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A B S T R A C T

The origin of the binary black hole is one of the most charming, cutting-edge, and active Astrophysical

topics. One of the possible formation channels is dynamical formation under the effect of another

compact object, during which there must exist a triple system. In order to test the existence of the

third object, we focus on the gravitational lensing effect on the Gravitational Waves emitted from the

binary system. When we consider the binary as the gravitational source and the third object as the

lens, the amplification factor which is a function of both frequency and position will show differences

under different source parameter combinations and orbital types when the source is inside the defined

obvious lensing window, which will help us infer the source information and separate different orbits.

In this work, we mainly focus on the magnification difference between circular and straight orbits

with different incoming directions under low-velocity conditions.
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1

I N T R O D U C T I O N

One of the most cutting-edge unsolved astrophysical problems is the origin of the binary black hole

(BBH), especially the eccentric binary black holes. According to the previous research work, one

possible formation channel is under the influence of another black hole (Rodriguez, Amaro-Seoane,

et al. 2018), which means there exists a time period during which the three Black Holes (BHs) form a

triple system, either hierarchical bound or under chaotic resonance. In order to find whether a binary

is formed through this channel, we use Gravitational Wave (GW) as our probe to infer the source

information.

The environmental perturbation on the gravitational wave emitted from the binary can be divided

into two main classes: one is gaseous friction and the other is from the gravitational field of the

tertiary black hole. The latter case contains three more specific effects: gravitational lensing effect,

Doppler effect and Newtonian tidal effect(Yu et al. 2021). In this work, we will first review some

previous research work and then try to find whether it is reasonable to infer the orbital type and

source parameters only from the gravitational lensing effect, in which the binary is considered as the

gravitational-wave source and the tertiary black hole as the lens.

We will concentrate on the simplest moving case: both inner and outer orbits are circular. The inner

orbit is defined as the orbit inside the BBH and the outer orbit as the trajectory of the binary center-of-

mass(COM). The most significant parameter we use is the amplification factor F in a moving system,

which is a function of both GW frequency and source position parameters. By combining the evolution

2
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of inner BBH and outer orbit motion, we can calculate the magnification factor for any moving case

inside the defined obvious lensing window. Different mass combinations, angular diameter distance

combinations, orbit types and incoming directions will lead to magnification differences. Therefore, it

is reasonable to infer the source information and outer orbit type only from the gravitational lensing

effect.
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2

G R AV I TAT I O N A L WAV E S

Gravitational Wave (GW) is the transverse wave solution of the linearized weak-field equation

in General Relativity, which travels at the speed of light and possesses two polarizations. The

brief derivation of the GW is shown in the following parts according to the General Relativity and

Cosmology Lecture Notes by Troels Harmark:

In General Relativity, if we choose the weak field limit, the gravitational field is weak and the

metric gµν(x) is approximately that of Minkowski space, which is written as:

gµν(x) = ηµν + hµν(x),
∣∣hµν(x)

∣∣ << 1 (1)

Then if we expand the General Relativity to the first order in hµν(x), the weak field limit of the

geodesic equation is Eq.2, which is also called the linearized geodesic equation:

d2xρ

dτ2 = −(∂µhρ
ν −

1
2

∂ρhµν)
dxµ

dτ

dxν

dτ
(2)

The weak field limit of the Ricci tensor is calculated as:

Rµν =
1
2
(∂µ∂ρhρ

ν + ∂ν∂ρhρ
µ −□hµν − ∂µ∂νhρ

ρ) (3)

Here the d’Alembert operator is:

□ = ηµν∂µ∂ν = ∂µ∂µ (4)

If we combine the Eq.3 with Einstein equation Eq.5, linearized gravity will be got.

Rµν −
1
2

gµνR = 8πGTµν (5)

5



6

In order to simplify the equations, we use the gauge transformation of hµν and choose Lorenz gauge,

which is shown in Eq.6 and 7 respectively, where ϵµ(x) = ηµνϵν(x).

