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Introduction

I
n the past few years, gravitational wave (GW) physics has quickly risen to
become one of the most fruitful and promising field of astrophysics, both

from an experimental and a theoretical point of view. After the groundbreak-
ing detection of the now iconic GW signal GW150914, announced by the LIGO
scientific collaboration and the Virgo collaboration on 11 February 2016 [1],
it became clear that GWs can be directly detected and that they can reveal
to us fundamental insights into otherwise inaccessible aspects of our Universe,
ranging from signatures of its birth and evolution [2], on the cosmological
side, to compelling astrophysical phenomena like supernovae, pulsars and bi-
nary systems of compact celestial objects. Actually, as of now, the history of
the achieved GW detections revolves entirely around binary systems of stellar-
mass black holes and neutron stars, which evolve by losing energy and angular
momentum through the emission of GWs, with their component objects that
get closer and closer until they merge in a single child object, typically a Kerr
black hole. The ground-based laser interferometers Advanced LIGO [3] and
Advanced Virgo [4] have so far successfully detected a total of 90 GW sig-
nals [5–7],1 all produced in coalescences of stellar-mass compact binaries. The
GWs sourced by the these phenomena are in fact the loudest in the frequency
band [10 Hz, 10 kHz], which roughly represent the one probed by our current
array of detectors. These GW observations have already pushed forward our
astrophysical knowledge with invaluable results. Just to name a few: the proof
of the existence of black holes with mass up to hundreds of solar masses [8,9];
the discovery of a population of bound systems of black holes and neutron
stars, which merged in less than the current age of the Universe; the inference
of the properties of such binaries (masses, spins, luminosity distance, sky po-
sition), together with insights on their formation [7, 10, 11]; the development
of a new method to measure the Hubble constant [12–14]; numerous confir-
mations of general relativity (GR), notably also in the previously unexplored
strong gravity regime [15, 16]. Moreover the first detected GW signal from a
binary neutron star merger, GW170817 [17], and the followup observation of
the gamma ray burst GRB 170817A in the electromagnetic (EM) domain [18]

1We refer in particular to the events that have a probability greater than 0.5 of being of
astrophysical origin. With different thresholds their number is subject to change.
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have ushered in a new branch of multi-messenger astronomy, demonstrating
the link between these two phenomena and cementing the interplay between
GW and EM searches [19–23].

If the present of GW astronomy is undoubtedly thriving, its future prospects
are no less exciting. Over the coming 20 years we will supposedly witness [24]:

• the next observing run (the fourth, O4) of Advanced LIGO and Ad-
vanced Virgo, after more than 2 years of upgrades [25,26] and with the
support of the Japanese interferometer KAGRA [27], which will join the
detector array at the start of the observing run and then step away for
commissioning to return toward the end of the run with enhanced sen-
sibility; the start of O4 is currently scheduled for March 2023 and its
planned duration is around a year;

• the enrichment of the ground-based detector network with LIGO-India [28],
which should see the light of day in this decade, and with the third gener-
ation observatories Einstein Telescope (ET) [29], in Europe, and Cosmic
Explorer (CE) [30], in the USA, both planned for the mid 2030s;

• the entry into service of the first space based interferometers, which
will search for GW signals in the frequency band [100µHz, 100mHz];
on the European and US side, the Laser Interferometer Space Antenna
(LISA) [31–33] is planned to be launched in 2034, whereas the Chinese
TianQuin [34] and Taiji [35] are still to be scheduled, even though they
are expected to come into operation not long after LISA;

• the realization in space of the Japanese DECI-hertz Interferometer Grav-
itational wave Observatory (DECIGO) [36], which will aim at detecting
primordial GW of cosmological interest; the scientific pathfinder for this
project, dubbed B-DECIGO, is planned for launch in the 2030s;

• the first results from the pulsar timing array (PTAs) projects, which are
attempting the detections of ultralong GWs (10−9 to 10−6Hz) [37] by
measuring, with radio telescopes, GW-induced deviations in the arrival
time of the pulse from an array of 20-50 millisecond pulsars; the main on-
going PTA projects at the moment are the Australian Parkes PTA [38],
the European PTA consortium [39], the US NANOGrav consortium [40]
and the Indian PTA [41], all united in the multi-institution concerted
program that goes by the name International PTA (or IPTA) [42]; a
first successful PTA detection is expected in the next few years [43].

Regarding the interesting astrophysical data we can expect from this great
scientific effort, on the one hand we will have at our fingertips a huge number
of GW detections from coalescing binary system of compact objects (thanks
in particular to the next generation observatories), spanning a much broader
range of masses, spins, and orbital configurations, with the higher sensibility
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that will allow for a more accurate inference of their properties; on the other
hand, we will hopefully observe unprecedented GW signals from new kind
of sources, like isolated neutron stars [44], supernovae [45], or the primordial
Universe [46].

Given the pivotal role they play in the present and the expected future of
GW astronomy, compact binary coalescences (CBC) are GW sources of par-
ticular interest. In fact, because of the tremendous energy which characterizes
this kind of cataclysmic events, the GW signals they produce are by far the
loudest we receive, and hence in principle the easiest to measure. Moreover,
they have the crucial feature of being deterministic and predictable, as op-
posed to stochastic GWs, like the one produced during the early stage of the
Universe, or deterministic but unpredictable GWs, like those emitted by the
supernovae, whose underlying dynamics is way too involved for an appropriate
analytical modelization. Therefore, the possibility of an accurate description
of how CBCs evolve in time allows for the manufacture of waveform tem-
plates for the GWs they produce. These are then cross-correlated with the
noisy output signals of our GW detectors, by means of specific CBC search
pipelines based on matched filters [47, 48], thus optimizing the effective GW
detection sensitivity for CBC signals. Secondly, these waveform templates
are crucial for the statistical inference techniques that, building on Bayesian
statistics [49] (See also Chapter 7 of Ref. [50]), are employed to estimate the
CBC parameters and the associated statistical error 2.

Undertaking the task of modeling CBC waveform templates means facing
two intertwined problems: (i) the relativistic two-body motion of inspiralling
and coalescing binaries; (ii) the emission and propagation to future null infin-
ity of the associated gravitational radiation. On the analytical side, given the
challenge posed by the highly non-linear character of general relativity, our
only option to address these problems is to resort to approximation schemes.
In this respect a prominent role has been (and still is) played by the post-
Newtonian (PN) theory. In this perturbation scheme, appeared shortly after
the birth of general relativity [52], the Newtonian equations of motion are
supplemented with relativistic effects in a weak-gravitational-field and slow-
velocity expansion on the dimensionless parameter v2/c2 ∼ GM/(rc2), where
v is the typical orbital velocity of the binary system, r its typical relative
separation, M its total mass, c the speed of light, and G the gravitational
constant. The powers of 1/c are often used as a counter of the orders in
this expansion, with terms of order O(1/cn) referred to as n

2 PN corrections.
Over the years, several different approaches have been conceived and devel-
oped to come up with a PN description of the two-body motion: the surface
integral method, introduced by Einstein, Infeld & Hoffman [53] and later pur-
sued by Itoh & Futamase [54–58]; the PN iteration of Einstein’s equations

2See Appendix E of Ref. [51] for an overview on the parameter estimation techniques
used in the latest analysis of the LIGO-Virgo-KAGRA collaboration
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ushered in by Blanchet, Faye & Ponsot in Ref. [59] and further developed in
a series of works, see Refs. [60–68]; the canonical Hamiltonian formalism in
Arnowitt-Deser-Misner coordinates by Jaranowski, Schäfer & Damour [69–75];
the effective-field-theory approach originally proposed by Goldberg & Roth-
stein [76–78] and extensively used by Foffa & Sturani [79–85] and other au-
thors [86,87];3 the Fokker Lagrangian approach [89] used in Ref. [90]. Focusing
on the problem of modeling the associated gravitational radiation, the PN ex-
pansion lies at the core of the main analytical frameworks devised to tackle it:
the direct integration of Einstein’s equation by Will, Wiseman & Pati [91–93]
and the PN-matched multipolar post-Minkowskian generation formalism de-
vised by Blanchet & Damour [94–107]. As the latter construction mechanism
is used to derive the current state-of-the-art of the PN waveform results, upon
which each analytical waveform model is built, included the one discussed in
the hearth of this Thesis, we will review it in its main aspects in Chapter 1,
specifically in Sec. 1.3.

All this being said, one has to bear in mind that, regardless of the specific
computational strategy adopted, PN results are naturally faithful only in a
portion of the CBC evolution, that is during the early and mid stages of the
inspiral phase, when the two compact bodies are still far apart in their inspi-
ral motion around each other. In the late inspiral and during the plunge, just
before merger, we enter a regime where the gravitational field is strong and
the typical velocity of the system grows up to around one half of the speed
of light. In this regime the PN series shows severe convergence issues, which
ultimately spoil the reliability of PN results before merger, either at the level
of the binary dynamics and the radiation field; see e.g. Refs. [108–110]. On
the one hand, this prompted the development of complementary analytical
approaches like Black hole perturbation theory, which models compact bina-
ries and their radiation field by expanding perturbatively the field equations
in powers of the binary mass-ratio, provided this is sufficiently small.4. On the
other hand, it gave a strong motivation to pursue numerical relativity (NR)
approach, a computational approach that, after a breakthrough in 2005 by
Pretorius & others [?,127], allowed for the “exact” (modulo numerical errors)
description of the late stages of evolution of a CBC by means of supercom-
puter simulations, see Refs. [?] for some reviews. Although they stand at the
pinnacle of the accuracy one can reach in dealing with the two-body problem,

3This approach has also been instrumental to the recent developments of the post-
Minkowskian scheme [88], based on a power series expansion in G with no requirements
on the velocity of the system; see e.g Refs. [[ [?] ]]

4After the seminal works of Regge, Wheeler & Zerilli [111, 112] and Teukolsky [113–
116] on the GW emission of a test particle moving in the neighborhood of, respectively,
a Schwarzschild or a Kerr black hole, a lot of effort has been focused on extending this
approach to model extreme-mass-ratio binaries. Moving away from the leading-order test-
particle description, the idea is to include perturbatively the alterations that the metric
perturbations sourced by the smaller body induce on the motion of the latter around the
bigger one, describing them as the effect of a suitably defined gravitational self-force [117–126]
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NR simulations are computationally expansive, with a typical calculation time
of the order of several weeks, and present technical issues in some portions of
the CBC parameter space, e.g. when the mass ratio of the binary differs sensi-
bly from 1. Analytical methods, therefore, were not rendered obsolete by NR
even from a practical point of view, all the more considering the appearance in
their ranks of the effective one-body (EOB) approach [128–131]. This analyti-
cal formalism, introduced in 1998 by Buonanno & Damour, takes as input the
known conservative PN dynamics of a given compact binary, with component
masses m1 and m2, and maps it onto the effective non-geodesic dynamics of
a single particle of mass µ ≡ m1m2/(m1 + m2), the binary reduced mass,
in the effective metric of a Schwarzschild or Kerr black hole (respectively for
spinless or spinning binaries) altered by a continuous deformation which is
parameterized by the symmetric mass ratio ν ≡ µ/M , with M ≡ m1 + m2.
Thanks to this surprisingly simple formalism, the EOB approach succeeded in
improving drastically the convergence of PN results in strong-field and there-
fore allowed for a robust description of the motion and radiation of compact
binaries in all the stages of the coalescence, from the early inspiral up to
the ringdown phase after merger. Accordingly, the EOB approach provided
crucial quantitative and qualitative predictions on CBC waveforms, well be-
fore the advent of appropriate NR simulations. Moreover, shortly after the
latter appeared, the flexibility of the EOB approach has been exploited to
inform EOB models with additional non-perturbative NR information, which
improved remarkably their accuracy [132–139]. The fast and accurate wave-
form models produced in this fashion, usually dubbed EOB[NR] models, have
quickly become a stepping stone for the generation of the templates used to
sustain GW observations, and over the years have undergone a long process of
refinement, with the inclusion of extra dynamical/waveform information and
extra layers of sophistication in the resummation prescriptions. This process
has ultimately led to the development of two different EOB waveform models,
SEOBNR [?] and TEOBResumS [?], the latter being the focus of the waveform
modeling activities presented in this Thesis. Fitting into the ongoing his-
tory of endeavors aimed at improving and extending EOB-flavored waveform
models, the main scope of this Thesis is in fact to propose, discuss and test
an updated version of the generic planar orbit branch of TEOBResumS, now
known as TEOBResumS-DALI, with additional corrections designed to better
capture the waveform modulations induced by the eventual noncircularity of
the sourcing dynamics.

Coming to the actual structure of the Thesis, it is organized in three Chap-
ters, each made up of several sections. The first two Chapters are intended as
a review of the main concepts upon which the original work presented in the
third is based, so to make it as self-consistent as possible and thus accessible
also to readers with limited expertise on the subject at hand. In the third
Chapter, instead, after a recap on the current state of the art of TEOBResumS
-DALI, we present our original contributions to its further development, heav-
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ily based on the associated publications [140–142].
More in details:

• Chapter 1 addresses the waveform generation problem, illustrating, first
in linearized gravity and then in the full non-linear theory, how the
gravitational radiation at infinity can be modeled on the basis of the
energy-momentum content of its source, under the necessary simplifica-
tions that come with the application of suitable approximation schemes,
PN theory in particular.

• Chapter 2 introduces the reader to the effective one-body approach to
the motion and radiation of compact binary systems, explaining its take
on the binary dynamics and presenting the associated waveform model
for the whole CBC process (inspiral-plunge and merger-ringdown). Here
we limit the discussion to the native quasi-circular version of EOB mod-
els, primarily referring to the one of TEOBResumS, which now goes by the
name of TEOBResumS-GIOTTO.

• In Chapter 3 we finally discuss our contribution to the development
of TEOBResumS-DALI, the branch of TEOBResumS realized for modeling
GWs from coalescing binaries in motion on noncircularized orbits. After
a brief review of this waveform model, we introduce and thoroughly test
possible extensions of it that revolve around new 2PN-accurate analyt-
ical factors, specifically designed to be incorporated in the preexisting
prescriptions for the pre-merger waveform and radiation-reaction force.
As we will see, this results in a new waveform model with improved
performances for noncircular binaries.



Chapter 1

Gravitational waves from
post-Newtonian sources

T
he overarching theme of this opening Chapter is the theoretical description
of the gravitational radiation produced by post-Newtonian sources (PN

sources). Here we address this topic by offering a personal review which
will also lay the groundwork for the rest of the Thesis, from a formal and
conceptual point of view. Indeed the content presented in this Chapter is not
original, but results from the elaboration of several pieces of literature on the
subject, in particular Refs. [98, 102,106,143–146].

To begin with, we specify that we dub as “post-Newtonian” every GW
source that is both slowly moving and weakly stressed by its self-gravitation.
Following Ref. [106], we summarize this with the requirement

ε ≡ max

{∣∣∣∣T 0i

T 00

∣∣∣∣, ∣∣∣∣ T ijT 00

∣∣∣∣1/2, ∣∣∣∣VN

c2

∣∣∣∣1/2
}
� 1, (1.1)

where Tµν is the stress-energy tensor of the matter source and VN its Newto-
nian gravitational potential.

Coming to the GW sources of our interest, that is CBCs, one may have
the legitimate concern that they do not comply to the above definition, as
their constituent compact objects present indeed strong gravitational fields.
Actually, as long as the two objects are sufficiently far apart, the effacement
principle of general relativity [147] ensures that a PN description is still appli-
cable for these sources. This can be shown using the surface integral method
we quoted in the Introduction, e.g. see Ref. [148] or Sec. 5.5 of Ref. [145].
Of course, as the CBC evolution proceeds and the compact bodies approach
each other, considerations of this kind no longer apply. Therefore, the CBC
waveform information that be computed using the techniques presented in
this Chapter, and thus is ultimately given in terms of truncated PN series, is
truly physically sound only in the initial inspiral phase of the coalescence, up
to several orbital cycles before merger time. Nevertheless, within the EOB

9
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CHAPTER 1. GRAVITATIONAL WAVES FROM POST-NEWTONIAN

SOURCES

formalism, such waveform information becomes an essential ingredient to pro-
duce the complete inspiral-plunge-merger-ringdown models that are used in
actual data analysis. We defer to the next Chapter the discussion of how the
EOB approach makes use of this results, pushing their validity up to merger,
and complementing them with a GW model for the ringdown part of the
signal.

Another important aspect regarding compact binaries and the effacement
principle is that the internal structure of their component bodies has a marginal
impact on their dynamics, with the first structure-dependent effects appear-
ing at the 5PN order in the equations of motion. Accordingly, even when the
compact objects in question are neutron stars, in first approximation one can
model their gravitational radiation as if they were systems of two structure-
less point particles, fully described by their mass and, eventually, their spin.
At the level of the energy-momentum tensor Tµν , this amounts to consider

Tµν(t,x) =
∑
A=1,2

mAv
µ
Av

ν
A√

−gαβvαAv
β
A/c

2

δ(3)(x− yA(t))√
−g

, (1.2)

where mA is the mass of the particle A, yA(t) is its trajectory, and vµA =
(c, dyA/dt). Beyond the 1PN order, the Dirac distributions appearing in
Eq. (1.2) give rise to ultra-violet divergences, which need to be regularized.
This process is far from trivial and the details of the regularization schemes
adopted, the Hadamard and dimensional self-field regularizations, can be
found in Sec. 6 of Ref. [106]; for a recent work on the subject, see instead
Ref. [149]. In what follows, the GW generation problem will be addressed
while assuming a general and smooth (C∞) energy-momentum tensor with
spatial compact support, knowing that the discussion can be specialized any-
time to the compact binary case (1.2), with the additional cost of having to
include a regularization prescription for the occurring divergences. In particu-
lar, after we lay down in Sec. 1.1 the fundamental equations we want solve, the
rest of this Chapter proposes an extensive dive into the theoretical description
of GWs, initially limited to the simplistic prescriptions of linearized gravity,
in Sec. 1.2, and then extended to the full non-linear theory, in Sec. 1.3.

1.1 The field equations of general relativity

Let us start by stating precisely the problem we want to solve. The theory
of GR in presence of matter can be described by the action S = SEH + SM,
where

SEH =
c3

16πG

∫
d4x
√
−gR, (1.3)

is the renown Einstein-Hilbert action, containing the Ricci scalar R and the
determinant of the metric g ≡ det(gµν), and SM = SM[gµν , ψM] is the action

Troels Harmark
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term of the matter fields ψM. The variation of the action SM under a change
of the metric gµν → gµν + δgµν defines the stress-energy tensor of matter

Tµν ≡ 2c√
−g

δSM
δgµν

. (1.4)

By extremising the action with respect to the metric field gµν , pursuant to
the principle of least action, we get Einstein’s field equations in the form

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (1.5)

which relate the metric, and thus the geometrical properties of spacetime,
on the left-hand side, to the energy-momentum distribution of matter, on
the right-hand side. Here Rµν is the Ricci tensor, defined by the contraction
Rµν ≡ Rαµαν of the Riemann curvature tensor,1 and the Ricci scalar R = Rαα
is its trace. Since Eq. (1.5) is written in terms of symmetric tensors of rank
2, it can be actually seen as a set of ten independent equations: four of
them determine the evolution of matter, with the contracted Bianchi identity
identities that imply

∇αTµα = 0, (1.6)

the conservation of the matter stress-energy tensor; the other six constrain the
ten components of the metric, with four residual unconstrained component
which reflect GR diffeomorphism invariance and can be fixed by selecting a
specific coordinate system. Our variable of reference to study GWs is the
metric density

hµν ≡
√
−ggµν − ηµν , (1.7)

where gµν is the contravariant metric (gµαg
αν = δνµ) and ηµν ≡ diag(−1, 1, 1, 1)

is a Minkowskian auxiliary metric that is convenient in the prospects of de-
scribing GWs as space-time perturbations propagating, in first approximation,
on a fixed flat background. We now fix the gauge by imposing the harmonic
(or De Donder) gauge condition

∂αh
µα = 0, (1.8)

or equivalently by adopting harmonic coordinates. In this gauge, Einstein’s
equations (1.5) can be rewritten in the Landau-Lifshitz form2

�hµν =
16πG

c4
τµν , (1.9)

1Adopting Einstein notation, repeated indices are always implicitly summed over all
their possible values

2These are often called relaxed Einstein’s equations, because contrary to Eqs. (1.5) they
do not imply automatically the conservation of the matter stress-energy tensor. This is
instead implied by the harmonic condition (1.8), which in fact is required for the equivalence
of Eq. (1.9) with Eqs. (1.5).
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a wave-like differential equation characterized by the flat space-time d’Alembertian
operator � ≡ ηαβ∂α∂β. The quantity τµν that appears in the source term is
the stress-energy pseudo tensor

τµν ≡ (−g)Tµν +
c4

16πG
Λµν , (1.10)

which collects the contributions of the matter fields (Tµν) and the gravitational
field (Λµν). The general expression of the latter in terms of the metric field
reads

Λµν = ∂αh
µβ∂βh

να − hαβ∂α∂βhµν + gαβg
ρσ∂ρh

µα∂σh
νβ

+
1

2
gαβg

µν∂ρh
ασ∂σh

ρβ − gαβ(gσµ∂ρh
νβ + gσν∂ρh

µβ)∂σh
ρα

+
1

8
(2gµαgνβ − gµνgαβ)(2gρσgλτ − gσλgρτ )∂αh

ρτ∂βh
σλ. (1.11)

Indeed, both gµν and gµν can be expanded, through Eq. (1.7), in terms of
hµν . Once this is done in Eq. (1.11), using ηµν to raise and lower indices,
Λµν just depends on hµν and its spacetime derivatives up to the second. Due
to the non-linearity of gµν as a functional of hµν , this resulting expression
has no closed form, as it involves infinite powers of hµν (and its derivatives),
starting from quadratic combinations and going on indefinitely. We have thus
the formal structure

Λµν = Nµν [h, h] +Mµν [h, h, h] + Lµν [h, h, h, h] +O(h5). (1.12)

The quadratic terms, for instance, are given by

Nµν [h, h] = −hαβ∂α∂βhµν +
1

2
∂µhαβ∂

νhαβ − 1

4
∂µh∂νh

− ∂µhαβ∂αhβν − ∂νhαβ∂αhβµ + ∂αh
µβ(∂αhνβ + ∂βh

αν)

+ ηµν
(
− 1

4
∂αhβρ∂

αhβρ +
1

8
∂αh∂

αh+
1

2
∂αhβρ∂

βhαρ
)
, (1.13)

where in the right-hand side we use the notation h ≡ ηαβhαβ. The full (rather
long) expressions of the cubic and quartic terms can be found in Eqs. (3.8b)-
(3.8c) of Ref. [62].

Let us also mention that the harmonic condition (1.8) implies, through
Eq. (1.9), the conservation law ∂ατ

αµ = 0 for the stress-energy pseudo tensor,
and this can be shown to be equivalent to the covariant conservation of energy
and momentum, given by Eq. (1.6).

Under the assumption that the gravitational field has been independent
of time before some reference finite instant, the so-called past-stationarity
condition3, we can write a formal exact solution to Eq. (1.9) as

hµν =
16πG

c4
�−1

retτ
µν , (1.14)

3This is a way to impose the no-incoming radiation condition, which imposes that the
source is isolated and does not receive any external radiation.
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where we used the retarded inverse d’Alambertian integral operator

(�−1
retf)(x, t) ≡ − 1

4π

∫
d3x′

|x− x′|
f(t− |x− x′|/c,x′), (1.15)

such that �−1
ret(�f) = f .

Indeed, considering that τµν is a functional of hµν and its derivatives,
Eq. (1.14) is no more than an integro-differential way of rewriting Eq. (1.9).
In fact, it cannot be evaluated exactly for realistic astrophysical sources. In
the rest of this Chapter we will rather explore how to compute analytically
solutions to these field equations using suitable approximation schemes, in
particular those that best capture the physics of GWs when they originate
from PN sources.

1.2 Gravitational radiation in linearized gravity

We start our dive in the theoretical description of GWs by analyzing the case
of linearized gravity, a simplified setting where it is assumed that the gravita-
tional field of the source is weak enough that the metric can be decomposed
as

gµν = ηµν + h̃µν , |h̃µν | � 1, (1.16)

namely in terms of the Minkowskian metric ηµν , describing a flat background,
and an additional gravitational perturbation h̃µν , so small that one is entitled
to neglect any contribution more than linear in it. For self-gravitating sources,
this approximation means that we are describing their dynamics as prescribed
by Newtonian gravity. Coming back to our general GW variable hµν , if we
use in its definition (1.7) the linear limit relations

√
−g ' 1 + 1/2h̃, where

h̃ = ηµν h̃µν , and gµν ' ηµν − hµν , we find

hµν '
(

1 +
1

2
h̃

)
(ηµν − h̃µν)− ηµν ' −

(
h̃µν − 1

2
ηµν h̃

)
. (1.17)

Therefore, the linear approximation of hµν coincides, modulo an overall sign,
to the trace-reversed perturbation h̄µν ≡ h̃µν − 1/2 ηµν h̃, the standard field
variable used to study GWs in linearized gravity. Correspondingly, by recast-
ing the general field equations (1.9) in terms of this variable, with hµν ' −h̄µν ,
and expanding to linear order in h̄µν , we find the linearized field equations

�h̄µν = −16πG

c4
Tµν , (1.18)

which are to be solved with the associated harmonic condition

∂αh̄αµ = 0, (1.19)

linear limit reduction of Eq. (1.8). Before we start working out a solution to
the set of equations (1.18)-(1.19), which fully characterize the GW generation
problem in linearized gravity, we have to discuss the specific gauge symmetry
of this theory.
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1.2.1 Gauge symmetry in linearized theory

Since the linear condition (1.16) is reference-frame dependent, as soon as we
enforce the linearized approximation we break the gauge symmetry of GR
under arbitrary diffeomorphisms, i.e.

xµ → x′µ(x) =⇒ gµν(x)→ g′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (1.20)

Nevertheless, in linearized gravity some gauge freedom still remains, and in
fact we are able to select the harmonic gauge (1.19). But there is more: a
coordinate change xµ → xµ+ ξµ(x) on the linear metric (1.16) yields, through
Eq. (1.20), the transformation law

h̃µν → h̃µν − (∂µξν + ∂νξµ), (1.21)

which in terms of h̄µν becomes

h̄µν → h̄µν − (∂µξν + ∂νξµ − ηµν∂αξα). (1.22)

By applying on the latter a partial derivative, one can easily show that

∂ν h̄µν → ∂ν h̄µν −�ξµ, (1.23)

and thus find that the harmonic condition (1.19) does not constrain the co-
ordinate displacement vector ξµ, if not for the condition �ξµν = �ξµ = 0.
This manifests the possibility of imposing four additional conditions on h̄µν
through a suitable choice for ξµ. A standard choice in this context is to fix
ξ0 so to enforce h̄ = 0, and use the remaining spacial components ξi to set
h̄0i = 0, which, via the harmonic condition, also implies ∂0h̄00 = 0. As far as
GWs are concerned, which have a non-static character by definition, this last
condition means h̄00 = 0, and we finally have

h̄0µ = 0, h̄ = 0, ∂j h̄ij = 0. (1.24)

This is the definition of the transverse-traceless (TT) gauge, and the corre-
sponding GW variable is denoted as hTTij . Having completely fixed the gauge,

hTTij only depends on two physical degrees of freedom, i.e the two GW polar-
izations in the plane transverse to the unit vector n, pointing from the source
to the observer. For instance, in a Cartesian coordinate system {t, x, y, z}
with the z axis oriented along n, we have

hTTij =

h+ h× 0
h× −h+ 0
0 0 0


ij

, (1.25)

where h+ and h× are respectively the renown plus and cross GW polarizations,
named after the displacement they induce on a ring of test masses, as the GW
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transversely propagates through it. On more general terms, introducing two
orthogonal unit vectors P and Q in the plane transverse to n, we can define
the two physical polarizations of the wave as

h+ ≡
1

2
(PiPj −QiQj)hTTij ,

h× ≡
1

2
(PiQj −QiPj)hTTij .

(1.26)

Moreover, defining the vector

m ≡ 1√
2

(P + iQ) (1.27)

we can also write

h+ − ih× = m∗am
∗
bh
TT
ab . (1.28)

We conclude this discussion by mentioning that, given a GW solution in
the harmonic gauge, we can find the associated TT solution by applying the
projector

Πijkl(n) ≡ Pik(n)Pjl(n)− 1

2
Pij(n)Pkl(n), (1.29)

where P (n) ≡ δij − ninj . Its relevant properties are

ΠijklΠklmn = Πijmn, niΠijkl = njΠijkl = ... = 0, Πiikl = Πijkk = 0.
(1.30)

1.2.2 Leading-order quadrupole formalism

We now make the first steps in the resolution of the linearized field equations
(1.18). Under the past-stationarity condition, the d’Alambertian operator in
Eq. (1.18) can be inverted using a retarded Green’s function, as we did in the
full non-linear theory to get Eq. (1.14). The resulting solution in this case
reads

h̄µν(t,x) =
4G

c4

∫
d3x′

1

|x− x′|
Tµν

(
t− |x− x′|

c
,x′
)
, (1.31)

where indeed Tµν is the stress-energy tensor of matter. Outside the source,
the corresponding TT gauge solution is then given by the TT projector (1.29)
as

hTTij (t,x) =
4G

c4
Πijkl(n)

∫
d3x′

1

|x− x′|
Tkl

(
t− |x− x′|

c
,x′
)
, (1.32)

where now n = x/|x|. Here we can omit the components T00 and T0k, since
they are related to Tkl by the conservation law ∂µTµν = 0, linear-order version
of the condition (1.6). Let us denote by d the radius of a time-like world tube
enclosing the source and define r ≡ |x|. The integral in Eq. (1.32) has the same
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compact support of Tij , i.e. |x′| ≤ d. Therefore, if we focus on field points far
away from the source, satisfying r � d, we can expand its integrand according
to

|x− x′| = r − x′ · n +O

(
d2

r

)
. (1.33)

By selecting the leading O(1/r) component, which is essentially the one we
observe in our detectors, considering the large distance between them and the
typical GW source, we find

hTTij (t,x) =
1

r

4G

c4
Πijkl(n)

∫
d3x′ Tkl

(
tr −

x′ · n
c

,x′
)
, (1.34)

where we introduced the retarded time tr ≡ t− r/c. As we already mentioned
in the Introduction, for self-gravitating sources like the ones we are interested
in, the weak-field condition underlying the linear approximation is paired with
the small-velocity condition. The latter, for a source of typical velocity v and
internal frequency ωs, can be written as v ∼ ωsd � c. Let us then consider
the Fourier transform of the stress-energy tensor

Tkl

(
tr −

x′ · n
c

,x′
)

=

∫
d4k

(2π)4
T̃kl(ω,k)e−iω(tr−(x′·n)/c)+ik·x′ , (1.35)

where k = (ω/c,k). From the small-velocity condition, the compact support
of the integral (1.35), and the fact that T̃kl(ω,k) is peaked around a range
of frequencies with maximum value ωs, we infer that the frequencies ω whose
contribution to the Fourier transform above is dominant satisfy

ω

c
x′ · n . ωsd

c
� 1. (1.36)

We can thus exploit such condition and perform the expansion

e−iω(tr−(x′·n)/c)+ik·x′ = e−iωtr
(

1− iω
c
x′ini −

1

2

ω2

c2
x′ix
′
jninj + ...

)
. (1.37)

When this is inserted in Eq. (1.35), the result is the associated expansion

Tkl

(
tr −

x′ · n
c

,x′
)

= Tkl(tr,x
′) +

x′ini
c
Ṫkl(tr,x

′)

− 1

2c2
x′ix
′
jninj T̈kl(tr,x

′) + ..., (1.38)

where, using a standard notation, each dot represents a derivative with respect
to time. In turn, once this is put inside Eq. (1.34), it becomes

hTTij (t,x) =
1

r

4G

c4
Πijkl(n)

[
Skl(tr) +

1

c
nmṠklm(tr)+
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+
1

2c2
nmnnS̈klmn(tr) + ...

]
(1.39)

where we introduced the stress multipole of Tij , defined as

Sij(t) ≡
∫
d3xTij(t,x), [stress monopole] (1.40)

Sijk(t) ≡
∫
d3xTij(t,x)xk, [stress dipole] (1.41)

Sijkl(t) ≡
∫
d3xTij(t,x)xkxl. [stress quadrupole] (1.42)

Higher orders in Eq. (1.39) involve higher multipoles of Tij , and their definition
follows by analogy with the lowest order multipoles listed above. Notice that
all these multipoles are separately symmetric in ij and in the set of indices
that comes after them.

Given that ∂nt Sijk1...kn ∼ vn, we recognize in Eq. (1.39) the familiar struc-
ture in powers of v/c of a PN expansion. Truncating it at leading order gives

hTTij (t,x) =
1

r

4G

c4
Πijkl(n)Skl(tr) +O(v2/c2). (1.43)

We want now to rewrite the stress monopole Skl so to make more explicit its
physical meaning. For this purpose we define the multipoles of ρ ≡ T00/c

2,
the Newtonian mass density, as

Qi1...in(t) ≡
∫
d3x ρ(t,x)xi1 ... xin , [mass 2n-pole] (1.44)

and the multipoles of the momentum density Pi ≡ T0i/c, as

Pij1...jn(t) ≡
∫
d3xPi(t,x)xj1 ... xjn . [momentum 2n-pole] (1.45)

From the stress monopole definition Sij we have

Sij =

∫
d3xTij =

∫
d3xTikδkj =

∫
d3xTik∂kxj = (1.46)

= −
∫
d3x ∂kTikxj . (1.47)

The integration by parts in the last equality is performed considering an inte-
gration volume larger than the source, on whose boundaries Tµν = 0. Then,
the conservation law ∂αT

αµ = 0 tells us

∂kTki = −1

c
∂0T0i, (1.48)

so that, after restoring the original symmetry in ij, we have

Sij =
1

c

∫
d3x Ṫ0(ixj) =

1

2

(
Ṗij + Ṗji

)
. (1.49)
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Here we adopted the notation by which the symmetric part of a tensor with
respect of some of its indices is indicated by enclosing them in the parentheses
(). With the same trick we find

Pij =
1

c

∫
d3xT0kδki xj =

1

c

∫
d3xT0k

(
∂kxi

)
xj =

= −1

c

∫
d3x

(
∂kT0kxixj + T0jxi

)
= Q̇ij − Pji, (1.50)

and thus

Sij =
1

2
Q̈ij . (1.51)

At this point, we can go back to Eq. (1.43) and plug in the relation we just
found. Since Πijklδkl = 0, we do so by tradingQij(t) with its traceless analogue

Mquad
ij (t) ≡ Qij(t)−

1

3
δklQkl(t) =

∫
d3x ρ(t,x)

(
xixj −

1

3
r2δij

)
, (1.52)

finally obtaining

hTTij (t,x) =
1

r

2G

c4
Πijkl(n)

[
M̈quad
ij (tr) +O(v2/c2)

]
. (1.53)

This is the famous quadrupole formula found by Einstein [150], which shows
the leading quadrupolar nature of GWs, a characteristic maintained even in
the full non-linear theory. This is in agreement with the field-theoretic take
on GR, where the graviton, the carrier of the gravitational interaction, is a
massless particle with helicty ±2, so that it does not admit a state with total
angular momentum j = 0 or j = 1, as it would be required for a monopolar
or dipolar radiation.

We highlight that, in the point-particle case specified by the flat spacetime
analogue of the energy-momentum tensor (1.2), the mass quadrupole (1.52)
can be conveniently expressed as

Mquad
ij (t) = µ

(
yi12(t)yj12(t)− 1

3
r2

12(t)δij

)
(1.54)

where y12 ≡ y1−y2 is the relative coordinate of the two particles in the center-
of-mass frame, r12 ≡ |y12| their relative separation, and µ ≡ m1m2/(m1 +m2)
their reduced mass.

Within this leading quadrupole formalism, we can also compute the GW
fluxes of energy and angular momentum at infinity, emitted by the source in
all directions. Once we have specified a GW solution at infinity, in the TT
gauge, they follow from the general formulas

Ė =
r2c3

32πG

∫
dΩ ḣTTij ḣ

TT
ij , (1.55)
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J̇i, =
r2c3

32πG

∫
dΩ εijk

(
2ḣTTjl h

TT
kl − ḣTTlm xj∂khTTlm

)
, (1.56)

where Ω is the solid angle and εijk is the Levi-Civita symbol. Using our
leading quadrupole solution (1.53) and performing the integral over Ω with
the identity ∫

dΩ Πiikl(n) =
2π

15
(11δikδjl − 4δijδkl + δilδjk), (1.57)

we find

Ėquad =
G

5c5

[
...
M

quad
ij

...
M

quad
ij +O(v2/c2)

]
, (1.58)

J̇quad
ij =

2G

5c5

[
εijkM̈

quad
jl

...
M

quad
kl +O(v2/c2)

]
. (1.59)

1.2.3 General linear solution

In the previous section we computed explicitly the leading quadrupolar GW
solution in linearized theory and in passing we found that a simple general-
ization of this solution, with higher order corrections in v/c, can be found in
the form a multipole expansion, see Eq. (1.34). Here our intention is to write
down, in a convenient and physically meaningful fashion, the most general
solution, valid outside the source, to the linearized field equations (1.18). To
this end, we will introduce a systematic generalization of the multipole de-
composition we encountered previously, which will be also essential for the
construction of a GW solution beyond the linear approximation, the central
topic of Sec. 1.3. In order to firmly establish the logic of this formalism, we
will proceed by first exploring its application to the simpler problems

(1) ∆φ(x) = −4πS(x),

(2) �φ(t,x) = −4πS(t,x),

where φ is a scalar field, S its associated source, and ∆ ≡ ∂i∂i the Laplace
operator. After that, at the end of this section, we will apply such formalism
to the case of linearized gravity, so to build, accordingly, the sought-for general
linear solution.

Multipole decomposition of the Poisson equation

We start our analysis by discussing the static problem

∆φ(x) = −4πS(x), (1.60)

for a localized source S(x) whose compact support is enclosed in a sphere of ra-
dius d. The associated homogeneous problem, Laplace’s equation ∆φ(x) = 0,
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is an elliptic differential equation, which admits an analytic solution ϕ(x). We
can therefore Taylor-expand it around the origin 0 of our coordinate system
as

ϕ(x) = ϕ(0) + xi(∂iϕ)(0) +
1

2
xixj(∂i∂jϕ)(0) + ... . (1.61)

We introduce a convenient index notation by Blanchet & Damour, according
to which any tensor F with ` indices, say i1..i`, is written in short as FL ≡
Fi1...i` ; similarly xL ≡ xi1 ... xi` and ∂L ≡ ∂i1 ... ∂i` . In these terms, the above
expansion assumes the compact form

ϕ(x) =

∞∑
l=0

xLFL, FL ≡
1

`!
(∂Lϕ)(0), (1.62)

where we notice that the tensor FL is indeed symmetric but also trace-free,
i.e. any possible contraction with the metric returns zero (here the metric is
δij and, after a contraction with any index of FL, we have ∂k∂kϕ = ∆ϕ = 0).
We will say that a tensor with such properties is symmetric-trace-free (STF).
The contraction of a STF tensor with a generic non-STF tensor selects just
the STF part of the latter. Therefore, our solution about the origin becomes
actually

ϕ(x) =
∞∑
`=0

x̂LF̂L =
∞∑
`=0

r`n̂LF̂L, (1.63)

where we use a hat to mark tensors that are STF with respect to all their
indices and x = rn. The formula to compute the STF part of a generic tensor
is given in Appendix A.1.

