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Abstract

This thesis summarises the candidate contributions in advancing the understanding of how the remnant of

a black hole binary merger relaxes towards equilibrium. In the past, significant effort has been dedicated

to studying the response of a black hole perturbed by initial-data. A posteriori analyses of perturbative

(extreme mass-ratio) and fully non-linear (comparable masses) binary mergers numerical waveforms hint

towards a strong imprint of the inspiral two-body dynamics on the waveform emitted after a common

horizon is formed. However, to date, attention to address the analytical modeling of this problem has been

sparse. This is the focus of the thesis.

After introducing basic techniques in perturbation theory and the analytical modeling of the two-body

problem, we first reproduce past phenomenological results on the imprint of the inspiral on black

hole relaxation. We present a battery of inference tests performed on non-linear waveforms using the

Bayesian inference algorithm bayRing, and analyze the post-merger signal of simulations of non-spinning

progenitors in quasi-circular binaries. We validate past results obtained by fitting the numerical data

through powerful tools of Bayesian data analysis. We show that unmodeled features in the post-peak

waveform preclude confidently extracting more than one overtone harmonic in the black hole relaxation

spectrum. This results hints at the presence of non-modal physical features of the waveform comparable

or larger in magnitude than high overtones. In agreement with past literature, we find a linear dependence

of the fundamental quadrupolar mode amplitude on the progenitors symmmetric mass-ratio. We then

extend for the first time this approach to electrically-charged progenitors, by introducing an effective

charge able to parametrize the fundamental mode amplitude, remnant mass and spin at the merger.

Having consolidated the physical picture arising in the post-merger waveform, we turn our attention to

a first principles description of its features in the perturbative, extreme-mass-ratio limit. We derive an

analytical model able to describe the late-time tails emitted by a test-particle infalling in a Schwarzschild

black hole through generic orbits. The model is an integral over the system’s entire past history, obtained

by convolution of the test-particle source with Price’s law Green’s function, thereby highlighting tails’

hereditary nature. We validate the model against a set of perturbative numerical evolutions, considering

quasi-circular and eccentric mergers, dynamical captures, radial infalls and a scattering configuration. Our

model yields an accurate prediction of the late-times waveform for bounded orbit with intermediate to

high eccentricities. The model explains the several orders-of-magnitude increase in tail amplitude with

orbital eccentricity, and shows that the tail emission is maximized when the motion is at large distances.

Fast angular motion induces destructive interference among subsequent tail signals, hence the total tail
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emission is enhanced along the portion of the trajectory with small angular velocity. This understanding

predicts that for an eccentric merger, the late-time tail observed right after the ringdown is generated at

the last apastron before the merger. We validate this hypothesis with a series of numerical experiments,

showcasing the ability of tails to probe the spacetime large scale structure. We show that the late-time

signal is a superposition of an infinite number of inverse power laws in the retarded time, with Price’s law

as slowest decaying contribution. As a consequence, in a binary merger, a large number of faster decaying

corrections is excited giving rise to a long lived transient with lenght comparable to the inspiral duration.

Price’s law, i.e. vacuum perturbation theory prediction, can only be obtained in the limit of very late times.

We leverage the obtained analytical understanding of late-time tails excited by a two-body problem,

to investigate this effect in fully non-linear numerical evolutions. We focus on head-on collisions of

comparable masses, non-spinning progenitors. For the first time, we uncover the presence of late-time

tails in non-linear simulations, by carefully handling extrapolation methods and outer-boundary placement.

Comparison between non-linear results and perturbative prediction yields an excellent agreement, from

the peak of the waveforms to late times. The relative amplitude of the tail with respect to the peak is

consistent among the perturbative and non-linear cases. However, the non-linear tail decays slower than

the perturbative prediction, yielding the first evidence of non-modal non-linear effects in the late-times

portion of the signal.

Finally, we study the dynamical excitation of black hole quasi-normal modes. This is a problem of key

importance both to extend black hole spectroscopy to the near-peak signal, containing the largest amount

of signal power, and to avoid modeling systematics that might induce overfitting in phenomenological

templates. We show how quasi-normal-mode signals propagate within the light cone and derive a causality

condition selecting the retarded part of their Green’s function. This allows to build the first analytical

model for the dynamical excitation of the ringdown, that can be smoothly connected to the inspiral portion

of the waveform. We derive this model for generic planar orbits of a test-particle on a Schwarzschild

background. The quasi-normal modes amplitudes behave as activating functions, growing during the

inspiral-plunge and saturating to constant values near the light-ring crossing. The causality prescription

regularizes the quasi-normal modes Green’s function, otherwise divergent once the test-particle reaches

the horizon. The apparent location of the test-particle as observed at null infinity reaches the horizon in

an infinite amount of time. As a consequence, the observer receives signals emitted by the test-particle

source even at late-times after the light-ring crossing, and the signal is quenched with the horizon redshift.

In particular, we show that this new feature of the post-peak waveform is described by a superposition of

non-oscillating, exponentially decaying terms with decay-rate given by multiples of the horizon redshift.

Our model for the ringdown excitation does not completely reproduce the near-peak evolution observed in

numerical waveforms. Other components of the Schwarzschild background spectral response must be

taken into account to predict the waveform at such early times. However, we are able for the first time to

predict the inspiral imprint on the stationary ringdown response, as we explicitly show by computing the

amplitude and phase dependence on the eccentricity.

This thesis initiates a program of first-principles analytical modeling of the post-peak waveform. We

detail future efforts required to fully achieve this goal, in light of the results obtained.
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Abstract (Danish version)
Denne afhandling opsummerer kandidatens bidrag til at fremme forståelsen af, hvordan resterne af en sort

hul binær fusion går mod ligevægt. Der er tidligere blevet lagt betydelig indsats i at studere responsen af

et sort hul forstyrret af initialdata. A-posteriori analyser af perturbative (ekstrem masseforhold) og fuldt

non-lineære (sammenlignelige masser) numeriske bølgeformer udsendt af binære fusioner peger på et

stærkt aftryk af inspiral-to-legeme problem i den udsendte bølgeform efter dannelsen af en fælles horisont.

Derimod har opmærksomheden på at adressere den analytiske modellering af problemet været sparsom.

Dette er fokus for afhandlingen.

Efter at have introduceret grundlæggende teknikker i perturbationsteori og den analytiske modellering af

to-legeme problemet, replikerer vi først tidligere fænomenologiske resultater om inspiralens aftryk på

sort hul afslapning. Vi præsenterer en række inference-tests udført på non-lineære bølgeformer ved hjælp

af den Bayesianske inference-algoritme bayRing og analyserer post-merger signalet fra simuleringer af

ikke-roterende progenitorer i quasi-cirkulære binære systemer. Vi validerer tidligere resultater opnået

ved at tilpasse de numeriske data gennem kraftfulde værktøjer til Bayesiansk dataanalyse. Vi viser, at

umodelerede træk i bølgeformen efter toppen forhindrer en pålidelig udtrækning af mere end én harmonisk

overtone i sort hul afslapningsspektret. Dette resultat peger på tilstedeværelsen af ikke-modale fysiske træk

i bølgeformen, som er sammenlignelige med eller større end de høje overtoner. I overensstemmelse med

tidligere litteratur finder vi en lineær afhængighed af den fundamentale quadrupole mode amplitude på

progenitorernes symmetriske masseforhold. Vi udvider derefter for første gang denne tilgang til elektrisk

ladede progenitorer ved at introducere en effektiv ladning, der kan parametrisere den fundamentale mode

amplitude, restmassen og spinnen ved fusionen.

Efter at have analyseret det fysiske billede, der opstår i bølgeformen efter fusionen, retter vi vores

opmærksomhed mod en først-principper beskrivelse af dens træk i den perturbative, ekstreme-masse-

forholds grænse.

Vi udleder en analytisk model, der kan beskrive de sene tids haler, der udsendes af en test-partikel, der

falder ind i et Schwarzschild-sort hul gennem generiske baner. Modellen er et integral over systemets

samlede historik, opnået ved konvolution af test-partikelkilden med Price’s lov Green’s funktion, hvilket

fremhæver halernes arvelige natur. Vi validerer modellen mod et sæt af perturbative numeriske evolutioner,

der omfatter quasi-cirkulære og eksentriske fusioner, dynamiske fangster, radiale indfald og en spred-

ningskonfiguration. Vores model giver en præcis forudsigelse af bølgeformens sene opførsel for bundne

baner med mellemlange til høje ekscentriciteter. Modellen forklarer den flere størrelsesordener store stign-

ing i haleamplitude med orbital ekscentricitet og viser, at haleemissionen er maksimeret, når bevægelsen

er på store afstande. Hurtig vinkelbevægelse inducerer destruktiv interferens blandt de efterfølgende

halesignaler, hvorfor den totale haleemission forstærkes langs den del af banen med lille vinkelhastighed.

Denne forståelse forudser, at for en eksentrisk fusion, vil den sene tids hale, der observeres lige efter

ringdown, blive genereret ved den sidste apastron før fusionen. Vi validerer denne hypotese med en række

numeriske eksperimenter, der viser halernes evne til at undersøge rumtidens stor-skala struktur. Vi viser,

at den sene tids signal er en superposition af et uendeligt antal inverse potenslove i den retarderede tid,

hvor Price’s lov giver det langsomste dæmpende bidrag. Som en konsekvens bliver et stort antal hurtigere
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dæmpende korrektioner i en binær fusion exciteret, hvilket giver anledning til en langlivet transiente

med længde sammenlignelig med inspiralens varighed. Price’s lov, dvs. vacuum-perturbationsteoriens

forudsigelse, kan kun opnås i grænsen af meget sene tidspunkter.

Vi udnytter den opnåede analytiske forståelse af sene tids haler, exciteret af et to-legeme problem, til at

undersøge denne effekt i fuldt non-lineære numeriske evolutioner. Vi fokuserer på direkte kollisioner

af sammenlignelige masser, ikke-roterende progenitorer. For første gang afslører vi tilstedeværelsen

af sene tids haler i non-lineære simuleringer ved omhyggeligt at håndtere ekstrapolationsmetoder og

placeringen af ydre grænser. Sammenligning mellem non-lineære resultater og perturbative forudsigelser

giver en fremragende overensstemmelse, fra bølgeformernes top til sene tider. Den relative amplitude

af halen i forhold til toppen er konsekvent mellem de perturbative og non-lineære tilfælde. Dog aftager

den non-lineære hale langsommere end den perturbative forudsigelse, hvilket giver den første evidens for

ikke-modale non-lineære effekter i den sene tids del af signalet.

Endelig studerer vi den dynamiske excitering af sorte hulers quasi-normal modes. Dette er et problem af

afgørende betydning både for at udvide sort hul spektroskopi til signalet nær toppen, som indeholder den

største mængde signalstyrke, og for at undgå modellering systematikker, der kunne inducere overfitting i

fænomenologiske skabeloner. Vi viser, hvordan quasi-normal-mode signaler propagerer inden for lysets

konus og udleder en kausalitetsbetingelse, der vælger den retarderede del af deres Green’s funktion. Dette

gør det muligt at bygge den første analytiske model for den dynamiske excitation af ringdown, som

kan forbindes glat med inspiral-delen af bølgeformen. Vi udleder denne model for generiske planbaner

af en test-partikel på en Schwarzschild baggrund. Quasi-normal modes amplituder opfører sig som

aktiveringsfunktioner, der vokser under inspiral-plunge og mætter til konstante værdier nær lys-ring

krydsningen. Kausalitet medføre at quasi-normal modes Green’s funktionen er regulariseret, som ellers

ville være divergent, når test-partiklen når horisonten. Den tilsyneladende placering af test-partiklen, som

observeres ved null uendelighed, når horisonten på efter en uendelig mængde tid. Som en konsekvens

modtager observatøren signaler udsendt af test-partikelkilden selv ved sene tider efter lys-ring krydsningen,

og signalet dæmpes med horisontens rødforskydning. Især viser vi, at denne nye funktion af bølgeformen

efter toppen beskrives af en superposition af ikke-oscillerende, eksponentielt aftagende termer med en

dæmpningsrate givet ved multipla af horisontens rødforskydning.

Vores model for ringdown excitationer er ikke i stand til fuldt ud at reproducere den nær-toppe udvikling

i amplitude og øjeblikkelig frekvens, der observeres i numeriske bølgeforme. Andre komponenter af

Schwarzschild baggrundens spektrale respons skal tages i betragtning for at forudsige bølgeformen

på så tidlige tidspunkter. Vi er dog i stand til for første gang at forudsige inspiralens aftryk på den

stationære ringdown respons, som vi eksplicit viser ved at beregne amplitude- og faseafhængigheden af

ekscentriciteten.

Denne afhandling initierer et program for først-principper analytisk modellering af bølgeformen efter

toppen. Vi beskriver fremtidige indsatsområder, der kræves for fuldt ud at opnå dette mål, på baggrund af

de opnåede resultater.

Danish translation revised by Leart Sabani
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Summary

In Chapter 1, we outline the problem addressed in this thesis and highlight its relevance within the context

of past literature. We provide intuition and briefly discuss the methods used to derive the original results

of this manuscript.

In Chapter 2, we introduce the basic elements of black hole perturbation theory, focusing on a Schwarzschild

background. We review the derivation of the non-homogeneous Regge-Wheeler and Zerilli equations,

dictating the behavior of the gravitational perturbations multipoles driven by a generic stress-energy

matter tensor. We discuss the Green’s function approach as a framework to solve for the perturbations

and we detail its spectral decomposition in a prompt, quasi-normal modes and tail components, following

past literature. We conclude the chapter by reviewing some results on initial-data driven perturbations in

vacuum, useful for the original results presented in this manuscript.

In Chapter 3, we discuss the basics of the relativistic two-body problem. After introducing the geodesics

equations of motion via the Hamiltonian formalism, we review the characteristics of different bounded

orbits. We discuss radiation-reaction effective forces driving the dynamics through inspiral and plunge,

providing a broad overview of well-known methods. We conclude by discussing the specific radiation-

reaction forces used to compute the original results of this thesis.

In Chapter 4, we review past efforts devoted to modeling the ringdown signal through a posteriori analyses

of numerical evolutions and discuss phenomenological models that describe the waveform near its peak.

In the second part of the chapter, we present original results. We investigate the ringdown emitted by

non-spinning progenitors in quasi-circular orbits through a Bayesian inference algorithm. Our results

validate previous studies based on fitting algorithms. We then generalize the investigation to electrically

charged progenitors.

In Chapter 5, we investigate late-time tails in the post-peak signal emitted by a test particle infalling in a

Schwarzschild black hole, presenting our novel tails model. This Chapter is based on the work in Ref. [1].

In Chapter 6, we uncover late-time tails in fully non-linear mergers, focusing on head-on collisions of

equal masses black holes. The results are compared with perturbative ones hinting at the presence of

non-linear effects in the late-times portion of the signal. This Chapter is an adaptation of the project

Ref. [2].

In Chapter 7, we investigate the dynamical excitation of quasi-normal modes for a test-particle infalling

in a Schwarzschild black hole. We derive a causality condition for the propagation of the quasi-normal
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modes, from first principles. We present an analytical model for the ringdown, smoothly connected with

the plunge-merger portion of the evolution. This chapter contains original results from ongoing efforts.

In Chapter 8, we summarize the main findings of the thesis and discuss future extension of this work.

In Appendix A, we present the expression of the source term in the Regge-Wheeler/Zerilli equations,

for perturbations driven by a test-particle. In Appendix B, we discuss the convergence of the RWZHyp

code used to obtain the results in Chapters 5, 6, 7. In Appendix C we discuss the Chandrasekhar’s

transformations relating Regge-Wheeler and Zerilli modes. In Appendix D we review regularization

techniques used in the literature to compute the excitation coefficients of the quasi-normal modes excited

by a source which extends towards the horizon.
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Chapter 1

Introduction

Gravitational waves are a clear prediction of Einstein’s General Relativity. Working in the simplest setting,

we consider a flat spacetime described by the Minkowski metric ηµν with small perturbations hµν [3, 4]

gµν = ηµν + hµν , |hµν| ≪ 1 . (1.1)

We substitute the above ansatz into Einstein’s equations, expand in hµν and neglect all terms beyond

linear order. This yields a set of ten equations governing the evolution of hµν. A fundamental principle of

General Relativity is gauge invariance: solutions of Einstein’s equations remain valid under coordinate

(gauge) transformations. This freedom allows us to impose four constraint equations on hµν. For the sake

of this example, it is convenient to adopt the harmonic gauge (also known as the De Donder or Lorentz

gauge) [3, 4]

∂µ
(
hµν −

1
2
ηµνη

αβhαβ

)
= 0 . (1.2)

In this gauge, the linearized Einstein’s equations governing hµν read

□F

(
hµν −

1
2
ηµνη

αβhαβ

)
= −

16πG
c4 Tµν , (1.3)

where Tµν is the stress-energy tensor sourcing the gravitational perturbations, and □F ≡ η
µν∂µ∂ν is the flat

space d’Alambert operator. This equation predicts the existence of wave-like spacetime perturbations,

which we call gravitational waves. Einstein [5] was the first to derive this result, but he erroneously

argued that gravitational waves were a “gauge artifact” removable by choosing an appropriate coordinate

frame. Later, it was shown that a gravitational wave passing through a collection of test particles alters

their relative proper distance, which is a physical observable. In particular, gravitational waves possess

two physical degrees of freedom, corresponding to two observable polarizations [3, 4].

A rough estimate of the gravitational waves’ amplitude generated by a source Tµν, can be obtained from

the prefactor on the right-hand side of Eq. (1.3)

□Fh ∼
G
c4 × T ∼ 8 · 10−50 s2

g cm
× T . (1.4)

Gravitational wave emission is extremely weak, so these signals are generally difficult to observe except

via secular effects or from extremely massive and compact sources. The first evidence for gravitational
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Chapter 1. Introduction

waves was, in fact, indirect: precise timing of the Hulse–Taylor binary pulsar revealed a decreasing

orbital period, consistent with the orbital energy loss due to gravitational wave emission predicted by

general relativity [6]. The first direct detection of gravitational waves was instead achieved in 2015, by

the LIGO-Virgo collaboration [7], using Michelson interferometry.

Binary black hole mergers generalities

Since the first direct detection, many more binary black hole mergers have been observed, thanks also to

upgrades that improved the detectors’ sensitivity [8]. Gravitational waves coming from these systems can

be divided into three main stages. A schematic representation of these phases is shown in Fig. 1.1, taken

from Ref. [7]. Initially, the two black holes orbit each other on a bound trajectory that gradually decays as

energy and angular momentum are carried away by gravitational radiation. We denote this portion of the

binary evolution and the gravitational signal it emits inspiral. Because the gravitational emission is weak,

its back-reaction on the orbit is small and acts over long timescales. As a consequence, the trajectory

slowly evolves through a sequence of stable bounded orbits. After a critical separation is reached, stable

orbits able to osculate the trajectory no longer exist. The relative motion of the two objects becomes

much faster and is unaffected by back-reaction [9, 10]. This portion of the orbital evolution, known as the

plunge, culminates in the formation of a common horizon, the merger. During the plunge-merger stage,

the waveform exhibits a transient behavior: its amplitude peaks, and then starts to decay exponentially. Its

instantaneous frequency grows until it saturates to a constant. This transient lasts for about ≈ 15M [11,

12] and ends when the waveform is well described by a superposition of exponentially damped sinusoids

(at leading order) [13], a regime denoted as the ringdown.

In the ringdown phase, a common horizon has already formed, and a perturbed black hole geometry

approximates the spacetime. Black hole perturbations in vacuum have been studied by analytical and

numerical means, mainly evolving Gaussian-like initial data in an exact geometry, e.g. Schwarzschild or

Kerr. These studies decompose the black hole response into three different spectral components [14, 15,

16, 17, 18]: a prompt signal, propagating the initial data directly towards the observer, a superposition

of exponentially damped sinusoids (the quasi-normal modes) and a late-time inverse power-law decay

(the tail). Analyses of numerical waveforms [13] showed that, for each multipole, the amplitude and

instantaneous frequency of the ringdown signal match the least-damped quasi-normal mode frequency of

the remnant black hole, as computed by perturbation theory. This motivated modeling the post-merger

phase as a superposition of constant-amplitude quasi-normal modes

hring(t, r, θ, φ) =
1
r
θ(t − tstart)

∑
ℓ≥2

∑
|m|≤ℓ

∑
n=0

∑
s=±

Aℓmnseiϕℓmns × e−iωℓmnst−t/τℓmns × −2Yℓm(θ, φ) , (1.5)

where Aℓmns, ϕℓmns are the real amplitude and phase of each mode, while ωℓmns, τℓmns denote its real

frequency and damping time. The indices (ℓm) label different components in the spin weight −2 spherical

harmonics −2Yℓm basis (note that also spin weight −2 spheroidal harmonics can be used), n is the overtone

number and s distinguishes “regular” and “mirror” modes. tstart defines the ringdown starting time, i.e. the

time after which Eq. (1.5) can accurately describe the signal.

The current sensitivity of the LIGO-Virgo detectors spans approximately the range ∼ 20−103 Hz, allowing

the detection of binaries with total mass in the stellar and intermediate mass intervals ∼ 2 − 103 M⊙ [8].
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Figure 1.1: Numerical waveform emitted from a black-hole binary merger with an artistic rendering of

each different stage. Figure taken from Ref. [7].

The fundamental quadrupolar mode (ℓmn) = (220) of a Schwarzschild black hole has frequency ω220+ ≃

0.37/M, hence, the ringdown is in the LIGO-Virgo band for total mass in the intermediate regime

∼ 102 − 103M⊙. The first gravitational wave detection marked also the first ringdown observation; to date,

∼ 20 ringdown events have been catalogued [8] (see Ref. [19] for the full list). This sample is expected to

grow extensively in future observing runs, as the LIGO–Virgo detectors undergo further upgrades.

To extract information from observations, we compare the data against predictions derived under different

hypothesis, enclosed in waveform models. Such models do not need to cover the full inspiral-merger-

ringdown signal, but can be restricted to different evolution phases or even to selected features. For

instance, the template in Eq. (1.5) is a parametrized model for extracting quasi-normal mode content

from the post-merger waveform, treating the (complex) amplitudes and frequencies as free parameters. In

General Relativity, the no-hair conjecture implies that the complex quasi-normal frequencies depend only

on the black hole’s mass, spin, electric and magnetic charge [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32]. Hence, detecting a single quasi-normal mode lets us infer the remnant’s mass and spin, whereas

observing multiple modes enables tests of general relativity and its coupling to other fundamental fields.

This line of research, denoted as black hole spectroscopy [33, 34, 35, 36, 37, 38], holds great potential

to discover new physics, motivating further investigations aimed at computing accurate plunge-merger-

ringdown models that more closely match General Relativity’s predictions.
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Defining the problem

The ringdown template in Eq. (1.5) has several limitations. To begin with, its functional form was

computed from first principles, solving linearized Einstein’s equations for narrow Gaussian initial data

with small amplitude, localized far from the black hole, and is only valid at late times for an observer

at large distances [39, 14, 15]. It is not immediate to deduce that a model constructed under such

simplifications can be applied to binary mergers. To start with, comparison of non-linear and perturbative

waveforms hints at a suppression of non-linear effects at later times [40]. Therefore, enough time after

a common horizon has formed, the signal emitted seems to be well-modeled as a linear initial-value

problem on a fixed background geometry, at leading order. Also, for real detections, we can always

assume the observer to be at large distances. Hence, two of the above hypotheses are expected to be valid.

However, realistic initial data are not a narrow Gaussian localized far from the black hole. Relaxing this

assumption yields a more complex phenomenology than Eq. (1.5) [41]. Further, although at late times

non-linear effects are suppressed, the plunge-merger and post-merger portion of the signal does contain

such beyond-linear effects. Some appear as exponentially damped sinusoids: the quadratic quasi-normal

modes deriving from second-order couplings in the Einstein equations [42, 43, 44, 45, 46, 47, 48, 40, 49],

which can easily be incorporated into Eq. (1.5). Other non-linear phenomena are non-modal [50, 51, 52,

53, 54, 55, 56, 57] and cannot be captured by Eq. (1.5).

Equation (1.5) does not predict how the constant-amplitude quasi-normal response is excited, hence it

cannot be smoothly connected to the transient signal and requires an additional free parameter, the starting

time tstart. Without clear predictions on tstart and the plunge-merger transient, ringdown analyses of real

data could, in principle, be performed at any time, even near the waveform peak. At such early times and

only for specific systems, the (numerical) waveform may be approximated by a superposition of many

overtones [13, 58, 59]. This result, however, is not a prediction but rather an a posteriori observation,

derived by fitting numerical relativity waveforms with many free parameters, assuming a fixed black hole

geometry (while the remnant is dynamical), and without properly addressing overfitting. Lacking an

accurate plunge-merger-ringdown waveform model could lure one into repeating such analysis on real

data [60], potentially yielding unphysical conclusions [61, 40, 62].

The ringdown signal decays fast: for a remnant black hole of mass ∼ 100M⊙ and zero spin, the fundamental

mode in the quadrupole has lifetime τ220+ ∼ 5.54 ms M/(100M⊙). If the model restricts our analyses to

times well after the peak, the rapidly decaying nature of the signal leads to a loss in signal to noise ratio,

reducing our ability to disentangle gravitational waves from the detector noise. Pushing modeling abilities

closer to the waveform peak would imply following the merger-ringdown evolution for a longer duration,

improving parameter estimation.

Current closed-form plunge-merger models are purely phenomenological, built by fitting heuristic tem-

plates to numerical relativity waveforms. Alternatively, it is possible to use numerical waveforms directly

as models. In this case, we have a first-principles model, since it is obtained by solving the full Einstein’s

equations describing the two-body problem until the remnant reaches an equilibrium configuration. Since

generating a waveform for every binary configuration and progenitors’ parameters is computationally chal-

lenging, numerical relativity based models typically interpolate across a catalog of numerical waveforms,
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creating numerical surrogates [63, 64, 65, 66, 67, 68, 69]. Both numerical surrogates and phenomeno-

logical models are valuable because they enable the identification of gravitational-wave signals within

detector noise and facilitate the extraction of some physical parameters. However, these models have

downsides. They only allow us to quantify the total agreement or mismatch between the data and a set of

predictions on different portions of the signal, in which all parameters are fixed a priori. In this process,

the inability to disentangle different waveform features and parametrize them in terms of fundamental

observables of our theory of gravity limits the ability to isolate specific physical contributions and infer

new physics from observations.

We wish instead to have analytical models derived by first principles, able to describe different waveform

features, in the form of closed templates parametrized by observables. If we consider binaries initialized in

different configurations, modify the underlying theory of gravity, assume the presence of an environment,

etc., such models should yield precise predictions on how each observable is affected, while often retaining

a similar underlying functional expression. By comparison with observations, we would then be able

to make theory-agnostic tests on these observables, later evaluating them against existing predictions or

formulating new ones as needed.

First-principles analytical models have been computed through perturbative expansions for the inspiral

part of the waveform, through the Effective-One-Body approach [70, 71] for generic mass ratios and by the

self-force program [72] for extreme and intermediate mass ratios of the progenitors. In these frameworks,

given a theory (e.g. general relativity in vacuum or electrovacuum, extensions to this theory), it is

possible to derive semi-analytic solutions to the two-body problem, describing both the objects’ motion

and the gravitational radiation they emit. This thesis employs black-hole perturbation theory to derive

first-principles analytic models of the plunge–merger and post-merger phases of the gravitational-wave

signal.

Intuition and starting points

An intuition on how to tackle this problem can be built by analyzing and comparing perturbative and

non-linear numerical waveforms, exploiting the features uncovered by phenomenological ansatzes. Below,

we briefly sketch such intuition, which will be tested and made rigorous in the remainder of the thesis.

For instance, it is possible to describe the transient and ringdown phase in each multipole through a single

quasi-normal mode, the least damped one, with time dependent amplitudes Aℓm(t) and phases ϕℓm(t),

modeled as smooth activation functions [73]. The templates for Aℓm(t), ϕℓm(t) are heuristic functions

of parameters fitted from numerical waveforms. The key idea, however, is that the quasi-normal mode

response must switch on over a finite timescale, rather than instantaneously as assumed in Eq. (1.5).

The picture behind this intuition is the following (see also Fig. 1.2). During the inspiral, the instantaneous

frequency of the multipole (ℓm) is approximately mΩ(t), where Ω(t) is the binary orbital frequency. This

behavior still holds in the early plunge, until the maximum orbital frequency is reached Ωmax. Afterwards,

Ω(t) falls rapidly, while the multipolar instantaneous gravitational-wave frequency continues to increase,

until it saturates to the fundamental quasi-normal frequency. In the extreme mass-ratio limit, the binary

system reduces to a test particle evolving on a fixed black hole background, and the orbital frequency has
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Chapter 1. Introduction

Figure 1.2: In black, the quadrupolar instantaneous frequency emitted by a test particle infalling in a

Schwarzschild BH. In blue, its instantaneous orbital frequency, rescaled with respect to the multipole

number m = 2. Figure taken from Ref. [74].

a peak when the light-ring is crossed. The light-ring is located near the peak of the background effective

potential barrier. Studies of black hole perturbations in vacuum identify the generation of quasi-normal

modes as a scattering process off the potential barrier peak. Hence, we heuristically expect the ringdown

response to be “activated" as the test particle approaches and crosses the light-ring.

The quasi-normal mode response is a solution of a second-order partial differential equation in (t, r∗).

When a test particle drives the perturbations, this equation is non-homogeneous, with a source term

oscillating with frequency well approximated by ≈ mΩ(t). Then, the quasi-normal mode excitation can be

viewed as a driven, damped harmonic oscillator [74, 75]. The fundamental mode (n = 0) has the longest

life-time and the largest real frequency ωℓm0+, satisfying ωℓm0+ > mΩmax. Overtones are characterized by

a shorter life-time and a smaller real frequency. In the limit n ≫ 1 the quasi-normal modes share the same

real frequency ≪ 1, while the decay-rate grows linearly in n [15]. As the test particle plunges, mΩ(t)

either sweeps or approaches each real quasi-normal frequency ωℓmn+, progressively driving the excitation

of the respective mode. This cumulative (“quasi-resonant”) effect is most efficient for the least damped

modes, n ≳ 0, corresponding to frequencies ωℓmn+ ≳ Ωmax and, as a consequence, it contributes the most

when the test particle is close to the light-ring. Once the test particle crosses the light-ring, Ω(t) drops

quickly to zero. The “driving force” disappears, the quasi-normal mode excitation can be modeled as a

free oscillator, and we expect the quasi-normal amplitudes to be approximately constant.

Even though this intuition is derived under the extreme mass-ratio limit, it can be generalized to comparable

masses by stating that the quasi-normal mode response is progressively excited near the peak of the

binary orbital frequency. Phenomenological models employed to describe the post-peak waveform [73],

share the same functional form in both the perturbative, extreme mass-ratio limit and the fully non-linear,

comparable-mass one. The non-linear content of the waveform is encapsulated in the free parameters of

these phenomenological templates. This feature showcases how perturbative and non-linear post-merger
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waveforms are characterized by similar features, hinting at a common underlying mechanism to describe

them at leading order.

The heuristic picture sketched above offers an intuition on how to connect the ringdown template in

Eq. (1.5) with the inspiral portion of the waveform. Moreover, it hints at the fact that the ringdown

response begins to accumulate before a common horizon has formed, when two distinct objects are still

present. As a consequence, we expect that the quasi-normal mode amplitudes will carry information

on inspiral features. This is indeed observed in numerical relativity waveforms: fits of numerical data

performed with template Eq. (1.5) and fixed quasi-normal frequencies yield amplitudes and phases which

carry clear imprints of the progenitors’ binary [76, 77, 11, 78, 12, 79, 49, 80, 69, 81, 82, 83].

Interestingly, a posteriori analyses of numerical waveforms can robustly identify up to the first few

overtones, while higher overtones are not parametrically stable [40, 84]. Agnostic studies, in which both

complex amplitudes and frequencies are fitted from the data, hint at the presence of low-frequency features

in the post-merger waveform comparable in magnitude with overtones n ≥ 2 [40]. These features could

be either unmodeled numerical noise or unmodeled physical signals not captured by Eq. (1.5), which, as

aforementioned, is derived under oversimplified conditions. A possible low-frequency contamination in

the waveform at intermediate times, is given by tails, an inverse power-law decay dominating the signal at

late times. This signal is small by the time it starts dominating the strain, however, its functional behavior

hints it could be louder at earlier times, enough to potentially compete in magnitude with overtones.

Due to the current lack of a first principles understanding of how overtones and tails are excited, this

picture remains speculative. There are hints that the late-time tails could bear imprints of the inspiral

two-body problem and be potentially magnified by certain binary features [75]. However, contrary to

the quasi-normal mode case, there is no intuition behind the mechanism of tail excitation. These results

warrant deeper investigations.

A better understanding of tails is important not only in the context of ringdown studies. The several

orders of magnitude enhancement of late-time tails with the progenitors’ binary eccentricity observed

in Ref. [75] brings tails into the realm of observational physics and is relevant for current (LIGO-Virgo-

KAGRA) and future (LISA) detections. Several channels for eccentric mergers are being investigated

(see e.g. [85, 86]); moreover, there is evidence that an eccentric merger has already been observed by

the LIGO-Virgo-KAGRA collaboration [87, 88]. A tail detection would have significant implications

both in the foundations of general relativity and in astrophysics. On one side, tails have the potential to

complement small-scale information obtained through the ringdown with information on the spacetime

asymptotic structure [89, 90] and peeling behavior (or lack thereof) [91]. At the same time, the strong

dependence on eccentricity offers a unique way to measure this parameter through gravitational waves,

which is relevant in the context of population studies and binary formation scenarios.

Methods

We have outlined the problem we want to solve and sketched our intuition on how the post-merger

response is excited. Now, we identify the methods required to translate such intuition into a rigorous

calculation. We will see that, although the overall qualitative picture is correct, several other features
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contribute to the dynamical excitation of the black hole relaxation.

The main focus of this thesis will be on binaries in which one of the black holes is much smaller than

the other, so that it can be approximated by a test particle. To derive these results, we will consider a

decomposition of the gravitational perturbation in spin weight −2 spherical harmonics, and solve for

the Regge-Wheeler and the Zerilli differential equations [92, 3, 4], driven by a source localized at the

particle trajectory. We will present semi-analytical results, obtained through the convolution of the source,

fed with a numerical trajectory, with different components of the retarded Green’s function associated

with the Regge-Wheeler/Zerilli differential operator. The results will then be compared with numerical

perturbative evolutions, computed with the RWZHyp code [93, 94]. For some fine-tuned configurations,

we analyze fully non-linear numerical evolutions, computed with the Spec code [95, 96, 97, 98, 99],

relative to comparable-masses BH binaries.

We will mainly consider a test particle evolving along trajectories driven by radiation reaction through

the inspiral, plunge, and merger phases. At each time before the plunge, it is possible to find a geodesic

osculating the trajectory, while, once the test particle enters the plunge, the effect of radiation reaction on

the orbit becomes negligible, and the trajectory approaches a geodesic [9, 10]. This non-linear trajectory

will be fed into the source term on the right-hand side of the Regge–Wheeler and Zerilli equations. This

approach has been widely used in the literature [100, 74, 101, 75] to compute inspiral–plunge–ringdown

waveforms for small mass ratios; however, it is not formally consistent with a first-order perturbative

expansion. To be consistent with first-order perturbation theory, we should restrict our treatment to

geodesic trajectories. Instead, we introduce dissipative second-order effects in the particle-dependent

source driving the perturbations. Below, we justify this approach based on results and arguments present

in the literature.

The heuristic argument behind our framework is that, due to the long timescale over which radiation

reaction affects the orbital evolution, we expect it to be effectively (though not formally) equivalent to

the adiabatic approximation approach in Ref. [102]. In this reference, the inspiral-plunge waveform

emitted by the test particle is computed by allowing its amplitude and instantaneous frequency to have

a slow time evolution. At each time step, these quantities are fixed to values relative to a motion along

the osculating geodesic. The resulting waveform then “stitches together” first-order waveforms and is

formally consistent with a perturbative expansion.

A formal argument supporting the approach used in this thesis was presented in Ref. [100]. In this

reference, the Regge–Wheeler and Zerilli equations with the non-linear trajectory fed into the source

are solved numerically. The resulting angular momentum flux at future null infinity is then compared

with an analytical prediction of the binary’s angular momentum loss, computed through a resummed

Post-Newtonian expansion. This analytical quantity, derived within a consistent perturbative framework,

shows good agreement with the numerical angular momentum flux at infinity during the inspiral (see

Fig. 4 of Ref. [100]). As discussed in Ref. [100], a mismatch appears in the final stages of the plunge.

However, in this regime, the motion becomes approximately geodesic, and the numerical framework thus

becomes consistent with first-order perturbation theory. This result suggests that the error introduced by

the inconsistent use of perturbation theory stays small throughout the orbital evolution.
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Ref. [103] provided another test of the validity of our approach. This work compares test-particle

numerical waveforms obtained using the “perturbatively inconsistent” framework with fully non-linear

numerical evolutions computed for several mass ratios in the intermediate regime, the largest being

q = 128. The amplitudes at merger, where non-linear effects are expected to be most relevant, are

compared after rescaling by the leading dependence on the symmetric mass ratio. Ref. [103] found

excellent agreement between the test-particle and fully non-linear results for all the multipoles considered

in the present work, i.e., (ℓ,m) = (2, 2), (3, 2), (4, 4) (see Fig. 2 of Ref. [103]). This direct comparison

with the full solution of Einstein’s equations further validates the approach used in this thesis, suggesting

that non-linearities in wave generation are subleading, at least for the aforementioned multipoles.

Unless specified, we will always use geometric units, for which G = c = 1.
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Chapter 2

Schwarzschild black hole perturbations

A Schwarzschild black hole (BH) is a spherically symmetric, asymptotically flat solution of Einstein’s

equations in vacuum, characterized by the presence of a null hypersurface, known as the horizon. Let g0
µν

denote the Schwarzschild metric and R0
µν, R0 be the Ricci tensor and the Ricci scalar constructed from

this metric, Einstein’s equations read

R0
µν −

1
2
g0
µνR

0 = 0 . (2.1)

In Schwarzschild coordinates (t, r, θ, φ), the line element describing this solution is

ds2 = g0
µνdxµdxν = −A(r)dt2 +

1
A(r)

dr2 + r2
(
dθ2 + sin2 φdφ2

)
, A(r) =

(
1 −

2
r

)
, (2.2)

where we have rescaled r → r/M, with M BH mass. We adopt this convention throughout the chapter. It

is also useful to introduce the tortoise coordinate r∗ as a function of r, with the following convention

dr∗
dr
= A−1(r) , r∗(r) = r + 2 log

( r
2
− 1

)
, (2.3)

and the Eddington-Finkelstein coordinates (u, v) (also referred to as retarded and advanced time, respec-

tively)

u = t − r∗ , v = t + r∗ . (2.4)

We will consider linear perturbations on top of g0
µν; thanks to the spherical symmetry of the background,

the equations governing the evolution of these perturbations separate into an angular part and a (t, r)

part. The angular sector is solved using tensor spherical harmonics. The (t, r) sector is governed by

second-order partial differential equations known as master equations. These equations will be derived in

Sec. 2.1 assuming the presence of matter driving the perturbations. However, in this chapter, we will focus

on a vacuum problem, studying the evolution of initial data imposed on the Cauchy hypersurface t = t0.

In Sec. 2.2, we will introduce a framework to study these perturbations, based on the Green’s function

technique. In Sec. 2.3, we will review previous results in the literature, on which the results of Chapters 7

and 5 are based. The non-vacuum case will be discussed in detail in Chapters 3 and 4.

The discussion of Sec. 2.1 is based on Refs. [92, 3, 4] and references therein, as stated in the text. Sec. 2.2

is mainly based on Refs. [104, 14, 105, 15, 106, 107, 18].

11



Chapter 2. Schwarzschild black hole perturbations

The discussion in Sec. 2.3.2 is based on Ref. [108].

2.1 Master equations

We consider small perturbations on top of a Schwarzschild background g0
µν, kept fixed, driven by the

presence of a stress-energy tensor Tµν ∼ O(ε), where ε is a small book-keeping parameter. The perturbed

metric is expanded in O(ε) and Einstein’s equations are solved iteratively, order by order. At the linear

level, we have

gµν = g
0
µν + εhµν + ... , (2.5)

with hµν solution of the linearized Einstein’s equations

R1
µν −

1
2
g0
µνR

1 = 8πTµν . (2.6)

R1
µν and R1 are the linearized (order ∼ ε) Ricci tensor and Ricci scalar [92].

Following Refs. [92, 3, 4], we proceed to separate the perturbations into an angular and a (t, r)-sector,

independent from each other.

We exploit the spherical symmetry of the background and decompose the Schwarzschild manifold as

M = M2 ×S2, where M2 is the 2-dimensional Lorentzian manifold covered by the coordinates (t, r), while

S2 is the 2-sphere with coordinates (θ, φ). We will use capital Roman letters to denote components on M2,

and lowercase for components on S2. We denote the metric on S2 as γab ≡ diag(1, sin2 θ), with inverse

γab = diag
(
1, sin−2 θ

)
. ∇a is the covariant derivative on S2.

We can rewrite hµν as [92, 4]

hµν =

hAB hAa

haA hab

 , A, B = t, r , a, b = θ, φ . (2.7)

Each of the components hAB for A, B fixed is a scalar under rotations on S2, hAa for A fixed is a vector

and hab is a rank-2 tensor. As a consequence, it is possible to expand hAB, hAa and hab in scalar, vector

and tensor spherical harmonics, respectively. We denote the scalar spherical harmonics by Yℓm(θ, φ) with

ℓ ≥ 0, |m| ≤ ℓ, as the solutions of the following eigenvalue problem

γab∇a∇bYℓm(θ, φ) = −λYℓm(θ, φ) , (2.8)

where we have defined λ ≡ ℓ(ℓ + 1).

The vector spherical harmonics on S2 are defined for ℓ ≥ 1, |m| ≤ ℓ as

Yℓm
a = ∇aYℓm =

(
∂θYℓm, ∂φYℓm

)
,

S ℓm
a = −ϵabγ

bc∇cYℓm =

(
−

1
sin θ

∂φYℓm, sin θ ∂θYℓm
)
.

(2.9)

In the above, ϵab is the Levi-Civita symbol on S2 defined as ϵ23 = −ϵ32 = sin θ.
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2.1 Master equations

For tensor spherical harmonics, we use the orthonormal set introduced by Zerilli-Mathews [109, 110],

defined for ℓ ≥ 2 as

Aℓmab = γabYℓm = diag
(
Yℓm, sin2 θ Yℓm

)
,

Zℓmab = ∇a∇bYℓm +
λ

2
γabYℓm =

1
2

Wℓm Xℓm

Xℓm − sin2 θWℓm

 ,
S ℓm

ab =
1
2

(
∇bS ℓm

a + ∇bS ℓm
a

)
=

1
2

− 1
sin θXℓm sin θWℓm

sin θWℓm sin θ Xℓm

 ,
(2.10)

where we have introduced the functions Wℓm, Xℓm as follows

Wℓm(θ, φ) ≡ ∂2
θY

ℓm − cot θ ∂θYℓm −
1

sin2 θ
∂2
φYℓm , Xℓm(θ, φ) ≡ 2∂θ∂φYℓm − 2 cot θ ∂φYℓm . (2.11)

The harmonics just introduced are eigenstates of the parity operator, whose action maps θ → −θ + π, φ→

φ + π. In particular, Yℓm, Yℓm
a , Aℓmab and Zℓmab have eigenvalue (−1)ℓ and are denoted as even or polar.

The odd or axial harmonics S ℓm
a and S ℓm

ab have eigenvalues (−1)ℓ+1. It follows that we can separate the

first-order perturbations hµν in Eq. (2.7) into even and odd, as [92, 4]

hµν =
∑
ℓ,|m|≤ℓ

(
hℓm,(e)
µν + hℓm,(o)

µν

)
. (2.12)

The even sector is decomposed as [92, 4]

hℓm,(e)
µν =

hℓm,(e)
AB (t, r) Yℓm(θ, φ) hℓm,(e)

A (t, r) Yℓm
a (θ, φ)

hℓm,(e)
A (t, r) Yℓm

a (θ, φ) r2
[
Kℓm(t, r)Aℓmab (θ, φ) + Hℓm(t, r)Zℓmab (θ, φ)

] , (2.13)

while the odd perturbations have components [92, 4]

hℓm,(o)
µν =

 0 hℓm,(o)
A (t, r) S ℓm

a (θ, φ)

hℓm,(o)
A (t, r) S ℓm

a (θ, φ) h̄ℓm,(o)(t, r) S ℓm
ab (θ, φ)

 . (2.14)

The stress-energy tensor of the external perturbations Tµν can also be decomposed in scalar, vector and

tensor spherical harmonics, and then separated into even and odd sectors [92]

Tµν =
∑
ℓ,|m|≤ℓ

(
T ℓm,(e)
µν + T ℓm,(o)

µν

)
, (2.15)

where the even and odd sectors are defined as [92]

T ℓm,(e)
µν

T ℓm,(e)
AB (t, r) Yℓm(θ, φ) T ℓm,(e)

A (t, r) Yℓm
a (θ, φ)

T ℓm,(e)
A (t, r) Yℓm

a (θ, φ) r2T ℓm
3 (t, r)Aℓmab (θ, φ) + T ℓm

2 (t, r)Zℓmab (θ, φ)

 , (2.16)

T ℓm,(o)
µν =

 0 T ℓm,(o)
A (t, r) S ℓm

a (θ, φ)

T ℓm,(o)
A (t, r) S ℓm

a (θ, φ) T̄ ℓm,(o)(t, r) S ℓm
ab (θ, φ)

 . (2.17)
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Chapter 2. Schwarzschild black hole perturbations

2.1.1 Sourced Regge-Wheeler equation

We substitute the linear-order odd perturbations Eq. (2.14) and stress-energy tensor Eq. (2.17) into the

linearized Einstein’s equations Eq. (2.6). Following [92], we redefine the function ∂th
ℓm,(o)
r in terms of the

Regge-Wheeler master function Ψ(o)
ℓm as

∂th
ℓm,(o)
r =

(λ − 2)
r
Ψ

(o)
ℓm + r2∂r

hℓm,(o)
t

r2

 , (2.18)

and substitute this expression into the linearized Einstein’s equations for the odd sector. The (tϕ)-

component is a function of the following variables

δGℓm,(o)
tϕ

[
r,Ψ(o)

ℓm, ∂rΨ
(o)
ℓm, h

ℓm,(o)
t , ∂rh

ℓm,(o)
t , ∂2

r hℓm,(o)
t , ∂th̄ℓm

]
= 8πT ℓm,(o)

tϕ

[
r,T ℓm,(o)

t

]
, (2.19)

where we used the notation δGµν = R1
µν−(1/2)g0

µνR
1. We differentiate the (rϕ)-component of the linearized

Einstein’s equations with respect to the t-coordinate, then substitute the expression for ∂th̄ℓm obtained

solving Eq. (2.19). Finally, we rewrite the equation in terms of the r∗ coordinate, as defined in Eq. (2.3).

The result is a partial differential equation in the variables (t, r∗) only, independent of the angular variables

(θ, φ). This equation, governing the odd-parity perturbations, is denoted Regge-Wheeler master equation

and reads [
∂2

t − ∂
2
r∗ + VRW

ℓm (r∗)
]
Ψ

(o)
ℓm(t, r∗) = S (o)

ℓm(t, r∗) , (2.20)

where the Regge-Wheeler potential and source have been defined, respectively, as [92, 3, 4]

VRW
ℓm (r∗) ≡ A(r)

(
λ

r2 −
6
r3

)
, (2.21)

and [92]

S (o)
ℓm(t, r∗) ≡

16πr
λ − 2

[
A(r) ∂tT

ℓm,(o)
r (t, r∗) − ∂r∗T

ℓm,(o)
t (t, r∗)

]
. (2.22)

2.1.2 Sourced Zerilli equation

Following Refs. [92], we introduce the Zerilli master function as

Ψ
(e)
ℓm(t, r∗) =

r
λ [r (λ − 2) + 6]

(
rλ κ1 + 4rA2(r) κ2

)
, (2.23)

where the functions κ1,2 are defined as

κ1 ≡ Kℓm +
λ

2
Hℓm + A(r)

(
r∂rHℓm −

2
r

hℓm,(e)
r

)
,

κ2 ≡
1
2

hℓm,(e)
rr − A−1/2(r)∂r

[
rA−1/2(r)

(
Kℓm +

λ

2
Hℓm

)]
.

(2.24)

Manipulating the linearized Einstein’s equations Eq. (2.6) for the even-sector, it is possible to find that

Ψ
(e)
ℓm is solution of a second order partial differential equation in the variables (t, r∗), the Zerilli master

equation [92] [
∂2

t − ∂
2
r∗ + VZ

ℓm(r∗)
]
Ψ

(e)
ℓm(t, r∗) = S (e)

ℓm(t, r∗) (2.25)
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Figure 2.1: Regge-Wheeler (purple), Eq. (2.21), and Zerilli (blue, dot-dashed), Eq. (2.26), potentials vs

the r-coordinate for ℓ = 2, λ = 6.

where we have introduced the Zerilli potential as [92, 3, 4]

VZ
ℓm(r∗) ≡ A(r)

λ(λ − 2)2r3 + 6(λ − 2)2r2 + 36(λ − 2)r + 72
r3 [r(λ − 2) + 6]2 , (2.26)

and the source [92]

S (e)
ℓm(t, r∗) ≡ −

8π
λ [r(λ − 2) + 6]

{
A2(r)r [2 + r(λ − 4)] T ℓm,(e)

rr + 2r3∂r∗T
ℓm,(e)
tt +

2λ(3r − 8)r − r2λ2 − 8r2 + 68r − 108
r(λ − 2) + 6

rT ℓm,(e)
tt − 2r3A2(r)∂r∗T

ℓm,(e)
rr +

4λrA2(r)T ℓm,(e)
r + A2(r)

[
2
(
1 −

3
r

)
− λ

]
λT ℓm,(e)

2 + 4r2A2(r)T ℓm,(e)
3 } .

(2.27)

The Regge-Wheeler and Zerilli potentials, Eq. (2.21) and Eq. (2.26) respectively, share similar features,

as shown in Fig. 2.1 for the case ℓ = 2, λ = 6. Both VRW,Z
ℓm are potential barriers with a peak near the

light-ring r ∼ 3, vanishing exponentially towards the horizon. Neither potential is compact at large

distances; in fact, both decay as inverse polynomials in r ≫ 1, with leading behavior given by the

centrifugal barrier λr−2.

2.1.3 Metric reconstruction

We consider an observer at rest in the wave zone, i.e. very far away from the source emitting the

gravitational perturbation. Following Ref. [92], we define the tetrad eµa, projecting into the observer’s local

inertial frame, as ηab = eµaeνbg
0
µν with eµa = diag

[
−A−1/2(r), A1/2(r), r−1, (r sin θ)−1

]
. Then, we apply this

projection to the gravitational perturbations hℓmµν . The goal is to write the master functions Ψ(e/o)
ℓm (t, r) as
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Chapter 2. Schwarzschild black hole perturbations

functions of the two polarizations h+,×(t, r, θ, φ) measured by the observer in the transverse-traceless (TT)

gauge.

By definition, a TT tensor satisfies the following properties [111]

h(TT)
µ0 = 0 , h(TT)

kk = 0 , h(TT)
i j = h(TT)

ji , ∂ih
(TT)
i j = 0 . (2.28)

Only the radiative components of the metric perturbation can be written in a TT form. These components

are characterized by the behavior h ∼ r−1 in the wave zone [111]. Hence, in the TT gauge it must hold,

for r ≫ 1

hTT
θϕ = hTT

θθ = hTT
ϕϕ ∼

1
r
, hTT

θθ + hTT
ϕϕ ∼ O(r−2) , h(TT)

µt , h(TT)
µr ∼ O(r−2) , (2.29)

The TT-tensor components are related to the strain polarizations as [111]

h+ = h(TT)
θθ = −h(TT)

φφ , h× = h(TT)
θφ = h(TT)

φθ . (2.30)

With these considerations, following Ref. [92], we can reconstruct the metric perturbation for the odd-

sector perturbations.

We apply eµa to the odd perturbations tensor hℓm,(o)
µν in Eq. (2.14), yielding

hℓm,(o)
ab =


0 0 −

hℓm,(o)
0

r S 2(θ, φ) −
hℓm,(o)

0
r sin θ S 2(θ, φ)

∗ 0
hℓm,(o)

1
r S 2(θ, φ)

hℓm,(o)
1

r sin θ S 2(θ, φ)

∗ ∗ −2h̄ℓm Xℓm(θ,φ)
r2 sin θ h̄ℓm Wℓm(θ,φ)

r2

∗ ∗ ∗ 2h̄ℓm Xℓm(θ,φ)
r2 sin θ


+ O

(
r−2

)
. (2.31)

Comparing the above with the conditions in Eq. (2.29), it must hold

hℓm,(o)
t , hℓm,(o)

r ∼ O(r−1) , h̄ℓm ∼ O(r) , (2.32)

while the two polarizations in Eq. (2.30) can be found as

hℓm,(o)
× =

h̄ℓm(t, r∗)
r2 Wℓm(θ, φ) , hℓm,(o)

+ = −
h̄ℓm(t, r∗)

r2

Xℓm(θ, φ)
sin θ

. (2.33)

We have now related the variable h̄ℓm to the ×,+ polarizations in the TT gauge. We are left with the task

of relating the h̄ℓm variable to the Regge-Wheeler master function Ψ(o)
ℓm. To do so, we expand in O(r−n)

the (tϕ)-component of the linearized Einstein’s equation in the odd sector, Eq. (2.19). At lowest order in

r ≫ 1 it holds

∂th̄ℓm = A(r)∂r
(
rΨ(o)

ℓm

)
+ hℓm,(o)

t ∼ ∂r
(
rΨ(o)

ℓm

)
+ O

(
r−1

)
. (2.34)

Note that we have assumed a compact source for the stress-energy tensor, which vanishes at large distances

from the BH. At large distances, we expect the gravitational perturbation to be a function of the retarded

time t − r∗ ≈ t − r. As a consequence, it will hold ∂th̄ℓm ≈ −∂rh̄ℓm. Since h̄ℓm ∼ O(r), we can neglect the

subleading term O(r−1) in Eq. (2.34) and write h̄ℓm ≃ −rΨ(o)
ℓm. We can then construct the odd-parity strain

in terms of the two polarizations h×,+ from the master function Ψ(o)
ℓm as

(
hℓm,(o)
+ − ihℓm,(o)

×

)
= i

√
(ℓ + 2)!
(ℓ − 1)!

