 0.99 and m = 1, the maximum instability occurs at € ~ 0.0056, for
a/M = 0.99 and m = 2 at € ~ 0.0052, and the relevant timescales are of order
~ 106 M [76].
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Having examined instabilities inherent to horizonless ultracompact ob-
jects — systems probing the limits of GR without forming an event
horizon — we now transition to a complementary scenario: energy ex-
traction mechanisms driven by the dynamic formation and evaporation
of horizons in bouncing geometries. This shift allows us to explore the
profound consequences of horizon physics from a different angle. Both
phenomena are deeply intertwined with the physics near the would-be
horizon scale, often necessitating quantum considerations — whether to
explain the potential stability or instability of horizonless objects, or to
account for particle creation and energy release during transient hori-
zon phases. We will now delve into these energy extraction processes.

4.1 INTRODUCTION

Hawking radiation and the consequent BH evaporation are among the
most remarkable possibilities raised by theoretical physics in the last
half century. These are prime examples of quantum gravitational phe-
nomena, but, due to the lack of a fully established theory of quantum
gravity, their understanding stems mostly from semiclassical arguments
(as the ones that led to their discovery [109]), where gravity is treated
classically and matter quantum mechanically. Similar phenomena arise
also from somewhat informal pictures developed in the context of can-
didates to full quantum gravity theories, such as Loop Quantum Grav-
ity [110], and from phenomenological approaches leading to classical
metrics that explicitly capture some of the features suggested by the
proposals above [37].

Even under this theoretical uncertainty, and without observational
evidence, it is widely accepted that some form of radiation and evapo-
ration play an essential role in BH dynamics. It is then natural to try
to understand what distinguishes such quantum gravitational objects
from their classical counterparts, and, more excitingly, if any of these
differences might show up under observational scrutiny.

Here, we consider a simple family of bouncing geometry models, pre-
scribed by classical metrics which are simplified versions of a proposal
by Hayward [37], describing fully regular spacetimes containing a “BH”
that forms dynamically and later on evaporates. The Penrose diagram
of such a dynamical spacetime is depicted in Fig. 4.1. Strictly speaking,
these spacetimes don’t contain a BH region, since every event can be
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regular center

flat region

Figure 4.1: Penrose diagram of a (everywhere regular) bouncing geometry.
Following the advanced time coordinate v, we start (v < v,) with
a flat region; then, an influx (v, < v < v.) of positive energy leads
to the formation (v = vp) of two horizons bounding a region con-
taining trapped surfaces; afterwards, an influx of negative energy
(va < v < vy) leads to the evaporation of the horizons (v = v.),
and to a flat spacetime in the far future region (v > vy).
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seen from future null infinity. Nonetheless, they have a trapped region
bounded by two apparent horizons, an inner horizon and an outer hori-
zon, which form dynamically and eventually evaporate, leaving behind
a flat spacetime in the far future.

Our goal is to understand how these spacetimes respond to perturba-
tions, by re-evaluating the geometric optics approximation and, more
importantly, by studying the evolution of (massless) scalar fields. We
show that the evaporation and consequent disappearance of the hori-
zons leaves behind a clear signature: a burst of extremely high energy
generated at the inner horizon. This burst may lead to detectable obser-
vational signals, either in gravitational waves or in the electromagnetic
spectrum, that could allow us to gain further insight into the quantum
nature of astrophysical horizons.

4.2 A DYNAMICAL “BOUNCING” SPACETIME.

We consider a spherically symmetric metric of the form
ds* = —F(v,r)dv?* 4 2dvdr + r?dQ? (4.1)

where d©? is the round metric on the unit sphere and

2m(v)r?

Fo,r)=1— 20
(v,) r3 + 212m(v)

(4.2)
Here, the constant [ is assumed to be positive, and the mass function
m(v) is assumed to be non-negative. There are two positive real so-
lutions 74 (v) of the equation F(v,r) = 0 when m(v) > m, = %l,
corresponding to an inner and an outer apparent horizons.

We are interested in describing a spacetime which is flat at early and
late times, but has transient horizons. We follow Ref. [37] in choosing
m(v) to be a smooth function that (nearly) vanishes in the intervals
(—00,v4) and (vg,00), is (nearly) constant equal to mg > m, in the
interval (ve,vq), is increasing in the interval (vg,v.), and is decreasing
in the interval v € (vg,vy), where v, < v. < vg < vy are adjustable
parameters. Under these assumptions, the horizons are formed at some
advanced time v, € (vq,v.) and disappear at ve € (vq,vy), where vy
and v. are determined by m(vp) = m(ve) = m.. Concretely, we choose

m(v) = Mo [tanh (s i ) — tanh <s i >] , (4.3)
2 Ve — Vg, v§ — U4
which closely resembles Hayward’s profile. In particular, for larger val-

ues of s, the slope in the transition intervals (vq,v.) and (vq,vf) be-
comes steeper. For concreteness, here we take s = 10.

4.3 BLUESHIFT OF NULL GEODESICS.

Our main result is a large blueshift of the radiation trapped inside
the horizons. This radiation may have been absorbed during horizon
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Null geodesics for spacetime IA. The black dashed line shows the
location of the horizons. Notice how null geodesics pile up near
the inner horizon, which is ultimately the reason for the high-
energy burst of radiation that we see once the spacetime bounces
and horizons disappear, cf. Fig. 4.3. The line color indicates the
amplification factor, with darker blue lines representing a stronger
blueshift and darker red lines indicating a stronger redshift. In
regions located far away from the inner horizon, there is only a

Figure 4.2:
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4.3 BLUESHIFT OF NULL GEODESICS.

formation, or accreted at later stages. Although our focus is on mass-
less (scalar) fields, we can see the blueshift already at the level of null
geodesics, a good description of high-frequency radiation. This geomet-
ric optics approximation was previously studied in Ref. [111], although
for a different mass function. We quickly revisit this problem for the
mass function (4.3), in order to compare with our main result concern-
ing the amplification of scalar waves. Consider a radially outgoing light
ray. The energy of the corresponding photon with respect to stationary
observers in the flat region, as well as observers at the center r = 0 (for
whom F'(v,r) = 1), is simply

oL
E=——"=F ) — 7 4.4
O P,y 7, (44)
where
1 2 e
L= 5 [—F(v,r)v + 21)7“] (4.5)

is the Lagrangian for radial geodesics. This is also a conserved quantity
in the static Schwarzschild-like region where m is constant, and so we
identify it with the photon’s energy. For outgoing null geodesics, we
have

dr 1
F ) = 27 — =_-F 4.
(=2 = = For), (46)
and also
1
E=r= §F(v,r)z}. (4.7)

Using the Euler-Lagrange equation in r, we find that
U=—=—0", (4.8)

and so, assuming v = vg and ¥ = ¥y for r = 0, we have

1 (v oF
U = U exp <— 6dv) ,

4.
2 Jy, Or (4.9)

where r(v) in this integral is computed from Eq. (4.6). From Eq. (4.7)
we then obtain the ratio between the energies of the photon at r = 0
and r = oo:

Ea 1 [ 0F
.A— Eio = exp <—2 w0 87‘dv> . (410)

We evaluated the integral in (4.10) to compute the largest and small-
est amplification factor A for different spacetimes, shown in Table 4.1
and Fig. 4.2. Notice that the amplification can become arbitrarily large
for sufficiently long-lived horizons (when vy — v, is very large compared
to the other scales in the problem), and stems from geodesics close to
the inner horizon, which is in fact an attractor for radial null geodesics,
as is easily seen from Eq. (4.6).
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Table 4.1: List of simulations for the evolution of the ¢/ = 0 mode of a scalar
field in spacetime (4.1)-(4.3). We use r¢ = 8, 0 = 1 for the initial
pulse, with initial energy Ey = 0.63. We also use s = 10 for the mass
function m(v). We define the amplification A = E /Ep, the ratio
between final and initial energy of the scalar field, cf. Eq. (4.19).
The quantities A, .A;“in, are the corresponding amplification
factors for null geodesics which maximize or minimize the energy
gain, respectively, cf. Eq. (4.10). We get similar results for ¢ > 0.
To assess whether the effect also is present for longer wavelengths,
we incorporated additional test runs, referred to as IWA, IWB, and
IWC. We adjusted the parameters as follows: rg = 45, Ey = 0.06
and o = 1,5, 10, respectively.

Run mo vqa v wvqg vf 1 K Eyf A AP Argni“

IA 15 6 10 11 15 1 09329 455 7.26 225 0.38

ITA 155 6 10 11 15 1 0.9351 5.15 8.22 232 0.38
ITIA 16 6 10 11 15 1 0.9371 5.67 9.06 239 0.38
IvA 165 6 10 11 15 1 0.9390 6.10 9.73 246 0.37
VA 17 6 10 11 15 1 0.9408 6.40 10.2 253 0.37
ILA 15 6 10 11 15 2 0.4324 0.47 0.747 10.7 0.63
ILB 15 6 10 11 15 4 0.1813 0.63 0.998 2.59 0.82
ma 15 6 10 12 16 1 09329 11.3 181 573 0.34
IMB 15 6 10 13 17 1 0.9329 26.5 42.3 1457 0.31
IMC 15 6 10 14 18 1 0.9329 69.0 110 3704 0.28
IMD 15 6 10 15 19 1 0.9329 178 285 9416 0.26
IME 15 6 10 16 20 1 0.9329 459 733 239350.24
IwaA 50 6 10 11 15 1 0.9800 1.31 0.905 640 0.30
IwB 50 6 10 11 15 1 0.9800 1.31 2.76 640 0.30
Iwc 50 6 10 11 15 1 0.9800 1.31 20.9 640 0.30

In the limit vq ~ v, v4 ~ vy, and for null geodesics that stay close
to the inner horizon, we have the approximate formula

A~ exp (k—(vg —ve)) , (4.11)

where

4 72,2
o _Mmort A mgr_ ’ (4.12)
(T‘i + 212777,0)2

is the surface gravity of the inner horizon, with r_ the smallest positive
root of 3 — 2mor2 + 202mg. Note that for [ < mg we have r_ ~ [
and k_ ~ 1/l, and so the amplification acquires the simple form A ~

exp ((vg — ve)/1).
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4.4 DYNAMICS OF A MASSLESS SCALAR FIELD

To verify that energy extraction holds also for large wavelength fields, a
proper description of radiation is necessary. For simplicity, we follow the
dynamics of a massless scalar field on the above background, governed
by the wave equation

VoV,d =0. (4.13)

We can expand @ as a superposition of spherical modes, given in terms
of the spherical harmonics Yy, (6, ¢) as solutions of the form

av,r,0,¢) = Ly 0,0), (1.14)

and so we focus on these solutions. The wave equation for the modes
can be written explicitly as follows:

F_, orF oF L(l+1)
— — =0. 4.1
8v8r¢+2(9T¢+ 5 Orp <2r + o2 >¢ 0 (4.15)
In what follows we will solve this equation numerically as a character-
istic initial value problem by giving initial data on the characteristic
surface v = v,. Specifically, we will take a Gaussian centered at r = rqg
with width o

rT—Tq )2

¢ (r,v0) = e (% (4.16)

Even though the spacetime is dynamic, it has static regions where
one has well-defined notions of energy. The energy of the field on a
characteristic surface N of constant v contained in the static regions
can be computed as

E——/ T <8>M<8>V——/OO/ Trr?dQdr (4.17)
v M \ow or)  JoJs2 " ’ ’

From the usual expression for the massless scalar field energy-momentum
tensor, we find

1 2 1 2

where Y is the gradient on the unit 2-sphere. Since the spherical har-
monics Yy, (0, ) form an orthonormal basis of eigenfunctions of the
Laplacian on the unit 2-sphere with eigenvalues —¢(¢ + 1), we obtain,
after integrating by parts,

o ;/OOO [Fﬁ (ar (f))Q + MTJQ ”ﬂ dr. (4.19)

We define the amplification factor A as we did for the null geodesics,
A= EL/Ey.
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4.5 NUMERICAL SCHEME

We can proceed to solve Eq. (4.15) by employing numerical methods.
Specifically, we apply a 2" order finite difference method for spatial
discretization and a 4*" order Runge-Kutta method for time integration.
We evolve ¢ and 0,¢ using the boundary conditions

¢(v,0) =0 (regularity at the origin) ,
¢(v,00) = Orp(v,00) =0 (no incoming radiation) ,

together with the implicit boundary condition obtained by integrating
Eq. (4.15):

Orp(v,0) = — /Ooo (aTF oo+ 1>> pdr. (4.20)

r

More precisely, given ¢ and 0,¢ on a surface of constant v, we recom-
pute 9,¢(v,0) from Eq. (4.20) (if £ > 0, the convergence of the integral
in Eq. (4.20) implies immediately that 0,¢(v,0) = 0), which we use to
evaluate 02¢. We then have 9,0,¢ from Eq. (4.15), and 0,¢ from

Opp(v, 1) / 0Oy dr, (4.21)

which we use to evolve ¢ and J,¢ by the method of lines.

In practice, we use a finite computational domain rather than an
infinite one. Furthermore, in order to improve the resolution at the
inner horizon, we introduce a new radial coordinate R by stretching r
as (see [112])

F(R) = A(R— Ro) + B\/1+ (R— Ro)? /e, (4.22)
r=f(R) - f(0). (423)

By using these coordinates, it is possible to smoothly transition between
the two resolutions. These resolutions are determined by the values of
the parameters A and B, and the transition takes place in a region
with a width of € centered around the value of Ry. To be specific,
we use Ry = 1000, ¢ = 10, and obtain the values of A and B by
solving 7/(0) = 0.01 and limpg_, 7' (R) = 1. This allows us to resolve
sharply shaped waveforms caused by blueshift near the inner horizon.
Our numerical results show second-order convergence, consistent with
the scheme we use.

4.6 BLUESHIFT OF SCALAR FIELDS.

Our results are summarized in Fig. 4.3 and Table 4.1. A common fea-
ture to all our simulations is clear in Fig. 4.3: a sharp spike of radiation,
produced close to the inner horizons and released out when the horizons
disappear. This is the wave analog of the blueshift seen before in null
geodesics, and is responsible for the energy amplification shown in the
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Figure 4.3: Evolution of Gaussian initial data in bouncing spacetimes. Top
panel: the scalar field measured at r ~ 2.0 for spacetimes IA and
VA. Notice a sharp spike in the radial derivative, signalling what
we term “blueshift” phenomena. Bottom panel: the total energy
E in the spacetime, defined in Eq. (4.19). Energy amplification is
apparent.
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lower panel of the figure and quantified also in Table 4.1. A study of
different families of initial data confirms the geodesic estimate (4.11):
the amplification A scales exponentially with the lifetime of the hori-
zons and with the inner horizon surface gravity. It is also reassuring
to notice that the amplification A of the scalar pulse lies between the
largest and smallest values of the corresponding amplification factor of
null geodesics, i.e. A7™ < A < AP (cf. Table 4.1). The last row in
Table 4.1 shows that no fine tuning of initial data is necessary: even ini-
tial data which is spread (o > [) gives rise to very large amplification
factors.

The spacetime also possesses one unstable light ring, which corre-
sponds to the maximum real root of the equation 2F(r) — rF’(r) = 0
(in the stage where m is constant to a good approximation). Thus, we
expect all the physics associated to unstable light rings — for example,
quasinormal ringdown [11, 113, 114] — to be shared by our dynami-
cal spacetime. The fractional correction to the light-ring frequency is
5Q/Q = 21%2/(27m3) + O(1/mg)*, and thus for microscopic I not acces-
sible to current detectors.

4.7 DISCUSSION

The novel energy amplification mechanism that we have identified here
originates from a blueshift instability which is akin, but nonetheless
significantly different, from the Cauchy horizon instability discovered
by Penrose [115].

Cauchy horizon instabilities have been studied extensively [53, 54,
116—124], in particular in the related context of regular (eternal) BHs [125—
127]. In all these cases, the inner horizon is an ingoing Cauchy horizon
and the corresponding blueshift mechanism leads to a divergent insta-
bility and the blow-up of perturbations, which remain confined to the
BH interior. In fact, the global causal structure of these spacetimes is
significantly different from the one depicted in Fig. 4.1 (for compari-
son, see for instance Fig. 1 in [127]), and the infinite blueshift instability
can already be foreseen by inspection of the corresponding Penrose di-
agrams: at the level of geometric optics, it stems from the piling up
(at the Cauchy horizon) of an infinite number of ingoing null geodesics
emitted at regular time intervals, as measured by an exterior observer.

By contrast, in our framework, the inner horizon is not a Cauchy
horizon; in particular, spacetime is globally hyperbolic and inextendible.
Moreover, the inner horizon is outgoing and, in this case, the blueshift
instability leads to a finite amplification, in accordance with the fact
that now only a finite number of equally timed outgoing geodesics can
pile up near the inner horizon. Most remarkably, these phenomena
can be observed from infinity, after the horizons evaporate, leading, in
essence, to an energy extraction mechanism.

If indeed collapse is halted and horizons disappear, our results seem
to imply that there are high-energy phenomena in the cosmos that
could be of quantum origin. These effects could give rise to high energy
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photons, neutrinos or GWs. Page has shown that primordial BHs of
mass mo < 5 x 1014 g would have evaporated by now [128]. Take there-
fore, for illustration purposes, an object which is evaporating today,
hence with vg — v ~ 13 x 10° yr. For Planck size cores, | ~ 10745, we
find an amplification A ~ 61061, which means that the outgoing pulse
has a significant backreaction in the spacetime, not taken into account
in our study. Indeed, a single cosmic microwave background photon
would be amplified to a much larger energy than the object itself (and
it’s challenging if not impossible to concoct an initial fluctuation for
which this is not true). Indeed, even for macroscopic [ the amplifica-
tion is tremendous. Note that Hawking radiation would also be present
during the process, but it is significantly different from the inner hori-
zon instability effect. In fact, Hawking radiation has a purely quantum
origin, and it is thermal. In contrast, the inner horizon amplification
identified in this paper is a classical mechanism (acting on model reg-
ular spacetime geometries that may result from Hawking evaporation),
and it is non-thermal. A deeper understanding of both phenomena
would require analyzing the effects of backreaction.

Backreaction in the geometry is an interesting problem, but it re-
quires knowledge of an underlying theory leading to spacetime (4.1)-
(4.3). Attempts in this direction can be found in Refs. [129-135].

We did not dwell on more classical phenomena like BH ringdown,
but it is clear that for spacetimes for which the horizons linger longer
than a light ring timescale, BH ringdown should also be observed [11,
15, 136].

Finally, our results could have experimental verification, beyond the
gravitational realm, in the context of analogue gravity [137-140]. For
example, sound waves in a nontrivial flow propagate as a scalar field
on a curved spacetime. For flows with sonic points (where flow velocity
equals local sound speed) horizons appear. Spherically symmetric, or
more general time-dependent flows, therefore develop apparent acoustic
horizons and no acoustic event horizons [139]. There are indeed acoustic
geometries with multiple sonic points [141, 142]. It would be interesting
to understand the consequences of our results for those acoustic setups,
or even if they have a bearing on collapse of air bubbles leading to
sonoluminescence [143].
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ENERGY EXTRACTION FROM FUNDAMENTAL
SOLITONS

The blueshift amplification near the inner horizon presents a potent
energy extraction mechanism tied to the specific dynamics of bouncing
geometries. In this chapter, we investigate whether similar energy ex-
traction phenomena, potentially driven by different underlying physics
such as self-interaction and time-periodicity, can occur in fundamental
solitons like Q-balls.

5.1 INTRODUCTION

Energy exchange phenomena play a pivotal role in the small and large
scale dynamics of all observed phenomena. A class of these are termed
“superradiant” and take place when an object with many internal de-
grees of freedom — which can internally dissipate energy — is able to
amplify certain impinging radiation modes, while increasing its inter-
nal energy [144]. In this mechanism the necessary energy to enhance
the radiation (and increase the object’s internal energy) is usually pro-
vided by kinetic energy. For objects in uniform linear motion superra-
diance requires a velocity larger than the characteristic phase velocity
in the medium (e.g., Vavilov-Cherenkov effect), while rotational su-
perradiance requires angular velocities larger than the characteristic
(angular) phase velocity in the medium [36, 61, 62, 144]. A different
energy exchange mechanism is realised by the interaction of radiation
with a time-dependent background. Time-periodic backgrounds tend
to induce a coupling between a discrete set of modes, leading to an
effective energy exchange with radiation. In particular, the energy of
radiation may be enhanced through a blue-shift of incoming modes
to higher frequencies (as it happens with oscillating cavity walls and
objects [145-148] or moving objects [149]).

Superradiance has attracted a considerable amount of attention in
BH physics, since it may be a viable way to power violent phenom-
ena in the cosmos, or even to transfer energy between BHs and new
fundamental degrees of freedom [36]. Spinning BHs have two proper-
ties which are ideal for superradiance: an ergoregion that effectively
couples radiation to spacetime, and an horizon that quenches negative-
energy modes, allowing for energy exchange in a stable manner [67].
It was recently claimed that Q-balls — a type of non-topological scalar
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field soliton [23, 150] — are also prone to superradiance, not requiring
rotation nor any type of motion in real space [151].

Here, we argue that even though the original proof was flawed, en-
ergy extraction from Q-balls is indeed possible. It is not of superradiant
nature, but it involves rather a blue-shift mechanism powered by the
time-periodic background, akin to Doppler shift of radiation in oscil-
lating cavities. Due to Derrick’s theorem [152] — showing that there is
no stable time-independent solution of finite energy for a wide class
of nonlinear wave equations — most fundamental solitons are expected
to be time-periodic. This energy extraction mechanism most likely ex-
tends to all these objects, since nonlinearites will induce the necessary
mode-mixing in impinging radiation. We have explicitly proved that
this is the case for (Newtonian) BSs, which have attracted attention in
connection with DM physics and BH mimickers [11, 20].

5.2 Q-BALLS AS A TESTBED

Consider a simple U(1)-symmetric theory of a complex scalar field ®
in a three-dimensional flat spacetime (R?,7,5) described by the action

S = —%/d%\/?n 078050 + v (19])] . (5.1)

where 7 = det(1,), with the potential V' = p?|®|? — A\|®[* + g|®|C.
We work with the re-scaled the dimensionless quantities x == ux, ® =
VA® /i and g == p2g/N?, in terms of which the potential reads V =
@2 — |®|* + g|®|®. We restrict to g > 1/4 (so that ® = 0 is the true
vacuum). The field satisfies the equation of motion

oV
0, — — = 2
and possess the divergenceless Noether current
J§ =Im (2°0°9), (5.3)

and energy current (as measured by a family of parallel inertial ob-
servers with 4-velocity d5')

iy = =0 Tp07, (5:4)
with the (also divergenceless) energy-momentum tensor
Top = 0@ 05 P — 510p (0720, 0 + V (|D))]. (5.5)
Using polar coordinates (r,¢) on the hypersurfaces ¥; orthogonal
to 0, Q-balls are solutions of the form
1
V2

that are regular at » = 0 and r = +oo (without loss of generality, we
consider wg > 0 and mq € Z ). Some radial profiles with different wg

are shown in Fig. 5.1. To exist the Q-ball frequency must be wglin <

Bq(t,r, ) = —=f(r)e i (“et-mae), (5.6)

wq < 1, with the lower bound wgﬁn := min[2V/|®|?] corresponding to
the so-called thin-wall limit [23].



