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Introduction

S
ince their first detection back in 2015 [1], gravitational waves have provided
us invaluable information about the Universe [2–7], especially when it

comes to black holes and binary systems. In fact the first signal of gravitational
waves not only represents the first direct proof of the existence of binary
black hole (BBH) systems but also it gives us confirmation that black holes
do merge out there in the Universe. Since then, we detected an increasing
number of binary black hole mergers [8], motivating the scientific community
to analyse in detail the dynamical evolution of BBH systems, with a particular
attention on possible formation channels for black hole - black hole binaries [9–
11] and moreover possible mechanisms that could lead to mergers happening
on an a timescale shorter than the age of the Universe [12–14]. The latter
problem arises from the fact that for a BBH system to merge by emission of
gravitational waves on a reasonable timescale1, it requires either the binary to
have a large eccentricity (close to 1) or the two companions to be very close to
each others. This can be seen by simply considering that the timescale needed
for a BBH system to merge by emission of gravitational waves is proportional

to a prefactor given by
(
1− e2

)7/2
[15, 16], where e is the eccentricity of the

binary system. It is clear that as the eccentricity approaches 1, the emission
of gravitational waves becomes more efficient leading to a faster merger. On
the other hand, if we assume that the BBH system is a circular one (e = 0),
the merger time due to emission of gravitational waves can be written as [17]

τGW =
5

256

c5

G3

a4

M2µ
= 1010 years

(
20M⊙
M

)2 5M⊙
µ

(
a

0.0888AU

)4

, (1)

where a is the semi-major axis of the binary, M and µ are respectivey the
total mass and the reduced mass of the system, namely M = m1 +m2 and
µ = m1m2/(m1 + m2), with m1,2 the masses of the two black holes. For
a BBH system similar to the one detected with the first gravitational wave
signal GW150914 [1], i.e. M = 65M⊙ and µ = 16M⊙, the merger time would
be smaller than the age of the Universe if its semi-major axis is smaller than
a ≤ 0.23AU.

1Here with reasonable we mean a timescale shorter than the age of the Universe.
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One possible merging channel that could speed up the merger of a BBH
system consists in assuming that the binary system is not an isolated one but
instead it is interacting with an external third object, forming a triple system
[17–24]. The presence of a third body can lead to faster mergers, compared
to the case of an isolated binary, mostly because of the so-called von Zeipel -
Lidov - Kozai (ZLK) mechanism [25–29], i.e. a secular effect in triple systems
that can trigger oscillations in both the eccentricity and inclination of the
BBH system in a periodic fashion. During these oscillations the eccentricity
of the BBH system can reach values close to 1, yielding to a more efficient
emission of gravitational waves and thus to a faster merger [19,20,30].

This has motivated people in recent years to study black hole triple systems
in different context: analysing possible formation channels [31–34], studying
secular effects in triple systems [20,35–40], including relativistic effects to the
evolution of the BBH system [41–45] and investigating non-secular effects such
as resonances [46–49]. In all these contexts triple systems have been studied
assuming that the distance between the binary system and the tertiary was
large enough to use Newtonian physics to describe the dynamical evolution of
the triple system, using a Post Newtonian (PN) expansion to include relativis-
tic effects. This approach works very well in astrophysical settings where the
distances at play are large enough compared to the characteristic scales of the
three objects in the triple system. However, motivated by the fact that the
upcoming interferometers LISA [50] and the Einstein Telescope [51] will be
able to detect gravitational waves emitted by binaries in triple systems evolv-
ing in a strong gravity regime, i.e. when the distances at play are of the same
order of the characteristic scale of the tertiary object, people have started to
focus their attention on possible mechanisms leading to the formation of BBH
systems close to an external supermassive black hole. These mechanisms are
usually referred to as migration mechanisms [52–57] and can efficiently lead to
binaries merging in regions close to the center of galaxies where strong gravita-
tional effects can significantly affect the evolution of the system. Moreover in
this context, Extreme Mass Ratio Inspirals (EMRIs) play a key role in the fu-
ture of gravitational waves and in analysing the strong gravity regime [58–63].
EMRIs are binary systems where the primary companion is much larger than
the secondary one and, as a consequence of this huge difference in the masses,
the latter is expected to undergo several orbital cycles in the near-horizon
region of the former where its evolution is dominated by strong gravity ef-
fects [50, 64]. Recent works have shown how a fraction of EMRI systems are
expected to be b-EMRIs, i.e. binary Extreme Mass Ratio Inspirals, where the
lighter companion is not a single compact object but rather a binary system,
making b-EMRIs actually hierarchical triple systems [65–68]. Again, the large
difference in the masses between the binary system and the primary compan-
ion in the b-EMRI makes it so that the former will spend the last phase of
its evolution in the strong gravity region around the latter, where it will emit
gravitational waves detectable by the future interferometers.
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In these scenarios, where the binary system is close to the tertiary object,
the Newtonian approximation breaks down and we need to use General Rel-
ativity instead to describe properly the dynamics of the triple system. This
motivates us to analyse, in this thesis, black hole triple systems in the con-
text of a strong gravity regime, using General Relativity instead of Newtonian
Physics to describe the evolution and the dynamics of a BBH system orbit-
ing closely around a supermassive black hole. More in details, this thesis is
structured as it follows:

• In Chapter 1 we analyse how the dynamics of a BBH system, with
two black holes of comparable masses, is affected by the presence of
an external supermassive Kerr black hole. We start by giving a brief
overview about triple systems in the Universe, mentioning possible for-
mation channels and introducing the stability condition needed for a
triple system to evolve without being disrupted. Next we introduce the
concept of secular timescale and we focus our attention on the ZLK
mechanism, providing the key elements for understanding how it works
and presenting a brief review on how it has been described previously in
the literature. We then move to the original contribution in this research
field, i.e. the analysis of the ZLK mechanism in the context of strong
gravity regime. This is done by describing the BBH system using the
point particle approximation, i.e. assuming that the distance between
the two black holes is larger than their characteristic size, but the tidal
interaction between the binary and the external body is treated in a
full General Relativistic manner, describing the supermassive black hole
through the Kerr metric. This approach allows us to introduce strong
gravity effects, generated by the tertiary, in the dynamical evolution
of the BBH system. Practically speaking this is done by introducing
the multipole electric Ea1,a2,...,aj and magnetic tidal moments Ba1,a2,...,aj ,
which encode all the information about the tidal interaction between
the binary system and the supermassive Kerr black hole. We carry
out the analysis in two different reference frames, a local-inertial one
moving together with the BBH system and a non-inertial one associ-
ated with an asymptotic observer. We find that strong gravity effects
can significantly enhance the ZLK mechanism, leading to a higher fre-
quency for the eccentricity and inclination oscillations which results in
a faster merger for the binary system compared to the one predicted
by the Newtonian description of the triple system. Moreover with our
approach we can provide a complete expression for the gyroscope preces-
sion, i.e. the precession of the angular momentum of the BBH system
around the direction identified by the angular momentum of the external
black hole, which expanded with a PN expansion gives back the results
already known in the literature plus new higher order corrections. We
also check that we included the effect of the spin of the supermassive
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black hole consistently in the dynamics of the BBH system by using
again a PN expansion and checking that the lower orders agree with
the already known results in previous works. Finally we conclude our
analysis by studying the peak frequency of the gravitational waves emit-
ted by the binary system in the strong gravity regime, more precisely
in the extreme case where the BBH system is orbiting along the In-
nermost Stable Circular Orbit (ISCO) of the supermassive Kerr black
hole, including the effect of the gravitational redshift and connecting
our results with the future space-based interferometers. We show how
the Newtonian description cannot capture properly the dynamics of the
BBH system in the strong gravity regime and, as consequence, how a
General Relativistic description is needed to correctly understand the
merger of a binary system in this extremely important scenario for the
future of gravitational waves.

• In Chapter 2 we analyse the scenario of an EMRI system, where the two
companions are a Schwarzschild black hole and a test particle, orbiting
around a supermassive Kerr black hole. Firstly we give a brief overview
on EMRIs, enlightening their properties, possible formation channels
and their relevance for the future interferometers such as LISA. We
then move to the original part of this Chapter, which consists in study-
ing how a tidal environment, sourced by a supermassive Kerr black hole,
deforms the orbits of the test particle around the Schwarzschild black
hole in the EMRI system, focusing our attention on the ISCO and the
light ring. To this end we start by constructing the electric and mag-
netic tidal moments, up to the first order in their multipole expansion,
which encode all the information about the source of the tidal environ-
ment and which we use to describe the interaction between the external
body and the EMRI. Note that the electric tidal moments were already
known in the literature [69], while the magnetic ones have never been
computed before in a generic scenario and thus they represent a novel
result. Following Ref. [70], we use the electric and magnetic tidal mo-
ments to write the metric for a tidally deformed Schwarzschild black
hole which we then use, together with the four-velocity of the test par-
ticle, to build the Hamiltonian describing the EMRI system in a tidal
environment. Finally we apply this formalism to study how the ISCO
and the light ring of the Schwarzschild black hole get deformed by the
presence of an external tidal field. In particular we are interested in tidal
effects that stick to the dynamics of the test particle for more than just
one orbit around the primary companion, thus for this reason we elimi-
nate the fast motion in the dynamics of the EMRI system by averaging
over one orbital cycle of the test particle around the Schwarzschild black
hole. This allows us to find the secular shifts induced by the external
supermassive black hole on the parameters characterizing the ISCO and
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the light ring of the EMRI. The tidal corrections are written in terms of
an effective perturbative parameter, which contains all the information
about the tidal environment and the orientation of EMRI system with
respect to its orbit around the Kerr black hole. In our analysis we find
that depending on the orientation, which is specified thanks to a set of
Euler angles, the presence of a tidal field can either shrink or expand the
radial position of both the ISCO and the light ring. Moreover there is a
specific configuration for the binary for which the two orbits do not feel
the presence of the external tidal field and thus they do not get deformed.
Lastly we also show how in the case of strong gravity regime, i.e. when
the EMRI system is orbiting closely to the supermassive black hole, the
tidal deformations are stronger than the ones in the scenario where the
binary is far away from the source of the tidal field. This last scenario
has already been analysed, in less general settings, in Refs. [71, 72] and
we recover their results by choosing a specific orientation for the binary
system and by taking the limit r̂ → ∞, where r̂ represents the distance
between the EMRI system and the source of the tidal environment.

• In Chapter 3 we focus our attention on charged black hole binaries.
Given that it is widely believed that charged black holes do not exist in
the Universe, we start this Chapter by presenting some motivations for
which we should include the presence of charge in binary systems. Firstly
we review some possible charging mechanisms that could potentially
lead black holes to have a small amount of electric charge which might
be preserved thanks to the presence of an electromagnetic field [73].
Secondly we include the possibility of having magnetically charged black
holes, which are more stable than their electric counterparts [74] and
have drawn a lot of attention in the scientific community in recent years
[74–77]. Thirdly we argue that the inclusion of an extra parameter in the
description of a BBH system allows us to study a more general scenario
than the one depicted by only neutral black holes, since it can be used
as a toy model to describe the more astrophysically relevant (but often
computationally harder to analyse) case of spinning black holes. After
giving some motivations for including the charge in BBH systems, we
introduce the original part of this Chapter, which consists in analysing
two different aspects of charged binaries.

In the first one we study the evolution and the formation of the event
horizon during the merger of an EMRI system, where the lighter com-
panion is a charged black hole. Following Ref. [78], this can be done
analytically by implementing the EMR limit, which consists in taking
m/M → 0, where m andM are the masses of respectively the secondary
and the primary companions in the EMRI. To study the evolution of the
event horizon of the charged black hole during the merger we need to
be able to analyse its geometrical structure, thus the EMR limit must
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be satisfied by keeping the size of the smaller object fixed while sending
the size of the larger one to infinity, namely M → ∞. Then, in this ap-
proximation, the procedure to extract the evolution of the event horizon
during the merger proceeds as follows: we start by considering the con-
figuration of the event horizon at future null infinity and we trace back
in time the null geodesics generating the event horizon until they meet
each others in a caustic point [78]. We compute different parameters
characterizing the merger of the EMRI system, such as the pinch-on
coordinate representing when the two black holes touch, the duration
of the merger and the increase in the area of the event horizon of the
charged black hole. What we find, comparing our results with the ones
obtained in the case of a neutral EMRI [78], is that as the charge of
the small black hole increases, the merger happens closer to its center
and becomes quicker. Lastly we extend our analysis to the case of a
charged BBH merger in higher dimensions than 4, where after extract-
ing numerically the evolution of the event horizon during the merger we
find that in D > 4 dimensions, as a consequence of the steeper r de-
pendence in the metric describing the charged black hole 2, the merger
happens faster and closer to the center of the small black hole in the
EMRI system compared to the astrophysical scenario in 4 dimensions.

In the second part of Chapter 3 instead, we analyse the dynamics of an
EMRI system moving in a tidal environment which we will keep com-
pletely general, without specifying its source. We will follow the same
steps introduced in Chapter 2 for the case of a neutral EMRI, but this
time the primary companion in the binary system will be a charged
black hole described by the Reissner–Nordström (RN) metric and more-
over we will consider the secondary companion to carry a small amount
of charge. Our goal in this analysis is to first write down the metric of
a tidally deformed RN black hole, which we do by following Ref. [77],
and second to use this result to study how the dynamics of the test
particle in the EMRI system is affected by the presence of an external
tidal environment, in particular focusing our attention on the role of the
charge of the primary companion in the tidal deformations induced on
the dynamics of the binary system. As a practical application of our
formalism we compute the tidal shifts induced on the parameters char-
acterizing the ISCO and the light ring of the RN black hole, showing how
they change as the charge increases until it reaches is maximum value at
extremality. We find that as the charge increases, the tidal corrections
become smaller approaching their minimum (but finite) value for an ex-
tremal black hole. This is a consequence of the fact that as the charge
of the RN black hole reaches its maximum value, its throat elongates,

2Here the charged black hole will be described using the Reissner–Nordström metric and
r represents the radial coordinate in the charged spacetime.
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dragging both the ISCO and the light ring closer to its center, resulting
in a suppression of the tidal effects. Moreover, since both the primary
and the secondary companions in the EMRI system possess a charge,
the tidal deformations will have both a gravitational and an electromag-
netic contribution. In our analysis we will consider only gravitational
static tides, thus the gravitational contribution in the tidal effects will
be larger than its electromagnetic counterpart.

• In Chapter 4 we present our concluding remarks and possible future
directions for the analysis presented in this thesis.





Chapter 1

Triple Systems and Secular
Effects

I
t is widely known that almost every large galaxy has a supermassive black
hole at its center [79, 80]. Thus for two compact objects forming a binary

system in these environments it is very unlikely to evolve as an isolated bi-
nary since they will feel the presence of the supermassive black hole in their
dynamical evolution. Moreover back in the late 1900s, it was already known
that at least 35% of stars binaries had a third companion moving on a wider
orbit [81] and today more analysis on triple stars systems have confirmed that
they are quite common in the Universe [82–87]. A clear example of a triple
system is the 4U 1820-30 low-mass X-ray binary whose short binary period
has been explained by including the presence of a third companion [88, 89].
Triple systems are also very relevant in the formation and evolution of giant
gas planets, especially if these objects form in stellar environments where they
form a binary system star-Hot Jupiter. It has been shown how the presence of
a third body orbiting these binaries can induce a migration mechanism that
would help us understand how these systems form and evolve [90–94]. Even
by looking at our surroundings we can find a lot of examples of triple sys-
tems: the most obvious one is the Sun-Earth-Moon system, which has been
widely studied, but also smaller objects, such as asteroids, can form binary
systems [95–98] and be affected by the presence of the Sun. Finally in recent
years a lot of binary black hole systems have been detected with LIGO-Virgo-
Kagra thanks to the emission of gravitational waves [99]. In this context the
interaction of a binary black hole system with a third body, thus forming a
triple system, can alter significantly the signature of the gravitational wave
detected [100–105], giving us a better insight on what is really happening out
there in the Universe. Moreover the presence of a third companion altering
the evolution and merger of a binary black hole system is a very common
scenario, especially if the binary is forming in dense stellar systems [106–110].

Even though there are different mechanisms that can lead to the formation

11
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of stable triple systems, such as binary - binary encounters [31] or binary -
single - single interactions [32], there are also a lot of scenarios where strong
gravitational perturbations between the inner and outer orbit or mass loss
from stellar wind can contribute to the ejection of one of the three bodies,
leading to the disruption of the triple system [111, 112]. Thus to study the
stability of triple systems and to understand in which astrophysical scenarios
it is possible for them to evolve dynamically in a stable configuration for a long
period of time is of paramount importance. On this context, in the literature
have been proposed different stability criteria for triple systems that relate
the parameters of the inner binary with the ones of the outer binary. One of
the most used in astrophysical settings is the one proposed by Mardling and
Aarseth in 2001 [113] which states:

aout > 2.8 ain

[
(1 + qout)

1 + eout

(1− eout)
1/2

]2/5
, (1.1)

where aout(ain) is the semi-major axis of the outer (inner) binary, eout is the
outer eccentricity and qout = m3/(m1 +m2) with m3 the mass of the tertiary
while m1 and m2 are the masses of the two bodies in the inner binary. A
simplified version of this stability criteria is the one presented in [35, 114],
which relates the semi-major axes (aout, ain) and the masses (m3, m1, m2) of
the inner and outer binaries, namely

aout ≥ rtide ≈ ain

(
3

m3

m1 +m2

)1/3

. (1.2)

The two stability conditions defined in (1.1) and (1.2) imply that in order for a
triple system to be stable a hierarchical configuration is required. This means
that the outer orbit needs to be much larger than the inner one (aout > ain), in
other words the third body has to be sufficiently far away from the inner binary
in order to avoid tidal disruption phenomena. For the purpose of this thesis
we will focus our attention only on stable triple systems. The hierarchical
configuration required means that the dynamics of the system will take place
on a timescale much longer than both the orbital period of the inner and
outer binary [115], usually called secular timescale. Thus in order to study
the evolution of the orbital parameters describing the two orbits, we need
to apply the secular approximation, which consists in averaging out the fast
timescales characterizing the triple system.

1.1 von Zeipel Lidov Kozai Mechanism

One of the most, if not the most, relevant secular effect is the von Zeipel -
Lidov - Kozai (ZLK) mechanism, which in this subsection we quickly review,
enlightening the most relevant results achieved in the literature in the past
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years. This part of the thesis, namely the review of the ZLK mechanism, is
heavily based on Ref. [20].

To find the first trace of the ZLK mechanism in literature we have to go
way back to 1910, when the astronomer and mathematician Edvard Hugo
von Zeipel published his paper on the periodic motion of comets [25], where
he already introduced all the key elements describing the ZLK mechanism.
Unfortunately his work on the subject went unnoticed until recent years and
the credits for this mechanism have been usually given for a long time only
to the Soviet scientist Michail L’vovich Lidov and the Japanese astronomer
Yoshihide Kozai, who independently established in the 1960s the theoretical
framework for this phenomenon. The former showed in his paper [26], focused
on the motion of satellites, that it is possible for the argument of pericenter
of a perturbed orbit to librate rather than circulate [116], while the latter
reached the same conclusion on his paper [27] where he analysed how the
secular motion of asteroids with a high inclination is affected by the presence
of Jupiter.

Both Lidov and Kozai in their above mentioned works were interested in
a hierarchical three body system, consisting in an inner binary formed by two
objects with masses m1 and m2 and a third much more massive object m3

orbiting around (m1,m2) on a much larger orbit than the inner one, which
is usually referred to as the outer orbit, forming with the center of mass of
the inner binary the so called outer binary as depicted in Fig. 1.1. In this
setup it is possible to study the dynamics of the problem using the secular
approximation where, on a timescale much longer than the period of both the
inner and outer orbit, the interaction between the two makes them exchange
angular momentum in such a way that their mutual inclination and both
the eccentricities of the two orbits can oscillate in time, keeping fixed the
semi-major axes of both the inner (a1) and outer (a2) orbit [117]. Moreover
in the hierarchical approximation it is possible to treat the inner and outer
orbit separately as two Keplerian orbits, using Newtonian physics to describe
their motion. As a consequence the Hamiltonian of the triple system can be
written as the sum of contributions describing the motion of the inner binary,
i.e. the relative motion of the body with mass m1 around the body with mass
m2, the dynamics of the outer binary, i.e. the one describing the motion of
the third body with mass m3 around the center of mass of the inner binary,
plus a third term describing the gravitational interaction between the two
orbits [118]. Given that both the semi-major axes of the inner and outer
orbits remain constant during the secular evolution of the triple system, and
given the hierarchical nature of the problem which ensures that a1 ≪ a2, it
is natural to use the ratio a1/a2 as a small perturbative parameter to expand
the gravitational potential describing the interaction between the inner and
outer binary [26,27]. Thus the Hamiltonian of a hierarchical triple system can
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itot

Φ

m1

m2

m3

c.m.
r1

r2

Figure 1.1: Schematic representation of a three body system (not in scale).
The two bodies m1 and m2 form the inner binary, where r1 is the relative
distance between them. C.m. represents the center of mass of the inner
binary and together with the tertiary body m3, placed at a distance r2 from
the c.m., form the outer binary. Finally itot represents the total inclination
between the inner orbit and the outer one, while Φ defines the angle between
r1 and r2.
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the be written as [20,118]

H =
Gm1m2

2a1
+
Gm3(m1 +m2)

2a2

+
G

a2

∞∑
n=2

(
a1
a2

)n

Mn

(
r1
a1

)n(a2
r2

)n+1

Pn (cosΦ) ,

(1.3)

where we introduced r1 and r2 as the vectors identifying respectively the
relative position from m1 to m2 and from m3 to the center of mass of the inner
binary, as depicted in Fig. 1.1. Moreover G is the gravitational constant, Pn

the Legendre polynomials, Φ the angle between r1 and r2 and finally Mn is
defined as

Mn = m1m2m3
mn−1

1 − (−m2)
n−1

(m1 +m2)n
. (1.4)

Given that both the inner and outer motions are periodic, as usually in
celestial mechanics, it is convenient to analyse the problem using the action-
angle formalism. After choosing the z axis along the direction of the total
angular momentum, i.e. working in the invariable plane reference frame, we
can use the Delaunay variables [119] to treat the dynamics of our hierarchical
triple system. This set of variables consist in three angles and three conjugate
momenta for both the inner and outer orbit. Firstly we introduce the angle
variables, using the subscript 1 (2) for the inner (outer) elements:

• mean anomalies: they tell us where the objects are in their orbits and
we denote them as l1 and l2;

• arguments of periastron: they define the position of the eccentricity
vectors, we indicate them with g1 and g2;

• longitudes of ascending nodes: they represent the angle between the
reference direction and the direction of the ascending node, where this
last one is the point where the orbit crosses the plane of reference. We
denote them with h1 and h2.

The conjugate momenta associated with these angle variables are respectively:

• the conjugate momenta to the mean anomalies, L1 and L2, which are
defined as

L1 = µ1
√
Gma1, L2 = µ2

√
GMa2; (1.5)

• the conjugate momenta to the arguments of periastron, G1 and G2,
which can be written as

J1 = L1

√
1− e21, J2 = L2

√
1− e22; (1.6)
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• the conjugate momenta to the longitudes of ascending nodes, J1,z and
J2,z, which can be written as

J1,z = J1 cos i1, J2,z = J2 cos i2; (1.7)

where we introduced the eccentricity e1 for the inner orbit and e2 for the outer
one, the reduced mass µ1 (µ2) and the total mass m (M) for the inner (outer)
binary defined as

µ1 =
m1m2

m1 +m2
, µ2 =

m3(m1 +m2)

m1 +m2 +m3
,

m = m1 +m2, M = m1 +m2 +m3,

(1.8)

and finally i1 (i2) which represents the inclination of the inner (outer) orbit
with respect to the direction of the total angular momentum Jtot, as can be
seen from Fig. 1.2. The conjugate momenta to the arguments of periastron,
J1 and J2, can be interpreted as the absolute values for the angular momen-
tum vectors (J1 and J2) respectively of the inner and outer orbit while the
action variables associated to the longitudes of ascending nodes, J1,z and J2,z,
represent the z-component of J1 and J2. Given the choice we made for our
reference system, i.e. the z axis aligned with the direction of the total angular
momentum, it is straightforward to check that the magnitude of Jtot is given
by

Jtot = J1,z + J2,z. (1.9)

Moreover we can write some geometrical relations between the angular mo-
menta of the system which will be useful later in this section, namely

cos itot =
J2
tot − J2

1 − J2
2

2J1J2
, (1.10)

J1,z =
J2
tot + J2

1 − J2
2

2Jtot
, (1.11)

J2,z =
J2
tot + J2

2 − J2
1

2Jtot
, (1.12)

where Jtot = J1+J2 and we introduced the total inclination itot = i1+ i2, see
Fig. 1.2.

With the introduction of the mean anomalies l1 and l2 for both the inner
and outer orbit it is immediate to isolate the short timescales in the Hamilto-
nian (1.3) that has to be averaged out in order to study the secular dynamics
of the triple system and thus the ZLK mechanism. This can be done since,
as we already mention above, the two orbits can be treated as Keplerian ones
with conserved energies, and this allow us to use the secular approximation.
There are different ways to get rid of the short timescales in the Hamilto-
nian, one of them is to average out the mean anomalies l1 and l2 by simply
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itot

i1

i2

J1

J2

Jtot

invariable plane

Figure 1.2: Schematic representation of the angular momentum vectors. J1

and J2 represent respectively the angular momentum of the inner and outer
binary, while Jtot = J1+J2 is the total angular momentum, aligned along the
z-axis and perpendicular to the invariable plane. Meanwhile i1 and i2 depict
the inclination of the inner and outer angular momenta with respect to Jtot.
Finally itot denotes the total mutual inclination, i.e. itot = i1 + i2.

integrating the Hamiltonian (1.3) as [120]

⟨H⟩ = 1

(2π)2

∫ 2π

0
dl1

∫ 2π

0
dl2H. (1.13)

Another method to study the secular dynamics is to use a canonical trans-
formation, usually called the von Zeipel transformation [121], where a time
independent generating function periodic in l1 and l2 is introduced to get rid
of the mean anomalies in the Hamiltonian [37].

As the analytical mechanics teaches us, every time the Hamiltonian does
not depend on an angle variable, its conjugate momentum is conserved. In
our case this means that after averaging out l1 and l2, the conjugate momenta
L1 and L2 are conserved. This can be seen explicitly by writing down the
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equations of motions [122]:

dLk

dt
=
∂H

∂lk
,

dlk
dt

= − ∂H

∂Lk
,

dJk
dt

=
∂H

∂gk
,

dgk
dt

= − ∂H

∂Jk
,

dJk,z
dt

=
∂H

∂hk
,

dhk
dt

= − ∂H

∂Jk,z
,

(1.14)

where k = 1, 2. By using the explicit expressions (1.5), (1.6) and (1.7) for the
conjugate momenta it is possible to use the equations of motion defined in
(1.14) to study the evolution of the orbital parameters such as the eccentricity
and the inclination angle between the inner and outer orbit, namely

dek
dt

=
∂ek
∂Jk

∂H

∂gk
,

d cos ik
dt

=
J̇k,z
Jk

− J̇k
Jk

cos ik.

(1.15)

The conservation of L1 and L2 yields to the fact that both the semi-
major axes a1 and a2 of the inner and outer orbit remain constant during the
evolution of the triple system. Thus, as already pointed out previously, the
ratio a1/a2 is a good small perturbative parameter that we can use to expand
the interaction part of the Hamiltonian (1.3).

1.1.1 Quadrupole Approximation

The expansion of the Hamiltonian (1.3) is a multipole expansion where the first

order is called quadrupole approximation and it is proportional to
(
a1/a2

)2
.

This level of approximation was already reached by the pioneers von Zeipel,
Kozai and Lidov in their works mentioned above and they found that not only
the total angular momentum of the triple system Jtot is conserved but also the
angular momentum J2 of the outer orbit remains constant during the secular
evolution [123]. This means that the quadrupole approximation can be used
only to describe scenarios where the outer orbit is symmetric under rotation,
i.e. when we have an outer axisymmetric potential.

For the scope of this thesis we will restrict ourselves to analyse the most
simple case that satisfies the quadrupole approximation, i.e. the scenario
where the outer orbit is circular. To study the evolution of the orbital pa-
rameters it is convenient to rewrite explicitly the Hamiltonian (1.3) in terms
of the Delaunays variables we introduced above. Up to the quadrupole order
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this yields to

H =
Gm1m2

2a1
+
Gm3(m1 +m2)

2a2

+ 4
G2(m1 +m2)

7m7
3

16(m1m2)3(m1 +m2 +m3)3
L4
1

L6
2

(
r1
a1

)2(a2
r2

)3

(3 cos 2Φ + 1)

(1.16)

The next step in studying the secular dynamics of the triple system is to
eliminate the short timescales associated with the inner and outer orbits. This
can be achieved by integrating out the mean anomalies l1 and l2 from the
Hamiltonian (1.16), leading to the secular quadrupolar Hamiltonian [37]:

Hquad =
C2

8

[
(1 + 3 cos(2i2))

(
(2 + 3e21)(1 + 3 cos(2i1)) + 30e21 cos(2g1) sin

2 i1

)
+3 cos(2∆h)

(
10e21 cos(2g1)(3 + cos(2i1)) + 4(2 + 3e21) sin

2 i1

)
sin2 i2

+12(2 + 3e21 − 5e21 cos(2g1)) cos(∆h) sin(2i1) sin(2i2) (1.17)

+120e21 sin(2g1)
(
sin i1 sin(2i2) sin(∆h)− cos i1 sin

2 i2 sin(2∆h)
)]
,

where C2 can be written as

C2 =
G2

16

[
(m1 +m2)m3

]7[
(m1 +m2 +m3)m1m2

]3 L4
1

L3
2J

3
2

, (1.18)

and we defined ∆h = h1 − h2. To further simplify the expression (1.17) we
can use a well known procedure called elimination of nodes [27, 124], which
consists in setting

h1 − h2 = π. (1.19)

It is important to mention that this relation can only be used when the total
angular momentum of the system is conserved, as it is in our case. A common
mistake when applying the elimination of nodes is to naively conclude that,
since the Hamiltonian no longer depends on the angles h1 and h2, the associ-
ated conjugate momenta J1,z and J2,z are conserved. As shown by previous
works in the literature [37, 124] this is not always the case and can lead to
significantly different equations of motion. To avoid this mistake one should
apply the condition (1.19) only after deriving the equations of motion for the
triple system, or alternately the elimination of nodes can be directly used on
the Hamiltonian (1.17) as long as the evolution equations for the inclination
i1 and i2 are derived from the conservation of the total angular momentum
Jtot and not from the canonical relations defined in (1.14). For a more de-
tailed analysis on the elimination see [37, 124]. Note that it is also possible
to study the evolution of the triple system avoiding the elimination of nodes,
see [125–128].
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Since in our analysis the total angular momentum is conserved, we can
safely apply the relation (1.19) to the quadrupolar Hamiltonian defined in
(1.17), which simplifies to

Hquad = C2

[
(2 + 3e21)(3 cos

2 itot − 1) + 15e21 sin
2 itot cos(2g1)

]
, (1.20)

where C2 is defined in (1.18) and itot = i1 + i2 is the total inclination, see
Fig. 1.2.

With this Hamiltonian we can explicitly write the evolution equation for
the eccentricity of the inner binary, from the first equation in (1.15) follows
that

de1
dt

= C2
1− e21
J1

30e1 sin
2 itot sin(2g1). (1.21)

Note that from the definition itself of J1 in (1.6), setting ė1 = 0 also means
J̇1 = 0 and, by looking at eq. (1.21), it is immediate to see that this condition
is satisfied when g1 = nπ/2, with n = 0, 1, 2, ..., more specifically n = 0
corresponds to the minimum value for the eccentricity while n = 1 to the
maximum one. Moreover from the definition of Jk,z in (1.7) we also find that
J̇1 = 0 implies J̇1,z = 0 which yields to i̇1 = 0. This tells us that to an
extremum in the eccentricity corresponds an extremum for the inclination of
the inner binary. We can use the conservation of the total angular momentum
Jtot to derive a relation between the eccentricity of the inner binary e1 and
the total inclination itot. We start by writing the relation (1.10) in terms of
the eccentricities e1 and e2 and the conjugate momenta L1 and L2

L2
1(1− e21) + 2L1L2

√
(1− e21) cos itot = J2

tot − J2
2 , (1.22)

where we set e2 = 0 since we are interested in an outer circular orbit. Note how
the right-hand side is fixed by the initial condition since both the total angular
momentum and the one of the outer orbit are constant at the quadrupole level
of approximation1. To study how the eccentricity e1 and the total inclination
of the triple system evolve in time, the relation (1.22) must be supplemented
with the two relations obtained by imposing the conservation of energy for
both the minimum (g1 = 0) and maximum (g1 = π/2) eccentricity case in
(1.20), which respectively yield to

Hquad

2C2
= 3 cos2 itot(1− e21)− 1 + 6e21,

Hquad

2C2
= 3 cos2 itot(1 + 4e21)− 1− 9e21.

(1.23)

1Note how the conservation of J2 holds only up to the quadrupole approximation, and
it is a consequence of the fact that the Hamiltonian (1.20) does not depend on g2. The
conservation of the angular momentum for the outer orbit at this level of approximation is
usually known as “happy coincidence” [123].
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After fixing the initial conditions for the eccentricity e1 and the argument of
periastron g1 to zero for simplicity, we can re-write eq. (1.22) and eq. (1.23)
respectively as: √

1− e21 cos itot = cos i0 +
L1

2L2
e21,

(1− e21) cos
2 itot = cos2 i0 − 2e21,

(1 + 4e21) cos
2 itot = cos2 i0 + 3e21,

(1.24)

where i0 is the initial value for the total inclination of the system. After
combining these equations we end up with a relation that give us the maximum
eccentricity that the inner binary can reach during its secular evolution as a
function of the initial mutual inclination, namely(

L1

L2

)2

e41 +

(
3 + 4

L1

L2
cos i0 +

(
L1

2L2

)2
)
e21 +

L1

L2
cos i0 − 3 + 5 cos2 i0 = 0.

(1.25)

To get a better understanding of how the maximum eccentricity is related
to the initial mutual inclination of the triple system, we can analyse eq. (1.25)
in the test particle approximation (also known as the TPQ limit [30]), where
we assume that L2 ≫ L1. This condition holds in the scenario we are analysing
since we assume a hierarchical configuration for the triple system, i.e. m3 is
much larger than both m1 and m2. In the TPQ limit eq. (1.25) takes a more
simple expression, namely

e21 = 1− 5

3
cos2 i0. (1.26)

This equation can also be obtained by computing the Hamiltonian of the triple
system directly in the TPQ approximation [129–131], where usually one of the
two objects in the inner binary is assumed to be a test particle, i.e. m2 → 0 or
equivalentlym1 → 0. The main difference with the case where all three masses
are non-negligible is that in the test particle approximation the Hamiltonian
does not depend on the angle variable h1, and can be written as2 [30, 132]

HTPQ
quad =

3

8

Gm1m3

a2

(
a1
a2

)2
[
−e

2
1

2
+

(
1 +

3

2
e21

)
cos2 itot +

5

2
e21 sin

2 itot cos(2g1)

]
,

(1.27)
where we already set e2 = 0. Thus the conjugate momentum associated to
h1, i.e. the z component of the angular momentum of the inner binary J1,z,
is conserved

J1,z =
√

1− e21 cos itot = const. (1.28)

2Here we choosem2 → 0 but we could have choose alsom1 → 0 without loss of generality.
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From this relation follows that

J1,z =
√

1− e21,max cos itot,min =
√
1− e21,0 cos itot,0, (1.29)

where the subscript 0 denotes the initial values. As we did before this equa-
tion must be supplemented with the conservation of energy for the minimum
(maximum) eccentricity case, which is obtained by setting g1 = 0 (g1 = π/2)
in (1.27), respectively yielding to

E0 (g1 = 0) = 2e21,min + (1− e21,min) cos
2 itot,max,

E0 (g1 = π/2) = −3e1,max + (1 + 4e21,max) cos
2 itot,min.

(1.30)

Solving together eq. (1.29) and the second equation in (1.30) allow us to find
the maximum value reachable by the eccentricity of the inner binary e1 and
the minimum value for the total mutual inclination itot. After fixing the initial
conditions to e1,0 = g1,0 = 0 we find

e1,max =

√
1− 5

3
cos2 itot,0,

cos itot,min = ±
√

3

5
.

(1.31)

These angles are known as the Kozai angles and they represent the interval
where the initial value for the mutual inclination should lie in order to trigger
the exchange of angular momentum between the inner and outer orbit and
thus to induce the ZLK mechanism. In formula

39.9◦ < itot,0 < 140.77◦. (1.32)

To fully appreciate the oscillations induced on the eccentricity of the inner
orbit and the mutual inclination of the triple system by the ZLK mechanism,
it is useful to plot how e1 and itot evolve as a function of time. To achieve
this we first need to derive the full set of equations of motion for the orbital
parameters of the triple system and then to integrate them. For the ease of
notation we do this in Appendix A and we show the result in Fig. 1.3. 3

One final remark on the TPQ approximation is that it is possible to define
a new constant of motion [133]

CZLK =
1

2

[
−e

2
1

2
+

(
1 +

3

2
e21

)
cos2 itot +

5

2
e21 sin

2 itot cos(2g1)

]
− 1

2
J2
1,z

= e21

(
1− 5

2
sin2 itot sin

2 g1

)
,

(1.33)

3In Appendix A we write the equations of motion up to the octupole order in the
expansion for the Hamiltonian (1.3). However to reproduce Fig. 1.3 we are only interested
in the quadropole contributions to those equations, i.e. the terms proportional to C2.
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Figure 1.3: Time evolution of the eccentricity of the inner binary e1 (top
panel) and the total inclination of the triple system itot (bottom panel) as a
function of time (years) in the quadrupole approximation. Here we choose the
following parameters: m1 = m2 = 10M⊙, m3 = 2 × 109M⊙, a2 = 150AU,
a1 = 0.1AU, e2 = 0 and, as initial conditions we fixed e01 = 0.1, g01 = 0◦ and
i0tot = 70◦. Notice how when the eccentricity reaches its maximum value, the
total inclination reaches its minimum and vice versa.
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which plays a relevant role in the test particle approximation when expanding
the Hamiltonian (1.3) to higher orders than the quadrupole one, see [20, 128]
for a more detailed analysis.

1.1.2 Octupole Approximation

The next order in the expansion of the Hamiltonian (1.3) beyond the quadrupole
one is called octupole approximation and can introduce some significant dif-
ferences in the dynamics of the triple system compared to the previous case
we analysed. The tidal part of the Hamiltonian (1.3) (i.e. the third term in
the expression for H) expanded up to the octupole order can be written as

Htidal = Hquad + ϵHoct, (1.34)

where Hquad is the quadrupole contribution to the Hamiltonian and it is the
same ad the one defined in (1.20) whileHoct is the octupole contribution which
can be written as

Hoct = C2

[
(2 + 3e21)(3 cos

2 itot − 1) + 15e21 sin
2 itot cos(2g1)

]
+ C3e1e2

[
θ + 10 cos itot sin

2 itot(1− e21) sin g1 sin g2

]
,

(1.35)

where

C3 = −15

16

G2

4

[
(m1 +m2)m3

]9[
(m1 +m2 +m3)m1m2

]4 m1 −m2

m1m2

L6
1

L3
2J

5
2

, (1.36)

and

ϵ =
m1 −m2

m1 +m2

a1
a2

e2
1− e22

, (1.37)

and finally

θ =−
[
4 + 3e21 −

5

2

(
1 + 5e21 − 7e21 cos(2g1)

)
sin2 itot

]
× [cos g1 cos g2 + cos itot sin g1 sin g2] .

