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Abstract

Carrollian geometry is a type of non-Lorentzian geometry that has gained considerable
traction in recent years. It has important applications to flat space holography due to its
relation to null hypersurfaces as well as to the physics of black holes and cosmology. One
arrives at Carrollian geometry by taking a small speed of light expansion of Riemannian
geometry and one arrives at Carrollian gravity in the same manner via the small speed
of light limit of general relativity. The goal of this thesis is threefold: to complete the full
derivation of NLO equations of motion of the Carroll expansion of GR (previously done
to truncated order), to show that the Carrollian expansion of Schwarzschild black holes
can be derived from general vacuum solutions to the evolution equation of the theory,
and to expand the Kerr metric for both the electric and magnetic limit of the Carrollian
expansion. In order to expand the Kerr metric, one needs to include odd powers of c in
the Carrollian expansion which will be explored in this thesis as well.
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1. Introduction

Albert Einstein’s theory of General Relativity (GR) published in 1915 is among the most
successful models within modern theoretical physics. It describes how the curvature of
spacetime induces what is often called the force of gravity, thus showing that it is not
actually a force but rather a manifestation of the geometry of spacetime. Einstein’s field
equations in 3+1 dimensions are a set of 10 nonlinear partial differential equations that
relate the matter distribution within a spacetime to its geometry. They are not exactly
solvable in general, thus requiring various simplifications or assumptions in order to
find analytic solutions. These include assumptions of symmetry, such as spherical
symmetry for the Schwarzschild solution, and limits such as the infinite speed of light
(c) limit, often referred to as the non-relativistic (NR) limit of GR.

In 1923 Elie J. Cartan formulated a geometric theory of Newtonian gravity, referred to
as Newton-Cartan (NC) geometry [1, 2]. This framework makes manifest the connection
between Newtonian gravity and GR and allows one to study the NR limit of GR. In
particular one has the post-Newtonidan (PN) expansion for small speeds and weak
gravity which has had great success within astrophysics and cosmology [3-5]. The NR
limit ¢ — oo of gravity is made possible by the PN expansion where one expands in
powers of 1/c. In theory, one is able to take the opposite limit, c — 0 and expand GR in
powers of c. At first this might seem counter-intuitive, considering that the limit might
imply that the velocity of the observer is infinite compared to that of light, which is
impossible according to causality. However, one can instead interpret this limit as the
ultra-local limit of GR that collapses the light cone to a single line such that all spatially
separated points become causally disconnected. Jean-Marc Lévy-Leblond was the first
to consider the possibility of taking this limit for the Poincaré group in 1965 [6] and
coined the resulting structure Carrollian geometry. The Carroll limit of GR was first
considered in 1979 by Marc Henneaux [7] and recently in [8] using a more modern
approach of taking the Carroll limit of the Lorentz geometry.

Carrollian geometry and Newton-Cartan geometry are examples of non-Lorentzian
geometries, which have seen a resurgence of interest in recent years. These theories
allow for probing corners of GR that have useful applications of their own as well as
hinting at directions for more general solutions, this is especially relevant for theories
of quantum gravity. Holographic dualities are among the most promising theories of
quantum gravity that relate gravitational theories to field theories. The most developed
realization is that of the AdS/CFT correspondence [9] which establishes a link between
strongly coupled conformal field theories (CFTs), that live on the boundary of Anti-de
Sitter (AdS) space, and weakly coupled gravitational theories in asymptotically AdS
spacetime (one refers to the gravitational theories as existing in the bulk of the theory).
The properties of AdS spacetime endow the AdS/CFT correspondence with a lot of
elegance and simplicity which makes it a very attractive model to study. However, there
is great interest in establishing other types of holographic dualities that are better suited
to describing real-world observations in certain areas. Lifshitz holography [10, 11]
makes use of an extension of NC geometry, called torsional Newton-Cartan geometry
that describes the boundary of the theory, to arrive at a non-relativistic holography that
is well adapted to condensed matter problems.

Another reason for wanting to consider novel types of holographic dualities is the fact
that AdS spacetimes are not compatible with observations of our own universe. This
has spurred many researchers to try and construct de-Sitter or flat space holographic
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dualities. One of the main hints to Carrollian geometry being relevant for flat space
holography is that on null hypersurfaces in Lorentzian theories, one naturally finds
Carrollian geometry. Incidentally, at light-like infinity, that is to say on the conformal
boundary of asymptotically flat spacetimes, one finds a null hypersurface. It would,
therefore, not be surprising if Carrollian geometry appeared in flat space holographic
dualities, which is indeed the case. The Carroll group has been shown to be relevant
to flat space holography [12] and conformal Carrollian field theory in 3D is applied
in celestial holograph where it describes gravity in 4D asymptotically flat spacetime
[13-16].

Apart from potential applications in holography, Carrollian geometry and gravity has
become an active field of research in the last few years [17-45], as well as having spawned
the research subject of Carrollian field theory [12, 17, 37, 42, 46-52]. Carrollian gravity
has been shown to have great potential for describing dynamics of various limits of
gravity, both with regards to black hole physics [25, 26, 47] as well as cosmology [46, 47].
Null hypersurfaces are induced on the event horizon of a black hole and, in accordance
with the discussion above, Carrollian geometry is thus a candidate for describing that
structure. The connection to cosmology is clearly seen when considering recessional
velocities far outside the Hubble sphere, there the velocity satisfies v > ¢ and thus
corresponding with the Carroll limit ¢ — 0. Carroll symmetry has also found another
application in string theory, where it has been shown that various theories exhibit
Carrollian worldsheet structure [53-61].

For both Newton-Cartan geometry and Carrollian geometry, one encounters a split
into a temporal and a spatial part, reminiscent of the 3+1 formalism of GR [62]. Before
expanding both theories one accounts for this split by introducing pre-non-relativistic
(PNR) variables for the NC theory and pre-ultra-local (PUL) for the Carrollian theory.
These two approaches lead to similar structure, the leading order of the PNR variables
gives NC geometry while the leading order of the PUL variables yields Carrollian
geometry, where both expansions have further geometric fields appearing at higher
orders. The PNR formalism is described in [63, 64] and the PUL in [8]. A duality that
can be formulated between the leading orders of the two theories is explored in [17, 65].

Although sharing many similarities, the NC and Carroll expansions differ a lot when
one begins to analyze the content of the expansion orders. The LO of NC geometry
only serves to constrain the theory and a kinetic term containing extrinsic curvature
first appears at next-to-next-to-leading order (NNLO). For Carrollian geometry, one
has interesting dynamics appearing at LO where such a kinetic term already appears.
Furthermore, The LO Carrollian geometry can be written in the form of constraint and
evolution equations as is done in the 3+1 formalism, which allows one to take initial data
that satisfies the LO equations and evolve it in time [8]. It turns out that, at LO one does
not yet have mass or energy present but at the order of ¢ in the expansion one is able to
consider massive solutions due to the curvature terms that appear at that order in the
theory. In much of the literature on both expansions, one runs into the assumption of the
expansions being analytic in even powers of the expansion parameter, i.e. expanding
in powers of 1/c? for NC geometry and c? for Carrollian geometry. We will, however,
encounter an example where this assumption breaks down for the Carrollian geometry,
specifically when considering the Carroll expansion of the Kerr metric, and thus we will
spend some effort into developing an expansion for all powers of c. This has been done
before for NC geometry in [66]. Thus, great care has to be taken when discussing higher
orders of the theories. As an example, the curvature terms discussed above appear at
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NLO in the c? expansion but get shifted to the NNLO order in the ¢ expansion.

Having derived the LO and NLO of the Carroll expansion allows one to consider the
so-called electric and magnetic sectors of the theory, the name coming from a comparison
to Maxwell theory [17, 67] where only the electric field or the magnetic field survive in
each respective limit. The leading-order of the Carroll expansion will be identified as
the electric theory while the magnetic theory is that of the truncated next-to-leading-
order. The truncation is imposed via a constraint on the LO, K, = 0, that makes the LO
vanish and the NLO then effectively becomes the ‘new’ leading-order. This has been
explored in detail in [46, 47]. These truncated NLO EOMs for Carrollian geometry have,
until now, been the only presentation of the Carrollian NLO.

1.1. Overview

This thesis begins with a review of a few key topics from general relativity in Section 2.
The concept of taking derivatives on a manifold is discussed in 2.1 and the Lagrangian
formulation of gravitational theories, specifically via the Einstein-Hilbert action, are
reviewed in 2.2. The section concludes with a review of the vielbein formalism 2.3.
Section 3 presents a review of the main concepts of Carrollian physics. We begin by
introducing Carroll transformations in 3.1 which will then be related to the Poincaré
algebra. In 3.2 we derive the Carroll algebra by taking the Carroll limit of the Poincaré
algebra. Then in 3.3 we will first gauge the Poincaré algebra and thereafter move onto
gauging the Carroll algebra to arrive at both the data for Carrollian geometry as well
as showing how one can, in a relatively simple manner, derive curvature terms using
said procedure. This is referred to as a first-order approach for obtaining Carrollian
geometry and is presented in [21]. For later illustrating the electric and magnetic sectors
of Carrollian geometry we will in 3.4 consider a simple example of a Carrollian scalar
field theory that can then be related to the Carroll expansion of GR.

In this thesis we will consider two ways in which to arrive at Carrollian geometry
and the second approach is that of a ultra-local expansion in the metric formulation
of GR around ¢ = 0, this will be the main approach considered in this thesis. In
order to prepare for the Carroll expansion we follow [8] by introducing PUL variables
that perform a split into a spatial and temporal part of the theory which can then be
Carroll expanded. We describe this process in Section 4 where in 4.1 we introduce
transformations of the PUL variables, the PUL and Carroll connections in 4.2 which are
then related to the Levi-Civita connection of GR in 4.3. We then show a few identities
for the connections in 4.4 along with Appendix A.1, define the variables of the curvature
in 4.5 and finally construct the PUL Einstein Hilbert action in 4.6.

Having defined the PUL expansion, we move on to deriving the Carrollian geometry
in Section 5. In anticipation of problems we encounter later in the thesis related to the
assumption that the expansion is analytic in c2, we introduce two different approaches
to the expansion in 5.1. One where we expand in even powers of ¢ and one where
we consider all powers of ¢, which we call the ¢ and ¢ expansion respectively. Some
details of these derivations have been relocated to Appendix B. Subsequently, we review
the leading-order of the Carrollian geometry in 5.2, following [8] and then in 5.3 we
derive the next-to-leading-order theory. This has not been done before in pre-existing
literature and will be the main result of the thesis. Again, detailed derivations for these
sections are found in Appendix C.

In addition to presenting the derivation of the LO and NLO equations of motion we
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also show their spatial and temporal projections for both the ¢ and c¢? expansion in
Section 6, the LO in 6.1 and NLO in 6.2. The Carroll expansion of GR spacetimes will be
considered in 6.3. The expansion of the Schwarzschild solution has been studied before
in [8, 47] and in this thesis the connection between those solutions and the evolution
equation of the LO theory will be made explicit. Furthermore, an attempt will be made
to derive the Carroll expansion of the Kerr metric where we will, as mentioned before,
have to consider the inclusion of odd powers in c. There also turns out to be an issue with
the electric limit of the Carrollian Kerr metric owing to super-leading terms appearing
in the expansion. The relation of these solutions to the general Carroll expansion will
be discussed and put into perspective. We conclude the thesis with Section 7 where the
results of the thesis are discussed as well as further directions for research.



2. General relativity

Gravity arises due to the effects of the geometry of spacetime. This is well known and
was famously formulated by Einstein in his theory of general relativity. The theory
uses the Riemann curvature tensor as the geometric invariants along with an affine
connection that is both torsion-free and metric compatible. See [68, 69] for detailed
reviews of conventional general relativity. Later it was shown that one can relax both the
assumption of metric compatibility and the zero torsion of the connection, see e.g. the
Palatini formulation of gravity [70] and Einstein-Cartan theory [71], to find alternative
theories of gravity. This section shows some aspects and formalism of gravitational
theories that will be of use in this thesis.

2.1. Differentiation on a manifold

A general metric-affine theory is defined by three objects, the manifold M, the metric
tensor g, and a metric affine connection which can be written as

P, =", +K +17,, (2.1)

which defines a covariant derivative of an arbitrary tensor X

= [N _ [N S Atk A U1eee Uk
VpXHH, = X, L T X +...-1, X

V1.V

Ao Vi (22)

Here, T” pv is the Levi-Civita connection, K v is usually called the contortion tensor and
L’ uwv the disformation tensor. Their explicit expressions are

1

Iﬂp,uv = Egp)\ (ayg/\v + avgy/\ - a/\gpv), (2.3a)
1

K’y = E(TH b +T,0 —T, ) (2.3b)
1

Lppv = E(prv - Qypv - vap)/ (2-3C)

where TPW =21 ]
From this it is evident that imposing zero torsion 7" w = 0 and metric compatibility
?p guv =0, as for Einstein’s GR, we arrive at the Levi-Civita connection. We define the
covariant derivative in that case via V without the bar on top. The contortion tensor

and non-metricity tensor are the geometric objects for theories of gravity along with the
Riemann curvature tensor

is the torsion tensor and QP#V = ﬁp Suv the non-metricity tensor.

Ry’ =2 a[grpy]v +2 TPM Mrﬁw (2.4)
and in general one can consider their role for various theories of gravity. The formal
study of these formulations of gravity is called the Geometric Trinity of Gravity, see [72]
for a useful review, but that is outside the scope of this thesis. Here, we merely highlight
the existence of torsion and non-metricity for later reference.

The motivation for defining a covariant derivative, as in (2.2), is often shown by
taking a partial derivative of a tensor, 8“X“ﬁ, and showing that such an object does

not transform as a tensor under a general coordinate transformation. However, a more
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fundamental argument is found by considering that a tensor at a point P lives on the
tangent plane to the manifold at P. Thus, when wanting to compare that tensor at two
different points, one runs into the problem of what it actually means to compare the
two since they live on two different tangent planes. We have to account for a change
of basis of the tangent space between the two points and this requires us to specify a
connection between the two, which we can further constrain via consistency conditions.
The covariant derivative thus requires the introduction of a new structure, I’ - We
can, however, define a different type of derivative that also transforms as a tensor, called
the Lie derivative:

£eX% = &7V XY = X VeE® = ET% ) Xy + X0, V& + ETY X%, (25)
that does not require any extra structure. When the Lie derivative of a tensor field

vanishes, EL,X“"'ﬁ“_ = 0, it is said to be Lie transported along the integral curve of £¢.

2.2. Lagrangian formulation of theories of gravity

Under a coordinate transformation x® — x® (x%), the volume element for d + 1 dimen-
sions transforms as d¥*'x = J d*1x’, where | = det[dx®*/dx*]. Writing the transforma-
tion of the metric as

dx® dxP
B = 3T ooy Saps 2.
808 = G G 8 20

and taking the determinant on both sides, we have

g =g = J=4g/s 2.7)

where ¢ = det[g.s]. Now considering the transformation to be from a local Lorentz
frame x% to an arbitrary coordinate system x%, we have ¢’ = det[n,4] = -1, and the
transformation of the volume element becomes

4ty = 1@ty = = Q9+1y. (2.8)

Thus, for an arbitrary region M of a spacetime manifold that is bounded by a closed
hypersurface d M we can write up an action functional

S = / £(9,Vaq)y—g d%x, (2.9)
M

of a Lagrangian density £(g, d,q) for a field q(x%). Requiring that the variation of the
action vanishes, we arrive at the Euler-Lagrange equations of motion

oL oL
— -V, ———=0. 2.10
g "o(Vug) 210

2.2.1. Einstein-Hilbert action

Here, we will give a heuristic argument for why the Einstein-Hilbert action is the simplest
possible scalar action for general relativity. For constructing a scalar action for general
relativity we start by considering our dynamical variable, the metric g;,. According
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to the Einstein equivalence principle, one can always find a local inertial frame where
the metric reduces to the Minkowski metric n,,, = (=1,1,1,...) and the first derivatives
of the metric are all zero. In other words, locally flat spacetime. Thus, we know that
we need a scalar that depends, at least, on the second derivatives of the metric. The
Riemann curvature tensor is the obvious candidate and it can be shown that the Ricci
scalar is the only independent scalar one can construct from the Riemann tensor. See
various textbooks on general relativity for more in-depth explanations.

It was David Hilbert who first argued this and presented the Einstein-Hilbert action:

Sen = 16‘::(; /M Ry~gdi*lx, (2.11)

where R is the Ricci scalar
R = g" Ry, (2.12a)
Ryy = Ry, = za[pfﬁ]v + 2ff’p| Mfﬁ]v, (2.12b)

and Ry, the Ricci tensor, which is a contraction of the Riemann curvature tensor (2.4).
Later in this thesis we will expand the Einstein-Hilbert action to arrive at Carrollian
geometry.

2.3. Vielbein structure

When working with manifolds one has to choose coordinates for the tangent spaces,
often they are chosen as (), i.e. based on our preexisting coordinate charts. It can be
convenient, however, to choose a set of vectors that comprise an orthonormal basis, é,),
which is defined as such:

8 (8 ew)) = Nav, (2.13)

where g(é(a), é(b)) is a general metric and 1, the Minkowski metric. What this means
is that locally at each point the spacetime metric is the Minkowski metric. We can thus
express the old basis vectors using the new ones as

é(p) = ey” é(a)/ (2.14)

where e, is an invertible 7 X n matrix which we call the tetrad or vielbein. Their inverse
is defined such that

ety e, =0, e, el = 0. (2.15)
Using these, (2.13) becomes:

Suv e, e’y = Tab, (2.16a)
guv = e," ¢, b, (2.16b)

where the second line is just a rewriting of the first.
Similarly, we can set up an orthonormal basis of one forms

90 = o 60, W = ¢ 7 W), 2.17)
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where we have made them compatible with the basis vectors in the following way:
0We) = 6. (2.18)

This results in allowing us to refer to a vector V (or a one-form) in whichever basis we
find convenient, V* ¢ yorV* e(a)- Therefore, we can write tensors with multiple indices
in either basis as:

Vi =e, Vi =" Vi, =e e, VE, (2.19)

From (2.16) we can deduce that the Latin indices correspond to those of the flat Min-
kowski metric, 1,,. Thus, allowing us to raise and lower said indices via the flat metric.
Moreover, the Greek indices are then raised and lowered with the curved metric, g;,:

e“,l = """ Nap evb. (2.20)

Having introduced a new basis to work in, we have to consider its transformation
properties. The orthonormal basis is not derived from any coordinate system and is
therefore independent of the coordinates. The basis can therefore be changed at will
and the transformation only has to preserve (2.13). The transformations that preserve
the flat metric in Lorentzian signature are the Lorentz transformations:

é(g) g é(a/) = A”a,(x)é(a). (2.21)

We call these local Lorentz transformations (LLTs) because the tangent space is defined
in a single point p and the transformations are thus only valid locally around said point.
The transformation of a tensor with mixed coordinate and orthonormal indices then
becomes:

o oxt o oxV
“oxt TV gxv

Now, that we have such tensors with mixed indices, it is important to account for them
appropriately in the covariant derivative. Just as we have the affine connection for
the coordinate based (Greek) indices (2.2), we now have a different connection for the
noncoordinate (Latin) indices called the spin- or Ehresmann connection, a)y“b. Thus,

X"

ap
X = A - (2.22)

b’

taking the covariant derivative of the mixed index tensor in (2.22) yields:

apg _ ap rd yac  _ o i _ a4 yCu c yau
DX, =X, + T X, o, X, —w, e X T, p X cvs (2.23)

where both connections appear.

Using the fact that a tensor should be independent of the basis we choose, we can
find a relationship between the spin connection and the affine connection. Considering
a covariant derivative of a vector, writing it first in a coordinate basis

DV = (D, V") W @8,
- (ayvv +T pVP) CEY (2.24)
and then in a mixed basis and converting to coordinate basis:

DV = (DHV”) é(}l) ® é(a)
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(8 Ve — )9(‘”)@6()

= (a},(e Yy — @, Lo pr) OV @ e° 28(0)

e, (eﬂ&FVV + Ve, — a)y”bepbvp) oW ® )
= (VT + Ve 00, = 0,0, V) 00 @ . (2.25)

We can now compare this with (2.24) which gives a relationship between the two
connections:

pr =e%due," —w " e b (2.26a)

£ b€ s
a _ P a_yo a,pP
w, " =edue," =T e e (2.26b)

ub b’

where the second equation is merely a rearrangement of the first. Taking the covariant
derivative of the vielbein and inserting (2.26b)

a _ a_ pa a a b
Dye, =due, —Te," —w e,

ub
= due,” - f“vea” - ( P puey” FZP a pb)evb
= dye,” F;'fv 658#% + szeg“éfj =0,
= Dye," =0, (2.27)

and we have arrived at the so-called vielbein postulate, i.e. that the vielbein vanishes
when taking the covariant derivative.