5.3 LINEAR PERTURBATIONS

1.75 _ W = 0.76
— wg =0.70

— Lo =058
1.50 wo =5

1.25 4

1.00 4

0.75 1

0.50 1

0.25 1

0.00 A

Figure 5.1: Radial profile f(r) of the Q-balls studied in this work, with wg =
(0.58,0.70,0.76), mg = 0 and g = 1/3. The values at the origin are,
respectively, f(0) = (1.78,1.70,1.54), their charge is Q = [, J§ =
(70.77,13.70,9.76) and energy is E = [, J, = (47.02,12.00,9.14).
We consider only ground-state (nodeless) Q-ball solutions.

5.3 LINEAR PERTURBATIONS

A sufficiently small perturbation ®; to a Q-ball background solution,
¢ ~ $g + ¢y with |P1] < |Pg|, satisfies the linearized equation of
motion

0,81 — U(r)®; — e 2(@et=me@) (1) &% = 0, (5.7)
where U := 1—2f2+%gf4 and W = —f2+%gf4. The last term gives rise

to mode-mixing and, thus, this equation does not admit monochromatic
solutions.

5.4 FREQUENCY-DOMAIN ANALYSIS

The solutions with minimal frequency-content are of the form
Oy = ¢y (r)e WHmmEe) 4 g (r)ei o tmmoe), (5.8)

where wi = wg + w and m4 = mg + m. The mode functions (¢, ¢—)
satisfy the coupled system

mi

%ar (ror¢s) + w2 —U — 72] ¢ — Wk =0, (5.9)
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which clearly shows the mode-mixing between ¢ and ¢_ introduced
by the background Q-ball. At infinity the mode functions are

1 out ik4r in_—ikyr
Jim o1~ e (Agrteiher 4 Alpemiher) (5.10)
and at the origin
lim 6 ~ Cy (ks |r)m! (5.11)

where ki == £s,(w? — 1)1/2 with s, = sign(w). From the scale invari-
ance of the linear perturbations, we can choose C = 1 without loss of
generality.

In this work we focus on perturbations satisfying the double condi-
tion |wy| > 1, in which case both modes describe propagating waves
(i.e., scattering states); the waves with amplitude A9 (resp., A'!) have
radial group velocity ?i",:i[ (resp., dwi) This means that A%" describe
outgoing states propagating in the 5“ direction, the opposite to the di-
rection of propagation of incoming Aij; states.

The time-averaged flux of ()-charge through a 1-sphere of radius r
(with r — o00) is

Fo = lim T/OQ” dep <J€2>

N, Y (|AOut2 |Ai;|2), (5.12)

s=+,—

that of of energy is

2T
Fr = lim r/ de (Jg)
0

7—00

oo Y sws ([AD? - |AR?) (5.13)
S=+,—

and of angular momentum is

21
fL e rli)Iglo T 0 d(p <TT‘<,0>
oo Y sm (JAS2 - |AR2). (5.14)

s=+,—

where (-) = limgp_,o %f(;[ dt(-)
It is easy to see from Eq. (5.9) that the quantity

Jy =rIm (¢7 0rdp4 + ¢_0r ") , (5.15)

is independent of r on-shell, i.e., 0,J4 = 0 for a solution of Eq. (5.9).
Regularity of the linear perturbations at the origin [c.f. Eq. (5.11)]
implies then that J, = 0. But, since Jy(r — oo) o< >, (JA|* —

| A|2), one finds

‘Aout|2 + |Aout’2 ’All’l’Q + ’Am|2 (5.16)
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The time-averaged fluxes can then be written as

Thus,

Fo 25, (|42 - |42, (5.17)
T =~ 25,00 (|A1ut12 — A" ) , (5.18)
Fr = 2s0mq (|A? — [AT[?) (5.19)

both Q)-charge, energy and angular momentum can be exchanged

with the background (exchange of angular momentum is only possible
with a spinning Q-ball). Energy extraction from a spinning Q-ball is
necessarily accompanied by angular momentum extraction.

7%

04 — wo=076

0.2

0.0 {rrEER ARt RS

Figure 5.2: Upper panel: Relative energy amplification factor, Zg, of an incom-

ing mode ¢ with m = 0 scattering off a non-spinning Q-ball; the
coupling is ¢ = 1/3. The dashed lines are the results from time-
domain simulations. Lower panel: Ratio |A"|?/|A%|?, which is
seen to be < 1 for all w.

The amplification factors of -charge, energy and angular momen-
tum in the scattering process, defined as (the absolute value of) the
ratio of the time-averaged outgoing flux to the incoming flux, are re-

spectively
’Aout‘Q Aout‘Q
' AT | Ame | (5.20)
Wi [ AP — w_ | AP
1+Zp = — — ) (5.21)
Wi [AB[? o | AR
m A2 — | A
1+ 77 = d ; 5.22
o= e )
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The Z-factors measure the relative amplification (or attenuation) in
the scattering process: Z > 0 for amplification, whereas Z < 0 for
attenuation.

Note that asymptotic fluxes are the appropriate quantities that allow
one to discriminate between amplification and attenuation in a scatter-
ing process. In Ref. [151] an alternative criteria for energy amplification
was used, based instead on (the absolute value of) the ratio of energy
contained in outgoing states to incoming ones in some asymptotic an-
nular region r; < r < re. Given the different propagation speeds of
the ¢4+ modes, this is not an appropriate measure. In fact, in the limit
where one mode has arbitrarily small group velocity, its energy den-
sity becomes arbitrarily large (c.f. Fig. 2 of [151]), but its energy flux —
which determines the rate of energy exchanged with the exterior — may
still be small.

From Eq. (5.21) it is clear that energy amplification will occur for
any incoming state with A™ = 0 and w > 0, or A™ = 0 and w < 0.
On the other hand, there will be energy attenuation (Zg < 0) for any
incoming state with A™ = 0 and w > 0, or A™ = 0 and w < 0. These
sufficient conditions for energy amplification do mot agree with the
ones found in Ref. [151], due to the different criteria for amplification
given there. The outcome of a more general scattering process in which
the incoming state contains a mixture of ¢ and ¢_ modes depends
on the details of the process, i.e., on the scattering parameters w, m
and A /A®. Similarly, one can immediately see from Eq. (5.22) that
for a spinning Q-ball (mg > 0) there is angular momentum amplifi-
cation for an incoming state with A" = 0 and m > mg, or A™ = 0
and m < —mg, and attenuation for an incoming state with A" = 0
and m > mg, or Aifrl =0and m < —mg.

The energy extraction mechanism discussed here is not of superradiant-
type. In fact, enhancement of energy (or Q-charge, or angular momen-
tum) of a single incoming state is never observed, as can be seen by
noting that |A%"|/|AR| < 1, either directly from Eq. (5.16), or from
the lower panel of Fig. 5.2. Instead, the energy extraction is accom-
plished through a ”blueshift-like“ exchange, where the time-dependent
background effectively pumps energy from the lowest energy (i.e., fre-
quency) state to the highest. As we discuss in the next section, the
Q-ball will then evolve to a new Q-ball with different parameters as
to conserve the total (Q-charge, energy, and angular momentum in the
process.

The Zg-factor is shown in the upper panel of Fig. 5.2 for an in-
coming ¢, mode (i.e., A™ = 0) from solving numerically Eq. (5.9);
these results show a remarkable agreement with those from evolving
a wavepacket in the time-domain (discussed in the next section). As
expected, we find energy amplification of w < 0 modes for all Q-balls,
and attenuation of w > 0 modes. Note also how energy extraction is
more effective for Q-balls closer to the thin-wall limit, for which the
field profile is nearly constant in the interior (c.f. Fig. 5.1).
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— w=-3
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Figure 5.3: Wavepacket scattering off a non-spinning Q-ball with wg = 0.76;
the coupling is ¢ = 1/3 and we use initial conditions with o, =
5, 1o = 100, and wy = {—2.24,3.76}. Upper panel: Energy flux
Ji(r = 60) as function of time, with the outgoing flux zoomed-in.
Lower panel: Integrated energy flux Efvx = fg dtJ(r = 60), with
an inset showing attenuation (Zg = —0.022) for w = 3 and ampli-
fication (Zg = 0.037) for w = —3. These results are in excellent
agreement with the frequency-domain analysis (c.f. Fig. 5.2).
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5.5 TIME-DOMAIN ANALYSIS

To verify the consistency of our results, we performed a time-domain
evolution of a m = 0 wavepacket scattering off a Q-ball, solving Eq. (5.7)
with initial conditions appropriate for a Gaussian wavepacket with (av-
erage) frequency wp and radial width o,

_ (r=rg)? .
®1(0,r) =€ 27 e 'S0V wo—lr (5.23)
8,5‘131(0, 7’) = —in(I)1<0, 7’). (5.24)
Additionally, we have also evolved the full nonlinear Eq. (5.2) around
non-spinning Q-ball solutions, using the initial conditions

(r—rg)?

D(0,7) = Dg(0,r) +de 7 e Vel (5.25)
8,®(0,7) = —i[wo®q + wo(® — Bg)] (0, 7). (5.26)

For small enough 6 < ®(0,0) the nonlinear scattering results are
consistent with the linearized calculations. We employ a fourth-order
finite difference scheme in space and a standard Runge-Kutta 4 algo-
rithm in time. The results are summarized in Figs. 5.2-5.3. Figure 5.3
shows how a smooth nearly monochromatic wavepacket scatters off and
acquires extra energy. For an incoming wavepacket with wg = 3.76, a
Fourier transform shows that the scattered wavepacket contains the
modes w_ ~ —2.24 and w4 =~ 3.76, in agreement with the analysis
around Eq. (5.9) for w = 3. The calculation of the amplification fac-
tor Zg from time-domain data is straightforward, and the results are
shown in Fig. 5.2 together with the frequency-domain prediction. The
agreement is remarkable.

The fact that the currents Jg and Jg are divergenceless, implies the
conservation of both Q-charge and energy; so, any change in ) and F
of the scattering states, must be accompanied by a symmetric change
in the Q-ball. Indeed, our results from full nonlinear evolutions show
that, after the scattering takes place, the remnant relaxes to a configu-
ration compatible with a new Q-ball with parameters such that charge
and energy conservation are verified. This allows us to predict the max-
imum extractable energy from these Q-balls. We verified numerically
that the entire family of Q-balls in our testbed model (with g = 1/3)
is absolutely stable (i.e., have F/Q < 1), and their energy decreases
monotonically to F ~ 5.85 in the limit w — 1; this is a qualitative
agreement with the analytic approximation of Ref. [153]. Thus, the max-
imum extractable energy for the Q-balls with wg = (0.58,0.70,0.76) is,
respectively, (88%,51%,36%) of their initial energy. One can then — in
principle — extract more energy from these objects than from spinning
BHs [154].

5.6 OTHER FUNDAMENTAL OBJECTS

The simplicity of the energy extraction mechanism discussed in this
work indicates that other fundamental objects (like BSs [20], Proca
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stars [21], etc) might be prone to the same mechanism. For instance,
the extension of the proof to spherically symmetric Newtonian BSs
is particularly simple. It goes as follows. Consider a four-dimensional
complex scalar field ® of mass g minimally coupled to gravity. In
the non-relativistic limit the scalar field ® := e ¥/, /u satisfies the
Schrodinger-Poisson system [155]

1OV = —oL ViV + uUW, (5.27)
Vi VU = 47p| V|2 (5.28)

Newtonian BSs are solutions of the form Wy = 1 (r)e 0! with 0 <
wo < u, and a static gravitational potential ug(r), both satisfying reg-
ularity at » = 0 and r = +oco. Inspired by the Q-ball treatment, it is
not hard to see that:

1. The linearized system contains time-periodic coeflicients, and all
of these are of the form oc e 72wl and oc e~ woly;.

2. This leads to mode-mixing between the states w_ = wyg — wy
and wy = wg+wi; so, the minimal frequency-content solutions ¥y
must contain these two modes [c.f. Eq. (5.8)], while U; is real-

valued and has frequencies +w;. This was also seen, e.g., in Ref. [155,

156].
3. The current

Ty =2 Im(Y3 O, + Y 0y
— Lupdpuy — fSu_Oru_) (5.29)

satisfies 0,.Jy , = 0. Regularity at the origin implies .Jy; , = 0, and
the asymptotic behaviour gives Jy ,(r — oo) o< 3, (JAS2 —
|AP?).

4. As for the Q-ball, an incoming state with Ai}r‘ =0 and w; > 0,
or A" = 0 and w; < 0 will necessarily extract energy from the
boson star.

5.7 DISCUSSION

Our results establish that energy extraction from Q-balls is allowed by a
process that does not require rotation nor any motion in real space, but
merely an interaction with a time-periodic background. As we showed,
there is no superradiance in this process, since an incoming single state
is never enhanced. Instead, this mechanism bears strong similarities to
the blue-shift mechanism reported when a wave is trapped within a
cavity whose boundaries oscillate periodically [145-148]. In general, an
interaction of radiation with a time-periodic background tends to lead
to mode-mixing, effectively coupling a discrete set of modes. If initially
the radiation has only support in the lowest frequency (i.e., energy)
mode, the interaction with the background will then re-distribute ra-
diation over the several coupled modes, leading to an overall energy
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amplification of radiation powered by the internal energy of the back-
ground. The simplicity of this argument indicates that other types of
fundamental solitons — expected to be time-dependent due to Derrick’s
theorem — might be prone to the same mechanism. We have showed it
explicitly for Newtonian BSs.

If a continuous family of (stable) soliton solutions exists (as for Q-
balls, boson and Proca stars) the backreaction of the scattering process
on the soliton is straightforward. For instance, if we continuously "illu-
minate a Q-ball with a single state ¢ of frequency wy > 1, the de-
position of energy in the object will drive secularly the soliton through
a continuous sequence of Q-balls with increasingly larger energy and
charge (i.e., along the thin-wall limit). The process will eventually sat-
urate if w_ = —1 is attained. Similarly, illuminating a Q-ball with a
single state ¢ of frequency w; < —1 will continuously extract energy
and charge from the object driving the soliton through a continuous
sequence of Q-balls with increasingly smaller energy and charge, which
saturates if wy = —1 is attained. The evolution picture drawn here is
compatible with our full nonlinear time evolutions of wavepacket scat-
tering. Note however that this evolution may be hindered by the soliton
reaching some unstable configuration.

—100 Hn(rf

—200
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0.0 0.2 0.4 0.6 0.8 1.0
t x10%

Figure 5.4: Integrated energy flux Efi™x = fot dtJy at r = 20 for a wavepacket
scattering off a non-spinning Q-ball with wg = 0.76 inside a
cavity; the coupling is ¢ = 1/3 and we use initial conditions
with o, =5, 1o = 80, and wg = {—2.24,3.76}. We impose Dirich-
let conditions ®; = 0 at » = 100 to model the cavity.

In the case of superradiance, energy extraction can also be associated
to instabilities when the radiation is confined and forced to repeatedly
interact with the amplifying body (the cavity can be artificial, or arse
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naturally as part of the geometry) [36, 145-148, 157, 158]. However,
for the energy extraction mechanism discussed in this work, it is not as
obvious (as it is for superradiance) that confining the radiation should
lead to an instability. This is because, even if the initial (incoming)
state is chosen so that its energy must be necessarily amplified, the
scattered state will be in a mixture of modes whose energy does not
need to be enhanced. Although we are unable at this point to provide
statements of sufficient generality, we can trap radiation in a cavity
with a Q-ball inside and study numerically its evolution. Our results
are summarized in Fig. 5.4 for a moderately large cavity. Interestingly,
they indicate that the system relaxes to a state with a Q-ball that over-
all has absorbed energy, even when starting with a state that initially
extracts energy from the soliton (c.f. lower panel of Fig. 5.4). We have
not investigated trapped radiation around fundamental solitons in full
generality, neither have we studied them when orbited by a point-like
charge, a good proxy for some astrophysical systems. Is it possible for
a soliton to loose energy to an orbiting point-like charge, making it
out-spiral (something known as floating orbit)? This and other aspects
remain open.
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PIERCING OF A MINI-BOSON STAR BY A BLACK HOLE

6.1 INTRODUCTION

The nature of the matter making up most of the universe is unknown.
There is overwhelming evidence for the existence of DM of an un-
known nature and properties, which nevertheless interacts gravitation-
ally [159-162]. Efforts to determine the properties of such matter and
to place it in a theoretical framework have so far been unsuccessful,
but will continue vigorously for years to come [163, 164]. If the stan-
dard model of particle physics is a good guide, one can expect new
“dark stars” of various types (depending on the number and proper-
ties of the putative new elementary particles passing as DM), which
can make up a significant fraction of astrophysical environments. The
scales at which such new structures will appear depend, in particular
on the fundamental scale dictated by the fundamental constituents of
the, hitherto invisible, new fields.

Here we entertain the possibility that there are new fundamental,
scalar degrees of freedom minimally coupled to gravity, and that these
form localized, self-gravitating objects. It is well known that for complex
scalar fields—such as the ones we focus on—BSs form rather generically
as a consequence of gravitational collapse [20, 165-168]. For real scalars,
similar objects exist and form (see Refs. [20, 169] and work cited therein;
the extension to vector degrees of freedom can also be considered [21]).
In the absence of self-interactions, the maximum mass My« of such
configurations is dictated by the mass of the fundamental boson p, as
Mpax = 0.8Mg x (10710eV /) [170]. For sufficiently light fields, BSs
can therefore have stellar masses, or even galactic-scale masses. Indeed,
there are indications that such solutions describe well DM cores in ha-
los. These models are often referred to as fuzzy DM models, and require
ultralight bosonic fields (we refer the reader to Refs. [155, 171-177], but
the literature on the subject is very large and growing).

Dark stars have so far gone undetected, but the advent of gravitational-
wave astronomy may also mark the beginning of the illumination of
such dark components of our Universe [11, 178-180]. Understanding
the behavior of DM when moving perturbers drift by, or when a binary
inspirals within a DM medium is crucial for attempts at detecting DM
via GWs. In the presence of a nontrivial environment accretion, gravi-
tational drag and the self-gravity of the medium contribute to a small,
but potentially observable, change of the GW phase [155, 181-189].
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When the length scales between different objects are similar, numeri-
cal relativity can be used to extract accurate predictions for the dynam-
ics of the objects and of gravitational waveforms [190-193]. When the
scales are too different, one needs to rely on other methods. The tidal
deformability of BSs leaves an imprint in gravitational waveforms and
was considered recently [191, 194, 195]. Dynamical friction in scalar
structures was also studied recently and allows us to understand the
slowdown of bodies moving within scalar structures [155, 172, 189, 196].
The evolution of a compact binary within a large scale BS was studied
within a pointlike approximation for the binary [155], and it predicts a
—6-PN dephasing effect, potentially observable.

Here, we wish to bridge the gap between these two types of results,
and consider the motion of a small BH as it “pierces” a large BS struc-
ture fully nonlinearly. The small BH will be subjected to friction, it
accretes a portion of the scalar material from the BS, and it emits GWs
carrying energy and momentum. Likewise, as a consequence of the BH
motion, the BS itself will move and be nonlinearly perturbed—or even
destroyed entirely.

6.2 BOSON STAR CONSTRUCTION

We consider a minimally coupled, complex scalar field ® described by
the Einstein-Klein-Gordon action,

S = / d*z\/—g [R — (gabvawb@* + ,ﬂ@@*)] ,
167

where g4 is the spacetime metric, R is the Ricci scalar, u is the mass
of the scalar field and * denotes complex conjugation. From the action,
the equations of motion are

1
Rap — iRgab =811y, (61)
9**VaVpd = p? @, (6.2)
with the stress-energy tensor
T = VOV'D* + VIO VD — g (VOV.D* + 200" ) . (6.3)

Following Ref. [20], we derive equilibrium equations in spherical sym-
metry by assuming a harmonic ansatz for the scalar field and a station-
ary geometry,

D(r, ) = p(r)e (6.4)
ds* = —a(r)*dt* + a(r)*dr® + r*dQ3 .
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Then, the spherically symmetric Einstein-Klein-Gordon system can be
written as three ordinary differential equations

1 —a? w?

{ — +8mr [(0‘2 + ;ﬂ) a?¢? + (qb’)2] } :
a?—1 w?

{ " + 8r [(oﬂ — u2> a’p? + (¢’)21 } )

! 2
o = —{1+a2—87rr2a2u2¢2} ¢ . (W /~L2> ¢a27

r o?

a =

[NV ST

/
o =

«a
2

where primes stand for radial derivatives. In order to obtain a physical
solution, the following boundary conditions must be imposed on this
system.

¢(0)=do,  ¢'(0)=0, a(0)=1, (6.6a)
i 6(r) =0, (6.6b)
Jim. a(r)a(r) =1. (6.6¢)

Here, ¢g can be specified arbitrarily, and it roughly determines the
mass of the boson star. We can find a simpler system by rescaling the
variables in the following manner,

b=V8rg, F=pr, t=wt, a=(plwa.

Then the equations become

where primes stand for the derivatives with respect to 7. Note that both
p and w drop out of the equations. We will use the mass parameter p
as our unit.

To integrate these equations, we need to understand their asymptotic

behavior. At the origin, # = 0, we can expand all quantities in a Taylor
series to find

(a3 + 1)¢3

a(f) =1+ 62 + O,
a(F) = ao — fQ(&%G(;()%aﬁ% +O(),
o(7) = do + (@6 — 1o | o),

)
60
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where $(0) = o, @(0) = ag. Notice that the form of the metric in
Eq. (6.5) is consistent with the Schwarzschild metric at large distances
where

a(r) = (1 - 2M>_ , (6.8)

r

NI

with M the Arnowitt-Deser-Misner (ADM) mass of the spacetime.
This allows us to define a more general mass aspect function

M(r) = g (1 - aQiT)) : (6.9)

which measures the total mass contained in a sphere of radius r. Fur-
thermore, we can use boundary condition Eq. (6.6¢) together with
Eq. (6.8) to get a(r) at large distances

2M )é . (6.10)

a(r) = (1 -

We are now ready to solve for the boson star structure using a shooting
method to solve Egs. (6.7): we fix $o and shoot for &g using boundary
conditions Egs. (6.6a) and (6.6b), so as to have an asymptotically flat
spacetime. There are many possibilities for &g, which correspond to
different excited states of the boson star. Once we have solved for a, &
and ¢ we can recover w by using Eq. (6.6¢). In practice, since we use a
finite grid, we use the values of a and a at the last radial grid point of
the solution we have (see below for details on how good the agreement
is with the Schwarzschild metric at r ~ 100).