For our discussion we are actually interested in a solution regular at infinity
rather than at the origin. Following a similar rationale, it can be shown that
this solution can be generally written in the STF language as

ϕ(x) =
∞∑
`=0

n̂LD̂L

r`+1
=
D0

r
+
niDi

r2
+
n̂ijD̂ij

r3
+ ... , (1.64)

where D̂L is a numerical tensor akin to the F̂L above. We recognize the usual
profile of the multipole expansion, now rewritten in closed form thanks to the
STF formalism. Equivalently, if we consider4

∂L
1

r
= (−)`(2`− 1)!!

n̂L
r`+1

, (1.65)

and define

ĈL ≡
`!

(2`− 1)!!
D̂L, (1.66)

4One can easily prove that ∂L(1/r) is trace-free from ∆(1/r) = 0
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we can rewrite the multipole decomposition above in the form

ϕ(x) =
∞∑
`=0

(−)`

`!
ĈL∂L

1

r
. (1.67)

Let us now come back to our Poisson equation (1.63). The Green’s function
method readily tells us that, given

∆
1

|x− y|
= −4πδ3(x− y), (1.68)

its solution is given by the integral

ϕ(x) =

∫
d3y

S(y)

|x− y|
. (1.69)

Outside the source, where necessarily r ≡ |x| > |y|, we can expand the de-
nominator as

1

|x− y|
=
∞∑
`=0

(−)`yL∂L
1

r
=
∞∑
`=0

(−)`ŷL∂L
1

r
, (1.70)

where, in the last equality, we used the fact that ∂L(1/r) is a STF tensor.
Therefore, the STF decomposition of the solution (1.69), valid outside the
source, is

ϕ(x) =
∞∑
`=0

(−)`

`!
Q̂L∂L

1

r
. (1.71)

which has the same structure of Eq. (1.67) but, instead of the numerical tensors
ĈL, it features the STF multipole moments of the source

Q̂L ≡
∫
d3y ŷLS(y). (1.72)

Multipole decomposition of the relativistic wave equation of a
scalar field

Now we shift our attention to the wave equation

�φ(t,x) = −4πS(t,x), (1.73)

where S(x) is again a source with spacial compact support enclosed in a sphere
of radius d. The exact retarded solution of this equation, computed in terms
of the retarded inverse operator of the d’Alambertian (1.15), reads

φ(t,x) =

∫
d3y

S(t− |x− y|/c,y)

|x− y|
, (1.74)
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and it is well defined anywhere, even inside the source.
We now want to write down a multipole decomposition for φ(t,x) valid

outside the source, akin to the one in Eq. (1.71). To do so we notice that, for
any given function f of the retarded rime tr ≡ t− r/c, we have

�

[
f(tr)

r

]
= 0, (1.75)

meaning that f(tr)/r is a solution to Eq. (1.73) in its homogeneous vacuum,
to which it reduces for r > d because of the compact support of S(x). This
is still true even after we apply to f(tr)/r an arbitrary number of partial
derivatives ∂i and we use, in place of f , a multi-index STF tensor. Therefore,
the decomposition

φ(t,x) =
∞∑
`=0

(−)`

`!
∂L

[
F̂L(tr)

r

]
, (1.76)

written in terms of a set of generic STF tensors F̂L, is ensured to describe a
solution to (1.73) in the region outside the source, since each of its terms sep-
arately solves the associated vacuum equation. Moreover, Eq. (1.76) actually
represents the most general solution of this kind. In fact, a STF tensor with
` indices, and corresponding 2`+ 1 independent components, is an irreducible
representation of weight ` and dimension 2`+ 1 of SO(3), the group of proper
rotations. Therefore, the set of STF tensors F̂L, with ` ranging from zero to
any positive integer value, provides a complete set of representations of SO(3).

Having recognized the generality of Eq. (1.76), we still have to relate the
STF tensors F̂L to the source S. As detailed in Appendix B of Ref. [98], this
is done by expanding in STF harmonics the integral Eq. (1.74) and relating
it to Eq. (1.76), in the region outside the source. The result reads

F̂L(tr) ≡
∫
d3y ŷL

∫ 1

−1
dz δ`(z)S(tr + z|y|/c,y), (1.77)

where we have a weighted time average in z, with weight function

δ`(z) ≡
(2`+ 1)!!

2`+1`!
(1− z2)`, (1.78)

which satisfies ∫
dz δ`(z) = 1, lim

`→∞
δ`(z) = δ(z), (1.79)

that can be physically traced back to the time delay between different points
within the extended source S(t,x), which becomes irrelevant for large `. It
is important to mention that the integral over z in Eq. (1.77) admits, in the
slow-velocity regime, the convenient time-derivative expansion∫ 1

−1
dz δ`(z)f(tr + z|y|/c,y) =

∞∑
k=0

(2`+ 1)!!

2kk!(2`+ 2k + 1)!!

(
|y|
c

∂

∂tr

)2k

f(tr),

(1.80)
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which essentially replaces the integral with its formal PN series.

Multipole decomposition in linearized gravity

We are now ready to apply the STF tensor formalism on the linearized field
equations, which we recall to be

�h̄µν(t,x) = −16πG

c4
Tµν(t,x), (1.81)

with the matter source Tµν assumed to have a spatial compact support. Fol-
lowing the logic we outlined above, while treating each component of h̄µν as a
scalar field, we can write the most general solution, in the exterior region, as

h̄00(t,x) =
4G

c4

∞∑
`=0

(−)`

`!
∂L

[
F̂L(tr)

r

]
, (1.82)

h̄0i(t,x) =
4G

c4

∞∑
`=0

(−)`

`!
∂L

[
Gi〈L〉(tr)

r

]
, (1.83)

h̄ij(t,x) =
4G

c4

∞∑
`=0

(−)`

`!
∂L

[
Hij〈L〉(tr)

r

]
, (1.84)

where we use the usual notation by which the delimiters 〈〉 enclose subsets
of STF indices on tensors that are not completely STF. Among these equa-
tions, only Eq. (1.82) can be rightfully said to represent a proper multipole
decomposition, as it is given in terms of the STF tensors

F̂L(tr) =

∫
d3y ŷL

∫ 1

−1
dz δ`(z)T00(tr + z|y|/c,y), (1.85)

irreducible representations of dimension 2` + 1 of SO(3), in perfect analogy
with the scalar case. All the other components, instead, are written in terms
of tensors, Gi〈L〉 and Hij〈L〉, which are STF only in the indices L, and thus
actually yield reducible representation of SO(3), respectively of the type D1⊗
D` and D1 ⊗D1 ⊗D`. We can however decompose them in a direct sum of
irreducible representations, considering D1 ⊗D` = D`+1 ⊕D` ⊕D|`−1|. More
specifically, in STF terms, we can use the formula [143]5

Gi〈L〉 = Ĝ
(+)
iL +

`

`+ 1
εai〈i`Ĝ

(0)
L−1〉a +

2`− 1

2`+ 1
δi〈i`Ĝ

(−)
L−1〉, (1.86)

where Ĝ
(+)
iL ≡ G〈iL〉, Ĝ

(0)
L ≡ Gbc〈L−1εi`〉bc, and Ĝ

(−)
L−1 ≡ ĜbbL−1. A repeated

application of this formula also yields the decomposition of Hij〈L〉 in six irre-
ducible pieces; this is given explicitly in Eqs. (5.7)-(5.8) of Ref. [144].

5This is a particular instance of the general rule according to which a generic tensor
TP can be decomposed in a sum over ` of terms like γLP R̂L, where γLP are tensors made of
products of δij and εijk, the invariant tensors of SO(3), and R̂L are STF tensors built by
taking the STF part of the possible contractions of Tp with δ’s and ε’s
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At the end of this operation, our solution h̄µν is decomposed in a total of 10
independent sets of STF tensors. We can however relate some of them upon
imposing some gauge condition: to begin with, the so-decomposed solution
does not satisfy automatically the harmonic condition (1.19), and by impos-
ing it we get 4 constraints; then, as described in Sec. 1.2.1, we have the extra
gauge symmetry of the linearized theory, which we can use to impose 4 addi-
tional constraints. This leads to the possibility of parameterizing our general
linear solution in terms of just two residual sets of STF tensors, the so-called
canonical multipole moments of the source ML and SL,6 respectively called
of mass type and current type. For the details of this rather long computation
we refer to Ref. [144]. The final result is

h̄00(t,x) =
4G

c2

∞∑
`=0

(−)`

`!
∂L

[
ML(tr)

r

]
, (1.87)

h̄0i(t,x) = −4G

c3

∞∑
`=1

(−)`

`!

{
∂L−1

[
ṀiL−1(tr)

r

]
+

`

`+ 1
εiab∂aL−1

[
SbL−1(tr)

r

]}
, (1.88)

h̄ij(t,x) =
4G

c4

∞∑
`=2

(−)`

`!

{
∂L−1

[
M̈ijL−2(tr)

r

]

+
2`

`+ 1
∂aL−2

[
εab〈iṠj〉bL−2(tr)

r

]}
. (1.89)

Furthermore, thanks to this formalism, the two sets of canonical multipoles
(ML,SL) can be shown to admit the closed-form expressions [144]

ML(tr) =

∫
d3y

∫ 1

−1
dz

[
δ`(z)ŷLσ −

4(2`+ 1)

c2(`+ 1)(2`+ 3)
δ`+1(z)ŷaLσ̇a

+
2(2`+ 1)

c4(`+ 1)(`+ 2)(2`+ 5)
δ`+2(z)ŷabLσ̈ab

]
(tr + z|y|/c,y) (1.90)

SL(tr) =

∫
d3y

∫ 1

−1
dz εab〈i`

[
δ`(z)ŷL−1〉aσb

− 2`+ 1

c2(`+ 2)(2`+ 3)
δ`+1(z)ŷL−1〉acσ̇bc

]
(tr + z|y|/c,y) (1.91)

where, following Ref. [98], we have introduced the source densities σ ≡ c−2(T00+
Taa), σi ≡ c−1T0i, and σij ≡ Tij . Again, if the slow-velocity condition holds,
we can replace all the integrals in z with their easier to evaluate PN expansion
(1.80).

6In compliance with standard notation we write these two quantities without the hat,
even though they are STF in all their indices. Henceforth, we will do to the same for any
other STF multipole moment
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We finally stress, as it will be useful for later, that if we leave the multi-
poles (ML,SL) generic, not specifying their expressions in terms of the source
densities, then Eqs. (1.87)-(1.89) also yield the most general solution to the
vacuum wave equations �h̄µν = 0 in the STF formalism.

1.2.4 Linear GWs and the asymptotic region

Let us now discuss the profile of our generalized linear solution at future null
infinity, i.e. in the asymptotic region where GWs can be detected, defined by
the limit r →∞ at constant retarded time tr. This will also offer the occasion
to present the general asymptotic structure of GW solutions, valid regardless
of the linear approximation considered here.

In this regard, we have to remark that in the asymptotic limit the har-
monic coordinates we used so far are notoriously plagued by the appearance
of coordinate-dependent logarithmic terms [151], which are absent when one
adopts specially designed coordinate systems, grouped under the name of ra-
diative coordinates. We specifically refer to either the Bondi-type coordinates
introduced in Refs. [152–154] or their analogue by Newman & Unti [155]. Let
us denote such coordinates by Xµ = (T,X), with R ≡ |X|, retarded time
TR ≡ T − R/c, and unit radial vector N ≡ X/R. It has been proved that,
once expressed in radiative coordinates, the asymptotic GW waveform ad-
mits, in full generality (notably also in the full non-linear theory), the STF
decomposition [156]

hTTij (TR,N) =
4G

c2R
Πijab(N)

∞∑
`=2

[
1

c``!
UabL−2(TR)NL−2

+
2`

c`+1(`+ 1)!
εcd(aVb)dL−2(TR)

]
. (1.92)

Evidently, we are looking at the leading 1/R part of the projection on the TT
gauge of a general solution hij , namely what we can hope to observe of it at
future null infinity. The two sets of STF tensors UL(TR) and VL(TR) which
parameterize this asymptotic solution are called radiative multipole moments.

In linearized theory they can be computed in terms of the canonical multi-
pole moments (ML,SL), by comparing Eq. (1.92) with the harmonic solution
given in Eqs. (1.87)-(1.89), after this is projected in the TT gauge and stream-
lined down to its leading 1/r component with the help of the formula

∂Lf(tr) =
(−)`

c`
nLf

(`)(tr), (1.93)

where the superscript (`) stands for the `th time derivative, here with respect
to tr. In particular, the simplifications that come with the linear approxima-
tion also determine that there is no difference between harmonic and radiative
coordinates, in this case. Indeed this is no longer true as we go beyond the
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linear order, where we anticipate that a proper coordinate transformation is
needed.

The results of this computation, which completes our discussion on the
GW generation problem in the linearized theory, simply read[

UL(TR)
]
linear

=M(`)
L (TR),

[
VL(TR)

]
linear

= S(`)
L (TR). (1.94)

If we plug these relations in Eq. (1.92), the first terms in the emerging series
turn out to be[

hTTij (TR,N)
]

linear
=

2G

c4R
Πijab(N)

{
M̈ab(TR) +

1

3c

[
...
Mabc(TR)Nc

+ 4εcd(aS̈b)dL−2(TR)

]}
+ ... . (1.95)

Considering that Mij = Mquad
ij + O(v/c2), we recognize in the leading term

the quadrupolar solution derived in Eq. (1.53).
To wrap up, the most general GW solution in linearized gravity can be

computed according to the scheme

Tµν → (ML,SL)→ (UL, VL)linear →
[
hTTij (TR,N)

]
linear

, (1.96)

through which one connects the energy-momentum tensor Tµν of the GW
source under consideration to the observable degrees of freedom of the GW
waveform at infinity.

1.3 Beyond the linear order: Blanchet-Damour
generation formalism

Up to this point we dealt with the GW generation problem under the approx-
imation that the background spacetime can be assumed to be flat. In this
context we saw how to systematically relate, within an expansion in v/c, the
GW waveform at infinity to the energy-momentum content of the source. The
additional implicit assumption we made along the way is therefore that the
typical velocity of the source and its effect on the background curvature could
be treated as they were completely independent. While this may be the case
for sources whose internal forces are of non-gravitational nature, the same
cannot be said in regard to the post-Newtonian sources we are interested in,
which are by definition self-gravitating systems. For systems of this kind, in
fact, the virial theorem implies the relation

v2

c2
∼ RS

d
, (1.97)

where RS = 2GM/c2 is the Schwarzschild radius associated to the total mass
M of the system, and d is its size. The corrections in v/c are then to be
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consistently paired with extra non-flat contributions to the background cur-
vature, whose magnitude is roughly measured by the ratio RS/d. In order to
properly model GWs radiated by PN sources, in the usual series in powers of
v/c, one has therefore to go beyond the linear approximation and determine
a non-linear generalization of the GW generation scheme of Eq. (1.96). Our
goal in this section is precisely to present one of leading-edge techniques to do
so. More specifically, what we are going to outline is the Blanchet-Damour
GW generation formalism, originally established in Ref. [98].

A first important obstacle we have to face as we go beyond the linear theory
is that the PN approximation, by itself, is not anymore adequate to describe
GWs far away from their source. This problem becomes quite manifest if we
realize that, in a direct application of the PN expansion, we would attempt
to build up,order by order, a retarded gravitational field of the type

hµν(t− r/c) =
1

r
Fµν(t− r/c), (1.98)

from the corresponding expansion for small retardation (r/c� t)

1

r
Fµν(t− r/c) =

1

r
Fµν(t)− 1

c
Ḟµν(t) +

r

2c2
F̈µν(t) +O(r2/c3). (1.99)

We see that this series blows up as r →∞, in contrast to the asymptotically
flat behavior that the gravitational field should have. The PN expansion,
in this case, takes on the connotations of a singular perturbation theory, not
uniformly valid in r but limited to a finite region r < R, with the consequential
impossibility of imposing the required boundary conditions at infinity, such
as the already mentioned no-incoming radiation condition. The radius R
that defines the boundaries of this near region, where retardation effects are
negligible and the PN expansion is valid, can be determined as the larger radius
for which the condition r � λ̄ holds, where λ̄ is the reduced wavelength of the
emitted radiation.

The basic idea of the Blanchet-Damour approach is then the following.
Let d be the size of the matter source. In the exterior region r > d, the
energy-momentum tensor Tµν of the compact matter source vanishes and the
gravitational field becomes a solution of the vacuum Einstein equations, which
is natural to tackle by means of a multipole expansion. Moreover, as far as
PN sources are concerned, the gravitational field in the exterior region is suf-
ficiently weak that it can computed in a post-Minkowskian (PM) expansion,
treating it as a non-linear metric perturbation of the flat spacetime. Combin-
ing the two expansions, the gravitational field in the exterior region is therefore
conveniently built in terms of a multipolar-post-Minkowskian (MPM) expan-
sion, in which each perturbative order in the PM series entails an underlying
expansion in STF multipoles. This description is well defined in the whole
spatial domain d < r <∞ and, once recasted in radiative coordinates, has an
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asymptotic structure at future null infinity that is consistent with the Bondi-
Sachs-Penrose paradigm.7 However, it is completely disconnected from the
stress-energy tensor Tµν , as it represent instead the most general field solu-
tion as seen from the outside of any source. On parallel, one has the PN
expansion cited above, which determines the inner gravitational field as a
functional of Tµν , thus connecting it to its specific source, but it is only valid
in the near region r < R around the source. We are at the decisive point of
this approach: if the source is post-Newtonian, we can count on the condition
R � d, which ensures the existence of an overlapping region d < r < R where
the PN and MPM expansions are both valid; an illustrative sketch of the differ-
ent spacetime regions in play is given in Fig. 1.1. Exploiting this overlap, the
two perturbative expansions can be matched together with a proper applica-
tion of the matched asymptotic expansion method. This procedure ultimately
specifies, from the starting generality of the MPM solution, the particular and
physical exterior field corresponding to the given energy-momentum content
of the source, encoded in Tµν . It is important to notice that the PN expansion
represents the most downstream approximation scheme of the whole genera-
tion formalism, and as such it is also the one with respect to which the final
waveform results are given.

Before we start illustrating the main aspects of the Blanchet-Damour ap-
proach, we wish to point out the existence of another GW generation for-
malism, devised by Will, Wiseman & Pati. This is similar in spirit to the
one of Blanchet & Damour but, even though the results are the same, it still
entails several technical differences; for more details on this formalism see
Refs. [91–93].

1.3.1 Multipolar post-Minkowskian expansion in the exterior
region

To start our review of the Blanchet-Damour approach, the first aspect we want
to explore is its prescription for the general solution to the vacuum Einstein
equations, which shape the gravitational field outside the source. We work in
harmonic coordinates, using as a reference field variable the metric density hµν

defined in Eq. (1.7), which we can think of as a non-linear metric perturbation
of flat spacetime. Correspondingly, the field equations we have to solve are
obtained from Eq. (1.9) by imposing the vacuum condition Tµν = 0 and the
harmonic condition. They read

�hµν = Λµν , ∂αh
αµ = 0. (1.100)

At a distance r from the source, a general weak-field deviation from the
Minkowski metric, such as hµν , can be expanded in powers of the dimensionless

7More specifically Ref. [95] has proved that it is asymptotically simple in the sense of
Penrose [154,157,158].
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t, T

r, Rd ℛ

Exterior region (MPM expansion)

Overlapping region 
(Matching)

Near region (PN expansion)

Source

Asymptotic 
region

Figure 1.1: Sketch of the spacetime regions considered in the Blanchet-
Damour waveform generation formalism. As specified in the text, d and R
respectively enclose the source and its near region. In the exterior region
beyond R, we further single out the asymptotic region containing future null
infinity, where a proper GW description requires abandoning the harmonic
coordinates (t, r) in favor of the radiative coordinates (T,R).

ratio RS/r, defining what we call its post-Minkowskian expansion. Since
RS ∼ G, it is standard to recast this expansion as a power series in G, which
on our field variable reads

hµν =

∞∑
n=1

Gnhµν(n), (1.101)

where we identify the coefficient hµν(n) of Gn as the nPM contribution to hµν .
Having the final goal of describing the gravitational field up to a given PN
order, we can indeed consider a finite truncation of the series (1.101),8 but
to push the computation to arbitrarily high orders we need to know how to

8The virial theorem (1.97) implies that for the nPN order we need PM corrections up
to the (n− 1)th
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formally determine each coefficient hµν(n). We will work this out in the form of

an iterative algorithm, since inserting Eq. (1.101) in the field equations (1.100)
yields the hierarchical system of equations

�hµν(1) = 0, (1.102)

�hµν(n) = Λµν(n)[h(1), h(2), ..., h(n−1)] for n > 1, (1.103)

∂αh
αµ
(n) = 0 for n ≥ 1. (1.104)

where the leading order equation is source-less, since Λµν = O(G2), while
all the others have a source term with non-compact support defined in terms
of the lower-order PM contributions. For instance, recalling the expression
of Λµν as a functional of hµν , shown in Eq. (1.12), at the lowest subleading
orders we have

�hµν(2) = Nµν [h(1), h(1)], (1.105)

�hµν(3) = Nµν [h(1), h(2)] +Nµν [h(2), h(1)] +Mµν [h(1), h(1), h(1)]. (1.106)

The first step is to compute the leading 1PM contribution given by Eq. (1.102)
and the associated harmonic condition. This is the same set of equations we
encountered while dealing with the linear field in section 1.2.3. Therein we
showed that the most general solution can be decomposed in two sets (ML,
SL) of STF multipoles, see Eqs. (1.87)-(1.89). We remember however that,
in the path leading to that solution, we had to take advantage of the gauge
symmetry (1.22), specific of the linearized theory, and use it to impose four
additional constraints. This is no longer possible in the full non-linear theory,
for which Eq. (1.22) is not a gauge symmetry, implying that the most general
solution to Eq. (1.102), in harmonic coordinates, should be given in terms of
six, rather than two, sets of STF multipoles. Moreover, such multipoles should
be unspecified functions of the harmonic retarded time tr ≡ t − r/c, with no
a priori connection to the stress-energy tensor of the source, as opposed to
the multipoles ML and SL in linearized theory, for which we wrote down the
closed-form expressions (1.90) and (1.91). We therefore write our multipolar
1PM solution in the form

hµν(1) = kµν(1) + ∂µξν + ∂νξµ − ηµν∂αξα. (1.107)

Here kµν(1) is given by

k00
(1) = − 4

c2

∞∑
`=0

(−)`

`!
∂L

[
IL(tr)

r

]
, (1.108)

k0i
(1) =

4

c3

∞∑
`=1

(−)`

`!

{
∂L−1

[
I

(1)
iL−1(tr)

r

]
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+
`

`+ 1
εiab∂aL−1

[
JbL−1(tr)

r

]}
, (1.109)

kij(1) = − 4

c4

∞∑
`=2

(−)`

`!

{
∂L−1

[
I

(2)
ijL−2(tr)

r

]

+
2`

`+ 1
∂aL−2

[εab〈iJ (1)
j〉bL−2(tr)

r

]}
, (1.110)

and mirrors the structure of the linear solution (1.87)-(1.89),9 but replaces
the source-rooted multipoles (ML,SL) with (IL, JL), a different set of mass-
type and current-type STF multipoles. As we mentioned, at this stage the
latter are arbitrary functions of tr, with the exception of I, İi, and Ji which
must be constant in time because of the conservation laws for the total mass
of the source M ≡ I, its total linear momentum Pi ≡ I

(1)
i , and its total

angular momentum Ji. The other three terms in Eq. (1.107) reintroduce,
via Eq. (1.22), the four STF multipoles that had been gauged away from the
linear solution. In fact, the vector ξµ can be decomposed in four general STF
multipoles, denoted as (WL, XL, YL, ZL) and usually called gauge moments,
according to

ξ0 =
4

c3

∞∑
`=0

(−)`

`!
∂L

[
WL(tr)

r

]
, (1.111)

ξi = − 4

c4

∞∑
`=0

(−)`

`!
∂L

[
XL(tr)

r

]
− 4

c4

∞∑
`=1

(−)`

`!

{
∂L−1

[
YiL−1(tr)

r

]
+

`

`+ 1
εiab∂aL−1

[
ZbL−1(tr)

r

]}
. (1.112)

This completely determines the 1PM solution of the exterior filed in terms
of an expansion in six sets of STF multipole moments, (IL, JL,WL, XL, YL
, ZL). Since the multipole decomposition has entered the first step of a PM
iterative algorithm, we are actually justified in calling the overall procedure
a multipolar-post-Minkowskian expansion. The multipoles (IL, JL,WL, XL

, YL, ZL) are usually referred to as the multipole moments of the source, in
anticipation of the fact that they can be related to the source by means of the
matching with the PN solution in the overlap region. Despite this remarkable
property, using a solution parameterized by six set of multipoles in the itera-
tive algorithm would be quite inconvenient. Besides, we know that GWs have
two physical degree of freedom, their two polarization states. Hence, there
must exist a reduced set of just two multipoles that is physical equivalent to

9There are actually two small differences: (i) a factor G is missing in kµν(1) because it is

collected in front of hµν(1) in its defining relation, Eq. (1.101); (ii) the overall sign is changed

due to [hµν ]linear = −h̄µν , as we showed in Eq. (1.17).
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the one we used above, i.e. that generates the same MPM solution if used
to parametrize the leading coefficient hµν(1) at the basis of the MPM iterative

algorithm. Indeed the naif choice (IL, JL, 0, 0, 0, 0) is no good, as it is related
to (IL, JL,WL, XL, YL, ZL) by a linear gauge transformation rather than a
non-linear diffeomorphism. What we are after must be instead an isometric
reduced set (ML, SL, 0, 0, 0, 0) where the STF multipoles ML and SL, usu-
ally called canonical multipole moments, are non-linear functionals of the six
source multipoles, with the identifications ML = IL and SL = JL being valid
exclusively at a linear level. Of course, decomposing hµν(1) in canonical mo-
ments returns a much simpler expression than its source moment counterpart
(only kµν(1) remains in Eq. (1.107)), therefore it is more easily implemented in
the iterative MPM algorithm. However, there is no way of directly connecting
these canonical moments to the source. The idea is then to use the canonical
moments for the MPM algorithm and later recast the so-constructed solution
in terms of the source moments. Evidently, we need the explicit functional
relations between canonical and source moments, up to the target PN accu-
racy of the final waveform results. The procedure to obtain these relations
is presented in the recent work [159], where it is formally outlined at every
order in the PM expansion and then practically implemented to compute the
relations between the mass quadrupoles Mij and Iij up to 4PN. For instance
we have [105,146]

Mij = Iij +
4G

c5

[
IijW

(2) − I(1)
ij W

(1)

]
+O

(
1/c7

)
(1.113)

Sij = Jij +
2G

c5

[
εab〈i

(
− 2Ij〉bY

(2)
a + I

(1)
j〉bY

(1)
a − I(3)

j〉bWa

)
+ 3J〈iY

(1)
j〉

− 2J
(2)
ij W

(1)

]
+O

(
1/c6

)
. (1.114)

Similar relations hold for higher multipoles, with the first correction being
always of order O(G/c5).

We now investigate by induction how to formally implement the MPM
iteration algorithm at every order. The problem at hand is how to compute
the nPM coefficient hµν(n) after the previous n−1 have been already determined,
starting with the multipolar 1PM solution we just discussed. We have to solve
the wave equation (1.103), with the source term Λµν(n) known by induction

hypothesis. A straightforward application of the retarded integral (1.15) is not
possible here, because Eq. (1.103) is physically meaningful only outside the
source. On the same note, the multipole expansion nested in the source term
Λµν(n) makes the latter manifestly divergent for r → 0, with the divergence order
that increases indefinitely as the multipole expansion proceeds towards higher
values of `. It is however crucial to remember that the multipole expansion
naturally comes with an associated expansion in 1/c, meaning that if we want
to compute the waveform at a given PN order we can neglect any multipole
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moment beyond a corresponding finite ` = `max. After this truncation, the
divergence order of Λµν(n) becomes actually finite and we have the chance of

regularizing the integral �−1
retΛ

µν
(n).

Following Ref. [143], the first step in this direction is to introduce the
regularized quantity

Iµνn (B) ≡ �−1
ret

[
rB

rB0
Λµν(n)

]
, (1.115)

a function of the complex number B that is defined when <(B) is large enough
to make rBΛµν(n) regular at the origin. In particular, if Dmax is the maximal

divergence order of Λµν(n), the definition domain of Iµνn (B) is <(B) > Dmax−3.
The constant length scale r0 is there just to make the regularizing factor
dimensionless, and it must disappear from the expression of every physical
observable. Ref. [143] proved that Iµνn (B) admits a unique analytic continua-
tion Ĩµνn (B) defined for all B ∈ C except for some integer values. The function
Ĩµνn (B) may develop some poles in B = 0, but around this point we can always
consider the Laurent expansion

Ĩµνn (B) =
+∞∑

p=−pn

Bpιµνn,p, (1.116)

where pn is the order of these eventual poles, with pn = 0 if there are none.
We can then apply the operator � to both sides of Eq. (1.116), remembering
the definition (1.115). This gives

rB

rB0
Λµν(n) =

+∞∑
p=−pn

Bp�ιµνn,p, (1.117)

where, in the left hand side,

rB

rB0
= eB log(r/r0) =

+∞∑
p=0

Bp [log(r/r0)]p

p!
. (1.118)

Equating the different powers of B yields the infinite set of equations

�ιµνn,p = 0 for − pn ≤ p ≤ 1, (1.119)

�ιµνn,p =
[log(r/r0)]p

p!
Λµν(n) for p ≥ 0. (1.120)

We notice that ιµνn,0, the coefficient of the term with p = 0 in the Laurent ex-
pansion of the analytically continued quantity (1.115), is a particular solution
of Eq. (1.103). The series of operation that allowed us to compute ιµνn,0 from
the retarded integral Iµνn (B) is called finite part of Iµνn (B). In other words,



34
CHAPTER 1. GRAVITATIONAL WAVES FROM POST-NEWTONIAN

SOURCES

denoting the operation of taking this finite part by the symbol FPB=0, we
found that a particular solution uµν(n) to Eq. (1.103) can be computed as10

uµν(n) = FPB=0�
−1
ret

[
rB

rB0
Λµν(n)

]
. (1.121)

The solution we want, however, must also satisfy the harmonic condition
(1.104). Instead, from the solution above,

wµ(n) ≡ ∂αu
αµ
(n) = FPB=0�

−1
ret

[
B
rB

rB0

ni
r

Λαi(n)

]
, (1.122)

where we used the conservation of the stress-energy pseudo tensor (1.10),
which in vacuum becomes ∂αΛαµ = 0, and thus ∂αΛαµ(n) = 0. We see that

in general wµ(n) 6= 0, as it is the case when the associated retarded integral,

stripped of the explicit factor B, develops a simple pole 1/B in its Laurent
expansion for B → 0. Nevertheless, realizing that the finite part operation
effectively identifies wµ(n) with the coefficient of this simple pole, we can infer, in

analogy with Eq. (1.119), that it must solve the source-free equation �wµ(n) =
0. This means that we can decompose it in terms of four set of STF multipoles,
similarly to what we did in Eqs. (1.111)-(1.112) for ξµ. From the multipolar
expression of wµ(n) is then possible to define another object vµν(n) such that

�vµν(n) = 0, ∂αv
αµ
(n) = −wµ(n). (1.123)

The resulting vµν(n) is not unique, but each of its determinations, once added

to uµν(n), gives an object that is still a solution to Eq. (1.103) while also being
divergence free, as we wanted. For the explicit expression commonly used
for vµν(n), given in terms of the multipoles of wµ(n), see, e.g., Eqs. (47)-(48) of

Ref. [106].11

Finally, the nPM metric coefficient hµν(n), solution to Eqs. (1.103) and

(1.104), is formally obtained as

hµν(n) = uµν(n) + vµν(n), (1.124)

with uµν(n) defined in Eq. (1.121) and vµν(n) defined from wµ(n) in Eq. (1.122), upon

requesting the conditions (1.123). Moreover, this is the most general solution

10For a source S with compact support and no divergences, we simply have

FPB=0�
−1
ret

[
rB

rB0
S

]
= �−1

ret(S),

in compliance with the fact that no regularization is needed in this case.
11The procedure to compute vµν(n) from the multipolar expression of wµ(n) is often called

the MPM harmonicity algorithm.
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we can find for hµν(n). As proved in Ref. [143], in fact, the most general solution

to the associated homogeneous equation, �hµν(n) = 0, has necessarily the same

multipolar structure of the 1PM solution hµν(1), which is also a solution to this
equation. Thus, we can always reabsorb any extra homogeneous term added
to the solution (1.124) in a redefinition of the multipole moments used to
parameterize hµν(1).

As it is not difficult to imagine, the practical implementation of the MPM
iterative algorithm detailed above becomes very challenging already at low
PM orders. To make things manageable, the usual strategy is to consider sep-
arately different multipole interactions, determined by the different multipole
products that pop up in the MPM iterations. This is done by starting the it-
erative algorithm with a linear term hµν(1) which only presents the pieces where
some selected multipoles appear. For instance, to fix the mass monopole and
mass quadrupole structure of hµν up to 2.5PN corrections, it is sufficient to
consider a single iteration on the linear metric

hµν(1) = hµν(1,M) + hµν(1,Mij)
, (1.125)

where, referring to Eqs. (1.108)-(1.110), rewritten in terms of the canonical
moments (ML, SL), the multipolar components considered read12

h00
(1,M) = −4M

c2r
, h0i

(1,M) = hij(1,M) = 0, (1.126)

and

h00
(1,Mij)

= − 2

c2
∂ab

[
Mab(tr)

r

]
, (1.127)

h0i
(1,Mij)

=
2

c3
∂a

[
M

(1)
ai (tr)

r

]
, (1.128)

hij(1,Mij)
= − 2

c4

M
(2)
ij (tr)

r
. (1.129)

Then, by inserting the linear metric (1.125) in the right hand side of Eq. (1.105),
we find the three quadratic interactions

hµν(2) = hµν
(2,M2)

+ hµν(2,M×Mij)
+ hµν(2,Mij×Mij)

, (1.130)

which can be separately determined by direct application of the MPM algo-
rithm; for the explicit computation of these contributions see Sec. 5.3.4 of
Ref. [145] and references therein.

12In our notation, for instance, hµν(1,M) represents the term, in the multipolar decomposi-

tion of hµν(1), that involves the mass monopole M , whereas hµν(1,Mij) is the one associated to

the mass quadrupole Mij .
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An important aspect of the nonlinear MPM metric coefficients that result
from the procedure we just outlined is the inevitable appearance, in their
expressions, of time integrals involving the canonical moments and spanning
over all the instants before the retarded time tr.

13 Contributions of this kind
are called hereditary, in antithesis with the “standard” instantaneous terms
which just depend on tr, because they effectively leave on the exterior field the
mark of the whole history of its (yet unspecified, at this point) source. Seen
from another angle, these hereditary non-linearities are expression of the fact
that the curved background spacetime affects the gravitational interaction as
if the latter took place in flat spacetime and propagated at all possible speeds,
lower or equal to c.

We finally mention a very important result, originally shown in Ref. [143],
about the near-zone singular structure that each coefficient hµν(n) must have to
allow the required analytic continuations in B in the MPM algorithm. For
each N ∈ N, in the limit r → 0, we have

hµν(n)(t,x) =
∑
m, p

rm(log r)pn̂LF
µν
L,m,p,n(t) + o(rN ),

{m ∈ Z | m0(n) ≤ m ≤ N ; p ∈ N | p ≤ n− 1},
(1.131)

where m0(n) is an integer that goes toward −∞ as n increases, FµνL,m,p,n(t)

are multi-linear functionals of the source moments, and o(rN ) is the standard
Bachmann–Landau notation for a residual of order greater than rN in the
considered limit.

1.3.2 PN expansion in the near region

We address now the problem of building a PN solution to the field equations
(1.9), formally valid at each perturbative order but limited to the near region
r < R. Using a standard notation, the formal PN expansion, complete of all
its infinite terms, of any given quantity is indicated with an overline . Focusing
in particular on our field variable hµν , its PN expansion reads14

h̄µν(t,x) =
+∞∑
n=2

1

cn
hµνn (t,x; log c) (1.132)

where we made explicit that the nPN coefficient, which multiplies the factor
1/cn, may also contain logarithms of c. Their presence is expected from the
profile of the nth MPM metric coefficient in the limit c→∞, which is

hµν(n) ∼
∑
p,q∈N

(log c)p

cq
, (1.133)

13This happens already at the level of the metric component h00
(2,M×Mij); see Eq. (5.164)

of Ref. [145].
14This should not be confused with the linear trace-reversed perturbation h̄µν , which

plays no role in the non-linear formalism we hare presenting here.
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as implied by its near-zone structure (1.131), considering that each r therein
comes with a factor 1/c.

Accordingly, the PN-expanded stress-energy pseudo tensor (1.10) reads

τ̄µν(t,x) =
+∞∑
n=−2

1

cn
τµνn (t,x; log c), (1.134)

where the starting term of order c2 comes from the rest-mass contribution to
the energy.

By inserting these expansions in Eq. (1.9), we find the recursive set of
Poisson-like equations

∆hµνn = 16πGτµνn−4 + ∂2
t h

µν
n−2, (1.135)

where the last term comes from � = ∆ + 1/c2∂2
t . We proceed again by in-

duction: we try to formally compute hµνn supposing the knowledge of all the
previous PN coefficients of the metric and, with them, of τµν . Here the Lapla-
cian cannot be simply be inverted via the Green’s function (1.68), because
the source term has a non-compact support, and diverges for r → +∞. This
obstacle has been overcome in Ref. [160], which showed that an appropriate
inversion of the Laplacian, for any source term τµνn , can be be defined in
terms of a finite-part regularization, operationally similar to the one used in
the MPM algorithm and thus denoted with the same symbol FPB=0. It reads

∆−1[τµνn ](t,x) ≡ − 1

4π
FPB=0

∫
d3x′

r′B

rB0

τµνn (t,x′)

|x− x′|
. (1.136)

We remark that in this case the regularization is needed for divergences at
infinity, rather than at zero, therefore <(B) must be sufficiently large and
negative for the integral to be defined, before it is analytically continued ev-
erywhere in the complex B-plane except for, in this case, just B = 0.

The most general solution to Eq. (1.135) is then given by

hµνn = 16πG∆−1[τµνn−4] + ∂2
t ∆−1[hµνn−2] +

+∞∑
`=0

x̂L BµνL,n, (1.137)

where in the last term we added to our particular solution the most general
solution of the homogeneous Laplace equation that is regular at r = 0, decom-
posed in STF tensorial functions BµνL,n as we did in Eq. (1.63). Indeed we can

use Eq. (1.137) in its own coefficient hµνn−2 and keep going recursively until we
reach either hµν0 or hµν1 , which are both zero.