Ψ
(o)
ℓm(t, r∗)

r −2Yℓm(θ, φ) + O
(
r−2

)
, (2.35)
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2.1 Master equations

where we have introduced the spin-weight −2 spherical harmonics as

−2Yℓm(θ, φ) =

√
(ℓ − 2)!
(ℓ + 2)!

(
Wℓm − i

Xℓm

sin θ

)
. (2.36)

We now repeat this procedure for the even sector. We apply the tetrad eµa to the even perturbations tensor

hℓm,(e)
µν and we impose Eq. (2.29), yielding

hℓm,(e)
tt , hℓm,(e)

rr , hℓm,(e)
tr ∼ O(r−2) , hℓm,(e)

t , hℓm,(e)
r ∼ O(r−1) , Hℓm ∼ O(r−1) , Kℓm ∼ O(r−2) . (2.37)

The two polarizations can be written in terms of the quantity Hℓm as

hℓm,(e)
× = Hℓm(t, r∗)

Xℓm(θ, φ)
2 sin θ

, hℓm,(e)
+ = Hℓm(t, r∗)

Wℓm(θ, φ)
2

. (2.38)

We expand κ1,2 as defined in Eqs. (2.24) assuming the wave-zone behaviors in Eq. (2.37), yielding

κ1 ≃
λ

2
Hℓm + r∂rHℓm ,

κ2 ≃ −
λ

4
∂r(rHℓm) .

(2.39)

Substituting into Eq. (2.23), it is possible to find Ψ(e)
ℓm ≃ rHℓm. Then, the Zerilli master function Ψ(e)

ℓm and

the +, × polarizations are related through the following equation

(
hℓm,(e)
+ − i hℓm,(e)

×

)
=

√
(ℓ + 2)!
(ℓ − 2)!

Ψ
(e)
ℓm(t, r∗)

r −2Yℓm(θ, φ) + O(r−2) . (2.40)

Results for the odd, Eq. (2.35), and the even, Eq. (2.40), sectors can be combined to yield

(h+ − i h×) =
∑
ℓ,|m|≤ℓ

√
(ℓ + 2)!
(ℓ − 2)!

1
r

(
Ψ

(e)
ℓm + iΨ(o)

ℓm

)
−2Yℓm(θ, φ) + O(r−2) . (2.41)

2.1.4 Energy and angular momentum fluxes

To define energy and angular momentum carried by the gravitational perturbation hµν, a separation in

the typical scales of g0
µν, hµν is needed [111, 3, 4]. For instance, let L be the characteristic length of

the background g0
µν and Λ the typical wavelength of the GWs perturbation hµν, such that the condition

Λ/L ≪ 1 holds. It is then possible to define the gravitational-wave energy density through the tensor [3,

4] ⟨tµν⟩, obtained by averaging the Landau-Lifshits stress-energy pseudo-tensor tµν [112] over several

wavelengths Λ.

The energy flux dE/dt through a 2-sphere at r ≫ 1 carried by the gravitational waves, can be written

as [3, 4]
dE
dt
=

∫
dΩ

〈
t00

〉
=

r2

16π

∫
dΩ

〈
|ḣ+(t, r∗)|2 + |ḣ×(t, r∗)|2

〉
, (2.42)
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Chapter 2. Schwarzschild black hole perturbations

where the integration is performed along the full solid angle and we have denoted with ˙( · ) differentiation

with respect to the time coordinate t. Substituting Eq. (2.41) into Eq. (2.42), we can rewrite the energy

flux in terms of the Regge-Wheeler and Zerilli master functions [92]

dE
dt
=

1
16π

∑
ℓ,|m|≤ℓ

(ℓ + 2)!
(ℓ − 2)!

〈
|Ψ̇

(e)
ℓm(t, r∗)|2 + |Ψ̇

(o)
ℓm(t, r∗)|2

〉
. (2.43)

The angular momentum flux dJ/dt is related to the (rϕ)-component of the GWs stress-energy tensor ⟨tµν⟩,

in particular it is possible to write [92]

dJ
dt
=

1
32π

∑
ℓ,|m|≤ℓ

(ℓ + 2)!
(ℓ − 2)!

〈
im

[
Ψ̇

(e)
ℓm

(
Ψ

(e)
ℓm

)∗
+ Ψ̇

(o)
ℓm

(
Ψ

(o)
ℓm

)∗]
+ c.c.

〉
, (2.44)

where we have used ( · ) + c.c. to denote that we sum the quantity ( · ) with its complex conjugate ( · )∗.

2.2 Green’s function method

We define the Green’s function (GF) associated with the Regge-Wheeler/Zerilli differential operators

∂2
t − ∂

2
r∗ − Vℓm(r) through[

∂2
t − ∂

2
r∗ + Vℓm(r∗)

]
Gℓm(t − t′; r∗, r′∗) = δ(t − t′)δ(r∗ − r′∗) . (2.45)

with the condition G(t − t′; r∗, r′∗) = 0 if t < t′, due to causality. The GF gives information on how a

perturbation which is impulsive in both variables of the partial differential equation, i.e. localized at a

certain event (t′, r′∗), propagates on the curved (fixed) background towards the observer at (t, r∗). Assume

now to have a superposition of N impulsive contributions localized at different events (ti, ri
∗), each with a

different amplitude S (ti, ri
∗). The contribution of each source propagates towards the observer in a different

way, as encoded in the relative GF, G(t − ti; r∗, ri
∗). The general solution will then be a sum of the source

impulsive contributions, each weighted with the corresponding GF.

Heuristically, we can consider a generic, extended source as a superposition of N → ∞ impulsive sources,

each with a different amplitude S (t′, r′) and localized at different locations (t′, r′). The general solution,

then, as we take the continuous limit N → ∞, can be written in terms of the convolution integral

Ψ(t, r∗) =
∫ ∞

−∞

dt′
∫ ∞

−∞

dr′∗G(t − t′; r∗, r′∗) S (t′, r′∗) . (2.46)

To solve Eq. (2.45), it is convenient to define a Fourier (anti-)transform and switch to (time t) frequency ω

domain as

F ϕ = ϕ̃(ω, r) ≡
∫ ∞

−∞

dt eiω(t−t′)ϕ(t, r) , F −1ϕ̃ = ϕ(t, r) =
1

2π

∫ ∞

−∞

dω e−iω(t−t′)ϕ̃(ω, r) . (2.47)

Note that, from now on, we will label with a ˜( · ) the quantities in the ω-domain. We apply the transform

operator F on Eq. (2.45) to reduce the partial differential equation to an ordinary differential equation.

Remembering that the Dirac delta function can be represented as δ(t − t′) = (2π)−1
∫ ∞
−∞

dω e−iω(t−t′), we

obtain [
−∂2

r∗ − ω
2 + Vℓm(r)

]
G̃ℓm(ω; r∗, r′∗) = δ(r∗ − r′∗) . (2.48)
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2.2 Green’s function method

The general solution of the above equation can be written as

G̃ℓm(ω; r∗, r′∗) = θ(r∗ − r′∗)ũ
out
ℓm (ω; r∗)

ũin
ℓm(ω; r′∗)

Wℓm(ω; r′∗)
+ θ(r′∗ − r∗)ũin

ℓm(ω; r∗)
ũout
ℓm (ω; r′∗)

Wℓm(ω; r′∗)
, (2.49)

where ũin,out
ℓm (ω; r∗) are solutions of the homogeneous problem associated with Eq. (2.48), i.e.[

−∂2
r∗ − ω

2 + Vℓm(r)
]

ũℓm(ω; r∗) = 0 , (2.50)

with the following boundary conditions

ũin
ℓm(ω, r∗) =

 e−iωr∗ , r∗ → −∞

Ain(ω)e−iωr∗ + Aout(ω)eiωr∗ , r∗ → ∞
, (2.51)

ũout
ℓm (ω, r∗) =

 Bin(ω)e−iωr∗ + Bout(ω)eiωr∗ , r∗ → −∞

eiωr∗ , r∗ → ∞
. (2.52)

The Wronskian of these solutions is Wℓm(ω; r∗) and has the following definition

Wℓm(ω; r∗) = ũout
ℓm (ω; r∗)∂r∗ ũ

in
ℓm(ω; r∗) − ũin

ℓm(ω; r∗)∂r∗ ũ
out
ℓm (ω; r∗) . (2.53)

The Schwarzschild GF problem was first addressed by Leaver [14], who analytically proved that the

BH spectral response in the (complex) ω domain can be divided into three distinct contributions: an

infinite set of isolated simple poles, a branch cut and a high-frequency response. In the time domain, these

contributions translate, respectively, into a superposition of exponentially damped oscillatory modes, the

quasi-normal modes, an inverse power-law decay, the tail, and a Heaviside function-like component, the

prompt response.

In the following sections, we will show how to compute the GF for each of the contributions mentioned

above, following the seminal works [14, 15, 106, 107, 18].

2.2.1 Quasi-normal modes Green’s function

As shown in Eq. (2.49), to construct the GF, it is first necessary to compute the homogeneous solutions

ũin,out
ℓm associated with the problem in Eq. (2.48) with the boundary prescriptions Eqs. (2.51) and (2.52).

To this end, it is useful to rewrite the homogeneous equation Eq. (2.50) in the r coordinate. Note that, to

ease the notation, we will temporarily drop the ( · )ℓm indices.

Due to the simpler expression of the Regge-Wheeler potential, compared with the Zerilli one, we will

focus on the former. Results for the Zerilli modes can be obtained either using the same framework, or

mapping the odd results into the even sector exploiting Chandrasekhar’s transformation theory [113].The

homogeneous Regge-Wheeler equation in ω-domain, in terms of the r coordinate, reads [105]

r(r − 2)
d2

dr2 ũ(ω; r) + 2
d
dr

ũ(ω; r) +
[
ω2r3

r − 2
− λ +

6
r

]
ũ(ω; r∗) = 0 . (2.54)
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Chapter 2. Schwarzschild black hole perturbations

This is a generalized spheroidal wave equation, characterized by two regular and one irregular singular

points, at r = 0, 2 and r = ∞ respectively [104]. Different types of solutions to this equation have been

computed, as infinite expansions around different singular points; a detailed analysis on the subject was

provided by Leaver [105, 14]. Here we focus on the solution proposed in Ref. [14] to describe the QNMs

response as an infinite expansion near the horizon r = 2, characterized both by a purely ingoing wave (in

r∗) behavior at the horizon and a purely outgoing one (in r∗) at infinity

lim
r→2

ũ ∝ e−2iω log(r/2−1) , lim
r→+∞

ũ = eiω[r+2 log(r/2)] ≃ eiωr∗ . (2.55)

This solution has the following ansatz [104]

ũh(ω; r∗(r)) = Nh(ω)eiωr∗

(
r − 2

r

)−4iω ∞∑
k=0

ak(ω)
(
1 −

2
r

)k

, (2.56)

where Nh(ω) is a normalization factor reinforcing the boundary condition of outgoing plane wave with

unitary amplitude ũh → eiωr∗ in the limit r∗ → ∞, and is equal to Nh(ω) = (
∑

k ak)−1. Moreover, in the

limit r → 2, it holds

ũh ≃
[
e4iωa0Nh(ω)

]
· e−2iω−2iω log(r/2−1)

≃
[
e4iωa0Nh(ω)

]
· e−iωr∗ ≡ N−1

h,H+ · e−iωr∗ . (2.57)

In the above equation, we have defined the ratio between an ingoing unitary plane wave at the horizon

e−iωr∗ and the solution ũh, as Nh,H+ .

Substituting Eq. (2.56) into Eq. (2.54) yields a recurrence equation for the expansion coefficients

{ak(ω)}k [104]

a0 = 1 ,

α0a1 + β0a0 = 0 ,

αkak+1 + βkak + γkak−1 = 0 , k ≥ 1 .

(2.58)

with

αk(ω) = k2 + (2 − 4iω)k − 4iω + 1 ,

βk(ω) = −2k2 − (2 − 16iω)k + 16ω2 + 8iω − λ + 6 ,

γk(ω) = k2 − 8iωk − 8ω2 − 7 .

(2.59)

We define the polynomial F(ω) as the infinite continued fraction

F(ω) ≡
−γ1

β1 −
α1γ2

β2−
α2γ3
β3−...

(2.60)

It is possible to show [104, 114] that there exist a set of complex frequencies {ωn}n, the quasi-normal

frequencies (QNFs), such that

F(ωn) = −
β0(ωn)
α0(ωn)

. (2.61)

Then, substituting into the second of Eq. (2.58), a1 can be computed, and from the third equation all the

other coefficients can be derived. At the QNFs the series in Eq. (2.56) converges uniformly [104, 105], i.e.
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2.2 Green’s function method

as a function (at least C0) in r. The solutions Eq. (2.56) at the QNFs {ωn}n are called quasi-normal modes

(QNMs).

Following Ref. [14], we introduce two other solutions with different boundary conditions. The ansatze for

these solutions are the following [14]

ũ∞±(ω; r∗(r)) = (4ω)∓2iωe±iϕ±

(
r − 2

r

)−2iω ∞∑
L=−∞

bL [GL+ν(−2ω,ωr) ± iFL+ν(−2ω,ωr)] , (2.62)

where FL+ν(−2ω,ωr), GL+ν(−2ω,ωr) are Coulomb wave functions as defined in Ref. [115] with η =

−2ω , ρ = ωr and

ϕ± = ±i log

 ∞∑
L=−∞

bL

[
Γ (L + ν + 1 − 2iω)
Γ (L + ν + 1 + 2iω)

]±1/2

e∓i L+ν
2 π

 . (2.63)

The coefficients bL in Eq. (2.62) satisfy a three terms recursive equation similar to Eq. (2.58), but with

different coefficients αL, βL and γL, now functions of ν(ω) for each ω, whose explicit expression can be

found in Ref. [14]. For a generic ω, in the limit r → ∞, the Coulomb wave functions can be approximated

as [115]

FL+ν(−2ω,ωr) ± iGL+ν(−2ω,ωr) ≃ e±iω(r+2 log(r/2)) · e±i[2ω log(4ω)− L+ν
2 π+argΓ(L+ν−2iω)] . (2.64)

The solutions ũ∞± in Eq. (2.62) are a purely outgoing (ũ∞+ ≃ eiωr∗) and ingoing (ũ∞− ≃ e−iωr∗) unitary

plane wave at r → ∞, respectively. Note that the Coulomb wave function GL+ν(−2ω,ωr) is singular

for ω = 0 and, when computed on complex frequencies, is a multi-valued function of ω [115]. As a

consequence, to evaluate it on the complex ω plane, it is necessary to introduce a branch cut with branch

point at the origin.

Following [14], we focus on the QNMs and express the solutions ũin,out(ω; r∗) defined in Eqs. (2.51)

and (2.52), in terms of ũh, ũ∞± for ω = ωn. Given the boundary prescription in Eq. (2.51), we can write

ũin(ω; r∗) = Ain(ω)ũ∞−(ω; r∗) + Aout(ω)ũ∞+(ω; r∗) , ũout(ω; r∗) = ũ∞+(ω; r∗) . (2.65)

The Wronskian Eq. (2.53), computed in the limit r∗ → ∞, is given by

W(ω) = −2iωAin(ω) . (2.66)

By definition, at the QNFs {ωn}n the homogeneous solution ũin is purely ingoing (outgoing) at the horizon

(infinity) and can be expressed as in Eq. (2.56), i.e. ũin(ωn; r∗) ≡ Nh,H+ ũh(ωn; r∗). Hence, at the QNFs, the

conditions Ain(ωn) = 0 and Nh,H+(ωn)ũh(ωn; r∗) ≡ Aout(ωn)ũ∞+(ωn; r∗) hold and the Wronskian vanishes.

The quantity Aout(ωn) can be computed explicitly comparing Eqs. (2.56) and (2.62) in the limit r → ∞,

yielding [14]

Aout(ωn) = Nh,H+(ωn) = e−4iωn

∞∑
k=0

ak . (2.67)

To switch to the time domain, it is necessary to perform an anti-transform as in Eq. (2.47). The integral

for the t-domain GF reads

G(t − t′; r∗, r′∗) =
∫
Γ1

dω
ie−iω(t−t′)

4πωAin(ω)

[
θ(r∗ − r′∗)ũ

in(ω; r′∗)ũ∞+(ω; r∗) + θ(r′∗ − r∗)ũin(ω; r∗)ũ∞+(ω; r′∗)
]
.

(2.68)
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Re(ω)

Im(ω)

× ×

× ×

Γ1
Γ4

Γ2

Γ6

Γ3
Γ5

Γ′2

Figure 2.2: Schematic representation of the complex-frequencies plane relative to the integrand in

Eq. (2.68). The zig-zagged line is the branch cut, and the crosses are the simple poles of the integrand.

Thick and dashed lines represent two possible closed contours: Γ1 + Γ
′
2 and Γ1 + Γ2 + Γ3 + Γ4 + Γ5 + Γ6.

Figure taken from Ref. [1].

In the above equation, Γ1 indicates that we are integrating over the whole real axis, i.e. for ω ∈ (−∞,∞)

with ω ∈ Re. However, the integrand has a singularity in ω = 0; hence, to compute the integral, we

perform an analytical continuation to complex frequencies ω. At an operational level, we shift Γ1 parallel

to the Re(ω) axis, at Im(ω) = ϵ ≪ 1, as shown in Fig. 2.2 [14, 15]. The integrand in Eq. (2.68) has a rich

structure in the complex Im(ω) < 0 half plane: there is an infinite set of complex frequencies {ωn}n, the

QNFs, at which the Wronskian vanishes yielding isolated regular poles. Along the negative imaginary

axis Re(ω) = 0, Im(ω) < 0, there is a branch cut, originating from the branch point in ω = 0. Following

Leaver [14], the time-domain GF can be separated to account for each of these different contributions

G(t − t′; r∗, r′∗) = GF(t − t′; r∗, r′∗) +GQNMs(t − t′; r∗, r′∗) +GBC(t − t′; r∗, r′∗) (2.69)

The term GBC(t − t′; r∗, r′∗) is given by the integration along the branch cut

GBC(t − t′; r∗, r′∗) = −
[∫
Γ3

dω G̃(ω; r∗, r′∗) +
∫
Γ4

dω G̃(ω; r∗, r′∗) +
∫
Γ5

dω G̃(ω; r∗, r′∗)
]
. (2.70)

As we will show in detail in Sec. 2.2.2, this contribution is characterized by an inverse power-law behavior

in the retarded time, denoted as late-time tail.

The term GF(t − t′; r∗, r′∗) in Eq. (2.69) is the contribution of the high-frequency arcs Γ2 and Γ6

GF(t − t′; r∗, r′∗) = −
[∫
Γ2

dω G̃(ω; r∗, r′∗) +
∫
Γ6

dω G̃(ω; r∗, r′∗)
]
. (2.71)

As detailed in Sec. 2.2.3, it is common in the literature [14, 15] to assume that this contribution is

responsible for the prompt response, i.e. the initial propagation of the perturbation right towards an

observer placed at large distances.

Finally, the GQNMs(t − t′; r∗, r′∗) term in Eq. (2.69) is the contribution to the integral given by the isolated

poles in Fig. 2.2, the QNFs {ωn}n. For frequencies approaching the QNFs, it is possible to Taylor expand

the Wronskian as [14]

W(ω) = −2iωAin(ω) ≃ −2iωn(ω − ωn)
dAin(ωn)

dω
(2.72)
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Under this expansion, the QNFs appear to be first-order isolated poles of the integrand G̃(ω; r∗, r′∗), hence,

their contribution to the time-domain GF is given by the residue theorem [14]

GQNMs(t − t′; r∗, r′∗) = − 2πi
∑

n=0,s=±

Res
[
G̃(ω; r∗, r′∗)

]
=

∑
n=0,s=±

Bn,s · e−iωn,s(t−t′)ũh(ωn,s; r′∗)ũh(ωn,s; r∗) ,

(2.73)

where we have defined the geometric excitation coefficients Bn,s as

Bn,s ≡ Nh,H+(ωn,s)
1

2ωn,s αn,s
, αn,s ≡

dAin(ω)
dω

∣∣∣∣∣
ω=ωn,s

. (2.74)

The notation in Eq. (2.73) is such that n identifies QNFs with the same imaginary component, while

s differentiates between modes with positive (s = +) real frequency or negative (s = −) one, i.e.

ωn,− = −ω
∗
n,+. Modes with s = − are denoted mirror modes.

For a Schwarzschild BH, the odd and even sectors are isospectral: they are characterized by the same

spectrum of QNFs.

2.2.2 Tails

The contribution of the branch cut in Fig. 2.2 to the time domain GF was investigated in Refs. [14, 15],

under the assumptions of large distances r ≫ 1 and small frequencies ω ≪ 1. Ref. [106] carried out the

computation for real frequencies under the same assumptions, but without the analytical continuation in

the complex plane, and obtained an equivalent result.

Starting from the homogeneous RW equation in ω-domain Eq. (2.54), we perform a field redefinition as

ũ(ω; r∗) = A−1/2(r)y(ω; r) [15], yielding

r2(r − 2)2 d2

dr2 yℓ(ω; r) +
[
r4ω2 − λr2 + 2r(λ + 4) − 15

]
yℓ(ω; r) = 0 , (2.75)

We approximate this equation in the large-distance limit r ≫ 1, neglecting all terms which decay faster

than O(r−2) [106]
d2

dr2 yℓ(ω; r) +
[
ω2 +

4ω2

r
+

12ω2 − λ

r2

]
yℓ(ω; r) = 0 , (2.76)

Introducing the new variable ρ = ωr and expanding the equation above in the limit ω ≪ 1, keeping

corrections up to O(ω), we obtain the following result [106]

d2

dρ2 yℓ(ω; r(ρ, ω)) +
[
1 −

2η
ρ
−
λ

ρ2

]
yℓ(ω; r(ρ, ω)) = 0 , (2.77)

with η = −2ω. Eq. (2.77) is called Coulomb wave equation [115] and its solutions are the Coulomb wave

functions Fℓ(η; ρ) and Gℓ(η; ρ). We are interested in a solution which is purely outgoing at ρ→ ∞, that

we will denote yout, and a solution which is regular at ρ ≃ 0, denoted yin [106]

yin
ℓ (ω; r(ρ, ω)) = Fℓ(η, ρ) =

2ℓ|Γ(ℓ + 1 + iη)|
Γ(2ℓ + 2)

ρℓ+1e−iρM(ℓ + 1 − iη, 2ℓ + 2, 2iρ) ,

yout
ℓ (ω; r(ρ, ω)) = Gℓ(η, ρ) + iFℓ(η, ρ) ,

(2.78)
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where M(a, b; z) is the Kummer’s function [115].

To simplify the computation, we will assume that the initial-data, or the generic matter perturbations,

are compact and do not extend towards the observer r∗ > r′∗, in particular we will assume r∗ ≫ r′∗
and separate the scales of the observer and the source by imposing ωr ≫ 1 and ωr′ ≪ 1 respectively.

The uin,out
ℓ

(ω; r∗) solutions in the GF expression Eq. (2.49) are related to yin,out
ℓ

through uin,out
ℓ

(ω; r∗) =

(r − 2)−2iωr2iωyin,out
ℓ

(ω; r). Reinforcing the large distances approximation r, r′ ≫ 1 for both ũin,out modes,

we approximate uin,out
ℓ

(ω; r∗) ≈ y
in,out
ℓ

(ω;ω, r). Note that, in doing this approximation, our formalism is

no longer able to “see” the horizon at r = 2. The Wronskian of ũin,out
ℓ

(ω; r∗) can be computed, in the large

r∗ → ∞ limit, as [115]

W(ω) ≡ ω
[
Gℓ(η, ρ)

dFℓ(η, ρ)
dρ

− Fℓ(η, ρ)
dGℓ(η, ρ)

dρ

]
= ω , (2.79)

In the limits ωr ≫ 1 and ωr′ ≪ 1, uin(ω; r′∗) and uout(ω; r∗) can be expanded as [14, 106]

uin
ℓ (ω; r′∗) ≃

2ℓeπω|Γ(ℓ + 1 − 2iω)|
Γ(2ℓ + 2)

(r′ω)ℓ+1 ,

uout
ℓ (ω; r∗) ≃ eiωr∗ · e2iω log (2ω) · e−iπℓ/2 · ei argΓ(ℓ+1−2iω) ,

(2.80)

Substituting into the GF expression in frequency domain in Eq. (2.49) and expanding in the limit ω ≪ 1

neglecting orders O(ω2), it holds [106]

G̃(ω; r∗, r′∗) =
2ℓ(−i)ℓℓ!
(2ℓ + 1)!

ωℓ(r′)ℓ+1eiωr∗ ·
[
1 + 2iω log(4ω) + πω − 2iωγ(ℓ + 1)

]
, (2.81)

where γ(ℓ + 1) is the digamma function of (integer) argument ℓ + 1. The Green’s function in the time

domain can be found using the anti-transform defined in Eq. (2.47)

G(t − t′; r∗, r′∗) =
1

2π

∫ ∞

−∞

dω
2ℓ(−i)ℓℓ!
(2ℓ + 1)!

ωℓ(r′)ℓ+1e−iω(t−t′−r∗) ·
[
1 + 2iω log(4ω) − 2iωγ(ℓ + 1)

]
. (2.82)

However, the logarithm log(ω) is not defined along the full real axis, but only for ω > 0, and is singular at

the origin ω = 0. Hence, to perform the anti-Fourier transform in Eq. (2.82), we analytically continue to

complex frequencies ω. The (now complex) logarithm is a multi-valued function, introducing a branch

cut along the negative imaginary axis which originates at the branch point ω = 0. The structure of

the integrand in Eq. (2.82) in the complex ω-plane is the same as what is shown in Fig. (2.2), with

the exception that now the integrand does not have any isolated simple pole. We shift the real axis at

Im(ω) = ϵ ≪ 1 and perform the integration by means of the residue theorem, along the thick contour

shown in Fig. 2.2, under the late times assumptions t − t′ − r∗ ≫ 1 [14]. Due to the absence of residuals

inside the closed contour, it holds

G(t − t′; r∗, r′∗) =
1

2π

∫
Γ1

dω e−iω(t−t′)G̃(ω; r∗, r′∗) =

−
1

2π

[∫
Γ3

dω e−iω(t−t′)G̃(ω; r∗, r′∗) +
∫
Γ5

dω e−iω(t−t′)G̃(ω; r∗, r′∗)
]
.

(2.83)

The contributions coming from the arcs Γ2, Γ6 vanish due to Jordan’s lemma: the integrand asymptotes to

a null value for |ω| → ∞ on the lower-half of the complex plane Im(ω) < 0.
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The single-valued terms in Eq. (2.82) cancel out when integrated along both sides of the branch cut. The

term proportional to the complex logarithm, that we denote f (ω) logω, becomes f (ω)
(
logω + 2πi

)
when

evaluated on the left side of the branch cut [14, 15]. As a consequence, the integral of f (ω) logω along Γ3

and Γ5 is equal to [14, 15]

G(t − t′; r∗, r′∗) = −
1

2π

[∫
Γ3

dω e−iω(t−t′)G̃(ω; r∗, r′∗) +
∫
Γ5

dω e−iω(t−t′)G̃(ω; r∗, r′∗)
]
=

−
1

2π
2πi

∫ 0

−i∞
dω e−iω(t−t′) f (ω) .

(2.84)

This integral yields the following result [14]

GBC(t − t′; r∗, r′∗) =
(−1)ℓ+12ℓ+1ℓ!(ℓ + 1)!

(2ℓ + 1)!
(r′)ℓ+1

(t − r∗ − t′)ℓ+2 . (2.85)

This is the time-domain GF propagating the late-time response of a Schwarzschild BH to an external

perturbation, usually denoted as radiative tail [14], as observed at very large distances r∗ → ∞.

It is possible to find a non-radiative tail if we place the observer closer to the source of the radiation. In

particular, we still consider r ≫ 1, but instead of assuming ωr ≫ 1, we impose ωr ≪ 1 [14]. We consider

uin(ω; r′∗) as in Eq. (2.80), but we construct uout(ω; r∗) from yout(ω; r(ρ, ω)) in Eq. (2.78) as [14]

uout(ω; r∗) =Gℓ(η(ω), ρ(ω, r∗)) + iFℓ(η(ω), ρ(ω, r∗)) ≃

−
2ℓℓ!

(ℓ + 1)!
4iω log(ω)(rω)ℓ+1 + O(ω2) + single valued .

(2.86)

The ω-domain GF is then

G̃(ω; r∗, r′∗) = −
[

2ℓℓ!
(ℓ + 1)!

]2

2i
(
rr′

)ℓ+1 (ω)2ℓ+2 log(ω) + single valued . (2.87)

The time domain GF can be found in the late times limit t − t′ ≫ 1, with the same contour used

in Eq. (2.83), with the high-frequency arcs Γ2, 6 contributions vanishing due to Jordan’s lemma. The

difference along the two sides of the branch cut gives a factor 2πi in the multi-valued piece in Eq. (2.87),

while the single-valued contributions cancel out and the integral reduces to [14]

GBC(t − t′; r∗, r′∗) =
[

2ℓℓ!
(ℓ + 1)!

]2

2(−1)ℓ+1 (2ℓ + 2)!
(rr′)ℓ+1

(t − t′)3+2ℓ . (2.88)

This Green’s function propagates the late-time response of a Schwarzschild BH to an external perturbation,

as observed at a finite distance r∗. Equation (2.88) is the propagator of Price’s law [16, 17, 14] as will be

discussed in more detail in Sec. 2.3.2.

If the observer is located at I+, the approximation ωr ≫ 1 is valid at any time and, as a consequence,

the late-time signal is always dominated by the radiative tail in Eq. (2.85). If the observer is placed at

a finite distance, there is an initial transient δt such that r∗ ≫ δt and the approximation ωr∗ ≫ 1 holds.

As a consequence, this transient is dominated by the radiative tail. At later times, however, ωr∗ ≪ 1 and

Price’s law dictates the perturbed Schwarzschild spacetime relaxation. In particular, Leaver [14] estimated

the radiative tail to be the dominant inverse power-law behavior until t− t′ − r∗ + r′∗ ≪ r∗, while for t ≫ r∗
Price’s law is dominant.
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Chapter 2. Schwarzschild black hole perturbations

2.2.3 Prompt response

Leaver [14] suggested that the contribution to the GF coming from the high-frequencies arcs, GF in

Eq. (2.71), propagates the initial radiation observed at times t′ + |r∗ − r′∗| ≲ t ≲ t′ + r∗ + r′∗, but did not

compute this contribution explicitly. Later, Andersson [15] gave a first estimate of the high-frequency arcs

contribution to the full GF, working in large ω and large r, r′ limit, focusing on a scalar field. As a result,

he proposed 1

GF(t − t′; r∗, r′∗) =
1
2
θ
(
t − r∗ − t′ + r′∗

)
. (2.89)

In Chapter 8, we show numerical experiments solving for the gravitational field GF, stressing that the

prompt response has a non-constant functional form not captured by Eq. (2.89), even for r, r′ ≫ 1.

An interesting computation for this part of the signal was performed by Barack [107, 18] in the time

domain, for an observer placed at null infinity I+, assuming compact initial data localized outside the

potential barrier. Following Ref. [107, 18], under these assumptions, it is possible to approximate the

potential in the Regge-Wheeler/Zerilli equations as

V0(r∗) ≡


λ

4r2
∗

, r∗ ≥ r∗,0 ,

0 , r∗ < r∗,0 .
(2.90)

In the above, r∗,0 is a typical scale set near the peak of the (real) potential, close to the light-ring.

The field is then solved in an iterative expansion: the lowest order corresponds to compact initial data

Ψ(u = u0, v) = 0, Ψ(u, v = 0) = ζ(u) propagated by a GF approximating the prompt response one. Higher

orders are sourced by corrections to the potential δV ≡ V(r) − V0(r). The approximated prompt response

GF is the solution to the problem

∂u∂vGF(u, v; u′, v′) + V0(r)GF(u, v; u′, v′) = δ(u − u′)δ(v − v′) , (2.91)

where u, v are the Eddington-Finkelstein coordinates defined in Eq. (2.4).

We consider a compact initial-data source localized in the region r∗ > r∗,0 and focus on the response

observed at I+ for u′ ≤ u ≤ v′ − 2r0 (I-region in Ref. [18]), corresponding to the times when the

prompt-response dominate the signal according to Leaver [14], t′ + r∗ − r′∗ < t < t′ + r′∗ + r∗ − 2r∗,0.

Following Barack [107, 18], the GF propagating this response is GF(u, v; u′, v′) = θ(u − u′)θ(v −

v′)ḠF(u, v; u′, v′), where

∂u∂vḠF(u, v; u′, v′) +
λ

(v − u)2 ḠF(u, v; u′, v′) = 0 , u ≥ u′ , v ≥ v′ , (2.92)

with boundary conditions ḠF(u′, v′; u′, v′) = 1. The solution to this problem is [107, 18]

ḠF(u, v; u′, v′) =
ℓ∑

n=0

(2ℓ − n)!
n!ℓ!(ℓ − n)!

1
(v′ − u′)ℓ(v − u)ℓ−n

dn

dun
[
(v′ − u)(u − u′)

]ℓ . (2.93)

The initial assumptions are such that the GF in Eq. (2.93) is not informed (yet) of the potential V0 structure

inside r∗,0. As a consequence, this GF is essentially Minkowski’s propagator.
1Note that Andersson [15] assumed t′ = 0 in his computations. Here we are considering his computations in a more generic

case: while for an initial-data problem we are always free to impose t′ = 0, if we were to convolve the GF with a generic source,

it would not be possible to fix t′.
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2.3 Initial data problem: numerical and analytical past results

In Sec. 2.1, we have derived the master equations governing the response of a Schwarzschild BH to

an external perturbation, in terms of two field variables Ψ(o,e) directly related to the strain cross and

plus polarization as observed very far away from the source. In this section, we restrict the focus on

perturbations of a Schwarzschild BH (SBH) in vacuum, i.e. we assume T µν = 0 and consider perturbations

generated by some initial data (ID) imposed on a Cauchy hypersurface t = t′. Problem Eqs. (2.20), (2.25)

translates in an homogeneous equation with ID prescriptions[
∂2

t − ∂
2
r∗ + V(r)

]
Ψ(t, r∗) = 0 , (2.94)

Ψ(t = t′, r∗) ≡ ψ(r∗) , ∂tΨ(t = t′, r∗) = ζ(r∗) . (2.95)

This problem can be solved using the Green’s function method. The first step is to move in the frequency

domain through a Fourier transform, as defined in Eq. (2.47). Integrating by parts, it is possible to show

that

F [∂tΨ(t, r∗)] = −iωΨ̃(ω; r∗) + ψ(r∗) ,

F
[
∂2

tΨ(t, r∗)
]
= ζ(r∗) − iωψ(r∗) − ω2Ψ̃(ω; r∗) .

(2.96)

Hence, applying the Fourier transform operator to the homogeneous problem Eq. (2.94) with ID Eq. (2.95),

yields a non-homogeneous problem in the ω-domain[
−∂2

r∗ − ω
2 + V(r)

]
Ψ̃(ω; r∗) = iωψ(r∗) − ζ(r∗) (2.97)

The solution to this equation is computed by convolution of the ω-domain GF with the initial-data

ω-domain source

Ψ̃(ω; r∗) =
∫ ∞

−∞

dr′∗ G̃(ω; r∗, r′∗)
[
iωψ(r′∗) − ζ(r′∗)

]
. (2.98)

To switch to t-domain, it is sufficient to anti-transform Eq. (2.98), as in Eq. (2.47).

Equations. (2.94), (2.95) are equivalent to the following problem [14][
∂2

t − ∂
2
r∗ + V(r)

]
Ψ(t, r∗) = −ψ(r∗)∂tδ(t − t′) − ζ(r∗)δ(t − t′) ≡ S ID(t − t′, r∗) , (2.99)

Ψ(t = t′, r∗) ≡ 0 , ∂tΨ(t = t′, r∗) = 0 . (2.100)

In fact, the general solution of Eqs. (2.99), (2.100) can be found though the t-domain GF as

Ψ(t, r∗) =
∫ ∞

−∞

dt′′
∫ ∞

−∞

dr′∗G(t − t′′; r∗, r′∗)
[
−ψ(r′∗)∂t′′δ(t′′ − t′) − ζ(r∗)δ(t′′ − t′)

]
=∫ ∞

−∞

dr′∗

[
ψ(r′∗)∂t′′G(t − t′′; r∗, r′∗)

∣∣∣∣∣
t′′=t′
− ζ(r∗)G(t − t′; r∗, r′∗)

]
,

(2.101)

which is equivalent to the anti-Fourier transform of Eq. (2.98). This result implies that we can consider an

ID problem in vacuum as a non-homogeneous problem with null ID, Eq. (2.100), driven by a source with

a specific time dependence, prescribed in Eq. (2.99).

In this section, we review some important results, both numerical and analytical, for QNMs and tails in

the context of initial data problems. In Chapters 7 and 5, we generalize the discussion to perturbations

induced by a test-particle source.
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Chapter 2. Schwarzschild black hole perturbations

2.3.1 Quasi-normal modes

Vishveshwara [39] studied the scattering of a Gaussian packet from a SBH, numerically at first-order in

the perturbations, showing that the signal observed at I+ is a superposition of spaced peaks: an oscillatory

response with exponentially damped amplitude. This is the first work in which QNMs have been observed.

Moreover, Ref. [39] found that the spacing between the peaks (as well as the number of resolved peaks) is

highly dependent on the width a of the Gaussian packet, and it saturates once this width is comparable

with the BH size a ∼ 1. This result suggests that QNMs are generated close to the BH and are strictly

connected to the potential barrier peak.

This hypothesis was further investigated by Ferrari and Mashhoon [116, 117], under the eikonal limit

ℓ ≫ 1 and approximating the real potentials of Eq. (2.20), (2.25) with a Poshl-Teller potential. The

Poshl-Teller potential is, by definition, a symmetric potential barrier of width α centered at the maximum

of the real potential, r∗,0, vanishing exponentially towards the horizon and at large distances [116, 117]

VPT(r) ≡
V0

cosh2 [
α(r∗ − r∗,0)

] , (2.102)

where the parameters α,V0 are estimated from the real potential as [116, 117]

α2 ≡ −
1

2V0

d2V
dr2
∗

∣∣∣∣∣
r∗=r∗,0

, V0 ≡ VRW/Z(r∗ = r∗,0) . (2.103)

This scheme yields the following approximated expression for the QNFs [116, 117]

ωℓ≫1,n ≃ ±

√
V0 −

α2

4
− iα

(
n +

1
2

)
≃

1

3
√

3

[
±

(
ℓ +

1
2

)
− i

(
n +

1
2

)]
. (2.104)

These results are consistent with Leaver’s computations [104] for QNF with ℓ ≫ 1, reinforcing that, at

least in this limit, the peak of the potential is indeed the only relevant feature.

Working with the GF formalism, Leaver [104, 14] introduced an analytical framework to isolate and

investigate the ringing portion of the signal ΨQNMs

Ψ
QNMs
ℓm (t, r∗) =

∑
n=0,s=±

cℓmns · e−iωℓmns(t−r∗) . (2.105)

The terms cℓmns are denoted excitation coefficients and yield the (constant) amplitude of each QNM

present in the BH response to an external perturbation. The cℓmns are factor of two terms: the geometrical

excitation coefficients Bℓmns in Eq. (2.74), and the overlap between the QNM eigenfunction in Eq. (2.56)

and the initial data source in Eq. (2.97)

cℓmns ≡ Bℓmns eiωℓmnst′
∫ ∞

−∞

dr′∗ ũh(ωℓmns; r′∗) ·
[
iωℓmnsψ(r′∗) − ζ(r′∗)

]
. (2.106)

Note that, in Eq. (2.105), the QNMs propagation appears to be instantaneous, whereas any signal must

travel on or inside the light-cone. In fact, it was argued by Leaver [14] that Eq. (2.105) is only valid after

some time. In particular, given the central role of the potential barrier peak in the QNMs generation,

Leaver [14] and many subsequent works, e.g. [118, 119], considered the QNMs excitation as a scattering
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process. A Gaussian-like perturbation is initialized at r′∗ outside the light-ring at time t′. A portion of

this perturbation travels directly to the observer at r∗ > r′∗, r∗ ≫ 1, yielding the signal denoted as prompt

response [14, 15, 18]. A portion of the initial perturbation travels from r′∗ towards the BH and, once it

reaches the potential barrier peak r∗ ≈ 0, generates a QNMs response traveling towards the observer at r∗.

Hence, the observer at r∗ sees the QNMs response approximately after a time t ≳ t′ + r′∗ + r∗ [14, 118,

119]. This condition (heuristically) describes inside which portion of the curved light-cone the QNMs

propagate, assuming a compact source located outside the potential barrier peak.

Refs. [14, 118] also considered the case in which an initial perturbation is extended inside the light-ring

and is not compact (i.e. it does not vanish fast enough) at the horizon. In this case, the integral in the

definition of the excitation coefficients cℓmns, Eq. (2.106), is (in general) divergent for the overtones n > 1,

since the QNMs radial functions ũh → ∞ for r∗ → −∞. Refs. [14, 118] introduced a regularization scheme

to compute this integral, but did not discuss properly how a perturbation initialized inside the light-ring

can escape towards I+, i.e. over which portion of the light-ring this signal propagates. Following [14,

118], the first step of the regularization procedure consists of splitting the integral in Eq. (2.106) into two

different contributions as

cℓmn = Bℓmneiωℓmnt′
[∫ ∞

r∗,0
dr∗ ũh(ωℓmn; r∗) S̃ (ωℓmn; r∗) +

∫ r∗,0

−∞

dr∗ ũh(ωℓmn; r∗) S̃ (ωℓmn; r∗)
]
. (2.107)

In the above, we are considering a generic ω-domain source S̃ (ω; r∗) for the perturbations. For an ID

problem, S̃ (ω; r∗) = iωψ(r∗)− ζ(r∗), however, the formalism is general and can be applied to any extended

source that can be Fourier transformed. If we assume a source which is compact in the limit r∗ → ∞,

the first term on the right-hand side of Eq. (2.107) is regular, and can be discarded from the present

discussion. For simplicity, we will work with the Schwarzschild coordinate r instead of the tortoise

coordinate r∗. Assuming that the source S̃ (ω; r∗(r)) can be expanded in series near the horizon r = 2,

since ũh in Eq. (2.56) is by definition a near-horizon expansion, it is possible to rewrite the second integral

in Eq. (2.107) as [118]∫ r∗,0

−∞

dr∗ ũh(ωn; r∗) S̃ (ωn; r∗) =
∫ r0

2
dr

∞∑
k=k0

ξk(ωn) (r − 2)k−2iωn . (2.108)

In the above, k0 is an integer and accounts for the behavior of the source near the horizon; terms in the

sum with k such that k − 2|Im(ωn)| > 0 are regular as r → 2 and their integral is∫ r0

2
dr

∑
k−2|Im(ωn)|>0

ξk(ωn) (r − 2)k−2iωn =
∑

k−2|Im(ωn)|>0

ξk(ωn)
(r − 2)k+1−2iωn

k + 1 − 2iωn
. (2.109)

For the terms with k − 2|Im(ωn)| < 0 the integral Eq. (2.108) can be computed though an analytical

continuation of the r coordinate [14, 118]. Note, however, that there is no clear prescription describing

when a signal emitted inside the light-ring, possibly extending towards the horizon, reaches I+. We will

come back to this point in Chapter 7, where we detailed the regularization procedure in Refs. [14, 118]

and compare it against some of the original results of this manuscript.

Among past ID-driven results, it is important to mention Ref. [41] as the first work that took into account

the light-cone propagation of QNMs, yielding a formula with time-dependent amplitudes. This work,
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however, does not consider a SBH but is restricted to a simplified geometry, in which the master function

describing linear order perturbations satisfies an equation like Eqs. (2.20) and (2.25), with potential

approximated by a delta-function centered at the peak of the real potential, Vδ ≡ V0δ(r∗). This simplified

model mimics the fundamental mode excitation in the Schwarzschild case: there are no late-time tails and

there is only one QNM, with frequency dictated by the height of the potential barrier ω = −iV0/2 [120,

41]. In this case, the time domain GF can be computed exactly, yielding [41]

G(t − t′; r∗, r′∗) = GF(t − t′; r∗, r′∗) +GQNM(t − t′; r∗, r′∗) , (2.110)

with [41]

GF(t − t′; r∗, r′∗) = −
1
2

[
θ
(
t − t′ − |r∗ − r′∗|

)
− θ

(
t − t′ − |r∗| − |r′∗|

)]
,

GQNM(t − t′; r∗, r′∗) = −
1
2
θ
(
t − t′ − |r∗| − |r′∗|

)
exp

[
−

1
2

V0
(
t − t′ − |r∗| − |r′∗|

)]
.

(2.111)

Given some initial data, the observable contribution to the BH response propagated by the QNMs GF

GQNM(t − t′; r∗, r′∗) is given by [41]

ΨQNM(t, r∗) = θ (t − |r∗|) c0(t, r∗) e−
V0
2 (t−|r∗ |) , (2.112)

where c0(t, r∗) is the time-dependent QNM amplitude, obtained from the initial data source in Eq. (2.99) as

c0(t, r∗) =
1
2

∫ t−|r∗ |

|r∗ |−t
dr′∗

[
ζ(r′∗) −

V0

2
ψ(r′∗)

]
. (2.113)

The time dependence of the QNM amplitude originates from the Heaviside function in Eq. (2.111),

necessary to reinforce causality: to see a signal at (t, r∗), the observer must wait for the initial data

to propagate on the background. If the initial data is extended, it will not reach the observer all at

once. As shown in Ref.[41], another interesting consequence of the causality condition in Eq.(2.111)

is that the QNM portion of the signal in Eq. (2.112) asymptotes to a late-time constant, instead of a

constant-amplitude QNM, for sigmoid-like initial data asymptotically constant at the horizon.

We will return to causality considerations regarding the QNM propagation in a Schwarzschild background

in Chapter 7 to extend the results presented in this section to the case of a test particle infalling into a BH

driving the perturbations. We will show that causality implies the automatic regularization of the retarded

QNMs GF for r∗ → −∞, introducing a non-oscillating new behavior strictly related to the presence of an

event horizon.

2.3.2 Tails

Price was the first to analytically investigate the late-time signal emitted by a perturbed Schwarzschild

BH. In Ref. [121, 17], he focused on the collapse of a scalar field into a BH and found that the late-

time signal emitted by such system behaves as t−2ℓ−3−a, with a = 0, 1 for an initially stationary, static

scalar perturbations, commonly denoted as Price’s law. Gundlach, Price and Pullin performed numerical
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simulations for the scalar collapse, both linear [122] and non linear [123], verifying in both cases Price’s

analytical predictions.

The original result of Price [17] was re-obtained through the Green’s function method by Leaver [14],

who found a new, radiative, tail signal as inverse power-law in the retarded time u−ℓ−2−a with a = 0, 1 for

stationary, static ID, respectively. According to Leaver’s analytical predictions, if the signal is observed at

finite distances, the radiative tail only dominates the initial late-time response, eventually leaving place to

Price’s law, as discussed in Sec. 2.2.2. If the signal is observed at I+, the late-time response is dominated

only by the radiative tail, and Price’s law is not present in the signal at any time.

The radiative tail observed at I+ was investigated through numerical simulations first in Ref. [124] by

Burko and Ori and later by Zenginoglu [125, 126]. Zenginoglu [125, 126], also studied the transition from

a radiative tail-dominated behavior to Price’s law as a function of the observer distance from the source of

gravitational radiation. Numerical results of Refs. [125, 126] validate the predictions of Leaver [14]: the

further the observer, the longer the time-scale over which the radiative tail dominates the signal before

giving way to Price’s law. Interestingly, Ref. [125] estimated that astrophysical sources probed by current

and future detectors are located so far away that we can focus only on the radiative tail and discard Price’s

law contribution to the signal. This implies approximating the detectors as being placed at I+, as far as tail

observations are concerned. For instance, Ref. [125] estimated that for a source at a distance of ∼ 104M

(close, relative to sources usually observed), the late-time response is approximated by the radiative tail

over a time-scale of ∼ 105M.

Finally, it is worth mentioning other works that computed both the radiative tail and Price’s law using

the GF methods, but in the time domain. In particular, Barack [107, 18, 127] found the radiative tail as

propagation of the O(G) corrections to the approximated background potential in Eq. (2.90), convolved

with the flat space time GF in Eq. (2.93).

Poisson [89] found the GF for Price’s law in the time domain, in a post-Minkowskian fashion, by means

of a perturbative expansion in O(G). Notably, Ref. [89] showed that Price’s law GF does not depend on

the symmetries of the background but only on its asymptotic structure: the late-time tail GF is the same

for a Kerr or a Schwarzschild spacetime. These results were later generalized in Ref. [128] for generic

corrections to the potentials in Eq. (2.21), (2.26) behaving as ∼ r−α. Ref. [128] analytically proved that

any correction with α > 2 leaves, at leading order, the late-time tail unaffected. Through a series of

numerical experiments, Ref. [128] showed instead that for 0 < α < 2 the late-time signal is affected at

leading order.

Other works have computed corrections to the tail propagator, either considering generic potentials as in

Ref. [129, 130], or computing higher-order corrections to the large distances approximation [15, 131].

We will return to tails in Chapters 5, 6 to discuss how this signal is excited in binary black hole mergers,

focusing first on the perturbative case of a test particle in a SBH and later extending the results on the

late-time relaxation following a non-linear, comparable masses BH merger.
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Chapter 3

Relativistic two-body problem

In this chapter, we focus on the relative motion of two black holes (BHs) of masses m1, m2 as predicted

by General Relativity, commonly denoted as the relativistic two-body problem. We define the mass-ratio

q and the symmetric mass-ratio η as

q ≡
m2

m1
, η ≡

m1m2

(m1 + m2)2 , m1 ≤ m2 , (3.1)

with M ≡ (m1 + m2) total mass of the binary. We differentiate between two cases: the extreme mass-ratio

(EMR) limit q ≫ 1 and the comparable masses case q ≳ 1.

In the EMR limit, the small BH can be approximated, to lowest order, as a test particle of mass µ ≡ Mη

orbiting a fixed curved background, generated by the massive companion. During its evolution, the test

particle emits gravitational waves: this signal is a correction to the background metric, hence it will induce

corrections to the test-particle orbit. In particular, the test particle loses energy and angular momentum by

gravitational waves (GWs) emission, and its (bounded) orbit shrinks in time.

During the initial stage of the binary evolution, the back-reaction on the trajectory acts on a large timescale

with respect to the orbital motion itself. As a consequence, the orbit evolves adiabatically and, at each

time, it is possible to find an osculating geodesic which describes the particle motion [9]. We denote this

portion of the orbital evolution as inspiral.

At a certain distance from the black hole, depending on the test-particle initial energy and angular

momentum, the trajectory is osculated by the last stable orbital configuration and, at later times, no stable

configurations exist anymore. We denote this portion of the trajectory as transition to plunge; the plunge

is the last segment of the orbital evolution, ending with the test particle approaching the horizon. During

the plunge, the orbital motion is fast, almost unaffected by the radiation reaction and can be approximated

as quasi-geodesic [9, 10] (see also e.g. Sec. III.A of [74]).

In this chapter, we review some basic techniques used to solve the general relativistic two-body problem

along different portions of the orbit. We focus on the EMR limit, and investigate the motion of a test

particle of mass µ on top of the background generated by a Schwarzschild BH (SBH), Eq. (5.1). Note,

however, that some of the methods we will discuss are general and can be applied to comparable-mass

systems.
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In Sec. 3.1 we introduce the geodesics equation of motion of the test particle, through the Hamiltonian

formalism. In Sec. 3.1.1, we discuss the different possible orbital configurations, depending on the initial

energy and angular momentum of the test particle. In Sec. 3.2 we give an overview of the semi-analytical

methods to compute the radiation reaction driving the dynamics during the inspiral, while in Sec. 3.3

we briefly discuss the transition to plunge. We will implement the methods introduced in this chapter to

evolve generic planar orbits in Chapters 5 and 7. In Sec. 3.4, we give details on the specific radiation

reaction used in those chapters, to obtain the original results of this thesis.

The discussion in Sec. 3.1 is based on the textbook Ref. [4], while the discussion of Sec. 3.2 and Sec. 3.3

is mainly based on Refs. [132, 133, 3].