Finally, to perform numerical evolutions in the absence of symme-
tries, isotropic coordinates are preferred. In isotropic coordinates, the
spherically symmetric metric can be written as [20]

ds? = —a(R)%d#* + Y(R)" (dR? + R*0?) | (6.11)

where 1 is the conformal factor. A change of the radial coordinate R =
R(r) can transform the solution obtained in Schwarzschild coordinates
into isotropic ones, in particular,

dR R

— =a—. 6.12

dr r ( )
In a boson star the scalar field decays exponentially, and therefore the
solution quickly asymptotes to a Schwarzschild exterior. We can thus
integrate Eq. (6.12) by imposing a Schwarzschild exterior of mass M
at large distances, with

M2
R)=M+— +R. 6.13
r(R)= M+ + (613)
We perform the coordinate transformation (6.12) numerically where
Eq. (6.13) is used when r > rpax. We solve this equation via a shooting
method, where we integrate outwards; we therefore need to understand
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the behavior R(r) for small r. Taylor expanding at 7 = 0, i.e.., R(r) =
>, R™Wrm /n) we find
3 1 2\ 42
R(r) = er — T 0020 Chs 30)% +0(r%). (6.14)
1205
Then, R'(0) = c is a free parameter which we determine by shooting to
the exterior solution (6.13). In practice we set rpax ~ 100 and we can
verify that we effectively recover the Schwarzschild metric from this
1
point onward: |¢| < 10716 |a(r) — (1 — 2M/r)"2 | < 10715, Hence, our
solution is smoothly connected.
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Figure 6.1: Configuration describing an isolated BS with mass M = 0.53 in
isolation, corresponding to a value of the scalar field at the center
oo = 0.02, ap = 0.873, w = 0.936. Top: scalar field and met-
ric components as a function of the radial coordinate. Bottom:
Hamiltonian constraint along the R axis. The red curve has been
multiplied by 16, the expected factor for fourth-order convergence.
We use mesh refinement, and A represents dz ,dy, and dz of the
coarsest level.

In the following, we use a ground-state BS with mass M = 0.53 in
isolation, corresponding to BS parameters p = 1, ¢g = 0.02, ag =
0.873, w = 0.936. The solution is summarized in the top panel of
Fig. 6.1. Note that Rgg = 12.39 is the radius of the isolated BS solution
which encloses 98% of the BS mass. A measure of the correctness of
this solution can be assessed by the violation of the Hamiltonian con-
straint (introduced in the next section, see Eq. (6.20)), shown in the
bottom panel of Fig. 6.1. Notice that when the resolution increases, the
constraint violation decreases in accordance with the expected fourth-
order convergence of our results (we use fourth-order accurate finite-
difference operators throughout).

When the BS is dilute, the relevant equations governing the structure
of isolated BSs reduce to the Schrodinger-Poisson equations [155, 197].
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In this limit, all BS solutions are related via simple scaling relations,
and accurate fits are given by expressions (45)-(50) in Ref. [155]. In
this regime, the radius Rgg (defined by the areal radius containing 98%
of the BS mass) can be related to the total mass via My ~ 9.1/ Rggp.
The BS that we use as a reference is not fully within the Newtonian
regime.

6.3 DYNAMICAL BH-BS SPACETIMES

6.3.1 3+1 decomposition and evolution procedure

Our strategy to perform numerical evolutions makes use of the standard
3+1 decomposition [198, 199], whereby a 3-metric 74 is introduced via

Yab = Yab + Malt (6.15)

where n® denotes a unit timelike vector normal to a spacelike hypersur-
face. The full spacetime metric g, can then be written in the form

ds® = gapda®dx®
S (a2 - 5@'@-) df? + 2B; dt da’ + vij da’ da? | (6.16)
where o and (8 are the usual lapse and shift gauge functions, and the
indices 4, j,... run from 1 to 3.

To write the evolution equations in this formalism we introduce the
extrinsic curvature Kj;,

1
Kij = —5- (0= Lp)vij (6.17)
and the “conjugate momentum” of the complex scalar field ®,
1
Ko =——(0—Lp) P 6.18
[ 20 ( t ﬂ) ) ( )

where £ denotes the Lie derivative. The evolution equations then take
the form

Ovij = —2akKi; + Lpij (6.19a)
8tKZ'j = —Dz-c?ja + « ( B'Rij — 2KikKkj + KKZ']')

+ Lo Kij + dma [(S = p)yij — 253] (6.19Db)

® = —2aKg + Ld | (6.19¢)

1 .. 1
OhKe = a (KK.:I) — i'waiaj(I) + 2,u2<1>)
1 .
— ify”&aaj@ +LsKs, (6.19d)

which is subject to the following constraints

H=R-Ki;jK7+K*—161p=0, (6.20)
M; = D'K;j — D;K —87j; = 0. (6.21)
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where K = 'y"jKZ-j, D; and SRU denote, respectively, the covariant
derivative and Ricci tensor with respect to the 3-metric, and the source
terms are given by

p=T%np,

i = —Yia Ty,

Ji a%ab b (6.22)
Sii =% Ta

S = ’}/Z]Sij .

For the numerical simulations we rewrite the evolution equations
above in the Baumgarte-Shapiro-Shibata-Nakamura form [200-202], as
detailed in Ref. [203], and use the Einstein Toolkit infrastructure [204—
206] for the evolutions. We use Carpet [207] for mesh refinement capa-
bilities, AHFinderDirect [208, 209] for finding and tracking apparent
horizons, and QuasiLocalMeasures [210] for extracting BH mass. The
spacetime metric and scalar field variables are evolved in time using
the LeanBSSNMoL and ScalarEvolve codes, which are freely available
as part of the Canuda library [211].

For our simulations we use two refinement centers, one center corre-
sponding to the location of the BH and the other to the location of the
BS, which sits initially at the origin of the numerical domain. We use
up to 10 refinement levels for the BH and 3 refinement levels for the
BS. We always use at least 25 points to cover the BH, thus ensuring
enough grid points for an acceptable resolution. During the evolution,
the mesh refinement around the BH moves, and the mesh refinement
resolving BSs are fixed at the origin of the numerical domain. To avoid
redundant calculations, we assume reflection symmetry on the x = 0
and y = 0 planes (the collision will always be along the z axis).

Throughout the code, derivatives are approximated using fourth-
order-accurate finite-differencing stencils but there are also lower-order
elements in the code, such as prolongation operations, which are only
second-order accurate in time. We use the method of lines with Runge-
Kutta 4 to evolve the equations in time with outgoing (radiative) bound-
ary conditions and the usual 1 4 log and Gamma-driver gauge condi-
tions [199].

6.3.2 Diagnostics

To understand and characterize some of the physics more precisely, we
monitor the scalar field around the moving BH, in a frame comoving
with the BH.

We simply consider a sphere with constant coordinate radius 7 around
the BH, as measured with the numerical coordinates introduced above,
and we extract the multipole mode of the scalar field on the sphere,
which is defined as

(;blm (tv 77) = dQQ}/l*m(Q)q)(ta r, Q) ) (623)

SBH
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where Spy is the sphere around the BH with radius 7. For the small
Lorentz boosts considered in this work, such a sphere is also a constant-
radius sphere in the BH frame.

In addition, we monitor the energy E™d and momentum P4 radi-
ated in GWs, which can be be calculated as [212],

dErad(t) ) 7“2 t N
ik [ /Q /—oo Yt

AP (t) r2 b

Y e gim | — [ 4| Wadi
== g el

where ¢; = (—sin 6 cos ¢, — sin # sin ¢, — cos 6), and ¥y is the Newman-
Penrose scalar, which is defined in Appendix C of Ref. [213].

Besides, we also monitor the energy density and momentum flux of
the scalar field into the BH horizon. For any vector field, we have

2

dQ] , (6.24)

2
dQ] , (6.25)

Q= / d3ra/T, e, (6.26)
Q

where Ty, is the energy-momentum tensor, v is the determination of
the 3-metric, and « is the lapse function. When £* = (%)“ we denote
Q by Qy, and for £* = (%)“ we denote ) by (). Even though £ is not
a Killing vector, the charge defined in Eq. (6.26) is a good measure of
the scalar field energy, and it has been adopted by other authors (e.g.

Ref. [214)).

6.3.3 Initial data

For our evolution procedure, the relevant initial data amount to speci-
fying the spatial profile of the 3-metric, extrinsic curvature, lapse and
shift, as well as the scalar field, at a given time slice. We have described
in Sec. 6.2 our construction of stationary BS spacetimes. Isolated BH
spacetimes are known analytically, and to construct spacetimes contain-
ing both objects we superpose these two solutions using a procedure
analogous to the one outlined in Ref. [215], which we can summarize
as follows. The spacetime is described by

BH BS
W = BH 4 1/,(135) — 146, (6.27b)
i = ¢t diag(1,1, B?), (6.27c)
B =12 [1 - 0?3 — B 4 g(B9)2y=6] | (6.27d)
where I' = 1/4/1 — v2, v is the speed of the BH, KSBH) and KSBS) are

the extrinsic curvatures of the BH and BS respectively, while ¢y and
1(BS) are the conformal factors of the BH and BS solutions, respectively.
In the above system 0K;; and v are correction terms, which should
be solved for by solving the appropriate elliptic system. For simplicity,
here we set 0K;; = 0 and 69 = 0. This means that these initial data
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do not satisfy the constraint equations (6.20) and (6.21). While not
ideal, the constraint violation incurred is small for large initial distances,
and such a construction has been standard practice in studies of BS
binaries [216-218].

One can find explicit expressions for the metric and extrinsic curva-
ture of a boosted BH in Ref. [215]. For the spherically symmetric BS

solutions that we consider, Ki(]BS) =0 and

(BS) 1 . iwqﬁ
Ky = —%851) = "5y
where « is the lapse function obtained previously for BSs in isolation;
w and ¢ are defined in Eq. (6.4). Finally, we fix the initial conditions
for the gauge variables by choosing o = ¢~2, and 3* = 0.

We place the BS at the center of our coordinates, and we keep its pa-
rameters fixed in all our simulations: as we discussed above, we consider
a BS which in isolation is characterized by a total mass M = 0.53, cor-
responding to a value of the scalar field at the center, ¢g = 0.02, ap =
0.873, w = 0.936, as shown in Fig. 6.1. Hereafter we fix units where
@ = 1—all our results will be shown and discussed in these units.

Table 6.1: List of simulations analyzed for collisions between a BH of mass
parameter Mpy and a BS of mass M = 0.53. The BH has initial
velocity vy along the z axis, and starts from position zy. The BS
is characterized by a frequency w = 0.936 and values at the origin
¢o = 0.02, ap = 0.873. The total energy is Myt = I'Mpy + M —
I'MpuM /zg with T the Lorentz factor. The total momentum of the
boosted BH is I'Mppvg. We define a mass ratio ¢ = M /Mgy and
a length ratio £ = Rgg/(2Mpn). Notice that at the initial time the
mass parameter Mpy is equal to the irreducible mass M;,, within
better than 0.5% and the irreducible mass is given by A = 167 M2,
where A is the area of the apparent horizon.

Run Mgy L Vo 20 Mot Piog
IA 1 6 1074 -50 1.52 0
IB 1 6 0.5 -200 1.68 0.577
IIA 0.4 16 1074 -50 0.93 0
IIB 0.4 16 0.5 -200 0.99 0.231
IIIA 0.2 31 1074 -50 0.73 0
IIIB 0.2 31 0.5 -200 0.76 0.115
IVA 0.1 62 1074 -50 0.63 0
IVB 0.1 62 0.5 -200 0.65 0.086

What we vary in the initial data are the BH parameters, in partic-
ular, its initial velocity and mass. We have studied a variety of initial
conditions, summarized in Table 6.1. Our initial data include a BS-
BH mass ratio ¢ = M /Mgy ranging from 0.2 to 2, and a length ratio
L = Rgg/(2Mpy) from 6 to 62. These ratios are far from those expected
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for galactic halos [155], but they are the only ones possible with current
infrastructure. They could be appropriate to describe the interactions
between BHs and DM roaming “lumps,” or even as a starting point to
understand how to extrapolate to other, more extreme ratios.

We also consider two different initial BH velocities. One describes
slow infalls, for which we take an almost static BH with vy = 10~ at

zo = —50. We also consider high velocity collisions, for which vy = 0.5
at zp = —200. In all cases, the BH is initially well outside the BS,
20 > Ros.
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Figure 6.2: Snapshots of evolution, depicting the scalar field absolute value

|®| for the initial data IB in Table 6.1. From left to right, the
snapshots are taken at instants ¢ = 0.0, 300.8, 380.8, 390.4 in the
top row, and at ¢t = 396.8, 406.4, 416.0, 448.0 in the bottom row.
Pink lines depict contours of constant lapse function a = 0.2,
which are a good approximation for the location of the horizon,
further indicated by arrows. Notice how the BS is tidally distorted
as it approaches the BH and how it eventually is almost totally
swallowed up by the BH. Animations are available online [219],
and also as ancillary files in this submission.

6.4.1 Dynamics and accretion during collision process

We mostly look at results in the “lab frame,” where the BS is at rest,
and the BH—initially at (0, 0, zp)—is moving along z axis to eventually
collide and interact with it.

The numerical convergence of our results is consistent with the dis-
cretization scheme we used, as discussed in Section 6.4.5. The outcome
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Figure 6.3: Snapshots of evolution, depicting the scalar field absolute value
|®| for the initial data IVB in Table 6.1. From left to right, the
snapshots are taken at instants ¢ = 0.0, 349.6, 389.6, 408.8 in the
top row, and at ¢t = 415.2, 436.8, 450.4, 480.8 in the bottom row.
Pink lines depict contours of constant lapse function o = 0.2,
which, as in the previous figure, indicate the horizon location; this
region is much smaller (and difficult to see) than the corresponding
one of Fig. 6.2 since the BH is much smaller. Notice how the BS
pulls back the BH during the collision process (panels 5 and 6), and
eventually is swallowed up by the BH. Animations are available
online [219], and also as ancillary files in this submission.
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of our numerical simulations are summarized in Figs. 6.2-6.7 and Ta-
ble 6.2.

Snapshots of the scalar field absolute value |®| = v/®®* are shown in
Figs. 6.2-6.3, for initial data IB and IVB. The contour in pink marks the
contour of constant lapse function a = 0.2, which is a good indication
of the BH apparent horizon location. It is clear from Fig. 6.2 that,
in this frame, during the collision the BS moves towards the BH as
it approaches. If we define the collision as the instant when the BH
crosses Ryg, it is clear from these snapshots that even prior to collision
the BS is tidally distorted. Tidal Love numbers of BSs are positive and
relatively large as compared to compact systems [194, 220], hence the
deformation is along the BH-BS axis and visible. The tidal deformation
is clear for nearly equal mass objects, as the effects are much stronger
in this regime. For the purpose of our study, the case IVB in Fig. 6.3
is more interesting, for it describes a very small BH plunging through
a large BS. Tidal effects are now less obvious on length scales of the
boson star; however, they become visible and will play a crucial role
once the BH pierces through the BS, as we explain below.

—
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Figure 6.4: Accretion of scalar onto the BH. Top panel: normalized BH ir-
reducible mass M;,,/Mgp for simulations IB and IVB. The gray
lines are the total mass Mot normalized by the initial mass Mgy
given in Table 6.1. At late times the BH mass approaches M,
thus the BH ends up accreting the entire BS. Bottom panel: ac-
cretion rate for the two different initial data. Notice that there are
two accretion stages for simulation IVB, which we argue to be due
to tidal effects. The accretion rate is larger than expected for a
stationary regime, see main text.

It is also evident from the snapshots that the BS is almost entirely
swallowed by the BH, which continues moving—albeit with a smaller
velocity by momentum conservation—after the interaction with the BS.
We find that the BS is nearly totally accreted for all the initial data
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in Table 6.1; an extreme example concerns simulation IVB: even a BH
which is 62 times smaller than the BS and moving at half the speed of
light, ends up “eating” all of the BS material. This is seen, in particu-
lar, in Fig. 6.4 where we show the BH irreducible mass (estimated with
the help of the horizon area) as function of coordinate time. After a
relatively short timescale ~ 1000, and after the BH has had time to in-
teract with the BS, the final BH mass is at least 95 % of the total initial
energy. We have further quantified accretion by computing the scalar
energy in the initial and final spacetime slices [cf. definition (6.26)]; our
results are shown in Table 6.2 and are consistent with total or nearly
total accretion of the BS onto the BH, even for such length ratios as
L = 62 of run IVB.

Accretion onto a nonmoving BH placed at the center of a Newtonian
BS proceeds at a stationary rate M ~ 8 x 10~2(uMpg)(uMpg)* [221].
For simulation IV this amounts to M ~ 2 x 1074, roughly 2 orders
of magnitude below what we observe numerically. We can estimate
the effective absorption cross section ¢ from our results, letting M =
opvg. For simulation IVB one finds 0 ~ 400 at the peak of accretion,
corresponding to an absorbing disk with radius 2 orders of magnitude
larger than the BH scale [222]. We do not understand the origin of such
large accretion rates, but we suspect they are related to a transient
stage. Unfortunately, our setup does not allow us to simulate more
extreme length scales; hence, we never see past the transient and into
the stationary regime.

For simulations with smaller BH masses, the residual scalar field
outside the BH increases by several orders of magnitude as seen in
Table 6.2, although it is still but a small fraction of the total energy.
One can expect that for even smaller BH masses the BH can pierce
through without “eating” the entire BS. Unfortunately, as we said, in
order to evolve such a small BH, one would need too large an amount
of computational resources.

6.4.2 Black hole motion and tidal capture

To interpret our results and to compare them with simple estimates,

consider first the motion, in Newtonian dynamics, of two pointlike par-

ticles of mass m; at z = z1(t) and mg at z = z3(t). We thus neglect

tidal effects (although they are apparent in our results, cf. Fig. 6.2) and

relativistic effects. Defining d = z9 — z1 and using Newtonian dynamics

(or equivalently, energy and momentum conservation), one finds
mi + ma mo

d.:—i, leﬁ

5 (6.28)

For our system, we take mq = Mgy, mo = M, and we integrate them
with initial conditions appropriate for the initial data. For IB, z1(0) =
—200, d = 200. We find that the BH and BS are separated by a distance
d = 5 when the BS sits at zo = —7.7, which is consistent with the left
bottom panel in Fig. 6.2.
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80

Table 6.2: Summary of the results of the dynamical evolution of the initial data in Table 6.1. Here, My is the final BH irreducible mass, and vy is the final

BH velocity as calculated from the puncture trajectory; in parentheses we show the expected value Mpyvg/Mio from momentum conservation,
assuming that the entire BS is accreted onto the BH (notice the good agreement between these two estimates). Note that £ and P are the
energy and momentum radiated in GWs, respectively. They are calculated from 1, and compared to a Newtonian, quadrupolar approximation
which includes no accretion (number in parentheses, see main text for further details). Finally the total momentum and energy flux of the
scalar field into the BH horizon are the last two entries. The junk radiation exists in all cases and we neglect it.

Run Mgy My o vy 104 prad 104 prad initial final Qinitial Qfinal

IA 1.0 1.56  107* —2.9 x 107 (0) 2.9 (11.7) —0.24 0.53 7.7 x 1070 0 4.1 %1078
IB 1.0 1.64 0.5 0.33 (0.30) 12.5 (35.6) 4.1 0.54 3.9 x 1074 0 ~7.4x107°
IIA 0.4 0.94 1074 —1.6 x 1073 (0) 0.63 ﬁ.e 6.5 x 1073 0.52 2.6 x 1073 0 —3.1x107°
IIB 04  1.01 0.5 0.20 (0.20) 5 (5.7 1.5 0.54 4.0 x 1073 0 —6.4 x 1074
IIIA 0.2 0.73 1074 —2.5 x 1073 (0) 0.20 (0. %v 9.0 x 1073 0.51 4.2 x 1073 0 ~1.6 x 1074
IIIB 02  0.78 0.5 0.12 (0.13) 2 (1.4) 0.47 0.54 1.1 x 1072 0 ~1.3x 1073
IVA 0.1 0.61 1074 —7.1x 1073 (0) 0.10 (0.12) 4.7 x 1073 0.51 1.5 x 1072 0 ~1.0x 1073
IVB 0.1 0.64 0.5 0.064 (0.077) 0.75 (0.36) 0.11 0.53 2.2 x 1072 0 ~1.2x 1073
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Figure 6.5: Location z and the speed v of the BH for IB and IVB, as read from
the puncture location. The interaction between the BH and the
BS is clear from these data, and it translates into a deceleration
starting at ¢t ~ 400 and lasting for 20, roughly the time taken
to cross the bulk of the BS. Notice also that the BH velocity is
negative for a small amount of time in simulation IVB: the BH is
tidally captured by the boson star.

The BH velocity can be estimated from our numerical results, using
the puncture trajectory. These estimates are shown in Fig. 6.5 for sim-
ulations IB and IVB, and also in Table 6.2. Due to our initial gauge
condition 8 = 0, the puncture velocity is zero at the initial time, but it
will reach vy over a period of time (see Fig. 6.6). Notice that the BH ve-
locity after interaction with the BS agrees well with simple momentum-
conservation estimates. For extreme length ratios, the agreement is not
as good due to the extreme requirements necessary; our simulation is
not yet accurate enough, and we would require larger resolutions to
fully capture the dynamics to the necessary level of precision.

Nevertheless, there are interesting details in how the asymptotic ve-
locities are achieved, which require a deeper analysis. We find that the
BH pierces through the boson star and produces a tidal “stretching,”
with a significant amount of energy deposited in such a configuration.
A point of near-maximum distortion is shown in the lower left panel of
Fig. 6.3. At this instant, the velocity of the BH is close to zero, and
the tidally distorted cloud is slowly moving in the positive z direction.
Thus, the cloud pulls the BH, which then acquires a velocity in the
negative z direction, as seen in Fig. 6.5. The pull is significant and can
make the BH velocity large, but negative. As the cloud relaxes from
this tidal pull, it is accreted by the BH and transfers all its positive mo-
mentum to the BH, which then reaches its asymptotic value, consistent
with momentum conservation. This momentarily retrograde motion is
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Figure 6.6: Puncture velocity of a single boosted BH with M = 1 and v = 0.5.
The dashed gray line represents v = 0.5. Since we set § = 0 at
the initial time, the puncture speed is initially zero. Here we show
the effect of this initial gauge condition using a simulation of an
isolated boosted BH with M = 1 and v = 0.5. One can see that
the puncture speed (as measured by the zero of the shift vector 3)
of the boosted BH approaches the BH speed v = 0.5 over time and
eventually stabilises at v = 0.5. This means that the instantaneous
puncture speed before the collision can be used to gauge the speed
of the BH.
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directly responsible for the different accretion peaks in Fig. 6.4, and for
the features in GW emission that we discuss below.

In other words, what we find is an extreme example of “tidal cap-
ture” [223, 224], which in our setup leads to the subsequent accretion
of the entire boson star. As discussed in Ref. [223], the maximum tidal
oblateness that can be induced is of order Mpy/M for a BH sitting at
the BS “radius.” The associated tidal energy is ~ M]_%H /Rog. Since the
BH mass grows by the time it reaches the other BS extreme, this quan-
tity can be a sizable fraction of the initial kinetic energy, leading to
the stoppage of the BH. To prevent the BH backward motion, smaller
BH masses need to be considered, or more dilute BSs. Unfortunately,
either choice requires more extreme length ratios, which we are unable
to study at this point.