Let us now introduce the operator

�−1
inst[τ̄

µν ] ≡
+∞∑
k=0

1

c2k
∂2k
t ∆−k−1[τ̄µν ], (1.138)
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where

∆−k−1[τ̄µν ](t,x) ≡ − 1

4π
FPB=0

∫
d3x′

r′B

rB0

∣∣x− x′
∣∣2k−1

τ̄µνn (t,x′)

(2k)!
(1.139)

is the kth iteration of the operator (1.136). Mind that the definition (1.138) is
legitimate exclusively for formal PN expansion at all orders like τ̄µν . Once all
the metric coefficients are recursively replaced in the left hand side, neglecting
for the moment the homogeneous terms, Eq. (1.137) can be generalized at
every PN order in the compact form

h̄µνpart =
16πG

c4
�−1

inst[τ̄
µν ]. (1.140)

This is by construction a particular solution to Eq. (1.9), implying that

�(�−1
inst[τ̄

µν ]) = τ̄µν , (1.141)

and thus justifying a posteriori the notation �−1
inst, where the label “inst”

stands for instantaneous, namely not involving integrals in time as opposed
to �−1

ret . On parallel, we have the collection of homogeneous terms that comes
from the infinite iterations required to obtain Eq. (1.140) from Eq. (1.137).
It can be proved that this homogeneous part corresponds to the general so-
lution of the source-free D’Alambertian equation regular at the origin, which
must be composed of the difference between retarded waves and their ad-
vanced analogue. The most general PN solution for the metric hµν , formally
encompassing all PN orders, is therefore

h̄µν =
16πG

c4
�−1

inst[τ̄
µν ]− 4G

c4

+∞∑
`=0

(−)`

`!
∂̂L

[
AµνL (t− r/c)−AµνL (t+ r/c)

2r

]
.

(1.142)
There is no way to further specify the quantities AµνL in the standard PN
theory, we may just relate them to the functions BµνL,n without gaining much.
As we will see in the next section, the solution to this problem lies in the
matching with the MPM solution in the exterior region.

1.3.3 PN-MPM matching in the overlapping region

We now come to the crucial point of the Blanchet-Damour generation formal-
ism: enforcing the matching between the MPM and PN expansions in their
common region of validity, the overlapping region d < r < R. Similarly to
what we did on the PN side with the notation h̄µν , let us denote by M(hµν)
the formal MPM expansion

M(hµν) ≡
+∞∑
n=1

Gnhµν(n)[IL, JL,WL, XL, YL, ZL], (1.143)
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which represents the exterior solution of Sec. 1.3.1, comprehensive of all PM
orders and expressed in the multipoles of the source. Indeed this is such that
M(hµν) = hµν for r > d, just like h̄µν = hµν for r < R. We thus have

M(hµν) = h̄µν for d < r < R. (1.144)

This is not yet a matching equation since it does not relate two mathematical
expression of the same nature. The idea is then to take the formal PN expan-
sion ofM(hµν) and equate it to the formal multipolar expansion of h̄. In our
notation we get

M(hµν) =M(h̄µν), (1.145)

which is by all means a matching equation, to be intended as the infinite set
of functional equations that make identical, term by term, the two double
expansions, M(hµν) and M(h̄µν). Moreover, thanks to the known near-zone
structure of hµν(n), Eq. (1.131), we are able to infer the general shared structure
of such double expansions, that is

M(hµν) =
∑
m, p

rm(log r)pn̂LF
µν
L,m,p =M(h̄µν),

{m ∈ Z ; p ∈ N},
(1.146)

where, compared to Eq. (1.131), we have FµνL,m,p =
∑+∞

n=1G
nFµνL,m,p,n. Here

the second equality can be seen as the specification of the singular structure
of the PN expansion h̄ in the limit r → +∞.

The first remarkable consequence of the matching equation (1.146) is that,
given a PN source, which we know to always come with the necessary overlap-
ping region, the solution to the Einstein field equations (1.9) in the exterior
region can be proved to be15

M(hµν) = FPB=0�
−1
ret

[
rB

rB0
M(Λµν)

]
− 4G

c4

+∞∑
`=0

∂̂L

[
FµνL (tr)

r

]
, (1.147)

where, in the first term, we find the formal MPM expansion

M(Λµν) =
+∞∑
n=2

GnΛµν(n) =
16πG

c4
M(τµν), (1.148)

while, in the second term, we have a set of STF tensorial functions FµνL (tr)
that are related to τµν by

FµνL (tr) = FPB=0

∫
d3y
|y|B

rB0
ŷL

∫ +1

−1
dz δ`(z)τ̄

µν(tr + z|y| /c,y), (1.149)

15This poof is given e.g. in Sec. 4.2 of Ref. [106].
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where the weighted integral in z is the same one seen in Eq. (1.77).16 This sec-
ond term represents the linear 1PM term of the exterior solution (1.147). As
such, it can be further decomposed in irreducible STF representations of SO(3)
which correspond precisely to the source multipole moments (IL, JL,WL, XL

, YL, ZL). One can thus invert the relations that substantiate this decompo-
sition and express the source moments in terms of the components F00

L (tr),

F0i
L (tr), and F ijL (tr), finally relating them to τ̄µν via Eq. (1.149). The results

is a set of source-rooted closed-form expressions for the source multipoles. For
instance we have

IL(tr) = FPB=0

∫
d3y
|y|B

rB0

∫ +1

−1
dz

{
δ`ŷLΣ− 4(2`+ 1)

c2(`+ 1)(2`+ 3)
δ`+1ŷiLΣ

(1)
i

+
2(2`+ 1)

c4(`+ 1)(`+ 2)(2`+ 5)
δ`+2ŷijLΣ

(2)
ij

}
(tr + z|y| /c,y),

(1.150)

JL(tr) = FPB=0

∫
d3y
|y|B

rB0

∫ +1

−1
dz εab〈i`

[
δ`ŷL−1〉aΣb

− 2`+ 1

c2(`+ 2)(2`+ 3)
δ`+1ŷL−1〉acΣ

(1)
bc

]
(tr + z|y| /c,y), (1.151)

where we have defined Σ ≡ c−2(τ̄00 + τ̄aa), Σi ≡ c−1τ̄0i, and Σij ≡ τ̄ ij .
Analogues relations are found for the gauge moments (WL, XL, YL, ZL); see
e.g. Eqs. (125a)-(125d) of Ref. [106]. Notably, the above expressions for
IL and JL correspond to the linearized theory expressions (1.90)-(1.91) with
the replacement Tµν → τ̄µν and the addition of the necessary finite-part
regularization. Beware that each z-integral in the source multipoles should be
intended as a formal PN expansions in the sense of Eq. (1.80).

Essentially, the first important consequence of the matching is that it se-
lects, among the general class of exterior solutions described by the MPM
algorithm of Sec. 1.3.1, which we remind are not source-specific, the phys-
ical solution associated to the energy-momentum content of a given matter
source, provided this the latter is post-Newtonian. Indeed, to compute explic-
itly the source moments up to a target PN accuracy, we need to determine
the PN-expanded sources Σ, Σi and Σij , and thus τ̄µν . We need therefore
the near-zone field solution of section 1.3.2, which was however not com-
pletely determined, because of the unspecified homogeneous functions AµνL
in Eq. (1.142). This brings us to the second remarkable accomplishment of
the PN-MPM matching: as shown in Ref. [160], the matching equation also
implies

AµνL (t) = FµνL (t) +RµνL (t) (1.152)

16This is no coincidence since the second term of the solution (1.147) is the only one that
survives in the linear limit, therefore it must reproduce the linearized field studied below
Eq. (1.81), once we replace τ̄µν by the compact-support matter tensor Tµν , whose regularity
also allows us to remove FPB=0 and |y|B /rB0 .
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where FµνL are the functions of Eq. (1.149) and

RµνL (t) = FPB=0

∫
d3y
|y|B

rB0
ŷL

∫ +∞

1
dz (−2δ`)M(τµν)(t+z|y| /c,y, (1.153)

which we note to be given in terms of the formal MPM expansionM(τµν). The
functions FµνL and RµνL in Eq. (1.152) completely characterize the radiation-
reaction effects in the near field-solution, with the linear order contribution
FµνL and the extra non-linear correction RµνL first entering, respectively, at
2.5PN order and 4PN order.

Remarkably, it is possible to rewrite Eq. (1.142) in the convenient form
[161]

h̄µν =
16πG

c4
�−1

ret [τ̄
µν ]− 4G

c4

+∞∑
`=0

(−)`

`!
∂̂L

[
RµνL (t− r/c)−RµνL (t+ r/c)

2r

]
.

(1.154)
Here the first term is given by

�−1
ret [τ̄

µν ](t,x) = − 1

4π

+∞∑
n=0

(−)n

n!

(
∂

c∂t

)n
FPB=0

∫
d3y |x− y|n−1 τ̄µν(t,y),

(1.155)
and corresponds to the formal PN expansion of the retardations in the integral
(1.15), thus representing the most intuitive way of tackling (1.15) within the
PN theory; recalling Eq. (1.138), one can furthermore prove that

�−1
ret [τ̄

µν ]−�−1
inst[τ̄

µν ] = −4G

c4

+∞∑
`=0

(−)`

`!
∂̂L

[
FµνL (t− r/c)−FµνL (t+ r/c)

2r

]
.

(1.156)
The second term of Eq. (1.154), with its dependence on RµνL , conveys the
inadequacy of the previous intuitive term as one goes at the 4PN order and
beyond, where it is no longer possible to completely expand the solution in
instantaneous contributions but it is rather necessary to also factor in non-
linear radiation-reaction effects, complete of hereditary pieces, as prescribed
by the MPM expansion entering RµνL through M(τµν). In fact, if restricted
to its leading order, this second term reduces to the 4PN hereditary-type
radiation-reaction originally found in Ref. [96].

In conclusion, Eq. (1.154) is what is generally considered to explicitly
determine order by order h̄µν , and from it τ̄µν , as it is needed for the evaluation
of Eqs. (1.150), (1.151) and their gauge moment analogues. See for instance
Refs. [103,104] for the application of this formalism up to the 3PN order, and
sections 5.3 and 5.4 of Ref. [106] for its 3.5PN and, in part, 4PN extension.

1.3.4 Non-linear waveform at infinity

We conclude the Chapter by discussing the implication of the Blanchet-Damour
formalism on the asymptotic waveform at future null infinity. We remind that
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this is the observationally relevant component of the GW, projected on the TT
gauge and restricted to its leading 1/R component, R being the radial distance
from the source in radiative coordinates. We also recall that the asymptotic
waveform admits the general STF decomposition given in Eq. (1.92), in terms
of the two sets of radiative multipoles UL(TR) and VL(TR).

Similarly to what we did in our linearized theory analysis, in Sec. 1.2.4,
the strategy to compute (UL, VL) is to take the field solution valid outside the
source we built in the previous sections, select its 1/R component and finally
read off, by comparison with Eq. (1.92), the structure of each radiative multi-
pole (UL, VL) up to the available PN order (see the c factors in Eq. (1.92)). In
practice, within the non-linear formalism we are exploring now, the exterior
solution we have to consider for this procedure is the one computed via the
MPM algorithm. The radiative multipoles are thus computed in the form of
non-linear functionals of the canonical multipole moments (ML, SL), which
are then rewritten in terms of the source moments (IL, JL,WL, XL, YL, ZL)
as discussed below Eq. (1.112). Using the source-rooted expressions one has,
thanks to the PN-MPM matching, for the source multipoles, we can ultimately
relate the observable radiative multipoles (UL, VL) of the asymptotic waveform
to the content of its source. In this derivation we have however to be careful
about the difference between the radiative coordinates used in Eq. (1.92) and
the harmonic coordinates adopted so far in each part of the Blanchet-Damour
formalism. In fact, if we ignore the problem and pretend that Eq. (1.92) is
written in harmonic coordinates (t,x), the resulting radiative moments are
found to develop an explicit dependence on log r (and powers of it). For
instance, stopping at the first non-linear correction, one computes

UL(tr, log r) = M
(`)
L (tr) +

2GM

c3

∫ +∞

0
dτ M

(`+2)
L (tr − τ)

[
log

(
cτ

2r

)
+ κ`

]
+O(1/c5),

(1.157)

VL(tr, log r) = S
(`)
L (tr) +

2GM

c3

∫ +∞

0
dτ S

(`+2)
L (tr − τ)

[
log

(
cτ

2r

)
+ π`

]
+O(1/c5), (1.158)

with

κ` =
2`2 + 5`+ 4

`(`+ 1)(`+ 2)
+

`−2∑
k=1

1

k
, (1.159)

π` =
`− 1

`(`+ 1)
+

`−1∑
k=1

1

k
. (1.160)

Beside the presence of log r, we see that the first non-linear effects in
the radiative multipole expressions (1.157)-(1.158) are of hereditary type. In
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particular, these hereditary contributions are known as tail integrals, since
the log τ tends to suppress them as τ goes toward the remote past before tr.
Coming back to the issue with the logarithms of r, it can be proved that they
can all be removed with the linear gauge transformation

Hµν
(1) = hµν(1) + ∂µχν(1) + ∂νχµ(1) − η

µν∂αχ
α
(1),

χµ(1) ≡
2M

c2
η0µ log

(
r

r0

)
,

(1.161)

which results in the retarded-time shift

TR = tr −
2GM

c3
log

(
r

r0

)
+O(G2), (1.162)

where r0 is the same constant length scale that appears in the finite part
regularizations. The transformation (1.162) is actually enough to remove any
radial logarithm in UL(tr, log r) and VL(tr, log r). For instance, by employing
it in (1.157), we simply find

UL(TR) = M
(`)
L (TR) +

2GM

c3

∫ +∞

0
dτ M

(`+2)
L (TR − τ)

[
log

(
cτ

2r0

)
+ κ`

]
+O(1/c5).

(1.163)

The same happens even if we consider non-linearities at higher PN order.
By way of illustration, we provide below the 3PN-accurate expression for the
radiative mass quadrupole:

Uij(TR) = M
(2)
ij +

2GM

c3

∫ +∞

0
dτ M

(4)
ij (TR − τ)

[
log

(
cτ

2r0

)
+

11

42

]
+
G

c5

[
1

7
M

(5)
a〈iMj〉a −

5

7
M

(4)
a〈iM

(1)
j〉a −

2

7
M

(3)
a〈iM

(2)
j〉a +

1

3
εab〈iM

(4)
i〉aSb

− 2

7

∫ +∞

0
dτ M

(3)
a〈iM

(3)
j〉a(TR − τ)

]
+ 2

(
GM

c3

)2 ∫ +∞

0
dτ M

(5)
ij (TR − τ)

[
log2

(
cτ

2r0

)
+

57

70
log

(
cτ

2r0

)
+

124627

44100

]
+O(1/c7) (1.164)

Here, the term in the third row is the lowest order memory integral [99], a
designation given to all the non-linear contribution where the remote past is
not suppressed as in the tail integrals, because there are no logarithms of τ .
The term in the last row is instead the tail-of-tail of the mass quadrupole,
the first of the “second layer” hereditary effects that arise from more than
quadratic multipolar interactions; more specifically, this is obtained from the
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cubic interaction M ×M ×Mij [162]. Mind that, in harmonic coordinates,
also the tail-of-tail logarithms would have r instead of r0 in their argument,
but the transformation (1.162) is enough to completely remove any log r.

Concerning this aspect, we have also to mention that the presence of ra-
dial logarithms in harmonic coordinates may become an obstacle to the very
application of the MPM algorithm: in highly non-linear terms like the tail-of-
memory, a cubic-interaction effect whose leading 4PN contribution is currently
under investigation, the standard MPM paradigm in harmonic coordinates
leads to polylogarithmic terms which is quite hard to handle. The way out of
this issue has been recently found in the adoption of a modified version of the
MPM algorithm, which directly builds the exterior field solution in radiative
coordinate; see the recent work [163] for more details.

In conclusion, the computational scheme that emerges from the Blanchet-
Damour GW generation formalism is given as

Tµν → τ̄µν → (IL, JL,WL, XL, YL, ZL)→ (ML, SL)

→ (UL, VL)→ hTTij (TR,N), (1.165)

and constitutes the beyond-linear generalization of Eq. (1.96).
Before we end this Chapter, let us mention for later convenience that there

is an alternative way of writing the general asymptotic waveform (1.92). In

fact, introducing the pure-spin tensor harmonics TE2,`m
ij and TB2,`m

ij , we can
also write [156,164]

hTTij (TR,N) =
G

c2R

∞∑
`=2

∑̀
m=−`

[
1

c`
U`m(TR)TE2,`m

ij

+
1

c`+1
V`m(TR)TB2,`m

ij

]
, (1.166)

where the two sets of spherical multipole moments (U`m, V`m), again referred
to, respectively, as mass-type and current-type radiative multipole moments,
are related to their STF counterparts (UL, VL) by

U`m =
4

`!

√
(`+ 1)(`+ 2)

2`(`− 1)
Y`mL UL, (1.167)

V`m = − 8

`!

√
`(`+ 2)

2(`+ 1)(`− 1)
Y`mL VL, (1.168)

where ∗ denotes complex conjugation and Y`mL are the STF spherical harmon-
ics that connects the basis of the scalar spherical harmonics Y `m to the set of
STF tensors N̂L. They can be computed in terms of the integral

Y`mL =

∫
dΩ N̂L(Θ,Φ)[Y `m(Θ,Φ)]∗, (1.169)
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considering the angular parametrization N(Θ,Φ) = (sin Θ cos Φ, sin Θ sin Φ, cos Θ).
Furthermore, the STF harmonics are related to the spin-weighted spherical
harmonics ±2Y`m by

TE2,`m
ij =

1√
2

(
−2Y`mmimj + 2Y`mm

∗
im
∗
j

)
, (1.170)

TB2,`m
ij = − i√

2

(
−2Y`mmimj − 2Y`mm

∗
im
∗
j

)
, (1.171)

where we used the vector m of Eq. (1.27). We recall that the general definition
of the spin-weighted spherical harmonics is

−sY`m ≡ (−)s
√

2`+ 1

4π
d`ms(Θ)eimΦ, (1.172)

where the Wigner d-function are defined as

d`ms(Θ) ≡
√

(`+m)!(`−m)!(`+ s)!(`− s)!

×
kf∑
k=ki

(−)k
[sin(Θ/2)]2k+s−m[cos(Θ/2)]2`+m−s−2k

k!(`+m− k)!(`− s− k)!(s−m+ k)!
, (1.173)

with ki = max(0,m − s) and kf = min(` + m, ` − s). Plugging Eqs. (1.170)-
(1.171) in Eq. (1.166), and remembering Eq. (1.28), yields

h+ − ih× =
G√
2Rc2

∞∑
`=2

∑̀
m=−`

1

c`

[
U`m(TR)− i

c
V`m(TR)

]
−2Y`m(Θ,Φ)

=
∞∑
`=2

∑̀
m=−`

h`m−2Y`m(Θ,Φ), (1.174)

in which we defined the spherical harmonic components

h`m ≡
G√

2Rc`+2

[
U`m(TR)− i

c
V`m(TR)

]
, (1.175)

also known as spherical modes of the waveform. The latter completely charac-
terize the waveform at infinity and are particularly convenient when one wants
to compare analytical and numerical results for the GW waveform. As such,
they are also at the basis of the formalism adopted by the EOB waveform mod-
els we will discuss in the next Chapter, since these models hybridize analytical
results with non-perturbative information coming from NR simulations.

Relevantly, when one deals with GWs produced by non-precessing compact
binaries (i.e. spin-less or with spins aligned/antialigned to the binary angular
momentum), such as the ones we will mainly target in this Thesis, Eq. (1.175)
further simplifies according to the mode separation

h`m = − G√
2Rc`+2

U`m when `+m is even, (1.176)
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h`m = i
G√

2Rc`+3
V`m when `+m is odd, (1.177)

as proved, e.g., in section IIIB of Ref. [146].
We finally highlight that, within this formalism, the fluxes of energy and

angular momentum at infinity can be directly computed from the spherical
modes h`m. In fact, from Eqs. (1.55)-(1.56), one finds

Ė =
1

16π

`max∑
`=2

∑̀
m=−`

|ḣ`m|2, (1.178)

J̇ = − 1

16π

`max∑
`=2

∑̀
m=−`

m=
(
ḣ`mh

∗
`m

)
(1.179)



Chapter 2

The effective one-body
approach to coalescing
compact binaries

T
he waveform modeling techniques we discussed so far are inherently lim-
ited in their application to post-Newtonian sources. As such, they have

no means of adequately reproducing GW signals whenever these are radiated
by astrophysical phenomena that elude the PN approximation, encompass-
ing strong-gravity effects and high internal velocities. We think in particular
about the last stages of the CBC evolution, starting from the late inspiral,
when the two component objects become close to each other and their orbital
velocity rises up to relativistic values. In order to build complete waveform
templates for CBC signals, as it is required by GW data analysis, one has
therefore to go beyond plain PN results, whether they are relative to the
waveform or to the associated compact binary dynamics. The effective one-
body approach (EOB) we will review in this Chapter, which is at the root of
the waveform modeling activity presented in the next one, has been devised
precisely with this purpose: finding a proper analytical formalism to exploit
the available information regarding the two-body problem, coming particu-
larly but not exclusively from PN theory, and provide a description to the
motion and radiation of coalescing compact binaries valid over their entire
evolution, comprehensive of late inspiral, plunge, merger, and ringdown. As
we will see, the key factors to achieve this goal are essentially two: (i) the
systematic use of several resummation methods, which basically consist in re-
placing PN results, in their standard polynomial form, in powers of 1/c, with
suitable non-polynomial functions that incorporate expected non-perturbative
features of their exact counterparts,1 and that give back, once PN-expanded,

1In identifying these non-perturbative structures, a crucial role is played by the connec-
tion that the EOB approach establishes between the compact binary dynamics and the way
simpler case of a test particle in motion around a Schwarzschild (or Kerr) black-hole; the

47
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the original polynomial results; (ii) the calibration of several free parameters,
either naturally present but analytically unknown or specifically added in the
EOB description,2 on the non-perturbative waveform information provided
by numerical relativity (NR) simulations, exact modulo the small numerical
error.

In general, we can single out three main building blocks in the EOB for-
malism [165,166]:

• a prescription for the conservative dynamics of the compact binary, en-
coded in an Hamiltonian;

• a prescription for the radiation-reaction force that drives the dissipative
effects in the dynamics, i.e. the loss of energy and angular momentum
in GW emission;

• a prescription for the corresponding GW waveform at infinity.

In this Chapter we will review each one of these fundamental aspects, referring
specifically to the recipes that characterize the waveform model TEOBResumS,
which will be the protagonist of the noncircular extensions at the core of the
next Chapter. In doing so, we will mainly focus on the case of nonspinning
binary black holes, although we specify that TEOBResumS can account for more
general dynamics where spin and tidal deformations are present. We briefly
review in [[?]] the extension of this model to spin-aligned (or antialigned)
binary black holes, that is parallel (or anti-parallel) to the angular momentum
direction); for its application to binaries with generically oriented spins, see
Ref. [167]; for the inclusion of tidal effects, relevant for binaries with neutron
stars, see instead Refs. [168,169].

More specifically, we will proceed according to the following plan. In
Sec. 2.1 we will present the EOB conservative dynamics, detailing its histori-
cal establishment at 2PN accuracy [128, 129] and its extensions at 3PN [130]
and 4PN [170], with some mentions to the strategy recently devised to push
it at even higher orders [171–174]. Then, in section 2.2 we will discuss the
related prescriptions for the radiation reaction force and the waveform model
before merger, specifically referring to the native quasi-circular version of
TEOBResumS. Finally, in Sec. 2.3, we describe the completion of the waveform
model with a prescription for merger and ringdown.

2.1 Conservative dynamics in the EOB approach

It is widely known that, within Newtonian gravity, the two-body relative mo-
tion, in the center of mass frame, for a system of objects with masses m1 and

nature of this link will be clarified in Sec. 2.1.
2The possibility of adding free tunable parameters in the EOB description is often re-

ferred to as the EOB flexibility
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m2, can be described in terms of a “test particle” of mass µ ≡ m1m2/(m1+m2)
orbiting in the gravitational potential generated by an external mass M ≡
m1 +m2 equal to the total mass of the system. The founding idea of the EOB
approach, from which it takes its name, is a generalization of this logic to
the general relativity case: describing the conservative dynamics of a compact
binary of masses m1 and m2 in terms of the motion of a particle of mass µ in
an effective external metric geff

µν(xλeff ,M), which is a priori undetermined. In-
deed, this effective description should be equivalent, once PN-expanded, to the
corresponding “real” two-body dynamics obtained in PN theory. Moreover it
should make contact to other approximation schemes, such as the gravitational
self force or the post Minkowskian formalism. Enforcing this requirements,
we have thus to properly define the effective metric geff

µν(xλeff ,M) and establish
a dictionary between the EOB and the two-body dynamical descriptions. In
what follows we will describe in details this procedure, initially limiting our
discussion to the 2PN order, for historical and expositional reasons.

2.1.1 EOB conservative dynamics at 2PN

The motion of a gravitationally interacting systems of two compact objects of
masses m1 and m2 is generally encoded in the action

Stot[x
µ
1 , x

µ
2 , gµν ] = SEH[gµν ]−

∑
A=1,2

mac

∫ √
−gµν(xλA)dxµAdx

ν
A, (2.1)

where the first term is the Einstein-Hilbert action (1.3) and the second one is
relative to two component objects, seen as point particles with coordinates xµ1
and xµ2 . In 1981, Damour & Deruelle computed the associated equations of mo-
tion at 2PN accuracy [175], using harmonic coordinates. Therein, they showed
that those same equations equivalently follow from a generalized Lagrangian,
extension at 2PN of the 1PN Lagrangian of Einstein, Infeld & Hoffman [53],
that must depend also on the accelerations of the two particles. Afterward, in
Ref. [176], Damour & Schäfer proved that this acceleration dependence could
be removed by rewriting the harmonic Lagrangian in ADM coordinates, which
had been introduced in Ref. [177].3 The so-obtained ordinary Lagrangian was
then translated, via a Legendre transform, into a 2PN-accurate two-body
ADM Hamiltonian. This PN dynamical description is of great importance for
our discussion, as it represents the technical starting point at the dawn of the
EOB approach, in Ref. [128].

Let us denote the ADM coordinates of the two particles as q1 and q2,
with conjugate momenta p1 and p2, where pA = ∂S/∂qA for A = 1, 2. In
the center-of-mass frame, the relative motion is described by the coordinates

3The contact transformation between harmonic and ADM coordinates is given at 2PN
order in Eq. (35) of Ref. [178] and at 3PN order in Ref. [64].
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Q = q1 − q2 and P = p1 = −p2, such that P = ∂S/∂Q. Introducing the
rescalings

q ≡ Q

GM
, p ≡ P

µ
, t̂ ≡ t

GM
, (2.2)

the µ-rescaled 2PN Hamiltonian of Ref. [176] can be written as

Ĥnr(q,p) ≡ Hnr(q,p)

µ
=
∑
n=0

1

c2n
Ĥnr
nPN(q,p), (2.3)

Ĥnr
N (q,p) =

p

2
− 1

q
, (2.4)

Ĥnr
1PN(q,p) = −1− 3ν

8
p4 − 1

2q

[
(3 + ν)p2 + ν(n · p)2

]
+

1

2q2
, (2.5)

Ĥnr
2PN(q,p) =

1− 5ν + 5ν2

16
p6 +

1

8q

[
(5− 20ν − 3ν2)p4

− 2ν2p2(n · p)2 − 3ν2(n · p)4
]

+
1

2q2

[
(5 + 8ν)p2 + 3ν(n · p)2

]
− 1 + 3ν

4q3
, (2.6)

where Hnr ≡ H −Mc2 is the “non-relativistic” Hamiltonian obtained by sub-
tracting to the total one its rest-mass contribution, ν ≡ µ/M = m1m2/(m1 +
m2)2 is the symmetric mass ratio of the system, q ≡ |q|, and n ≡ q/q. The
invariance of this Hamiltonian under time translations and spatial rotations
ensures the conservation of the quantities

Ĥnr = Ênr ≡ E
nr

µ
, q× p = j ≡ J

µGM
, (2.7)

respectively reduced energy and angular momentum of the system in the
center-of-mass frame.

We now move to rewriting the dynamical information above in a coordinate-
invariant fashion, that will be helpful in establishing the connection with ef-
fective problem. In the non-spinning (or spin-aligned) setting the motion is
planar, qz = 0. Using polar coordinates q = (r cosϕ, r sinϕ, 0) we can there-
fore write the reduced action as4

Ŝ =
S

µGM
= −Ênrt̂+ jϕ+ Ŝr(r, Ênr, j) (2.8)

where we used the conservation of the quantities (2.7) to separate the coordi-
nates t̂ and φ, with j ≡|j|. Here the radial action is defined as

Ŝr(r, Ênr, j) ≡
∫
dr pr(r, Ênr, j), (2.9)

4We work here, in particular, with the Fokker-type action that is obtained by eliminating
the gravitational degrees of freedom in total action (2.1)
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where the radial-momentum function pr can be computed by solving pertur-
batively Eq. (2.3) for (n · p)2 = p2

r , with Ĥ = Ênr and p2 = p2
r + j2/r2.

The resulting expression is a fifth-order polynomial in 1/r and is written in
Eq. (3.4) of Ref. [176]. The associated radial action variable is determined by
solving the integral

ir(Ênr, j) ≡ 1

π

∫ rmax

rmin

dr pr(r, Ênr, j), (2.10)

where rmin and rmax are the two turning points of the radial motion, real
roots of pr(r, Ênr, j) = 0; see Appendix B of Ref. [176] for more details on this
computation.

Coming back to unscaled variables, with R = GMr, α ≡ µGM , and
IR(Enr,J ) = αir(Enr/µ,J /α), the explicit 2PN result is [176]

IR(Enr,J ) = α

√
µ

−2Enr

[
1 +

(
15

4
− ν

4

)
Enr

µc2
+

(
35

32
+

15

16
ν

+
3

32
ν2

)(
Enr

µc2

)2]
− J +

α2

J c2

[
3 +

(
15

2
− 3ν

)
Enr

µc2

]
+

α4

J 2c4

(
35

4
− 5

2
ν

)
, (2.11)

This expression can be inverted, order by order in the PN expansion, to derive
Enr as a function of the action variables IR and J 5. Doing so by trading
IR for the Delaunay action variable N ≡ IR + J yields the 2PN Delaunay
Hamiltonian

Enr
real(N ,J ) = −1

2

µα2

N 2

[
1 +

α2

c2

(
6

NJ
− 15− ν

4N 2

)
+
α4

c4

(
5(7− 2ν)

2NJ 3

+
27

N 2J 2
− 3(35− 4ν)

2N 3J
+

145− 15ν + ν2

8N 4

)]
, (2.12)

that we dub “real” for future convenience, to highlight that it refers to the
real two body dynamics we want to describe in the EOB terms.

For our purpose, the great utility of this objects resides in its coordinate in-
variance. In fact, if we see it through the lens of the semi-classical quantization
of Bohr & Sommerfeld, Enr

real(N ,J ) describes the discrete energy spectrum of
the conservative two-body dynamics in terms of the integers values assumed
by N/~, the principal quantum number, and J /~, the angular-momentum
quantum number.

5Indeed J corresponds to the action variable

J =
1

2π

∮
dϕ pϕ.
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Let us now move to the effective problem and compute the analogue of
Eq. (2.12) in the effective dynamics. In this case the action is simply

Seff = −µc
∫ √

−geff
µν(xλeff)dxµeffdx

ν
eff . (2.13)

Focusing on non-spinning dynamics, we can use a static and spherically sym-
metric ansatz for the metric, namely6

geff
µνdx

µ
effdx

ν
eff = −A(Reff)c2dT 2

eff +B(Reff)dR2
eff

+R2
eff

(
dθ2

eff + sin2 θeffdϕeff

)
, (2.14)

where the unknown metric functions A(Reff) and B(Reff) are conveniently
organized in the generic expansions

A(Reff) = 1 +

+∞∑
n=1

an

(
GM

Reffc2

)n
, (2.15)

B(Reff) = 1 +
+∞∑
n=1

bn

(
GM

Reffc2

)n
, (2.16)

which are parameterized by two sets of free mass-dependent parameters an
and bn. Notice that truncating A(Reff) and B(Reff) at the kPN order means
to stop the series at nmax = k + 1 for the former and nmax = k for the latter.

To keep things as simple as possible, we assume that the motion of the
effective test particle of mass µ can be constrained along the geodesics of the
spacetime described by geff

µν . We have thus at our disposal the Hamilton-Jacobi
equation

0 = µ2c2 + gµνeff p
eff
µ p

eff
ν = µ2c2 + gµνeff

∂Seff

∂xµeff

∂Seff

∂xνeff

, (2.17)

which we can solve by a separation of variable akin to the one in Eq. (2.8),
that is

Seff = −Eeffteff + Jeffϕeff + SReff
(Reff , Eeff ,Jeff), (2.18)

where Eeff is the energy in the effective problem, comprehensive of its rest-
mass part, and Jeff its angular momentum. Inserting Eqs. (2.14) and (2.18)
in Eq. (2.17) yields

0 = − 1

A(Reff)

E2
eff

c2
+

1

B(Reff)

(
dSReff

dReff

)2

+
J 2

eff

R2
eff

+ µ2c2, (2.19)

from which

SReff
(Reff , Eeff ,Jeff) =

∫
dReff PReff

(Reff , Eeff ,Jeff), (2.20)

6We use here Schwarzschild-like coordinates, which avoid the appearance of an extra
radial potential multiplying the angular part of the metric.
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with

PReff
(Reff , Eeff ,Jeff) =

√
B(Reff)

A(Reff)

E2
eff

c2
−B(Reff)(µ2c2 +

J 2
eff

R2
eff

). (2.21)

We can now compute the effective radial action IReff
at 2PN order, by adopting

the same method used to get Eq. (2.11). The result, in terms of Enr
eff ≡ Eeff −

µc2, reads

IReff
(Enr

eff ,Jeff) = α

√
µ

−2Enr
eff

[
C1 + C2

Enr
eff

µc2
+ C3

(
Enr

eff

µc2

)2]
− Jeff

+
α2

Jeffc2

[
C4 + C5

Enr
eff

µc2

]
+

α4

J 3
effc

4
C6, (2.22)

where

C1 = −a1

2
, C2 = b1 −

7

8
a1, C3 =

b1
4
− 19

64
a1,

C4 =
a2

1

2
− a2

2
− a1b1

2
, C5 = a2

1 − a2 − a1b1 + b2,

C6 =
3

8
a4

1 −
3

4
a2

1a2 +
a2

2

8
+
a1a3

4
− a3

1b1
2

+
a1a2b1

2
+
a2

1b
2
1

8
+
a2

1b2
4
.

(2.23)

With the same perturbative inversion we used to get Enr
real from Eq. (2.11),

Eq. (2.22) gives the 2PN effective Delaunay Hamiltonian

Enr
eff(Neff ,Jeff) = −1

2

µα2

N 2
eff

[
1 +

α2

c2

(
2C4

NeffJeff
− C2

N 2
eff

)
+
α4

c4

(
2C6

NeffJ 3
eff

+
3C2

4

N 2
effJ 2

eff

− 4C2C4 + C5

N 3
effJeff

+
5C2

2 + 2C3

4N 4
eff

)]
, (2.24)

where Neff ≡ IReff
+ Jeff . Again, this is a coordinate-invariant object that

represents, in a semi-classical sense, the possible energy levels in the effective
dynamics, with quantum numbers Neff/~ and Jeff/~.

It is now time to establish the connection between Enr
real and Enr

eff and use
it to build the bridge between real and effective dynamics. In light of the
coordinate invariance of these objects and their semi-classical interpretation,
we start by imposing the natural identifications

N = Neff , J = Jeff . (2.25)

From here, the most straightforward path would be to directly identify the
two Delaunay Hamiltonians. Accordingly, this was the first tentative energy
map considered in Ref. [128]. There, however, it was proved that such an
identification is incompatible with two basic requirements: that the effective
test particle mass is simply µ and that the effective metric does not acquire
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any extra dependence on Enr
eff . The solution proposed therein is instead to

consider a generalized energy map of the type

Enr
eff

µc2
=
Enr

real

µc2

[
1 +

+∞∑
n=1

αn

(
Enr

real

µc2

)n]
, (2.26)

given in terms of another set of mass-dependent free parameters, αn.
Stopping Eq. (2.26) at the 2PN order and using in it Eqs. (2.12) and

(2.24), with the identification (2.25), returns an underdetermined system of
five equations in the seven parameters (a1, a2, a2; b1, b2;α1, α2). The standard
way to proceed, then, is to require a1 = −b2 = −2, i.e. that the effective
metric coincides with the Schwarzschild metric at linear order in G.7 The
other parameters are thus uniquely fixed by the energy map:

a2 = 0, a3 = 2ν, b2 = 2(2− 3ν), α1 =
ν

2
, α2 = 0. (2.27)

At the level of the metric functions (2.15)-(2.16), typically referred to as EOB
potentials, this means

A≤2PN(u) = 1− 2u+ 2νu3,

B≤2PN(u) = 1 + 2u+ 2(2− 3ν)u2,
(2.28)

where we introduced the PN-counting radial variable u ≡ GM/(Reffc
2). To

better understand the properties of the effective metric, it is often advanta-
geous to replace the potential B(u) with

D(u) ≡ A(u)B(u) = 1 +
+∞∑
n=1

dnu
n, (2.29)

D≤2PN(u) = 1− 6νu2, (2.30)

where, at 2PN, d1 = a1 + b1 = 0 and d2 = a2 + a1b1 + b2 = −6ν.
On the other hand, for the 2PN energy map one finds the simple result

Enr
eff

µc2
=
Enr

real

µc2

(
1 +

ν

2

Enr
real

µc2

)
, (2.31)

or equivalently, in terms of the total energies,

Eeff

µc2
=
E2

real −m2
1c

4 −m2
2c

4

2m1m2c4
. (2.32)

This is, remarkably, the simplest symmetric function of the Mandelstam in-
variant s ≡ E2

real. Inverting Eq. 2.32 in terms of Ereal and introducing the
Hamiltonians Hreal = Ereal and Heff = Eeff we find

Hreal(Qe,Pe) = Mc2

√
1 + 2ν

(
Heff(Qe,Pe)

µc2
− 1

)
, (2.33)

7To be precise, the condition a1 = −2 actually follows already from the Newtonian limit.



2.1. CONSERVATIVE DYNAMICS IN THE EOB APPROACH 55

where Qe and Pe are the effective analogue of the ADM center-of-mass canon-
ical coordinate Q and P; in polar coordinates we have

Qe = (Reff cosϕeff , Reff sinϕeff , 0),

Pe = (PReff
cosϕeff −

Pϕeff

Reff
sinϕeff , PReff

sinϕeff +
Pϕeff

Reff
cosϕeff , 0).

(2.34)

The effective Hamiltonian Heff , which encodes the dynamics of the test mass
µ in the effective metric, can be computed from (2.19) with

PReff
=

∂S

∂Reff
=
dSReff

dReff
, Pϕeff

=
∂S

∂ϕeff
= Jeff , (2.35)

and at 2PN it reads

Heff(Reff , PReff
, Pϕeff

) = µc2

√
A(u)

[
1 +

P 2
ϕeff

µ2c2R2
eff

+
A(u)

D(u)

(
P 2
Reff

µ2c2

)]
. (2.36)

Some comments are in order. For starters, we stress that the EOB Hamiltonian
(2.33), with Heff given by Eq. (2.36), describes the two-body conservative
motion in a form canonically equivalent to the 2PN ADM Hamiltonian (2.3).
It is however remarkably simpler, since the many terms in Eq. (2.3) have been
condensed in the Hamiltonian map (2.33) and in the two non-zero coefficients
a3 and d2 in the 2PN potentials A≤2PN(u) and D≤2PN(u). Moreover, it is
not given in the form of a PN expansion but rather incorporates the PN
information of the ADM Hamiltonian in resummed form. In fact, the PN-
expanded quantities from which Hreal depends, i.e. the EOB potentials, are
visibly nested in a double square root.