3. Carroll symmetry and geometry

A standard procedure for simplifying general relativity is to take the infinite speed of
light limit, ¢ — oo, which flattens the light cones, thus making information propagate
instantaneously. One often refers to this as the Galilean limit and one can interpret it
using a dimensionless parameter c /v, with some characteristic velocity v. — 0, i.e. ¢
is infinite compared to v.. This characteristic velocity is that of an observer moving
at non-relativistic speeds and thus corresponds to the realm of classical physics of the
everyday world, Newtonian physics. Another limit one might take to simplify GR is the
¢ — 0 limit. This was first done by Lévy-Leblond where he took the ¢ — 0 limit of the
Poincaré group and called the result the Carroll group. The Carroll group gets its name
from the Red Queen’s race from Lewis Carroll’s Through the Looking Glass [73] where
Alice and the Red Queen run as fast as they can while standing still in the same spot.
Unlike the Galilean limit, one does not interpret the Carroll limit as having v, — oo,
since this would mean a characteristic velocity greater than the speed of light. Instead,
one sets ¢ = ¢ € where the dimensionless € is expanded around zero. Thus the Carroll
limit collapses the light cones to a line, making all spatially separated points causally
disconnected, i.e. ultra-local. Carrollian causal structure therefore implies that space is
absolute and points cannot move even when boosted. It is from this behavior one can
draw parallels to Carroll’s Red Queen’s race. This section will present an introduction
to Carroll symmetry and transformations which will then be used to derive the Carroll
algebra. We then gauge the Carroll algebra and further hint at a derivation of Carrollian
geometry via first-order formalism. Lastly, we introduce the electric and magnetic
sectors of Carroll theory via an example of a scalar field theory.

3.1. Carroll transformations

In general relativity the spacetime metric can be locally approximated by the Minkowski
metric, thus exhibiting Lorentz symmetry and translational symmetry:

xt = xt = AF x4+ at, (3.1)

where A", are the Lorentz transformation matrices and a* is a constant vector in
spacetime. This transformation can be split into its temporal and spatial part using
xt = (ct, xP):

xi
ct »ct' =A% x"+4° = c(AOOt +A0i?) +a°, (3.2a)

xt - xt = AxV +al = c(A’Ot +Aljx?) +a'. (3.2b)

This split results in A, only corresponding to Lorentz rotations. The symmetries
presented here are captured by the Poincaré group, whose Lie algebra is defined by

[Ja, Pc] = nacPp —necPa = 21ncaPp), (3.3a)
[JaB,Jcp] = nacJep + nepJac —BcJap — NapJBc
= 2(ncialsp — Moaleic) = 40icialsp) (3.3b)

with all the other commutation relations being zero. The algebra has been generalized
to d + 1 dimension with 17, = diag(-1,1,...,1), i.e. the uppercase indices are as such:

10
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A =0,1,...,d. The square brackets around indices represent anti-symmetrization in
the respective indices with a normalization factor of 1/n! in front of it (n representing
the number of indices being anti-symmetrized). Now, the generators of the algebra are
defined as

PA = aA/ (3.43)
Jag = xpda — xAdp. (3.4b)

Now specifying further the transformations (3.2) to Lorentz boosts along the x direc-
tion we get

ct —>ct' = y(ct —ﬁixi), (3.5a)
‘ , S 1
xt—xt = y(xl —ﬁ’ct), y = , (3.5b)
V1-p2

with the Lorentz boost parameter ! taking the values 0 < |B] < 1. If we wanted to take
the Galilean limit we would now define a boost parameter b’ = cf' and take the limit
¢ — oo which would result in t = ¢, i.e. time being absolute,'and we would arrive at
the Galilei algebra. Instead we define the boost parameter as b* = ' /c and get

t' = )/(t - bixi) = t'=t—bix, (3.6a)
o = )/(xi _ bic2t) e G X (3.6b)

where the second term of the second equation vanishes due to the limit ¢ — 0, thus
space being absolute, and y — 1 due to ' — 0. We have now derived the Carroll
boosts. Using these we further derive how partial derivatives transform under Carroll
boosts:

0 oxd 9 9

o “arax ool a3t (3.72)
d dx d Jt o d d
o "o ox Taxrar ow lig (3.7b)

The Carroll boosts, along with spatial rotations and translations, define the Carroll
group. For a more in-depth treatment see [17, 46].

3.2. Carroll algebra

The Carroll algebra can, however, also be derived via a contraction of the Poincaré
algebra (3.3). We define

Po=€e'H,  Joa=€'Cs, (3.8)

where we have introduced a split into a temporal part, represented by the generators
defined above where the parameter € ~ c reintroduces factors of ¢, and the spatial
parts P, and J,;. The lowercase indices, a = 1,2,...,d, are just the spatial part of the
uppercase indices from before. Since we are using the mostly plus signature, we can
raise and lower the lowercase indices via the Kronecker-6 symbol. Using the Poincaré

11



3. CARROLL SYMMETRY AND GEOMETRY

algebra, changing to lowercase indices and exchanging 1,, with 6,5, we get the following
commutation relations:

[Jab, Pc] = 21caPr) = 2 0c[aPpy, (3.9a)
[Jav, Po] = 2101aPr) = 210[.Pp) = 0, (3.9b)
[Joa, Py] = 21p10Pa) = n60Pa —6paPo, (3.90)
~——
-0
[Joa, Po]l = 21010Pa) = —Pa — 104 Po, (3.9d)
~——
-0
Uavs Jeal = 4nc(alb1a] = 4 O1c[a)a)a)s (3.9)
Uav, Joc] = 41101a)b1c] = 2 Mogatb)c —Oclalb10), (3.9
—_———
-0
Uoa, Jool = 411010]a1p) = —Jab, (3.9g)

where the terms including 1,0 (with a mixture of 0 and lowercase index) vanish, since the
lowercase indices can never equal 0. We now rewrite the equations using the previously
defined contractions (3.8):

[Pa, Job] = 6abPo = € '[P, Cy] = Sape'H, (3.10a)
[Po, Joa] = Pa = €?[H,C,] =P, (3.10b)
Jav, Jeo] =2 Ocfalon] = e [Jap, Cc] = 26—15C[acb1, (3.10¢)
Uoa, Job] = —Jab = € ?[Ca Cpl = ~Jan, (3.10d)
and thus, taking the limit € — 0, we arrive at the Carroll algebra:
Uab, Pc] =206 Py), (3.11a)
Uab, Jed] = 4 0(c[alb)a)s (3.11b)
[Pa, Cp] = 6apH, (3.11¢c)
Uab, Ce]l = 26¢4Cr), (3.11d)
[H,Cs] =0, (3.11e)
[Ca, Cp] = (3.11f)

3.3. Gauging algebras

Gauge symmetry describes a redundancy in the description of a system’s configuration
[74], allowing the freedom to choose a specific gauge that makes it easier to examine
certain aspects of a theory and often simplifies calculations. To construct gauge theories
one can start with a Lie algebra and extend its global symmetries to local symmetries.
This process introduces gauge fields and connections, both of which have some freedom
of choice called gauge freedom. In this section we will first present a method to obtain
pseudo-Riemannian geometry by gauging the Poincaré algebra and thereafter the same
procedure is used for obtaining the Carrollian geometry by gauging the Carroll algebra.
For a review of gauging algebras see e.g. [75].

12



3. CARROLL SYMMETRY AND GEOMETRY

3.3.1. Gauging the Poincaré algebra

For Einstein’s theory of general relativity we expect every point in a curved spacetime
to locally exhibit symmetries under Lorentz transformations and translations, i.e. every
point can locally be approximated by flat Minkowski spacetime. Thus, by taking the
Poincaré algebra and gauging it (making the global properties local), one can arrive at
GR. This can be done by various approaches but here we will use the that of [65].

A non-Abelian Lie algebra g has in general a gauge field defined as

Ay=AST,, a=1,...,dim(g), (3.12)

where T, are the generators of the algebra. The field A, used in gauging the Poincaré
algebra will thus consist of the generators of the algebra contracted with associated
gauge field components to leave only one coordinate space index:

1
Ay =Pae,t + >Ja w, ", (3.13)
where a)PAB = —a)#BA is imposed due to the antisymmetry of J4g. The field will
transform as
Au(x) — A;[(x) = ll+(x)AH(x)U(x) + ll(x)*ayll(x), (3.14)

with the local infinitesimal transformation:
U(x) = e = 1+ A(x) + O(A?), (3.15)
thus giving:

Al = (1= M)AL(L+A) + (1= A)u(1 + A)
= Ay — AAUA = AAy + AN+ A — AduA
= Ay + [Ap A] + A+ O(A?)
= 0Au=duA+ AL Al (3.16)

Writing out the variation of (3.13) gives
1
6Au =Pade,” + > dw, P (3.17)

Now we can relate the two expressions. Defining A(x) also in terms of the Poincaré
generators but contracted with some other tensors

1
A) = PAC (x) + 5Jap 0" (x), (3.18)
we insert it along with (3.13) into (3.16) and get:
1 1 1
6Ay = Pad, Lt + 5Jas 90" + |Pae,t + 5Jbc w,"¢, Ppc”+ SJer oFF

1 1
= PaduC + S]ap 0u0™" + ¢, C7 [P, Ppl+5e," 0™ [Pa, Jer]
N———
=0

13



3. CARROLL SYMMETRY AND GEOMETRY

1 1
+ EwyBCCDUBCI Pp]+ zwyBCUEFUBC, JEF]

1 1
= PAaHCA + E]AB 8H0AB + EEHAO‘FEZ T]A[EPF]

1 1
- E%CBCDZ nosPcy + ZwyBC o FanEslo

1
= PAQHCA + EIAB 8“0AB + EMAGFAPF - a)yCD CDPC

B

1 1
tow Copfler - > w,"

C_. E
u Op Jec

1
= pA(apcA +e BGAB - a)HABCB) + E]AB (%GAB + a)HCAaCB —w

, CBaCA). (3.19)

u

Comparing this to (3.17) we find the following variations:

6eHA = 8HCA + eHBaAB - a)HABCB (3.20a)

6a)HAB = 8y0AB - a)HACGCB + a)uBCaCA, (3.20b)

which shows that e yA and P are the vielbein and spin connection respectively.

The transformation A(x) as defined in (3.18) is a local transformation that exhibits local
spacetime translations that we would, however, like to replace with diffeomorphisms.
In order to do that, we can denote a new set of local transformations by 5 where we
replace the parameter relating to local spacetime translations C4 with a spacetime vector
&M defined in the following way:

¢t = gte, A (3.21)
Then we define
_1 AB AB) _ 1. B
£ = 5Jan(04F - 40, ") = SJapA??, (3:22)
which results in us being able to write:
A=E&A,+X (3.23)

1
= gH(PAeHA + EIAB a)HAB) +X

1 1 1
= PaC* +M+ E]ABUAB_— Hagw,”™,

where the last line recovers the original definition of A(x) in (3.18). Inserting this new
definition of A(x) into (3.16), we have:

6Ay = [Auw A + du/A
= [Au E"Ay + 2] + 9u(E"A, + X)
=&AL Ay + [AL 2] + Av9uE” + EV DA, + Iy (3.24)

The general field strength tensor is defined as

Fuy = 9uAy = Au+ [Au, Ay, (3.25)

14



3. CARROLL SYMMETRY AND GEOMETRY

and looking at the last line, we notice that we have two out of three terms of the field
strength tensor contracted with £". The transformation can thus be written as:
0Au = [Ap Z| + AyduE” + 9T+ EFuy + £V 0L A,
= [Au Z] + 0uZ + EFpy + £ Ay, (3.26)
where in the last line, two of the terms have been gathered into a Lie derivative of a
one-form. From this, the new local transformation is defined as
5Ay = 0A, =& Fuy (3.27a)
=LA+ 9,2+ [AL X, (3.27b)
where the Lie derivative of A, with respect to & shows clearly that A, transforms
under diffeomorphisms. In other words, we have gone from having a local infinitesimal
transformation (3.16) using A(x) that consists of translations and rotations, as per (3.18),
to having a local infinitesimal transformation (3.27b) using X which only consists of
Lorentz transformations, as can be seen in (3.22), as well as the diffeomorphism £:A u-
We have turned the translational symmetry into a coordinate transformation.

Repeating the steps done to arrive at (3.19) but this time for 6A, using (3.22) and
(3.13), we have

_ _ 1 _
5Ay = Pabe,” + > Saw, AP (3.28)
= £cAu + 0L+ [Ay, X

1 1
= ££ (PAEMA + E]AB C()#AB) + 8H(§]AB/\AB) +

1 1
PAe‘uA + E]AB a)‘uAB/ z]CD/\CD]

1 1 1 1
= Patee, + E]ABE.S(UHAB +5Ja AP + EACD (eyA[PA/]CD] + Ea)pABUAB/]CD])

1 1
= Pafee,” + E]AB&ECU#AB L A + A% e PPa+ AP0, ap
1 B |ClA
= Pa(£ee,® +A%5e, ") + S Jap (£ew, AP + uA%E 422 P, 1), (3.29)

where the last term in the last step becomes antisymmetrised since ] 45 is antisymmetric.
This allows us to identify:

56#’4 = £,§€#A + )\ABeHB, (3.30a)

5w, AP = £, AP + 9P +21 P, /M, (3.30b)

; A
ie. e,

the infinitesimal local Lorentz transformation A4B, Taking the covariant derivative, as
defined in (2.23), of the vielbein

as the vielbein and w HAB the spin connection, both transforming under o with

Z)erA = 8yevA - I’ﬁvepA - a)uABevB, (3.31)

(here we ignore the overbar on the connection that was used in Section 2) we know that
it should transform in the same way as the vielbein in (3.30a). Comparing that with
doing the 6 transformation directly:

5(Z)erA) = 8y(56VA) - S(FfwepA) - S(a)HABeVB) (3.32a)
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3. CARROLL SYMMETRY AND GEOMETRY

= £:(Dye, ) + Ay (Dye, ), (3.32b)

we expand all terms in both lines and find a constraint for them to be equal.
Starting with one term at a time in the first line (3.32a):

i) 8y(5eVA) - a“(goaae/* e, 40, &7+ AN, eVB)
= 0,E9000, M + E9Ddge,t + e, A0, E°
+e,49,0, &7 +e,29,A%; + A4, 0e, P, (3.33a)
i) = 8(The,") = —e,A8T%, T, 3e,”
e, 517, - rﬁv(gaage e, A, 7+ A4, pB), (3.33b)
iii) — 5(a)yABevB) = “AB(Se —e, 50w,

=-w, B(é"&gevB + egBav &% + ABC evc)

_eVB(éaaaa)HAB+ngB(9H£o+8HAAB+ACBw CA_ ) Ay CB),

u c “u
(3.33¢)

and then expanding the two terms in the second line (3.32b):

iv) £¢ (Z)#eVA) = £¢ (8yevA - waepA - a)yABeVB)
= £0,0ue, + 05, ADuET + Dy, 0,67 = £90, (Thue,t) = Thye, 49
ng A9,E9 — £99, ( e B) —ng33v89y50—wyAgeaBavégz
(3.33d)
V) /\AB (Z)yevB) = /\AB (8H3VB —FﬁvepB - a)yBCevC). (3.33e)

Setting the two lines equal and canceling common terms, we are left with
e, (40 £ = 8T, = T5,05 ) = w, A A e ® e, O (AP caony + A4 e B
— e pA(-gUagrﬁv —T0,0,8° - rﬁgavgf’) - e b, (334)
which can be rearranged into the § transformation of the affine connection:

STy = 0udy &P =T5,05 &P + E70Th, + 15,087 +T}50,E7, (3.35a)
= 9,0y EF + £:T,. (3.35b)

It is evident that the affine connection transforms via a diffeomorphism under the 6
transformation.

Poincaré curvature

Since A, is expressed in terms of the Poincaré generators P4 and J4p, we should also
be able to express the curvature F, in terms of those as well, contracted with some
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3. CARROLL SYMMETRY AND GEOMETRY

curvature tensors:
1
Fuv = PaR A (P) + 5 JaR P ()). (3.36)

These curvature terms, R, and R HVAB , are then specified by inserting (3.13) into the
definition of the field strength tensor and using the Poincaré algebra as defined in (3.3):

Fuy = 201,A,) + [Ay, A

BC
U

1 1 1
= Za[y PAeV]A + EIAB a)V]AB) + PAeHA + EIBC w p PDEVD + E]EF a)VEF

1
= ZPAg[er]A +J4B ﬁ[wa]AB + eyAevD [Pa, Pp] +§eyvaEF[PA/IEP]
—_———
=0
1 1
+ EwyBCeVDUBC/PD] + prBCwVEFUBC/]EF]
= ZPAB[HeV]A +]AB a[ya)v]AB - €yAa)VEFT]A[EPF]

+ %BC%DT}D[BPC] + wyBvaEFU[E[BIC]F]

= ZPAQ[HEV]A +]AB 8[HwV]AB + epB a)VABPA - 4

B
u evBPA

I( ca B CA_ B
+§(wv w, cJap—w, " w, C]AB)

A A A CA
=2PA(3[H€V] -y, Bev]B)+]AB(8[ya)v] B—a)[u w B ) (3.37)

Comparing with (3.36) we identify:
A(py — A AB
R, (P) = 28[#61/] -2 @, eyyps (3.38a)
AB(Ty _ AB CA_, B
R, () =2dpw " - 2w, 0, (3.38b)
Returning to the vielbein postulate (2.27) and rearranging:

Tivea” = due, —w e, ”, (3.39)

p

as well as contracting it with the inverse vielbein e" ,

a , AL _ P A A , B
Ie ey =e A(ayev -, ge, )
P _ P A P A B
= T =e,due, " —e @, gl (3.40)

we have the affine connection in terms of vielbeine and the spin connection. Now taking
the antisymmetric part of the vielbein postulate

A_tp LA A, B_
‘9[/131/] —F[Hv]ep -, e, =0, (3.41)

and comparing to R HVA (P), (3.38a), we find the following relationship:

A _ A AB _ P A
Ry (P) = 29e," =20, e,y =27 e, (3.42)

Thus, R H,,A(P) has been identified as the torsion tensor.
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3. CARROLL SYMMETRY AND GEOMETRY

The Riemann curvature tensor, as defined in (2.4), has the following relation to the
commutator of the covariant derivative:

Ruvo' Vo = [V, Vo ] VP +2rfmvpvg. (3.43)

First, showing that

8H(epAegA) = eUA&“epA + epA8HeaA
=duoh =0
= e(,AﬁyepA = —epA&HeOA, (3.44)

which will be used in the following calculations. We then insert the relation found from
the vielbein postulate (3.40) and find:

RHVU‘D =-2 8[# (epAaV]eUA - epA a)v]ABeaB)

A, BY(,A C_,A _ C D
: B2 )(e cIvies — € cw, peo )

A
B

p A_ P
—2(6 A&sz —e @,

- p A_, By P B,P A _ P B, A
=2 [a[ue A9v1es" ~eg Iue 4, g —eg e @, g e g Ouey "W,y

p A C_ P AL . C D
e ey e e — € 49ue) e cw, e,

P A B_A C ., P A B A
e A@, 5 € covie, te A9 e €@

C D
v] pCo ]

- P A_,By P A _,B,p A _ P B, A
= Z[Q[ye 29018, — e due A@, g e e AB[ya)V] p—¢ A8[#e|0| @, "p
AN P Co,A ,Ay o C ,D
—e el due qdvjes telcey " det W T pes
——— ———
:5é :(sé
_ LB P A C,,B,A ,p ,D A _ C
ey elce yop, povies e el e e, @, @, D]
~———
5¢ 5¢
= _oP AB _ CA, B
= —eye 4 (2000, ~ 200, P, P ), (3.45)

where we have used the identity (3.44). Now in comparison with (3.38b) this gives:
Ruve” = —€"pe 4R, (). (3.46)

Thus we have shown that the curvature tensor R’ wv from (3.36) is the Riemann curva-
ture two-form and we have therefore constructed the building blocks of GR via gauging
the Poincaré algebra.