One of our original motivations was to study dynamical friction in a
full nonlinear realistic setup. Dynamical friction is of order 47 M p/v?
for a constant density boson star [155, 172, 189, 225]. We can estimate
when dynamical friction is dominant with respect to gravitational accel-
eration; both effects will impart similar accelerations (albeit of different
sign) when

4 47 M BHP
Zrpr ~ —— 208

. : (6.29)

02
where energy conservation requires that the BH velocity, in the constant-
BH-mass approximation, satisfies v = v%+4mp/3(R3s —r?). Here vp is
the BH velocity when it reaches the BS radius. Even in the most favor-
able situation when the BH starts from rest at infinity, v% = 2M/Rys,
and therefore we find that dynamical friction dominates only at dis-
tances

r S VRos, (6.30)

where « is defined by My = vM. Thus, we see how challenging it
is to perform simulations of self-gravitating objects where dynamical
friction can be isolated.

6.4.3 Gravitational-wave emission

When the BS is Newtonian and the BH velocity is nonrelativistic, we
can use the quadrupole approximation to estimate waveforms and radi-
ated fluxes. In addition, when the BH mass Mgy is much smaller than
that of the BS mass M, one can find simple solutions to the dynamics
of the system and consequent GW emission. In such a setup, the BH
simply follows a spacetime geodesic parametrized by a radial position
r(t), in a background whose geometry is dictated by a BS fixed at the
center of coordinates. The quadrupole approximation yields

dE 8 o o a2
= BMBH Bri+r7)” . (6.31)
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We first approximate the BS as a scalar blob of constant density and
radius Rgg, with vacuum outside. In this Newtonian setup the motion
of the BH in the exterior can be calculated using energy conservation,

72— 2M/r = v, (6.32)

where vy is the asymptotic velocity at large distances. In the interior,
one needs an accurate description of the BS gravitational potential. In
the approximation of constant density p = 3M /(47 R?), one finds
24 2 (- B3) = v (6.33)
3
in the interior, where Rgg is the BS radius and vr the velocity at Rgg
which can be obtained from (6.32).
Consider first infalls from rest. Integrating the quadrupole formula
in the exterior, one then finds (using dt = dr/r to perform a radial
integration)

16v/2 [ M \*/? M2
= 1OV2 (MY M (6.3)
105 Rosg Rog
In the interior one finds instead
. 63 cot ™1 (\/5)
B = | —— 1) B2 (6.35)

V2

For finite velocity or realistic matter density, a numerical integration
of the equation of motion, along with that of the quadrupole formula
is necessary. The result of such an integration is shown in Table 6.2,
where we use the fully relativistic boson star solution, and a slow motion
approximation. We truncate the integration at the origin when vy = 0,
but we assume that the BH plunges through and emerges on the other
side for vg = 0.5.

Our fully relativistic results for GW emission are shown in Table 6.2
and Fig. 6.7. We compute the energy and momentum flux of GWs at
r = 500. There is a pulse of “junk” radiation in the initial data, which is
easily distinguished from the physical pulse [226]. Hence we are able to
discard nonphysical contributions to the total radiated fluxes and ener-
gies. As seen in Table 6.2, our Newtonian estimate is in good agreement
with the full relativistic results, especially if one considers how simple
the Newtonian model is, with no accretion included. The flux of energy
in GWs for extreme length ratios, Fig. 6.7, shows three emission peaks,
which are caused by the BH tidally induced retrograde motion and
accretion and momentum-induced forward motion described above.

Table 6.2 also shows the linear momentum carried by GWs. Since
radiation is forward focused, linear momentum in GWs is along the
direction of the BH motion, in the positive z direction. The only ex-
ception concerns simulation IA, for which the collision happens from
rest and the BS is less massive than the BH. It is thus expected that
this is best described by a BS falling onto a BH, hence a negative total
linear momentum radiated. In any case, the linear momentum carried
by GWs is too small to influence any of the dynamics of the system.
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Figure 6.7: Energy flux ' = of the GW, which is the integration of
W, on the sphere r = 500. The blue dashed line is multiplied by
10.
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6.4.4 Late-time decay of the scalar

The BH accretes most of the BS material in a violent accretion stage,
as we saw. However, a small fraction of the BS leftovers linger around
the BH in a quasi-bound state co-moving with the BH, as might be
expected for massive scalars. To understand if such states correspond
to those in perturbation theory [36], we use a spherical harmonic de-
composition in the BH frame, as explained in Sec. 6.3.2.

Figure 6.8 shows the monopolar (I = m = 0) component of the scalar
field on a sphere around the BH extracted close to the BH for simu-
lations IB and IVB. The field oscillates at a frequency u, as expected
for massive fields. We also see a clear exponential decay of the field
after the collision, indicating that the system is relaxing in one of its
characteristic modes of vibration, corresponding to the so-called “grav-
itational atom” (with a BH “nucleus” and the light scalar field as the
“electron”) [36, 42, 43].

To test this picture and to compare with the decay timescale of a
bound state within perturbation theory, we calculate the quasi-bound
states of massive scalars in a fixed Schwarzschild geometry, using Leaver’s
continued fraction method [36, 89]. In other words, the field is assumed
to be quasistationary ¢ ~ e™* and evolving on a fixed BH background.
The characteristic frequencies w = wpgr + iwy. For simulation IA, for
example the final BH mass My ~ 1.56, and the decay rate seen in
the time evolution is close to that predicted by mode calculations, at
wy = —0.13. For simulations IB and IVB, we find a similar behavior, al-
though the agreement with linearized mode calculations is not as good,
nor as clean, since the BH is still accreting at late times (which changes
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Figure 6.8: Real part of the [ = m = 0 multipole of the scalar field on sphere

r = rgy + 1 around the BH for IB and IVB, where the origin is the
position of the BH and rgy is the BH horizon radius. The dashed
gray line indicates a “merger instant,” (somewhat arbitrarily) de-
fined as the instant where |¢og| > 1072 on the sphere r = rpy + 1.
The monopolar component grows once the BH plunges into the
BS, after which we see an exponentially decaying stage of a rate
(wy ~ —0.15 for IB and w; ~ —0.075 for IVB, in rough agreement
with expectations from the quasi-bound state calculation within
a linearized approach). Our calculations indicate that this is the
first overtone and that a “gravitational atom” was created. At late
times, we see a power-law decay, ¢gg ~ t~1® for simulations IB,
as expected for massive fields [227, 228]. For simulation IVB we do
not have clear control on the very-late-time behavior: this would
require a longer simulation, which for these extreme values is very
challenging to achieve, while keeping precision under control.
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its mass, and the quasi-bound state frequencies are very sensitive to the
precise value of the BH mass).

The quasi-bound states decay exponentially, and eventually may give
way to power-law tails. For massive scalars, the tail stage is dominated
at intermediate times by a behavior ¢gg ~ t~3/2 for spherically sym-
metric modes [227, 228]. This behavior is independent of the presence
of the BH and is already present in Minkowski: it is a characteristic of
massive fields. Our results for the late-time behavior, seen for example
in Fig. 6.8, are consistent with a decay close to the theoretical power-
law tail t=3/2, characteristic of intermediate times [227, 228]. We note
that this behavior is consistent with what we see in runs IA, IVA, and
IB. For simulation IVB we do not have any indication that the field
settled to its late-time value yet (by the time the simulation finishes,
the BH is still accreting). At very late times, one expects a slightly
different behavior, ¢gg ~ t=5/6_ for which we have no evidence. There
are several possible reasons for this, one of them being that we are not
able to evolve the spacetime long enough for this decay to dominate.

6.4.5 Numerical convergence

To check the convergence of our numerical results, we define the usual
convergence factor

_fac=Fa, AL AL
fan = fa, AL A

where n is the order of the finite difference scheme used, and fa_, fa,,,
and fa, are the numerical solutions obtained for a given function f at
resolutions A., Ay and Ay, respectively. For these tests we performed
simulations for configuration IB (see Table 6.1) with resolutions A, =
2.4M, Ay, = 2M and Ap, = 1.6M.

As explained in the main text, we use a simple superposition pro-
cedure to build initial data. The Hamiltonian constraint is therefore
expected to converge to a small, but nonzero, value. This is shown
in Fig. 6.9, where a fourth-order convergence can be seen. We exper-
imented with other methods for the superposition operation, but saw
no noticeable advantage. For the future, we intend to try the method of
Ref. [229], or a similar method, to check if any improvement is observed.

We also monitor the £2-norm of the constraint violations during the
evolution (see Fig. 6.10) to confirm these do not grow with time.

Finally, we plot in Fig. 6.11 the convergence analysis for the [ = 0,
m = 2 multipole of Wy, extracted at » = 500M, for configuration IB.
The results are compatible with a convergence order between third and
fourth order.

Q@n (6.36)

6.5 CONCLUSION

We have performed some of the most challenging simulations to date
involving BHs and BSs, with length ratios as large as ~ 62. Our goal
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Figure 6.9: Top: convergence of the Hamiltonian constraint violation at ¢ = 0
for IB. The green line is multiplied by @4 = 1.82, the expected
factor for fourth-order convergence. Bottom: Richardson extrap-
olation used to obtain the value of the Hamiltonian constraint as
A — 0.
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Figure 6.10: Violation of the Hamiltonian and momentum constraints as func-
tions of time for run IB.



6.5 CONCLUSION

x10~7

9 {' === X1.49,A1=2,A2=1.6
i _= X1.82,A1:2,A2i1.6

AT (r = 500M)

860 880 900 920 940 960 980
t

Figure 6.11: Convergence analysis of the I = 0, m = 2 multipole of W, ex-
tracted at r = 500M . The blue line shows the expected result for
third-order convergence (Q3 = 1.49), while the green line shows
the expected result for fourth-order convergence (Q4 = 1.82).

was to understand how bosonic structures—which could describe dark
matter—interact with BHs, and which dynamical friction or accretion
they induce on the BHs. Our fully relativistic results are in good agree-
ment with Newtonian estimates for the motion and asymptotic veloci-
ties of the objects, as well as for GW emission. To our surprise, even at
the most extreme length ratios we considered, the boson star is entirely
accreted by the BH. The reason, we believe, is that the BH is tidally
captured by the boson star. This seems to be an extreme case of tidal
capture not reported previously. At late times, a “gravitational atom”
is formed, where a massive BH is surrounded by a quasi-bound state
of the scalar field, the BS remnant.

One of our goals was to see the fate of a boson star which had
been pierced by a high-velocity BH, and how dynamical friction on the
BH compares to estimates in the literature. Unfortunately, because of
tidal capture, the BS is swollen and dynamical friction turns out to be
strongly enhanced due to transient accretion. We estimate in Sec. 6.4.2
that very challenging simulations need to be done, if tidal friction is to
be identified at the full nonlinear level in self-gravitating structures.

In our configuration, the BS is kept fixed in all scenarios, but we
believe the results would be similar for other BS parameters. We focus
on spherically symmetric, neutral configurations, but there are obvi-
ously new phenomena when one extends the initial data to spinning
or charged configurations (see also Ref. [217] for a possible similar end
state with spin). We are currently starting these studies.
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In this chapter, we generalize Ref. [40] to SBSs. The addition of a repul-
sive self-interaction term introduces extra resistance to gravitational
collapse and may drastically modify the relevant length scales [230].
Moreover, the maximum mass of mini-BSs, M., &= Mglanck /1, is sig-
nificantly smaller than the Chandrasekhar mass, Mcy ~ Mglamk /1,
for bosonic particle candidates with typical masses, where p is the
mass of the particle [20, 170, 231]. Dark stars are anticipated to ac-
crete mass from their surroundings, regardless of their initial mass.
As a result of this accretion process, their mass can increase by as
much as 10" Mg [232]. To extend the limit of the potential to astro-
physical masses that are comparable to the Chandrasekhar mass, a
self-interaction component has been incorporated into the potential to
provide additional pressure to counteract gravitational collapse [233].

As the simplest example of nontopological solitons, an SBS can even
exist in the absence of gravity and is referred to as a Q-ball [12, 20,
23, 234]. Mini-BSs attain stability through the balance between gravi-
tational and repulsive pressure forces. On the other hand, the stability
mechanism of SBSs differs, with a bubble-like structure emerging in
the densest region of the parameter space. Stability arises from the
accumulation of energy near the surface, engendering surface tension
among distinct vacua [12].

Evidence also suggests that SBSs can describe dark matter cores in
sub-halos. A sub-halo is a smaller clump of dark matter that is gravita-
tionally bound within a larger dark matter halo, and is created when
smaller halos are accreted and tidally disrupted by larger ones [235]. A
solitonic core can be considered as a special type of sub-halo that has a
different profile and properties than other sub-halos [236]. However, the
variability of the core-halo relation can make the discrepancy between
soliton and sub-halo less strong for larger halos [237]. If dark matter is
made up of ultralight bosons, it is possible for solitonic cores to form at
the centers of dark matter halos [172]. It is worth noting that Ref. [238,
239] provides evidence that the density profiles of different mergers of
solitonic cores conform to the SBS profile in ultralight axion dark mat-
ter halos. In addition, although the well-known cusp-core problem can
be overcome by introducing a quartic term in the self-interaction scalar
potential [240, 241], the scaling relation between the dark matter halo
radius and central density still contradicts the observations [242]. With
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an additional ¢%-term in the potential, the problem could be resolved
and the cores would have a non-trivial phase structure [242, 243]. In this
work, by focusing on SBSs, we aim to gain a comprehensive understand-
ing of how solitonic cores behave in the presence of drifting perturbers.
We note, however, that for relativistic fuzzy dark matter models, the
boson mass is approximately of the order of 10722 eV, which would
correspond to a solitonic core radius of order 1 kpc [177]. Considering
the largest known astrophysical BH, Tonantzintla 618%, its radius is
of the order of 107 kpc [244], resulting in a length ratio of 10® which
is impossible to resolve with our current approach. As a model for such
systems, we will present the largest ratios that are feasible with our com-
putational infrastructure, and as we will argue later, we do not expect
our results to change significantly for larger length ratios that remain
within one order of magnitude. Probing length scales much higher than
these currently considered would necessitate a fundamentally different
approach.

7.1 FRAMEWORK
7.1.1 Solitonic boson star

We consider the Lagrangian density of a self-gravitating, complex scalar
field ® with a solitonic potential V = V (|®|?)

Lo ~ |9V @V, " + V], (7.1)

~ 167
where g, is the metric of the spacetime, R is the Ricci scalar, ®* is
the complex conjugate of the scalar field and V' is the potential

o2\
V = u?|®|? (1—22> : (7.2)
g

Here p is the scalar field mass and o is a free parameter controlling
the self-interaction. The self-interaction potential is chosen to provide
configurations that can exist even in flat spacetime [12, 23, 234], and
is a standard choice in the literature (e.g. [190, 245]). Variation of the
corresponding action with respect to the metric g% gives the equations
of motion

1
Rab - iRgab = 877Taba (73)
av
ab
NVp® =0—— 7.4
9*°VaVy e (7.4)
with energy-momentum tensor
T% = VOVl D* + VI* VD — g% (VCOV, .0 + V) . (7.5)

Following Refs. [20, 40, 246], we write down equilibrium equations with
the general, spherical symmetric metric in Schwarzschild-like coordi-
nates

ds* = —a?dt? + a*dr® + r?dQ3 (7.6)
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where a = a(r), a = a(r). In addition, to get the time-independent
solution, we assume a harmonic ansatz

O = ¢(r)et. (7.7)

Then, the Einstein-Klein-Gordon system can be written as three cou-
pled ordinary differential equations

/ 9 2 22 o 22
2i:1 a + 871 [(%4_@) a2¢2+(¢/)2]7
T o o

a
f:a2;1+8ﬂrl<g_W>a2¢2+(¢/)2],
"Z—{1+a2—87rr 2¢2(U_2¢2)}¢/
r
2 A2
‘{22—”2 O 36?2 >}¢a2,

where primes stand for radial derivatives d,. To obtain a physical solu-
tion, the following boundary conditions must be imposed on this sys-
tem.

$(0) = <l50, ¢'(0)=0,  a(0)=1, (7.8)
lim ¢(r) = Jim a(r)a(r)=1. (7.9)

r—r00
¢ can be specified arbitrarily and roughly determines the mass of the
BS. We can find a simpler system by rescaling the variables in the
following manner,

q}zé, T

Then the equations become

|||
\.P#
jo))
Il
=
~
E
Q

pr, t

L ;{1; esmote [ (2 + (1207 aqu(a)g]} ,
& % {“2; L | 8ro% Kof? -(1- 2¢32)2) a’¢* + (3)2} } " (7.10)
QE/

gE” = — {1 +a%— 87 02r2a2¢ (1 2&2)2}
_ [6}2 —1—4¢%(3¢% — 2)] ¢a®

where primes now stand for derivatives with respect to 7. To integrate
these equations, we need to understand their asymptotic behavior. At
the origin, 7 = 0, we can expand all quantities in a Taylor series to find

Ari2o2d2 ~
a(f) =1+ w [1+a301-289)%] + 0(7),
) =0+ IR 5530232 + 0.
~2~
37) = o+ T2 [1- 2 83+ 1238 + 0,
0
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where $(0) = ¢g, @(0) = ao. At large distances, the asymptotic behav-
ior of ¢ is

B(F — 00) ~ %exp(—f\/l —a7?). (7.11)

Equation (7.2) results in the potential of mini-BSs in the limit o —
oo [156]. A SBS is not always dynamically stable against linear fluc-
tuations. An unstable solution evolves on timescales possibly shorter
than those of collision processes we aim to study, hence it is crucial to
select linearly stable solutions as initial data. The stability of spheri-
cally symmetric BSs has been investigated with findings showing that
stability changes at a mass extremum, meaning it is marginally stable
at a particular value of ¢o: dM/dpg = 0 (See II. C in Ref. [247] for
details). This result reveals, as indicated in Fig. 2 of Ref. [248], that
SBSs possess two stable and two unstable branches for any value of
o< 1[12, 234, 249, 250].

The first stable branch of SBSs arises from the non-relativistic limit
(¢o/0 — 0) with weak self-interactions, leading us to anticipate that it
will yield results similar to those of the mini-BS. In contrast, the second
stable branch is situated near ¢y/o and possesses significantly stronger
self-interactions. This allows for a more compact configuration of SBSs
compared to the first branch.

It is also worth noting that while SBSs may initially form in a di-
lute state, subsequent interactions and coalescence could lead to more
compact configurations [12, 168]. Moving forward, we will standardize
units such that g = 1. All our results will be shown and analyzed using
this unit measure. In the following analysis, we will focus on the sec-
ond branch and utilize a ground-state SBS characterized by ¢ = 0.7,
o =0.1, M = 0.20, and Rgg = 4.41, where Rgyg represents the radius
that encompasses 98% of the SBS mass. This configuration is depicted
in Fig. 7.1.

7.1.2 BH-BS binary

To construct initial data of BH-SBS spacetime, we transform radial
coordinates of SBS into isotropic coordinates R and superpose this
solution with a boosted Schwarzschild BH, the details of which are
demonstrated in Ref. [40].

To evolve this system, we employ the Baumgarte-Shapiro-Shibata-
Nakamura formulation of Einstein’s equations [200-202] for our numeri-
cal simulations and rely on the infrastructure of the Einstein Toolkit [204,
205, 251] for the numerical evolutions. Mesh refinement capabilities are
facilitated by Carpet [207], apparent horizons are located and tracked
using AHFinderDirect [208, 209], and BH mass is extracted using QuasiLo-
calMeasures [210]. The spacetime metric and scalar field variables are
evolved in time using the LeanBSSNMoL and ScalarEvolve codes [203,
211]. We employ the method of lines, coupled with the fourth-order
Runge-Kutta technique, to advance our equations over time. In the inte-
gration process, we use outgoing (radiative) boundary conditions along-
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Figure 7.1: Scalar field and metric components as functions of the isotropic
radial coordinate R for an isolated SBS with mass M = 0.20,
$o =0.7,0 = 0.1, w = 0.1, Rog = 4.41. In this work we focus on
this specific SBS.

side the common 1+ log and Gamma-driver gauge conditions [199]. For

all simulations we use a square numerical domain with x¢ . = —430,
Tlax = 430. We tested also with larger domain sizes and it did not

change the final results. We consistently employ a minimum of 40 points
to cover the BH, thereby guaranteeing sufficient grid points to achieve
satisfactory resolution and use the same grid structure as in Ref. [40].
We have run simulation IVA until £ ~ 1500 and simulation IVB until
t ~ 800. The data analysis for this project was performed utilizing the
Python package “kuibit” [252].

7.1.3 Diagnostic tools

To gain a clearer understanding and more precise characterization of
some of the physics involved, we track the following quantities, whose
definitions can be found in Ref. [40]:

o The spherical harmonics decomposition of the scalar field ¢y, (¢, 7)
in the vicinity of the moving BH, using a frame that is comoving
with the BH. We use a coordinate system where the dynamics
is axi-symmetric, hence the only contributing multipoles have az-
imuthal number m = 0.

e The energy £ and momentum P radiated in GWs at large
distances.

e The total energy density Q; of the scalar field into the BH horizon.
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7.2 NUMERICAL RESULTS

Table 7.1: List of simulations analyzed for collisions between a BH of mass
parameter Mgy and an SBS with mass M = 0.20. The BH is
initially moving along the z-axis with a velocity of vy and starting
from position zg = —50. The SBS is characterized by a frequency
of w = 0.759 and values of (;30 =0.7,0 = 0.1, = 0.827 at the
origin. The total energy of the system, M, can be approximated
using a Newtonian approach as Mo, = I'Mpy + M — T'MguM/ 2,
where I' is the Lorentz factor. The total momentum of the boosted
BH is 'Mpuvo. The simulations use a mass ratio of ¢ = M/Mpy
and a length ratio of £ = Rgs/(2Mpn) as parameters. It should
be noted that initially the mass parameter Mpy is approximately
equal to the irreducible mass M;,, to within 0.5%. The irreducible
mass can be calculated as A = 16mM2,, where A is the area of

the apparent horizon. Recall that all results are presented in units

where p = 1.

Run Mgy L Vo Mo Pioy
IA 0.5 4 1074 0.70 0
IB 0.5 4 0.5 0.78 0.289
IIA 0.25 9 104 0.45 0
IIB 0.25 9 0.5 0.49 0.144

IIIA 0.125 18 1074 0.33 0

IIIB 0.125 18 0.5 0.35 0.072
IVA 0.0625 35 1074 0.26 0
IVB 0.0625 35 0.5 0.27 0.036

We conducted a study on a range of initial conditions, varying the ini-
tial mass and velocity of the BH. We use coordinates such that the SBS
is initially at rest at the origin, and the BH is located along the z axis,
initially at (0,0, zp) and moving in the positive z-direction. The conver-
gence of our numerical simulations is demonstrated in Section 7.2.4.

The initial conditions are summarized in Table 7.1 and our numerical
results and findings are summarized in Table 7.2 and Figs. 7.2-7.7. In
the following subsections, we focus on two typical cases, Run IIIB and
Run IVB, as our main interest lies in small BHs. However, to more
clearly illustrate tidal deformation, we opt to showcase Run IB rather
than Run IIIB in Section 7.2.1.