3.1 Geodesic Hamiltonian equations of motion

We work in Schwarzschild coordinates, but we replace the r-coordinate with the tortoise one r∗ as defined

in Eq. (2.3) (t, r∗, θ, φ). The Lagrangian density governing the test-particle motion is

L(xµ, ẋµ) =
µ

2
g0
µν

dxµ

dτ
dxν

dτ
= −

µ

2
A(r)

(
ut
)2
+
µ

2
A(r)

(
ur∗)2

+
µ

2
r2

(
uθ

)2
+
µ

2
r2 sin2 θ

(
uφ

)2 , (3.2)

with µ mass of the test particle. In the above, τ is the affine parameter for the curve xµ(τ) so that

uµ ≡ dxµ/dτ is the four-velocity of the test particle, g0
µν is the Schwarzschild metric Eq. (5.1), written in

terms of r∗
ds2 = −A(r)dt2 + A(r)dr2

∗ + r2
(
dθ2 + sin θ dφ2

)
. (3.3)

The Lagrangian density is a function of the variables xµ and their derivatives with respect to the affine

parameters uµ. We want to move to Hamiltonian variables, i.e. xµ and their conjugate momenta, defined

as p̃µ = ∂L/∂uµ

p̃t ≡
∂L

∂ut = −µ A(r) ut , p̃r∗ ≡
∂L

∂ur∗
= µ A(r) ur∗ , p̃θ ≡

∂L

∂uθ
= µ r2 uθ , p̃φ ≡

∂L

∂uφ
= µ r2 sin2 θ uφ .

(3.4)

We focus on planar orbit, hence we assume θ = π/2, p̃θ = 0. Starting from the Lagrangian density

Eq. (3.2) and the conjugate momenta in Eq. (3.4), we compute the test-particle Hamiltonian

H(xµ, p̃µ) = uµ p̃µ − L(xµ, uµ) = −
1

2µA(r)
p̃2

t +
1

2µA(r)
p̃2

r∗ +
1

2µr2 p̃2
φ . (3.5)

The equation of motion for the test particle, i.e. the geodesics, can be found from

dxµ

dτ
=
∂H

∂ p̃µ
,

dp̃µ
dτ
= −

∂H

∂xµ
. (3.6)

yielding
dt
dτ
= −

p̃t

µA(r)
,

dr∗
dτ
=

p̃r∗

µA(r)
,

dφ
dτ
=

p̃φ
µr2 , (3.7)

for the variables, while for the momenta

dp̃t

dτ
= 0 ,

dp̃r∗

dτ
=

1
µr2A(r)

(
−p̃2

t + p̃2
r∗

)
+

A(r) p̃2
φ

µr3 ,
dp̃φ
dτ
= 0 . (3.8)
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Figure 3.1: Left: Effective potential Veff in Eq. (3.11) as function of r, for different values of L2 as shown

in the labels. Crosses indicate the minimum of the potential, if it exists. The horizontal line corresponds

to the energy Ĥ2 that a test particle with L2 = 15 must have to evolve along a bounded, eccentric orbit

between rapo,peri, at which Veff(rapo,peri) takes the values indicated by the dots. Right: Location of the

minimum rmin and maximum rmax of the potential with respect to the test-particle angular momentum L2.

The quantities p̃t, p̃φ are constants of the geodesic motion, associated with the two Killing vector fields of

the Schwarzschild solution: kµ = (1, 0, 0, 0) and mµ = (0, 0, 0, 1). We will denote them as p̃t ≡ −H, p̃φ ≡ L̃

since, for a test particle very far away from the BH, these quantities can be interpreted as its energy and

angular momentum, respectively.

It is possible to find a constraint equation that the momenta must satisfy, considering that a massive test

particle travels along timelike curves, i.e. the four-velocity uµ obeys the following equation

g0
µνu

µuν = −
1

A(r)

(
Ĥ2 − p2

r∗

)
+

p2
φ

r2 = −1 . (3.9)

where we have introduced the µ-rescaled momenta and energy as pµ ≡ p̃µ/µ, Ĥ ≡ H/µ, respectively.

We can rewrite equations Eqs. (3.7) and (3.8) in terms of derivatives with respect to the time coordinate t,

that we indicate through the notation ˙( · ) ≡ d( · )/dt, as

ṙ∗ =
pr∗

Ĥ
≡

vr

A(r)
,

φ̇ =
A(r)
r2Ĥ

pφ ≡ ω ,

ṗr∗ =
A(r)
r2Ĥ

[
−1 + pφ

−3 + r
r2

]
,

ṗφ = 0 .

(3.10)

In the above, we have defined radial and angular orbital velocities as vr and ω, respectively.
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3.1.1 Planar orbits

The expression in Eq. (3.9) allows to write the energy in terms of a kinetic term and an effective potential

Veff(r)

Ĥ2 = Veff(r) + p2
r∗ , Veff(r) ≡ A(r)

(
1 +

L2

r2

)
, (3.11)

where L ≡ L̃/µ is the angular momentum of the test particle per unit mass µ. For each L, Veff(r) has

a fixed radial profile. As an example, we show in Fig. 3.1, the shape of the effective potential Veff(r),

for L2 = 10, 12, 15, 18. Then, different orbital configurations are possible depending on the test-particle

energy E.

We can compute the stationary points of the potential in Eq. (3.11) by analyzing the behavior of its first

derivative

dVeff(r)
dr

= 0 → rmin =
L2

2

1 + √
1 −

12
L2

 , rmax =
L2

2

1 − √
1 −

12
L2

 . (3.12)

For L2 < 12, Veff(r) has no stationary points, hence a test particle coming from infinity (i.e. E ≥ 1) with

ṙ ≤ 0 is captured and falls directly into the BH.

The case L2 = 12 corresponds to rmin ≡ rmax being a stable inflection point of the effective potential Veff .

As a consequence, a test particle with Ĥ2 = Veff(rmin) at r = rmin moves along a stable circular orbit. A

test particle initialized at finite distances with Veff(rmin) < Ĥ2 < 1 and ṙ ≥ 0 initially moves outwards

from the BH. However, it eventually reaches a turning point, defined as

r ≡ rTP | Ĥ2 = Veff(rTP) , ṙ(rTP) = 0 , (3.13)

where it is scattered by the potential barrier back towards the BH. It the test particle initially has ṙ ≤ 0 and

Ĥ2 > Veff(rmin) it directly falls into the BH.

We now analyze the case L2 > 12, for which rmin,max are, respectively, a minimum and a maximum of the

effective potential Veff . A test particle with ṙ = 0 localized at r = rmin (/r = rmax), moves along a stable

(/unstable) circular orbit with energy Ĥ2 = Veff(rmin) (/Ĥ2 = Veff(rmax)).

For L2 = 16, the potential satisfies Veff(rmax) = 1; we will analyze separately the cases 12 < L2 < 16 and

L2 > 16. For 12 < L2 < 16, a particle either arriving from infinity with Ĥ ≥ 1 and ṙ ≤ 0 or initialized

at some finite distance with Veff(rmax) < Ĥ < 1 and ṙ ≤ 0, falls directly into the BH. Another possibility

is to initialize the particle at some finite distance with Veff(rmax) < Ĥ < 1 but with ṙ > 0. In this case, it

will initially move outward from the BH, to be later “reflected” from the potential at the inversion point,

defined as in Eq. (3.13), subsequently falling into the BH. Finally, if the test particle has energy in the

interval Veff(rmin) < Ĥ2 < Veff(rmax), it will move between two turning points r±, at which Ĥ2 = Veff(r±)

and ṙ(r±) = 0, i.e. the test particle is on an eccentric orbit. We will discuss later, in more detail, how to

characterize such orbits.

In the case L2 > 16, a test particle with ṙ ≤ 0 and Ĥ2 > Veff(rmax) falls directly into the BH, while a test

particle with 1 < Ĥ2 < Veff(rmax) and ṙ ≤ 0, coming towards the BH from large distances, eventually
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reaches a turning point, defined as in Eq. (3.13), at which its radial velocity changes sign and is scattered

back from the BH towards infinity. Instead, if Veff(rmin) < Ĥ2 < 1, the particle motion is bounded between

two turning points, moving in an eccentric orbit.

3.1.1.1 Circular orbits

We are interested in how the characteristics of stable and unstable circular orbits change by varying the

angular momentum L of the test particle. As shown in Fig. 3.1, rmin is an increasing function of L and,

for L2 = 12, it holds rmin = rmax = 6 yielding the minimum size of a stable circular orbit, denoted as

innermost stable circular orbit or ISCO.

On the other hand, rmax is a decreasing function of L2, as can be seen in Fig. 3.1. In the limit L2 → ∞,

expanding Eq. (3.12) in a Taylor series, we find

rmax ≃ 3 + O(L−2) . (3.14)

Massive test particles, in the limit L2 → ∞, can move along unstable circular orbits as close to the black

hole as the light-ring at r = 3. This is related to the so-called geometric optics limit: a massive test particle

with large angular momentum behaves as a light-ray; as a consequence, its unstable circular orbit is as

close to the BH as the unstable circular orbit of massless particles (the light-ring).

3.1.1.2 Eccentric orbits

We consider now bounded orbits in which the r-coordinate of the test particle varies in time between a

minimum and a maximum value, denoted as periastron rperi and apastron rapo, respectively. We introduce

the eccentricity e and the semi-latus rectum p, as

e =
rapo − rperi

rapo + rperi
, p =

2raporperi

rapo + rperi
. (3.15)

The above equations can be inverted to yield

rapo =
p

1 − e
, rperi =

p
1 + e

. (3.16)

Being the extreme points of motion, at the apastron and at the periastron ṙ = 0 and the test-particle

energy equals the effective potential Ĥ2 = Veff(rapo,peri). Inverting these equations, it is possible to find

an expression of the energy and the angular momentum Ĥ, L in terms of eccentricity e and semi-latus

rectum p

Ĥ2 =
4e2 − (p − 2)2

p(3 + e2 − p)
, L2 =

p2

p − 3 − e2 . (3.17)

Note that it must hold rapo ≥ rperi, implying the condition e ≥ 0. Moreover, rapo is an increasing function

of Ĥ2 and, considering the case L2 > 16 and the limit Ĥ2 → 1 it holds rapo → ∞, i.e. e→ 1. It follows

from this reasoning that the eccentricity is constrained in the interval 0 ≤ e < 1.
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For L2 > 16 and Ĥ2 < 1 or 12 < L2 < 16 and Ĥ2 < Veff(rmax), the equation Ĥ2 = Veff(r) has three roots:

rapo,peri and r3, which has the following expression in terms of e, p

r3 =
2p

p − 4
. (3.18)

It is then possible to rewrite the expression Ĥ2 − Veff(r) as

Ĥ2 − Veff(r) = (r − rapo)(r − rperi)(r − r3) . (3.19)

In the case in which Ĥ2 = Veff(rmin), then rapo = rperi = rmin and the test particle moves on a circular

stable orbit, corresponding to e = 0 and p = rmin.

In the case Ĥ2 = Veff(rmax), then rperi = r3 = rmax and the test particle is on an unstable circular orbit.

From Eqs. (3.16) and (3.18), it is possible to see that rperi = r3 has two roots: the first one is p = 0, which

does not satisfy the condition L2 > 12 so is discarded. The second root is the solution we select and

corresponds to p = 6 + 2e. For e = 0, it holds p = 6, L2 = 12 and the orbit corresponds to a stable circular

orbit, while smaller values of p do not correspond to any bounded orbit. Hence, the root p = 6 + 2e,

denoted as the separatrix, gives the general condition which must be satisfied for bounded orbits to exist

p ≥ 6 + 2e.

3.2 Radiation reaction driving the dynamics

In the previous section, we have considered a test particle evolving on top of a SBH geometry along a

geodesic identified by two constant parameters, the energy Ĥ and angular momentum L. However, as

the particle moves on the curved background, it generates gravitational waves. Since the test particle

has a small mass and the gravitational emission is always weak with respect to the source (see Eq. (1.4)

and related discussion), the gravitational signal it emits can be considered as a small correction of the

fixed stationary background. This correction can be treated in a perturbative expansion as in Eq. (2.5).

Then, from Eqs. (2.43) and (2.44), it is possible to compute the fluxes of energy and angular momentum

carried by the GWs at infinity. This non-vanishing flux implies that the test-particle trajectory’s energy and

angular momentum Ĥ, L get time-dependent corrections at order O(h2). As a consequence, the effective

potential Veff describing the possible orbital configurations for the test particle becomes a function of time.

Hence, a test particle cannot move exactly along the background geodesics and, due to back-reaction

effects, it moves along geodesics of the perturbed spacetime. Note that, even if the fluxes are ∼ O(h2),

the geodesics equations get corrected at order ∼ O(h) (since Christoffel symbols are modified at order

Γ
µ
αβ ∼ O(h)).

Operationally, corrections to the geodesic motion manifest not only in a time dependence of the test-

particle energy and angular momentum (denoted as H, pφ), but also in the presence of effective forces

38



3.2 Radiation reaction driving the dynamics

Fr,φ accounting for radiation reaction, correcting the Hamiltonian equations of motion in Eq. (3.10) as

ṙ∗ =
pr∗

Ĥ
≡

vr

A(r)
,

φ̇ =
A(r)
r2Ĥ

pφ ≡ ω ,

ṗr∗ =
A(r)
r2Ĥ

[
−1 + pφ

−3 + r
r2

]
+ A(r)Fr ,

ṗφ = Fφ .

(3.20)

Computing the radiation-reaction effective forces implies solving the two-body problem in General

Relativity. Different approximation schemes have been introduced to solve this problem; a brief review of

these methods is the topic of the current section. Note that we temporarily re-introduce physical units

G, c.

We first introduce some quantities to describe the source. We define M as its mass, d as its characteristic

length, and v as its characteristic velocity. Since we will focus on BH binaries, d is the size of the binary.

We denote the source characteristic frequency as Ω ∼ 2πv/d and its typical wavelength as λ = 2πc/Ω.

One of the first approaches developed to solve the two-body problem in General Relativity is the post-

Newtonian (PN) approximation scheme. The PN framework is based on the underlying approximation of

a slowly moving source generating a weak gravitational field. In terms of the quantities defined above,

this condition reads [3]

ϵ ∼ (v/c)2 ∼ GM/(c2d) , ϵ ≪ 1 , (3.21)

where we have used ∼ to denote that the quantities must be of the same order of magnitude.

The spacetime metric and the matter stress-energy tensor are expanded under the above approximation in

orders O(ϵn). We will denote their components at different ϵi orders as g(i)
µν and T (i)

µν , respectively; note that

i is not necessary an integer. If we neglect dissipative effects (i.e. working at low PN order, as will be

discussed shortly), the metric is invariant under time reversal; then, g00, g jk must be expanded in powers

of ϵn, while g0 j in ϵn/2 with n ∈ N, [3]. Hence, under this condition, it is possible to PN expand gµν as [3]

g00 = −1 + g(1)
00 + g

(2)
00 + ...

g0 j = g
(1.5)
0 j + g

(2.5)
0 j + ...

g jk = δ jk + g
(1)
jk + g

(2)
jk + ...

(3.22)

Similarly, we can expand the stress-energy tensor as

T 00 = T 00, (0) + T 00, (1) + ...

T 0 j = T 0 j, (0.5) + T 0 j, (1.5) + ...

T jk = T jk, (1) + T jk, (2) + ...

(3.23)

Note that the T jk expansion starts at ϵ order with respect to T 00, while T 0 j starts at ϵ0.5, as a consequence

of the condition in Eq. (3.21). Substituting Eqs. (3.22), (3.23) into Einstein’s equations and solving for
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each ϵi order, it is possible to find the explicit expressions of the PN metric component. The lowest PN

order corresponds to the Newtonian limit, given by the metric

g00
Newt = −1 + 2

Φ

c2 , g
0 j
Newt = 0 , g

jk
Newt = δ

jk , (3.24)

where Φ is the Newtonian gravitational potential. We will denote this as 0PN order. The next to leading

order corrections are g(2)
00 , g

(1.5)
0 j and g(1)

jk denoted as 1PN order, and so on.

Before proceeding any further, it is useful to introduce a new formalism to treat Einstein’s equations. We

start by defining the gothic metric as gµν ≡
√
−g gµν, with g metric determinant. Then we move into the

harmonic gauge by imposing the four equations [3]

∂µg
µν = 0 . (3.25)

We rewrite gµν in terms of the quantities hµν as

g
µν = ηµν + hµν . (3.26)

Einstein’s equations are then the gauge condition in Eq. (3.25), ∂µhµν = 0 in terms of hµν, and the wave

equation

□Fhµν =
16πG

c4 τµν , (3.27)

denoted relaxed Einstein field equation [134]. In Eq. (3.27), □F ≡ η
µν∂µ∂ν and τµν is the effective stress-

energy pseudotensor which consists in the matter stress-energy tensor T µν and two pseudotensors, tµνLL and

tµνH , which depend only on the gravitational field [134]

τµν ≡ (−g)
(
T µν + tµνLL + tµνH

)
. (3.28)

tµνLL is the Landau-Lifshifts pseudotensor while tµνH is related to the harmonic gauge choice; explicit

expressions can be found in Chapter 6 of Ref. [134]. The harmonic gauge condition can be rewritten as a

statement on the stress-energy pseudotensor, as

∂µτ
µν = 0 , (3.29)

and supplements the wave equation for the gravitational field Eq. (3.27), with information on how it

backreacts on the matter source [134].

We consider an expansion of hµν analogous to Eq. (3.22), then substitute into Eq. (3.27) and iteratively

solve in O(ϵi). The typical frequency of the gravitational radiation emitted by the system is O(2Ω), as a

consequence, in the limit Eq. (3.21), time derivatives of the metric are of higher PN order than spatial

derivatives, in particular ∂t ∼ O(ϵ1/2)∂i [3]. With this consideration, it is possible to see that each O(ϵi)

perturbation is solution of the following problem [3]

∇2h(i)
µν =

16πG
c4 τµν, (i−1) + ∂2

t h(i−1)
µν . (3.30)

Assuming time derivatives as subleading with respect to spatial ones corresponds to neglecting propagation

effects. This approximation is valid only in the so-called near zone, i.e. in the region r ≪ λ. At larger
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distances, in the wave zone, Eq. (3.30) is not valid anymore, propagation effects are relevant, and the PN

expansion breaks down. We will discuss this shortly.

Through the PN approximation scheme just outlined, it is possible to compute the lowest-order con-

tributions to the effective forces correcting the geodesic dynamics in Eq. (3.20). These forces appear

at O(ϵ5/2) or 2.5PN order, as can be shown through the simple example of a test particle in a circular

orbit around a SBH. Be µ its mass, ω its angular velocity and d the radius of the orbit. We assume an

observer at r far away from the source, placed along the direction n̂, such that the angle between n̂ and

the perpendicular to the orbital plane is θ. In the (Newtonian) quadrupolar approximation, the observer

measures the polarizations [3]

h+ =
1 + cos2 θ

2
Gµ
c2r

4v2

c2 cos(2vt/d) , h× = cos θ
Gµ
c2r

4v2

c2 sin(2vt/d) . (3.31)

where v ≡ ωd. From Eq. (2.42), we can compute the flux of energy across a 2-sphere at r

Ėobs =
1
10

Gµ2

d2

v6

c5 . (3.32)

We equate the above flux with the orbital energy loss Ėorb. Following Ref. [3], we argue that, at Newtonian

order, Eorb = µv
2/2 + Vp with Vp potential energy of the orbit, related to the kinetic energy µv2/2 through

the virial theorem Vp = −µv
2, hence Eorb = −µv

2/2. Differentiating with respect to time and equating to

Eq. (3.32), yields
dv
dt
= −

1
10

µ

M
GM
d2 (v/c)5 . (3.33)

The back-reaction on the orbit of the test particle appears at ϵ5/2 order after the leading Newtonian order

GM/d2.

Following Refs. [135, 136, 137], for a generic system, we define back reaction forces in the equations of

motion through the ansatz

d2xi

dt2

∣∣∣∣∣
rad−react

= −
8

5c3

(
µ

M

) (GM
d2

)
·
(GM

d

)
·
(
−A5/2ṙ ni + B5/2v

i
)
. (3.34)

In the expression above, GM/d2 is the leading Newtonian order, while GM/(c2d) is the relativistic

correction due to the GWs emission ∼ O(ϵ). The power of the velocity is justified by the requirement

that radiation reaction is a dissipative effect and yields a correction of order ∼ O(ϵ1/2). Since we expect

radiation-reaction forces to appear at O(ϵ5/2), the coefficients A5/2, B5/2 ∼ O(ϵ). These coefficients can be

found through balance laws for the energy and angular momentum fluxes, following the intuition of the

example above. In particular, it is imposed that the PN fluxes through a 2-sphere located far away from

the source, r ≫ d, are equal to the energy and angular momentum losses of the orbit, computed including

Eq. (3.34) in the dynamics [136, 137].

In a BH spacetime, there are two dissipative boundaries: one at infinity and the other at the BH horizon.

However, in the above discussion, we have completely neglected the effect of energy fluxes through the

horizon. The reason is that such effects appear at high PN order. BH perturbation theory provides a
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natural framework to investigate horizon absorption effects, as it allows probing of strong field regions.

This approach applies to small perturbations h ≪ 1 on top of a BH background, generated by a test

particle of mass µ ≪ M moving in this curved geometry. Using this framework, Ref. [138] computed the

energy flux through the horizon for a particle on a circular orbit in SBH, finding that this effect appears

at 4PN order. As argued in Ref. [138], this feature can be heuristically explained by the presence of a

potential barrier surrounding the horizon. As the test particle orbits the SBH, it emits a small-frequency

signal. As a consequence, when this signal reaches the potential barrier it is mainly scattered towards the

observer at large distances, while transmission is suppressed. Ref. [139] extended the computation to Kerr,

showing that in this case, horizon absorption effects in the energy fluxes appear at 2.5PN. These works are

performed in the EMR limit, while Ref. [140] was the first to compute horizon absorption effects for a

comparable-masses binary, showing that they are suppressed also for generic mass ratios.

The PN approach outlined above cannot be extended to the whole spacetime, but can only be applied

close to the source since only in this region the basic assumption of the PN expansion, Eq. (3.21), is valid.

This is made manifest in Eq. (3.30): in the PN framework, the gravitational interaction is instantaneous.

This result automatically becomes ill-defined if extended to the whole spacetime, since it would violate

causality (signals must travel locally on the curved light-cone). Moreover, if one tries to extend the PN

expansion to the whole spacetime, singular integrals appear in the expansion Eq. (3.35). In particular,

there are non-compact source terms on the right-hand side of Eq. (3.30), which give rise to a singular

behavior at large r for PN solutions starting from the 4PN order O(ϵ4), as shown by Ref. [141]. While the

results discussed above to compute Eq. (3.34) are valid, the same framework cannot be straightforwardly

applied to higher PN orders.

Blanchet and Damour [132] introduced a regular framework to compute up to generic PN order the

gravitational fluxes at large distances and radiation-reaction effects on the source internal dynamics. The

basic idea is to divide the spacetime into two different regions: near zone and outer region. The near

zone is defined through the condition r ≪ λ: it is the region of spacetime enclosing the source where

propagation effects can be neglected. These effects, in fact, become important on a scale r ≫ λ, which

defines the wave zone. We introduce the outer region as the zone where the matter stress-energy tensor

vanishes, i.e. r > d. The outer region includes the wave zone and also an overlap with the near zone, for

d < r ≪ λ. This overlap region depends on the nature of the source: for non-relativistic sources, it holds

v/c ∼ d/λ ≪ 1 and the overlap region is extended.

In the Blanchet-Damour approach, [132], the PN expansion is used to study the source evolution and the

gravitational signal it emits, in the inner region. Focusing on a source which generates a weak gravitational

field, in the outer region r > d, the gothic metric gµν can be expanded around the flat metric ηµν in the small

quantity GM/(c2d) ≪ 1. This expansion is denoted as post-Minkowskian (PM) and usually represented as

g
µν = ηµν +

∑
i=1

Gihµνi . (3.35)

where the gravitational constant G is used as book-keeping parameter, in agreement with the literature [3].
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3.2 Radiation reaction driving the dynamics

Following Ref. [132], we substitute the PM expansion, Eq. (3.35), into Eq. (3.27). Since we are outside

the source, r > d, the matter stress-energy tensor vanishes and each order O(Gi) is solution of

□Fhµνi = Λ
µν [h1, h2, ..., hi−1] , (3.36)

where Λµν is given by τµν truncated at order n. Since Λµν is at least quadratic in hµν, is non vanishing only

for n > 1. Eq. (3.36), together with the gauge condition ∂µhµνi = 0, determine the solution in the outer

region r > d, at order i.

At each order, the strain is expanded in spherical multipoles [132]

hµνi =
∑
ℓ≥0

n̂L(θ, φ) hµνi,L(t, r) , (3.37)

where we use L to indicate the collection of indices i1i2...iℓ and we have defined n̂L ≡ STF[(xi1/r)(xi2/r)...(xiℓ/r)],

with STF[ · ] to denote the symmetric trace-free component of a tensor [3]. As a consequence, also the

source on the right-hand side of Eq. (3.36) is written as an expansion in multipoles. As argued in Ref. [132],

it is not trivial to integrate Eq. (3.36). The particular solution of this equation cannot be computed through

the convolution of the retarded Green’s function with the source, defined as □−1
F Λ

µν with

(□−1
F f )(t, x) ≡ −

1
4π

∫
R3

d3x′

|x − x′|
f (t − |x − x′|/c, x′) , (3.38)

since we cannot extend the integral beyond r > d: the source Λµν would be singular at r = 0 due to its

multipolar structure. However, Ref. [132] presented a mathematical algorithm to circumvent this problem,

allowing for the regularization of the convolution integral. This approach is valid only when the multipole

expansion is truncated and is denoted as multipolar post-Minkowskian (MPM) expansion [3].

Once the solutions in the outer region and the near zone are computed, a matching procedure is performed

in the overlap region d < r ≪ λ, exploiting the possibility to expand in (v/c) ≪ 1 (i.e. to neglect

retardation effects) and in GM/(c2d) ≪ 1 both. In this region, the outer region solution, written in terms

of a multipoles expansion, is expanded in the limit (v/c) ≪ 1; the near zone solution obtained through the

PN approach is expanded in multipoles [132]. In this way, the multipoles of the outer region expansion

are related to the matter source [132, 3].

Ref. [132] found that the general solution of Eq. (3.36), at each order, can be written as a sum of

two different types of terms: instantaneous and, starting from O(G2), hereditary contributions. An

instantaneous contribution depends only on the retarded time t − r/c at which the signal reaches the

observer in the outer region, while an hereditary term is an integral over the whole history of the source

prior to the retarded time t − r/c. Hereditary terms derived in the outer region are, in the overlap region, of

order O
[
ϵi+2 (log ϵ)i−1

]
, with i identifying the PM order. This implies that the (now regular at all orders)

PN expansion must contain terms of order ∼ ϵn log ϵm other than ∼ ϵn. The first hereditary term appears

at O(G2) in the outer region and is of PN order O(ϵ4 ln ϵ) in the overlap region.

Through the matched PN-MPM formalism it is possible to compute the corrections to the quadrupole

formula connecting the radiation observed at large distances in the TT-gauge hTT
i j with the quadrupole

43



Chapter 3. Relativistic two-body problem

moment of the source Ii j which, at Newtonian level, is given by

NewtIi j(t) =
1
c2

∫
V

d3x
(
xix j −

1
3
δi j(xkxk)

)
· T 00

Newt . (3.39)

In the equation above, V is the volume enclosing the source and T 00
Newt is the (00)-component of the

stress-energy tensor, at Newtonian order. Up to 4PN order accuracy, the quadrupole formula can be

written as

hTT
i j (u) =

2G
c4 r

d2

dt2 Ii j(u) +
4G2M

c7 r

∫ ∞

0
dτ

d2

dt2
NewtIi j(u − τ)

[
ln

(
τ

2r

)
+ κ2

]
+ o(ϵ4 ln ϵ) , (3.40)

where u = t− r/c is a retarded time coordinate, Ii j is the quadrupole moment of the source with corrections

up to ∼ O(ϵ4) order, and κ2 is a constant, which depends on the gauge. The first term on the right-hand

side of Eq. (3.40) is the usual (instantaneous) quadrupole formula, while the second term is an integral

over the whole history and is the lowest PN order contribution to the hereditary tails. In Chapter 5 we

will show that late-times tails computed in a perturbation theory framework (as introduced in Sec. 2.2.2

and 2.3.2) are hereditary effects which depend on the whole history of the system, yielding the same

physical effect as tails in PM theory. However, while Eq. (3.40) focuses on the signal emitted during the

inspiral regime, we will investigate these hereditary effects as observed at very late-times, after the two

objects have merged into a final BH.

It is important to specify that the results derived in Ref. [132], can be applied to BHs binary systems

with generic mass-ratios and are not only valid in the EMR limit. For comparable-mass systems, the

test-particle mass µ translates into the binary reduced mass, related to the symmetric mass-ratio introduced

in Eq. (3.1) as µ = Mη.

As a conclusive remark for this section, it is important to stress that the PN-MPM matched approach is not

the only approach possible to compute radiation-reaction effects driving the motion of a test particle in a

BH spacetime. Parallel efforts have been developed over the years exploiting BH perturbation theory tools,

starting from the investigations in Refs. [142, 143, 138, 144, 145]. This line of research, in particular

starting from Ref. [146], originated what is nowadays denoted as the self-force approach, see Ref. [72] for

a recent review.

3.3 Transition to plunge

Since radiation-reaction corrections appear in the equations of motion only from the ∼ O(ϵ5/2) order, this

effect can only impact the orbital dynamics on a long timescale. For instance, we assume a test particle

with initial energy Ĥ and angular momentum L far from the separatrix crossing values, such that at the

initial time step the particle is on a bounded circular orbit. As time evolves, due to radiation reaction,

the test-particle motion is not geodesic. However, at each time step, it is possible to find a geodesic that

osculates the trajectory. This portion of the evolution is denoted as adiabatic inspiral regime [9]. The

parameters Ĥ, L vary smoothly and with a slow time dependence; as a consequence, also the effective

potential Veff evolves in time, while the orbital configurations span over a set of geodesics until the
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Figure 3.2: Effective potential Veff in Eq. (3.11) as function of r. Each line corresponds to the potential

build with angular momentum pφ at a different time-step t of the orbital evolution. Dots represent the

energy and location (Ĥ(t), r(t)) of the test particle at that time. In purple, values at the time tISCO when the

test particle is at the ISCO rISCO = 6. After this time, no stable bound orbits exist, and the test particle

plunges into the horizon. Results relative to a quasi-circular evolution obtained numerically solving the

Hamiltonian equations of motion Eq. (3.20) with the RWZHyp code [93, 94], with effective forces Fφ, Fr∗

as computed in Ref. [147], discussed in Sec. 3.4.

separatrix is reached. This behavior is shown in Fig. 3.2, for a quasi-circular inspiral evolved with the

radiation reaction computed in Refs. [147]. The typical size (velocity) of the orbit decreases (increases) in

time, hence the parameter ϵ controlling the validity of the PN expansion progressively increases.

After the separatrix is crossed, the parameters Ĥ, L are such that bounded geodesics do not exist anymore;

as a consequence, the typical timescale of the dynamics becomes much faster and radiation-reaction

effects can be neglected so that the motion is quasi-geodesic [9, 10, 74]. This stage is denoted transition to

plunge and is the focus of the present section. During the plunge, the orbital motion is fast and ϵ → 1 as

the test particle approaches the horizon. Hence, in this last stage of the trajectory, large PN orders might

be necessary to converge towards the “real” motion.

The matched PN-MPM method developed by Ref. [132] and discussed in the previous section is an

algorithm to compute a well behaved gravitational signal at I+ that, in turn, induces corrections in the

test-particle orbit, at generic PN order O(ϵn ln ϵm). In particular, both the emitted gravitational radiation

from the test particle in the near region and its equations of motion are computed, in this framework, as

Taylor series in ϵn log ϵm. The regularity of the Taylor expansions at each PN order, however, does not

guarantee the convergence of the Taylor series towards the “real solution” for ϵ ≲ 1. In this case, we

define convergence by requiring that the difference between the truncated Taylor series of a quantity and

its “real value” (e.g. computed numerically) progressively and consistently decreases with the order of
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Chapter 3. Relativistic two-body problem

truncation.

In Ref. [148], the linear perturbative waveform emitted by a test particle on a circular orbit around a SBH

was computed numerically and the flux of energy at infinity was later fitted with a PN series-like template

dE
dt
= ĖNewt ·

5∑
k=0

ak xk , (3.41)

where, following Ref. [148], ĖNewt is the Newtonian energy flux, x ≡ r−1/2
0 with r0 position of the

test-particle circular orbit and ak are free-parameters of the fit. Up to k = 3, Ref. [148] showed that the

fitted PN coefficients ak agree up to high accuracy with the theoretically computed ones and estimated that

higher corrections of orders k = 4, 5, as inferred from the fit, are accurate up to ∼ 2%, 10% respectively.

From Ė it is possible to compute the orbital frequency increase, directly related to the evolution rate

of the emitted GWs frequency Ω̇GW/ΩGW, hence to its phase. Be ∆Ė the difference between the exact

energy flux and the one computed through the PN expansion-like in Eq. (3.41). Two waveforms computed

with these two different Ė will accumulate a phase difference of order ∆ϕ/ϕ ∼ ∆Ė/Ė [148]. Ref. [148]

argued that adding more terms to the truncated expansion in Eq. (3.41) does not greatly improve this

phase difference, hinting at a slow convergence of the PN Taylor expansion.

In Ref. [149], the exact expression for the energy flux of a test particle in a circular orbit around a BH

was computed. This quantity was compared with Taylor expanded fluxes truncated at different PN orders,

showcasing a slow and oscillating convergence towards the exact solution.

In Ref. [133], an alternative expansion was proposed in place of the usual Taylor series, able to improve

convergence for large values of the PN parameter ϵ. This new expansion is based on Padé approximants;

we introduce this mathematical tool through the example in Refs. [133, 3], focusing on the energy of a

test particle in a SBH background.

The general idea behind Padé approximants is the following [133, 3]. Define Tn[ f , ϵ] as the operator

which, applied to the function f , returns its Taylor series near ϵ ≈ 0 truncated at order n, denoted as

Tn[ f , ϵ] = f̂n(ϵ). The Padé approximant Pm
k [ f , ϵ] is defined as the ratio of two polynomials in the variable

ϵ, Nm(ϵ) of order m and Dk(ϵ) of order k, such that [133]

Pm
k>0[ f , ϵ] =

Nm(ϵ)
Dk>0(ϵ)

, n = m + k | Tn[Pm
k [ f , ϵ]] = f̂n(ϵ) (3.42)

with the convention Dk(0) = 1. Note that we have required k > 0; otherwise, the Padé approximant would

coincide with the Taylor expansion. Since the Taylor expansion of the Padé approximant of f is equal to

the Taylor series of the function itself, it is usually said that this method consists in a re-summation [133].

In order to understand how Padé approximants work with respect to the usual Taylor expansion, we

consider a simple example. Following Refs. [133, 3] we consider a test particle on a circular orbit around

a SBH. The expression for the orbital frequency ω can be found imposing pr∗ = 0 and

dpr∗

dτ
=

1
r2A(r)

E2 +
A(r)
r3 pφ = −

E2

r2A(r)

(
1 − ω2r3

)
= 0 → ω = r−3/2 , (3.43)

where we have used the definition of the orbital velocity given in Eq. (3.10). Substituting this expression
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into Eq. (3.9), it is possible to compute the energy of the test particle as a function of its frequency ω

Ecirc = A(r)
(
1 −

3
r

)−1/2

=
1 − 2x
√

1 − 3x
. (3.44)

To simplify the notation, we will use the parameter x ≡ r−1. Following Refs. [133, 3], we introduce a new

energy function ξ(x) as

ξ(x) ≡ E2 − 1 . (3.45)

Since we know the explicit expression of the test-particle energy E, Ecirc in Eq. (3.44), we can compute ξ

explicitly as

ξcirc(x) = x
1 − 4x
−1 + 3x

. (3.46)

We perform a PN expansion of the quantity above, as a Taylor series in x ∼ ϵ truncated at order n = 2

(2PN)

ξT
circ = x

(
−1 + x + 3x2

)
(3.47)

Although we know the exact expression of the (new) energy function ξcirc, we assume, for the moment, to

have access only to its truncated Taylor series Eq. (3.47), along with the knowledge that ξcirc possesses a

simple pole [133, 3]. We use this information to construct the Padé approximant of Ecirc, following the

prescription in Eq. (3.42). Since the exact function has a pole, we consider the approximant m = k = 1

whose generic expression is given by

P1
1(ξ, x) = x

a + bx
1 + cx

. (3.48)

To find the coefficients a, b, c we expand P1
1/x in a Taylor series, keeping corrections up to x2, then

impose this quantity to be equal to ξT
circ/x in Eq. (3.47). As a result, we obtain

a = −1 , b = 4 , c = −3 . (3.49)

Substituting the above result in Eq. (3.48), we see that the Padé approximant, given only a perturbative

Taylor expansion of the real function and the knowledge of its pole structure, yields the exact expression

for the energy in Eq. (3.44), [133, 3].

In the simplified example presented above, the exact expression of the energy was known, in general,

this is not the case: for instance, an explicit expression for the energy flux at infinity in the test-particle

limit is not known, and only Taylor expansions of this quantity in the PN limit are available. As argued

in Ref. [149, 133], these Taylor expansions appear to converge slowly to numerically computed fluxes,

oscillating in the PN truncation order around the real (numerically computed) solution. Ref. [133] applied

the Padé approximants framework to this problem, showing that a Padé expansion for the flux yields a

result converging monotonically towards the numerical results.

Thanks to its convergent behavior, Padé expressions for the fluxes allow for computing these quantities

along the whole trajectory of the test particle. The re-summed expressions for the radiation-reaction forces

in Eq. (3.20) yield a smooth transition from the adiabatic inspiral regime through the quasi-geodesic

plunge motion, for which ϵ ≲ 1, as shown in Ref. [10].
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As we increase the PN order n of accuracy, we have more freedom to choose the Padé approximant. In

Eq.(3.42) we have prescribed m + k = n, where m and k are the truncation orders of the Taylor expansions

in the numerator and denominator functions, respectively. As n increases, different choices for the Padé

approximant can be made. The general strategy is to use approximately diagonal Padé, such that m ∼ k

with the additional requirement that the only poles are motivated by physical arguments, hence are not

artifacts of the expansion procedure [133]. If this requirement is not sufficient, the Padé orders are fixed

by comparing re-summed predictions against numerical evolutions [71]. For this reason, this method is

often regarded as semi-analytical.

In Ref. [150] a new Padé procedure was introduced, denoted as tuned Padé. The idea is to fine-tune the

location of the pole in the energy flux re-summed expression, to minimize the mismatch between the

semi-analytical PN expansion and the numerical expression at the last stable orbit. Ref. [150] showed

that this procedure allows to have better agreement with the numerical flux along the whole trajectory, in

particular near the transition to plunge.

State-of-the-art re-summation procedures factor semi-analytical waveforms and fluxes into different

components, each re-summed independently. The Newtonian limit is factored out, along with the leading

tail terms (hereditary contributions) [74, 151]. In Ref. [74] it was argued that the motion during the

plunge has non-quasi-circular features, regardless of the inspiral binary. It was proposed to introduce

an additional factor in the waveform, accounting for non quasi-circular corrections. This factor is a

superposition of terms activated by non-circular motion, such as ∝ pn
r∗/(rω)n with pr∗ , ω as defined in

Eq. (3.20). Coefficients of each of these terms are fixed to improve the match between the semi-analytical

waveform and a perturbative numerical evolution in the EMR limit.

3.4 Final remarks

In Chapters 5, 6 and 7 we are going to introduce the original results of this thesis. These investigations

focus on the gravitational signal emitted by a test particle evolving on a SBH background, in generic

planar orbits. These orbits are numerical, obtained by solving the Hamiltonian equations of motion in

Eq. (3.20), with effective forces to drive the dynamics towards the merger. The forces that we are going to

use were computed in Ref. [147]; here we briefly summarise later results and describe how these functions

are built.

In Ref. [152], the radiation-reaction forces Fr, Fϕ were computed for generic orbits and mass-ratios, in

the context of the Effective One Body (EOB) approach [70]. These expressions were obtained through

balance laws arguments, imposing that the energy Ėorb and angular momentum L̇orb losses of the orbit

satisfy

Ėorb + ĖSchott + Ė∞ = 0 , L̇orb + L̇∞ = 0 , (3.50)

where Ė∞, L̇∞ are the energy and angular momentum fluxes at infinity, carried by the gravitational waves.

ĖSchott is the Schott energy change in the orbit [152] due to its interaction with the local gravitational

field. A Schott term is not present in the angular momentum balance law: following Ref. [152], part of the

48



3.4 Final remarks

gauge freedom can be fixed so that this contribution vanishes. The orbital energy and angular momentum

losses are directly related to the radiation-reaction forces, as

Ėorb = ṙFr + φ̇Fφ , L̇orb = Fφ . (3.51)

So that from Eq. (3.50), once the flux at infinity is known, it is possible to compute Fr, Fφ, ESchott.

Ref. [152] computed these quantities informed at 2PN order, i.e. they contain corrections on the

gravitational radiation up to 2PN after the Newtonian limit. We denote the results of Ref. [152] as

F 2PN
r , F 2PN

φ , E2PN
Schott, to stress that these quantities are computed in a Taylor series, not re-summed. As a

consequence, they are not suited to describe the whole dynamic, in particular the plunge regime.

Ref. [147] computed Fr valid along the full dynamical evolution from F 2PN
r of Ref. [152], as

Fr =
32 pr∗

3r4 P0
2[F 2PN

r ] , (3.52)

where with P0
2[ · ] we denote the m = 0, k = 2 Padé approximant (see Eq. (3.42)). This is the radiation-

reaction force we will use in the Hamiltonian equations of motion Eq. (3.20) for the results of Chapters 5, 6

and 7.

Ref. [147] computed the Schott energy from the 2PN informed expression in Ref. [152], E2PN
Schott, through

the re-summation

ESchott =
16 pr∗

5r3 P0
2[E2PN,c

Schott] P0
2[E2PN,nc

Schott ] , (3.53)

where E2PN,c
Schott is the Schott energy informed at 2PN computed in the circular case, i.e. setting pr∗ = ṗr∗ = 0

in the expression computed by Ref. [152]. The non-circular factor is then computed such that

E2PN
Schott = E2PN, c

Schott (r) · E2PN, nc
Schott (r, pr∗ , pφ) . (3.54)

For Fφ, two possible expressions for Fφ are compared in Ref. [147]. The first is obtained factoring

the circular-motion limit of F 2PN
φ computed in Ref. [152], obtained imposing pr∗ = ṗr∗ = 0, with the

non-circular component, defined through

F 2PN
φ = F 2PN, c

φ (r) ·F 2PN, nc
φ (r, pr∗ , pφ) . (3.55)

The circular component F 2PN, c
φ (r) is evaluated along rc = ω−2/3

c , as valid for a circular motion (see

Eq. (3.43)), with ωc as instantaneous circular frequency [147]. Then, the 2PN informed F 2PN, c
φ (rc) is

replaced by the EOB re-summed expression present in the literature for a circular inspiral F EOB, c
φ (rc) [151,

147]. The non-circular component is instead re-summed through a Padé, so that the first proposed

expression for the radiation-reaction force Fφ is [147]

F EOB, 2PN nc
φ = F EOB, c

φ (rc) · P0
2[F 2PN, nc

φ (r, pr∗ , pφ)] . (3.56)

This expression is compared with

F
EOB qc, nc
φ = −

32 µ
5 M

r4
cω

5 f̂ (ω) · f̂ nc
φ , (3.57)
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which consists of the Newtonian order angular momentum flux computed in Ref. [152] for a quasi-circular

motion (i.e. neglecting derivatives of r, ω), with the factor f̂ nc
φ accounting for non-circular corrections.

This factor is a combination of r, ω derivatives with coefficients of each term fine-tuned on numerical

waveforms [147].

Ref. [147] computed the energy and angular momentum fluxes by solving numerically the evolution of

a test particle plunging into a SBH. The perturbative numerical fluxes are compared with the predicted

ones, computed with Fr in Eq. (3.52), ESchott in Eq. (3.53) and F EOB qc, nc
φ in Eq. (3.57). The comparison

is then repeated for the semi-analytical fluxes obtained through Fr in Eq. (3.52), ESchott in Eq. (3.53) and

F EOB 2PN nc
φ in Eq. (3.56).

This comparison shows that Eq. (3.57) is better suited to describe the angular momentum loss of the orbit.

Hence, we will use this Fφ for the original results presented in the thesis.
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Chapter 4

Post-merger waveform: a
phenomenological approach

In the previous chapter, we have focused on the orbital evolution of black-hole (BH) binaries (BBH) in

the extreme mass-ratio (EMR) limit, discussing the equations of motion of these systems and introducing

the effective forces driving the dynamics towards a merger. Now, we move the attention to gravitational

waves generated by these binaries, but keeping the sources’ mass ratios generic. These investigations

have been enabled by the numerical relativity breakthrough of Refs. [153, 154, 155], numerically solving

the (non-linear) Einstein’s equations for a BBH merger from the inspiral up to and through the merger,

until the final black hole has reached its stationary equilibrium configuration. Since these seminal works,

the numerical relativity field has flourished: several independent codes have generated several catalogs,

see e.g. [156, 157, 158, 159], of numerical waveforms relative to different types of progenitor’s binary

configurations: quasi-circular non-spinning/spin-aligned/spin-precessing progenitors, eccentric/hyperbolic

orbits [160, 161, 162, 163], neutral (Kerr)/electrically charged (Kerr-Newman) [164, 165] BHs and finally,

numerical waveforms in some modified theory of gravity [166, 167, 168, 169, 170, 171, 172, 173, 174,

175] are now available.

In Fig. 4.1, we show a non-linear numerical waveform obtained from the coalescence of two non-

spinning BHs progenitors of comparable masses, generated with the SpeC code [176, 95, 96, 97, 98] and

available in the public SXS catalog [156]. In particular, the signal has been decomposed in spin weight

−2 spherical harmonics and we focus on the quadrupole (ℓm) = (22), showing the radiation emitted

close to the luminosity peak. As detailed in Chapter 1, the waveform is typically divided into three

different components. It starts with the inspiral emitted while the two BHs are orbiting around each other,

progressing towards the merger signal, emitted once a common horizon is formed (∼ the quadrupole peak

of luminosity). The relaxation towards a stationary equilibrium configuration can be described, at leading

order, with vacuum perturbation theory results, as a superposition of quasi-normal modes (QNMs) [13,

177]. This stage is denoted as ringdown and is valid some time after the waveform peak ∼ 15M [11, 12].

As will be explored in this chapter, the QNMs complex frequencies are functions only of the final (product

of the merger) BH mass M f , spin J f , electric Q f or magnetic P j charge [20, 21, 32, 31, 30, 29, 28, 27, 26,
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Figure 4.1: Real (left) and imaginary (right) component of the strain multipole h22 vs the time, translated

with respect to the time tpeak of |h22| peak. Results are relative to the numerical waveform SXS:0305 of the

SXS catalog [156], characterized by non-spinning progenitors in a circular orbit with mass ratio q ≃ 1.2.

25, 24, 23, 22], while their amplitudes encode information on the progenitor’s orbit [76, 77, 11, 78, 12, 79,

49, 80, 69, 81, 82, 83].

Surprisingly, while non-linear effects are present in numerical waveforms [42, 43, 44, 45, 46, 51, 47, 48,

40, 49, 52, 53, 178, 54], these waveforms exhibit morphological features similar to those of perturbative

evolutions computed for EMR systems, for what concerns the transient emitted between the waveform

peak and the ringing regime. In fact, the functional expressions of the phenomenological models describing

this signal are independent of the mass ratio [179, 73], as will be detailed later.

While there are analytical methods to compute the signal during the inspiral-plunge, e.g. the post-

Newtonian (PN) scheme and (in the EMR and intermediate mass-ratio limits) the self-force approach, a

similar first principles understanding of the post-merger signal is currently lacking. The goal of this chapter,

is to provide an overview of past investigations on this portion of the waveform obtained through fits of

numerical evolutions, both in the perturbative and in the fully non-linear case. The phenomenological

picture arising from these studies introduces the intuition behind the original results presented in Chapter 7.

In the first section, Sec. 4.1, we review past efforts devoted to understanding the modal content of the

ringdown, i.e. how many modes can be identified (which modes are the loudest), and how the QNMs

amplitudes are related to the inspiral two-body problem. In Sec. 4.2, we discuss purely phenomenological

models, able to reproduce the transient behavior connecting the waveform at its peak with the subsequent

ringdown. These investigations are not only useful to build parametrized models, but can offer valuable

insight into how to build a first-principles analytical model. In Sec. 4.3, we introduce an algorithm to

perform Bayesian inference on numerical ringdown data. This algorithm is then applied to re-derive

past results on Kerr BHs and to introduce new results for the ringdown of Kerr-Newman mergers. We

conclude the chapter with some final remarks in Sec. 4.4, briefly summarizing the heuristic ringdown

picture emerging from an a-posteriori analysis, and its limitations.
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Figure 4.2: Rescaled amplitude (left) and instantaneous frequency, as defined in Eq. (4.5), (right) compo-

nent of the strain multipole h22 vs the time, translated with respect to the time tpeak of |h22| peak. Results

are relative to the numerical waveform SXS:0305 of the SXS catalog [156], characterized by non-spinning

progenitors in a circular orbit with mass ratio q ≃ 1.2.

4.1 Stationary ringdown

In Chapter 2, we have discussed the response of a Schwarzschild BH to an external (small) perturbation,

at linear order in this quantity. In particular, we have shown that this response can be divided into three

different stages: an initial prompt response traveling on the light-cone, an intermediate ringing signal

characterized by a superposition of exponentially damped vibrational modes, the QNMs, and an inverse

power-law decay dominating the relaxation at late times.

It is interesting to investigate whether a similar structure can be found in fully non-linear numerical

simulations, during the relaxation of a perturbed BH product of a comparable-mass BH binary merger. In

this chapter, we focus on the ringdown and leave the tail to Chapter 6. We review past works which study

the non-linear numerical signal some time after the waveform peak, fitting with the following template

h+(t, r, θ, φ) − i h×(t, r, θ, φ) =
1
r

∑
ℓ,|m|≤ℓ

∑
s=±,n

Aℓmns eiϕℓmns · e−iωℓmnst · −2S ℓmns(θ, φ) , (4.1)

where h+,× are the polarization as observed at I+ in the TT-gauge and −2S ℓmns are the spin weight

−2 spheroidal harmonics [180], ωℓmns are the (complex) QNMs frequencies and Aℓmns, ϕℓmns are their

amplitudes and phases, assumed to be constant quantities. The quantity s distinguishes between the

co-rotating modes Re(ωℓmn+) > 0 and the counter-rotating modes Re(ωℓmn−) < 0, also denoted as mirror

modes. We will neglect the counter-rotating modes in the discussion of the current chapter, since mirror

modes are appreciably excited only for small remnant spins or very high mass ratios, neither of which

will be considered. As discussed in Chapter 2, the QNFs are functions of the parameters describing

the BH spacetime: according to the no-hair conjecture these quantities are the BH mass M, its angular

momentum J and its electric Q or magnetic P charge [20, 21, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22]. In

Eq. (4.1), the QNFs are relative to the final BH generated by the merger, so ωℓmn = ωℓmn(M f , J f ,Q f , P f ).

The QNMs amplitudes, on the other hand, depend both on the final spacetime configuration, i.e. on the
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Chapter 4. Post-merger waveform: a phenomenological approach

parameters (M f , J f ,Q f , P f ), but also on the perturbations triggering the ringdown response; we will come

back to this point later.

In the template Eq. (4.1), we have considered an expansion in spin weight −2 spheroidal harmonics,

instead of spherical, since the final BH producing the ringdown signal is, in general, a Kerr BH. Due to

angular momentum conservation, even if initially the progenitors have vanishing spin, the final BH will

have non-zero angular momentum. The final BH is Schwarzschild only for specific fine-tuned inspiral

configurations.

Perturbations of a Kerr BH can be separated into radial part and angular part: at the QNFs, the former

is solved by the QNMs radial profile, while the latter is solved by spin weight −2 spheroidal harmonics

−2S ℓmn [180]. However, as argued in Refs. [181, 182, 183, 11] , −2S ℓmn are not orthonormal nor a

complete set, hence numerical relativity waveforms are usually decomposed in the orthonormal basis of

spin weight −2 spherical harmonics −2Yℓm. In the limit Jωℓmn → 0, the spin −2 spheroidal harmonics

reduce to spherical ones, and it is possible to perform a Taylor expansion in Jωℓmn ≪ 1 connecting these

quantities [184]

−2S ℓmn(θ, φ) = −2Yℓm(θ, φ) + (Jωℓmn)
∑
ℓ′,ℓ

−2Yℓ′m(θ, φ)cℓ′ℓm + O
[
(Jωℓmn)2

]
, (4.2)

where the cℓ′ℓm can be found in Ref. [184]. For J ∈ [0, 1], it is possible to decompose the spheroidal

harmonics into spherical ones as

−2S ℓmn(θ, φ) =
∑
ℓ′

Aℓℓ′mn · −2Yℓ′m(θ, φ) , Aℓℓ′mn(J)δmm′ =

∫
dΩ −2S ℓmn(θ, φ) · −2Yℓ′m′(θ, φ) . (4.3)

the coefficient Aℓℓ′mn were computed in Ref. [183]. Following Refs. [182, 11], inserting the expression

above into the template in Eq. (4.1), it is possible to rewrite the ansatz used to analyze numerical waveforms

in terms of spin weight −2 spherical harmonics. The template to describe each multipole (in −2Yℓm) is then

hℓm(t) =
∑
ℓ′,n

Aℓℓ′mn eiϕℓℓ′mn · e−iωℓ′mnt , (4.4)

with frequencies ωℓ′mn computed solving the Teukolsky equation (i.e. in a Boyer-Lindquist coordinate

system). Note that, from now on, we will simplify the notation as Aℓℓ′mn = Aℓ′mn, ϕℓℓ′mn = ϕℓ′mn. In

Eq. (4.4), the spherical multipole (ℓm) receives contribution from modes with ℓ′ , ℓ, this phenomenon is

usually denoted as mode-mixing [182]. According to Eq. (4.2), the larger is the product between the final

angular momentum and the QNF, J fωℓ′mn, the more excited are the mixed modes [182, 11].