3.3.2. Gauging the Carroll algebra

The process of gauging the Carroll algebra is conceptually the same as for gauging the
Poincaré algebra, albeit with some modifications. The goal is to derive from the Carroll
algebra the data of the theory and then further Carrollian geometry. Here we will
follow a similar route as in [18]. We start by defining the gauge field A, in terms of the
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3. CARROLL SYMMETRY AND GEOMETRY

generators of the Carroll algebra contracted with the associated gauge field components
in the following way:

1
Ay =Hrt,+Pee," +Cow " + E]uba)H”b, (3.47)
with the transformation matrix defined as:
1
A=A +E, T =CoA% + A (3.48)
H 2

We have here introduced a split of the X from before into a spatial and temporal part.
Likewise, in (3.47), we have split up the vielbein from the previous section, e yA, into a
temporal part 7, and a spatial part ¢,

et = (T4 ¢, (3.49)

Then, we introduce another frame e 4= (v#, et ) consisting of the inverses of the two
vielbeine with the following properties:

] _ a _ H_ a,lb _ <a
ott, = -1, v“ey =0, Tue’, =0, e ety = 0p- (3.50)
The contraction e, *¢", can be found via:
uta
H A _ i oa
e e, = —ovbt, +e e,
= efe =06 +ot,. (3.51)

The transformation of the field will again be as in (3.16)
6Ay = A+ [Au A, (3.52)
which is then modified to
0Ay = £cAy+ 9,2+ [AL X, (3.53)
identical to (3.27b). Using the given ingredients we now write the previous equation
explicitly:
8Ay = Hoty, + Pobe,” + Cobw,” + % Javbw,™ (3.54)

1 1
= HEgmy + Pafice,” + Cogw,” + 5 Javfew, ™ + Cady A" + 5 JabduA™?

1 1
+| Hry +Pee," + Cowv,* + SJap@, ™, CAS+ —]C,mcd]
PR 2
N——

=0

1
= HET,+ Patee,” + Ca (£, +0uA") + S as (£, + 9,1
1 1
+e,"A° [Pa, Ccl +5¢,°A [Pa, Jea] +5@,"A% [Ca, Jed]
) \ 2 . .
=0acH Z_Zéa[cpd] =_2éa[ucd]

1 1
+ 50, A ap, Cel 70, A [Jap, Jed]

2 ~—— ——
=26,Cp) =40(c[a)p1d]
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_ H(Eg’cy + eM”)\a) +Pofee, +C, (55%” + a#)\“) + %]ab(ﬁgw/b + ay)\“b)
+e, "N P+ @, A%, Ca+ @, Ao Cp — 0, A Jie
- H(ggfy + eym) +P, (£gey“ + eywb) n %]ah (£ga)#“b T+ oA =2 w;[”Ab]C)
+ Ca L6, + BuA" + @,/ A%, + @, A, (3.55)

and see that we get the following transformation rules:

0Ty = £ty + e,"Aa, (3.56a)
56#” =£ge," + eyb)\”b, (3.56b)
(‘_5a)y” =f£ew," + A" + a)HbA”h + a)#b”Ab, (3.56¢)

S, = £z, + A =20, 127, (3.564)

p u

Using the inverse relations in (3.50), we then find that the inverses transform as:
ovH = £:0H, (3.56¢€)

Set'y = Leey + v A, + A el (3.56f)

We can repeat the same procedure as in the Poincaré case where one transforms the
covariant derivatives in the same way as the tensors themselves and then compares to
transforming it directly. But note that since the transformations of e,” and cuH”b are
identical to the expressions found when gauging the Poincaré algebra, see (3.30), we
will therefore find the same transformation of the affine connection as in (3.35a):

0T, = 0u0y &P + £:T,. (3.57)

Again, since ¢," transforms in the same way as before, the covariant derivative of e *
will be the same as before (3.31)

Dye,” = dye,"” - l"fwep“ - a)u”bevb. (3.58)
Writing
Dty = Ity — Ty Tp — w0, (3.59)
we can show that D, 7, transforms just like 7,
8(Duty) = IudTy — Tp5fﬁv - FZVSTP —e, 0w

<, a
ua —a)wéev

= ulEety + e, Aa) = Ty (9udy & + £6T0, ) =Ty (£6p +," A
—e,’ (£5a)ya +dul, —%+ (beuAb) — Wy, (Egev’l +%)
= ay(ﬁg’[v) +%— Tpgygv &P + £§ (_FZVTP — Wyg evu)

— e, 9y + Aq (%eva - Ffwep” - wy“bevb)
(D) + Aa(Dye,),
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which can also be done for v” and eV, :
D" = dyv¥ +17,,0°, (3.60a)
Dye’, = dye’, +F}’lpepa —0'wy, - a)wbevh. (3.60b)

At this point we have derived the transformation rules and covariant derivatives of
the vielbeine for the Carroll algebra. This is sufficient for the remainder of the thesis and
we instead rely on an expansion around ¢ = 0 to derive Carrollian geometry in Section
4. For completeness, however, we will show how one can derive Carrollian geometry
using a gauging procedure.

Carroll curvature

Considering now the curvature F, and expressing it as:
1
Fyuv = HRyy(H) + PaR " (P) + CaR,,,"(C) + 5 Jao R, (1), (3.61)
and comparing with
Fuy = 201,A,) + [Ay, A
1
=2 (Ha[u’[v] + Paa[yev]” + Caa[#mv]” + E]Qba[uwv]”b)

1 1
+ [ Hty +Pge," + Cow,," + E]aba)“”b, Hrt, +P.e, +Cew, + Efcda)vc

—— ~——
=0 =0

d

1
=2 (Ha[HTV] + Paa[yev]“ + Ca&[#wv]“ + Ejab(;[pwv]ab)

d d
+e, " w, 0q,cH — e}l“wvc 0acPy — a)}l”evcéacH - a)#”a)vc 042cCa

+ ;H”bevcesmpb + @, @, 00aCp— 0, @, Joc
= H(201 +2¢,"0,), ) + Pa (20, +2¢, b, 1, )
+Ca (2000, 420, @, ) + % Jan (20, + 20, 0, "), (3.62)
we have the following;:

Ryy(H) =20p,7,) +2 e[uawv]a, (3.63a)
R (P) =20)e,," +2 e[#ba)v]”b, (3.63b)
R, (C) = 20w, +2 w[yb%v]b, (3.63¢)
Ru™(J) = 20,0, + 2w, @, - (3.63d)

The derivatives defined in (3.58) and (3.59) can now be set to zero to derive vielbeine
postulates:

Thye," = due,” - evbwy“b, (3.64a)

ThTp = OuTy = €," @, (3.64b)
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and contracting the first of these with e“;:

ba)a

o 1P a _ ,0 a o
e’ Ipe,” =e, due,” —ee, b

atuvtp
=T, (69 + 0%t
= Luv|% p
—_T0 orP
= Fw+v FW’CP
=Ty, +0° (8HTV — eV”a)W)
b

wll

o _ ,0 a o
= I}, =e%due," —e%e, b

—070uTy +0%e, @, (3.65)
gives us the affine connection written in terms of the vielbeine. Here we have inserted

(3.64b) into the penultimate line. Antisymmetrising (3.65):

[Py =07 (&[ﬂv] - a)[WeVJ“) +e%, (ﬁ[yevj” - a)w”bevjh), (3.66)
we see that the two terms in brackets can be identified with R, (H) and R HV”(P):

217, = —0"Ru(H) + e, R, (P), (3.67)
where we have then found a relationship between two of the curvature terms and the
affine connection.

Now taking the Riemann tensor (2.4) and inserting (3.65):

Ryye” = =20y,I0, —2Tf |\ T

[ulA]” v]o

=-2 a[y (e‘oa (dve," — egba)vl"b) - 0P (dy)T5 — eG”wV]a))

U

~2 (epa R e C T eAa“)[w))
% (eAc (Du1es = 1y @) = 0" (976 = e|alcwv16))

=-2 [8[yepa dvje," + epa 8[P8V]e0“ —eab8[#epa a)v]“b
N—
=0
—ef, 8[#egba)v]“b —ef, egbé’[ya)v]”b — 91,vP 9T,

— 090y T ey A0 @,y + D Due, g, + 00, Ty, |
=0
-21e”, eAb a[ue|/\|aa1/]eab - epaeACeGba[Hew”wV]Cb - epaa)[yabav]eob
+ef, egcw[#”b(uv]bC —ef, UAQ[#eMl“c?v]’cg +ef, UAeGbB[HeW”a)V]b

P oA a p,A , b a P a
ore aa[H’CWaV]BG +ore” e, a[HTwwv] b +0 a)[Wé’v]eg
b

P a pA _ P, C
otes a)[wa)vl b + oo 8[“T|A|8V]TU otve, a[qua)V]C]

=-20Pe,, (8[#6"1/]“ + a)[#b”a)v]b) -2 epb €sa (8[Ha)v]“b + a)[“”a)v]bc)
= —0Pe,, Ry, " (C) = e’ esu R, (), (3.68)
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3. CARROLL SYMMETRY AND GEOMETRY

we find a type of Carrollian curvature. This is a relatively easy way of obtaining
Carrollian geometry and can be used in formulating a dynamical theory, see [21], by
finding the Ricci tensor and scalar and inserting into the Eintein-Hilbert action (2.11).
We will not be using this formulation of Carrollian geometry further in this thesis.

3.4. Carrollian field theory

Having derived the Carroll algebra and geometry along with the Carroll transformations
we are now in a position to explore a Carrollian field theory. For the purpose of this
thesis we explore here the simple example of a real scalar field in order to illustrate the
so called electric and magnetic sectors of the Carroll limit. The names for the sectors
come from considering limits of Maxwell theory, see the seminal work [67] as well as
[76], first for ¢ — oo and later for ¢ — 0 as in [46, 47]. Here, we follow the presentation
in [46].

3.4.1. Scalar field

We start with a Lagrangian for a relativistic scalar field ¢

L 1 m?c?

£=262(8@)2_%(3@)2_1/((,5), V(o) =570 (3.69)

where we have assumed the potential to be quadratic, moreover, the scalar field trans-
forms under Lorentz boosts as

5p = ctpioi + %&xiatcp. (3.70)

Expanding the field around ¢ = 0 where we assume that the expansion is analytic in ¢?,

we get

¢ = cA(¢0 + 2 + oy + 0(c6)), (3.71a)
69 = ¢ (Bix' a0 + ¢2(Bix' repr + £ Digho) + O(cY) (3.71b)
= A1 (6¢0 +c20¢1 + O(c4)).

The factor of ¢® is there to show that one moves all factors of ¢ preceding the leading
order term of the expansion outside the brackets. Now, by expanding (3.70) in the same
way as above, we can generalize the Carroll boosts of the scalar field as:

5P = Pix'didpo, 0Py = Bix' Oy + 1t ipn1, 1 >0. (3.72)

The assumption of analyticity in ¢? will later on in the thesis be shown to be inadequate
in certain cases, see Section 5.1, but for this example it is perfectly fine.
We write the Lagrangian for the free theory as

L= Lo - S - 31|

- CM—Z[Eqsg + c2(q50¢‘>1 - z(ai(po)z) + 0(&)] (3.73)
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3. CARROLL SYMMETRY AND GEOMETRY

= (202 [1:0 2L+ O(c4)], (3.74)
where we have:
1., | ’
Lo=500  Li=dop1-5(dido)". (3.75)

We now want to check whether the Lagrangians are Carroll invariant. The rotational
and translational invariance is almost trivial since there are, of course, no free indices in
the Lagrangian. For checking the boost invariance we use the Carroll boosts (3.6) and
the transformation rules for the derivatives (3.7) defined before along with the fact that
the scalar field transforms as ¢’(x") = ¢(x):

Lo Ly = 5(009})" = 3 (9ro)’ = Lo (3.76a)
L1 £y = 0000005 - 5(000%)°

= dipodip1 — %(@' +bidp)o)’

= 9rpodi P1 — %(9@0)2 — b'9ipods o — %bz (depo)?

= L1~ dob'dipo — %bzq'bg. (3.76b)

From this it is clear that the leading-order Lagrangian £ is Carroll invariant while
L1 is not, due to the extra terms that can not be written on the form of a total derivative.
However, when setting o = 0 via a Lagrange multiplier, essentially setting £o = 0, £;
becomes Carroll invariant as well. What this effectively does is to kill the LO Lagrangian
while truncating the NLO Lagrangian so that it becomes the new leading order term.
Moreover, if one instead truncates (3.72) in the same manner, then £ is invariant under
the Carroll boosts. Drawing parallels from [67], we call the LO Lagrangian the electric
theory and the truncated NLO Lagrangian the magnetic theory. Later in this thesis, see
Section 5, we will derive the LO and NLO EOMs for the Carroll expansion and define
the electric and magnetic sector in an analogous manner to the discussion here.
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4. PUL expansion

Carrollian geometry can be derived from Lorentzian geometry by expanding around
the point ¢ = 0, i.e. the small speed of light expansion as presented in [8]. As ex-
plained before, in this limit the light cones close up and the theory becomes ultra-local.
Anticipating this behaviour, we introduce a pre-ultra-local (PUL) parameterisation of
the Lorentzian metric and vielbein that splits the metric and vielbein into a spatial and
temporal part. We can then consider the transformations of the PUL vielbeine and
define a suitable connection, which yields a so-called Carroll connection upon taking
the Carroll limit. We then relate it to the Levi-Civita connection, show some identities of
the PUL and Carroll connections and define a Ricci tensor and scalar using the Carroll
connection that we then further use to define the PUL Einstein-Hilbert action for the
theory.

4.1. Transformations of PUL vielbeine

The PUL parameterisation of the vielbein and its inverse looks like:

1

-V E“a), (4.1)

A _ -
EA=(TuES)  E A_(

where T, and V* are a timelike one-form and vector,and E " and E H, arethe spatial parts
with the index a = 1,2,...,d, while the indices for the full vielbeine are A =0,1,...,d.
This is the split of the vielbein into temporal and spatial vielbene. The vielbein and its
inverse transform under local Lorentz transformations A% p as:

0E, = AEP, oE", = -AP E",, (4.2)
with A48 = —ABA. Moreover, they are related to the metric in the following way:
8w =NapE, ES, gt =n"PE E, (43)
which upon insertion of (4.1) gives the PUL parameterisation of the metric:
Suv = —C*TyTy + 6 E,"E, = =T, T, + 11, (4.4a)

1 1
gH = == VIV + 6EF Y, = - VIV 4TIV, (4.4b)
C C

where I1;,, and I1*" are symmetric tensors that represent the spatial part of the metric.
The variables just introduced then have the following properties:

T,V#=-1, T,E';=0, E/S V=0, E/,E" =3¢, (4.5a)
TII* =0, IWV#=0, E/EY, =06} =-T,V"+IL,II". (4.5b)

Inserting (4.1) into (4.2):

A _
OF,* = (coT,, OF,)

(A%ELL, eAT T, + A%E,Y), (4.6)
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4. PUL EXPANSION

1
b p
SE", = (—E(SV“, SF a)

1
= (—AbOE“b, SA%VE - AbaE“b), (4.7)
and identifying that the transformation has also been split into its spatial part A”, and
temporal part cA, = A°, (which are both finite in the ¢ — 0 limit), we find that the PUL
variables transform as:
6Ty = AJE,*", SVH = c2A"E", (4.8a)
OE," = A E"+ AT, OE", = —-A"EF, + AV (4.8b)

From these we further find:
0Tl = Oas (OF,"E," + E,"E,")
= Sap (Evb (A”CEyC + CZA”T#) +E, (AbcEvc + czAbTv))

=2 czAuT(HEV)“ + B AGE S+ E S AES, (4.8¢c)

ST =2 ATV WEY) (4.8d)

giving us the complete list of PUL vielbeine transformations. In a similar manner as
we defined the anti-symmetrization of indices, here the parentheses around indices
represent symmetrization with the same normalization factor 1/n!. Having split the
vielbein (and its inverse) into the spatial and temporal PUL vielbeine, we are now in a
position to start considering the Carroll expansion around ¢ = 0.

Throughout the literature one mostly assumes that the PUL variables are analytic in
c¢? and can thus be expanded purely in even powers of c. Later in this thesis we show
that this is not always the case and therefore, we have to consider the full expansion by
including odd powers of c. This has not been done before for the Carroll expansion of
GR but a similar treatment for non-relativistic GR can be found in [66]. For now, we
define the general expansion as such:

X = X() T Z CNjX(j), (4.9)
j=1

where we can either choose N = 1 for an expansion in ¢ or N = 2 for ¢?, as will be done
in Section 5.1. For the PUL variables we then have:

. O . :
Vi =l + 3 cNiott, To=10+Y Nt/ (4.10a)
j=1 j=1
EY, = e(o)“a + Z cNfe(j)“u, EH” = e(o)#a + Z che(j)Ha, (4.10b)
j=1 j=1
e = hfy+ )" Nat, My = b+ Y M), (4.100)
j=1 j=1
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4. PUL EXPANSION

and the transformation parameters are defined as:

Al + Z NIAL, (4.11a)
A%, = A, + Z cNAG?,. (4.11b)

Now, we insert these expansions into (4.8), giving the leading order transformations:

ot = A,e®,",  ovly =0, (4.12a)

6e(O)H“ = A(O)“be( )IJ , 66(0) a = —A(O)b 8(0)#b + /\(O)avﬁ)), (4.12b)
0 _ pv _

Shyy =0, Ohyg = 24{)0 (O)e(o)v)a, (4.12¢)

which are found in the following manner:
5T = /\(0) 6(0) ! + CN (/\(0) 6(1)ya + A(l)ae(o)ya) + O(CzN)

= ot + Z Nisz), (4.13)
j=1

by matching terms with no powers of c. Comparing these LO vielbeine transformations
to the transformations acquired through gauging the Carroll algebra, (3.56), they are
evidently the same with regards to Lorentz rotations and boosts, i.e. ignoring the
diffeomorphisms.

4.2. The PUL and Carroll connection

The transformations (4.12) show clearly that ot 0) and hg)v), the timelike vector and spatial

metric, vanish while their inverses, TL ) and hﬁ)), do not. This means that the latter pair
are not invariant under Carroll boosts and in turn, the vanishing of covariant derivatives

can therefore not be ensured in all reference frames. In light of this, we choose an affine

connection [ such that v, ) and h( ) vanish with respect to the covariant derivative

Vooly =0, Vphih =0. (4.14)
This is the Carrollian version of the metric compatibility, V,¢,, = 0, mentioned in
Section 2.1. It is, however, impossible to enforce vanishing torsion on the theory, since
intrinsic torsion is always part of the general structure [77], even though the intrinsic
torsion can in some cases be zero.

Starting with the non-expanded PUL variables V" and I1,,, we define a connection

©)

CZV’ called the PUL connection, associated with a covariant derivative V u such that

(€) (€)

V,V'=0, VI =0. (4.15)
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4. PUL EXPANSION

As presented in [8] the connection can be written as
~ 1
Chy = VPO, T,) - VPT Ly T, + EHWt [0uTT01 + 9T Tay — OaT1y | ~TIPA T, KGn,  (4.16)

where K}, = —3£yT1,, is the extrinsic curvature which is purely spatial since

1
VEHy = =5V EyTly

1
= —E(V”V”&;HW + V15,0,V + VHII, 8VV")

N——
=0
= —%(8G(V“V“HW) - vﬁnwaavf’) =0, (4.17)

and symmetric since I, is symmetric. Moreover, since the extrinsic curvature is purely
spatial we are allowed to define

KH = TIHPIT K, (4.18)

i.e. the indices on the extrinsic curvature can be raised with the spatial metric I1*". This
is only defined for notational convenience and should not to be interpreted as anything
more than that.

We define the leading order of the connection as

0 _ AP R (0) p 0 (0)
Lav = Cuvlocg = ~2(0%w ) ~ 0) T Eo0)Ty)
LpAf 5 1) ) O] _ 4,70
+ sl [0 + 010 = ahs) | - VK, (@19)
where K, = —%£v(0)h§2} . The connection fﬁv, called the Carroll connection, is then

associated with the covariant derivatives (4.15).