Let us now examine the distinctive features of the effective dynamics en-
coded in the Hamiltonian (2.36). A crucial aspect to notice is the closeness
between the effective metric determined by the EOB potentials A≤2PN(u) and
D≤2PN(u) and the Schwarzschild metric generated by a black hole with mass
M , for which we would have ASchw(u) = 1−2u and DSchw(u) = 1. At the 1PN
level, the two metrics do actually coincide, with the first differences appearing
at 2PN, where the effective metric turns out to be given by a very simple
smooth deformation of the Schwarzschild metric, with deformation parameter
ν, the symmetric mass ratio of the system. We recall in this respect that
ν ∈ [0, 1/4], where the maximum value ν = 1/4 corresponds to the equal-mass
case, m1 = m2, while the minimum ν = 0 is the test-mass limit, m1 � m2 (or
m2 � m1, although we will henceforth adopt the convention m1 ≤ m2).

The overall deviation of the 2PN effective metric from the Schwarzschild
one is in general quite small, even in the extreme scenario ν = 1/4 and
Reff = 2GM/c2 (or u = 1/2), that is at the Schwarzschild event horizon.
This implies that the effective dynamics is qualitatively equivalent to the mo-
tion of a particle around a Schwarzschild black hole, and thus presents the
same non-perturbative features, including in particular:
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(i) the existence of an innermost stable circular orbit (ISCO), below which
the particle plunges, defined by the effective radius RISCO(ν) such that

∂WJISCO

∂Reff
(RISCO) = 0 =

∂2WJISCO

∂R2
eff

(RISCO), (2.37)

namely the inflection point developed by the radial potential

WJeff
(Reff) ≡ Heff(Reff , PReff

= 0, Pϕeff
= Jeff) (2.38)

at the ISCO value JISCO(ν) of the angular momentum; see Fig. 1 of
Ref. [128] for an illustration of this fact;

(ii) the existence of a last unstable circular orbit, or light ring, defined as
the radius RLR(ν) at which the angular momentum J (Reff), obtained
from the circular-orbit condition ∂Reff

WJ (Reff) = 0, becomes singular,
i.e. J (RLR)−1 = 0;

(iii) the existence of a regular Killing horizon RH(ν), defined by the real
solution of A(RH) = 0.

These quantities have been evaluated at 2PN accuracy In Refs. [128, 129],
where they were shown to assume slightly lower values than in the Schwarzschild
case; e.g., for ν = 1/4, the values found are

R2PN
ISCO(1/4) = 0.953RSchw

ISCO, R2PN
LR (1/4) = 0.948RSchw

LR ,

R2PN
H (1/4) = 0.928RSchw

H ,
(2.39)

where we recall RSchw
ISCO = 6GM/c2, RSchw

LR = 3GM/c2, and RSchw
H = 2GM/c2.

Lastly, we deal with the link between the effective canonical coordinates
(Qe,Pe) and their ADM counterparts (Q,P). As originally proved in Ref. [128],
they are related by a canonical transformation; below we revisit its 2PN deriva-
tion, highlighting its importance in the development of the EOB approach.
Henceforth, both the effective and the ADM coordinates will be considered in
their rescaled form, as per Eqs. (2.2), with the same lowercase letter notation
to signal the rescaling.

The general procedure consists in looking for a generating functionG(q,pe)
such that

G(q,pe) = qipie + Ḡ(q,pe), Ḡ(q,pe) ≡
+∞∑
n=1

1

c2n
GnPN(q,pe), (2.40)

qie = qi +
∂Ḡ(q,pe)

∂pie
, pie = pi − ∂Ḡ(q,pe)

∂qi
. (2.41)
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For its determination at 2PN, we come back to Eq. (2.31) and insert therein
Enr

real/µ = Ĥnr(q,p), in the 2PN form of Eqs. (2.4)-(2.6), and Enr
eff/µ = Ĥeff(qe,pe)−

c2, where

Ĥeff(qe,pe) = c2

√
A(u)

[
1 +

p2
e

c2
+

(
A(u)

D(u)
− 1

)
(ne · pe)2

c2

]
(2.42)

is the µ-rescaled version of Eq. (2.36) written in rescaled effective Cartesian
coordinates, with qe ≡|qe|, ne ≡ qe/qe, and u = 1/(c2qe). In this Hamiltonian
we use the generating function relations (2.41) in iterated form, namely

qie = qi +
∂Ḡ(q,p)

∂pi
− ∂Ḡ(q,p)

∂qa
∂2∂Ḡ(q,p)

∂pa∂pi
+O(1/c6),

pie = pi − ∂Ḡ(q,p)

∂qi
+
∂Ḡ(q,p)

∂qa
∂2∂Ḡ(q,p)

∂pa∂qi
+O(1/c6),

(2.43)

considering that with each Ḡ comes at least a factor 1/c2. At this point,
both sides of our energy map are expressed in rescaled ADM coordinates.
Its Taylor expansion in 1/c yields a series of differential equations in the PN
coefficients of Ḡ; more specifically, from the leading order differential equation
we can compute G1PN(q,p) and, with its knowledge, we can use the next one
to determine G2PN(q,p). Moreover, the structure of these equations is such
that we can write in advance

G1PN(q,pe) = (q · pe)
[
c11p

2
e +

c12

q

]
, (2.44)

G2PN(q,pe) = (q · pe)
{
c21p

4
e +

1

q

[
c22p

2
e + c23(n · pe)2

]
+
c24

q2

}
, (2.45)

and recast them in algebraic relations to solve for the mass dependent coeffi-
cients cmn. The result is

c11 = −ν
2
, c12 = 1 +

ν

2
, (2.46)

for G1PN and

c21 =
ν

8
+

3ν2

8
, c22 =

2ν

8
− 5ν2

8
, c23 = ν +

3ν2

8
,

c24 =
1

4
− 7ν

4
+
ν2

4
,

(2.47)

for G2PN. Once inserted in Eq. (2.43), this generating function completely
determines the 2PN canonical transformation we are after; for the explicit
result see Eqs. (6.22) and (6.23) of Ref. [128].8 Remarkably, it is possible to

8Here the authors denote the rescaled EOB coordinates as q′ and p′.
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carry out the computation of the generating function (2.40) also before the
parameters describing the effective metric and the energy map (2.31) have
been determined. In this case the procedure detailed above fixes them to the
same values found by matching the two Delaunay Hamiltonians and therefore
it constitutes a full-fledged alternative implementation of the EOB method.
As we will see in the next sections, this method has been instrumental to
delineate the EOB Hamiltonian at higher PN orders.

2.1.2 EOB Hamiltonian at 3PN order

The 3PN extension of the reduced ADM Hamiltonian (2.3) has been com-
puted by Damour, Jaranowski & Schäfer in Ref. [72], with some associated
regularization ambiguities that have been finally fixed by the same authors
in Ref. [73], via dimensional regularization. The resulting 1/c6 coefficient of
Eq. (2.3) reads

Ĥnr
3PN(q,p) = −5− 35ν + 70ν2 − 35ν3

128
p8 − 1

16q

[
(7− 42ν + 53ν2

+ 5ν3)p6 − (2− 3ν)ν2(n · p)2p4 − 3(1− ν)ν2(n · p)4p2 + 5ν3(n · p)6
]

− 1

16q2

[
(27− 136ν − 109ν2)p2 − (17 + 30ν)ν(n · p)2p2

− 4

3
(5 + 43ν)ν(n · p)4

]
− 1

8q3

{[
25−

(
π2

8
− 335

6

)
ν + 23ν2

]
p2

+

(
85

2
+

3π2

8
+ 14ν

)
ν(n · p)2

}
+

1

8q4

[
1 +

(
218

3
− 21π2

4

)
ν

]
. (2.48)

The corresponding EOB Hamiltonian has been derived in Ref. [130] by means
of the generating function methods we explored at the end of the previous
section. There is however an important difference with respect to the 2PN
order. In general, the number of equations we have to solve to establish a
proper mapping between the real and the effective dynamics, at a given PN
order, is determined by the number of combinations of the scalars p2, (n ·
p)2, 1/q (and their powers) in the input ADM Hamiltonian at that PN order.
In the present 3PN case, the Hamiltonian (2.48) has eleven combinations of
this kind and thus a direct 3PN generalization of what we did at 2PN would
yield eleven new equations to satisfy. However the additional free parameters
we have at 3PN are:

(i) a4 and d3, in the 3PN order expansions of the potentials (2.15) and
(2.29), receptively;

(ii) α3, in the 3PN energy map (2.26);

(iii) the seven parameters (c31, ..., c37) in the 3PN termG3PN(q,pe) of Eq. (2.40),
whose structure can be fixed in advance, just like at the previous orders,
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to

G3PN(q,pe) = (q · pe)
{
c31p

6
e +

1

q

[
c32p

4
e + c33p

2
e(n · pe)2

+ c34(n · pe)4
]

+
1

q2

[
c35p

2
e + c36(n · pe)2

]
+
c37

q3

}
. (2.49)

Consequently, we would have a system of eleven equations but just ten free
parameters to solve them, clear indication of the fact that we are constraining
too much the effective dynamics.

One possible solution would be to relax the 1PN constraint b1 = 2, or
d1 = 0, as explored in Appendix A of Ref. [130], but it would result in an
unpleasant mixing of perturbative orders (the 1PN parameter d1 would have
to be determined together with the 3PN parameters) with no follow-up gen-
eralization to higher PN orders. The main proposal of Ref. [130] is, instead,
to stop assuming that the motion of the µ-particle in the effective metric is
geodesic. In this case, in fact, the Hamilton-Jacobi equation (2.17) we use to
derive the effective Hamiltonian becomes

0 = µ2c2 + gµνeff (xλeff)peff
µ p

eff
ν +Qµνρσ4 (xλeff)peff

µ p
eff
ν p

eff
ρ p

eff
σ +O(p6), (2.50)

with additional higher order terms at least quartic in the momenta. The lead-
ing quartic deviation from the geodesic case, the only one we can have at the
3PN level, is generally described by a tensor Qµνρσ4 (xλeff) which remains essen-
tially undetermined. Nevertheless, considering that 0 = µ2c2 +gµνeff (xλeff)peff

µ p
eff
ν

holds in first approximation, we can restrict all the non-geodesic terms in
Eq. (2.50) to be purely spatial, relevantly with no peff

0 = Eeff . Therefore, we
can rewrite the Hamilton-Jacobi equation as9

0 = µ2c2 + gµνeff (xλeff)peff
µ p

eff
ν + µ2Q(qe,pe), (2.51)

where Q(qe,pe) is a function of the rescaled effective coordinates, with the
dimensions of a velocity squared, which formally collects all the possible non-
geodesic deviations. Indeed the presence of the latter yields a modification in
the effective Hamiltonian, which, now compute from Eq. (2.51), becomes

Ĥeff(qe,pe) = c2

√
A(u)

[
1 +

p2
e

c2
+

(
A(u)

D(u)
− 1

)
(ne · pe)2

c2
+
Q(qe,pe)

c2

]
.

(2.52)

9To avoid confusion we specify that the four-vectors xµeff and peff
µ are never to be intended

in rescaled form. Explicitly this means xµeff = (c Teff ,Qe), p
eff
µ = (Eeff/c,Pe).
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Here, the non-geodesic corrections Q(qe,pe) are given, in their leading 3PN
component, by

Q3PN(qe,pe) =
u2

c2

[
z1p

4
e + z2p

2
e(ne · pe)2 + z3(ne · pe)4

]
, (2.53)

which is the most general scalar involving quartic combinations of the mo-
mentum pe, equipped with a factor u2/c2 for dimensional reasons. The three
parameters zn appearing in Eq. (2.53) are free dimensionless function of the
binary masses, and indeed take part, through Eq. (2.52), in the matching with
the ADM Hamiltonian: now this involves eleven equations and thirteen free
parameters. To uniquely solve this system we have to make two additional as-
sumptions. Following Ref. [130], we require z1 = z2 = 0, so that the two-body
circular motion can still be mapped to a geodesic effective dynamics, since the
residual term in Q3PN is then proportional to (ne · pe) = peff

r , which vanishes
when the motion is circular. The unique solution that follows is characterized
by the parameters10

a4 =

(
93

3
− 41π2

32

)
ν, d3 = 2(3ν − 26)ν, α3 = 0,

z3 = 2(4− 3ν)ν,

(2.54)

where we notice in particular that the energy map does not receive any
modification at 3PN, a result that follows regardless of the choices made in
Q3PN(qe,pe), whose final form is

Q3PN(qe,pe) =
u2

c2

[
2(4− 3ν)ν(ne · pe)4

]
. (2.55)

Before we explore how to push the EOB description at higher PN orders, let
us address a considerable issue in the 3PN EOB description we just outlined.
The 3PN result for the potential A(u) is

A≤3PN(u) = 1− 2u+ 2νu3 +

(
93

3
− 41π2

32

)
νu4, (2.56)

where in the 3PN coefficient we find the rather large number(
93

3
− 41π2

32

)
' 18.6879. (2.57)

This implies that, for comparable-mass binaries where ν ' 1/4, as Reff get
smaller and u grows, A≤3PN(u) stray away from the exact function A(u) of
which it is a truncated PN series. Such a problem is also confirmed by the fact

10The values of the parameters (c31, ..., c37) can be found in Eqs. (4.32) and (4.35) of
Ref. [130]. Mind moreover that we have set the regularization ambiguity parameter ωstatic to
zero, in compliance with what was later found in Ref. [73], using dimensional regularization.
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that A≤3PN(u) no longer has a simple zero when ν is too large, as depicted in
Fig. 2.1 for ν = 1/4. We lose therefore the possibility of defining an effective
horizon and with it the expected continuity between the effective and the
Schwarzschild motion: the resummation inherent to the EOB approach is not
enough to cure the bad convergence properties of the PN series. The solution
originally proposed in Ref. [73] is then to further resum the potential A≤3PN(u)
in Eq. (2.56) by replacing it with the Padé approximant

P 1
3 [A≤3PN](u) =

8− 2ν − (16− 8ν − a4)u

8− 2ν + (4ν + a4)u+ 2 (4ν + a4)u2 + 4
(
ν2 + a4

)
u3

(2.58)
a rational function that gives back A≤3PN(u) when PN-expanded up to or-
der u4; more details on Padé approximants can be found in Appendix A.2.
As shown in Fig. 2.1, this resummation heavily modifies the behavior in u
of the potential A≤3PN(u), recovering the monotonically decreasing trend of
A≤2PN(u) and the existence of a simple zero, which defines the effective hori-
zon.

A similar fate awaits the potential D(u), with

D≤3PN(u) = 1− 6νu2 + 2(3ν − 26)νu3 (2.59)

that needs to be resummed to prevent it from going towards large and negative
values, as u grows. In this case, the Padé of reference is [165]

P 0
3 [D≤3PN](u) =

1

1 + 6νu2 − 2(3ν − 26)νu3
, (2.60)

whose effect is illustrated in Fig. 2.2.

2.1.3 EOB Hamiltonian at the 4PN order

Starting from the 4PN order, working out the two-body dynamics becomes
significantly more challenging than at the previous orders. The main reason is
that, as we already commented in Sec. 1.3.3 of Chapter 1, it becomes necessary
to supplement the PN description of the near-zone metric with the correla-
tions over arbitrarily large time differences induced by the tail-transported
part of the radiation-reaction [96]. As a consequence, every 4PN dynamical
description develops contributions that are non-local in time. The first com-
plete derivation of the 4PN dynamics came only in 2014, when Damour, Jara-
nowski & Schäfer derived the full 4PN Hamiltonian in ADM coordinates [75].
Under the usual µ-rescaling and non-relativistic reduction, the corresponding
4PN coefficient of Eq. (2.3) reads

Ĥnr
4PN(q,p) = Ĥ loc,c

4PN (q,p) + Ĥ loc,log
4PN (q,p) + Ĥnl

4PN(q,p). (2.61)

where:
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Figure 2.1: Plot for the three approximations we considered so far for the
EOB potential A(u), at ν = 1/4, adapted from Fig. 2 of Ref. [165]. The
vertical dashed lines mark the positions of the Schwarzschild ISCO and light
ring. The behavior of A≤3PN(u) is dramatically different than A≤2PN(u), in
particular it has no zero as u grows. The approximant P 1

3 [A≤3PN](u), instead,
decreases monotonically and reaches a simple zero, ensuring the continuity
with the Schwarzschild case in the limit ν → 0.

• Ĥ loc,c
4PN (q,p) is a local in time component whose profile is in continuity

with the previous PN orders. See Eq. (5.13) of Ref. [75] for its (quite
long) explicit expression.11

• Ĥ loc,log
4PN (q,p) is another local in time term characterized by a log q factor.

In particular it is given by

Ĥ loc,log
4PN (q,p) =

2

5
G2M log

q

s

[
(IN )

(3,red)
ij (q,p)

]2
, (2.62)

where s is a scale with the same dimensions of q (1/velocity2) that has to
be introduced in the regularization of logarithmic infra-red divergences,

while (IN )
(3,red)
ij is the order-reduced third time derivative of the New-

tonian mass quadrupole of the binary system, originally in the form
given in Eq. (1.54). The result of this order-reduction procedure, which

11Here, the variables r and r correspond to q and q in our notation.
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Figure 2.2: Analogue of Fig. 2.2 for the EOB potential D(u), again with
ν = 1/4. The approximant P 0

3 [A≤3PN(u)] cures the tendency of D≤3PN of
going towards large negative values as u grows, renaming always positive.

amounts to the replacement of each time derivative with the correspond-
ing equation of motion, in this case truncated at Newtonian accuracy,
reads

(IN )
(3,red)
ij (q,p) = −2

µ(GM)2

q3

[
4q〈ipj〉 −

3

q
(n · p)q〈iqj〉

]
. (2.63)

• Ĥnl
4PN(q,p) is the non-local in time part of the 4PN Hamiltonian and

consists in a time-integral functional of the variables q and p. Explicitly
we have

Ĥnl
4PN(q,p) = − G2

5νc8
PfTs

∫ +∞

−∞

dτ̂

|τ̂ |
(IN )

(3,red)
ij (t)(IN )

(3,red)
ij (t̂+ τ̂), (2.64)

where the integral is regularized by taking its Hadamard partie finie [61]
with time scale Ts ≡ 2GMs/c.

In view of the objective of translating this PN information in the EOB
formalism, we have first of all to understand how to properly deal with the
non-localities in time. Ref. [170] has purposely introduced a method to re-
cast the non-local Hamiltonian (2.64) in an ordinary local expression. The
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basic idea is to take advantage of the fact that Ĥnl
4PN(q,p) is by itself a 4PN

correction, so that, if we work at 4PN accuracy, we can rewrite it according
to the Keplerian parametrization of the Newtonian orbital motion [179]. In
particular, it is convenient to find the associated Delaunay expression in the
action-angle variables (L, `;G, g), where L and G are defined in terms of the
semimajor axis a (GM -rescaled) and the eccentricity e of the orbit by

L ≡
√
a, G ≡

√
a(1− e2), (2.65)

while their conjugate angle variable are the mean anomaly ` and the argument
of periastron g. The Newtonian motion is then described by

qx(L, `;G, g) = qx0 cos g − qy0 sin g,

qy(L, `;G, g) = qx0 sin g − qy0 cos g,
(2.66)

with

qx0 ≡ L2 cosue − L
√
L2 − G2, qy0 ≡ G2 sinue. (2.67)

The eccentric anomaly ua is related to ` and e =
√

1− G2/L2 by Kepler’s
equation,

ua − e sinua = `, (2.68)

which admits the Bessel-Fourier expanded solution

ua = `+

+∞∑
n=1

2

n
Jn(ne) sin(n`), (2.69)

in terms of the Bessel function of the first kind, Jn. This is in essence an
expansion in e, where, for instance, up to order e4 we have

ua = `+

(
e− e

3

8

)
sin `+

e2

2
sin(2`) +

3e3

8
sin(3`) +

e4

3
sin(4`) +O(e5). (2.70)

Using this parametrization, the non-local Hamiltonian (2.64) becomes a
functional of the type Ĥnl

4PN(L,G, `), with no g dependence because of the
rotational invariance of (IN )ij , and an underlying expansion in powers of e,
considered as a function of L and G. Of course, it still involves the regularized
integral in τ̂ of the original expression (2.64). The crucial point proved in
Ref. [170] is that this e-expanded Hamiltonian is canonically equivalent to
(and thus can be replaced with) its `-averaged value

ˆ̄Hnl
4PN(L,G) ≡ 1

2π

∫ 2π

0
d` Ĥnl

4PN(L,G, `), (2.71)

which indeed is still organized in a power series in e. Since L and G are con-
served quantities of the Newtonian motion, and so is e, the integral functional
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ˆ̄Hnl
4PN results in a series of simple integrals in τ̂ over the coefficients of the un-

derlying expansion in e. All these integrals can be readily evaluated, yielding
a local, ordinary Delaunay Hamiltonian, expanded in even powers of e. For
instance, up to order e4, one finds [170]12

ˆ̄Hnl
4PN(L,G) =

ν

L10c8

{
64

5

[
2 log 2 + log

(
eγEs

cL3

)]
+

1

5

[
296

3
log 2

+ 729 log 3 +
1256

3
log

(
eγEs

cL3

)]
e2 +

[
29966

15
log 2

− 13851

20
log 3 + 242 log

(
eγEs

cL3

)]
e4

}
+O(e5), (2.72)

where the scale s enters through the partie finie operation regularizing the
integrals in τ̂ and the Euler–Mascheroni constant γE appears in their evalu-
ation. We will refer to the series of operation detailed above, which reduces
the non-local Hamiltonian (2.64) to the equivalent local expression (2.72), as
Delaunay time averaging.

Let us now come to the corresponding 4PN generalization of the effec-
tive Hamiltonian. Even though we can still refer to the generic expression
(2.52), we have to modify the structure of the building blocks A(u), D(u),
and Q(qe,pe), so to take into account the presence of logarithms and time
non-localities in the ADM Hamiltonian. It turns out that it is enough to
consider the local versus non-local split

A(u) = Aloc(u) +Anl(u), D(u) = Dloc(u) +Dnl(u),

Q(qe,pe) = Qloc(qe,pe) +Qnl(qe,pe),
(2.73)

where the 4PN-accurate local components are parameterized by

Aloc
≤4PN(u) = A≤3PN(u) +

(
aloc

5,c + aloc
5,log log u

)
u5, (2.74)

Dloc
≤4PN(u) = D≤3PN(u) +

(
dloc

4,c + dloc
4,log log u

)
u4, (2.75)

Qloc
≤4PN(qe,pe) = Q3PN(qe,pe) +

1

c2

[(
zloc

34,c + zloc
34,log log u

)
u3(ne · pe)4

+
1

c2

(
zloc

26,c + zloc
26,log log u

)
u2(ne · pe)6

]
, (2.76)

and similarly, on the non-local side,

Anl
4PN(u) =

(
anl

5,c + anl
5,log log u

)
u5, (2.77)

Dnl
4PN(u) =

(
dnl

4,c + dnl
4,log log u

)
u4, (2.78)

Qnl
4PN(qe,pe) =

1

c2

[(
znl

34,c + znl
34,log log u

)
u3(ne · pe)4

12To avoid confusion, in this equation Euler’s number is denoted with the symbol e rather
than e as in the rest of the text, which instead has here the meaning of eccentricity.



66
CHAPTER 2. THE EFFECTIVE ONE-BODY APPROACH TO

COALESCING COMPACT BINARIES

+
1

c2

(
znl

26,c + znl
26,log log u

)
u2(ne · pe)6

]
(2.79)

Correspondingly, the PN expansion of the effective Hamiltonian can be itself
split in two parts: (i) a local piece Ĥ loc

eff , which only depends on the local
components of A, D, and Q; (ii) a non-local 4PN piece, simply given by

Ĥnl
eff =

1

2

[
Anl

4PN(u)− (ne · pe)2Dnl
4PN(u) +Qnl

4PN(qe,pe)
]

(2.80)

Notice that we had to revise the profile of the PN series (2.15) and (2.29),
by incorporating in their 4PN parameters ,a5 and d5, the local/non-local split
and a dependence on log u . For example, the a5 appearing in (2.15) is now

a5 = aloc
5,c + anl

5,c +
(
aloc

5,log + anl
5,log

)
log u. (2.81)

As for Q(qe,pe), generalizing the choice made for its leading term, it is writ-
ten as a power series in the radial momentum (ne · pe), including all the
dimensionally admitted combinations at least quartic in it.

Lastly, we point out that all the non-local components introduced above
are, despite their name, actually local in time. Although the nomenclature
may sound strange, the point is that we can match the effective Hamiltonian
component Ĥnl

eff , after this is rewritten in the action-angle variables (L, `,G),
`-averaged as in Eq. (2.71) and finally expanded in powers of e, with the
Delaunay time averaged Hamiltonian (2.72). This uniquely fixes the value
of the 4PN “nl” coefficients. On parallel, all the 4PN local coefficient can
be separately obtained by matching Ĥ loc

eff (qe,pe) with the local part of the

ADM Hamiltonian, given at 4PN by the sum Ĥ loc,c
4PN (q,p) + Ĥ loc,log

4PN (q,p), see
Eq. (2.61). This can be done, again, by means of the generating function
method, with the energy map (2.26) stopped at the α4 term and the 4PN
component of the generating function expressed in the parametric form13

G4PN(q,pe) = (q · pe)
{
cc4,1p

8
e +

1

q

[
cc4,2p

6
e + cc4,3p

4
e(n · pe)2 + ...

]
+ ...+

cc4,11

q4

}
+ (q · pe) log

(
q

c2

){
clog

4,1p
8
e +

1

q

[
clog

4,2p
6
e + clog

4,3p
4
e(n · pe)2 + ...

]
+ ...+

clog
4,11

q4

}
, (2.82)

where we also need a logarithm-dependent part. The result is again unique
and remarkably one finds α4 = 0, meaning that the simple energy map (2.31)
is still unmodified at this order.

13We do not show explicitly every term of G4PN, with the understanding that one has to
include inside the braces all the dimensionally allowed combinations of (1/q, p2

e, (n · pe)2)
and their powers have to be included, each with an associated coefficient c4,n.
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The final 4PN result for the EOB functions, found by assembling the local
and non-local part of their separately determined coefficients, reads

A4PN(u) =

[(
2275π2

512
− 4237

60
+

128

5
γE +

256

5
log 2

)
ν

+

(
41π2

32
− 221

6

)
ν2 +

64

5
ν log u

]
u5, (2.83)

D4PN(u) =

[(
23761π2

1536
+

533

45
− 1184

15
γE +

6496

15
log 2− 2916

5
log 3

)
ν

−
(

123π2

16
− 260

)
ν2 − 592

15
ν log u

]
u4, (2.84)

Q4PN(qe,pe) =
1

c2

{[
−
(

5308

15
− 496256

45
log 2− 33048

5
log 3

)
ν

− 83ν2 + 10ν3

]
u3(ne · pe)4 − 1

c2

[(
827

3
+

2358912

25
log 2

− 1399437

50
log 3− 390625

18
log 5

)
ν

+
27

5
ν2 − 6ν3

]
u2(ne · pe)6

}
,

(2.85)

We see that the regularization scale s has disappeared from the final results,
even tough, as shown in Ref. [170], it is present in the individual local and
non-local pieces of a5 and d4: this amounts to a non-trivial consistency check.
Moreover, we notice that the function Q4PN(qe,pe) does not develop any log u
dependence, which a priori could not be excluded.

2.1.4 EOB conservative dynamics beyond the 4PN order

The PN knowledge of the two-body conservative dynamics does not go beyond
the 4PN order, with only partial results obtained at the 5PN level [85,180]. In
this case, the EOB formalism has been used in a series of works [171–174] as a
receptacle for collecting and organizing complementary dynamical information
derived within different perturbative schemes beside the PN one: MPM results
for the non local contributions, O(ν) information from gravitational self-force,
and post-Minkowskian (PM) results for the scattering angle. Without entering
too much into the quite intricate details of this machinery, we present here
below the main steps of its implementation, which has ultimately pushed the
EOB dynamical description up to the 6PN order, modulo some undetermined
coefficients in the effective Hamiltonian. [[more refs below?]]

(i) Using the results for the hereditary pieces of the radiation-reaction, com-
ing from the PN-matched MPM formalism of Sec. 1.3, the non-local
Hamiltonian is completely determined up to the 6PN order.
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(ii) With a 2PN generalization of the Delaunay averaging procedure, out-
lined at Newtonian accuracy in the previous section, the information
encoded in the 6PN non-local Hamiltonian is translated into the knowl-
edge of the 6PN non-local component of the effective Hamiltonian. The
latter is singled out from the total effective Hamiltonian through the
same local/non-local split used at the 4PN level.

(iii) In the context of gravitational self force, it is possible to compute the
O(ν) correction to the orbital averaged redshift invariant 〈z1〉 [181], re-
definition of the one introduce bu Barack & Sago in Ref. [182]. Once
such a correction, denoted as 〈δz1〉, is expanded in powers of the ec-
centricity, it turn out to contain all the information needed to fix the
total (local+non-local) O(ν) component of, in principle, each coefficient
in the PN series of the EOB potentials, Q included.

(iv) Subtracting the result of point (i) from the one of point (iii), the local
O(ν) component of the EOB potential coefficients is determined. Be-
yond the 4PN order, the local components more than linear in ν remain
still unknown at this point.

(v) In Ref. [183] it has been found that the coefficients in the PM expan-
sion of the scattering angle χ(Eeff , jeff) in the effective dynamics have a
specific dependence on ν; see e.g. Sec. IX of Ref. [172]. By exploiting
the latter it is then possible to compute the vast majority of the missing
O(ν2) component of the coefficients in the EOB potentials.

At 5PN accuracy, the resulting values for the EOB potential parameters
are separately listed in their non-local and local parts respectively in Table IV
and Table VII of Ref. [172]. For instance, at the level of the A(u) potential,
with local and non-local parts combined, we have

A5PN(u) =
(
a6,c + a6,log log u

)
u6, (2.86)

with

a6,c = ν

[
− 1066621

1575
+

246367π2

3072
− 14008

105
γE −

31736

105
ln 2 +

243

7
ln 3

+

(
64

5
− 288

5
γE +

928

35
ln 2− 972

7
ln 3 + aν

2

6,c

)
ν + 4ν2

]
, (2.87)

a6,log = −7004

105
ν − 144

5
ν2. (2.88)

Here aν
2

6,c is a missing numerical parameter in the O(ν2) component of a6,c,
specifically coming from its local part. This and another similar parame-
ter dν

2

5,c in the local part of D5PN(u) are the only two 5PN components of
the EOB Hamiltonian that are left undetermined by the procedure sketched
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above. Correspondingly, at the 6PN order, we just have four missing numer-
ical parameters: aν

2

7,c and aν
3

7,c in A6PN (u), dν
2

6,c in D6PN (u), and zν
2

54 in the

local part of Q6PN(qe,pe) proportional to u5(ne · pe)4. All the other 6PN
parameters are uniquely determined and can be found in Tables VI and X of
Ref. [173].

If this represents the state-of-the-art knowledge of the EOB conservative
dynamics (and of the two body motion in general), only part of this informa-
tion is effectively implemented in EOB waveform models. Examining the case
of TEOBResumS, and more in particular of its nonspinning sector, the EOB
effective Hamiltonian it employs sees the EOB potentials D(u) and Q(qe,pe)
stopped at the 3PN order, with Q(qe,pe) containing only its leading contri-
bution (2.55), and D(u) included in the resummed Padé form (2.60). As for
the potential A(u), the model incorporates it at 5PN accuracy, specifically
through the Padé approximant P 1

5 [A≤5PN](u),14 in analogy with the 3PN ap-
proximant (2.58) discussed in Sec. 2.1.2. However, the 5PN contribution (2.86)
is included considering the parameter a6,c therein as a free tunable parameter,
which is then fixed by minimizing the dephasing at merger between the wave-
form model and numerical relativity simulations [184]. The reason for this
is in part chronological, since the logarithmic contribution a6,log was made
available already in Ref. [170], in Sec. IXA, while the analytical result a6,c

only came in Ref. [172]. On the other hand, the recent work [185] assessed
the impact of including in TEOBResumS the extra analytical information of
Eq. (2.87), along with higher order terms in the other EOB potentials, and
showed that the numerically fitted expression for a6,c has better performances
than its analytical counterpart.

2.2 Radiation reaction and inspiral-plunge
waveform in the EOB approach

In the previous section we have been concerned with the EOB prescription for
the conservative dynamics of non-spinning compact binaries. Summing up,
we saw that this part of the dynamics can be fully encoded in a µ-rescaled
EOB Hamiltonian given by

ĤEOB =
c2

ν

√
1 + 2ν

(
Ĥeff

c2
− 1

)
, (2.89)

Ĥeff = c2

√
p2
r∗ +A(u)

[
1 + p2

ϕu
2 +

Q(u, pr∗)

c2

]
, (2.90)

which we have conveniently rewritten here in rescaled phase-space variables,
associated to the polar coordinates in the plane θeff = π/2. In particular

14When computing log-dependent Padé approximant like this one, the log u are treated
as numerical constants.
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we consider r ≡ Reff/GM = c2/u, ϕ ≡ ϕeff , pr ≡ PReff
/µ., and pϕ ≡

Pϕeff
/(µGM). Moreover, the radial momentum pr has been replaced with

pr∗ = A/D1/2 pr, the momentum conjugate to the tortoise radial coordinate
r∗ ≡

∫
dr (D1/2/A), as it is often done in analytical and numerical work to

bypass the diverging behavior of pr(r) for r → 0.

Adopting this notation, we now want to discuss how to complete the EOB
dynamics with dissipative effects, as they are induced by the emission of grav-
itational radiation at infinity during the pre-merger part of the CBC evolu-
tion. To do so, we will see that we also need to specify the contextual EOB
waveform model for the inspiral and plunge phases. More precisely, in this
section we will address such topics in the specific context of circularized bi-
naries, whose inspiral and, for the most part, plunge are modeled after a
sequence of circular orbits, shrinking adiabatically up to the last part of the
plunge. This quasi-circular assumption is motivated by the long-known fact
that inspiralling binaries are very efficient in circulating through the emission
of GWs [186], so much that, when isolated, they are expected to have be-
come practically circular, irrespective of their initial eccentricity, by the time
their orbital frequency has increased enough to allow the detection of the as-
sociated GW signal. In Chapter 3 we will have the chance to comment on
the limits of this assumption and explore the strategies that can be used to
extend TEOBResumS beyond its borders, finally coming to the main original
contribution of this Thesis.

Considering the Hamiltonian nature of the EOB approach, the EOB dy-
namics is indeed determined by solving Hamilton’s equations, relative to
ĤEOB, for the variables (r, ϕ, pr∗ , pϕ) we selected to describe the motion. The
basic strategy to include dissipative effects in the dynamics is then to equip
such Hamilton’s equations with a radiation-reaction force F of components
(Fr and Fϕ, specifically added in the evolution equations of the momenta pr∗
and pϕ, respectively. More explicitly, the general EOB equations of motion
are

dr

dt
=

A√
D

∂ĤEOB

∂r∗
, (2.91)

dϕ

dt
=
∂ĤEOB

∂ϕ
≡ Ω, (2.92)

dpr∗
dt

=
A√
D

(
F̂r −

∂ĤEOB

∂r

)
, (2.93)

dpϕ
dt

= F̂ϕ, (2.94)

where F̂ϕ,r ≡ Fϕ,r/ν and t ≡ Teff/(GM). In the quasi-circular case, we actu-
ally need to include just F̂ϕ, with F̂r either set to 0, as in TEOBResumS-GIOTTO

[187, 188], the native quasi-circular branch of TEOBResumS, or expressed in



2.2. RADIATION REACTION AND INSPIRAL-PLUNGE WAVEFORM
IN THE EOB APPROACH 71

terms of F̂ϕ as in the quasi-circular model SEOBNRv4HM [138,189].15

The computation of PN-expanded results for the radiation-reaction force
F has been the subject of several works using different approaches, see Ref. [190]
and references therein. Since the initial development of the EOB formalism,
it was understood that these results could not be included in the equations
of motion in their original Taylor-series form, but they needed some suitable
resummation. Ref. [110] in particular, shortly before the birth of the EOB ap-
proach, proposed a resummation technique based on a parameter-dependent
Padé approximant, devised around the test-mass limit case ν → 0, which was
then extensively used to model the radiation-reaction force in early-stage EOB
models [?]. Nevertheless, the technique currently adopted in modern EOB
models, TEOBResumS included, builds upon a different, parameter-free resum-
mation procedure, proposed in Refs. [191, 192] and refined in Ref. [193]. In
this case, the radiation-reaction force F̂ϕ is modeled after a resummed (quasi-
circular) prescription for the spherical modes h`m of the inspiral-plunge (here-
after insplunge) waveform, laid down in those same works. Let us first specify
the link between the radiation-reaction force and the spherical modes of the
waveform, which we recall have been defined in Eq. (1.174). The radiation-
reaction force components (Fr,Fϕ) are related, via Eqs. (2.91)-(2.94), to the
system loss of energy (ĖS) and angular momentum (J̇S),

ĖS ≡
dĤEOB

dt
= ṙF̂r + ΩF̂ϕ, (2.95)

J̇S ≡
dpϕ
dt

= F̂ϕ, (2.96)

here in rescaled form. These, in turn, are connected to the energy and angular
momentum fluxes at infinity, Ė and J̇ , by two balance equations, which reads
[190]

ṙF̂r + ΩF̂ϕ + ĖSchott + Ė = 0, (2.97)

F̂ϕ + J̇ = 0, (2.98)

where ĖSchott is the Schott contribution to the energy loss of the system ĖS,
which cannot be directly identified with Ė due to the interactions with the
local field. In general there is an additional Schott contribution J̇Schott also
in Eq. (2.98), but in Sec. II of Ref. [190] it has been shown that such a term
can be always set to zero. Focusing on the quasi-circular case, thanks the
expression (1.179) of J̇ in terms of the spherical modes h`m , we can write the

15In particular this model prescribes

F̂r =
pr
pϕ
F̂ϕ.
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ϕ-component of the radiation-reaction force as

F̂ϕ = −J̇ =
1

16π

`max∑
`=2

∑̀
m=−`

m=
(
ḣ`mh

∗
`m

)
, (2.99)

with `max determined by the desired PN accuracy, considering Eqs. (1.176)-
(1.177).

Let us now clarify the resummation prescription used in TEOBResumS-GIOTTO

for the multipolar insplunge waveform. Under the quasi-circular approxima-
tion, the PN Taylor-expanded results for the modes h`m, which stems from
the PN-matched MPM formalism we explored in the previous Chapter, can
be written in the form of polynomials (modulo some logarithms) of the PN-
counting frequency parameter x ≡ (Ω/c3)2/3 [164].16 This is the only dynam-
ical variable required, besides ϕ, to model the waveform in the quasi-circular
case,17 where it has the advantage of being gauge invariant (just like ϕ), so
that there is no need to worry about the difference between harmonic and
EOB coordinates. As we go toward the merger and x increases in magnitude,
however, the modes h`m in their original polynomial form exhibit an unsatis-
factory converging behavior. Therefore, instead of incorporating these results
as they are, modern EOB models use them as input in the construction of
corresponding resummed avatars, one for each spherical mode, given by the
product of several factors:

h`m = h
(N,ε)
`m ĥ

(ε)
`m ≡ h

(N,ε)
`m Ŝ

(ε)
eff T`me

iδ`mf`mĥ
NQC
`m . (2.100)

We outline below the definition and the rationale behind each one of these
factors.