(1.38)

Here we already applied to the Hamiltonian the elimination of nodes, i.e.
h1 − h2 = π, to simplify the expression but this does not mean that the
z components of the angular momenta for the inner and outer orbits are
conserved. From the definition of ϵ in (1.37) we can see immediately that if the
outer orbit is circular, i.e. e2 = 0, then the octupole part of the Hamiltonian
goes to zero and does not contribute to the dynamics of the triple system. This
tells us also that the quadrupole approximation we studied above is more than
enough to describe a triple system when the inner binary is moving along a
circular outer orbit.
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To further simplify the analysis of the octupole approximation we also take
the test particle limit on the Hamiltonian (1.34), assuming that one of the two
masses in the inner binary goes to zero. At the test particle octupole (TPO)
level the Hamiltonian can be written as [20,30]

HTPO
tidal =

3

8

Gm1m3

a2(1− e22)
3/2

(
a1
a2

)2 (
Fquad + ϵTPO Foct

)
, (1.39)

where
ϵTPO =

a1
a2

e2
1− e22

, (1.40)

moreover Fquad is the quadrupole contribution to the Hamiltonian which is
defined between brackets in (1.20):

Fquad = −e
2
1

2
+

(
1 +

3

2
e21

)
cos2 itot +

5

2
e21 sin

2 itot cos(2g1), (1.41)

and finally Foct represents the octupole contribution to the tidal part of the
Hamiltonian, which can be written as

Foct =
5

16

(
e1 +

3

4
e31

)[(
1− 11 cos itot − 5 cos2 itot + 15 cos3 itot

)
cos(g1 − h1)

+
(
1 + 11 cos itot − 5 cos2 itot − 15 cos3 itot

)
cos(g1 + h1)

]
(1.42)

− 175

64
e31

[(
1− cos itot − cos2 itot + cos3 itot

)
cos(3g1 − h1)

+
(
1 + cos itot − cos2 itot − cos3 itot

)
cos(3g1 + h1)

]
.

Compared to the quadrupole approximation, at the octupole level the dynam-
ics of the triple system changes significantly. First of all, the z component of
the outer angular momentum J2,z is no longer conserved even in the test parti-
cle limit. Moreover the eccentricity of the inner binary e1 can reach very high
values that can lead to the orbital flip of the system, i.e. the total inclination
itot can go from itot < 90◦ to itot > 90◦ [20, 30, 134, 135]. In Fig. 1.4 we show
the time evolution for the eccentricity e1, the inclination i1 and the z compo-
nent of the angular momentum of the inner binary up to the octupole level
of approximation. From the inclination plot, i.e. the mid panel, we can see
clearly how periodically the inclination of the inner binary goes from i1 > 90◦

to i1 < 90◦, thus describing the flip of the orbit. As already mention above
the orbital flip is a new effect that does not occur at the quadrupole level of
approximation. To make this even more clear in the bottom panel of Fig. 1.4
we plot the z component of the inner angular momentum J1,z (normalized to
the total angular momentum) for both the octupole approximation (blue line)
and the quadrupole one (cyan line). The quadrupole result describes an orbit
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that remains always prograde during the secular evolution of the triple system
while the octupole result represents an orbits that periodically oscilates from
a prograde orbit to a retrograde one, as expected. It is also possible to find
an analytical condition for the orbital flip in terms of the initial conditions
for the triple system. This is done in [20, 128] where after averaging over a
quadrupole cycle, they define a new constant of motion as

C = F (CZLK)− ϵ cosΩ, (1.43)

where CZLK is defined in (1.33)4, ϵ is the octupole pre-factor defined in (1.37),
cosΩ can be written as

cosΩ =
cos itot sinh1 sin g1 − cos g1 cosh1√

1− sin2 itot sin
2 g1

, (1.44)

and lastly F (CZLK) is defined as

F (CZLK) =
32
√
3

π

∫ 1

3−3CZLK
3+2CZLK

K(x)− 2E(X)

(41x− 21)
√
2x+ 3

dx, (1.45)

where K(x) and E(x) are the complete elliptic function of the first and second
kind, defined as

K(m) =

∫ π/2

0

1√
1−m sin2 θ

dθ,

E(m) =

∫ π/2

0

√
(1−m sin2 θ)dθ.

(1.46)

To find a criterion for the orbital flip, i.e. when Jtot,z changes sign, we recall
that during a flip Jtot,z = 0. We can use this together with the constants
defined in (1.33) and (1.43) to write a required condition for the octupole
pre-factor ϵ for the orbital flip to occur, namely

ϵ > ϵc, (1.47)

where ϵc is defined as

ϵc =
1

2
max

(
|∆F (x)|

)
, (1.48)

with ∆F (x) = F (x)−F (CZLK,0) and CZLK,0 < x < CZLK,0+
1
2(1−e

2
1,0) cos itot,0,

where the 0 subscript denotes the initial values for the parameters. The condi-
tion (1.47) takes a simple expression when e1,0 ≪ 1, which implies CZLK,0 ≪ 1,
Jtot,z = cos itot,0 and thus itot,0 ≥ 61.7◦:

ϵ >
1

2
F

(
1

2
cos2 itot,0

)
. (1.49)

4Note that at the octupole level of approximation this is no longer a constant as it was
in the quadrupole one.
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Figure 1.4: Time evolution of the eccentricity e1 (top panel), inclination (mid panel)
and z component of the angular momentum J1,z (bottom panel) of the inner binary
system. Here we solve the evolution equations for the orbital parameters up to the
octupole approximation. Following refs. [37,136], in this plot we choose the following
parameters: m1 = 1M⊙, m2 = 0.65M⊙, m3 = 0.6M⊙, a1 = 60AU and a2 = 800AU.
As initial conditions instead we have e01 = 0.01, e02 = 0.6, i01 = 90.02◦, i02 = 7.98◦,
g01 = g02 = 0◦.By looking at the mid and bottom panels we can see how the inclination
of the inner binary system goes from i1 > 90◦ to i1 < 90◦, i.e. at the octupole level of
approximation the orbit of the inner binary oscillates periodically between a prograde
orbit and a retrograde orbit (in relation with the total angular momentum). Note
how the orbital flip is a completely new effect that is not present at the quadrupole
level of approximation. This is clear by looking at the bottom panel where we plot
the ratio between the z component of the angular momentum of the inner binary and
the total angular momentum both in the octupole approximation (blue line) and in
the quadrupole one (cyan line).
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It is worth mentioning that to study the orbital flip here we restricted ourselves
to an initial inclination which satisfies the condition (1.32). This is also known
as the “high initial inclination regime” [20], where the orbital flip is usually
accompanied by a chaotic behaviour for the triple system which is not present
at the quadrupole level of approximation [20, 30, 134, 135]. It is also possible
to see the orbital flip effect even when the condition (1.32) is not satisfied and
the total inclination itot is well below the threshold, namely itot < 39.9◦. We
usually refer to this scenario as “low initial inclination regime” [20] and in
this context the orbital flip does not present a chaotic behaviour and it is well
regular, happening on a timescale which is much shorter compared to the one
of the high inclination flip. See ref. [20, 137] for a more detailed analysis.

1.1.3 General Relativity contribution

Even if the ZLK mechanism was already known in the early 1910s, it started to
get a lot of attention in the scientific community only in recent times, probably
after two important astrophysical achievements: the discover of the eccentric
planet 6 Cyg B [138] and the hierarchical triple stellar system Algon [139].
In recent years people started to explore the ZLK mechanism more in detail,
adding Post Newtonian corrections to the dynamics of the triple system [40,42]
and including effects from general relativity [45,140,141] that can significantly
affect the time evolution of the orbital parameters of the triple system. In
this context one of the effects that we must take into account to get a more
realistic picture for the evolution of a triple system is the precession of the
periapsis, which can suppress significantly the oscillations on the eccentricity
(and inclination) induced by the ZLK mechanism. The precession of the
periapsis for the inner binary can be written as [142](

dg1
dt

)
PN

=
3(G(m1 +m2))

3/2

a
5/2
1 c2(1− e21)

. (1.50)

In principle we should also take into account the PN precession of the outer
orbit but its contribution is not really relevant to the evolution of the triple
system and thus in this analysis we neglect it. The timescale associated with
the precession in (1.50) can be written as [20,43]

T inner
PN ∼ 2π

a
5/2
1 c2(1− e21)

3
[
G(m1 +m2)

]3/2 . (1.51)

To understand when the PN precession becomes relevant in the dynamics of
the triple system, it is also useful to introduce the timescale associated with
the ZLK oscillations at the quadrupole level of approximation, which can be
written as [143]

Tquad ∼ 16

15

a32(1− e22)
3/2(m1 +m2)

1/2

a
3/2
1 m3G1/2

. (1.52)
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Figure 1.5: Time evolution of the eccentricity of the inner binary e1. The
black line represents the result obtained by solving the evolution equations
including only the ZKL quadrupole contributions while for the red line we
also included the PN precession contribution for the inner binary defined in
(1.50). We used the same parameters in both case, i.e. m1 = m2 = 10M⊙,
m3 = 4 × 106M⊙, a1 = 0.1AU, e2 = 0, a2 = 380AU, and the same initial
conditions, namely e01 = 0.1, g01 = g02 = 0◦ and i0tot = 89.4◦. We can see that
with just the inclusion of the PN precession for the inner binary, the ZKL
oscillations are suppressed and the maximum value that the eccentricity can
reach during its time evolution is much smaller compared to one in the case
where the precession is not included.

When the timescale in (1.51) of the PN precession shorter than the one in
(1.52) of the ZLK mechanism then the oscillations of the inner orbit eccen-
tricity e1 induced by the exchange of the angular momentum between the
inner and outer orbit are suppressed, see for example [141, 144] and Fig. 1.5.
Interesting when the PN precession and the quadrupole ZKL timescales be-
come comparable, i.e. Tquad ∼ T inner

PN , the eccentricity of the inner binary can
grow close to unity [20, 43, 141, 144]. The maximum value that e1 can reach
in this scenario is simply given by the following relation, as pointed out in
Refs. [20, 141]

ϵGR

(
1

j1,min
− 1

)
=

9

8

e21,max

j21,min

(
j21,min −

5

3
cos2 itot,0

)
, (1.53)

where j1,min =
√

1− e21,max and ϵGR is a dimensionless parameter defined as

ϵGR =
3G(m1 +m2)

2a32(1− e2)
3/2

a41c
2m3

=
Tquad

T inner
PN

(1− e21). (1.54)

Note that in the absence of PN precession, i.e. ϵGR = 0, the relation (1.53)
yields to the usual condition for the maximum eccentricity, i.e. the one pre-
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sented in (1.31).

The inclusion of the PN precession becomes relevant to get a more accurate
simulation for the merger of two compact objects in a binary perturbed by a
third body since it can alter the dynamical evolution of the system, see for
example Refs. [19, 145–149].

1.2 Binary mergers in strong gravity background
of Kerr black hole

So far we provided a brief review on how the ZLK mechanism works and how it
has been analysed in the literature in the past years. The stability conditions
(1.2) and (1.1) require the triple system to be hierarchical, namely a2 ≫ a1.
This condition, together with fact that during the secular evolution of the
triple systems the semi-major axes of both the inner and outer orbit remain
constant, has led to a natural perturbative approach to study the dynamics of
the system, expanding the Hamiltonian in terms of the small parameter a1/a2
as showed in (1.3). In this approximation the masses of the three bodies in the
triple system are left unconstrained, meaning that the three objects can have
comparable masses as long as the binary system is orbiting far away from the
third companion with an orbital velocity v ∼

√
(m1 +m2 +m3)/a2 ≪ 1 [70].

This is usually referred as the weak field approximation, where the three ob-
jects in the triple system can be treated as point-particles and Newtonian
physics can be used to efficiently describe the dynamics of the system, adding
Post-Newtonian (PN) corrections to include effects due to General Relativity.
Even though this approximation has been extensively used in the literature
and has yield a lot of interesting and fundamental results, it can only be
applied when strong General Relativity effects are not dominant in the dy-
namics of the triple system, namely when the binary system is far away from
the third body. However binary black hole mergers can also take place close
to the center of galaxies, where usually a supermassive black hole is located.
In this scenario General Relativity effects can alter significantly the evolu-
tion of the triple system and must be included to have a better estimate for
the parameters describing the inner binary system. For example the Doppler
and gravitational redshift induced by the presence of a supermassive black
hole could lead to an higher (and thus incorrect) estimate for the masses of
the two merging objects [150, 151]. There are two main mechanisms for the
formation of triple systems where the binary system is close to a supermas-
sive black hole. The first one is by tidal capture, which can lead to binaries
that can either merger before completing one orbit around the supermassive
black hole or binaries orbiting for several times around the third body be-
fore merging. Even though this is a viable mechanism for a binary system to
orbit close to a supermassive black hole, its even rate is very low [152, 153].
The other one is a well known mechanism for planetesimals in protoplanetary
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discs which can also be applied to black hole binary systems. In particular
planetesimals move with a Keplerian velocity while the protoplanetary disc,
because of the gas pressure, is moving with a smaller velocity compared to
the Keplerian one. A headwind arises from the difference between these two
velocities which effectively pushes the planetesimals towards the inner regions
of the disc [154–157]. Recently the same mechanism has been used by [52,158]
to explain how black holes can be driven towards the supermassive black hole
at the center of a galaxy and get trapped on a region close to the Innermost
Stable Circular Orbit (ISCO), which is usually called last migration trap. This
trapping mechanism is due to relativistic effects taking place close to the ISCO
of a supermassive black hole which lead to a super-Keplerian motion for the
gas [159–161]. On the other hand, compact objects driven into this region will
move with a Keplerian velocity and, from the difference between the motion
of the gas and the objects, it will arise a tailwind which can counter (in some
cases) the negative torque generated by the gravitational wave emitted by the
object-supermassive black hole binary, trapping compact objects in a region
very close to the ISCO of a supermassive black hole [162–164]. These objects
will eventually interact with themselves and form binary systems that can
evolve in this region until they merge under the influence of the third body.

In this scenario it is no longer possible to treat the supermassive black
hole as a point particle since this approximation only holds when the distance
between the binary system and the supermassive black hole is much larger than
the Schwarzschild radius of the latter. Moreover we can no longer apply the
weak field approximation since binaries in this region of space-time can have a
relative velocity comparable to the speed of light and strong gravity can induce
effects of the gravitational potential that can be considered non-perturbative
in comparison with the PN expansion. Thus in order to understand properly
the dynamics of a binary system in a strong gravity regime, it is necessary
to describe the supermassive black hole generating the tidal environment in
which the two objects are moving using a metric, which encodes all possible
General Relativity effects.

It is still possible to treat the interaction between the inner and outer orbit
perturbatively by using a more general approximation than the weak field one,
called small-tide approximation [70]. To introduce this approximation we need
first to define two different length scales in our triple system: the first one is
associated with the inner binary, and it is related to its total mass m =
m1 +m2, while the second one is related to the outer orbit, more specifically
it is the radius of the curvature R induced by the external supermassive black
hole on the position of the binary system. The small-tide approximation
assures us that we can always distinguish between the binary system and
the external background, treating the last one as a small perturbation to the
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dynamics of the binary, when the following condition is satisfied [70]:

m≪ R =⇒ m

R
≪ 1.5 (1.55)

Recalling that for a binary system with total mass m orbiting around a su-
permassive black hole of mass m3 at a distance r its orbital velocity v and the
radius of the curvature induced by the external body can be written as

v ∼
√
m+m3

r
, and R ∼

√
r3

m+m3
, (1.56)

we can rewrite the condition (1.55) as

m

R
∼ m

m+m3
v3 ≪ 1. (1.57)

There are two different ways of satisfying this condition, the first one is the al-
ready mentioned weak-field approximation, placing the binary system far away
from the supermassive black hole so that its orbital velocity v ≪ 1, and we
can analyse the system leaving the masses of the three objects unconstrained.
The second one instead is the so called small-hole approximation, where the
total mass of the binary system is assumed to be much smaller than the one
of the external supermassive black hole, i.e. m/(m + m3) ≪ 1, leaving the
mutual distance (and thus the orbital velocity of the binary) unconstrained.
Both of these approximations satisfy the most general small-tide condition
(1.55), but while the first one breaks down as the binary system gets closer to
the supermassive black hole, the second one is still valid even when the binary
is at a distance from the third body comparable to the size of the latter one
r ∼ m3. Note that in this last scenario, as we get closer to supermassive black
hole, we need to be careful to still satisfy the stability condition presented
in (1.2) to avoid tidal disrupting events and to let the binary system evolve
until the merger. In our analysis this is achieved by shrinking the binary sys-
tem as we place it on an orbit closer to the supermassive black hole, in this
way not only the radius of the curvature induced by the external body will
always be much larger than the typical scale of the binary itself, allowing us
to analyse the problem perturbatively, but also the stability condition will be
always satisfied, allowing us to evolve the system for a long time (even up
until the merger of the two compact objects in the binary) to study its secular
dynamics. It is also worth noticing that the stability condition is satisfied in
astrophysical context, in fact for an enough massive black hole the radius of
the last stable orbit6 is of order 10÷ 103 AU depending on its mass and spin,

5Here we set G = c = 1.
6Here we are referring to the last stable circular orbit since for the purpose of this thesis

we will restrict ourselves to circular orbits.
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while for a binary system typical values for the semi-major axis (especially in
the last orbits before they start merging) can be 10−1 ÷ 10 AU [19,147,165].

In what follow we will use the small-hole approximation to study how the
ZKL mechanism is modified in the presence of a strong gravitational field, i.e.
when the inner binary is placed very close, even on the ISCO, of a supermassive
black hole.

1.2.1 Binary system in a tidal force background

In this section, we review the basic concepts regarding the dynamics of a
black hole binary system in the context of a general tidal force background up
to the quadrupole approximation. The tidal forces arise from the curvature
of the spacetime in which the binary system is moving. We will treat the
two black holes in the binary system as point particles, using the Newtonian
approximation for a simpler analysis. The quadrupole tidal force background
on the other hand is kept completely general and it is described using General
Relativity. We assume the binary system to be freely falling, hence to leading
order its center of mass moves on a geodesic of the background space-time.
See [166] for a similar analysis.

The metric in the neighborhood of a geodesic of a background spacetime
can be described, in general, using the Thorne-Hartle version of the Fermi-
normal coordinates [167], namely

g00 = −1− Eijxixj +O((x/R)3) ,

g0i = −2

3
ϵijkBj

lx
kxl +O((x/R)3) ,

gij = δij(1− Eklxkxl) +O((x/R)3) ,

(1.58)

where i, j = 1, 2, 3, the square of the geodesic distance to the geodesic is
x2 = xixi and R is the curvature length scale. In Appendix B we provide a
brief review on Fermi normal coordinates.

As already anticipated, to speak meaningfully about the dynamics of the
binary system in a tidal field background, we need to require that the curvature
length scale R of the background is significantly larger than the size x of
the binary system, hence x ≪ R [70], i.e. we need to satisfy the small-tide
approximation (1.55).

The fact that we keep terms up to order x2/R2 in (1.58) encaptures the
quadrupole approximation of the tidal forces, for which the electric and mag-
netic tidal moments Eij and Bij are related to the Riemann curvature tensor
as

Eij = R0i0j |x=0 , Bij =
1

2
ϵpq(iR

pq|j)0|x=0 , (1.59)

with i, j, p, q = 1, 2, 3. In general, the tidal moments depend on the proper
time τ of the geodesic. We assume that the background spacetime has Rµν =
0 which is indeed true for the Kerr spacetime. Below in Section 1.2.2 we
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will restrict ourselves to tidal moments Eij and Bij for geodesics around a
Kerr black hole, as computed in [69, 168], but for the moment we keep our
considerations general.

We now assume that the center of mass of the binary is located at the
geodesic and we model the two black holes in the binary system as two point
particles moving in the spacetime described by the metric (1.58). The La-
grangian for particle 1 is

L(1) = −m1c
2

√
−G00 − 2G0i

vi(1)

c
−Gij

vi(1)v
j
(1)

c2
. (1.60)

Here vi(1) is the velocity of particle 1. The metric Gµν is evaluated at the

position x⃗1 of particle 1 and it is given by the background metric gµν with
tidal forces (1.58) plus the gravitational potentials generated by particle 2.
For the latter, we use the PN expansion of Sections 5.1.4 and 5.1.5 in the
book [16]. Explicitly, we have up to 1PN

G00 = g00 − 2ϕ(2) − 2(ϕ2(2) + ψ(2)) + · · ·

G0i = g0i + ζ
(2)
i + · · ·

Gij = gij − 2δijϕ(2) + · · ·

(1.61)

where the standard PN gravitational potentials ϕ(2), ψ(2) and ζ
(2)
i arise solely

from the gravitational interaction with particle 2, see [16] for details. Notice
that here we are neglecting possible terms corresponding to mixed couplings
between the tidal forces and the PN expansion. These contributions would
appear for the first time as terms of the type ϕ(2) times the tidal moments.

We can now perform a PN expansion of the Lagrangian (1.60) for particle
1, where we have to keep in mind that the tidal moments are treated as
a small perturbation and thus they should only be included up to the first
order. Schematically, this gives

L(1) =L(1)|E=B=0 −
1

2
m1c

2xi(1)x
j
(1)Eij

− 2c

3
m1v

i
(1)x

k
(1)x

l
(1)ϵijkB

j
l + · · ·

(1.62)

Here the first term L(1)|E=B=0 is the Lagrangian that arises solely from the
gravitational interaction with particle 2, as well as the kinetic energy of particle
1. The second term in (1.62), coupling to Eij , is the leading coupling to the
quadrupole tidal moments of the background spacetime. The third term in
(1.62), coupling to Bij , is subleading as it is suppressed by vi(1)/c. Note that
the coupling between the gravitational potentials and the tidal moments would
be of order v2(1)/c

2 or higher, thus not affecting this term.
Considering the Newtonian limit, with respect to the two particles in the

binary, of all the terms in the Lagrangian (1.62), and adding the analogous
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contributions for the second particle, we get the Lagrangian for the Newtonian
limit of the binary system, which can be written as

LNewton =− (m1 +m2)c
2 +

1

2
m1v

2
(1) +

1

2
m2v

2
(2)

+
Gm1m2

r
− c2

2

[
m1x

i
(1)x

j
(1) +m2x

i
(2)x

j
(2)

]
Eij . (1.63)

Introducing now the center of mass quantities

M = m1 +m2, µ =
m1m2

M
,

X⃗ =
m1x⃗(1) +m2x⃗(2)

M
, x⃗ = x⃗(2) − x⃗(1), r = |x⃗| ,

V⃗ =
m1v⃗(1) +m2v⃗(2)

M
, v⃗ = v⃗(2) − v⃗(1) ,

(1.64)

the Lagrangian (1.63) becomes

LNewton =−Mc2 +
1

2
MV 2 +

1

2
µv2

+
GMµ

r
− c2

2

[
MXiXj + µxixj

]
Eij . (1.65)

Since the center of mass motion of the binary is decoupled from the relative
motion of the binary system we can consistently set

X⃗ = 0, V⃗ = 0 . (1.66)

This means that the center of mass of the binary system is placed on the
geodesic, which agrees with the fact that at large distance scales the binary
system should be seen as one particle of mass M moving along the geodesic.
Using moreover the general formula ( [70])

xixjEij = r2Eq , (1.67)

where Eq is the quadrupole tidal potential, we get the binary system La-
grangian

LNewton =
1

2
µv2 +

GMµ

r
− c2

2
µ r2Eq . (1.68)

One can now easily Legendre transform this to the Hamiltonian

HNewton =
1

2µ
p2 − GMµ

r
+
c2

2
µ r2Eq , (1.69)

with pi = µvi. This Hamiltonian describes the dynamics of a binary system
of two particles moving along a geodesic in a background spacetime deformed
by the presence of quadrupole tidal forces, arising from the curvature of the
spacetime itself. This is valid in a local inertial system as set by the Fermi-
normal coordinates (1.58).



36 CHAPTER 1. TRIPLE SYSTEMS AND SECULAR EFFECTS

1.2.2 Binary system in the background of large Kerr black
hole

In this section we analyse the scenario of a black hole triple system. We
consider two black holes of masses m1 and m2 in a bound motion, forming the
BBH system. We will refer to it as the inner binary, and their motion as the
inner orbit. We will assume the BBH system to be orbiting around a third
supermassive black hole (SMBH), with mass m3. Moreover the masses of the
two companions in the binary system are much smaller than the mass of the
external black hole, namely m1,m2 ≪ m3.

To study analytically the dynamics of the BBH system in a tidal environ-
ment, we will assume two independent separations of scales. The first one
consists in taking the Schwarzschild radii of the two black holes in the bi-
nary to be much smaller than their separations r, which means that the BBH
system is in the particle/PN regime:

r ≫ 2Gm1

c2
,

2Gm2

c2
. (1.70)

In particular, their relative velocity is much smaller than the speed of light.

Secondly, we work in a regime where the small-tide approximation is sat-
isfied, i.e. we are assuming that the characteristic size of the BBH system r is
very small compared to the radius of the curvature R induced by the SMBH
on the position of the binary. This enables us to treat the influence of the
SMBH on the BBH via a tidal force approximation, even when the BBH is
close to the SMBH. Under these assumptions the motion of the binary sys-
tem can be described, to leading order, as a geodesic one in the background
sourced by the supermassive Kerr black hole. We will refer to this motion as
the outer orbit. On the geodesic the small-tide approximation r ≪ R can be
written explicitly as

r ≪ r̂

√
c2r̂

Gm3
, (1.71)

with r̂ the radial coordinate of the Kerr metric that we introduce below.

We will restrict ourselves in this thesis to the leading quadrupole effect,
arising from the Riemann curvature tensor of the Kerr metric evaluated on
the geodesic. Below we shall include PN effects in the binary dynamics, in
the form of the periastron precession and the GW radiation-reaction, thus we
assume that the octupole tidal forces are smaller than these PN effects.
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Kerr black hole background

In our setup the SMBH is describe by the Kerr metric, whose line element,
represented in Boyer-Lindquist coordinates x̂µ = (t̂, r̂, θ̂, ϕ̂), reads

dŝ2 =−
(
1− 2Gm3r̂

c2Σ

)
c2dt̂2 − 4Gm3r̂

c2Σ
s3 sin

2 θ̂ c dt̂ dϕ̂

+
A
Σ

sin2 θ̂ dϕ̂2 +
Σ

∆
dr̂2 +Σdθ̂2 .

(1.72)

Where m3 is the black hole mass, s3 = J3/(cm3) is the specific angular mo-
mentum and we defined

Σ = r̂2+s23 cos
2 θ̂ , ∆ = r̂2 − 2Gm3

c2
r̂ + s23 ,

A = (r̂2 + s23)
2 −∆s23 sin

2 θ̂ .
(1.73)

For convenience we introduce the dimensionless spin parameter χ, defined as

χ =
s3c

2

Gm3
. (1.74)

The position of the event horizon can be obtained by solving the equation
∆ = 0, which in general gives two roots: the major one represents the event
horizon while the other describes a Cauchy horizon. Moreover the cosmic
censorship conjecture requires 0 ≤ s3 ≤ (Gm3/c

2), i.e. 0 ≤ χ ≤ 1.
A generic geodesic x̂µ(τ) in the Kerr spacetime is parametrized by three

constants of motion, respectively representing the energy Ê, the angular mo-
mentum L̂ and the Carter constant K per unit of rest energy [169].

In our analysis we will restrict ourselves to circular (r̂ constant) and equa-
torial (θ̂ = π/2) geodesics in the Kerr background. In this case the tan-
gent vector uµ, representing the four-velocity of a particle moving along the
geodesic, can be written as

uµ ≡ dx̂µ

dτ
= ut(δµt +Ω δµϕ) , (1.75)

where the redshift factor ut and the coordinate angular velocity Ω are defined
as

ut ≡ dt̂

dτ
=

1√
−(gtt + 2Ωgtϕ +Ω2gϕϕ)

,

Ω ≡ dϕ̂

dt̂
=

σ (Gm3)
1/2

r̂3/2 + σs3

(
Gm3
c2

)1/2 ,
(1.76)

and where we use σ = ±1 to respectively distinguish orbits that are co-rotating
and counter-rotating relatively to the angular momentum of the Kerr black
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hole. 7 We also introduce the orbital angular velocity defined with respect to
the proper time, which will be useful later in our analysis. This is given by
Ωϕ̂ = utΩ, which explicitly reads

Ωϕ̂ ≡ dϕ̂

dτ
=

σ (Gm3)
1/2

r̂1/2

√
r̂2 + 2σs3

(
Gm3
c2

r̂
)1/2

− 3Gm3
c2

r̂

. (1.77)

In the case of circular and equatorial geodesics, it is possible to obtain explicit
expressions for the constants of motion in terms of the orbital radius r̂, the
black hole mass m3, and the specific spin value s3. More specifically, one has
the energy, orbital angular momentum, and Carter constant per unit of rest
energy

Ê =
r̂3/2 − 2Gm3

c2
r̂1/2 + σs3

(
Gm3
c2

)1/2
r̂3/4

√
r̂3/2 − 3Gm3

c2
r̂1/2 + 2σs3

(
Gm3
c2

)1/2 ,

L̂ =

σ
(
Gm3
c2

)1/2(
r̂2 + s23 − 2σs3

(
Gm3
c2

r̂
)1/2)

r̂3/4

√
r̂3/2 − 3Gm3

c2
r̂1/2 + 2σs3

(
Gm3
c2

)1/2 ,

K =
(
s3Ê − L̂

)2
=

r̂ − σs3

√
c2r̂

Gm3

2
r̂2Ω2

ϕ̂

c2
.

(1.78)

Finally, for later convenience, we also introduce the Innermost Stable Cir-
cular Orbit (ISCO). More in detail, in the equatorial plane of a Kerr black
holes it is possible to identify two ISCOs: the first one is co-rotating (σ = +1)
with the black hole while the second one is counter-rotating (σ = −1) with
it. The value of the radial coordinate at which the ISCOs are located in the
equatorial plane of the Kerr spacetime is given by [170]

r̂σISCO =
Gm3

c2

[
3 + Z2 − σ

√
(3− Z1)(3 + Z1 + 2Z2)

]
, (1.79)

where

Z1 = 1 +
(
1− χ2

) 1
3
[
(1 + χ)

1
3 + (1− χ)

1
3

]
,

Z2 =
√
Z2
1 + 3χ2 .

(1.80)

One can see immediately that for χ = 0 eq. (1.79) reduces to r̂ISCO =
6Gm3/c

2, i.e. the usual ISCO position for a Schwarzschild black hole.

7In the Schwarzschild limit χ = 0 then σ distinguishes anti-clockwise and clockwise
orbits, respectively.
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Binary system on a Kerr geodesic

As mentioned above, the two black holes in the BBH system are treated as
point particles in the Newtonian limit since we assume the condition (1.70) to
hold. We assume that the binary is moving along a circular, equatorial orbit
in the background of a supermassive Kerr black hole. As seen in Section 1.2.1,
if the binary system is small enough (1.71) we can treat the influence of the
SMBH as a small perturbation on the BBH system, and we can approximate
its presence through quadrupole tidal forces acting on the binary system,
which is moving approximately on a geodesic of the Kerr background. This
means we can employ the results of Section 1.2.1.

For the Kerr metric (1.72), we can use the Marck’s tetrad [69] to describe
the local Fermi-normal coordinates (1.58) of Section 1.2.1. Marck’s tetrad
is given by the four vectors λµA which provide an orthonormal basis for the
vector space at each point of the Kerr-geodesic since λµAλ

ν
Bgµν = ηAB and

λµAλ
ν
Bη

AB = gµν , where in particular λµ0 = uµ is the four-velocity. Note
that A = 0, 1, 2, 3 are the flat tetrad indices. One can equivalently represent
Marck’s tetrad as the orthonormal one-forms λAµ = ηABgµνλ

ν
B. One can now

employ the standard map of the Fermi-Normal coordinates between vectors
on the Kerr geodesic and events in the neighborhood of the geodesic. For
Marck’s tetrad, we have in addition to the time coordinate x0 = τ , which is
the proper time on the geodesic, also the spatial coordinates xi parametrizing
an orthogonal vector

∑3
i=1 x

iλµi at the geodesic. In this way the coordinates
xA describe a neighborhood of the geodesic. We will call this coordinate
system the Marck’s frame of reference.

Since Marck’s tetrad is parallel-transported along the geodesic, it provides
an inertial frame, meaning it is characterized by a vanishing acceleration and
vanishing angular velocity of rotation of spatial basis vectors [171] 8

ai ≡ λiµ
Dλµ0
dτ

= 0 , ωi ≡ −1

2
ϵijkλ

µ
j

Dλkµ
dτ

= 0 . (1.81)

For circular geodesics in the equatorial plane (θ̂ = π/2), Marck’s tetrad can
be conveniently written in the one-forms basis as

λ0µ =
(
Ê, 0, 0, L̂

)
,

λ1µ = cosΨ λ̃1µ − sinΨ λ̃2µ ,

λ2µ = sinΨ λ̃1µ + cosΨ λ̃2µ ,

λ3µ = (0, 0,−r̂, 0) ,

(1.82)

8Both formulas can be derived starting from the general transport law for an observer’s
tetrad, Dλµ

a/dτ = −Ωµ
νλ

ν
a, with the quantity Ωµν = aµuν − uµaν + uαωβϵαβµν [171].
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with

λ̃1µ =

(
0,

√
r̂2

K + r̂2
(
√
Ks3 + Êr̂2)

∆
, 0, 0

)
,

λ̃2µ =

(
(s3 − Ê

√
K)√

K + r̂2
, 0, 0,

Ê
√
Ks3 − s23 − r̂2 −K√

K + r̂2

)
,

(1.83)

where r̂ is the constant radius of the circular equatorial geodesic and the
angle Ψ is introduced to ensure that the tetrad is parallel transported along
the geodesic [69, 168], as shown by Eqs. (1.81). The explicit expression for Ψ
in terms of the geodesic’s proper time τ is given by Ψ = ΩΨτ , with

ΩΨ ≡ σ

√
Gm3

r̂3
. (1.84)

To use the results for the Lagrangian and Hamiltonian of Section 1.2.1,
given respectively in Eqs. (1.68) and (1.69), we report the explicit expressions
for the electric tidal moments in the equatorial plane of a Kerr black hole,
which are given by [69,168]9

E11 =

[
1− 3

(
1 +

K

r̂2

)
cos2Ψ

]
Gm3

c2r̂3
,

E22 =

[
1− 3

(
1 +

K

r̂2

)
sin2Ψ

]
Gm3

c2r̂3
,

E33 =
(
1 + 3

K

r̂2

)
Gm3

c2r̂3
,

E12 = −3

(
1 +

K

r̂2

)
Gm3

c2r̂3
cosΨ sinΨ .

(1.85)

These results can be used together with Eq. (1.67) to get an explicit expression
for the scalar quadrupole electric tidal moment induced by the Kerr black hole,
as measured by an observer using Fermi-normal coordinates, namely

r2Eq =
Gm3

c2r̂3

[
r2 + 3(x3)2

K

r̂2

−3

(
1 +

K

r̂2

)
(x1 cosΨ + x2 sinΨ)2

]
.

(1.86)

With this, we can describe the dynamics of the binary system in the approx-
imations (1.70) and (1.71) via the Lagrangian (1.68) and Hamiltonian (1.69)
of the BBH system.

9See Chapter 2, Section 2.1.1, for a derivation of the quadrupole tidal moments.



1.2. BINARY MERGERS IN STRONG GRAVITY BACKGROUND OF
KERR BLACK HOLE 41

1.2.3 Gyroscope precession and the distant-star frame

In this section, we introduce the gyroscope precession of Marck’s parallel trans-
ported reference frame by introducing a non-inertial frame of reference that
we dub the distant-star frame. 10

This precession arises from the curvature of the background spacetime, like
it happens in the case of the Earth-Moon binary system orbiting around the
Sun [172]. More in detail, the BBH system has an angular momentum which
is precessing in its motion along an equatorial, circular geodesic in the Kerr
background, around the direction identified by the angular momentum of the
SMBH. In the Schwarzschild space-time this gyroscope precession is known
as the Fokker-de Sitter precession [173], whereas in the equatorial plane of a
Kerr black hole, it takes the name of Schiff’s precession [174].

The origin of this precession is the difference between the local and global
points of view for our binary system moving on a geodesic. Marck’s frame
represents the local view point, where we have an approximate inertial system
close to the center of mass of the binary that moves on the geodesic. However,
there is also a global point of view, in which the global properties of the Kerr
spacetime are taken into account. In the case of an equatorial, circular motion
this is clear since the only spatial coordinate in the BL coordinates of Kerr
that changes is the angle ϕ̂ as

ϕ̂ = Ωϕ̂τ , (1.87)

where Ωϕ̂ is given in (1.77). A period of motion is obviously when ϕ̂ changes
with 2π. However, Marck’s frame is not the same after one period, since the
Ψ angle has changed with ∆Ψ = 2π(ΩΨ/Ωϕ̂ − 1), which gives the gyroscope
precession.

Since the precession is not observable in Marck’s frame of reference by
itself, it is useful to define a non-inertial reference frame in which the gyroscope
precession is manifest. Such a frame, here called the distant-star frame of
reference, is constructed in [175], by simply rotating the Marck’s frame with
an angle ϕ̂ − Ψ such that the distant-star frame is periodic under rotations
with respect to the ϕ̂ angle. Specifically, seeing it as a tetrad eiµ, it is defined

by the following rotation of Marck’s tetrad eiµ = Ri
jλ

j
µ with

Ri
j =

cos(Ωgτ) − sin(Ωgτ) 0
sin(Ωgτ) cos(Ωgτ) 0

0 0 1

 . (1.88)

10The gyroscope precession was also considered for a BBH system in orbit around a
Schwarzschild black hole in [166].
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where we introduced the gyroscope angular velocity Ωg as

Ωg = Ωϕ̂ − ΩΨ = ΩΨ

 1√
1 + 2 s3

c ΩΨ − 3 r̂2

c2
Ω2
Ψ

− 1

 , (1.89)

such that ϕ̂−Ψ = Ωgτ . It is easy to check that Ωg = 0 at r̂ = 4/9 (Gm3/c
2)χ2,

and that this location never corresponds to a stable orbital radius, since r̂⋆ <
r̂σISCO for 0 ≤ χ ≤ 1. For completeness, we report that at the ISCO one
has Ωg = (c/r̂ISCO)(

√
2 − 1)/

√
6 in the Schwarzschild case χ = 0, whereas

in the extreme Kerr case, χ = 1, the gyroscope precession diverges as Ωg ≈
2c/

√
3(r̂ − r̂+ISCO)

−1 for co-rotating orbits, and Ωg = (c/r̂−ISCO)(1/3 −
√
3/4)

for the counter-rotating ones. As we shall see below, the distant-star frame
provides a local coordinate system close to the circular equatorial geodesic
in which one can directly observe the precession as a fictitious force in the
Lagrangian description.

In general, a local observation of a precession angle is not possible, since
one cannot compare angles between two events in spacetime in a path-independent
manner. However, the construction of the distant-star tetrad is based on the
global structure of the Kerr background, being stationary and axisymmetric,
which gives a natural definition of angular and radial directions in the equa-
torial plane through Carter’s tetrad [176]. Thus, in this sense, one can mean-
ingfully claim the distant-star frame is fixed with respect to the asymptotic
definition of the rotating angle, justifying its name as an angle with respect
to distant stars. In other words, the distant-star frame provides a Cartesian
frame that keeps a fixed orientation with respect to distant stars [175]. Hence,
the non-inertial distant-star frame of reference provides a global point of view,
contrary to the local inertial Marck’s frame of reference.

Given that the distant-star tetrad eiµ is anchored to the geodesic, it has
naturally a vanishing acceleration but it is characterized by a non-vanishing
angular velocity of rotation relative to the Marck’s tetrad [171]

ai ≡ eiµ
Deµ0
dτ

= 0 , ωi ≡ −1

2
ϵijke

µ
j

Dekµ
dτ

= Ωgδ
i
3 , (1.90)

where we used the vector tetrad basis eµi = λµj (R
T )j i and e

µ
0 = λµ0 = uµ.

The spatial coordinates ri associated with the distant-star tetrad are given
by 11

ri = Ri
jx

j . (1.91)

In the following, we shall use the Cartesian vector notation

r = r1x̂+ r2ŷ + r3ẑ , (1.92)

11This follows from the fact that for any vector V µ its spatial components are ri =
V µeiµ = V µRi

jλ
j
µ and xi = V µλi

µ.
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where we defined the unit vectors

x̂ =

1
0
0

 , ŷ =

0
1
0

 , ẑ =

0
0
1

 . (1.93)

The consequence of going to this non-inertial frame for the binary system is
the introduction of fictitious forces. Indeed, the local Lagrangian now becomes

L =
µ

2
(v −Ωg × r)2 + GMµ

r
− c2µ

2
r2Eq , (1.94)

where we introduced the Cartesian vectors v = dr/dτ and Ωg = Ωgẑ in
agreement with Eq. (1.90). Now Eq. (1.67) reads

r2Eq =
Gm3

c2r̂3

[
r2 + 3(r3)2

K

r̂2
+

−3

(
1 +

K

r̂2

)
(r1 cos ϕ̂+ r2 sin ϕ̂)2

]
.