In Fig. 4.2, we show the waveform emitted from a comparable-mass BH binary merger, for non-spinning

progenitors. In particular, we focus on the merger and post-merger quadrupole (ℓm) = (22) signal and plot

its amplitude and instantaneous frequency. The amplitude has been rescaled with respect to the decay rate

of the fundamental mode, i.e. with the factor e−|ω
Im
220 |(t−tpeak), where ω220 is the QNF relative to the mode

(220) of the final black hole. The frequency is defined as

fℓm = −i
d log (hℓm/|hℓm|)

d(t − tpeak)
(4.5)
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4.1 Stationary ringdown

Some time after the peak of the quadrupole amplitude, more specifically t ∼ tpeak+20M, the instantaneous

frequency saturates to the fundamental mode one Re(ω220), while the |ωIm
220|-decay rescaled amplitude

saturates to a constant. This indicates that the quadrupole amplitude leading behavior is ∝ e−iω220(t−tpeak),

hinting that at least the fundamental QNM is present in the post-merger waveform. A similar behavior can

be found for other (ℓm) multipoles, which are dominated by the least-damped QNM (ℓm0).

The amplitudes Aℓmn of the loudest QNMs in each multipole have been studied in several works [76, 77,

11, 78, 12, 79, 49, 80, 69, 81, 82, 83, 84] by fitting numerical waveforms with the template in Eq. (4.4),

and it was found that these quantities carry information on the progenitors’ binary. Ref. [76] was the first

to investigate this dependence, focusing on the least damped mode for the multipoles (22), (21), (33), (44),

considering different mass ratios and non-spinning progenitors. Ref. [76] found that the larger is the

mass-ratio q, the more excited are the higher-multipoles, consistent with the analysis of Ref. [177]. This

investigation was extended to progenitors with non-vanishing, aligned or anti-aligned spins (i.e. non

precessing) in Ref. [77], where it was observed that the (210) mode is highly sensitive to the initial spins

χ1,2 and its amplitude can be parametrized in terms of an effective spin parameter χeff defined as

A21 = A21(χeff) , χeff =
1
2

(
χ1

√
1 − 4η + χ−

)
, χ− =

m1χ1 − m2χ2

m1 + m2
, (4.6)

where η is the (M-rescaled) symmetric mass-ratio. Modes with ℓ = m, e.g. (220), (330), (440), do not

vary appreciably with the spin, showing a sub-leading dependence on this parameter [77]. These results

can be heuristically explained considering that in a tensorial harmonic decomposition the m = l− 1 modes

are magnetic terms, dominated by the leading order “magnetic” parameter, i.e. the spin [185]. During the

inspiral, the PN expression for the (ℓm) = (21) multipole is given by [186, 77]

hPN, insp
21 ∝

ν(m1 + m2)
D

v3
(
√

1 − 4ν −
3
2
vχ−

)
, (4.7)

with v typical velocity of the source. Comparing Eqs. (4.6) and (4.7) we see that the dependence on the

symmetric mass-ratio ν and the spins χ1,2 of the (21) multipole, at leading order (since overtones are

neglected), is carried from the inspiral through the ringdown [77]. Even multipoles, e.g. (ℓm) = (22), (33),

of the inspiral are less sensible to the spin than (21), since its contribution appears at higher PN orders:

1.5PN after the leading behavior, while for (21) the spin is present already at 0.5PN order after the

leading one [77]. This result hints that also the ringdown multipoles (22), (33), (44) carry (at leading order,

since we consider only the fundamental mode behavior) a similar structure as the inspiral ones [77]. To

summarize, not only do the QNMs amplitudes bear imprints of the progenitors’ binary, but these imprints

reflect the same behavior as the respective multipoles in the inspiral phase. This is a very important

consideration, which serves as a building block for the results that will be presented later on in the

manuscript.

Refs. [11, 12, 79] extended these findings through a systematic investigation of PN-like ansatz for the

QNMs amplitudes, in η, χ1,2 or quantities built from these parameters. In particular, Ref. [11] focused

on non-spinning progenitors with different mass ratios, analyzing the behavior of additional modes and

providing a closed form for their amplitudes, as expansions in the symmetric mass ratio η. The discussion

was later extended to progenitors with aligned spins in Ref. [12] and new, more generic expressions for the
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Chapter 4. Post-merger waveform: a phenomenological approach

QNMs amplitudes were estimated, as functions of η and χ1,2. Ref. [79], focused both on non-spinning and

aligned-spin progenitors with different mass ratios and tested templates to describe the multipoles near

the merger characterized by the same behavior on η, χ1,2 as the inspiral multipoles at leading PN order

computed in Ref. [187]. The comparison was performed not only during the plunge, but also 10M after

the quadrupole peak. Interestingly, the PN-like templates well describe the (22), (21), (33), (44) multipoles

after the merger has occurred, while they fail to capture the other odd ℓ + m multipoles. This result hints

that only some multipoles retain in the ringdown the same structure they had during the inspiral, while

others are more sensitive to the merger itself and get modified, for instance, due to mode-mixing.

Recent efforts have been dedicated to studying more complex binary configurations and the imprints left

on the ringdown spectrum; for instance, Ref. [81] and Refs. [80, 83] discussed eccentric mergers and

precessing systems, respectively.

As mentioned above, after the multipole peak, the numerical waveform saturates to the ringdown while

emitting an early-times transient that lasts approximately ∼ 15M [11, 12]. Different proposals have been

explored to describe this transient, ranging from the presence of high-overtones [13, 59] to non-modal

non-linearities.

Overtones have a short lifetime, hence, if they are excited close to the merger, we can expect their most

significant contribution to the total luminosity to be confined near this time. However, it was shown

in Refs. [40, 84] that no more than n ≲ 2 overtones can be confidently identified. In particular, higher

overtones n ≳ 2 are parametrically unstable, meaning that the fitted amplitudes and phases are not smooth

against small changes in the fit starting time or in the progenitors’ binary parameters. We can identify

two main factors preventing overtones n ≳ 2 extraction from numerical data: unknown noise sources or

non-modal physics content not accounted for in the template Eq. (4.4). For instance, close to the peak

non-linear effects might be relevant, as will be discussed shortly. The plunge source could yield non-modal

effects that swamp high-overtones, see Chapter 7, and, at the same time, contribute to a time-dependence

of the QNMs amplitudes and phases at early times. The tail contribution to the luminosity is larger close

to the peak, compared to late times, and high overtones might decay below this signal early on after being

excited, due to their short lifetime. To summarize, while a constant amplitude and phase QNMs template

cannot be applied at early times when we expect overtones to be the loudest, at later times, once their

amplitudes are constant, other effects competing in magnitude with the overtones are likely to be present.

To extract higher overtones, a more detailed template, beyond Eq. (4.4), is needed. If other physical

content is not explored nor accounted for, and the analysis is carried out with Eq. (4.4) and a large number

of overtones, there is the risk of overfitting [40, 188].

The other proposal to describe the early times transient signal is based on non-linear effects. For instance,

after a common horizon is formed, the BH spacetime described by (M0, J0) is perturbed and emits a

signal composed of QNMs. However, part of this radiation is reabsorbed through the horizon, causing the

BH’s mass and spin to evolve M0 + δM, J0 + δJ, exciting QNFs relative to these new parameters. This

process is denoted as absorption induced mode emission (AIME) and has been extensively investigated in

Refs. [51, 52, 53, 54]. Stationary ringdown templates, e.g. Eq. (4.4), are written in terms of the final mass

and spin M = M f , J = J f , describing the BH spacetime once it has reached its equilibrium configuration;
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for this reason, we expect that these templates might fail at early times. However, AIME effects are not

sufficient to explain the transient behavior leading the waveform from its peak towards the stationary

ringdown phase [54].

It is also important to mention non-linear effects of modal nature investigated by the literature. Pair-

wise coupling of QNMs in the second-order perturbation source yields a non-linear signal written as a

superposition of exponentially damped sinusoids. The “parent” linear QNFs uniquely determine their

complex frequencies, and these non-linear modes are denoted as quadratic QNMs [42, 43, 44, 45, 46,

178] (QQNMs). The coupling between linear order QNMs yields precise selection rules for the QQNMs;

e.g. the coupling between two fundamental modes in the quadrupole leads to a QQNM in the (ℓm) = (44)

multipole. As a consequence, except in head-on collisions, QQNMs do not enter the quadrupole waveform

but only affect higher multipoles. Quadratic QNMs in the (ℓm) = (44), (55) and in the (ℓm) = (20), (40) for

head-on collisions, have been identified in numerical waveforms, through a posteriori fitting schemes [47,

48, 40, 49].

A detailed review of the topics and results discussed in this section can be found in Ref. [108].

4.2 Phenomenological models

In the previous section, we discussed efforts to understand the modal content of the post-merger signal. In

the current, we focus on the literature devoted to constructing phenomenological models able to reproduce

a numerical multipole from the time of its peak onwards, in a closed form through a parametrized template.

Initially, the same template introduced in Eq. (4.4) was used to describe numerical multipoles, from

their peak to late times. Ref. [13] employed a superposition of N = 3 QNMs with complex amplitudes

Aℓmneiϕℓmn and final BH mass M f and spin J f as free parameters to be inferred from numerical data, while

the complex frequencies were fixed to perturbation theory predictions ωℓmn(M f , J f ). In Ref. [58] the same

template was used, Eq. (4.4), but a new approach to compute the amplitudes was introduced: Aℓmn, ϕℓmn

for each mode were fixed by requiring a smooth transition from the analytical inspiral-plunge waveform

hinsp−pl
ℓm (t) to the post-merger one hQNMs

ℓm at the time of the orbital frequency maximum tmatch. In particular,

given N QNMs in the post-merger template, it was required a CN−1 differentiability of the waveform at

the matching time, i.e.

dk

dtk

[
hinsp−pl
ℓm (t) − hQNMs

ℓm (t)
]
t=tmatch

= 0 , k = 0, ...N − 1 . (4.8)

In Ref. [189], another technique for the matching was proposed, requiring the analytical waveform to be

C0 on an extended matching region centered at the time of the orbital frequency peak tmerge. In particular,

given N QNMs, the following condition is required

hinsp−pl
ℓm (tmatch + k∆t) − hQNMs

ℓm (tmatch + k∆t) = 0 , k = −
N − 1

2
,−

N − 1
2
+ 1, ...

N − 1
2

, (4.9)

for a fixed ∆t. Ref. [190] combined the two methods, by imposing continuity of the waveform and its

first and second derivatives in a matching region, while later work of Ref. [191] impose continuity of
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the waveform and its first derivative only. More importantly, Ref. [190] found that for non-precessing,

spinning progenitors, the lowest real frequency among the QNFs is much higher than the orbital frequency

at the time of the matching (i.e. near its peak). As result, the semi-analytical waveform frequency saturates

much faster to the fundamental mode value, not reproducing the slow-growth observed in numerical

data. This problem was solved in Ref. [190] by adding to the QNMs superposition a pseudo-QNM with

complex frequency fine-tuned to reproduce the numerical waveform exactly. This result can be explained

through the previous section discussion: a pure, constant amplitudes/phases QNMs description is only

valid some time ∼ 15M after the peak of the multipole tpeak ∼ tmatch, while early times are dominated by a

(yet unknown) transient.

Ref. [179] investigated the near-merger transient in numerical waveforms, with particular attention to the

growth of the instantaneous frequency fℓm of each multipole (ℓm), rescaled with respect to m, fℓm/m. It

was observed that fℓm/m evolves monotonically and is reminiscent of an activating function saturating

to the multiple fundamental mode frequency. For this reason, Ref. [179] proposed the parametrized

expression

m−1 f fit
ℓm(t) = Ωi + (Ω f −Ωi) ·

1 + tanh
[
ln
√
κ + (t − t0)/b

]
2


κ

,

Ωi = Ω f −
b
2
Ω̇0

(
1 +

1
κ

)κ+1

,

(4.10)

with Ω f , Ω̇0, κ, b, t0 free parameters to be fitted from numerical multipoles. The model in Eq. (4.10) was

tested against numerical waveforms for different (ℓm) and different mass-ratios q ∼ [1, 6], showcasing

excellent agreement from t ≈ tpeak−20M up to late times, with tpeak time at which the multipole amplitude

is the largest.

State-of-the-art current EOB models employ a purely phenomenological model for the merger-ringdown

portion of the waveform, suggested for the first time in Ref. [73], inspired by this “activating” behavior.

The proposal of Ref. [73] is to factor out the fundamental mode (ℓm0) from the post-merger waveform

and impose a specific time dependence for its amplitude and phase

hℓm(t) = Aℓm(t)eiϕℓm(t) · e−iωℓm0t . (4.11)

At early times, we expect the amplitude of the multipole Aℓm(t) to be an increasing function of time t,

since the matching time is close to the orbital frequency peak, preceding the multipole amplitude peak.

The time-dependence of the amplitude and phase includes unmodeled non-linear and source-dependent

content as well as overtones. These effects decay quickly and, at late times, we expect hℓm(t) to be

dominated by the constant amplitude and phase fundamental mode. It is reasonable to assume that the

transition between these limits is smooth and that Aℓm, ϕℓm behave as activating functions. Ref. [73] tested

this intuition against numerical evolutions finding that Aℓm(t), ϕℓm(t) follow an hyperbolic tangent-like

behavior, encapsulated in the following templates

Aℓm(t) = cA
1 tanh

(
cA

2 t + cA
3

)
+ cA

4 ,

ϕℓm = −cϕ1 ln

1 + cϕ3e−cϕ2 t + cϕ4 e−2cϕ2 t

1 + cϕ3 + cϕ4

 , (4.12)
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where some parameters are fixed by imposing continuity constraints at the matching time, while others

are fitted against a numerical waveform.

It is important to stress that the template in Eq. (4.12) describes both perturbative waveforms in the

EMR limit and non-linear ones in the comparable masses case, showcasing yet again how non-linearities

are suppressed in a black-hole binary merger. This result, then, provides a valuable insight into how to

investigate the transient, since it hints that results found on the easier, perturbative EMR limit could later

be generalized to the non-linear comparable masses case.

While it does not qualify as a phenomenological post-merger model, it is important to discuss the toy

model introduced in Ref. [75] for the QNMs excitation, a useful starting point for the original results of

this thesis. In Ref. [74], a heuristic picture for the QNMs excitation was proposed. This intuition is that

the orbital frequency growth during the plunge quasi-resonantly excites the QNMs as it sweeps their real

frequencies. Due to the QNFs’ complex nature and since the maximum orbital frequency (reached at

the light-ring crossing) is always below the fundamental QNF, a real resonance never occurs. However,

in this picture, the fundamental mode and the first overtones’ amplitudes can accumulate over a time

interval close to the orbital frequency maximum. In Ref. [75], this intuition is used to create a toy model

describing the QNMs excitation.

The QNMs response originated from a compact initial-data perturbation of a Schwarzschild BH can

be written as a superposition of constant-amplitude, exponentially-damped sinusoids. The complex

frequencies of these modes are identified through the multipole numbers (ℓm), the overtone number n

and the sign of their real frequency. Hence, for fixed (ℓmn), the QNM solution ψℓmn to the homogeneous

Regge-Wheeler/Zerilli problem, is

ψℓmn(t) = Cℓmn+e−iωℓmn+t +Cℓmn−e−iωℓmn−t , (4.13)

see Chapter 2 for more details. Following Ref. [75], this ansatz can be considered as the solution of a

damped harmonic oscillator

ψ̈ℓmn + 2αℓmnψ̇ℓmn + (α2
ℓmn + σ

2
ℓmn)ψℓmn = 0 (4.14)

where we have used the ˙( · ) to denote differentiation with respect to the time coordinate t and we have

defined αℓmn ≡ Im(ωℓmn), σℓmn± ≡ Re(ωℓmn±) as the imaginary and real component of each QNF ωℓmn±,

respectively.

Following Ref. [75], we introduce a driving force on the right-hand side of Eq. (4.14), e.g. f̃ℓm(t) defined

in Eq. (A.4) of Appendix A for a test-particle source

ψ̈ℓmn + 2αℓmnψ̇ℓmn + (α2
ℓmn + σ

2
ℓmn)ψℓmn = f̃ℓm(t) (4.15)

This new problem admits as a solution

ψℓmn(t) = Cℓmn+(t)e−iωℓmn+t +Cℓmn−(t)e−iωℓmn−t . (4.16)
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Working under the assumptions of slow-varying amplitudes Cℓmn±(t) (with respect to the real frequency

σℓmn±), Ref. [75] computed the following solution

Cℓmn±(t) = Cℓmn±(t0) +
i

2σℓmn±

∫ t

t0
dt′ f̃ℓm(t′) · eiωℓmn±t′ . (4.17)

This toy model describes the excitation of each QNM as the overlap integral between the driving force

and the damped sinusoid representing the mode. The source function oscillates as f̃ℓm(t) ∝ e−imφ(t) where

φ(t) is the azimuthal coordinate of the test-particle, that can be approximated as φ(t) ≈ Ω(t)t, with Ω(t)

(instantaneous) orbital frequency of the test-particle. Hence, the overlap integral is large when the orbital

motion mΩ(t) ≈ σℓmns and suppressed otherwise: this model perfectly encapsulates the physical intuition

of Ref. [74]. Ref. [75] computed numerically the activation functions for the fundamental mode and its

mirror mode and some overtones n ≤ 3; for higher overtones, non-physical features appear showing the toy

model breakdown. The findings show that the fundamental mode is more excited with respect to its mirror

mode, consistent with the quasi-resonant picture. As the overtone number n increases, the difference

in excitation between the mode and its mirror one is less appreciable. This result can be explained by

remarking that quasi-resonant effects are not present for large n due to the extremely short life-times of

these modes [75].

4.3 Bayesian approach to ringdown modelling

In this section, we introduce an algorithm to analyze numerical waveforms data, based on Bayesian

inference methods. We use this algorithm to re-derive some known results, in particular, to investigate the

modal content of comparable-mass, non-spinning BBH waveforms, after the merger. Once we identify

the (220), (221), (320) as the loudest modes in the quadrupole, we focus on the (220) and investigate its

dependence on the mass ratio, to reproduce the analysis of Ref. [11]. Finally, we introduce some new

results on the ringdown of Kerr-Newman non-linear mergers.

4.3.1 Bayesian inference

Suppose we have a dataset Xn of n-points, each corresponding to a time step, together with a model M

predicting the data behavior, written in closed form in terms of N parameters ai for i = 1, ...N, as M(ai).

We differentiate between two types of parameters: fixed and free; fixed parameters are assumed to be

known quantities, while we want to infer the free parameters from the numerical data. Note that it is still

possible to have some a priori information on the free parameters. Even if not sufficient to fix them, such

information can still give valuable aid in the analysis. In particular, we construct a probability distribution,

called the prior P(ai; M), containing all known information on the free parameters.

We wish to obtain the probability distribution P(ai; M, Xn) reflecting how well the model M and the

parameters ai can describe the dataset Xn. This distribution is called posterior and it can be computed by

means of the Bayes theorem [192]:

P(ai; M, Xn) =
P(Xn; ai,M) · P(ai; M)

P(Xn; M)
. (4.18)
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In the above, we have introduced the likelihood P(Xn; ai,M) and the evidence P(Xn; M), defined respec-

tively as the probability distribution of the data given the model M and parameters ai and its marginalization

over the whole parameter space obtained weighting each P(Xn; ai,M) with the prior P(ai).

We consider datasets containing an unknown component (“noise”) on top of the true signal we wish to

investigate. For simplicity, we consider each data point Xn as drawn from a Gaussian distribution centered

at the true value X̄n and characterized by variance σn. Then, assuming that the true value is given by the

model M, i.e. X̄n = M(ai), the likelihood can be written as follows

P(Xn; ai,M) =
1

σn
√

2π
exp

−1
2

(
Xn − M(ai)

σn

)2 (4.19)

This approach is an approximation leveraging a prediction for the physical content of the signal and a

minimal understanding of the numerical noise. As discussed in the next section, if multiple waveform

resolutions are available, the variance at each time step can be computed directly. If only a single resolution

is available, the numerical noise can still be estimated heuristically at each time step. These assumptions

amount to fixing the first two moments of the underlying distribution at each time step. Then, according to

the principle of maximum entropy [192], the Gaussian distribution with the prescribed mean and variance

is the best approximation to the “true” distribution that does not impose any assumptions beyond the

specified information. This approximation introduces a limitation in our approach: to reliably extract

subleading physical features, one would require both a more accurate signal model and a more detailed

characterization of the noise.

In what follows, we agnostically focus on uniform prior distributions P(ai; M) (also denoted as flat prior).

This implies that

P(ai; M) = θ(ai − amin) · θ(amax − ai) . (4.20)

for some boundary values [amin, amax].

With the above assumptions, in Eq. (4.18) the posterior distribution for the values ai is proportional to the

likelihood; hence, finding the parameters that best describe the data, assuming the model is correct, reduces

to the problem of maximizing the exponential in Eq. (4.19) or, equivalently, minimizing the exponent

therein. Error bars on the best parameters can be obtained as the interval of parameters containing 95% of

the posterior; this is denoted as 95% confidence interval.

Note that the problem we wish to solve may not be restricted to determine the best parameters ai to

describe the data through a specific template: we might also want to test and compare different models.

This can be done by comparing the evidence P(Xn; Mk) for each Mk, the model with the largest evidence

can be considered to best describe the data. Moreover, P(Xn; M) is a useful tool to understand whether we

are overfitting the data, or if adding more free parameters ai is physically meaningful: if adding more ai

does not improve the evidence, we can disregard the additional information added to our model.

Model selection can also be performed by comparing the marginalized posterior probabilities of each

model P(Mk; Xn). The ratio of posteriors for two models M1 and M2 is related to the evidence ratio by

P(M1; Xn)
P(M2; Xn)

=
P(Xn; M1)
P(Xn; M2)

P(M1)
P(M2)

, (4.21)
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where P(Mk) denotes the prior probability assigned to model Mk. Comparing posteriors incorporates

more information than comparing evidences alone, as it includes prior assumptions about each model. In

the following, to remain as agnostic as possible, we assign equal prior probabilities to different models,

hence comparing posteriors or evidences becomes equivalent.

4.3.2 Software: bayRing

In the previous section, we presented a theoretical framework to estimate the parameters for which a given

model best describes the data. Now, we are going to discuss a Python package which implements this

algorithm and is targeted to analyze the ringdown in numerical simulations of compact objects’ binary

mergers.

The algorithm is called bayRing [193] and is based on the nested sampling algorithm as implemented

in the CPNest package [194]. The general idea behind the algorithm is to explore the parameter space

by evaluating the likelihood at various points (known as “live points”, abbreviated in “nlive”) drawn

according to the prior distribution. Since we assume a uniform prior, compact in a certain domain, the

sampler initially draws points uniformly within this domain. The term “nested" refers to the way the

algorithm progressively explores nested shells of increasing likelihood. At each iteration, the point with

the lowest likelihood is removed and replaced by a new point sampled from the prior, but constrained

to have a likelihood greater than a given threshold. This threshold increases over time, allowing the

algorithm to concentrate its exploration around the region of highest likelihood, while also computing the

Bayesian evidence and producing posterior samples. To remove possible influences of the initial point at

which the stochastic exploration starts, every posterior evaluation is repeated for four different random

initial seeds and the posteriors of each evaluation are combined.

Finally, we set the error in our likelihood. We are going to work with waveforms contained within the

SXS catalog [156]. For this dataset, two main sources of errors exist: finite numerical resolution, and

approximate extrapolation of the waveform from a compact numerical domain to future null infinity. For

each binary configuration, the catalog contains results at multiple resolutions and extrapolation orders. To

account for this finite accuracy in our results, the variance σ is computed, at each time step, as

σn ≡

√(
XN,E

n

)2
−

(
XN−1,E

n

)2
+

√(
XN,E

n

)2
−

(
XN,E+1

n

)2
. (4.22)

where we have used the superscripts N, E to respectively denote the resolution level and extrapolation

order of the numerical waveform analyzed. If only one waveform is available (as for the Kerr-Newman

waveforms we will investigate), σn is fixed to a constant value for all n, set by the numerical floor of the

evolution.

4.3.3 Ringdown of Kerr BHs: identifying the modes

In this section, we focus on non-spinning, uncharged BH binary mergers and investigate the modal

content of the quadrupole (ℓm) = (22) signal. We investigate how many modes can be extracted from
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Figure 4.3: Parameter estimation results for the simulation SXS:0305 (mass-ratio q ≃ 1.2) with the

algorithm bayRing [193], assuming the models in the labels. Left: Evidence Z of each model as a

function of the starting time of the fit tstart, quoted with respect to the time at which the waveform

quadrupole reaches its maximum value tpeak. Right: Real frequency ωRe and decay time τ recovered by

the agnostic search. Each point represents the maximum posterior value obtained starting the inference at

tstart, shown on the color bar.

the numerical signal through the Bayesian inference algorithm bayRing [193], discussed in Sec. 4.3.2.

We focus on the simulation labeled by SXS:0305, characterized by a mass-ratio q ≃ 1.2. We consider

different models for our analysis:

• Exponentially damped sinusoids templates

hℓm(t) =
k∑

i=0

Āieiϕi · e−iωit−t/τi , (4.23)

with real amplitudes Āi, phases ϕi, real frequencies ωi and decay rates τi as free parameters to be

inferred from the data. We will use the following notation for such models: kDS.

• QNMs superposition templates

hℓm(t) =
∑
ℓ′n

Āℓ′mneiϕℓ′mn · e−iωℓ′mnt−t/τℓ′mn , (4.24)

where only real amplitudes Āℓ′mn and phases ϕℓ′mn are free parameters of the inference problem

while real frequencies ωℓ′mn and decay rates τℓ′mn are fixed to the perturbation theory values as

functions of the final BH mass M f and spin J f extracted from the simulations. Mirror modes

contributions are ignored, as they are negligible for the parameter space we will be considering. We

will use the following notation for such models (ℓ′m0) + (ℓ′m1) + ...(ℓ′mn).

• QNMs superposition plus exponentially damped sinusoids templates

hℓm(t) =
k∑

i=0

Āieiϕi · e−iωit−t/τi +
∑
ℓ′n

Āℓ′mneiϕℓ′mn · e−iωℓ′mnt−t/τℓ′mn , (4.25)
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Figure 4.4: Parameter estimation results for the simulation SXS:0305 (mass-ratio q ≃ 1.2) with the

algorithm bayRing [193], assuming as model (220) + (221) + (320) + const. On the top row, we show

the amplitudes as rescaled with respect to the peak, Aℓ′mn = Ãℓ′mne−iωℓ′mntpeak where Ãℓ′mn is the parameter

inferred from the algorithm and Aℓ′mn is the result we plot above. On the bottom row, we show the phases.

On the left/center/right, results relative to the damped sinusoid with complex frequency fixed to that of the

(220)/(221)/(320) mode, respectively. Note that phases have been unwrapped.

where the free parameters are the real amplitudes Āi, Āℓ′mn, phases ϕi, ϕℓ′mn, and, for the damped

sinusoid part of the template, also the frequencies ωi and decay rates τi. The quantities ωℓ′mn, τℓ′mn

are instead fixed to the perturbation theory QNFs as functions of M f and J f . We will use the

following nomenclature for these templates (ℓ′m0) + (ℓ′m1) + ...(ℓ′mn) + kDS.

• Templates with a late-time dominating behavior, such as a constant

hℓm(t) = hQNMs+DS
ℓm (t) + (CRe + iCIm) , (4.26)

with CRe, CIm fixed parameters a priori known, or a late-time tail

hℓm(t) = hQNMs+DS
ℓm (t) + Ataileiϕtail t−ptail , (4.27)

with Atail, ϕtail, ptail as free parameters. In the above equations, hQNMs+DS indicates one of the

templates in Eqs. (4.23), (4.24) or (4.25). We will then use the following nomenclature for a

template with a fixed constant (ℓ′m0)+ ...+ (ℓmn)+ kDS+ const and (ℓ′m0)+ ...+ (ℓmn)+ kDS+ tail

for a template with a tail.

For all the analyses presented below, we will use uniform priors for the inference free parameters, with

the following wide boundary values

Ai ∈ [10, 150] , ϕi ∈ [0, 2π] , ωi ∈ [−0.318, 0.318] , τi ∈ [1, 50]

Aℓ′mn ∈ [10, 150] , ϕℓ′mn ∈ [0, 2π] ,
(4.28)

and we consider a sampler of size nlive = 64. For each template we consider, the inference procedure is

repeated, varying the starting times in the range tstart − tpeak ∈ [0, 45M], namely cropping an increasing

fraction of the data, aiming to target the regions where our perturbative description does not apply. Since

by definitions the parameters appearing in our template are considered to be constant, their value should

not depend on the portion of data included (within error bars). Hence, the parameter estimation is

64



4.3 Bayesian approach to ringdown modelling

0 10 20 30 40
tstart tpeak

103

105

107

109

ln
Z

220+221+320+const
220+221+320+DS+const
220+221+320+222+const
220+221+320+222+223+const

0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Re

2

4

6

8

10

12

14

16

220

221

320

222 220+221+320+DS+const
2.5

5.0

7.5

10.0

12.5

15.0

17.5

t s
ta

rt
t p

ea
k

Figure 4.5: Parameter estimation results for the simulation SXS:0305 (mass-ratio q ≃ 1.2) with the

algorithm bayRing [193], assuming different models, as reported in the labels. Left: Evidence Z of

each model as a function of the starting time of the fit tstart quoted with respect to the time at which the

waveform quadrupole reaches its maximum value tpeak. Right: Real frequency ωRe and decay time τ

recovered by the agnostic search. Each point represent the maximum posterior value obtained starting the

inference at tstart, shown on the color-bar.

considered successful only if the recovered parameters are approximately constant (within error bars)

for a large enough time interval. Otherwise, the model might be failing, as a consequence of unmodeled

physics or noise.

The first analysis that we will perform is denoted as agnostic search: the idea is to consider a template 1DS

and identify the dominant mode (ℓ′mn) in the numerical data, then to repeat the analysis for a template

(ℓ′mn) + 1DS to search for the next “loud" mode. The same algorithm is performed again, so that at each

iteration the template contains all the QNFs previously identified plus a single damped sinusoid. The

results of this procedure are shown on the right-panel in Fig. 4.3, where we show the evolution of the free

parameters ωi, τi as function of the starting time of the inference (identified by the color bar); note that

we rescale the time with respect to the time tpeak at which the quadrupole amplitude reaches its maximum

value. The agnostic search first iteration, with template 1DS, converges towards the fundamental mode

(220) frequency. The second iteration, (220) + 1DS, identifies for earlier starting times tstart ≲ tpeak + 20M

a mode with frequency close to the final BH (221) frequency, while at late times the parameters ωi and

τi evolve towards small and large values respectively. This result can be explained, at early times, by

considering that overtones are generally short-lived, so we expect them to decay below other features of

the signal at late times. Moreover, the small discrepancy between the recovered frequency and the (221)

QNF of the final BH could be due to the fact that mass and spin of the BH are still evolving at early times

and have not yet saturated to M f , J f . The late-time result hints that the template in Eq. (4.23) is not suited

to describe the waveform for t ≫ tpeak and we should instead investigate a non-oscillating template, e.g.

a late-time tail. In Fig. 4.7, we show the late-time behavior of several simulations of the SXS catalog,

including the SXS:0305: at late times the waveforms are dominated by a zero-frequency behavior. For this

reason, we perform a new inference test with template (220)+1DS+ tail, yielding a minimal improvement
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Figure 4.6: Parameter estimation results for the simulation SXS:0305 (mass-ratio q ≃ 1.2) with the

algorithm bayRing [193], assuming as model (220) + (221) + (320) + (222) + (223) + const. On the

top row, we show the amplitudes as rescaled with respect to the peak, Aℓ′mn = Ãℓ′mne−iωℓ′mntpeak where

Ãℓ′mn is the parameter inferred from the algorithm and Aℓ′mn is the result we plot above. On the bottom

row, we show the phases. On the left/center/right, results relative to the damped sinusoid with complex

frequency fixed to that of the (221)/(222)/(223) mode, respectively. The horizontal lines correspond to the

mean value of the amplitudes in the intervals tstart − tpeak ∈ [0, 30M]/[0, 20M]/[0, 10M], respectively. The

opaque regions represent the associated standard mean deviations. Note that phases have been unwrapped.

in the recovery of ωi, τi at late times: the inferred frequency is close to the final BH (221) mode one for a

longer time, but converges again towards a non-modal behavior for tstart ≳ 25M + tpeak.

From Fig. 4.7 we see that the simulation SXS:0305 seems to be dominated by a spurious numerical

constant. For this reason, we perform a trial and error approach: we first assume the simplest possible

template for the numerical error of SXS:0305, a constant, and infer this value by fitting the waveform at

late times, yielding the following result

CRe + iCIm = 7.976 · 10−6 − i 1.802 · 10−5 . (4.29)

Then, we reiterate the agnostic search with template (220) + 1DS + const, fixing the constant to the value

above. The results for the free parameters ωi, τi are shown in the right panel of Fig. 4.3; for early starting

times, the inference procedure yields the same results as with other templates, identifying a mode with

frequency close to the final BH (221) QNF. However, at intermediate times, the frequency recovered by

the damped sinusoid evolves until it converges near the final BH (320) QNF. The presence of this mode is

expected due to mode-mixing. This result can be interpreted as follows: the (221) is more excited than the

mode-mixing (320), hence dominates the waveform close to its peak. However, the decay rate of the (221)

is faster and, after a certain amount of time, this mode decays below the (long-lived) (320). The presence

of spurious numerical constants was later confirmed by independent studies in the literature [49], and can

be cured by transforming to the correct Bondi–Metzner–Sachs frame [84].

The above results are supported by the behavior of the evidence (denoted by Z), compared among

all the different models we discussed, plotted on the left panel of Fig. 4.3. At early starting times

tstart ≲ 30M + tpeak, the model (220) + 1DS improves the evidence (i.e. lowers − ln Z) by several orders of

magnitude with respect to the (220) template, hinting further at the presence of the (221) at early times.
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Adding a (free) tail or a (fixed) constant to the template (220)+1DS+tail or (220)+1DS+const significantly

improves the evidence with respect to (220) + 1DS only for late starting times tstart ≳ 30M + tpeak. In

particular, inserting the constant into the model yields higher evidence than adding a late-time tail.

The agnostic search discussed above hints at the presence of the (220), (221), (320) modes in the numerical

quadrupole. We now move to the next step of the inference investigation, aimed at estimating the real

amplitudes and phases of these QNMs. We repeat the parameter estimation test, for different starting times,

considering the template (220) + (221) + (320) + const. We show in Fig. 4.4 the behavior of Aℓ′mn, ϕℓ′mn

vs the time tstart at which the inference procedure is started, with rescaled amplitude Aℓ′mn defined as

Aℓ′mn = Āℓ′mne−iωℓ′mntpeak . If the variation of the recovered amplitudes and phases with respect to tstart is

significant, it is an indication that the model we impose on the data is not appropriate, but the algorithm

is still “trying” to reproduce other numerical features with our template. Hence, we need to identify the

interval of tstart for which the inferred parameters are constant inside the error bars, estimated as the 95%

credible interval of the posterior (i.e. given a parameter inside the error bar, there is 95% probability that

it is the true parameter according to the posterior). We can then average values of Aℓ′mn, ϕℓ′mn inside these

intervals, and assume these values as final, numerical estimates of the QNMs complex amplitudes.

From the results in Fig. 4.4, we see that the inferred parameters of the (220) are (approximately) constant in-

side the error bars, for times tstart ≳ 10M+tpeak, this time interval changes to tstart−tpeak ∈ [∼ 10M,∼ 40M]

for the overtone (221) and to tstart ≳ 20M + tpeak for the (320) mode coming from the mixing. In the next

section, we will repeat this procedure for several systems, characterized by different mass-ratios q in order

to investigate the dependence of A220 on q.

We now extend the search to higher overtones by repeating the agnostic search with a template (220) +

(221) + (320) + 1DS + const. The results for the inferred ωi, τi are shown on the right panel of Fig. 4.5;

the recovered values of τi are close to the final BH (222) damping time. However, the real frequency ωi

cannot be resolved by the algorithm, and oscillates over its prior interval. This result implies that overtones

with n > 2 have magnitude comparable to numerical noise or other un-modelled physical signals, e.g.

non-linear contribution. Hence, it is not possible to agnostically recover these modes without first handling

these other subtleties, which are beyond the scope of our investigations. This result is compatible with

past literature, e.g., with Ref. [40].

We perform a final analysis to investigate higher overtones, fixing the free frequencies to their QNFs; in

particular, we consider the templates (220) + (221) + (320) + (222) + const and (220) + (221) + (320) +

(222) + (223) + const. In the left panel of Fig. 4.5, we compare the evidence of these models with the

ones of (220) + (221) + (320) + 1DS + const and (220) + (221) + (320) + const. For late starting times,

the evidence significantly improves for the template with the free-damped sinusoid, however, by these

times, the damped sinusoid in the model is not recovering any modal content, but rather a zero-frequency

signal. Hence this result is only stressing the necessity of a better modelization of the noise or other

physical features. Adding overtones with n > 1 to the template greatly improves the evidence at early

times, however, the recovered amplitudes are constant, inside the error bars, for progressively shorter time

67



Chapter 4. Post-merger waveform: a phenomenological approach

10 5

10 4

10 3

10 2

10 1

|h
22

|

ID : 0305
ID : 0198
ID : 0296
ID : 0294

0 50 100 150 200 250
t tpeak

2

1

0

1

2

3

4

f 2
2

Figure 4.7: Amplitude (top) and instantaneous fre-

quency (bottom) of the mode (ℓm) = (22) vs the

time, translated with respect to the amplitude peak.

Different colors correspond to different numerical

waveforms as shown in the labels, listed in Ta-

ble 4.1.

SXS : ID q η

0305 1.221 0.247

0198 1.202 0.248

0259 2.499 0.204

0200 3.272 0.179

0294 3.499 0.172

0295 4.499 0.149

0296 5.499 0.130

0192 6.579 0.115

0195 7.761 0.101

0199 8.729 0.0922

0196 9.663 0.0849

Table 4.1: On the left, ID of the SXS waveform,

mass-ratio q on the center column and symmetric

mass-ratio η on the right.

intervals tstart − tpeak ≲ 30M, 20M, 10M respectively for the modes (221), (222), (223). Hence, we cannot

confidently conclude if overtones with n > 1 are present in the waveform, and further analysis with a more

detailed noise characterization or a different template accounting for other physical features is needed.

These results show that our framework is appropriate to extract QNM information from numerical

simulations, yielding results compatible with the linearized theory. However, they also underline the

limitations of a purely phenomenological approach: other than noise, the signal could contain (even at

linear perturbative order) un-modelled physics beyond constant-amplitude QNM superpositions. These

contributions require a first-principles approach to be appropriately characterized, the subject of Chapter 7.

Moreover, an analytical model for the QNMs amplitudes could provide more stringent priors, aiding the

parameter estimation.
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Figure 4.8: Left: Rescaled-to-peak amplitudes of the (220) mode vs the starting time of the inference

analyses translated with respect to the time of the peak. Different colors are relative to the different

numerical waveforms in Tab. 4.1. The analyses are performed with the algorithm bayRing [193], assuming

as model (220) + (221) + (320). Right: Purple points are the average (220) mode amplitude A220 for the

different simulations in Tab. 4.1, vs the symmetric mass ratio of the simulation η. The dot-dashed grey

line is the result of a linear fit of the data, Eq. (4.31).

4.3.4 Ringdown of Kerr BHs: impact of the mass-ratio

After having characterized in detail a single binary configuration, we now extend our investigation to a set

of binary mergers with varying parameters. We start by investigating the dependence of the (220)-mode

rescaled amplitude A220 on the progenitors’ mass ratio. In particular, we will focus on the symmetric

mass-ratio, defined as

η =
m1m2

M2 , (4.30)

with m1,2 as progenitors initial masses. To extract A220 from numerical data, we use the Bayesian inference

algorithm bayRing [193] and assume a template (220) + (221) + (320). The analysis is repeated, varying

the starting time of the inference analysis tstart − tpeak ∈ [0, 45M], for all the simulations in Table 4.1.

Note that we do not include any constant in the templates, unlike in the previous section: some waveforms

are characterized by a zero-frequency noise with a clear time-dependence, as shown in Fig. 4.7. In

principle, a detailed characterization of the noise for each waveform could be performed, but since we

now focus only on the loudest mode, well-above the noise floor for a prolonged time interval, this is not

needed,

We identify the values of tstart at which the rescaled quantity A220 = Ā220e−iω220tpeak is approximately

constant as the interval tstart − tpeak ∈ [5M, 40M] and we compute mean value Aav
220 and standard deviation

of A220 inside this region, for each η. The results are shown in Fig. 4.8: on the left-panel, we show the

rescaled amplitude A220 vs the starting time of the inference procedure, for all the different simulations

considered, while on the right-panel we show the behavior of the inferred Aav
220 along with error bars given

by the standard deviation. We fit the data with a linear template Aav
220 = a · η, motivated by the behavior of

the (22) PN multipole in the inspiral [187]. We determine a by minimizing the chi-squared χ2 value; the
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Figure 4.9: Inferred amplitude of the (220) mode rescaled with respect to tpeak (top), final BH mass M f

(center) and final BH spin a f (bottom) as function of the effective charge parameter βeff as defined in

Eq. (4.32). Values are relative to different numerical evolutions of initially non-spinning charged BHs

with the same charge-to-mass ratio βi = qi/mi and mass-ratio q = 1.241. The red dot highlights the only

data point which does not follow the trend for the amplitude A220.

result yields

Aav
220 = a · η , a = 3.964 ± 0.001 . (4.31)

The above result is consistent with the value found in Ref. [11, 12]. The important remark, however, is the

agreement with the leading order PN-expression of the inspiral (22) multipole: it hints at the possibility of

analytically computing QNMs amplitudes through the inspiral source multipoles. We will come back to

this point in Chapter 7.

4.3.5 Ringdown of Kerr-Newman BHs: effective charge imprints

Previous works focused on the impact of different orbital configurations [80, 81, 83], mass-ratios [76,

11, 49, 69, 82] and progenitors’ spins [77, 12, 49, 69, 82] on the QNMs amplitudes in the ringdown.

It is interesting to investigate then how the picture changes if we consider progenitors described by a

solution more generic than Kerr. We will focus on Kerr-Newman BHs and add an electric charge Q to

the BHs in the inspiral binary. Non-linear solutions of these systems were computed for the first time

numerically in Refs. [164, 165], focusing on non-spinning progenitors in quasi-circular orbits, through the

EinsteinToolkit [195].

We have analyzed six numerical waveforms of this (private) charged-BH catalog, characterized by mass-
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ratio q = 1.241 and different progenitors charges; in particular, we focus on BHs with charges of the same

sign and such that the charge-to-mass ratios βi ≡ qi/mi of the progenitors coincide β1 = β2. In the same

fashion as Refs. [77, 11, 12], we build a PN-inspired effective charge parameter, as follows

βeff =
m1β1 + m2β2

m1 + m2
, βi =

qi

mi
, (4.32)

where m1,2 and q1,2 are the progenitors masses and charges respectively. As shown in Fig. 4.9, the final BH

mass M f and spin a f = J f /M f are clear functions of βeff , with a non-linear trend. We are then motivated

to try to use this quantity to parametrize the QNMs amplitudes, in particular, focusing on the (220) mode.

We have performed an inference analysis with the algorithm bayRing [193] on the numerical data,

assuming as template (220) and imposing as QNFs the values computed in Ref. [196] as functions of

the final BH parameters (M f , J f ,Q f ), varying the starting times in tstart − tstart ∈ [0, 45M]. In the region

tstart − tstart ∈ [5M, 40M], the rescaled amplitudes A220 are (approximately) constant inside the error

bars. We compute, for each simulation, mean and standard deviation of this quantity. The values we

obtain are shown on the top panel of Fig. 4.9: except for one simulation, the values appear to follow a

clean dependence on the charge parameter. We leave the exact nature of this dependency to future work.

However, we note that a PN model for the inspiral BHs orbit and the emitted waveform monopoles could

provide an ansatz in terms of βeff or even provide a better quantity to parametrize the amplitude. An

interesting avenue of future investigation will be to extend to this non-linear regime the EMR results found

in [197], where the ℓ = 1 electromagnetic modes were found to contribute to the gravitational multipoles

for high-enough charges.

4.4 Concluding remarks

The above discussion highlights that the post-merger waveform, once a stationary ringdown is reached,

shows clear imprints of the progenitors’ inspiral. However, the analytical computation of such dependence

has not yet been achieved. At the same time, an understanding of the early stages of the post-merger

waveform is still lacking, and (known) non-linear effects fail to capture the dominating transient behavior

for t ≲ 15 + tpeak.

An analytical computation of the amplitudes’ dependence on the binary configuration would naturally start

in the EMR limit. What would be the extent of the validity of such a result to the comparable-mass regime

discussed here? A hint of the fact that the comparable-mass regime could be well described (at least in a

first approximation) by a perturbative calculation comes from the phenomenological models described in

Eq. (4.12). These can describe the post-peak transient and smoothly connect it to late times, when the

slowest decaying mode dominates the ringdown. An interesting result is that the same time-dependence

of Eq. (4.12) was found to accurately describe the transient for both the EMR limit and the comparable

masses case. Albeit mass-ratio corrections and background changes will necessarily need to be included

in the free coefficients entering such templates, this is a powerful hint that the same underlying physical

mechanism is likely active in the transient for both EMR and comparable-mass regimes. These results

suggest we go back to perturbation theory and model the transient and the QNMs response as excited by
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a two-body problem rather than in vacuum, from a first-principles, purely-analytical approach. A clear

insight into the EMR perturbative limit could then point towards new results in the comparable-masses

fully non-linear case. This investigation is the subject of Chapter 7.
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Chapter 5

Late-time tails: extreme mass ratio mergers

In Chapter 2, we investigated the response of a black hole (BH) in vacuum to an initial-data perturbation,

at linear order. We showed that the late-time response of the BH is governed by an inverse power-law

behavior denoted as Price’s law [121, 17, 14, 15]. This effect originates from the back-scattering of

small frequency components of the perturbation, from the long-range curvature of the background. If

the observer is at finite distance, then the late-time signal behaves as t−2ℓ−3−a, with a = 0 for initial data

with ∂tψ(t = 0, r) , 0 and a = 1 for ψ(t = 0, r) , 0, ∂tψ(t = 0, r) = 0 [121, 17, 122, 123, 126]. If the

observer is at future null infinity I+, then the late times are dominated by an inverse power law decay in

the retarded time τ ≡ t − r∗, as τ−ℓ−2−a, with a = 0, 1 as above [14, 124, 126].

In the presence of matter, e.g. for a BH perturbed by an infalling test particle , this back-scattering

problem was studied analytically by Blanchet and Damour [198, 199, 200] in the context of Multipolar

Post-Minkowskian (MPM) theory and by Poisson et al. [201, 138]. In particular, the former investigations

showed that the tail is a hereditary effect carrying information on the entire history of the system. These

works focused on the inspiral stage, while little attention has been paid to hereditary effects in the

post-merger phase of a binary merger.

Ref. [75] performed numerical evolutions of BH binary mergers in generic orbits within a perturbative

setting, incorporating radiation-reaction effects through an analytical expression based on post-Newtonian

(PN) results, and resummed according to Effective One Body (EOB) techniques [147]. This study

unexpectedly found an enhancement of several orders of magnitude of the tail amplitude when increasing

the progenitors’ binary eccentricity, resulting in an earlier transition from a quasi-normal modes (QNMs)

to a tail-dominated regime. The mechanism behind this enhancement was initially unknown, since no

first-principles investigation of the late-time tail excitation was available. This result was later explained

in Ref. [1], where an explicit modelization of hereditary contributions to the post-ringdown signal of

binary mergers was put forward. In this chapter, we discuss this original result.

Another set of investigations was initially attempted to explain the late-time phenomenology of Ref. [75].

Ref. [55] showed that a source behaving as ∼ δ(r∗−vst)r−β, with vs constant velocity and β ≥ 0, propagated

through the prompt response Green’s function in Eq. (2.93), can originate a new late-time inverse power-

law decay, different from Price’s law. However, through a series of numerical experiments, Ref. [55]
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found that this new effect is only present for unbound systems: if the system ends in a merger, the late

times are dominated by Price’s tail. The reason behind this finding is that the “new tail” introduced in

Ref. [55] is not hereditary (as Price’s law is), rather instantaneous: once the source emitting this signal

has vanished, the effect disappears from the full waveform. As a consequence, the “instantaneous tail” of

Ref. [55] cannot explain the late-time phenomenology observed in Ref. [75]. However, an interesting

by-product of the analysis in Ref. [55] is the prediction of a new non-linear term at late times. In fact, a

persistent source at late times, after the merger has occurred, and with the correct fall-off in r, is present at

higher perturbative orders. Through a series of numerical experiments, Ref. [55] found that the second

order source of the multipole ℓ = m = 4 (decaying as S ∝ r−2 at large distances) does indeed generate at

late times a new instantaneous second order tail effect, behaving as an inverse power-law with a slower

fall off than Price’s law. We will come back to this result and its implications in Sec. 6.4 and Chapter 8.

In this chapter, we discuss the derivation of an explicit integral formula capable of predicting the late-time

tail enhancement, connecting tail terms to properties of the test-particle non-circular motion in the inspiral,

and matching the eccentricity dependence found within previous numerical evolutions. The expressions

introduced for the source-driven tail are relevant to any kind of non-spinning binary merger, as showcased

by applying them not only to eccentric binaries, but also to dynamical captures and radial infalls. We

find a much more complex behavior compared to the predictions of source-free perturbation theory, with

a non-monotonic variation in the tail exponent at intermediate times, due to a superposition of a large

number of exact power-laws. In the asymptotic τ→ ∞ limit, homogeneous perturbation theory results are

instead recovered. In particular, asymptotic perturbations of systems that become bounded and eventually

merge behave as Price’s law (τ−ℓ−2). Finally, to single out the reason behind the enhancement of tail terms

with eccentricity, we carry out two additional sets of investigations. First, we study changes in the tail

when integrating over different portions of the inspiral motion, isolating the dominant contribution to the

tail excitation, and characterizing the key role of the motion around the last apastron. Second, through an

expansion in large r and small tangential velocities, we show how an eccentric binary, which spends a

larger fraction of time at large distances just before merger, can emit tail signals that are both enhanced

and constructively interfere with each other.

The chapter is structured as follows. First, in Sec. 5.1, we introduce our perturbative framework and

discuss the RWZHyp code [93, 94], used to evolve the binary system and numerically solve for the emitted

gravitational strain. Then, in Sec. 5.2, we present the analytical model of the source-driven tail. Sec. 5.3

is dedicated to test the model predictions against numerical evolutions of eccentric binaries, dynamical

captures, radial infalls and scattering configurations. In Sec. 5.4, we identify the mechanism behind

the tail enhancement with binary eccentricity, and highlight the key contribution of motion around the

last apastron. In Sec. 5.5 we discuss a parametrization of the signal amplitude at the time the tail starts

dominating over the QNMs, in terms of different progenitor’s binary parameters: the eccentricity at the

separatrix and the impact parameter, Eq. (5.21), at the light-ring crossing. In Sec. 5.6, we characterize the

tail term as a superposition of a large number of inverse power-laws. While the main focus of the chapter
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is the radiative tail observed at I+, in Sec. 5.7 we briefly discuss the tail observed at finite distances. In

Sec. 5.8 we summarise the results presented.

Unless explicitly stated, we work in geometric units c = G = 1 and assume all quantities are rescaled with

respect to the central black hole mass M.

5.1 Perturbative and numerical framework

Our analysis focuses on small mass ratios, thus we linearize Einstein’s equations and discard higher-order

corrections. We impose both the BH and infalling test particle to be initially non-spinning. Since we are

working at linear perturbative order, the remnant (post-merger) BH is also consequently non-spinning.

The background metric is thus the Schwarzschild metric:

ds2 = −A(r)dt2 +
dr2

A(r)
+ r2dΩ2 , (5.1)

with A(r) = 1− 2/r. We expand the strain observed at large distances r ≫ 1 in spin-weighted −2 spherical

harmonics modes −2Yℓm(Θ,Φ):

h+ − ih× =
∑
ℓ

ℓ∑
m=−ℓ

hℓm(t)−2Yℓm(Θ,Φ) . (5.2)

As discussed in Chapter 2, it is possible to build to gauge invariant quantities that transform under parity

as (−1)ℓ and (−1)ℓ+1 denoted Ψ(e)
ℓm and Ψ(o)

ℓm respectively. These quantities are directly related to the strain

multipoles in Eq. (5.2) through

hℓm =
1
r

√
(ℓ + 2)!
(ℓ − 2)!

(
Ψ

(e)
ℓm + iΨ(o)

ℓm

)
+ O

(
1
r2

)
, (5.3)

where, depending on the parity of ℓ + m, only one of the two terms on the right-hand side vanishes. As

discussed in Chapter 2, the functions Ψ(e/o) satisfy two (decoupled) inhomogeneous Schrödinger-like

equations, the Regge-Wheeler/Zerilli (RWZ) equations Eqs. (2.20), (2.25), that we rewrite here as

O(e/o)Ψ
(e/o)
ℓm (t, r∗) = S (e/o)

ℓm (t, r), (5.4)

where we have introduced the Regge-Wheeler/Zerilli operators O(e/o) as

O(e/o) ≡
[
∂2

t − ∂
2
r∗ + V (e/o)

ℓm (r∗)
]
, (5.5)

In the following, when it is not necessary to distinguish the two cases, we will drop the superscripts (e/o).