• The Newtonian factor h
(N,ε)
`m represents the leading order term in the

PN expansion (in x) of h`m. By factoring out this term, one can define

a residual PN factor ĥ
(ε)
`m that is stripped of the overall constants and

ϕ-dependence of h`m, thus resulting in a simple polynomial in x (modulo

16Our definition of x has a missing GM factor with respect to the one of Ref. [164], since
we are using t = T/(GM) and thus Ωt = GMΩT .

17More specifically, with respect of our canonical variables, in the quasi-circular limit we
have pr∗ = 0, pϕ = pϕ(u), obtained by solving for pϕ

0 = ṗr∗ =
∂ĤEOB

∂r

(
pr∗ = 0, pϕ, u

)
,

and u = u(x), obtained by inverting perturbatively

x =
1

c2
ϕ̇2/3 =

1

c2

[
∂ĤEOB

∂pϕ

(
pr∗ = 0, pϕ(u), u

)]2/3

,

which indeed also implies pϕ = pϕ(x).



2.2. RADIATION REACTION AND INSPIRAL-PLUNGE WAVEFORM
IN THE EOB APPROACH 73

log x terms) of the type 1 + PN(x). The explicit form of h
(N,ε)
`m reads

h
(N,ε)
`m =

GMν

DL
n

(ε)
`mc`+ε(ν)x(`+ε)/2Y`−ε,−m

(
π

2
, ϕ

)
, (2.101)

where DL is the luminosity distance (physical value of the radial sepa-
ration R between source and observer), ε is either 0, when `+m is even,
or 1, when `+m is odd, while

n
(0)
`m ≡ (im)`

8π

(2`+ 1)!!

√
(`+ 1)(`+ 2)

`(`− 1)
,

n
(1)
`m ≡ −i(im)`

16π

(2`+ 1)!!

√
(2`+ 1)(`+ 2)(`2 −m2)

(2`− 1)(`+ 1)`(`− 1)
,

(2.102)

c`+ε(ν) ≡ 21−`−ε
[(√

1− 4ν + 1
)`+ε−1 −

(√
1− 4ν − 1

)`+ε−1
]
. (2.103)

• Ŝ
(ε)
eff is the so-called effective source and is given by

Ŝ
(0)
eff ≡ Ĥeff ,

Ŝ
(1)
eff ≡

pϕu

Ω
,

(2.104)

which can be expressed in x as explained above, in footnote 17. These
quantities are the EOB generalization for arbitrary ν of factors appear-
ing in the source of the Regge-Wheeler-Zerilli equations [111,112], which
determine the spherical modes h`m in the test-mass limit ν → 0. By fac-
toring out each of the two, we are actually removing a square root singu-
larity ∝ 1/

√
1− 3x in the test-mass limit, x = 1/3 being Schwarzschild’s

light-ring, that otherwise would cause the numerical coefficient of xn in

ĥ
(ε)
`m to grow as 3n for large n.18

• T`m is a factor that resums an infinite series of tail-rooted logarith-
mic terms that enters the MPM expression of (UL, VL) in terms of the
canonical moments (ML, SL), and thus the spherical modes h`m via
Eqs. (1.167)-(1.168). Such terms are in particular those proportional
to

(GM)n
∫ +∞

0
dτ C

(`+1+n)
L (TR − τ) logn

(
cτ

2r0

)
, (2.105)

18More in general, if f(x) =
∑
n cnx

n has a radius of convergence xs, corresponding to
the closest singularity to x = 0 of f(x), then

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ =
1

xs
.



74
CHAPTER 2. THE EFFECTIVE ONE-BODY APPROACH TO

COALESCING COMPACT BINARIES

with CL equal to either ML or SL; in Eq. (1.164), for instance, one
can easily find the pertaining terms for n = 1, 2 in the case of the
mass quadrupole Uij , which enters the dominant mode h22. The explicit
definition of T`m is

T`m ≡
Γ
(
`+ 1− 2i

ˆ̂
k
)

Γ
(
`+ 1

) eπ
ˆ̂
k e2i

ˆ̂
k log (2kr0), (2.106)

where
ˆ̂
k ≡ GHEOBmΩ, k ≡ mΩ, and r0, the length scale introduced in

the Blanchet-Damour waveform generation formalism, is fixed here to
r0 = 2GM/

√
e, so to match test-mass limit results. Again, the original

proposal of the factor (2.106), made in Ref. [192], is the outcome of
the EOB generalization of a related test-mass waveform factor, first
singled out in Ref. [191]. We finally mention that the factorization of
T`m absorbs powers of mπ that would otherwise end up in the coefficients

of the expanded quantity ĥ
(ε)
`m, making them bigger and thus spoiling the

convergence properties of the inherent PN series.

• The factor eiδ`m collects all the subleading phasing corrections not cap-
tured by T`m, with δ`m defined as the argument of the PN-expanded
complex ratio

TPN

 ĥ
(ε)
`m

Ŝ
(ε)
eff T`m

 , (2.107)

where the operator TPN applies the required expansion, in this case
a Taylor-series in x, although the quantity δ`m is usually rewritten
in terms of the variable y ≡ (ĤEOBΩ/c3)2/3 [191]. More specifically,
TEOBResumS-GIOTTO employs a 3.5PN-accurate expression for δ`m, with
the addition of higher order test-mass contributions, up to the 4.5PN
order. For the majority of the spherical modes it is moreover resummed
through Padé approximants, selected individually for each spherical mul-
tipole to improve the EOB/NR frequency agreement before merger [187].

• The factor f`m, on the other hand, collects all the residual amplitude
corrections and is defined as

f`m ≡ TPN


∣∣∣ĥ(ε)
`m

∣∣∣
Ŝ

(ε)
eff |T`m|

 , (2.108)

where, recalling Eq. (2.106) and using the properties of the Γ function,
we have

|T`m|2 =
1

(`!)2

4π
ˆ̂
k

1− e−4π
ˆ̂
k

∏̀
n=1

[
n2 + (2

ˆ̂
k)2
]
. (2.109)
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Among the various terms appearing in the resulting expression of f`m,
which is again a power series in x with some logarithms, there are contri-
butions ∝ `x that become problematically large as ` grows. Therefore,
already in Ref. [193], it was proposed to consider the replacement

f`m → (ρ`m)`, ρ`m ≡ TPN

[
f

1/`
`m

]
, (2.110)

devised so that the quantity ρ`m does not present anymore the aforemen-
tioned `-growing terms of f`m. This is what is used also in TEOBResumS-

GIOTTO where, similarly to what is done for δ`m, the generic-in-ν results
for ρ`m, included up to the 3PN order, are hybridized with test-mass
information up to 5PN or 6PN accuracy, depending on the given spher-
ical mode, and later Padé resummed [187]; see also Ref. [194] for an
extension of this hybridization and resummation process at higher PN
orders.

• The last factor, ĥNQC
`m , is called Next-to-Quasi-Circular (NQC) factor

and, as the name suggests, it is specifically included in the waveform to
incorporate the modulating effects induced by the deviations from cir-
cularity that necessarily appear, also for quasi-circular binaries, during
the last part of the plunge, right before merger. In TEOBResumS-GIOTTO

it is given by the phenomenological expression [136]

ĥNQC
`m =

(
1 + a`m1 n`m1 + a`m2 n`m2

)
ei
(
b`m1 n`m3 +b`m2 n`m4

)
, (2.111)

where (a`m1 , a`m2 , b`m1 , b`m2 ) are free parameters and (n`m1 , n`m2 , n`m3 , n`m4 )
is a basis of functions of the radial momentum and acceleration. More
specifically, they read [184]

n`m1 =

(
pr∗
rΩ

)2

∀`,m , (2.112)

n22
2 =

ṗr∗
rΩ2

∂ṙ

∂pr∗
, n21

2 =
p2
r∗

r2Ω4/3
, n`≥3,m

2 = n22
2 , (2.113)

n`m3 =
pr∗
rΩ

∀`,m , (2.114)

n22
4 = (rΩ)pr∗ , n21

4 = n`≥3,m
4 =

pr∗
rΩ1/3

, (2.115)

where their specific definitions are chosen to control as much as possible
the behavior of the corresponding ĥNQC

`m . The parameters (a`m1 , a`m2 , b`m1 ,
b`m2 ) are fixed by imposing a C2 contact condition, at a specific ν-
dependent extraction time, between the EOB and NR spherical modes,
precisely at the level of their amplitude and frequency. We underline in
this respect that, being h`m a complex quantity, it can be decomposed
in amplitude and phase as h`m = A`me

−iφ`m , with associated frequency
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ω`m ≡ −φ̇`m. The C2 contact condition mentioned above can then be
written as

AEOB
`m (tEOB

extr ) = ANR
`m (tNR

extr), ȦEOB
`m (tEOB

extr ) = ȦNR
`m (tNR

extr), (2.116)

ωEOB
`m (tEOB

extr ) = ωNR
`m (tNR

extr), ω̇EOB
`m (tEOB

extr ) = ω̇NR
`m (tNR

extr), (2.117)

where the choices for the extraction times are [184]

tEOB
extr = tpeak

Ω − 1 + ∆tNR
`m , ∆tNR

`m ≡ t
peak

ANR
`m

− tpeak

ANR
22
, (2.118)

tNR
extr = tpeak

ANR
`m

+ 2, (2.119)

where in general we denote as tpeak
X the instant at which a given quantity

X reaches its maximum. For more details on these choices we refer the
reader to Sec. IIID of Ref. [184] and references therein.

Coming back to the associated factorization of the radiation-reaction F̂ϕ,
TEOBResumS-GIOTTO does not use directly Eq. (2.99), but rather, neglecting
spin contributions,

F̂ϕ = − 32

5c5
νr4Ω5f̂ , (2.120)

where f̂ is the Newton-normalized flux

f̂ ≡
8∑
`=2

∑̀
m=1

(FN22)−1F`m, (2.121)

explicitly given by

F`m ≡
1

8π
m2Ω2|h`m(x)|2, (2.122)

FN22 ≡
32

5
x5, (2.123)

FN22 being the leading Newtonian part of the dominant mode F22. We notice
that to obtain this form of F̂ϕ from Eq. (2.99) one has to use the parity
condition h`,−m = (−)`h∗`m and the circular-limit relations ḣ`m = −imΩh`m
and h`0 = 0. It is actually in Eq. (2.122) that the factorized and resummed
insplunge waveform of Eq. (2.100) enters the radiation-reaction force, defining
a resummation for its spherical modes F`m.19

19In this process, we point out that the NQC factor of the waveform is only used for the
dominant mode F22, while is neglected in the factorization of any other spherical mode of
F̂ϕ. Moreover, the parameters (a22

1 , a
22
2 ) that end up in F22 have, through it, an impact on

the EOB dynamics that is used to compute them. They must therefore be determined using
an iterative process, which stops when an acceptable degree of convergence is reached.
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2.3 EOB description of merger and ringdown

To complete the discussion on the EOB approach we have now to outline its
prescription for merger and ringdown. Once again, the guiding principle is
the closeness between the EOB dynamics and the test-mass motion in the
Schwarzschild metric, which is recovered from it for ν → 0. The pioneering
works of Davis, Ruffini, Press, Price & Tiomno [195–197] showed that, in the
simple case of test-particle plunging radially on a Schwarzschild black hole,
the associated GW signal at infinity is composed by an initial quadrupolar-
like part suddenly followed by exponentially dumped oscillations. The latter
were interpreted in Ref. [196] as the vibrational modes, or quasi-normal-modes
(QNMs), of the black hole perturbed by the plunging particle, which relaxes to
stability with the emission of GWs. Building upon these works and the “close
limit” analysis of Ref. [198], the proposal of the EOB waveform formalism
entails to use, up to merger, the insplunge model we discussed in the previous
section, and then prescribes a sharp transition to a different waveform model,
specific of the ringdown phase. This was originally implemented in the form
of a linear superposition of the QNMs of the final Kerr black hole born out of
the coalescence, whose mass (MBH) and spin (JBH) can be either determined
from the insplunge EOB dynamics or, more accurately, via NR fits [199].

Going into more details, let us first specify that the merger time tmrg, at
which the waveform description sharply changes, is chosen as the time where
the amplitude of the quadrupolar mode h22 reaches its maximum. Accord-
ingly, for each spherical mode of the waveform, we can write a complete EOB
model, covering the whole CBC evolution, as

htot
`m(t) = θ(t− tmrg)hinsplunge

`m (t) + θ(tmrg − t)hringdown
`m (t), (2.124)

where θ(t) is Heaviside’s step function, hinsplunge
`m (t) is the insplunge model

given by Eq. (2.100), and hringdown
`m (t) is the corresponding ringdown model,

that we will now proceed to illustrate.
The linear superposition of QNMs after which the ringdown signal was

originally modeled reads

hQNM
`m ≡

∑
n

(
C+
`mne

−σ+
`nτ + C−`mne

−σ−`nτ
)
. (2.125)

Here the index n is the overtone number and labels the different QNMs in the
decomposition, starting from the fundamental one with n = 1. Each QNM is
given in terms of two complex coefficients C±`mn and two complex frequencies
σ±`n ≡ α`n ± iω`n, made of a real frequency ω`n and an inverse dumping
time α`n. The dimensionless time parameter appearing on the exponentials is
defined as

τ ≡ c3

GMBH
(T − T peak

ANR
`m

), (2.126)
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and counts the time passed from the instant T peak

ANR
`m

, at which the amplitude

ANR
`m of the numerical waveform reaches its peak, in unit of the final black hole

mass MBH.
Actually, with the test-mass analysis of Ref. [191] on the physical excitation

of QNMs, it was understood that the above superposition could be simplified
by setting C−`mn = 0 and retaining just the components with positive frequen-
cies (σ+

`n). The procedure consisted then in determining these QNM complex
frequencies from (MBH , JBH) [200] and the coefficients C+

`mn from specific

matching conditions between hQNM
`m and the insplunge waveform, such as by

imposing the two waveforms to coincide at a set of instants that were selected
by discretizing into equally spaced points a time interval around tmrg [191].
However, Ref. [137] proved that, in order for Eq. (2.125) to be a faithful rep-
resentation of the ringdown signal, the coefficients appearing therein should
be promoted to τ -dependent functions, as a consequence of the fact that the
QNM generation is not always completed at merger. This additional layer of
complexity led to the proposal, in that same paper, of an alternative approach,
which is now the basis of the ringdown modeling strategy of TEOBResumS.

The idea is to consider a factorized ringdown waveform of the type

hringdown
`m = e−σ1τ−iφpeak

`m h̄`m(τ), (2.127)

where φpeak
`m is the value of the waveform phase at τ = 0. Then, instead of

deriving h̄`m(τ) from Eq. (2.125), this is replaced with a suitable parametric
template. Omitting the indices (`,m) for readability, this reads20

h̄(τ) = Ah̄(τ)eiφh̄(τ), (2.128)

Ah̄(τ) =

(
cA1

1 + e−c
A
2 τ+cA3

+ cA4

) 1

cA5

, (2.129)

φh̄(τ) = −cφ1 ln

1 + cφ3e
−cφ2 τ + cφ4e

−2cφ2 τ

1 + cφ3 + cφ4

 , (2.130)

given in terms of two sets of parameters, cAi and cφi . However, not all of these
are free: there are five constraints that ensure the correct behavior of h̄(τ) for
τ = 0 and late times, namely

cA1 =
cA5 α21

cA2
(Apeak)c

A
5 e−c

A
3

(
1 + ec

A
3

)2
, (2.131)

20We report here the updated prescription of Ref. [194], which improves the one in
Ref. [184] by replacing with Eq. (2.129) the old amplitude template

Ah̄(τ) = cA1 tanh
(
cA2 τ + cA3

)
+ cA4 .

.
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cA4 = (Apeak)c
A
5 − cA1

1 + ec
A
3

, (2.132)

cA5 = −
Äpeak

Apeakα
2
21

+
cA2
α21

ec
A
3 − 1

1 + ec
A
3

, (2.133)

cφ1 =
1 + cφ3 + cφ4

cφ2 (cφ3 + 2cφ4 )
(ω1 −MBHωpeak), (2.134)

cφ2 = α21, (2.135)

where αn and ωn are the real and imaginary components of the QNM complex
frequency σn (n being the overtone number), α21 ≡ α2 − α1, and finally
(Apeak, ωpeak) are the numerically-determined amplitude and frequency of the
waveform mode at τ = 0, with Äpeak second time-derivative computed at that
instant. Therefore, the free parameter that remain to be determined by fits
on the numerical data are actually just (cA2 , c

A
3 , c

φ
3 , c

φ
4 ).

We finally notice that the NR waveform information incorporated (i) in

hinsplunge
`m through ĥNQC

`m and (ii) in hringdown
`m through h̄`m (here written with

explicit indices ` and m), is enough to guarantee that the complete wave-
form modes (2.124) are smooth at t = tmrg, where there is the shift between
insplunge and ringdown model.





Chapter 3

Eccentricity effects in EOB
waveform models

I
n this Chapter we finally discuss the main theme of the Thesis: how to
best extend EOB models to the case of eccentric binaries. We refer with

this term to binary systems that have escaped, at least partially, the circu-
larization process typical of isolated binaries [186, 201], and thus still present
non-negligible orbital eccentricity in their late inspiral, when the GWs they
emit enter the frequency band sensitivity of our detectors. The motivation
behind this line of work is essentially twofold. On the one hand, measuring
eccentricity with GWs can shed light on the unknown mechanisms behind
the generation of binary black holes, with valuable indications on the actual
plausibility and weight of the different formation channels that have been
proposed for their origin. If in fact isolated binary black holes, result of the
evolution of isolated binary stars, are expected to efficiently circularize via
GW emissions, in recent years population synthesis studies [202–209] have
shown that dynamical captures in dense stellar environments, primarily glob-
ular clusters and galactic nuclei, and the Lidov-Kozai mechanism in compact
triples, isolated or in dense environments like those cited above, should lead
to a substantial fraction of CBC with measurable eccentricity during the pre-
merger motion, notably with different eccentricity distributions depending on
the given astrophysical scenario considered. See, e.g., the illustrative scheme
in Fig. 3.1, taken from Ref. [208], that put together the expected distributions
of eccentric binaries, relative to three relevant formation scenarios, with the
minimum distinguishable eccentricity for several GW detectors.

On the other hand, even if we are not interested in the astrophysical im-
plications of eccentricity signatures in the GWs we detect, dedicated analy-
sis [212, 213] have shown that neglecting eccentricity in GW models is likely
to cause systematic errors in the inference of the other binary parameters,
especially the individual system masses. This is due to the fact that, in the
presence of eccentricity, the parameter that determines the leading order evo-

81
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Figure 3.1: Expected fractional distributions of eccentric binary black holes
for three relevant astrophysical scenarios, credits to Ref. [208]. Considering
as a reference the eccentricity at an orbital frequency of 10Hz, we find in
different colors (i) the globular cluster distribution of Refs. [206,207] (green),
(ii) the galactic nuclei one of Ref. [210] (orange), and (iii) the one relative to
field triples (i.e. isolated three-body systems), taken from Ref. [211] (purple).
The vertical lines represent the minimum detectable eccentricity estimated
in Ref. [208] for the ground-based detectors Advanced LIGO and Advanced
Virgo, Einstein Telescope, and Cosmic Explorer. On these lines, different
colors mark different estimation techniques: the Bayesian method (blue) and
the waveform overlap (red); see section III of Ref. [208] for more details on
these techniques.

lution of the GW phase, and thus is measured with the highest precision, is
no longer the chirp mass

Mch ≡
(m1m2)3/5

(m1 +m+ 2)1/5
, (3.1)

but an “eccentric chirp mass”, combination of Mch and the eccentricity e, that
around a reference frequency of 10Hz can be approximately defined as [213]

M ecc
ch ≡Mch

(
1 +

157

40
e2

0

)
, (3.2)

e0 being the eccentricity at that frequency. We have therefore a degeneracy
between Mch and e0, similar to the well-known circular case degeneracy be-
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tween m1 and m2, when the primary parameter that drives the GW phasing
is simply Mch. This has been also proved to be impactful for the validity
of GR tests performed on GW data, with arising systematic biases that be-
come comparable with the statistical errors even when small eccentricities are
neglected; see for instance the analysis of Refs. [214,215].

Prompted by all this, and with the additional prospect of many future
detections of eccentric stellar-mass binaries, thanks to space-based interfer-
ometer like LISA [216, 217], the GW community has embarked on develop-
ing new waveform models that go beyond the quasi-circular approximation,
both on the numerical [218–221] and the analytical side [222–230]. As re-
gards EOB-based waveform models, the first eccentricity modulations have
been incorporated in the circular model SEOBNRv1 [133] in a series of work
[231, 232], which ultimately led to the proposal of a new model, dubbed
SEOBNRE. This was later improved, building upon the next generation cir-
cular model SEOBNRv4HM [189], with the inclusion of analytical noncircular
waveform information up to the 2PN order [230], thus yielding the recent
eccentric model SEOBNRv4EHM [233]. On the TEOBResumS side, noncircular
corrections to the insplunge model have been first introduced in Ref. [234],
generalizing to noncircularized orbits the quasi-circular Newtonian prefactor
(2.101). This laid the foundation for the development, in several follow-up
works [185,194,235,236] of a new highly accurate EOB model for generic pla-
nar orbits, now referred to as TEOBResumS-DALI, which has also been used
to analyze the GW source GW190521 [237, 238] under the hypothesis of a
hyperbolic capture [239].

In this Chapter, after a brief review, in Sec. 3.1, of the crucial noncircular
generalizations that define TEOBResumS-DALI, we will present, discuss and test
some strategies to incorporate in this model, while preserving its factorization
and resummation prescriptions, currently known analytical waveform results
for generic planar orbits, at 2PN accuracy. More specifically, the rest of the
Chapter is organized as follows. In Sec. 3.2 we review the 2PN waveform re-
sults we used as an input and explain how their information is recasted into
new 2PN noncircular waveform factors, through a dedicated factorization pro-
cedure. Their performance in the waveform model is probed in Sec. 3.3, by
comparing the predictions of the latter against numerical waveforms, relative
to a test particle inspiralling and plunging on a Kerr black hole along eccentric
orbits. This gives rise to the need of implementing additional resummation
strategies, necessary to obtain noncircular corrections that are reliable also
for large eccentricities, e ∼ 0.9. In the same section we also perform simi-
lar test-mass analyses for a few of illustrative hyperbolic encounter dynamics.
The testing process continues in Sec. 3.4, where we focus on comparable-mass
binaries and provide direct phasing comparisons between numerical relativity
(NR) waveforms and our EOB eccentric model, complete of the new 2PN-
accurate resummed factors. An analogues factorization strategy is used in
Sec. 3.5 for the proposal of associated noncircular correcting factors to include
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in the radiation-reaction component F̂ϕ; their impact is then numerically in-
vestigated in the test-mass limit. In Sec. 3.6, focusing again on the test-mass
limit case, we provide waveform comparisons with the factorization scheme
proposed in Ref. [230] (and used in Ref. [240]). Motivated by the results of
these comparisons, in Sec. 3.7 we finally devise and test an alternative pre-
scription for some of the noncircular waveform factors introduced in Sec. 3.2,
focusing on the dominant mode ` = m = 2.

We mention in closing that a big portion of the content presented in this
Chapter has been originally released to the public in our series of papers
[140–142].

3.1 The eccentric insplunge of TEOBResumS-DALI

We dedicate this section to a review of the noncircular generalizations that dis-
tinguish the eccentric model TEOBResumS-DALI from the native quasi-circular
model TEOBResumS-GIOTTO, outlined in the non-spinning sector in the previ-
ous Chapter. We will focus in particular on the noncircular analytical pre-
scription for the insplunge waveform factorization and, correspondingly, for
the radiation-reaction force, although we mention that TEOBResumS-DALI also
entails a new determination of the NR-informed flexibility parameters in the
EOB dynamics, like the a6,c mentioned at the end of Sec. 2.1.4, and new
suitable choices for the initial conditions, such that the modulations due to
eccentricity in the EOB waveform are consistent with their homologues in
eccentric NR simulations; for more details on these aspects see Ref. [236].

The noncircular insplunge waveform model proposed by Ref. [234] is sim-
ply obtained by performing, in the factorized quasi-circular waveform (2.100),

a general redefinition of the Newtonian factor h
(N,ε)
`m , i.e. of Eq. (2.101). Con-

sidering the chain of relations (1.176)-(1.177) and (1.167)-(1.168), which con-
nects the spherical modes h`m to the STF radiative multipoles (UL, VL), and
remembering that at the Newtonian order we have

(UL)Newt =
d`

dt`
(IL)Newt, (VL)Newt =

d`

dt`
(JL)Newt, (3.3)

where (IL, JL) are STF multipoles of the source, the most general definition
of the Newtonian factor of each h`m is1

h
(N,0)
`m = − 2

√
2G

DLc`+2(`!)

√
(`+ 1)(`+ 2)

2`(`− 1)

d`

dt`

[
Y`mL (IL)Newt

]
, (3.4)

h
(N,1)
`m = −i 4

√
2G

DLc`+3(`!)

√
`(`+ 2)

2(`+ 1)(`− 1)

d`

dt`

[
Y`mL (JL)Newt

]
(3.5)

1The tensors Y`mL can be freely brought inside the time derivatives, since they are purely
numerical.
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We notice that in general[
Y`mL (IL)Newt

]
∝Mν r`e−imϕ, (3.6)[

Y`mL (JL)Newt

]
∝Mν r`+1Ωe−imϕ, (3.7)

implying that the general Newtonian prefactor h
(N,ε)
`m defined above involves

time derivatives of r and Ω, up to r(`) and Ω(`). All these time derivatives
vanish for circular orbits and the usual approach used in their regards, to
obtain PN noncircular results for the modes h`m, is to order-reduce them
by means of the PN-expanded equations of motion, truncated at the target
PN accuracy. Here they are instead kept explicit and evaluated using the
resummed EOB equations of motion, which become exactly known in the test-
mass limit ν → 0.2 In this sense, we can regard these explicit time derivatives
as a resummation of the noncircular contributions that would appear in the
PN-expanded noncircular expression of h`m by performing the usual order-

reduction procedure. Moreover, each Newtonian factor h
(N,ε)
`m is written as

h
(N,ε)
`m = h

(N,ε)c

`m h
(N,ε)nc

`m (3.8)

i.e. as the product of its circular limit part h
(N,ε)c

`m , which gives back Eq. (2.101)
when expressed in terms of x, and a Newtonian noncircular factor,

h
(N,ε)nc

`m ≡
h

(N,ε)
`m

h
(N,ε)c

`m

, (3.9)

which collects all the noncircular contributions and reduces to 1 for circular
orbits; for instance, focusing on the dominant quadrupolar mode h22, we have

h
(N,0)c

22 = −8GM

DLc4

√
π

5
νr2Ω2e−2iϕ, (3.10)

ĥ
(N,0)nc

22 = 1− 1

2

(
ṙ2

r2Ω2
+

r̈

rΩ2

)
+ i

(
2ṙ

rΩ
+

Ω̇

2Ω2

)
. (3.11)

Let us now outline the corresponding noncircular modifications on the
radiation-reaction force. To begin with, the radial component F̂r can no
longer be set to zero; instead, the noncircular prescription for it introduced
in Ref. [234] is to use the 2PN instantaneous result of Ref. [190] in Padé
resummed form. Explicitly we have

F̂r =
ν

c5

pr∗
r4
f̂N
r P

0
2

[
f̂r/f̂

N
r

]
(3.12)

2In practice, the evaluation of all these time derivatives follows from a generalization of
the iterative analytical approach outlined in Appendix A of Ref. [135].
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where, from Eqs. (3.70) and (D9-D11) of Ref. [190],

f̂r = f̂N
r +

1

c2
f̂1PN
r +

1

c4
f̂2PN
r , (3.13)

f̂N
r = − 8

15
+

56p2
ϕ

5r
, (3.14)

f̂1PN
r = p2

r∗

(
− 1228

105
+

556ν

105

)
+

1

r

[
− 1984

105
+

16ν

21
+ p2

r∗p
2
ϕ

(
− 124

105

− 436ν

105

)]
+
p2
ϕ

r2

(
− 1696

35
− 1268ν

105

)
+
p4
ϕ

r3

(
1252

105
− 2588ν

105

)
, (3.15)

f̂2PN
r = p4

r∗

(
323

315
+

1061ν

315
− 1273ν2

315

)
+

1

r

[
p2
r∗

(
20666

315
+

17590ν

189
− 218ν2

189

)
+ p4

r∗p
2
ϕ

(
− 461

315
− 983ν

315
+

131ν2

63

)]
+

1

r2

[
59554

2835
+

9854ν

105
− 3548ν2

315

+ p2
r∗p

2
ϕ

(
− 1774

21
+

10292ν

315
− 8804ν2

315

)]
+

1

r3

[
− 29438

315
+

9568ν

63

− 1752ν2

35
+ p2

r∗p
4
ϕ

(
− 628

105
− 1052ν

105
+

194ν2

7

)]
+
p4
ϕ

r4

(
− 35209

315

+
1606ν

15
+

25217ν2

315

)
+
p6
ϕ

r5

(
− 3229

315
− 718ν

63
+

3277ν2

105

)
. (3.16)

Regarding the other component F̂ϕ, the noncircular generalization of Eq. (2.120)
used in TEOBResumS-DALI consists in dressing the dominant multipole F22 in

f̂ with the noncircular factor f̂Nnc
ϕ,22, associated to ĥ

(N,0)nc

22 . More explicitly, we
have

F̂ϕ = − 32

5c5
νr4Ω5f̂nc22 , (3.17)

where

f̂nc22 ≡ F̂22f̂
Nnc
ϕ,22 + F̂21 +

8∑
`≥3

∑̀
m=1

F̂`m, (3.18)

f̂Nnc
ϕ,22 =

1

8π
=
[

˙̂
h

(N,0)nc

22

(
ĥ

(N,0)nc

22

)∗]
= 1 +

3ṙ4

4r4Ω4
+

3ṙ3Ω̇

4r3Ω5
+

3r̈2

4r2Ω4

+
3r̈ṙΩ̇

8r2Ω5
− r(3)ṙ

2r2Ω4
+

ṙ2Ω̈

8r2Ω5
+

4ṙ2

r2Ω2
+

r̈Ω̈

8rΩ5
− 2r̈

rΩ2
− r(3)Ω̇

8rΩ5

+
3ṙΩ̇

rΩ3
+

3Ω̇2

4Ω4
− Ω̈

4Ω3
, (3.19)

with the noncircular factor (3.19) obtained from Eq. (2.99) after the parity
condition h`,−m = (−)`h∗`m is used in it.

We finally mention that a particularly useful test for the radiation-reaction
prescriptions is to compare the corresponding fluxes at infinity with their
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numerical analogue. In this respect, we remind that the energy flux at infinity
is obtained via the balance equation (2.97), where in addition to F̂r and F̂ϕ
also the Schott contribution ĖSchott appears. To compute the latter, following
Ref. [234], it is useful to reorganize the 2PN result for ESchott given in Eqs. (C1-
C4) of Ref. [190] in the factorized and resummed form

ESchott =
16

5

pr∗
c5r3

P 0
2 [Ec

Schott]P
0
2 [Enc

Schott], (3.20)

where Ec
Schott is the circular component of the Schott energy, which can be

read off Eq. (3.56) of Ref. [190], while Enc
Schott is the corresponding noncircular

factor obtained by computing ESchott/E
c
Schott.

3.2 Factorized 2PN noncircular corrections in the
insplunge waveform

The spherical modes of the 2PN waveform for generic planar orbits have been
recently obtained in EOB coordinates by Khalil et al. [230]. Here, the expres-
sion for the instantaneous contributions have been computed by translating in
EOB coordinates the waveform results of Ref. [225], which obtained them in
harmonic coordinates trough an application, for noncircularized orbits, of the
non-linear waveform generation formalism we outlined in Sec. 1.3 of Chapter
1. Within the same framework, the tail contributions have been derived start-
ing from the results of Ref. [232], and then subsequently extended to include
higher-order corrections in the eccentricity, notably also for higher spherical
modes than the dominant one, the ` = m = 2 mode. In this section we
want ot exploit this 2PN waveform information (neglecting noncircular spin
contributions) to define alternative noncircular corrections that fit properly
in the waveform factorization scheme of TEOBResumS-DALI. The procedure we
followed to define these corrections, in the form of extra noncircular factors, is
presented in Sec. 3.2.2, focusing initially on the case of the dominant spherical
mode ` = m = 2 and then moving to all the subdominant modes that enter
the 2PN accurate waveform. Before that, we find useful to recall, in Sec. 3.2.1
some of the steps of the above derivation, so to fix the notation and keep the
discussion as self-contained as possible. Separately, in Sec. 3.2.3, we discuss
the main issues of the modes with m = 0 and propose a specific 2PN-accurate
model to circumvent them.

3.2.1 2PN noncircular waveform in EOB coordinates

To start with, let us specify that we consider here the waveform mode struc-
ture [225]

h`m =
4GMν

c4DL

√
π

5
e−imϕĤ`m, (3.21)
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where each Ĥ`m mode is decomposed in the sum of instantaneous and hered-
itary (or tail) terms

Ĥ`m = Ĥ inst
`m + Ĥtail

`m , (3.22)

which enter at different PN orders and that will be discussed separately.

Instantaneous contributions

The instantaneous contributions to the modes for nonspinning binaries were
derived in Ref. [91, 241] up to 2PN order and in Ref. [225] up to 3PN order,
where they are provided in terms of harmonic coordinates. By way of illus-
tration, the 2PN-accurate ` = m = 2 mode in harmonic coordinates explicitly
reads

(
Ĥ inst

22

)
h

=
1

rh
+ r2

hϕ̇
2
h + 2irṙhϕ̇h − ṙ2

h +
1

c2

{
1

r2
h

(
ν

2
− 5

)
+ rh

[
ϕ̇2
h

(
78ν

21
+

11

42

)
− iṙhϕ̇h(ṙ2

h + r2
hϕ̇

2
h)

(
27ν

7
− 9

7

)]
−
ṙ2
h

rh

(
16ν

7
+

15

14

)
+ iṙhϕ̇h

(
45ν

7
+

25

21

)
+ (ṙ4

h − r4
hϕ̇

4
h)

(
27ν

14
− 9

14

)}
+

1

c4

{
1

r3
h

(
79ν2

126
+

181ν

36
+

757

63

)
+ ϕ̇2

h

(
13133ν2

1512
− 5225ν

216
− 11891

1512

)
+
ṙ4
h

rh

(
214ν2

21
+

83ν

21
− 557

168

)
+
iṙhϕ̇h
rh

(
2852ν2

189
− 3767ν

189
− 773

189

)
−
ṙ2
h

r2
h

(
467ν2

126
+

2789ν

252
− 619

252

)
+ (ṙ2

hr
4
hϕ̇

4
h − ṙ6

h + r6
hϕ̇

6
h − r2

hṙ
4
hϕ̇

2
h)

(
1111ν2

168
− 589ν

168
+

83

168

)
− ir2

hṙhϕ̇
3
h

(
1703ν2

84
− 103ν

12
− 433

84

)
− iṙ3

hϕ̇h

(
211ν2

9
+

731ν

63
− 863

126

)
+ r3

hϕ̇
4
h

(
− 2995ν2

252
+

19ν

252
+

835

252

)
+ ir3

hṙ
3
hϕ̇

3
h

(
1111ν2

42
− 589ν

42
+

83

42

)
− rhṙ2

hϕ̇
2
h

(
58ν2

21
+

169ν

14
− 11

28

)
+ i(rhṙ

5
hϕ̇h + ṙhr

5
hϕ̇

5
h)

(
1111ν2

84
− 589ν

84

+
83

84

)}
+O

(
1

c6

)
,

(3.23)

where ϕh is the harmonic orbital phase and rh is the GM -reduced radial
harmonic coordinate, rh ≡ Rh/GM . For completeness, we explicitly report
below the transformation from the harmonic set (rh, ṙh, ϕh, ϕ̇h) to the EOB
canonical set (u, ϕ, pr, pϕ) that we derived, independently of Ref. [230], from
the coordinate relations given in Appendix E of Ref. [190]. We highlight that,
in order to make clearer the PN structure, we henceforth redefine the variable u
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by stripping it of the usual c−2 factor, meaning that, if not otherwise specified,
we consider u ≡ 1/r. We find

rh =
1

u
+

1

c2

[
1

2
ν

(
3p2
r

u
+ p2

ϕu− 1

)
− 1

]
− ν

8c4u

[
(5− 3ν)p4

r

+ 2p2
ru

(
28− 3(ν − 1)p2

ϕu

)
+ u2

(
2(ν − 19) + (ν + 1)p4

ϕu
2

+ p2
ϕu(1− 3ν)

)]
+O

(
1

c6

)
, (3.24)

ṙh = pr +
1

2c2
pr

[
(2ν − 1)p2

r + u

(
(4ν − 1)p2

ϕu− 6− 4ν

)]
+

1

8c4

{
(3− 8ν)p5

r − 2p3
ru

[
2(8ν − 5) +

(
2ν2 + 12ν − 3

)
p2
ϕu

]
+ pru

2

[
− 10ν2 + 78ν + 12 +

(
8ν2 − 16ν + 3

)
p4
ϕu

2

+ 2

(
ν2 − 55ν + 6

)
p2
ϕu

]}
+O

(
1

c6

)
, (3.25)

ϕh = ϕ+
1

c2
νprpϕu−

1

4c4
νprpϕu

[
(4ν + 2)p2

r + u

(
− 3ν + 15

+ 2p2
ϕu

)]
+O

(
1

c6

)
, (3.26)

ϕ̇h = pϕu
2 +

1

2c2
pϕu

2

[
u

(
(ν − 1)p2

ϕu− 2

)
− (3ν + 1)p2

r

]
− 1

8c4
pϕu

2

{
−
(

15ν2 + 11ν + 3

)
p4
r + 2p2

ru

[
2

(
ν2 − 24ν − 3

)
+ 3

(
3ν2 − ν − 1

)
p2
ϕu

]
+ u2

[
2

(
ν2 − 9ν + 2

)
+

(
ν2 + 5ν − 3

)
p4
ϕu

2

− 2

(
3ν2 − 17ν + 2

)
p2
ϕu

]}
+O

(
1

c6

)
. (3.27)

Then, replacing the relations (3.24)-(3.27) into Eq. (3.23) yields

Ĥ inst
22 = u− p2

r + 2iprpϕu+ p2
ϕu

2 +
1

c2

{
i

(
ν

7
− 5

7

)
p3
rpϕu

− iprpϕu2

[(
4ν

7
+

185

21

)
−
(
ν

7
− 5

7

)
p2
ϕu

]
+

(
ν

14
− 5

14

)
(p4
ϕu

4 − p4
r)

+

(
3ν

14
+

64

14

)
p2
ru+ u2

[
(ν − 4) +

(
31ν

14
− 157

42

)
p2
ϕu

]}
+

1

c4

{(
17ν2

168
+

13ν

168
− 5

24

)
(p6
r + p4

rp
2
ϕu

2 − p6
ϕu

6)− i
(

17ν2

84
+

13ν

84

− 5

12

)
prpϕu(p4

r + p4
ϕu

4)− p2
ru

2

[(
13ν2

63
+

151ν

18
+

1055

252

)
+

(
17ν2

504
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+
13ν

504
− 5

72

)
p4
ϕu

2 +

(
313ν2

252
+

85ν

252
− 101

252

)
p2
ϕu

]
−
(

85ν2

168
+

55ν

168
+

425

168

)
p4
ru+ ip3

rpϕu
2

[(
62ν2

63
+

11ν

126
+

695

126

)
−
(

17ν2

42
+

13ν

42
− 5

6

)
p2
ϕu

]
− iprpϕu3

[(
523ν2

189
+

2452ν

189
− 193

27

)
+

(
8ν2

21
− 29ν

14
− 67

28

)
p2
ϕu

]
+ u3

[(
205ν2

126
− 49ν

18
+

190

63

)
−
(

671ν2

504
+

1375ν

504
− 481

72

)
p4
ϕu

2 +

(
127ν2

27
− 2710ν

189
− 5519

1512

)
p2
ϕu

]}
+O

(
1

c6

)
. (3.28)

This result coincides with Eq. (83) of Ref. [230], as long as we replace p2
ϕu

2 =
p2 − p2

r . The canonical transformations above have also been applied to the
higher multipoles, up to ` = m = 6, and their EOB coordinate expressions
have been checked to precisely coincide with the corresponding ones from
the supplementary material of Ref. [230]. Moreover, for an additional, inde-
pendent, validation of these transformations, we have verified that the 2PN
instantaneous angular momentum flux given in Eq. (3.70) of Ref. [190] could
be obtained, by means of Eq. (2.99), from the 2PN noncircular instantaneous
component of h`m, written in EOB coordinates.3

Hereditary contributions

For the hereditary components Ĥtail
`m we adopt the results of Ref. [230]. These

contributions comes from the evaluation of the leading tail integrals that ap-
pear in the relations between radiative and source multipole moments; see
Eqs. (1.157)-(1.158). In particular their evaluation is performed using the Ke-
plerian parametrization and considering an expansion for small eccentricity,
according to the method outlined in Ref. [232]. The resulting tail contributions
are initially expressed in terms of the frequency parameter x ≡ (Ω/c3)2/3, the
eccentricity e and the phase variable χ, which, together with the semilatus
rectum p, parametrize the motion according to

r =
p

1 + e cosχ
. (3.29)

3More specifically, we found that the spherical modes that bring a nonzero contribution
to F̂ϕ are: (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 2), and (4, 4).
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To be precise, the dynamical parameters p and e used in Refs. [230, 232] and
by us are defined in analogy with Newtonian mechanics as4

e ≡ r+ − r−
r+ + r−

, p ≡ 2r+r−
r+ + r−

, (3.30)

where r+ and r− are the turning point of the radial motion, respectively
apastron and periastron, which can be determined from the EOB Hamiltonian
ĤEOB. We also specify that, for stable orbits, p must satisfy the condition
p > ps(e, â) where ps(e, â) is the separatrix given by a real root of [242,243]

p2
s(ps − 6− 2e)2 + â4(e− 3)2(e+ 1)2 − 2â2(1 + e)ps

[
14 + 2e2

+ ps(3− e)
]

= 0. (3.31)

Here â is the dimensionless spin parameter of the Kerr black hole that lies at
the core of the EOB dynamics when spinning binaries are concerned. In the
non spinning case â = 0, we have simply ps = 3(2 + e).