7.2.1 Dynamics and accretion during collision

Snapshots of the evolution of the scalar field for initial data IB and
IVB are shown in Figs. 7.2 and 7.3, respectively. In both figures the
tidal distortion of the BS as the BH approaches is clear, probably due
to their large (and positive) tidal Love numbers compared to compact
systems [194, 220]. The distortion becomes more visible as the BH
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Figure 7.2: Snapshots of evolution for the simulation IB, where the BH and

SBS are nearly of equal mass. Color intensity depicts scalar field
absolute value |®|. Snapshots are shown at instants ¢t = 80, 100,
102, 112 from left to right. The pink lines depict contours of con-
stant lapse function @ = 0.2, a rough measure for the location of
the apparent horizon. This figure illustrates that the SBS under-
goes considerable tidal distortion as it nears the BH, and ultimate
near-total accretion by the BH.
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Figure 7.3: Snapshots of evolution, depicting the scalar field absolute value |®|

for the simulation IVB. The top row displays snapshots taken at in-
stants ¢t = 0.0,79.36,94.72, and 107.52 from left to right, while the
bottom row shows snapshots taken at t = 120.32,130.56, 140.8,
and 145.92 from left to right. As in the previous case, the pink
lines depict contours of constant lapse function o = 0.2, indicat-
ing the location of the apparent horizon. The pink circle in this
figure is much smaller and harder to see compared to the one in
Fig. 7.2, due to the significantly smaller size of the BH. In this
figure, the SBS pulls back the BH during the collision process, as
depicted in panels 5 and 6. Finally, the BH swallows the BS com-
pletely. Notice that when the BH first passes through the SBS,
the tidal deformation of the SBS is quite inconspicuous. However,
as the SBS accretes an increasing amount of the scalar field, the
deformation becomes more pronounced.
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approaches the BS along the BH-BS axis. Tidal effects become crucial
to capture the BH, and this is evident for simulation IVB: a much
smaller BH, moving at half the speed of light is still captured by the
SBS via tidal effects, ending up by accreting almost all of the SBS. The
tidal capture is clearly illustrated in bottom panel of Fig. 7.4, where
the BH’s velocity even becomes negative for a short period.
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Figure 7.4: The puncture location z and the velocity v of the BH for simula-
tions IIIB and IVB. They provide good estimates for the location
and velocity of the BH, and these results demonstrate a clear in-
teraction between the BH and the BS. Notably, in simulation IVB,
the BH velocity becomes negative for a brief period as the BH is
tidally captured by the SBS.

Some of the main numerical results are reported Table 7.2, which
shows a few interesting aspects of this process. For all simulations we
performed, across the different mass ratios, the BH ends up accreting
the SBS. The reason for this is most likely three-fold: accretion and
dynamical friction slows the BH down as the plunges through the SBS
material [155, 189, 196], but for the process to be fully effective, tidal
capture ensures that the BH remains inside the SBS, eventually ac-
creting it all or almost all. Accordingly, the velocity of the BH at late
times is well estimated by simple momentum conservation as can be
seen from Table 7.2.

Given the velocity dependence of dynamical friction, it is unlikely
that yet higher velocities would allow for the BH to cross the SBS and
exit without first accreting it [155, 189, 196], unless of the course one
gets to more extreme mass ratios. In fact, the BH absorption cross-
section is the main factor that determines whether a BH can pass
through a BS without destroying it, and to decrease it one needs to
make the BH smaller. Table 7.2 seems to indicate indeed that the resid-
ual scalar field increases for smaller BH mass. We can infer that for
yet smaller BHs than those simulated here, the BH may pierce through
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the SBS, consuming only a small portion of scalar field, thereby leaving
a smaller SBS in its wake. However, our numerical simulations would
take a prohibitively long time to evolve such cases. As a result, within
this theoretical framework, it is very difficult to verify whether a BH
can pass through a BS without destroying it.

7.2.2  The tidal capture and gravitational-wave emission

o ———
-

N
\
'\

0 200 400 600 800

Figure 7.5: Accretion of scalar onto the BH. Top panel: normalized BH irre-
ducible mass M;,,/Mgp for simulations IIIB and IVB. The gray
lines are the normalized total mass Mot /Mpu given in Table 7.1.
At late times the BH mass approaches M., thus the BH ends up
accreting the entire BS. Bottom panel: accretion rate for the two
different initial data. It is worth mentioning that for simulation
IVB, there are two distinct stages of accretion that we believe are
caused by tidal effects.

When small BHs are tidally captured, we find that they oscillate
around the center of the SBSs like a harmonic oscillator. The phe-
nomenon is clearly observable for IVB case in both bottom panel of
Fig. 7.5 and upper panel of Fig. 7.6, which features multiple peaks,
indicating various stages of oscillation. The peaks depicted in the bot-
tom panel of Fig. 7.5 indicate a high accretion rate, suggesting that the
BH is traversing the core of the SBS. Due to the deformation of the
SBS, this core is identified as the region where the absolute value of
the scalar field |®| reaches its maximum at this stage. Meanwhile, the
peaks seen in the upper panel of Fig. 7.6 stem from the acceleration and
deceleration of the relative movement between the SBS and the BH. It
is worth noting that this oscillatory behavior is not clear in Fig. 7.4,
given that the SBS have non-zero velocity in the lab frame.

To estimate the period of this oscillation and determine how close we
are to the test particle threshold, we use the test particle approximation.
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Figure 7.6: Energy flux F = dE™4/dt of the GW for IIIB and IVB. Top:
The energy flux obtained by integrating ¥, over the sphere with
radius r = 400. Bottom: The energy flux is calculated using the
quadrupole approximation (7.14), which requires numerical data
from the simulation such as the puncture location, puncture veloc-

ity, and BH mass.
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By assuming this, we can use the lapse function a(R) of non-deformed
SBS, which provides a good approximation of the gravitational poten-
tial. Therefore this function is also commonly referred to as the Newton
potential. When considering a test particle oscillating within this po-
tential, the acceleration it experiences can be determined from

d’R do(r)
— == : 7.12
dt? dR ( )
The period given by the equation of motion is then
2
T=—"C _ ~2323. (7.13)
a//(o)

Additionally, the period of the emitted gravitational wave corresponds
to half of the motion period 7', which for this case is 11.62. This period
is consistent with the first peak of gravitational waves observed in case
IVB, as shown in Fig. 7.6. This suggests that we are very near the test
particle threshold for simulation IVB. Therefore, it is unlikely that we
will observe any new phenomena at length ratios slightly larger but still
within one order of magnitude. As we observe subsequent peaks, the
oscillation period gradually decreases due to the BH accretion.

Our results for gravitational wave emission, derived using a fully
relativistic approach, are presented in Table 7.2. We have selected two
typical cases to illustrate the waveform, as depicted in top panel of
Fig. 7.6. Following Ref. [40], in the case that the BH mass is much
smaller than SBS mass, the quadrupole approximation can be used to
estimate the waveforms and radiated fluxes, with the BH moving along
a spacetime geodesic defined by a radial position r(t) in a background
dictated by the SBS

%3 = %M]_%H(?)ﬁ—i—r‘f')Q. (7.14)
Nevertheless, the present scenario differs significantly from the Newto-
nian case, which is characterized by ¢/o — 0, rendering the methodol-
ogy in Ref. [40] inapplicable in this context. As an alternative solution,
we use the puncture location, puncture veolcity and BH irreducible
mass in numerical simulations instead of the original semi-analytic ap-
proximation. To reduce the impact of high frequency noise in numerical
data of IIIB and IVB, we utilize a low-pass filter on both the punc-
ture location and puncture velocity with a cutoff frequency w. = 2.5
(T = i—z ~ 2.51). From the numerical results, it can be seen that the
dominant wavelength of the energy flux exceeds 2.51, indicating that it
would not significantly affect the main waveform. However, as depicted
in bottom panel of Fig. 7.6, this approximation fails to describe the
peaks that follow the initial main peak in both ITIIB and IVB, which
emerge from the BS, retaining only specific remnants during the final
acceleration phase. This circumstance invalidates our initial assumption
in the quadrupolar formula, where the BH mass Mpy is significantly
smaller than the BS mass and the trajectory of the BH is a geodesic on
the SBS background. Ideally, substituting the puncture velocity with
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the relative velocity between BHs and SBS could lead to improved
results. However, defining and calculating this relative velocity poses
significant challenges. The result of quadrupolar approximation is given
in bottom panel of Fig. 7.6. However, in all instances, these values are
too insignificant to exert any substantial impact on the system.

7.2.3 Late-time decay of the scalar

As noted in Ref. [40] and demonstrated in the IIIB case in Fig. 7.5,
when the mass of the BH is about half that of the BS, the BH enters
a violent accretion phase, during which it absorbs most of the material
from the BS. However, as shown in the IVB case in Fig. 7.5, the scenario
deviates slightly. Here, the BH starts significantly smaller than the BS.
After the BH is tidally captured and begins to increase in size, the sub-
sequent stage of accretion becomes significantly more violent compared
to the initial phase. In any case, a small portion of the BS remnants
remains in a quasi-bound state, moving alongside the BH, which is typ-
ical for massive scalars. The small portion of BS remnants is expected
to be mainly composed of spherical components and large wavelengths
due to their lower accretion rate [255, 256]. Therefore, we validate the
quasi-bound states for [ = m = 0 multiple, as predicted by perturba-
tion theory, by using the spherical harmonic decomposition technique
in the BH frame [36]. Specifically, we calculate the quasi-bound state
spectrum corresponding to the final BH mass using Leaver’s method
[89, 253, 254]. We find that the imaginary part of these modes align
with the fitting result from one of the exponential decay stages. The
results are shown in Fig. 7.7. Note that while there are multiple expo-
nential stages, it becomes challenging to compare them with the results
of perturbation theory before the BH mass reaches a stable stage, due
to the variations in the BH mass during the accretion process.

7.2.4 Numerical convergence

We check the convergence of our numerical results by defining the usual
convergence factor

_fac=Fa, AL AL
fan = Tfa, AL -4

where n denotes the order of the finite difference scheme employed,
while fa., fa,., and fa, represent the corresponding numerical solu-
tions for a specified function f at resolutions of A., A,,, and Ay,

We plot in Fig. 7.8 the convergence analysis for the [ = 0, m = 2
multipole of Wy, extracted at r = 400M, for configuration IB. The
results are compatible with a convergence order between second and
fourth order for physical waveform between ¢ = 500 to ¢ = 530.

As illustrated in the bottom panel of Fig. 7.9, the Hamiltonian con-
straint does not converge to zero, which is attributed to the superpo-
sition procedure used in constructing the initial data. To demonstrate

Q@n (7.15)
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Figure 7.7: Real part of the [ = m = 0 multipole of the scalar field on sphere

r = rgy + 1 around the BH, where the left figure (a) is for IIIB
and the right figure (b) is for IVB. The position of the sphere is
taken as the position of the BH, and rgy represents the radius of
the BH horizon. As indicated by the dashed lines, it is evident that
both ITIB and IVB display exponential decay, with varying rates
at distinct stages. The rates of the dashed red lines are roughly
consistent with the expectations from the quasi-bound state cal-
culation using Leaver’s method [36, 89, 253, 254], which predicts
wr ~ —0.0350, —0.00559, —0.00167, ... for IIIB (M; = 0.31) and
wr ~ —0.018, —0.0025, —0.00073, ... for IVB (M; = 0.25), re-
spectively. The modes are characterized by the principal quantum
number n [42]. It is notable that for IIIB, the corresponding mode
is the n = 3 mode w; ~ —0.00167, while for IVB, the correspond-
ing mode is the n = 1 mode wy; ~ —0.018. This result indicate the
existence of a “gravitational atom”. The monopolar component ex-
perienced two growth phases. The decrease after the first growth
is due to passing through the center of the SBS (defined as the
place with the highest scalar field density). The second growth is
caused by the BH pulling the SBS back and gradually swallow-
ing it. Notice in panel (b) that the monopolar component has two
highest peaks near the highest point, which implies that the BH
oscillates at the center of the SBS.
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Top: The analysis of convergence for the [ = 0, m = 2 multi-
pole of W4, which was extracted at r = 400M, is presented. The
blue line represents the expected result for a second-order conver-
gence with a value of Q2 = 1.15, while the green line illustrates
the expected result for a fourth-order convergence, identified by
@4 = 1.53. Bottom: The [ = 0, m = 2 multipole of V4. The time
interpolation order of Carpet is of the 2th order, whereas Multi-
ple Thorn, which we employed to extract W92, utilizes a 3rd order
interpolation order. Consequently, we anticipate that the conver-
gence order of W$? will land between these two values—namely,
the 2rd and 3th orders.
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Figure 7.9: Top: Convergence of the Hamiltonian constraint violation at ¢ = 0
for IB. The green line is multiplied by @4 = 1.70, the expected
factor for fourth-order convergence. Bottom: We employ a tech-
nique known as Richardson eztrapolation to derive the value of
the Hamiltonian constraint as A — 0.

the convergence that aligns with the finite difference scheme that was
implemented, the top panel of Fig. 7.9 shows that the violation of the
Hamiltonian constraint exhibits fourth-order convergence.

To ensure that constraint violations do not increase over time, we
track the evolution of the ¢?-norm of these violations, as shown in
Fig. 7.10. Fig. 7.11 shows that the apparent horizon is consistently
covered by finest level of the grid in Run IB, which demonstrates that
Carpet tracks the grid structure effectively.

7.3 CONCLUSION

We have performed simulations involving BHs and SBSs, with length
ratios as large as ~ 35. Our objective is to investigate the interaction be-
tween bosonic structures with self-interaction, which could potentially
represent dark matter, and BHs, as well as to determine the dynamical
friction or accretion they induce on the BHs. We find that the results
are very similar to those obtained in Ref. [40], even for a more com-
pact SBS. The presented results in this study, combined with those
in with Ref. [40], suggest that if a scalar field with self-interaction is
a good model for describing dark matter, then the emergence of grav-
itational atoms will be very common in astrophysical environments,
and thus possible to be detected by detectors [257]. As we expected,
a gravitational atom comes into existence after collision, characterized
by a massive BH surrounded by a quasi-bound state of the scalar field,
known as the SBS remnant. This differs from the ones in Ref. [258, 259],
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Figure 7.10: Violation of the Hamiltonian and momentum constraints as func-
tions of time for run IB.
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Figure 7.11: Difference in the z direction between the boundary of the two
finest refinement levels and the location of the BH puncture. The
red line indicates the maximum apparent horizon radius of the
BH.
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which are primarily mixed-state solutions of the Schrodinger-Poisson
system including spherical and dipolar components. Given that the os-
cillation period of the BH located at the center of the SBS is already
close to the test particle limit, we do not expect any new phenomena
to emerge until we reach extremely high length ratios, such as inter-
mediate or even extreme mass ratios. However, as we discussed in the
introduction, the length ratio of solitonic cores formed by relativistic
fuzzy dark matter and astrophysical BHs would be at least on the or-
der of 10%, representing extreme mass ratio systems. Simulating such
systems with our current computational infrastructure is not possible.
In all of our scenarios, we focus on a specific SBS, illustrated in Fig. 7.1.
However, we anticipate that our findings will be similar for other SBS
configurations with similar compactness to our present cases.
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LATE-TIME TAILS IN DYNAMICAL SPACETIMES

8.1 INTRODUCTION

GR is our ultimate description of the gravitational interaction. It con-
tains, as a mathematical solution, perhaps the most interesting and
bizarre object known to humankind: BHs [52, 260, 261]. Two powerful
results highlight the role of BHs in our understanding of nature and
on their potential to uncover new laws of physics: i. the most general
vacuum BH solution belongs to the Kerr family [262—-264]; ii. BHs har-
bour spacetime singularities, where the known laws of physics break
down [50, 265]. The assertion that all singularities are hidden from us
is so remarkable that any observational evidence for or against it is
highly sought for.

The advent of gravitational-wave astronomy harnessed access to in-
formation from the coalescence of two BHs, opening new exciting ways
to test gravity in its strong-field and dynamical regime. A key aspect
involves understanding the full gravitational waveform, including its
behavior long after the initial merger burst. One relevant question con-
cerns the approach to the final state: if there is a stationary state and
it is well described by the Kerr family, how is it approached? How does
the spacetime shed its multipolar structure when approaching a station-
ary BH state? Insight into this problem was provided by linearizing the
field equations. At late times, BHs relax (“ring down”) in a series of
exponentially damped sinusoids, so-called quasinormal modes [88], fol-
lowed by an inverse power-law decay with time, Price “tails” [44, 45,
266, 267]. This chapter focuses on these late-time tails as a specific
probe derived directly from the gravitational wave signal. For generic
initial data of multipolar structure described by a spherical harmonic
of angular number ¢, a massless field in a non-spinning BH background
decays at fixed spatial position as ® ~ t7P, p = 2 4+ 3 at very late
times [44]. Such behavior arises from a branch-cut in the Green’s func-
tion, or equivalently from large-radius scattering, and is observed in
linearized analysis of scattering experiments, stellar collapse or point
particle evolutions in BH backgrounds [45, 268, 269]. We term such
decay “Initial Data-led Tails” (IDT). In numerical experiments, power-
law tails are suppressed relative to the ringdown stage, hence they are
very challenging to observe. Nevertheless, they dictate how fluctuations
behave at late times and play a crucial role in foundational issues such
as strong cosmic censorship [120, 270-272].
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It has recently been observed in linear and nonlinear simulations of
eccentric coalescences (see Fig. 19 in Ref. [273] and Fig. 1 in Ref. [274])
that the ringdown stage can be much shorter than previously thought,
and very soon dominated by large amplitude transients which decay
slower than IDTs (reporting fall-offs at null infinity slower than the
asymptotic Price value at intermediate times). This behavior is unex-
pected, and exciting, as it means that large-amplitude post-ringdown
signals might be detected with upcoming experiments, leading to new
tests of Einstein equations with gravitational waves. If such a decay
really describes the long-term behavior of relaxing BH spacetimes, it
also means that our understanding of final state problem (how does
one get to the final Kerr state) is incomplete; should such a decay also
be present in cosmological backgrounds, then there are also important
consequences for strong cosmic censorship.

We see three possibilities to circumvent Price’s results: a) the effect is
linear but triggered by the motion of sources in the BH vicinity, some-
thing not taken into account in all previous asymptotic analyses, which
focused on the vacuum (and sourceless) linearized equations. As we will
show, source-driven tails—SoDTs—do indeed exist, and depend on the
source spatial distribution; b) the effect is nonlinear in nature. Such
a possibility was raised in the past in the context of toy models [275].
Here we show, in the context of second-order perturbation theory, that
second order tails exist and may dominate over linear ones, yet are
weaker than predicted [275]; ¢) the effect is only a transient, possibly
triggered by initial conditions. To understand the context of these po-
tential new signals, we first review the established understanding of
late-time behavior.

8.2 KNOWN RESULTS FOR LINEAR FLUCTUATIONS

To place the context, we start by briefly summarizing the main results
on the late-time decay (IDTs) of massless fields in BH backgrounds. We
focus on non-spinning BHs.

Linearized fluctuations of BH spacetimes seem to be well understood.
For a Schwarzschild BH of mass M in standard coordinates, the evolu-
tion of these variables is governed by the wave equation [276-280] (x
ranges from | — oo, +00[)

P - 020 -VP=S. (8.1)

Here @ denotes a gauge-invariant combination of metric variables. These
are expanded in tensor spherical harmonics of indices ¢, m and decom-
posed in two different sets, so-called Regge-Wheeler or axial and Zerilli
or polar. The tortoise coordinate is defined as

x=r+2Mlog(r/(2M)—1), (8.2)



8.3 INITIAL AND SOURCE-DRIVEN TAILS

and the potentials V = V7 or V = Viw are given by

(0+1)  6Mr*A(A+2) +3M(r — M)

Vo=1 72 r3 (rA+3M)? ’ (8.3)
(e+1) 6M '
Vew = f [(7,2) — 7,3} ;

where A\ = ({ —1)(¢ 4+ 2)/2, and f = 1 — 2M/r. The source term S
encapsulates information about possible matter exciting the fluctua-
tions ®. For other massless fields, a similar wave equation describes

all radiative degrees of freedom, with an effective potential Vgw =

L(0+1)  2(1-s*)M
fasn _ 20
respectively. We will use scalar fields as toy models in some of our

discussions.

In the absence of a source, the late time decay of generic massless
fluctuations at fixed spatial position and asymptotically late times, cor-
responding to solutions of the linear wave equation, is governed by
Price’s law [44, 45, 266, 267],

], with s = 0,1 for scalar or electromagnetic fields,

B ~tP (8.4)

This behavior is dictated by a branch cut at zero frequency [266, 281,
282]. For generic initial data (®(t = 0) # 0,0;®(t = 0) # 0) of compact
support then p = 2¢ 4 3. If initial data is of compact support and
initially static (9;®(t = 0) = 0) then p = 2¢ + 4 [283, 284]. For static
initial data but non-compact support p = 2¢ + 2. As a special example,
a late-time decay ¢~3, was proven to describe the asymptotics of a self-
gravitating scalar field, with compact-support initial conditions [285].

In the presence of forcing terms, like matter moving in the BH exte-
rior, the source S in (8.1) is nonzero. Its effect on possible late-time be-
havior has hardly been explored. However, when the full set of Einstein
equations is expanded to second order around a fixed BH background,
then second order metric quantities obey a similar equation, sourced by
first order quantities. There are arguments suggesting that these lead
to nontrivial power-law decay at late times [275]. Thus, here we focus
on precisely the class of equations (8.1), in BH spacetimes.

8.3 INITIAL AND SOURCE-DRIVEN TAILS

Building on previous work [283, 284, 286], we develop a two-parameter
perturbative expansion to estimate the asymptotic decay of the fields
in the presence of sources. Details are given in Supplemental Material
of Ref. [46]. Consider the wave-like equation describing massless field
evolutions in a spherically symmetric BH spacetime, written in double
null coordinates (u,v),

—492,® =Vd +aS, (8.5)

where V' = V/(x) is an effective potential that depends only on the
tortoise coordinate x €] — oo, 4o00[; a is a book-keeping parameter
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that controls the source S. Since the background has a Killing vec-
tor T' = (1/2)(0y + 0y), the potential is a function of x = (v —wu)/2 [45].
We decompose the potential into a truncated centrifugal potential bar-
rier, Vp, and a perturbation 6V,

V=W+edV, (8.6)
with
0+1
( t ) ) z Z )
Vo = x (8.7)
0, z < Tg

Here, zy characterizes wave scattering and is of the order of the light
ring radius, whereas ¢ is a small book-keeping parameter. We consider!

with p = 3,4,5,---. The correction §V and the source S are responsible
for the appearance of late-time tails, which we now study. It is known
that a branch cut in the Green’s function in the complex frequency
plane is a generic feature if §V tends to zero asymptotically slower than
an exponential [281, 282]. Consider ® in a two-parameter perturbative
expansion,

® =300 4 00 4 46O 4 et 4 (8.9)

For @ = 0 this expansion gives a good description of the late-time
behavior [284]. Clearly, ®09) contains the direct propagation of the
initial conditions through the centrifugal barrier (flat space, if £ = 0).