The potentials in the equation above are the RWZ ones [202, 92], Eqs. (2.21), (2.26), and the driving

source is built from the in-falling particle stress-energy tensor [92]. As a consequence, it is localized

along the particle trajectory r(t) at all times. This feature can be made explicit by writing

S (e/o)
ℓm = f (e/o)

ℓm δ(r − r(t)) + g(e/o)
ℓm ∂rδ(r − r(t)) . (5.6)
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In Appendix A we report the full expressions of the functions f (e/o)
ℓm , g(e/o)

ℓm for a point-particle, as found in

Ref. [92].

In the present work, we will compute analytical and numerical solutions of the Cauchy problem given by

Eq. (5.4), always using as initial conditions:

Ψℓm(t = 0, r) = ∂tΨℓm(t = 0, r) = 0 . (5.7)

These initial conditions are not physical. In fact, realistic systems emit gravitational waves from the

moment they are created. Effectively, Eq. (5.7) means neglecting all the history of the system before a

certain time and thus imposing a formally incorrect solution. This implies a partial loss in information, but

also an initial transient in which the emitted radiation does not correspond to a real, physical solution of the

linearised Einstein equations and, for this reason, is commonly denoted as "junk radiation". In Appendix B,

we motivate the negligible influence of junk radiation on our results, determining the approximate initial

conditions of Eq. (5.7) as appropriate for our purposes.

Unless specified, the trajectory of the particle will always be computed numerically, solving the system of

Hamiltonian equations [100] introduced in Chapter 3

ṙ =
A
Ĥ

pr∗ ,

φ̇ =
A

r2Ĥ
pφ,

ṗr∗ = AF̂r −
A

r2Ĥ

(
p2
φ

3 − r
r2 + 1

)
,

ṗφ = F̂φ ,

(5.8)

where (pr∗ , pφ) are the µ-rescaled momenta conjugate to the variables (r∗, φ), and Ĥ is the µ-rescaled

Hamiltonian of a test particle in Schwarzschild background of Eq. (3.9), that we rewrite as

Ĥ =

√
A

1 + p2
φ

r2

 + p2
r∗ . (5.9)

Finally, F̂r and F̂φ are the components of the dissipative force that drives the dynamics, whose general

expression can be found in [147, 101]. These quantities are analytical, built from a PN-based, EOB-

resummed analytical expansion for the fluxes of energy and angular momentum observed at infinity, as

computed in [101, 147]. Such fluxes have been shown to be consistent with the corresponding numerical

expressions in Ref. [75], hence consistent with emission of gravitational waves (GWs) computed from the

evolution. More details on these radiation-reaction forces are discussed in Sec. 3.4. It is important to note

that at the operational level, the GW expressions obtained as numerical output of the evolution will not

directly enter the particle trajectory within our implementation. Hence, the trajectory is not informed by

the numerical waveform. This approach will be a key point when feeding the particle trajectory as input

to our semi-analytical computations used to derive a prediction for the GW strain, ensuring that numerical

errors in the numerically-computed GWs (against which we will compare the prediction obtained) cannot

contaminate the semi-analytical predictions.
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Im(ω)

Γ1
Γ4

Γ2

Γ6

Γ3
Γ5

Γ′2

Figure 5.1: Schematic representation of the complex-frequencies plane relative to the integrand in

Eq. (2.81). The zig-zagged line is the branch cut in the integrand. Thick and dashed lines represent two

possible closed contours: Γ1 + Γ
′
2 and Γ1 + Γ2 + Γ3 + Γ4 + Γ5 + Γ6.

To solve the problem in Eq. (5.4)-(5.7)-(5.8) numerically, we employ the time-domain code RWZHyp1 [93,

94]. The software uses a homogeneous grid in tortoise coordinate r∗ and, at large distances, a hyperboloidal

layer (over which r∗ is compactified [126]) is attached to the standard computation domain, where the

trajectory evolves. We define ρ to be the compactified coordinate and τ the retarded time in the layer.

The coordinates of the layer (τ, ρ) are connected to those of the standard computational domain (t, r∗) as

follows:

τ − ρ = t − r∗ . (5.10)

The hyperboloidal layer allows for the extraction of the GW strain at future null infinity I+ at a finite

location ρ+. The grid in r∗ ends, for negative values, at a finite quantity, in order to keep the horizon

outside of the computational domain. The code uses double precision, hence our computations will have a

precision of at most ∼ 10−16. Numerical strain values close to this threshold will be considered dominated

by numerical error. In Appendix B, we also show that the numerical resolution used in all the results

discussed below is adequate for our purposes and does not affect any of the results obtained below.

Due to the inclusion of radiation reaction, the trajectory is non-linear. By feeding this trajectory into the

source for the linearized perturbations, we obtain a treatment that is not formally consistent with first-order

perturbation theory. In Chapter 1, we provide arguments supporting the validity of this approach. In

Chapter 8, we discuss which of the results in this chapter remain valid within a first-order perturbation

theory framework. For the results that rely on the inclusion of dissipative effects in the dynamics, we also

outline a future direction to render them formally consistent with first-order perturbation theory.
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5.2 Long-range propagation in curved backgrounds with a source

5.2.1 General solution

The general solution of Eqs. (5.4)-(5.7), in terms of the Schwarzschild coordinates (t, r), can be written as

the convolution

Ψℓm(t, r) =
∫ t

−∞

dt′
∫ ∞

−∞

dr′ S ℓm(t′, r′) Gℓ(t, t′; r, r′) . (5.11)

Where Gℓ(t, t′; r, r′) is the Green’s function, defined as solution to the impulsive problem

O|t,r∗ Gℓ(t, t′; r, r′) = δ(t − t′) δ(r − r′) . (5.12)

Note that we assume homogeneous boundary conditions on the Green’s function, for all times, at r′∗ → ±∞.

In Sec. 2.2.2, we have reviewed the derivation of the propagator controlling the tail, which can be obtained

in the limit of large r′, r and small frequencies 2 ωM ≪ 1, following Refs. [14, 106]. The former

approximation is connected to the tail being due to the corrections to the flat light-cone propagator, arising

from the long-range spacetime curvature [14, 198, 15]. The latter approximation encodes the fact that

small frequency waves are the ones interacting the most with the curved geometry on large scales [16, 14,

15], and implies that the propagator we derive is the retarded Green’s function only in the limit of large

retarded times τ compared with the source retarded time, τ ≫ t′ + ρ+.

We introduce an additional factor to the time domain radiative tail propagator in Eq. (2.85), by adding

a causality condition that follows from the choice of the retarded GF, instead of the advanced one. As

discussed in Sec. 2.2.2, in Fourier domain the GF, G̃Tail(ω; r, r′) in Eq. (2.81), is singular at ω = 0. To

perform the anti-transform and compute the GF in time domain, GTail(t− t′; r, r′), we analytically continue

ω into the complex plane. The singularity ω = 0 corresponds to a branch-point, due to the multi-valued

nature of the complex logarithm lnω appearing in G̃Tail(ω; r, r′) expression. While the branch point is

fixed, the location of the branch-cut is not predetermined; we have fixed the branch-cut on the negative

imaginary axis following Ref. [14, 15]. In doing so, we have selected the retarded GF, while fixing the

branch-cut on the positive imaginary axis would have selected the advanced one. In fact, with the branch

cut in the lower-half plane, we close the complex contour either with two quarters of circumference of

radius |ω| → ∞ on the lower half plane, or with a semi-circle of radius |ω| → ∞ in the upper half plane,

as shown in Fig. 5.1. The choice is made by requiring that the exponential in the anti-transform integrand

Eq. (2.82) is well behaved inside the whole complex contour. We rewrite this exponential in the code

coordinates Eq. (5.10) as

e−iω(t−t′−r∗) = e−iω(τ−t′−ρ+) . (5.13)

For τ − t′ − ρ+ > 0, Eq. (5.13) is regular if we close the contour on the lower half plane. Then, when

τ − t′ − ρ+ > 0 we close the contour along the thick line in Fig. 5.1, Γ1 + Γ2 + Γ3 + Γ4 + Γ5 + Γ6, in the

region where we fixed the branch-cut. For τ − t′ − ρ+ < 0, instead, Eq. (5.13) is regular on the upper half

plane; for these times we close the contour along the dashed line in Fig. 5.1, Γ1 + Γ
′
2, in a region where

1The version of the RWZHyp code bears the tag tails, on the rwzhyp_eccentric branch.
2In this section exclusively, we use explicit units of M to highlight the relevant scales.
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there is no branch-cut. As a consequence, fixing the branch-cut at Re(ω) = 0, Im(ω) < 0, implies that the

tail response is present only for τ − t′ − ρ+ > 0.

Fixing the branch cut at Re(ω) = 0, Im(ω) > 0, would have yielded the tail response only at times

τ − t′ − ρ+ < 0.

Following the above reasoning, the retarded propagator of the late-time signal, assuming that the observer

is located at I+, is

Gℓ(τ, t′; ρ+, r′) = θ(τ − t′ − ρ+) ·
(−1)ℓ 2ℓ+1ℓ!(ℓ + 1)!

(2ℓ + 1)!
(r′)ℓ+1

(τ − t′ − ρ+)ℓ+2 , (5.14)

with the Heaviside function to reinforce causality. Plugging in the result above in the general expression

for the tail strain Eq. (5.11), together with the point-particle source expression Eq. (5.6), and considering

an observer located at (τ, ρ+), yields

Ψℓm(τ, ρ+) = cℓ

∫ τ−ρ+

−∞

dt′
rℓ(t′)

{
r
[
fℓm(t′, r) − ∂rgℓm(t′, r)

]
− (ℓ + 1) gℓm(t′, r)

}
r=r(t′)

(τ − t′ − ρ+)ℓ+2 , (5.15)

where we have denoted as r(t′) the value of r along the point-particle trajectory and we have defined the

factor cℓ as

cℓ =
(−1)ℓ 2ℓ+1ℓ!(ℓ + 1)!

(2ℓ + 1)!
. (5.16)

Note that fℓm and gℓm in the above are computed along the trajectory as well. In Appendix A, we show the

full expressions of the functions fℓm, gℓm for a point-particle, as computed in [92, 100]. The failure of our

model for τ − ρ+ ≈ t′ is made manifest by the upper limit of integration in Eq. (5.15), since the integrand

is singular at this point. We can interpret this by stating that our model can describe signals travelling well

inside the light-cone, but fails to describe signals marginally close to it. In the present work, we will focus

our attention on systems that become bounded after a certain timescale, and we will limit our analysis to

the post-merger signal. Since the source contribution to Eq. (5.15) dies exponentially after the light-ring

crossing, we expect our results not to be influenced by the singularity in t′ ≈ τ − ρ+.

We briefly discuss systems that are unbounded at all times, e.g. scattering scenarios, in Sec. 5.3.5.

5.2.2 Intermediate vs asymptotic behavior

The analytic model for the tail, Eq. (5.15), is an integral over the entire past history of the source. For this

reason, we expect the tail to show a more complicated phenomenology compared to what is predicted

by source-free perturbation theory [16, 15, 126], reviewed in Sec. 2.3.2. In general, since the source

is an oscillating function, the real and imaginary parts of the late-time waveform Eq. (5.15) are non-

monotonic functions. Moreover, we cannot sort out from the integral a single power-law behavior in the

observer retarded time τ, since the integral is rather a superposition of power-laws in τ with location of the

asymptote (corresponding to the zero in the denominator) depending on the integration variable t′. Since

the source decays exponentially after the light-ring crossing [75], there exists a certain timescale after

which the source information will not affect the signal anymore, leaving place to a single pure power-law

in τ dictating the asymptotic decay of the perturbation.
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Two questions arise from the above intuition. The first concerns the timescale that an observer at I+ has

to wait in order for the tail to be a single power-law, the second is relative to the value of the power-law

exponent in this asymptotic limit. To answer the above questions, we start considering initially unbounded

systems originating at a time Tin, that become bounded after a certain timescale Tbound due to radiation

reaction. For the moment, we assume that the observer is located at very late times τ ≫ Tbound, after

the merger has occurred. Then we can separate the integration domain in Eq. (5.15) accordingly, in an

interval during which the system is unbounded, (Tin,Tbound), and one over which the system is bounded

(Tbound, τ − ρ+). We focus first on the contribution to the late-time signal of the dynamics in the interval

(Tin,Tbound), during which we assume the test particle to be in the far-away region r′ ≫ M, moving

slowly. As a consequence, the spacetime curvature can be neglected and the test-particle trajectory can be

approximated as xi(t) ≃ vit with vi constant velocity, i.e. we expand the source Eq. (5.6) neglecting all

terms O(G) or higher, and work at lowest PN order. The source for the (ℓ,m) = (2, 2) mode can be written

in terms of the (tt)-component of the particle stress energy tensor Ttt = µδ
3(xi − vit), as

S (e)
22 ∝ rT (2,2)

tt = µ
δ(r − |v|t)

r
. (5.17)

Plugging this expression in Eq. (5.15), yields

ψunbound(τ, ρ+) ∝
∫ Tbound

Tin

dt′
µ|v|2t′2

(τ − t′ − ρ+)4 . (5.18)

The integral above can be carried out analytically, and it reads

ψunbound ∝
(ρ+ − τ)2 + 3 (−ρ+ + τ) Tin + 3Tin

2

3 (ρ+ − τ − Tin)3 −
(ρ+ − τ)2 + 3 (−ρ+ + τ) Tbound + 3Tbound

2

3 (ρ+ − τ − Tbound)3 . (5.19)

When considering the limit τ ≫ Tin,Tbound, each of the terms in Eq. (5.19) gives a leading power-law

contribution ∝ τ−1, equal in modulo but opposite in sign. A similar cancellation can be found for the

∝ τ−2, τ−3 contributions, leaving a dominant power-law ∝ τ−4.

We now analyze the contribution to the late-time signal of the bounded dynamics. As mentioned above,

after the light-ring crossing, the source decays exponentially [75], hence does the integrand in Eq. (5.15).

If we let Tf be the time at which the source can be considered zero (up to a given precision), when

performing an observation at times τ > ρ+ + Tf , we can replace the upper limit of integration with Tf .

Then, we Taylor expand the integrand, assuming τ ≫ Tf + ρ+

ψbound(τ, ρ+) =
cℓ
τℓ+2 ·

∫ Tf

Tbound

dt′S ℓ(t′)

1 + ∞∑
n=1

(ℓ + 1 + n)!
n! (ℓ + 1)!

(
t′ + ρ+
τ

)n , (5.20)

where we denoted as ψbound(τ, ρ+) the contribution to the late-time signal of the bounded dynamics. The

result in Eq. (5.20) is a superposition of power-law decays 3, with the smallest decay being ∝ τ−ℓ−2. We

expect the importance of faster decaying terms to depend on the pre-merger dynamics, apart from the

observer retarded time τ. As we move τ to progressively late times, the faster decaying contributions will
3Note that this result is fundamentally different from the one obtained in Ref. [15]. In the latter, power-laws corrections to

the propagator giving rise to Price’s law were computed. Instead, the propagator we consider is the same as the one through

which Price’s law can be derived.
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e0 Ĥ0 pφ,0 r0 bLR esep tLR napi

0.9 0.9890 3.9170 83.000 3.9315 0.869 14555 9

0.8 0.9791 3.8313 40.000 3.8881 0.778 5386 7

0.7 0.9713 3.7671 26.667 3.8429 0.670 6921 13

0.6 0.9649 3.7139 20.000 3.7998 0.563 8955 21

0.5 0.9587 3.6502 15.400 3.7699 0.483 5654 15

0.4 0.9538 3.6001 12.500 3.7400 0.393 4856 14

0.3 0.9525 3.6103 11.429 3.7075 0.276 14895 47

0.2 0.9484 3.5514 9.375 3.6909 0.201 7996 25

0.1 0.9453 3.5044 7.778 3.6766 0.114 3773 11

0.0 0.9449 3.5000 7.000 3.6693 0.000 4308 40*

Table 5.1: From left to right: initial eccentricity, initial energy and angular momentum, initial radius,

impact parameter at the light-ring crossing, eccentricity at the separatrix crossing, time of the light-ring

crossing and number of apastri. The results are relative to the eccentric and quasi-circular simulations. For

eccentric orbits, we initialize the trajectory at an apastron, hence r0 is the coordinate of the first apastron.

For the quasi-circular case, we do not show the number of apastra, but show instead the number of orbits

before the plunge. Note that the eccentricity decreases during the inspiral, but because of its definition in

terms of radial turning points, it can increase close to the separatrix, as exemplified in Fig. 1 of [75].

eventually die off, leaving Price’s law as the dominant component. The transient regime characteristic

timescale depends on the excitation coefficients of each power-law contribution: the more enhanced these

coefficients are, the longer the intermediate regime will be. From Eq. (5.20), these coefficients depend on

an integral of the source S (t′) multiplied by a factor (t′ + ρ+)n. Hence, the excitation coefficient of each

power-law correction to Price’s law depends both on the specific orbital dynamics under consideration

and on the amount of inspiral history included in the evolution, for timescales at which the source is still

appreciably excited. Instead, at very early past times, the source suppression will cut off the contribution

of higher-order terms. We refer the reader to Sec. 5.6 for a quantitative discussion on the latter point.

To summarize, the above results show that, even if the system is initially in an unbounded configuration,

the asymptotic relaxation is dominated by a τ−2−ℓ power-law, while the τ−1, τ−2, τ−3 contributions cancel

out. This result is in agreement with the homogeneous perturbation theory literature [16, 14, 15]. The

intermediate behavior of the tail in the post-merger phase can instead be approximated by a superposition

of exact power-laws in τ, with expansion coefficients depending on the source history. In the following,

we will apply this expansion from Tin, for both initially and dynamically bounded systems. We briefly

discuss in Sec. 5.3.5 the analytical prediction for the tail signal emitted in a scattering scenario.
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Chapter 5. Late-time tails: extreme mass ratio mergers

nenc Ĥ0 pφ,0 r0 bLR esep tLR

1 1.000001 3.9980 300.0 3.9687 ... 2650

2 1.000001 4.0065 300.0 3.9457 0.955 8059

3 1.000001 4.0150 300.0 3.9327 0.927 15947

4 1.000001 4.0235 300.0 3.9232 0.907 23827

5 1.000001 4.0320 300.0 3.9155 0.892 31878

6 1.000001 4.0405 300.0 3.9075 0.876 40228

7 1.000001 4.0447 300.0 3.8968 0.851 45037

8 1.000001 4.0490 300.0 3.8737 0.819 49786

Table 5.2: From left to right: number of encounters, initial energy and angular momentum, initial radius

impact parameter at the light-ring crossing, eccentricity at the separatrix and time of the light-ring crossing.

The results are relative to the dynamical capture simulations. The case nenc = 1 corresponds to a direct

capture. In this case, there are no eccentric orbits before the merger, hence we do not report esep.

5.3 Comparison with numerical results

We now analyze the (ℓm) multipolar components of the waveform produced by a particle orbiting around

a Schwarzschild BH. The main focus will be on the (22) mode, as it is the loudest mode emitted by BBH

mergers, while we briefly discuss results for the (32) and (44) modes in Subsec.5.3.4. The investigation of

the (32) mode is interesting since it allows us to test our analytical prediction in Eq.(5.15) for perturbations

in the odd sector. Moreover, this mode might become relevant for spinning BHs and hence could be of

interest for future investigations on late-time tails. The (44) mode is the first in which quadratic QNMs

appear. These modes are long-lived and may be comparable in magnitude to the tail at intermediate times.

Thus, a correct characterization of tail signals in the (44) multipole could aid in the extraction of quadratic

modes in non-linear numerical investigations.

We focus our attention on bounded orbits with varying eccentricities, on dynamical captures (i.e. initially

unbounded orbits becoming bounded after some time due to radiation reaction), and finally on radial

infalls from different distances. In Subsec. 5.3.5, we briefly discuss a scattering scenario (i.e., the particle

arrives from infinity, has a close encounter with the BH, and then escapes to infinity again). In Fig. 5.2,

we report examples of these different dynamics. In Table 5.1 and 5.2 we show the relevant parameters for

each configuration considered. Note that we always impose the initial polar and azimuthal angles to be

θ = π/2 and φ = 0, respectively. For bounded orbits, we report the initial eccentricity and the number of

apastri before merger. For dynamical captures, we show the number of encounters. For simulations ending

in an eccentric merger, we report the eccentricity at the separatrix crossing time 4. For all simulations, we

show the initial energy and angular momentum, the initial distance from the BH in terms of the coordinate

4During the inspiral, the test particle can be assumed to move along eccentric stable orbits identified through the eccentricity

e and the semi-latus rectum ι, as long as ι − 2e ≥ 6 is satisfied. Values of e and ι such that ιsep = 6 + 2esep identify the last stable

orbit, denoted as separatrix. We refer to Chapter 3 for a more thorough discussion of this topic.
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Figure 5.2: Left: quasi-circular inspiral and plunge, with test particle initialized at a distance r0 = 7.0.

Center: Dynamical capture configuration, with initial angular momentum pφ,0 = 4.0405. A zoomed-in

view of the dynamics at smaller radii is shown in the inset. Right: trajectory of a test particle moving in

an orbit with initial eccentricity e0 = 0.8. The red line marks the light ring. The green line highlights the

portion of the trajectory used in Fig. 5.15.

r0, the time of the light-ring crossing and the impact parameter computed at the light-ring crossing bLR,

where we define b as the ratio [75, 203]

b = pφ/Ĥ . (5.21)

The eccentricity is defined (for bounded systems) through its relation with the apastron and the periastron

coordinates rapo,peri of the orbit [147, 101, 75], as in Eq. (3.15). Note that the initial eccentricity alone is

not enough to predict the dynamical evolution of a binary. Another parameter is necessary, e.g. the initial

semilatus rectum, which can be computed from initial energy and angular momentum as in Eq. (3.17).

For bounded orbits, we select a test-particle mass µ = 10−3, while, for simplicity, when simulating

dynamical captures we set the test-particle mass to be µ = 10−2. This choice is because given certain

initial conditions (E0, pφ,0), the test particle can either be directly captured by the central BH, have multiple

close encounters before the merger, or scatter away. As discussed in Refs. [204, 163], the region within the

parameter space (E0, pφ,0) for which captures involving multiple encounters are possible, decreases with

the increase of the mass ratio. Hence, the larger is the mass of the test particle, the easier it is to obtain

different multiple encounters simulations. Below, we will always show mass-rescaled quantities so that

this choice will not affect our results. Finally, we analyze five different radial infalls, with the test particle

of mass µ = 10−2, initial energy E0 = 1.00 and angular momentum pφ,0 = 0.0, from different initial

distances r0 = {100, 200, 300, 400, 500}. The time of the light-ring crossing in these configurations is

tLR = {496, 1370, 2495, 3825, 5331} respectively. The trajectory of the test particle in the aforementioned

settings is computed numerically by means of the RWZHyp code, as detailed in Sec. 5.1. We use the same

code to obtain the numerical (linear) waveform produced by the motion of said systems, as observed at I+,

to test the model introduced in the previous section. In particular, we plug the numerical trajectory solved
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Chapter 5. Late-time tails: extreme mass ratio mergers

by RWZHyp in the integral form Eq. (5.15) and use a trapezoidal method 5 built in the scipy 6 [205]

library to compute the integration. Since we are interested in the tail part of the signal, we focus on two

quantities of interest that can be extracted from hℓm, the amplitude Aℓm(τ) = |hℓm| and the tail exponent

p ≡
d ln Aℓm(τ)

d ln τ
. (5.22)

Note that we do not assign ℓm indices to p in order to keep the notation simple. In the present section,

we always shift the axis of the retarded time τ to have a zero at the time of the light-ring crossing 7.

We have checked that this is close to the peak of Aℓm for all the configurations considered, so that it is

possible, from our results, to estimate correctly the order of magnitude of the tail amplitude when it starts

to dominate over the ringdown, with respect to the peak amplitude of the whole signal. We refer to Table I

of Ref. [75] for an estimate of the delay between the peak of the orbital frequency and the quadrupolar

amplitude for eccentric and quasi-circular orbits.

5.3.1 Initially bounded case: eccentric and quasi-circular binaries

We now focus on systems initialized as bounded. We start by considering initial data for the particle

trajectory on a quasi-circular binary, and then we increase the eccentricity. In Table 5.1 we report the

initial conditions and eccentricities of all the systems we have considered. To compute the numerical

evolutions with the RWZHyp code, we have multiplied the source in Eq. (5.4) by a factor µ−1. This

does not change the results in the waveform except for an overall multiplicative factor, allowing us to

circumvent the threshold given by double precision. In Fig. 5.3 we show the results of our numerical

experiments, together with the analytical prediction for the late-time signal in Eq. (5.15). In particular,

we show the amplitude of the (2, 2) mode, rescaled with respect to the test-particle mass µ = 10−3, and

the tail exponent p as defined in Eq. (5.22). Below each plot, for simulations with e0 > 0.3, we report

the residuals, defined as 100 ∗ (Xnumerical − Xanalytical)/Xnumerical, quantifying the agreement level between

numerical and analytical results, Xnumerical and Xanalytical respectively.

As already noted in [101, 206], the time at which the tail starts to dominate on the ringdown strongly

depends on the eccentricity of the progenitors’ binary, and is due to a different amplitude of the tail at these

intermediate times. In particular, the higher the eccentricity, the more the tail is excited, and the sooner it

starts to dominate. The first test of our model is to reproduce this scaling in the amplitudes. From the

left panel of Fig. 5.3, it can be seen how for eccentricities larger than e0 ∼ 0.3 the model reproduces the

amplitude of the tail, from the moment it starts to dominate over the ringdown, to asymptotically late times.

In particular, the agreement is good for e0 ≥ 0.8, for which the residuals are ≤ 10%. As the eccentricity

decreases, the residuals increase approximately by an overall constant factor, but remain ≤ 17%. For

small eccentricities, our model can only infer the order of magnitude of the amplitude at the transition. In

5Note that we also tested the built-in function implementing Simpson’s rule, yielding the same results.
6Specifically, we use integrate.trapz[ f (t), dx = dt′] (or integrate.simps[ f (t), dx = dt′]), where f (t) is the integrand

in Eq. (5.15) computed along the numerical trajectory, while dt′ is the spacing between the time steps of the latter.
7The reference retarded time enters the definition of p: choosing a different value implies assuming a different functional

form for the tail, since it moves its asymptote. This does not affect the asymptotic value of p, but only its intermediate behavior.
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Figure 5.3: Left: Mass-rescaled amplitude of the (2, 2) waveform multipole vs the observer retarded time,

translated with respect to the time τLR at which the test particle crosses the light-ring. Right: value of the

tail exponent, Eq. (5.22). The thick solid lines are the numerical experiments, computed by integrating

Eq. (5.4) with the RWZHyp code. The thin dot-dashed lines are the analytical prediction for the late-time

behavior Eq. (5.15). The dashed black horizontal line on the right, is Price’s law. These results are relative

to the eccentric and quasi-circular simulations of Table 5.1, each labeled by the initial eccentricity e0.

We cut the simulations for values of the amplitude A22/µ = 10−12, four orders of magnitude before the

numerical precision threshold dictated by double precision and when numerical noise becomes noticeable

(high frequency oscillations in the plot on the right). Below each plot, for simulations with e0 > 0.3,

the residuals between numerical results and analytical predictions are shown, in %, to quantify the

agreement/mismatch.

the right panel of Fig. 5.3, we report the tail exponent p extracted from numerical experiments and from

our model. The model reproduces with very high accuracy the numerical experiments for e0 > 0.3, but not

for lower eccentricities. For e0 > 0.3, the residuals are in the interval [−2.5, 2.5]%, when not taking into

account the high-frequency oscillations at late times in the numerical waveforms (due to numerical noise).

Also, note that for the simulation e0 = 0.6, the residuals diverge at τ ≃ τLR + 3 · 103, due to the numerical

value of p crossing zero. These residuals do not show any clear trend in the eccentricity. The high accuracy

in the prediction of the exponent p is consistent with the mismatch between analytical predictions and

numerical results for A22 being well approximated by a constant factor through the evolution, since by

definition p is not sensitive to an overall rescaling of A22. The mismatch for low eccentricities is expected

and consistent with the fact that Eq. (5.15) was derived always assuming a source localized at large r with

respect to the BH. Hence, the longer the test particle spends far away from the BH during the inspiral, the

better agreement we can expect. In a medium/high eccentric binary, this condition is satisfied up to times
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Chapter 5. Late-time tails: extreme mass ratio mergers

close to the merger, while, for low eccentricities, the test-particle trajectory receives support at small r for

a longer time during the last stage of the inspiral, as can be seen in Fig. 5.10 of Sec. 5.4. Instead, we do

not have a clear understanding as to why the residuals seem to be approximately constant along the tail

evolution. We leave the investigation of this behavior and related model improvements to future work.

Note that we cut the results in Fig. 5.3 for values of the amplitude A22/µ = 10−12, four orders of magnitude

above the numerical double precision threshold. Right before the simulations are cut, high-frequency

oscillations are already present in the numerical results. For low eccentricity configurations, the tail starts

to dominate when the signal is close to this strain value. Hence, we could partially impute the mismatch

between our model and the experiments to limitations in numerical precision.

As mentioned in the previous section, our model predicts the tail to be a hereditary effect that depends

on the entire inspiral history. In particular, it is an integral over the source that, for generic orbits, is an

oscillating function. We thus expect a more complex behavior than a monotonic relaxation to a single

power-law as in e.g. Ref. [126]. For instance, destructive interference among various components of the

back-scattered signal can result in the amplitude A22 nearly going to zero before increasing again (as

dictated by the very late-time behavior), implying a quasi-divergence in the tail exponent, which depends

on the amplitude derivative.

This is confirmed by the numerical evolutions, as shown in the right panel of Fig. 5.3, where for e0 = 0.6

the cusp in the amplitude is reflected in an almost singular behavior 8 of the tail exponent p.

5.3.2 Dynamically bounded case

We now analyze systems which are initially unbounded and, after a certain time, become bounded due

to radiation reaction, eventually merging. In Table 5.2 we show the initial conditions used for all of the

simulations and, for each one of them, the number of close encounters between the test particle and the

BH. Some of these configurations have also been studied in Ref. [163]. In Fig. 5.4, the results of the

numerical evolutions computed by integrating Eq. (5.4), (5.7) with the RWZHyp code are compared with

the analytical model Eq. (5.15). Below each plot, we show the behavior of the absolute value of the

residuals. From this comparison, we see a good agreement for all of the simulations considered, from

intermediate to late times. In particular, the absolute value of the residuals is ≤ 10% for the amplitude A22

and ≤ 1% for the tail exponent, for all simulations in Table 5.2. This implies that our model is able to

reproduce both the amplitude of the tail, as well as the non-trivial evolution of the exponent p, from the

time it starts to dominate over the QNMs, up to very late times. We note that the amplitude of the tail at

the transition time increases as the number of encounters decreases. We elaborate this point in further

detail in Sec. 5.4, where we discuss which inspiral trajectory feature is able to enhance or suppress the tail.

Here, we just point out that this scaling in the amplitude is consistent with what is found in Fig. 5.3. In

fact, GWs are mainly emitted at turning points along the trajectory, hence a larger number of encounters

during the inspiral phase implies that the test-particle orbit loses more energy and angular momentum

8We do not fully include its evolution in the plot for visualization reasons. Since it spans a wide range, capturing it completely

would make the visualization of other results significantly harder.
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Figure 5.4: Left: Mass-rescaled amplitude of the (2, 2) waveform multipole vs the observer retarded

time translated with respect to the time of light-ring crossing τLR. Right: value of the tail exponent,

Eq. (5.22). The thin dot-dashed lines are the analytical predictions for the late-time behavior, Eq. (5.15),

while the thick solid lines are numerical experiments obtained by integrating the Zerilli equation with the

RWZHyp code. The results are relative to the dynamical captures in Table 5.2, each simulation is labeled

by the number of encounters nenc between the test particle and the BH. Below each plot, the absolute value

of the residuals between numerical results and analytical predictions is shown to quantify the agreement.

before the merger, resulting in a progressive circularization of the orbit, Fig. 5.12. Quantitatively, for

the dynamical capture configurations with nenc > 2 under consideration, it holds e > 0.95 after the first

encounter. The larger the initial angular momentum, the higher the eccentricity after the first encounter,

since less radiation is emitted. However, systems with large angular momenta will undergo multiple

close encounters before plunging, so that the final eccentricity at the separatrix-crossing will be lower.

Indeed, the configuration with nenc = 8 results in the lowest eccentricity at separatrix-crossing, having

esep = 0.797.

From the discussion in Sec 5.2.2, we expect that the tail exponent p will relax towards a −ℓ − 2 value

at asymptotically late times. In fact, we show that the slower decaying terms, led by ∼ τ−1, vanish

at asymptotically late times, for systems ending in a merger, at first order in perturbation theory. The

results depicted in Fig. 5.4 seem to confirm these predictions: for simulations with nenc = 1, 2 number

of encounters, the exponent p is relaxing towards p = −4. Simulations with larger nenc take a longer

time to merge, and as a result of a more prolonged history, there is a longer intermediate behavior in the

post-merger tail (see Sec. 5.6 for more details). In particular, the relaxation of p towards its asymptotic

limit is not monotonic for nenc > 2. As already discussed in the previous section, this happens because the
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Figure 5.5: Left: Mass-rescaled amplitude of the (2, 2) waveform multipole vs the observer retarded time

translated with respect to the time of light-ring crossing τLR. Right: value of the tail exponent, Eq. (5.22).

The thin dot-dashed lines are the analytical predictions for the late-time behavior, Eq. (5.15), while the

thick solid lines are numerical experiments obtained by integrating with the RWZHyp code. The results

are relative to radial infalls starting from the distances r0 in the labels, with initial energy E0 = 1.00. Note

that the particle is infalling in the xy-plane, along the x axis. Below each plot, the absolute value of the

residuals between numerical results and analytical predictions is shown to quantify the agreement.

source is oscillating, hence destructive interference between tail signals generated at different times can

give rise to such non-monotonic behavior. In Sec. 5.6 we will study in more detail the case with nenc = 8,

by means of a numerical evolution long enough to recover Price’s law, and indeed will characterize the

non-monotonic intermediate behavior of p as a superposition of a large number of power-laws in τ, with

different decay rates.

5.3.3 Radial infall

In Fig. 5.5 we compare numerical experiments against the analytical prediction Eq. (5.15) for radial infalls

from different initial distances r0 = {100, 200, 300, 400, 500}. In the plots, we show the absolute value

of the residuals to quantify the agreement. The analytical prediction matches very accurately all the

numerical evolutions, with the absolute value of the residuals being ≤ 10% (≤ 1%) for the amplitude (tail

exponent). It should also be noted how the amplitude at the transition from a QNMs to a tail-dominated

behavior is larger than all of the configurations previously analyzed; we will explain this phenomenon

in Sec. 5.4. As concerns the intermediate behavior, defined as the relaxation to the asymptotic limit, i.e.

Price’s law, there are two important considerations to be made. The further from the BH is the initial
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location of the test particle, the longer is the intermediate behavior of the tail, before approaching ∼ τ−4.

Moreover, this relaxation is monotonic. This is a consequence of the source being non-oscillating, since φ

is fixed along the entire trajectory. As mentioned above, this removes the destructive interference among

tail signals emitted close to each other, yielding a monotonic relaxation.

Ref. [207] shows the post-merger tail generated by a geodesic radial infall from r0 = 7, when observed

at I+. As in our case, the relaxation of p therein depicted is monotonic. However, in Ref. [207] the tail

exponent p reaches the asymptotic value from below, i.e. from smaller values. In our case, the value

p→ −4 is reached from above. We have verified that this apparent discrepancy stems from the different

definitions adopted in Eq. (5.22), in particular in the choice of a reference time. As mentioned above, in

the present work, unless explicitly stated, we report all results with τ translated with respect to τLR, the

time at which an observer at I+ sees the test particle crossing the light-ring. In Ref. [207], the time is

instead translated with respect to the radial infall starting time. This choice can change the intermediate

behavior of p and yield the observed inversion of the tail exponent relaxation towards a constant value.
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Figure 5.6: Left: Mass-rescaled amplitude of the (3, 2) waveform multipole against the observer retarded

time, translated with respect to the time τLR at which the test particle crosses the light-ring. Right: value of

the tail exponent, Eq. (5.22). The thick solid lines are the numerical evolutions, computed by integrating

Eq. (5.4) with the RWZHyp code. The thin dot-dashed lines are the analytical prediction for the late-time

behavior, Eq. (5.15). These results are relative to the eccentric simulations of Table 5.1, each labeled by

the initial eccentricity e0. We cut the simulations for values of the amplitude A32 = 10−16, corresponding

to the double precision numerical threshold. Below each plot, for simulations with e0 > 0.3, the absolute

value of the residuals between numerical results and analytical predictions is shown, in %, to quantify the

agreement/mismatch.

5.3.4 Eccentric and quasi-circular binaries: higher modes

We investigate the late-time decay of the waveform multipoles (ℓm) = (32) and (44).

The results of the comparison between model Eq. (5.15) and the numerical evolutions, focusing on

eccentric binaries of Table 5.1, is reported in Fig. 5.6 and Fig. 5.7 for the (3, 2) and (4, 4) mode respectively.

Note that we cut both numerical evolutions and analytic results for values of the (non-rescaled) amplitude

smaller than the double precision threshold 10−16. This implies that, for the (44) mode, we can only study

the late-time tail in configurations with initial eccentricity e0 ≥ 0.5 of Table 5.1.

We find a scaling in the amplitude of the tail with eccentricity, similar to what is found for the (22) mode,

Fig. 5.3. The model is in good agreement with the numerical experiments for high eccentricities, while it

performs worst for e0 ≤ 0.3, for the (32) mode. We attribute these discrepancies to the fact that the tail

starts to dominate the signal very close to the double precision threshold. Moreover, as already stated,

we expect the analytical model to fail for small eccentricities, since in these systems the test particle
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Figure 5.7: Left: Mass-rescaled amplitude of the (4, 4) waveform multipole against the observer retarded

time, translated with respect to the time τLR at which the test particle crosses the light-ring. Right:

value of the tail exponent, Eq. (5.22). The thick solid lines are the numerical experiments, computed by

integrating Eq. (5.4) with the RWZHyp code. The thin dot-dashed lines are the analytical prediction for

the late-time behavior Eq. (5.15). These results are relative to the eccentric simulations of Table 5.1, each

labeled by the initial eccentricity e0. We cut the simulations for values of the (non-rescaled) amplitude

A44 = 10−16, corresponding to the double precision numerical threshold. Below each plot, the absolute

value of the residuals between numerical results and analytical predictions is shown, in %, to quantify the

agreement/mismatch.

spends a greater amount of time at small distances from the BH, close to the merger, where our model

is not formally valid. To quantify the agreement/mismatch between the numerical evolutions Xnumerical

and the analytical results Xanalytical we have shown in Figs. 5.6, 5.7, for e0 ≥ 0.4, the residuals, defined as

100 ∗ (Xnumerical − Xanalytical)/Xnumerical. For both modes considered, the residuals of the tail exponent are

in the interval (0, 2)%, while for the amplitudes the residuals are in the interval (0, 10)%, (0, 15)% for the

(32) and the (44) mode respectively.
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Figure 5.8: Left: Mass-rescaled amplitude of the (2, 2) waveform multipole against the observer retarded

time, translated with respect to the time of the A22 peak. Right: value of the tail exponent, Eq. (5.22).

Thick lines are results of numerical evolutions, computed by integrating Eq. (5.4) with the RWZHyp code.

Dot-dashed lines are the leading order tail in Eq. (5.24), normalized to remove the factor in Λ. These

results are relative to a scattering simulation from r0 = 300, with initial energy and angular momentum

E0 = 1.000001, pφ,0 = 4.070195, evolved considering geodesics motion.

5.3.5 Scattering configurations

Signals that travel well inside the flat light-cone are correctly described by Eq. (5.15), which instead fails

to describe signals propagating on or marginally close to it. This is manifest in the singular behavior of

the integrand, when computed at the upper bound of integration t′ + ρ+ ≃ τ. If we consider systems that

eventually merge, and focus on the signal emitted at asymptotically late times, we never encounter this

singularity. For these systems, the source (hence the integrand) decays exponentially after the light-ring

crossing. It is interesting to investigate what happens to our model if we try to apply it to systems that do

not merge. An example is a scattering situation; in this setting, the test particle is unbounded from the

BH, and the source never vanishes. Then, we introduce a dimensionless timescale Λ in the upper limit

of integration in Eq. (5.15) τ − ρ+ → (1 − Λ) (τ − ρ+), that effectively select only signals travelling with

velocities ≤ Λ. We consider a test particle travelling far away from the BH, r′ ≫ M with a small constant

velocity, such that the source contribution in the integral form Eq. (5.15) is proportional to ∝ µ|v|2t′2. The

signal observed at I+ as predicted by Eq. (5.15) is

ψ ∝ µv2
∫ (1−Λ)(τ−ρ+)

Tin

dt′
t′2

(τ − ρ+ − t′)4 . (5.23)
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5.4 Tail amplitude: last apastron contributions

The expression above can be solved analytically. We assume the observer at τ − ρ+ ≫ Tin and keep

corrections up to O
[(

Tin
τ−ρ+

)4
]
. Then Eq. (5.23) becomes

ψ ≃ −8πY∗ℓmcℓ
1 + 2ℓ

ℓ(ℓ + 1) − 2
|v|2µ ·

 (−1 + Λ)3

3Λ3

1
τ − ρ+

+
T 3

in

3 (τ − ρ+)4

 . (5.24)

There is a clear issue: as we consider signals propagating marginally close to the flat light-cone Λ→ 0,

the amplitude of the (τ − ρ+)−1 tail in the above expression diverges. In the context of the classical soft

graviton theorem, logarithmic corrections to the scattering amplitude give rise to a τ−1 tail [208, 209].

Our model appears to be in agreement with this prediction. However, we regard this result as incomplete,

due to the presence of the arbitrary cutoff Λ. We leave to future work either the physical interpretation of

the scale factor Λ, or a “renormalization" procedure to get rid of this cutoff.

For completeness, we compare the leading (τ − ρ+)−1 term of Eq. (5.24) with a numerical scattering

evolution. For this simulation, we do not include radiation reaction in the Hamiltonian equations of motion

Eq. (5.8), thus the trajectory is geodesic. The results are shown in Fig. 5.8, where we have normalized the

predicted behavior in order to remove the cutoff Λ. As expected, the analytical model fails completely

to reproduce the correct amplitude of the signal. The numerical evolution seems to converge towards

a slower decay than (τ − ρ+)−1. We leave a more in-depth investigation of the scattering scenario, both

numerical and analytical, to future work.

5.4 Tail amplitude: last apastron contributions

In Fig. 5.3, it is shown that the time of transition from a QNM to a tail-dominated behavior depends on the

eccentricity of the progenitors’ binary. Similarly, Figs. 5.4, 5.5 show a similar behavior for other classes

of non-circular orbits. In the present section, we investigate which specific features of the non-circular

orbits are causing the tail enhancement, focusing on the (ℓm) = (22) multipole.

First, we isolate the portion of the point-particle inspiral trajectory which contributes the most to the

tail amplitude. To do so, we compare the tail amplitude obtained from the numerical evolution and

our model, and study how this comparison evolves as we change the initial time of the integration in

our semi-analytical computation, to include progressively less inspiral history. Beyond understanding

which portion of the trajectory is determining the tail, an additional byproduct of this analysis is learning

“how much history” needs to be included in order to obtain a reasonable estimate of the tail amplitude,

within some accuracy threshold. This information is useful, e.g. when aiming to extract tail terms from

simulations of comparable-mass mergers, in which only a limited number of cycles is available. Then,

based on the intuition drawn from the above investigation, we derive an expansion that allows us to deduce

which specific orbital features are determining the tail behavior.

Throughout the present section, we refer to Atail ≡ A22(τtrans) as “tail amplitude”, where τtrans = τ̄ + 5τ220,

and τ̄ is the time of the flex in the frequency ω22 of the (22) multipole, when transitioning from the

fundamental mode frequency ω220 to a zero value, i.e. the one corresponding to the tail regime. The factor

5τ220 serves to exclude the QNMs portion, and we found it to be a reasonable approximation for the time
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Figure 5.9: Horizontal opaque lines: amplitude of the (2, 2) multipole, A22 at the transition between

QNM and tail-dominated regime, obtained by integrating the full problem in Eq. (5.4), (5.7) with the

RWZHyp code. Each color corresponds to one of the simulations in Table 5.1, labeled by the value of

the initial eccentricity e0. For readability of the plot, we do not display the results relative to e0 = 0.2,

characterized by the same oscillatory behavior as e0 = 0.1. The thick lines represent the values of A22

at τtrans computed with the model Eq. (5.15), by changing the initial time tin of integration on the x-axis.

The x-axis is also translated by subtracting the plunge time, i.e. the last time at which r̈ ≡ 0 before the

merger. Crosses (dots) indicate the time of apastra (periastra).

at which the tail starts to dominate, see also Ref. [206].

5.4.1 Eccentric binaries

The results of the analysis described above are depicted in Fig. 5.9, for the simulations in Table 5.1. Note

that, for all the eccentricities available, we start the integration in the analytical model Eq. (5.15) from

the fourth periastron before the merger. Numerical evolutions include more orbits; however, we did not

consider it relevant to include additional past history in the analysis, due to the converging behavior of

Atail vs tin.

For intermediate to high eccentricities, the motion around the last apastron is the part of the trajectory that

mostly determines Atail. In particular, for high eccentricities, one could consider only the motion from the

last apastron, and still correctly determine Atail. Instead, when considering intermediate eccentricities,

an oscillatory behavior arises. We interpret these oscillations as due to ingoing and outgoing motion

near the last apastron, generating tail terms that are comparable in modulo but opposite in sign, leading

to cancellations. From this picture, we get the heuristic intuition that the tail is enhanced by a motion

happening near an apastron, at large distances from the BH, r ≫ 2. As can be seen in Fig. 5.10, this

regime corresponds to small radial and angular velocities ṙ, pφ/r ≪ 1. To verify such intuition, we expand
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Figure 5.10: Radius (left), radial velocity (center) and angular momentum per unit r (right) vs the time

translated with respect to the time of the light ring crossing. Different colours identify the different

eccentric simulations of Table 5.1, labeled by the initial eccentricity e0. The crosses (dots) indicate the

last apastron (periastron).

Eq. (5.15) according to these conditions, starting from the large distance (r ≫ 2) approximation, yielding

Ψℓm(τ, ρ+) =
∫ T f

Tin

dt′
rℓ(t′)e−imφ(t′)Pℓm (cos θ0)

(τ − t′ − ρ+)ℓ+2 · Ĥ

a1

√
1 − ṙ2 + a2ṙ

pφ
rĤ
+ a3

p2
φ

r2Ĥ2

 , (5.25)

where the coefficients a1,2,3 are given by

a1 = a0 (ℓ + 1) (ℓ + 2) ,

a2 = a04im ,

a3 = a0
(
λ − 2m2 − 2

)
,

a0 = cℓ
8πµ

λ (λ − 2)
.

(5.26)

We now expand in small ṙ, pφ/r ≪ 1. Considering the expression for the energy per unit mass Eq. (5.9) in

these limits, we obtain

Ψℓm(τ, ρ+) =
∫ T f

Tin

dt′
rℓ(t′)e−imφ(t′)Pℓm (cos θ0)

(τ − t′ − ρ+)ℓ+2 ·

a1 −
a1

2
ṙ2 + a2ṙ

pφ
r
+

(
a3 +

a1

2

) p2
φ

r2

 . (5.27)

This integral form confirms our previous intuition. The overlap between the propagator and the source is

enhanced for large distances r, since low-frequencies signals (the ones contributing to the tails) not only

are scattered the most by the background, but are also emitted by a motion on large scales. It is important

to note the oscillatory term in the integrand of Eq. (5.27) for m , 0 modes. This term implies that the

faster φ varies, the more destructive the interference between tail signals emitted close to each other will

be. For each eccentric orbit, the test particle is the furthest away from the BH at the apastron rapo. The

further the location of the apastron, rapo, the smaller is the angular velocity φ̇ at this location, as prescribed

by Kepler’s second law, promoting the emission of an enhanced tail signal. Both these features are related

95



Chapter 5. Late-time tails: extreme mass ratio mergers

to the eccentricity; systems with higher eccentricity have larger rapo and smaller φ̇apo, indicating that the

expansion in small pφ/r in Eq. (5.27) is an expansion in the eccentricity 9, as implied by Fig. 5.10.

Hence, in an eccentric merger, the late-time signal in the post-ringdown waveform is the tail generated at

the last apastron before merger. The larger the eccentricity of the last orbit before merger, the further the

last apastron, and the smaller the test-particle angular velocity at this location. While the test particle is

moving near the last apastron, at each time step it generates a tail signal that is more enhanced the larger

the distance from the BH. Destructive interference among these subsequent tail signals is more suppressed

the smaller the source angular velocity, in favor of constructive interference. This results in an enhanced

tail, dominating the late-time strain.

Note that the oscillatory term suppressing the tail signal, e−imφ(t′) = 1 for m = 0, regardless of the

binary configuration. This implies that the late-time tails in the (ℓ0) multipoles are enhanced even for

quasi-circular mergers, as observed in numerical simulations in Ref. [211].

If for very high eccentricities, near the apastra, we can neglect the last two terms in the square parentheses,

these become relevant for intermediate eccentricities. In particular, the third term depends on the sign of ṙ,

and is the one responsable for the cancellations among tails emitted close to the apastron during outgoing

and ingoing motion, observed in Fig 5.9. The second term in Eq. (5.27) depends as well on ṙ, but not on

its sign. It does not imply cancellation among ingoing and outgoing motion, but is part of the expansion

around the apastron. In particular, as we move away from it, this factor, opposite in sign to the leading

order, suppresses the tail.

The approximation in Eq. (5.27) does not hold for low-eccentricities since, in these cases, the test particle

is located near the BH during the whole last stage of the inspiral, see Fig. 5.10.

5.4.2 Dynamical captures and radial infalls

We analyze the trajectory of the test particle in the dynamical captures listed in Table 5.2. These systems are

initialized as unbounded, and, during the first encounter, become bounded due to emission of gravitational

radiation, resulting in highly eccentric orbits that eventually merge. As shown by the results in Fig 5.12,

if the number of encounters nenc > 1, near the last apastron the particle is far away from the BH with

small tangential velocity pφ/r. As the number of encounters nenc increases, the distance from the BH at

the last apastron decreases, while the tangential velocity increases, resulting in less time spent around

this location. This is due to the fact that the GWs are emitted mainly at the turning points, thus the more

encounters are present, the more the orbit loses energy and evolves towards a more "circularized" setting.

Thus, we expect a reasoning similar to the one in the previous section to hold, considering that a higher

nenc implies a smaller eccentricity of the last stable orbit, as discussed in Sec. 5.3.2.

We repeat the experiment of the previous section, i.e. we compare Atail from the numerical evolutions

with the one computed from the model Eq. (5.15), varying the starting time of integration, tin. The part

of history relevant to determining Atail is the motion from the last apastron, in agreement with what was

9This intuition is in agreement with the Newtonian limit, in which
(
p2
φ/r − 1

)
∼ e, see for instance the discussion in [210].
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Figure 5.11: Horizontal opaque lines: amplitude of the (2, 2) multipole A22 at the transition between

QNM and tail-dominated regime, obtained by integrating the full RWZ problem in Eq. (5.4), (5.7) with

the RWZHyp code. Each color corresponds to one of the captures in Table 5.2, labeled by the value

of the number of encounters nenc, plus a radial infall from the same distance r0 = 300. The solid lines

represent the values of A22 at τtrans computed with the model Eq. (5.15), by changing the initial time tin of

integration that is on the x-axis, translated with respect to the plunge time, i.e. the last time at which r̈ ≡ 0

before the merger. Crosses (dots) indicate that the starting time of integration is a turning point far from

(close to) the BH.

found in the previous section for bounded orbits. In fact, from the comparision of the trajectories in

Fig. 5.10 and Fig. 5.12, we see that, even for the larger value of nenc considered in Table 5.2, the last orbit

has features compatible with an eccentricity close to the two most eccentric simulations in Table 5.1 (see

also discussion in Sec. 5.3). In such a setting, as mentioned above, the last two terms in Eq. (5.27) can be

neglected and the influence of in/out-going motion near the last apastron on Atail is negligible.

An interesting limiting case is nenc = 1, for which the orbit does not have a turning point. Consistent

with the intuition developed above, we find that contributions from all times are relevant in this case, as

depicted in Fig. 5.11. Similar considerations also hold for a radial infall starting from the same initial

distance of r0 = 300. A curious feature to note is that in the nenc = 1 case, the amplitude is suppressed with

respect to a radial infall from the same distance. This is puzzling at first since, as depicted in Fig. 5.12, the

nenc = 1 simulation dynamics is close to the radial infall one, except in the plunge phase that, however,

does not seem to influence Atail, as shown in Fig. 5.11. The reason of this can be traced back to pφ/r, that

remains small for the whole orbit, allowing us to consider the expansion of Eq. (5.27). The third term in

the expansion, proportional to ṙ and pφ/r, acts as a small negative contribution with respect to the leading

one in the nenc = 1 case, due to the ingoing nature of the motion. At the same time, the oscillating factor

∼ e−imφ will induce interference among subsequent tail terms. These terms are not present for a radial

infall (the latter being a constant), explaining the amplitude suppression in the nenc = 1 case, compared to
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Figure 5.12: Radius (left), radial velocity (center) and angular momentum per unit r (right) vs the time

translated with respect to the time of the light ring crossing. Different colours identify the different

simulations of dynamical captures listed in Table 5.2, labeled by the number of encounters nenc, plus a

radial infall from the same distance r0 = 300. The crosses (dots) indicate the last turning points, further

(closer) to the BH.

a radial infall from the same distance.