4.3. The Levi-Civita connection

Having found the PUL connection, we can now relate it to the Levi-Civita connection
of GR. We begin by Carroll expanding the Levi-Civita connection via (4.4):

1
FZV = Egpa (aygav + avgycr - aagyv)

= %(_%vaa + HPG) ( —c? (8M(TZTTV) +0, (TuTo) —ps (TMTV))

+dullsy + Iy Iy — 8GHW)

11
- E(C—ZVP(H(W&#VU T d, VO + V9Tl | + VP VT, 29T,
——

=Lyl -1

VP TT0,V + VO, T, + T,T,0,V7 + VOT,,T, |

=T, £y T, =Tty Ty
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4. PUL EXPANSION

+I1P° (2 8(HHV)U — QGHW)

~220( T, (9Th) ~ Tudlo Ty - Tva[gTy]))

=0
51 1
=c ZEVF’/EVHW — VP T, — VPT Ly T, + 17 (a(},nv)a - Eaanw)
CZ
+ gnf’“ (TuTow + T, T5p), (4.20)
where we have defined
Tuw =20, Ty). (4.21)

We further see that the Levi-Civita connection can be split up into three terms of
different orders in c:

(-2) ©0) (2)
FZV = C_ZCZV + CZV + CZCZV/ (4.22)
where

(-2) 1
CZV = EVP£VHHV = _qu(yw (4.23a)
© 1
Chy = =VP (9T + TyubvT)) + 1177 9 I1,), — E&gnw , (4.23b)
@ 1
Clav = ST (T, Toy + Ty Toy). (4.23¢)

The numbers in parentheses on top of the tensors indicate the power of ¢ preceding the

(0)
term. On comparison with (4.16) we see that C fw can be further decomposed as:
© ~ 1
Chv=Ci+Sm,  Spy = —EHPATVEVHM = 1P T, Kz (4.24)

)
One can in fact think of wa as a ‘shift’ tensor that shifts Cﬁv to produce the PUL
connection. This then yields the following expression, relating the PUL and Levi-Civita
connections:

(=2) ~ (2)
I, = cCh, +Clh, + Sp, +¢*Ch,. (4.25)

4.4. Connection identities

Before proceeding further, we will show a few useful identities for the PUL connection
we have just defined. We write the antisymmetrised version of the connection, or 1 of
the torsion, as such:

~ 1
P A
C[w] - EHP (GpeHoa + 2 i~ 2T %K)
_ 1pA _ P
= P T}, Ko = =S0 . (4.26)

From this it is evident that the combination C EV +S ﬁv will cancel out the antisymmetric
parts of the tensors and thus yield a symmetric tensor, as can also clearly be seen in
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4. PUL EXPANSION

(4.23b), thus confirming how one can relate the torsionful connection wa to the torsion-

free Levi-Civita connection. The trace of the connection can be shown to be:

i 1
Chv = =VP(9pTy) + Tipkv T)) + STIP [ 9Tl = OaTlpy | = TIPVT, Kin

1
= 5( - VPsT, - VPO, T, + V25T, + TaavV“) = VPT,(V995T, + T,9,V?)

1
+ EH”A [9pH1 + 0y T1p1 — Higy | ~ VK

1
=-Vro,T, + EHmavnm ~T,K =T, VPV (9,T, - 9,Ty)

=0

1
= EQVE - TV7<,

(4.27)

where K = [1"VK,,, is the trace of the extrinsic curvature and we have defined E =

det [ (Ty, E y”)], called the vielbein determinant, such that:

%aaE - det[(V“,E“u)]8adet[(Tv, E,]

- det[(V“,E”a)]det[(Tv,EV”)]
X Tr [(V“, E”a)(?a(Tv, EV”)]

= —VH#9,Ty + E 9, E,"

= -VH#9,T, + %H“VQQHW.

In the last line we have used the following:
[0,y = B, B0, (E,E, |
= E',E"(E,"0uE,, +E,,aE,)
=2E",d.E,".
For the covariant derivative associated with the PUL connection, we have:

N 20 A _ @A =)
VoXpy = 96 Xpy + Ch X0, - C X5, - COVXL’A,
from which we can derive a few useful identities (see Appendix A.1):

@ 1 1
VoTy = 5Tou = EVA (T, Ty + TuTho),

(s

VI = V(”HV)PTAP((SQ - TGVA),

VI = VEIT'PT,,,

(©) 1
Vo Kuv = 9Ky — (HP" (a(gnw -~ Eamw) - HF’ATF‘KM)‘KPV
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4. PUL EXPANSION

- (HF’A (a(gnm - %amgv) - HFMTVK,A)WW. (4.31d)

Lastly, we can further show an identity relating the covariant derivative of an arbitrary
vector X* to a total derivative, using the vielbein determinant (4.28) and the trace of the
connection (4.27):

Iu(EXH) = 9EXH + EJy X*

= E(eyX“ + THX“K), (4.32)
where we has used:
() _ ~ U
V. XH =9, X"+ Ch,X°
1
=y X" + (EB(,E - T(ﬂ()X“. (4.33)
Later in this thesis, we will make use of (4.32) repeatedly to simplify covariant deriva-
tives, taking advantage of the fact that total derivatives will vanish due to boundary
conditions.
4.5. Curvature: Ricci tensor and scalar

Taking the Ricci tensor (2.12b) for the Levi-Civita connection and inserting the decom-
position of the Levi Civita connection (4.25), we find

— P P o
Ry =20,I0, +217 7 (4.34)

(-2) ~ )
=2|9,[c2CP +C" +8P +c2CP
p plv " Tulv Ty Hlv

(-2) ~ (2) (-2) -~ 2)
+(c2CP, +CP,  +S°  +c*CP c2C% +C% +89 +c*C°
[plo] [plo] [plo] [plol ulv ulv ulv ulv

_ | P Do 2[4 ‘Fp
‘Z[C Crptot Cav €| 20 C gy * Cpptol\ S + S olol T °lplo]

(=2) ~ ~ (-2)
+CP (ca +5° )+(c” +8P )co
[plo| ~ ulv v v ulv

+0 (CP +s° )+(é)p 8“ +(C’p +sF )(C" +5° )+((ZZ)p Co
e\~ ™ Puy [plo| = ulv lplal ™ Zrplol J\~uly T Pulv [plo] " ulv

2

2[5 Zp =p p
+e (a[pcy]ﬁ (C[p|GI+S )ccr

2 2

(2) ~
e (e ))+c4cp ce

[plol) ~ul [plo] plv lplo] = ulv |7
(4.35)
where, again, we split it up into orders of c:
Ry = c_4(ﬁ)w + c_Z(jé)HV + ;){)W + cﬁ%w + c‘qgw. (4.36)
Here, terms like:
Ch, = —VPK,, =0, (4.372)
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§2,CY, = ~TIPO T, K, VOKi =0, (4.37b)
ShoSTy = P T, K TP T Kyp = 0, (4.37¢)
82685v = }lnfﬂ (T, Tho + TsThp) 17 (T, Ty + T, T) =0, (4.37d)
8,@0% = %np" (T, Tho + T Thp) 117 T, Ky = 0, (4.37¢)
Sﬁggﬁv = %HP“TG‘KMHUﬁ (T Ty + T, Tpu) =0, (4.37f)

vanish due to K, being purely spatial, see (4.17), and due to the identity T, IT*" = 0,
@
(4.5a). Terms containing C ZV vanish in the following way:

2p 1 o
Cpy = 511 ( T, TUV+TVTUP)
~——
=0

=117°T, (95T, — 9, Ty)

=T, (—~TpdoI1P7 + T,0,11°7)

=T, (-TpdoI1P? + T,0,11°F) = 0, (4.38)
due to the symmetry of I1*". Thus, we identify (see Appendix A.2 for derivation):

(-4)

Ryv =0, (4.39a)
(-2) (©)

Ruy = =VPV, Ky + KKy, (4.39b)
(0) © © 1o . 1o (—Z)P (V)] o

Ruy = Ry +2VpSh +2C7 180, -2C CT (4.39)
@ 1©

Ruv = 5V (1P (TuToy + Ty Toy)), (4.39d)
) 1

Ry = —L—LHPATHTMHUVTVTW, (4.39%)

where we have defined the Ricci tensor for the PUL connection as

©

— ~p AP Fo
Ry =2 8[pr]v +2 C[pIUIC#]V' (4.40)
Now for the Ricci scalar, we begin by inserting (4.4b):
v 1 4 v
R=g"Ry = (—va + T )RW (4.41)
1

(-2) 1 (=2) )
= —C_4V'uVVR‘uV + c—2 (HHVRFW —_— V[JVVRHV)

0) @ @ @ “@
+TT""Ryy — VHV Ry + CZ(H“VRW - V“VVRW) + 64% (4.42)

(=4
where R ,, has previously been shown to vanish and the ¢* term can be shown to vanish

as well:

@) 1
T Ryy = =TI TP T, Ty TI7PT, Ty = 0. (4.43)
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4. PUL EXPANSION

Grouping together all the R, terms of the same order and considering them separately,
we find (once again, see Appendix A.2 for derivation):

1 1 = 11
(§HW - C—4V“VV) Ry = = pOp(EKV?), (4.44a)
v 1 v v 1 1 o

[ = VAV Ry = IRy + | =2 0uEKVE) + KK |, (4.44b)

C

6] 2 1

(P11 = VAV )Ry, = ST TOT, T, = 20, (EVITIFOT,, ), (4.440)
2R, = ~ ST, T, 4.44d
—C wv = _Z oA py- ( . )

Here, (4.32) has been used in various places as well as the following expression:

©) ©) (©) ~ (©)
Vi, VIV = =Ry Vo =267 VoV =0
(©)
= R,V =0. (4.45)
The Ricci scalar is thus:
R=1(=25 (EKVP) - K2 + KK
- C_2 - E p( )_ + uv
&) 1 2

+ T Ry = 20, (EVATIP ) + LTI T, (4.46)

The leading-order term contains only the extrinsic curvature and can therefore be inter-
preted as a kinetic term and at next-to-leading-order we have a curvature term. Having
derived the Ricci scalar, we can now move onto constructing the Einstein-Hilbert action.

4.6. PUL Einstein-Hilbert action

The Einstein-Hilbert action, as defined in (2.11), can now be expanded using the previ-
ously derived PUL form of the Ricci scalar (4.46):

[

3
— —= qd+1
SEH = 161G ‘/M Ry=gd™x

1
161G Jy

cz(wwqw _x2 - %ap(E«vp))

© 1 6
+ct (H“VRW - 29 (EV#HPOTW)) + ST TIP T, T [Ed ™.

(4.47)

Here the PUL expansion of the metric (4.4a) has been inserted into /=g = 4/—det[g,|:

V=g = \/—det[—CZTyTv + ]

= c\/det[nAB(TH,E (T, E,")]

33



4. PUL EXPANSION

= ¢VE2 = ¢E, (4.48)

and E is, again, the vielbein determinant. The factoring out of the —c? can be done in
the following way:

—det[—c*T, T, + ] = €M (= ATy To+ Mo ) (= Ty, Ti +TTg1) -+
—— ~——
=0 =0

= gtk (_CZTyoTOHmlHHzZ - )
= c*det[T, T, + 1], (4.49)

where on has used the fact that T, has no spatial part and I, no temporal part.
The total derivatives, boundary terms, will now vanish due to boundary conditions,
and thus we arrive at the following PUL action:

1
SEH = l6nG ‘/M

One wants the leading-order term of the action (and the Lagrangian) to have no preced-
ing orders of ¢ and thus defines S = ¢S, where ¢ are then all the pre-leading orders
of ¢ that can be pulled outside of the integral in the action:

¢ 6
(KK = K?) + TP Ry + LT TIOT, T [E Q. (450)

) (A+N)
SgH = CA ((SLO + CN S N1Oo + O(CZN)), (4.51)

where N = 1 for the expansion in all orders of ¢ and N = 2 for the expansion in even
orders of ¢2.

34



5. Carrollian expansion of general relativity

This section will consist of a review of the derivation of the equations of motion for the
leading order of the Carroll expansion, as done before in [8], as well as a derivation
of the full next-to-leading-order equations of motion of the theory. Until now, this has
only been done to truncated order and is therefore a novel result. In this thesis we
will only consider vacuum solutions, for solutions including a cosmological constant as
well as other solutions see [8, 47]. Moreover, we consider both the case of the ¢ and ¢?
expansion for the NLO theory.

5.1. Carroll expansion

As mentioned in the previous section, when taking the Carroll limit of the PUL variables
they reduce to their leading order and the PUL connection becomes the Carroll connec-
tion. Now that we have derived the PUL action, we first have to return to the topic of
expanding in all powers of ¢ versus ¢? before deriving the equations of motion of the
theory. The reason being that the expansion one chooses affects how the theory behaves
at higher orders. The LO equations will be unaffected by this choice but depending on
whether we choose to expand in all powers of ¢ or only in even powers, the NLO term
of the PUL action (4.50) will be preceded by an extra order of either ¢ or ¢2. We will
start by presenting the full expansion in all powers of ¢, followed by the even powers
expansion.

5.1.1. Expanding in all powers of ¢

The expansion for all powers in ¢, even and odd, will be referred to as the ¢ expansion
throughout the rest of this thesis. The c expansion will be useful for the cases where the
assumption of analyticity in ¢? breaks down. The vielbeine are then as defined in (4.10)
with N = 1. We take the contravariant vielbeine V¥ and E", to be the defining ones, i.e.
the higher order terms for all the other vielbeine will be defined in terms of the higher
order terms of the two along with all the leading order terms. Here we will show the
derivation for the expansion of T, and then referring to Appendix B for the remaining
vielbeine.
Expanding the first two of the completeness/orthogonality relations (4.5a)

(0) (0) (1) 2 (0) (2) 1
VH Ty—v(o) u +c( (1) Ty +v(0) u )+c ( (2) Ty +U(O) M +v(l) H)

+0(c3) -1, (5.1a)
E'uaT‘u = E(O) aT L)+C(€(0) aT L)‘f'e() aT L))
+C (6(0),1!(1)+€(2)aL)+€()ay)+0( ): (5.1b)

0),#

V) = = -1and e(o) 2T ( ) = =0,

and demanding that they hold at leading order, such that 7,
we find constraint equations for | > 1:

J J
z : Db _ 2 : () —
: Tu U(I—j) =0, : Tu 6(]_]')”” =0 (5.2)
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with | representing the order of c in the expansion. Taking these two equations and
contracting them with TLO) and e© Ha respectively, we have

J J-1
(0) (4, .p (0) (G_p 0)) (0) p
Ty To Vi) = Tu ‘ Tp 0 ])+’C Y0 =0, (5.3a)
]:
0“](]') 0 O 0 D o0 ¢
6( )y ZT‘O e(]—j)pa = 6( )y 6(] ]) ( )# 6(0) a = 0, (5.3b)
j=0 j=0 e
6P+v(po) LO)

where we then combine the two using the common term appearing in both, giving;:

~
_

n _ (0) (J) p 0) ¢ (])
Ty ’C (] ])—6( )‘u ,0 e(] ]) a (54)

j

I
o

This equation can then be solved iteratively for each order of the expansion, for the
derivation for all the other vielbeine we refer to Appendix B. For | = 1 we have

1 0) (0 a
o) =1t ol —e® Ve, (5.5a)
a 0 a a
e, =), oy =€ 6(0) e’ (5.5b)
hﬁv) =0 (e(O)Hae(l)vb +eq) ae(O)vb)/ (5.5¢)
1 _ 0 b 0 2.0 p 0
hyv = 26,1};8( )P e( )(ﬁl (Tv) U( 1) - 6( ) ) 6(1) c)/ (55d)

and then for | = 2:

@ _ O () p 0
Ty =1Tp (T 0 e() €©2) ,1)

Z @
+(r(0) ©),, 0%, - e“”p”fg e’ )(T(o) 51) 00 aea) a), (5.60)
@ " = ¢ ”( O9f) —eO), ‘e’ b)
+ (120)6(0)0%51)_em)pbem)oae(l)ab)( Oof 460, le b) (5.6b)
iy = 6" (6(0)“a€(2)vb + ey ae)”, + e(z)”a€<o>”b), (5.60)
) =260 w0 e® 't (O) (°>) —20mew’ >be<0)(#“e<0>v)c
+6, v(l)fff”( g))e@a“ @ 90 "y e(O)pCe«»gae() 00 by

d

d b
e o0 “e(l) e e( ) 6(1)“d)

+5ubv(l)(T(O)T(O)vfl) e(o)ch(o)

_ © (.0 (0) 0P 7O <0> © 4,0 ° 0 <0>
Oqpe ‘u( Oy To (1) —e, e e()

e )e(m ") b

(1)
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0 a e b
— 00 of e, e®, e,

d

b
p €) a 6(1)“e)e<1>ac

a b ¢ d
_6’”’6(0)# €<0)p 5cd6€f€(l)pfe(0)v 3(0)0 e(l)ge

— 5ape® e(o)pb 5046 e (1)pf(r§°)e(°’acv(“1) —e® 5,0 (1)ag) e(O)ﬁd e
(5.6d)
Now for the general expansion of the metric (4.4a)
Quv = —C*T, T, + 1,
= —21,7y + oy + VD) + ANRG), (5.7)
we can write for the ¢ expansion:
v =l +chll) + cz(hffv) - T,,TV) + 0(c3), (5.8)

which will be useful later on.

5.1.2. Only even powers of ¢

Here, one will assume that the PUL parameters are analytic in ¢ and can thus be
expanded using only even powers of ¢, thus setting N = 2. We will call this the c?
expansion. This assumption will hold in many cases and is convenient due to simplicity.
For V# and E", we define the expansions as

VE =t + PMF +O(c*) and EY, =e", + 2", + O(ch), (5.9)
where the LO and NLO parameters have been defined in the following manner:
[T [
Vi) = 0% V) = MH, (5.10a)
eo'a=e'a  ewfa =m0 (5.10b)

For the leading order of all the other parameters, we drop the (0) index in the same
manner. Inserting (5.10) into (5.5) we find the expansions to be:

VHE = ot + 2MH + O(ch), (5.11a)
T, =1, + CZ(THTVMV - eH”TVnVu) +0(ch), (5.11b)
EY, = e, + 2t + O(cY), (5.11¢)
E,S=c,+ Cz(Tvaeva - eyhevanvb) +O(ch), (5.11d)
[T = b 4 2DH + O(c?), (5.11e)
Iy = hyy +2 czéabe(y“ (TV)MPeph - ev)cepbnpc) +0(ch), (5.11f)
We can further verify that inserting (5.11) into (4.5b) we find:
ot = =1, 1" =0, huo' =0, e e, =06, =-1,0" +hyht. (5.12)
Lastly, the metric g, in the ¢? expansion becomes:
Suv = hyy + cz(hfllv) - THTV) + 0(04), (5.13)

that will, again, be used later in this thesis.
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5.2. Leading-order theory

In order to explore the leading order of the theory, one does not have to specify whether
one has chosen the ¢ or ¢? expansion, since the leading order variables will be the same
for both expansions. Here we will choose to drop the (0) labels on the leading order
variables and we stay with that choice throughout the rest of this thesis. By defining the
leading order of the extrinsic curvature as K, = —%Evh uv and the vielbein determinant
as e = det[(ty, e,")], we can write the leading-order term of the Einstein-Hilbert action
(4.50), thus effectively taking the Carroll limit:

@) 1

S10 = 10— | [K*Kuw = K?|ed™x. (5.14)
M

As a reminder, the label (2) above the LO action represents that there are two powers of
¢ multiplying that term.
Before tackling the variation of the action, we first present some variational identities.

0Ty = =1y hyuOh?” + 17,607, (5.15a)
Shyuy = —huphyadhP* +2 by, 1,607, (5.15b)

1 1 ~
6Kyv = —T/\KHV + K/\(VT#) - Eh)\‘uTJGTUV - Eh;\vv"rgy)évA - hG(VVH)cSv“

- v"ha(“’fv)@géva - K/\(vh

1 ~
wpdhP + 2 hyp a0V OhP?, (5.15¢)

~ 1 ~
5K = —(0°70; + 1A K)00" — (5§ + v"m)VyévA + S0 Vo0h, (5.15d)
§(KMKuy) = =(2TaAK" Ky + KY 10774,) 60" =2 K" V60" + K,107Vo60PY,  (5.15€)

de = ety v’ — e%hméhm. (5.15f)

Here we have made the choice of having all the variations being defined in terms of 6o
and 6h*". The derivation of the identities can be found in Appendix C.1. For covariant
derivatives of the variations, we use (4.32) along with the vanishing of boundary terms
to show

/eX@H(Sx”dd“x:/ e[V (Xoxt) -V, XoxH]| dx
M M

:/ [%(eXéx“)—eT#Xéx“—e@#Xéx“ d¥*lx. (5.16)
Ml—
=0

This will also hold if one replaces X with an object of arbitrary tensor indices that then
contract with the index of the varied variable and the index of the derivative, such as
8M (X“P vaéxv), as well as for multiple indices in the varied variable.