From Ref. [230], the ` = m = 2 dominant tail component at 2PN accuracy,
and up to O(e6), reads

(
Ĥtail

22

)
KP

=
2πx5/2

c3

[
1 + e

(
11e−iχ

8
+

13eiχ

8

)
+ e2

(
5

8
e−2iχ +

7

8
e2iχ

+ 4

)
+ e3

(
121e−iχ

32
+

143eiχ

32
+

3e−3iχ

32
+

e3iχ

12

)
+ e4

(
25e−2iχ

16
+

203e2iχ

96

− 5e4iχ

96
+

65

8

)
+ e5

(
55e−iχ

8
+

6233eiχ

768
+

15e−3iχ

64
+

281e3iχ

1536
+

53e5χ

7680

)
+ e6

(
175e−2iχ

64
+

1869e2iχ

512
− 449e4iχ

3840
+

31e6iχ

23040
+

30247

2304

)]
. (3.32)

Analogously to Ref. [230], we want to recast all the tail components like
Eq. (3.32) in terms of EOB phase-space variables. In particular, we want
to adopt just the variables (u, pr, pϕ), avoiding the use of ṗr, as opposed
to Ref. [230], to simplify the numerical implementation of the consequential
model. Since we are working at 2PN accuracy we can resort to the following
Newtonian relations:5

x =
1− e2

p
, (3.33)

u =
1 + e cosχ

p
, (3.34)

pϕ =
√
p, (3.35)

4We warn the reader that the eccentricity e defined here is different from the time
eccentricity et that appears in the context of the quasi-Keplerian parametrization.

5Corrections to the leading Newtonian order would enter at 2.5PN order in the waveform.
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pr =
e sinχ
√
p
. (3.36)

Then, since Eq. (3.32) is given in an expansion for small eccentricity e, it
is important to identify the combinations of the variable (u, pr, pϕ) that are
of the same order of e. These are easily found in pr and ṗr, with the latter
related to pϕ and u through the Newtonian equation of motion

ṗr = u2(p2
ϕu− 1). (3.37)

In fact, using Eqs. (3.33)–(3.36), we find pr ∼ e and (p2
ϕu−1) ∼ e. Therefore,

the expansion in e of Eq. (3.32) translates into a simultaneous expansion in
pr and ṗr. This reads6

Ĥtail
22 =

2πu5/2

c3

[
1 +

(
ṗr

2u2
+

ipr
4
√
u

)
− ṗ2

r

8u4
−
(

ṗ3
r

96u6
+

7iprṗ
2
r

32u9/2

− 7p2
r ṗr

32u3
− 7ip3

r

96u3/2

)
+

(
7ṗ4
r

384u8
+

iprṗ
3
r

12u13/2
− p2

r ṗ
2
r

64u5
− ip3

r ṗr

96u7/2
+

p4
r

48u2

)
−
(

13ṗ5
r

1920u10
− iprṗ

4
r

768u17/2
+

73p2
r ṗ

3
r

768u7
+

49ip3
r ṗ

2
r

384u11/2
− 35p4

r ṗr
384u4

− 89ip5
r

3840u5/2

)
+

(
109ṗ6

r

46080u12
− iprṗ

5
r

64u21/2
+

137p2
r ṗ

4
r

1536u9
+

137ip3
r ṗ

3
r

1152u15/2
− 65p4

r ṗ
2
r

768u6

− 23ip5
r ṗr

640u9/2
+

p6
r

96u3

)]
. (3.38)

where we also find half-integer powers of u. These can be eliminated by means
of Eq. (3.37), which, after an expansion in ṗr, gives

pϕ =
1√
u

+
ṗr

2u5/2
− ṗ2

r

8u9/2
+

ṗ3
r

16u13/2
− 5ṗ4

r

128u17/2
+

7ṗ5
r

256u21/2

− 21ṗ6
r

1024u25/2
+O(ṗ7

r), (3.39)

and thus

1√
u

= pϕ

(
1− ṗr

2u2
+

3ṗ2
r

8u4
− 5ṗ3

r

16u6
+

35ṗ4
r

128u8
− 63ṗ5

r

256u10
+

231ṗ6
r

1024u12

)
+O(ṗ7

r).

(3.40)

Once this is inserted into Eq. (3.38), one precisely obtains Eq. (102) of Ref. [230],
which we rewrite here in our notation:

Ĥtail
22 =

2π

c3

[
pϕu

3 +
1

4
ipru

2 −
(

7ṗ3
rpϕ

96u3
+

7iprṗ
2
r

32u2
− 7

32
p2
r ṗrpϕ −

7

96
ip3
ru

)
6Here the parentheses () collect terms at the same order in eccentricity
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+

(
3ṗ4
rpϕ

32u5
+
iprṗ

3
r

12u4
− p2

r ṗ
2
rpϕ

8u2
− ip3

r ṗr
96u

+
1

48
p4
rpϕu

)
−
(

173ṗ5
rpϕ

1920u7
− iprṗ

4
r

768u6

+
p2
r ṗ

3
rpϕ

192u4
+

49ip3
r ṗ

2
r

384u3
− 31p4

r ṗrpϕ
384u

− 89ip5
r

3840

)
+

(
97ṗ6

rpϕ
1152u9

− iprṗ
5
r

64u8
+
p2
r ṗ

4
rpϕ

16u6

+
137ip3

r ṗ
3
r

1152u5
− 47p4

r ṗ
2
rpϕ

384u3
− 23ip5

r ṗr
640u2

+
p6
rpϕ
96

)]
.

(3.41)

Note that this expression, if interpreted within the EOB framework, may
be ambiguous, since here ṗr actually only refers to the time derivative of
the Newtonian radial momentum obtained from the Newtonian equations of
motion. Although there are no strong arguments that may prevent us from
promoting it to the derivative of the relativistic radial momentum as defined
within the resummed EOB dynamics, we prefer here to simplify the logic
and have an expression that avoids ṗr, and only uses (u, pr, pϕ) as in the
instantaneous components Ĥ inst

`m . We therefore insert Eq. (3.37) in Eq. (3.41),
obtaining

Ĥtail
22 =

2π

c3

[
pϕu

3

(
1931

1440
−

595p2
ϕu

384
+

377p4
ϕu

2

128
−

1747p6
ϕu

3

576

+
347p8

ϕu
4

192
−

381p10
ϕ u

5

640
+

97p12
ϕ u

6

1152

)
− ipru2

(
9

256
−

29p2
ϕu

48
+

39p4
ϕu

2

128

+
5p6
ϕu

3

64
−

61p8
ϕu

4

768
+
p10
ϕ u

5

64

)
− p2

rpϕu
2

(
53

192
−

13p2
ϕu

64
−

17p4
ϕu

2

64

+
49p6

ϕu
3

192
−
p8
ϕu

4

16

)
− ip3

ru

(
47

288
−

77p2
ϕu

128
+

31p4
ϕu

2

64
−

137p6
ϕu

3

1152

)
− p4

rpϕu

(
35

192
−

125p2
ϕu

384
+

47p4
ϕu

2

384

)
+ ip5

r

(
227

3840
−

23p2
ϕu

640

)
+
p6
rpϕ
96

]
. (3.42)

Indeed, the same is repeated for all the subdominant spherical multipoles
relevant at 2PN, that is up to ` = m = 6.

We finally point out that the absence of logarithmic terms in Eq. (3.42)
is due to a dedicated phase redefinition, performed already at the level of
Eq. (3.32), which completely reabsorbs them at this PN order; see Sec. III C
of Ref. [232] for further details on this.

3.2.2 New noncircular waveform factors at 2PN accuracy
(m 6= 0)

We now want to incorporate the 2PN results touched on in the previous
section in the factorization prescription for the insplunge waveform used in
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TEOBResumS-DALI, which we remember is given by substituting the general
Newtonian prefactor of Eqs. (3.4)-(3.5) and (3.8) in the quasi-circular factor-
ized waveform (2.100).

We do so according to the generalized factorization scheme

h`m = h
(N,ε)c

`m ĥ
(N,ε)nc

`m Ŝ
(ε)
eff ĥ

(ε)c

`m ĥnc
`m, (3.43)

where the first two factors are the circular and noncircular part of the gen-

eral Newtonian factor (3.8), Ŝ
(ε)
eff is the effective source, here considered in its

generic orbit form (2.104), ĥ
(ε)c

`m is the PN residual circular correction, i.e. ĥ
(ε)
`m

of Eq. (2.100) (without Ŝ
(ε)
eff ) equipped here with a “c” to make manifest its cir-

cular nature, and ĥnc
`m is the PN residual noncircular correction, which collects

the novel information we propose to integrate in the model. More specifi-
cally, our aim here is to explicitly determine the noncircular correcting factor
ĥnc
`m at 2PN accuracy for each relevant mode, by properly factorizing the PN-

expanded multipoles of the previous section. The procedure is rather straight-
forward, although it needs the 2PN-expanded EOB equations of motion to be
correctly carried out. It consists in three steps: (i) starting from the 2PN
noncircular results for h`m, we factor out the generic Newtonian prefactor
and the effective source; (ii) we order-reduce, in the denominator, the associ-
ated derivatives with the 2PN-expanded equations of motion and expand the
residual at 2PN; (iii) we factor out the circular part of the residual in order
to single out the 2PN noncircular factor ĥnc

`m. Indeed, for this prescription to
work properly, one has to be sure that no spurious poles are introduced by the
factorization. Even though this is not the case for the majority of the spheri-
cal modes, all the modes with m = 0 happen to show this kind of problematic
behavior, since their Newtonian factor is entirely noncircular and thus goes
to zero in the circular limit. We defer to the next section the discussion of a
possible alternative prescription for these modes and focus here on the m 6= 0
case. In formulas, we can compute the total PN residual factor as

ĥ
(ε)
`m ≡ T2PN

 h`m(
h

(N,ε)c

`m ĥ
(N,ε)nc

`m

)
EOMs

Ŝ
(ε)
eff

 , (3.44)

where T2PN applies to its argument a Taylor-expansion in 1/c up to O(1/c4)
and the subscript “EOMs” indicates that inside the parenthesis where it ap-
pears we order-reduce all the time derivatives with the corresponding PN-
expanded equations of motion.7 This is needed to avoid considering two times

7The PN-expanded equations of motion for the first time derivatives can be computed
directly from the EOB Hamiltonian, by Taylor-expanding Eqs. (2.91)-(2.94); see Appendix
B of Ref. [190] for their explicit expressions at 2PN order. Then, the computation of the PN-
expanded equations of motion for the higher order derivatives follows from a straightforward
iteration.
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the noncircular terms already resummed, in the form of time derivatives, in
the general Newtonian prefactor that precedes the PN residual we are com-
puting here. The resulting expression (3.44) is a rational function of (u, pr, pϕ)
of the type “1 + PN terms”.

Now that the PN factor is singled out, we can also factor out its circular
component

ĥ
(ε)c

`m ≡ lim
pr→0

ĥ
(ε)
`m, (3.45)

in order to obtain the total noncircular PN factor we are interested in, that is

ĥnc
`m ≡ T2PN

 ĥ(ε)
`m

ĥ
(ε)c

`m

 , (3.46)

which amounts to a collection of all the relativistic noncircular contributions
not yet included in TEOBResumS-DALI. Moreover, we can split ĥnc

`m into a tail
factor and an instantaneous factor,8 considering

ĥnc
`m = ĥnctail

`m ĥncinst
`m . (3.47)

Then, we trade the radial momentum pr for pr∗ ≡ (A/
√
D) pr, with A/

√
D

truncated at the 2PN order. Finally, to simplify the structure of the analytical
expressions we are using, we expand each of the new factors in pr∗ up to
O(p4

r∗).
9

Focusing now on the dominant ` = m = 2 mode, the tail factor that follows
from the procedure detailed above is

ĥnctail
22 = 1 +

1

c3

π

(p2
ϕu+ 1)2

[
− i
(

9pr∗u

64
t̂22
pr∗

+
457

456

p3
r∗

(p2
ϕu+ 1)2

t̂22
p3
r∗

)
+

5729

1440

p2
r∗pϕu

(p2
ϕu+ 1)

t̂22
p2
r∗

+
133

80

p4
r∗pϕ

(p2
ϕu+ 1)3

t̂22
p4
r∗

]
, (3.48)

where (t̂22
pr∗
, t̂22
p3
r∗
, t̂22
p2
r∗
, t̂22
p4
r∗

) are the following polynomials in y ≡ p2
ϕu (with

alternate signs):

t̂22
pr∗

= 1 +
24341

405
y − 290

3
y2 +

1606

9
y3 − 13979

81
y4

+ 101y5 − 1504

45
y6 +

388

81
y7, (3.49)

t̂22
p3
r∗

= 1 +
46372

2285
y − 134587

2285
y2 +

45492

457
y3

8This splitting can be performed with ease since tail and instantaneous contributions
are consistently well separated by the PN ordering.

9We have verified that this choice gives an excellent approximation to the full expressions
for all cases considered.
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− 54397

457
y4 +

43924

457
y5 − 112697

2285
y6

+
32212

2285
y7 − 776

457
y8, (3.50)

t̂22
p2
r∗

= 1− 27552

5729
y +

2910

337
y2 − 70015

5729
y3

+
61785

5729
y4 − 34674

5729
y5 +

10952

5729
y6 − 1455

5729
y7, (3.51)

t̂22
p4
r∗

= 1− 35260

1197
y +

78500

1197
y2 − 34825

342
y3

+
265975

2394
y4 − 96727

1107
y5 +

6305

171
y6

− 3245

342
y7 +

2425

2394
y8. (3.52)

The resulting instantaneous factor is conveniently separated in amplitude
and phase,

hncinst
22 = fncinst

22 eiδ
ncinst
22 , (3.53)

which are given by

fncinst
22 = 1−

p2
r∗

c2
(
p2
ϕu+ 1

)3[( 1

14
− 31ν

14

)
f̂22

11PN +
p2
r∗

u
(
p2
ϕu+ 1

)2(5

7
− 8ν

7

)
f̂22
p1PN
r∗

]
+

p2
r∗

c4
(
p2
ϕu+ 1

)4[u( 65

252
+

211ν

126
+

139ν2

63

)
f̂22
u2PN

+
p2
r∗(

p2
ϕu+ 1

)2(1613

504
− 1567ν

504
− 71ν2

72

)
f̂22
p1PN
r∗

]
, (3.54)

δncinst
22 =

pr∗pϕ

c2
(
p2
ϕu+ 1

)2[u(25

21
− 18

7
ν

)
δ̂22
u1PN +

p2
r∗(

p2
ϕu+ 1

)2(55

21
− 34ν

7

)
δ̂22
p1PN
r∗

]
+

pr∗pϕu

c4
(
p2
ϕu+ 1

)3[u( 7

27
− 416

189
ν − 652

189
ν2

)
δ̂22
u2PN

+
p2
r∗(

p2
ϕu+ 1

)2(20945

2646
− 17321

1323
ν +

134

1323
ν2

)
δ̂22
p2PN
r∗

]
.

(3.55)

Similarly to the tail factor, all the functions (f̂22
i , δ̂

22
i ) are polynomials in y;

their explicit expressions are

f̂22
11PN = 1− 7(1 + 3ν)

1− 31ν
y − (451− 177ν)

3− 93ν
y2 − 3(3 + 5ν)

1− 31ν
y3, (3.56)

f̂22
p1PN
r∗

= 1− 65− 216ν

3(5− 8ν)
y − 5(115− 72ν)

3(5− 8ν)
y2 +

305− 264ν

3(5− 8ν)
y3, (3.57)

f̂22
u2PN = 1− 44767 + 28618ν − 7276ν2

42
(
65 + 422ν + 556ν2

) y
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+
132507− 87244ν − 29672ν2

14
(
65 + 422ν + 556ν2

) y2 − 134789 + 27920ν + 9472ν2

42
(
65 + 422ν + 556ν2

) y3

−
3
(
637− 1448ν + 512ν2

)
2
(
65 + 422ν + 556ν2

) y4 −
3
(
418 + 355ν + 710ν2

)
7
(
65 + 422ν + 556ν2

) y5, (3.58)

f̂22
p2PN
r∗

= 1− 16399− 169738ν − 9902ν2

7
(
1613− 1567ν − 497ν2

) y
− 256835− 145513ν + 7405ν2

4839− 4701ν − 1491ν2
y2 +

4
(
292018− 194489ν − 76057ν2

)
21
(
1613− 1567ν − 497ν2

) y3

− 449937 + 29671ν − 80119ν2

7
(
1613− 1567ν − 497ν2

) y4 − 34361− 33826ν − 3518ν2

7
(
1613− 1567ν − 497ν2

)y5

+
15
(
5− 13ν + ν2

)
1613− 1567ν − 497ν2

y6, (3.59)

δ̂22
u1PN = 1 +

125− 102ν

25− 54ν
y, (3.60)

δ̂22
p1PN
r∗

= 1 +
42 (5− 2ν)

55− 102ν
y − 35 (7− 6ν)

55− 102ν
y2, (3.61)

δ̂22
u2PN = 1 +

39761− 20950ν − 21236ν2

14
(
49− 416ν − 652ν2

) y −
3
(
3709− 2556ν − 408ν2

)
14
(
49− 416ν − 652ν2

) y2

−
3
(
767− 2551ν − 1070ν2

)
7
(
49− 416ν − 652ν2

) y3 , (3.62)

δ̂22
p2PN
r∗

= 1 +
66624− 84120ν + 300789ν2

41890− 69284ν + 536ν2
y

− 292601− 298528ν − 144464ν2

41890− 69284ν + 536ν2
y2 +

7
(
28217 + 17672ν − 1664ν2

)
41890− 69284ν + 536ν2

y3

+
3
(
6473− 23284ν + 6856ν2

)
41890− 69284ν + 536ν2

y4 . (3.63)

We anticipate here that in Sec. 3.3.2 we will argue how these polynomials,
and especially the various t̂22

pnr∗
(y) of the tail factor, need a proper resummation

in order for the 2PN corrections to have a robust behavior in the strong field
regime. The same will follow for the subdominant spherical modes of the
waveform, in Sec. 3.3.4.

3.2.3 2PN noncircular corrections for the m = 0 modes

As mentioned in the previous section, the factorization scheme presented
therein cannot be applied successfully to the spherical modes with m = 0,
because of the vanishing of their Newtonian factor in the circular limit. Nev-
ertheless, we can still devise a model for them that is well behaved and incor-
porates the 2PN noncircular waveform information outlined in Sec. 3.2.1. In
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particular, the alternative to Eq. (3.43) we propose in this case is

h`0 = Ŝeff

(
h

(N,ε)
`0 +

ˆ̂
h`0

)
, (3.64)

where the PN correction, which indeed is fully noncircular, is given by

ˆ̂
h`0 = T2PN

h`0 − (h(N,ε)
`0

)
EOMs

Ŝeff

 . (3.65)

Similarly to the other prescription, this quantity comes out naturally split into
an instantaneous and a tail part,

ˆ̂
h`0 =

ˆ̂
htail
`0 +

ˆ̂
hinst
`0 . (3.66)

Here however it is convenient to express the PN corrections using (u, pr∗ , ṗr∗)
instead of (u, pr∗ , pϕ). The reason is that, in this case, writing the corrections
in pϕ leads to issues in their numerical evaluation along the EOB dynamics,
since they present noncircular combinations of pϕ and u that do not vanish
automatically in the circular limit, but need pϕ to be replaced with its corre-
sponding quasicircular PN expansion in u. Therefore, we remove pϕ in favor
of (u, pr∗ , ṗr∗) by inverting the 2PN-accurate EOB equation of motion of ṗr∗ ,
Eq. (2.93).

We report here the corresponding PN corrections for the mode (2, 0):

ˆ̂
htail

20 = − π

960u10c3

√
ṗr∗ + u2

6u

[
960ṗr∗u

10 + 960ṗ2
r∗u

8 + 240
(
−3ṗ3

r∗u
6

+p2
r∗ ṗr∗u

9
)

+ 80u4
(

7ṗ4
r∗ + 2p4

r∗u
6
)
− 5

(
95ṗ5

r∗u
2 + 26p2

r∗ ṗ
3
r∗u

5

+11p4
r∗ ṗr∗u

8
)

+
(

417ṗ6
r∗ + 110p2

r∗ ṗ
4
r∗u

3 − 45p4
r∗ ṗ

2
r∗u

6 + 2p6
r∗u

9
)]

(3.67)

ˆ̂
hinst

20 =
1

14
√

6u2c2

[
ṗr∗u

2(−19 + ν) + 3
(
ṗ2
r∗ − p

2
r∗u

3
)

(3 + 5ν)

+ 6p2
r∗ ṗr∗u(3 + 5ν) + 3p4

r∗u
2(3 + 5ν)

]
+

1

504
√

6u3c4

[
ṗr∗u

4
(

1052− 2803ν − 53ν2
)

+ p2
r∗u

5 (−743 + 7009ν

−571ν2
)

+ 3ṗ2
r∗u

2
(

545− 430ν + 28ν2
)
− 3ṗ3

r∗

(
79 + 25ν + 5ν2

)
+ 18p2

r∗ ṗr∗u
3
(

81 + 404ν + 65ν2
)
− 9p2

r∗ ṗ
2
r∗u
(

115 + 121ν + 65ν2
)

+ 6p4
r∗u

4
(

79 + 133ν + 185ν2
)
− 9p4

r∗ ṗr∗u
2
(

151 + 217ν + 125ν2
)

− 3p6
r∗u

3
(

187 + 313ν + 185ν2
)]
. (3.68)



3.3. WAVEFORM VALIDATION: TEST-MASS LIMIT 99

3.3 Waveform validation: test-mass limit

Let us now proceed to assess the performance of our new factorized waveform
model, starting from the test-mass case, ν → 0. As we mentioned multiple
times in our presentation of the EOB approach, in Chapter 2, this extreme
case has always been of great importance in the development of essentially ev-
ery aspect of EOB models: on the one hand, because it is closely related, via
the EOB approach, to the general case of binary systems with any mass-ratio
ν; on the other hand, because it is much easier to handle from an analytical
and numerical point of view. Focusing in particular on the numerical side, in
the test-mass limit we have the great advantage to be able of rapidly generat-
ing exact waveforms (modulo numerical errors) for essentially any dynamics
we want, without the need of computationally expensive simulations as in
the comparable-mass case. This offers a convenient and flexible methodol-
ogy to thoroughly test our waveform model and individuate possible paths
of improvement. Accordingly, in Sec. 3.3.1 we explore the case of test-mass
eccentric insplunges, focusing on the dominant ` = m = 2 mode, and we show
the emergent need of adopting specific resummation techniques on our noncir-
cular factors. These are discussed and tested in Secs. 3.3.2 and 3.3.3, and later
extended to higher (`,m) modes in Sec. 3.3.4. In Sec. 3.3.5 we test the 2PN
noncircular corrections for the m = 0 modes, presented in Sec. 3.2.3, focusing
in particular on the mode h20. Finally, in Sec. 3.3.6 we use the flexibility of
the test-mass limit to validate our model in the case of dynamical capture
dynamics.

3.3.1 Eccentric insplunge in the test-mass limit

Let us start our waveform checks in the test-mass limit with the case of elliptic
inspirals . We proceed by following Ref. [194], which extensively explored this
limit to validate the waveform prescription of TEOBResumS-DALI, indeed now
considering also the 2PN noncircular factors at the center of our study. Focus-
ing on the motion of a test particle around a Kerr black hole, such validation
procedure relies on comparisons between the analytic EOB waveform and the
numerical solution of the Teukolsky equation, obtained using the 2+1 time-
domain code Teukode [244]. In particular Ref. [194] considered both (i) the
geodesic motion along elliptic orbits and (ii) the full transition from the ec-
centric inspiral to merger and ringdown. The outcome of that study was that,
even without the 2PN corrections, the analytic waveform delivers a rather
accurate approximation of the exact waveform up to mild values of the initial
eccentricity, both for amplitude and phase (see, e.g., Fig. 13 of Ref. [194]).

On our side, we use precisely the expressions for (ĥnctail
22 , hncinst

22 ) given in
Eqs. (3.48) and (3.53) and repeat the comparisons of Ref. [194]. The ec-
centric numerical waveforms we compare with are listed in Table 3.1. We
also recall that the quasi-circular part of the waveform we adopt is precisely
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Table 3.1: Numerical eccentric simulations considered in our comparisons.
We use ν = 10−3 to drive the transition from inspiral to merger. For each
eccentric simulation, we report the spin parameter â, the initial/final values of
eccentricity and semilatus rectum, and the merger time tmrg. The final values
of eccentricity and semilatus rectum are evaluated at tsep since they are not
defined for later times, where tsep is the time when the semilatus rectum equals
the separatrix and the radial turning points cease to exist (definitions of e, p
and the separatrix written in terms of radial turning points can be found in
Sec. IIA of Ref. [194]).

â e0 p0 esep psep tsep tmrg

0.0 0.1 6.700 0.107 6.213 1459 1890
0.0 0.3 7.000 0.305 6.611 1382 1731
0.0 0.7 7.700 0.694 7.388 1916 2049
0.0 0.9 8.050 0.891 7.783 4570 4663
−0.4 0.5 8.800 0.501 8.426 2182 2387
0.4 0.5 5.900 0.490 5.415 2092 2192

the same of Ref. [194]. In Fig. 3.2, we report different configurations aim-
ing at comprehensively covering the parameter space. The first four panels
from left to right refer to nonspinning binaries with increasing eccentricity
e0 = (0.1, 0.3, 0.7, 0.9), while the last two panels refer to two spinning binaries
with â = ±0.4 and initial eccentricity e0 = 0.5. For low eccentricity, up to
e ' 0.3, the 2PN corrections improve the phase agreement during the inspiral,
but for higher eccentricity, the phase of the wave with only Newtonian cor-
rections is more accurate. Moreover, in all the cases, the analytical/numerical
agreement visibly deteriorates as one gets closer to plunge and merger, both
at the level of the phase and of the amplitude. Careful analysis of the geodesic
case highlights that the reliable behavior of the waveform during the eccentric
inspiral is related to cancellations between the tail and instantaneous factors.
By contrast, the inaccurate behavior of the analytical waveform during the
plunge is related to the fact that the quantity y ≡ p2

ϕu, which appears every-
where in Eq. (3.48), becomes rather large during the late plunge, as shown in
Fig. 3.3. The growth of p2

ϕu makes the eccentric noncircular tail factors too
large with respect to the instantaneous ones, and the cancellations mentioned
above are no longer possible, leading to the observed loss in accuracy. This
issue is also responsible for the large phase disagreement near the periastra of
configurations with high eccentricity.

To cure this behavior, we need to implement specific resummation strate-
gies, as we will discuss in the following.
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Figure 3.2: Comparisons with nonresummed noncircular tail factor: compar-
ing analytical and numerical ` = m = 2 waveforms for the transition from
inspiral to plunge of a test particle on a Kerr black hole with spin parameter
â. We consider different orbital configurations, determined by the values of
initial eccentricity e0 and initial semilatus rectum p0, with ν = 10−3. Each
panel displays the numerical waveform (black line, indistinguishable) and two
EOB waveforms: (i) the solid-red one, with noncircular information only in
the Newtonian prefactor and (ii) the dashed-blue one, with also the noncircu-
lar 2PN factor, here without any resummation. The bottom panel shows both
the phase differences and the relative amplitude differences with respect to
the numerical waveform. We use dashed lines for the differences correspond-
ing to the wave with 2PN corrections. The vertical line marks the merger
time, corresponding to the peak of the numerical amplitude.
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Figure 3.3: Last part of the time evolution of p2
ϕu for different combinations

of (â, e0, p0). Notice that, during the plunge, p2
ϕu can grow up to ∼ 10. This

growth is mostly responsible for the unacceptably large analytical/numerical
phase disagreement during the plunge exhibited by the waveform model with
2PN noncircular corrections, see Fig. 3.2.

3.3.2 Resummation of the noncircular tail factor

Let us start this section by going back to the structure of the tail factor. In
its native form, it is a 1.5PN order term that is expanded in eccentricity up
to e6. We have seen above that this expansion in eccentricity, after the factor-
ization of the Newtonian contribution, can be recast in a rational function of
(u, pr, pϕ), see e.g. Eq. (3.48). In particular, the expansion in the eccentricity
e can be rewritten as an expansion in the radial momentum pr and ṗr, which
can be subsequently recast in a form where one can single out several poly-
nomials in y ≡ p2

ϕu, which are all, formally, at Newtonian order. Figure 3.3
shows the behavior of y versus time for different eccentric configurations: y
is not a small quantity.10 For the non-spinning configurations considered in
Fig. 3.3, it oscillates between 0 and 4 during the eccentric inspiral and may
reach values ∼ 7 up to merger. We thus wonder whether an argument that
can be so large may eventually generate some nonphysical behavior for the
functions (t̂22

pr∗
, t̂22
p3
r∗
, t̂22
p2
r∗
, t̂22
p4
r∗

), especially given the fact that they stem from

an expansion in eccentricity within a PN expansion.

10Note that y = p2
ϕu = 1 at Newtonian order and for circular orbits, since pN,circ

ϕ = 1/
√
u.
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As an example, Fig. 3.4 shows various truncations of t̂22
pr∗

. One sees that
̂ t22 p r

*

Figure 3.4: Behavior of various truncations and several Padé resummation
for the polynomial t̂22

pr∗
, appearing in Eq. (3.49). Tn represents a truncation

at yn. The various truncations of t̂22
pr∗

oscillate and become very large for

values of p2
ϕu of the order of those reached during the plunge; see Fig. 3.3. A

straightforward diagonal Padé approximant (P 3
3 or P 4

3 ) tapers the behavior
of the polynomial in strong field and eventually improves the performance of
the noncircular factor where it appears.

(i) the various polynomial truncations become very large for values of y of
the order of those of the late inspiral and (ii) the sign alternation gives an
oscillatory behavior that visually resembles the one that is typically found
for the truncated PN expansions of the energy flux of a test particle orbit-
ing a Schwarzschild black hole on circular orbits; see e.g. Ref. [110]. On
the basis of this analogy, and with the understanding that t̂22

pr∗
is the prod-

uct of an expansion in the eccentricity (or in pr∗ and ṗr), we interpret the
polynomial expression of t̂22

pr∗
as the truncated expansion of an unknown func-

tion of y that is expanded around y = 0. As such, this function can be
resummed, and we do it straightforwardly by applying Padé approximants.
In Fig. 3.4 we exhibit several (diagonal or nearly diagonal) Padé approximant
that resum different truncations of this polynomial. The Padé stabilizes the
truncated series (e.g. the results obtained resumming the truncation up to y6

is close to the Padé of the full polynomial up to y7) and considerably low-
ers the value it reaches after y ' 3, in particular with respect to the full
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nonresummed polynomial (T7 in Fig. 3.4). Although we do not have a for-
mal proof, the consistency between the P 3

2 , P 3
3 , and P 4

3 approximants seems
to suggest that the residual polynomial t̂22

pr∗
is indeed the Taylor expansion

of some unknown function and its resummation does make sense. A com-
pletely analogous behavior is found for the other three polynomial functions
(t̂22
p3
r∗
, t̂22
p2
r∗
, t̂22
p4
r∗

), which are thus also resummed. More specifically, the Padé

approximants we consider to replace the Taylor-expanded polynomials of the
tail factor are (P 4

3 [t̂22
pr∗

], P 4
4 [t̂22

p3
r∗

], P 4
3 [t̂22

p2
r∗

], P 4
4 [t̂22

p4
r∗

]). The quality of this resum-

mation is probed in Fig. 3.5, which is the analog of Fig. 3.2 in which the
polynomials in the noncircular tail factor have been Padé resummed as clar-
ified above. The analytical/numerical phase agreement not only improves
(and largely) during the plunge and merger phase, but also improves during
the eccentric inspiral. Moreover, the overall improvement with respect to the
simple Newtonian prefactor is evident, and there is no longer any pathological
behavior toward merger.

3.3.3 Resummation of the noncircular instantaneous factor

A priori, the same resummation strategy should be implemented for the resid-
ual instantaneous 2PN corrections, which present an analogous structure with
polynomials in y. We explored this both at the level of amplitude and phase
corrections, fncinst

22 and δncinst
22 . For the amplitude, we found that any choice of

Padé approximant for the various residual polynomials in y of Eq. (3.54) de-
velops spurious poles, so our resummation strategy cannot be pursued.11 This
is not of great concern, since the generic Newtonian prefactor alone already
gives an excellent approximation to the exact waveform. This can be clearly
seen in Fig. 3.5, where the amplitudes, with and without 2PN noncircular
corrections, are seen to produce analytical/numerical relative differences that
are comparable.

By contrast, for the instantaneous residual noncircular phase given in
Eq. (3.55) the procedure is robust. More precisely, we resum the polyno-
mials in y appearing in Eq. (3.55) with the Padé approximants P 1

0 [δ̂22
u1PN ],

P 1
1 [δ̂22

p1PN
r∗

], P 1
2 [δ̂22

u2PN ], and P 1
1 [δ̂22

p2PN
r∗

]. Note that the polynomial δ̂22
p2PN
r∗

, written

explicitly in Eq. (3.63), is of degree 4 in y, but we only use O(y2) terms since
the P 2

1 approximant produces unphysical behaviors for large y and the other
higher-order Padé approximants have spurious poles in the equal-mass case.
The improvements introduced by this resummation are shown in Fig. 3.6,
where we compare the analytical/numerical phase differences of the wave-
forms with and without the resummations of the polynomials in δncinst

22 , while
always adopting the resummed version of the noncircular tail factor. While a

11This is the current situation with the 2PN-accurate noncircular waveform. The proce-
dure will have to be investigated again in the future using results at 3PN order.
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Figure 3.5: Comparisons with resummed noncircular tail factor: comparing
analytical and numerical ` = m = 2 waveforms for the transition from inspiral
to plunge of a test particle on a Kerr black hole with spin parameter â. We
consider different configurations with ν = 10−3. Each panel displays the nu-
merical waveform (black line, indistinguishable) and two EOB waveforms: (i)
the solid-red one, with noncircular information only in the Newtonian prefac-
tor and (ii) the dashed-blue one, with noncircular 2PN corrections with the
tail factor ĥnctail

22 of Eq. (3.48) resummed following the procedure discussed in
Sec. 3.3.2. The bottom panel shows both the phase differences and the relative
amplitude differences with respect to the numerical waveform. We use dashed
lines for the differences corresponding to the wave with 2PN corrections. The
vertical line marks the merger time, corresponding to the peak of the numer-
ical amplitude. The resummation strongly improves the analytical/numerical
agreement with respect to Fig. 3.2.
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Figure 3.6: Same configurations of Fig. 3.5, but here we focus on the phase,
and we show also the analytical/numerical agreement obtained considering
the resummed noncircular tail and the resummed instantaneous noncircular
correction (dashed light green). The color scheme of the other differences is
the same of Fig. 3.5: solid light blue line for the wave with only the generic
Newtonian prefactor and dashed blue line for the wave with 2PN corrections
with resummed tail and Taylor-expanded instantaneous corrections.
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slight improvement in the phase accuracy can be seen in the reported cases,12

the resummation of the instantaneous phase corrections is less relevant than
the resummation of the eccentric tail.

As noted in previous works [194, 234], the general Newtonian prefactor is
quite effective in capturing the eccentric modulation of the waveform, both in
amplitude and phase. As a consequence, the missing analytical information we
are adding here is bound to bring rather tiny corrections, so that special resum-
mation procedures become essential to make the 2PN noncircular correcting
factors really useful. By separately analyzing the cumulative action of the in-
stantaneous and hereditary contributions to the waveform, one finds that the
good performance of our resummed waveform is due to compensations between
the two. This eventually yields only a tiny correction to the Newtonian non-
circular prefactor. More importantly, one notices that the instantaneous con-
tributions alone tend to overestimate the analytical phase, eventually yielding
phase differences, with respect to the numerical waveform, that are larger than
those obtained with the simple Newtonian prefactor. This is very clear when
inspecting Fig. 3.7, which illustrates this effect for four different geodesic con-
figurations (i.e. with F̂r = F̂ϕ = 0): (e, p) = (0.3, 9), (0.5, 9), (0.9, 9), (0.9, 13).
Indeed, at high eccentricity and relatively small semilatus rectum, the resum-
mation of the tail factor is a crucial aspect in order to have a compensation
between instantaneous and hereditary terms. The benefits of the resumma-
tion can be seen even at milder eccentricities or larger semilatera recta, even
if it is less pronounced. In Fig. 3.8, we also show the effect of resumming the
polynomials in the instantaneous factors for the same configurations consid-
ered in Fig. 3.7. While the effect of the resummation is clearly visible, it is
also evident that the resummation of the instantaneous factors is less relevant
than that of the tail factor.