In summary, we find the following. In the absence of a source (see
also footnote 2)

<I>(Il+’0) (u) ~u'=P~t, L0 g2 s g (8.10)

For p = 3, we recover Price’s law [44].2
Sources of the form (or their extended version, see Supplemental
Material of Ref. [46])

p=>0, (8.11)

where Uy (|Us| < 1) is a source velocity, are physically interesting, as
they describe compact objects moving in the vicinity of BHs, plunging
(Us < 0) or moving outwards (Us > 0). Outward motion is a good
prototype for gamma-ray bursts [287], or to mimic eccentric motion
where long-lived transients have been observed [273, 274]. We find,

In a spacetime of mass M, one can expand r = x —2M log x +4M?/x(1+log x)+ ... .
For massless fields, p = 3. One can extend the analysis to §V = z ™" log z [281, 282].
We are mostly interested in waves at t > r = constant and large. One can also
use null coordinates and focus on Z* (v — oo at constant u). For & ~ ¢~™ then
O~y T at TT (44, 286).
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i) for outward-directed sources and 8 < £+ 2 with 0 < Ug < 1, SoDTs
of the form

0,1 _ 0,1 _5_
(I)(Z+,())<Us<1 ~ul 6’ (I)E)<U)s<1 ~t? 57 t>x. (8.12)

ii) for outward-directed sources and f > ¢ + 3 with 0 < Us < 1,
SoDTs (8.12) are generated but the late-time behavior is dominated by
the IDTs, Eq. (8.10).

iii) for outward-directed sources of 5 = 0,1 or § = ¢+ 2 with Us = 1,
SoDTs of the form

R ~ul P D P s (8.13)

but when 2 < < /41 for £ > 1,
o) ~u P oY T s g (8.14)

iv) in the presence of the inward-directed sources with —1 < Us < 0,
no SoDTs appear at late times. The late-time behavior is dominated
by IDTs (8.10).

Problem (8.5) can describe a linearized setting with pointlike masses,
or a nonlinear problem expanded to second order. Our analytical results
therefore predict a nontrivial late-time decay, which can be source-
dominated. The following explores the same problem, but from a numer-
ical perspective, confirming our predictions, both for pointlike sources
and for sources appropriate for the second-order expansion of the Ein-
stein equations, thus establising our results in the nonlinear regime.

8.4 NUMERICAL PROCEDURE

We used different numerical routines to obtain the results in the main
text, as a way to validate our results independently. Our first code
is a time-domain solver with a two-step Lax-Wendroff integrator with
second-order finite differences, which has been thoroughly described
and validated in Refs. [288-292]. To achieve the necessary precision
for the study of tails, we employ quadrupole floating point precision.
Some of the results are extracted at null infinity, which is achieved by a
hyperboloidal compactification of the spatial coordinate, with the outer
boundary of the compactified domain corresponding to null infinity Z+.

Another code employs an 8th-order finite difference method for spa-
tial discretization, the canonical Runge-Kutta 4th-order method for
time integration and quadruple-precision floating-point. We use the
outflow boundary condition as proposed by Ref. [293], placing it dis-
tant from the region where we extract the data to mitigate the impact
of an imperfect boundary condition.

We will often work with pointlike particles as our radiation source.
They are represented by Dirac-delta distributions localized around the
spatial location of the particle at a given instant, x,,(t). We approximate
the Dirac-deltas with narrow Gaussian distributions

exp |—(w — 2p(1))?/(2X2)]

0z —ap(t)) = NoESY , (8.15)
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where A, is sufficiently small to ensure numerical convergence as A\, —
0. We take A\, ~ 4dz, where dz is the grid discretization step [294].
Typically, we use dz < 0.05.

Throughout this work, we use three sets of initial data. (i) Static
initial data (s), which corresponds to a Gaussian localized at some
initial radius x;

(v —xp)?
202

¢s(0, ) = exp (— ) . O1ps(0,2) =0, (8.16)

where o controls the width of the pulse. (ii) Non-static/generic (g)
initial data of the form

B B (z — m1)2
¢e(0,2) =0, 0ie(0,2) =exp| ———5—5— | - (8.17)

202

(iii) Zero initial data for which ¢(0, z) = 9,¢(0,2) = 0. We have checked
that all types of initial data listed above are in excellent agreement with
the analytical predictions for tails of the homogeneous Zerilli equation.

The main quantity extracted from numerical simulations is the local
decay rate p = p(t), which we evaluate as

p=—toIn|¢|, (8.18)

such that p is a constant for a field & ~ ¢7P,

8.5 NUMERICAL RESULTS I: POINTLIKE OBJECTS AROUND A BH

Consider now a 3 4+ 1 problem on a BH background. We focus on a
scalar field, sourced by a pointlike charge of the form:

a 6($ — T — Ust)
ViV, = ; o Yim s (8.19)

where Yy, are standard spherical harmonics. We take the ansatz ® =
&(t, 7)Yy /r and find,

!

R R L _RURRNCEY
with f = 1—2M/r and the tortoise coordinate x defined in terms of the
coordinate 7 via dr/dx = f. The peculiar choice of the power (8 + 1)
in (8.19) is made such that § in (8.20) is the curved space analog of
the 141 source (8.11).

As apparent in Fig. 8.1, inward-moving sources excite BH ringdown,
a stage which subsequently gives rise to Price tails (8.10). On the other
hand, outward-moving sources give rise to SoDTs (8.12), which are
longer lived (for 5 < ¢+ 3) than Price tails. The results concern Us =
+0.5, but the outcome is qualitatively the same for other velocities and
for Gaussian widths which are orders of magnitude larger. At late times
and for |Us| < 1, we obtain at finite radii [295]

d ~ 97t 0<U,<1 & B<t+2,
d ~ t73720 otherwise (8.21)
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Figure 8.1: Scattering of a scalar field (¢ = 0) in a Schwarzschild background,
Eq. (8.20) with Ug = 0.5 and non-static initial data 9;® # 0 (see
Section 8.4). Source is initialized at z; = 20M, ¢ is extracted at
Text = 200M. Solid (dashed) lines denote outward (inward) mo-
tion. The power-law is independent on initial data for Us; < 1, and
agrees with prediction (8.12). Throughout this work, the exponent
p is calculated via p = —t0; In |p|. Steep jumps in outward motion
occur after source passage (see Section 8.4).
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in perfect agreement with the analytical predictions (8.12). All the re-
sults we discuss were also measured at null infinity to obey the relation
in footnote 2. For § > ¢ + 3, SoDTs are also excited (according to our
analytical results) but are subdominant with respect to IDTs. In agree-
ment with analytical predictions, we find that inwards-directed sources
only excite IDTs. It is worth mentioning that before the particle passes
the observer, for some regimes—specially low Us—we find still a power-
law behavior, but now of the form, ® ~ t' =+t for t < (z — x,)/Us.
The above results are independent of velocity, for |Us| < 1, and of

initial conditions. For an ¢nwards travelling source with Us = —1, we
find Price tails in all cases, i.e. ® ~ t7372¢, On the other hand, for an
outwards travelling source (Us = 1) [295]

d ~ t5 7t for B=0,1,

O ~ 7272 for 2<pB<L+2,

d ~ t37%  otherwise. (8.22)

(the power p at intermediate times is sensitive to the initial location x4
of the source and to its width; we start the particle close to the BH
(zs < 0) to suppress “junk radiation” which could excite IDTs stronger
than SoDTs).

The empirical, numerical result disagrees with analytical predictions (8.13)—
(8.14) for 2 < 8 < £+2. We attribute this to the fact that @ relies on
the perturbative expansion (8.9), not the exact problem (8.20), missing
some properties of ®.

We can repeat the numerical experiment with a realistic setup: a
pointlike mass following a radial geodesic on Schwarzschild background.
The particle sources GWs which are governed by the Zerilli equation
(Section 8.2, Section 8.4 and Refs. [292, 296, 297]). We use vanishing
initial data. Therefore, we expect to recover—and we do—the results
of the previous section for 5 = 0 for massive particles (8.21), and
B = 2,Us = 1 (8.22) for massless particles. The precise signal and
power is shown for outward null motion in Fig. 8.2. Inward motion
yields the expected IDTs.

Having examined linear effects with point sources, we now turn to
nonlinear effects arising from second-order perturbations.

8.6 SECOND ORDER PERTURBATIONS

For the numerical simulation of the second order equation (15), we
use the hyperboloidal coordinates {r, p, 0, ¢} with minimal gauge [298—
300], where the coordinate transformation from standard coordinates
is given by
1
—M <lnp +In(1—p) — p> , (8.23)
x

AM ;< Fin(l=p) = hlp)' (824
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Figure 8.2: Tails for massless particle on outgoing radial geodesics on a
Schwarzschild background. We use ®(0, z) = 9;®(0,z) = 0. Parti-
cle is initialized at x; = —20M, ¢ extracted at Text = 200M. The
asymptotic behavior agrees with (8.22) for 5 = 2.
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We will use p = —70; In || in this section. To allow a stable evolution
with larger time-steps, we introduce a new momentum variable (3] =
Or {"}\I'—(p—l)ap {"}. We use the following types of initial data for first
order polar perturbation with parameters pg = 0.6 and o2 = 1/1000:
Approximately Ingoing:

o2
(7 =0,p) = exp <_(p20p20)> , (8.25)
W =0,p) = (p+1)7'0, Mw(r=0,p). (8.26)
Approximately Outgoing:
1 (p = po)?
Uy (r = 0,p) = exp <—w> , (8.27)
(- =0,p) = 0. (8.28)

For simplicity, we set the initial data of the second-order polar pertur-
bation to zero, but we checked that its power law doesn’t depend on
the initial data.

Chy(r=0,p)=0, BMr=0,p) =0. (8.29)

To resolve the late-time tails, high-accuracy spatial discretization meth-
ods such as high-order finite differences or the pseudospectral method
are required. Here, we use the Chebyshev pseudo-spectral methods for
spatial discretization and the canonical Runge-Kutta 4th order method
for time integration. High-precision floating-point numbers are also re-
quired to achieve the necessary precision for the study of late-time tails
of second-order perturbation. For the final results in this section, we
use N = 450 for Chebyshev pseudo-spectral methods, and integrate the
equation using a fixed step A7 = 0.0005, with the numerical precision
being around 210 bits.

8.7 NUMERICAL RESULTS II: SECOND ORDER TAILS

Consider now the full nonlinear Einstein equations. A perturbative ex-
pansion of the field equations around a background metric can be writ-
ten as Gu = Guv + Yooy o Why, [276-280, 302-304]. For a vacuum
Schwarzschild background spacetime, {”}hW can be reconstructed from
the gauge-invariant generalisation of the Zerilli and Regge-Wheeler mas-
ter variables [302-306]. We focus on the Zerilli sector, governed by,

~02 By 4 92 — v, Bhe = By (8.30)
t x

with the potentials given in Equation (8.3).

The source term of order n, ™Sy, depends on the metric perturba-
tions up to order n — 1, with the first order sources being identically
zero [304-306]. We focus on the expansion up to and including second
order, n = 2. Source terms decay as O(1)/r? at infinity [304, 306].
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Figure 8.3: First-order (¢ = m = 2) (red line) and second-order polar gravi-
tational perturbations (£ = m = 4) (green line) sourced by self-
coupling of the former. We use sources in Ref. [301] and evolve
the equations with approximately ingoing initial data for first or-
der perturbations, and zero initial data for second order quantities.
Solid and dashed lines are extracted at future null infinity Z+ and
at pext =~ 0.1, respectively. First order decays as Price tail, second
order as (8.22).
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Evolutions of second-order perturbations were carried out in the
past [307], with a different purpose. We use a pseudospectral code,
with hyperboloidal coordinates {7, p,d, ¢} in the minimal gauge [298—
300]. Details on the numerical procedure and initial conditions for first
order quantities are given in the Section 8.6.

Results for the evolution of Eq. (8.30) are shown in Fig. 8.3 for a
{ = m = 4 second order perturbation driven by the self-coupling of
¢ = m = 2 quantities. With Prony methods [104], we find two families
of QNMs [306, 308-310]. The first family belongs to potential-driven
modes and are also part of the spectrum of first-order quantities. Our
results are compatible with the linearized prediction (to 14 decimal
digits or more). The second family are source-driven, whose frequencies
are twice that of the first-order perturbations [305, 306, 308-313].

We find a power p = 10 for the decay at fixed spatial distance for this
particular mode, which, given the fall-off of the source term {#Sy at
infinity (oc 772), is consistent with the SoDT (8.22) [295]. These results
are to the best of our knowledge the first accurate simulations of second
order gravitational modes including late-time tails. The source term in
Ref. [306] yields a power p which is consistently one unity less than
that for the source in Ref. [304], since the master wavefunction of the
former is, up to irrelevant factors, the time derivative of the latter. We
show in the Section 8.8 that for this reason there must be special classes
of initial data for which the late-time decay is consistently faster than
that predicted by Price’s law.

Our findings are consistent with those from nonlinear, spherically
symmetric collapse simulations [285, 314, 315] (there are a few studies
of dynamical spacetimes with no symmetries, but it is unclear whether
they apply to GR [316-318]). Our results are in tension with claims
in Ref. [275] (also Ref. [312]), which reports a decay t~2. To further
investigate this issue without being limited by the numerical accuracy
of first-order quantities, we solved the following problem with an inde-
pendent numerical routine,

efiw(tix)H(t + J;)
T‘5+1 m

ViV® =)

Im

(8.31)

with H the Heaviside function and w = 0.5 — 0.1¢ (arbitrarily chosen).
This source mimics a first-order ringdown waveform. Numerical results
are again consistent with our previous findings: there are two distinct
tails, depending on the sign in the exponent. For § < 3, we find re-
sults (8.22) for outward-moving sources and Price’s law ® ~ ¢t =372 for
inward-moving sources (again, the analytical approach fails to capture
all the features, we suspect because some properties of & are missing
in ®0.1),

Predictions [275, 312] of source-driven and nonlinear tails assumed
that the effective potential decays asymptotically faster than the cen-
trifugal barrier and using a (1+1)-dimensional Green’s function. Such
studies predicts a 1/t? decay, slower than any IDT [275, 312]. Our re-
sults are consistent with this prediction only for ¢ = 0 modes, where
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the centrifugal barrier is absent and indeed the Green’s function is 141
dimensional. In such toy models, the source term decays slower than
the effective potential at large distances [275, 312]. We conjecture that
this determines the asymptotic time behavior and that p = g+ £ in
such cases.

8.8 TAILS OF TIME DERIVATIVES

As previously stated, we explore special classes of initial data for which
the late-time decay is consistently faster than that predicted by Price’s
law.

10

10

&‘\

——  Generic

T Static 7

600 1000 1400 1800
t/M

Figure 8.4: Power-law for the ¢ = 2 solution of Eq. (8.32) with {%Sy = 0,
using initial data from Eq. (8.35). Red line corresponds to using

U as defined in Eq. (8.17), green line to ¥y as defined in Eq. (8.16).

Data is extracted at x = 100M.

Suppose V is the Zerilli wavefunction, obeying Zerilli’s equation (15).
Take a time derivative of that, to get

—2X + 92X — VX = Sy, (8.32)

where we defined X = {2}¥; dot is a time derivative. This can be done
an arbitrary number of times, i.e., the n—th time derivative of the Zerilli
wavefunction obeys the Zerilli equation. This looks like a contradiction:
the n-th order derivative of the Zerilli wavefunction obeys the Zerilli
equation, hence should have the same tails. However, the initial data
is now

Byt =0) = wo(r), P =0) =9, (8.33)
X(t=0) = ¥y, X(t=0)=V,. (8.34)
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Thus, there are constraints that need to be satisfied if X is indeed the
time derivative of the original master function. In particular, using the
Zerilli equation we find

Xt=0) =¥y, X({t=0)=0Uy—Vy¥y. (8.35)

Our numerical results confirm that initial conditions (8.35) are indeed
“special”. Based on Price’s results one would expect naively that they
would produce tails with power p = 2¢ + 3 for generic initial data
and 2¢ 4 4 for initially static data. We find, however—Fig. 8.4—that
p =20+ 4 and p = 2¢ 4 5 respectively. Thus, there are special classes
of initial data that escape Price’s description, as had to be the case for
consistency.

8.9 DISCUSSION

We have shown that distributional sources, such as those appropriate
to describe pointlike objects, or even extended coherent sources, give
rise to late-time power-law tails which can dominate over IDTs. These
results are important as a point of principle, but could play a role in
observations in the linearized context, for example for extreme-mass-
ratio systems. For second-order corrections, our results establish the
existence of tails which can dominate over linear ones, but which decay
much faster than over-simplified toy models suggest [275, 312].

Nonlinear corrections to extreme-mass-ratio systems will also occur,
but are suppressed by the mass ratio. However, there are consequences
at linear order, due to the distributional character of the source. The
high-amplitude post-ringdown signal observed in extreme-mass-ratio
systems and for which there is evidence in numerical evolutions of bi-
nary mergers [273, 274] then begs the question of their origin. Since
they are apparent in eccentric binaries only, we have also looked for
imprints in toy models attempting to mimic eccentric binaries, such as
VoV ® = §(x — x5 — Ust — Acos Qt) /rPT1  but for all plunging motions
the asymptotic behavior of radiation at late times is governed by the
IDT ¢~ (2443) We were thus unable to reproduce the behavior reported
in the literature, which requires a more specialised analysis.

Our results, summarized in Figs. 8.1-8.3 also suggest that the on-set
of the tail occurs long after the start time of ringdown for plunging par-
ticles, and that in this case their magnitudes are suppressed by orders
of magnitude relative to the main burst. However, for outgoing sources,
tail magnitudes are not negligible, raising questions about detectability.
We also note that our results are consistent with the literature. Time-
like scattering of pointlike particles was predicted to give rise to a 1/u
leading tail [319]. This result is consistent with our own numerical result
for scattered particles. For ingoing sources, our results predict that the
tail is suppressed, in line also with Ref. [319], which shows that if the
final state is a single massive object and radiation — as in our ingoing
or outgoing massless sources — the 1/u piece cancels out. This also pro-
vides consistency with Price’s results and explains why tails for second
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order perturbations decay faster than 1/u, because these are massless
sources, for which one would expect the cancellations to occur.

In classical mechanics and GR, the future is dictated by initial con-
ditions. The reader might then wonder why we find an asymptotic
behavior different from that derived from the evolution of generic ini-
tial conditions, for linearized equations. The reason is that compact
sources, such as the ones we consider, arise as the evolution of initial
data only if one includes extra, nonlinear interactions, in the theory.
These have not been dealt with in Price’s analysis.

Finally, the existence of SoDTs is not fundamentally tied to the ex-
istence of horizons nor to the asymptotic structure of the spacetime.
Hence, one might suspect they exist in cosmological backgrounds of
interest, like asymptotic de Sitter spacetimes. Our results show they
exist in toy models with Poschl-Teller effective potentials, which have
no IDTs and which are a good proxy for Schwarzschild de Sitter space-
times [320]. It would be an intriguing resolution to cosmic censorship
violations if the very existence of matter would restore it [120, 272].

Beyond the intrinsic features of the gravitational waveform itself, the
dynamic spacetime distortions during events like BH relaxation can
also influence other messengers, such as light. The subsequent chapter
explores this phenomenon through the lens of gravitational lensing.
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DYNAMICAL LENSING DURING BLACK HOLE
RINGDOWN

As discussed in the previous chapter, the relaxation of BHs following a
merger generates a complex gravitational wave signal, including charac-
teristic late-time tails. Complementary to studying the waveform itself,
the dynamic spacetime curvature associated with these gravitational
waves provides another observational probe: the lensing of light. One
of the foundational tests of GR concerns the deflection of light by mas-
sive bodies [321-324], where the path of light rays is “bent” by mass-
energy distorting the spacetime fabric. Similarly, travelling spacetime
distortions like GWs can also bend light paths.

This chapter focuses specifically on the prospect of detecting light
bending by the GWs emitted during the ringdown phase of a black hole,
which would add an extra information channel on strong gravity, par-
ticularly in highly dynamic scenarios. This possibility was raised and
studied by different authors in the weak field regime [325-329]. Our
purpose here is to study light deflection near compact objects in highly
dynamic spacetimes. In particular, we will study the appearance of a
BH which is approaching a quiescent state via relaxation in its charac-
teristic modes of oscillation, called QNMs. The relaxation stage is also
referred to as ringdown stage, and is a generic late-time description of
the coalescence of compact objects [88, 330]. Our results could describe
stars on the background of a binary BH merger, or the appearance of a
circumbinary accretion disk surrounding two merging compact objects.

9.1 RAY TRACING TOWARDS A RELAXING BLACK HOLE

A relaxing BH is well described by general relativistic first-order per-
turbation theory, where spacetime is expressed by small fluctuations
away from the final, stationary state. Uniqueness results in GR suggest
that the final state, to a good approximation, is a Kerr BH [264, 331,
332]. We thus take our relaxing BH spacetime, of mass M and angular
momentum aM to be given by

Juv = g;(ﬁ/) + h,uz/a (9.1)

where gfg) is the Kerr metric (we will use Boyer-Lindquist (t,7,6,¢)
coordinates throughout [333]). The term h,,, denotes first-order pertur-

bations.
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Instead of working directly with the metric perturbations h,,, we
consider instead curvature perturbations [47, 334]. These can be sepa-
rated and decoupled and all the relevant information about radiative
degrees of freedom is encapsulated in a master variable

sZ
V2T

Vs(t,r,0,0) = $5(0) sR(r)e witimo (9.2)

The gravitational quantity of interest is \11511) =_o(t,r,0,¢)(r—iacosh)

the first-order perturbation of one of the Weyl scalars, which is directly
related to the amplitude of GWs far from the source. Notation and con-
ventions are shown in Section A.1. The function sS() is a spin-weighted
spheroidal harmonic, while the radial Teukolsky function sR(r) obeys
a homogeneous second-order differential equation. We fix its normal-
ization by calculating energy fluxes at infinity, and comparing to nu-
merical relativity results. Then, ;7 controls the amplitude of the GW,
by matching the ringdown stage to some physically generated process.
The characteristic modes are found by imposing proper boundary con-
ditions on sR(r) , which selects only a discrete set of frequencies w,
the ringdown frequencies [88]. All the functions and quantities carry a
dependence on angular numbers £, m and a possible overtone number
n [47, 88, 334]. For simplicity, we do not include these indices in the
subscripts. A GW signal comprises a superposition of various modes,
but the ¢ = |m| = 2 dominates (so far it is the only one detected be-
yond any doubt). Additionally, we exclusively address the n = 0 mode,
which lasts longer compared to the more rapidly decaying higher over-
tones. For similar reasons we neglect nonlinearities, which are of much
smaller amplitude even for equal-mass mergers, and of shorter dura-
tion [308, 310]. For QNMs characterized by frequency w and labeled by
(¢, m,n), there exists a corresponding “mirror” mode with frequency
—w and (¢,—m,n). In the final spin frame, these paired modes primar-
ily represent GW emissions propagating in opposite directions along
the spin axis [91, 335-337]. The observed waveform typically manifests
as a superposition of these two distinct sets of modes. However, one of
the paired modes may be less prominent due to weaker excitation [336,
338]. In the following analysis, we primarily focus on the m = 2 mode
with Re(w) > 0, which predominantly emits toward the southern hemi-
sphere, as more general cases exhibit similar features, as discussed in
Section 9.4.

Once _oR(r) is known, we reconstruct the metric fluctuation h,,, fol-
lowing well-known prescriptions [339-341], summarized in Section A.2.
We initiate the ringdown at ¢ = r,, where r, denotes the tortoise ra-
dial coordinate, by applying a Heaviside-like filter to the perturbation,
hyy — H(t —74) hy,, along the light cone, with

1 t— 7Ty
H(t—ry) = 5 (tanh Xr + 1) . (9.3)

In the following, we employ a relatively sharp truncation in the filter
function H(t — ry), with —xIm(w) = 0.1.
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During the ringdown phase, a photon trajectory is influenced by
the metric perturbations encountered along its path, governed by the
geodesic equation:

d2z+ da¥ dz?
vo———— =20, (9.4)
dr? dr dr
where I' denotes the Levi-Civita connection, and 7 represents the proper
time.