Now that we have found the variational identities (5.15d) - (5.15f), we can return to
the LO action (5.14) and vary it:

5S10 = |6(KH" Ky = K2)e + (K" Ky — K2)de | 41

16nG Jy,
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1
"~ 161G

1
161G Jy

/ |€(6 (K" K) ~2KoK) + (KFKy, — K2 3¢ | d™1x
M

= 2(K¥ Kya + K" 0770, ) 500 = 2K, 9,00 + Ko7V, 517

- 1 ~
- ZK(—(U"TUA + 11 K)ov" = W he) V607 + EhpAUaVaéhpA))

+ (K*“’KW - Kz)e(m(‘iv}L — %hméhm) d?+x

— 1 1 v 2 H H A
- 1671G,/Mel_2(_§(1<u Ko = K21 + 070 (K A—(SAK))év

1
- E(K”VKW - Kz)hméhp)‘

+ (Kpr = Khpa) (—2 ¥, 507 + vﬁ\’/gahpﬁ) di*ly. (5.17)

Then the identity (4.32), more specifically the procedure in (5.16), allows us to rewrite
the last term as

/ e| (Kopn = Khpa) (-2 h709,80" + 07V, 017 )| a1
M
= / e[ o ((Kon = Kitpa) (-2 hP 50" + 07610 )
M
+ Vo (Ko = Khgn) (2170 00" = 07 5hi
+2 (Kpn = Khpn) 957050 | d*1x
= / [8(, (E(Kp/\ — Khpy) (—2 hoP 5ot + v”éh’”))
M

~ Kty (Kpr = Khipa) (=2 60" +0%0h?")
——
=0

+ eV, (Kpn — Khyp) (2 hoP ot — v“éhM)
+2 (Kga = Klipa) Vo h? 60 | 41
N /M e [K(Kpn = Kltpn) 5h + 9, (Kyn = Khpa) (2 h7P00" = 05k
+2 (Kpa = KlipnJo P a50* | 41, (5.18)
and the variation of the action thus becomes:

2 1 1
¥%10 = 1gng [‘ 25 (KK K 2 =] o
M

1
— 5 (K¥ Koo = K2 a1 + K (Ko = Khga) o
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+ Vg (Ko = Kltpn) (211760 — 0% hi

A qd+1
+ (Kpr = Toubv" [ A

- 16;G/ elz(—%(KWKW—KZ)THW%(KM—Kh,m))ézﬂ
M

1 _
+ ( = 5 (K Ky = K)o = 07V, (Ko = Kl

+K(Kp - th;\))éhfm d?+1x. (5.19)

We have now finally arrived at the LO equations of motion

@ 1 ~

Gu= _E(KWKPG - KZ)TH + 1PV (Kyy = Khyy ), (5.20a)
o) 1 =
Gﬁv ) (KPGKPG - Kz)hw + K(Kyy = Khyy) = 07V Ky = Khyy), (5:20b)

for the variation of the LO action:
1 2o u 1 =y uv| 3d+1
6S1p0 = % ME GH(SU + EGHV(Sh d"x. (521)

Furthermore, on comparison with the general form of the variation

@ @
0S10 = T/Me Sor oot + SHEY oht1d" x, (5.22)

we find that

()] @)

80 _0L1o 18h _0L1o

b= 3G = S (5.23)

Comparing these results to non-relativistic (or Galilean) gravity, where the LO EOMs
only serve as constraints on the theory by foiliating the spacetime into time slices [78],
we see that here we already have interesting dynamics at the leading-order. Similar
dynamics first appears at NLO and NNLO in NR gravity, thus showing that Carrollian
gravity is considerably more difficult to calculate to higher orders.

5.3. Next-to-leading-order theory

What we consider here to be the next-to-leading-order hinges on which expansion pa-
rameter one chooses, ¢ versus c2. Following an equivalent treatment for non-relativistic
gravity from [64], we begin by showing a few characteristics of Lagrangians consisting
of fields that are expanded in orders of ¢V as such:

¢! = (Pfo) * CN% * CZN(sz) +O(™), (5.242)
Iud’ = i) + Ny + Ny, + O, (5.24b)
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which then allows us to specify later whether N = 1 or N = 2. As for the action (4.50)
we define for the Lagrangian £ = ¢® £, with ¢® the pre-leading orders. It is evident
from the action (4.50) that we have A = 2 and thus:

@) 2+N

L= Lio+cN Lino+0(N)]. (5.25)

The Lagrangian is in general a function of the field ¢! and its derivative d,¢’, all of
which can be considered to be a function of ¢V. Thus, we define a total derivative

1 I
d 9 +a¢> d +8(8y¢) 0 (5.26)

deN 9N 9N 9Pl AN 9(9upl)

which is used to define the Taylor expansion:

2N

L(cN)y= L)+ N L)+ 1:”(0) +0(c3N). (5.27)
This in turn shows that:
(2) ~ ~
LLO = L(O) = L(qbéo)/ a‘uqbfo)/ CN = 0) (528)
@) oL 3(]51 oL 8(8;1(75[) oL
Lno=L0) = (8CN N 507 N 3050 g
LOL| L0 aL| 0w of
S OcN |y IeNIP |y IeN 9(Dud!) | g
~ (2) 2)
&L I aLLO a'L:LO
=S| o 9
IcN |y @ aqsgo) % D auply)
~ (2) 2)
_dL I aLLO JdL1o
"3 Loy a0t 3‘%) (% b))l )

=0
@

_ gl ( 8£Lo )
L
~ @
0L ;1 0Lio
= — + ¢ — (5.29)
IcN | v 4] 6¢(0)
where 6({:’1 is the Euler-Lagrange derivative and terms two and three in the third line

©)
are found in the following way:

8¢I 8.f I N .1 2N 3£
3 0g |, = | (0 v2e 0 vt ’)a(qsf e gl + O
- ©0) (1) N0
~ 2)
dL(0) 1 9Lio
a(P(O) a(75(0)
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For the Einstein-Hilbert action we have chosen the defining fields to be V# and IT*"
with their Carroll expansion given as

VH =0t + chﬁ) +0(c?N), (5.31a)

T = b + cNh(”lV) +0(c®N). (5.31b)
Thus, in order to obtain the NLO Lagrangian, we simply use (5.29):

)

_ @
@N) B 8_,[: p 0Lio  ,woLio
NLO = 5N Neg D ot 1) ohHv
~ aj u @ 1 HV(Z)]’I
TN |y Y Ch 3 G (5:32)

where in the last line, (5.23) has been inserted. It is evident that the LO equations of
motion are encoded in the NLO equations of motion. This is repeated at every level in
the expansion and thus every higher order action will contain all the dynamics of the
lower order. The variation of the NLO action will now become:

(2+N) 1 a_i
05 N0 =g /Me[é(ac_N

H (2)?]
+v(1)6Gy +

@) 1 @)
u WY ~h
y 0) + 60(1)Gf1 + Qéh(nGw
cN =l

(2+N)

1, . @ 1
Ehﬁv)(SGﬁv+ Lo Soe d+1, (5.33)

We will now assemble all the ingredients to be able to derive the variation of the NLO
action for both the ¢ and c? expansion. Starting with the first term of (5.33) we begin
by noting that from (4.50) it is clear that the stripped Lagrangian £ only contains even
powers of c. Thus when considering the first term of (5.32) and setting N = 1, the term
vanishes. However, if we take N = 2, we are left with

oL

1 ~
ﬁ = Eh‘U'VR‘UV, (534)

c2=0

(€ ~
where we have defined R) v |02: = Ryy-
In order to calculate the variation of (5.34) we first show:

L
Ruw =20, +2F0 o (5.35a)
R = TP P 1o P o

ORyw = 2(9yp0T0, + 017 To +T0 5T ), (5.35b)

which when used with

v, P _ P g I T P I 7P
291,000, = 2(00T%), + T 870, ~ 7 of0, = Tf of) )

[plo] ™" ulv [pu] [PV plo
2] _ v P T P
= Ry = 2(v[p5ry]v - rf#p]érw), (5.36)

allows us to write:

S(h" Ryy) = Oh* Ry + H*VOR
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— [ ARy P _ 1o P
= ShM Ry + 2 (v[péry]v r[mérw)
_ v S N Y y, N Y
= O Ry + V(0T ) =V, hi 6T,
-, (h‘“’éfgv) + VY STE, = 2 B R 1 K, 10, (5.37)

Two of the terms with the covariant derivatives are then rewritten using (4.32)

/M e[ﬁp(hw(sfﬁv)]dd“x: /M [ap(ehwafﬁv) —eTpKh“V(Sffw] 4y, (5.38a)

=0
- / e[?y(hw(sfgv)]dd“x:— / [ay(ehw(sfgv) —eKsT?, ’Cth]ddﬂx (5.38b)
M M ~——
-0 =0

which gives:
oL 1 - )
(55 || = 5 (o R ot i~

=y, (8) = 10 JoTY, + 0 h T 6T, ), (5.39)
where we have used (4.31b) and (4.31c). Here we encounter terms with 6T that require
lengthy calculations. Looking at (5.20a) and (5.20b) it is clear that we will be varying
covariant derivatives which also lead to similar terms. Thus, we refer to Appendix C.2
for detailed derivations of such terms. This results in (5.39) becoming

1

oL 1 .
6( £ 2 o) = —[—v”T,WhVV (65\ +UPTA)TVP(SUA + 1" 1,5,V 00P

ac?|a_,) 2|2

- 1
+ (RpA +2Kv1pT)0 + (562 - U"Tp)TnyKVA)(ShpA

1 ~
+ (K(ag + b, )Ty = K - Ev%whwhm)vyéhm]
~ L lv% hVV(6p+vPT )’C -V (B Tyy) |00
Toll2Y u pftve v wy
R +2 Ko Lsn _on K’
| Ry + 2 K07 1ty + | S04 = 01 | Ty K7y

= Vo (K(0f + 007 ) vy — KOy, - %v”rwhwhw))éhw . (5.40)

—

From Appendix C.2 we also find the fourth term from (5.33):

(2)
H [
106w ® o) 2

1
27,KP Ky Ty + Kaa(—éj‘qw + 0" Ty (2 o047y +3 6ﬁm))

1 ~
+ EK(T)\H — 1,0 oA — 0V ATy + KTyt ) — ZVPKPATM
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- 1 1
+ vﬂvprgy(—zéﬁ(éﬁ ~ofr,) + o) (8] + 0Pt - EhPVhAP))évA

3 1 ~ 1 -
+ ((EKV"KW - §K2 + UUVUK)TAhW + E(1<2 - vUvGK)ryhpA

+ (2 K’ Ky, - gKKpA + UU%KM)T# ~ (KinK +0°9,Kyn )7,

1 1 1
+ Ev“rayKyAhW - EZ)GTGPK)LH +07T5p (KP;L - EhpAK)

. 1 1
+2K Kyt + 5 VoK - Ev#1<m)5hf”‘]

5 3
K7, (5ZTA - EéK’cy) + K((SKT” - 62”) + ngrw(éﬁ +07'1))

5 9 1
+ Upry(—E(sz(s)A/ = 1000 T+ 676) — Ehﬁth))azﬂ

1 y y 1

1
— 5Ky (005 + 07y ) + 07 (05 - 20%)))&7“]

- - 1 1
+ Vo Vooy, 5(5352 +090P Ty + 07, +zf’m%y) - Eh‘“’hw]év}‘, (5.41)

and the fifth term of (5.33) to be

Low o2y 1w
Eh(l)écw/ ~ Eh(l)

(KOyKU),(h“VT/\ - h)\‘ul’v) - K(KVVT/\ + ZT‘uK/\V)

1
- KF’V((sﬁTHKVp + v%gp(zéf\hw + 55@))
— Kz(hyv’[/\ + h/\“’[v) - ngGV (5;\/}1#1, + (Szhw\)

+V,Kyy (6Zv"n - (3 6Z + Z)UTH))

+ VoK(205h +20 oy, + vﬂhwu))ézﬂ

1 . 1 3
+ |5 (K7 Koy + K2 =20V, K yphta + 5 (K2 = 070K ) By i

+ (KU/\KGV - KKy, + UU@UKAv)hyp

1/ -
+ 5 (079 Kor = KKon )y
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1 ~
~ KngKop + 5 (KK - UGVGKW)hPA)(ShF’A]

% iy [|K (8 +2070a) o + Koy (87,67 3655

—K“y(aﬁhwmmm))évﬂ

1
+ EvG(K(hW,hM =2 huhpp) + huyKor — Kwhm)éhm]
1
EU’/V \Y hﬁ; (5Zh/\v_h‘uv(6i+va’[}t) +UUhA‘uTV)6UA
1 o pA
+§U h‘upl’lw\+hyvhp/\ Oh . (5.42)

Finally, the last term of (5.33) is

(2+N) 1 B aj v @ 1 A
LNLOE(Se = (&:—N N (DGU + 2h(1)GW Tp00F — Ehp/\éhp

8'£~ 1 2 V

2N |, + (1)( 2(1( K,y =K )7:# + 1"V, (Kyy —Khw))

+5 hﬁ)( (KV”KM — K2y + K (K = K

— 0V, (K — Kh,w)ﬂ (mzﬂ - %hméhm). (5.43)

Having assembled all the ingredients, we are now finally ready to present the NLO
equations for both expansions.

5.3.1. NLO all powers of c

For the ¢ expansion, i.e. N = 1, we have the varied action

®) 1 e 10 n ) v . 10 v
— U uv 1) g,k 1) H d+1
OSNLO —87_(G/Me Gpovt + 5 G ,Oh +G 60(1)+2GW Ohy | d (5.44)
The equations of motion are thus
@y @) ®n @
G“(” =GJ, Gy(vl) = GZV’ (5.45)

repeating the EOMs from the LO just as expected, along with:

®3)

Gy =

v(l)(quK YKty + K9, ( 6;‘(%+UVT),G(25§TH+3531A))
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1 = p
+ EK(T/\H — 1,070 — 0V ATy + K1yma) =2 V,K' 7,
c Loy(cp (sp 1
+ UOVPTGV(_E(S/\ (6y - UPT#) + 6}[(6)\ + vpu) - Ehm’h/\y

1 ) O

1 y 1
+ Ehg‘lv) (K"VKgy(hwn = hauty) + pr((smKVp + v%(,p(iéﬁhw + 55}%))

— K(Kuw 2 +27,Kay) = K (Byyta + hagty) = VoK, (0] iy + 00 hyua )
+V,Kyy (6Zv‘ju - (3 6ﬁ + UOTH))
+ VoK (200 + 207y, + 07T )

1 2
+ u( - E(KMKV” -K )hw + K(Kyy — Khyy)
— 07V, (Kuy ‘Khuv)))
ﬁ H K° 67 567/ K(s° 5¢ 3 o 6V y
+ Vo) | K% \0uta = 5037 | + K| 037 = 0t ) + 0 Tyu (0 +0712)

5 9 1
+ vPpr(—Eégéj - —0)v T, + 056, - Eh‘”h;\y))

4 A
@@ u 1 606P 5%0P o 6.0 o p 1haph
+ P UU(l)E /\[J+ /\U TH+U T2 ‘u+7) TAO ’T‘u —E Au
1~
+5Vahly (K(ag #2070 Iy + Ky 005 = 38,05 ) = K7, (6] I + 55@))
1 .~ =~
+5 yv),vghflv)(agmv — (85 +077)) + vﬁhA,ﬂv)], (5.46)

and

@)

Gl = [vﬁ)((3 K77K o = K2 + 070Kt + (K2 = 070K g

+ (4K Kayy =3 KKpn +20° 90 Kon )1+ 2( Kyl K = 07V Ky )
+ v“'cgyKy(Ahp)y — 0T, Ky + 07 Topu (2 Kpp = hpa K)

y - -
+4K (pT/\)K/-‘V + V()‘Kayhp/\ - V#Kp/\

1 2 s
+ hp)\ (E(quKyn -K )Ty - hV)/Vy (K.UV - Kh}w)))
1 . 1 v
+ hﬁv)(i(K”Kcy + K%~ 20"%1() huphay + §(K2 - Z’GVGK) Muwhpa
+ (KGVK"(A - KK, + UG@aKv(A)hp)u = KypKayu

1/ - 1 -
+ 5 (07 Ve Kon = KKon o + 5 (KK = 0795 Ky i
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4 %hm (% (KV”KW - KZ)hW — K(Kuy = Khyy) + 07V (K — Khw)))
+ vgv(l)( (%hp)y + 61;1%) —0%7,Khp
Ky 09+ moe7)oh + 7 3520, ) )
+5Voho (K(hu(phmv =2 hyyhpr) + huwKop — Kwhm)

(5.47)

1
+ ZUVZJGVVV h(l)(hy(ph}t)v + hyvhp)\) .

The last two are therefore the new equations of motion that appear at NLO and are
considerably more complicated than the LO EOMs.

5.3.2. NLO even powers of ¢

For the ¢2 expansion, i.e. N = 2, we have the varied action

@ 1 e Ly o) S sy | g+l
0SNLO = 3G /M Govt + 5 Gwéh + G 60(1) + ZG“V Ohy | d - (5.48)
which has the following equations of motion:
@) 2 @n 2
G\ =G5  Gu =G, (5.49)

again repeating the dynamics of the LO theory, along with:

4) 1
Gl = (1)(2 T, KPY K,y 1) + K7 (26)“\’[,10 + 07Ty (2 o4 Ty +35fjm))

1 -
+ EK(U“ — 1407 To2 =0V ATy + KTMTA) - ZVPKPAT#

1, 1
S04 (0h —or7.) + ol (6] + 0P - EhPVhM,)

+ v"@pfcay(
1 -
v 1 7
+ Zhﬁ)(KUVK (hva/\ - h)\,ﬂv) + pr (61’@1(1,,3 + UUTGP(E(SZ\/hHV + 5)V hM))
— K(Kuwta +21,Kny) = K2 (hyyta + hauty) = VoK, (0% iy + 63 hyun )
+VKyy (5ZUGTA - (3 65 + U“Ty))
+ VUK(Z 0Ty +207 Ty + U“hwm)

1
+ m( — 5 (K71Ky = K2) Iy + K (K = K

~ 0"V (K = Khw)))
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+ V0! (K‘fy ((%m 253’[“) + K((SKTF - 62”) + ?IUGT”,((SZ{ +0'1))

5 9 1
- v%py(—iégé; - Zéiv%y + 690, - Ehgyh)\y))

41

- 1 1
+V,Veo é‘ (E(égéﬁ + 0690 1, + UUT)\(Sﬁ + v‘jmvpfcy) - zhﬁphﬁy)

1 had V 4
+5V hﬁj(K(éffuv TA)hW+1<w(5V50‘ 36 50) L (0 iy + 0] hM))

—_

+ =0 V V h(”lv)(é"hM hw(é +0° T/\ +0 h)\‘uTV)

N

1 1. _
+ 70 T h Y (8 + 00T ) Tp = 5 Vp (W77 Ty ) + EWRWU , (5.50)

and

4) ~ ~

Gl = [ (1)((3 K"Ky = K2+ 07V oK)t gy + (K2 = 079K ) Tl
+ (4K Kayy =3 KK 1 +20°90Kon )1+ 2( Kyl K = 07V Ky )
+ UGTG),K (/\hp){l - UUTG(‘DKA)H + UU’CGH (2 Kp/\ - hp/\K)

+4 KV(pT/\)KH)/ + VoK o = VKo

1 -
+ hpA(z(Kme - K2)TH = "7V (K = Khuv)))

1 -
5 (K2 =0 VoK) I

+ (KGVK“(A — KKy + vG%KV(A)hP)y — KoKy

) )
h%(z (K Koy + K2 =207 VoKl +

1/ e 1 3
+ 5 (07 Ve Kon = KKon )y + 5 (KK = 0795 Ky i

2
4 %hm (% (KV’?KW - Kz)hw — K(Kuy = Khyy) + 07V (K — Kh,w)))
+V,0f) (K" (80 oy + O} ton ) = 077Kl
~ Ky (8 + 10 )35+ 870 - zm)))
+ 2V, hflv) (K(h”(phA)v —2huhpp) + hywKop — Kwhm)
+50 YoV, V h(l)(hy(phA)V + hwhp/\) +Rop + 071,15, (207K - K7

1

) 3 1
= S Rl = Vo (K (65 + 077, ) 1a = K%yta = 5000, h 7V hin )| 65D)
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5. CARROLLIAN EXPANSION OF GENERAL RELATIVITY

On comparison with the ¢ expansion, the EOMs are equivalent up to a few extra terms
that appear in the c? expansion. Among these are terms containing curvature, RHW
which first appear at NNLO for the ¢ expansion. The appearance of curvature terms
means that the theory allows for massive solutions, see [8].

5.3.3. Electric and magnetic sector

Akin to the treatment of the Carrollian field theory presented in Section 3.4, we will
now define the leading-order of the Carrollian geometry to be the electric sector of the
theory. The NLO equations for the ¢? have previously only been derived to truncated

order, i.e. with vﬁ)) =0and hﬁ; = 0. This simplifies the equations immensely, leading
to:

4 ~ ~
(G)X o = %v”’cwhw (6‘; + vpu)’cgp - %Vp(hpyuy) + %h“"RW’[A, (5.52a)
%0)="0)=0
G = Rpr + 077,14y (267K - K )—%Wﬁ h
P pA ploy\=@, V) pvitpA
%0)="0)=0

= Vo (K05 + 07 J1a — Koyt - %v%wh”hm). (5.52b)

This truncation is equivalent to the one described in Section 3.4 for the scalar Carrollian
field theory, where we set the LO of the theory to be zero via Lagrange multipliers
and thus make the NLO part of the theory Carroll invariant. Here, however, we set

the higher order fields vﬁ)) and hég; to zero which also results in the vanishing of the

leading order. Hence, one calls this truncated NLO theory the magnetic Carroll theory.
)
Truncating the NLO for the ¢ expansion is a trivial effort since it makes both G and
@
Gh ) vanish.
p
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6. LO and NLO EOMs and solutions

Having derived the equations of motion for the leading-order theory and both ex-
pansions of the next-to-leading-order theory we now study these further based on
approaches from [8] and [47]. We first present the LO EOMs, find projections of those
and solutions of said projections. The NLO EOMs and its projections are merely pre-
sented for completeness. Lastly we will Carroll expand the Schwarzschild and Kerr
metrics for both the electric and magnetic sector.