3.3.4 Resummed noncircular corrections for the
subdominant modes

The resummation procedure we just outlined can be similarly applied to the
2PN noncircular corrections of the other waveform modes, whose expressions
are collected in Appendix B.1, notably in the form that we get before any
resummation is applied. Here we specifically discuss resummations and an-
alytical/numerical comparisons for the (`,m) modes (2, 1), (3, 3), (3, 2) and
(4, 4). We choose this illustrative set by observing that, at 2PN order, while
for the modes (2, 1) and (3, 3) the noncircular tail contribution is present, for
the modes (3, 2) and (4, 4) it is absent, as it would appear as a 2.5PN term in
the complete waveform. This has implications on the performance of the re-
spective noncircular corrections, as we will see below. To make the discussion

12The only exception is the â = −0.4 case, but bear in mind that we are not including
spin terms in the noncircular corrections.
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Figure 3.7: Instantaneous and hereditary noncircular 2PN corrections
to the quadrupolar phase for four non-spinning geodesic cases (e, p) =
(0.3, 9), (0.5, 9), (0.9, 9), (0.9, 13). The instantaneous phase corrections are
shown with dot-dashed blue lines, while the orange lines are for the phase
contributions of the resummed eccentric tail (dashed for the expanded results
and solid for the resummed ones). The corresponding sums between instan-
taneous and tail terms are shown in green with the same line style scheme
for the expanded and resummed version. The vertical dashed line marks the
periastron passage. For e = 0.9, we do not show the whole radial period in
order to highlight the neighborhood of the periastron.

clearer, it is convenient to rewrite here explicitly the tail factors at 2PN order
for the modes (2, 1) and (3, 3):

ĥnctail
21 = 1 +

1

c3
π

[
− i
(

3029

1920
upr∗ t̂

21
pr∗

+
619

576
p3
r∗ t̂

21
p3
r∗

)
+

635

768

p2
r∗

pϕ
t̂21
p2
r∗

− 61

256

p4
r∗

pϕu
t̂21
p4
r∗

]
, (3.69)

ĥnctail
33 = 1 +

1

c3

π

p2
ϕ

(
7 + 2p2

ϕu
)2[− i(4763

384
pr∗ t̂

33
pr∗

− 4763

24

p2
ϕp

3
r∗

p2
ϕu

2
(
7 + 2p2

ϕu
)2 t̂33

p3
r∗

)
+

4763

96

p2
r∗

pϕu
(
7 + 2p2

ϕu
) t̂33

p2
r∗
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Figure 3.8: Analogous to Fig. 3.7, but here we focus on the relevance of the
resummation for the instantaneous part. The orange solid line is the phase
contribution of the resummed eccentric tail, while the blue lines correspond
to the instantaneous phase contributions, solid when they are resummed and
dot-dashed when they are not. The corresponding sums between tail and in-
stantaneous contributions are shown in green with the same line style scheme.
The vertical dashed line marks the periastron passage. For e = 0.9, we do not
show the whole radial period in order to highlight the neighborhood of the
periastron.

+
4763

6

p3
ϕp

4
r∗

p3
ϕu

3
(
7 + 2p2

ϕu
)3 t̂33

p4
r∗

]
, (3.70)

where

t̂21
pr∗

= 1 +
6035y

3029
− 10870y2

3029
+

8350y3

3029
− 3215y4

3029
+

511y5

3029
, (3.71)

t̂21
p2
r∗

= 1− 1388y

635
+

666y2

635
− 92y3

635
− 13y4

635
, (3.72)

t̂21
p3
r∗

= 1− 981y

619
+

573y2

619
− 115y3

619
, (3.73)

t̂21
p4
r∗

= 1− 82y

183
− 17y2

183
, (3.74)
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t̂33
pr∗

= 1 +
67183y

23815
+

721737y2

47630
− 85973y3

9526
+

30812y4

4763
− 10722y5

4763

+
16769y6

47630
− 337y7

47630
, (3.75)

t̂33
p3
r∗

= 1 +
3125521y

762080
+

5675333y2

762080
− 2623521y3

69280
+

3513777y4

95260

− 2943211y5

152416
+

7128059y6

762080
− 2725303y7

762080
+

35247y8

95260
+

5233y9

95260
, (3.76)

t̂33
p2
r∗

= 1 +
1407963y

381040
− 343943y2

47630
+

2036583y3

95260
− 271775y4

19052

+
602219y5

76208
− 268357y6

95260
+

85037y7

190520
+

918y8

23815
, (3.77)

t̂33
p4
r∗

= 1 +
858779y

190520
+

92901791y2

6096640
+

66769y3

7040
− 94475723y4

1219328

+
9400891y5

152416
− 82481269y6

3048320
+

17880961y7

1524160
− 6096411y8

1524160

+
2935y9

13856
+

4009y10

76208
. (3.78)

Each of these polynomials in y is resummed using Padé approximants.
The choices we made are summarized in Table 3.2. The results of this proce-

Table 3.2: Padé used for the resummation of the tail 2PN noncircular cor-
rections for the modes (2, 2), (2, 1), and (3, 3). Note that t̂33

p3
r∗

has terms up to

y8, but we use the Padé P 3
2 .

Selected Padé

(`,m) t̂`mpr∗ t̂`mp2
r∗

t̂`mp3
r∗

t̂`mp4
r∗

(2, 2) P 4
3 P 4

3 P 4
4 P 4

4

(2, 1) P 2
3 P 1

3 P 0
3 P 2

0

(3, 3) P 4
3 P 5

4 P 3
2 P 5

5

dure for the modes (2, 1) and (3, 3) are collected in Fig. 3.9, which compares
analytical and numerical waveforms for an illustrative, but significative, set of
configurations. The same is done in Fig. 3.10 for the modes (3, 2) and (4, 4).
When analyzing the phasing during the inspiral, a few comments are in order.
First, the phase and amplitude agreement for the modes (2, 1) and (3, 3) is in
this case comparable to the (2, 2) mode, and the 2PN corrections are found
to yield a notable reduction of the analytical/numerical phase difference with
respect to the simple Newtonian prefactor prescription. This is true for any
value of the eccentricity considered. When moving to the modes (3, 2) and
(4, 4), one faces instead the rather surprising fact that the waveform with
2PN noncircular corrections performs worse than the one without. In light of
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Figure 3.9: Same type of plots (and same color scheme) of Fig. 3.5, but
here we collect in different columns our test-mass results for the subdomi-
nant modes (2,1) and (3,3), for the illustrative configurations (e0, â, p0) =
(0.1, 0, 6.7), (0.5, 0, 7.35), (0.9, 0, 8.05), (0.5, 0.4, 5.9).
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Figure 3.10: Same plots of Fig. 3.9 for the subdominant modes (3,2) and
(4,4).
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our above analysis in the compensation between tail and instantaneous fac-
tors, we understand this result as a consequence of the fact that these modes
do not have a tail factor at 2PN order, in contrast to what happens for the
modes (2, 2), (3, 3), and (2, 1), where the aforementioned compensation can
take place. A confirmation of this interpretation can be found in Fig. 3.11,
where we analyze an exemplifying orbital configuration with e0 = 0.7.

Figure 3.11: Comparisons of the waveform modes (2,2), (2,1), and (3,3) for
the nonspinning configuration (e0, â, p0) = (0.7, 0, 7.7). Top panels: numerical
waveforms (solid black line), analytical waveforms with only Newtonian non-
circular corrections (solid red line), and analytical waveforms with complete
2PN noncircular corrections, with the resummed eccentric tail factor (dashed
blue line). Bottom panels: analytical/numerical phase differences (in radians)
for different prescriptions: (i) Newtonian noncircular corrections only (solid
light blue line); (ii) with the addition of the 2PN instantaneous noncircular
corrections without noncircular tail factor (dashed purple line); (iii) wave-
form with the complete 2PN noncircular corrections, with instantaneous and
tail terms in expanded form (solid aqua-green line); and (iv) waveform with
the complete 2PN noncircular corrections, with tail terms in resummed form
(dashed blue line). Notice the huge impact of the resummed tail factor in the
PN noncircular corrections.

Qualitatively, going to higher PN orders, the same behavior should be
found also for the modes (3, 2) and (4, 4). Future work, which aims at incor-
porating all noncircular corrections up to 3PN in our factorized and resummed
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waveform, will hopefully clarify these issues.

3.3.5 2PN noncircular corrections for the modes with m = 0

In Sec. 3.2.3, we have already pointed out that we have to use an alternative
factorization for the modes with m = 0. In Fig. 3.12, we test the factor-
ization proposed in Eq. (3.43) for different geodesic configurations around a
Schwarzschild black hole, in the case of the mode (2, 0). As one can see, the

Figure 3.12: Comparisons for the mode (2, 0) on nonspinning geodesic orbits
with e = (0.5, 0.9) and p = (9, 13). We show the numerical waveform (solid
black line), the EOB waveform with noncircular corrections only at Newtonian
level (solid red line), and the one with corrections at 2PN order as discussed
in Sec. 3.2.3 (dashed blue line).

agreement between numerical and analytical results is still qualitatively good,
even if the accuracy reached by the m 6= 0 modes discussed above is clearly
higher. Here, in addition to the different factorization scheme, a source of
disagreement is that the asymmetry of the m = 0 numerical modes with re-
spect to the apastron is not negligible, even for geodesic dynamics. In any
case, for the m = 0 modes, the 2PN corrections do not seem to bring a visi-
ble improvement to the analytical waveform with only the generic Newtonian
prefactor.

3.3.6 Dynamical captures in the test-mass limit

We now turn our attention to the case of dynamical, or hyperbolic, captures.
In particular, we consider the same dynamical configurations that appear in
Fig. 14 of Ref. [194], whose parameters are also listed in Table 3.3. The an-
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Table 3.3: Reference hyperbolic capture configurations in the large-mass-ratio
limit. The symmetric mass ratio used to drive the dynamics is ν = 10−2. For
each configuration, we report the Kerr dimensionless spin parameter â, the
initial energy E0, the initial angular momentum pϕ,0, the initial separation

r0, the number of peaks of the orbital frequency Npeaks
Ω , and the merger time

tmrg.

â E0 pϕ,0 r0 Npeaks
Ω tmrg

0 1.000711 4.01 120 2 2133
0 1.000712 4.01 120 1 819
0 1.001240 4.01 120 1 731

alytical/numerical comparisons for the new prescriptions, compared with the
original Newtonian case, are shown in Fig. 3.13. We report both the wave-
forms with expanded and resummed instantaneous noncircular phase at 2PN
order. We also recall that, in the hyperbolic case, the parameters of the ring-
down model, the NQC corrections and the merger time are extracted directly
from the numerical waveform. This is due to the fact that a fit over the pa-
rameter space of these quantities is not currently available; see Sec. VC of
Ref. [194] for more details. For this reason, the last part of the waveform is
artificially more accurate than what we would have obtained with the same
fitting procedure adopted for eccentric orbits. Nonetheless, this aspect is not
very relevant for our discussion since, in order to test the reliability of the
2PN corrections, one should focus on the inspiral and plunge parts of the
waveform. The phase differences of Fig. 3.13 show that, in this hyperbolic
scenario, the 2PN noncircular corrections do not provide a remarkable im-
provement in the analytical/numerical agreement with respect to the original
waveform of TEOBResumS-DALI. Moreover, the resummation of the instanta-
neous noncircular phase factor seems here to worsen the analytical/numerical
agreement of the wave with respect to the one where such factor is left in
expanded form. This may be an indication that the resummation of the in-
stantaneous phase is not uniformly reliable in all the parameter space and
hence, considering also how small is its effect on the elliptic inspirals, that
it should be in general avoided. We hope that adding noncircular analyti-
cal information beyond the 2PN order may conclusively clarify whether this
resummation is convenient or not.
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Figure 3.13: Dynamical captures of a particle on a Schwarzschild black
hole with ν = 10−2, pϕ,0 = 4.01, and three different initial energies, E0 =
(1.000711, 1.000712, 1.00124). Left column: relative trajectories, all starting
from r0 = 120, although the plot only focuses on the last part before the
capture. Right column: In the upper panels we compare the real part of the
numerical waveform (black line, barely indistinguishable) with two analytical
waveforms: the one with only the Newtonian noncircular factor (red line) and
the one with the 2PN corrections where the tail factor is resummed while
the instantaneous factor is not (dashed blue line). The corresponding phase
differences are reported in the bottom panels (solid clear blue and dashed
blue lines, respectively). The same panels also show the analytical/numerical
phase difference obtained with the resummation applied to both the tail and
the instantaneous 2PN noncircular phase δncinst

22 (dashed green line). The pa-
rameters of the ringdown and of the next-to-quasicircular corrections, as well
the merger time (marked by the vertical line), are extracted from numerical
data as in Ref. [194]; The closest analytical/numerical agreement is observed
when only the noncircular tail factor is resummed.
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3.4 Waveform validation: the comparable-mass
case

Let us now shift our focus on comparable-mass binaries. In this case, we in-
corporate our 2PN-improved noncircular waveform within the EOB eccentric
model of Ref. [185], which is currently the latest avatar of TEOBResumS-DALI.
In doing so, we keep the same dynamics, informed by NR quasi-circular sim-
ulations, of Ref. [185]. The 2PN noncircular corrections to the waveform
have an essentially negligible impact on quasicircular configurations and it is
not worth to provide a new, optimized, determination of (ac6, c3) using the
2PN resummed waveform. We thus explore here the performance of this new
waveform with both time-domain (phase-alignment) and frequency-domain
(unfaithfulness) comparisons, reported respectively in Secs. 3.4.1 and 3.4.2.

3.4.1 Phase comparisons in the time domain

Let us consider first the time-domain phasing comparison with the 28 public
eccentric datasets of the SXS catalog [218]. We have 20 nonspinning datasets,
with initial nominal eccentricities up to 0.3, and 8 spin-aligned datasets.
Ref. [236] presented specific analyses of these data, aimed at complementing
the information available in previous work [218], in particular (i) computing
a gauge-invariant estimate of the eccentricity during the evolution and (ii)
giving two different estimates on the NR uncertainty from the two highest
resolutions available. For completeness, the datasets we consider are listed
in Table 3.4. The table reports the time-domain phase uncertainty at merger
δφNR

mrg as well as the analogous quantities for the unfaithfulness F̄max
NR/NR on Ad-

vanced LIGO noise, as detailed in Ref. [236], according to the definitions that
we will recall below in Sec. 3.4.2. Table 3.4 also reports, for each configuration,
the parameters (eEOB

ωa , ωEOB
a ) used to initialize each EOB evolution at apas-

tron (see Refs. [234,236]). These values are updated with respect to previous
works, as they are determined by inspecting the EOB/NR phase difference in
the time domain and are tuned manually so to reduce as much as possible the
difference between the EOB and NR instantaneous GW frequencies [236]. Let
us note that our procedure for setting up initial data can be optimized. On
the one hand, the manual procedure for determining (eEOB

ωa , ωEOB
a ) could have

been automatized. On the other hand, the initial conditions we use are the
analogous of the adiabatic initial conditions for circular orbits. As such, they
do not reduce to the (iterated) postadiabatic ones [135,245] in the quasicircu-
lar limit, and some spurious eccentricity would be present in that case. These
improvements are discussed in Ref. [240] and will be taken into consideration
for future developments. It is anyway understood that they would eventually
just improve the EOB/NR agreement, and thus they do not interfere with the
model validation analysis we want to perform here.
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Table 3.4: SXS simulations with non-zero eccentricity analyzed in this sec-
tion. From left to right: the identification string of the simulation (ID); the
mass ratio q ≡ m1/m2 ≥ 1 and the individual dimensionless spins (χ1, χ2);
the time-domain NR phasing uncertainty at merger δφNR

mrg; the estimated NR

eccentricity at first apastron, eNR
ωa ; the NR frequency of first apastron ωNR

a ;
the initial EOB eccentricity eEOB

ωa and apastron frequency ωEOB
a used to start

the EOB evolution; the maximal NR unfaithfulness uncertainty F̄max
NR/NR; the

initial frequency used in the EOB/NR unfaithfulness computation Mfmin; the
maximal EOB/NR unfaithfulness F̄max

EOB/NR.

# ID (q, χ1, χ2) δφNR
mrg(rad) eNR

ωa ωNR
a eEOB

ωa ωEOB
a F̄max

NR/NR(%) Mfmin F̄max
EOB/NR(%)

1 SXS:BBH:1355 (1, 0, 0) +0.92 0.0620 0.03278728 0.0888 0.02805750 0.012 0.0055 0.13
2 SXS:BBH:1356 (1, 0, 0) +0.95 0.1000 0.02482006 0.15038 0.019077 0.0077 0.0044 0.24
3 SXS:BBH:1358 (1, 0, 0) +0.25 0.1023 0.03108936 0.18082 0.021238 0.016 0.0061 0.22
4 SXS:BBH:1359 (1, 0, 0) +0.25 0.1125 0.03708305 0.18240 0.021387 0.0024 0.0065 0.17
5 SXS:BBH:1357 (1, 0, 0) −0.44 0.1096 0.03990101 0.19201 0.01960 0.028 0.0061 0.15
6 SXS:BBH:1361 (1, 0, 0) +0.39 0.1634 0.03269520 0.23557 0.020991 0.057 0.0065 0.35
7 SXS:BBH:1360 (1, 0, 0) −0.22 0.1604 0.03138220 0.2440 0.019508 0.0094 0.0065 0.31
8 SXS:BBH:1362 (1, 0, 0) −0.09 0.1999 0.05624375 0.3019 0.01914 0.0098 0.0065 0.15
9 SXS:BBH:1363 (1, 0, 0) +0.58 0.2048 0.05778104 0.30479 0.01908 0.07 0.006 0.25
10 SXS:BBH:1364 (2, 0, 0) −0.91 0.0518 0.03265995 0.0844 0.025231 0.049 0.062 0.15
11 SXS:BBH:1365 (2, 0, 0) −0.90 0.0650 0.03305974 0.110 0.023987 0.027 0.062 0.12
12 SXS:BBH:1366 (2, 0, 0) −6× 10−4 0.1109 0.03089493 0.14989 0.02577 0.017 0.0052 0.20
13 SXS:BBH:1367 (2, 0, 0) +0.60 0.1102 0.02975257 0.15095 0.0260 0.0076 0.0055 0.15
14 SXS:BBH:1368 (2, 0, 0) −0.71 0.1043 0.02930360 0.14951 0.02512 0.026 0.0065 0.13
15 SXS:BBH:1369 (2, 0, 0) −0.06 0.2053 0.04263738 0.3134 0.0173386 0.011 0.0041 0.25
16 SXS:BBH:1370 (2, 0, 0) +0.12 0.1854 0.02422231 0.31708 0.016779 0.07 0.006 0.37
17 SXS:BBH:1371 (3, 0, 0) +0.92 0.0628 0.03263026 0.0912 0.029058 0.12 0.006 0.19
18 SXS:BBH:1372 (3, 0, 0) +0.01 0.1035 0.03273944 0.14915 0.026070 0.06 0.006 0.09
19 SXS:BBH:1373 (3, 0, 0) −0.41 0.1028 0.03666911 0.15035 0.02529 0.0034 0.0061 0.13
20 SXS:BBH:1374 (3, 0, 0) +0.98 0.1956 0.02702594 0.314 0.016938 0.067 0.0059 0.1

21 SXS:BBH:89 (1,−0.50, 0) . . . 0.0469 0.02516870 0.07194 0.01779 . . . 0.0025 0.18
22 SXS:BBH:1136 (1,−0.75,−0.75) −1.90 0.0777 0.04288969 0.1209 0.02728 0.074 0.0058 0.12
23 SXS:BBH:321 (1.22,+0.33,−0.44) +1.47 0.0527 0.03239001 0.07621 0.02694 0.015 0.0045 0.27
24 SXS:BBH:322 (1.22,+0.33,−0.44) −2.02 0.0658 0.03396319 0.0984 0.026895 0.016 0.0061 0.26
25 SXS:BBH:323 (1.22,+0.33,−0.44) −1.41 0.1033 0.03498377 0.1438 0.02584 0.019 0.0058 0.17
26 SXS:BBH:324 (1.22,+0.33,−0.44) −0.04 0.2018 0.02464165 0.29425 0.01894 0.098 0.0058 0.19
27 SXS:BBH:1149 (3,+0.70,+0.60) +3.00 0.0371 0.03535964 0.06237 0.02664 0.025 0.005 1.07
28 SXS:BBH:1169 (3,−0.70,−0.60) +3.01 0.0364 0.02759632 0.04895 0.024285 0.033 0.004 0.10

To convey all available information, we find it useful to explicitly show the
time-domain phasing comparisons in Fig. 3.14 (for the nonspinning datasets)
and in Fig. 3.15 (for the spinning dataset). One appreciates that, for several
cases, the careful choice of (eEOB

ωa , ωEOB
a ) allows one to obtain a rather flat

EOB/NR phase difference and residual oscillations of the order of 0.01 rad,
with accumulated phase difference at merger compatible with the nominal
NR uncertainty listed in Table 3.4. However, for some datasets, notably those
with larger initial eccentricities, the choice of the initial parameters looks
suboptimal, and the phase difference still shows a linear drift. Typically, this
effect is more prominent for dataset with larger initial eccentricity. It might
be related to either missing physics in the dynamics13 or to the need of further

13We remind the reader that the azimuthal radiation-reaction force we are using here
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Figure 3.14: EOB/NR time-domain phasing for all the nonspinning datasets
considered. The dashed vertical lines indicate the alignment window. For each
configuration, in the top panel we show the real part of the NR (black line)
waveform and the EOB one supplemented by our 2PN noncircular corrections
(red line); in the bottom panel we report the associated phase difference (light
blue line) and relative amplitude difference (orange line).
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Figure 3.15: EOB/NR time-domain phasing, analogous to those of Fig. 3.14,
for all the spinning datasets considered.

improving the initial data choice. Note, however, that this happens for NR
simulations that are especially noisy in the frequency at early times, so this
might prevent us from an optimal determination of the initial data that is
based on the time-alignment procedure, which is in turn affected by the noise
in the frequency. In any case, our choice of (eEOB

ωa , ωEOB
a ) can be considered

conservative for all the datasets considered and actually suggests that the
analytical model can match the NR waveforms even better than what shown
in Figs. 3.14 and 3.15. The understanding that this might be the case is
motivated by the observation that there are datasets with high eccentricity,
e.g., SXS:BBH:1362 or SXS:BBH:1363, whose EOB/NR phase agreement is
practically equivalent to that of less eccentric dataset (e.g., SXS:BBH:1358).

3.4.2 EOB/NR unfaithfulness

As an additional figure of merit we evaluate the quality of the EOB waveform
by computing the EOB/NR unfaithfulness weighted by the Advanced LIGO
noise over all the available configurations. Here we update the analogous
calculation done in Ref. [185] that was only relying on the simple Newton-
factorized waveform without the 2PN-accurate eccentric corrections. Consid-
ering two waveforms (h1, h2), let us recall that the unfaithfulness is a function
of the total mass M of the binary and is defined as

F̄ (M) ≡ 1− F = 1−max
t0,φ0

〈h1, h2〉
||h1||||h2||

, (3.79)

only incorporates the noncircular Newtonian prefactor in its ` = m = 2 mode. See section
3.5 for the proposal and testing of an updated prescription which also incorporates the 2PN
noncircular corrections we are adding here to the insplunge waveform.
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where (t0, φ0) are the initial time and phase. We used ||h|| ≡
√
〈h, h〉, and

the inner product between two waveforms is defined as

〈h1, h2〉 ≡ 4<
∫ ∞
fmin

h̃1(f)h̃∗2(f)

Sn(f)
df, (3.80)

where h̃(f) denotes the Fourier transform of h(t), Sn(f) is the zero-detuned,
high-power noise spectral density of Advanced LIGO [246] and fmin is the
initial frequency, approximately corresponding to the frequency of the first
apastron on each NR simulation, after the initial junk radiation has cleared. In
practice, the integral is done up to a maximal frequency fend that corresponds
to |h̃(fend)| ∼ 10−2. Both EOB and NR waveforms are tapered14 in the time
domain so as to reduce high-frequency oscillations in the corresponding Fourier
transforms. In addition, as originally pointed out in Ref. [218], the accurate
calculation of the Fourier transform of eccentric waveforms is a delicate matter,
and it may affect the calculation of the EOB/NR unfaithfulness, F̄EOB/NR,
if not optimally chosen. These issues have been discussed to some extent
in Sec. IV of Ref. [185]; see in particular Figs. 15 and 16 therein. Here,
we only recall that the original waveform is padded with zeros in order to
increase the frequency resolution and capture all the details of the Fourier
transform. Similarly, we were careful to tune the tapering parameters so that
the EOB and NR Fourier transforms for each dataset visually agree, likewise
to the case shown in Fig. 16 of Ref. [185]. The final outcome of the EOB/NR
unfaithfulness computation versus M is shown in Fig. 3.16. The maximum
values F̄maxEOB/NR are also listed in the last column of Table 3.4, together
with the value of the initial frequency Mfmin used in the integral. Figure 3.16,
complemented by Table 3.4, shows a small improvement with respect to Fig. 14
of Ref. [185], especially for low masses. Since we are using here a new choice
of the parameters (eEOB

ωa , ωEOB
a ) (and consequently new tapering parameters),

it is not really possible, within the context of equal-mass binaries, to precisely
state to which extent the small improvements found depend on these new
choices or on the additional PN corrections in the waveforms. Globally, in view
of the similarities between Fig. 14 of Ref. [185] and our current Fig. 3.16, we
are prone to conservatively state that, even when in factorized and resummed
form, the 2PN noncircular waveform corrections do not improve noticeably
the TEOBResumS-DALI model on this specific corner of the parameter space.

3.5 2PN noncircular corrections in F̂ϕ
In the previous sections we proposed and tested an extension of the TEOBResumS
-DALI insplunge waveform that additionally incorporates 2PN-accurate non-
circular correcting factors. After suitable resummations (in particular those

14We use a hyperbolic tangent function function, with two tunable parameters (α, τ), of
the form w(t) =

[
1 + tanh(αt− τ)

]
/2; this multiplies both the NR and EOB waveforms.
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Figure 3.16: EOB/NR unfaithfulness for the ` = m = 2 mode computed
over the 28 eccentric SXS simulations we are considering, see Table 3.4. The
horizontal lines mark the 0.03 and 0.01 values. The value of F̄max

EOB/NR does

not exceed the 0.7%, except for the single outlier given by SXS:BBH:1149,
corresponding to (3,+0.70,+0.60) with eNR

ωa = 0.037, which is around the 1%.
This is consistent with the slight degradation of the TEOBResumS performance
for large positive spins already found in the quasicircular limit, and pointed
out in Ref. [185].

introduced in Sec. 3.3.2), this yielded an improved analytical/numerical wave-
form agreement with respect to the simple use of the generic Newtonian prefac-
tor, especially at the level of the phase. The aim of this section is to explore the
performance of an analogous procedure applied to the radiation-reaction com-
ponent F̂ϕ. For simplicity, and since in any case the F̂ϕ used in TEOBResumS

-DALI is noncircularly flexed only in the ` = m = 2 mode (see Eq. (3.18)), we
focus our radiation-reaction analysis on its quadrupolar component. Regard-
ing the organization of this section content, in Sec. 3.5.1 we present the 2PN
noncircular expression for the ` = m = 2 mode of F̂ϕ, which is then used in
Sec. 3.5.2 to build a properly resummed correcting factor. Finally, the new
radiation-reaction prescription is tested in Sec. 3.5.3.
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3.5.1 2PN-accurate noncircular quadrupolar flux

In analogy with the case of the waveform, the starting point for our extension
noncircular prescription for F̂ϕ is to compute the generic planar orbit expres-
sion for its spherical multipoles, in PN-expanded form. We did so at 2PN
accuracy, considering F`m = m=

(
ḣ`mh

∗
`m

)
with h`m given by the noncircular

2PN result of Sec. 3.2.1.

For our current purposes, we show here explicitly just the ` = m = 2 flux
multipole, up to 2PN order,15 including both the instantaneous and tail parts:
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where, for simplicity and to be consistent with we what we did on the non-
circular waveform factors, we performed an expansion around 0 of pr∗ , up

15We refer here to PN orders counted from the leading order of F̂ϕ, which we remember
is, at leading order, a 2.5PN quantity in the EOB equations of motion.
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to order O(p4
r∗); notice moreover that we are omitting an overall factor c−5.

We actually performed the same computation for all the subdominant (`,m)
multipoles of F̂ϕ that are relevant at 2PN accuracy; their explicit expressions
can be found in Appendix B.2.

3.5.2 Factorization and resummation

Our aim here is to add 2PN-accurate noncircular corrections to angular radiation-
reaction force. This is achieved by dressing the first term of Eq. (3.18) with
an additional correcting factor F̂ 2PNnc

ϕ,22 derived from the full noncircular 2PN

flux F̂ 2PN
22 written in Eq. (3.81). Following the same methodology we adopted

for the insplunge waveform in the previous sections, our factorization scheme
is the following:

(i) starting from the Taylor expanded flux F 2PN
22 , we factorize the full New-

tonian contribution, given by FN22 f̂
Nnc
ϕ,22, while using in the latter the

2PN-accurate EOB equations of motion, so to remove from our correc-
tions the contribution already accounted for by the time derivatives in
f̂Nnc
ϕ,22, and finally we expand the residual up to O(1/c4);

(ii) we single out the circular part F̂ 2PNc
22 of the Newton-factorized flux by

simply taking on it the limit pr∗ → 0;

(iii) we factorize the circular part computed in the previous step and compute
the desired noncircular correction F̂ 2PNnc

22 .

In formulas we have

F̂ 2PNc
22 ≡ lim

pr∗→0
T2PN

[
F 2PN

22(
FN22 f̂

Nnc
ϕ,22

)
EOMs

]
, (3.82)

F̂ 2PNnc
22 ≡ T2PN

[
F 2PN

22(
FN22 f̂

Nnc
ϕ,22

)
EOMs

F̂ 2PNc
22

]
, (3.83)

where we use the same notation of Sec. 3.2.2. Again, the resulting noncircular
factor (3.83) comes out naturally split in an instantaneous and a tail com-
ponent, which appear at different PN orders. For this reason we can readily
factorize it further in an instantaneous and a tail factor,

F̂ 2PNnc
22 = F̂

2PNnc,inst

22 F̂
2PNnc,tail

22 , (3.84)

which explicitly read16
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16For consistency we have again to expand in pr∗ up to order O(p4
r∗).
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The quantities f̂PN
pnr∗

and t̂1.5PN
pnr∗

are polynomials in the Newtonian-order variable

y = p2
ϕu. For the instantaneous part, the coefficients of the polynomials

contain also the symmetric-mass ratio ν and read
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while in the tail factor there are no ν-contributions and the two polynomials
simply read

t̂1.5PN
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= 1 +
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Note that the analytical structure of the 2PN correction F̂ 2PNnc
22 is similar to

the one of the 2PN correcting factors of the waveform multipoles, discussed
in Sec. 3.2.2. As already argued there, the polynomials in y need to be re-
summed in order to provide reliable results in the strong field regime. More
specifically, we find convenient to use diagonal Padé approximants for the
polynomials in Eq. (3.86) and in the 2PN part of Eq. (3.86), while leaving the
other polynomials in Taylor-expanded form.

3.5.3 Testing the 2PN noncircular correction to F̂ϕ

We test the reliability of the resummed factor F̂ 2PN
22 in the test-mass limit, fo-

cusing on the associated quadrupolar contributions to the angular momentum
and energy fluxes, which we denote respectively by J̇22 and Ė22. Since we are
interested in comparing different prescriptions for F̂ϕ, the analytical fluxes
are not computed through Eqs. (1.179)-(1.178) but via the balance equations
(2.97)-(2.97), with the Schott energy in the resummed form (3.20). Indeed
this is not the case for the numerical results we use as a reference, which
instead are computed using in Eqs. (1.179)-(1.178) the numerical test-mass
quadrupolar waveform associated to the given dynamics.

We start by considering two non-spinning geodesic dynamics with eccen-
tricities e = 0.1, 0.9, in Fig. 3.17. In the rightmost panels, we show the 2PN
noncircular correction F̂ 2PNnc

22 with different resummation procedures: in Tay-

lor expanded form, with resummations only on the tail factor F̂
2PNnc,tail

22 , and

with resummation on both F̂
2PNnc,inst

22 and F̂
2PNnc,tail

22 . The latter is used to
compute the fluxes that we label as NCN2PN. In the case with e = 0.1, the
three prescriptions considered are similar, while in the other configuration
with e = 0.9 the effects of the resummations become more relevant. More-
over, it is possible to see that, again, the resummation is more relevant for the
tail factor than for the instantaneous one. This is also a consequence of the
fact that the polynomials t̂1.5PN

pnr∗
are of order eight in y, while f̂2PN

pnr∗
are fourth-

order polynomials. Nevertheless, as shown in the middle panels of Fig. 3.17,
the improvement brought by the resummed 2PN corrections to the angular
flux J̇22 is rather small, even for e = 0.9.

Deeper insight on its impact on the angular radiation-reaction force is
obtained considering the averages of the quadrupolar fluxes over an entire
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Figure 3.17: Trajectories, quadrupolar angular momentum fluxes, and 2PN
factor F̂ 2PNnc

22 of Eq. (3.84) for two geodesic configurations. In the middle
we show the numerical flux (black line, dubbed numerical), the standard flux
from TEOBResumS-DALI (red line, dubbed NCN), and the result of our 2PN
noncircular corrections in resummed form (yellow line, dubbed NCN2PN); be-
low we plot the corresponding analytical/numerical relative differences. These
plots refer to the radial periods that are highlighted in blue in the orbital tra-
jectory plot, on the left column. More precisely, for the configuration with
e = 0.9, the fluxes and the 2PN corrections are shown over just a portion of
the radial period, in order to highlight the burst of radiation at periastron
(vertical dashed line in the flux plots); in the corresponding trajectory plot
this is highlighted in aqua-green. On the rightmost panels we show the 2PN
corrections to the flux in Taylor expanded form, with resummations in the tail
factor, and with resummations either in the instantaneous and tail terms.

orbital period Trob, that is

〈J̇22〉 ≡
1

Trob

∫ Trob

0
J̇22dt, (3.93)

〈Ė22〉 ≡
1

Trob

∫ Trob

0
Ė22dt. (3.94)

In particular, Table 3.5 and Fig. 3.18 shows the relative analytical/numerical
differences for these quantities, further averaged over several geodesic dynam-
ics with the same eccentricity, and denoted as 〈∆J22/J22〉e and 〈∆E22/E22〉e.
The prescriptions we test are again the standard TEOBResumS-DALI prescrip-
tion (NCN), the one upgraded with F̂ 2PNnc

22 in Taylor-expanded form (NCN2PN
(Taylor)), and the one where F̂ 2PNnc

22 is Padé resummed. As can be seen, the
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Table 3.5: Absolute analytical/numerical relative differences for orbit aver-
aged quadrupolar fluxes, further averaged over several dynamical configura-
tions at fixed eccentricity. We consider in particular â = (0,±0.2,±0.6,±0.9)
and p = (9ps(e, â)/ps(e, 0), 13ps(e, â)/ps(e, 0)), where ps(e, â) is the sepa-
ratrix given by Eq. (3.31). Moreover, we adopt the shorthand notation
〈δF22〉e ≡ 〈|∆F22|/F22〉e. The radiation-reaction prescriptions we compare
are the NCN, NCN2PN(Taylor) and NCN2PN defined in the main text. Mind
that each value in the table is reported as a percentage.

NCN
NCN2PN
(Taylor) NCN2PN

〈δJ22〉e 〈δE22〉e 〈δJ22〉e 〈δE22〉e 〈δJ22〉e 〈δE22〉e
e = 0.1 0.31 0.39 0.26 0.34 0.24 0.32
e = 0.3 2.03 2.52 1.70 2.23 1.47 1.98
e = 0.5 4.70 5.41 4.24 5.17 3.40 4.26
e = 0.7 7.41 8.10 8.75 10.05 5.45 6.49
e = 0.9 9.66 10.36 24.36 26.91 7.37 8.44

2PN noncircular correction improves the radiation-reaction NCN, but the re-
summation is needed in order to obtain accurate results also for e & 0.6.
Indeed, for high eccentricity the periastron gets closer to the central black
hole, making the y-polynomials of F̂ 2PNnc

22 grow too much in their original
form. The resummation prevents this issue and leads also to better results for
lower eccentricities.

Figure 3.18: Illustrative plot for the absolute analytical/numerical relative
differences of the averaged fluxes, as they are given by Table 3.5, for the three
prescription NCN, NCN2PN(Taylor) and NCN2PN, specified in the main text.
Each point is an average over 14 configurations, with 〈δJ22〉0 = 〈δE22〉0 =
0.07% in the circular case e = 0. The NCN2PN prescription for the radiation-
reaction force, which incorporates resummed 2PN noncircular corrections, is
the one that has consistently the best performance.
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3.6 Comparisons with others eccentric EOB
models

Ref. [230], besides providing the analytical expressions of the generic-orbit tail
terms we adopted for our model, also proposed a different waveform factor-
ization where only the quasicircular Newtonian prefactor (2.101) is used and
all the 2PN noncircular contributions are included in additive form on top of
the respective quasicircular factors.

The scope of this section is thus to thoroughly test this analytical waveform
proposal and compare it with ours, outlined in Sec. 3.2.2, using as a benchmark
the numerical test-mass waveforms we already used in Sec. 3.3. To this end,
we carefully follow Sec. IIIB of Ref. [230] and recap here the results that are
relevant to our analysis. For modes with m 6= 0, Ref. [230] advocates the
waveform prescription

h
2PNqc

`m = h
(N,ε)c
`m Ŝeff

(
T`m + T ecc

`m

)
eiδ`m

(
f`m + f ecc

`m

)
, (3.95)

where the eccentric terms f ecc
`m and T ecc

`m are written as functions of (r, pr, ṗr).

The quasi-circular terms h
(N,ε)c
`m , T`m, δ`m, and f`m, are here identified with

their TEOBResumS counterparts, detailed in Sec. 2.2. Focusing just on the (2, 2)
mode, we use the expressions of T ecc

22 and f ecc
22 provided in the supplemental

material of Ref. [230]. The full expression of the former reads

T ecc
22 = η3π
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4
rr

6 − 116ṗ5
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(3.96)

while f ecc
22 , specified to the test-mass limit case, results

f ecc
22 = − p2
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where

v0 ≡
(1 + ṗrr

2)1/6

√
r

, (3.98)

is the Newtonian orbital velocity.
These are then recasted in terms of (pr∗ , ṗr∗) considering (see also Ap-

pendix E of Ref. [230])

pr =

√
D

A
pr∗ , (3.99)

ṗr = −
[(

∂H

∂r

)
pr∗

+ pr∗

(
∂H

∂pr∗

)
r

√
D

A

d

dr

A√
D

]
. (3.100)

Figure 3.19 shows a comparison between (i) the numerical waveform, (ii)
the analytical waveform of TEOBResumS-DALI, here without 2PN noncircular
corrections, and (iii) the 2PN-corrected waveform of Eq. (3.95). We observe
that the amplitude differences during the inspiral become more relevant as we
go towards large eccentricities and near the apastra. Moreover, even at small
eccentricity, the waveform of TEOBResumS-DALI seems to perform globally
better than the one of Eq. (3.95).

Figure 3.19 also highlights an aspect that is a priori unexpected: the
largest amplitude differences occur at apastron and not at periastron. This
might look puzzling because PN expansions are more accurate in weak field
than in strong field, while the plot seems to indicate the opposite.