Observer
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Figure 9.1: Schematic diagram of the coordinate system. Left: Illustration of
a light ray originating from the observer (green point) and traced
backward (black arrow) toward the BH, terminating at the celes-
tial sphere plane at infinity (blue plane). The black and red lines
represent the geodesics in unperturbed Kerr spacetime and those
deflected by metric perturbations, respectively. The grand arc dif-
ference is denoted by 4, with angular variations in the azimuthal
and polar directions labeled as A¢ and Af. Right: Diagram of
the observer plane with polar coordinates (p, ¢). The critical curve
pe(@) is shown as a black contour, and the relative impact param-
eter is defined as Ap = p — pe.

To characterize the observable effects, it is essential to define the
observer frame. In an unperturbed Kerr BH scenario, a zero angular
momentum observer (ZAMO) frame is typically used [342]. However,
in a dynamic spacetime, the ZAMO tetrads are neither orthogonal nor
normalized. To rectify this, we apply a Gram-Schmidt orthogonaliza-
tion process to establish a normalized, orthogonal tetrad basis derived
from the ZAMO tetrads, as detailed in Section 9.2.1. Using this newly
defined observer frame, we initiate geodesics towards the BH employ-
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ing backward ray tracing. Here, each pixel on the observer plane, rep-
resented by coordinates (X,Y) [55, 343, 344], corresponds to photon
momentum in this frame. The photon’s 4-momentum in the dynamic
spacetime p* = da#/dr is then constructed from this orthogonal tetrad
basis, similar to the procedure established in Kerr spacetime [345]. For
convenience, we also introduce polar coordinates for the observer plane
centered on the direction directly facing the BH in Kerr spacetime,
denoted as (p, @), where p is the impact parameter and ¢ is the angle.

Photon geodesics in the relaxing Kerr spacetime are then computed.
We position an observer at r, = 10° M, confirming convergence of
results at large r, due to the decay of h,, amplitude as 1/r at greater
distances. Notice that even though we employ backward ray tracing,
photon propagation in the +t direction still aims towards the observer,
aligning with the GWs that co-propagate in the same direction upon
departure from the BH.

The following section details the technical implementation of this
backward ray tracing approach. We first define the observer’s local
reference frame in the perturbed spacetime and then discuss the coor-
dinate systems and parameters used to trace the photon paths.

9.2 BACKWARD RAY TRACING
9.2.1 Local oberver basis

The observation of photons at any given point is dependent on the
observer. For the case of a pure Kerr BH, ZAMOs are typically em-
ployed. In this section, we extend them to dynamically perturbed Kerr
spacetime.

Within the Boyer-Lindquist coordinate system, a ZAMO frame can
be chosen and expressed in terms of the coordinate basis {0, 0y, 09, 0y }
[55, 342, 345, 346] as

9660t — 90 e T
(Ol 5 0T g O T e TO T Jggs
\/ Yoo <g¢t - gqsqsgtt)
(9.5)

The observer basis 5’2’ ) has a Minkowski normalization

0 v
930202y = M) (9.6)

with 7)) = diag{—1,1,1,1}. Unlike the unperturbed case, Eq. (9.6)

no longer holds when the unperturbed metric g,(f)) is replaced by the

perturbed metric g,,,,. To address this issue, we employ a Gram-Schmidt
orthogonalization process, using the chosen ZAMO tetrad v, = Z”(p ) as
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the initial set of vectors. The Gram-Schmidt process can be expressed
as

o = Vo
Uy = U1 — projg, (V1) , 0.7)
iy = Uy — projg, (V2) — projg, (v2) ,
i3 = U3 — projg, (U3) — projgz, (U3) — projz, (v3) ,
where the projection operator is defined as
. (u,0)
L= 9.8
prOJuU <ﬂv’ ,L—L>>u7 ( )

with the inner product evaluated using the metric g,,. The resulting
orthonormalized tetrad, denoted as

Up

o= (9.9)
(p) -
’ (1, tip)]
satisfies the following condition
gw,z_’é;)z(a) = 1(p)(o) - (9.10)

9.2.2 Impact Parameters

In the image plane of the observer defined above, each photon is as-
signed Cartesian coordinates (X,Y"), which represent its impact param-
eters. These coordinates are proportional to the photon’s observation

angles (&, ). Here we follow a convention similar to Ref. [345], and
define them as:

=—r3, Y =ra. (9.11)

Considering the geometry of photon detection, we can express the pho-
ton’s 4-momentum in the observer’s reference frame as follows (refer to
Fig. 1 in Ref. [345]):

p'®) = |P|sinBcosa, p¥ = |P|sina, p”) = |P|cosBcosa, (9.12)

where |P| = p®). From this, we can derive the photon’s momentum
using

P =z, (9.13)
9.2.3 Kerr—Schild coordinates
To avoid the numerical problem when a photon gets too close to the

pole in the BL coordinate system, we perform ray tracing in the Carte-
sian Kerr—Schild (KS) coordinate system {tkg,z,y, z}. The coordinate
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transformations, which can be found in Ref. [347-349], are also reviewed
in the following.
The Kerr metric in KS coordinates {tks, x,y, z} can be expressed as

g;goy):nuu‘i‘fk,ukua
2Mr3 B rer4+ay Ty —ar z (9.14)
f= e =l r)

Tr2 402’ 24027y

where r is the same as the radial coordinate in the BL coordinates.
The radial coordinate r can be defined in terms of the Cartesian KS
coordinates as

1’2 4 y2 2,2

Then the coordinates {r, 0, ¢xs} can be written explicitly in terms of
Cartesian KS as

1/2
—a2+\/ —a2 + 4q222

(9.16)

z
0 = arccos =, ¢xg = tan” ' (—ay — ra,ax —ry) + m
,

where

R=\/a?+y?>+22. (9.17)

The function tan=!(x, ), also known as the two-argument arctangent
function, calculates the arctangent of y/x while considering the quad-
rant in which the point (x,y) lies.

The coordinate transformation from BL coordinates can be written

as
iy / 2Mr
ABL
T = \/msm 0 cos [pks + arctan(a/r)] , (9.18)
Yy = \/msin 0 sin [QZ)KS + arCtan(a/T)] )
z=rcosf,
where
dr
BL

Following Ref. [347], we fix the integration constant is fixed by letting
tks =t and ¢ks = ¢ at the initial radius r,, so we have

r4ln —r_lIn )
To — T+ To —T—
() -m (=)
To— Tt ro—1r_/]"

M
VM? —a? (9.20)

2V M? — q?
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102?

Figure 9.2: Growth of geodesic deviation Akg, representing the distance be-
tween unperturbed and deflected geodesics at the same backward-
propagating time ¢, —t, in a relaxing Kerr BH spacetime with spin
a = 0.7TM, viewed from a face-on observer with 6y ~ m, is shown
in Cartesian KS coordinates. Different colors represent geodesics
launched at various observation times ¢,, as detailed in the accom-
panying inset panel. The dashed line marks a trajectory terminat-
ing on the BH, whereas the others extend towards infinity. The
metric perturbation is modeled using the n = 0 and { = m = 2
mode, with the magnitude normalized to |_2Z| = 0.24. The initial
impact parameters are set at p = 5.041M, slightly exceeding the
critical curve p. = 5.04M in Kerr spacetime. Inset: Illustration
of the corresponding photon trajectories. The black line represents
unperturbed geodesics in Kerr spacetime, with an arrow indicating
the direction from the observer to the BH to depict the backward
ray-tracing method used. The gray plane indicates the BH equa-
tor.
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9.3 LENSING TOMOGRAPHY

We explore geodesics in a relaxing Kerr spacetime, particularly focusing
on the merger events of supermassive black hole binaries (SMBHBs)
with equal mass ratios. The remnant BH from each mass ratio merger
events typically characterized by an angular momentum parameter a ~
0.7 M [350], a value consistent with numerous observations [8, 351] and
considered as our fiducial value. The GW signal from these mergers is
dominated by the ¢ = |m| = 2 mode [88, 212, 336, 352], with the n =0
mode persisting the longest. This fundamental mode is characterized
by Mw = 0.5326 — 0.08079: [88, 353].

The radiated energy determines the amplitude of the metric pertur-
bation. Here, we estimate the radiated energy of a single mode after
truncation. The energy flux is given by [212]

dF . r2 /
— = lim |—
de¢ r—oo | 167 Jo

The total energy emitted can then be calculated as

t

2
q;f)df‘ dQ] : (9.21)
+oo

* dE
B = | —dt, 9.22
tot to dt ( )

where tg = r.(r,). This total energy satisfies the condition Eior/M <
3% [212]. Assuming that only the £ = m = 2 mode dominates the
radiated energy, this relationship leads to

2] $0.24. (9.23)

It is important to note that this approach differs slightly from truncat-
ing the metric using H (¢t —r,). However, it should provide a sufficiently
accurate estimate for our purposes.

In the vicinity of the BH, the metric perturbation amplitude can
reach up to M 2\11511) ~ 0.1 [212]. The total radiated energy during the
ringdown, Fio, is limited to approximately 3% of the remnant BH’s
mass [212], setting an upper limit on the magnitude of |_2Z| for the
{ = m = 2 mode at about 0.24. We adopt this upper bound as the
fiducial value for our analyses, our results can be trivially re-scaled for
generic amplitudes.

We first consider a face-on observer with 8, ~ 7. Figure 9.2 illustrates
backward photon trajectories, all launched from the same direction, us-
ing identical backward impact parameters relative to the observer po-
sitioned at ry = 107 M. These trajectories are depicted using the Carte-
sian KS coordinate system (z, y, z). The black line represents a geodesic
in an unperturbed Kerr spacetime, while the various colors indicate dif-
ferent observation times ¢, = t, — 74(r,), where £, = 0 is approximately
the time when the GW ringdown initially reaches the observer. The
bottom panel displays the growth of deviations between unperturbed
and deflected geodesics, defined as Akg = (Az? + Ay? +Az2)1/ 2 repre-
senting the distance between the two trajectories at the same backward
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propagating time £, — ¢, colors corresponding to trajectory lines in the
inset panel.

In Fig. 9.2, we select p = 5.041M as the (backward) impact param-
eter, which is close to the critical curve p. ~ 5.04M for this BH spin.
This curve, defined in Kerr spacetime, represents the geodesics that can
propagate around the BH indefinitely. Some of the perturbed geodesics,
shown in dashed lines, terminate on the BH instead of propagating to-
wards infinity, indicating a distortion of the critical curve during the
ringdown.

The evolution of geodesic deviations, launched at different observer
times, initially shows a weak increase after departing from the observer.
Geodesics launched later exhibit deviations exponentially smaller than
those launched earlier, reflecting the exponential decay of GW ampli-
tude near the BH during the ringdown phase. Closer to the BH, all
deviations begin to exhibit exponential growth due to the instability
of the radial potential in the light ring region [56, 114, 344, 354-362].
Here, the interplay between light ring instability and GW induces ad-
ditional oscillation features in the exponential growth. The geodesics
that depart from the light ring region begin to develop deviations that
increase linearly with time.

To quantify the lensing during ringdown, we analyze backward pho-
tons that ultimately reach infinity, corresponding to far-away sources.
We assess the angular difference between the asymptotic direction for
Kerr geodesic and the deflected geodesic as observables, including the
grand arc difference 8, and variations in the azimuthal angle A¢ and
polar angle Af.

Figure 9.3 displays the deflected angles in polar (Af) and azimuthal
(Ap) components as a function of observer frame time, #,, for trajec-
tories initially launched from various polar coordinate angles ¢ on the
observer plane. The impact parameters are fixed at p = 6M. Due to
ringdown metric perturbations, axial symmetry is not preserved even
in face-on observations. Notably, both A¢ and Af show identical vari-
ations for values of ¢ separated by m. This pattern is precisely at-
tributable to the m = 2 mode of the metric perturbations, akin to
those generated by vector or tensor superradiant clouds [362], demon-
strating that the deflected angles can effectively dissect the polarization
pattern of the GWs around the BH.

In the top panel of Fig. 9.4, we depict the evolution of the deflec-
tion angle 6 for different relative impact parameters Aj = p — pe,
where p. =~ 5.04M is defined as the critical curve in Kerr spacetime
(for a = 0.7M). The early time evolutions of ¢ consistently exhibit
a pattern of exponential decay and oscillation that aligns with the
time-dependence of the gravitational waveform shown in the bottom
panel. This alignment suggests that these observables effectively cap-
ture key characteristics of the BH ringdown. We fit the envelope of
the Ap/M = 0.5 case using the ringdown decay rate, specifically,
6 ~ Asexp(Im(w)i,), as shown in the dot-dashed line. This demon-
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Figure 9.3: Evolutions of the deflected angles in the azimuthal (A¢) and polar
(Af) components for geodesics terminating at infinity, plotted as
a function of observation time f,. The configuration of the BH,
observer, and ringdown is consistent with the setup described in
Fig. 9.2. Different colors illustrate geodesics launched from various
angles on the polar coordinate of the observer’s plane ¢, all with
fixed impact parameters of p = 6M . The symmetrical patterns ob-
served in cases separated by 7 in ¢ highlight the m = 2 symmetry
of the BH ringdown.
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strates a clear overlap in the early stages. The amplitude of the deflec-
tion angle Aj is well described at large Ap by

1.2y/Erot /M
Ao —————— .24

with Eiot /M = 0.03 in our fiducial case.
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Figure 9.4: Top: Deflection angle of geodesics terminating at infinity, 0, de-
fined as the grand arc difference from the unperturbed direction,
plotted as a function of observation time #,. Different colors repre-
sent geodesics launched with varying relative impact parameters
Ap along the +X-axis. The BH, observer, and ringdown configu-
ration are consistent with the setup described in Fig. 9.2. Early
stages show a dominant exponential decay and oscillation behav-
ior, in very good agreement with the GW ringdown depicted in
the bottom panel. The envelope of the Ag/M = 0.5 curve is fitted
by 0 ~ As exp(Im(w) &), illustrated by the dot-dashed line. At
later times, a slow decay appears, fitted by 6 x t.3, shown by the
dashed line. Bottom: Amplitudes of the GWs in the two polar-
izations, h4 and hy, in transverse traceless gauge, as observed by
an observer at 0,/m =1 —10~*.

Note that the scaling A; o< 1/Ap differs from the inverse-cubic depen-
dence reported in Refs. [329, 363-365]. This distinction arises because,
in our case, the dominant deflection occurs locally when the photon first
encounters the ringdown perturbation near ¢t ~ r, — close to the BH and
at early times — when the photon and GW propagation directions are
not yet fully aligned. As a result, the deflection, which is proportional
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to the contraction hy,p*p”, is primarily governed by the 1/r component
of the metric perturbation, rather than the 1/r® contribution. In con-
trast, the inverse-cubic scaling in Refs. [329, 363-365] assumes a source
that emits GWs continuously and nearly isotropically long before the
photon arrives, such that only the component of the GW field with
momentum aligned with the photon direction contributes appreciably
to the net deflection.

Furthermore, as the impact parameter approaches the critical curve,
specifically when Ap < M, there is a noticeable increase in the overall
amplitude of 0. This enhancement can be attributed to the instability
of the BH light ring region, which causes an exponential growth in the
perturbed deviation during propagation around the BH [56, 114, 344,
354-360, 362].

On the other hand, at late times, the evolution exhibits a power-law
decay. This distinction arises from deflections developing in two dis-
tinct regions. During the early stages, the photon encounters the GW
field close to the BH, where the 1/r component of the perturbation
dominates and induces a deflection that decays locally in an exponen-
tial fashion—reflecting the ringdown behavior of the GW itself. At late
times, the encounter occurs farther from the BH, where the photon
and GW propagate nearly anti-parallel. In this regime, the deflection
effect receives non-vanishing contributions only from the 1/73 compo-
nent of the metric perturbations. Indeed, our results are consistent with
a power-law scaling, 6 x t,3, as shown by the dot-dashed fit in Fig. 9.4,
following the behavior predicted in Refs. [329, 363-365].

We also present cases with different observer inclination angles 6,
in Fig. 9.5, with the impact parameters fixed at g/M = 10 along the
+X-axis. Similar to the observations in Fig. 9.4, the evolutions exhibit
two distinct types of behavior: a ringdown-like exponential decay with
oscillations, and a subsequent power-law decay proportional to £, 3. The
power-law tail becomes more pronounced at smaller 6,. This effect is
due to the polar angle 6 of photon geodesics at t & r, being closer to 7,
where the metric perturbation of the £ = m = 2 mode is most dominant,
as shown in the angular distribution of the GW ringdown in the inset
panel. For 6, = m(1 — 107%), the deflection angle is predominantly
characterized by ringdown behavior, with oscillation frequency mimics
the ringdown frequency to one part in 100,

Furthermore, we consider the effect of incorporating the QNM’s mir-
ror mode with equal energy, reflecting a more realistic scenario where
the SMBHB was in a quasi-circular orbit before the merger. This setup
also exhibits the two previously discussed characteristics: an initial
rapid decay during the ringdown phase, followed by a late-time power-
law tail, as shown in Section 9.4.

9.4 RESULTS OF MIRROR MODE

We consider the effect of incorporating the QNM’s mirror mode with
equal energy, reflecting a more realistic scenario where the SMBHB
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Figure 9.5: Evolutions of the deflection angles of geodesics terminating at
infinity, observed from various inclination angles 6y and plotted
against observation time #,. The impact parameter is consistently
set at 5/M = 10 along the +X axis. The dashed black line in-
dicates that 0 scales proportionally to ;3. Inset: The relative
strain amplitudes of the GWs, Ay, defined as h = (h% + h2)1/2 ~
Ay, exp (Im(w)fo), are plotted as a function of the 6,. The ampli-
tude is most prominent at 6, = .
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was in a quasi-circular orbit before the merger. In Fig. 9.6, we show
the evolution of & for different values of Aj and 6,. Compared to the
results of Figs. 9.4 and 9.5, this setup also exhibits the two previously
discussed characteristics: exhibit the same two key features: an initial
rapid decay during the ringdown phase, followed by a late-time power-
law tail. Due to the mirror mode’s symmetry across the equatorial
plane, the dependence on 6, becomes less pronounced.

9.5 DISCUSSION

This study explored the dynamic lensing of photons during the ring-
down phase after SMBHB mergers. By calculating photon trajectories
around a relaxing Kerr BH using backward ray tracing, we demonstrate
how metric perturbations during the ringdown significantly influence
photon paths. In most cases, the evolutions of photon deflection angles
initially exhibit behavior akin to GW ringdown, providing insights into
the fascinating dynamics of spacetime.

The visualization of ringdown through photon lensing opens a new av-
enue for multi-messenger astronomy. While pulsar timing arrays (PTAs) [32,
366-368], astrometry [369-371], binary orbits [372, 373|, and fast radio
burst timing [374] may directly detect ringdown GWs from SMBHB
mergers, observations from the EHT [4, 375] and future upgrades [376],
could provide visualizations of a ‘Waltz’ between GWs and photon co-
propagation. Each pixel on the observer plane could reveal additional
insights by dissecting the metric perturbations in the vicinity of the
relaxing BH.

A critical question is the feasibility of observing ringdown in elec-
tromagnetic channels. This requires the telescope’s Gaussian kernel,
represented by Ores/2.4 (where 6,5 is the angular resolution), to be
finer than the changes in the impact parameter on the observer plane,
scaling as 4 x rs/To with r being the distance to the BH. Substituting
from Eq. (9.24) and using Eyo; ~ 0.27M¢?/(1+q)*, where ¢ is the mass
ratio [212], we derive the requirement:

M 1
= > 0.67 0res3 (2 +q+ q) , (9.25)

To

where 5 = Ap/rs < 1 is a geometric factor dependent on the con-
figuration of the light source, the BH, and the observer. The current
angular resolution achievable by the EHT is 20uas, anticipated to im-
prove to 3uas with space-based missions like the Black Hole Explorer
(BHEX) [377-380]. Further enhancements in resolution can be achieved
by extending the baselines to locations such as the Moon or the second
Sun-Earth Lagrange point [360].

For a merger involving BHs with comparable mass ratios, assuming
M = 10! M, as suggested by PTA observations [381], BHEX could
detect lensing signatures from distant sources out to r, ~ 12 Mpc/f.
For well-monitored supermassive black holes (SMBHs) such as Sgr A*
and M87*, even mergers with smaller mass ratios become observable,
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Figure 9.6: Evolution of the deflection angles of geodesics terminating at infin-
ity, plotted as a function of observation time ,, for the case incor-
porating the QNM’s mirror mode with equal energy. Left: Results
for various impact parameters Ag/M with 0, /7 = 1-10~%. Right:
Results for various initial inclination angles 6y with /M = 10
along the +X axis.
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enabling detection of events with ¢ ~ 0.58. A source with a small 5—
typically located on the far side of the BH, such as a jet feature, an
accretion flow near the light ring, or a background star—can therefore
significantly enhance the detection prospects.

In the case of background stars lensed by Sgr A*, Ref. [382] predicts
that upcoming telescopes like Extremely Large Telescope (ELT), Thirty
Meter Telescope (TMT), and Giant Magellan Telescope (GMT) will
detect O(100) stars with angular separations of ~1mas and distances
of ~1pc behind the BH, corresponding to 3 ~ 1075, Given their mas-
level angular resolution, these telescopes could detect lensing signatures
from intermediate-mass BHs merging into Sgr A* with mass ratios as
small as ¢ ~ 1073,

While our focus here is on ringdown, the underlying formalism ap-
plies more broadly to dynamic metric perturbations. For instance, a sin-
gle SMBH surrounded by a bosonic superradiant cloud could generate
sustained periodic perturbations, potentially observable by EHT-class
instruments as time-dependent lensing signatures in the accretion flow
near the photon ring [362]. Moreover, our approach is applicable to the
long-lasting inspiral stage of a binary system, where the accumulation
of signal-to-noise ratio could make such searches feasible. A more pre-
cise prediction of the apparent position shift of a point source would
require generalizing forward ray tracing [383] in perturbed spacetime.
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This thesis embarked on an exploration of the intricate dynamics, sta-
bility properties, and potential observational signatures associated with
compact objects within the framework of GR. Structured into several
parts focusing on foundational theory, stability and energy extraction,
interactions, and observational probes, we leveraged advanced numer-
ical relativity techniques alongside analytical and perturbative meth-
ods to investigate fundamental questions at the intersection of strong
gravity, DM physics, and the burgeoning field of gravitational wave
astronomy.

10.1 DISCUSSION OF KEY FINDINGS AND INTERCONNECTIONS

Our investigations, following the thematic progression of the thesis,
revealed several key physical phenomena.