6.1. LO equations of motion

Starting with the LO EOMs (5.20), we first project out the temporal part by contracting
them with o#

@ 1 -
oGy = E(KPUKPO - KZ) + thVp(UH(Kw — Khyy) ) =0, (6.1a)
—
=0
wen — _1(gpo 2) ot u h v s h =
e ——E(K Kpo - K )v wv +K 0 (Kppy = Klty) =0 Vp(v (Kuy - K W)) -0,
=0 =0 =0
(6.1b)

and then by contracting with h#" we project out the spatial part of the equations

@ 1 ~
B G = 5 (KP Ky = K2) B2 41 B0V (K = Kly) = 0, (6.2a)

——
=0

@ 1
B Gl = =5 (KP7 Ko = K2) B 4K (1 Ky = KB By )

2 \ ) —_—
=0 =0
= 10V (K = Ky )
N——
=0
= K = h*"£,Kyy + 4 W 0PT] Koy

= K2 - hl'wfsz‘uv -2 hythyK‘uyK}\v
= B (—£vl<w + KKy =2 KHAK/\V) =0, (6.2b)

where we have used (2.5) and (4.26). We arrive at the following equations:

KPK,s —K* =0, (6.3a)
WPV (K — Khyy) =0, (6.3b)
KKy —2K, Ky = £,Kpy, (6.3¢c)

where we can now interpret the first two of the equations as constraint equations and
the third one as a time evolution equation. This is reminiscent of the 3+1 decomposition
of the Einstein equation where a split in time and space is introduced in order to carry
out a Hamiltonian analysis [62].
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For further studying solutions to the EOMs we have just derived, it can be practical
to restrict to a spatial hypersurface. We start by defining some properties of spatial
hypersurfaces on a Carroll manifold. Spatial covectors are defined as

otX, =0, (6.4)

however, a spatial vector 7,X" is not boost-invariant. Thus one has to specify to a
particular boost frame in order to define a spatial hypersurface and from that one can
generalize frame-independent quantities. Choosing x# = (t,x') as the coordinates, we
define a lapse function « such that

0k, = %at, (6.5a)
T, dx¥ = —adt +b;dx’, (6.5b)

and we can further choose a boost-frame where b; = 0 which yields

1
U‘uay = aat, (663)

Ty dxt = —adt, (6.6b)

hyy dx# dx¥ = hy; dx’ da/, (6.6¢)
h 9,0, = h'9;0;, (6.6d)

where we have defined the Riemannian metric /;; on the spatial hypersurfaces. This
particular boost-frame will now be used to study various Carroll solutions.

6.1.1. Solution to the evolution equation

Using the parameterization as defined above, we write the extrinsic curvature and the
Lie derivative as:

1 1
Ki]' = _§£vhij = —E(Z)nghi]‘ + hmaiv” + hlp&jv“)

1({1 1 1
= —E(—athi]‘ + ]’lt]' al’— + hti a]'—)
o o ~—— 41

——
=0 =0
e—B/Z .
= hij, (6.7)
e~B/2 . e~BI2 . ]
£vKij = —v“&H(Thi]‘) - T ( h#j&iv“ + hiyajv’l)
=0
e B( B. ..
= _T(_Ehij + hz’j)/ (6.8)

where the lapse function has been defined to be & = ¢/2 and the over-dots represent

a t derivative. The terms in the second and the fourth line vanish since & has no ¢
component. Inserting these into (6.3c):

£oKyw = KKy = 2K, Ky, (6.9a)
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6. LO anp NLO EOMs AND SOLUTIONS

e_B B . . e_B Kkl 1 e_B ki T
= —7 _Ehij—"hij = Th hklhij_th hilhkj; (6-9b)

gives the evolution equation in the form of an ordinary differential equation:
i/ii]‘ + %fli]‘(hkllf.lkl — B) - hklhilhkj =0, (6.10)
which is then further simplified by choosing B = hii hij:

hij — W iy = 0. (6.11)

Dropping the indices for now and noting that #* is just 7!, the ODE can be solved
via substitution:

. . du dh du
u(h) = hit), 1) =5 =5
du 4 o_ (du -1 =
= U h u—u(dh uh )—O, (6.12)
whose nontrivial solution is:
uldu-h1dh=0 = wu=ch= %,
= hldh=cdt = h(t)=cre. (6.13)
Setting initial conditions as
hij(t = 0) = h)ij = c2, Kij(t = 0) = K(pyij, (6.14)
we find
e B2 B/2 ik
K(O)ij = - 5 h(O)ijcl = c1 = —2e K(O)ijh(o)r (6.15)
and the solution is thus
hif(t) = e > 0N on (6.16)

Comparing our solution here with the one presented in [8] we encounter an extra
factor of ¢°”' in our solution. This is most likely an error resulting from setting B = 0
for a specific case and forgetting to include the factor in the more general case. This
solution will be used later in this section to show that the electric Carroll limit of the
Schwarzschild metric is a solution of the evolution equation.

6.2. NLO equations of motion

Moving on to the NLO EOMs, there we have four equations to be contracted with v#
and h*" but two of them are the same as the LO EOMS, (5.45) and (5.49), and therefore
we only need to consider the other two but for both expansions. Beginning with the ¢
expansion we have:

®)
Ao
v'Gy =

3
vﬁ)( = 5 TwKP Ky = 3K, 071,507 + Koty
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— Kty = "7V (K — Khw))

- 1~
+ ngﬁ) (K(v"’c# + 6ﬁ) - K“y + v"fcpyv") + Evghﬁj (va" - Kv"hw)

1 ”1/ 1 3 2 ~
+ Eh(l)( - EKGVKGVhW + KKy + EK hyy + UVV),KW) =0, (6.17a)
Adn _|ou 2 & y
vAGh, = [ <1>(‘ (3K Ky = K2+ 07V, K yp — 4K pKW)
+ hﬁ‘;( - K(KW - Khw) + U?’@y (KHV - Khw))] =0, (6.17b)
as well as
KA (20 H oK 1 Y 1 KA KA o KAY P
h*"GY = (o K ETHU-I-ZU Tyo Ty +§K(h Tau — W 140 Tg/\)—Zh VoK T

- 1 1
+ UngTgy(_EhKV(éﬁ - UPTH) + 6Zh’<p - Ehpy (6’;l + UKTH)))

1 1
+ Eh%( - K"VKU),((S’:[ + Z)KTH)TV + KPY (THKVP + Ev"fgphw)
= 2B KKy = VoK (B + 01 (05 + 0¥, ))
- K? (6}’; + Z)KTH)TV + hKA@GKM((SZUUU - (3 6Z + v"ry))

+KP,07 7, (6’; + UKT#) + %K(Z W hyy +2 v"(éﬁ + TJKTM)TV))

- 5 3
+ Vavﬁ)( - EKU"T“ +Kh*7, + Zv"’cwhw

, , 1 :
+ vpfpy(—gagw - Zwv%y + )~ Ehﬁ?(@; + UKTH)))

TRV
+VPVUU(1)

%(h’“’éﬁ N hKavaH) _ %hﬁﬁ (5Z + v"m))

le L wfppx % y
+5Vonth (Kh“’hw + Ky (8117 =317 57

-, (Wb 4 0] 3540, ) )

=0, (6.17¢)

1 e a ,
- Evyv),vahﬁ”)(ég(é’; +0°1,) = Iy B + va(éz N U,{Ty)%)

(] ~ ~
nGh, = lvﬁ)((zx K7 Ky =3 K2+ 210070 K | + 2 Ko - hF’AVprA)

1 = Y 1 V
+ hﬁz(EKGVKUVh‘uV - UGVUK]’IMV - KKyv + UUVGK.UV + EhpAUUVGKp/\hHV)
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. . 1 .
+ Vo0l K(80 =207, ) + Vol 0 Ky, + 507070, Vol | = 0. (6.17)

For the ¢? expansion we get

@)

0!Gy = >

v(“l)( = 5 TwKP Ky =3 K, 071,500 + Ko'ty,

- KZT[J - hV'}/@y (K‘uv - Khyv))

1 uv 1 3 2 R
+ Eh(l)( - EK“VKgth + KKy, + EK hyy + 0 VyKW)

+ @avﬁ)( - K%+ K(U“TH + 6‘;) + vp'cpyv“)

ot - Ko7+ Koo

=0, (6.18a)

+
NI~ N

- 1 -
o'V, (hP 1)) — 5P Ry

4)

vAGl, = [ (”1)( - (3K Ky = K2+ 07 0,K )y - 4KVPKW)

+ hﬁV)( = K(Kyy = Khy) + 07V (K - Khw))

+0 R+ Vo (K (05 +0°7,) - K%, )| =0, (6.18b)
along with
hKA(év = |o" [ KOo¥ 1 207 1K KA KA o 2 By kP
1= |20 5Tuo 207 Ty Ty | + 5 ( Ay — 10700 ) — oK" ) T

+ 0V, 7oy (—%h”’ (86 = 0Pz, ) + oo %W (o5 + v%y)))
+ %hﬁ)( — KKy (5;; + zﬂw#)@ + K‘Dy(’CHKVP + %v%gphw)
=2 B KKy = VoK (B g + 07 (05 + 0¥, )
— K2(05 + 0" )1y + BNV Koy (000t — (305 + 0, )
K070 (05 + 050, ) + VoK (215 g + 207 0 + vm)u))
+V, 0l ( - gKGKTH +Kh*7, + va’”c)/#h"y

¢9)

1
+ Upry(—géthy - ZhKVU%H + h"“éz - Ehm’(éz + UKT“)))
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-~ 1 1
+ VPVGU(HI)(E(}IKG(SFP[ " hKGUpTy) _ EhGP (6Z + UKTH)

1. L
+5Vahly (Kh""hw + Ky (01157 =376

S GO

1 e = :
+EUVVnghﬁ;(éﬁ(éﬁ+ZJKTV)—hth+va(6E+UKT#)TV)

1 1, e
+ 70N T BT = 5h’“vp(hpyw) =0, (6.18¢)

@ ~ ~
WG, = [vﬁ)((zl K"Ky, -3K*+2 hp%ﬁvakm)% +2 K0 Ty — hpAVHKp/\)

1 S Y ! V
+hf) (EKUVK(,)/hW ~ 0V Khyy — KKy + 07V Ky, + Eh”"v"VaKpAhw)

- - 1 - .
+ VUUZ)K((SZ -2 z)"fcy) + Vghﬁv)v"Khw + EUVUGV;,VUhﬁV)hW

- - 1
+ hPARpA - hpAVG (K(ég + UUTP)T/\ - KUPT/\ - EvnTr];/ha)/hpA)] =0.
(6.18d)

Here we won't show any further solutions to the equations, only stating them for
completeness.

6.3. Carrollian spacetimes

In this section we will present the Schwarzschild and the Kerr metrics in a Carroll
expansion. In studying these Carroll expansions of GR solutions, we find different
expansions than those considered in Section 5. They correspond to the so-called electric
and magnetic limit as described in [47], where the electric and magnetic limit of the
Schwarzschild metric is studied. These limits yield Carrollian solutions that one can
then compare with the electric and magnetic sectors of the Carroll expansion. In taking
these limits what one essentially does is to choose which parameters to keep fixed in
the limit and rescale other parameters appropriately to accommodate for that. For the
Kerr solution we will draw inspiration from the method used in [79] for deriving the
non-relativistic limit of the Kerr metric.

6.3.1. Schwarzschild metric

The Schwarzschild metric can be written as
1
guvdxt dx” = —62(1 - 1;_5) d*+ 1-& dr? +r*dQ?
T

= —02(1 - ZMZGN) dt? +

]_Z—MGN dr2 + 1"2 sz, (619)

cr
c2r
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where vy = 2MGy/ c? is the Schwarzschild radius, Gy being the Newtonian gravita-
tional constant and M the characteristic mass, and dQ? = d6? + sin® 0 d¢2.

Electric limit

For taking the electric limit we will keep the combination MGy fixed, which is often
referred to as the black hole energy. Using the relation E = Mc? it is evident that we
need to rescale Gy as such:

e _ Gn
cC ~ 27

E

MGy =Gy =EGY), G (6.20)
c

where the subscript C indicates that it is the gravitational constant for the Carroll limit

and the superscript (el) indicates the electric sector of said limit. Since we keep both

E and Ggl) fixed, the limit describes a region of strong gravity within a black hole.
Inserting this into the Schwarzschild metric above and taking the limit ¢ — 0 we have:

E G(el)
Quv dxt dx” = ——5—d#? - (2 = dr? +72d0%. (6.21)
r 2EGYY
We can relate this to Carroll quantities by defining:
L T= ;15/2 = r32VH, (6.22)

= EGD’ (el)
2EGe \2EGY

and then the metric becomes

2 4/3
guy dx dx” = _UH g ZL(Z dT) + (r/\/ﬁ) d?

C E—
2/3 1/H
(T/ ,—H) /H\3vVH
1 T4/3
T 212 2 2
=—5¢ dr +( e + dQ?. (6.23)

In order to compare with the Carroll expanded metric, we have to choose which
expansion to consider. The Schwarzschild metric has been shown to be compatible with
the ¢2 expansion and therefore, that would be the natural choice. On comparison with
(5.13) we identify:

2 1 4/3
tdr=Zdr, 00 = —gaT, Tty dxt dx¥ = 2, g2 (6.24)

(HT)2/3 + H2/3 4

which are the leading order Carrollian vielbeine. Here an important choice has been
made of only considering the 7,7, part of the ¢? term in the expansion. This corresponds

to either setting h;}v) to zero or absorbing it into the 7,7, term. If we would instead choose

to compare with the general metric in the ¢ expansion, we also have to set hi,lv) =0due
to the Schwarzschild solution not containing any factors of ¢ and then one also ignores

hﬁ) in the same way as one did for hf}v) before.
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We can show that this is a solution of the evolution equation (6.3c), as mentioned in
[47], by identifying the purely spatial metric as

R Vi
hijjdx' dx/ = R dQ? (6.25)
4/3 o
I%éij dxidx/, x%+ yZ +22=1. (6.26)

and the extrinsic curvature

Ky dxtdx? = —%Evhw dx*dx? = —%v“&th dxt dx”

1
= —5(—3)81}1}” dxt dx”
32 1 , 4T3,
Z(_§ [2/375/3 dt” + 3 2/3 dQ
S PN 7
T D H2/35/3 £ g2/3 (6.27)
with purely spatial part as
S U
Kijjdx'dx/ = 7/3 dQ? (6.28a)
£1/3
H2/3 —-0jj dxidx/, x*+ y2 +22=1. (6.28b)
Choosing
B = e 2 S (0)=1, (6.29)
we then find:
1 1 Kkl K o0
hoyj = 0 Koi =m0y = e =, (6.30)
which, when inserted into (6.16), gives
4/3, ok
l](t) Wézki' /
4/3

We have thus confirmed that the electric Carroll limit of the Schwarzschild metric is
indeed a solution of the evolution equation (6.3c) and is therefore compatible with the
LO of the Carroll expansion of GR.

Magnetic limit

Now for the magnetic limit of the Schwarzschild metric we would like to keep the
Schwarzschild radius s fixed. Again with E = Mc? we then show
2MGny _ 2EGn Gn

_ _ P ) (m) _
o= =" =2EGY",  G¢'=T,

(6.32)
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where the superscript (m) implies the magnetic sector. We then insert the expression
into the Schwarzschild metric and take the Carroll limit to arrive at:

(m)
2EG!

r

A2+ — 1 d2 4 2d? (6.33)

U v _ _ 201 _
gyvdx dx" = —c (1 1_2EG(C'")
r

We now identify

EG(Cm)
Tt dt = dt t8t (634&)
(m)
-2EG,

hyy dxt dx” ZEGW ———dr?+r*dQ% (6.34b)
1_ r

Notice that since hw is static the Lie-derivative with respect to v is zero, i.e. Ky =0,
which makes it fit naturally within the framework of the truncation of the NLO of the
Carroll expansion, discussed in Section 5.3.3. The vanishing of K also tells us that the
metric describes a constant time slice of a Schwarzschild black hole [47].

6.3.2. Kerr metric

Another important metric to consider is the Kerr metric for rotating black holes. We
follow a similar approach as done for non-relativistic GR in [79] and use oblate spherical
coordinates

x = VR? 4+ 42sin © cos ¢, (6.35a)
y = VR?+4a2sin Osin ¢, (6.35b)
z = Rcos ©. (6.35¢)

R and © are here variables that will reduce to be 7, 0 at leading order. The Kerr metric
then becomes:

guv dxt dx” = —(1 - %)czdﬂ + Rzia (1 + T) dR* + £ de?

ZarsR
x

+ sin? @( +a+ ZR a”sin @) d¢? - sin®@dtde, (6.36)

where we have defined

Y =R?>+4%cos? @, (6.37a)
J

= J 6.37b

a=— ( )

A=R%>+a%-1R, (6.37¢)

with J being the angular momentum.
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6. LO anp NLO EOMs AND SOLUTIONS

Electric limit

We choose the same electric limit here as before, i.e. we want to keep MGy fixed and
define Ggl) = Gn/c?. The Kerr bound describes how self-gravitating compact objects,
where the gravitational binding energy dominates the total energy, have to respect the
following relation [80]:

Jc < GyM?. (6.38)
This bound is then used to find the rescaling of the angular momentum in the following
way:

](51)

Je Jc ) _ 1.3
= = < 1, ] ]C ’ (6'39)
2 (el) 2 E2 (el)
GNM GC c2C_4 GC E2

which further gives
(el) (el)
e _ 2EG.
B2 T '

Inserting these into the Kerr metric and expanding all variables to expose all factors of
¢, we arrive at:

> (6.40)

g
2 EGSZ)R 5 1o R?c? + % cos’ ® )
guvdxtdx” = -1~ = ccdte + = dR
I e
R2¢2 + —(E ) 0s2© R2¢2 + (Ez 2 ~2EGYYR
ey G
+| R?+ 14 cos’ ® [d®?* - sin® @ dt d¢
c

(el)
R2¢% + (]E ) cos2 ®

(]éel))z 2EGE! (]<ez>)

+sin? O R? +
E2c4

sin® @ |d¢?. (6.41)
R2E2¢6 + (](el)) c2cos? ©

Expanding to order ¢? and assuming that the variables R and © approach their leading
order terms, R — r and ® — 6, under the Carroll limit we have:

(eD g3
2G-E°r
Quvdxt dx” = —c%dt? + cos? 0| 1 +c2— dr?
ey
(e)
2 (]e ) 2 2 4G(CEZ)E2r .2
+| 17+ —5— - cos 01do —c(l)—sm 0dtde¢
E%c & cos? 0
(el)
o (Ie ) 2G¢Ersinto  2GE E}Psin?0)
+sin” O r* + ——— + oI +c 5 Q°.
E%c c*cos= 0 (el) ”
(]C ) cos* 0
(6.42)
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where we have kept higher order terms in ¢ that would normally vanish under the
Carroll limit. This is done for illustrative purposes.

Note the single factor of ¢ preceding the second term in the second line. This singular
term of ¢ can not be removed by any rescaling without obtaining odd powers of ¢
elsewhere. As it turns out, this happens to be a problem for the assumption of only even
powers in the Carroll expansion, hence why we introduced the c expansion in Section
5.1.1. A bigger problem, however, is that of the super-leading orders of ¢ appearing in
the expansion. These will essentially dominate over all other terms and the limit ¢ — 0
should therefore leave us with a metric

)

guv dxt dx" = 2.

(cos2 0 d6? +sin’ 6 dcpz), (6.43)

that has shrunk down to two dimensions and does not contain any interesting dynamics.
Moreover, taking the limit | ((f D 0of (6.42) we find

(ehrs3 (eh) g2
Quv dxt dx¥ = —c*dt? + cos® 6| 1 +c22GC—E2r dr? —cll(i(:i sin® 6 dt do
(]((:el)) ]((:e ) cos? 0
(el) . 4 (e) 3.3 qia2
240 4 sinl 0 r2+2GC Ersin 6+022GC E°r°sin” 0 d¢2
c2cos? 0 () ’
2
(]C ) cos* 0
(6.44)

and for (6.43) we have g, dx*dx" — 0. Either of those should give us the electric
Schwarzschild metric (6.21) but alas they do not, further confirming that something
needs to be reconsidered for taking the electric Carroll limit of the Kerr metric. Due
to this failure it does not make sense to identify any of the terms with the Carrollian
vielbeine.