(1.95)

To find the Hamiltonian we define the canonical momentum as

π =
∂L
∂v

= µ
(
v −Ωg × r

)
, (1.96)

and the canonical angular momentum as

Lin = r × ∂L
∂v

= r × π , (1.97)

where we adopt the subscript “in” for later convenience to distinguish the
angular momentum of the inner BBH system and the angular momentum
associated with the outer orbit. The Hamiltonian, thus, reads

H =
π2

2µ
− GµM

r
+Ωg ·Lin +

µc2

2
r2Eq , (1.98)

with Eq given in Eq.(1.95). The extra term in (1.98) with respect to (1.69) is
responsible for the gyroscope precession of Lin.

1.2.4 Euler angles and action-angle variables

In this section we review standard definitions of angular coordinates and mo-
menta that are highly useful in Celestial mechanics to describe the dynamics
of the inner binary, and to derive the secular Hamiltonian in Section 1.2.5.
Firstly we define all these quantities with respect to the distant-star refer-
ence frame, and secondly we introduce the action-angle formalism in Marck’s
frame of reference, providing a canonical transformation between the distant-
star and Marck’s frame Hamiltonians.
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Euler angles

During the motion of the inner binary along a circular, equatorial geodesic
in the Kerr spacetime, the orientation of the inner orbital plane of the BBH
system can vary with respect to the outer orbital plane of the Kerr SMBH.

The vector (1.92) describing the relative position of a body in a Newtonian
elliptic orbit can be represented as

r = r(cosψ û+ sinψ v̂) , (1.99)

where

r =
a(1− e2)

1 + e cosψ
, (1.100)

where a and e are respectively the semi-major axis and the eccentricity of
the orbit, whereas ψ is the angular coordinate that keeps track of the body
motion along the orbit, namely the true anomaly.

The two directions û and v̂ have a precise geometrical meaning, with û
(ψ = 0) identifying the periapsis direction, and v̂ (ψ = π/2) lying along
the direction of the ascending nodes. The space spanned by these two vectors
specifies the inner orbital plane. These two vectors, together with the direction
of the angular momentum for the inner binary L̂in = û × v̂, form a triad of
orthonormal vectors.

Since the inner binary is assumed to be in a Newtonian regime, it is possible
to unambiguously introduce the eccentric anomaly ζ and the mean anomaly
β, defined by means of

cosψ =
cos ζ − e

1− e cos ζ
, β = ζ − e sin ζ . (1.101)

The first relation defines ζ in terms of the true anomaly ψ, whereas the second
is the Kepler equation. Kepler’s equation is a transcendental equation and no
closed-form solution is known that allows to express the eccentric anomaly ζ
in terms of the mean anomaly β. The mean anomaly β represents the angle
that a fictitious body moving in a circular orbit would span if it had the same
orbital frequency as the actual body moving along the elliptic orbit. In other
words its motion is uniform in time, β =

√
GM/a3τ .

One can obtain a generic orientation of the orbit using the Euler angles
defined through the following rotation matrices

Rθ =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 , RI =

1 0 0
0 cos I − sin I
0 sin I cos I

 ,

Rγ =

cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 ,

(1.102)
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where the angle θ is called the longitude of ascending nodes, I is the orbital
inclination, and γ is the argument of the periapsis. We refer the reader to
Fig. 1.6 for an illustration of the orbital parameters.

In general to describe a Newtonian orbit with an arbitrary orientation we
need to introduce a reference plane. Given that we are working under the
assumption m3 ≫ (m1 +m2), it is natural to take the equatorial plane of the
Kerr black hole as the reference plane. An arbitrary orientation of the inner
binary is therefore derived by performing the rotation r = RθRIRγ(r cosψ x̂+
r sinψ ŷ), and by fixing ψ = 0, π/2 one gets

û =(cos γ cos θ − cos I sin γ sin θ) x̂

+ (cos γ sin θ + cos I sin γ cos θ) ŷ (1.103)

+ sin I sin γ ẑ ,

v̂ =(− sin γ cos θ − cos I cos γ sin θ) x̂

+ (− sin γ sin θ + cos I cos γ cos θ) ŷ (1.104)

+ sin I cos γ ẑ .

For later use, we define in addition the eccentricity vector as

e = e û , (1.105)

which corresponds to the dimensionless version of the Laplace–Runge–Lenz
vector [177].

The direction of the angular momentum for the inner binary is readily
obtained as L̂in = û× v̂, yielding

L̂in = sin I sin θ x̂− sin I cos θ ŷ + cos I ẑ . (1.106)

The magnitude of the outer orbit angular momentum L̂ for a fully relativistic
equatorial, circular geodesic in the Kerr background, as the one along which
our BBH system is moving, is given in Eq. (1.78), whereas its direction in the
distant-star frame is

L̂out = ẑ . (1.107)

Notice that, by definition, the inclination angle quantifies the projection of
the inner orbit angular momentum on the outer orbit one, L̂in · L̂out = cos I.

Action-angle variables

In Celestial mechanics every time we are working with a periodic motion, it is
convenient to analyse the problem by introducing the action-angle formalism,
mostly because for any libration of periodic motion, we can introduce action-
angle variables to describe the momenta. This is advantageous since they
are constants of motion and allow us, in our description of the BBH-SMBH
system, to describe the non-tidal part of the Hamiltonian (1.69) purely in
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I

γ

θ

ψ

x

y

z

Figure 1.6: Illustration of orbital parameters. The green plane represents
the reference plane while the intersection between the red line and the orbit
constitutes the periapsis and the intersection between the blue line and the
orbital plane provides the ascending node.

terms of constants of motion. We shall use the action-angle variables known
as Delauney variables which we already introduced in Sec. 1.1 and here recall
for convenience, with the position given by the three angles

(β, γ, θ) , (1.108)

each periodic with period 2π, as well as the corresponding action-angle vari-
ables

Jβ = µ
√
GMa , Jγ = µ

√
GMa(1− e2) ,

Jθ = µ
√
GMa(1− e2) cos I ,

(1.109)

with M and µ defined in Eq. (1.64) as the total mass and the reduced mass
of the BBH system respectively.

We recall that the Delauney action variables are related to the magnitude
and the orientation of the angular momentum of the inner binary with respect
to the reference plane. In particular

Jγ = |Lin| , Jθ = Lin · L̂out . (1.110)
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The total Hamiltonian of the inner binary (1.98) in the distant-star refer-
ence frame can therefore be simply expressed, in terms of action-angle vari-
ables, as

H = −

(
GM

Jβ

)2

+ΩgJθ +Hq . (1.111)

and the quadrupole tidal part is expressed in terms of Euler angles according
to

Hq =
µ

2

Gm3r
2

r̂3

[
1 + 3

K

r̂2
sin2(γ + ψ) sin2 I

− 3

(
1 +

K

r̂2

)(
cos(ϕ̂− θ) cos(γ + ψ)

+ sin(ϕ̂− θ) sin(γ + ψ) cos I
)2]

.

(1.112)

Action-angle variables for Marck’s frame

For later convenience, we also introduce the action-angle variables for the
Hamiltonian in Marck’s frame of reference given by Eqs. (1.69) and (1.86).

It follows from Section 1.2.3 that the longitude of ascending nodes for
Marck’s reference frame is

θ′ = θ − Ωgτ , (1.113)

where θ is the corresponding longitude of ascending nodes in the distant-star
frame. This can also be written as θ′ −Ψ = θ − ϕ̂. The other angles β and γ
remain the same.

The Hamiltonian together with the action-angle variables conjugate to
the angles (β, γ, θ′) can be found directly by using a canonical transforma-
tion of the second type [177]. More precisely, this implies that the momenta
(Jβ, Jγ , Jθ) given in the distant-star frame (1.109) are the same for the Marck’s
frame, for it to be a canonical transformation. In detail, we have the generat-
ing function

F2(q, P, τ) = β Jβ + γ Jγ + (θ − Ωgτ) Jθ , (1.114)

with (q, p) and (Q,P ) being respectively the distant-star and the Marck phase
space variables, which can be identified as

qi = (β, γ, θ), Qi = (β, γ, θ′) ,

pi = Pi = (Jβ, Jγ , Jθ) .
(1.115)

This gives pi = ∂F2/qi and Qi = ∂F2/∂Pi as needed. The transformed Hamil-
tonian therefore becomes

H = H+ ∂τF2 = H− ΩgJθ . (1.116)
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From this we get the Hamiltonian in Marck’s frame as

H = −

(
GM

Jβ

)2

+Hq . (1.117)

with quadrupole tidal part

Hq =
µ

2

Gm3r
2

r̂3

[
1 + 3

K

r̂2
sin2(γ + ψ) sin2 I

− 3

(
1 +

K

r̂2

)(
cos(Ψ− θ′) cos(γ + ψ)

+ sin(Ψ− θ′) sin(γ + ψ) cos I
)2]

.

(1.118)

It is straightforward to check that if one introduces the Delauney variables
directly for Marck’s frame Hamiltonian given by Eqs. (1.69) and (1.86) one
would get the same result as above.

1.2.5 Secular Hamiltonian

In this section we obtain the Hamiltonian describing the secular dynamics of
the BBH-SMBH triple system. As already mentioned previously, the secular
dynamics describes the binary system at timescales much larger than both the
inner and outer orbit periods, namely the timescales respectively associated
with the inner motion of the two black holes in the BBH system and the
geodesic motion of the binary around the Kerr black hole.

The secular Hamiltonian is obtained by getting rid of the fast-dynamics
in the triple system, namely by taking the average over both the inner orbit
motion as well as the outer orbit motion. As explained above, these two
motions can be separated to leading order in our regime (1.71), in that the
outer orbit motion corresponds to the center of mass of the binary system
moving on a circular geodesic in the equatorial plane of the supermassive
Kerr black hole.

The motion of the two black holes in the inner binary, i.e. the inner
orbit, is described as a Newtonian elliptic motion, which is perturbed by tidal
forces.12 To take the average, we need an angle that grows uniformly with
time in the elliptic motion. In the Newtonian regime this is provided by the
mean anomaly β defined in Eq. (1.101). However, since the tidal part of the
Hamiltonian (1.112) is a function of the true anomaly ψ instead, we translate
(2π)−1

∫ 2π
0 dβ into

1

2π

∫ 2π

0
dψ

(1− e2)3/2

(1 + e cosψ)2
, (1.119)

12In Section 1.2.7 we shall include the 1PN effect of the periastron precession as well as
the leading GW radiation-reaction effect.
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since this follows from Eq. (1.101).
The averaging procedure for the outer orbit is more subtle, this is due to

the fact that General Relativistic effects play a role. In terms of the action-
angle variables introduced in Section 1.2.4, we have found the Hamiltonian in
both the non-inertial distant-star frame with Eqs. (1.111)-(1.112) as well as
in the inertial Marck’s frame with Eqs. (1.117)-(1.118).

We start by discussing the averaging procedure for the outer orbit in the
distant-star frame, since this resemble the Newtonian case (see for exam-
ple [19]), and thus it is more intuitive. In fact, by considering the Hamilto-
nian (1.111)-(1.112), we notice that it is periodic in the angle ϕ̂ with period
2π. This periodicity is precisely associated with one outer orbit cycle of mo-
tion. Moreover, the angle grows linearly with proper time, as one can infer
from Eq. (1.87), making it the relativistic analog of the outer orbit angle, that
one for instance uses in [19] for the averaging of the outer orbit. Therefore,
the outer orbit average in this frame is simply performed as (2π)−1

∫ 2π
0 dϕ̂.

The secular Hamiltonian is thus computed as the following double-average
of the Hamiltonian (1.111) in the distant-star frame

⟨H⟩ = −

(
GM

Jβ

)2

+ΩgJθ + ⟨Hq⟩ , (1.120)

with

⟨Hq⟩ ≡
1

(2π)2

∫ 2π

0
dϕ̂

∫ 2π

0
dψ

(1− e2)3/2

(1 + e cosψ)2
Hq , (1.121)

which explicitly reads

⟨Hq⟩ = −Ω
(GR)
ZLK Jγ

(
W +

5

3

)
,

W = (1− e2)(cos2 I − 2)− 5e2 sin2 I sin2 γ ,

Ω
(GR)
ZLK = Ω

(N)
ZLK

(
1 + 3

K

r̂2

)
,

Ω
(N)
ZLK =

3

8Jγ

(
Gm3µ

r̂

)(
a

r̂

)2

,

(1.122)

where the subscript ZLK refers to the ZLK effect which will be extensively
discussed in the remaining Sec. 1.2.6 and in Sec. 1.2.7.

From the expressions above we can see that the General Relativistic ef-
fects arising from the Kerr perturber are included in the dynamics of the

BBH system through the overall prefactor Ω
(GR)
ZLK in the averaged tidal Hamil-

tonian (1.122). It is easy to check from (1.122) that in the weak field regime
r̂ → ∞ one recovers the Newtonian secular Hamiltonian of Ref. [19]. These

General Relativistic effects are completely accounted for by the term in Ω
(GR)
ZLK

proportional to the Carter constant K.
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However, not all the General Relativistic effects are explicitly manifest in

the prefactor Ω
(GR)
ZLK , defined in Eq. (1.122). Some of them are not immediately

apparent from the above secular Hamiltonian of Eqs. (1.120) and (1.122). The
most obvious one is the gyroscope precession of the binary system introduced
in Section 1.2.3, here arising from the term ΩgJθ in the total Hamiltonian
(1.120). Another less explicit effect is the time dilation of the proper time
used above, relative to the asymptotic time t̂. This we shall include later in
Section 1.2.7. Both of these effects are related to how an asymptotic observer
will view the binary system, i.e. the global point of view, rather than the local
point of view. Furthermore, in Section 1.2.7 we shall add further relativistic
effects to the binary dynamics, to describe gravitational backreaction due to
gravitational waves.

So far we have considered the averaging procedure only in the distant-star
frame. It is important to check that one can obtain the same secular average
in Marck’s frame of reference. We notice immediately that the Hamiltonian
(1.117)-(1.118) is periodic in Ψ with period 2π. Also, the angle grows linearly
with time Ψ = ΩΨτ . Therefore, we conclude that, in Marck’s frame, one
should compute the outer orbit average as (2π)−1

∫ 2π
0 dΨ. Explicitly,

⟨H⟩ = −

(
GM

Jβ

)2

+ ⟨Hq⟩ . (1.123)

with

⟨Hq⟩ ≡
1

(2π)2

∫ 2π

0
dΨ

∫ 2π

0
dψ

(1− e2)3/2

(1 + e cosψ)2
Hq , (1.124)

It is now straightforward to see that double-average over the tidal part of the
Hamiltonian in the two different frames agree

⟨Hq⟩ = ⟨Hq⟩ . (1.125)

This means the only difference between the secular Hamiltonians in the two
frames is the constant term ΩgJθ, accounting for the fictitious forces.

However, as explained in Section 1.2.3, the gyroscope precession essen-
tially measures the difference between ϕ̂ and Ψ when they have gone through
one cycle in the outer orbit motion. So how can the outer orbit average over
the tidal contribution give the same result in the two different frames, as
we are averaging over two different angles? The answer lies in the formula
ϕ̂ − θ = Ψ − θ′. In the distant-star frame one should keep fixed θ in taking
the average, as this angle is fixed during the motion. But, for Marck’s frame,
it is instead the angle θ′ that one should keep fixed. Thus, the reason that
the outer orbit averages give the same result in the two frames is that the
difference between θ and θ′ precisely accounts for the difference ϕ̂−Ψ, which
is the gyroscope precession.
Notice that the canonical transformation detailed in Sec. 1.2.4 can also be
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directly used to relate the secular Hamiltonian in the distant-star frame with
the secular Hamiltonian in Marck’s frame. Since neither depend on the re-
spective longitude of ascending nodes angle (θ and θ′), this transformation
simply relates the secular Hamiltonians as ⟨H⟩ = ⟨H⟩ − ΩgJθ.

1.2.6 ZLK mechanism in a strong GR background

In this section, we apply the result for the secular Hamiltonian in the distant-
star reference frame, as derived in the previous section, to study the long
timescale dynamics of the BBH system moving on an equatorial circular
geodesic of the external Kerr SMBH.

An important result of this Section is that we can quantify to what extent
the ZLK frequency departs from its Newtonian value when one takes into
account strong gravity effects associated to the general relativistic description
that we adopt for the outer orbit. Moreover, in this Section we derive the
equations of motion for the inner orbital parameters, from which one can study
the evolution of the ZLK mechanism. This will be used later to compare the
weak-gravity limit of our results to the PN corrections found in the literature.
In Section 1.2.7 we build on the results of this section by refining the equations
of motion for the inner orbital parameters found in Section 1.2.6 to include
the periastron precession and GW emission. This is used to study the ZLK
mechanism and its influence on the binary merger time.

ZLK frequency in the vicinity of SMBH

From the distant-star frame secular Hamiltonian, given by Eqs. (1.120) and
(1.122), it is immediate to observe that two main effects govern the secular
dynamics of the BBH system: the ZLK mechanism, which manifests due to
the tidal interaction with the external SMBH, and the gyroscope precession,
which is present in the distant-star frame of reference whenever a general
relativistic description for the SMBH is adopted.

We begin this section by discussing the ZLK mechanism which in the
distant-star secular Hamiltonian is modeled by the quadrupole tidal contri-
bution ⟨Hq⟩ in Eq. (1.122). A well-known result in the literature concerning
the ZLK mechanism [20, 27, 123] is that the set of parameters characterizing
the outer orbit only enters in ⟨Hq⟩ through the frequency of the eccentric-
ity/inclination oscillations. We observe from (1.122) that this remains true
in our case, as all the information concerning the outer orbit enter through

the frequency Ω
(GR)
ZLK . Thus, all new tidal force effects that arise from an ex-

act metric description of the SMBH as a Kerr black hole enters through this
frequency. Therefore, the main aim of the following is to show that BBH sys-
tems close enough to an external SMBH to probe the strong gravity regime can
manifest substantial deviations in the frequency of the ZLK oscillations, com-
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pared to the frequency one gets from employing a Newtonian point particle
approximation.

We begin by comparing Ω
(GR)
ZLK to the Newtonian frequency Ω

(N)
ZLK, i.e. the

frequency that would have resulted from Newtonian quadrupole tidal forces
induced by a particle of mass m3. We find

Ω
(GR)
ZLK

Ω
(N)
ZLK

=
1 + 3χ2

d2
− 4σχ

d3/2

1− 3
d + 2σχ

d3/2

, (1.126)

where we defined for convenience the dimensionless radius d for the equatorial
circular orbit as

d = r̂
c2

Gm3
. (1.127)

Remarkably, at the ISCO r̂ = r̂σISCO the ratio (1.126) takes the universal
value13

Ω
(GR)
ZLK = 2Ω

(N)
ZLK . (1.128)

This result will be highly important in Section 1.2.7 where we consider the
evolution of the BBH-SMBH system in detail. One can check that (1.128)
gives the maximal value of the ratio (1.126) that the binary system can at-
tain. Instead, for large d the ratio goes to one. Both of these statements are
illustrated in Fig. 1.7. The result (1.128) shows that one has an order one

difference between the weak-field Newtonian result Ω
(N)
ZLK and our novel strong

field result Ω
(GR)
ZLK when close to the SMBH.

However, it is important to note here that the frequency Ω
(GR)
ZLK is mea-

sured with respect to the proper time of the BBH orbit. Thus, this is not
the frequency that an asymptotic observer would measure. To find the corre-
sponding asymptotic ZLK frequency we need to incorporate the redshift factor
as follows

Ω
(∞)
ZLK =

1

ut
Ω
(GR)
ZLK (1.129)

where the redshift factor can be written as

ut =
Ωϕ̂

Ω
=

1 + σχ
d3/2√

1− 3
d + 2σχ

d3/2

, (1.130)

which one can check is always greater than 1, and it is a decreasing function
of σχ for fixed d. Using (1.130) we get the following ratio between the asymp-

totically measured ZLK frequency Ω
(∞)
ZLK, which now takes into account all the

GR effects, and the corresponding Newtonian frequency Ω
(N)
ZLK

Ω
(∞)
ZLK

Ω
(N)
ZLK

=
1 + 3χ2

d2
− 4σχ

d3/2(
1 + σχ

d3/2

)√
1− 3

d + 2σχ
d3/2

. (1.131)

13One can derive this using K = 1
3
r̂2ISCO at the ISCO, see Ref. [168].
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Figure 1.7: Diagram of the ratio Ω
(GR)
ZLK /Ω

(N)
ZLK versus the distance d from the

SMBH. Different colors label various values of the black hole spin χ where the
solid and dashed lines represent co-rotating (σ = +1) and counter-rotating
(σ = −1) orbits, respectively. Each curve terminates at the ISCO.

The inclusion of the redshift factor gives a more refined difference in the ratio
of the frequencies. One finds that in the counter-rotating case σ = −1 the
maximal value of the ratio (1.131) is at the ISCO, as illustrated in Fig. 1.8.
For the co-rotating case σ = 1, the same is true for the range 0 ≤ χ ≤ 0.69.
However, as illustrated in Fig. 1.9, this behavior starts changing in the range
0.69 ≤ χ ≤ 0.7, so that for χ ≥ 0.7 the maximal value of the ratio (1.131) is
no longer reached at the ISCO. We see from Fig. 1.10 that for χ ≥ 0.75 it is
instead the minimal value that one reaches at the ISCO.

For all three Figs. 1.8, 1.9, and 1.10 we note that the ratio (1.131)
approaches 1 for d going to infinity, as one would expect. Finally, we have
also plotted the value of the ratio (1.131) at the ISCO in Fig. 1.11.

The above results for Ω
(∞)
ZLK/Ω

(N)
ZLK show that the GR effects that arise from

being in close vicinity to the SMBH are highly significant. This is particularly
relevant in the case of bound systems of BBHs situated in the GC. Indeed,
we see the importance of including strong-gravity effects as they significantly
alter the frequency, and therefore the timescale, of the ZLK oscillations. One
can also see that the spin of the SMBH, as modeled by a Kerr black hole, can
significantly alter the dynamics.

Evolution equations for ZLK mechanism

Using the secular Hamiltonian (1.122) we can now derive the evolution equa-
tions for the orbital variables describing the inner BBH system. It is possible
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Figure 1.8: The ratio Ω
(∞)
ZLK/Ω

(N)
ZLK is plotted in the counter-rotating case σ =

−1 as a function of the dimensionless radius d for several values of the spin.
The figure shows that the maximum value for the ratio is always at the ISCO.
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Figure 1.9: The ratio Ω
(∞)
ZLK/Ω

(N)
ZLK is plotted in the co-rotating case σ = 1 as

function of the dimensionless radius d for the range 0.61 ≤ χ ≤ 0.79.
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Figure 1.10: The ratio Ω
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ZLK is plotted in the co-rotating case σ = 1 as

a function of the dimensionless radius d for several values of the spin.
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Figure 1.11: Here the binary system is always placed at the ISCO. The blue
line describes the counter-rotating case while the red line describes the co-
rotating case.
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to derive an evolution equation for the orbital inclination I by exploiting the
fact that Jθ = Jγ cos I, Eq. (1.109), which yields

dI

dτ
=

1

Jγ sin I

(
dJγ
dτ

cos I − dJθ
dτ

)
. (1.132)

This general equation will be useful when including the loss of angular momen-
tum associated with the emission of GWs, which we postpone to Sec. 1.2.7. In
this section instead, we only focus on the effect of tidal deformations resulting
in the ZLK mechanism. For the secular Hamiltonian (1.122) the Euler angle θ
is a cyclic variable so that its conjugate momentum Jθ is a constant of motion,
dJθ/dτ = −∂θ⟨H⟩ = 0, and the last term in (1.132) does not contribute if we
ignore the emission of GWs.

Similarly, the equation of motion for the eccentricity of the inner binary
follows from the definition of the Delauney variable Jγ in Eq. (1.109). In the
following we use the fact that no variation of the semi-major axis a exists in
the absence of GW emission, so that

de

dτ
=
dJγ
dτ

(
dJγ
de

)−1

= −1− e2

e

1

Jγ

dJγ
dτ

. (1.133)

Therefore, the evolution equations for the orbital elements can be derived
from the equation of motion of Jγ . This follows from Hamilton’s equations
and only involves the tidal Hamiltonian

dJγ
dτ

= −∂⟨H⟩
∂γ

= −5Ω
(GR)
ZLK Jγe

2 sin2 I sin 2γ . (1.134)

From the relations (1.132), (1.133), and (1.134) one can derive the ZLK con-
tributions to the evolution equations for the orbital inclination I and for the
eccentricity e

dI

dτ
= −5

2
Ω
(GR)
ZLK e2 sin 2I sin 2γ , (1.135)

de

dτ
= 5Ω

(GR)
ZLK e(1− e2) sin2 I sin 2γ . (1.136)

From these equations of motion, it is immediate to notice that the stationary
points for minimum and maximum inclination and eccentricity correspond to
γ = 0, π/2. As we mentioned earlier, as long as the gravitational backreaction
is neglected, Jθ = Lin · L̂out = µ

√
GMa(1− e2) cos I is conserved, meaning

that the orbital inclination has a maximum Imax when the eccentricity is
minimal emin, and viceversa. In particular, by computing the second derivative
in (1.135) and (1.136), it is easy to show that the pair (Imax, emin) occur for
γ = 0, whereas one has (Imin, emax) for γ = π/2.
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The evolution equation for the longitude of ascending nodes can be derived
from Eq. (1.122), upon making in ⟨H⟩ the substitution cos I = Jθ/Jγ . One
has

dθ

dτ
=
∂⟨H⟩
∂Jθ

= Ωg − 2Ω
(GR)
ZLK cos I(1− e2 + 5e2 sin2 γ) , (1.137)

where it is evident the contribution of the gyroscope precession in the distant-
star frame. Using the canonical transformation detailed in Sec. 1.2.4 it is
immediate to derive an analogous equation for the shifted angle θ′ = θ −Ωgτ
in Marck’s frame, which indeed lacks the gyroscope precession contribution.
We stress that in passing from the distant-star to Marck’s frame of reference
only θ changes in θ′, and therefore all other equations of motion written before
remain unaltered.

Finally, the equation of motion for the argument of the periapsis γ can be
found by trading the eccentricity e for the angular momentum Jγ and using
again that cos I = Jθ/Jγ . We get

dγ

dτ
=
∂⟨H⟩
∂Jγ

= 2Ω
(GR)
ZLK [2(1− e2)− 5(1− e2 − cos2 I) sin2 γ] . (1.138)

General-relativistic effects in the ZLK mechanism

The ZLK mechanism is an effect for which a binary system under the influence
of the tidal forces of an outer third body can exhibit a periodic exchange of
eccentricity and orbital inclination, with a timescale much larger than its
orbital period [20,27,123].

To understand under which circumstances this mechanism can operate,
one can start by recalling that, in the Newtonian approximation for the inner
binary, the secularly-averaged Hamiltonian ⟨H⟩ and the angular momentum
projection Jθ are conserved quantities. Their values can therefore be estimated
by fixing initial conditions for the eccentricity e0 and the inclination I0. The
corresponding values for ⟨H⟩ and Jθ will be labeled as ⟨H⟩0 and (Jθ)0. By
restricting to the case in which the inner orbit is initially circular, e0 = 0,
from the conservation of energy and angular momentum, explicitly ⟨H⟩0 =
⟨H⟩γ=π/2 and (Jθ)0 = µ

√
GMa(1− e2max) cos Imin, one gets

emax =

√
1− 5

3
cos2 I0 , cos Imin = ±

√
3

5
. (1.139)

Notice that, being Imin independent of the initial inclination I0, it does not
only constitute the minimum inclination reached in the ZLK oscillation but
also the critical angle for the onset of the ZLK effect [20]. For the ZLK mech-
anism to work, one has that the initial inclination I0 should obey |cos I0| <√

3/5. For an initial inclination I0 ≈ π/2 of the inner binary system in circular
orbit (e0 = 0), the system exhibits high eccentricity emax ≈ 1.

We thus find that including full general relativistic effects for the outer
orbit does not alter the way the ZLK mechanism is triggered, it only affects
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the frequencies associated with the ZLK oscillations, as discussed in Sec. 1.2.6.
In Sec. 1.2.7 we will include PN effects in the inner binary dynamics that will
modify the condition (1.139) [178].

A more exhaustive way to see how the ZLK mechanism manifests itself
together with the general-relativistic gyroscope precession consists of consid-
ering the interchange between the eccentricity vector e of the inner binary and
its angular momentum Lin relative to the orbital plane of the outer binary.
More specifically, from Eqs. (1.105),(1.106) and (1.110), one has

dLin

dτ
=
dLin

dτ
L̂in + Lin

dL̂in

dτ
,

de

dτ
=
de

dτ
û+ e

dû

dτ
. (1.140)

These evolution equations can be computed explicitly by recalling that both
directions for e and Lin are parametrized in terms of Euler angles I, γ, and
θ (see Eqs. (1.103), (1.105), and (1.106)) whereas their magnitudes are re-
spectively related to the eccentricity e and the Delauney variable Jγ (see
Eqs. (1.110) and (1.133)) so that

dLin

dτ
=
dJγ
dτ
L̂in + Jγ

(
dL̂in

dI

dI

dτ
+
dL̂in

dθ

dθ

dτ

)
, (1.141)

de

dτ
=
de

dτ
û+ e

(
dû

dI

dI

dτ
+
dû

dθ

dθ

dτ
+
dû

dγ

dγ

dτ

)
. (1.142)

By exploiting vector identities, Eqs. (1.141) and (1.142) can be rewritten as

dLin

dτ
= Ωg ×Lin + 2Ω

(GR)
ZLK Jγ

[
(1− e2)(L̂in · L̂out)(L̂in × L̂out)

− 5(e · L̂out)(e× L̂out)
]
, (1.143)

de

dτ
= Ωg × e+ 2Ω

(GR)
ZLK

[
(L̂in · L̂in)(e× L̂in) + 2L̂in × e

− 5(e · L̂out)(L̂in × L̂out)
]
, (1.144)

where we used Ωg = ΩgL̂out and the results obtained in Eqs. (1.133) and
(1.134).

Eqs. (1.143) and (1.144) are written in terms of the proper time τ related
to the inner binary system. From the point of view of an asymptotic observer,
they become

dLin

dt̂
= Ω(∞)

g ×Lin + 2Ω
(∞)
ZLKJγ

[
(1− e2)(L̂in · L̂out)(L̂in × L̂out)

− 5(e · L̂out)(e× L̂out)
]
, (1.145)

de

dt̂
= Ω(∞)

g × e+ 2Ω
(∞)
ZLK

[
(L̂in · L̂in)(e× L̂in) + 2L̂in × e
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− 5(e · L̂out)(L̂in × L̂out)

]
, (1.146)

where we defined

Ω(∞)
g =

1

ut
Ωg . (1.147)

Notice that the redshifted gyroscope precession frequency above is always

finite: at the ISCO, for instance, one has Ω
(∞)
g = (c/r̂ISCO)(

√
2 − 1)/(2

√
3)

in the non-spinning case χ = 0, whereas at extremality, χ = 1, one finds

Ω
(∞)
g = 1/2(c/r+ISCO) and Ωg = (c/r̂−ISCO)(4/

√
3 − 9)/26 respectively for the

co-rotating and counter-rotating orbits.

Eq.s (1.145) and (1.146) include the gyroscope precession and extend the
results previously known in the literature for the ZLK effect [140,141,179] to
the case in which the external body, in this case a supermassive Kerr black
hole, is described using the Kerr metric (1.72), thus being in a strong GR
regime.

In the case of a circular orbit for the inner binary, e = 0, which constitutes
a solution for the equation for the eccentricity, Eq. (1.145) becomes

dLin

dt̂
=
[
Ω(∞)
g − 2Ω

(∞)
ZLK(L̂in · L̂out)

]
(L̂out ×Lin) , (1.148)

which describes the precession of the angular momentum of the inner binary
Lin around the direction of the angular momentum of the outer binary L̂out.
In the weak-field limit r̂ → ∞, one has

dLin

dt̂
=[

3

2

(Gm3)
3
2σ

c2 r̂
5
2

− GJ3
c2r̂3

− 3

4

m3

r̂3

√
Ga3

M
(L̂in · L̂out)

]
(L̂out ×Lin)

+

[
9

8

(Gm3)
5
2σ

c4 r̂
7
2

− 3
G2m3J3
c4r̂4

− 9

8

Gm2
3

c2r̂4

√
Ga3

M
(L̂in · L̂out)

]
(L̂out ×Lin)

+O
(
r̂−9/2

)
,

where in the first line, the first term represents the 1PN contribution due to
the gyroscope precession, the second term is a relativistic effect related to the
spin of the SMBH and the third term represents the precession generated by
the standard ZLK mechanism. This is consistent with the results presented
in Ref. [140], in the hierarchical regime for circular outer orbits and where
the contribution proportional to the spin of the SMBH comes from the Lense-
Thirring precession. The second line is instead a new result and represents
higher-order contributions which we predict using the result in Eq. (1.148).

As pointed out in the past literature (see for instance [180], [181] and
[140] ) the interplay of the ZLK mechanism with additional precessing effects
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Figure 1.12: In this figure we set m1 = m2 = 10 M⊙, m3 = 2 × 109 M⊙ and
a = 0.1 AU. (Left panel) Absolute value of the ratio between the gyroscope
precession frequency and the ZLK frequency as a function of the inner binary
eccentricity e. The different curves are obtained for different values of the
dimensionless spin parameter χ of the SMBH. (Right panel) Absolute value of
the ratio between the gyroscope precession frequency and the ZLK frequency
as a function of the dimensionless spin parameter χ of the SMBH, for different
values of the eccentricity of the inner binary e. The solid and dashed coloured
curves are respectively for co-rotating (σ = +1) and counter-rotating (σ = −1)
outer geodesics. The value R = 1, depicted with the dot-dashed line, marks

the trans-adiabatic regime in which Ω
(∞)
g ≈ Ω

(∞)
ZLK. The rightmost curve in the

left panel, corresponding to χ = 0.99999, is reported to show that R→ ∞ for
χ→ 1, in agreement with the behaviour presented in the right panel and the
discussion made below Eq. (1.89).

can lead to significant alteration in the BBH dynamics and exhibit chaotic
features. The dynamical behaviour can be identified by means of an adiabatic
parameter, that we define as

R ≡

∣∣∣∣∣∣Ω
(∞)
g

Ω
(∞)
ZLK

∣∣∣∣∣∣
∣∣∣∣∣
r̂σISCO

=

∣∣∣∣∣ Ωg

Ω
(GR)
ZLK

∣∣∣∣∣
∣∣∣∣∣
r̂σISCO

, (1.149)

where the ratio is evaluated at the ISCO, since r̂σISCO marks the scale at
which the strong-gravity effects are more relevant in our setup. Fig. 1.12
shows plots for the ratio R in a specific configuration for the BBH-SMBH
system as a function of the inner BBH system eccentricity e and the SMBH
spin parameter χ. It would be interesting to study the interplay between the
gyroscope precession and the ZLK mechanism further.

1.2.7 Binary merger time close to a supermassive BH

In this section, we refine the dynamics of the inner binary system by adding
the periastron precession and GW emission, so that we can study the interplay
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of these effects together with the ZLK mechanism. This enables us to study
how treating the SMBH in strong gravity can alter the dynamics of the BBH
system compared to if one included only the Newtonian gravity effect of the
SMBH [19,182].

We recall that to treat the presence of the SMBH as a perturbation of
the BBH system the condition (1.71) must be satisfied. After introducing the
parametrization for an elliptic orbit as in (1.100), the tidal condition can be
rewritten in terms of the semi-major axis a of the binary system as

a≪ r̂

√
c2r̂

Gm3
. (1.150)

This ensures that we can safely neglect the GW backreaction of the outer
orbit and consider therefore only the GWs emitted by the inner BBH [19].

Post-Newtonian dynamics of the binary system

GWs emitted by the inner BBH system reduce its energy and angular mo-
mentum and consequently its semi-major axis a and eccentricity e. Peters’s
equations [15, 183] keep into account this gravitational backreaction by pro-
viding the orbit-averaged evolution of e and a for an isolated binary. The
average variations read〈

da

dτ

〉
GW

=− 64

5

G3µM2

a3c5
1(

1− e2
)7/2 (1 + 73

24
e2 +

37

96
e4
)

,〈
de

dτ

〉
GW

=− 304

15

G3µM2

a4c5
e(

1− e2
)5/2 (1 + 121

304
e2
)

.

(1.151)

These equations were obtained to model the gravitational backreaction for an
isolated binary, but one can include the influence of a third external body,
that interacts with the binary through the ZLK mechanism, by adding these
PN contributions to the system of equations describing the time evolution of
the orbital variables (a, e, γ, I), as given in Eqs. (1.135), (1.136), (1.138).
In particular, the first of the two PN contributions above is responsible for
triggering the inspiral phase for the binary system, by decreasing the relative
distance a between the two masses. As opposed to the ZLK mechanism, which
can lead to an increase of the orbital eccentricity e, the second equation shows
how the emission of GWs tends to circularise the orbit.

We recall that Jγ represents the magnitude of the angular momentum
for a Newtonian binary system. Hence, by combining Eqs. (1.151) with the
definition of Jγ , according to Eq. (1.109), it is immediate to estimate the loss
of angular momentum associated to the GW emission, namely [184]〈

dJγ
dτ

〉
GW

= −32

5

G7/2µ2M5/2

a7/2c5
1

(1− e2)2

(
1 +

7

8
e2
)

. (1.152)
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It is important to stress that the gravitational backreaction only reduces the
magnitude of the angular momentum, without affecting its direction. In other
words, if we ignore the presence of the SMBH, the binary system remains in the
same plane when including the GW emission. Thus, we have ⟨dI/dτ⟩GW = 0
which from Eq. (1.132) gives

〈
dJθ
dτ

〉
GW

=

〈
dJγ
dτ

〉
GW

cos I . (1.153)

It is immediate to notice, using Eq. (1.152), that the loss of angular mo-
mentum (or, analogously, the decreasing of the orbital distance and eccentric-
ity, according to Eq. (1.151)) due to GW emission becomes extremely efficient
when the condition e ≈ 1 is met. As we discuss this in more detail in the fol-
lowing subsection, the enhancement in the eccentricity due to the ZLK mech-
anism can therefore boost the merger of eccentric binary systems. While such
ZLK-boosted mergers were already noticed in previous works that analyzed
the combined ZLK dynamics with PN effects (see for instance Refs. [19,182]),
in the next subsection we show that strong gravity effects associated to the
external SMBH can lead to further significant changes in the frequency of the
ZLK-oscillations and in the merger time. Finally, following [19], we include
also the effect of the periastron precession of elliptic orbits as an additional
contribution to the evolution equations, since this 1PN effect plays a signifi-
cant role in the ZLK mechanism. Indeed, as we shall review later, it is known
to limit the range in which the ZLK mechanism is valid. Notice that the
periastron precession preserves the angular momentum vector dLin/dτ = 0,
meaning for instance that the orbital plane remains unchanged and only man-
ifests itself as an apsidal advance dêin/dτ = (dγ/dτ)v̂ (see Eqs. (1.141) and
(1.142)). The periastron precession can therefore be written in terms of a first
derivative for the argument of periapsis γ, according to

(
dγ

dτ

)
PN

=
3

ac2
(
1− e2

) (GM
a

)3/2

. (1.154)

As discussed below, these PN effects alter the dynamics of the ZLK mechanism
for BBH systems influenced by the presence of an external mass. We can now
write down a closed set of equations by combining the evolution equations
Eqs. (1.135), (1.136), (1.138) of Sec. 1.2.6, which considers the strong gravity
effects of an external spinning SMBH, with the effects of GW emission and
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periastron precession introduced above. This gives the evolution equations

〈
da

dτ

〉
=− 64

5

G3µM2

a3c5
1(

1− e2
)7/2 (1 + 73

24
e2 +

37

96
e4
)

,〈
de

dτ

〉
= 5Ω
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e(
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)5/2 (1 + 121

304
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dτ

〉
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(GR)
ZLK [2(1− e2)− 5(1− e2 − cos2 I) sin2 γ]

+
3

ac2
(
1− e2

) (GM
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)3/2

,〈
dI

dτ

〉
=− 5

2
Ω
(GR)
ZLK e2 sin 2I sin 2γ ,

(1.155)

where the equations have to be supplemented with the definition Jγ = µ
√
GMa(1− e2),

as in Eq. (1.109), and with the general-relativistic definition of the ZLK fre-

quency Ω
(GR)
ZLK , that we derived in Eq. (1.126). These evolution equations are

written with respect to the proper time τ , being the time associated with the
inner binary system. However, one can use d

dt̂
= 1

ut
d
dτ to translate these equa-

tions into evolution equations with respect to the asymptotic time t̂ to obtain
the dynamical description as seen by an asymptotic observer. The system
of equations (1.155) allows us to study how the orbital parameters (e, a, I, γ)
of the inner binary, evolve in time. To solve them, one has to specify ini-
tial conditions for the inner BBH system, (a0, e0, γ0, I0), a set of parameters
that characterize the outer circular equatorial orbit around the Kerr SMBH
(r̂, s3, σ = ±1), and the three masses (m1,m2,m3).