5.5 Tail amplitude parametrization

From the analysis in Sec. 5.4, it emerged that it is not practical to describe Atail in terms of the initial

eccentricity e0, since Atail rather depends on the eccentricity of the last orbit before the merger. In fact, as

already discussed at the beginning of Sec. 5.3, the eccentricity evolves during the inspiral in a non-trivial

way. Hence, the initial eccentricity, taken alone, is not sufficient to determine e at late stages of an orbit.

The two parameters that have been previously used in the literature to parametrize the merger/ringdown

waveform, able to quantify the eccentricity of the last inspiral stages, are the eccentricity at the separatrix

esep, [101], and the impact parameter at the light-ring crossing/merger [75, 203, 81]. In Fig. 5.13, we show

the amplitude of the (22) mode at the time in which the tail starts to dominate over the QNMs, Atail, as

a function of the eccentricity at the separatrix esep and as a function of the impact parameter Eq. (5.21)

at the light-ring crossing bLR translated with respect to its value for a quasi-circular plunge. These plots

suggests esep to be more suited to parametrize Atail, while there is a double-valued behavior of Atail in bLR,

exhibiting two branches, one for bounded orbits and one for dynamical captures.

It is not straightforward to connect esep, bLR to the motion near the last apastron, and we leave a more

detailed study on the parametrization of Atail to future work. However, the results in Fig. 5.13 hint that the

eccentricity at the separatrix is a good quantity to capture the features of the last orbit and to describe the

late-time tail enhancement.
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Figure 5.13: Amplitude of the (22) mode at the time at which the tail starts to dominate over the QNMs,

Atail, vs the eccentricity at the separatrix esep (left) and the impact parameter in Eq. (5.21) at the light-ring

crossing (right). The results are relative to the bounded orbit simulations of Table 5.1 and the dynamical

captures in Table 5.2.

5.6 Power-laws superposition

In the previous sections, we discussed the amplitude of the tail around the time at which it starts to

dominate over the QNMs-driven regime. Now, we focus on the phenomenology of the tail after this

time. As derived in Secs. 5.2 and 5.3, the tail is initially dominated by an intermediate transient, leaving

place after some time to Price’s law. Here, we characterize the decaying behavior of the transient regime

and present a very long-lived selected simulation to explicitly show that Price’s law is recovered both

numerically and analytically, as expected. In particular, we analyze the dynamical capture of Table 5.2

with nenc = 8. At the end of the section, we report the same analysis for a radial infall from r0 = 300 and

for the inspiral with initial eccentricity e0 = 0.9 of Table 5.1.

Our model predicts that the intermediate behavior can be described by a superposition of power-laws in

observer retarded time τ, Eq. (5.20). The lowest order of this expansion corresponds to Price’s law, and

thus will dominate at asymptotically late times. This prediction is in agreement with the aforementioned

numerical evolutions, as shown by the results in Fig. 5.14 and Fig. 5.16. Note that, in deriving Eq. (5.20),

we considered as the upper limit of integration in the analytical model a time T f large enough so that

the source has vanished. In all of the configurations analyzed in the present section, we study the tail

from the time at which it starts dominating the strain. By this time, in the limits of double precision, the

test particle has effectively already crossed the horizon, and the source has long vanished. Hence, we do

not set an upper limit for the integral in Eq. (5.20), but we integrate over all t′ < τ − ρ+. However, as

explained above, the integrand has vanished before the earliest time τ at which we compute the analytical
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Figure 5.14: Left: Mass-rescaled amplitude of the (2, 2) waveform multipole against the observer retarded

time, translated with respect to the time τLR at which the test particle crosses the light-ring. Right: value of

the tail exponent, Eq. (5.22). The system under study is the dynamical capture with nenc = 8 in Table 5.2.

The time between initializing the test particle and the light-ring crossing is ∼ 5 · 104. The gray thick line

corresponds to the numerical experiment obtained by integrating Eqs. (5.4),(5.7) with the RWZHyp code.

High-frequency oscillations in the plot on the right for very late times (≳ 105) are due to numerical noise.

The coloured lines are computed through the expansion in power-laws in the retarded time τ, Eq. (5.20).

The label n specifies how many power-laws have been added to Price’s law (horizontal line in the right

panel).

tail as an expansion in power-laws superposition. For instance, for the radial infall analyzed in Fig. 5.16,

the source has vanished and r = 2 at a time ∼ 54 after the light-ring crossing.

The intermediate regime relevance can be quantified by how many power-laws are necessary to reach

convergence, which in Fig. 5.14 corresponds to n ∼ 1000. The excitation coefficient of each Price’s

law correction term ∼ τ−n−ℓ−2 is given by an integral over the source S ℓm(t′), multiplied by a factor

(t′ + ρ+)n. The term (t′ + ρ+)n seems to imply that the longer the inspiral’s past history, the more enhanced

the excitation coefficient of τ−n−ℓ−2 is. However, moving Tin further and further in the past will yield

a convergent behavior of the waveform, due to the presence of the weight S (t′) which is suppressed in

this limit. In fact, as discussed in Sec. 5.2.2, S (t′) can either vanish in the asymptotic past, or give rise

to a suppressed 1/τ tail that does not propagate at asymptotically late times (see also the discussion in

Sec. 5.3.5).

To test these predictions, we turn to the dynamical capture analyzed in Fig. 5.14. At the beginning of

this simulation, the system is unbounded. Going earlier in time with respect to the history considered

would result in a suppressed source, hence a suppressed tail contribution. Instead, the source is not

suppressed once the system becomes bounded, during subsequent encounters. Hence, “excluding" some
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Figure 5.15: Left: Mass-rescaled amplitude of the (22) waveform multipole against the observer retarded

time, translated with respect to the time τLR at which the test particle crosses the light-ring. Right: value

of the tail exponent, Eq. (5.22). The system under study follows the same trajectory of the dynamical

capture with nenc = 8 in Table 5.2. However, the integration included only the last nenc = 2 encounters of

the same evolution. The time between initializing the test particle and the light-ring crossing is ∼ 2 · 103.

The gray thick line corresponds to the numerical experiment obtained by integrating Eq. (5.4),(5.7) with

the RWZHyp code. High-frequency oscillations in the plot on the right for very late times (≳ 3 · 104) are

due to numerical noise. The coloured lines are computed through the expansion in power-laws in the

retarded time τ, Eq. (5.20). The label n specifies how many power-laws have been added to Price’s law.

past encounters from the integral in Eq. (5.20), would significantly change the excitation coefficients of

the power-laws therein, giving rise to a different intermediate regime of p. We show this point explicitly

by running the same analysis as in Fig. 5.14, but changing the initial time of integration in Eq. (5.20),

Tin. We compare these results with a numerical evolution obtained initializing the test particle (hence

starting the integration) along a different point of the same inspiral trajectory. The initial conditions on the

emitted radiation are still imposed as in Eq. (5.7), while the initial conditions of the test particle are such

that the trajectory remains unchanged. The starting time for the numerical integration is fixed to match

the initial time of the analytical one. The section of the trajectory considered is highlighted (green) in

Fig. 5.2, in particular, we now consider a motion including only the last two encounters. In the original

simulation the test particle orbited around the BH for a time ∼ 5 · 104 before the light-ring crossing while

we have now reduced this time to ∼ 2 · 103. The results of the analysis, shown in Fig. 5.15, confirm the

model’s prediction: faster decaying power-laws are less excited when considering a reduced amount of

history. As a consequence, the system reaches Price’s law on a shorter timescale. In particular, when

considering a longer fraction of the inspiral, as in Fig. 5.14, Price’s law is approached well further than a

time ∼ 2 · 105 after the light-ring crossing (estimate based on the amplitude). Instead, when considering a
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Chapter 5. Late-time tails: extreme mass ratio mergers

trajectory including only the last two encounters, Price’s law is recovered at ∼ 104. In agreement with

the model, the number of power-law terms required to recover the numerical result has now significantly

decreased to n ∼ 200. These analyses further stress the impact of initial conditions on the extraction of the

tail exponent, in stark contrast to the amplitude at transition, which is far less dependent on the trajectory

integration, as shown in the previous section.

Note that all the simulations considered are consistent with Price’s law at asymptotically late times, and

slower decaying terms led by the τ−1 tail, discussed in Sec. 5.2.2, are not present. Such a result holds

for systems that are originally unbounded, as in Fig. 5.14, as well as for systems directly initialized as

bounded, Figs. 5.15, 5.16. This is consistent with the picture of Sec. 5.2 and linear perturbation theory [16,

14, 15].

To conclude, we test the expansion of the analytical model Eq. (5.15) in n exact power-laws Eq. (5.20)

valid at large retarded times τ, against numerical evolutions of the radial infall from r0 = 300 and the orbit

with initial eccentricity e0 = 0.9 of Table 5.1. The results are shown in Fig. 5.16, top and bottom row

respectively.

The results are in perfect agreement with what was already discussed at the beginning of the current

section. In particular, the history considered for the radial infall has approximately the same length

(∼ 2 · 103) as the simulation in Fig. 5.15. As a result, the number of faster-decaying terms necessary to

reach convergence (n ∼ 200) in the post-merger tail is also of the same order as in Fig. 5.15, as is the

timescale after which Price’s law (i.e. agreement with the n = 0 term) is recovered in the amplitude

(∼ 104). The eccentric simulation in Fig. 5.16 (bottom row) has a longer inspiral before the merger,

∼ 1.5 · 104. As a consequence, a larger number of faster-decaying terms are necessary compared to the

radial plunge simulation to reach Price’s law, which happens on a longer timescale (∼ 105) consistently

with the case of Fig. 5.14, as expected.
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Figure 5.16: Left: Mass-rescaled amplitude of the (2, 2) waveform multipole against the observer retarded

time, translated with respect to the time τLR at which the test particle crosses the light-ring. Right: value

of the tail exponent, Eq. (5.22). Top row: the system under study is the radial infall from r0 = 300 with

E0 = 1.00. The time between initializing the test particle and the light-ring crossing is ∼ 2 · 103. Bottom

row: the system under study is the orbit with initial eccentricity e0 = 0.9 in Table 5.1. The time between

initializing the test particle and the light-ring crossing is ∼ 1.5 · 104. The gray thick line corresponds to

the numerical experiment obtained by integrating Eq. (5.4),(5.7) with the RWZHyp code. High-frequency

oscillations in the plots on the right for very late times (∼ 105) are due to numerical noise. The coloured

lines are computed through the expansion in power-laws in the retarded time τ, Eq. (5.20). The label n

specifies how many power-laws have been added to Price’s law (horizontal line in the right panel).
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Figure 5.17: Left: Mass-rescaled amplitude of the (2, 2) waveform multipole extracted at finite distance,

against the observer retarded time translated with respect to the time of the A22 peak. Right: value

of the tail exponent, Eq. (5.22). Numerical experiments, computed by integrating Eq. (5.4) with the

RWZHyp code. These results are relative to the eccentric and quasi-circular simulations of Table 5.1,

each labeled by the initial eccentricity e0, and a radial infall from r0 = 300 with E0 = 1.00. The observer

is located at robs = 200. We cut the simulations for values of the amplitude A44 = 10−14, two orders of

magnitude before the numerical precision threshold dictated by double precision.

5.7 Tail observed at finite distances

All the results reported in the chapter so far were extracted at I+, in terms of the retarded time τ. Con-

cerning real observations, we can consider our detectors to be at I+ with very good approximation [212].

However, often numerical waveforms of comparable mass mergers are extracted at finite distances. Hence,

in this section we analyze the tail produced in the numerical evolutions of Tabs. 5.1 and for a radial infall

from r0 = 300 with initial energy E0 = 1.00, as observed at finite distance. The results are shown in

Fig. 5.17, considering an observer placed at robs ∼ 200 from the BH. We observe the same scaling of the

tail amplitude with the binary eccentricity as the one appearing at I+, Fig. 5.3. For each configuration,

the tail is suppressed in amplitude by approximately one order of magnitude when observed at a finite

distance compared to I+. The tail exponent p, Eq. (5.22), is relaxing towards a smaller value than in

Fig. 5.3. It is not possible to determine this quantity exactly, due to the waveforms hitting the numerical

double precision threshold before reaching the asymptotic relaxation regime. However, these results are

compatible with vacuum perturbation theory, i.e. a relaxation with leading behavior ∼ t−2ℓ−3 at finite

distance [16, 14, 15], compared to u−ℓ−2 (u−ℓ−3) for stationary (static) initial conditions at I+.
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5.8 Summary

In this chapter, we have investigated the late-time relaxation of a Schwarzschild BH perturbed by an

infalling test particle. We worked in non-homogeneous perturbation theory, with a source representing the

matter content of the test particle, and an orbit driven by a highly accurate EOB-resummed analytical

radiation reaction. Analyzing the late-time propagation of low-frequency signals, we derived an analytical

formula for the late-time perturbations, Eq. (5.15). This model is an integral over the entire past history of

the system, revealing that the late-time relaxation of a BH carries imprints of the system’s information

in the far past. We tested this model against numerical evolutions obtained by solving the full Regge-

Wheeler/Zerilli equations for different inspiral configurations. Our model is in good agreement with these

non-circular results, as shown in Fig. 5.3, Fig. 5.4 and Fig. 5.5, respectively for bounded elliptical binaries,

dynamical captures and radial infalls.

The results discussed in this chapter shed light on the nature of tails in the presence of a source, somehow

hidden in homogeneous perturbation theory [16, 14, 15], in which the integral over the “history” of

the system is reduced to a local expression computed on a Cauchy hypersurface, see the discussion in

Chapter 2. In the non-homogeneous case, the tail is in fact due to the interaction of a time-varying

quadrupole source with the long-range structure of the background. Low-frequency signals emitted by

the source will interact the most with the background, resulting in their scattering; as a consequence, an

observer at large distances from the BH will not see the signal as travelling on the light-cone, but with

all the velocities inside it. This is the heuristical intuition behind the formal result in Eq. (5.15), that

explains how the late-time relaxation of a BH is, in fact, an effect analogous to the hereditary tail of

multipolar-post-Minkowskian theory [198] (see Eq. (3.40) and the discussion in Sec. 3.2).

We have found that Atail, the amplitude of the tail at the transition between the QNM and tail dominance

τtrans, depends mainly on the motion near the last apastron for eccentric binaries or dynamical captures

Figs. 5.9, 5.11. In particular, we have shown that the tail is enhanced by motion at large distances with

small tangential velocity; the first condition guarantees that the overlap between the source and the

tail-propagator is large, while the second is necessary to minimize destructive interference among tail

signals emitted close to each other. For this reason, Atail is maximized for a radial infall vs a capture

initialized at the same distance. For a radial infall from small distances r0 ≲ 200, Atail is larger the further

the infall starts, while it saturates to a maximum value for r0 ∼ 200, Fig. 5.5. These results are able to

explain the scaling of the tail amplitude with the progenitors’ binary eccentricity observed in Ref. [75] in

the test-mass case and discussed in Ref. [206] for comparable masses.

We have also proposed an expansion of the tail expression Eq. (5.15), valid at late retarded times τ ≫ ρ++t′,

as superpositions of power-laws in τ. This approximation allows us to sort out the complicated behavior

of the tail in a contribution that scales as the leading homogeneous perturbation theory tail (the slowest

power-law that dominates the asymptotic limit), with faster decaying terms whose excitation coefficients

depend on the nature of the source, that eventually die out of the signal. In particular, for the systems

that eventually become bounded and merge, we recover the asymptotic decay ∼ τ−ℓ−2 of Refs. [16, 14,

15]. Slower decaying contributions, led by ∼ τ−1, emitted during the initial unbounded stage (in the
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case of a dynamical capture) cancel out at asymptotically late times. We have tested the expansion

Eq. (5.20) against numerical experiments, to understand the relevance of the fast decaying contributions.

The results of Figs. 5.14, 5.16 show that a large number of fast-decaying power-laws is necessary to

correctly reproduce the numerical experiments, starting from the time τtrans at which the tail starts to

dominate over the QNMs. We leave for future work the exploration of alternative closed-form expressions

for late-time tails that may be more compact and require fewer terms, potentially making them better

suited for parameter inference.

For completeness, we have also analyzed the behavior of higher multipoles of the waveform: an odd

mode, the (32), and the (44), in Sec. 5.3.4. We observe for both modes a similar enhancement of the tail

amplitude with the initial eccentricity, Fig. 5.6, 5.7, and a similar level of agreement with the numerical

evolutions. These results are particularly relevant for the (44) mode, since this is the lowest mode in which

quadratic QNMs significantly appear for a binary merger. A complete description of the ringdown in a

non-linear setting would, in fact, benefit from the inclusion of the tail, when considering a generic planar

orbit.

In Sec. 5.3.5 we have studied a scattering case. In this setting, the source is present at all times, hence

it will continue to emit signals at asymptotically late times. Our model fails to describe such a system;

however, when appropriately regularised, it still predicts a τ−1 tail signal travelling marginally close to the

flat light-cone, in agreement with the classical soft graviton theorem [208, 209].

In Sec. 5.5 we show the behavior of the tail amplitude by the time it starts to dominate the strain, Atail, as

a function of the eccentricity at the separatrix esep and the impact parameter in Eq. (5.21) at the light-ring

crossing bLR. From our results, it emerges that esep is more suited to describe Atail than bLR. In particular,

Atail is not a function of bLR, since it exhibits a double-valued behavior with respect to this parameter.

All our results are expressed in terms of the radiative coordinate τ, as observed at I+, acting as a very

good approximation to what would be observed in a real detection on Earth. However, when performing

numerical simulations in a fully non-linear setting, the signal is often extracted at a finite distance in terms

of the time coordinate t. Hence, to connect with these latter studies, we have studied a configuration

extracted at finite distance in Sec. 5.7; as shown in Fig. 5.17, such settings preserve the scaling of the tail

with the progenitors’ binary eccentricity, however the amplitude of the tail is suppressed of at least one

order of magnitude, also for a radial infall. In Chapter 6, we will discuss in more detail how to extract

the radiative tail from numerical simulations (both perturbative and non-linear) in which the signal is

computed at finite distances only.

The analytical model and numerical evolutions presented in this chapter, are in complete agreement

with the independent study in Ref. [213]. In particular, with a focus limited to numerical experiments,

Ref. [213] identified the apastron of an eccentric orbit as the location where tails are excited the most.

Unlike the current chapter, Ref. [213] compared geodesic motion with orbital evolutions employing

different prescriptions for radiation reaction, showing that the latter has a negligible impact on the tail

signal. Ref. [213] extends the current study to a test particle infalling in a Kerr background, showcasing

how the mechanism of tail enhancement due to the inspiral eccentricity also holds in the presence of spin.
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However, future work is necessary to fully understand the impact of spin on this late-time signal.
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Chapter 6

Late-time tails: comparable masses
mergers

In the present chapter, we discuss the results of Ref. [2] and present the first robust extraction of late-time

tails from fully non-linear numerical relativity (NR) simulations of comparable-mass black-hole (BH)

binaries.

Characterizing tail effects in numerical simulations is challenging, because excitations of quasinormal-

modes (QNM) can take a long time to decay [214]. Hence, to identify tail contributions, we must look

for them in a regime where QNMs are short-lived, and the tail amplitude is large. The first is easy to

achieve by targeting remnant BHs with small angular momentum (shorter relaxation time). The second

condition is harder to obtain if we do not know a priori the dependence of the tail amplitude on the

binary’s initial conditions. In Chapter 5, we discussed how late-time tails are excited and explained

how certain binary configurations can lead to an enhancement of their amplitude. This was done by

introducing a first-principles analytical model that, for a given bounded trajectory, accurately describes

the source-driven tail behavior in generic orbital configurations. The model shows how the simple picture

of a single “Price tail” needs to be replaced by a superposition of a large number of inverse power-law

components giving rise to a long, slowly-decaying transient. A key prediction of the model is that the tail

amplitude reaches its maximum for radial infalls; hence, in this chapter, we restrict to head-on collisions.

These analytical predictions, together with considerations presented in [215, 216], equip us with the

necessary understanding of initial-data (ID) and boundary effects to extract a tail signal in non-linear

mergers, and constitute the required semi-analytical tool to verify the robustness of numerical evolutions.

Exploiting the very high accuracy of the SpEC code [99], we demonstrate the extraction of tail effects in

fully non-linear 3+1 evolutions, displayed in Fig. 6.1. The figure shows the amplitude of the gravitational

wave (GW) news quadrupolar mode extrapolated to I+, for several head-on binary simulations with mass

ratios close to unity. Around 140M after the peak, the amplitude transitions from an exponentially damped

quasinormal-driven regime to a slowly-decaying non-oscillatory behaviour. The result aligns remarkably

well with perturbative linear evolutions of an infalling test particle with compatible ID, further validating

the numerical computation and pointing towards a suppression of non-linear tails contributions [55].
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Figure 6.1: Mass-rescaled quadrupolar news amplitude, as a function of retarded time from the peak. The

inset shows the behaviour of the tail exponent, as defined in Eq. (6.1). Thick lines represent non-linear

evolution of head-on comparable-mass collisions, while the dot-dashed line represents a perturbative

evolution of a radial infall with compatible initial data.

The chapter is structured as follows. In Sec. 6.1 we introduce the conventions that will be adopted. In

Sec. 6.2 we report on the numerical methods employed both in the non-linear and perturbative cases. In

Sec. 6.3, we discuss in more detail the results obtained, their interpretation, and possible non-linear effects

behind the subtle differences between linear and non-linear evolutions. We conclude summarising open

questions and future avenues for tail signals in Sec. 6.4.

6.1 Conventions

We use geometric units c = G = 1 and denote the retarded time as u. The GW strain is decomposed in

spin-weight −2 spherical harmonics modes, hℓm(t). To avoid memory contributions or gauge effects that

could spoil tail extraction, entering as a constant offset, we focus on the GW news function ḣℓm. Modes

beyond the quadrupolar are subdominant, hence we are going to focus on ℓ = 2. Exploiting the cylindrical

symmetry of the problem, we present all results in a frame [217] in which the two BHs collide along the

z-axis and hence the m = 0 is the only non-zero ℓ = 2 waveform multipole. At asymptotically late times, it

holds: hℓm ∝ up̄, ḣℓm ∝ up̄−1, with p̄ = −(ℓ + 2) for Schwarzschild BHs. Hence, it is convenient to define

a “strain tail exponent” as

p(t) = 1 +
d ln |ḣℓm|

d ln u
. (6.1)
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so that p(t) = p̄ at asymptotically late times. With m1,2 we indicate the Christodoulou masses [218] of the

individual black holes at the relaxation time of the simulation (i. e., when the high-frequency oscillations

in the Christodoulou masses have settled down), M = m1 + m2 is the total Christodoulou mass of the

system, ν = m1m2/M2 the symmetric mass ratio, and q = m1/m2 ≥ 1 the binary mass ratio. The time axis

is constructed by setting t = 0 at the peak of |ḣ20(t)|, and is quoted in units of M. The tortoise coordinate

in perturbative evolutions is r∗ = r + 2M log( r
2M − 1), with r the standard Schwarzschild coordinate. We

indicate the distance between the binary and the observer with R.

6.2 Numerical methods

We generate non-linear evolutions of head-on collisions with the SpEC code [95, 96, 97, 98, 99], whose

methods are summarised in [219, 220]. The initial data (ID) [221, 222, 223, 224] are constructed using the

extended conformal thin sandwich equations [225] and the evolution is carried out with the generalized

harmonic formulation [226, 227]. Standard SpEC runs stop at a retarded time of 100M after merger,

which is typically enough to only resolve the quasinormal ringdown. In order to capture the waveform

behavior on longer time scales, here we carry out simulations with much longer post-merger components,

stopping at retarded time 400M after merger.

We compare these NR waveforms with linear perturbative waveforms of radial infalls into a Schwarzschild

BH, numerically computed using the RWZHyp1 code [93, 94]. We solve for the Regge-Wheeler/Zerilli

equations, governing the evolution in time of the gauge-invariant quantities Ψ(e/o)
ℓm[

∂2
t − ∂

2
r∗ + V (e/o)

ℓm (r∗)
]
Ψ

(e/o)
ℓm (t, r∗) = S (e/o)

ℓm (t, r) . (6.2)

These master variables encode the odd/even metric degrees of freedom at the linear level [100], as

discussed in Chapter 2. In the linear evolutions, we set null ID Ψ(e/o)
ℓm (t = 0, r) = ∂tΨ

(e/o)
ℓm (t = 0, r) = 0, as

the perturbations are driven by the presence of the source S (e/o)
ℓm . The latter is evaluated on the infalling

test-particle trajectory. We refer to Sec. 5.1 for additional details and to Appendix A for the source explicit

expression. For radial infalls with null ID, the odd sector is identically zero; hence, in what follows, we

drop the superscript. Following an effective one body (EOB)-inspired approach, we compute the particle’s

trajectory solving the associated Hamiltonian equations of motion, Eq. (3.20), where dissipative effects

linked to the GW emission are taken into account by including a radiation-reaction force [100, 74]. Such a

force was computed for generic orbits by means of a PN-based, EOB-resummed analytical expansion [152,

147] for the fluxes of energy and angular momentum observed at infinity, and shown to be consistent with

the corresponding numerical quantities in [101]. In Sec. 3.4, more details on the radiation-reaction we use

are provided. Note that, due to the short time-scale of the dynamics in the configurations we consider, the

inclusion of the radiation reaction force has a small impact on the evolution. In particular, the impact of

radiation reaction on the waveform amplitude is below ≲ 10−7 along the whole post-merger evolution

1The version of the RWZHyp code used bears the tag tails, on the rwzhyp_eccentric branch.
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Figure 6.2: Schematic spacetime diagram demonstrating the geometry of the head-on merger and remnant,

retarded time u, extraction spheres, and outer boundary.

until late times, while its impact on the trajectory is at most at the level of ≲ 10−6. Hence, the motion can

be effectively considered as a geodesic.

At large distances, the master function Ψℓm is related to the linearized strain’s spin weight −2 spherical

harmonic modes hℓm through [92]

hℓm =
1
r

√
(ℓ + 2)!
(ℓ − 2)!

Ψℓm + O

(
1
r2

)
. (6.3)

Moreover, the source term S ℓm(t, r) is linearly proportional to the mass ratio, which in the test-particle

limit is equivalent to the symmetric mass ratio, so Ψℓm ∝ ν. To compare perturbative waveforms with

NR comparable-mass results, we will thus always rescale the perturbative results Ψℓm by ν. The NR

waveforms are also rescaled with their symmetric mass ratio.

To compare full NR results against perturbative test-mass limit ones, we initialize the two systems with

compatible ID. We only consider non-spinning black holes. The SXS simulation ID are given by setting

the angular momentum to zero and imposing that the Arnowitt-Deser-Misner (ADM) energy EADM is

equal to the total rest mass of the system M within relative accuracy of 10−4, so that the two black holes

are at rest at infinite separation, and the initial binding energy is close to zero. We generate equivalent

test-mass data by imposing that the test particle is at rest at infinity, i. e. by setting its initial energy equal

to its mass.

6.2.1 Outer boundary

The SpEC code imposes data on the outer boundary, located on a sphere with radius Rout, such that

constraints are preserved [226], and the physical degrees of freedom are chosen assuming that there is

no gravitational radiation entering the numerical domain [228, 229]. In curved spacetimes, however, a
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certain amount of radiation is always scattered back. Back-scattering, giving rise to wave propagation

well within the light-cone, is precisely the mechanism responsible for tails generation [198, 199, 201,

138, 1] (see discussion in Chapters 2, 5), and a small Rout would imply missing a significant fraction of

such contribution. Hence, to capture the vast majority of the back-scattered radiation, we place the outer

boundary exceptionally far away from the binary location (see Tab. 6.1).

Moreover, due to imperfect boundary conditions, when radiation reaches the boundary, a non-physical

numerical artifact is generated, contaminating the signal with numerical noise. As pointed out in Refs. [215,

216], this contamination can alter the structure of tails. Therefore, to study the long-range and late-time

tails contribution, it is important that our simulations remain causally disconnected from the boundary.

To avoid such contamination, we chose Rout to be large enough such that the boundary is never in causal

contact with the extraction spheres for the entire evolution (see Table 6.1). This causal structure, our

evolution domain, and the locations of finite-radius observers are visualized in Fig. 6.2.

6.2.2 GW extraction

The RWZHyp software uses a numerical domain that is decomposed into two regions, a compact inner

region and an outer hyperboloidal layer [230, 126, 231]. The inner region contains the particle trajectories

and has a uniform grid in r∗, ranging from r∗ = −100M to a large positive r∗ value. The hyperboloidal
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Figure 6.3: Mass-rescaled quadrupolar news amplitude. Comparison of the waveform directly extracted

at I+ (black solid) using RWZHyp, while the dashed and dot-dashed lines correspond to waveforms

extrapolated to I+ using a polynomial extrapolation built from finite-distance observer locations Robs ∈

[300M, 1200M] (purple) and Robs ∈ [100M, 300M] (blue).
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layer, compactified over r∗, is attached to the positive end of the inner region in order to bring I+ into the

computational domain. As a result, perturbative waveforms can be computed both at finite distances, in

terms of the coordinate time t, as well as at I+ in terms of the retarded time u.

In SpEC the GW information is extracted on spheres, whose radii Rext are distributed in the interval

[300M, 1200M] and are held fixed across all simulations in this work, as opposed to standard SpEC runs

in which their radii scale with Rout. The extracted finite radius waveform data are extrapolated to I+ by a

standard polynomial fit using the method of [232] as implemented in the scri package [233, 234, 235,

236, 237].

The idea behind this extrapolation technique is the following. First, we introduce a quantity u that, in the

limit of large distances, is a null coordinate [232]

u ≡ tcorr −

[
R + 2EADM log

(
R

2EADM
− 1

)]
, (6.4)

with

R ≡
[

1
4π

∫
dΩ

√
det(gµν)

]1/2

, tcorr ≡

∫ t

0
dt′

⟨N⟩
√

1 − 2EADM/R
, (6.5)

where gµν is the spacetime metric and ⟨N⟩ is the lapse average value on the extraction 2-sphere [232].

The strain multipoles hℓm are computed at different Rext as a function of the coordinate u. Then, for each

“retarded time-step” ui of the evolution, the quantities R · hℓm(ui,R) are fitted across the extrapolation

radii with a polynomial in R determined by the strain peeling properties towards I+ , truncated at order

N − 1 [232]

R · hℓm(ui,R) = h(0) + h(1)R−1 + ... + h(N−1)RN−1 , (6.6)

N is defined as the extrapolation order. The strain at I+ is recovered in the limit R→ ∞ as [232]

lim
R→∞

R · hℓm(ui,R) = h(0) (6.7)

To understand whether this extrapolation technique can actually recover the tail signal observed at I+

without introducing numerical artifacts, we first discuss it in the perturbative limit, where the generation

and propagation of the tail signal are understood. Then, we run a series of numerical (perturbative) experi-

ments to test the method’s robustness, leveraging the availability of perturbative numerical waveforms

computed both at finite distances and at I+.

The tail in the strain observed at finite distances in terms of the coordinate time t has an asymptotic

behaviour ∝ t−3ℓ−m [16, 14]. Hence, it is suppressed with respect to the signal observed at I+ as a function

of the retarded time u, which is instead characterized by a decay ∝ u−ℓ−2. However, even when observed

at finite distance, the asymptotically late-time decay is characterized by a transient radiative tail ∝ u−ℓ−2,

behaving as the one observed at I+ [14]. This transient eventually leaves place to the ∝ t−3ℓ−m term.

In [125], ID-driven perturbative numerical simulations confirmed this picture, showing that a progressively

longer transient appears as the observer is moved away from the source. The physical interpretation is

the following: tail terms are generated by the interaction of small frequency signals with the long-range,

slow decay of the background. Smaller frequencies can probe larger scales and get back-scattered more
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SXS identifier q D0/M Rout/M ucon/M

SXS:BBH:3991 [238] 1 100 4000 1600

SXS:BBH:3997 [239] 2 100 4000 1600

SXS:BBH:3998 [240] 3 100 4000 1600

SXS:BBH:3994 [241] 1 100 8000 5600

SXS:BBH:3995 [242] 1 200 8000 5600

SXS:BBH:3996 [243] 1 400 8000 5600

Table 6.1: List of simulations and relevant parameters: D0 is the initial separation, Rout is the radius of

the outer boundary and ucon = Rout − 2Rext denotes the approximate retarded time at which the outermost

extraction radius (located at 1200M) would enter in causal contact with the outer boundary. The first

column states the identifier in the SXS waveform catalog [220, 156]. Numerical data are available from

Caltech Data [244, 245, 246, 247, 248, 249, 238, 250, 251, 241, 242, 243, 239, 240] and can also be

accessed through the sxs python package [252, 156].

efficiently. If the observer is located close to the BH, smaller frequencies cannot reach it and, as a

consequence, the observed tail is quenched.

With this phenomenology in mind, we extrapolate the numerical waveforms obtained from non-linear

evolutions at finite distance to I+, using the SXS standard polynomial extrapolation procedure of [232] as

implemented in the scri package [233, 234, 235, 236, 237], with polynomial order N = 2. In Fig. 6.6,

we also compare to the results obtained with N = 3, showing that the extrapolation order does not

alter our conclusions. We choose extraction radii at large distances in the interval [300M, 1200M]. To

gain intuition about whether our procedure leads to a correct extraction of tails, we perform a test on

the perturbative waveforms computed with the RWZHyp code, where we can compare finite distance

results to waveforms directly computed at I+, see Fig. 6.3. In particular, we compare two different

extrapolations, computed considering Robs ∈ [100M, 300M] and Robs ∈ [300M, 1200M] respectively.

For the extrapolation technique, we employ the same algorithm used for the non-linear waveforms: the

procedure of Ref. [232] previously described as implemented in the scri package [233, 234, 235, 236,

237]. Since we are considering linear perturbations on top of a Schwarzschild BH, we consider u = t − r∗
as a null coordinate and R = r. As expected from our argument above, the extrapolation performed with

Robs closer to the BH yields a large mismatch with respect to the one computed at I+. On the other hand,

extrapolating with Robs far enough from the BH, yields an extrapolation in excellent agreement with the

tail computed at I+ by means of the hyperboloidal layer. The agreement slowly decreases in time; as

expected, the extrapolated waveform undergoes a faster decay after the initial evolution.
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6.3 Results

In Table 6.1 we report the parameters of the simulations carried out with the above methods. Fig. 6.1

shows the resulting news function, normalized by the symmetric mass ratio, with respect to the retarded

time u. A first striking result from Fig. 6.1 concerns the dependence on the mass ratio. In fact, after

mass-rescaling the waveforms, the comparable-mass waveforms with different mass ratios are very similar

(differences around the percent level), suggesting that finite mass-ratio corrections do not play a significant

role in the waveform generation, including the tail part.

We also compute the tail exponent p(t) (Eq. (6.1)), reported in the inset of Fig. 6.1. Its magnitude is much

smaller than the asymptotic Price-law value (p̄ = −4, for this multipole), towards which we expect it

to slowly converge [1], as discussed in Chapter 5. Such a decrease in exponent magnitude significantly

boosts the tail amplitude at intermediate times. This result agrees with the analytical perturbative picture

of [1] discussed in Chapter 5, according to which tail emission is maximized for motion at large distances

from the central BH, with small angular velocity. The additional numerical time derivative required for

the exponent computation, combined with finite resolution, tends to introduce high-frequency noise. To

compute the tail exponent at late times we therefore apply a Savitzky-Golay filter [253] on the waveform

to suppress high-frequency oscillations. In the next section, we compare the unfiltered tail exponent

with the one computed after applying the filter, showcasing that our conclusions are not impacted by the

filtering.

Even the test-mass perturbative case (similarly rescaled, and aligned minimizing the post-peak mismatch)

shows a remarkable agreement with the non-linear evolutions, displaying the same slowly-decaying

behaviour and an identical overall morphology. Such results confirm that the tail is primarily generated

by the source term. This aligns with previous findings, which showcased how test-particle perturbative

evolutions proved to be a remarkably accurate tool for the modelling of inspiral-merger-ringdown wave-

forms [100, 74, 254]. Somewhat surprisingly, though, this framework provides quantitatively accurate

predictions even for comparable mass systems [255, 256], as we confirm here. This is true even in the (a

priori strong-field) merger stage, as notably depicted also in Fig. 2 of [103].

However, in Fig. 6.1 above, there is a visibly growing mismatch as the tail evolves, with the non-linear

evolution displaying a slower decay with respect to the perturbative result. This may be due to a variety of

effects, including the presence of non-linear tail components (computed in [55] for ℓ = 4 modes within

second order perturbation theory, see also [50]), together with corrections due to the finite mass ratio or

the time-dependent background in the non-linear case [51, 52, 257, 54, 53]. Although the good agreement

in the quasinormal-driven regime suggests the last two effects are likely small, the hereditary nature of

tails implies that small differences in the evolution can accumulate and impart a larger effect.

In the remainder of this section, we will investigate the robustness of our results. We begin by discussing

the filtering technique applied to the late-time portion of the non-linear signal to remove high-frequency

oscillations that could otherwise spoil the investigation of the tail exponent p. Next, we present a series of

tests obtained by changing the initial binary configuration, particularly the initial separation R0, or the
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numerical setup of the non-linear simulations. As we will show, the late-time signal is not appreciably

affected by these variations. Finally, we briefly discuss results obtained through Cauchy Characteristic

Evolution (CCE) and compare them with the extrapolation method introduced in Sec. 6.2.2 that is used

for all the results of the current chapter.

6.3.1 Waveform filtering

200 250 300 350 400
(u− upeak)/M

−3

−2

−1

0

p

SXS : BBH :3991

SXS : BBH :3998

Figure 6.4: Tail exponent of Eq. (6.1) as a function of retarded time from the peak, extracted from both

unfiltered (solid thick) and filtered (dashed thin) numerical data. Results relative to two representative

comparable-mass SpEC simulations of Tab. 6.1.

To reduce high-frequency numerical noise in the NR waveforms, we applied a Savitzky-Golay filter.

The filter, acting on a sliding time window, is applied on the news amplitude in the interval u − upeak ∈

[150M, 400M]. The two dominant noise frequency components are suppressed by applying the filter with

a window length of 20M and then 6M, respectively, suppressing the modulations and high-frequency

oscillations contaminating the news. The tail exponent is instead filtered with a 20M-long window. The

filter fits the data with a polynomial function in the specified time window, then sets the fit prediction at

the center of the interval as the value of the filtered function. We select a linear fitting function, using

scipy.signal.savgol_filter(data, window_length=window_length, polyorder=1).

In Fig. 6.4 we compare the filtered and unfiltered tail exponents, for two exemplary SpEC simulations

analyzed in this work. We report the simulations SXS:BBH:3991 and SXS:BBH:3998, which are evolved

under the same Rout but different binary ID, to showcase how the result obtained is robust with respect to

different binary ID. Albeit contaminated by high-frequency noise, a clear decaying trend for the exponent

is distinguishable.
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Figure 6.5: Mass-rescaled quadrupolar news amplitude for equal-mass runs with different initial separation

D0.

6.3.2 Impact of initial separation

We investigate a sequence of NR simulations with q = 1 and varying initial separation (with identifiers

SXS:BBH:3994, SXS:BBH:3995 and SXS:BBH:3996 in Table 6.1). If ID are set up consistently, the three

evolutions should give close to indistinguishable results. This is what Fig. 6.5 shows, with very small

differences even when increasing the initial separation by a factor of four. This confirms the robustness of

our numerical evolutions. However, in practice, our ID at different separations will not be perfect (i. e.

will not correctly capture the entire past binary history). In this case, the tail amplitude is expected to

increase with larger initial separation, since this enhances the overlap between the source and the tail

propagator [1], consistently with tails hereditary nature [198, 199, 201, 138], as discussed in Chapter 5.

Such an increase is expected to be small for large enough separations, so that most binary history is

already captured. This is confirmed by Fig. 6.5, showing a small increase in the tail amplitude when

increasing the separation, another validation of our results’ robustness.

6.3.3 Resolution tests

In Fig. 6.6 we compare three different resolution levels (see [219, 220]), for the SXS:BBH:3991 case

(see Tab. 6.1). We report the residuals relative to the highest resolution available, Lev3, with smaller
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extrapolation order, N = 2, defined as

Res.(X) = 100
|ḣ(X)

20 | − |ḣ
(Lev3,N=2)
20 |

|ḣ(Lev3,N=2)
20 |

. (6.8)

The tail properties are unchanged with increasing resolution, and differences between different resolution

levels are too small to affect any of the considerations previously discussed, including comparisons with

perturbative waveforms.
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Figure 6.6: Top: Mass-rescaled quadrupolar news amplitude for different resolution levels (solid) for the

SXS:BBH:3991 case. A higher extrapolation order is shown in dashed black (other lines refer to N = 2),

while the purple dot-dashed line reports the perturbative result. Bottom: residuals with respect to the

highest resolution (Lev3).

6.3.4 Cauchy-characteristic evolution

We investigate the waveforms obtained through CCE and compare the late-time portion of the signal with

the extrapolated to I+ one. A CCE evolution consists of two steps. The initial step is the standard Cauchy

evolution: the spacetime is evolved and the signal is extracted on a 2-sphere at a finite distance, far from

the GWs source. In the second step, the spacetime computed at different times on the extraction sphere is

used to start a characteristics integration extended to I+.

We run SpECTRE code’s CCE module [176, 258, 259] on worldtubes with radii [300, 600, 900, 1200]M.

Initial data for the first null hypersurface for each simulation was created using SpECTRE’s default
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Figure 6.7: Mass-rescaled quadrupolar Ψ4 amplitude, as a function of retarded time from the peak. The

CCE (Rext = 600M) and extrapolated (N = 2) waveforms of SXS:BBH:3996 with D0 = 400M are shown

in black and purple. The CCE waveform SXS:BBH:3995 with D0 = 200M is shown in blue. Differences

between the two highest Cauchy-evolution resolutions for SXS:BBH:3996 are shown with dot-dashed

lines.

ConformalFactor method. After running CCE, we mapped each system to the superrest frame of its

remnant black hole 50M before the end of the simulation [260, 261, 262, 212].

In Fig. 6.7 we show the Newman-Penrose scalar Ψ4 extracted using CCE (with Rext = 600M)2 and

extrapolation, for the cases SXS:BBH:3995 and SXS:BBH:3996. We also show the residual between the

highest and next-highest resolutions for both the CCE and extrapolated waveforms. As can be seen, while

the CCE and extrapolated waveforms for D0 = 400M seem to agree fairly well, for D0 = 200M the CCE

waveform has a much slower falloff than the extrapolated waveform. We suspect that this inconsistency is

likely due to the initial data in CCE. In particular, with a shorter simulation, like SXS:BBH:3995 with

D0 = 200M, there is less time for the radiation due to unphysical initial data to propagate out of the

system. Consequently, the late-time tail behavior between the two simulations can take on fairly different

structures. We choose to work with extrapolated waveforms for the main results presented in this chapter,

to mitigate this effect. Understanding the impact of initial data on the tails of CCE waveforms will be the

subject of future studies.

2We use Rext = 600M since this worldtube radius shows marginally better agreement with the extrapolated waveform. Larger

worldtube radii tend to yield a slightly slower falloff. The reason behind this behaviour will be investigated in future work.
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6.4 Summary and future avenues

We have investigated and uncovered late-time gravitational-wave tails in 3+1 non-linear simulations of

black holes collisions through the highly accurate SpEC code, robustly validating this result through a

number of numerical tests. The waveforms display a remarkable agreement with perturbative results, a

fact that deserves further scrutiny in future works.

Our results raise several interesting questions. On the modeling side, these include: What is the non-linear

content of late-time tails? Can second-order tails explain the observed differences between linear and

non-linear evolutions? Or can these instead be accounted for by higher-order (self-force type) corrections

to the trajectory or the dynamical background? A one-power slower decay is predicted by mathematical

relativity results of Ref. [263] when accounting for non-linearities. Could this be the cause of our

deviations from perturbation theory? Precision studies on this subject will benefit from longer simulations

and the development of Cauchy Characteristic Matching (CCM) techniques [264, 265, 266] or non-linear

codes in hyperboloidal coordinates [267, 268, 269, 270], to uncover the subtle role of non-linearities.

At the same time of the work that we discussed in this chapter, based on Ref. [2], another investigation of

late-time tails in fully non-linear numerical evolutions of head-on collisions appeared, Ref. [271], using

CCM to compute the waveform at I+. Notably, the two studies yield consistent results for the equal-mass

case, the only overlapping dataset. The CCM method of Ref. [271] could be employed in the future to

study late-time tails emitted by comparable masses eccentric mergers, to further test Chapter 5 predictions

in a fully non-linear setting.
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Chapter 7

Dynamical excitation of quasi-normal
modes

In Chapter 2, we have reviewed known results for linear perturbations of a Schwarzschild black hole

(BH). We showed that the Green’s function (GF) of this geometry has a series of infinite simple poles

in the complex Fourier domain, denoted as quasi-normal frequencies (QNFs). The GF depends only

on the background and, as a consequence of the no-hair conjecture, the QNFs are functions only of the

(Schwarzschild) BH mass M [24, 26, 272, 27]. If the perturbations originate from Gaussian-like initial

data, the QNFs generate a ringing signal: a superposition of exponentially damped sinusoids called

quasi-normal modes (QNMs), whose amplitudes depend on the initial data.

A ringdown signal is also emitted by more complex initial data, e.g. the ones generated by a BH binary

merger right after a common horizon has formed. A posteriori fits of numerical waveforms emitted by BH

binary mergers show that the QNMs amplitudes are highly sensitive to the inspiral configurations [76, 77,

11, 78, 12, 79, 49, 80, 69, 81, 82, 83, 84], as detailed in Sec. 4.1. For certain modes, the amplitude can be

parametrized as a function of progenitors’ binary quantities, such as the mass ratio and the spins, to closely

resemble the dependence of the respective post-Newtonian multipole during the inspiral [76, 77, 11,

79]. This suggests that the inspiral post-Newtonian and the post-merger ringdown modes share the same

“source”. Therefore, computing accurate predictions of the QNMs amplitudes requires understanding

how the plunge-merger dynamics couples to the ringdown. Several works derived a heuristic intuition

for this process, based either on phenomenological [179, 73] or toy models [74, 273, 75], as discussed

in Sec. 4.2. However, to the best of our knowledge, a first-principles understanding of the ringdown

dynamical excitation is missing.

Two broad strategies have been explored in the past to analytically predict the QNMs amplitudes. The

first, valid for generic mass ratios, entails modeling the post-merger initial data (e.g., the close-limit

approximation [274, 275]). In this chapter, we focus on a second approach valid in the extreme mass-ratio

limit, which consists of treating the binary companion as an external source within perturbation theory.

This approach has the advantage that it can be systematically extended to higher mass ratios, through

higher orders in BH perturbation theory or through the effective one body (EOB) framework. Past
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literature within this framework, Ref. [276], is limited to a specific binary configuration (radial infalls) and

provides results valid only at late times (when the constant-amplitude ringdown template well describes

the waveform). The difficulty in extending analytical computations at earlier times lies in not knowing

how the QNMs signal propagates with respect to the light-cone. Being interested in physical signals, the

retarded GF is the appropriate GF component to be selected, propagating signals either on or inside the

light-cone. We refer to the prescription selecting over which portion of the light-cone the QNMs signal

travels as the “QNMs causality condition”. As discussed in Sec. 2.3.1, an exact QNMs causality condition

was computed for a toy-model geometry [41], while, for a Schwarzschild BH background, only a heuristic

prescription was proposed [14, 118, 15, 119], valid if the source of the perturbations is localized far away

from the light-ring.

In the present chapter, we focus on the ringdown driven by a point particle infalling into a Schwarzschild

BH through generic planar orbits. We compute a first-principles (i.e. obtained by solving perturbatively

Einsteins’ equations) model for the full signal propagated by the QNMs GF, for a given trajectory. We do

not limit the analysis to the late-time, constant-amplitude regime; instead, we provide a prediction for

the dynamical QNMs excitation during the inspiral-plunge. To achieve this result, we derive an accurate

QNMs causality condition and show that it automatically resolves a common obstacle in the analytic

calculation of the QNMs amplitudes: the GF divergence for a source extended towards the horizon.

We find that the signal can be divided into two components that we denote as excitation and impulsive

contributions. The impulsive contribution is “local”: it only depends on the source configuration at the

time it is emitted. The excitation contribution is an “history” term which accumulates past information

and that, at late times, yields the constant-amplitude QNMs response. In Chapters 5, 6, we have discussed

another contribution depending on the history of the source, hereditary tails. Tails propagator decays much

slower than the QNMs ones, as a consequence, this signal can accumulate “more efficiently” past history.

Instead, the constant-amplitude ringdown in the post-merger signal is mainly influenced by the last stages

of the plunge. Hereditary tails are characterized by a zero-frequency propagator; as a consequence, the

effect of an oscillating source translates in destructive interference between subsequent tail signals (see

Sec. 5.4). The QNMs propagator is a superposition of terms oscillating with different frequencies. Each

of these QNFs is quasi-resonantly excited by the oscillating source during the inspiral-plunge. During

this stage of the dynamics, the instantaneous frequency of the full QNMs response is effectively driven

by the test-particle source, and the modes’ amplitudes behave as activation functions in time. After the

particle crosses the light-ring, the source gradually stops contributing to the QNMs amplitudes, which

saturate to constant values. The signal emitted by the source while it approaches the horizon is quenched

by its infinite redshift, escaping towards an observer at I+ as a superposition of an infinite tower of

exponentially-damped, zero-frequency contributions, that we denote redshift terms. The existence of these

redshift terms is in agreement with past literature [16, 277, 278, 279]. As a by-product of the analysis, we

also explicitly compute for the first time the amplitude of the fundamental mode in the quadrupole, for

generic planar orbits.

The plan of the chapter is as follows. In Sec. 7.1, we introduce the methods and conventions used in this

chapter, or refer to the other section of this thesis where they are detailed. In Sec. 7.2, we derive the QNMs
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causality condition, then study the QNMs GF convolution with the test-particle source. We also employ

near-horizon expansions to assess the regularity and temporal structure of the QNMs signal, and study

the role of the source redshift. In Sec. 7.3 we detail our predictions for a quasi-circular plunge and show

that the qualitative picture is unchanged for intermediate to high eccentricities. We then discuss a radial

infall. We construct the portion of the waveform propagated by the QNMs GF and evaluate its agreement

with a complete numerical solution of the perturbative equation. In Sec. 7.4 we provide an analytical

prediction of the ringdown quadrupolar total amplitude, phase and leading redshift term as a function

of the eccentricity at the separatrix and the impact parameter, Eq. (7.70), at the light-ring crossing. We

summarise our findings and briefly discuss future directions in Sec. 7.5.

7.1 Conventions and methods

We work in geometric units c = G = 1. Our analysis focuses on non-spinning BH binaries with small

mass ratios, thus we linearize Einstein’s equations and discard higher order corrections. The background

metric is thus Schwarzshild Eq. (5.1). We rescale r → r/M. We will use this convention throughout the

chapter. Since at first perturbative order the mass and spin of the BHs are unchanged, the final BH will

not be spinning. For this reason, we can expand the strain in spin-weighted spherical harmonics modes

−2Yℓm(θ, φ), retaining consistency with the spacetime symmetries both in the inspiral and the ringdown

phase (i.e. no mode-mixing [183] arises):

h(t, r, θ, φ) =
∑

ℓ≥2,|m|≤ℓ

hℓm(t, r)−2Yℓm(θ, φ) (7.1)

The even (odd) components of the strain are obtained by solving the Zerilli (Regge-Wheeler) equation[
∂2

t − ∂
2
r∗ + Vℓm(r∗)

]
Ψℓm(t, r∗) = Sℓm(t, r∗) , (7.2)

where we have introduced the tortoise coordinate with the convention r∗ = r + 2 log (r/2 − 1). The strain

multipoles hℓm can be computed from the Regge-Wheeler/Zerilli eigenfunctions Ψℓm through

Ψℓm =
hℓm

√
(ℓ + 2) (ℓ + 2) ℓ (ℓ − 1)

(7.3)

We divide the source function on the right-hand side into two different components

Sℓm(t, r∗) = S ℓm(t, r∗) + S ID
ℓm(t, r∗) . (7.4)

S ID
ℓm is the initial-data source, i.e.

S ID
ℓm(t, r∗) = Ψℓm(t0, r∗)∂tδ(t − t0) + ∂tΨℓm(t0, r∗)δ(t − t0) . (7.5)

While the source function S ℓm(t, r∗) of Eq. (7.4) has a generic time dependence.

We focus on perturbations of a Schwarzschild BH driven by a test particle infalling into it. Since we

initialize the test particle far away from the BH, we can assume null data of the perturbation field on the

initial Cauchy hypersurface t = t0, i.e.

Ψℓm(t = t0, r∗) = ∂tΨℓm(t = t0, r∗) = 0 . (7.6)
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This condition implies S ID
ℓm ≡ 0, hence Eq. (7.4) depends only on the source function S ℓm. The latter is

localized on the test-particle trajectory and can be decomposed into two pieces

S ℓm(t, r∗) = f̃ℓm (t, r∗) δ (r∗ − r∗ (t)) + g̃ℓm (t, r∗) ∂r∗δ (r∗ − r∗ (t)) . (7.7)

Explicit expression for the source functions f̃ℓm, g̃ℓm can be found in Appendix A.