First, exploring stability and energy extraction mechanisms
(Part II) provided crucial insights into the behavior of compact ob-
jects beyond standard BHs. We precisely mapped the threshold for the
ergoregion instability in truncated Kerr spacetimes to the equatorial
ergosurface for large multipoles (Chapter 3). Importantly, outside the
ergoregion, we found no evidence for linear instabilities driven solely by
light rings on astrophysically relevant timescales (7 < 105M), suggest-
ing that rotation and trapping alone might not destabilize horizonless
objects linearly. Complementing this stability analysis, we uncovered
potent energy extraction mechanisms beyond standard superradiance.
Dynamic bouncing geometries mimicking evaporating BHs exhibit a
blueshift instability near the inner apparent horizon capable of enor-
mous energy amplification (Chapter 4). Similarly, time-periodic funda-
mental solitons like Q-balls amplify scattered waves via mode-mixing,
a potentially generic mechanism for such structures (Chapter 5).

Second, the study of interactions and dynamics between BSs
and BHs (Part III) highlighted the dramatic consequences of encoun-
ters between these objects. A central theme emerged from simulating
a BH piercing through mini-BSs (Chapter 6) and SBSs (Chapter 7).
We discovered a surprisingly dominant role for tidal capture, leading
to the near-total accretion of the BS by the BH across a wide range
of parameters, even for significant scale disparities. This extreme tidal
capture, robust even for self-interacting SBSs, suggests such encoun-
ters are highly disruptive. A consistent outcome was the formation of
quasi-bound scalar field remnants—*“gravitational atoms”—around the
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final BH, linking interaction dynamics to the fundamental properties
of scalar fields in strong gravity.

Third, our work on observational probes of gravitational waves
(Part IV) revealed deviations from previous theoretical expectations in
late-time signals and offered new multi-messenger avenues. We iden-
tified source-driven tails (SoDTs) in gravitational perturbations, gen-
erated by point-like matter or nonlinearities, which can dominate over
the canonical Price’s law decay (IDTs) for outgoing sources (Chapter 8).
This alters our understanding of the late-time behaviour of gravita-
tional signals. We also demonstrated that dynamical gravitational lens-
ing during BH ringdown encodes quasinormal mode oscillations in the
light deflection angle, offering a novel multi-messenger probe (Chap-
ter 9).

These findings interconnect, showing how stability properties (er-
goregion, trapping), fundamental field characteristics (scalar potentials,
time-periodicity), and interaction dynamics (BH-BS encounters) man-
ifest in potentially observable phenomena like energy extraction signa-
tures, gravitational wave tails, and lensing effects.

10.2 SIGNIFICANCE AND BROADER IMPLICATIONS

The results presented carry significant implications across several do-
mains. For DM physics, the prevalence of tidal capture and disruption
in BH-BS interactions poses challenges for the survival of extended
scalar DM structures in dense environments, potentially constraining
models where BSs constitute a significant fraction of DM. The forma-
tion of gravitational atoms, however, offers a potential signature if such
remnants can be detected.

In the context of testing GR, our findings offer new avenues. The
characterization of SoDTs provides a more nuanced picture of late-time
gravitational wave signals, potentially requiring modifications to wave-
form models used in data analysis, especially for sources involving mat-
ter or significant nonlinearities. Dynamical lensing during ringdown
presents a conceptually new way to probe the strong-field dynamics
near merging BHs using electromagnetic observations, offering tests
complementary to direct gravitational wave detection.

Regarding quantum gravity phenomenology, the stability analysis of
horizonless UCOs helps delineate the parameter space where such ex-
otic objects could potentially exist, refining constraints derived from
the ergoregion instability. The investigation of energy extraction from
bouncing geometries and Q-balls touches upon fundamental questions
about energy conservation and extraction in scenarios potentially mo-
tivated by quantum gravity effects (e.g., singularity resolution, funda-
mental solitons), offering glimpses into physics beyond classical BHs.

Observationally, this work points towards new targets and methods.
The potential for high-energy bursts from bouncing geometries, the spe-
cific gravitational wave signatures from BH-BS interactions, the subtle
effects of SoDTs on late-time signals, and the prospect of observing dy-
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namical lensing with next-generation telescopes (like next generation
Event Horizon Telescope (ngEHT) or space-based very long baseline
interferometry (VLBI)) all represent concrete, albeit challenging, obser-
vational goals. These studies underscore the power of multi-messenger
astronomy in probing fundamental physics in the strong gravity regime.

10.3 OPEN QUESTIONS AND FUTURE RESEARCH

Despite the progress made, several limitations and open questions re-
main, paving the way for future research.

o Extreme Scale Separation: Our BH-BS simulations were lim-

ited by computational resources to moderate mass and length ra-
tios. Exploring astrophysically relevant scenarios, such as a astro-
physical BH interacting with a galactic-scale DM halo (£ ~ 109),
requires new approaches.

Diverse Objects and Physics: We focused primarily on scalar
fields. Extending stability and interaction studies to other types
of compact objects (e.g., Proca stars, fermion stars) or including
additional physics (e.g., magnetic fields, different scalar poten-
tials, vector fields) would broaden our understanding. The stabil-
ity of UCOs with different equations of state or boundary condi-
tions also requires further investigation.

Backreaction and Nonlinearities: Our analysis of SoDTs in-
cluded second-order gravitational perturbations, but a full un-
derstanding requires exploring higher orders and potentially non-
perturbative effects. Similarly, the energy extraction mechanisms
studied (e.g., bouncing geometry blueshift, Q-ball mode-mixing)
largely assumed negligible backreaction; incorporating this self-
consistently, especially for the potentially explosive bouncing ge-
ometry scenario, is a significant theoretical challenge.

Observational Signatures and Realistic Scenarios: Con-
necting theoretical models to concrete observational predictions
needs refinement. This includes generating more realistic gravita-
tional waveforms for BH-BS encounters across a wider parameter
space and quantifying the detectability of potential signatures
like gravitational atoms. For SoDTs, assessing their detectabil-
ity amidst detector noise and astrophysical foregrounds, particu-
larly in sources like EMRISs, is crucial. Detailed feasibility studies
for observing dynamical lensing during ringdown (and potentially
during inspiral or from superradiant clouds) require further work.
Furthermore, exploring the potential for testing energy extrac-
tion mechanisms in analogue gravity experiments could provide
complementary insights.

Connections to Fundamental Theory: Linking the phenomeno-
logical models used (e.g., bouncing metrics, specific scalar po-
tentials) more directly to candidate theories of quantum gravity
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or specific DM models would strengthen the physical motivation
and allow for more direct constraints on fundamental parame-
ters. Additionally, investigating the implications of phenomena
like SoDTs for fundamental principles such as strong cosmic cen-
sorship, particularly in de Sitter spacetime, is an important the-
oretical direction.

Addressing these open questions through continued theoretical mod-
elling, advanced numerical simulations, and synergistic analysis of grav-
itational wave and electromagnetic observations promises to further
unravel the mysteries of compact objects and the fundamental laws
governing our Universe.
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METRIC PERTURBATIONS DURING RINGDOWN

A.1 NEWMAN-PENROSE FORMALISM

In this appendix, we review the Newman-Penrose (NP) formalism, adopt-
ing the convention from Refs. [384-386]. Note the overall sign difference
in some NP quantities compared to the common convention, as seen,
for example, in Ref. [47]. This ensures that the background values re-
main consistent with cases where the metric signature is (4, —, —, —).
In the NP formalism, four null vectors e‘(l“) are defined as

€lu) = {6?0)761(11)7@?2)76((13)} = {1, n", m" m*} , (A.1)

where [® and n® are real null vectors, and m® and m® are complex null
vectors, satisfying

ng,=—-1 and m%m,=1. (A.2)
The metric can be obtained via
Jab = —2l(anb) + 2m(aﬁlb) . (A3)

The directional covariant derivatives are defined as

D=1V, A =nV,, § =m°V,, = m°V,. (A.4)
The Ricci rotation coefficients are given by
A
T(@)(b)(e) = gMe( )E(e )vVe(b) (A-5)
which can be explicitly written as
_ _ 1
F=7700m0), @ = 771@m, €= 75 (7(2)(1 4)(1)>
1
T=TT3MEVET10Mm@) 7= Ty (7( (1)) T7 3)(4)(2))
1
T =B 1)E) ) L= TV R@E) ) B = 9 (7( 2)(1)3) T 7E)9)@3) )
1
P=ETABM@ A= TV@@) @) ¢ = D) (7( (1)) TG )

The formal adjoint £ of an operator

L=el,Va (A.T)
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can be written as [387-389]
LV =—L—V,el,. (A8)

Therefore, the formal adjoint directional derivative operators are
Di=-(Dtete—p=p) Al=-(hor=gaptp),

ft=—(+8-a-r+@),0l=-(@+F-a-7+w).

In the Kerr background, we use the Kinnersley tetrad as follows

1 1
22 ) VR 2 2 I /A 2 2
‘m == AL (7“ +a ,ABL,O,a> o Cgy =t = o (?“ +a”, ABL7O’G) )

wo_ i — P (0 v no = P (g _i>
€3y = m NG (zasm@,o, 1, sin@) y Cyy =M NG (zast,O, 1, snd )

(A.10)
where p = —1/(r — iacos ) and the overbar denotes complex conjuga-
tion. Agy, and Ygy, are defined as

AL =72 —2Mr+ad%, SpL=r>+a’cos?0. (A.11)
The Ricci rotation coefficients can be written explicitly as
k=A=v=0=€=0, (A.12)

and

p=—1/(r—iacosb), B =—pcotf/(2V2), w = iap*sinf/v/2,
T = —iappsin0/vV2, p=p*pAJ2, v = p+pp(r — M)/2, a == — .
(A.13)

The Weyl scalars are defined as

Yo = Cuy3)1)3) = Cuvpel"m"1Pm? , W1 = Cy)1)(3) = Cpupol"n"1Pm?,
U2 = Coy@)@@) = Cuvpol"m"mn”, U3 = Cay@)()(2) = Cuvpol"n"mn?,
Vs = Coyy@)) = Cupon’m’nm?

(A.14)

where C},, s is the Weyl tensor. In the Kerr background, we have ¥ =
\111:\1'3:\114:0and

Ty =p>M. (A.15)
Other useful equations derived from the Bianchi identities are

DUy = 3pWy, AWy = —3uy, §Uy = 370y, 00y = —3wWs. (A.16)



A.2 METRIC RECONSTRUCTION 153

A.2 METRIC RECONSTRUCTION

Cohen, Chrzanowski, and Kegeles (CCK) formulated a method for re-
constructing vacuum metric perturbations within a radiation gauge
[339-341]. Here, we briefly review the procedure of CCK reconstruc-
tion, which is detailed in Ref. [385, 390-394]. Many of our calculations
heavily depend on the NP formalism, adhering to the conventions out-
lined in Appendix A.1.

We begin by introducing four operators: £,0,8, and T, each with
their respective formal adjoints

e The linearized Einstein operator & , which is defined as

Ew(h) = E [fvcvchab — VaVohe 4+ 2V°V (e + Gab (chchdd - vcvdhcd)} .

2
(A.17)

The operator & is self-adjoint, as indicated by & = &, and it
maps a metric perturbation to its corresponding linearized Ein-
stein tensor.

« The Teukolsky operator O, which can be written as [47]

A

+w—4a)—3\112,
§r

+45) —30,.

Op=(D-3e+e—4p—p) (A-dy+p) - (§+@-a-38—4r)(
Os=(A+3y—5+4p+7) (D+4e—p) - (3—%+B+3a+4w) (
(A.18)

Then the Teukolsky equation with spin +2 can be expressed as
OUV = 8aTy, 049 = 87Ty . (A.19)

Their separable form, the Teukolsky master equation, can be writ-
ten as

Ogths = 87X T (A.20)
where the spin s is designated as either 2. For s = —2

g =p A0 Oy = 25p40up* Ty = 20Ty (A21)
conversely, when s = 42

oo =TV Oy =250, Ty = 2T, . (A.22)

e The operator S, which acts on an energy-momentum tensor 7Ty
to yield the source Ty of the Teukolsky equation (Eq. (2.15) in
Ref. [47])

Sab = (A 3y — 7+ 4p +/1) {(5 — 27 + 2a)n@m? — (A +2v — 2a‘y+ﬁ)m“mb}
+ (3—%+B+3a+4w) [(A+2y+2a) nm? - (g—?+2ﬁ_+2a)n“nb} ,

(A.23)
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o The operator 7”, which acts on a metric perturbation hg, to yield
the perturbed Weyl scalar \IIS)

’f“b:—%{(é—%+3a+5) (6 = 7 + 20+ 26) nn"
+(A+ 43y =) (A+j+2y—29)momt
—[(A+7a+3y-7) (5-27+20)

+(§—%+3a+6) (A+ 20+ 2y) | n@m?} .

(A.24)

hab ~ Tab
:; 4~ 2% O
Oy
g — 1
04
Figure A.1: Relation of operators for s = —2.

As pointed out by Wald [387], one can find the following operator
identity

04T = S8E, (A.25)

and its formal adjoint, 71Ol = SST, is also valid. Then, assuming a
complex potential @, also known as the Hertz potential, satisfies the
adjoint Teukolsky equation (’)1@ = 0, we can consequently have

A

Eap(h) = 2Re(T1LO1®) = 0. (A.26)

Therefore, under the assumption, hg,, provides a solution to the lin-
earized Einstein equation, and can be expressed as

hay = 2Re (8],2) . (A.27)
Chrzanowski introduced two radiation gauges: the ingoing radiation

gauge (IRG) and the outgoing radiation gauge (ORG) [339]. In this
paper, we choose ORG, which can be written as

hapn® = 0 = g%hyy . (A.28)
Under this gauge condition, the metric satisfies
hon =0=h;py =0=hpm =0=hpn =0=hnm. (A.29)

The Hertz potential ®org fulfills the adjoint Teukolsky equation OIQJORG =
0, where

(91:(15—36—1—6—5) (A—4v—3u)—(3—36—d+@) (§—4a—3w>—3\112.



A.2 METRIC RECONSTRUCTION

(A.30)

One can verify Ol@ogg = 0 is equivalent to the homogeneous Teukol-
sky equation for a field with s = +2, that is,

Ol®ora = p 0 (p4<1>ORG) =0, (A.31)

and the metric component can be written as [388]

hab:{n(amb) {(§+B—3a+?+w) (A—47—3,u)

+ (A =3y =3+ p—p) (5o - 3w)]

A

(A.32)

—nanb<5—ﬁ—3a+w) (§—4a—3w>
—MeMp (A—?ry—l—f_y—i—u) (A—47—3u)}<I>ORG+c.c.,

where “c.c.” stands for the complex conjugate part of the whole object.
If we define ®org = p*®orq, then the non-zero metric component can
be written as [395, 396]

hi = hul*l” = Hibora + c.c., hum = hylPm” = A} dora,

him = R > Bonam = hymPm? = Hi dopg | (A.33)
where
Hl=—p*(5-3a—F+5w)(-da+w),
I [T N

+(A+5u—ﬂ—3'y—7y) (§—4a+w>},
H%m:—p_4(A+5u—3v+ﬁ) (A—F,u—élfy).

While éORG does indeed satisfy the vacuum Teukolsky equation with

s = 42, the field does not correspond to either the Weyl scalar \I’(()l) or

\Ilgll) originating from the reconstructed metric hqp. From Fig. A.1, it is

clear that \11511) can be obtained via a fourth-order ordinary differential
equation (ODE) along ingoing null rays [385, 396, 397]

oM = Fabp,, | (A.35)

We can reduce this circularity condition to what is known as a radial
inversion relation [385, 386, 398-400)]

) = % <A+37_§) <A+27—2ﬁ> (A+7—3ﬁ) (A—4’7)i)ORG7
(A.36)

which can be solved in vacuum algebraically by applying the separation
of variables in the next section.
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A.2.1 @QNM to Hertz potential

In Boyer-Lindquist (BL) coordinates, the Teukolsky operator Oy with
spin s in Eq. (A.20) can be written as [47]

. B (r? +a2)2 9o 0%, AMar 0%, aj 1 0%,
Ots = |85~ S0 5 + R dioe 20| 942
A O SHEMJS) 1 ( 8%) B [a(r—M) icosﬂ} O
ApLy, (ABL ar ) “smooo 0% ) T | T Am T sin20) 90
M (Tz — a2) . ws 2 2
25[ABercosﬁ 5 +(s cot 9—5)1/15.

(A.37)

where 1) is a field with spin s. In the vacuum case Ts = 0, we can apply
the separation of variables by letting

1 ) )
s (t) T, 0, ¢) = V7= Z sZtmn ssémn(g) sRémn(T)e_zwmnt+Zm¢ ) (A38)
2 lm,n
With z = cos 8, sSemn(0) satisty
mn m + sz)>
az [(1 - 22) az [ssﬂmn(e)]} + [(62)2 —2csz+ s+ Ag (C) - (1_22) Ssﬂmn(e) =0.
(A.39)

where ¢ = aw, and Sy, (0)e™™? represents the spin-weighted spheroidal
harmonics, with their phase is consistent with Ref. [91]. To normalize
the spin-weighted spheroidal harmonics, we apply the following normal-
ization condition

/ 5Somn(0)Semn (0) sin 06 = 1. (A.40)
0
The radial function R(r) is required to fulfill

d
ABL dr

+ diswr — Apmn | sRemn(r) = 0.

Ast sRomn (7 )] N K? —2is(r — M)K
dr ABL

(A.41)

where
Kon = (7’2 + a2) Winn— QM 5 s A, = SAgmn+a2w,%m—2amwmn. (A.42)

Here Ay, is the angular separation constant.

In the following, we will revisit the procedure for obtaining the Hertz
potential corresponding to specific Weyl scalar \IJ(I) or \I'(l), which is
discussed in Ref. [396, 397]. According to the prev1ously mentioned
condition, O+2(I>0RG = 0, we can expand q)ORG in modes

Z Cémn +2R2mn( )—i-QSEmn(e)eimd)iiwmntv (A43)

£m,mn

(i)ORG \/T
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where Cy,,, are constant coefficients. In addition, the Hertz potential
dopre also satisfies Eq. (A.36), which can be simplified using the fol-
lowing relationship

(A m’y—i—n'y) F=Almm2gmm A [Ag; n)/2 gm y=n f} (A.44)

In this equation, f = f(¢,r,0,¢) can represent any function. Then
Eq. (A.36) can be written as [386, 395-397]

%AQBL (ﬁ8)4 {A%L%ORG} =ptul). (A.45)

Here, the operator 258 is defined as

(T2 + (12) 815 + (18¢ .

Dy =0r ApL,

(A.46)
Note that Eq. (A.45) can be solved easily on the mode basis given by
Eq. (A.43), using the operator

Wi (12 + a®) —ma

K
-|- — . mn —
n = Or + Z—ABL Op +1 Anp ,

(A.A4T)

which acts on radial modes. The coefficient can be fixed by considering
the asymptotic limit approaching infinity and the horizon. This analysis
was previously carried out in Ref. [396, 397] for real w. Due to our choice
of gauge (ORG), the results are similar to those in Section III.C of
Ref. [396]. Here, we briefly review and extend the procedure to complex
w

~ =, 4
1 A\ 4 B C mn Kon _ » .

(A.48)
By relabelling (m,n) to (—m, —n) and employing the identities sS¢mn(6) =

(_1)S+m785’l—m—n(9)a SREmn = sRi_m—n, Kiin = —K_1n_ns and Wp,p, =
—W_m_n, the equation transforms into

5508 (D)) [Audona] = 3 (-1 Coonn 3, (D) [ 81 12 emn) -2 0)67 ]

(A.49)

When considering Eq. (A.38), we obtain

(=D™

—2Z€mn —2R€mn('r) = CZ m— nA (Amn) [A2BL +2R€mn(’r)} .

32
(A.50)
The asymptotic behavior of Ry, is as follows [91, 401]
e*iwr* L. .
hrn len( *) ~ { . 7'* + B0 wave (A51)
r*—00 etwr .
T2EFT : outgolng wave.
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ikmnr™ : :
mn : t of BH
lim o Remn (1) ~ e | ingoing (out o ) (A.52)
e Agie~tkmnt™ : outgoing (into BH).
where k= Wimn — %, and r* is the tortoise coordinate, which is
given by
2M r—rg r—r_
= _— 1 —r_1 ) A.53
r 1"—|—T+_r_ mn( QM) r n( i )} ( )

If f(r) is a solution to the radial Teukolsky equation Eq. (A.41) with
spin s, then Agp, f(r) is a solution to the radial Teukolsky equation with
spin —s. For generic modes with wy,, # 0, the asymptotic behavior sug-
gests that this relation swaps physical (retarded) boundary conditions
with unphysical (advanced) ones. We denote the relationship as

st?Emn = A]S3L SRZmn : (A'54)
With this in mind, we have

="
32

fQZZmn 72R€mn(7ﬁ) = C_Yﬁ—m—nAQBL (ﬁinn>4 [fQRfmn} . (A'55)

Inserting the asymptotic behavior into Eq. (A.55), we find

2

Cfmn = T(_l)“—m—ZZ@mn . (A56)

Here, we used the following relationship
—2Zlmn - (_1>l—2217m7n . (A57)

Consequently, once we have the solution set {w, \Pil)} for the Teukolsky
equation with s = —2, we are able to reconstruct the first-order metric
perturbation hgp. After reconstructing the metric, we verify its validity
by substituting it into the linearized Einstein equation gab(h) =0.

We calculate the quasinormal mode using the gqnm package [353],
which employs Leaver’s method for the radial equation and the Cook-
Zalutskiy spectral approach for the angular sector [90, 91]. Furthermore,
we use the pseudospectral method to obtain solutions to the radial
Teukolsky equation. Here, we briefly illustrate our steps. We convert
the asymptotic behavior into coordinate r [91]

i —1-25+23 77L7LM i mn
7qh_g)lo sRemn (1) ~ 71 ST etmna’ (A.58)
lUm s Rppn(r) ~ (r—ry) 7. (A.59)
rT—=r4
2 7nnM - 3 3
where o, = % Then we can define a new radial function

sRémn (7“) by

sRémn(T) — (7“ - r+)—s—i0+ r—l—s+2iwmnM+iJ+ €iwmnrsifigmn(7') ’ (A60)
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where Ry, (r) is regular at the BH horizon and infinity, and we nor-
malize it by applying

rli_}IglO sRomn(r) =1. (A.61)

We can expand SRgmn(T) as a series of Chebyshev polynomials and
obtain ¢S, (0) in terms of spin-weighted spherical functions as in
Ref. [91]. As a result, we can use our numerical results and evaluate
them at any point (¢,7, 0, ¢) of spacetime in the subsequent ray tracing
section. To ensure the perturbation metric is flawless, we also verified

A

Eab(h) = 0 numerically.

A.3 RADIATED ENERGY

In this section, we estimate the radiated energy of a single mode after
truncation. The energy flux is given by [212]

dE . r2 /
— = lim |—
dt r—oo | 167 Jo

Then the total energy emitted can be calculated as

t

2
\Ilfll)df’ dQ] : (A.62)
+oo

~©dE
Eiot = —dt . A.63
o= [ (A.63)

where tg = 7,(r,). This total energy satisfies the condition Eiot/M <
3% [212]. Assuming that only the £ = m = 2 mode dominates the
radiated energy, this relationship leads to

.Z] < 0.24. (A.64)

It is important to note that this approach differs slightly from truncat-
ing the metric using H (t —r,). However, it should provide a sufficiently
accurate estimation for our purposes.
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