In the next subsection, we solve numerically the system of equations (1.155),
for some specific case of interest. We will work in astronomical units, i.e. (AU,
M⊙ and years), where G = 4π2 and c = 63072 AU/years.
As previously explained, we need to impose the condition (1.150) for the tidal
approximation to be valid. This allows us to neglect the GW backreaction
of the outer orbit over the timescale that governs the inner binary dynamics.
Furthermore, we are working in the near-Newtonian regime (1.70) in which
we can treat the black holes in the inner binary approximately as particles.
The ZLK oscillations take place on a timescale much longer than the orbital
period of the binary system around the SMBH. Thus, it becomes important
to ensure that the triple system is stable, allowing the ZLK mechanism to
enhance the eccentricity of the BBH system. When the binary system is too
close to the SMBH, the interaction between the three bodies can result in a
tidal breakup.
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Figure 1.13: The colored regions represent regions of the parameter space
for the SMBH which are consistent with the tidal breakup condition r̂/a >
(3m3/M)1/3. The green, orange and blue colors respectively identify r̂ =
r̂σISCO, r̂ = 10 r̂σISCO and r̂ = 100 r̂σISCO, whereas the left and right panels
distinguish co-rotating (σ = +1) and counter-rotating orbits (σ = −1). The
plots are obtained by fixing m1 = m2 = 10 M⊙ and a = 0.1 AU, as represen-
tative values for a stellar-mass BBH system.

To ensure that the presence of an SMBH does not lead to a tidal break
up of the binary system, the stability condition defined in (1.2) and (1.1) has
to be satisfied. In our analysis, we carefully chose the radial distance between
the binary system and the SMBH so as to always guarantee the stability
of the triple system. As an illustrative example, in Fig. 1.13 we plot the
regions of the parameter space for the SMBH which are consistent with the
tidal breakup condition (1.2), in the case of a stellar-mass BBH system with
masses m1 = m2 = 10 M⊙ and separation a = 0.1 AU.

To prepare for the analysis we perform in the remaining of this section,
we now briefly introduce respectively the GW and PN timescales at play in
our investigation and the peak frequency of GW emitted by the BBH system.
These will play a key role in the next subsections where we show how the GR
effects in the strong field regime affect the merger time of the binary system
and the emission of GW waves.

Time Scales

For an isolated BBH system the merger time due to the emission of GWs
is [15,16]

TGW =
5

256

c5a40
G3m1m2M

G(e0)(1− e20)
7/2 , (1.156)
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where

G(e0) =
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19g4(e0)(1− e20)
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304
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)870/2299

.

(1.157)

The function G(e0) ∈ [0.979, 1.81] for e0 ∈ [0, 1], and for an order of magnitude
estimate it can be ignored. For all practical purposes, a good approximation
for an isolated BBH system merger time is thus given by

TGW ≈ 1.6 (1− e20)
7/2 × 1010 yrs (1.158)

×
(
10M⊙
m1

)(
10M⊙
m2

)(
20M⊙
M

)(
a0

0.1 AU

)4

.

The prefactor (1−e20)7/2 shows that for very high values of the eccentricity, the
merger time can be drastically reduced. Tidal interactions generated by an
external SMBH, through the ZLK mechanism, can produce high eccentricities,
thus catalyzing the coalescence for highly-inclined BBHs and speeding up the
merger to timescales much shorter than those characteristic of isolated binaries
with the same masses and relative distance [185].

From Eq.(1.154) we can compute also the time scale associated with the
periastron precession as

TPN =
ac2
(
1− e2

)
3

(
a

GM

)3/2

≡ 2π

ΩPN
. (1.159)

In this regard, it is interesting to notice that, when the periastron timescale
becomes comparable with the ZLK timescale TZLK = 2π/ΩZLK, the periastron
precession destroys the ZLK resonance and the binary system begins to evolve
as if it was isolated. To see the competing effects of the periastron precession
and the ZLK mechanism, it is convenient to neglect the GW backreaction and
analyze under which conditions ⟨dγ/dτ⟩ = 0 and ⟨de/dτ⟩ = 0 in Eq. (1.155),
where the second equation is automatically satisfied by setting γ = π/2. One
finds

cos2 I0 =
3

5
(1− e2)− 3

10

1

(1− e2)

(
GM
a

)3/2
ac2Ω

(GR)
ZLK

(1.160)

which replaces Eq.(1.139) when the periastron precession is taken into account.

Due to the presence of Ω
(GR)
ZLK , this generalizes the Newtonian formula found

in [182]. The window of values for the critical inclination that triggers the ZLK
resonance is reduced by the presence of the periastron effect. This makes
it complicated to find a condition on r̂ that would result in the condition
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cos2 I0 > 0. To illustrate this, consider the simpler case of a non-spinning
SMBH for which we find the following condition

r̂3

a3

(
1− 3Gm3

c2r̂

)
<

3

4
(1− e2)3/2

(
ac2

GM

)
m3

M
. (1.161)

In the limit in which this bound is saturated, the critical inclination value is
close to I0 ≈ 90◦, so that the minimum and maximum values for the inclination
almost coincide. It is clear from (1.160) that, consistently, the maximum value
of the eccentricity is lowered compared to the case in which the periastron
precession is neglected.

Peak Frequency

For eccentric binaries, the GW spectrum is spread across an infinite number
of harmonics [183], with frequencies that are integer multiples n of the fun-
damental Keplerian frequency 1/(2π)

√
GM/a3, and peaked approximately

at [147]

fGW ≃
√
GM

π[a(1− e2)]3/2
(1 + e)1.1954 . (1.162)

In the evolution of an isolated binary the gravitational backreaction, encoded
in Eqs. (1.151), would contribute to circularize the orbit and move the peak
frequency towards the usual n = 2 harmonic long before the merger takes place
[16]. Under the influence of an external body, however, the ZLK mechanism
can provide large eccentricity oscillations in highly-inclined binaries and can
enhance the peak frequency to values high enough to enter in the sensitivity
band of future space-based GW detectors [35].

Binary merger time in the weak field limit

In Sec. 1.2.3 we studied how GR effects induced by the presence of a spin-
ning SMBH can lead to a significant enhancement of the frequency for the
ZLK resonance in the case of a Newtonian binary system moving on a circu-
lar geodesic. By superimposing the ZLK mechanism with the PN dynamics
of the inner BBH system, according to the discussion made in the previous
subsection, we are now in a position to study how the BBH merger time is
influenced by the presence of an external SMBH.

We will start the study of the evolution equations (1.155) by considering
a case in which we are in the weak gravity regime, regarding the influence
of the SMBH on the binary system. This regime has already been studied
previously, e.g. in [19], but here we use it to provide a baseline for the analysis
in the strong gravity regime (also described by Eqs. (1.155)), which we will
discuss later and where we find novel results.

We investigate the evolution equations (1.155) by solving them numer-
ically. For the weak-field example of this section we choose fixed masses
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Figure 1.14: We focus on the spinless case for the SMBH, i.e. χ = 0. Here
r̂ = 120 AU, which corresponds to approximately r̂ ≈ 500 r̂ISCO for a non-
spinning black hole with mass m3 = 4× 106M⊙. We combine the effect of the
ZLK mechanism with the periastron precession and GW emission. The picture
highlights that the maximum values of the BBH eccentricity e corresponds to
the minimum values for its orbital inclination I and viceversa.

m1 = m2 = 10 M⊙ and m3 = 4× 106 M⊙ for the three black holes.14 We use
these values to connect to previous literature (e.g. Ref. [19]) and since m3 is
roughly the mass of Sagittarius A*. Moreover, we choose the initial conditions
for the inner binary to be e0 = 0.1, a0 = 0.1 AU , γ0 = 0◦ and I0 = 89.9◦, so
that we only need to specify the outer orbit parameters.15

For a non-spinning SMBH with the above-mentioned choice form3 we have
the ISCO radius r̂ISCO = 6 Gm3/c

2 ≈ 0.24 AU. Naturally, the strong gravity
effects from the presence of the SMBH are most significant at the ISCO. We
choose here the outer orbit radius to be r̂ = 120 AU ≈ 500 r̂ISCO which means
we are within the weak-field regime (concerning the gravitational influence of
the SMBH on the binary system). In this regime, the redshift factor is ut ≈ 1
according to Eq. (1.76). At the same time, r̂ = 120 AU ensures we are well
below the tidal breakup limit (1.2).

From Eq. (1.158) one can observe that, with our choice for the orbital
parameters, it would take approximately ∼ 1010 years for an isolated binary
to coalesce. In Fig. 1.14 we show our numerical solution, which presents the
characteristic quasi-periodic behavior of the BBH system influenced by an

14Note that the system has the scaling property that if we scale all three masses m1,m2,
and m3 with the same factor, along with the initial conditions for the semi-major axis of the
inner binary a0 and radius of the outer orbit r̂, the merger time will be rescaled with this
factor as well.

15The initial value for the inclination angle I is chosen specifically to maximize the ZLK
mechanism. The initial value for the semi-major axis a is fixed to be 0.1 AU. This value is
small enough to ensure that the binary system does not break up when interacting with the
SMBH, according to Eq. (1.2), but it is also sufficiently large to allow the two black holes
in the inner binary to evolve without merging too fast [114].
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Figure 1.15: Semi-major axis as a function of the asymptotic time t̂ in the
non-spinning case for r̂ = 500 r̂ISCO ≈ 120 AU. The step-like behavior is a
consequence of the loss of angular momentum, which is maximized when the
eccentricity oscillations are close to their maximum values (the minima of the
black curve in Fig. 1.14).

external SMBH. From Fig. 1.14 it is immediate to see that the time for the
merger to occur is drastically reduced to order ∼ 102 years by the presence of
the eccentricity oscillations associated with the weak-gravity ZLK mechanism.

It is possible to distinguish three different phases that characterize the
merger process in the example we consider. At earlier stages (TPN ≫ TZLK)
the ZLK mechanism dominates the dynamics and, due to the inner binary’s
high initial inclination, leads to large-amplitude oscillations for the eccentricity
and inclination. More specifically one can see from Fig. 1.14 that, in agreement
with the ZLK mechanism, the maximum eccentricity e (minima of the black
curve) corresponds to a minimum of the inclination I (maxima of the cyan
curve). The temporary increase of the eccentricity up to e ≈ 0.999 leads to
an efficient loss of angular momentum via GW emission in a small amount of
time, which translates into the typical step-like monotonic decreasing of the
semi-major axis a (see Fig. 1.15), and in a progressive reduction of the ZLK
oscillations amplitude.

In the intermediate stage, the ZLK timescale becomes comparable with the
periastron precession timescale (TZLK ∼ TPN), and the eccentricity/inclination
oscillations are hampered by the PN contributions in the BBH dynamics.
In the final phase (TPN ≪ TZLK), the ZLK resonance is suppressed. In other
words, the BBH evolves as if the system were isolated and characterized by
a high initial eccentricity inherited by the ZLK mechanism. The Peter’s con-
tributions in Eqs. (1.155) then become dominant, causing a fast orbital circu-
larisation and a prompt decreasing in the semi-major axis of the BBH system
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Figure 1.16: The picture shows the evolution of the eccentricity for a BBH
system perturbed by an external SMBH of mass m3 = 2 × 109 M⊙. The
four panels correspond to different values of the initial inclination I0. The
gray curve represents the case in which the external black hole is treated in
the Newtonian point particle approximation, the black curve includes general-
relativistic effects associated with a non-spinning black hole whereas the purple
and orange curves describe a Kerr black hole with spin parameter χ = 0.95
in the co-rotating (purple line) and counter-rotating (orange line) case. Here
we choose r̂ = 180 AU. In terms of the ISCO radius it means r̂ ∼ 1.5 r̂ISCO

for χ = 0 while for χ = 0.95 we have r̂ ∼ 4.7 r̂+ISCO in the co-rotating case
and r̂ ∼ 1.02 r̂−ISCO in the counter-rotating case. The four panels show that
small variations in the initial inclination I0 correspond to huge variations in
the merger time, both for the GR and the Newtonian case. The amplitude of
the ZLK oscillations shows that the maximum eccentricity grows as I0 → 90◦.
In particular, note that when the the ZLK mechanism is most efficient, i.e.
when I0 ∼ 90◦, strong-gravity effects contribute to accelerate the BBH merger
compared to the Newtonian case (bottom right panel). Instead, for smaller
values of I0, the ZLK mechanism is less efficient and the merger time is thus
slowed down by the redshift factor (top panels and bottom left panel).

via GW emission. Even though a realistic description of the final stages of
the inspiral phase would require much more advanced analytic or numerical
frameworks, here we limit to convene that the BBH merger takes place when
both a and e vanish.

Binary merger time in the strong field limit

We are now ready to study the evolution equations (1.155) for configurations
in which one can see the strong field effects in full, regarding the influence
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of the SMBH on the binary system. Indeed, we shall consider configurations
for which the radius r̂ of the outer orbit is comparable with the ISCO radius
r̂σISCO of the SMBH.

Since we are in a strong-gravity regime, it means that we will also be able
to account for the dependence on the spin of the SMBH and in the following
we will describe both the case where the BBH system moves on a co-rotating
(σ = +1) circular equatorial orbit or a counter-rotating (σ = −1) circular
equatorial orbit.
For the configurations of this subsection, we choose the mass of the SMBH to
be m3 = 2 × 109 M⊙ which happens to be roughly the mass of M87*. This
choice allows us to explore the situation where a stellar BBH system with
masses m1 = m2 = 10 M⊙ and semi-major axis a = 0.1 AU is near or at the
ISCO of the SMBH, while at the same time being sufficiently far away from
the tidal breakup condition (1.2), see Fig. 1.13.

We consider three cases for the spin of the SMBH: the non-spinning case
χ = 0, and the highly spinning cases χ = 0.95 with co-rotation (σ = 1) and
counter-rotation (σ = −1).16

Finally, we choose the outer orbit radius to be r̂ = 180 AU, respectively cor-
responding to r̂ ≈ 4.68 r̂+ISCO for co-rotating and r̂ ≈ 1.02 r̂−ISCO for counter-
rotating orbits. Notice that this value is also consistent in the case of a non-
spinning SMBH of the same mass, since it would correspond to r̂ ≈ 1.51 r̂ISCO.
We emphasize that the chosen values of the parameters ensure that the BBH
system is not subjected to a tidal breakup and can experience strong gravity
effects due to the tidal interaction with the external SMBH.
We have solved the evolution equations (1.155) for these choices of configu-
rations. The result is depicted in Fig. 1.16 where we show the evolution of
1−e2 as a function of the asymptotic time t̂ for four different initial inclination
angles I0 = 88.5◦, 89◦, 89.3◦, 89.5◦. Moreover, we choose the remaining initial
conditions for the inner binary to be e0 = 0.1, a0 = 0.1 AU and γ0 = 0◦. As
one can see, in Fig. 1.16 we compare the BBH eccentricity evolution for the
case where the inner binary is moving on a co-rotating and a counter-rotating
circular equatorial Kerr geodesic (respectively purple and orange curves), with
the case in which the external body is a non-spinning SMBH (black curve)
described in the Newtonian point particle approximation (grey curve). This
is to highlight the effect of the SMBH spin.

We point out that when the BBH is at the ISCO of the SMBH, or close to
it, the GR effects become quite significant and the Newtonian point particle
approximation is no longer valid to describe the dynamics of the system. Here
we use the point particle description for the SMBH to illustrate the comparison
between our novel results valid in the full GR regime and the results obtained
in the standard point particle approximation. We can conclude that describing

16We choose χ = 0.95 since it is supposed to be close to the value of the spin of M87* as
inferred by the Event Horizon Telescope Collaboration [186,187].
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the SMBH with the Kerr metric, instead of as a point particle, leads to effects
that significantly impact the dynamics of the BBH system.

The four different panels with four different initial inclination angles in
Fig 1.16 aim to illustrate the strong dependence of the merger dynamics on
the initial inclination angle I0: it is possible to observe that the more the
BBH system is inclined, the more the ZLK mechanism is effective in reaching
high values for the eccentricity and, thus, in reducing the merger time. This
feature of the ZLK mechanism remains true regardless of whether the SMBH
is described in a Newtonian or in a general-relativistic manner. Indeed, in all
cases, one can observe that the maximum eccentricity grows as I0 increases
approaching 90◦ and, consequently, a smaller number of ZLK oscillations is
needed in order to boost the merger.
In particular, by making use of the terminology adopted in Ref. [19], the two
top panels and the bottom left panel in Fig. 1.16 describe a slow-merger dy-
namics, i.e. when the BBH system undergoes more than one ZLK cycle before
merging, whereas the bottom right panel depicts a fast-merger dynamics, in
which the BBH system coalesces in just one cycle of the ZLK mechanism, and
the merger time t̂⋆ is directly given by t̂⋆ ≈ utTZLK [19].

Another feature associated with strong gravity effects that emerges from
Fig. 1.16 is related to the impact of the redshift factor on the merger time. We
recall that in the evolution equations of the system, Eqs. (1.155), the details
of the description adopted for the SMBH enter through the ZLK frequency

Ω
(GR)
ZLK which now, from the point of view of an observer in the asymptotic

region of the Kerr space-time, translates into the quantity Ω
(∞)
ZLK defined in

Eq. (1.129), where the role of the redshift factor is evident.

When the SMBH is described using the Kerr metric (or the Schwarzschild
metric for non-spinning black holes), it is the redshift factor which is respon-
sible for slowing down the evolution of the system and causing an increase in
the merger time compared to the case where one uses the standard Newto-
nian point particle description for the SMBH. The effect of the gravitational
redshift is particularly evident in the two top panels of Fig. 1.16, where the
BBH evolution is characterized by a large number of ZLK cycles. Here one
sees that for example the orange curve, with a redshift factor ut ≈ 1.24, cor-
responds to a slower merger time compared to the black curve with redshift
factor ut ≈ 1.22 and so on.

Finally, Fig. 1.16 highlights another consequence of being in a strong-
gravity regime. In Sec. 1.2.6 we discussed how a general-relativistic descrip-
tion of the external SMBH can lead to a significant increase in the local ZLK
frequency when compared to the Newtonian description. As opposed to the
gravitational redshift, thus, the strong-gravity effects in the ZLK frequency
contribute to catalyzing the BBH merger at earlier times than in the Newto-
nian case. In particular, from Fig. 1.7 it is immediate to see that for a fixed
value of the radial coordinate r̂ and of the spin parameter χ, the deviation
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of Ω
(GR)
ZLK from the Newtonian value Ω

(N)
ZLK is greater for counter-rotating or-

bits. The interplay between the GR enhancement of the local ZLK frequency,
which accelerates the merger, and the gravitational redshift, which instead
tends to slow down the merger, is particularly evident in the bottom right
panel of Fig. 1.16. For the co-rotating case (purple), the gravitational red-
shift ut ≈ 1.2 almost entirely compensates the GR frequency enhancement

Ω
(GR)
ZLK /Ω

(N)
ZLK ≈ 1.21, so that Ω

(∞)
ZLK/Ω

(N)
ZLK ≈ 1. This makes the purple curve

almost indistinguishable from the Newtonian one (the gray curve). In the
non-spinning (black) and counter-rotating (orange) case, instead, one respec-

tively has Ω
(GR)
ZLK /Ω

(N)
ZLK ≈ 1.49 and Ω

(GR)
ZLK /Ω

(N)
ZLK ≈ 1.95, 17 corresponding to

Ω
(∞)
ZLK/Ω

(N)
ZLK ≈ 1.22 and Ω

(∞)
ZLK/Ω

(N)
ZLK ≈ 1.57 respectively so that the strong-

gravity effects in the ZLK frequency dominate over the gravitational redshift,
thus accelerating the merger.

GW peak frequency at the ISCO

As already remarked, the strong-gravity effects should be maximal when the
BBH is closest to the SMBH, which, for equatorial orbits, is when the outer
orbit is at the ISCO. In this section we analyze this scenario in detail. As
already mentioned at the beginning of Sec. 1.2 this scenario is astrophysically
relevant since there are some mechanisms that can lead compact objects to
migrate from the outer regions of a galaxy towards the SMBH at its center
where they can get trapped on a region close to the ISCO that allow binaries
to form and coalesce [52–54].

We begin with the case of a high initial inclination, I0 = 89.9◦, which
maximizes the ZLK mechanism. We have depicted this in Fig. 1.17, showing
the evolution of the BBH eccentricity in terms of the proper time τ (solid black
line) and the asymptotic time t̂ (red line) compared with the case in which
the external SMBH is treated in a Newtonian point particle approximation
(dashed curve). The masses are chosen as it follows: m1 = m2 = 10M⊙ for
the BBH and m3 = 2 × 109 M⊙ for the SMBH, ensuring that it is possible
to approach the ISCO while avoiding tidal breakup. For simplicity we have
chosen to focus on the non-spinning case χ = 0, for which r̂ ≈ 119 AU, and
ut =

√
2.

We see from Fig. 1.17 that the combination of a high initial inclination
angle and the strong-gravity effects at the ISCO speeds up the merger, which
occurs in just a single ZLK oscillation. Accordingly, Fig. 1.17 also shows that
the maximum eccentricity is enhanced when including GR effects, reaching
extremely high values 1 − e2max < 10−4, and further contributing to reduce
the merger time (t̂ ≈ 0.025 yrs in terms of the asymptotic time) compared to

17This value in the counter-rotating case is consistent with the fact that the BBH orbits
very close to the SMBH ISCO, r̂ ≈ 1.02 r̂−ISCO.
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Figure 1.17: We depict here the eccentricity of a BBH system at the ISCO of
an SMBH with χ = 0. The solid black and red lines represent the system in
terms of the local time τ and the asymptotic time t̂, respectively. The masses
are chosen as m1 = m2 = 10 M⊙ and m3 = 2 × 109 M⊙. In contrast, the
dashed black line is the result obtained by using the Newtonian point particle
approximation for the SMBH with the same outer orbit radius 119 AU. The
initial conditions for the BBH orbital parameters are e0 = 0.1, a0 = 0.1 AU,
γ0 = 0◦ and I0 = 89.9◦.

the examples presented before in Fig. 1.14. Finally, it is important to observe
that, in terms of the proper time τ (black curve in Fig. 1.14), the merger time
is halved, as compared to the merger time when using the Newtonian point
particle approximation for the SMBH (dashed curve in Fig. 1.14), in perfect
agreement with the analytical prediction we derived in Sec. 1.2.6 that at the

ISCO of an SMBH one has Ω
(GR)
ZLK /Ω

(N)
ZLK = 2.

Other than the merger time, it is of obvious importance to understand
the frequency spectrum of the GWs emitted from the BBH, to see further
observational signatures of placing the BBH at the ISCO of the SMBH. A
measure of this is the peak frequency fGW of Eq. (1.162) that marks the
dominant frequency in the GW spectrum.

As pointed out in previous works [19, 185], an exhaustive characteriza-
tion of ZLK-boosted triple systems via GW signal observations would require
combining future space-based interferometers such as LISA, to probe the ear-
lier phase of the merger when the two black holes are widely separated and
the ZLK mechanism dominates, together with current ground-based facilities
(such as LIGO-Virgo-KAGRA), which can detect the merger of an already-
circularized BBH system at late stages.

As is evidenced by Figs. 1.16 and 1.17, highly inclined (I0 > 89.4◦) binaries
in the strong-gravity regime are characterized by fast-merger dynamics. The
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Figure 1.18: GW peak frequency fGW emitted by the BBH system as a
function of the proper time τ (left panel) and asymptotic time t̂ (right
panel). The BBH is placed on the ISCO of a non-spinning SMBH with mass
m3 = 2× 109 M⊙, corresponding to r̂ ≈ 120 AU. The two black holes in the
binary system have masses of m1 = m2 = 10 M⊙ with an initial separation
of a0 = 0.1 AU, an initial inclination angle I0 = 89.4◦, initial eccentricity
e0 = 0.1 and γ0 = 0◦.
Left Panel: we compare the peak frequency when treating the SMBH by a full
GR description using the Schwarzschild metric (solid black) to what one ob-
tains from a Newtonian point particle description (dashed black). One notices
that there is twice the number of peaks in the GR description compared to

the Newtonian approximation, consistent with the fact that Ω
(GR)
ZLK = 2 Ω

(N)
ZLK

at the ISCO. The gravitational redshift is not considered in this plot.
Right Panel: the same comparison as in the left panel, but in terms of the
asymptotic time t̂ (red curve). This includes the gravitational redshift ut.
Notice that the inclusion of the redshift factor makes the merger time quite
different in the two cases (4.8 months in the Newtonian case compared to
6.9 months in the GR case) and reduces the maximum value reached by the
frequency.
The blue curve reproduces the ratio between the PN precession and the ZLK
timescales. Finally, the pink and green bands in the background respectively
show the range of frequency detectable for the upcoming interferometers ET
(1 Hz < fGW < 10 kHz) and LISA (0.001 Hz < fGW < 0.1 Hz) .
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Figure 1.19: Same peak frequency comparison as in Fig. 1.18 between the
Newtonian and the GR case but now for a spinning SMBH with m3 = 2 ×
109 M⊙ and χ = 0.3 (with σ = 1). In this case, the co-rotating ISCO is
located at r̂ ≈ 99 AU. As in Fig. 1.18 the left and the right panels differ for
the inclusion of the redshift factor, which in this case amounts to ut ≈ 1.41 .

GW signal in these cases would result in a single pulse observed by both
ET and LISA, promptly followed by a chirp signal detected by LIGO-Virgo-
KAGRA.
Lowering the initial inclination angle I0 should instead provide more ZLK
oscillations, as seen in Fig. 1.16, since the ZLK mechanism is less hampered
by the periastron precession. This could in turn provide a longer signal to be
observed by ET and LISA. Indeed, one would expect the detection of a BBH
merger by LIGO-Virgo-KAGRA to be preceded by a series of repeated pulses
detected by ET and LISA at earlier times, that mark the presence of the ZLK
cycles.
To show this, we plot in Figs. 1.18 and 1.19 the GW peak frequency fGW of
the GW emission from the BBH as a function of time given a slightly lower
initial inclination angle I0 = 89.4◦. We consider two cases, one for zero spin
χ = 0 of the SMBH (Fig. 1.18) and one with non-zero co-rotating spin χ = 0.3
(Fig. 1.19). In both cases the BBH moves along the ISCO of the SMBH. In
the figures we compare the results of our novel GR description for the SMBH
to what one would have obtained by treating the SMBH as a Newtonian point
particle. In detail, the black curves in Figs. 1.18 and 1.19 mark the peak
frequency fGW measured with proper time τ on the left while the red curve
marks the asymptotically measured peak frequency fGW with asymptotic time
t̂ of the Kerr space-time on the right. These curves are then compared to the
peak frequency fGW that one obtains from SMBH as Newtonian point particle,
marked by the black dashed curves.

While χ = 0 in Fig. 1.18, we have turned on the spin of the SMBH in
Fig. 1.19 with χ = 0.3 corresponding to a co-rotating spin σ = 1. Turning on
the spin parameter for the SMBH allows binary systems to access regions of
space-time which would be prohibited in the non-spinning case. More specif-
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ically, the co-rotating ISCO for Kerr lies closer to the black hole than in the
non-spinning case. Comparing the spinning case to the non-spinning case,
we observe that the binary system undergoes a larger number of ZLK cycles
before the merger occurs.

For the left panels of Figs. 1.18 and 1.19 we have depicted the evolu-
tion of the peak frequency in terms of the proper time, which is the local
time of the BBH. These panels highlight the fact that in the early phases of
the merger when the period of ZLK oscillations is much shorter than the
one of the periastron precession (TPN ≫ TZLK, as marked with the blue
curve), the future interferometers ET and LISA would detect twice the num-
ber of pulses entering their frequency band (depicted with pink and green
stripes respectively) compared to a Newtonian point particle description of
the SMBH. This is consistent with our analytic prediction that at the ISCO

of any SMBH, we have Ω
(GR)
ZLK = 2Ω

(N)
ZLK. While the LISA sensitivity band

(10−3 Hz < fGW < 10−1 Hz) detects GWs emitted only in the earlier
phases of the inspiral, it is interesting to notice that the ET frequency band
(1 Hz < fGW < 10 kHz) allows to observe GWs up to the final stages of the
BBH merger.

In the right panels of Figs. 1.18 and 1.19 we depict instead the evolution of
the peak frequency in terms of the asymptotic time t̂, i.e. the time appropriate
for the GW detector. The redshift factor included in the asymptotic time is
not only responsible for reducing the maximum peak frequency reached by
the GW emitted by the binary, but it also shifts the positions of the pulses
and significantly affects the merger time.

Finally, Figs. 1.18 and 1.19 show how in the last part of the merger (TPN ≪
TZLK) the GW peak frequency enters the detectable band of LIGO/Virgo/Kagra
(fGW > 10 Hz).



Chapter 2

Extreme Mass Ratio Inspirals

W
ith the term Extreme Mass Ratio Inspirals (EMRIs) we refer to binary
systems where the two companions have masses that are not compara-

ble, i.e. one of the two objects is way heavier than the other. If we denote the
mass of the primary object M and the mass of the secondary one m, the mass
ratio for an EMRI p = m/M is always much smaller than 1, namely p ≪ 1,
where typical values for the mass ratio are in the range 10−8 < p < 10−4 [50].

There are different formation channels for EMRI systems, but a lot of
them have a high uncertainty on the event rates [188]. Here we report the
most well-studied yet, which is usually known as the dry channel [189], where
EMRI systems form in galactic nuclei with a low gas density. In this scenario
it is possible for compact objects to form a dense environment close to the
galactic nuclei, where stellar mass objects can get gravitationally bounded to
the central SMBH, forming an EMRI which usually will have a high eccen-
tricity [188,190]. Another channel proposed in the literature involves the tidal
disruption of a binary system in the proximity of a SMBH, where one of the
two objects in the binary is ejected during the tidal disrupting event while the
other gets gravitationally bounded to the SMBH, forming an EMRI system
with usually a low eccentricity [191,192].

Since in the literature people are also referring to binary systems with
a different mass ratio as EMRIs, and given that in the Universe there exist
binaries with a mass ratio close to the one of an EMRI, we recall briefly the
nomenclature usually implemented in astrophysics for this kind of systems:

• Intermediate Mass Ratio Inspirals (IMRIs) [193, 194] - the mass ratio
for these binaries usually lies in the range 10−4 < p < 10−2 and they
can be divided in two classes: light and heavy IMRIs. We refer to the
former one when an Intermediate Mass Black Hole (IMBH) is orbited
by a stellar-mass object, while the latter describes a binary where the
primary object is a supermassive black hole (SMBH) and the secondary
one an IMBH.

77
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• Extreme Mass Ratio Inspirals (EMRIs) [64,195–197] - these binaries are
the ones we are interested in. As already mention above, their mass
ratio is usually in the range 10−8 < p < 10−4 and the two companions
are a supermassive black hole and a stellar mass compact object or, in
some cases, a SMBH and a binary stellar mass compact object. In the
latter case the system is usually called b-EMRI [65–68].

• Extremely Large Mass Ratio Inspirals (XMRIs) [198, 199] - The mass
ratio for these systems is p ≤ 10−8 and they usually have a SMBH as
the primary companion and a sub-stellar object, such as a brown dwarf,
as a secondary one.

In this thesis we will focus our attention on EMRIs and b-EMRIs but it
is worth mentioning that IMRIs are widely studied since they represent the
link between EMRIs and comparable-masses binaries and the study of their
properties can give us a better insight on the how SMBHs can form from
IMBHs. On the other hand XMRIs can give us valuable information on what
is happening in the inner region of our Galaxy, close to the SMBH at its center.
For a more detailed analysis on IMRIs we refer the reader to refs. [64,193–197],
while for XMRIs to refs. [198,199].

All the systems mentioned above, given the large mass of the primary
companion in the binary system, are expected to emit gravitational waves in
the range of 10−4 Hz ÷ 1 Hz, depending on how massive the SMBH is. Thus,
the current ground-based interferometers LIGO, Virgo and KAGRA, are not
able to investigate these kind of systems [200–203].1 On the other hand the
future space-based interferometers such as LISA, Taiji or TianQin will be able
to investigate the Universe through gravitational waves in the mHz band,
making EMRIs the perfect candidates and primary targets for them [58–63].
Thus to investigate the dynamics of EMRIs, their properties and how they are
affected by the presence of a tidal environment is of paramount importance,
especially for the future of gravitational waves [188].

Given the nature of EMRIs, i.e. the extreme difference between the masses
of the two companions forming the binary system, the stellar compact object
can spend an extended period of time (∼ years) completing 102 ÷ 105 orbital
cycles in the region near the horizon of the SMBH before merging [50, 64],
where the dynamics of the system is strongly affected by general relativity
effects, making EMRIs probes for strong-field gravity. Moreover the gravita-
tional wave signals emitted by these systems will be extremely sensitive to the
parameters characterizing the SMBH [189], making EMRIs the perfect candi-
dates for a more accurate measure of the mass or the spin of a SMBH. Finally
it is worth mentioning that EMRIs, thanks to the future space-based interfer-

1It might be possible for ground-based interferometers to detect gravitational waves
emitted by very light IMRIs, see references in the main text for more details.
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ometers, can also be used as dark sirens in the context of cosmology [204,205]
and they can be used to investigate theories of fundamental physics [206,207].

2.1 EMRIs in tidal environment

In this section we will focus our attention on how the dynamics of an EMRI
system is affected by the presence of an external tidal field, which in our
case will arise from the presence of a spinning black hole, i.e. a Kerr black
hole, in the proximity of the EMRI system. More specifically we will consider
a hierarchical three body system: a thigh inner binary with a non-spinning
black hole of mass M (described by the Schwarzschild metric) and a test
particle of mass m under the gravitational interaction of a supermassive black
hole with mass M∗, see Fig. 2.1 for a schematic representation of the triple
system. We also assume the outer orbit around the Kerr black hole to be much
wider compared to the orbit of the test particle around the Schwarzschild black
hole. Moreover there is also a hierarchy in the masses, namely we consider
m ≪ M ≪ M∗, where the condition m ≪ M ensures that we can treat
the inner binary system as an EMRI, while the second one, i.e. M ≪ M∗,
allows us to analyse the presence of the outer SMBH as a perturbation to the
dynamics of the EMRI. In other words the latter condition is necessary to
satisfy the small-tide approximation introduced in (1.55) using the small-hole

Figure 2.1: Schematic representation of the hierarchical triple system anal-
ysed in our problem. M∗ represents the supermassive spinning black hole,
described by the Kerr metric. The other two masses M and m form together
a EMRI system, where M depict a non spinning black hole described by the
Schwarzschild metric, while m represents a test particle.
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approximation and to analyse how the dynamics of the EMRI is affected by
strong gravity effects. Given the hierarchical configuration of our problem we
can also treat the SMBH - EMRI binary as an EMRI itself, where we will refer
to the Schwarzschild - test particle binary as the inner EMRI while to the
SMBH - inner EMRI as the outer one. Thus the small-tide condition (1.55)
(that here we satisfy thanks to the hierarchical configuration) is fundamental
to capture the dynamics of the inner binary system since, as we mentioned
previously in this chapter, the secondary companion of an EMRI system will
spend a lot of orbital cycles near the horizon of the more massive object. This
also apply to our problem where the inner EMRI will be orbiting very close
to the SMBH, where it is no longer possible to neglect strong gravity effects.

2.1.1 Tidal moments induced by a Kerr black hole

In this section we will follow Refs. [69, 70] to construct the quadrupole tidal
moments for a geodesic motion around a Kerr black hole. Some of the topics
that we will analyse in this section have already been covered, in a less detailed
manner, in Sec. 1.2. Since here we are using a different notation for our
triple system, we will repeat some arguments as they will be necessary for our
analysis. Moreover in what follow we will work in units with G = c = 1.

Carter’s tetrad

Here we start by writing the metric for a spinning Kerr black hole of mass M∗

and spin J∗ in Boyer-Lindquist (BL) coordinates x̂µ =
(
t̂, r̂, θ̂, ϕ̂

)
, which we

already introduced in eq. (1.72) and we here recall for convenience:

dŝ2 = −
(
1−2M∗r̂

Σ

)
dt̂2 − 4M∗r̂

Σ
a sin2 θ̂ dt̂ dϕ̂

+
A
Σ

sin2 θ̂ dϕ̂2 +
Σ

∆
dr̂2 +Σdθ̂2 ,

(2.1)

where a = J∗/M∗ is the specific angular momentum and

Σ = r̂2 + a2 cos2 θ̂, ∆ = r̂2 − 2M∗r̂ + a2,

A = (r̂2 + a2)2 − a2∆sin2 θ̂ .
(2.2)

The equations of motion for time-like geodesics can be written in terms of
three constants of motion, namely the energy per unit mass Ê, the angular
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momentum per unit mass L̂ and the Carter constant K. They read [169]

˙̂t =
AÊ − 2M∗r̂aL̂

∆Σ
,

˙̂r2 =

[
Ê(r̂2 + a2)− aL̂

Σ

]2
− ∆

Σ2
(r̂2 +K) ,

˙̂
θ2 =

1

Σ2

[
K − a2 cos2 θ̂ −

(
aÊ sin θ̂ − L̂

sin θ̂

)2
]
,

˙̂
ϕ =

1

∆

[
2M∗r̂aÊ

Σ
+

(
1− 2M∗r̂

Σ

)
L̂

sin2 θ̂

]
,

(2.3)

where the dot denotes differentiation with respect to the proper time τ . The
Kerr metric presented in (2.1) can also be written in terms of the so called
Carter’s tetrad [208] as dŝ2 = η(a)(b)ω

(a)ω(b), where

ω(0) =

√
∆

Σ

(
dt̂− a sin2 θ̂dϕ̂

)
,

ω(1) =

√
Σ

∆
dr̂ ,

ω(2) =
√
Σdθ̂ ,

ω(3) =
sin θ̂√

Σ

(
adt̂− (r̂2 + a2)dϕ̂

)
.

(2.4)

In terms of this tetrad, the curvature 2-form can be written as

Ω(a)(b) =
1

2
C(a)(b)(c)(d)ω

(c) ∧ ω(d) , (2.5)

where C(a)(b)(c)(d) are the components of the Weyl tensor (which for the Kerr
metric corresponds to the Riemann tensor Rµνρσ) projected along the inverse
of Carter’s tetrad presented in (2.4), ωµ

(a), namely

C(a)(b)(c)(d) = Cµνρσ ω
µ
(a)ω

ν
(b)ω

ρ
(c)ω

σ
(d). (2.6)

Explicitly the 2-form in (2.5) can be written as [69,209]

Ω(0)(1) = 2I1 ω
(0) ∧ ω(1) + 2I2 ω

(2) ∧ ω(3) ,

Ω(0)(2) = −I1 ω(0) ∧ ω(2) + I2 ω
(1) ∧ ω(3) ,

Ω(0)(3) = −I1 ω(0) ∧ ω(3) − I2 ω
(1) ∧ ω(2) ,

Ω(1)(2) = −I1 ω(1) ∧ ω(2) + I2 ω
(0) ∧ ω(3) ,

Ω(1)(3) = −I1 ω(1) ∧ ω(3) − I2 ω
(0) ∧ ω(2) ,

Ω(2)(3) = 2I1 ω
(2) ∧ ω(3) − 2I2 ω

(0) ∧ ω(1) ,

(2.7)
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where

I1 =
M∗r̂

Σ3

(
r̂2 − 3a2 cos2 θ̂

)
,

I2 =
aM∗ cos θ̂

Σ3

(
3r̂2 − a2 cos2 θ̂

)
.