The reason for this behavior can be understood by inspecting Figs. 3.20
and 3.21. In the first one we compare (i) the quasicircular EOB waveform,
(ii) the waveform with the general Newtonian prefactor, (iii) the waveform of
Eq. (3.43), and (iv) the waveform of Eq. (3.95). Moreover, we plot all the
respective analytical/numerical relative amplitude differences. On parallel,
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Figure 3.19: Comparisons between the ` = m = 2 numerical and ana-
lytical waveforms emitted by the eccentric inspiral of a test particle on a
Schwarzschild black hole. The initial eccentricities and semilatera recta are
(e0, p0) =(0.1, 6.7), (0.3, 7), (0.7, 7.7). The top panels display the numerical
waveform (black line, indistinguishable), TEOBResumS-DALI waveform (dot-
dashed red line, labeled N) and the waveform of Eq. (3.95) (dot-dashed green
line, labeled 2PNqc). The corresponding phase differences and relative am-
plitude differences are shown in the bottom panels. The vertical black line
marks the merger time, corresponding to the peak of the numerical wave-
form amplitude. Since we are interested on the inspiral, for simplicity the
2PNqc waveform is not completed by NQC corrections and ringdown. The
analytical/numerical phase agreement is comparable for the two choices (blue
lines); by contrast, the amplitude disagreement is always larger for the 2PNqc

prescription and worsens up to 30% when the eccentricity increases.

the second figure focuses on the noncircular instantaneous corrections to the
amplitude and to the phase for each analytical prescription, illustrating their
evolution along the dynamics. As shown in the middle panel of Fig. 3.21,
all the noncircular instantaneous factors provide a relevant correction to the
phase. The effect of these corrections is evident in the top panel of Fig. 3.20,
where the quasicircular waveform (gray line) is visibly dephased with respect
to the other curves. This indicates that the noncircular waveform informa-
tion has consistently the effect of improving the numerical/analytical phase
agreement with respect to the quasicircular EOB waveform. By contrast, the
noncircular correction given in Eq. (3.95), at 2PN accuracy, does not provide
a reliable amplitude description around the apastra, with differences that are
rather close to those obtained using the standard circular waveform.

To understand this aspect, let us focus for a moment on the Newtonian
noncircular prefactor, whose time evolution is shown, for the case considered,
in Fig. 3.21. The figure shows that the contribution of the Newtonian prefactor

is larger at apastron than at periastron. This is due to the fact that in ĥ
(N,0)nc

22

the orbital frequency Ω appears squared and at the denominator of the noncir-
cular correction, as a consequence of having factorized the circular Newtonian
contribution. This eventually amplifies the contribution of the whole function
in correspondence of the lowest values of Ω, i.e. in the neighborhood of the
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Figure 3.20: Comparing wave-
forms generated by a test parti-
cle inspiralling and plunging into
a Schwarzschild black hole, with
(e0, p0) = (0.7, 7.7). Top panel:
the numerical waveforms (black
line, indistinguishable), the qua-
sicircular EOB waveform (gray
line, dubbed qc), the waveform
of TEOBResumS-DALI with just the
Newtonian noncircular corrections
(red line, dubbed N), the waveform
of Eq. (3.43) with the 2PN correct-
ing factor (blue line, dubbed 2PN),
and the waveform of Eq. (3.95)
(green line, dubbed 2PNqc, without
NQC terms and ringdown). Bot-
tom panel: relative amplitude dif-
ferences with the numerical wave-
forms. Apastra are marked by dot-
ted red vertical lines, while peri-
astra are marked with dot-dashed
blue lines.

Figure 3.21: Contrasting differ-
ent noncircular corrections for the
same configuration of Fig. 3.20.
Top and middle panels: the non-
circular contributions to ampli-
tude and phase. We consider:
the noncircular Newtonian factor
ĥ

(N,0)nc

22 of Eq. (3.11) (red); the non-

circular factors ĥ
(N,0)nc

22 ĥncinst
22 ap-

pearing in our prescription (blue);
the 2PN noncircular corrections
of Eq. (3.95), written as 1 +
f ecc

22 /f22 for formal consistency
with the other noncircular correc-
tions (green). The bottom panel
shows the values assumed by r̈, Ω2,
and Ω̇ along the dynamics. The
correction proportional to r̈/(rΩ2)

in ĥ
(N,0)nc

22 yields larger values at
apastron than 1+f ecc

22 /f22, since Ω2

approaches 0 there.



3.6. COMPARISONS WITH OTHERS ECCENTRIC EOB MODELS 133

apastra. Note, however, that the only nonvanishing contribution of ĥ
(N,0)nc

22 at
apastron is the one proportional to r̈, whose presence is thus the main rea-
son behind the behavior seen in Fig. 3.21. The hierarchy between r̈ and Ω2

is clarified by the bottom panel of Fig. 3.21. By contrast, when considering
Eq. (3.95), without the crucial factorization of the Newtonian prefactor, the
amplitude correction remains substantially constant, and small, for the whole
radial evolution. This leads to the large analytical/numerical discrepancies for
the amplitude, as shown in Figs. 3.19 and Fig. 3.20. In fact, the prescription of

Eq. (3.95) incorporates the PN expansion of ĥ
(N,0)nc

22 through the replacement
of Ω and r̈ via the 2PN equation of motion, so that the crucial amplification
related to the exact r̈/Ω2 contribution is lost.

This trend is even more evident if we inspect dynamical capture dynam-
ics. Figure 3.22 provides an example of this, by referring to the uppermost
configuration of Fig. 3.13. The waveform of Ref. [230], Eq. (3.95), yields frac-
tional amplitude differences ∼ 60% at the apastron of the quasi-elliptic orbit
following the first encounter.

Figure 3.22: Same type of comparison of Fig. 3.19 but considering the dy-
namical capture configuration in the upper panels of Fig. 3.13. Top panel:
real part of the quadrupolar waveform. Middle panel: quadrupolar frequency.
Bottom panel: phase and fractional amplitude differences. The waveform of
Ref. [230], Eq. (3.95), accumulates rather large amplitude differences up to
the apastron of the quasi-elliptic orbit following the first encounter.

We conclude by noting that the analysis we just carried out also indi-
cates that, given the recipes we are following to build our PN noncircular
corrections, it is structurally impossible for them to improve the analyti-
cal/numerical agreement at periastron and apastron, since the two radial
turning points are characterized by pr∗ = 0, for which F̂ 2PNnc

`m and ĥnc
`m re-

duce to unity. Considering that in the vicinity of the periastra we have the
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biggest contribution to the fluxes, we see this as a first indication that using
the PN-expanded EOB equations of motion to define the 2PN noncircular
corrections, and thus getting rid of terms like r̈ that do not vanish apastra
and periastra (see the bottom panel of Fig. 3.21), may not be the best way to
proceed. We follow up on this note in the next section, where we reassess our
noncircular insplunge waveform recipe in light of what we highlighted here.

3.7 Alternative prescription for the quadrupolar
noncircular instantaneous factor

The noncircular corrections we discussed and tested in the previous sections
are all fundamentally based on PN expanded spherical multipoles of the wave-
form that, once recasted in EOB coordinates, are functions of the variables
(u, ϕ, pr∗ , pϕ). In our prescription, this leads to noncircular factors organized
in powers of pr∗ that reduce to 1 when pr∗ → 0. As a consequence, they tend
to disappear whenever the radial momentum dynamically evolves to small
values, notably near the apastra and periastra of the orbital motion.

Let us make a step back and dwell on the origin of the 2PN noncircular
expression of h`m, and thus of (U`m, V`m), which we are using as an input
to devise our waveform corrections. Setting aside the tail contributions, the
remaining 2PN-accurate instantaneous terms in (U`m, V`m) are completely de-
termined by the `th time derivatives of the source multipoles (IL, JL), specified
to their 2PN expressions for generic planar dynamics. Then, in the standard
procedure, also followed by Ref. [225] to derive the waveform results we used in
Sec. 3.2.2 for the definition of our noncircular instantaneous factors, these time
derivatives are systematically order reduced by means of the PN-expanded
equations of motion. Stated differently, at the 2PN order we are considering
here, the instantaneous part of h`m is simply given by a straightforward gen-
eralization of Eqs. (3.4)-(3.5) where the Newtonian multipoles (IL)Newt and
(JL)Newt are replaced with their 2PN-accurate counterparts. However, con-
trary to the rationale behind the definition of the general Newtonian prefactor,
the natural occurring time derivatives of the dynamical variables appearing
therein are all order reduced with the equations of motion.

In what follows we compute an alternative version of the 2PN instan-
taneous noncircular factor of Sec. 3.2.2 where we crucially skip this order-
reduction procedure, in what can be regarded as the 2PN generalization of
what is done in TEOBResumS-DALI for the Newtonian factor. The result is
a noncircular instantaneous correction that also depends on the time deriva-
tives of the EOB variables (u, ϕ, pr∗ , pϕ), remarkably including terms, such
as r̈, that despite being purely noncircular do not vanish in proximity of the
radial turning points of the orbital motion (see Fig. 3.21), and thus should
capture extra noncircular waveform modulations with respect to the previous
prescription. Focusing again on the dominant spherical mode ` = m = 2, we
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outline the new noncircular factor in Sec. 3.7.1, and then we test its perfor-
mance in the waveform model in Sec. 3.7.2.

3.7.1 Time-derivative dependent noncircular instantaneous
factor

In the case of the quadrupolar mode of the waveform, the 2PN generalization
of (3.4) giving the 2PN instantaneous piece of h22 reads

hinst
22 = −

√
6

c4

d2

dt2

(
Y22
L Iij

)
(3.101)

where, from Eq. (1.169),

Y22
ij =

√
2π

15

(
δ1〈i − iδ2〈i

)(
δj〉1 − iδj〉2

)
. (3.102)

To obtain our new noncircular instantaneous factor, we proceed as follows: (i)
we recover the 2PN accurate expressions for Iij , valid for noncircular bina-
ries, from Sec. IIIB of Ref. [225]; (ii) we trade the harmonic coordinates used
therein for the EOB phase space variables (u, ϕ, pr∗ , pϕ), using the transforma-
tion laws given in Eqs. (3.24)-(3.27); (iii) we compute hinst

22 from Eq. (3.101),
crucially keeping as they are the occurring time derivatives of the EOB vari-
ables, without replacing them with the PN-expanded equations of motion; (iv)

we factorize the Newtonian part, which is precisely h
(N,0)
22 of Eq. (3.10), and

the generic-orbit source term Ŝ
(0)
eff ≡ Ĥeff ; (v) we finally factorize the quasi-

circular part of the residual, obtained by setting to zero pr∗ and all the time
derivatives of the EOB variables except for Ω ≡ ϕ̇.

To be more precise, the expression we find for hinst
22 , before the factorization

process, has the structure

hinst
22 = h

(N,0)
22 (u, ṙ, r̈,Ω, Ω̇)

+
1

c2
h

(1PN,0)
22 (u, ṙ, r̈,Ω, Ω̇, pr∗ , ṗr∗ , p̈r∗ , pϕ, ṗϕ, p̈ϕ)

+
1

c4
h

(2PN,0)
22 (u, ṙ, r̈,Ω, Ω̇, pr∗ , ṗr∗ , p̈r∗ , pϕ, ṗϕ, p̈ϕ), (3.103)

where h
(N,0)
22 corresponds to Eq. (3.10) and (h

(1PN,0)
22 , h

(2PN,0)
22 ) formally address

the contributions obtained by taking the time derivatives (in this case second
derivatives) of the corresponding PN terms of the source multipoles, while
keeping all the derivatives explicit. We thus compute

ĥinst
22 ≡ T2PN

 hinst
22

h
(N,0)
22 Ŝ

(0)
eff

 . (3.104)
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The quasi-circular part of this quantity reads
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with pϕ left explicit, instead of being rewritten in terms of its quasi-circular
orbit expansion in u. The sought for 2PN noncircular instantaneous factor is
then obtained as

ĥncinst
22 = T2PN

[
ĥinst

22

ĥcinst
22

]
, (3.106)

and results in a rather long function of the variables (u, ṙ, r̈,Ω, Ω̇, pr∗ , ṗr∗ ,
p̈r∗ , pϕ, ṗϕ, p̈ϕ), which we report explicitly in Appendix B.3. Because of its
involved analytical structure, we find here convenient not to split this factor
in amplitude and phase.

Thanks to the fact that tail and instantaneous terms appear at different PN
orders and that the factorization procedure leading to Eq. (B.22) is analogues
to the one considered in Sec. (3.2.2), we can directly employ the new instanta-
neous noncircular factor (B.22) in the waveform model of Sec. (3.2.2) in place
of its previous counterpart, without the need of recomputing the noncircular
tail factor, which remains in the resummed form outlined in Sec. 3.3.2. We
test the so obtained alternative version of our 2PN-corrected waveform model
in the next section.

3.7.2 Assessment of the new waveform factor

The new prescription for the 2PN noncircular correcting factor is tested by ex-
amining the performance of the respective waveform in the test-mass limit, for
several dynamical configurations, and in the comparable-mass case. To set the
stage, we consider a particle inspiralling and plunging around a Schwarzschild
black hole in Fig. 3.23, which refers to a configuration with initial eccentric-
ity e0 = 0.5 and semilatus rectum p0 = 7.35. At the level of the phase, the
performance of the new noncircular factor and the one of Sec. (3.2.2) are sub-
stantially equivalent (see the dashed and solid blue lines in the middle panel
of Fig. 3.23). For the amplitude, instead, the new approach yields a reduced
maximum analytical/numerical difference during the evolution, as well as a
slight improvement as the orbital motion approaches the periastra (see bottom
panel of Fig. 3.23). This comes from the nonvanishing of the new noncircular
correction at the radial turning points. This is further highlighted in Fig. 3.24,
which compares the amplitude and phase of noncircular instantaneous factor
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Figure 3.23: Quadrupolar waveform generated by a test-mass plunging into
a Schwarzschild black hole along an orbit with initial eccentricity e0 = 0.5 and
semilatus rectum p0 = 7.35. In the top panel the numerical waveform (black
line) is shown alongside the EOB waveform of TEOBResumS-DALI (dashed
red line, below dubbed Unc

22 [N]), the one with the prescription of Sec. (3.2.2)
(dashed green line, below dubbed “Placidi et al.” after the paper where we in-
troduced it), and to the one proposed in the present section (dash-dotted blue
line, dubbed Unc

22 [2PN]). The middle and bottom panels show the phase and
relative amplitude differences for the three analytical waveform considered.

Figure 3.24: Comparing the instantaneous noncircular correction to the
amplitude (top panel) and phase (middle panel) of the quadrupolar wave-
form, considering the same dynamical configuration and analytical prescrip-
tions of Fig. 3.23. Bottom panel: amplitude relative difference of the two
2PN-corrected prescriptions with respect to the Newtonian contribution. The
noncircular factor introduced here is nonzero at the apastron (red dotted ver-
tical lines) and periastron (blue dash-dotted vertical lines). The black vertical
line marks merger time.
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used in the different prescriptions of Fig. 3.23. The bottom panel shows that
the 2PN factor we are considering here does not vanish at the radial turn-
ing points and is especially relevant at periastron. Note that the noncircular
instantaneous phase corrections at 2PN differ sensibly from the Newtonian
one; however, part of this difference is compensated by the hereditary phase
correction, as already highlighted in Fig. 3.7.

To better evaluate the impact of the difference at periastron between the
two 2PN noncircular factors, it is convenient to compare how the respective

quadrupolar waveforms reproduce the fluxes J̇22 = − 1

4π
=
(
ḣ22h

∗
22

)
and Ė22 =

1

8π
|ḣ22|2. More specifically, we consider the set of 14 geodesic eccentric orbits

of Table 3.5, already employed for Fig. 3.18 in Sec. 3.5.3. For instance, in
Fig. 3.25 we compare the fluxes for one of these configurations, with e = 0.5.
From the analytical/numerical relative differences, one finds that the 2PN

Figure 3.25: Quadrupolar fluxes at infinity of angular momentum and en-
ergy, generated by a test-particle in Schwarzschild spacetime along a geodesic
with e = 0.5 and p = 9. To mark the different prescription we use the same
notation of Fig. 3.23, with the addition of Unc

22 [1PN], that represent the pre-
scription with time-derivative dependent noncircular factor truncated at 1PN.
The vertical dashed line in the middle marks the periastron. The relative dif-
ferences in the bottom panels shows that the prescription Unc

22 [2PN] is the one
with the best analytical/numerical agreement at periastron.

noncircular corrections with explicit derivatives perform better at periastron
than the one of Sec. 3.2.2. The upper panels show instead a slightly stronger
emission at periastron than before, implying that, once the new waveform
prescription is recasted in an angular radiation-reaction force correction, as
we did in Sec. 3.5, and the latter is incorporated within the EOB dynamics,
we would eventually have an additional acceleration of the eccentric inspiral.
The development and testing of this radiation-reaction corrections is deferred
to future work.
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To draw a more global picture, it is useful to compare the orbital-averaged
analytical fluxes with the corresponding, averaged, numerical ones, mirroring
what we did in Fig. 3.18. This is done in Fig. 3.26. As showed therein, the new

Figure 3.26: Analytical/numerical fractional differences between the averaged
quadrupolar fluxes versus eccentricity. Each point is obtained from the mean
of the orbital averaged fluxes of all the configurations at a given eccentricity
e, taken from the set we previously considered for Fig. 3.18. We see that
analytical/numerical agreement of the fluxes is consistently improved with
respect to the previous prescription, more evidently as we go towards high
eccentricities.

2PN noncircular correction with explicit time derivatives yields (on average)
the best analytical/numerical agreement: even when this is truncated at 1PN,
its waveform reproduces more accurate fluxes than the one of Sec. (3.2.2).
Note however that the average over all spinning configurations can hide some
information. In particular, for highly eccentric configurations (e = 0.9), the
Newtonian prescription yields a better analytical/numerical agreement when
averaged only on negative spins. However, in the Schwarzschild case, the
hierarchy of the different prescriptions is the same as that of Fig. 3.26.

The new noncircular correcting factor with explicit time derivatives seems
quantitatively superior to all the other prescriptions. This is further corrob-
orated by the following: the instantaneous amplitude correction presented in
Eq. (3.54) contains a 1PN term ∝ −p2

r∗/u = −p2
r∗r that can become extremely

large when considering hyperbolic or eccentric orbits with large initial radius.
While this issue is not relevant for any of the configurations considered in
Sec. 3.2.2, such an amplitude correction can become even negative, and thus
unphysical, for large separations, e.g. those occurring in hyperbolic encoun-
ters. By contrast, the new noncircular correction is well-behaved also for a
hyperbolic encounter or a scattering configuration starting from any, arbitrar-
ily large, initial separation.

The same behavior carries over to the comparable-mass case, with the test-
mass dynamics replaced by the resummed EOB dynamics in the evaluation of
the explicit time derivatives. Figure 3.27 exhibits the time evolution of the dif-
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ferent noncircular waveform corrections along the EOB dynamics of a binary
corresponding to the illustrative NR configuration SXS:BBH:321 of the SXS
catalog [247], row #23 in Table 3.4. In this case, the mass ratio is q = 1.22
while the dimensionless spins (χ1, χ2), aligned with the orbital angular mo-
mentum, are χ1 = +0.33 and χ2 = −0.44. The initial EOB eccentricity at the
apastron is small, eEOB

ωa = 0.07621, but large enough to probe whether the new
waveform model brings an improvement with respect to the one of Sec. 3.2.2
or not. Fig. 3.27 indicates that, in the comparable-mass case, the amplitude

Figure 3.27: Same scheme as in Fig. 3.24, but relative to an eccentric inspiral
binary with e0 = 0.07621 and q = 1.22, corresponding to the illustrative NR
configuration SXS:BBH:321 of the SXS catalog [247], row #23 in Table 3.4.

correction at the radial turning points is more relevant than in the test-mass
case (compare with Fig. 3.24), although the extra correction with respect to
the Newtonian one is still quite small. It is also informative to look at the
EOB/NR phasing comparison for SXS:BBH:321, that we report in Fig. 3.28.
The top panels compare the EOB and NR real parts of the waveform, while the
bottom panels show the EOB/NR phase difference ∆φEOBNR

22 ≡ φEOB
22 − φNR

22

and relative amplitude difference, with ∆AEOBNR
22 ≡ AEOB

22 − ANR
22 . The pic-

ture illustrates that ∆φEOBNR
22 is reduced, during the late-inspiral and plunge,

with respect to the corresponding plot with the model of Sec. 3.2.2, in the
upper right corner of Fig. 3.15, which uses the same waveform alignment in-
terval. A similar behavior is also found with higher eccentricities. However,
it must be noted that, since the waveform is different, the choice of the initial
parameters, which we are currently not changing, might be optimized further.
Investigations on this aspect, together with the extension of this prescription
to higher modes, is postponed to future work.
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Figure 3.28: Illustrative EOB/NR phasing comparison with the NR dataset
SXS:BBH:321 of the SXS catalog [247]; see row #23 in Table 3.4 for the
relevant data. The EOB waveform is aligned to the NR one by minimizing
the phase difference in the frequency interval corresponding to the two vertical
lines in the left panels of the figure. Here, the EOB/NR phase difference is
reduced during the plunge with respect to the corresponding plot in the upper
right corner of Fig.3.15, in Sec. 3.4.1. The associated noncircular waveform
correction is shown in Fig. 3.27.





Conclusions

I
n this Thesis we addressed the problem of building accurate analytical
models for GW signals that had their origin in the coalescence of non-

circularized compact binary systems, i.e. binaries for which the orbital eccen-
tricity remains non-negligible during their whole inspiral motion. We started
out with an extensive dive in the general theory of GWs produced by PN
sources, in Chapter 1, where we laid down the basic theoretical concepts and
methodologies that are at the heart of any analytical waveform model. Then,
in Chapter 2, we specialized our discussion to the case of EOB models, probing
in details how the EOB approach describes the evolution of compact binaries
and the associated emission of gravitational radiation. Here, we paid partic-
ular attention to the prescriptions of TEOBResumS, the faithful and physically
complete EOB model upon which we based our waveform modeling activ-
ity, which represents the core content of Chapter 3, and, more in general, of
our original contributions to the field. In particular, after having reviewed
TEOBResumS-DALI, the state of the art eccentric branch of the aforementioned
model, we dedicated the rest of Chapter 3 to propose and thoroughly test
several extensions of it, revolving around the inclusion of 2PN noncircular
waveform information, with the goal of better capturing GW modulations
induced by the eventual noncircularity in the underlying binary dynamics.

More specifically, in what follows we recap our proposals and set out the
conclusions we can draw from their performance assessment:

(i) We have exploited 2PN waveform results for generic planar orbits to
come up with the definition of associated correcting factors that can be
directly used to improve the waveform of TEOBResumS-DALI, within the
paradigm of the factorization of the generic Newtonian prefactor. In
particular we split these corrections in instantaneous and tail factors, on
the basis of the character of the waveform information they respectively
incorporate.

(ii) We tested the performance of these analytical correcting factors by per-
forming comparisons with numerical waveforms from eccentric inspirals
(also through plunge and merger) in the test-mass limit. We showed
that the analytical/numerical agreement through the plunge phase, es-
pecially for large eccentricity, can be largely improved by implementing
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a straightforward resummation scheme, via Padé approximants, of the
residual polynomials in p2

ϕu entering the noncircular factors; this was
found to be particularly important for the tail factors. With this proce-
dure, we obtained an analytical/numerical phase disagreements of ±0.04
rad for e = 0.9 and disagreements at most within 0.02 rad for smaller
eccentricities; see Figs. 3.5 and 3.6. Similar improvements are also found
for test-mass limit hyperbolic captures; see Sec. 3.3.6.

(iii) Moving to the comparable-mass case, we provided a new comparison for
our upgraded version of TEOBResumS-DALI with 28 public NR simula-
tions of eccentric inspirals, from the SXS catalog. For most of the con-
figurations, the phase difference during the inspiral is mostly within the
±0.05 bandwidth. The related EOB/NR unfaithfulness computations
(using aLIGO noise for 20M� ≤M ≤ 200M�) are below the 1% thresh-
old, grazing at most the 0.7%, except for a single outlier, SXS:BBH:1149,
which reaches this limit because of limitations inherited by the underly-
ing quasicircular model, as explained in Ref. [185]. It should be noted
that the new 2PN factor discussed here are found to be small corrections
to the TEOBResumS-DALI avatar of Ref. [185]. As such, the use of well
controlled test-mass limit numerical data is crucial for determining the
actual importance of this additional analytical information.

(iv) Adopting factorization and resummation strategies analogues to those
used for the waveform, we have also built 2PN noncircular correcting
factors with which to dress the quadrupolar component of the angular
radiation-reaction force of TEOBResumS-DALI. Our flux tests indicate
that employing this new radiation-reaction prescription yields a small
but visible improvement in the analytical/numerical agreement for each
value of the eccentricity; see Fig. 3.18.

(v) The availability of test-mass waveform data has also allowed us to thor-
oughly compare our waveform prescription with the one proposed in
Ref. [230], whose main difference from ours is that the the Newtonian
prefactor is left in its original quasi-circular form. We found that the
factorization of the general Newtonian-factor, even before the inclusion
of our 2PN noncircular factors, yields more accurate and robust predic-
tions all over the parameter space. This is particularly relevant at the
level of the waveform amplitude, with differences that can reach up to
60%, versus the 6% at most of our model; see Figs. 3.19 and 3.20.

(vi) The origin of the reliable behavior found for the amplitude of the wave-

form with the general Newtonian factor h
(N,ε)
`m , somehow not precisely

understood in past works, has been traced back to the crucial presence
in the latter of contributions like r̈/rΩ2 that do not vanish at the radial
turning point of the binary motion. This prompted the proposal of an
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alternative version of our 2PN noncircular instantaneous factors where,

similarly to h
(N,ε)
`m , the time-derivatives of the EOB variables are left

explicit. We comprehensively tested this prescription, focusing on the
mode ` = m = 2, against a large set of data, with waveforms and fluxes
emitted by a test-mass orbiting a Kerr black hole and with comparable-
mass simulations. The corresponding waveform model has been observed
to increase consistently the analytical/numerical agreement with respect
its previous 2PN-corrected iteration; this is particularly clear at the level
of the fluxes, reported in Fig. 3.26.

To wrap up, our results indicate that the incorporation of high-PN non-
circular waveform terms within EOB models is more effective if, on the one
hand, suitable factorizations and resummation procedures are implemented,
and if, on the other hand, the time derivatives of the EOB variables occurring
in the formal expression of the analytical waveform are not replaced, whenever
possible, with the PN-expanded equations of motion, but rather evaluated us-
ing the resummed EOB realization of the latter. This also explains why the
use of the general Newtonian prefactor, as originally proposed in Ref. [234],
seems to be an essential element for constructing highly accurate analytical
waveforms for noncircular dynamics.
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Appendix A

Useful mathematical tools

A.1 Symmetric-trace-free projection of a generic
tensor

Given a Cartesian tensor TP ≡ Ti1...ip , its explicit STF part reads

T̂P =

[p/2]∑
k=0

apkδ(i1i2δi3i4 . . . δi2k−1i2kSi2k+1...ip)a1a1...akak , (A.1)

where the parenthesis (...) denote a symmetrization over all the indices inside
them, SP ≡ T(P ),

apk ≡
p!

(2p− 1)!!
(−)k

(2p− 2k − 1)!!

(p− 2k)!(2k)!!
, (A.2)

and [p/2] is the integer part of p/2. For example we have

T̂ij = T(ij) −
1

3
δijTaa, (A.3)

T̂ijk = T(ijk) −
1

5

(
δijT(kaa) + δjkT(iaa) + δikT(jaa)

)
. (A.4)

A.2 Padé approximant

blabla
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Appendix B

Long analytical expressions

We list here the explicit expressions of different useful quantities that would
be cumbersome to insert in the main text.

B.1 2PN noncircular factors for the subdominant
modes (m 6= 0)

In this Appendix we list the 2PN noncircular relativistic factors, that result
from the factorization prescription of Sec. 3.2.2, for all the subdominant m 6= 0
modes up to ` = m = 4,1 before any resummation is performed. Note that
the contributions that are not explicitly written are equal to 1 (or to 0, in the
case of δinst-nc

`m ).

Tail noncircular factors

ĥtail-nc
21 = 1− π

11520c3

[
6ipr∗u

(
3029 + 6035p2

ϕu− 10870p4
ϕu

2 + 8350p6
ϕu

3

− 3215p8
ϕu

4 + 511p10
ϕ u

5

)
−

15p2
r∗

pϕ

(
635− 1388p2

ϕu+ 666p4
ϕu

2 − 92p6
ϕu

3

− 13p8
ϕu

4

)
+ 20ip3

r∗

(
619− 981p2

ϕu+ 573p4
ϕu

2 − 115p6
ϕu

3

)
+

15p4
r∗

pϕu

(
183− 82p2

ϕu− 17p4
ϕu

2

)]
.

(B.1)

ĥtail-nc
31 = 1− π

1920c3p2
ϕ

(
7− 6p2

ϕu
)2[ipr∗(88130− 107366p2

ϕu

1For ` > 4, at 2PN accuracy, all the modes present at most just their leading Newtonian
contribution, which implies ĥ`m = 1, i.e. no PN correcting factors.
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+ 89843p4
ϕu

2 − 388835p6
ϕu

3 + 588840p8
ϕu

4 − 397460p10
ϕ u

5 + 139731p12
ϕ u

6

− 20563p14
ϕ u

7

)
+

p2
r∗

2pϕu
(
7− 6p2

ϕu
)(2115120− 3821769p2

ϕu+ 915328p4
ϕu

2

− 2431548p6
ϕu

3 + 9399380p8
ϕu

4 − 10528645p10
ϕ u

5 + 5655444p12
ϕ u

6

− 1592318p14
ϕ u

7 + 186288p16
ϕ u

8

)
−

ip3
r∗

3p2
ϕu

2
(
7− 6p2

ϕu
)2(38072160

− 92454747p2
ϕu+ 79749569p4

ϕu
2 − 137703015p6

ϕu
3 + 356358768p8

ϕu
4

− 482607515p10
ϕ u

5 + 363100527p12
ϕ u

6 − 161234979p14
ϕ u

7 + 40408200p16
ϕ u

8

− 4441608p18
ϕ u

9

)
−

p4
r∗

2p3
ϕu

3
(
7− 6p2

ϕu
)3(304577280− 928941216p2

ϕu

+ 1082387695p4
ϕu

2 − 1365588354p6
ϕu

3 + 3139841017p8
ϕu

4

− 4991336104p10
ϕ u

5 + 4638849326p12
ϕ u

6 − 2632737900p14
ϕ u

7

+ 916090404p16
ϕ u

8 − 181221912p18
ϕ u

9 + 15589584p20
ϕ u

10

)]
.

(B.2)

ĥtail-nc
33 = 1− π

3840c3p2
ϕ

(
2p2
ϕu+ 7

)2[ipr∗(47630 + 134366p2
ϕu+ 721737p4

ϕu
2

− 429865p6
ϕu

3 + 308120p8
ϕu

4 − 107220p10
ϕ u

5 + 16769p12
ϕ u

6 − 337p14
ϕ u

7

)
+

p2
r∗

2pϕu
(
2p2
ϕu+ 7

)(381040 + 1407963p2
ϕu− 2751544p4

ϕu
2 + 8146332p6

ϕu
3

− 5435500p8
ϕu

4 + 3011095p10
ϕ u

5 − 1073428p12
ϕ u

6 + 170074p14
ϕ u

7

+ 14688p16
ϕ u

8

)
−

ip3
r∗

p2
ϕu

2
(
2p2
ϕu+ 7

)2(762080 + 3125521p2
ϕu+ 5675333p4

ϕu
2

− 28858731p6
ϕu

3 + 28110216p8
ϕu

4 − 14716055p10
ϕ u

5 + 7128059p12
ϕ u

6

− 2725303p14
ϕ u

7 + 281976p16
ϕ u

8 + 41864p18
ϕ u

9

)
−

p4
r∗

2p3
ϕu

3
(
2p2
ϕu+ 7

)3(6096640 + 27480928p2
ϕu+ 92901791p4

ϕu
2 + 57821954p6

ϕu
3

− 472378615p8
ϕu

4 + 376035640p10
ϕ u

5 − 164962538p12
ϕ u

6 + 71523844p14
ϕ u

7

− 24385644p16
ϕ u

8 + 1291400p18
ϕ u

9 + 320720p20
ϕ u

10

)]
. (B.3)
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Instantaneous noncircular factors

f inst-nc
21 = 1 +

1

c2
p2
r∗

(
9

14
+

5ν

7

)
, (B.4)

δinst-nc
21 =

1

c2
pr∗pϕ

(
1

14
+

6ν

7

)
. (B.5)

f inst-nc
31 = 1 +

1

c2

{
p2
r∗

p2
ϕu
(
− 7 + 6p2

ϕu
)3[(−1076 + 1168ν) + p2

ϕu

(
4783

2

− 4242ν

)
+ p4

ϕu
2(−1520 + 4834ν) + p6

ϕu
3(6− 2136ν) + p8

ϕu
4(180 + 288ν)

]
+

p4
r∗

p4
ϕu

3
(
− 7 + 6p2

ϕu
)5[(154944− 168192ν) + p2

ϕu(−569222 + 740344ν)

+ p4
ϕu

2(840044− 1241680ν) + p6
ϕu

3(−622914 + 1014636ν)

+ p8
ϕu

4(232812− 408168ν) + p10
ϕ u

5(−35208 + 65232ν)

]}
, (B.6)

δinst-nc
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1

c2
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pr∗

pϕ
(
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ϕu
)2[(269

3
− 292ν

3

)
+ p2

ϕu(−146 + 222ν)

+ p4
ϕu
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]
+

p3
r∗

p3
ϕu

2
(
7− 6p2

ϕu
)4[(−12912 + 14016ν)

+ p2
ϕu(39410− 52984ν) + p4

ϕu
2(−45043 + 69758ν) + p6

ϕu
3(22704− 39288ν)

+ p8
ϕu
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. (B.7)
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32 = 1 +
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p2
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+
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+ p2
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+
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, (B.12)
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pr∗pϕu(

7 + 3p2
ϕu− 6p4

ϕu
2
)2

(−1 + 3ν)

[(
− 5513

55
+
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+
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+
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+
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+
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+
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+
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+
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+
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. (B.13)

f inst-nc
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+
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+
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(B.14)
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+
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+
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[(
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+
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+
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+
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+
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)]}
. (B.15)

B.2 2PN-accurate subdominant multipoles of F̂ϕ
(m 6= 0)

In Eq. (3.81) of the main text we showed the expression for the Taylor-
expanded multipole F 2PN

22 of the angular radiation-reaction force, which enters
the factorization procedure described in Sec. 3.5.2. Here we list for complete-
ness all the other multipoles, F 2PN

`m , that are relevant at 2PN accuracy. Mind
that, similarly to Eq. (3.81), we write each F 2PN

`m without the overall c−5 factor.
Our results read

F 2PN
21 = − 1

c2
p3
ϕu

6 1− 4ν

9
− 1

c4

{
p3
ϕu

7

[
5

126
+

13ν

63
− 92ν2

63

+ p2
ϕu

(
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126
+

335ν
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+
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63

)]}
, (B.16)

F 2PN
31 = − 1

c2
pϕu

3(1− 4ν)

[
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1

24
−

149p2
ϕu

2016
+

11p4
ϕu

2

336

)
+ p2

r∗u

(
1

336

+
p2
ϕu

48

)
−
p4
r∗

84

]
+
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(
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+
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[
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(
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224
+
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)]}
, (B.17)

F 2PN
32 = − 1

c4
p3
ϕu

6(1− 3ν)2

[
5

126
u

(
1 + 7p2

ϕu

)
− 5

252
p2
r∗

]
,

(B.18)
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F 2PN
33 = − 1
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+
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+
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]
+
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, (B.19)

F 2PN
42 = − 1
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pϕu

4(1− 3ν)2

[
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−
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−
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+
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−
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441
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(B.20)

F 2PN
44 = − 1
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pϕu
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42
+
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+
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+

95p4
ϕu

2

42

)
+ p4

r∗

(
10

63
−

25p2
ϕu

252
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. (B.21)

Notice that, at the 2PN accuracy we are considering here, all the sublead-
ing F̂ϕ multipoles listed above are present just the instantaneous part. This
is simply related to the fact that their hereditary effect contributions appear
at higher orders than the 2PN.

B.3 2PN noncircular instantaneous factor with
time derivatives

Here we provide the full expression of the noncircular instantaneous factor
introduced and tested in Sec. 3.7. This result from Eq. (3.106) and reads
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22 = 1 +

1
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+ ipr∗pϕr̈u

2

(
− 5

21
− 2ν

7

)
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+ iṗr∗p

2
ϕṗϕu
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2u3

(
− 30

49
+

283ν

98
− 15ν2

98

)
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3

(
1361

189
+

2798ν

189

− 380ν2

189

)
Ω + p2
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(
40

63
− 50ν

63
− 4ν2

9

)
Ω + p3

r∗pϕṙu
2

(
40

63
− 50ν

63
− 4ν2

9

)
Ω

+ ṗr∗pϕu
2

(
− 10301

1323
− 13808ν

1323
− 400ν2

1323

)
Ω + pr∗ ṗϕu

2

(
− 10301
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− 13808ν

1323
− 400ν2

1323

)
Ω + ip2

r∗ ṙu
2

(
− 985

441
− 5668ν

441
− 59ν2

441

)
Ω+

ip4
r∗ ṙu

(
8

21
+

25ν

42
+

5ν2

42

)
Ω + pr∗pϕṙu

3

(
− 380

147
− 436ν

147
+

8ν2

49

)
Ω

+ ip3
r∗ ṗr∗

(
52

21
− 20ν

21
+

5ν2

21

)
Ω + ip2

r∗pϕṗϕu
2

(
32

21
+

20ν

21
+ ν2

)
Ω

+ pr∗p
3
ϕṙu

4

(
− 20

63
+

12ν

7
+

8ν2

7

)
Ω + iṙu3

(
− 5959

441
+

4478ν

441

+
892ν2

441

)
Ω + ip2

r∗p
2
ϕṙu

3

(
− 40

21
+ ν +

15ν2

7

)
Ω + ip2

ϕṙu
4

(
− 1361

126

− 1399ν

63
+

190ν2

63

)
Ω + ipr∗ ṗr∗p

2
ϕu

2

(
34

21
+

41ν

21
+

22ν2

7

)
Ω

+ ip3
ϕṗϕu

4

(
2

63
+

151ν

63
+

206ν2

63

)
Ω + ipr∗p

3
ϕu

3

(
− 40

63
+

8ν

21

)
Ω2

+ p2
r∗u

(
− 1525

441
− 3121ν

441
− 194ν2
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)
Ω2 + p4
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(
4

21
+

25ν

84
+

5ν2

84

)
Ω2

+ ipr∗pϕu
2

(
10301

1323
+

13808ν

1323
+

400ν2

1323

)
Ω2 + ip3

r∗pϕu

(
− 40

63
+

50ν

63

+
4ν2

9

)
Ω2 + p2

r∗p
2
ϕu

2

(
− 4

21
+

41ν
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+
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7

)
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3
ϕu

3

(
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63
− 4ν
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)
Ω̇

+ p3
r∗pϕu

(
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63
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9

)
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(
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441

)
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2

(
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2646
− 6904ν
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)
Ω̇ + ip4

r∗

(
2

21
+

25ν

168
+

5ν2

168

)
Ω̇

+ ip2
r∗p

2
ϕu

2

(
− 2

21
+

41ν

84
+

11ν2

14

)
Ω̇

]}
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