˜hµν(x) = hµν(x) + ∂µϵν(x) + ∂νϵµ(x) (6)

∂µ(hµν −
1
2

ηµνhρ
ρ) = 0 (7)

Combining Eq.7 and Eq.3 gives the weak field limit Ricci tensor in Lorenz Gauge:

Rµν = −1
2
□hµν (8)

which subsequently leads to the linearized Einstein equations:

□hµν = −16πG(Tµν −
1
2

ηµνηρσTρσ) (9)

In vacuum case Tµν = 0:

□hµν = 0 (10)

Eventually, the wave solution which is considered as the gravitational wave:

hµν = Re[Aµνexp(ikρxρ)] (11)

kµ = (ω, k1, k2, k3), kµkµ = 0 (12)

When it comes to the observation, a generic test is used which means comparing the observed signals

with theoretically predicted waveform to get information about the source. The detector principle is to

measure the variations of the light travel time between separated test masses, which is caused by the

GW passing(Bailes et al. 2021). Detectors can be categorized into two types, ground-based detectors

such as LIGO, and space-based detectors including LISA.

Gravitational Wave has many important applications. First, it can provide unique messages of the

most energetic astrophysical process by carrying dynamical information of massive objects such as

Binary Black Hole moving at relativistic speeds. Second, it has the potential to answer the fundamental

questions including the formation and evolution of Binary Black Holes (BBH) as well as the origin of

dark matter and dark energy (Bailes et al. 2021).



3

B I N A R Y B L A C K H O L E A N D C O R R E S P O N D I N G G W

3.1 B B H F O R M AT I O N C H A N N E L

Binary Black Hole (BBH) is considered one of the most important sources for Gravitational Waves

(GW). However, more research is still needed to unveil the mystery of BBH formation channel details.

Previous work has already unveiled most of the formation channels fall into the following 2 types

(Rodriguez, Amaro-Seoane, et al. 2018): BBH is the remnant of isolated massive binary stars, or

BBH is the result of dynamical interactions in a dense stellar environment. The two different types

of formation may happen at the same time in actual formation and evolution, so it is a challenge to

extract very detailed information for certain cases.

The product of both formation types are able to generate BBH with certain mass, spin, and merger

rates and corresponding GW inside the detector band such as LIGO (Amaro-Seoane and Chen 2016).

One of the most significant differences between the two formation channels is the binary eccentricity.

For the BBH as a remnant of massive binary stars, GW emission will efficiently circularize the orbit

long before the GW signal enters the current detector band. However, in the dynamical formation

channel, eccentric orbits can be realized either through the influence of a third object or from the

direct dynamical interaction under Post-Newtonian approximation.

7



3.1. BBH FORMATION CHANNEL 8

When we focus on the dynamical channel, there will be some probabilities for the BBH to merge

in dense environments such as Globular Clusters (GC), and the induction factors will be different.

According to the factors leading to the final merger, the BBH can be divided into the following four

types (Rodriguez, Amaro-Seoane, et al. 2018): a) Primordial binaries: Occurs in the isolated binaries

and never encounters a strong dynamical interaction. b) Ejected mergers (Rodriguez, Chatterjee,

et al. 2016): Binary will encounter many encounters before it is ejected from the initial environment

and finally merges outside. c) In-cluster mergers: binary merge inside the initial clusters after some

encounters but not due to the GW emission. d) GW captures: binary merge after a close encounter, to

be more specific, merge through resonant encounters as a result of GW emission.

The encounters mentioned above mean the event when a binary meets another object in the

surrounding environment and either interacts with or is perturbed by it. When it comes to the binary-

single encounters, it can be divided into several different categories depending on the initial conditions

as well as the final outcomes, which is shown in Fig.1.

Weak Perturbation (WP) refers to the case binary is only perturbed by another single object over

several orbital periods. Strong Perturbation (SP) occurs when the third object follows a hyperbolic

trajectory around the binary at a distance close to the binary SMA (Heggie 1975). A Close Interaction

(CI) occurs when the third object is inside the influence sphere rCI =
m2

m1+m2
a0, m2 > m1. m1, m2 are

the masses of the binary components. CI contains two cases, which are the Resonance Interaction (RI)

and Direct Interaction (DI).