(2.8)

Marck’s tetrad

We now introduce an orthonormal tetrad λ(a) =
(
λ
(a)
0 , λ

(a)
1 , λ

(a)
2 , λ

(a)
3

)
that is

parallel-transported along an arbitrary time-like geodesic, following Ref. [69],
which we call the Marck’s tetrad. This tetrad is the same as the one in (1.82),

which we here recall for convenience. The first component of the tetrad λ
(a)
0

is a time-like unit vector tangent to the geodesic while the other components

λ
(a)
i are space-like unit vectors. The components of the tetrad satisfy the

orthonormal condition
η(a)(b) λ

(a)
α λ

(b)
β = ηαβ , (2.9)

and the parallel-transported condition which guarantees that the tetrad frame
is inertial

λµ0∇µλ
ν
α = 0 , (2.10)

where λµα = ωµ
(a)λ

(a)
α and α, β = {0, 1, 2, 3} are the labels of the components of

the tetrad.
The explicit expression for the components of the tetrad can be conve-

niently given in terms of the constant of motion of the Kerr geometry as [69]
2

λ
(a)
0 =

(
Ê(r̂2 + a2)− aL̂√

∆Σ
,

√
Σ

∆
˙̂r,
√
Σ
˙̂
θ,
aÊ sin2 θ̂ − L̂

sin θ̂
√
Σ

)
,

λ
(a)
1 = λ̃

(a)
1 cosΨ− λ̃

(a)
2 sinΨ ,

λ
(a)
2 = λ̃

(a)
1 sinΨ + λ̃

(a)
2 cosΨ ,

λ
(a)
3 =

1√
K

(
a cos θ̂λ

(1)
0 , a cos θ̂λ

(0)
0 ,−r̂λ(3)0 , r̂λ

(2)
0

)
,

(2.11)

where

λ̃
(a)
1 =

√
T

KS

(
r̂λ

(1)
0 , r̂λ

(0)
0 ,

S

T
a cos θ̂λ

(3)
0 ,−S

T
a cos θ̂λ

(2)
0

)
,

λ̃
(a)
2 =

√
T

S

(
λ
(0)
0 , λ

(1)
0 ,

S

T
λ
(2)
0 ,

S

T
λ
(3)
0

)
,

(2.12)

and
S = r̂2 +K , T = K − a2 cos2 θ̂ . (2.13)

2We rename λ
(a)
2 and λ̃

(a)
3 in Ref. [69] with our λ

(a)
3 and λ̃

(a)
2 , respectively.
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Notice the identity Σ = S−T . Here we introduced the Marck’s angle Ψ which

ensures that the tetrad λ(a) =
(
λ
(a)
0 , λ

(a)
1 , λ

(a)
2 , λ

(a)
3

)
is parallel-transported

along the geodesic motion. This angle is a function of the proper time of the
Kerr geodesic and satisfies the following differential equation [69]:

Ψ̇ =

√
K

Σ

(
Ê(r̂2 + a2)− aL̂

S
+ a

L̂− aÊ sin2 θ̂

T

)
. (2.14)

An explicit expression for this angle can be found in ref. [69] and, in terms of
the Mino time, in ref. [210].

Tidal tensors

In this subsection we will derive the explicit expressions for the tidal tensors
which will be used to build the electric and magnetic tidal potential that con-
tain all the information about the interaction between the inner EMRI and
the supermassive Kerr black hole. We start by evaluating the Weyl tensor
Cµνρσ on the parallel-transported tetrad λ(a) defined in eq. (2.11). This is the
best way to capture tidal effects induced on the test particle moving in the
neighborhood of a Kerr geodesic.
In particular in order to compute the quadrupole tidal potential we are inter-
ested in the following components of the Weyl tensor projected on the tetrad
λ(a) [69, 70]

Cij ≡ C(a)(b)(c)(d)λ
(a)
0 λ

(b)
i λ

(c)
0 λ

(d)
j ,

Cijk ≡ C(a)(b)(c)(d)λ
(a)
0 λ

(b)
i λ

(c)
j λ

(d)
k ,

(2.15)

where the first one is a rank-2 tensor while the second one a rank-3 tensor. We
recall that C(a)(b)(c)(d) = Cµνρσ ωµ

(a)ω
ν
(b)ω

ρ
(c)ω

σ
(d). It is worth mentioning

that Cij is a STF tensor while Cijk is a trace-free and anti-symmetric in (j, k)
tensor which satisfies the condition Cijk + Cjki + Ckij = 0, yielding to the
following two relations

Cijk − Cjik = −Ckij , Cijk − Ckji = −Cjki. (2.16)

We are now ready to give the explicit expressions for the components in (2.16)
in terms of the parameters describing the Kerr geodesic. Note that these
expressions hold for an arbitrary time-like geodesic in the Kerr background.
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Starting with the Cij , the non-zero components are

C11 =

[
1− 3ST

KΣ2
(r̂2 − a2 cos2 θ̂) cos2Ψ

]
I1 +

6ST

KΣ2
ar̂ cos θ̂ cos2ΨI2 ,

C12 = − 3ST

KΣ2

[(
r̂2 − a2 cos2 θ̂

)
I1 − 2ar̂ cos θ̂I2

]
sinΨ cosΨ ,

C13 = −3
√
ST

KΣ2

[
ar̂ cos θ̂(S + T )I1 +

(
r̂2T − a2S cos2 θ̂

)
I2

]
cosΨ ,

C22 =

[
1− 3ST

KΣ2
(r̂2 − a2 cos2 t̂heta) sin2Ψ

]
I1 +

6ST

KΣ2
ar̂ cos θ̂ sin2ΨI2 ,

C23 = −3
√
ST

KΣ2

[
ar̂ cos θ̂(S + T )I1 +

(
r̂2T − a2S cos2 θ̂

)
I2

]
sinΨ ,

C33 =

[
1 +

3

KΣ2
(r̂2T 2 − a2S2 cos2 θ̂)

]
I1 −

6ST

KΣ2
ar̂ cos θ̂I2 ,

(2.17)

where I1,2 are defined in (2.8) and S, T in (2.13).
For the rank-3 tensor Cijk the non-vanishing componets are given by

C112 =
3
√
ST

KΣ2

[(
r̂2T − a2S cos2 θ̂

)
I1 − ar̂ cos θ̂(S + T )I2

]
cosΨ ,

C113 =
3ST

KΣ2

[
2ar̂ cos θ̂I1 +

(
r̂2 − a2 cos2 θ̂

)
I2

]
sinΨ cosΨ ,

C123 = − 6ST

KΣ2
ar̂ cos θ̂ cos2ΨI1 +

1

KΣ2

[(
r̂2T + a2S cos2 θ̂

)
(S − T )

−3ST
(
r̂2 − a2 cos2 θ̂

)
cos2Ψ

]
I2 ,

C212 =
3
√
ST

KΣ2

[(
r̂2T − a2S cos2 θ̂

)
I1 − ar̂ cos θ̂(S + T )I2

]
sinΨ ,

C213 =
6ST

KΣ2
ar̂ cos θ̂ sin2ΨI1 +

1

KΣ2

[
r̂2T (2S + T )− a2 cos2 θ̂S(S + 2T )

−3ST
(
r̂2 − a2 cos2 θ̂

)
cos2Ψ

]
I2,

C312 =
6ST

KΣ2
ar̂ cos θ̂I1 +

1

KΣ2

[
r̂2T (S + 2T )− a2 cos2 θ̂S(2S + T )

]
I2 .

(2.18)

Where we observe that C223 = −C113, C312 = C213 − C123, C313 = −C212,
C323 = C112. Restricting ourselves to geodesic motion in the equatorial plane
of the Kerr spacetime, i.e. fixing θ̂ = π/2, the tidal tensors simplify greatly
and we recover the expressions presented in (1.85), in agreement with Ref. [69,
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211,212]

C11 =

[
1− 3

(
1 +

K

r̂2

)
cos2Ψ

]
M∗
r̂3

,

C22 =

[
1− 3

(
1 +

K

r̂2

)
sin2Ψ

]
M∗
r̂3

,

C12 = −3

(
1 +

K

r̂2

)
M∗
r̂3

cosΨ sinΨ ,

C33 =

(
1 + 3

K

r̂2

)
M∗
r̂3

,

(2.19)

while the rank-3 tensor components in the equatorial plane reduce to

C121 = −3M∗
√
K

r̂4

√
1 +

K

r̂2
cosΨ ,

C221 = −3M∗
√
K

r̂4

√
1 +

K

r̂2
sinΨ ,

(2.20)

in agreement with refs. [211,213]. Finally we recall that the explicit expressions
for the constant of motion in the Kerr equatorial plane are defined in (1.78)3

and the equation for the Marck angle reduces to

Ψ̇ =

√
K

r̂2 +K

(
Ê − a

aÊ − L̂

)
= σ

√
M∗
r̂3
, (2.21)

where σ = ±1 distinguish between co-rotation orbits (+) and counter-rotating
orbits (−) in the Kerr spacetime.

Electric and magnetic quadrupole moments

Following ref. [70], the electric and magnetic quadrupole tidal potential can
be written as

Eij ≡ Cij , Bij ≡ −1

2
ϵkl⟨iC

kl
j⟩ , (2.22)

with ϵijk the three-dimensional Levi-Civita symbol with ϵ123 = +1. The
Cartesian indices, denoted by Latin letters, are raised and lower with the
Kronecker delta δij . Both the electric and magnetic tidal potential are STF,
meaning that they will have 5 independent components each, accounting for
the 10 independent components of the Weyl tensor. To give an example here
we report the magnetic quadrupole tidal moments in terms of the Cijk

4

B11 = −C123 , B12 = C113 , B13 = −C112 ,

B22 = C213 , B23 = −C212 , B33 = C123 − C213 ,

3Where in the notation used in this chapter we have m3 → M∗ and s3 → a.
4We only report the magnetic tidal potential since this is a new result, while the electric

quadrupole tidal moments have already been computed in several works, see for example [69].
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where we used that C223 = −C113, C312 = C213 − C123, C313 = −C212 and
C323 = C112. For the purpose of our analysis it is more convenient to de-
compose the electric Eij and magnetic Bij tidal potential in terms of their
irreducible representation of SO(3). To this end we need to introduce two
ingredients: the first one is the radial unit vector

Ωi =
xi

r
, (2.23)

where r =
√
δijxixj is the Euclidean radius which gives us the distance from

the geodesic, and the second one is the projector to the space orthogonal to
Ωi, given by

γij = δij − ΩiΩj . (2.24)

Then the decomposition for the electric quadrupole tidal potential Eij can be
written as

Eij = Eq

(
ΩiΩj −

1

2
γij

)
+ 2Eq

(iΩj) +
1

2
Eq
⟨ij⟩ , (2.25)

where the scalar Eq, the transverse vector Eq
i (i.e. ΩiEq

i = 0) and the trans-
verse STF tensor Eq

⟨ij⟩ are given by

Eq ≡ ΩiEijΩj = −γijEij ,
Eq
i ≡ γ j

i EjkΩ
k , (2.26)

Eq
⟨ij⟩ ≡ 2γ k

i γ
l
j Ekl − Eklγklγij = 2γ k

i γ
l
j Ekl + Eqγij .

For the quadrupole magnetic tidal potential Bij , we first write down the de-
composition of the rank-3 tidal tensor Cijk

Cijk = Bq
k

(
ΩiΩj − γij

)
− Bq

j (ΩiΩk − γik) +
1

2

(
Bq
⟨ik⟩Ωj − Bq

⟨ij⟩Ωk

)
, (2.27)

with the inverse relations given by

Bq
i = CjkiΩ

jΩk , Bq
⟨ij⟩ = 2ΩkClk(iγ

l
j) . (2.28)

Thus the decomposition for the magnetic tidal potential reads

Bij = ϵlk(i

[
Bq
l

(
Ωj)Ωk − γj)k

)
+

1

4

(
Bq
⟨j)l⟩Ωk − Bq

⟨j)k⟩Ωl

)]
, (2.29)

with symmetrization with respect to the indices (i, j) and STF with respect
to the indices ⟨jl⟩ and ⟨jk⟩. The transverse vector Bq

i and the transverse STF
tensor Bq

⟨ij⟩ are

Bq
i ≡ ϵijkΩ

jBk
lΩ

l ,

Bq
⟨ij⟩ ≡ 2ϵkl(iγ

m
j)Ω

kBl
m .

(2.30)
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2.1.2 Hierarchical triple system

In this section we use the explicit results that we got for the quadrupole tidal
moments to analyse how the dynamics of the test particle of mass m moving
along a circular geodesic around the Schwarzschild black hole of mass M is
affected by the presence of the supermassive spinning Kerr black hole of mass
M∗. We recall that we are interested in studying the scenario where the inner
EMRI is orbiting close to the SMBH black hole, i.e. when strong gravity
effects can no longer be neglected. As we mentioned in Sec. 1.2, a way of
analysing the dynamics of a binary system in the strong gravity regime is to
employ the small-tide approximation introduced in eq. (1.55),which here we
satisfy by requiring M ≪M∗.

Moreover we will assume that the radius or the orbit along which the test
particle m is moving is of order M , namely r = O (M), with an associated
timescale τbinary = O (M). For the outer orbit instead we will assume its
radius to be of order r̂ = O (M∗), with a timescale τKerr = O (M∗). From
the hierarchy in the masses of the triple system, i.e. M∗ ≫ M , immediately
follows that the time scale associated to the outer orbit is much longer than
the one associated to the inner orbit, i.e. τKerr ≫ τbinary. As a consequence
the dynamics of the test particle takes place on a time scale that is much faster
then the one associated with the evolution of the orbital parameters of the
outer orbit, which means that we can assume that the quadrupole moments
and the Marck’s angle Ψ do not vary in time5.

Tidally deformed Schwarzschild spacetime

We can take into account the effects of the tidal field induced by the Kerr
SMBH on the dynamics of the test particle by considering that the spacetime
where m is moving is described by the Schwarzschild metric induced by M
plus a small tidal perturbation due to M∗. We usually refer to this spacetime
as the tidally deformed Schwarzschild spacetime [70] which can be written as

ds2 = ḡµνdx
µdxν + hµνdx

µdxν , (2.31)

where the tidal perturbation hµν is computed up to the first order in the small-
tide approximation. The background geometry (in spherical coordinates) is

ḡµνdx
µdxν = −fdt2 + dr2

f
+ r2ΩABdθ

AdθB , (2.32)

with f = 1 − 2M/r and M being the black hole mass, θA = (θ, ϕ) and
ΩABdθ

AdθB = dθ2 + sin2 θdϕ2 being the metric of the unit sphere. By only

5This is explicit by looking at the expression of Ψ̇ in (2.14), where we immediately see
that if r̂ = O (M∗), then the rate of change of the angle Ψ is Ψ̇ = O

(
1/M∗

)
.
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retaining the quadrupole order terms in the tidal deformation hµν , one gets

hµνdx
µdxν =

− r2Eq (fdt+ dr)2 − 4

3
r3
(
Eq
A − Bq

A

)
(fdt+ dr) dθA

− 1

3
r4

(1− 2M2

r2

)
Eq
AB −

(
1− 6M2

r2

)
Bq
AB

 dθAdθB.
(2.33)

Where here we decomposed the quadrupole tidal potentials in their scalar
(Eq), vector

(
Eq
A,B

q
A

)
and tensor

(
Eq
AB,B

q
AB

)
components following the de-

composition in Eqs. (2.25)-(2.29), and changing coordinates from Cartesian
to spherical ones, according to the following relations

Eq
i dx

i =
∂xi

∂xA
Eq
i dx

A = Eq
θ (rdθ) + Eq

ϕ(rdϕ) ,

Eq
⟨ij⟩dx

idxj =
∂xi

∂xA
∂xj

∂xB
Eq
⟨ij⟩dx

AdxB =

= Eq
θθ(rdθ)

2 + 2Eq
θϕr

2dθdϕ+ Eq
ϕϕ(rdϕ)

2 ,

(2.34)

and similarly for the magnetic tidal moments Bq
i ,B

q
⟨ij⟩. The tidally deformed

metric for the Schwazrschild spacetime introduced in eq. (2.31) has been de-
rived in ref. [70] and in Appendix C we provide a brief summary of their
computation.

As we will see later, how the dynamics of the test particle is affected by
the presence of a tidal field depends also on the relative inclination between
the inner and the outer orbit6. Thus to properly analyse the effects of the
Kerr SMBH on the dynamics of the EMRI system we need to introduce the
usual three Euler angles which allow us to study all possible configurations
for the inner binary. To this end we start by introducing the unit directional
vector

Ωi = (cosϕ sin θ, sinϕ sin θ, cos θ) , (2.35)

centered in the Schwarzschild black hole of mass M , and attached to the
reference frame of the EMR system (M,m). Thanks to the spherical symmetry
of the Schwarzschild spacetime, we can set without loss of generality θ = π/2,
restricting the motion of the test particle to the equatorial plane. Therefore
any arbitrary orientation of the inner EMRI system is given by

Ω⃗′ = RχRβRα · Ω⃗ , (2.36)

6Note how this was also clear in the Chapter 1 of this thesis where we analysed the ZLK
mechanism, showing how it is highly dependent on the mutual inclination between the inner
and outer orbits.
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where Rα, Rβ, Rχ are the Euler rotational matrices, defined as

Rα =

 cosα sinα 0
− sinα cosα 0

0 0 1

 , Rβ =

1 0 0
0 cosβ sinβ
0 − sinβ cosβ

 ,

Rχ =

 cosχ sinχ 0
− sinχ cosχ 0

0 0 1

 .

(2.37)

Moreover we will restrict our analysis to circular orbits for the test particle
around the Schwarzschild black hole. In this scenario one of the Euler angles,
α in our case, can be reabsorbed by a redefinition of the azimuthal angle
ϕ → ϕ + α. Thus to fully specify any orientation of an orbit in the binary
system with respect to the Kerr perturber we only need two angles, namely
β and χ 7. In Fig. 2.2 we show four possible configurations in the case where
the SMBH with mass M∗ is a Schwarzschild black hole and the binary system
is moving on a circular geodesic.

Tidal moments in spherical coordinates

After introducing the three Euler angles it is obvious, by looking at the decom-
position of the electric and magnetic quadrupole tidal potentials presented in
eq. (2.26) and in eq. (2.30), that they will also depend on the relative configu-
ration between the inner EMRI (M,m) and the Kerr SMBH. More specifically
after replacing in the decomposition (2.26) the unit directional vector Ωi with
the new one Ω′i defined in eq. (2.36), we can write explicitly the components
of the electric quadrupole moments as

Eq = −1

8

(
C33 + T +

2 + T +
4 − 4T +

3 sin 2ϕ
)

− 1

8

[
3(C33 + T +

2 )− T +
4

]
cos 2ϕ ,

Eq
θ =

1

4

[
2T −

3 cosϕ− T −
4 sinϕ

]
,

Eq
ϕ =

1

8

[
4T +

3 cos 2ϕ+
(
3(C33 + T +

2 )− T +
4

)
sin 2ϕ

]
,

Eq
θθ = −Eq

ϕϕ = Eq +
1

2

(
C33 + T +

2 + T +
4

)
,

Eq
θϕ = −1

2

(
2T −

3 sinϕ+ T −
4 cosϕ

)
,

(2.38)

7Note that these Euler angles are the same introduced in (1.102), with the identifications
α → θ, β → I and χ → γ.
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Figure 2.2: For illustrative purposes, we show four possible configurations for
a hierarchical three-body system M∗ ≫M ≫ m in the special case for which
the perturber M∗ is a Schwarzschild black hole and the EMR binary system
(M,m) is parallel-transported around a circular geodesic around M∗, whose
orbital plane is depicted in gray and terminates at the ISCO. These configu-
rations are altered significantly in more general cases with a Kerr perturber
or non-circular geodesics. The names of the configurations refer to the orien-
tation of the orbital angular momentum L of the binary system with respect
to the gray orbital plane. The grey curve represents the orbit around M∗.
The blue orbit marks a conventional “initial” orthogonal configuration for the
binary system reference frame, with the Cartesian axis oriented according to
the parallel transported tetrad (panel I). The red orbits in panels II, III and
IV are obtained by Euler rotations with angles written in the bottom-left of
each panel.
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where we defined the following rotations around χ of the components of Cij

T +
1 = C23 cosχ+ C13 sinχ ,

T −
1 = C23 sinχ− C13 cosχ ,

T +
2 = 2C12 sin 2χ+ (2C22 + C33) cos 2χ ,

T −
2 = 2C12 cos 2χ− (2C22 + C33) sin 2χ

(2.39)

and the rotations around β of T ±
1,2

T +
3 = 2T −

1 sinβ + T −
2 cosβ ,

T −
3 = 2T −

1 cosβ − T −
2 sinβ ,

T +
4 = 4T +

1 sin 2β + (3C33 − T +
2 ) cos 2β ,

T −
4 = 4T +

1 cos 2β − (3C33 − T +
2 ) sin 2β .

(2.40)

Analogously, after the substitution Ωi → Ω′i, the decomposition for the mag-
netic quadrupole tidal potential defined in eq. (2.30) yield

Bq
θ =

1

8

[
4S+

3 cos 2ϕ+
(
3(C312 − S+

2 )− S+
4

)
sin 2ϕ

]
,

Bq
ϕ = −1

4

(
2S−

3 cosϕ− S−
4 sinϕ

)
,

Bq
θθ = −Bq

ϕϕ = −1

2

(
2S−

3 sinϕ+ S−
4 cosϕ

)
,

Bq
θϕ = −3

8

(
C312 − S+

2 + S+
4 +

4

3
S+
3 sin 2ϕ

)
+

1

8

[
3(C312 − S+

2 )− S+
4

]
cos 2ϕ ,

(2.41)

where we defined the rotations around χ of the components of Cijk

S+
1 = C212 cosχ+ C112 sinχ ,

S−
1 = C212 sinχ− C112 cosχ ,

S+
2 = 2C113 sin 2χ+ (C123 + C213) cos 2χ ,

S−
2 = 2C113 cos 2χ− (C123 + C213) sin 2χ

(2.42)

and the rotations around β of S±
1,2

S+
3 = 2S−

1 sinβ − S−
2 cosβ ,

S−
3 = 2S−

1 cosβ + S−
2 sinβ ,

S+
4 = 4S+

1 sin 2β + (3C312 + S+
2 ) cos 2β ,

S−
4 = 4S+

1 cos 2β − (3C312 + S+
2 ) sin 2β .

(2.43)

It is important to stress out that the decomposition for the electric and mag-
netic quadrupole tidal potential presented in eq. (2.38) and eq. (2.41) is com-
pletely general and do not depend on the type of perturber generating the



92 CHAPTER 2. EXTREME MASS RATIO INSPIRALS

tidal field, this makes these expressions very useful to model environmental
effects also in numerical works. In the particular case we are analysing here,
i.e. when the tidal perturber is a Kerr black hole, the tidal tensors Cij and
Cijk are given, respectively, in eqs. (2.17) and (2.18).
Moreover it is worth mentioning that in the expressions in eqs. (2.38) and
(2.41) the information regarding the tidal deformations induced on the inner
binary by the tidal environment are fully captured by the tidal tensors Cij and
Cijk, while the two angles β and χ specify the relative orientation between
the inner EMRI system and the outer perturber.

2.1.3 Secular dynamics of the inner EMRI

In Sec. 2.1.2 we argued by studying the timescales in play in our problem
that the dynamics of the test particle around the Schwarzschild black hole
in the inner binary takes place on a timescale that is faster than the one
associated with the outer orbit. Practically this means that in our analysis
we will neglect the motion of the inner EMRI around the SMBH and we will
focus our attention only on the secular dynamics in the binary system, i.e.
the dynamics after a large number of orbits of the test particle. This means
that we will average only over the inner motion and we will consider all the
parameters associated to the outer motion as constants.

Secular Hamiltonian of test particle in binary system

In order to study the secular dynamics of the test particle orbiting around the
Schwarzschild black hole we define the four velocity of the test particle as

uµ ≃ ūµ + uµ(1) , (2.44)

where ūµ is the 4-velocity of the unperturbed bound orbit and uµ(1) is the
leading correction due to the tidal perturbation hµν . Here we are interested in
circular, equatorial (θ = π/2) orbits in the Schawrzschild background metric
ḡµν , thus the unperturbed component of the four-velocity can be written as

ūµ =
(
Ē/f, 0, 0, L̄/r2

)
, (2.45)

where Ē = −ūµḡµν (∂t)ν and L̄ = ūµḡµν
(
∂ϕ
)ν

are the conserved energy and
angular momentum of the test particle in the unperturbed background. In
general the tidal fields induce deformations to all the four components of the
four velocity. Specifically they affect the gauge - independent photon red-

shift measurements [214]
(
∼ ut(1)

)
, induce radial deviations

(
∼ ur(1)

)
, tilt the

orbital plane
(
∼ uθ(1)

)
and induce a shift on the orbital frequency

(
∼ uϕ(1)

)
.

The Hamiltonian of a test particle moving in a tidally deformed Schwarzschild
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background can be written as

H =
1

2
uµuνgµν ≃ 1

2
ūµ
(
ūν + 2uµ(1)

)
ḡµν +

1

2
ūµūνhµν . (2.46)

Since we are interested in the quadrupole contributions from the tidal fields,
the only deformations of the four-velocity relevant at the quadrupole approx-
imation for our analysis are the ut(1) and uϕ(1), while the radial and polar

deviations affect the dynamics at higher order [72,215].
Moreover we are interested in studying the dynamics of the test particle

after integrating out the short-term oscillations induced by the tidal fields
on the orbit of the particle itself. This procedure is known as the secular
average and, following Ref. [72], can be understood by considering that the
effective dynamics of a test particle, moving on a tidally-deformed geodesic γ′

at the leading order in the perturbation hµν , can be analysed by replacing the
real physical trajectory γ′ with an averaged circular one γ in the perturbed
spacetime. The averaged orbit γ can be understood as a secular orbit in the
full tidally perturbed spacetime.
Given a quantity A, the secular average is defined as

⟨A⟩ = 1

2π

∫ 2π

0
A
∣∣
γ
dϕ , (2.47)

where ϕ is the azimuthal angle of the orbit in the Schwarzschild background
and γ is the secular orbit on the full metric gµν .
In order to obtain the secular Hamiltonian for the test particle, we compute
first the relevant averaged components of the tidal metric hµν . Recalling the
explicit expressions for the quadrupole tidal moments in Eqs. (2.38) and (2.41),
the relevant averaged components of the tidal part of the metric which will
enter the Hamiltonian are

⟨htt⟩ = −r2f2⟨Eq⟩ ,
⟨htϕ⟩ = 0 ,

⟨hϕϕ⟩ = −r4
(
1− 2

M2

r2

)
⟨Eq⟩ .

(2.48)

After plugging these expressions in Eq. (2.46) and after using that ⟨uµuνgµν⟩ ≃
⟨uµ⟩⟨uν⟩⟨gµν⟩, the averaged Hamiltonian for the test particle can be written
as

⟨H⟩ ≃ −1

2

(
⟨E⟩2

f
− ⟨L⟩2

r2

)
− η

⟨E⟩2 +

(
1− 2

M2

r2

)
⟨L⟩2

r2

 r2

M2
. (2.49)

we recall that E and L represent, respectively, the energy and the angular
momentum of the test particle in the full perturbed spacetime and the symbol



94 CHAPTER 2. EXTREME MASS RATIO INSPIRALS

⟨·⟩ denotes secular averaged quantities. Moreover we introduced an effective
pertubative parameter η which captures all the effects of the tidal deformations
at the quadrupole order. This parameter depends only on the orientation of
the binary system (on the Euler angles β and χ) and on the tidal deformation
induced by the SMBH on the EMRI system (the tidal moments Cij). The
explicit expression for this parameter can be written as

η = −M
2

2
⟨Eq⟩ =

=
M2

16

{
C33 (1 + 3 cos 2β) + 4 (C13 sinχ+ C23 cosχ) sin 2β

+
[
2C12 sin 2χ+ (2C22 + C33) cos 2χ

]
(1− cos 2β)

}
.

(2.50)

Note that this expression is completely general and holds for any test parti-
cle moving along a circular geodesic on the equatorial plane of a Schwarzschild
black hole immersed in a tidal environment when only retaining the quadrupole
order in the multipole expansion and when the secular average is applied. In
other words the expression for η holds for any source of the tidal fields.
In the specific case analysed here, i.e. when the source of the tidal fields is a
Kerr SMBH, we can use the tidal tensors Cij derived in Eq. (2.17) to write
explicitly

η =
I1M

2

16KΣ2

[
3ST (r̂2 − a2 cos2 θ̂)(1− 4 sin2 β sin2 χ) + 6 cos 2β

(
r̂2T 2 − a2S2 cos2 θ̂

)
−3a cos θ̂

(
aS2 cos θ̂ + 4r̂ sin 2β

√
ST (S + T ) sinχ

)
+KΣ2 + 3r̂2T 2

]
(2.51)

+
3I2M

2
√
ST

4KΣ2

[(
a2S cos2 θ̂ − r̂2T

)
sin 2β sinχ− 2ar̂

√
ST cos θ̂

(
cos2 β − sin2 β sin2 χ

)]
,

where K is the Carter constant, while I1, I2, S and T are defined in Eqs. (2.8)
and (2.13). Note that in the expression (2.51) we reabsorbed the Marck’s
angle Ψ (which we recall being a constant in our approximation) appearing in
the Cij by simply shifting the Euler angle χ as χ→ χ+Ψ.

In the weak field regime, i.e. when the EMRI binary system is far away
from the SMBH (M∗ ≪ r̂), this effective perturbative parameter η reduces
to the one already computed in Ref. [72] as expected. To see this explicitly
we take the r̂ → ∞ limit in the expression (2.51). and after keeping only the
leading terms we have

η =
M2

4K

M⋆

r̂3

[
3T (cos2 β − sin2 β sin2 χ)

−K
(
2− 3 sin2 β

)
− 3a

√
T cos θ̂ sinχ sin 2β

]
.

(2.52)
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This expression takes an even simpler form in the equatorial plane of the Kerr
black hole (θ̂ = π/2)

η =
M2

4

M⋆

r̂3

(
1− 3 sin2 β sin2 χ

)
, (2.53)

where η depends only on the two Euler angles β and χ and not on the spin
parameter a. As a consequence, in the weak field limit one cannot distinguish
the tidal effects of the SMBH Kerr black hole from the one of a neutral black
hole. This comes with no surprise since as we move away from the SMBH,
the spin effect becomes less and less significant. Finally after setting χ = π/2
and after identifying β as the angle between the tidal symmetry axis, aligned
with z, and the orbital plane we have

η =
M2M∗
4r̂3

(
1− 3 sin2 β

)
(2.54)

which is the same result obtained in Ref. [72] in the case of an EMRI orbiting
around a Schwarzschild SMBH in the weak field regime.

Circular equatorial geodesic in Kerr background

Up until this point both the construction of the quadrupole tidal moments
and the analysis of the secular dynamics of the test particle around the
Schwarzschild black hole were completely general, meaning that our results
can be applyed to any source of tidal fields. Here in this subsection we focus
our attention to the special case of an EMRI system moving along a circular
geodesic in the equatorial plane of a Kerr black hole. In this scenario, the en-
ergy, angular momentum and Carter’s constant characterising the outer orbit
are given by Eq. (1.78), and they can be used in Eq. (2.51) to get the explicit
expression for the perturbative parameter η in the case of a circular equatorial
orbit in the Kerr background, namely

η =
M∗M

2

4r̂3

1 + 3
K

r̂2
− 3

[
K

r̂2
+

(
1 +

K

r̂2

)
sin2 χ

]
sin2 β

 . (2.55)

Note that this is a general result, valid beyond the weak-field regime (M⋆ ≪ r̂).
This expression can be written solely in terms of the Kerr parameters (a,M∗, r̂)
thanks to the following relation8

K

r̂2
= −1

2

(
1− r̂2 − r̂M∗ − 2σa

√
r̂M∗ + 2a2

r̂2 − 3r̂M∗ + 2σa
√
r̂M∗

)
. (2.56)

8Note that this relation only holds in the case of a circular equatorial orbit in the Kerr
spacetime.
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By looking at the expression for the perturbative parameters η in Eq. (2.55) we
can notice immediately that for specific configurations for the EMRI system,
the effects of the tidal fields on the secular dynamics of the test particle vanish,
namely η = 0. For a fixed χ angle, these configurations are the ones given by
β = β∗ (χ) with

sin2 β∗(χ) =
1 + 3K/r̂2

3
[
K/r̂2 +

(
1 +K/r̂2

)
sin2 χ

] . (2.57)

It is worth mentioning that in the weak-field regime this relation reduces to

sin2 β∗ (χ) =
1

3 sin2 χ
, (2.58)

generalizing the result obtained in Ref. [72], which is only valid for χ = π/2.
Given that the closer we are to the SMBH the stronger General Relativity

effects become, it is interesting to analyse the scenario where the EMRI bi-
nary system is orbiting along the ISCO of the supermassive Kerr black hole.
Moreover, as already discussed above, we recall that this scenario is also astro-
physically relevant given the existence of migration mechanisms that can lead
to binary systems trapped in the region near the ISCO of a SMBH [52–54].
In the Kerr spacetime we can identify two different ISCOs: a co-rotating ISCO
(σ = +1) and a counter-rotating one (σ = −1). The radial positions of these
two orbits are given by Eq. (1.79), which we here recall for convenience

r̂σISCO =M∗

[
3 + Z2 − σ

√
(3− Z1)(3 + Z1 + 2Z2)

]
, (2.59)

where

Z1 = 1 +

(
1− a2

M2
∗

) 1
3

(1 + a

M∗

) 1
3

+

(
1− a

M∗

) 1
3

 ,

Z2 =

√
Z2
1 + 3

a2

M2
∗
.

(2.60)

On the ISCO the following relation holds [176]

Ê2
ISCO = 1− 2

3

M∗
r̂σISCO

, (2.61)

which can be used in the Carter constant K = (aÊ − L̂)29 yielding to

K =
1

3
(
r̂σISCO

)2 . (2.62)

9We recall that this relation between the Carter constant, the energy, the angular mo-
mentum and the spin of the Kerr black hole only holds in the equatorial plane, as stated in
Eq. (1.78).
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Figure 2.3: The picture represents how η, when evaluated at the ISCO r̂ ≡
r̂σisco, depends on the black hole spin a. The logarithm of the prefactor in
Eq. (2.63) is considered in order to have a clear distinction for the curves.
Colors are used to represent different magnitudes for the ratio µ = M/M∗.
In particular µ = 10−2 in blue, µ = 10−3 in purple, µ = 10−4 in red and
µ = 10−5 in orange. Solid lines are representative for the co-rotating ISCO
σ = 1, whereas dashed lines for counter-rotating ISCO σ = −1.

With this, we can write the expression for the effective perturbative parameter
η on the ISCO as

η =
M2M∗

2
(
r̂σISCO

)3 [1− 1

2
(1 + 4 sin2 χ) sin2 β

]
. (2.63)

It is worth mentioning that even when r̂σISCO ∼ O (M∗), which correspond to
the co-rotating case σ = +1 for an extremal Kerr black hole, the small-tide
approximation defined in Eq. (1.55) still holds thanks to the hierarchy in the
masses M ≪ M∗. Thus we can legitimately analyse, using the quadrupole
approximation, the scenario where the EMRI system is placed on the ISCO
of the SMBH. It is possible to distinguish two terms in the η expression in
Eq. (2.63): the prefactor M2M∗

2(r̂σISCO)
3 , which contains the dependence on the

spin parameter of the Kerr perturber and the term in square brackets, which
depends on the two Euler angles β and χ, specifying the orientation of the
binary system. In Fig. 2.3 we plot the η prefactor in Eq. (2.63) as a function
of the spin parameter of the Kerr SMBH for different values of the ratio
M/M∗. Note how the effective perturbative parameter η at the ISCO is also
well defined in the case of a co-rotating orbit σ = +1 for an extremal Kerr
black hole a = M∗, for which the radial position of the ISCO corresponds to
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Figure 2.4: The red line identifies the configurations β∗(χ) for which the
secular effect of tidal deformations vanishes under the assumption r̂ ≡ r̂σISCO.
The gray areas represent exclusion zones, namely values of the angle χ in which
the relation (2.64) cannot be satisfied. More specifically, these corresponds to
values of χ that would lead | sin2 β∗| > 1.

r̂+ISCO =M∗. In this case the prefactor reduces toM2/(2M2
∗ ), which represents

also the maximum value of η at the ISCO for a given orientation of the binary
system, as can be seen from Fig. 2.3.

On the ISCO the condition (2.57) for which the tidal effects induced by
the SMBH on the EMRI system vanish, i.e. η = 0, simplifies thanks to the
relation K/

(
r̂σISCO

)2
, which allows us to write the condition for β∗ (χ) as

sin2 β∗(χ) =
2

1 + 4 sin2 χ
. (2.64)

In Fig. 2.4 we plot the possible values for β∗ (χ) when the EMRI system is
moving along the Kerr ISCO.

2.1.4 Secular shifts for the ISCO and the Photon Sphere

In this section we apply the formalism introduced above to study the mo-
tion of the test particle along two specific orbits, namely the ISCO of the
Schwarzschild black hole and its photon sphere, analysing how the tidal fields
generated by the Kerr SMBH deform these two orbits.

The ISCO and the photon sphere represent the closest possible circular
orbits for respectively massive and massless particles around black holes. This
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makes them two very interesting orbits to analyse since on these orbits it is
possible to probe the regime where strong gravity effects emerge. Moreover the
ISCO is studied in the context of accretion disks [71, 216], usually associated
with the inner edge of the disk [217], while the photon sphere is extremely
important in the context of quasi-normal modes [218–220], allowing us to
probe with high precision the strong gravity regime [221–223].

Finally we point out that an analysis of the ISCO and the photon sphere
in a tidal environment is also carried out in Refs. [71, 72].

Gauge invariance of secular observables

Before we study the effects of the tidal fields on the motion of the test par-
ticle, it is useful to briefly discuss the issue of the gauge invariance of these
deformations.

We recall that the energy of the test particle can be written in terms of
the Killing vector field ∂t

E = −uµgµνT ν , (2.65)

where T = ∂t while gµν and uµ are respectively the metric and the four-
velocity in the full tidally deformed spacetime. Since the tidal perturbations
hµν do not depend on time, T is still a Killing vector field in the full spacetime
gµν = ḡµν + hµν , thus the energy is conserved and gauge invariant, namely
dE/dτ = 0 in any coordinate system when evaluated on a geodesic.
It is also possible to write the angular momentum in a covariant way

L = uµgµνJ
ν (2.66)

where J = ∂ϕ. This is a Killing vector field for the Schwarzschild metric ḡµν ,
however since the tidal perturbation hµν in general depend on the azimuthal
angle ϕ, J is no longer a Killing vector field in the full background gµν and, as a
consequence, L is not conserved along geodesics in the tidally perturbed met-
ric. To address this gauge invariant problem we start by writing the angular
momentum L as

L ≃ L̄+ ηL1 , (2.67)

where L̄ is the conserved angular momentum in the unperturbed Schwarzschild
background while L1 is the non-conserved part (in general) arising from the
tidal fields. We recall that the secular average is done by averaging over the
azimuthal angle ϕ, meaning that the averaged metric ⟨gµν⟩ is ϕ-independent
and thus the averaged version of the angular momentum ⟨L⟩ is a conserved
quantity along the secular geodesic. For a quasi-circular orbit we have

⟨L⟩ ≃
∫ 2π

0

(
L̄+ ηL1

)
|γdϕ = 2πL̄+ η

∫ 2π

0
L1|γdϕ . (2.68)

We now focus our attention on a class of coordinate transformations such that,
at the quadrupole approximation, act on the azimuthal angle according to the
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following transformation

ϕ→ ϕ̃ ≃ ϕ+ η χ(r, θ, ϕ) , (2.69)

where χ is a periodic function of ϕ with a period of 2π (χ(ϕ) = χ(ϕ + 2π))
while the gauge transformations of the coordinates r and θ are of order O (η),
i.e. they are proportional to the quadrupole perturbative parameter η. Un-
der these transformations quasi-circular orbits are always mapped into quasi-
circular ones, allowing us to identify the new ϕ̃ angle as a rotation angle
over which we can average to analyse the secular dynamics. Under the gauge
transformations in Eq. (2.69), the first term in the secular average described
in Eq. (2.68), transforms as

∫ 2π

0
L̄|γdϕ̃→

∫ 2π

0
L̄|γdϕ+ η

∫ 2π

0
L̄|γdχ = 2πL̄ , (2.70)

where we used the periodicity of χ and the fact that L̄ does not depend on ϕ.
The second term in Eq. (2.68), under the same gauge transformations (2.69),
reads as ∫ 2π

0
L1|γdϕ̃→

∫ 2π

0
L1|γdϕ+ η

∫ 2π

0
L1|γdχ . (2.71)

Notice how in general the last integral in the expression above in not zero,
given that L1 depends on ϕ. However we can safely neglect this contribu-
tion since, for the specific gauge transformations presented in Eq. (2.69), this
would be of order η2 and thus of higher order compared to the quadrupole
approximation.10

With these results we can write Eq. (2.68) as

⟨L⟩ ≃
∫ 2π

0

(
L̄+ ηL1

)
|γdϕ̃→ 2πL̄+ η

∫ 2π

0
L1|γdϕ , (2.72)

this relation tells us that ⟨L⟩ is gauge invariant under coordinate transforma-
tions 2π-periodic in ϕ of order O (η).
Similarly it is possible to prove that also ⟨ut⟩ and ⟨uϕ⟩ are invariant under
the gauge transformations described in Eq. (2.69). As a consequence also the
averaged orbital frequency for a quasi-circular orbit, defined as

Ω =
uϕ

ut
, (2.73)

is gauge-invariant under this class of transformations.