Magnetic limit

Considering the same magnetic limit as before for the Kerr metric, we find the rescaling
of J to be:

(m)
Jc Je Jc (m)
_ _ <1,  J™_y (6.45)
GNM? - GIWuE G ¢
and thus:
a= CT rs =2GME. (6.46)
We now write the Kerr metric as:
2E3G"™R 4E2GM MR gin2 @
_ C 2 1,2 c Jc
Suvdxtdx? = —1- R codt”—c sy dtdo
R2EZ + (]C ) cos? © R2EZ + (]C ) cos? ©®
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2 2
E%R? + (](Cm)) cos? ® (](Cm)) cos’ ®
+ 5 dR? +|R% + — de?
(J27) =2 E3RGL" + E2R? k

&)
£2

2
2EG(J) Rsin* @
+R* + d¢?, (6:47)

+sin’© 5
E2RZ + (]ém)) cos? ©

expanding to order c¢? and taking the limit ¢ — 0 (where we only substitute r, 6 for R, ©®
since no explicit terms of ¢ vanish) we have:

2E3GMy 4E2GM My sin2 g
guvdxtdx” =—1- Cz c2dt? - SE > dt d¢
r2E2 + (]ém)) cos? 0 r2E2 + (](Cm)) cos? 0
(m)? m)?
Ezr2+(]C ) cos? 0 (]C ) cos® 0
+ dr? +|r? + — de?

() (’”))2 —2E3GI + E292
C C

(m)) (m) (;m)\? o 2
(1) 2EGE(J) rsin® 0
+12+ > do¢?. (6.48)
E2r2 + (]ém)) cos? 0

+sin? 0
E2

Further taking the limit ] — 0 we find:

"
(m)
r—ZEGC

(m)
2EG!

r

Quv dxt dx" = —(1 - c2dr* + dr? +r*d6?* + r?sin®> 0 d¢?, (6.49)

which matches exactly the magnetic Schwarzschild metric. Here we don’t run into
problems from the singular power of c or from super-leading terms of c. The ] — 0
limit gets rid of the former but the latter simply does not appear in the magnetic limit.
The singular power of ¢ can be incorporated into the theory via the ¢ expansion and
thus the magnetic limit of the Kerr metric is established. Hence, we can identify:

2.2 m\? 2 m\? o
E“r®+(]Jo") cos=0 Jo ') cos” 0O

E2

hyy dxtx” = dr?+|r?+ de6?

(I (””)2 —2E3rG™ + E2r2
C C

(m)\? (m) (7?2
Jc 2EG-7|Jo ') rsin” O
+sin® 0 T+r2+ > do¢?. (6.50)
E2r2 + (](Cm)) cos? 0

As for the electric Carrollian Schwarzschild solution, this metric is static and thus
we have vanishing extrinsic curvature K, = 0, just as wanted for a magnetic theory.
Because we have a term of order c¢ in the expansion of the Kerr metric, we have to
compare with the c expansion of the general metric (5.8). There, we see that the term at
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order ¢ should be hle):

4E2GI Ty sin? 0

K dxt dx” = — dt de. (6.51)

(m))?
72E2+(]C ) cos2 0

Comparing the dt? and dr? terms of the magnetic Carrollian Schwarzschild to the
Kerr, it is tempting to write the factor preceding —c?dt? of the latter in the following
way:

2
2E3Gy (1) cos? 0 -2 B3 G + E2r2
_22 (m)? 2_ 2F2 (M) 02
r*E=+ (] ") cos* 0 r*E*+(Jo") cos*0
2 2
(&) —2E G+ B2 (J) sin?0

- h - 2 . (652)
r2E2 + (]((:m)) cos? 0 r2E2 + (]((:m)) cos? 0

This highlights how the terms preceding dt? and dr? in the Schwarzschild metric are
the inverse of each other. Furthermore, this allows us to identify:

2
1 sin6 \/r2E2 +(12") cos20
Tt dt = dt, vt&t = - ) 8t, (653&)
Jc 'sin0

(m)\*
r2E2+(]C ) cos? 6

m\* _ o 3, 0m)  p2 2
(J00) =2E3rGE" + B2

) dxt dx = - dt?, (6.53b)

m)?
r2E2 + (]C ) cos? 6
once again from comparison with (5.8).

6.3.3. Comparison of solutions to Carroll EOMs

The Carrollian Schwarzschild and Kerr solutions that have been presented here were
derived by taking the Carroll limit of solutions to general relativity. Earlier in Sections
5.2 and 5.3 we derived equations of motion for the LO and NLO of the Carroll theory,
the former we consider the electric theory and the latter, when truncated (as discussed
in Section 5.3.3), is the magnetic theory. In order to verify that the Carroll solutions
are consistent with our theory, one could ensure that the vielbeine identified from the
solutions are solutions to the corresponding EOMs as well. An example of that would
be to take the vielbeine identified for the magnetic Carrollian Schwarzschild metric
(6.34) and insert into the truncated NLO EOMs (5.52) and verify that they are indeed
solutions of those equations. For all Carroll solutions found in this manner, i.e. by taking
the Carroll limit of GR solutions, this should be the case. However, it is important to
note that the converse is not necessarily true, there exist many solutions to Carrollian
geometry that are not solutions to GR.
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7. Conclusion and outlook

In this thesis we have examined Carrollian geometry, its derivation and solutions. The
main result is the derivation of the full NLO for the Carroll expansion as well as the
derivation of the Carrollian Kerr metric for the magnetic theory. Moreover, the failure
of the electric Carrollian Kerr metric, along with the realization that the c? expansion is
not sufficient for either sector of the Carrollian Kerr metric, are important results in their
own right. The latter was the motivation behind considering the Carroll expansion in
all powers of ¢, which has not been done before, and applying that to the NLO. Other
results of this thesis include verifying that the Carroll expansion of Schwarzschild black
holes can be derived from general vacuum solutions to the evolution equation of the LO
theory.

The derivation of the full NLO of Carrollian geometry builds upon the foundation
laid in [8] for deriving the LO and the truncated NLO. On comparison with those, the
NLO derivation turned out to be quite complex and the resulting equations of motion
do not simplify to any significant degree. Furthermore, the inclusion of the c expansion
resulted in an extra layer of complexity. The full NLO theory has various important
applications and utility. Among those would be to explore sub-leading corrections
to the Beliniski-Khalatnikov-Lifshitz limit of general relativity that describes dynamics
near a singularity [81], which Carrollian gravity is able to describe. Another possibility
is that of expanding on the work of [82] where one considers the Palatini formulation
of gravity. In the Palatini formulation a lot of calculations tend to simplify and thus it
is a worthy effort to examine whether that approach can be taken in deriving higher
orders for the Carroll expansion. The full NLO theory allows one to verify if this
Palatini approach is valid. Additionally, the full NLO EOMs allow one to revisit the
construction of massive solutions at NLO as seen in [8, 38] as well as building further
on NLO solutions including a cosmological constant [8].

The explicit verification of the claim in [47] that the electric Carrollian Schwarzschild
solutions are solutions to the LO evolution equation is an important step. This confirms
that the electric limit chosen for Carroll expanding the Schwarzschild metric is consistent
with the LO of the general Carroll expansion. Now that the Carroll expansion of the
Kerr metric has been established for the magnetic sector, the next logical step would be
to verify that it is also a solution of the truncated NLO EOMs, i.e. the magnetic theory.
It would thus be interesting to take the vielbeine we identified from the magnetic
Carrollian Kerr metric and check if they solve the EOMs of the magnetic theory. If
successful, this could confirm that the magnetic Carrollian Kerr metric is indeed correct,
or it could give some hints as to why the electric Carrollian Kerr metric does not work.
Moreover, it could be that one needs to choose another way of taking the electric and
magnetic limit in order to Carroll expand the Kerr metric and, therefore, it is important
to do such consistency checks. Additional work on Carrollian spacetimes could include
exploring other metrics via the Carroll expansion as well as further considering the
coupling of matter to Carrollian geometry.

The evolution equation of the LO allows one to analytically evolve non-trivial initial
data in time. Having derived the full NLO EOMs, one could begin to consider a “post-
ultra-relativistic” expansion of GR where one perturbs around the LO Carroll theory.
However, given the complexity of the NLO EOMs this could prove to be a technically
difficult direction, though it would nonetheless be an interesting research direction.
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A. PUL identities

This section shows explicit calculations of some identities from Section 4.

A.1. Connection identities

From Section 4.4 we show the derivation of the identities (4.31):

(©)

VoT, = 9,T, - Ch,T,
= 00Ty = (=VP9 Ty = VP Tiokv Ty) Ty
= 95Ty = 9Ty =~ Tio (V4 OrTy) + TV

= Ao Ty = VM Tt Ty = Ty Th)

1 1
= 5Tou = EVA (To Ty + TuTho), (A.1a)

(©) ~ ~
VoII* = 9,IT* + C, 117 + C}y TTHP

= 9, T1" + 2( — V(9T + Tty Ty)

1
+ EH(#M' [8GHPA + 8‘01_[/\6 - a/\HGP -2 Tp WGA])HV)P
——
=0

1
= 9, TI* — 2 VTP (a(ng) + ETg(VAaATp + TAapVA))
+ T | T2 9, TP + VIO, Ti Ty 3,V + T (9T, — OaTlep)|
——
=0
= 9,TIF — 2 VTP (a(ng) + TGVAaMTp])

+

_ (62“ + Tpv“*)agnvw + TV 9, Ty + TTHHIT P9y, Ty ]

=0
= A H =2 VI (9T, ~ T, V9, Ty

— JH + 2 VTP, T,
= VTP (T, — T,V T,

- V<HHV>PTAP(5§ - TGVA), (A.1b)
© 1
VI = 2 (VI T, 4 VY T T, + VTP Ty — VY T, VAT, )
~— S———
=0 =0
= VHIT'PT,,, (A1)

(©) ~ ~
Vo Ky = 06Ky — Chu Koy — CLKop

= 95Ky — (HPA(a(UHH)A — %amw) — HPATﬂ(M)WpV
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- (HPA (8((,HV)A - %QAHGV) - Hp/\Tvq(o/\)q(yp- (A'ld)

A.2. Curvature identities

In Section 4.5, we present some identities for Carroll curvature which will be derived
here. Starting with the curvature terms stated in (4.39):

(—4) (=2, (-2

Ry ==CpoCl, = =VP Ky VI Ky = 0, (A.2a)
——
=0
(=2) _ a (*2)p . (*2)p =p (*2>(j . (*2)p P (*2)0
Ryv =pChv = Cpy Clio + CpoCy = Cp Cov + 251, Cly,
=V,Ch,-267 CP, 428" CO
= Vot TSN up S ov Tl <

(©)

= —VPV Ky — 2T T, Ky VP Koy — 2TTPA T Koy VO Ko

©)
= —VPV, K + AK7 K, + TP K1 Koy — TP K7 Ky
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= Ry +2V,,8" +267 sf —2CP €O A2
= Ry +2VoS, +2CF 1So, —2CL C7) (A.2¢)
@ (2)p =p (2>(7 . (2)p . (2)p (Z)P o
Ryy =20,Ch + CpoChiy = CipCoy — €5, Clio = Clio Sy,
© @ 2 2 )
— p ~ p p p
= VpCpu +2CJ, 1€ =9y Chy —CleSy,
N——
=0
© @
= V,Ch, -1}, %, Anmf( T, T+ TVTW)
N——
=0
1 A
ST (LT + T, Ty )L
=0
1©
= 5 V(I (T, Toy + TToy)) - T T, M TP K Ty, (A.2d)
——— e
=0
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1
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We then move onto (4.44)

1 1 E 1 1 ‘
ST - C—4V”VV)RW = (EHW - EV*‘VV) (—VP(Vp(Kyv + 7<7<W)
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1 ©
VeV oKy — K> | + S VIVIVIV, K
~— ——
=0
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© (s
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B. Expansion of vielbeine in all powers of ¢

Here we will show the derivation of the expansion for all powers of c for the remaining
vielbeine from Section 5.1.1. We use the definitions from (4.10) with N = 1. Beginning
with writing the higher order terms of IT*” in the following manner:

I = 5o E" EV,
=5ty + S e ety + S clenr,
=1 =1
= 5% [e(O)“ €0’y + C(%)“a%)vb + €<1>”a€(0>vb)
+c? (e<o>” €@’y e ae)’y + 3(2)“a€<0)vb) + O(C3)} 4 (B.1)

where we can just read off the higher order vielbeine hél ) for j > 1. Now we write out

the completeness/orthogonality relations up to order c?

(0) (0) (1)
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0 2 1
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(0) ot = -1, hyph@)

where we have imposed that they hold at leading order, i.e. 7, Y0 ooy =

6” + ot 0T ( ) and e(o)“ ue(o) Hb = 62. Then, we want to find constraint equations for | > 1:
J ) J
7)1 _
ZT G ZT“ e ,=0 (B.3a)
j=0 j=0
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j
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j=0 j=0
L ;) ! ;)
Dpuv J
Z hyy = ZUI jltur =0
j=0 j=0
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where | is the order in c. We can now rewrite and contract the equations
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where we have expressed the higher orders of the vielbeine in terms of the lower ones.
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Solving the previous equations along with (B.1) iteratively, we start with | = 1 to find

(l) = T(O)T(O) (pl) 6(0) ’ ()6(1) ar (B.6a)
b
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and then for | = 2:
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C. Variational calculus

C.1. LO variational identities

In the following are detailed derivations of the variational identities presented in Section
5.2. We begin with one of the relations from (5.12)

&y = hyph?t = 1,0%, (C.1)
and vary it:
6(03) = Suph? + hypdh#* — 67,0 ~ 750" = 0. (C2)
We can then use the expression above to isolate both 67, or 6h,:

—T)\(ST“Z)/\ = -1, (6}1“9 he? +hyp6hfm - Ty(SZ)/\)

=0

= 0Ty = —TAth(ShPA + T)L’Cyév/\, (C.3)
POl = =i (lypoh#t — o, o* —7,00")

=0
= (60 + 0Pz, oy
= Shyy = —huphyahP* + 2 hy, 1,007 (C4)
For e, we have:
oe = 6 det[(7y, ey‘l)]
= det[(t,, e,)Tr[ (0", e")0(Ty, e,")]

= e(—v”éfcy +e“uée“”)
— u 1hyv h
=e|-v 6@,+§ Ohyy

1
:e(’cyév“+Eh“"(—hwhméhp}‘+2hA(H T, 5#))
——
=0

1
= e(fyévu - EhpAéhpA), (C.5)

where we have used the expression for 6/, as well as (4.29).
For 6K, we show:

1
6Ky = —50(£olyr)

1
= —E (£6vhyv + £06hHV)

1 ~ ~ ~ ~ ~
= =560 Vohyy +1ou V607 + hyg V507 +2 507 T, g hay + 2 60T,y yia
S———
=0

72



C. VARIATIONAL CALCULUS

+0 V50l + 8hoy Vy0” +0hus Vyo? +20°T 1Shay + 20“ff‘av]6hM)
—— —
=0 =0
~ 1 -~
= —hy( Vo0 = hAyTUKy(VhH)/\(SUO - Evgvgéhw - WY v, Ky 0h
-1

= —hG(VﬁH)évg - TOKHV(SUU + h/\yKy(V( — hy)ahwéh“ﬁ + hﬁy)’[/\ 5Uﬁ + h‘[;/\TH)(SUﬁ)
~———
=0

1 . ) )
i (—hyﬁhmvgahﬂa 2 B Vo Ty 50% +2 hawv)vgava)

1 1 .
= (_T/\Kyv + KA(va) - Eh/‘yvaTgv - Eth"’cg“)évA - hU(VV“)év“
~ 1 ~
— 0 hy(y Ty Vo 00 = Ky hyp ORP + Eh#phmv"vgéhm, (C.6)

where after the second equality we have used the definition of the Lie derivative for
non-zero torsion (2.5), after the third equality we have used (4.26):

A A
r[oy] =h 7/’[[gK‘u]w (C7)

and after the fourth equality we have inserted 6/,,. We has also used (4.31a) to simplify
the term:

~ 1
—I’l/\HUUVGTV(SU/\ = —Ehwv" Tov — 07”(1017,1, +Ty Tye ) ovt
——
=0

= —hAyngwév)\. (C.8)
Moving on to 0K, we have:
0K = 6" Ky + h* 6K,y
1 1
= Sh" K + hW(( —TAKuw + Ky Ty —Eh;wv"rgv - EhAvv”Tgy)évA
~——
=0
- ha(vﬁlu)éva - Uaha(‘u’l'v) @géva
—

=0

— Ky hupohtt + %hyphmvﬁﬁgéhm)

- 1 -
= WKy — (TAK + 071452)00" = W hyo V1607 — KasbhP™ + Ehpw“vaahm, (C.9)

where we have used the previously derived 6K,,. Lastly, we use it once again for
showing:

6(KI"Kyn) = 2( K" Ky 01" + K# 6K,

= 2K* Ko™
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C. VARIATIONAL CALCULUS

1 1
+2 KHV(( - T Ky + Ky Ty _EhM‘UGT‘W B EhAVUUTG“)év/\
——

=0

- hg(v@“)év" - Z)Gha(y Tv) @(,50“
——
=0

1 & A
— Kol R + 5 luphon0”Vgdh? )

= (2T K"Ky + K¥ 0774, ) 60" =2 K¥ V607 + Kpp07Ve0hPY. (C.10)

C.2. NLO variational identities

For the variation of terms with covariant derivatives resulting in terms with of, as
encountered in Section 5.3, one can use some clever tricks and identities to simplify the
calculations. We begin, as for the LO theory, by showing variational identities that will
be useful later on:

0Ty = = (Rppy (Tun = 07 (T Tya + 12Ty ) +4 TPT[MKV]A)MM
+ (10 (T = 07 (T Ta + T Tyju))) + Ta Ty ) 507
—ZTAhp[Vﬁy](Shp/\ +2T/\T[V6H]6U/\, (C.11)
61,07 = =V, 60, (C.12)

- 1
(KH” — th”)(srflﬂp = (KUATPTM - EKPVUATVTM)(SPZPV

+(K(6h + 0ty )7y = K, | 90097, (C.13)
~ 1 -
ot Ty 0L, ) = hvma( - E(KV,](ShP’T +K, 1,00t + hPﬂaKm) - Vvévp), (C.14)
- 1 1 - 3
ST, = W(E(éj + 0P 100" = Sl V08 + Tpvvévp)
4+ K1y (65 +o? Tp)éhp/\, (C.15)

15 (VKy ) = P (950K, = 6T, Ky = 75, Ko
— v, P v, A
= hP"V 0Ky + KP 7,V 60
1

P y
- (EK A Tup —2KPY Ky 70

- KVPTHU"TW -2K°

A A
HUVTATW(SU )60

B (KGVKUVTWW ~ K Ky a
2K 1Ky + K Kty = 2K, Koo | 0

1 1 3
+ (—EKG#hpA + Kin0" Ty + 0K + 5K (05 - v%y))vgéhm,
(C.16)
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C. VARIATIONAL CALCULUS

096 (VK ) = 079p0K 0 = (K 2uKipg + 0710y K7 g + 07 TuKipn |60
= (K% Koy Ty = KA(uKV)P)‘ShpA -3 KA(vvu)(SUA
- (K"(Vhw + v%(#KVM)%W + Kah,0°VeohP,  (C.17)
1708 (i ¥,K) = (65 +0012) (100" = g0 VK + (8], + 077, ) V50K, (C.18)
095 (I VK = 0 (2 390" = g 61| K + 0Pl ¥ ,0K. (C.19)
To show 67, we begin by noting that

?[;ﬂv] = a[H’CV] - Zf‘ﬁw]’[/\

1
=T — 20 1, Ky 1a, (C.20)

:2 N—— —
=0

such that we can now write
0Ty =2 W[H(STV] -4 6fﬁw] T
=2 ﬁ[# (—T)\ hv]péhm + TATV](SU/\) -4 TAT[HKV]V(S}IAV
= <2 (I Va2 + 2 Tp1guKoga JOHP =2 2, Vg 91
+ (2 T[N#m + T,\TW)(‘SU}L +2 T)LT[V?H](‘SUA

= = (R (Tur = 07 (T Tya + T Ty 1)) + 4 Tp 7Kg ) 8P =2 T3k, Vg0 hP?