The test-particle trajectory (r(t), φ(t), θ(t) = π/2), with φ(t), θ(t) azimuthal and polar angle respectively, is

computed solving the Hamiltonian equations of motion in Eq. (5.8) driven by radiation-reaction effective

forces discussed in Sec. 3.4. These equations are solved numerically with the RWZHyp code [93, 94].

The code also solves for the gravitational perturbation Ψℓm at future null infinity I+, which we will use to

test our analytical predictions. The analytical results presented in this Chapter are informed only on the

numerical trajectory, which is completely independent from the numerical waveform. More details on the

RWZHyp code can be found in Sec. 5.1.

Due to the inclusion of radiation reaction, the trajectory is non linear. By feeding this trajectory into the

source for the linearized perturbations, we obtain a treatment that is not formally consistent with first-order

perturbation theory. We refer to Chapter 1 for a discussion of the validity of this approach. In Chapter 8,

we argue that, due to the quasi-geodesic nature of the motion during the final stages of the plunge, we

expect the results presented in this chapter to be valid within a first-order perturbation theory framework.

7.2 Analytical predictions

7.2.1 QNMs propagation and regularity

The general solution of Eq. (7.2) can be computed by means of the Green’s function (GF) method as

Ψ(t, r∗) =
∫ ∞

−∞

dt′
∫ ∞

−∞

dr′∗G(t − t′; r∗, r′∗)S(t′, r′∗) , (7.8)

In Chapter 2, we reviewed this method and investigated the GF of a Schwarzschild BH background.

Following Ref. [14], we showed that this GF can be separated into three different components: an

initial “prompt” response, a late-time “tail” and, at intermediate times, a “ringing” signal. The latter is

a superposition of exponentially decaying oscillatory modes, the quasi-normal modes (QNMs). In this

chapter, we will focus on the portion of the signal (7.8) propagated by the QNMs GF.

In Eq. (7.8), the integral is not actually performed in the entire domain t′ ∈ (−∞,∞); the choice of GF

will self-consistently impose a causality condition describing how the signal propagates with respect to

the light-cone. In particular, to describe a physical signal we select the retarded GF, which enforces the

condition of propagation inside/on the light-cone. As detailed in Sec. 2.3.1, in the past the QNMs response

was considered as a scattering off the peak of the potential barrier describing the curved background

geometry [14, 118, 15, 119]. Following this heuristic argument, given initial data localized at (t′, r′∗ ≫ 0)

and an observer located at r∗ ≫ r′∗, the QNMs response was expected to dominate the signal only for

t − r∗ ≥ t′ + r′∗.
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Figure 7.1: Schematic representation of the complex-frequencies plane relative to the integrand in

Eq. (7.14). The zig-zagged line is the branch cut, crosses are the simple poles of the integrand. Thick and

dashed lines represent two possible closed contours: Γ1 + Γ
′
2 and Γ1 + Γ2 + Γ3 + Γ4 + Γ5 + Γ6. Figure

taken from Ref. [1].

In this section, we derive a first-principle prescription identifying over which portion of the light-cone the

QNMs GF propagates a generic perturbation source.

We do not impose any prescription on the source coordinate r′∗, but we assume an observer placed far

away r∗ ≫ r′∗ and ωr∗ ≫ 1. The GF in the Fourier domain can be written as follows

G̃(ω; r∗, r′∗) =
i eiωr∗

2ωAin(ω)
ũin(ω, r′∗) , (7.9)

obtained substituting the asymptotic expression for ũout, Eq. (2.52), and the Wronskian expression in

Eq. (2.66) into the definition Eq. (2.49). In Eq. (7.9), ũin(ω, r′∗) is a solution of the homogeneous RWZ

equation in frequency domain, Eq. (2.50), which reduces to a unitary ingoing plane wave e−iωr∗ in the

limit r∗ → −∞, as in Eq. (2.51). In particular, as detailed in Sec. 2.2.1, the solution ũin can be written as

ũin(ω, r∗) = Ain(ω)ũ∞−(ω, r∗) + Aout(ω)ũout(ω, r∗) , (7.10)

with ũ∞− satisfying ũ∞− → e−iωr∗ in the limit r∗ → ∞. The quasi-normal frequencies (QNFs) are values

ω = ωn for which Ain(ωn) = 0. At these frequencies, ũin reduces to a solution behaving as a purely

ingoing (outgoing) plane wave at the horizon (infinity), i.e. ∝ e±iωr∗ for r∗ → ±∞.

Substituting Eq. (7.10) into Eq.(7.9), the Fourier domain GF can be divided in two contributions

G̃(ω; r∗, r′∗) = G̃(1)(ω; r∗, r′∗) + G̃(2)(ω; r∗, r′∗) , (7.11)

with

G̃(1)(ω; r∗, r′∗) =
i

2ω
eiωr∗ ũ∞−(ω, r′∗) , (7.12)

G̃(2)(ω; r∗, r′∗) =
i Aout(ω)
2ωAin(ω)

eiωr∗ ũout(ω, r′∗) . (7.13)

The term G̃(2) has isolated poles at the QNFs, yielding the time-domain QNMs response, while G̃(1) is

regular at the QNFs. As a consequence, only G̃(2) propagates the QNMs: in this chapter we focus on this

component and discard G̃(1).
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Figure 7.2: Smooth deformation of the closed contour in Fig. 7.1, shown as a thick line. The deformation

is performed without crossing any singularity, hence integration along the two closed contours yields the

same result. The contour in Fig. 7.1 is computed for a radius R→ ∞ of the two quarters of circumference

in the lower-half plane. The current contour is computed for Rω → ∞ and overtone number n→ ∞. Only

in this limit is it possible to close the semi-circles enclosing the QNFs, as schematically represented in the

figure.

The time-domain retarded GF responsible for the QNMs signal is given by the following anti-Fourier

transform

G(2)(t − t′; r∗, r′∗) ≡
∫ ∞

−∞

dω
e−iω(t−t′)

2π
G̃(2)(ω; r∗, r′∗) ≡

∫ ∞

−∞

dω I(ω; t, t′, r∗, r′∗) . (7.14)

The integrand is singular in ω = 0 since, for small ω, ũout = ũ∞+ has the explicit expression in Eq. (2.62)

and contains a contribution ∝ lnω. To compute the integral along the real ω axis, we analytically continue

ω to the complex plane. The general structure of the integrand in the complex plane is well known [14]

and shown in Fig. 7.1. The function I(ω; t, t′, r∗, r′∗) has a branch cut originating from the branch point

ω = 0, which we fix on the negative imaginary axis in order to select the retarded GF (see the discussion

in Sec. 5.2). The integration in Eq. (7.14) is then performed on an axis parallel to the real line shifted

at Im(ω) = ϵ > 0 with ϵ ≪ 1. In the lower half-plane Im(ω) < 0, there is an infinite number of isolated

simple poles which, in the limit Im(ω)→ −∞ share the same real component Re(ωn) ≪ 1 [104]. From

now on, we will use the following notation for the real and imaginary components of the frequency

Re(ω) ≡ ωRe and Im(ω) ≡ ωIm.

The integral along the (shifted) real axis in Eq. (7.14) can be computed by means of the residue theorem,

once we choose a prescription to close the complex contour. We distinguish between two contours, shown

in Fig. 7.1. Both share the line parallel to the real axis and extending to infinity. One contour is closed on

the upper half-plane and the other on the lower half. In the upper half-plane the integrand in Eq. (7.14)

has no poles nor branch cuts, while in the lower half-plane the contour is closed to avoid the branch cut, as
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in Fig. 7.1. The closed contour is selected so that the residue theorem can be applied: the integrand needs

to be regular except for isolated poles. In particular, it needs to be regular for Im(ω)→ +∞ if we integrate

along Γ1 + Γ
′
2, and for Im(ω)→ −∞ if we integrate along Γ1 + Γ2 + ...Γ6. Since we are interested in the

QNMs, i.e. the contribution coming from the poles in the lower half plane, we investigate the values of

(t, r∗, t′, r′∗) for which the integration can be carried over Γ1 + Γ2 + ...Γ6.

We can deform the contour in Fig.7.1 without changing the value of the integral, provided that no

singularity is excluded from the enclosed region. In the limit ωIm → −∞ the QNFs have a small real part

and are close to the branch cut. In this limit, we deform the contour to encircle the QNFs, as shown in

Fig. 7.2. Integrating along the thick line in Fig. 7.1 yields the same result as integrating over the thick

contour shown in Fig. 7.2, since the new contour can be “stretched” into the old one without crossing

any singularity. From the schematic representation of Fig. 7.2 for ωIm → −∞, in the lower half-plane

the contour can be deformed to encircle each QNF. The lines connecting each QNFs (di in Fig. 7.2) give

vanishing contribution, since integration along −di and di cancels out. Then, for ωIm → −∞ we can

approximate the homogeneous mode uout in Eq. (7.13) with the solution at the QNFs

ũout(ω; r′∗) ≃ ũh(ω; r′∗) ≡ eiω
[
r′∗−4 log

(
r′−2

r′
)]

â(ω, r′) . (7.15)

with ũh(ω; r′∗) defined in Eq. (2.56) and where we have introduced â(ω, r′) as

â(ω, r′) ≡

∑∞
k=0 ak(ω)

(
1 − 2

r′
)k∑∞

k=0 ak(ω)
. (7.16)

Substituting Eq. (7.15) into the integrand of Eq. (7.14), we can write the expression of I(ω) near the QNFs,

valid for |ωIm| ≫ 1

I(ω ≈ ωn; t, t′, r∗, r′∗) ≃
[

i Aout(ω)
4πωAin(ω)

· â(ω, r′)
]

· e−iω[t−r∗−C(t′,r′∗)] , (7.17)

with C(t′, r′∗) defined as

C(t′, r′∗) ≡ t′ + r′∗ − 4 log
(
r′ − 2

r′

)
. (7.18)

and â(ω, r′) defined in Eq. (7.16).

We will assume that the following limits are satisfied

lim
ωIm→−∞

1
Im(ω)

log
∣∣∣∣∣Aout(ω)

Ain(ω)

∣∣∣∣∣ = 0 , lim
ωIm→−∞

log |â(ω, r′)|
Im(ω)

= 0 ∀ r′ . (7.19)

The first limit can be motivated by the results of Andersson [280, 15] obtained in the limit of large ω. In

particular Andersson [15] explicitly computed the ratio Aout/Ain in the limit ω ≫ 1, as

Aout(ω)
Ain(ω)

=
(4iω)4iωe−4iωΓ(1/2 − 4iω)

√
πeiπ/2

. (7.20)

We expand the expression above in the limit ωIm → −∞ and approximate ωRe ≈ 0

lim
ωIm→−∞

∣∣∣∣∣Aout(iωIm)
Ain(iωIm)

∣∣∣∣∣ = 1
√

2
| sec

(
4π|ωIm|

)
| =

√
2

|e4iπ|ωIm | + e−4iπ|ωIm ||
. (7.21)
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We substitute this expression in the first limit in Eq. (7.19), and find

lim
|ωIm |→∞

−
1

2|ωIm|
log

[
1
2

e−8iπ|ωIm |
(
1 + e8iπ|ωIm |

)2
]
= 0 (7.22)

The second limit in Eq. (7.19) can be shown to be valid for r′ ≫ 1, since â(ω, r′ ≫ 1) → 1 regardless

of ω. The term â(ω) → 1 does not contain contributions ∼ eiωr′ , hence we expect the second limit in

Eq. (7.19) to be valid everywhere.

Then, the behavior of the integrand in Eq. (7.14) for |ωIm| ≫ 1 is determined by the exponential term in

Eq. (7.17)

lim
ωIm→−∞

I(ω; t, t′, r∗, r′∗) =

 < ∞ , t − r∗ ≥ C(t′, r′∗) ,

→ ∞ , t − r∗ < C(t′, r′∗) .
(7.23)

We conclude that for t − r∗ ≥ C(t′, r′∗) the integral in Eq. (7.14) should be computed through a closed

contour in the lower half complex ω plane (Γ1+ ...Γ6 in Fig. 7.1), where it picks up the QNM contributions.

Instead, for t − r∗ < C(t′, r′∗) the contour should be closed on the upper half plane (Γ1 + Γ
′
2 in Fig. 7.1),

where ũin,out are analytical: this integration does not contribute to the QNMs response. The integration of

Eq. (7.14) can proceed as detailed in Sec. 2.2.1, with the addition of an Heaviside function resulting from

the above discussion

GQNMs
ℓm (t − t′; r∗, r′∗) = θ

[
t − r∗ − C(t′, r′∗)

] ∞∑
n=0

∑
s=±

Bℓmns e−iωℓmns[t−r∗−C(t′,r′∗)]â(ωℓmns, r′) . (7.24)

The geometrical excitation factors Bℓmns were introduced in Eq. (2.74), as functions of the coefficients

αn,s defined therein. The results presented in this chapter make use of the αn,s computed by Leaver [14].

Note that Leaver [14] works with a variable s related to our frequency as s = −2iω. As a consequence,

our definition of the coefficients αn,s differs from Leaver’s one by αn,s = −2iαLeaver
n,s .

In Eq. (7.24), the Heaviside function crucially determines how the QNMs response is propagated on the

curved BH spacetime, i.e. on which section of the light-cone interior t − r∗ ≥ t′ − r′∗ the QNMs travel,

t − r∗ ≥ C(t′, r′∗) . (7.25)

Given its role, we thus refer to C(t′, r′∗) as the causality condition function.

In Fig. 7.3 we show the light-cone portion selected by the condition (7.25) assuming t′ = 0 for different

radii r′∗ of the initial pulse in Eq. (2.45). We compare this condition with the “scattering” condition

usually considered in the literature [14, 118, 15, 119] when discussing the propagation of QNMs, i.e.

t − r∗ > t′ + r′∗.

Our condition (7.18) has the following asymptotic behavior

C(t′, r′∗) ≃ t′ − r′∗ r′∗ → 2 ,

C(t′, r′∗) ≃ t′ + r′∗ r′∗ ≫ 2 .
(7.26)

Substituting the above limits into Eq. (7.25), yields

t − r∗ ≥ t′ − r′∗ r′∗ → 2 ,

t − r∗ ≥ t′ + r′∗ r′∗ ≫ 2 .
(7.27)
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Figure 7.3: Time t = tobs at which an observer located at r∗,obs = 100M sees an impulsive signal emitted

at r′∗ and t′ = 0. In black, a signal traveling on the light cone tobs − r∗,obs = t′ − r′∗. In blue, a perturbation

scattering at r∗ = 0, i.e. tobs−r∗,obs = t′+r′∗. In purple, the propagation of QNMs, i.e. tobs−r∗,obs = C(t′, r′∗)

with C(t′, r′∗) defined in Eq. (7.18).

Both limits are captured in Fig. 7.3. For initial data far from the BH, the “scattering” causality condition

well approximates Eq. (7.18). However, when approaching the light-ring, the “scattering” prescription

becomes ill-defined: for r′∗ < 0 it prescribes a signal traveling outside the light cone (going below the black

line in Fig. 7.3). For data well inside the light-ring, we find that QNMs propagate along the light-cone,

and are thus affected by the horizon redshift, as we are going to explicitly show below. Interestingly,

Eq. (7.18) corresponds to the hyperboloidal time coordinate in the minimal gauge [281, 282, 283]. This

yields the first prediction of our computation: the QNMs GF propagates perturbations on hyperboloidal

slices in the minimal gauge.

Note that the causality condition in Eq. (7.24) guarantees that the GF is regular for all (t′, r′∗). If we

consider an initial pulse approaching the horizon, it holds C(t′, r′∗ → −∞)→ ∞. As a consequence, the

exponential piece in Eq. (7.24) diverges as e|ω
Im
ℓmn |C(t′,r′∗). However, the amplitude observed at I+ stays finite:

the causality condition in Eq. (7.24) shifts the time at which an observer at I+ can see the perturbations

towards infinity, exactly at t − r∗ = C(t′, r′∗)→ ∞, canceling the divergence. The physical interpretation is

that a signal emitted at the horizon undergoes an infinite redshift, reaching the observer only at t− r∗ → ∞.

Hence, the divergent piece e|ω
Im
ℓmn |C(t′,r′∗) in Eq. (7.24) does not require any regularization procedure: one

should simply compute the full observable. We will discuss this point in more detail and compare our

results with regularization techniques proposed in the literature in Sec. 7.2.3.

The QNMs GF in Eq. (7.24) is only a portion of the full GF, given by the contribution of the simple poles

(the QNFs) of G̃(2) to the Fourier transform in Eq. (7.14). The full Fourier transform of G̃(2) receives

contributions also from the branch cut and from the ωRe ≫ 1 contour in Fig. 7.2. Since the branch
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cut is present only in the lower-half ω-plane, and we close the contour in this portion of the plane for

t − r∗ ≥ C(t′, r′∗), the branch cut contribution coming from G̃(2) will also carry a factor θ
[
t − r∗ − C(t′, r′∗)

]
in time domain. The response propagated (in time domain) by the Fourier anti-transform of G̃(1) is,

instead, unaffected by this causality condition, since G̃(1) is analytical at the QNFs. We argue that this

piece originates the prompt response, propagating signals on the curved light-cone t − r∗ ≥ t′ − r′∗. Here,

we focus on the QNM component and leave the treatment of the other two contributions to future studies.

7.2.2 QNMs signal

We now compute the QNM response to a test particle falling into a Schwarzschild BH on a generic

trajectory, by solving Eq. (7.2) with null initial data

Ψℓm(t = 0, r∗) = ∂tΨℓm(t = 0, r∗) = 0 . (7.28)

i.e. S ID
ℓm ≡ 0 in Eq. (7.4) and Sℓm = S ℓm from Eq. (7.7). This is a good approximation when the evolution

starts with the particle far away from the BH, much before the merger occurs. The explicit expression for

S ℓm is given in Appendix A.

Substituting the source S ℓm and the QNMs GF in Eq. (7.24) into the general solution Eq. (7.8), yields

Ψℓm(t, r∗) =
∑
n,s

Bℓmnse−iωℓmns(t−r∗) [cℓmns(t − r∗) + iℓmns(t − r∗)] . (7.29)

with

cℓmns(t − r∗) =
∫ ∞

−∞

dt′
∫ ∞

−∞

dr′∗δ(r
′
∗ − r∗(t′))θ

[
t − r∗ − C(t′, r′∗)

]
×[

uℓmns(t′, r′∗) f̃ℓm(t′, r′∗) − ∂r′∗
(
uℓmns(t′, r′∗)g̃ℓm(t′, r′∗)

)] , (7.30)

iℓmns(t − r∗) =
∫ ∞

−∞

dt′
∫ ∞

−∞

dr′∗δ(r
′
∗ − r∗(t′))δ

[
t − r∗ − C(t′, r′∗)

] ∂C(t′, r′∗)
∂r′∗

· uℓmns(t′, r′∗)g̃ℓm(t′, r′∗) . (7.31)

We compute Regge-Wheeler modes (ℓ + m odd) through a Mathematica notebook implementing Leaver’s

algorithm [104]. The Zerilli modes (ℓ + m even) are computed from the Regge-Wheeler ones through

Chandrasekhar transformations (see Chapter 4 of Ref. [113]), as we review in Appendix C. In order to

track the role of the causality condition, we write uℓmns in Eqs. (7.30), (7.31) as

uodd
ℓmns(t

′, r′∗) = eiωℓmnsC(t′,r′∗) · â(ωℓmns, r′) , (7.32)

with â(ωℓmns, r′) as in Eq. (7.16) for Regge-Wheeler modes and

ueven
ℓmns(t

′, r′∗) = eiωℓmnsC(t′,r′∗) · ẑ(ωℓmns, r′) , (7.33)

for Zerilli modes. The expression of ẑ(ω, r) is lengthy, and shown in Appendix C.

The two terms in Eqs. (7.30), (7.31) are labeled “excitation” cℓmns and “impulsive” iℓmns coefficients,

respectively. The excitation coefficients originate from the δ(r′∗ − r∗(t′)) piece in the source, and yield
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the constant QNMs amplitudes at late times. These coefficients are an integral over the past history of

the source, hence they accumulate in time more or less efficiently depending on the overtone number

(i.e. on the decay rate of the eigenmode). The coefficients iℓmns come from the ∂r∗δ(r′∗ − r∗(t′)) portion of

the source in Eq. (7.7), after integrating by parts in dr′∗. This integration is justified since the function

convoluted with the Dirac delta vanishes at the boundaries (as discussed in Sec. 7.2.1, the causality

condition regularize the diverging QNMs eigenmodes at H+). Contrary to the cℓmns, the iℓmns are not

integrals over the past history of the source (hence cannot accumulate), but are strictly local terms (see

Eq. (7.36)). The iℓmns terms do not appear in the absence of a persistent source (e.g., in the response to

initial data confined to one slice). For this reason, we have denoted the iℓmns as impulsive coefficients.

More details are given in Sections 7.2.3, 7.3.

The double integral in the definition of iℓmns can be solved using the properties of the Dirac delta. We first

use δ(r′∗ − r∗(t′)) to solve the integral in r′∗ and evaluate the integrand in dt′ on the trajectory r∗(t′). Then,

we use the following Dirac delta property to compute the integral on t′

δ
[
t − r∗ − C(t′, r∗(t′))

]
=

r2(t̄)δ(t′ − t̄)
ṙ∗(t̄)

[
8 − r2(t̄)

]
− r2(t̄)

, (7.34)

where we have introduced t̄ = t̄(t − r∗) solution of

t − r∗ − C(t̄, r∗(t̄)) = 0 . (7.35)

Substituting Eq. (7.34) into Eq. (7.31), and after performing the integration in t′, we find the expression

for the impulsive coefficients

iℓmns(t − r∗) =

[
r2(t̄) − 8

]
uℓmns(t̄, r∗(t̄))g̃ℓm(t̄, r∗(t̄))

ṙ∗(t̄)
[
8 − r2(t̄)

]
− r2(t̄)

. (7.36)

To compute the excitation coefficients cℓmn, we use the Dirac delta to solve the integral in t′ through the

property

δ(r′∗ − r∗(t′)) = −
δ(t′ − t(r′∗))

ṙ∗(t(r′∗))
(7.37)

We are then left with an integral in r′∗, with integrand computed on the trajectory t(r′∗)

cℓmns(t − r∗) = −
∫ ∞

r̄∗
dr′∗

1
ṙ∗(t(r′∗))

[
uℓmns f̃ℓm − ∂r′∗ (uℓmnsg̃ℓm)

]
(t(r′∗),r′∗)

, (7.38)

where we define r̄∗ = r̄∗(t − r∗) solution of

t − r∗ − C(t(r̄∗), r̄∗) = 0 . (7.39)

We will solve the integral Eq. (7.38) numerically in Section 7.3.

It is useful to introduce two new functions ψℓmns, ζℓmns denoted respectively as excitation and impulsive

contributions to the full QNMs signal in Eq. (7.29), as

ψℓmns(t − r∗) ≡ Bℓmnscℓmns(t − r∗) e−iωℓmns(t−r∗) , (7.40)
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and

ζℓmns(t − r∗) ≡ Bℓmnsiℓmns(t − r∗) e−iωℓmns(t−r∗) . (7.41)

So that we can rewrite Eq. (7.29) as

Ψℓm(t, r∗) =
∑
n,s

[
ψℓmns(t − r∗) + ζℓmns(t − r∗)

]
. (7.42)

7.2.3 QNM signal after light-ring crossing

We now analyze the behavior of the integral appearing in the excitation coefficients expressions, Eq. (7.38),

after the particle apparent location (r̄ in Eq. (7.39)) has crossed the light ring (rLR = 3 for a Schwarzschild

background) and is falling towards the horizonH+, i.e. for values of the integrand variable in the interval

r′ ∈ (2, rLR].

NearH+, at leading order, the source functions and QNMs have the following behavior

f̃ℓm(t(r′∗), r
′
∗), g̃ℓm(t(r′∗), r

′
∗) ∝ (r′ − 2) + O[(r′ − 2)2] , (7.43)

uℓmns(t(r′∗), r
′
∗) ∝ eiωℓmnst(r′)(r′ − 2)−2iωℓmns

[
1 + O(r′ − 2)

]
. (7.44)

Inside the light ring, the motion of a test particle is quasi-geodesic [10, 9], and it holds, in the limit r → 2

t(r′) ∝ −2 log(r′ − 2) + O(r′ − 2) , (7.45)

i.e.,

eiωℓmnst(r′) ∝ (r′ − 2)−2iωℓmns
[
1 + O(r′ − 2)

]
. (7.46)

This follows from an expansion around r = 2 of the orbit, using e.g. Eq. (10.27) of [4].

Since we focus on retarded times t − r∗ such that r̄(t − r∗) < rLR, we can split the integral in Eq. (7.38), in

an integral over r′ ∈ [rLR,∞) and one over r′∗ ∈ [r̄, rLR]

cr̄<rLR
ℓmnp = cℓmnp(r̄ = rLR) −

∫ rLR

r̄
dr′

A−1(r′)
ṙ∗(t(r′∗))

[
uℓmnp f̃ℓm − ∂r′∗

(
uℓmnpg̃ℓm

)]
(t(r′∗),r′∗)

. (7.47)

We consistently expand the source functions f̃ℓm(t(r′∗), r
′
∗), g̃ℓm(t(r′∗), r

′
∗) and the QN eigenmodes uℓmns(t(r′∗), r

′
∗)

near H+ at r = 2, fixing the test-particle energy and angular momentum Ĥ, pφ to their values at the

light ring. We then substitute these Taylor-expanded expressions in the second term on the right-hand

side of Eq. (7.47) and expand its integrand in the same limit. Considering the leading order behavior in

Eqs. (7.43), (7.44) and (7.46), the near-horizon contribution to cℓmns can be approximated as

cr̄<3
ℓmns(t − r∗) − cℓmns(r̄ = 3) ≃

∞∑
k=0

γk,ℓmns
[
1 − (r̄ − 2)k+1−4iωℓmns

]
, (7.48)

where we have defined

γk,ℓmns ≡
ξk,ℓmns

k + 1 − 4iωℓmns
, (7.49)

with ξk,ℓmns constant coefficients of the integrand expansion, which depend on the geodesic parameters.
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In this sum, terms for which 4|ωIm
ℓmn| − k > 1 diverge for r̄ = 2. For a Schwarzschild BH, 4|ωIm

22n| > 1 for

n > 0, hence at least one term in the k sum is divergent for the overtones. Only the excitation coefficients

of the fundamental mode and its mirror mode, c220±, are regular as r̄ → 2. However, this divergence does

not appear in the observable waveform. In fact, r̄ is an apparent trajectory, function of the observer’s

retarded time t − r∗. It corresponds to the point of the test-particle trajectory at which the signal that

reaches I+ at the retarded time t − r∗ is emitted, traveling on the light-cone portion selected by our QNM

causality condition (7.18). An observer can never “see” an object fall through the event horizon of a BH,

since the signals emitted by the object are infinitely redshifted in this limit. This translates in t − r∗ → ∞

as r̄ → 2, which contributes a redshift factor that automatically regularizes the coefficients cℓmns, iℓmns.

This can be seen explicitly as follows. By definition of C(t, r) in Eq. (7.18), along a geodesic trajectory

inside the light-ring as in Eq. (7.45), we can approximate

C(t(r̄), r̄∗) ≃ −4 log
(
1 −

2
r̄

)
, r̄ → 2 . (7.50)

Substituting into Eq. (7.39) yields

r̄ − 2 = r̄ · e−(t−r∗)/4 . (7.51)

Note that we have recovered the well-known redshift factor for a Schwarzschild black hole, given by its

horizon surface gravity κH+ (see Eq.(12.5.4) of [284])

κH+ =
1
4
. (7.52)

When we insert the near-horizon apparent trajectory (7.51) into the expansion of the excitation coefficient

(7.48), we find

cr̄<3
ℓmns(t − r∗) − cℓmns(r̄ = 3) ≃

∞∑
k=0

γk,ℓmns

[
1 − r̄k+1−4iωℓmnse−

k+1
4 (t−r∗)eiωℓmns(t−r∗)

]
. (7.53)

The divergence is now isolated in the factor eiωℓmns(t−r∗), for t−r∗ → ∞. Once we reconstruct the signal, this

divergent term cancels with the e−iωℓmns(t−r∗) factor in Eq. (7.29). In particular, the excitation contribution

of each QNM ψℓmns, defined in Eq. (7.40), is regular at all times and, for the apparent trajectory portion

r̄ < 3, it holds

ψr̄<3
ℓmns(t − r∗) ≃ χℓmnse−iωℓmns(t−r∗) + e−(t−r∗)/4

∞∑
k=0

αk,ℓmns(t − r∗)e−
k
4 (t−r∗) , (7.54)

where we have defined

χℓmns = Bℓmns

cℓmns(r̄ = 3) +
∞∑

k=0

γk,ℓmns

 ,
αk,ℓmns(t − r∗) = Bℓmns γk,ℓmns r̄k+1−4iωℓmns .

(7.55)

Since r̄ is a function of (t − r∗) such that in the limit t − r∗ → ∞ it holds r̄ → 2, then in the same limit

αk,ℓmns → Bℓmns γk,ℓmns 2k+1−4iωℓmns .

135



Chapter 7. Dynamical excitation of quasi-normal modes

The first line of Eq. (7.54) is, as one might have expected, a complex exponential with a QN frequency

ωℓmns and constant coefficient χℓmns, which is regular for all n. The second line arises from the divergent

component in the excitation coefficient and is also regular for all n. This term, however, does not decay in

time as a QNM. To leading order in the k−expansion, the new term decays as e−(t−r∗)/4, i.e., it is a pure

redshift contribution that we will denote as leading redshift term. Each redshift term has a coefficient

αk,ℓmns that saturates to a constant at late times.

The late-time constant QNM amplitudes χℓmns receive two contributions: the first term on the right-hand

side of Eq. (7.55) accumulates during the inspiral and is a history term; the second is a local contribution

of the near-horizon quasi-geodesic behavior. Each mode’s contribution to the redshift terms amplitudes

αk,ℓmns, instead, is purely local and is activated by the near-horizon motion. These properties can be

interpreted as follows. The test-particle orbital frequency grows during the initial stages of the plunge,

until it reaches a maximum at the light-ring crossing; at later times, this frequency quickly decays to zero.

The test-particle source on the right-hand side of Eq. (7.2) oscillates with the test particle orbital frequency

as e−imφ(t). As a result, each QNM excitation is driven by the oscillating source until the light-ring crossing,

while it resembles a free oscillator for later times (see also discussion related to Fig. 7.8), when the driving

force has zero frequency. This is reflected in the late-time QNM amplitudes expression: each QNF is

quasi-resonantly excited before the light-ring crossing, and the history term in the definition of χℓmns is

dominated by the portion of the trajectory where the test-particle orbital frequency is closest to the QNF.

After the light-ring crossing, the driving force is non-oscillating. Hence, each QNM is excited as a free

oscillator, and the contribution of the post light-ring crossing motion is constant along this portion of the

trajectory (the term which depends on γk,ℓmns in Eq. (7.55)). However, the QNM propagated response is

not a free oscillator: there is still a forcing term on the right-hand side of Eq. (7.2) with zero frequency.

The particular solution associated with this non-oscillating driving force is the redshift.

For the quadrupole modes, it holds |ωIm
22n>0| > 1/4. As a consequence, the redshift term will eventually

dominate the QNM decay of all overtones. The time of transition to a redshift-led decay depends on the

relative amplitudes of the QNM with respect to the redshift terms. We investigate this for different orbital

configurations in Sec. 7.3.

In the mathematical relativity literature, it was already known that perturbations at the horizon measured

by an observer at I+ must be exponentially redshifted, as discussed by Rodnianski and Dafermos [277]

and noted already by Price [16] in the context of a spherical collapse. Refs. [278, 279] found, respectively,

the leading and sub-sub-leading redshift terms for a test particle plunging into a Kerr BH. In particular,

Refs. [278, 279] focused only on the near-horizon limit, computing the convolution of the source and

the GF in the frequency domain, later switching to the time domain. Instead, in the present chapter, we

compute the convolution of the source and the (full) QNMs GF as already defined in the time domain. The

near-horizon expansion is a byproduct of our analysis and will be tested against the full result in Sec. 7.3.

We repeat the same calculation for the impulsive coefficients iℓmns in Eq. (7.36) and their contribution to

the QNM signal ζℓmns, as defined in Eq. (7.41). Expanding both source functions and the QN eigenmodes
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7.3 Time-dependent ringdown

in the limit r′ → 2, given the leading order behaviors in Eqs. (7.43), (7.44) and (7.45), we find

ir̄<3
ℓmns(t − r∗) ≃ (r̄ − 2)1−4iωℓmns

∞∑
k=0

βk,ℓmns (r̄ − 2)k . (7.56)

For the quadrupole overtones, 1 − 4|ωIm
22n>0| < 0. Hence, there is at least one term in the k-sum above

that is divergent at the horizon. Exploiting the causality condition through Eq. (7.51), we can write the

impulsive contribution ζℓmns to the full waveform as

ζ r̄<3
ℓmns(t − r∗) ≃ e−

(t−r∗)
4

∞∑
k=0

δk,ℓmns(t − r∗) · e−
k
4 (t−r∗) . (7.57)

where we have introduced

δk,ℓmns ≡ Bℓmns βk,ℓmnsr̄k+1−4iωℓmns , (7.58)

so that at late times t − r∗ → ∞, we have δk,ℓmns → Bℓmns βk,ℓmns2k+1−4iωℓmns . Again, the divergence is

exactly canceled by the factor e−iωℓmns(t−r∗) in the full signal, so that all terms in Eq. (7.57) are finite.

Past literature on QNMs excitation coefficients, to the best of our knowledge, did not account for causality;

hence, the radial integral in Eq. (7.38) is always extended to the horizon, r̄ = 2, (see e.g. [276] in the case

of a test-particle source) resulting in a divergence if the source of the perturbation is not compact towards

H+. Refs. [14, 118] proposed an analytical continuation on a deformed contour in the complex r-plane

to regularize the integral. This is equivalent to adding a regularizing counter term [51, 285], exactly

removing the divergent piece in Eq. (7.48) as detailed in Appendix D. We will refer to this approach as

“standard regularization”.

Instead, here we find that causality implies that the excitation coefficients are time-dependent: this

dependence is encoded in the lower limit of the radial integral in Eq. (7.38), r̄. Indeed, these coefficients

depend explicitly on r̄ as defined in Eq. (7.39), the apparent location of the test particle for the observer

at I+, as a consequence, they are a function of t − r∗. Due to the horizon infinite redshift, the excitation

coefficients are only evaluated at r̄ → 2 in the limit t − r∗ → ∞. By substituting this time dependence into

Eq. (7.48), it is possible to see that the divergence term, removed by the standard regularization, yields a

regular observable decaying with the BH redshift. However, the two methods are not inconsistent with

each other: the standard regularization technique is only valid in the limit t − r∗ → ∞. At this time, all the

information emitted by the source while falling towards the horizon has escaped to I+, and the redshift

term, canceled by the standard regularization, has effectively vanished.

7.3 Time-dependent ringdown

In this section, we investigate the excitation cℓmns and impulsive iℓmns coefficients and their contribution to

the waveform multipole Ψℓm, defined as ψℓmns in Eq. (7.40) and ζℓmns in Eq. (7.41) respectively. Then,

we use these contributions to construct the predicted signal propagated by the QNMs GF, Eq. (7.42), and

compare this result against numerical perturbative simulations. We focus on the quadrupole (ℓm) = (22),

and consider as trajectories the quasi-circular inspiral e0 = 0.0 in Table 5.1 and a radial infall from r0 = 50
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50 10 0 7 20 30 50
LR

10 3

10 2

10 1

100

|B
m

n±
c

m
n±

|

(220)
(220 )

50 10 0 7 20 30 50
LR

10 12

10 9

10 6

10 3

100

103

|B
m

n±
c

m
n±

|

(221)
(221 )
(222)
(222 )

5.22 3.97 3.00 2.27 2.01 2.001 2.000
r

5.22 3.97 3.00 2.27 2.01 2.001 2.000
re0 = 0.0

50 10 0 7 20 30 50
LR

10 5

10 4

10 3

10 2

|B
m

n±
i

m
n±

|

(220)
(220 )

50 10 0 7 20 30 50
LR

10 10

10 7

10 4

10 1

102

|B
m

n±
i

m
n±

|

(221)
(221 )
(222)
(222 )

5.22 3.97 3.00 2.27 2.01 2.001 2.000
r

5.22 3.97 3.00 2.27 2.01 2.001 2.000
r

Figure 7.4: Top: Absolute value of the QNM excitation coefficients c22n± (top) and impulsive ones

i22n± (bottom) (weighted with the geometric excitation factors B22n±) of the modes (220±) (left) and

(221±), (222±) (right), vs the retarded time of the observer τ with respect to τLR, as defined in Eq. (7.59).

On the top horizontal axes, we show the apparent location r̄ of the test particle emitting the signal observed

at τ, as defined in Eq. (7.39). Results relative to a quasi-circular orbit, e0 = 0.0 in Table 5.1.

with test-particle initial energy E0 = 1.00. A brief comment on additional configurations, the eccentric

inspirals e0 = 0.5, 0.9 in Table 5.1, can be found at the end of the section, in Sec. 7.3.5.

We solve numerically for the trajectory by means of the RWZHyp code, as detailed in Sec. 7.1. This

quantity is then fed into the integral in Eq. (7.38) for cℓmns and into expression Eq. (7.36) for iℓmns. We

perform the integral in Eq. (7.38) to compute the excitation coefficients, after the change of variables

dr = A(r)dr′∗, through the Python function numpy.integrate.sims.

We use τ = t − r∗ + ρ+, as in Eq. (5.10), to denote the observer’s retarded time. We also rescale all times

by

τLR ≡ C(t(r = 3), r = 3) . (7.59)

This is the retarded time at which the signal that is emitted when the test particle crosses the light ring,

traveling on the QNM light-cone section Eq. (7.25), reaches the observer at I+.
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Figure 7.5: Same as Fig. 7.4, for radial infall from r0 = 50 with test-particle initial energy E0 = 1.00.

7.3.1 Excitation c22n± and impulsive i22n± coefficients

In Fig. 7.4 we show the excitation and impulsive coefficient of the (220±) and the first two overtones

(221±), (222±), for the quasi-circular inspiral e0 = 0.0 in Tab. 5.1.

The c220+ coefficient behaves approximately as an activation function: it grows until it reaches a maximum

value around τ ≈ τLR + 7, and it saturates to a constant at late times. Interestingly, c220+ grows even once

the test particle has crossed the light ring. In particular, its maximum is emitted when the test particle is at

r̄ ≈ 2.27. The mirror mode c220− appears to be more sensitive to the near horizon motion: this quantity

has a maximum around the same τ , r̄ as c220+, but it saturates to a constant value at much later times, for

τ ≈ τLR + 40, r̄ → 2.

In the bottom panel of Fig. 7.4, we show the impulsive coefficients for the modes (220±), i220±. Contrary

to the coefficients c220±, which grow and eventually saturate to a constant, the i220± contribute only close

to the light-ring crossing, and vanish at both early and late times. These results are in agreement, at

late times, with the expansions in Eqs. (7.48), (7.56). In fact, since we are considering n = 0, then

4|ωIm
220| ≃ 0.356 < 1 and all terms in the expansions in Eqs. (7.48), (7.56) are regular. Equation (7.48)

is dominated by a constant in the limit r̄ → 2, with all the other terms vanishing, yielding the constant

amplitude of the (220±). The expansion for the impulsive coefficients in Eq. (7.56), instead, vanishes for

r̄ → 2 as (r̄ − 2)1−4|ωIm
220 |.
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Chapter 7. Dynamical excitation of quasi-normal modes

In Fig. 7.4, we also show the excitation and impulsive coefficients for the first two overtones and their

mirror modes (221±), (222±). We find that both c221± and i221± grow (although slowly) in τ, r̄ and do

not saturate to a constant value nor vanish in the limit τ ≫ τLR, r̄ → 2. This can be explained through

the near horizon expansions in Eqs. (7.48), (7.56), considering that 4ωIm
221 ≃ 1.096 ≳ 1: the leading order

behavior in these expressions is given by (r̄ − 2)1−4|ωIm
221 |, which diverges (slowly). Even if this divergent

contribution has a smaller amplitude than the constant O[(r̄ − 2)0] term present in c221±, it will eventually

dominate the excitation coefficient.

For the (222±) modes, 4|ωIm
222| ≃ 1.91. In this case, the post light-ring crossing behavior of c222±, i222±

displays a faster growth compared to the first overtone coefficients. In c222±, the divergent behavior

(r̄ − 2)1−4|ωIm
222 |, completely swamps the constant contribution in Eq. (7.48). The retrograde mode c222−

shows a very short time interval ≈ 5M in which it is approximately constant. For higher overtones, our

results are similar to what is already shown in Fig. 7.4 for n > 0: c22n>0±, i22n>0± diverge at late times,

with higher overtones displaying a faster growth.

In Fig. 7.5, we repeat the same analysis for a radial infall from r0 = 50 with initial energy E0 = 1.00. Note

that the (+), (−) modes are degenerate, as expected from the perturbation symmetry. The c220± behavior

is qualitatively similar to the quasi-circular plunge. However, now c220± reach their maximum at τ ≲ τLR,

or r̄ ≲ 3, earlier than in the quasi-circular case.

The overtone behavior is more interesting. As shown in the top right panel of Fig. 7.5, the c221± are

increasing functions at early times (as in the quasi-circular case) but saturate to an approximate constant

value just before the particle reaches the light ring. In the quasi-circular case, the c221± exhibit a growing

trend at all times, also after the light-ring crossing, albeit slow. The excitation coefficient of the n = 2

overtone and its mirror mode exhibit a similar behavior: c222± grow until a time τ ≲ τLR, then there is a

transient during which c222± is approximately constant lasting until τ ≈ 10 + τLR. Only after this time,

c222± starts growing. In the quasi-circular case, instead, the c222± grow at all times.

We interpret these results as follows: in the radial infall, the amplitude of the term giving rise to the

late time divergence in the overtones, O[(r̄ − 2)1−4|ωIm
22n |] in Eq. (7.48), is suppressed with respect to the

amplitude of the constant term O[(r̄ − 2)0].

Finally, in the bottom panel of Fig. 7.5, we investigate the impulsive coefficients i22n±, n = 0, 1, 2 excited

in the radial infall. For τ ≳ τLR the i22n± are smaller than in the quasi-circular case, showcasing a

suppression of the divergent factor O[(r̄ − 2)1−4|ωIm
22n |] also in the impulsive terms.

Overall, in the full signal propagated by the QNMs GF, Eq. (7.29) all terms behaving as ∝ O[(r̄−2)1−4|ωIm
22n |]

are suppressed for radial infalls.

As shown in the bottom row of Figs. 7.4 and 7.5, the impulsive coefficients iℓmn± of the fundamental mode

and the first two overtones have a zero near the apparent light-ring crossing. This feature signals a change

in the behavior of the coefficients, marking the time after which the near-horizon expansion in Eq. (7.56)

becomes valid. Such a sharp change in behavior is not visible in the excitation coefficients cℓmns; the

reason is that, at late times, there is an additional component in their definition (the constant in Eq. (7.48))
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which interferes with the time-dependent one.

7.3.2 Excitation |ψ22n±| and impulsive |ζ22n±| contributions to the waveform
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Figure 7.6: Left: Contribution to the full signal of the excitation coefficients ψ22n± in Eq. (7.40) (top

row) and impulsive ones ζ22n± in Eq. (7.41) (bottom row) vs the retarded time of the observer at I+.

Right: Contribution of excitation and impulsive coefficients to the full signal rescaled by their late-time

asymptotics, with Fn(τ) as defined in Eq. (7.60). Thick lines are results relative to the (22n+) modes,

n (different colors) denotes the overtone number. In dot-dashed, the mirror modes (22n−) results. The

retarded time of the observer is translated with respect to τLR, retarded time at which a signal emitted at

the light-ring crossing and traveling along the QNMs portion of the light cone in Eq. (7.39) reaches I+, as

defined in Eq. (7.59). On the top horizontal axes, the apparent location r̄ of the test particle emitting the

signal observed at τ, as defined in Eq. (7.39). Results relative to a quasi-circular inspiral-plunge, e0 = 0.0

in Table 5.1.

In the previous section, we analyzed the excitation and impulsive coefficients of the modes (22n±) with

n = 0, 1, 2, and we have shown that for the overtones n > 0, the coefficients diverge as τ ≫ τLR, r̄ → 2.

We motivated this behavior with the near-horizon expansions in Eq. (7.48), identifying the origin of this

divergence. As argued in Sec. 7.2.3, this divergence leads to an observable and should not be regularized:

even if the QN eigenfunctions are not regular at the horizon, a signal emitted at this location reaches I+ in
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Figure 7.7: Same as Fig. 7.6, but for a radial infall from initial separation r0 = 50 with initial energy

E0 = 1.00.

an infinite amount of time, exactly canceling the divergence.

In this section, we instead analyze the excitation ψℓmn± and impulsive ζℓmn± contributions to the waveform

for several QNMs. Interestingly, our calculations predict a new component of the signal at times τ > τLR:

a pure redshift term. This signal coexists with the standard constant-amplitude QNMs in ψℓmn±, and

completely dominates ζℓmn±.

In Fig. 7.6, we show the absolute value of |ψ22n±|, |ζ22n±| for n ≤ 6 in a quasi-circular orbit, as function of

τ − τLR and of the apparent position of the source r̄, defined in Eq. (7.39).

The fundamental mode excitation contribution (top left) grows until τ ≈ 7 + τLR, r̄ ≈ 2.27, then displays

an exponential decay. The behavior of |ψ22n>1±|, |ψ220−| is different: these quantities do not have a peak

near the light ring, but are decreasing functions of τ starting from early times ≲ τLR − 50. Interestingly,

for the modes (220−), (221), the excitation contribution is influenced by the source even for r̄ − 2 ≪ 1,

carrying information of the near-horizon region at late times, in agreement with the behavior of their

excitation coefficients shown in Fig. 7.4.

For n > 0 there is a transition near τ ≈ 7 + τLR, r̄ ≈ 2.27: before, each |ψ22n>0±| decays in τ − τLR at a

different rate, while for τ ≳ 7 + τLR all |ψ22n>0±| decay with the same rate. These results are consistent

with those of Sec. 7.3.1 and consistent with the near-horizon expansion of Eq. (7.48), giving rise to the

142



7.3 Time-dependent ringdown

redshift term ∝ e−τ/4 in Eq. (7.54). To better interpret this result, in the top right of Fig. 7.6 we show the

behavior of the rescaled quantity |Fn(τ) ·ψ22n±(τ)|, where

Fn=0(τ) ≡ e|ω
Im
220 |(τ−τLR) ,

Fn>0(τ) ≡ e(τ−τLR)/4 .
(7.60)

For τ ≳ 7 + τLR, |Fn(τ)ψ22n±(τ)| saturate to a constant value. Hence Eq. (7.60) correctly identifies the

asymptotic behavior of (the inverse of) |ψ22n±| at late times.

This experiment confirms the picture depicted by Eq. (7.54): at late times, in each ψ22n>0±, the overtone’s

characteristic rapid decay is swamped by the leading redshift term. In particular, in a quasi-circular plunge,

the ratios between each QNM amplitude, χℓmn±, and each QNM contribution to the leading redshift term,

α0,ℓmn± in Eq. (7.55), are such that the transition takes place close to the light-ring crossing, as shown in

Fig. 7.6. Note that the first overtone (221±) has imaginary frequency ωIm
221 ∼ 0.274 close to the redshift

decay factor κH+ = 0.25. This explains the oscillations around a constant value for the rescaled quantity

|Fnψ221+| shown in Fig. 7.6, as an interference between the leading redshift term in ψ221+ and its QNM

decay. These oscillations are not present for ψ221−: we then argue that the mirror mode (221−) is less

excited with respect to (221+) and the leading redshift term in n = 1.

In Sec. 7.3.5 we show these results for two eccentric configurations, e0 = 0.5, 0.9 in Table 5.1, finding the

same overall picture.

In Fig. 7.7, we investigate the excitation contributions ψ22n± for a radial infall from r0 = 50 with

test-particle initial energy E0 = 1.00. To investigate the relative QNM and redshift term excitation

α0,ℓmn±/χℓmn±, we study again |Fn ·ψ22n±|, top right of Fig. 7.7. The rescaled overtones contributions

saturate at late times towards a constant value for n ≥ 2, while |F1 ·ψ221±| is a decaying function at

late times τ ∼ 50 + τLR. This implies that ψ221± decays with its QNF behavior ∼ e−|ω
Im
221 |τ even for

τ ∼ 50 + τLR. Moreover, the transition from a QNM to a redshift term decay for the n = 2, 3, 4 happens at

later times compared to the quasi-circular and eccentric cases, which are shown in Figs. 7.6, 7.11 and 7.12.

Consistently with results in Sec. 7.3.1, the redshift term (originating from the divergent piece in c22n±) is

less excited in a radial infall compared to quasi-circular or eccentric plunges (even for large eccentricities).

We argue that this is due to the faster timescale of radial infall, which allows less information emitted near

the horizon to escape to infinity.

Similarly, on the bottom row of Figs. 7.6, 7.7, we show the contribution of the impulsive coefficients

|ζ22n±| for a quasi-circular plunge and a radial infall. In Section 7.3.5 we discuss the results obtained for

e0 = 0.5, 0.9, Figs. 7.11, 7.12, similar to those for e0 = 0.0. The |ζ22n±| are slowly decreasing functions of

τ, r̄ with different trends, up until τ ∼ 0, r̄ ∼ 3. From this time/apparent source location (corresponding

to the light-ring crossing) there is a change in the behavior, and the |ζ22n±| follow an exponential decay,

which is the same regardless of n. To investigate this behavior, we study

|ζ22n± e(τ−τLR)/4| , (7.61)

shown on the right bottom panels of Figs. 7.6, 7.7 (see also Figs. 7.11, 7.12 in Sec. 7.3.5). At τ ≳ τLR or

r̄ ≳ 3, this rescaled function saturates towards a constant, from which we infer the leading order coefficient

of the expansion in Eq. (7.57).
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Comparing the behavior of |ζ22n±| in a quasi-circular or eccentric plunge, Figs. 7.6, 7.11 and 7.12, versus

a radial infall, Fig. 7.7, we see that the impulsive contributions are more excited (suppressed) for τ ≲ τLR

(τ ≳ τLR) in the radial infall. We conclude that the redshift decay present in the post light-ring crossing

signal is suppressed for radial infalls also in the impulsive contributions |ζ22n±|. This is consistent with

the results discussed in the previous section, where we observed a suppression of the leading divergent

term in the near horizon expansion for iℓmn±, Eq. (7.56), originating the redshift contribution in the r̄ → 2

expansion of ζℓmn±, Eq. (7.57).

7.3.3 Predicted QNMs waveform vs numerical waveform

We can now use the excitation and impulsive contributions investigated in the previous section to construct

the QNMs portion of the signal, Eq. (7.42).

In Fig. 7.8, we compare the analytical results obtained by adding up to n overtones and their mirror

modes with the full (perturbative) numerical waveform obtained through the RWZHyp code, for the

quasi-circular inspiral-plunge. We show the strain polarizations, its amplitude and instantaneous frequency

as observed at I+ as a function of the retarded time τ, translated with respect to τLR defined in Eq. (7.59).

In particular, we show the rescaled amplitude A22e−ω
Im
220(τ−τLR): since the fundamental mode dominates

over other contributions at late times, as shown in Fig. 7.6, we expect this rescaled variable to saturate to a

constant.

We quantify the agreement between the analytical and the numerical waveforms through the residuals

Res.[%] = 100 ·
Xnumerical − Xanalytical

Xnumerical
(7.62)

The late-time signal for τ > τLR + 20 is in good agreement with our prediction, with residuals ∼ 2% in the

amplitudes and ∼ 0.4% in the frequencies. At earlier times, the residuals are much larger. In particular,

Fig. 7.8 shows a burst in proximity of the light-ring crossing τ ≲ 10 + τLR, r̄ ≲ 2.13. This result suggests

that the signal propagated through the QNMs GF is not sufficient to reproduce the full signal around the

time of light-ring crossing. Other contributions must be taken into account, coming from the prompt

response and the branch-cut portion of the GF.

At late times τ ≳ 20+ τLR, the signal is dominated by the fundamental mode. As we move to earlier times,

the overtones become progressively more relevant. For 0 ≲ τ − τLR ≲ 20, the first two overtones must

be included in the sum in Eq. (7.42). For times τ ≲ τLR, instead, n ≈ 5 overtones are necessary to reach

convergence in the analytical prediction.

The instantaneous frequency of the predicted signal in Fig. 7.8, grows in time until it saturates to a constant

value, corresponding to the fundamental mode, with beatings due to its mirror mode. For times τ ≲ τLR,

the growth in frequency is similar, albeit shifted, to the numerical waveform. However, while the latter

smoothly connects to the fundamental mode real frequency, our analytical prediction showcases a more

intricate behavior. In particular, the frequency of the QNMs portion of the signal grows until it has a (local)

peak at the light ring crossing, then saturates to a constant value with a faster growth. Indeed, before

the light-ring crossing, the source oscillates with mφ̇, and φ̇ grows in time until it reaches a maximum
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Figure 7.8: Top: polarizations of the strain quadrupole vs the retarded time τ of the observer at I+.

Bottom: quadrupole amplitude A22 rescaled with the factor e−ω
Im
220(τ−τLR) (left) and instantaneous frequency

(right) vs τ. The retarded time τ is translated with respect to τLR, the time at which the signal emitted

by the test particle at the light-ring crossing, traveling on the QNMs portion of the light-cone in Fig. 7.3

reaches I+, defined in Eq. (7.59). On the top horizontal axes, the apparent location r̄ of the test particle

emitting the signal observed at τ, as defined in Eq. (7.39). In gray, the numerical results obtained through

the RWZHyp code. Coloured lines represent the analytical prediction Eq. (7.29) obtained summing over a

different number n of overtones (different colors) and their respective counter-rotating modes. Results

relative to a quasi-circular inspiral-plunge, e0 = 0.0 in Table 5.1. In the bottom left panel, we also show the

residuals between numerical and analytical predictions for different values of n, as defined in Eq. (7.62).

exactly at the light-ring crossing. Afterwards, both the source and the orbital frequency rapidly die down.