10This is true since L1 is already of order η, see Eq. (2.68).
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Tidal deformations on the ISCO

The ISCO represents the closest stable circular orbit for a massive particle in
a black hole spacetime and it is fully characterized by its radius, energy and
angular momentum. We can find these parameters starting from the secular
Hamiltonian in Eq. (2.49)and following the reasoning of [215], which yields to
three defining conditions for the ISCO, namely

⟨H⟩|r=rISCO = −1

2
,

d⟨H⟩
dr

∣∣∣∣
r=rISCO

= 0 ,

d2⟨H⟩
dr2

∣∣∣∣
r=rISCO

= 0 .

(2.74)

We assume that secular tidal effects are all proportional, up to the quadrupole
order, to the effective perturbative parameter η and we expand the observables
around their unperturbed values as11

rISCO ≃ r0 + η r1 ,

EISCO ≃ E0 + η E1 ,

LISCO ≃ L0 + η L1 ,

(2.75)

where (r0, E0, L0) represent the unpertubed values for the radius, energy
and angular momentum of the ISCO for a Schawrzschild black hole while
(r1, E1, L1) define the corrections induced by the tidal fields at first order in
η.
After plugging the expanded expressions for the radius, energy and angular
momentum defined in Eq. (2.75) into the ISCO conditions (2.74), at lead-
ing order we can find the unperturbed values for the parameters (r0, E0, L0)
characterizing the ISCO of a Schwarzschild black hole, namely

r0 = 6 M , E0 =
2
√
2

3
, L0 = 2

√
3 M . (2.76)

Analogously by solving Eqs. (2.74) at first order in η we find the corrections
to the orbital parameters of the ISCO (r1, E1, L1) induced by the tidal fields
generated by the Kerr SMBH, which read

r1 = 3072 M , E1 = −152
√
2

3
, L1 = −348

√
3 M . (2.77)

Another relevant quantity that it is interesting to analyse is the ISCO orbital
frequency, which in general for quasi-circular orbits is defined as [72,214]

Ω2 =

(
uϕ

ut

)2

=
M

r3
− (r − 3M)

2r2
uµuν∂r⟨hµν⟩ , (2.78)

11For ease of notation from now on we will drop the bracket ⟨·⟩ notation for the secular
averaged quantities.
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where uµ are the components of the four-velocity (2.44). After writing the
ISCO orbital frequency as the unpertubed frequency in the Schwarzschild
background plus a tidal correction proportional to η, namely

ΩISCO ≃ Ω0 + η Ω1 , (2.79)

we find

M Ω0 =
1

6
√
6
, M Ω1 = −

√
2

3

491

6
. (2.80)

This expression tells us how the orbital frequency of the test particle moving
on the ISCO is shifted by the presence of a Kerr SMBH.
Finally we can use the ISCO orbital frequency defined in Eq. (2.78) to intro-
duce a gauge-independent quantity which allows us to measure the radial sepa-
ration between the two companions in the EMRI system. Following Ref. [214]
we introduce

RΩ =

(
M

Ω2

)1/3

, (2.81)

which combined with Eqs. (2.79) and (2.80) yields

RΩ ≃ 22/3M

Ω
2/3
0

(
1− 2

3
η
Ω1

Ω0

)
= 6M + 3928η M . (2.82)

The shift induced by the tidal fields on RΩ is different from the one computed
for the radial coordinate rISCO in Eq. (2.77) as expected since the former is a
gauge-invariant quantity while the latter is not.

Tidal deformations on the Photon Sphere

The photon sphere is the analogous of the ISCO for a massless particle, i.e.
the last stable circular orbit for photons. This peculiar orbit is uniquely
identified by two parameters, namely its radius and the impact parameter
defined as b = L/E. Given that we need only two parameters to describe the
photon sphere, this orbit can be studying by imposing two conditions on the
Hamiltonian (2.49)

⟨H⟩|r=rPS = 0 ,

d⟨H⟩
dr

∣∣∣∣
r=rPS

= 0 .
(2.83)

By following the same reasoning we used above for the ISCO, we expand the
photon sphere parameters in terms of the effective perturbative parameter η,
retaining only the leading order, namely

rPS ≃ r0 + η r1 ,

bPS ≃ b0 + η b1 ,
(2.84)
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where by solving the conditions in Eq. (2.83) at leading order in η we obtain the
unperturbed values for the photon sphere in the Schwarzschild background:

r0 = 3 M , b0 = 3
√
3 M . (2.85)

At first order in η instead we get the tidal corrections induced by the Kerr
SMBH:

r1 = −30 M , b1 = 30
√
3 M . (2.86)

Finally for completeness we also compute how the orbital frequency of the
photon sphere is shifted by the presence of the tidal fields. In general for the
orbital frequency we have

Ω =
uϕ

ut
=

1

b
, (2.87)

which we write as the unperturbed value plus a tidal correction proportional
to η as

ΩPS ≃ Ω0 + η Ω1 . (2.88)

Plugging in this expression the results obtained in Eq. (2.85) and (2.86) we
can immediately compute the tidal shift induced on the orbital frequency of
the photon sphere, which reads

M Ω0 =
1

3
√
3
, M Ω1 = − 10

3
√
3
. (2.89)





Chapter 3

Charged Binary Black Holes

C
lassically black holes are completely characterized by their mass, spin and
charge [224–227]. A charged black hole would attract particles of the

opposite charge pulling them into itself and, as a consequence, the charge of
the black hole will be quickly neutralized by the surrounding environment
and thus generally BHs are considered to be neutral [228, 229]. Although
this mechanism seems to work for a non-spinning black hole, the presence
of spin can change significantly the neutralization process for a charged BH.
This is mostly due to the fact that a spinning black hole could have, in the
near-horizon region, a charged separated plasma which can form a force-free
magnetosphere [230–233]. This magnetosphere may preserve a global charge
in a similar way as it happens for spinning magnetized neutron stars [234,235]
under the assumption that BHs posses a magnetosphere in a dipole configu-
ration, for which the conserved charge would be

Q ∼ Ω∗µ∗
3c

, (3.1)

with µ∗ the magnetic moment of the BH dipole and Ω∗ the angular velocity
of its magnetosphere [234,235].
Moreover it has been shown in [73] that a rotating black hole immersed in a
magnetic field can end up with a net electric charge by swallowing positive
charged particles and repelling the negative ones,1 with a similar mechanism
as the one depicted in [236] for a conducting sphere in flat space. The charge
of the black hole in this scenario can be estimated by using the injection-
energy argument [237], which allow us, by lowering a charged particle along
the symmetry axis of the black hole, to write the change in the electrostatic
energy of the particle as

ϵ = Efinal − Einitial = eAµT
µ
∣∣
horizon

− eAµT
µ
∣∣
∞, (3.2)

1This is true if the spin of the black hole is parallel to the magnetic field. If the two
are anti-parallel instead then positive charged particle would be repelled and negative ones
would be attracted by the black hole.

105
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where Tµ is the timelike Killing vector of the spacetime, Aµ the vector poten-
tial of the electromagnetic field and e the charge of the particle falling into
the black hole. The latter will keep harvesting charges until the electrostatic
injection energy ϵ becomes zero because of the change in Aµ. This yields to

ϵ = e

(
Q

2M
− B0J

M

)
, (3.3)

where M is the mass of the black hole, J and Q respectively its angular
momentum and charge and B0 is the strength of the magnetic field. By
imposing the condition ϵ = 0 we find that a black hole in a uniform magnetic
field can build up a charge given by

Q = 2B0J.
2 (3.4)

This expression tells us that the charge accumulated by the black hole is
proportional to both its spin and the strength of the magnetic field, thus for
typical values of the galactic magnetic field (B0 ∼ 10−4 ÷ 10−5 Gauss) this
mechanism leads to a very small charge-to-mass ratio but nevertheless allows
black holes to have a non-zero electric charge.

There are also other astrophysical arguments for which it is relevant to
include a small amount of charge in black holes. For example it has been shown
that any macroscopic object in the Universe should carry a small amount of
charge in order to avoid the separation of electrons and protons in stellar
atmosphere [238–241]. We can estimate the charge of a black hole by assuming
that celestial bodies in the Universe are neutral, meaning that the electrons
and protons densities should be the same np ≈ ne. We recall that the density
distribution can be defined as

n(r) = n0(e) e
−Φ(r)/(kBT ), (3.5)

where n0(r) is the density distribution in the absence of external field, kB
the Boltzmann constant, T the temperature and Φ(r) is the conservative field
outside the black hole which we assume to be given by a combination of the
gravitational and electromagnetic contribution, namely Φ(r) = ΦG(r)+ΦE(r).
The condition np = ne is satisfied by requiring Φp ≈ Φe, i.e. we should have
the same potential value for both protons and electrons. This condition yields
to a constraint for the charge of the black hole, namely

Qeq

M
=

2π(mp +me)

e
≈ 77CM−1

⊙ , (3.6)

where with M we denote the mass of the black hole while mp and me repre-
sent the masses of the proton and electron and finally M⊙ is the Solar mass,
i.e. M⊙ ∼ 2 × 1030 kg. If we also include the charge neutralization effects

2Here for this brief analysis we worked in geometrized units, i.e. G = c = 1.
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(Schwinger pair production [242]) to this estimate, the charge of a black hole
would reduce to approximately 1CM−1

⊙ [243].

The inclusion of the charge in black hole binaries can also be relevant in the
context of gravitational waves since it can help us to build waveform models
for signals coming from real astrophysical scenarios [244–248]. Moreover it
has been shown in [249] that the presence of the charge in a black hole binary
can significantly suppress the merger time. Furthermore on the observational
side it is worth mentioning that, with the data that we have at current times,
we cannot rule out the presence of a small amount of charge in black holes,
see Ref. [241] for an analysis on Sagittarius A∗ for example.

So far we focused our attention on electrically charged black holes. How-
ever lately there has been a great interest in magnetically charged ones be-
cause magnetic monopoles3 are expected to be more massive than electrically
charged particles, making the Schwinger pair production less effective and
thus leading to more stable magnetically charged black holes than the electri-
cally charged ones [253]. Moreover these objects have drawn a lot of attention
in the scientific community since in the near horizon region (usually called
electroweak corona) the magnetic fields could be so strong that it is possible
to restore the electroweak symmetry [254–257]. In particular assuming that
the magnetically charged black hole is described by the Reissner-Nordström
metric, if the radius of its event horizon is smaller than the monopole radius
(assuming a ’t Hooft-Polyakov monopole) it is possible to have a hairy black
hole with a cloud of electroweak fields in the near horizon region [258, 259],
which can enhance the Hawking radiation process and lead on a very short
timescale to extremal charged black holes for which the evaporation process
is suppress and thus these objects become very stable and can last as long as
the age of the Universe [74,75]. One of the possible formation channel for the
production of magnetically charged black holes is to assume that a primor-
dial black hole, in the early Universe, swallows magnetic monopoles building
up a net magnetic charge given by

√
N , with N the number of monopoles

swallowed [74,260].

Finally it is also worth mentioning that charged black holes are related to
more exotic theories, such as dark matter and mini-charged dark matter sce-
narios [261,262], where charged black holes could exist thanks to fermions with
a fractional electric charge much smaller than the one of an electron which
would make the pair production mechanism, usually responsible for neutraliza-
tion, ineffective. Moreover charged black holes are also related to topological
charges [263] and topological stars [264, 265], as well as traversable worm-
holes [266], superradiant instabilities in AdS spacetime [76], new forces beyond
the Standard Model [267] and in the context of the Gertsenshte in- Zel’dovich

3Even though we have not detected them yet, they are a key element in the quantisation
of the electric charge [250] and they are predicted in all Grand Unified Theories (GUTs)
[251,252].
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effect consisting in the conversion, in the presence of a strong magnetic field,
of electromagnetic waves into gravitational ones and vice versa [268].

Besides the possible existence of charged black holes in astrophysical sce-
narios, the presence of an extra parameter in the metric describing a black
hole can be used to generalize the ideal Schwarzschild solution, including the
possibility to have an extremal black hole and using it as a toy model to study
the more realistic scenario of rotating black holes described by the Kerr met-
ric. Thus in this chapter we will analyse how the dynamics of a binary system,
an EMRI in particular, changes when we allow one of the two bodies to have
a charge in the cases when the binary is isolated and when an external tidal
field is present.

3.1 Event horizon of a charged black hole binary
merger

In this section we analyse the formation and evolution of the event horizon of
a binary black hole system where at least one of the two objects is a charged
black hole described by the Reissner-Nordström (RN) metric [269,270].
To study the evolution of the event horizon during the merger of a binary
system is usually, both analytically and numerically, very challenging. How-
ever, as shown in [78,271,272], the problem simplifies greatly in the Extreme
Mass Ratio (EMR) limit, where one of the two objects in the binary system
is much smaller than the other. In particular using M and m to describe
respectively the masses of the primary and the secondary black hole in the
binary, the EMR limit consists in sending m/M → 0. This limit is usually
satisfied by taking m→ 0 (as we also did in Chapter 2), i.e. considering that
one of the two objects in the binary system is a point particle. This approach
is ideal if one wants to study the emission and propagation of gravitational
waves during the merger of the two companions, using for example a multi-
polar Regge-Wheeler-Zerilli perturbative approach [273, 274] or the Effective
One Body formalism [275–280]. However if we treat the secondary black hole
as a point particle we lose all the information about the physics happening
on the scale of m and moreover, we lose information about the geometrical
structure of the black hole making impossible for us to identify the null hyper-
surface which defines the event horizon. Then in order to study the physics
on the scale of m and to follow the evolution of the event horizon of the small
black hole during the merger, we satisfy the EMR limit introduced above by
keeping m fixed and sendingM → ∞. In this scenario, after placing ourselves
in the rest frame of the small black hole, we can neglect the curvature of the
spacetime over distances ≪ M and moreover we are still able to identify the
event horizon of the larger black hole as an accelerated horizon, i.e. a Rindler
horizon [78]. With this in mind the procedure that we will use to extract the
evolution of the event horizon during the merger, following Ref. [78], is quite
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simple. We start by placing ourselves in the rest frame of the small black
hole at a distance ≪ M , in this scenario we can neglect the curvature of the
spacetime induced by the primary companion in the spacetime and we can
describe the background using the RN metric, i.e. describing the small black
hole as a charged one. Furthermore given that M ≫ m, the event horizon of
the binary system at future null infinity I+ will coincide with the one of the
larger black hole in the EMRI system, i.e. it will be an infinite accelerated
horizon which corresponds to a congruence of light rays that forms a planar
surface. Starting from this surface at I+ we follow back in time a congruence
of null geodesics that, starting from the small, charged black hole, reaches a
planar horizon at large distance.
With this formalism we can analyse analytically the evolution of the event
horizon during the merger, allowing us to extract some key properties of the
merger such as the duration of it, the growth of the area of the small black
hole and the presence of a line of caustics. The last one is always present in
the event horizon of a black hole merger and it is a consequence of the strong
gravitational field causing the light rays to bend towards each other and in-
tersect in caustic points, forming a line of caustics. These points are the first
ones to enter the event horizon in the early times of the merger.

Throughout this chapter we use units where G = c = ϵ0 = µ0 = 1, unless
otherwise specified.

3.1.1 Analytical solution in D = 4

In this section we derive analytically the evolution of the event horizon of
a binary black hole merger in the EMR limit where the smaller black hole
is a charged one described by the RN metric in 4 dimensions, which in
Schwarzschild quasi-spherical coordinates can be written as

ds2 = −∆(r)dt2 +∆(r)−1dr2 + r2dΩ2, (3.7)

with

∆(r) = 1− 2m

r
+
Q2

r2
. (3.8)

Here, Q represents the electric or magnetic charge, a combination of the two
or, in general, any type of parameter with the same coupling of the charge in
the Einstein-Maxwell theory. Moreover, dΩ2 = dθ2 + sin2 θdϕ2 and m is the
mass of the black hole.

The position of the event horizon in the RN background can be found by
solving the equation ∆(r) = 0, which has, in general, two different solutions

r± = m±
√
m2 −Q2, (3.9)

which represent the inner (r−) and outer (r+) horizon. The latter gives the
position of the even horizon while the former is a Cauchy horizon. In the
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case of an extremal RN black hole, i.e. when |Q| = m, the two solutions in
Eq. (3.9) coincide and the location of the event horizon is given by rEH = m.

We will analyse separately two different cases: when the charge of the
black hole is smaller than its mass |Q| < m and the extremal case where
|Q| = m. The former one represents the physical and more realistic scenario,
where the black hole has a small amount of charge compared to its mass, while
the latter describes a black hole with the same amount of charge and mass
which corresponds to an unstable configuration since a small amount of charge
or mass would lead to a black hole with either |Q| < m or |Q| > m (where
the last one corresponds to a naked singularity and thus to a non-physical
scenario). Even though extremal black holes are very unlikely to exist in the
Universe4 they are very interesting theoretically speaking. For example, given
that the mass of a black hole is related to its dimension, an extremal black hole
describes the smallest possible configuration. Moreover they are often used as
a tool in supersymmetric theories since they are invariant under supercharges,
allowing a microscopic description of the Bekenstein Hawking entropy formula
for black holes in terms of D-branes configurations [281–284].

Case |Q| < m

We start by studying the evolution of the event horizon of a binary black hole
merger when the secondary companion of mass m is a RN black hole with
charge |Q| < m.

Mathematically an event horizon represents a null hypersurface, which
describes a congruence of null geodesics usually called generators. We know
that the final configuration of the event horizon, after the merger, at future
null infinity is the same as the one of the larger black hole in the binary system
in the limit M → ∞, i.e. the generators of the event horizon form a planar
horizon. The plan to extract the evolution of the event horizon during the
early stages of the merger is then to trace back the null geodesics that define
the event horizon at I+ until they reach the so-called line of caustics, which
identify the set of points where the generators focus as they enter the event
horizon [285–288]. This set of points represents where the event horizon begins
in the past since once at the horizon, a null generator can never propagate
off it, nor it can ever cross another null geodesic. This means that event
horizons are characterized by null geodesics passing through each point of the
null hypersurfaces defining them, continuing along the horizon forever into the
future, without crossing each other again and in agreement with the cosmic
censorship conjecture. Thus in order to extract the evolution of the event
horizon during the merger we need to study the geodesic equations describing

4Although in general they might be very unstable, there are some scenario in which
magnetically charged black holes could exist in a stable configuration, see discussion at the
beginning of Chapter 3.
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the motion of a congruence of light rays that reach a planar horizon at future
null infinity.

We recall that we place ourselves in the rest frame of the RN black hole
of mass m and we work in the EMR limit by taking M → ∞. In this way
the spacetime in which the merger takes place can be described by the RN
metric introduced in Eq. (3.7) which in the m/M → 0 limit still has the
usual spherical symmetry and the timelike Killing vector ∂t

5. Thanks to the
spherical symmetry we can set θ = π/2 without loss of generality and we can
write the geodesic equations in the RN background for a mass-less particle as

ṫ =
1

1− 2m
r + Q2

r2

, (3.10)

ϕ̇ = − q

r2
, (3.11)

ṙ =
1

r

√
r2 − q2

(
1− 2m

r
+
Q2

r2

)
, (3.12)

where q represents the ratio between the conserved angular momentum and
the energy of the light-ray trajectory and it is called impact parameter. More-
over ṫ = dt

dλ , ϕ̇ = dϕ
dλ and ṙ = dr

dλ with λ the affine parameter.
The impact parameter q has a geometrical interpretation which can be under-
stood by introducing Cartesian-like coordinates

x = r sin(ϕ), z = r cos(ϕ). (3.13)

In the (x, z) coordinates, asymptotically, all light rays move with dx = 0,

x|r→∞ = q +O(r−3), (3.14)

z|r→∞ = r +O(r−1), (3.15)

and the horizon is identified by

dt− dz = O(r−3). (3.16)

Fig. 3.1 shows the geometrical meaning of the impact parameter q, that
is the distance at future null infinity between the geodesics and the z axis.
Moreover in Fig. 3.1, r represents the distance between the geodesics and the
center of the RN black hole. Thanks to the spherical symmetry of the RN
background we can also bound the collision between the two black holes to
happen along the ϕ axis. More precisely the collision axis is defined by the two

5This is only true in the exact limit m/M → 0. The inclusion of corrections of order
m/M results in breaking these symmetries, making the analysis of the merger way more
complicated.
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Figure 3.1: Projection of null generators of the event horizon on the spatial
plane (x, z). The black lines are the light rays that move towards I+. At late
times, they move along the z direction as the generators of a Rindler horizon
(dt = dz). They are labelled by the impact parameter q at future infinity. This
graphic representation is the same of Figure 1 from [78], which we reproduce
here for convenience.

segments ϕ = 0 and ϕ = π in the plane θ = π/2 where, after placing ourselves
in the rest frame of the small black hole, the former points in the direction
away from the large black hole while the latter points in the direction towards
the large black hole.

For convenience we rewrite the geodesic equation in (3.10), (3.11) using r
as parameter along the geodesics instead of λ. They read

ϕq(r) =

∫
dr
ϕ̇

ṙ
, tq(r) =

∫
dr
ṫ

ṙ
. (3.17)

We now use the fact that at I+ the null hypersurface defining the event horizon
becomes a planar horizon. Thus we take the r → ∞ limit in Eqs. (3.17),
which gives us

ϕq(r → ∞) =

∫
dr
ϕ̇

ṙ

∣∣∣∣∣
r→∞

= αq +
q

r
+O(r−3), (3.18)

and

tq(r → ∞) =

∫
dr
ṫ

ṙ

∣∣∣∣∣
r→∞

= r + 2m log

(
r

2m

)
+ βq +O(r−1). (3.19)

We set the two integration constant αq and βq by requiring that all the null
geodesics move asymptotically in the same direction and that they arrive at
future null infinity at the same retarded time. This implies that both αq and
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βq must be set to some q-independent value, which for simplicity we choose
to be zero:

αq = 0, βq = 0. (3.20)

By looking at Eqs. (3.17) we can identify immediately the so-called central
generator, which corresponds to a light ray that starts at r = r+ at t →
−∞ and moves towards infinity in the ϕ = 0 direction. This generator is
characterized by q = 0 and, by solving Eqs. (3.17), can be written as

ϕq=0(r) = 0, (3.21)

tq=0(r) = m log
(
Q2 + r2 − 2mr

)
+

(
2m2 −Q2

)
tan−1

(
r−m√
Q2−m2

)
√
Q2 −m2

+ r.

(3.22)
In general to find the other generators of the event horizon we have to solve
the q-dependent integrals in Eq. (3.17), which can be written explicitly as

ϕq(r) = −
∫

q dr√
r4 − q2r2 + 2mq2r − q2Q2

, (3.23)

tq(r) =

∫
r4 dr

(r2 − 2mr +Q2)
√
r4 − q2r2 + 2mq2r − q2Q2

. (3.24)

In order to solve these integrals it is convenient to rewritte them as

ϕq(r) = −
∫

q dr√
(r − x1)(r − x2)(r − x3)(r − x4)

, (3.25)

tq(r) =

∫
r4dr

(r − r1)(r − r2)
√

(r − x1)(r − x2)(r − x3)(r − x4)
, (3.26)

where x1, x2, x3, x4 are the solutions of the quartic equation r
4−q2r2+2mq2r−

q2Q2 = 0, and r1,2 are the solutions of the quadratic equation r
2−2mr+Q2 =

0. We have

x1,2 =
1

2
√
6

(
ξ

1
2
1 ∓ ξ

1
2
2

)
,

x3,4 = − 1

2
√
6

(
ξ

1
2
1 ± ξ

1
2
3

)
,

r1,2 = m∓
√
m2 −Q2, (3.27)

where

ξ1 =
2 3
√
2γ

p
+ 22/3p+ 4q2,

ξ2 = − 24
√
6q2m

(2
3√2γ
p + 22/3p+ 4q2)

1
2

− 2 3
√
2γ

p
− 22/3p+ 8q2,
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ξ3 =
24
√
6q2m

(2
3√2γ
p + 22/3p+ 4q2)

1
2

− 2 3
√
2γ

p
− 22/3p+ 8q2,

p =

(√
q8
(
2q2 + 72Q2 − 108m2

)2 − 4
(
q4 − 12q2Q2

)3 − q2
(
2q2 + 72Q2 − 108m2

)) 1
3

,

γ = q4 − 12q2Q2. (3.28)

Since r1 and r2 satisfy r1+r2 = 2m, we will use this relation to eliminate r2 in
favor of r1 when convenient. We will use also the relation x1+x2+x3+x4 = 0
to simplify the expressions in the integrals.

The solutions to these integrals are given in terms of incomplete elliptic
integral of the first, second and third kind6, namely

F (x|m̄) =

∫ x

0

dθ√
1− m̄ sin2 θ

, (3.29)

E(x|m̄) =

∫ x

0

√
1− m̄ sin2 θdθ, (3.30)

Π(n;x|m̄) =

∫ x

0

dθ

(1− n sin2 θ)
√
1− m̄ sin2 θ

. (3.31)

When solving the integrals in Eqs. (3.25) and (3.26) we need to choose care-
fully the integration constants in order to reproduce the correct asymptotic
behaviour depicted in Eqs. (3.18) and (3.19), i.e. we need to fix them to the
values we choose in Eq. (3.20). To this end we use the following relation for
elliptic integrals [289]

Π(n;φ|α) = −Π(N ;φ|α)+F (φ, α)+ 1

2p
log[(∆(φ)+p tanφ)(∆(φ)−p tanφ)−1],

(3.32)
where

N = n−1 sin2 α, p = [(n− 1)(1− n−1 sin2 α)]
1
2 , ∆(φ) = (1− sin2 α sinφ)

1
2 .

(3.33)
Note that this identity can be used to rewrite Eq. (3.31) after identifying
sin2 α = m̄ and φ = x, according to the prescriptions of Mathematica 12.
The solutions to Eqs. (3.25) and (3.26), after fixing the integration constants
to the values (3.20), can be written as

ϕq(r) =
2q√
bf

(
F (y1|s)− F (y2|s)

)
, (3.34)

and

tq(r) =
1

(x2 − r1)(x2 − r2)
√
bf

[
F (y2|s)

(
2ma(r1 − x2)(2r2 + x1 + x3)

6The prescription used here for the square roots of complex numbers and the branch
cuts in the elliptic functions is the one implemented in Mathematica 12.
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−r21af − x22(x3x2 + x1x4)

)
+ x2

(
2ma(r1 − x2)− ar21 + x22(x1 + x2)

)]

+

√
(r − x1)(r − x3)(r − x4)

r − x2
−
√
bfE(y2|s)

+
a

(m− r1)
√
bf


r41Π

(
(r1−x2)c
(r1−x1)f

; y2|s
)

(r1 − x1)(r1 − x2)
−
r42Π

(
(x2−r2)c
(x1−r2)f

; y2|s
)

(r2 − x1)(r2 − x2)



+ 2m

log
(√

(r − x1)(r − x2) +
√
(r − x3)(r − x4)√

(r − x3)(r − x4)−
√
(r − x1)(r − x2)

)
− 2

aΠ

(
d
b ; y2|s

)
√
bf

− cq,(3.35)

where

cq =
F (y1|s)

(x2 − r1)(x2 − r2)
√
bf

(
2ma(r1 − x2)(2r2 + x1 + x3)− r21af − x22(x3x2 + x1x4)

)

+ x2

[
2ma(r1 − x2)− ar21 + x22(x1 + x2)

(x2 − r1)(x2 − r2)
√
bf

+ 1

]
−
√
bfE(y1|s) + 2m

log
(

2

x1 + x2

)
− 2

aΠ

(
d
b ; y1|s

)
√
bf



+
a

(m− r1)
√
bf


r41Π

(
(r1−x2)c
(r1−x1)f

; y1|s
)

(r1 − x1)(r1 − x2)
−
r42Π

(
(x2−r2)c
(x1−r2)f

; y1|s
)

(r2 − x1)(r2 − x2)

 (3.36)

and where we introduced the notation

a = x1 − x2, b = x1 − x3, c = x1 − x4, d = x2 − x3, f = x2 − x4,

y1 = sin−1

(√
f

c

)
, y2 = sin−1

(√
(r − x1)f

(r − x2)c

)
, s =

cd

bf
. (3.37)

Note that these expressions for tq(r) and ϕq(r) reproduce the correct asymp-
totic behaviour, namely for r → ∞ we have

ϕq(r) −−−−→
r → ∞

q

r
+O(r−3), (3.38)

and

tq(r) −−−−→
r → ∞

r + 2m log

(
r

2m

)
+O(r−1). (3.39)

With the explicit expressions for tq(r) and ϕq(r) derived in Eqs. (3.34) and
(3.35), we can compute the numerical values for the most relevant parameters
describing the event horizon of a charged black hole binary merger in the EMR
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limit. To this end we need to fix a value for the charge Q of the RN black
hole which we choose to be Q = 4/5m.

To carry out our analysis we divide the generators of the event horizon in
two different classes: the non-caustic generators and the caustic generators,
separated by the impact parameter q = qc. The former ones are characterized
by an impact parameter q ≤ qc and going back in time, starting from future
null infinity, these generators will not leave the horizon at a caustic point,
meaning that they do not have past endpoints. The latter instead are the
ones with an impact parameter q < qc, they enter the horizon through the
line of caustics and thus, going back in time, they do have endpoints. Among
the caustic generators we can identify the ones characterized by an impact
parameters q = q∗, which are the last to enter the event horizon at the caustic
line. See Fig. 3.2 for a graphic representation of the two classes of generators.

The generators characterized by the impact parameter q = qc play a key
role in our analysis, being the ones that separate the two classes of generators
described above. They correspond to null geodesics that originate from the
event horizon of the small black hole r+ and move towards the large black hole,
i.e. along the ϕ = π direction. This is the same as the central generator which
starts from r = r+ as well but moves in the direction ϕ = 0. The generators
with q = qc instead do not extend back to infinitely early times (as the central
generator does) since they have past endpoints. This can only happen if they
are moving towards the large black hole, thus we can find the numerical value
for the impact parameter q = qc by solving the following equation

ϕqc(r+) = π. (3.40)

Solving this equation numerically we find

qc = 3.73166m. (3.41)

It is interesting to compute the growth in the area of the event horizon
of the RN black hole due to the non-caustic generators. We recall that the
initial area of the event horizon for a charged black hole can be written as

Ain = 4πr2+, (3.42)

while, as a consequence of the three dimensional event horizon at future null
infinity where the generators that define the event horizon lie on a S1 of
radius q, the contribution of the non-caustic generators to the area of the
event horizon is the one of a disk of area πq2c . Thus, the growth in the area of
the event horizon of the RN black hole due to the non-caustic generators can
be written as

∆Anon−caustic =

((
qc
2r+

)2

− 1

)
4πr2+. (3.43)
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Figure 3.2: Representation in the (x, z) plane of the event horizon. The grey
circle is the RN black hole, the red lines represent the non-caustic generators,
the purple ones are the generators with q = qc and the blue curves are the
null geodesics with q = q∗. The light rays with qc < q < q∗ enter the event
horizon through the small black hole while the generators with q > q∗ are able
to move away from it. The last generators enter the event horizon through
the large black hole. All the curves move towards positive z direction. Note
that this representation is analogous to the one obtained for the neutral case
studied in [78] (see Fig. 5 therein).



118 CHAPTER 3. CHARGED BINARY BLACK HOLES

Using this, we obtain

∆Anon−caustic = 0.35989 Ain. (3.44)

Note that the non-caustic generators are the null geodesics defining the event
horizon of the charged black holes at early times, meaning that in the growth
of the area of the event horizon analysed in Eq. (3.43), no new generators are
added.

We can also analyse the caustic generators, characterized by an impact
parameter qc < q < ∞. Among them, we single out the last ones to enter
the event horizon at a caustic point at finite time, with an impact parameter
q = q∗. The value q = q∗, together with t = t∗ and r = r∗, describes the
moment when the two event horizons touch each other and merge, usually
called the pinch-on instant. Following back from I+ the generators with an
impact parameter q = q∗, we see that they remain “still” on the collision axis
ϕ = π: they reach the caustic line but they neither approach the small RN
black hole nor they leave it. Thus this set of null geodesics is characterized
by ṙ|ϕ=π = 0.

It is worth mentioning that generators with an impact parameter q > q∗
are far away enough from the small black hole to escape its gravitational
attraction and, as a consequence, they will not contribute to the evolution
of the event horizon of the RN black hole during the merger. In the EMR
limit with M → ∞ the event horizon of the large black hole becomes infinite,
meaning that the actual number of generators defining the event horizon at
future null infinity is infinite. Thus also the null geodesics with an impact
parameter q > q∗ will enter the final horizon, i.e. the one which will form at
the end of the merger, but they will do it through the large black hole instead
of the RN one. On the other hand generators with q < q∗ are close enough
to the small black hole to get pulled towards it because of its gravitational
attraction and are forced to enter the event horizon through the RN black
hole. It is clear that the last null geodesics to enter the event horizon of the
merger through the small RN black hole are exactly the ones characterized by
the impact parameter q = q∗: they cannot escape the gravitational attraction
of the small black hole but they are also not forced to move towards it.

Recalling that for these last generators ṙ|ϕ=π = 0, according to Eqs. (3.12)
we can find the values for r∗ and q∗ by solving

r4∗ − q2∗r
2
∗ + 2q2∗mr∗ − q2∗Q

2 = 0, ϕq∗(r∗) = π. (3.45)

Once again we solve these equations numerically and we get

r∗ = 3.0643m, q∗ = 4.75396m. (3.46)

After plugging these results in the expression for tq(r) defined in Eq. (3.35)
we can find the numerical value for t∗, which reads

t∗ = −8.10602m. (3.47)
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We can compare the parameters (3.41), (3.46) and (3.47) that we just obtained
in the case of a charged black hole merger with the ones extracted in the
neutral case analysed in Ref. [78]. We can notice how in the charged case they
are always smaller, meaning that the two event horizon merge closer to the
center of the small black hole. Moreover, given that r∗ can be interpreted as
a measure of how strongly the RN black hole is deformed by the larger one
during the merger, the fact that in the charged case r∗ is smaller compared
to the one obtained in the neutral case means that a RN black hole is less
distorted during the merger than a Schwarzschild one.

Furthermore in the EMR limit we can also estimate the duration of the
merger. This can be done by considering the difference ∆∗ between the re-
tarded time at I+ of the event horizon in the direction ϕ = 0 and the retarded
time associated to the light rays emitted when the two black holes merge in
the direction of the large black hole (ϕ = π). The latter is simply t∗, the
former is given by the central generator in Eq. (3.22) evaluated in r = r∗

7.
The duration of the merger ∆∗ is defined as

∆∗ = tq=0(r∗)− t∗. (3.48)

After plugging in ∆∗ the expression for tq=0 defined in Eq. (3.22) together
with the values for r∗ and t∗ we found in Eqs. (3.46) and (3.47), we have

∆∗ = 10.4669m. (3.49)

Again, we can compare this result with the one obtained in the neutral case in
Ref [78], which reads ∆∗ = 11.89352m. We can see that the merger happens
faster when one of the two black holes in the binary system is a charged one.
In our framework this can be explained by observing that a charged black
hole is smaller than its neutral counterpart, leading to a quicker absorption
by the larger black hole. This was to be expected since it is already known
in the literature that a small amount of electric or magnetic charge in black
hole binary systems can lead to faster mergers in the cases of both circular
and elliptic orbits [23,249,290]8.

The growth in the area of the event horizon of the small charged black
hole including also the generators with qc < q < q∗ can be written as

∆Asmallbh =

((
q∗
2r+

)2

− 1

)
4πr2+, (3.50)

where after plugging in the numerical value for q∗ found in Eq. (3.46) we have

∆Asmallbh = 1.20705 Ain. (3.51)

7See Figure 6 in Ref. [78] for a graphical interpretation of ∆∗ as the duration of the
merger.

8See also Ref. [291] for a discussion on the effect of the presence of charge in binaries on
the merger rate of primordial black holes.
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By comparing our results in Eqs. (3.44) and (3.51) with the ones in the neutral
black hole binary obtained in Ref. [78], we can see that the growth in the area
of the event horizon of the small black hole during the merger is larger in
the charged case. This can be understood by recalling that the more charge
is present in a black hole and the smaller the black hole becomes. As a
consequence the initial area of a RN black hole will always be smaller than
the one of a Schwarzschild black hole with the same mass m, this leads to
a greater contribution of the null geodesics to the growth of the area of the
event horizon in the charged case. Moreover notice how in both Eqs. (3.44)
and (3.51) the ∆A for the small black hole is positive, meaning that the area
of the event horizon of the RN black hole is bigger after the merger compared
to its initial value, satisfying the second law of black hole mechanics.

So far we extracted the parameters of the merger by keeping fixed the
charge of the small black hole to a specific value, i.e. Q = 4/5m, for an
illustrative purpose. However it is interesting to analyse how the parameters
qc, q∗, t∗, r∗ and ∆∗ behave for a general value of the charge Q. To this end, in
Figs. 3.3a, 3.3b, 3.3c, 3.3d and 3.3e we plot how the parameters of the merger
cited above behave as the charge of the RN black hole grows larger until it
reaches its maximum value, i.e. Q = m. From these plots we can immediately
notice how the more charge is added in the small black hole and the smaller
the parameters describing the merger become, reaching their minimum value
in the extremal case Q = m. In particular Fig. 3.3c tells us that as the
charge in the binary system grows larger the small black hole becomes less
and less distorted during the merger. From Fig. 3.3e instead, we can see that
the merger happens faster as the charge of the RN black hole increases, as
expected. Finally the fact that all the parameters become smaller when more
charge is added in the binary system simply tells us that the merger between
the two black holes is happening closer to the center of the small one.
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(a) Threshold impact parameter qc that sep-
arates the caustic generators q > qc and the
non-caustic generators q ≤ qc, as a function of
Q. The axes are measured in units of m.
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(b) Impact parameter q∗ of the last generator
to enter the horizon at the caustic line as a
function of the chargeQ of the small black hole.
The axes are measured in units of m.
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(c) Value of the radial coordinate r∗ of the
pinch-instant, as a function of Q. r∗ measures
the distorsion of the RN black hole during the
merger. The axes are measured in units of m.
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(d) Value of the time coordinate t∗ of the pinch-
on (according to the time origin imposed by
(3.39)), as a function of Q. The axes are mea-
sured in units of m.
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(e) Difference ∆∗ between the retarded time at
I+ of the event horizon in the direction ϕ = 0
and the retarded time associated to the light
rays emitted when the two black holes merge in
the direction of the large black hole (ϕ = π), as
a function of Q. The value of ∆∗ can be taken
as a measure of the duration of the merger.
The axes are measured in units of m.
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Extremal case: |Q| = m

Here we analyse the case where the small black hole in the binary system is
an extremal one, namely it has the same amount of charge and mass |Q| = m.
As already mentioned at the beginning of this Chapter, extremal black holes
are particularly interesting in supersymmetric theories and moreover they also
represent the smallest possible configuration for a black hole.

To analyse the extremal case we can take the Q → m limit either in the
Eqs. (3.21)-(3.24) or directly in the results obtained in Eqs. (3.34)-(3.36) in
the |Q| < m case. Starting with the expression for tq(r), in the extremal case
this takes the following expression9

tq(r) = 2m log

(
q

2

√
(r − x1)(r − x2) +

√
(r − x3)(r − x4)√

(r − x3)(r − x4)−
√

(r − x1)(r − x2)

)
− x2

+

√
(r − x1)(r − x3)(r − x4)

r − x2
+
√
bf
(
E
(
y1|s

)
− E

(
y2|s

))
+

am4

√
bf(m− x1)2(m− x2)2

{(
x1x3f − 2qm2 + x2x4b

(m− x4)(m− x3)
− 2(m− q)

)
Π

(
c(m− x2)

f(m− x1)
; y2|s

)
+

(
2(m− q)(m− x3) +

bc(m− x2)
2 − df(m− x1)

2

2a(m− x4)

)
Π

(
c(m− x2)

f(m− x1)
; y1|s

)
+
b(m− x1)(m− x2)

a(m− x3)(m− x4)

[
f

(
E(y1|s)

2
− E(y2|s)

)
+
c(m− x2)√

ab

(
4 sin(2y1) +

√
(r − x3)(r − x2)

2(m− r)
sin(2y2)

)]}

+
ma√
bf

[
m3f

(m− x1)(m− x2)2(m− x4)

(
F (y2|s)−

F (y1|s)
2

)
+ 4

(
Π

(
d

b
; y1|s

)
−Π

(
d

b
; y2|s

))]

+

(
(x1x4 + x2x3)x

2
2 − am

(
4m2 + (x1 − 6x2 + x3)m+ 2x2(x1 + x3)

))
√
bf(m− x2)2

(
F
(
y1|s

)
− F

(
y2|s

))
+

m4

(m− x1)2(m− x2)2

(
a(2m+ q)√

bf
+

(
x1x3f − 2m2q + x2x4b

)
2(m− x3)(m− x4)

)
Π

(
c(m− x2)

f(m− x1)
; y1|s

)

+
m4

2(m− x1)(m− x4)

 b

a(m− x3)

(
fE
(
y1|s

)
m− x2

+
c sin(2y1)

2
√
ab

)
−
fF
(
y1|s

)
(m− x2)2


(3.52)

where we now have that

x1,2 =
1

2

(
q ∓

√
q(q − 4m)

)
, x3,4 =

1

2

(
−q ∓

√
q(q + 4m)

)
, (3.53)

9Here we already explicitly subtracted the integration constant cq.