3.2. BBH EVOLUTION: PETER’S EQUATION 9

Figure 1: Schematic figure to show binary-single interaction and their final states in Samsing et al. 2014.

3.2 B B H E VO L U T I O N : P E T E R ’ S E Q UAT I O N

The evolution of the BBH, especially the final stages can be divided mainly into three types: the

inspiral, the merger, and the ringdown of the remnant black hole (Schmidt 2020). Here we mainly

focus on the inspiral and merger stage, as well as the corresponding GW.

According to Philip Carl Peters 1964, the evolution of an eccentric BBH can be described by

component masses, semi-major-axis (SMA) a and the eccentricity e:

⟨da
dt

⟩ = −64
5

G3m1m2(m1 + m2)

c5a3(1 − e2)7/2 (1 +
73
24

e2 +
37
96

e4) (13)

⟨de
dt
⟩ = −304

15
e

G3m1m2(m1 + m2)

c5a4(1 − e2)5/2 (1 +
121
304

e2) (14)

If we concentrate on the Keplerian orbits:

a3 = P2 G(M1 + M2)

4π2 (15)



3.2. BBH EVOLUTION: PETER’S EQUATION 10

Insert the Eq.15 into Eq.13 and 14, we will also get:

⟨dP
dt

⟩ = −192π

5c5 (
2πG

P
)5/3 m1m2

(m1 + m2)1/3

1 + 73
24 e2 + 37

96 e4

(1 − e2)7/2 (16)

⟨de
dt
⟩ = −608π

15c5
e
P
(

2πG
P

)5/3 m1m2

(m1 + m2)1/3

1 + 121
304 e2

(1 − e2)5/2 (17)

The evolution equations above also describe how the SMA changes with eccentricity by a differential

equation by combining Eq.13 and 14:

a(e) = c0
e12/19

1 − e2 [1 +
121
304

e2]870/2299 (18)

Here c0 depends on the initial conditions (m1, m2, a0, e0) of the BBH. Fig.2 is a reconstruction of the

figure shown in Philip Carl Peters 1964, which describes how the SMA changes with e.

Figure 2: Semi-major-axis a as a function of eccentricity e.

Once we get the evolution of a and e, the dominant frequency of the GW radiated by the BBH

at each time point can be calculated approximately as Eq.53 (Philip C Peters and Mathews 1963,

Philip Carl Peters 1964, Rodriguez, Amaro-Seoane, et al. 2018, Wen 2003), in which M is the total

mass of the source binary:

fGW =

√
GM
π

(1 + e)1.1954

[a(1 − e2)]3/2 (19)

In Fig.2, semi-major axis a changes rapidly near two endpoints, i.e. e ∼ 0 and e ∼ 1. e ∼ 0 refers to

the stage approaching to the merger. Since a decreases when the evolution goes towards the merger,



3.3. GW FROM BBH 11

the dominant frequency of the GW in Eq.53 will increase continuously until it reaches the merger

point, leading to the chirp signal which is consistent with the observation.

3.3 G W F RO M B B H

More than 10 BBHs have been identified through detection since the first landmark detection of

GWs from the coalescence of two stellar-mass BHs in 2015 by the Advanced LIGO GW-detectors

(B. P. Abbott et al. 2016, Schmidt 2020).

Figure 3: The direct observation results of GW150914, the binary black hole merger event in B. P. Abbott et al.

2016.

Fig.3 is the result of the first observation GW signal. All the time series in these subfigures are

filtered in the frequency region [35,350] Hz, in order to decrease the influence of the fluctuations

outside the detector’s most sensitive frequency band. The top row shows the signal strain detected

by the two detectors. The second row refers to the comparison between waveforms from different
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construction methods. The bottom row shows the signal frequency continuously increases which is

consistent with theoretical calculation result approximation Eq.53.