+ (T[V (T,U]/\ - Uy(TH]T)/)\ + TMT)’W])) + T/\T“V)(SUA +2 T)\T[Vv‘u](SUA. (C.Zl)

One of the key methods for finding all the 6T is to find vanishing covariant derivatives,
varying them and then isolating the relevant term. This can be seen quite simply for
oI, 07

o(V,07) = V,007 + 51,07 = 0
= oI}, 0" = -V, 60°. (C.22)
In the same manner we take the trace of (4.31a) with h*":
~ 1
h'Vyt, = hva(T}W - Z)/\(T”TAV + TV’C)\“)) =0, (C.23)
and see that it vanishes and thus we find:
6(h”vﬁy'cv) = 6h*“’@yrv + Rt (?H(STV - 6ffwfcg) =0

= o1 1, = 6h“1’@#7v + h“"ﬁyétv

uv
= —5h"" vt Thy + HHV 0T, (C.24)
Moreover, we show

B90t, = R By (Y, 017 + 1, 9,007 |
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1 ~
_(‘55 + U#Tp) (E(T“V -0 (tutpy + Tymy))éhpy + TyvyéhPV)

1
= _5( = 0" (TpTay + TyTap) + DTy - UA( ~ TpTay + 0T Ty Tay ))Mpy
~—_———
=0
- (5;‘ + vﬂffp)qﬁyéhp?, (C.25)
which then gives
h“véfzvfcg = —(ShfWUA’L’“TAV - (65 + U“Tp)’cyﬁuéhm’. (C.26)

For contracting (4.31a) K" we get:

5(K“V?MTV) = 6KHV@“TV + KMV (@H(‘STV - 6ffﬂ,'[g) =0
= KMol 1, = 0KM'V,1, + KV, 01,
= —6K*olt uTav + KH \Y uoTy
= K" (5@,’%, + KH*Y VM(STV
= —K, 0" 1,1, 0177 + KV 01, (C.27)

and
K’“’@“é’cv = -K""h,, (ﬁ“’cyéhm’ + ’qﬁyéhm’)
1 -
= _KWth(E( Tuy —UA(THT/\V +Ty’[)w))5hpy + ’cyvyéhm’)
~——

~——
=0 =0

= K”p(%v)\fﬂ;\yéhpy - rﬁfyahpy), (C.28)
giving
K”V(Sffw’cg = K ot yTAvORP? + K" (%v Ty TAuORP? — TVV 6hp7’) (C.29)
This allows us to replace the second term of (5.39) like so:
(KM — Kh*)olY, 7, = (Kv%p%, - %vav%mv)éw

+ (K(6h + 0ty )ty = K¥y, | 9, 0m97. (C.30)

For o#h"?6T ZW) we use that any tensor can be decomposed into a symmetric and

antisymmetric part and find:

oM h" 1), 017

— P P
AR ALE AN C) R v

= hVGT/\U (—Uyé(hp'l’[[v](#]q) - 6V60p)
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1
- hvma( - 5 (Kunoh? = PK goto,

——
=0

+ BP1T,08 0K g + H5K ) - ﬁvévp)

1 _
- hw%( - 5 (Kunoh?1 4 K P10t + hI6K,, ) - Vvévp), (C.31)

where we has used the expression for the torsion (C.7) and (C.12). Now, for 1" 61:21,, we
start by showing
6(paTuh?®) = Shpa Tyt + g 0,017 + By (8T, 17 + 5T, 1)
= 0hpa VyhP® + hpoV, 6hP* +2 6T, +2 610,071,
= (= paltay S +2 7oy 907 |y, (00 = 7,07

[ —
=0

+ hpaVyORP* + 2610 —27,V, 607
= —((TW + UATVT/\G)él)G + v"rﬂmév}’)

+ hpaVyORP* + 2061 —27,V,60°
~ 1 1 ~ .
= 6I’5P = E((TW; - UATVT)\U)(SUU + UUTyTVU(SUy) - Ehpavvéh” +1,V, 60,
(C.32)

where we have used (C.12), (5.15b) and (4.31b). Then splitting 1" 61:51, into its symmetric
and antisymmetric components and inserting the previous result, we have:

noY, = n71 (6%, ~ 208, )

1
= hvn(i(('{va -t Ty T/\G)évg + UGT)’TV‘jévy)
—_——
=0

1 - -
- Ehpwvéhm + 7, V007 =26 (hP 11, K )

1 L ¢ Y
= hV”(E(ég + UUT;/)Tvoévy - Ehp/\vvéhp/\ + TPVV(SUP)

4 Ku(ég + v%p)ahpﬁ, (C.33)

where (5.15a) has been inserted. Here, we have derived the necessary identities to
assemble (5.39).

Moving on to hpvé(?pKW) we have

B8 (9pKyn ) = 1 (Vp0Ky = T4, Ky = 0T p, Ky ). (C.34)
First considering the second term, we can show by symmetry/antisymmetry arguments

=1 =1 A
hP* Ko 0T, = hP Koy (5rup -2 6r[up])
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= Ko (8T8, =26 (17 11, Kp, ))

= 1" Ko (8T8 = SV 1Ky = 7 8T, Kpy = 7 2,0K 4 117 5T,K,y ),

(C.35)
and then the first term in the above equation is found as such:
Kd( Vi) = Koy (Vo™ + 5T4 1o + 6T, 1)
— Y Av A %
= KooV 0n +2088, 1)
= KAV(S(v(AhV)"TyG((SZ - vVTG))
= K/\V(SZ)AI’ZVUT),G (6;: - vyrg)
~ 1 ~
= B K0T, = 5K (00" 10, (8] — 07, ) - T0m™), (C.36)

where we have inserted (4.31b) in the third line, thus giving:

s 1 ’ -
hvaAvérgy = EK/\V (60/\}11/61-7/0 (621 - U) To ) - V‘uéh}tv)
=0

= hPVKM( — 6h"M 1Ky — BV Ky (T hpupOhP? + 147,607)
+ hAVKW( — TohppdhF" + 15 7, 67}"))
——
=0
rp 1 o 1 o A
+ K", ( — TaKpy + Ky Tp) _Eh)\pv Toy — ih/\yv Tgp)év

———r
=0
- hg(),ﬁp)éva -0’ ha(pTy) @géva
N——
=0

1 ~
= Kagy lpysohPt + Ehpﬁhmvgvgéhm)

1
= (EKP)\THp —2KPYKy)TuTh — Kypfyv"fgy)évA

+ (K7 Koyttt = K7 Ky ta = 2K 1Koy ) Sh

N 1 N

— K7 1,9,60" = SKpn (65 = 077, ) Vo0, (C.37)

For the third term of (C.34) we show:

Kund (V) = Ky (V,0h0% + 075, 1 + 53, 1)

= Kp)\

¥,61°" + W(%(a; +07 1,007 %hmﬁvéhm’
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= Tﬁvévp) + K1, 60" + 5fgthV)
= Kua (60%“1,30 + U‘DéhAg’L’pg + vphM(STpg)

=Kyua 6v"hM’ch + vpéhm’rpa

+ o hA"( = (ato (o35 = 27 (o1 + Ty 101))
+ AT Kop|OhS
+ (1o (Tp1s = 07 (Tp1Typ + TipTyip1)) + TpTpo) 007

-2 Tﬂha[aﬁp]éhaﬁ +2 Tﬁr[(ﬁp]évﬁ)

= K| 8071, +0l 81T + (000l -2 WV oKy |0
—_—————
—1/260P h*o 7y,
Ao 1 3 Y B [y AB Ao B
+h - gﬁ+§v TﬁT‘}/g ovP —v Tﬁvpéh +h ’cﬁvgév
1
= Kua EhM(TUP +3071,Ty4) 00" — 2" 1, K6 P

- Z)p’[[gﬁp(s}’l/\ﬁ + h/\oTﬁﬁo‘év'B

s 1 a
= K600, 1" = Kyp Eh“ (%+ ,E{Uy’(p’[)/g)(svp =2 W97, KopSh* — K1, 60"

— 0PV, 0 + 914V, 80P =V, 0hP?
BVp B p

_ hw\(%(%_i_ 0o y)TVG(Svy — %hp),?véhm/ + ’cpﬁvévp)]

= 2K, 0/ 11100 + (~KnK = 2K%, Kon |70 h

1 -
+ (EKUyhpA — Kunv1) — 5gKM)v05hPA, (C.38)
where we have inserted (C.33), (4.31c) and the expression for 67,,. Gathering it all
together, we find for (C.34):

15 (V Ky ) = P (950K, = 5T, Ky = 574, Ky

= h?"Vp6Kuy + KP 7,V 60"

1
P )4 A A
- (—K ATup —2KP7Kyy7utA — K p'cyv“'cgy - 2K“#v7/'cﬂygév ov

2
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~ (K7 Kottty = K7 Kyt
— 2K 1 Ky + Ky Kt, — 2K, Kyrt, |6hP
p Y H P u P

1 1 )
+ (—EK“thA + K0Ty + 89Ky + 5Kon (05 - v%u))vgahm. (C.39)

For vfo (WPKW) we begin by expanding the term

S _ S A
096 (VK ) = 09 (V0K = 2674 Ky ). (C.40)
Then, we take care of the second term in the following manner:

6(?#0”) = @Hév” - 6I~’vap

=V n_ 517 oP [ P

V60 61“9#7} +26F[py]v

= =i

= V00" = oL g, 0P +2 O (R T, Kypy ) 0P

= V60" = 6T} 0F = 6hV K iy, + K0P Ky 67 — B (0P 746K ), + 0K,y
_ =
= V60" = 5T'},0P = Ky OB + W'V (1, K5y — Kopt5) 60°

1 1 1
+ (M_EKWAT“ +§h’77/hwv‘7’cg), + E((SZ + UU’CA)UGTO—P)év/\
~—_————
+%K7]AT,,

- 1 -
+ 5 (00401 | 900" + S 17, T, 607

1
2
1 ~ 1
+ 5 (004 01 oo 1, Vo001 + KT, 0P
1 1 3

+ 5 (08 + 07| Knuoh = 5 (81 + 010 ) o V50" = 0
= 20 Kupyo? = (KP) 1Ky + 0700, KT g + 0% To(u Kyt )50

+ (K% Kowhpp = KaKyp) 5hP* + 3 K,V 507

+ (KU(VI’[#)A + UUT(HKV)A)ﬁaévA - K/\(Vhy)PUUﬁg(Shp/\. (C.41)

Now for hVPé(hW@p)K and vpé(hmﬁpK) we have:
1700 (o V,K) = B2 (8110 VoK + 1 V0K
= 10 (= Bun S +2 o 60 9K + 1 V0K )
= (67 +07t) (100" — hypOh™ )UK + (8f + 007, ) V0K,  (C42)
and
05 (I VK = 07 (011 VK + 1 V0K

= 0 (=l IO + 2ty 501 |V, K + 0Py 90K, (C.43)
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Having derived the variation of all the variables we can then start combining them.
We start by finding the variation of terms four and five in (5.33) which will appear in
either expansion of the NLO Lagrangian. Thus, we have for the fourth term:

wosBo _ou |1 KK 2 K6K) — S (K79K,, — K2
U(l)éGH = U(l) - ET‘u(é( )/a) - 6 ) - E( yo — )57-—‘[1

+ vP (KHV - KhHV)éhvp + hvpé(vp (KHV - Kh#v))‘
1 - -
= Uﬁ) [ - ET‘U' (—(2 TAKPUKPG + KU/\UyTyg)(SUA _ ZKpAvpév/\ + Kp/\vavgéhp/\)

3 1 .
+ T#K(—(Ug’l’m\ + 1, K)6v" — (65 + UGT/\)VU(SUA + Ehmvgvaéhm)
1 -

~ 5 (K7Kyo = K) (= tap B + 1a7,80% ) + ¥ (K = Kl ) Oh*?
+hP'V 0K, + K 1,V 00"

1 p py /4 o o Y A A
- EK 1 Tup —2KP"Kpytytpa — K 1 Tu?" Toy -2K u? TATye 00" |6V
- (KUyKGV Tl = K Ky Ta

2K, 1Ky + KaKey =2 K7, Koy |05

1 1 3
+ (—EK“#hpA + K0Ty + 0K+ 5Kon (07 - vGTy))VG(ShPA

_ (53 + UUTA)(TH(SU/\ _ hypéhp/\)@gl( _ (5Z + v"w)ﬁpéK

1 ~
T“(SK“AUVTW — Ko ) + EK%A = (05 +v°12) VoK + ZKWKPV“)

_ M
‘%[
Lo 2K, 07 5ot
+ (2 K? = 1K (8 + vm))?pézﬂ
31<V"1< h 11<2 hyp + VK + 2K K
13 yo Tty = SR Tapp + VpRua + 2 K5 p Ky T
+2K 1, Kpy — Kua K, + vmhup%K)éhpﬂ
°(2K L Kn Lgo n 59K 9% 5% |V, 6hPA
+ (v AuTpl T 5 TulkMpr | = 5Ky pa + 0p Bua + 5Kp10y [Vo

190K, — (80 + 077, ) V,0K|. (C.44)
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Using again (5.16) for the covariant derivatives of 6K, and 6K:

/ ofy |17 90K = (8f + 077, ) V0K | e

_ /M [a( (1)(hPV6KW (5Z+UPTH)5K))

— Ky (ol (0K — (8] + 077, ) oK) |

=0

—eV (U h? )6Kw+e@p(

¢Y)

ofy (8f +© Ty))aK} d*lx

- 1 1
~ /Me[ Vy ( ﬁ)h‘”’)((—mKW + KTy — EhMlZ’pTPV - Ehm,vp’cp“)évA

- hA(V%)(Sv)‘ - Uph/\(‘uTV)ﬁp(SUA

— Kawhppoh?! + In V, kPt

+V, ( # h"v)hw(—(vp’cp;\+ul<)6v)\

(1)
~ 1 ~
- (65)\ + UPTA)Vp(sU/\ +W] dé+ly

1 1 1
(T/\KUM — EKGATIJ + hm’(ih/va’cpv + EhAvaTP.U

M

T
Vav(l)

- hvy(Upr/\ + ’C/\K)))(SU/\
+ = (K% hyp + 7 Kauhyp) ShP?
1

1
SH7 (O + 00,) + h iy

+
ANI’—‘

- hm’hw(éﬁ + UPTA))VP(SUA)
o I KV 1KV 1hvyh p
+0 Tgyv(l) pTA = 5 ATet 5 AuO" Ty

1
26)\0 Tou — 5Z(UPTP/\ +T)\K))5UA

1 Y Y A

+ 5 (K7 g + 7 Koy )51
Lov(s0 s 1
(26A(6 vp’cy)+§hp7’hw

- 6Z(6f\ + vf’u))ﬁpézﬂ)] d™lx,  (C.45)
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and then doing the same for all the ﬁpév)\ and V,6hP terms:

(1)(2I< Ty — T#K((Sf\-I-UPT)\)

1 % 1 % -
+ v%w(zég(éfj + 0P, ) + S by, - (0] + vpm)))vpéz/‘

+V, o hGVhM o + 0Pt +1h“PhA — %y, (6° + 0Py ) |V, 601 | d¥Flx
(1) g Y ) iz #\“A P

-

9, (ev(l) (2 K? = 1K (8] + 0772
o 15y oF + 0P 1Wh 67 (6" + 0P svt
+ 0 Tgy 5 /\( + 0 Tu +§ Ap ~ Oy A+Z) TA [

+eV v(l)( h‘”’hM(é +vp'[y)

1
+ 5 hP = 1y, (6§ + UPT)\))(SZ)A)

—EKTP(Uﬁ)(2 K\ =K (8 + 00

N—— —_—
=0 -0
Loy (ep
N~————
=0
1 py V8P p
+§ h ]’l/\y—éy(éA+U T/\))
-0 N’

=0

1
+ Vo0l (51 (80 + 077,

| —
=0
AR T (0 +vm)))5zﬂ
2 v\
-0 N— ———

=0

—eV ( (1)(2K ATy~ TMK((SE-F’UPT/\)

+UUTOV(;(5K((SP+U T#)+ thhAy—éy(5P+vpm)))
+vgv(l)( B iy (8 + 077, )

+ %h“ph/\y - h‘”hw(éﬁ + UPT)\)))(SUA} dé+ly
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M

P P v P
( (l)(ZVK 3T = K (1 + 07 1,1y) = 1,9, K (8] + 077, )

1 1
- EKU” - —Kv (TATyu + TuTya) + 50 oy pTol (6 +0 TH)

1
+ Ev“VpTgyhm’h,\“ - UUVp’cg“ (6A + vpu)
o (1 1,
+ 0% ETOATW + Eh hauToyTpa = TouTpa
3
- Vo (e (21( ATy~ TMK(éﬁ + Z)‘DT/\) +0Ph7 oy + ZUUTH/\
5 1 1 3
+ 4—10)/00’5)//\’2?“ - ZUVUC’TWU - EUP(SXTW + Evpézfcm)
%, 9,0 y)( R (5] + 07,

+%h"PhM—hgvhvy(éﬁﬂﬁ’m)))éﬁ a1y, (C.46)

and
N Eel K ! Khoy +K
Me U(l) U — Ty p/\+§’[“ P)\+ uATp

2

1
= /M [80 (ev(”l) (Z)g( - T,JKPA + ET.“KhP/\ + KHATP)

1
- EKGyhP/\ + (SZKW\ +

- 1KG hp/\ + 09 K#/\ + ;Kp)\é") 5hp/\] dd+1

%Kmag)aw)

1
~eKofy T ( (= TuKon + 51K + Kty |

1 1 i
- E KUH ]’lp/\ + 6gK‘LM + EKp/\éfl)éhp
——
=0

~ 1
—-eV, (Uﬁ) (ZJU (2 KiuTp) + ETHthA)

1
- %K"yhm + 0Ky + EKM(SZ))MM d"ly

3 1 1. i
~ B 2
~ /M e [v(l)( = 5KKpitu+ 51K o + 5 VoKt = VoK

- 1 1~
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Putting all of this together we arrive at:
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Now for the fifth term of (5.33) we repeat in a similar manner:
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where once again we use (5.16) for the ?péKW and @péK terms:
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Then for V,60* and V,6hP* we have:

/e
M2

(h(ul:(hvaG/\ - 6KK.UV - UGT)\K[JV +3 5ZK/\V

+ Ky + 071, Koy = Khyo (69 + UUU))

M

+ 0PVt (<80 + B (05 + 0702 - vﬁhwv))vow

1
= /M 5 [ag (e(hﬁv)(th" 12— 09Ky = 07 TAK +3 65Ky
+ K7, i+ 00T, Kon = Ky (6 + 0711 )
+ 0PV h”v(—égh,\v + Iy (85 +0°12) - v"hAy'cv))évA)

P

2
— eK1, (hﬁ) (hw K%, = 89Ky = 071 Ky + F65Ksy
N——

N e
=0 =0
+ K%, hyp + 0%z Koy — Khy, (65 +077)) )
N—— | S —
:O :0

+ ’Z)pﬁphél;;( - 6Zh}[v + h[JV (63 + UOT/\) _Uah/\HTv))évA
————
=0

87



C. VARIATIONAL CALCULUS

—eV, (h(“lv) (th“A — 05Ky = 07 TA Ky +3 65Ky

+ Kavhw\ + ZJGTHKW\ - Khyv(éi + ZJUT/\))

+ Z)pﬁphﬁj(—ézhgv + hyv(éi + ZJGTA) - v"hAHTV))évA]

e ~ ~ ~ ~
~ /M 5 [( - hﬁv) (hWVGK“A — VK = 0160 Kpy = 0712 VoK + 3 V,iKpy
+ 60KUV}Z}M + UGTUFKVA + Z)UTP?UKVA - hyvﬁ)\K
= 0"V KT) =y Ko7 20 + 2 K1, K, |
= Vol (K = 55K = 07 01Ky +3 03Ky + K%, Iy

+ 077, Kyp = Khyy (65 +0°70) + 0 hyp v 1,0 — v"vphM,Tpv)

= 0PV Yty (=80 + B (65 + 0772 - vohwv))w],

(C.51)
and

/s
M2

) 2

1 1 1
(h[JV( - EhHVKP/\UG + _Kyvhp/\vg - K/\Vh[.lpvg + EKh[JVhpA’UU)

~ 1 1 -
+ 0 Ve (S huphuno” - Ehwhmv"))vgéhm

1)
_/1
2

1 1 1
9 (e(hf]”)( = 5 Kono” + 5K ha0” = Ky g0 + 5 Khyo 1107

1 1
+ 0 Ve S huphuno” - Ehwhmv(’))éh“

1 1 1
‘lV

1

2

+o ¥t

1
huphva — Ehuvhm))éhm

= v( 1 1 1
- eva(l’léll)( - EhHVKp/\Z)U + iKyVhp/\UU — KMhypv" + EKhHVhP/\UU)

(1 1
+ 0 Ve Shuphuno” - Ehwhmv“’))éhm

e uv 1 1

1 1 - 1 ,e
+ Ethwh,ﬂ + 5 VoKpr = 50°VoKyuyhipr

88



C. VARIATIONAL CALCULUS

~ 1 -
+ 0"V Ky = 50 VoKl

1 1 1
4 vavghﬁv)(imwhm = Kltyhor + 5 1 Kpn = 5K i + K;Lvh#p)

. 1 1
- v”vVVgVyhﬁv)(Ehyphm - Ehuvhm))éhm]- (C.52)
Putting this all together we have
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