3.1. EVENT HORIZON OF A CHARGED BLACK HOLE BINARY
MERGER 123

and we used the definitions in (3.37). Formally ϕq(r) in the extremal case has
the same expression as the one computed in the |Q| < m case in Eq. (3.34),
but with x1, x2, x3 and x4 given by Eq. (3.53).

We can now follow the exact same procedure used in the |Q| < m case
to compute the parameters characterizing the merger of the charged binary
black hole in the EMR limit when the small black hole is an extremal one.
Starting with the central generator we have

tq=0(r) = r +
Q2 − 2m2

r −m
+m log(Q2 + r2 − 2mr). (3.54)

While after using the expressions for tq(r), tq=0(r) and ϕq(r) defined in respec-
tively (3.52), (3.54) and (3.34) together with Eqs. (3.40), (3.45) and (3.48),
we can compute the parameters describing the merger of the two black holes
in the extremal case. They read

qc = 2.69128m, q∗ = 4.30440m,

r∗ = 2.72454m, t∗ = −7.54738m,

∆∗ = 9.39568m.

(3.55)

The values of qc and q∗ can be used to compute the growth in the area of
the event horizon of the small black hole due respectively to the non-caustic
generators and the caustic ones. By using Eqs. (3.44) and (3.50), the growth
in the area of the event horizon in the extremal case can be written as

∆Anon−caustic = 0.81075 Ain, ∆Acaustic = 3.63196 Ain. (3.56)

Comparing these results with the one obtained in the regular case |Q| < m, we
can immediately notice that the parameters qc, q∗, r∗, t∗ and ∆∗, are smaller
in the extremal case, as already shown in Figs. 3.3a, 3.3b, 3.3c, 3.3d and 3.3e.
Given that an extremal black hole is the smallest possible configuration for a
charged black hole, it will be swallowed more quickly by the large black hole in
the binary system while being less distorted during the merger, compared to
the regular case where the small black hole has a charge |Q| < m. This is well
described by the smaller numerical values obtained in the extremal case for
respectively ∆∗ and r∗. Finally this also explain why the growth in the area
of the event horizon is larger in the extremal case compared to the regular
case. Being the |Q| = m black hole smaller than the regular |Q| < m one, the
contribution of the generators to the growth in the area of its event horizon
will be more significant.

Orbit, spin and charge of the large black hole

So far we carried out our computation and analysed the merger of the two
black holes in the EMR limit without mentioning the charge or the spin of
the large black hole or the orbital properties of the binary system, which in
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general are not necessary negligible. However we can argue that for a merger
in the EMR limit is always possible to neglect those contributions and that
the case of a radial in-fall in a non-charged, non-spinning large black hole
describes every possible merger in the EMR limit.

Starting from the orbital properties of the binary, we can write any relative
motion between the two black holes in the EMR limit as a linear combination
of perpendicular and parallel contributions with respect the event horizon of
the large black hole. The asymptotic surface, from which we trace back the
event horizon of the merger in the EMR limit, is invariant under boosts along
the collision axis and this guarantees the invariance under perpendicular mo-
tion, while we can fix to zero the parallel motion without loss of generality by
using a similar argument [78,271], where a change in the parallel motion would
simply result in a different value for the integration constants in Eqs. (3.18)
and (3.19).

Moreover we can also prove that the charge of the large black hole plays no
role in the merger the EMR limit. This is due to the fact that the charge would
scale as r−2, where on the other hand the mass scales as r−1, see Eq. (3.7).
The steeper r-dependence makes it so that the contribution of the charge
becomes irrelevant outside the event horizon in the M → ∞, even when the
large black hole is an extremal one.

3.1.2 Numerical solution in 4 dimensions

In this section we use a numerical approach to analyse the merger of a charged
black hole binary system in the EMR limit. The numerical computation is
based on the Hamiltonian formalism for the geodesic equations and it has
the advantage of leading to easier differential equations to solve numerically
mainly because avoids working with incomplete elliptic integrals.

To carry on the numerical computation we start by rewriting the equations
of motion derived already in Ref. [271]10

dt

dλ
= ∆(r)−1 (3.57)

dr

dλ
= ∆(r)pr (3.58)

dϕ

dλ
=

q

r2
(3.59)

dpr
dλ

= − ∆′(r)

2∆(r)2
− ∆′(r)

2
p2r +

q2

r3
(3.60)

where λ is the affine parameter, q the impact parameter at infinity, ∆(r) =

1− 2m
r + Q2

r2
and ∆′(r) = d∆(r)

dr .

10The authors in Ref. [271] work in the plane θ = 0, where the geodesics lie in the constant
ϕ planes. Thanks to the spherical symmetry of the RN background we are free to change
the non-trivial angular variable θ ↔ ϕ and get the same form of the geodesic equations.
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The first step to solve these differential equations is to find a set of integra-
tion constants, which can be done by requiring that at future null infinity the
null hypersurface defining the event horizon of the merger becomes a planar
horizon. Next, by evaluating pµpµ = 0, we compute the explicit expression for
pr(r), which reads

pr =

√
1−

(
1− 2m

r + Q2

r2

)
q2

r2

1− 2m
r + Q2

r2

(3.61)

We use this result to decouple the inverse equation dλ/dr. This allows us
to work with the inverse equations where we can perform a series expansion
around r → ∞, integrate and inverse the series. This procedure yields

r(λ) = r∞ + λ+
q2

2λ
− mq2

2λ2
+

(
4Q2 − 3q2

)
q2

24λ3
+O

(
λ−4

)
, (3.62)

where r∞ is the integration constant, which we can set to zero by λ reparametri-
sation. We can then use Eq. (3.62) to solve (3.58), (3.59) and (3.61) around
I+. We get

t(λ) = t∞ + λ+ 2m log
λ

2m
+
Q2 − 4m2

λ
− m(8m2 − q2 − 4Q2)

2λ2

− 16m4 +Q2(q2 +Q2)− 3m2(q2 + 4Q2)

3λ3
+O

(
λ−4

)
(3.63)

ϕ(λ) = ϕ∞ − q

λ
+

q3

3λ3
+O

(
λ−4

)
(3.64)

pr(λ) = 1+
2m

λ
+

8m2 − q2 − 2Q2

2λ2
+
m
(
8m2 − q2 − 4Q2

)
λ3

+O
(
λ−4

)
(3.65)

where the integration constants t∞ and ϕ∞ can be set to zero without loss of
generality by shifting the time origin and orientation of the null plane.

Now that we have determined all the integration constants needed for our
computation, we can solve numerically the set of coupled differential equa-
tions in Eqs. (3.57), (3.58), (3.59) and (3.60). Solving these equations yields
to three independent functions, namely t(λ), r(λ) and ϕ(λ), which means
that all the information about the merger can be summarized in a three-
dimensional plot11. For convenience we plot the evolution of the generators of
the event horizon during the merger in the (x, z, t) space, where x and z are
the Cartesian-like coordinates introduced in (3.13). The results are shown in
Fig. 3.4 for the regular case |Q| = 4/5m, and in Fig. 3.5 for the extremal case
|Q| = m, while in Fig. 3.6 we show constant-time slices of these two plots,
showing the evolution of the merger.

11Note that the parameter λ is physically irrelevant and moreover pr(λ) can be computed
from r(λ) using Eq. (3.61)
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(a) (b)

Figure 3.4: Event horizon in a merger of a supermassive black hole with a
charged black hole of |Q| = 4/5m. The red curve represents the caustic line.
The axes are measured in units of m.

(a) (b)

Figure 3.5: Event horizon in a merger of a supermassive black hole with an
extremal charged black hole of |Q| = m. The red curve represents the caustic
line. The axes are measured in units of m.
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(a) t− t∗ = −9m (b) t− t∗ = −6m (c) t− t∗ = −3m

(d) t− t∗ = 0 (e) t− t∗ = 3m (f) t− t∗ = 6m

(g) t− t∗ = 9m (h) t− t∗ = 12m (i) t− t∗ = 15m

Figure 3.6: Constant-time slices of the event horizon in a merger of a super-
massive black hole (down) with a charged black hole of |Q| = 4/5m (centre)
in the latter’s centre-of-mass reference frame. The event horizon is plotted
with a black line, the grey area represents the inside of the black holes. The
axes are measured in units of m. The time slices are taken at regular time
intervals.
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Finally we can also compute the same parameters characterizing the merger
that we obtained with the analytical procedure in Eqs. (3.41), (3.46), (3.47)
and (3.55). With the numerical approach, in the regular case where the RN
black hole as a charge fixed to |Q| = 4/5m, we find

qc = 3.73m, r∗ = 3.07m, q∗ = 4.76m, t∗ = −8.12m, (3.66)

while in the extremal case where |Q| = m we have

qc = 2.71m, r∗ = 2.71m, q∗ = 4.30m, t∗ = −7.57m. (3.67)

The two methods agree as expected, with very small discrepancies of the order
O(0.01m).

3.1.3 Generalisation to D > 4 dimensions

The numerical procedure we introduced in the previous section allows us to
generalise our analysis to more general setups for the binary system, including
the case where the merger happens in D > 4 dimensions. Note that it only
makes sense to analyse our problem in D ≥ 4 since in lower dimensions black
holes, without a cosmological constant, do not exist. Here we analyse the
merger in dimensions higher than 4 since string theory or holographic models,
such as the AdS/CFT correspondence [292], work in dimension higher than
4. Moreover the study of the problem in generic D dimensions allow us to
understand which properties are characteristic of General Relativity and which
one are due to the choice D = 4.

In generic D dimensions, the metric of a RN black hole is formally the
same as the one defined in Eq. (3.7), where the function ∆(r) has now the
following form

∆(r) = 1− 2m

rD−3
+

Q2

r2(D−3)
(3.68)

As we did in the D = 4 case, we now need the asymptotic conditions to be
able to integrate the equations of motion, however it is not possible to find
these integration constants in generic D dimensions. What we can do instead
is to perform the asymptotic expansion for each fixed value of D. Just to give
an illustrative example, from now on we will work in D = 5 dimensions, where
we can write the asymptotic conditions at I+ as

r(λ) = λ+
q2

2λ
− mq2

2λ2
+

(
4Q2 − 3q2

)
q2

24λ3
+O

(
λ−4

)
(3.69)

t(λ) = λ+
Q2

λ
−

2m+Q2
(
q2 +Q2

)
3λ3

+O
(
λ−4

)
(3.70)

ϕ(λ) = − q
λ
+

q3

3λ3
+O

(
λ−4

)
(3.71)

pr(λ) = 1 +
4m− q2

2λ2
+O

(
λ−4

)
(3.72)
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With these asymptotic conditions we can solve the equations of motion intro-
duced in Eqs. (3.57), (3.58), (3.59) and (3.60) by following the same procedure
enlightened in the D = 4 case, but this time using for ∆(r) the definition in
Eq. (3.68). In Figs. 3.7 and 3.8 we show our results for D = 5 and for a fixed
value of the charge of the small black hole which, coherently with our previous
analysis, we choose to be |Q| = 4/5m.

(a) (b)

Figure 3.7: Event horizon in a merger of a supermassive black hole with a
charged black hole of |Q| = 4/5m in D = 5 dimensions. The red curve
represents the caustic line. The axes are measured in units of m.

Finally, for completeness, we also compute the parameters characterizing
the merger in D = 5 dimensions and for a charged black hole with charge
|Q| = 4/5m. They read

qD=5
c = 2.50m, rD=5

∗ = 1.98m, D = 5D∗ = 2.72m, ∆D=5
∗ = 6.26m.

(3.73)
By comparing these results with the ones obtained in D = 4 dimensions we
can notice two main differences: the first one is that in D = 5 the small black
hole is less distorted during the merger, as can be seen from rD=5

∗ < r∗, while
the second one is the relation ∆D=5

∗ < ∆∗ which implies a shorter merger time
in higher dimensions. This can be explained by looking at the expression in
generic D dimensions for ∆(r) in (3.68). In particular the higher the dimen-
sions the steeper becomes the r-dependence and thus the timescale and the
length scale for decaying become much shorter in D > 4 dimensions. Along
these lines we can also explain the relations qD=5

∗ < q∗ and qD=5
c < qc. One

final comment worth making is that the parameters (qc, q∗, r∗,∆∗) character-
izing the merger become smaller and smaller as the number of dimensions
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(a) t− t∗ = −9m (b) t− t∗ = −6m (c) t− t∗ = −3m

(d) t− t∗ = 0 (e) t− t∗ = 3m (f) t− t∗ = 6m

(g) t− t∗ = 9m (h) t− t∗ = 12m (i) t− t∗ = 15m

Figure 3.8: Constant-time slices of the event horizon in a merger of a super-
massive black hole (down) with a charged black hole of |Q| = 4/5m (centre)
in the latter’s centre-of-mass reference frame and in D = 5 dimensions. The
event horizon is plotted with a black line, the grey area represents the inside
of the black holes. The axes are measured in units of m. The time slices are
taken at regular time intervals.
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increases. More precisely they are monotonously decreasing functions of D
and they asymptotically approach zero as D goes to infinity.
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3.2 Tidal effects on charged binaries

In this section we analyse how the dynamics of a test particle moving around
a RN black hole is affected by the presence of an external tidal field. We will
follow the same procedure enlightened in Chapter 2, where we studied the
motion of a test particle around a Schwarzschild black hole in the proximity
of a supermassive Kerr black hole, but this time the primary companion in
the inner EMRI will be a charged black hole instead of a neutral one. Our
goal is to first write down the metric for a tidally deformed RN black hole
and second to analyse how the presence of the charge can alter the effects of
the tidal fields on the dynamics of the test particle. We will not specify the
source of the tidal fields, keeping our computation completely general in terms
of tidal multipole moments, up to the quadrupole order in their expansion.
Just to give an example, the tidal field could be generated by a supermassive
Kerr black hole around which the EMRI system with a charged black hole
and a test particle is orbiting. See Fig. 3.9 for a graphical representation of
this setup.

The effects of tidal fields on a RN black hole have been recently studied in
the context of Tidal Love numbers [293–295] and in higher dimensions than
4 [296,297].

Throughout this section we will work in geometric units, i.e. G = c = 1.

3.2.1 Tides on Reissner–Nordström Black Holes

The first step in our analysis is to compute the metric of a tidally deformed
RN black hole. The spacetime around a spherically symmetric, asymptotically
flat charged black hole, solution of the Einstein - Maxwell theory, is the one
already pointed out in Eq. (3.7), which here we rewrite for convenience as

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2 , f(r) = 1− 2M

r
+

Q2

r2
,

F = −Q

r2
dt ∧ dr + Pϵ ,

(3.74)

where we introduced the Maxwell field strength F , M is the mass of the black
hole while dΩ2 and ϵ represent, respectively, the metric and the volume form
of the 2-sphere, which in generic coordinates zA (with A = 1, 2) and spherical
coordinates (θ, ϕ) take the following expressions

dΩ2 = ΩABdz
AdzB = dθ2 + sin2 θdϕ2 , ϵ =

1

2!
ϵABdz

A ∧ dzB = sin θdθ ∧ dϕ .
(3.75)

Finally in (3.74), we also introduced the electric charge Q, magnetic charge
P , and “total” charge Q, which are defined by

Q =
1

4π

∫
S2

⋆F , P =
1

4π

∫
S2

F , Q =
√
Q2 + P 2 , (3.76)



3.2. TIDAL EFFECTS ON CHARGED BINARIES 133

Figure 3.9: Graphical representation of a hierarchical triple system with a test
particle m orbiting around a RN black hole of mass M and charge Q.

where S2 is any 2-sphere enclosing the hole. For completeness we also recall
that in the RN geometry two Killing horizons are present, namely

r± =M ±
√
M2 −Q2 − P 2, (3.77)

where under the assumption M2 ≥ Q2 + P 2, r+ corresponds to the event
horizon of the black hole while r− to a Cauchy horizon.

Moreover to compute the metric of a tidally deformed RN black hole we
will work with advanced Eddington–Finkelstein (EF) coordinates (v, r, θ, ϕ),
where

dv = dt+
dr

f(r)
. (3.78)

This set of coordinates is regular at both horizons r± and allows us to work
in the light-cone gauge, which is convenient in the computation of the metric
according to Appendix C and Ref. [70].
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3.2.2 Stationary Gravitational Tides

The metric of a tidally deformed RN black hole in the presence of a stationary
tidal source can be written as

gµν = gRN
µν + hµν , Fµν = FRN

µν + δFµν , (3.79)

where (gRN
µν ,FRN

µν ) is the unperturbed RN solution while (hµν , δFµν) is a sta-
tionary solution to the linearised Einstein–Maxwell equations. Note that
even if we consider a neutral source for the tidal fields, the strength of the
Maxwell field would still be excited with δFµν since the background spacetime
is charged.

The metric for a tidally deformed RN black hole can be derived by following
the steps presented in Ref. [77], which we refer the reader to for more details.
Here for the purpose of this thesis, we are only interested in the final result
which, in Schwarzschild coordinates and in the Regge–Wheeler gauge, can be
written as

h = Xℓm(r)Y ℓm

(
dt⊗ dt+

dr ⊗ dr

f(r)2

)
+ r2Uℓm(r)Y ℓmdΩ2

+ r2Vℓm(r)
(
dt⊗Xℓm +Xℓm ⊗ dt

)
, (3.80)

δF =

(
Q
Uℓm(r)

r2
− Eℓm(r)

r2

)
Y ℓmdt ∧ dr +

(
PVℓm(r)− f(r)

ℓ(ℓ+ 1)

dEℓm(r)

dr

)
dt ∧ Zℓm

+
f(r)

ℓ(ℓ+ 1)

dBℓm(r)

dr
dr ∧Xℓm + Bℓm(r)Y ℓmϵ , (3.81)

where here we introduced the usual spherical harmonics Y ℓm and the associ-
ated even and odd vector harmonics Zℓm

A = DAY
ℓm and Xℓm

A = ϵABD
BY ℓm,

where DA denotes the covariant derivative on the 2-sphere. Moreover we also
introduced the functions 12

Eℓm(r) ≡ QΦ+
ℓm(r) + PΦ−

ℓm(r) , Bℓm(r) ≡ PΦ+
ℓm(r)−QΦ−

ℓm(r) . (3.82)

The radial functions Xℓm(r),Uℓm(r),Vℓm(r) and Φ±
ℓm(r) appearing in Eqs. (3.80)-

(3.81) can be written as finite power series in r, namely

Xℓm(r) = rℓ
ℓ+3∑
n=0

aℓnr
−n , Uℓm(r) = rℓ

ℓ+1∑
n=0

bℓnr
−n , Φ+

ℓm(r) = rℓ
ℓ∑

n=0

cℓnr
−n ,

(3.83)

12For completeness we mention that in comparison with Ref. [77], here for convenience
Φ+ and Φ− are defined with an extra multiplicative factor given by 1/(2Q2) and i/(2Q2)
respectively.
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Vℓm(r) = rℓ−1
2ℓ∑

n=0

dℓnr
−n , Φ−

ℓm(r) = rℓ
ℓ+1∑
n=0

eℓnr
−n , (3.84)

where the constant coefficients aℓn, b
ℓ
n, c

ℓ
n, d

ℓ
n, e

ℓ
n can be obtained immediately

from the equations of motion. In Appendix D we show some of them explic-
itly as an example. Notice that the two sets of functions {Vℓm(r),Φ−

ℓm(r)}
and {Xℓm(r),Uℓm(r),Φ+

ℓm(r)} are independent from each other and they rep-
resent, respectively, the generalised odd and the even sectors of the fluctu-
ations 13, using Ref. [77] formalism. Moreover in order to extract the solu-
tions in Eqs. (3.80) and (3.81), we choose the boundary conditions in such
a way that fluctuations are regular at the horizon, while at infinity we as-
sume that the electromagnetic master variables Φ±

ℓm grow as ∼ rℓ. In general
the latter variables would evolve as Φ±

ℓm ∼ rℓ+1, but since here we are only
interested in purely gravitational tides (thus neglecting the electromagnetic
ones), we assume that at infinity they grow slower, namely Φ±

ℓm ∼ rℓ (see
Refs. [293, 295, 296] for a similar analysis). These boundary conditions allow
us to identify uniquely the solutions (3.80) and (3.81), up to a global ampli-
tude per sector which is usually determined by matching them with the source
of the tidal fields. Finally it is worth mentioning that since we are only consid-
ering gravitational tides, if the charge Q of the RN black hole vanishes, then
δF = 0 as expected. Moreover the dipolar ℓ = 1 degrees of freedom of the
tidal contribution are not present in our solutions since they are completely
related to the electromagnetic sector of the tides and here in this analysis we
focus, again, only on the gravitational contribution.

To apply this formalism in the analysis of the dynamics of a charged EMRI
system in a tidal environment, we will restrict ourselves only to the case of an
electrically charged black hole, focusing only on the quadrupolar modes ℓ = 2
of the tidal fields. Moreover we will follow Refs. [70,77] to write the solutions
presented in Eqs. (3.80) and (3.81) in terms of multipole tidal moments and
in the light-cone gauge, this yields to the following non-vanishing components
of the tidal fluctuations

hvv = −r2f2Eq ,

hvA = −2

3
r3f

(
Eq
A − Bq

A

)
,

hAB = −1

3
r2
(
Q2 + r2 − 2M2

)
Eq
AB +

r2

3

(
r2 − r2+

)
Bq
AB ,

(3.85)

13In general, for a non-vanishing magnetic charge P ̸= 0, the traditional even and odd
sectors would mix, see Ref. [298] for a more general discussion.
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and

δFvr =
Q

2r2
(r2 −Q2)Eq ,

δFvA = QrfEq
A ,

δFrA = −r
3
Q
(
Eq
A − Bq

A

)
,

δFAB =
Q

2

(
r2 −Q2

)
BqϵAB ,

(3.86)

where Eq, Eq
A, E

q
AB and Bq,Bq

A,B
q
AB are the electric and magnetic tidal multi-

pole potentials as introduced in [70]. The solutions presented in Eqs. (3.85)
and (3.86) represent the tidal contributions to the metric of a deformed RN
black hole and, together with the metric (3.74), they describe the spacetime
where the test particle in the EMRI system is moving.

3.2.3 Secular Dynamics

Here we analyse the dynamics of a test particle moving in a RN deformed
spacetime, which is given by (at the quadrupolar order in the tides’ modes), by
the usual RN background (3.74) plus the tidal corrections defined in Eq. (3.85).
We will neglect the contribution of the self-force by assuming that the ratio
between the mass m of the test particle and the mass M of the charged black
hole is small enough, namely m/M ≪ 1, allowing us to describe the motion of
the test particle with the geodesic equations. Moreover, in order to treat the
presence of the tidal environment as a small perturbation on the dynamics of
the EMRI system, we also implement the small-tide approximation introduced
in Eq. (1.55), which here we recall for convenience

M

R
≪ 1, (3.87)

whereR represents the radius of the curvature of the spacetime on the position
of the binary system. Finally we recall that we will consider only an electrically
charged black hole, where in this case the tidal perturbations of the spacetime
metric are exactly given by Eqs. (3.85) and (3.86).

Secular Hamiltonian of the test particle

The first step to study the dynamics of a test particle moving in a deformed
RN spacetime is to introduce the Hamiltonian describing the EMRI system,
which can be written as14

H =
1

2
ūµū

µ + ūµu
µ
(1) +

1

2
ūµūνhµν . (3.88)

Here we introduced the four-velocity of the test particle, defined as

uµ = ūµ + uµ(1) , (3.89)

14Indexes are lowered and raised with the unperturbed RN metric.
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where ūµ is tangent to a geodesic of the unperturbed background, and uµ(1) is
a correction due to the tidal deformation ∼ hµν . In our computation we will
consider circular unperturbed orbits, which are described by ūµ. The explicit
expression for the unperturbed component of the four-velocity, in the case of
a circular and equatorial orbit, can be written as

ūµ =
(Ē
f
, 0, 0,

L̄

r2
)
, ūµ =

(Ē − qQ
mr

f
, 0, 0,

L̄

r2
)
, (3.90)

where the left one describes the case of a neutral test particle while the right
one depicts the scenario of a charged test particle, where q and m represent
respectively its charge and mass while the constants Ē and L̄ denote the
specific energy and angular momentum. In the presence of an external tidal
field the unperturbed orbits get deformed and, in general, they are no longer
circular. As a result the trajectories in the full spacetime, i.e. the unperturbed
RN background plus the tidal environment, can be written as a mean circular
orbit plus some small oscillatory corrections [72]. Here we are interested in
studying the secular effects induced by the tidal environment on the dynamics
of the test particle, thus we focus our analysis on the mean circular part
of the orbits in the perturbed spacetime. This is done by integrating out
the oscillatory terms in the full trajectories by using the secular averaging
procedure, which we recall that for a mean circular orbit γ and a arbitrary
quantity A can be written as

⟨A⟩ ≡ 1

2π

∫ 2π

0
A |γ dϕ . (3.91)

With this formalism, we can compute the secular Hamiltonian describing
the EMRI system by applying this averaging procedure to the expression in
Eq. (3.88). In the case of a neutral test particle this yields to

⟨H⟩ = −1

2

(
⟨E⟩2

f
− ⟨L⟩2

r2

)
− η

[
⟨E⟩2 + f

⟨L⟩2

r2

]
r2

M2
, (3.92)

where E ≡ −u · ∂t and L ≡ u · ∂ϕ denote the specific energy and angular
momentum of the trajectory, η is an effective perturbative parameter propor-
tional to the mean amplitude of the tidal field ⟨Eq⟩, defined as

η = −M
2

2
⟨Eq⟩, 15 (3.93)

and we used that, form the solution (3.85), the metric components average to

⟨hvv⟩ = −r2 f2 ⟨Eq⟩ ,
〈
hvϕ
〉
= 0,

〈
hϕϕ
〉
= −r4f ⟨Eq⟩ . (3.94)

15Note that this is the same definition provided in Eq. (2.50), but here we keep it com-
pletely general without specifying the source of the tidal environment.
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For a charged test particle instead, the averaged Hamiltonian takes the fol-
lowing form

⟨H⟩ = −1

2

(( q̃Q
r − ⟨E⟩

)2
f

− ⟨L⟩2

r2

)
−η

[(
q̃Q

r
− ⟨E⟩

)2

+f
⟨L⟩2

r2

]
r2

M2
, (3.95)

where we introduced, for later convenience, the charge-to-mass ratio q̃ = q/m
for the test particle.

In what follows we will use the secular or averaged Hamiltonians defined
in Eqs. (3.92) and (3.95) to compute how the ISCO and the light ring of the
RN black hole are deformed by the presence of an external tidal field, in both
cases of a neutral and charged test particle. We remind the reader that these
two orbits are key elements in the propagation of matter, light and gravity in
the vicinity of a black hole.

3.2.4 Tidal Effects on the ISCO and the Light Ring - Neutral
Test Particle

We start by considering the case of a neutral test particle orbiting around the
tidally deformed RN black hole. We recall that the mean ISCO is characterized
by the following conditions in terms of the secular Hamiltonian (3.92) [215]

⟨H⟩|r=rISCO = −1

2
,
d⟨H⟩
dr

∣∣∣∣
r=rISCO

= 0 ,
∂2⟨H⟩
∂r2

∣∣∣∣
r=rISCO

= 0 . (3.96)

Given that the RN black hole is immersed in a tidal environment, the pa-
rameters characterizing the ISCO should be given by their usual unperturbed
values plus a small deviation proportional to the mean amplitude of the tidal
field ∼ η, namely the radial coordinate, the energy and the angular momentum
of the ISCO can be written as

rISCO ≃ r0 + η r1 , LISCO ≃ L0 + η L1 , EISCO ≃ E0 + η E1 , (3.97)

where (r0, E0, L0) denote the unperturbed ISCO parameters, and attempt to
solve (3.96) for the deformations (r1, E1, L1). For completeness, we also recall
that the ISCO’s orbital frequency can be written as [72,214]

Ω2 =

(
uϕ

ut

)2

=
1

2r2

[
2M

r
− (r − 3M)uµuν∂r⟨hµν⟩

]
, (3.98)

and search for solutions of the form

ΩISCO ≃ Ω0 + η Ω1 . (3.99)
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The unpertubed values for the ISCO’s parameters can be obtained by solving
(3.96) at zeroth order in η. In terms of the mass and charge of the RN black
hole, they can be written as

r0 = 2M +

(
W
M

)1/3

+

(
M

W

)1/3

(4M2 − 3Q2) ,

L0 = r0

√
Mr0 −Q2

r20 − 3Mr0 + 2Q2
,

E0 =
r20 − 2Mr0 +Q2

r0
√
r20 − 3Mr0 + 2Q2

,

Ω0 =

√
Mr0 −Q2

r20
,

(3.100)

where we introduced the quantity

W =
(
8M4 − 9M2Q2 + 2Q4 + Q2

√
5M4 − 9M2Q2 + 4Q4

)
. (3.101)

These are the usual known values characterizing the ISCO of a charged black
hole [299–302]. By solving the ISCO conditions presented in Eq (3.96) at the
first order in η, we can find analogous expressions also for the tidal corrections
(r1, E1, L1,Ω1), which can be written as

r1 =
2r20(r

2
0 − 2Mr0 +Q2)

M2C

(
2M3

(
44Q2r20 + 63r40

)
−M2

(
52Q4r0 + 199Q2r30 + 101r50

)
− 48M4r30 +M

(
10Q6 + 99Q4r20 + 111Q2r40 + 34r60

)
− 4

(
4Q6r0 + 7Q4r30 + 5Q2r50 + r70

))
,

L1 =
1

2M2
√
Mr0 −Q2(r20 − 3Mr0 + 2Q2))3/2

(
6M4r20(2r0 − r1)

+M3r0

(
Q2(9r1 − 20r0) + r20(4r0 + r1)

)
+ 2M2

(
Q4(4r0 − 2r1)− 5Q2r30 − 9r50

)
+ 2M

(
6Q4r20 + 9Q2r40 + 5r60

)
− 2r0

(
Q2 + r20

)(
2Q4 +Q2r20 + r40

))
,

E1 = − 1

2M2r20
(
r20 − 3Mr0 + 2Q2

)3/2(M2r1

(
Mr20(6M − r0) + 4Q4 − 9MQ2r0

)
+ 2r0

(
r20 − 2Mr0 +Q2

)(
r20

(
8M2 − 7Mr0 + 2r20

)
+Q2r0(3r0 − 8M) + 2Q4

))
,

Ω1 =
4M2Q2(r1 − r0) +M3r0(4r0 − 3r1)− 6MQ2r20 + 4Q2r30 + 4Q4r0 − 2r50

2M2r30
√
Mr0 −Q2

,

(3.102)
where, for the ease of notation, all the expressions are written in terms of r0
given in Eq. (3.100) and some expressions are implicitly given in terms of r1.
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Figure 3.10: Tidal corrections to the ISCO’s position, energy, angular momen-
tum and orbital frequency as a function of the black hole’s charge-to-mass ratio
Q/M . We represent the absolute value of the tidal correction normalised to
their value in the case that the black hole is neutral.

Moreover we defined

C = Q4r20

(
179Mr0 − 222M2 − 24r20

)
+ 6Q6r0(17M − 8r0)− 16Q8

+ 12MQ2r30

(
17M2 − 18Mr0 + 4r20

)
+Mr40

(
96M2r0 − 72M3 − 34Mr20 + 3r30

)
.

(3.103)

However, since their expressions are not very illuminating, we prefer to repre-
sent them in Fig. 3.10 as a function of the charge-to-mass ratio Q/M of the
RN black hole. From our results we can see that the magnitude of all the
tidal corrections decreases as the charge of the black hole grows larger. This
is exactly what we could have guessed from the beginning since as the charge
increases, the throat of the black hole elongates dragging the ISCO closer to
its center, washing away the tidal effects induced by an external field. It is
particularly interesting to notice that the tidal corrections reach their mini-
mum values in the extremal limit Q/M = 1, where the throat of the black
hole becomes infinitely long and they read

r1 = 648M, L1 = −126
√
2M, E1 = −

√
3

2

105

4
, Ω1 = −73

√
3

4M
. (3.104)

Thus, in our analysis, we have found that the tidal corrections induced by the
external environment on the ISCO of a RN black hole are suppressed as the
charge approaches extremality (as expected), but in the extremal limit they
do not vanish and they converge to finite values.
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Next we carry out a similar analysis for the light ring of the RN black hole,
which is defined by its position rLR and impact parameter bLR = L/E. These
two parameters can be found by using the averaged Hamiltonian (3.92) and
by solving the following conditions [303,304]

⟨H⟩|r=rLR = 0 ,
d⟨H⟩
dr

∣∣∣∣
r=rLR

= 0 . (3.105)

Analogously with the ISCO case, we search for solutions of the form

rLR ≃ r0 + η r1 , bLR ≃ b0 + η b1 , ΩLR ≃ Ω0 + ηΩ1 . (3.106)

At the zeroth order in η they define the unperturbed parameters for the light
ring of a RN black hole, which can be written as [305]

r0 =
3M +

√
9M2 − 8Q2

2
, b0 =

(3M +
√

9M2 − 8Q2)2

2[2M(3M +
√
9M2 − 8Q2)− 4Q2]1/2

, Ω0 =
1

b0
,

(3.107)
while by solving Eqs. (3.105) at first order in η we find the tidal corrections
induced by the external environment on the light ring parameters, which read

r1 = −15M + 9
Q2

M
+
Q2

M2

√
9M2 − 8Q2 − 45M2 − 38Q2√

9M2 − 8Q2
,

b1 =

√
2M(3M +

√
9M2 − 8Q2)− 4Q2

2M2
(5M(3M +

√
9M2 − 8Q2)− 4Q2) ,

Ω1 =
4(Q2 −M(

√
9M2 − 8Q2 + 2M))

√
2M(

√
9M2 − 8Q2 + 3M)− 4Q2

M2(
√
9M2 − 8Q2 + 3M)2

.

(3.108)
We represent them in Fig. 3.11. From these results we can notice how, similarly
to the ISCO case, the tidal corrections are decreasing functions of the charge-
to-mass ratio of the RN black hole, reaching their minimum, but still non-
zero, values once again at extremality. For completeness, the values of the
parameters characterizing the light ring in the extremal limit can be written
as

r0 = 2M , b0 = 4M , Ω0 =
1

4M
,

r1 = −12M , b1 = 16M , Ω1 = − 1

M
.

(3.109)

3.2.5 Tidal Effects on the ISCO - Charged Test Particle

Here we analyse the scenario where the test particle possesses an electric
charge q. In this case the dynamics is richer than the one of a neutral test
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Figure 3.11: Tidal corrections to the light ring’s position, impact parameter
and orbital frequency as a function of the black hole’s charge-to-mass ratio
Q/M . The corrections are normalised to their values in the neutral black hole
case.

particle since now the secondary companion in the EMRI system interacts
both gravitationally and electromagnetically with the tidally deformed back-
ground. Note that even if we are considering only gravitational tides, the
Maxwell field strength is coupled with the gravitational deformations thanks
to the charge Q of the RN black hole. Thus, in the case of a charged test par-
ticle, the tidal corrections contain both a gravitational and electromagnetic
contribution.

The Hamiltonian describing the EMRI system with a charged test par-
ticle is given by Eq. (3.95), which we expand in terms of the dimensionless
parameter q̃, which we assume to be small (q̃ ≪ 1) in order to carry out the
computation analytically. After retaining only terms up to the first order in
the expansion, the Hamiltonian takes the following form
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(3.110)
Even though the assumption q̃ ≪ 1 is not valid for elementary particles, for
which the charge-to-mass ratio is very large ∼ 1021,16 it captures very well

16We recall that we are working in geometric units, with G = c = 1.
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the scenario where the test particle in the EMRI is actually a macroscopic
body, for which the charge-to-mass ratio should be instead very small [243].
Following the same steps presented previously in the case of a neutral test
particle, we write the ISCO parameters as their unperturbed values in the
RN spacetime (for a charged test particle this time) plus a tidal correction
proportional to η, namely

rISCO ≃ r0 + q̃rq0 + η (r1 + q̃rq1) ,

LISCO ≃ L0 + q̃Lq
0 + η (L1 + q̃Lq

1) ,

EISCO ≃ E0 + q̃Eq
0 + η (E1 + q̃Eq

1) ,

ΩISCO ≃ Ω0 + q̃Ωq
0 + η (Ω1 + q̃Ωq

1) ,

(3.111)

where (rα, Eα, Lα,Ωα), with α = 0, 1, are the gravitational contributions to
respectively the unperturbed parameters and the tidal corrections computed
in the neutral test particle case. More in detail, the unpertubed values (de-
noted by the subscript 0) can be obtained by solving at leading order the
ISCO conditions presented in Eq. (3.96) with the Hamiltonian (3.110), where
E0, L0, r0 and Ω0 denote the ISCO parameters for a RN black hole in the
absence of tidal deformation for q = 0, and their expressions are given in
Eqs.(3.100), while rq0, L

q
0, E

q
0 and Ωq

0 are the first order corrections due to the
charge q and can be written as
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where C is defined in Eq. (3.103) and, to avoid heavy notation, we chose to
give the various expressions in terms of r0 which is given in Eq. (3.100). Notice
how by sending the charge of the test particle to zero q → 0 (or equivalently
q̃ → 0) the parameters (3.111) reduce to those given in Eq.(3.100) for a neutral
test particle, as expected. Moreover by setting the charge of the RN black
hole to zero, i.e. Q = 0, we recover the parameters describing the ISCO of
a Schwarzschild black hole, which obviously do not depend on the charge of
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the test particle, while for an extremal charged black hole (Q =M) the ISCO
parameters, up to the first order in q̃, takes the following expressions
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Here we can see explicitly that the position of the ISCO depends on the charge-
to-mass ratio q̃ of the test particle. In particular when the charge of the test
particle and the one of the RN black hole have the same sign, the ISCO is
closer to the black hole itself, while if the two charges have opposite signs the
ISCO is pushed far away compared to the case of a neutral test particle.

Finally by solving the ISCO conditions (3.96) at first order in η with the
Hamiltonian (3.110), we find the tidal corrections to the ISCO parameters of
a RN black hole in the case of a charged test particle, namely the ones with
the subscript 1 defined in Eq. (3.111). Here (r1, L1, E1,Ω1) denote the tidal
contributions to the gravitational field, which do not depend on the charge of
the test particle and they correspond to the ones computed for a neutral test
particle, while with the superscript q we represent the tidal contributions to
the electromagnetic field, which are always proportional (in our approximation
q̃ ≪ 1) to the charge of the test particle. They read
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where again C is defined in Eq. (3.103), K = r20−3Mr0+2Q2 and the explicit
expression for ξ1, .., ξ7 is relegated to App. E.

In the extremal limit (Q = M), the ISCO parameters up to first order in
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Figure 3.12: Ratio between the electromagnetic (denoted by the superscript
q) and gravitational (denoted by the superscript 0) contributions to the tidal
corrections of the ISCO parameters in the case of a charged test particle, as
a function of Q/M .

q̃, including also the tidal contributions, simplify to
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Similarly to the neutral test particle case, the explicit expressions for the
tidal corrections are not very useful. Given that all tidal corrections carry a
gravitational and an electromagnetic contribution, as shown in Eq. (3.111),
in Fig. 3.12 we plot the ratio of these two contributions as a function of the
charge-to-mass Q/M ratio of the RN black hole for each parameter character-
izing the ISCO, assessing the relative importance of these two effects as the
charge of the black hole grows.

The electromagnetic contribution of course vanishes for Q = 0, and it
is activated as Q increases. While the behaviour is slightly different for each
quantity, in all cases the gravitational correction dominates in magnitude over
the electromagnetic one for all Q. This may have been anticipated given that
we are only considering a gravitational tidal source. It is also worth noticing
that, for some values of Q, the electromagnetic corrections to the ISCO’s
position and angular momentum vanish. Such a non-monotonic behaviour
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reveals a nontrivial balance of forces governing the particle’s dynamics, which
is much richer than in the neutral case.