4

G R AV I TAT I O N A L L E N S I N G E F F E C T

After Johann Soldner’s first thinking and exploration of the light deflection by gravity using Newtonian

physics, Einstein directly addressed the influence of gravity on the light in 1911 with the same results

as Johann Soldner but it differs from the actual correct answer by a factor equal to 2, and finally

derived the correct deflection angle of a light ray by using General Relativity: α = 4GM
c2

1
r , where

M is the lens mass, c is the light speed and r is the distance between the incoming light ray and the

object. In the following century, the gravitational lensing effect was found to be a very useful tool in

astronomy and astrophysics due to its unique magnification property and different consequent multiple

images. Gravitational lensing effect also occurs when it comes to the Gravitational Waves. Although

unlike multiple images observed for the light bundle case, the lensed GW signals also show some

magnification.

4.1 L E N S I N G O N L I G H T

4.1.1 Approximation

When the light bundle is propagating through the universe, its path, size, and cross-section will be

influenced by all the matter between it and the observer. In order to calculate the final lensing effect,

some approximations are needed, including the underlying spacetime and several lens approximations.

13



4.1. LENSING ON LIGHT 14

For the underlying spacetime, we assume it can be described by the perturbed Friedmann-Robertson-

Walker metric:

ds2 = (1 +
2Φ
c2 )c2dt2 − a2(t)(1 − 2Φ

c2 )dσ2 (20)

For the lens, we use both the thin lens approximation and the point-mass model. Thin lens

approximation describes all the deflection action that takes place at a single distance, which is valid

when v << c and |Φ| << c2. Here v is the relative velocities of the source, lens, and observer, |Φ|

is the Newtonian potential. (Wambsganss 1998)

4.1.2 Lens Equation

Figure 4: A simplified gravitational lens scenario in Wambsganss 1998. The source, lens, and observer are

considered as points. θ and β are the angle positions of the image and source respectively.

Fig.4 shows a simplified gravitational lensing scenario for the simplest lensing case: the object L is

a point-like lens, and the light emitted from the source S is deflected by the lens and consequently
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forms two images S1 and S2. θ is the angular position of image, β is the angular positon of the source,

α̃ is the deflection angle. In the circular-symmetric case, the deflection angle is:

α̃(ξ) =
4GM(ξ)

c2
1
ξ

(21)

Here M(ξ) refers to the mass inside the region with radius ξ. DL, DS, DLS are the relevant angular

diameter distance between observer and lens, observer and source, lens and source respectively. If we

consider the point-mass lens model, and the distance is so large that β, θ, α̃ << 1, from the Fig.4 we

can derive the lens equation in the following steps:

θDS = βDS + α̃DLS (22)

α̃DLS = αDS (23)

β = θ − α(θ), α(θ) =
DLS

DS
α̃(θ) (24)

4.1.3 Einstein Radius

By inserting the relation of ξ = θDL shown in Fig.4 into Lens Equation 24 we can obtain:

β(θ) = θ − DLS

DLDS

4GM
c2θ

(25)

One special case in the gravitational lensing effect is when the source is just behind the lens and

forms a highly alignment case, described by β = 0. In this case, Eq.25 gives the special angle called

the Einstein angle (also called Einstein radius in some previous work):

θE =

√
DLS

DLDS

4GM
c2 (26)

The characteristic image of this case is the Einstein Ring with a radius of rE = θEDS.

If we transform the unit into the case for a triple BH system, the Einstein angle is:

θE = (
ML

1011.09M⊙
)1/2(

DLDS/DLS

Gpc
)−1/2arcsec (27)
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4.2 L E N S I N G O N G W

4.2.1 Amplification Factor Calculation

When it comes to the gravitational lensing effect on the GW, wave optics should be used due to its

much longer wavelength, instead of the geometric optics for the light case. The difference between

wave optics and geometric optics on the gravitational lensing results can be mainly divided into two

kinds: wave effects and strong lensing region. Wave effects include diffraction and interference, and

the strong lensing region refers to the source region leading to the obvious magnification.

In order to calculate the gravitational lensing effect in the case of BBH as the GW source and

tertiary BH as the lens, Thin Lens Approximation and Point Mass Model are used. The geometric

schematic figure of this case is shown in Fig.5. The lens here is the tertiary black hole, and the source

is the COM of the binary. η is the position vector referring to the distance between the source and the

lens projection position on the source plane. ξ is the impact parameter of the lens.