Hence, the analytical predictions in Fig. 7.8 validate the quasi-resonant picture of Refs. [74, 75] for the

QNMs excitation during the plunge: until the source is still active, its typical oscillation drives the QNMs

response, afterwards the system behaves as a free-oscillator.

In Fig. 7.9, we repeat the analysis for the radial infall. We show the time derivative of the only non

vanishing polarization (+), rescaled by its late-time asymptotics, |ḣ22 e−ω
Im
220(τ−τLR)|. The time derivative

serves to obtain a cleaner comparison by suppressing the tail part of the signal, prominent in radial infalls.
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Figure 7.9: Left: Quadrupolar news amplitude rescaled with the factor e−ω
Im
220(τ−τLR) (top) vs the retarded

time τ of the observer at I+ and absolute value of the difference between numerical and analytical results

(bottom). Right: + polarization of the strain (22) mode (right) vs τ. The retarded time τ is translated

with respect to τLR, defined in Eq. (7.59). On the top horizontal axes, the position of the source (test

particle) when it emitted the signal observed at τ, defined in Eq. (7.39). In gray, the numerical results

obtained through the RWZHyp code. Coloured lines represent the analytical prediction Eq. (7.29) obtained

summing over a different number n of overtones (different colors) and their respective counter-rotating

modes. Results relative to a radial infall from r0 = 50 with initial energy E0 = 1.0. Numerical and

analytical waveforms have been aligned in phase. Spikes on the left panel are numerical noise product of

the alignment procedure.

Interestingly, for this binary configuration, more overtones are needed at early times τ ≲ τLR in order to

achieve convergence in the QNMs signal.

Even though we are not able to reproduce the initial transient leading to the ringdown, our analytical

prediction can be smoothly extended to earlier times, yielding a fundamental piece in the analytical

description of the plunge transient. In fact, we predict that at τ ≈ τLR − 25 the QNMs portion of the signal

cannot be neglected, since it is comparable in magnitude with the perturbative numerical waveform. The

usual constant-amplitude ringdown picture [276], cannot be extended to the plunge since it diverges for

times earlier than the ringdown starting time tstart.

7.3.4 Leading redshift term

We now investigate the contribution of the redshift term to the post-light-ring-crossing signal. As shown

in Eq. (7.54), for r̄ ≪ 3 the excitation contribution ψℓmn± consists of two different terms: a constant

amplitude QNM and an infinite number of redshift terms, the leading one behaving as ∼ e−τ/4. The

impulsive contribution ζℓmn± does not contribute to the QNMs constant amplitudes, but only to the tower of

redshift terms as can be seen from the near horizon expansion in Eq. (7.57). Then, substituting Eqs. (7.54)

and (7.57) into Eq. (7.42), we can write the full signal propagated by the QNMs GF after the light-ring
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Figure 7.10: Left: Leading redshift term amplitude in Eq. (7.65) computed summing the excitation/impul-

sive contributions of regular/mirror modes up to N overtones, rescaled with the factor e(|ωIm
220 |−1/4)(τ−τLR), vs

the retarded time τ of the observer at I+. In gray, the numerical quadrupole function Ψ22 rescaled with

the fundamental mode decay e|ω
Im
220 |(τ−τLR), computed through the RWZHyp code. Right: In black dashed,

the total leading redshift term computed summing contributions up to N = 6 in Eq. (7.65) vs the retarded

time τ. In violet, the analytical prediction for the quadrupole function Ψ22, minus the fundamental and its

mirror mode excitation contributions. Quantities are plotted in absolute value. The retarded time τ has

been translated with τLR defined in Eq. (7.59). On the top axis, the apparent location of the test particle,

defined through Eq. (7.39). Results relative to the quasi-circular inspiral e0 = 0.0 in Table. 5.1.

crossing, as

Ψr̄≪3
ℓm (t − r∗) =

∑
n, s

χℓmnse−iωℓmn(t−r∗) + κ0,ℓme−
t−r∗

4 +

∞∑
k=1

κk,ℓme−
j+1
4 (t−r∗) , (7.63)

where we have introduced the redshift amplitudes κ j,ℓm as

κk,ℓm ≡

∞∑
n=0

∑
s=±

(
αk,ℓmns + δk,ℓmns

)
, (7.64)

with αk,ℓmn±, δk,ℓmn± defined in Eqs. (7.55) and (7.58) respectively, in the limit r̄ → 2.

The individual excitation and impulsive contribution of each overtone n to the leading redshift term k = 0,

has already been investigated in Figs. 7.6, 7.7. Now, we are interested in the superposition of all these

contributions, and in particular in the dominant redshift amplitude, Eq. (7.64) with k = 0. To investigate

how many overtones contribute to the total redshift amplitude, we introduce the following quantity

κ(N)
k=0,ℓm ≡

N∑
n=0

∑
s=±

(
α0,ℓmns + δ0,ℓmns

)
(7.65)

and study its convergence in N. The results are shown in the left panel of Fig. 7.10 for the quasi-circular

trajectory. In particular, we show the amplitude of the perturbative numerical quadrupole Ψ22, rescaled

with the factor e|ω
Im
220 |(τ−τLR), compared with the asymptotic redshift contribution rescaled by the same

factor

|κ(N)
0,22| · e(|ωIm

220 |−1/4) · (τ−τLR) . (7.66)
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The quantities α0,22n±, δ0,22n±, necessary to compute κ(N)
0,22, have been extracted from the right panels of

Fig. 7.6. To compute α0,22n>0±, δ0,22n±, we average over τ − τLR ∈ [40, 70] the rescaled quantities shown

in this plot. For α0,220±, we first compute the amplitudes χ220±, using the same averaging procedure. The

values of α0,220± are extracted averaging over τ − τLR ∈ [40, 70] the quantity

e(τ−τLR)/4
[
ψ22n±(τ) − χ220±e−iω220±(τ−τLR)

]
. (7.67)

From the right panels of Fig. 7.6, we learned that the near horizon expansions Eqs. (7.54), (7.57) with

constant coefficients are valid for τ ≳ 10 + τLR. Hence, the estimate of the redshift contribution in

Eqs. (7.63), (7.64) should be accurate after this time only and not before. In the left panel of Fig. 7.10,

results in the time interval τ < 10 + τLR are shaded and will be excluded from the following discussion.

The left panel of Fig. 7.10 suggests that only the overtones n < 3 contribute significantly to the leading

redshift term. Moreover, note that for 10 ≲ τ − τLR ≲ 25, the redshift contribution is relatively loud, at

most two orders of magnitude smaller than the leading (220+) mode behavior.

When discussing Fig. 7.6, we argued that the contribution of each ψ22n>0± to the redshift swamps the

respective overtone decay for τ ≳ 10+ τLR. However, this is not yet a definitive result: after combining the

excitation contributions ψ22n± with the impulsive ones ζ22n± and summing over all n,±, the total redshift

amplitude could, in principle, be suppressed with respect to the overtones. In the left panel of Fig. 7.10,

however, we see no evidence for this cancellation: the amplitude only decreases by a factor of ∼ 2 when

adding together all the contributions (impulsive/excitation) of the overtones and regular/mirror modes to

the redshift. To investigate this in more detail, we have plotted the difference between the total predicted

QNMs response and the asymptotic fundamental mode

Ψ22(τ) −
∑
s=±

χ220±e−iω220(τ−τLR) , (7.68)

where Ψ22, see Eq. (7.42), is computed as

Ψ22(τ) =
6∑

n=0

∑
s=±

[
ψ22ns(τ) + ζ22ns(τ)

]
. (7.69)

The absolute value quantity is shown on the right panel of Fig. 7.10, compared with the leading redshift

behavior |κ0,22|e−(τ−τLR)/4. For τ ≳ 15 + τLR, the decay of Eq. (7.68) is consistent with the leading redshift

term one, ∼ e−(τ−τLR)/4, hinting that after this time the overtones in the full signal are swamped by the

leading redshift term.

7.3.5 Additional eccentric configurations

The qualitative behavior between the redshift factor and QNMs decay does not seem to be affected by

the initial eccentricity. Figs. 7.11 and 7.12 analyze the eccentric plunges of Tab. 5.1 with respectively

e0 = 0.5 and e0 = 0.9. In both cases, the redshift factor starts dominating over the QNMs decay for n > 0

at a retarded time τ − τLR ≈ 7, in agreement with the quasi-circular case in Fig. 7.6.

148



7.4 Dependence on the inspiral configuration

50 10 0 7 20 30 50
LR

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

|
22

n±
(

)| n = 0
n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
( )

0 7 20 30 50
LR

10 5

10 4

10 3

10 2

10 1

|
n(

)
22

n±
(

)|

4.62 3.84 3.00 2.29 2.01 2.001 2.000
r

3.00 2.29 2.01 2.001 2.000
re0 = 0.5

50 10 0 7 20 30 50
LR

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

| 2
2n

±
(

)|

0 7 20 30 50
LR

10 7

10 5

10 3

10 1

| 2
2n

±
(

)e
(

LR
)/4

|

n = 0
n = 1
n = 2
n = 3

n = 4
n = 5
n = 6
( )

4.62 3.84 3.00 2.29 2.01 2.001 2.000
r

3.00 2.29 2.01 2.001 2.000
r

Figure 7.11: Same as Fig. 7.6, but for e0 = 0.5.

7.4 Dependence on the inspiral configuration

In this section, we investigate the dependence of the late-time behavior of the leading (ℓm) = (22) mode

on the eccentricity of the test-particle orbit. Specifically, we fix the observer at τ = 40 + τLR, when the

transient has long decayed out of the strain and the signal is well described by the near-horizon expansion

Eq. (7.63).

We define two parameters to assess the eccentricity of the inspiral: the eccentricity at the separatrix esep

and the impact parameter evaluated at the light-ring crossing

bLR =
E
pφ

∣∣∣∣∣
rLR

, (7.70)

a gauge-invariant quantity [203].

In Fig. 7.13 we show the amplitude A22 and phase ϕ22 of the quadrupole at τ = 40 + τLR vs bLR and

esep. We compare the results directly extracted from the numerical simulations (simply quoting the

numerical values, without fitting) with the analytical values computed through Eq. (7.42). Our prediction

is in excellent agreement with the perturbative numerical waveform, and it shows a clear dependence

of the post-merger quadrupole amplitude on the inspiral’s eccentricity. In particular, we show that the

eccentricity can increase A22 more than ∼ 25%.
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Figure 7.12: Same as Fig. 7.6, but for e0 = 0.9.

In the right panel of Fig. 7.10, we show the dependence of the leading redshift term amplitude in the

quadrupole, |κ0,22|, on the quantities bLR, esep. Similarly to ϕ22, we find an oscillatory |κ0,22| as function of

the eccentricity.

7.5 Summary and future directions

In this chapter, we have investigated the dynamical excitation of QNMs, driven by a test particle falling

into a Schwarzschild BH on generic planar orbits. In particular, we have investigated the full signal

propagated by the QNMs GF. For the first time, we have derived by first principles a causality condition

prescribing the propagation of QNMs within the light-cone, from a generic source location (t′, r′∗). For

a source localized far from the BH, this condition, shown in Eq. (7.25), reduces to the usual heuristic

prescription found in the literature as a scattering from the potential peak [14, 118, 15, 119]. Inside the

light ring, the prescription in Eq. (7.25) approaches the light-cone. The “first time” at which the QNMs

response reaches the observer Eq. (7.18) corresponds to the retarded time in the minimal gauge, and the

exact portion of the light-cone selected by the causality condition is shown in Fig. 7.3.

Thanks to this prescription, we can compute the convolution of the QNMs GF with the source, along

the whole inspiral-plunge-merger up to late times. We adopted null initial data since we assume a
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Figure 7.13: Amplitude (left) and phase (right) of the quadrupole at τ = 40 + τLR for the eccentric orbits

in Table 5.1. We show on the bottom x-axis the orbit’s impact parameter at light-ring crossing, Eq. (7.70),

on the top axis the eccentricity at the separatrix. In black circles, numerical results computed with the

RWZHyp code. In purple dots, analytical predictions computed as in Eq. (7.42). Numerical/analytical

quantities have been rescaled with the quasi-circular numerical/analytical values.

test particle initialized far away from the BH, much before the merger has occurred. The general

expression of the source can be found in Eq. (7.7): it is localized along the particle trajectory and is a

superposition of a term proportional to a Dirac delta, and a term proportional to its derivative. These

different source terms originate two distinct responses, that we have denoted as excitation ψℓmns and

impulsive contributions ζℓmns, see Eqs. (7.40) and (7.41) respectively. These contributions can be written

as retarded time-dependent coefficients, denoted respectively as excitation cℓmns(t − r∗) and impulsive

iℓmns(t − r∗) coefficients, weighted with the standard geometrical excitation coefficients Bℓmns and with

the factor e−iωℓmns(t−r∗). The cℓmns(t − r∗) accumulate in time, i.e. are integrals over the past history, see

Eq. (7.30), while the iℓmns(t − r∗) are purely local, see Eq. (7.31).

For the modes (220±), the excitation coefficients behave similarly to activating functions: they grow

during the inspiral, have a maximum near the light-ring crossing and eventually saturate to a constant

amplitude at late times, once the (stationary) ringdown dominates the signal. The impulsive coefficients of

the (220±) modes, instead, grow in amplitude until the light-ring crossing and then decay at later times.

We have found that the excitation and impulsive coefficients of the overtones n > 0 all diverge at late

retarded times. This is due to the fact that, even if the test-particle source vanishes at the horizon

r → 2, the QNMs eigenfunctions diverge faster in this limit. However, this divergence never impacts

actual observables. In fact, we do not observe the coefficients cℓmns, iℓmns but rather their contribution

to the waveform ψℓmns, ζℓmns, and these quantities are regular at all times. The divergence of the QNMs

eigenfunction is exactly at the horizon, but a signal emitted at this location escapes at I+ in an infinite

amount of time. Reinforcing the requirement that inside the light ring the QNMs are propagated along

the light-cone, naturally arising from our causality condition Eq. (7.25), we push the divergence in the

excitation and impulsive coefficients at t − r∗ → ∞, yielding a regular signal.

Be r̄ the position of the test particle emitting a signal at t̄, which travels on the light-cone section selected
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Figure 7.14: Amplitude of the leading redshift term in the quadrupole κ0,22 defined in Eq. (7.64), for the

simulations of Table 5.1. The quantity is computed summing over N = 6 overtones contribution, through

the procedure described in Sec. 7.3.4 to obtain the results of Fig. 7.10. On the bottom x-axis we show the

impact parameter at light-ring crossing, Eq. (7.70), of each configurations; on the top axis we show the

eccentricity at separatrix crossing.

by Eq. (7.25) and reaches I+ at t − r∗. We have expanded the post light-ring crossing signal in the limit

(t̄ → −r̄∗, r̄ → 2). We have then shown that each excitation contribution can be rewritten as a constant

amplitude QNM, plus a new behavior. This additional term is a superposition of an infinite number of zero

real frequency terms exponentially decaying in the retarded time, with multiples of the BH surface gravity

κH+ as decay rates. We have denoted these new pieces as redshift terms. The slowest decaying term in

this sum is denoted as leading redshift term and has decay rate κH+ = 1/4. The impulsive contribution

only yields redshift terms at late times. After combining the excitation and impulsive contributions, we

have the following prediction for the post light-ring crossing signal

Ψr̄≪3
ℓm (t − r∗) =

∑
n,±

χℓmn±e−iωℓmn(t−r∗) + κ0,ℓme−
t−r∗

4 +

∞∑
j=1

κ j,ℓme−
j+1
4 (t−r∗) , (7.71)

The leading redshift term decays slower than the overtones n > 0, hence, depending on the amplitude

κ0,ℓm, there exists a certain retarded time τ̃ at which the overtones’ contribution to the signal is smaller

than the redshift one. In particular, we have found that in quasi-circular and eccentric inspiral-plunges the

overtones are swamped by the redshift for τ̃ ≈ 15 + τLR. Radial infalls represent a special case in which

the redshift excitation is highly suppressed. As a consequence, the first overtone decay dominates over the

leading redshift up to late times ≈ 50 + τLR. We stress that the redshift terms are not uniquely a feature of

the background geometry, like the quasi-normal frequencies. These terms arise from the presence of a

source approaching the horizon. The specific functional form of the redshift contribution stems from the

particular near-horizon behavior of the QN eigenmodes and of the test-particle source.
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7.5 Summary and future directions

We have compared the analytical prediction for the signal propagated by the QNMs GF against perturbative

numerical simulations. The QNMs signal alone cannot reproduce the initial transient dominating the

plunge-merger stage signaling that prompt and tail contributions must be taken into account. However, it

constitutes a fundamental piece: the QNM response is comparable with the numerical waveform one even

at times τ ≈ τLR − 25.

The analytical prediction presented in this chapter partially solves the problem of the “ringdown starting

time”. Usual templates for the (stationary) ringdown include only a superposition of constant-amplitudes

QNMs, since these models are built with no information on how the QNM response is activated. As a

consequence, it is necessary to introduce the heuristic parameter τLR denoted as ringdown starting time

hring
ℓm (τ) = θ(τ − τstart)

∑
n,±

Aℓmn± e−iωℓmn±(τ−τstart) , (7.72)

At times < τLR, the above template cannot be used to describe the waveform, since it would yield a

divergent prediction. In this work, we have removed the necessity to introduce τstart since we have a

smooth analytical prediction for how the QNM response is activated in time.

It might still be useful to gauge the time τstart at which a numerical waveform is expected to enter the

stationary ringdown regime. Our model can only provide a partial solution: we can predict when the

QNMs amplitudes become constant. However, we cannot predict when the prompt response and the tail

contributions can be safely neglected. In this sense, the start time problem is still present and future work

will be needed to address it properly.

In Refs. [278, 279], the redshift terms were investigated in the context of a test particle plunging into

a Kerr BH. The convolution of the QNMs GF with the test-particle source is computed in frequency

domain (i.e. not taking into account causality) through a near horizon expansion. The results are then

switched to the time domain. In this framework, Ref. [278] computed the leading redshift term; however,

Ref. [279] argued that this mode vanishes due to a cancellation, leaving only the sub-sub-leading one. In

the current chapter, we obtain the full tower of redshift terms from a more generic framework: we first

compute the signal propagated by the (full) QNMs GF in time domain and only afterwards a near-horizon

expansion is performed. Our results point towards the presence of the leading redshift mode in the signal,

in disagreement with Ref. [279]. We leave for future work a more detailed comparison with the results of

Ref. [279], to understand the origin of this discrepancy.

Finally, we provided the first analytical prediction for the imprint of the inspiral eccentricity on the

ringdown quadrupolar waveform. We have quantified the inspiral eccentricity through the eccentricity at

the separatrix and the impact parameter at the light ring crossing, defined in Eq. (7.70). We have shown

that these parameters can modify the quadrupolar amplitude in the ringdown by up to 25%, with analytical

predictions in excellent agreement with numerical results.

The results of this chapter have several applications in gravitational-wave physics: in the context of

ringdown modelling for GW observations, in the interpretation and fitting of NR simulations and, poten-
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Chapter 7. Dynamical excitation of quasi-normal modes

tially, for tests of general relativity and horizon physics with GW observations. We will discuss in detail

these implications in Chapter 8. Here, we sketch a first exploration of the causality condition for QNMs

propagation on a Kerr background.

7.5.1 Kerr quasi-normal modes propagation

Following Leaver [104], the ingoing solution Eq. (7.10) at the QNFs can be expanded as follows in a Kerr

geometry

ũin(ω, r∗) =

(r − r−)3
(
r − r+
r − r−

)2+i 2r+a
r+−r−

m

d̂(ω, r)

×
exp

{
iω

[
r∗ −

4r+
r+ − r−

log
(r − r+

2

)
+ 4 log

(r − r−
2

)]}
,

(7.73)

where a is the BH adimensional spin and we have defined

d̂(ω, r) ≡
∞∑

k=0

dk(ω)
(
r − r+
r − r−

)k

. (7.74)

Note that r∗ is now the Kerr tortoise coordinate

r∗ ≡ r +
2r+

r+ − r−
log

(r − r+
2

)
−

2r−
r+ − r−

log
(r − r−

2

)
. (7.75)

Following the same reasoning discussed in Sec. 7.2.1, assuming an observer at I+, we can rewrite the

causality condition as

t − r∗ ≥ CKerr(t′, r′∗) ≡ t′ + r′∗ −
4r+

r+ − r−
log

(r − r+
2

)
+ 4 log

(r − r−
2

)
. (7.76)

It is straightforward to prove that CKerr → C as in Eq. (7.18) in the limit a→ 0.

The horizon redshift κH+ of a Kerr BH is equal to

κKerr
H+
≡

r+ − r−
4r+

. (7.77)

Then, the near horizon behavior of the causality condition in Eq. (7.76) is

CKerr(t(r̄), r̄∗) ≃ −
1

κKerr
H+

log
( r̄ − r+

2

)
, r̄ → r+ . (7.78)

Future investigations are needed to assess the presence and relevance of redshift terms for a test particle

infalling in a Kerr geometry.
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Chapter 8

Conclusions and future directions

The main focus of this thesis has been to investigate the relaxation of a Schwarzschild black hole (SBH)

following an external perturbation, at linear order in the perturbation.

In the past, this problem has been extensively investigated under different conditions. The majority of

efforts in the literature have been devoted to evolving some small amplitude initial data on top of the SBH,

focusing in particular on Gaussian-like initial data. In this thesis, we have focused on a different, more

complex problem: the relaxation of a BH following a binary black hole merger. Consequently, the aim

has been to predict the impact of the inspiral two-body problem on post-merger waveforms.

A posteriori investigations of numerical relativity waveforms yield a heuristic picture of the post-peak

transient leading to the ringdown response. According to this intuition, the transient can be understood as

an “activation” process, during which the quasi-normal frequencies (QNFs) are progressively excited in

an almost-resonant manner by the two-body problem source [74, 75]. Interestingly, the transient shares

similar features both in the extreme mass-ratio and in the comparable masses case [73], hinting at a

common behavior leading this relaxation towards the ringdown, which can be applied to generic mass

ratios.

Past results showcase the imprint of the inspiral two-body problem in the constant amplitudes of the QNMs

excited in the ringdown [76, 77, 11, 78, 12, 79, 49, 80, 69, 81, 82, 83]. We reproduced previous work

by analyzing non-spinning, quasi-circular BH binary numerical simulations from the SXS catalog [156]

using the Bayesian inference algorithm bayRing [193]. The aim was to identify the modal content of

the post-peak waveforms and to investigate the dependence of the loudest mode in the quadrupole on

the progenitors’ mass ratio. As a result, we have confidently recovered the fundamental mode, the first

overtone and the lowest mode-mixing, while we could not identify higher overtones from the numerical

data, in agreement with past literature [40, 84]. This result hints at the presence of non-modal signals in

the numerical waveform, comparable in magnitude with higher overtones, hence spoiling their extraction.

As argued in Ref. [40], this unmodeled feature could be due to numerical noise or have a (yet unknown)

physical origin.

We find that the amplitude of the quadrupole fundamental mode A220 is linearly dependent on the
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progenitors’ mass ratio, consistent with results in Refs. [11, 12]. In particular, we recover A220 ≃ 3.964 η,

with η symmetric mass ratio and A220 rescaled with respect to its value at the time of the quadrupole

amplitude peak. We have extended the analysis to quasi-circular mergers of non-spinning progenitors with

electric charge, producing a Kerr-Newmann remnant. We have introduced an effective charge parameter

in terms of the charge to mass ratio of each progenitor, then showed the non-linear dependence in this

quantity of the fundamental mode amplitude and the remnant mass and spin at the quadrupole peak time.

This analysis hinted at the pivotal role of the inspiral-plunge two-body problem in the excitation of the

ringdown response. Perturbative results of Ref. [75] showed a several orders of magnitude enhancement

of the post-merger late-time tail, increasing with the progenitors’ orbital eccentricity. This result found

no explanation in past tails literature (mainly focused on initial data Gaussian-like perturbations), and

was suggestive of the fact that also at late times the signal carries information on the inspiral two-body

problem.

To address this problem, we have investigated the late-time tails emitted by a test particle infalling in a

Schwarzschild BH through generic planar orbits. We presented an analytical model able to describe the

late-time signal, built through the convolution of the radiative tail Green’s function with the test-particle

source. The model is an integral along the whole past history of the inspiral, making manifest the hereditary

nature of late-time tails. Comparison with perturbative numerical waveforms shows good agreement with

our predictions for intermediate to high eccentricities, from the time the tail starts dominating the strain

up to very late times.

We used the model to explain the tail amplitude enhancement with the progenitors’ binary eccentricity, as

observed in perturbative numerical experiments. The overlap between the tail propagator and the source

is larger for sources localized further away. Hence, our model predicts an enhanced tail emission for a

motion happening at large distances from the BH. The integral over the trajectory receives contributions

from a function oscillating as e−imφ(t), with m azimuthal number of the multipole under study and φ(t)

azimuthal coordinate of the test particle on the equatorial plane. When this phase oscillates fast, it

induces destructive interference between subsequent tail signals. Instead, when the phase is approximately

constant, the interaction is constructive. In an eccentric orbit, the conditions of large distances and small

angular velocities are satisfied at the apastron. In particular, the larger the eccentricity, the further the

apastron and, due to Kepler second law, the smaller the angular velocity at this location. As a consequence,

our model predicts that the tail emission during an eccentric merger is enhanced at the last apastron before

merger; the tail observed in the post-ringdown is emitted at this location, much before the light-ring

crossing, far away from the potential barrier peak. This enhancement mechanism reinforces the close

relation between late-time tails and the large-scale structure of the background, showing how tails yield

complementary probes with respect to QNMs, which are instead sensitive to smaller scales.

The radiative tail generated by an initial-data perturbation of a Schwarzschild BH is a single inverse

power-law ∝ (t − r∗)−ℓ−2−a, with ℓ multipole of the strain [14] and a = 0, 1 depending on the initial-data

nature. By employing the same propagator, we proved that the late-time tail excited by a two-body problem

has a much richer content. In particular, we computed the post-merger tail as a superposition of an infinite

number of inverse power-laws. The slowest decaying term is the radiative tail ∝ (t − r∗)−ℓ−2, while higher
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order corrections are sensitive to the trajectory features and, in particular, to its time duration. These

corrections give rise to a long-lived transient, e.g. for a radial infall of duration ≈ 2 · 103M, the transient

dominates the strain for ≈ 5 · 104M. We concluded that for observational purposes, many fast-decaying

power-law terms dominate the detected signal over Price’s law.

Once the mechanism behind tails generation and propagation in the perturbative extreme mass-ratio

limit was identified, we successfully applied this insight to study tails in non-linear comparable masses

mergers. In particular, we focused on head-on collisions of non-spinning BHs, predicted by our model to

be the configuration where the tails are most strongly excited. Tails are a hereditary effect, i.e. a signal

traveling well inside the light-cone, generated by the back-scattering of small frequency signals against

the long-range curvature of the background. As a consequence, numerical evolutions targeted to study

tails must be performed inside a computational domain extended at large distances. Moreover, both the

observer radii employed in the extrapolation procedure and the outer boundary must be at large distances.

The first requirement allows for successful extrapolation of the tail at null infinity, as discussed in the main

text through a series of numerical experiments. The outer boundary must be far enough away from the

observers to never be in causal contact with them. Otherwise, spurious numerical noise generated by the

imperfect boundary condition would propagate at late times, spoiling the tail extraction. Handling these

subtleties, not taken into account in standard waveform extractions, we achieved the first identification of

late-time tails in non-linear numerical evolutions.

The non-linear waveforms obtained were in good agreement with perturbative ones emitted by a radial

infall from the same initial separation, for a test particle at rest at past null infinity. Surprisingly, the

features of the waveforms are remarkably similar along the entire post-peak portion of the signals, even

at early times when in principle one could expect non-modal non-linear effects to be relevant [51, 52,

53, 54]. Late-time tails start dominating the perturbative and non-linear waveforms at the same time and

with approximately the same amplitude (with respect to the waveform peak). However, the non-linear

tail signal deviates from the perturbative prediction at later times. In particular, the non-linear tail decays

more slowly than the perturbative one. We argued that this is the first observation of non-linear effects

at late times and is intrinsic to the very nature of tails: being a hereditary effect, they can accumulate

non-linearities, amplifying them.

Once a first principle understanding of the late-time signal was found, both in perturbative and non-linear

settings, we have shifted our attention to earlier times and focused on the signal propagated by the

QNMs Green’s function. We have supplemented the standard Green’s function found in Ref. [14], with

a causality condition reinforcing the retarded Green’s function prescription, derived by first principles.

We then isolated the portion of the signal propagated by the retarded QNMs Green’s function, following

its evolution through the inspiral until the plunge final stages. The causality prescription regularizes

the QNMs Green’s function divergence at the horizon, by generating a new (regular) signal, emitted

once the test particle is inside the light-ring crossing and is approaching the horizon. This signal is

non-oscillatory (zero instantaneous frequency) and can be written as a superposition of exponentially

damped terms, with decay rates given by multiples of the BH redshift. We predict that in a generic planar

orbit in Schwarzschild, the leading redshift mode completely swamps the overtones at intermediate times
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(≳ 15M after quadrupole peak), while for a radial infall the redshift is suppressed, hence the first overtone

dominates the strain until late times. The complete predicted signal incorporates a superposition of QNMs

with time dependent amplitudes, growing in an activating function fashion and saturating to constant

values near the light-ring crossing. This model, even if not sufficient to explain the transient behavior of

numerical waveforms near the peak, allows us to naturally connect the ringdown with the inspiral-plunge

motion and is the first model of time-dependent ringdown amplitudes. This is a first step towards the

analytical modelling of the entire post-plunge signal.

This first principles computation allows us to solve for the dependence of the QNMs constant amplitudes

on features of the inspiral. For instance, we were able to predict for the first time the dependence of the

quadrupole amplitude and phase on the eccentricity, matching numerical results with high accuracy.

In Chapter 1, we argued that solving the Regge–Wheeler and Zerilli equations by feeding a non-linear

trajectory into the test-particle source is not consistent with a perturbative expansion. This is the strategy

behind some of the results in Chapters 5 and 7. While we already motivated the validity of this approach

in Chapter 1, here we discuss in more detail what it entails for the results derived within this framework.

The focus of Chapter 7 is on the final stages of the plunge, where the impact of radiation reaction on the

trajectory is negligible. Although a hereditary component in the QNMs signal is present, it mainly receives

contributions near the light-ring crossing. As a consequence, we expect that switching off dissipative

effects in the trajectory will not hinder the accuracy of our semi-analytical model of the dynamical

excitation of QNMs, nor of our closed-form expression for the stationary ringdown, when compared to a

realistic extreme mass-ratio ringdown.

Tails are highly sensitive to the entire past history of the inspiral. As a consequence, our ability to predict

their behavior in the late-time signal of a binary merger is subordinate to the inclusion of radiation-reaction

effects in the inspiral. Future work will be devoted to implementing an algorithm along the lines of

Ref. [102], stitching together our prediction for the late-time tail emitted by a test particle on the geodesics

that osculate the trajectory at each time step. This will allow us to improve our current model so that it

remains consistent with first-order perturbation theory, while retaining the same level of accuracy.

The mechanism behind enhanced or suppressed tail emission, which explains the scaling of the post-

merger tail amplitude with inspiral eccentricity, is completely general and can be applied to geodesics.

In fact, the same scaling was also observed in the independent study of Ref. [213], which considered

only geodesics and provided a similar argument for tail enhancement with eccentricity. The closed-form

expression for late-time tails as a superposition of an infinite number of inverse power laws was derived

using a generic trajectory. The argument that a larger number of power laws are excited the longer the

inspiral lasts was verified through tests on different inspiral trajectories, including radial infall, which can

be considered geodesic. In fact, radiation reaction in this configuration is negligible, as its impact on the

trajectory is of order ∼ 10−6. To conclude, the aforementioned results also hold for geodesic trajectories,

confirming their consistency with first-order perturbation theory.
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Figure 8.1: Numerical quadrupolar waveform (left) and its amplitude (right), solution of the Zerilli

equation with source δ(t)δ(r∗ − r∗(r′)) vs the retarded time of the observer at I+, translated with respect to

the retarded time at which the amplitude peaks. Results obtained through the RWZHyp code [93, 94]. At

early times, the numerical Green’s function is dominated by a parabolic-like behavior in the retarded time.

The duration of this behavior depends on the location of the source: the further away from the BH, the

longer the prompt signal.

In agreement with initial intuition, once the inspiral two-body dynamics is taken into account, the

phenomenology of the post-peak waveform becomes richer, with many new features arising. Price’s

law gets corrected by a superposition of faster decaying power-laws, giving rise to an intermediate long

transient. The infinite redshift of the event horizon is such that we never see, from the outside, a test

particle crossing this surface; as a consequence, the source keeps emitting radiation quenched to null

infinity as a superposition of exponentially damped redshift terms. The work presented in this thesis,

however, is far from complete. This thesis is rather the starting point of a program to model analytically

the post-peak waveform, in the perturbative extreme mass-ratio limit. Many directions must be explored

in the future to fully achieve this goal, with a particular focus on the near-peak transient. We highlight

some of them below.

While our work on the QNMs response allows us to write a first principle formula for the ringdown
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excitation, smoothly connected to the plunge motion, we showed that this component is not sufficient to

reproduce the amplitude and frequency growth near the light-ring crossing. Future work must compute the

contribution of other spectral components of the propagator, i.e. the branch-cut and the prompt response.

These calculations entail several subtleties. For instance, the tail propagator derived in Chapter 2 and

used for the results in Chapter 5 is computed under the approximation of large distances, both for the

source and the observer. While we can safely assume an observer at null infinity (if we are interested

in real detections), the location of the source must be general to investigate the near-peak waveform.

Moreover, Price’s law propagator is derived under the assumptions of small frequencies. At an operational

level, this means that we only consider the contribution of the branch cut near the branch point, with

null real frequency and small imaginary component. Hence, the tail propagator does not oscillate in the

time domain and decays slowly (i.e. travels well inside the light-cone). We speculate that the branch cut

contribution for large imaginary frequency would yield a non-oscillating signal decaying fast in the time

domain, traveling marginally close to the light-cone. Once a complete and general propagator associated

with the branch cut is available, detailed computations of its contribution to the near-peak waveform are

necessary to gauge its interaction with the signal propagated through the QNMs response.

Both the tail and the QNMs response do not travel on the light-cone, except in the limit of the test particle

approaching the horizon. The prompt response, instead, is propagated on the light-cone, giving rise to the

direct signal. Spectral investigations of Leaver [14] and Andersson [15] proposed that the time-domain

prompt propagator originates from the high-frequency arcs in the Fourier domain. Andersson [15] used

this argument to compute an Heaviside function propagator for the direct signal, under the approximation

of large distances for both the (compact) source and the observer. We claim that this approximation cannot

yield the correct Green’s function, even for a (compact) source at large distances. We have performed a

numerical investigation of the Green’s function, solving the Regge-Wheeler and Zerilli equations with an

impulsive source ∼ δ(t − t′)δ(r∗ − r′∗), with Dirac deltas approximated by narrow Gaussians. The results,

as observed at I+, are shown in Fig. 8.1 for different r′∗, always fixing t′ = 0. The early times signal,

propagated by the prompt response, is a zero (instantaneous) frequency component, with a parabolic-like

behavior in retarded time, consistent with the analytical prediction of Ref. [107, 18]. As r′∗ approaches

the light-ring, the prompt is progressively shorter, but its functional form is approximately the same

for r′ = 200, 2000. A better description of the prompt propagator is needed to model analytically the

near-peak transient.

In this thesis, we focused on perturbations of a Schwarzschild background. More work is needed to

understand the implications of late-time tails and QNMs response in future astrophysical observations and

their potential to answer fundamental questions in GR.

First and foremost, astrophysical BHs have spin. Hence, it is imperative to extend our perturbative models

to account for a test particle plunging into a Kerr BH through generic (potentially precessing) orbits. It

is known that the radiative tail propagator is not affected by spin [89, 128], however the test-particle

trajectory (hence the source), is. In a spinning background, the tail could potentially be enhanced even
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further [213]. The causality condition for the Kerr QNMs propagator was derived in Chapter 7, but a

detailed investigation of its convolution with the test-particle source of the Teukolsky equation is still

missing.

Astrophysical BHs typically exist within environments, rather than in vacuum. For instance, they can be

surrounded by accretion disks [286] or dark matter halos [287]. The impact of low-density environments

on ringdown was recently shown to be difficult to resolve through future detections [288]. The impact on

tails is potentially larger, due to their close relation to the large scale structure of the background, which

is modified by extended astrophysical environments. An investigation in this direction could open new

possibilities for environmental studies in the post-merger waveform.

In Chapter 5, a closed-form expression for the late-time tail was introduced; however, it requires a large

number of terms to accurately approximate the signal by the time the tail begins to dominate over the

QNMs. As a result, this functional form may not be well-suited for parameter inference, should a tail

signal be observed. Future research will be devoted to deriving a more compact closed-form expression

for this signal that is better suited to this task. We identify two directions to achieve this goal. The first

focuses on radial infall, for which the radiation reaction impact on the trajectory is negligible. As a

consequence, the orbital evolution can be described through a simple closed-form geodesic trajectory,

which might allow for analytical integration of the late-time tail contribution. In highly eccentric mergers,

the tail observed at retarded times close to τtrans, when the post-merger signal transitions from a QNMs

to a tail-dominated behavior, is emitted primarily near the last apastron, as discussed in Chapter 5. By

expanding the trajectory around this location, direct integration of the tail integral might be possible,

yielding an approximate closed-form expression for the tail valid within a narrow time window around

τtrans.

Results in Chapter 6 show the presence of non-linearities in the late-time portion of the signal. We propose

three different mechanisms to explain this effect. First, we mention the results of Ref. [50, 55, 56, 57],

predicting the existence of a non-linear tail decaying slower than Price’s law propagating to late-time.

This non-linear tail originates from two QNMs coupled in the second-order source, and propagated by

the prompt response Green’s function. As a result, it is not a hereditary effect but is instantaneous, i.e.

travels on the light-cone. An accurate comparison of fully non-linear waveforms against perturbative

predictions, both at linear and second order, is needed to probe the relevance of this new effect. A second

mechanism could be generated by the dynamical evolution of the background; since the tail propagator

chiefly depends on the background mass monopole, it could potentially be affected by third-order non-

linear effects [54] relevant for mass ratios q ≈ 1. Lastly, (linear) tails are a hereditary effect that can

accumulate non-linearities present in the source, amplifying them. Accounting for finite-size effects in

the inspiral-plunge source, i.e. higher corrections in the mass-ratio, when computing the convolution

with Price’s law propagator, could potentially impact the late-time signal. With this mechanism, at late

times we could extract information about the inspiral non-linear features. In-depth investigations of these

three mechanisms for the non-linear tail enhancement will allow us to understand and model the leading

non-linear effect present in the late-time signal.

The research direction outlined above would allow us to improve our models for the late-time tails and the
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QNMs response. Future observational goals would be to estimate the tail detectability with LISA and

understand which physics can be extracted from an eventual tail observation. Refined predictions for the

QNMs and redshift modes excitation in a Kerr background will grant more control of fully non-linear

waveforms: better understood templates, devoid of overfitting issues, and more strict priors could greatly

improve black hole spectroscopy. Indeed, most of the recent debates sparked by our poor analytical

understanding of the near-peak waveform [289]. This could allow improved studies of the non-linear,

non-modal content of numerical mergers, a fundamental step to understand why waveforms emitted by

comparable-mass mergers share so many similar features with perturbative ones.

Finally, extending waveforms predictions through numerical relativity simulations for a wide class of

beyond-GR theories, and in the presence of a generic non-vacuum environment, would likely require an

unfeasible amount of computational power. Achieving the full potential of gravitational-wave astronomy

as a probe of complex astrophysical environments and fundamental physics phenomena will thus require

complete inspiral-merger-ringdown analytical predictions, in which new effects can be added in a well-

understood way.
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Appendix A

Test-particle source

We focus on a test-particle evolving on top of a Schwarzschild BH geometry on a planar orbit θ = π/2.

The stress-energy tensor of the test-particle is the following

Tµν = g0
µαg

0
νβ µ

∫
dτ

uαuβ

r2 δ(t − t(τ))δ(r − r(τ))δ(φ − φ(τ))δ
(
θ −

π

2

)
. (A.1)

By means of Eq. (3.6), it is possible to change the integrating variable as dτ = A(r)dt/E, the integral can

then be solved by means of the Dirac delta δ(t − t(τ)). The final result is the following

Tµν =
µ

r2 δ(r − r(t))δ(ϕ − ϕ(t))δ
(
θ −

π

2

)
·


E A(r) −pr∗ 0 −L A(r)

∗
p2

r∗
E A(r) 0 L pr∗

E

∗ ∗ 0 0

∗ ∗ ∗
L2A(r)

E


. (A.2)

We decompose the above tensor in scalar, vector and tensor spherical harmonics then separate even and

odd sectors, as in Eqs. (2.16) and (2.17). The explicit expressions for each component can be found in

Ref. [92]. Substituting these expressions into the source functions in Eqs. (2.27) and (2.22), we compute

the Zerilli (even) and Regge-Wheeler (odd) representing a test-particle influence on the gravitational field.

These sources have the general expression [100]

S (o,e)
ℓm (t, r) = f̃ (o,e)

ℓm (t, r) δ(r∗ − r∗(t)) + g̃
(o,e)
ℓm (t, r) ∂r∗δ(r∗ − r∗(t)) , (A.3)

where we have defined the functions f̃ℓm, g̃ℓm as

f̃ (e)
ℓm (t, r) = −

16πµA(r)Y∗ℓm
rĤλ [r(λ − 2) + 6]

−2im pφpr∗ + 5 +
12Ĥ2r

r(λ − 2) + 6
−

rλ
2
+

2p2
φ

r2

+
p2
φ

r2(λ − 2)

[
r(λ − 2)(m2 − λ − 1) + 2(3m2 − λ − 5)

] ,
(A.4)

g̃(e)
ℓm(t, r) = −

16πµA(r)Y∗ℓm
rĤλ [r(λ − 2) + 6]

(p2
φ + r2) , (A.5)

163



Test-particle source

for the even sector, and

f̃ (o)
ℓm (t, r) =

16πµ∂θY∗ℓm
rλ(λ − 2)


(

p̂r∗ p̂φ
Ĥ

)
,t
−

2 p̂φ
r

A(r) −
im
r2 A(r)

p̂r∗ p̂
2
φ

Ĥ

 , (A.6)

g̃(o)
ℓm(t, r) =

16πµ∂θY∗ℓm
rλ(λ − 2)

p̂φ

1 − p2
r∗

Ĥ

 , (A.7)

for the odd sector.

The Regge-Wheeler and Zerilli test-particle sources can also be written in terms of a Dirac delta in r and

its derivative (with respect to r) as

S (o,e)
ℓm (t, r) = f (o,e)

ℓm (t, r) δ(r − r(t)) + g(o,e)
ℓm (t, r) ∂rδ(r − r(t)) , (A.8)

with fℓm, gℓm defined as

f (e)
ℓm (t, r) = −

16πµA2(r)Y∗ℓm
rĤλ [r(λ − 2) + 6M]

{
−2imp̂r∗ p̂φ + 3M

(
1 +

4Ĥ2r
r(λ − 2) + 6M

)
−

rλ
2
+

p̂2
φ

r2(λ − 2)

[
r(λ − 2)(m2 − λ − 1) + 2M(3m2 − λ − 5)

]
+

(
p̂2
φ + r2

) 4M
r2

 ,

(A.9)

g(e)
ℓm(t, r) = −

16πµA3(r)Y∗ℓm
rĤλ [r(λ − 2) + 6M]

(
p̂2
φ + r2

)
, (A.10)

for the even sector and

f (o)
ℓm (t, r) =

16πµ∂θY∗ℓm
rλ(λ − 2)

A(r)
(

p̂r∗ p̂φ
Ĥ

)
,t
−

2 p̂φ
r

A2(r) +
2M
r2 A(r) p̂φ

1 − p2
r∗

Ĥ

 − im
r2 A2(r)

p̂r∗ p̂
2
φ

Ĥ

 , (A.11)

g(o)
ℓm(t, r) =

16πµA2(r)∂θY∗ℓm
rλ(λ − 2)

p̂φ

1 − p2
r∗

Ĥ

 , (A.12)

for the odd sector

In Eqs. (A.4)-(A.12), we have denoted with Ĥ, p̂φ, p̂r∗ the µ-rescaled energy and momenta, as introduced

in Sec. 5.1. We denoted λ = ℓ(ℓ + 1).
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Appendix B

RWZHyp convergence

We now assess the convergence of the time-domain code RWZHyp by performing numerical tests on

an illustrative case, the initially bound configuration with e0 = 0.5. For all the grid configurations, we

truncate our computational domain at rH
∗ = −100, locate future null infinity at ρ+ = 500, and perform the

hyperboloidal layer matching at ρmatch = 400. This grid setup is the one typically adopted for the runs

considered in this work, where we use a radial-step of ∆ρ = 0.015. In this Appendix we also consider

three lower resolutions, going up to ∆ρ = 0.12. The amplitudes of the corresponding (2,2) waveforms

are shown in the upper panel of Fig. B.1 for the different radial resolutions, together with the tail decay

exponents computed according to Eq. (5.22).

To establish the convergence of the code, we consider triplets of resolutions (low/medium/high) at fixed

Courant–Friedrichs–Lewy number C = 0.5, and rescale the difference between medium-high resolutions

with the scaling factor SF(r), defined as

SF(r) =
(∆ρL)r − (∆ρM)r

(∆ρM)r − (∆ρH)r . (B.1)

The order of convergence r is determined by requiring that the rescaled medium-high difference match the

low-medium one. We observe a 2nd order converge for the inspiral, ringdown, and early tail. However,

the convergence starts to deteriorate from 2000 after the light-ring crossing. Moreover, some artefacts in

the data are visible in the tail decay exponent p at late times, where high-frequency oscillations become

particularly visible for small radial steps. However, all the resolutions considered provide an accurate

description of the tail, since all the relative differences on the amplitude are well below the 1% threshold.

We also performed some numerical tests considering different grid options, finding that setups with larger

rH
∗ or smaller ρ+ provide slightly less accurate numerical waveforms.

Finally, we highlight that the junk radiation never enters in the trajectory used in Eq. (5.15), by construction.

In fact, as stressed in Sec. 5.1, the fluxes used to compute the radiation-reaction effective forces, F̂r∗ , F̂φ

in Eq. (5.8), are analytical. Then, we argue that the agreement of our prediction with the late-time signal

computed in the numerical evolutions, as shown in Fig. 5.3, 5.4 and 5.5, is a test confirming the fully

negligible influence of the junk on the late-time tail.
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RWZHyp code convergence

Figure B.1: Convergence test of the RWZHyp code for the configuration with e0 = 0.5. Upper panel:

amplitude of the (2,2) mode for different radial resolutions and corresponding tail exponent (insert)

computed according to Eq. (5.22). Lower panel: relative amplitude differences among different resolutions

(solid lines). We also rescale the last two with a second order rescaling factor SF(2) (dashed lines) in

order to highlight the effective second-order convergence of the code.
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Appendix C

Chandrasekhar’s transformations between
Regge-Wheeler and Zerilli modes

Consider a Regge-Wheeler mode ũodd(ω, r∗) and a Zerilli one ũeven(ω, r∗). Following Chandraskhar [113],

these modes are related through the transformation

ũeven(ω, r∗) =
1

κℓ + 12iω

[(
κℓ +

72
Fℓ(r)

)
ũodd(ω, r∗) + 12A(r)∂rũodd(ω, r∗)

]
, (C.1)

where we have introduced the following quantities

κℓ ≡ ℓ
4 + 2ℓ3 − ℓ2 − 2ℓ , Fℓ(r) ≡

r2 [rℓ(ℓ + 1) − 2r + 6]
r − 2

. (C.2)

Following Chapters 2, 7, we write the ω-domain quasi-normal eigenfunction for an odd mode as

ũodd(ωx; r∗) = eiωx
[
r∗−4 log( r−2

r )
]
â(ωx, r) , (C.3)

where we defined the index x ≡ (ℓmns) identifying the multipole numbers (ℓ,m), the overtone n ≥ 0 and

the regular/mirror mode s = ± index. Substituting the above expression in the transformation Eq. (C.1),

we find the even quasi-normal mode as

ũeven(ωx; r∗) = eiωx
[
r∗−4 log( r−2

r )
]
ẑ(ωx, r) , (C.4)

where we have defined ẑ(ω, r∗) as

ẑ(ω, r∗) ≡
1

κℓ + 12iω

[(
κℓ +

72
F(r)

+ 12iω
r2 − 8

r2

)
â(ω, r∗) + 12A(r)∂râ(ω, r∗)

]
. (C.5)
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Appendix D

Standard regularization of excitation
coefficients

As discussed in Sec. 7.2.3, the quasi-normal modes excitation coefficients may be divergent should one

consider initial data that extends all the way to the horizon, or a source approaching it dynamically. To

handle these divergences, different regularization procedures have been introduced in the literature. In

Ref. [118], Sun and Price investigated the excitation coefficients for initial data extending to the horizon.

They introduced a regularization based on an analytic continuation on a deformed contour in the complex

r− plane. An analogous approach was used by Leaver [14]. More recently, it was shown that the excitation

coefficients can be regularized by subtracting suitable counter-terms, as shown in [51, 285]. In this

Appendix, we show that the two procedures are equivalent, focusing on a source with the same near

horizon behavior as the one considered in Chapter 7.

Let us consider the following integral, which describes the near-horizon behavior of the excitation

coefficient (7.38) of the first overtone,

IH =

∫ b

2
(2 − r)−4iω221dr , (D.1)

where b > 2. Such integral is clearly divergent, as −4|ωIm
221| + 1 < 0. The regularization procedure by

Price, Sun and Leaver [14, 118] amounts to computing the integral along a complex path as the one shown

in Fig. D.1 in the limit ϵ → 0. The branch cut of the integrand is placed along the real axis in the interval

r ∈ (2,∞) and the excitation coefficient is computed as

IH = lim
ϵ→0

∫ b
a dr

[(
2 − r + iϵ

)−4iω221
−

(
2 − r − iϵ

)−4iω221]
(1 − e−8ω221)

, (D.2)

where a < 2. The denominator is due the phase change between the two sides of the branch cut. The two

terms in (D.2) represent the contributions along the horizontal paths above and below the cut. Note that

the contribution of the vertical path is not included, as it becomes infinitesimal in the limit ϵ → 0.

Let us now show how this expression can be rearranged to find the counter-term of regularization method
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Re(r)

Im(r)

r+
r = b + iϵ

r = a − iϵ r = b − iϵ

r = a + iϵ

Figure D.1: Analytic continuation of the radial coordinate used to compute the regularized excitation

coefficients in [118]. The zig-zag line represents the branch cut along the real axis, while the dashed line

is the deformed integration contour. The integral on such contour matches the one obtained using the

counter-term regularization method.

of Refs. [51, 285]. We introduce a new variable 2 < r̃ < b such that eq. (D.2) can be rewritten as:

IH = lim
ϵ→0

∫ b
r̃ dr

[
H+(r, ϵ)−4iω221 − H−(r, ϵ)−4iω221

]
(1 − e−8ω221)

−

[
H+(r, ϵ)1−4iω221 − H−(r, ϵ)1−4iω221

]r̃

a

(1 − e−8ω221)(1 − 4iω221)
, (D.3)

where we defined for compactness H±(r, ϵ) = (2 − r ± iϵ). Let us now take the limit r̃ → 2. Noting that

above and below the cut we have H−(r, ϵ) = H+(r, ϵ)e−8ω221 , the first term in (D.3) can be rewritten as:

lim
ϵ→0
r̃→2

∫ b
r̃ dr

[
H+(r, ϵ)−4iω221 − H−(r, ϵ)−4iω221

]
(1 − e−8ω221)

= lim
ϵ→0+
r̃→2

∫ b

r̃
dr

[
H+(r, ϵ)−4iω221

]
= lim

r̃→2

∫ b

r̃
(−r + 2)−4iω221

As for the second term, we have two different contributions when the function inside the square bracket is

evaluated at r̃ and a, respectively. In the first case we have:

lim
ϵ→0
r̃→2

[
H+(r̃, ϵ)1−4iω221 − H−(r̃, ϵ)1−4iω221

]
(1 − e−8ω221)(1 − 4iω221)

= lim
ϵ→0+
r̃→2

H+(r̃, ϵ)1−4iω221

1 − 4iω221
= lim

r̃→2

(2 − r̃)1−4iω221

1 − 4iω221

When evaluated in r = a instead, this term gives a vanishing contribution. As a < 2, when the

limit ϵ → 0 is performed, the branch cut is not crossed and the function is continuous, and therefore

limϵ→0
[
H+(r, ϵ) − H−(r, ϵ)

]
= 0 for r < 2 trivially. Summing up the two terms, we can rewrite the

excitation coefficient as:

IH = lim
r̃→2

[ ∫ b

r̃
dr(2 − r)−4iω221 −

(2 − r̃)1−4iω221

1 − 4iω221

]
, (D.4)

which is exactly the prescription of the counter-term regularization method. To solidify our conclusions,

we verified that such equality holds by computing numerically the integral (D.1) both with the complex

contour and the counter-term regularization method, obtaining the same values up to machine precision.
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