Chapter 4

Conclusions

I
n this thesis we analysed how the dynamics of a black hole binary system
is affected by the presence of a tidal environment, which in our analysis is

usually sourced by a supermassive spinning black hole forming a triple system
with the binary. We focused our attention on the scenarios where strong grav-
ity effects emerge, i.e. when the binary system is orbiting along a geodesic
very close to the supermassive black hole. We described the interaction be-
tween the tidal environment and the binary system perturbatively, treating
the presence of the supermassive black hole as a perturbation on the binary
system, thanks to the small-tide approximation introduced in Eq. (1.55), i.e.
by requiring that the characteristic scale of the binary system is much smaller
compared to the radius of the curvature induced by the tidal environment
on the position of the binary itself. The effects of the tidal field are entirely
captured by the multipole tidal moments Ea1,a2,...,aj and Ba1,a2,...,aj , which are
functions of solely the parameters characterizing the supermassive black hole.
Strong gravity effects can significantly modify the dynamics of a binary sys-
tem, potentially affecting also the gravitational wave signals emitted by the
binary during the merger of the two companions. This, together with the fact
that the new interferometers such as LISA and the Einstein Telescope will
allow us to investigate regions of the Universe where strong gravity effects
dominate the evolution of a binary system [50, 207], motivates us to analyse
carefully black hole triple systems using General Relativity instead of the usual
astrophysical approach relying on the weak field approximation.

More in detail, in Chapter 1 we analysed the evolution of a black hole bi-
nary system orbiting around a supermassive Kerr black hole along a circular
and equatorial geodesic. We used the small tide approximation to treat the
interaction between the binary system and the Kerr black hole as a small per-
turbation and we also assumed that the distance between the two companions
in the binary was much bigger than the characteristic scales of the two black
holes, allowing us to describe them as point particles and thus to describe

147



148 CHAPTER 4. CONCLUSIONS

the binary using a Newtonian approach. In other words, the supermassive
black hole generating the tidal field is described with the Kerr metric, using
General Relativity, while the binary system is depicted as a Newtonian bi-
nary. We analysed how the description of the von Zeipel-Lidov-Kozai (ZLK)
mechanism changes with our new approach, showing how with a relativistic
description the characteristic frequency of the ZLK mechanism is enhanced by
an extra factor depending of the parameters describing the source of the tidal
field which becomes extremely relevant when the binary system is orbiting in
the near horizon region of the supermassive Kerr black hole. This extra term
in the frequency leads to faster mergers in the binary system and to a differ-
ent signal for the peak frequency of the gravitational waves emitted by the
two companions compared to the one predicted in the weak field limit. More-
over our approach allow us to incorporate new effects in the dynamics of the
binary system that the usual point particle description cannot include, such
as the gravitational redshift arising from the fact that the outer spacetime
is now curved. This effect slows down the merger between the two objects,
competing with the ZLK mechanism which, on the other hand, speeds up the
merger. A General Relativistic description of the tidal environment captures
also all possible effects of the spin of the supermassive Kerr black hole in the
evolution of the binary system, allowing us to recover with a post-Newtonian
(PN) expansion the usual spin-related contributions to the dynamics of the
two companions included in the weak field approximation but also to extend
the previously known results with new terms. Finally by describing the triple
system in two different reference frames, i.e. the local inertial frame dubbed
Marck’s frame and the non-inertial one called distant stars frame, we were
able to study the gyroscope precession of the angular momentum of the bi-
nary system around the direction identified by the angular momentum of the
Kerr black hole. This precession is known in literature as the Fokker - de Sit-
ter precession [173] or the Schiff’s precession [174], depending on whereas it
happens respectively in the Schwarzschild spacetime or in the Kerr one. As we
did for the spin contribution, we used the PN expansion to recover the results
already known in the literature [140], adding to them higher order corrections
that so far were not taken into account.

In Chapter 2 we focused our attention on Extreme Mass Ratio Inspirals
(EMRIs), i.e. binary systems where one of the two companions is much bigger
than the other. Because of this large difference in the masses of the two ob-
jects, the lighter one is expected to undergo several orbital cycles in the near
horizon region of the heavier one, where strong gravity effects play a crucial
role in the dynamics of the system [50,64]. This makes them the perfect can-
didates for the future interferometers to investigate regions of the Universe
which can possibly give us an invaluable insight in the strong gravity regime,
potentially leading to new physics [189, 206, 207, 306]. Their key role in the
future of gravitational wave physics has motivated the scientific community to
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study them in great details in different contexts [64,195–197]. They have been
used as probes to investigate the properties of black holes [307–311], for the
detection of scalar and vector fields [312, 313] and to analysed astrophysical
environments [314]. They have been studied in relation with the self-force
theory [315, 316], and they are particularly relevant in the context of reso-
nances [317–323]. Furthermore it has been shown that a fraction of EMRIs
might actually be b-EMRIs, i.e. binary Extreme Mass Ratio Inspirals, where
the secondary companion is a binary system, instead of a single compact ob-
ject [65, 324, 325]. This had lead to an increasing interest in EMRI systems
in tidal environments, where the binary is orbiting around an external su-
permassive black hole, analysing how the latter affects the dynamics of the
former [46, 71, 72]. For all of the reasons mentioned above, in Chapter 2 we
studied how the dynamics of an EMRI system is affected by the presence of a
tidal environment, which in our analysis will be generated by a supermassive
Kerr black hole, in a strong gravity regime when the binary and the exter-
nal black hole are close to each other. We started by computing the explicit
expressions for the multipole electric (Ea1,a2,...,aj ) and magnetic (Ba1,a2,...,aj )
tidal moments at their leading order, i.e. the quadrupole one, generated by
the Kerr black hole. The electric ones were already computed in previous
works in the literature [69,71,72] while the magnetic quadrupole moments are
a novelty that has never been computed before.1 These tidal moments encode
all the information about the source of the tidal field where the EMRI systems
is moving, and we use them to study how the dynamics of the secondary com-
panion in the binary system is affected by the presence of a supermassive Kerr
black hole. In particular we focused our attention on two specific orbits, the
ISCO of the primary companion and its light ring, computing the tidal shifts
induced on their orbital parameters by the tidal environment on a secular
timescale, i.e. on a timescale much longer than the orbital period of the test
particle in the EMRI system. We encoded all the information about the tidal
environment in an effective perturbative parameter η introduced in Eq. (2.50)
and we showed how depending on the orientation of the binary system with
respect to the plane where the outer orbit lies, the external tidal field can
either push far away the radial position of both the ISCO and the light ring
or can get them closer to the event horizon of the primary companion in the
EMRI. Moreover we showed how it exists a particular configuration for the
binary system, identified by the β∗ parameter defined in Eq. (2.57), for which
the EMRI system does not feel the presence of the tidal field and thus both
the ISCO and the light ring remain unperturbed.

In Chapter 3 we include the presence of the charge in binary systems. Al-
though it is widely believed that electrically charged black hole do not exist

1Note that the magnetic quadrupole tidal moments have also been computed, in a less
general scenario compared to the one analysed in this thesis, in Ref. [211].
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in the Universe because of the neutralization with the surrounding environ-
ment [229], it is still reasonable to include the charge in binary systems for
different reasons. First of all there are some mechanisms capable of electri-
cally charge a black hole, which usually lead to a very small - but non zero -
charge for this astrophysical objects [73, 234, 235, 238–241, 243]. Secondly to
include the electric charge in black hole mergers can potentially lead to a more
accurate waveform models in the case of mergers happening in astrophysical
environments [244–249]. Moreover the charge introduced in our analysis can
also be a magnetic one. Magnetically charged black holes are more stable
compared to their electrically charged counterpart, mostly because magnetic
charges are expected to be way more heavier than the electric ones, making the
pair-production neutralization ineffective [253]. Besides their stability [74,75],
magnetically charged black holes have drawn a lot of attention in the scien-
tific community because of the corona forming in the near horizon region of
the charged black hole where the electroweak symmetry is restored [254–257].
Finally the inclusion of an extra parameter in the description of a black hole
allows us to analyse a more general scenario compared to the one where we
only consider spherically symmetric and neutral objects, which can be used as
a toy model for the more realistic astrophysical scenario of a spinning black
hole or for some theories beyond General Relativity that predict the presence
of an extra parameter in the metric describing a black hole [326–328]. Lastly
it is also theoretically interesting to analyse charged black holes since they can
also become extremal, i.e. when it has the same amount of charge and mass,
scenario that is not achievable for a neutral black hole since it is only described
by one parameter (its mass). Extremal black holes are a key element in super-
symmetric theories [329] and in the context of theories in dimensions higher
than four [281–284], making charged black holes perfect tools for investigating
these theories.

In the first part of Chapter 3 we analysed the formation and the evolution
of the event horizon of a charged black hole binary system, where one of
the two objects is much smaller than the other, making the binary an EMRI
system. Denoting with M and m the masses of respectively the primary and
the secondary companion in the binary system, EMRIs are studied by taking
the EMR limit m/M → 0 which is usually satisfied by assuming that one
of the two objects is a test particle, i.e. m → 0. However in this limit we
lose all the information about the geometry of the small object, including
also the radial position of the event horizon, thus making this limit ineffective
for the aim of our analysis. For this reason we choose to satisfy the EMR
limit by sending M → ∞, which means that the event horizon of the primary
companion becomes a planar horizon. To extract the evolution of the event
horizon during the merger we start from its final configuration at future null
infinity, i.e. the one at the end of the merger, which corresponds to the one
of the larger black hole in the EMRI system and we trace back in time the
generators of the event horizon until they reach the line of caustics. We find
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that, even though the geometry of the problem is the same as the one analysed
in the case of a neutral EMRI system [78], the presence of the charge in the
binary can significantly affect the merger of the two black holes. In particular
we find that as the charge of the small black hole in the EMRI grows larger,
the merger happens closer to its event horizon, the black hole is less distorted
during the merger and the time required for the two companions to merge
is shorter. This is a consequence of the fact that as the black hole reaches
extremality, it becomes smaller in size meaning that it will be swallowed more
quickly by the large black hole leading to a faster merger.

In the second part of Chapter 3 instead we analysed how the dynamics of
an EMRI system with a charged black hole described by the RN metric as
the primary companion is affected by the presence of an external tidal field.
We started by writing down the metric for a tidally deformed RN black hole,
following Refs. [70, 77] which we then used to study how the ISCO and the
light-ring of a RN black hole are deformed by the presence of an external tidal
field, comparing our results with the one obtained in Chapter 2 for a neutral
EMRI. We carried out the computation in two different scenarios, when the
test particle orbiting around the charged black hole in the binary system is
a neutral one and when it is charged, under the assumption that the charge
of the test particle is small compared to its mass, i.e. q̃ = q/m ≪ 1. In the
case of a neutral test particle we found that as the RN black hole reaches
extremality, the shifts induced by the external tidal fields on the parameters
characterizing the orbits of the test particle become smaller, reaching their
minimum finite values exactly when Q = M , with Q and M respectively the
charge and the mass of the RN black hole. This can be interpreted by consid-
ering that the more charge is added to the black hole, the smaller it becomes
in size and as a consequence the ISCO and the light-ring get closer to its event
horizon, resulting in a less effective deformation induced by the external tidal
fields. In the case of a charged test particle instead the tidal effects have both
a gravitational and an electromagnetic contribution, where the latter is pro-
portional to the product of the two charges q and Q, respectively the charge of
the test particle and of the RN black hole. We found that both contributions
become smaller as the RN black hole approaches extremality, reaching again
their minimum (but finite) value when Q = M as expected. It is interesting
to notice how the gravitational part of the tidal deformations is larger than
the electromagnetic counterpart. This is a consequence of the fact that in our
analysis we still considered only gravitational tides.

What has been discussed in this thesis can be seen as a starting point for
possible future analysis in the context of triple systems in a strong gravity
regime. In this last part of the thesis we mention some, but not all, possible
future directions which might be (in our opinion) astrophysically relevant.

The first natural extension to our work would be to study how the dynam-
ics of a binary system moving in an external tidal environment is affected by



152 CHAPTER 4. CONCLUSIONS

the multipole magnetic tidal moments Ba1,a2,...,aj . This is motivated by the
fact that in contrast with the electric ones, they do not have a Newtonian
counterpart, meaning that any astrophysical effect arising from their contri-
bution to the dynamics of a binary system would be purely relativistic. As
enlightened in Eq. (C.7), they are proportional to the orbital velocity of the
binary system and thus, assuming that the tidal environment is sourced by a
supermassive black hole, magnetic tidal moments become extremely relevant
when the binary system is very close to the third object. A straightforward
way of including them in the dynamics of a triple system would be to analyse
the case where the binary system is moving along an eccentric, non-equatorial
orbit around a Kerr black hole. In this scenario, they should survive the sec-
ular average procedure which, as we saw in Chapter 2, was responsible for
suppressing their contribution to the evolution of the binary in the case of a
circular outer orbit.

In this thesis we always took into account only the leading contribution in
the multipole tidal moments expansion, i.e. the quadrupole order, in the
dynamics of a binary system moving in a tidal environment. However it
would be extremely important to include also the next order contribution (the
octupole order), especially in the context of the ZLK mechanism since, as we
have mentioned at the beginning of Chapter 1, new effects (such as the orbital
flip) arise when including the octupole order in the multipole expansion. In
light of the results of this thesis, specifically the fact that the ZLK mechanism
is enhanced in the strong gravity regime, it is particularly interesting to include
the octupole tidal potentials in the computation and to study if and how the
orbital flip is affected by strong gravity effects.

It is also worth mentioning that non-secular effects, such as resonances,
can play a huge role in the dynamics of a binary system. In this context
another possible extension of this thesis would be to analyse resonances in
triple systems using a General Relativistic approach. First of all, analogously
to what happens in the context of ZLK mechanism, strong gravity effects
can enhance resonances that in the point particle approximation might be
suppressed. Secondly in General Relativity we usually have more frequencies
compared to the Newtonian description. Just to give an example, in the
weak-field regime (described by Newtonian physics) the azimuthal and radial
frequency Ωϕ and Ωr of a binary system orbiting a supermassive black hole are
the same, but in the strong gravity regime (described by General Relativity)
they split, leading to Ωϕ ̸= Ωr. As a consequence, in the strong gravity regime
we could have more frequencies resonating with each other, yielding possibly
to new resonances that are not captured by the Newtonian description.

Finally tidal effects are not only relevant in the context of gravitational
waves, but they might also play a significant role in some high-energy as-
trophysical phenomena such as for example the emission of electromagnetic
jets from black holes. The latter phenomena is still an open question in
astrophysics and one possible answer lies in the Blandford–Znajek mecha-
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nism [330–332], i.e. the equivalent of the Penrose process [333] for the electro-
magnetic field. As we also mentioned in Chapter 3, the tidal fields generated
by a supermassive black hole, or a tidal environment in general, also affect
the field lines of the electromagnetic field around a black hole, potentially
changing the emission of jets.





Appendix

155





Appendix A

Secular evolution equations

Here we write explicitly the evolution equations for the orbital parameters
for both the inner and outer orbit up to the octupole approximation in the
Hamiltonian (1.3). Here we use the notation presented in Refs. [20,124], which
we follow in this Appendix, and we define

A = 4 + 3e21 −
5

2
B sin2 itot,

B = 2 + 5e21 − 7e21 cos(2g1)

cosϕ = − cos g1 cos g2 − cos itot sin g1 sin g2.

(A.1)

For completeness we recall also the definition of the constants C2 and C3

defined in (1.18) and (1.36), namely
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(A.2)

The Hamiltonian up to the octupole order can be written using the elimi-
nation of nodes h1 − h2 = π since the equations of motion for the orbital
parameters are not affected by this relation. This is true as long as one uses
the conservation of the total angular momentum Jtot to derive the evolution
equations for J1,z and J2,z or, given their definition in (1.7) equivalently i1
and i2, and not the canonical relation in (1.14) since now we eliminated the
angle variables h1 and h2. The secular Hamiltonian can then be written (after
averaging over the mean anomalies l1 and l2) as

H = C2

[
(2 + 3e21)(3 cos

2 itot − 1) + 15e21 sin
2 itot cos(2g1)
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]
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(A.3)
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For the evolution equations for the arguments of periapsis g1 and g2 we can use
the canonical relation defined in (1.14) with the Hamiltonian we just defined
above. This yields to
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(
10 sin g1 sin g2 cos itot sin

2 itot(1− 3e21)

+ cosϕ(3A− 10 cos2 itot + 2)
)]
,

(A.4)

and

dg2
dt

= 3C2

[
2 cos itot
J1

(
2 + e21(3− 5 cos(2g1))

)
+

1

J2

(
4 + 6e21 + (5 cos2 itot − 3)(2 + e21(3− 5 cos(2g1)))

)]

+ C3e1

sin g1 sin g2(104e22 + 1

e2J2
cos itot sin

2 itot(1− e21)

−e2
(

1

J1
+

cos itot
J2

)(
A+ 10(3 cos2 itot − 1)(1− e21)

))

+cosϕ

(
5B cos itote2

(
1

J1
+

cos itot
J2

)
+

4e22 + 1

e2J2
A

) .

(A.5)

For the evolution equations for the inner (e1) and outer (e2) eccentricities we
can use eqs. (1.15) which explicitly read

de1
dt

= C2
1− e21
J1

(
30e1 sin

2 itot sin(2g1)
)

+ C3e2
1− e21
J1

[
35 cosϕ sin2 itote

2
1 sin(2g1)

−10 cos itot sin
2 itot cos g1 sin g2(1− e21)

−A(sin g1 cos g2 − cos itot cos g1 sin g2)
]
,

(A.6)
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and

de2
dt

= −C3e1
1− e22
J2

[
10 cos itot sin

2 itot(1− e21) sin g1 cos g2

+A(cos g1 sin g2 − cos itot sin g1 cos g2)
]
.

(A.7)

We can use again the canonical relation to find the equations describing the
time evolution of the angular momenta for the inner (J1) and outer (J2) orbit,
namely

dJ1
dt

= −C230e
2
1 sin(2g1) sin

2 itot

+ C3e1e2

[
A (sin g1 cos g2 − cos itot cos g1 sin g2)− 35e21 sin

2 itot sin(2g1) cosϕ

+10 cos itot sin
2 itot(1− e21) cos g1 sin g2

]
,

(A.8)

and

dJ2
dt

= C3e1e2
[
A (cos g1 sin g2 − cos itot sin g1 cos g2)

+10 cos itot sin
2 itot(1− e21) sin g1 cos g2

]
.

(A.9)

We can derive the evolution equations for the longitude of ascending nodes h1
and h2, which can be written as

dh1
dt

= − 3C2

J1 sin i1

(
2 + 3e21 − 5e21 cos(2g1)

)
sin(2itot)

− C3e1e2
sin itot
J1 sin i1

[5B cos itot cosϕ

−A sin g1 sin g2 + 10(1− e cos2 itot)(1− e21) sin g1 sin g2

]
,

(A.10)

where the geometrical relation

sin i1 =
J2
Jtot

sin itot (A.11)

has been implemented. For the evolution equation of h2 we can simply recall
the relation h1 − h2 = π which immediately tell us that ḣ1 = ḣ2.

Finally from the conservation of the total angular momentum we can write
the evolution equations for the z component of the angular momenta of the
inner (J1,z) and outer (J2,z) orbits. Moreover by recalling that Jtot = J1,z +
J2,z = const. we can write J̇1,z = −J̇2,z. Explicitly we have

dJ1,z
dt

=
J1
Jtot

dJ1
dt

− J2
Jtot

dJ2
dt

, (A.12)
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which can be re-written using the relation (A.11) as

dJ1,z
dt

=
sin i2
sin itot

dJ1
dt

− sin i1
sin itot

dJ2
dt

. (A.13)

It is conveniently to write this equations in terms of the inclinations for the
inner and outer orbits i1 and i2, using the definitions in (1.7) we have

di1
dt

= − 1

sin i1

(
J̇1,z
J1

− J̇1
J1

cos i1

)
, (A.14)

and
di2
dt

= − 1

sin i2

(
J̇2,z
J2

− J̇2
J2

cos i2

)
. (A.15)



Appendix B

Fermi normal coordinates

This Appendix is based on Chapter 8 of Ref. [334], which here we slightly
reformulate.

We introduce a generic geodesic γ, parametrized in a coordinate system
xµ by xµ(τ), with τ the proper time on the geodesic. The relativistic velocity
on γ is given by

uµ =
dxµ

dτ
, (B.1)

where, for a time-like geodesic

gµνu
µuν (B.2)

with gµν the metric describing the spacetime background.
We construct an orthonormal tetrad on the time-like geodesic γ by intro-

ducing four vector fields eaµ on γ such that they obey the following conditions

eµ0 = uµ,
D

dτ
eµa = 0, eµae

ν
bgµν = ηab, (B.3)

with a, b = 0, 1, 2, 3 and where ηab is the usual Minkowski metric. The dual
tetrad is defined as

eaµ = ηabgµνe
ν
b . (B.4)

Given an event p in the neighborhood of γ, we introduce the unique space-
like geodesic β that intersects γ orthogonally ending up at p, where we denote
q the intersection point between γ and β. Moreover we demand the tangent
vector vµ of β to be orthogonal, at q, to the tangent vector uµ of γ, namely

gµνu
µvν = 0 at q. (B.5)

Notice that vµ is the tangent vector at q that points in the direction towards
p.

The Fermi normal coordinates x̃µ for p are defined as

x̃0 = τ, x̃i = eiµv
µ, (B.6)
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where i = 1, 2, 3. The geodesic distance between q and p, as measured with
the space-like curve β, is denoted s, which can be written as

s2 = δij x̃
ix̃j . (B.7)

In terms of Fermi normal coordinates x̃µ, we can write the metric in the
neighborhood of the time-like geodesic γ as

g̃00 ≃− 1− R̃0i0j x̃
ix̃j +O

(
s3
)
,

g̃0i ≃− 2

3
R̃0jikx̃

j x̃k +O
(
s3
)
,

g̃ij ≃ δij −
1

3
R̃ikjlx̃

kx̃l +O
(
s3
)
,

(B.8)

where R̃0i0j , R̃0jik and R̃ikjl represent the components of the Riemann curva-
ture tensor evaluated on γ.

If the background (at least on γ) obeys the equations

Rµν = 0, (B.9)

then we can write the components of the Riemann curvature tensor as

R̃ikjl = δijEkl + δklEij − δilEjk − δjkEil, (B.10)

where we introduce the electric quadrupole moments Eij , defined as

Eij = R̃0i0j . (B.11)

Note that from the equation R00 = 0 (which follows from Eq. (B.9)), together
with the general result R0000 = 0, the following relations hold

Eij = Eji, δijEij = 0. (B.12)

Moreover from Eq. (B.9) follows

δikR̃0ijk = 0, (B.13)

which implies

R̃0ijk = −ϵjklBl
i, (B.14)

where we introduce the Levi-Civita tensor ϵjkl and the magnetic quadrupole
moment Bij , which obeys

Bij = Bji, δijBij = 0. (B.15)

We can now write the metric in the neighborhood of the time-like geodesic
γ, in the case where the Ricci tensor vanishes on γ (Rµν = 0), in terms of
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Thorne-Hartle coordinates, which are related to the Fermi normal ones by the
following transformation

x̂a = x̃a + ξa, ξa =
−
1
6 (x̃cx̃

c) Eabx̃b −
1

3
x̃aEbcx̃bx̃c +O

(
s3
)
. (B.16)

Thus, the metric in Thorne-Hartle coordinates can be written as [167]

ĝ00 ≃− 1− Eij x̂ix̂j +O
(
s3
)
,

ĝ0i ≃− 2

3
ϵijkBj

l x̂
kx̂l +O

(
s3
)
,

ĝij ≃ δij

(
1− Eklx̂kx̂l

)
+O

(
s3
)
.

(B.17)

Finally, for a more detailed review on Fermi normal coordinates we refer the
reader to Refs. [334,335].





Appendix C

Tidally deformed
Schwarzschild spacetime

In this Appendix we briefly review the basic steps needed for the construction
of the metric of a tidally deformed Schwarzschild black hole. This metric was
derived for the first time in Ref. [70]1, which here we strictly follow and review.
Throughout this Appendix we will work in relativistic units, where G = c = 1.

The first step is to introduce the two length scales in play in the problem,
namely the mass of the tidally deformed black hole M , and the radius of the
curvature R of the external spacetime generated by the source of the tidal
fields, evaluated on the position of the black hole. To meaningfully analyse
the motion of the black hole in the external spacetime, the tidal interaction
between the two must be small, meaning that

M ≪ R. (C.1)

This allows us to treat the problem perturbatively, with M/R ≪ 1, in the
so-called small-tide approximation. As already mentioned in Chapter 1, if the
source of the tidal fields is a supermassive black hole of mass M ′, the radius
R induced on the position of a black hole of mass M , placed at a distance of
b from the former can be written as

R ∼
√

b3

M ∗M ′ . (C.2)

In this scenario, the small-tide approximation takes the following expression

M

R
∼ M

M +M ′V
3, (C.3)

where V 3 is the orbital velocity of tha black hole of mass M , defined as

V ∼
√
M +M ′

b
. (C.4)

1Note that a first step in the study of black holes in a tidal environment was already
been made in Refs. [336–344].
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From the condition (C.3), it is clear that there are two different ways of
satisfying the small-tide approximation: by requiring that the orbital velocity
of the black hole of mass M is small, i.e. V ≪ 1, or by assuming that there is
a hierarchy in the masses of the two bodies, namelyM ≪M ′. We refer to the
first one as the weak-field limit, where the two bodies can have comparable
masses but they must be far away from each other, while the second one is
usually called small-hole limit, and requires the supermassive black hole of
mass M ′ to be much bigger than the one of mass M without any limitation
on the relative distance between the two objects.

C.1 Tidal Moments and Tidal Potentials

The information about the tidal environment can be completely be encoded
in symmetric tracefree (STF) tensors Ea1a2...al and Ba1a2...al [345], which are
called tidal multipole moments and are the most general terms describing the
tidal environment compatible with the Einstein field equations [346, 347]. In
order to find explicit expressions for these tidal moments, we need to introduce
a smooth timelike geodesic γ in a vacuum spacetime, parametrized by the
proper time τ in an arbitrary set of coordinates xα. We can build a vectorial
basis by using the velocity uα tangent to the worldline and an orthonormal
triad of vectors eαa (τ), orthogonal to u

α and parallel transported along γ. With
this basis we can project the components of the Weyl tensor on the timelike
geodesic γ, namely

Ca0b0 = Cαµβνe
α
au

µeβb u
ν ,

Cabc0 = Cαβγµe
α
ae

β
b e

γ
cu

µ,

Cabcd = Cαβγδe
α
ae

β
b e

γ
c e

δ
d.

(C.5)

We can use these decompositions to introduce the leading terms in the multi-
pole expansion for the tidal moments, which are usually referred as quadrupole
tidal moments and are defined as

Eab = (Ca0b0)
STF , Bab =

1

2

(
ϵapqC

pq
b 0
)STF

, (C.6)

where ϵabc is the permutation symbol. For the purpose of our analysis we will
only consider the quadrupole order in the multipole expansion of the tidal
moments, since in these thesis we will always carry our computations up to
this order of approximation, neglecting higher order terms. The quadrupole
tidal moments can be expressed in terms of two scales [167]: the length scale
given by the radius of the curvature R and the velocity scale V:

Eab ∼
1

R2
, Bab ∼

V
R2

. (C.7)

To have a physical understanding of these scales, we consider again the situ-
ation where the source of the tidal fields is a supermassive black hole of mass
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M ′, and we place ourselves on a circular orbit at a distance b from this object.
In this scenario the two timescales have the following expressions

R ∼
√

b3

M ′ , V ∼
√
M ′

b
, (C.8)

which yield

Eab ∼
1

b3
, Bab ∼

1

b7/2
. (C.9)

The next ingredient needed for the construction of the metric of a tidally
deformed black hole is the introduction of tidal potentials. To this end we
introduce the radial unit vector

Ωa =
xa

r
, (C.10)

where r :=
√
δabxaxb, and a projector to the transverse space orthogonal to

Ωa

γab = δab − ΩaΩb. (C.11)

We can now combine the tidal moments with Ωa and γab to form scalar, vector
and tensor tidal potentials. They read

Eq = EcdΩcΩd, Eq
a = γcaEcdΩd, Eq

ab = 2γcaγ
d
b Ecd + γabEq,

Bq
a = ϵapqΩ

pBq
cΩ

c, Bq
ab = ϵapqΩ

pBq
dγ

d
b + ϵbpqΩ

pBq
cγ

c
a,

(C.12)

where the superscript q stands for quadrupole order.
To convert this quantities in spherical coordinates (r, θ, ϕ), we redefine

xa = rΩa
(
θA
)
, (C.13)

where we defined Ωa = (sin θ cosϕ, sin θ sinϕ, cos θ) and θA = (θ, ϕ). Moreover
the relation in Eq. (C.13) implies

∂xa

∂r
= Ωa,

∂xa

∂θA
= rΩa

A, (C.14)

with

Ωa
A =

∂Ωa

∂θA
. (C.15)

Finally the following identities hold

ΩaΩ
a
A = 0, ΩAB = γabΩ

a
AΩ

b
B, ΩABΩa

AΩ
b
B = γab, (C.16)

where we introduced the metric on the unit two-sphere defined as ΩAB =
diag

(
1, sin2 θ

)
. We make use of the transformation matrix defined in Eq. (C.15)

to convert the tidal potentials from Cartesian coordinates into spherical ones
by means of the following relations

Eq
A = Eq

aΩ
a
A, Eq

AB := Eq
abΩ

a
AΩ

b
B,

Bq
A = Bq

aΩ
a
A, Bq

AB := Bq
abΩ

a
AΩ

b
B.

(C.17)
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C.2 Tidally deformed metric

We will now construct the metric of a tidally deformed black hole in two steps.
Firstly we compute the metric in the neighborhood of a timelike geodesic γ
in a vacuum spacetime, and secondly we place a black hole of mass M on the
worldline γ, computing the tidally deformed metric we are seeking.

The metric is obtained by solving the Einstein field equations in vacuum
in the local neighborhood of the worldline γ, under the assumption that the
size of the neighborhood is smaller than the radius of the curvature induced
by the tidal fields on γ, namely

r ≪ R, (C.18)

where r is the radial coordinate in the background measuring the distance
from the worldline. When we place a black hole on the null geodesic γ, the
condition (C.18) translates in

M ≪ R, (C.19)

whereM is the mass of the black hole. Note that in the derivation of the met-
ric, the tidal moments introduced above are kept completely general but they
must be specified once this metric used to describe astrophysical scenarios.

To derive the expression of the metric it is convenient to work in light-
cone coordinates (v, r, θ, ϕ). This set of coordinates is suited to analyse light-
cone surfaces, which can be thought as a congruence of null geodesics called
generators. In particular, we are interested in past light-cone converging on
the worldine γ. The reason why it is convenient to work with light-cone
coordinates is because the following properties hold

• the advanced-time coordinate v is constant along each light-cone;

• the coordinates (θ, ϕ) are constants on the generators of each light-cone;

• the radial coordinate r can be thought has an affine parameter on the
null geodesics defining each light-cone.

The metric in the neighborhood of the worldline γ can be written, in light-
cone coordinates (v, xa), as an expansions in powers of the small parameter
r/R ≪ 1. Up to the quadrupole order in the multipole expansion for the tidal
moments, the metric reads

gvv = −1− r2Eq +O
(
r/R

)3
,

gva = Ωa −
2

3
r2 (Eq

a − Bq
a) +O

(
r/R

)3
,

gab = γab −
1

3
r2
(
Eq
ab − Bq

ab

)
+O

(
r/R

)3
.

(C.20)
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We can rewrite this metric in quasispherical coordinates
(
v, r, θA

)
as

gvv = −1− r2Eq +O
(
r/R

)3
,

gvr = 1,

gvA = −2

3
r3
(
Eq
A − Bq

A

)
+O

(
r/R

)3
,

gAB = r2ΩAB − 1

3
r4
(
Eq
AB − Bq

AB

)
+O

(
r/R

)3
.

(C.21)

When a black hole is placed on the worldline γ, the procedure to extract
the metric in its neighborhood is exactly the same described in the case of a
timelike geodesic in vacuum spacetime but this time the past light-cone will
converge on the horizon of the black hole and not on the worldline γ.

Without carrying out explicitly the computation, the metric of a tidally
deformed Schwarzschild black hole in quasi-Cartesian coordinates (v, xa) and
up to the quadrupole order in the multipole expansion for the tidal moments
can be written as 2

gvv = −f − r2eq1E
q +O

(
r/R

)3
,

gva = Ωa −
2

3
r2
(
eq4E

q
a − bq4B

q
a

)
+O

(
r/R

)3
,

gab = γab −
1

3
r2
(
eq7E

q
ab − bq7B

q
ab

)
+O

(
r/R

)3
,

(C.22)

where here we have introduced the radial functions

eq1 = f2, eq4 = f, eq7 = 1− 1

2x2
,

bq4 = f, bq7 = 1− 3

2x2
,

(C.23)

with

f = 1− 1

x
, x =

r

2M
. (C.24)

We recall that this metric has been derived under the assumption thatM ≪ R
and it is valid in the spacetime region where r ≪ R. Note that in the M → 0
limit the metric reduces to the one in the neighborhood of a timelike geodesic in
vacuum spacetime, depicted in Eq (C.20). Moreover by sending R to infinity
and consequently by putting the tidal moments to zero, which corresponds
to turning off the tidal fields, we recover the usual Schwarzschild metric in
light-cone coordinates for the spacetime, i.e.

gvv = −f, gva = Ωa, gab = γab. (C.25)

2The fully detailed computation for extracting the metric of a tidally deformed black
hole can be found in Ref [70], which in this Appendix we strictly follow and quickly review.
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In quasi-spherical coordinates
(
v, r, θA

)
the black hole metric becomes

gvv = −f − r2eq1E
q +O

(
r/R

)3
,

gvr = 1,

gvA = −2

3
r3
(
eq4E

q
A − bq4B

q
A

)
+O

(
r/R

)3
,

gAB = r2ΩAB − 1

3
r4
(
eq7E

q
AB − bq7B

q
AB

)
+O

(
r/R

)3
,

(C.26)

where the radial functions are the same as the ones defined in Eq. (C.23).
Thus the line element for a tidally deformed Schwarzschild black hole reads

ds2 = −
(
f + r2f2Eq

)
dv2 + 2dvdr − 4

3
r3f

(
Eq
A − Bq

A

)
dvdθA

+

r2ΩAB − 1

3
r4

(1− 4M2

2r2

)
Eq
AB −

(
1− 12M2

2r2

)
Bq
AB


 dθAdθB,

(C.27)

where we note again that by sendingR → ∞ we get back the usual Schwarzschild
metric in Eddington-Finkelstein coordinates, namely

ds2 = fdv2 + 2dvdr + r2dΩ2. (C.28)

Finally we recall that it is possible to rewrite the metric (C.27) in the usual
set of coordinates (t, r, θ, ϕ) by using the relation

v = t+ r + 2M log f, (C.29)

where f = 1− 2M/r.
For a more detailed analysis on the metric of a tidally deformed Schwarzschild

black hole we refer the reader to Ref. [70], where this metric was derived for
the first time and which we strictly followed in this Appendix.



Appendix D

Explicit solutions for radial
functions

In this Appendix we give the explicit expressions for the radial functions
Xℓm(r),Uℓm(r),Vℓm(r) and Φ±

ℓm(r) appearing in Eqs. (3.80)-(3.81) as an ex-
ample.

We set the scale to M = 1 and, without loss of generality, we choose

the normalisations X = rℓ
(
1 +O(rℓ−1)

)
and V = rℓ−1

(
1 +O(rℓ−2)

)
. The

solutions for ℓ = 2, 3, 4 read:

• ℓ = 2:

X2,m(r) =

(
Q2 + r2 − 2r

)2
r2

(D.1)

U2,m(r) = Q2 + r2 − 2 (D.2)

V2,m(r) =
Q2

r
+ r − 2 (D.3)

Φ+
2,m(r) =

1

2

(
Q2 + 3r2 − 4

)
(D.4)

Φ−
2,m(r) = −3

2

(
r2 −Q2

)
(D.5)

• ℓ = 3:

X3,m(r) =

(
Q2 + r2 − 2r

)2 (Q2 + 5r2 − 5r
)

5r3
(D.6)

U3,m(r) =
1

5

(
−6Q2 + 5r3 − 10r2 +

Q4

r
+ 6Q2r + 4

)
(D.7)

V3,m(r) =
−Q6 + 15r6 − 50r5 +

(
21Q2 + 40

)
r4 − 32Q2r3 + 5Q4r2 + 2Q4r

15r4
(D.8)
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Φ+
3,m(r) =

2

5

(
5r3 − 9r2 +Q2(3r − 1) + 2

)
(D.9)

Φ−
3,m(r) = −

4
(
−Q4 + 5r4 − 8r3 + 4Q2r

)
5r

(D.10)

• ℓ = 4:

X4,m(r) =

(
Q2 + r2 − 2r

)2 (−2Q2 + 7r3 − 14r2 + 3
(
Q2 + 2

)
r
)

7r3

(D.11)

U4,m(r) =
−6Q4 + 21r5 − 70r4 + 30

(
Q2 + 2

)
r3 − 60Q2r2 +

(
9Q4 + 24Q2 − 8

)
r

21r
(D.12)

V4,m(r) =
Q6

14r4
− Q4

7r3
+ r3 − 9Q4

14r2
− 9r2

2
+

5
(
Q2 + 4

)
Q2

7r
+

3

7

(
4Q2 + 15

)
r

− 5

14

(
13Q2 + 8

)
(D.13)

Φ+
4,m(r) =

1

42

(
9Q4 + 12Q2 + 105r4 − 320r3 + 30

(
3Q2 + 8

)
r2 − 120Q2r − 16

)
(D.14)

Φ−
4,m(r) = −

5
(
4Q4 + 21r5 − 60r4 + 10

(
Q2 + 4

)
r3 − 3Q2

(
Q2 + 4

)
r
)

14r
(D.15)

Similar solutions are found for ℓ > 4.



Appendix E

Explicit expressions for
ξ1, ..., ξ7

Here we write explicitly the expressions for ξ1, ..., ξ7 introduced in Eqs. (3.114).
Their expressions are given in terms of r0, r

q
0, r1, L1 and E1 (see Eqs. (3.100) (3.102)

and (3.112)). In detail we have

ξ1 =
8Kr0

(
r20 − 2Mr0 +Q2

)
C

{
24M5

(
23Q2r40 + 21r60

)
− 6M4

(
295Q2r50 + 144Q4r30 + 85r70

)
+M3

(
1512Q2r60 + 2531Q4r40 + 660Q6r20 + 201r80

)
− 144M6r50

−2M2
(
219Q2r70 + 900Q4r50 + 870Q6r30 + 118Q8r0 + 17r90

)
+M

(
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C

{
2K
(
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]}

−Q7r20

(
2
√
Kr

q
0

Q

(
468M2 − 625Mr0 + 72r20
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2
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q
0

Q
(59M − 58r0) + 3r0(10r0 − 7M)
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In the above expressions, C is given in Eq. (3.103) and for convenience we
introduced K = r20 − 3Mr0 + 2Q2.
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[269] H. Reissner, Über die Eigengravitation des elektrischen Feldes nach der
Einsteinschen Theorie, Oct., 2018.

[270] G. Nordström, On the Energy of the Gravitation field in Einstein’s
Theory, Koninklijke Nederlandse Akademie van Wetenschappen
Proceedings Series B Physical Sciences 20 (Jan., 1918) 1238–1245.

[271] R. Emparan, M. Mart´inez and M. Zilhão, Black hole fusion in the
extreme mass ratio limit, Physical Review D 97 (Feb., 2018).

[272] R. Emparan and D. Mar´in, Precursory collapse in neutron star-black
hole mergers, Physical Review D 102 (July, 2020).



204 BIBLIOGRAPHY

[273] S. Bernuzzi and A. Nagar, Binary black hole merger in the
extreme-mass-ratio limit: A multipolar analysis, Physical Review D 81
(Apr., 2010).

[274] A. Nagar, T. Damour and A. Tartaglia, Binary black hole merger in
the extreme-mass-ratio limit, Classical and Quantum Gravity 24 (May,
2007) S109–S123.

[275] A. Buonanno and T. Damour, Effective one-body approach to general
relativistic two-body dynamics, Physical Review D 59 (Mar., 1999).

[276] T. Damour, A. Nagar, M. Hannam, S. Husa and B. Brügmann,
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