First let us talk about the wave effect, especially the diffraction. Since the GW has such a long

wavelength, if the wavelength λ is much larger than the Schwarzchild radius of the lens object

rS = 2GML
c2 (the radius defining the event horizon of a Schwarzschild black hole), the diffraction will

be large enough and make the magnification small. According to T. T. Nakamura 1998, if we consider

a double slit with lens Einstein radius ξE ∼ (MLD)1/2 as the slit width, where D is the distance

between the observer and the slit, then the width of the central peak for the interference pattern is D
ξE

λ,

λ is the wavelength. As a result, the maximum magnification is of the order ∼ ξE
( D

ξE
λ)

∼ ML
λ . If we

convert the units to the scale of the actual cases, the region for apparent diffraction effect is:

ML ≤ 108M⊙(
f

mHz
)−1 (28)
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Figure 5: Gravitational lens geometry for the source, lens, and the observer. Here DL,Ds, and DLS refer to

the distance between lens and observer, source and observer, lens and the source. The η is the

position vector of the source in the source plane, and ξ is the impact parameter of the lens (the closest

approach).

Second let us calculate the magnification factor, which is the most important step to get a lensed

GW signal since the lensed signal is the product of the magnification factor and unlensed signal:

˜hL
+,×( f ) = F( f ) ˜h+,× (29)

According to Takahashi and T. Nakamura 2003, the amplification factor in the Fig.5 case is:

F( f ) = exp{πω

4
+ i

ω

2
[ln(

ω

2
)− 2ϕm(y)]} × Γ(1 − i

2
ω)1F1(

i
2

ω, 1;
i
2

ωy2) (30)

xm =
y + (y2 + 4)1/2

2
(31)

ϕm(y) =
(xm − y)2

2
− ln xm (32)

Here both x and y are position parameters describing the source position with Einstein radius as the

unit because the normalization constant is chosen as ξ0 =
√

4MLDLDLS
DS

:

x =
ξ

ξ0
, y =

η

ξ0

DL

DS
(33)
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η is the position parameter, ML is the red-shifted lens mass and ω is a frequency parameter to

distinguish the apparent diffraction region from the strong lensing region:

MLz = ML(1 + zL), ω = 8πMLz f (34)

Combining Eq.28 and 34 gives the apparent diffraction region of ω < 1 and obvious magnification

region ω > 1. In the region of f ≥ 1
MLz

, ω ≥ 1, the magnification factor in 30 will be converged to

the geometric limit:

F( f ) =| µ+ |1/2 −i | µ− |1/2 e2πi f△td (35)

µ± =
1
2
± y2 + 2

2y(y2 + 4)1/2 (36)

△td = 4MLz[
y(y2 + 4)1/2

2
+ ln(

(y2 + 4)1/2 + y
(y2 + 4)1/2 − y

)] (37)

Figure 6: Reconstruction of how the amplification factor changes with frequency parameter ω when position

parameter y is fixed.

Fig.6 shows how the amplification factor changes with frequency parameter omega when position

parameter y is fixed. When ω ≤ 1, the diffraction effect is important and large wavelength λ leads to

a small amplification. When ω ≥ 1, the interference effect leads to the oscillation behavior. Besides,
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the region of ω >> 1 sees great oscillation behavior, which means the magnification will be very

sensitive to the change in GW frequency.

When it comes to the position parameter y, y=(0,1) refers to the region inside the Einstein radius,

and y=0 is when the source is just behind the lens, i.e. the high alignment case. Fig.6 shows a larger

magnification factor at a smaller y.

4.2.2 Different Lensing Type For Moving Cases

According to D’Orazio and Loeb 2020, during the observable lifetime of the moving source (inner

BBH), lensing cases can be classified into three different types by comparing several time scales. These

time scales include outer orbit period Po, which is the inverse of outer orbital frequency Po = 1/ f0);

time in the band τobs, which refers to the time when GW emitted from inner BBH is above a set SNR

(signal-to-noise ratio); and window crossing time τlens, which is the time the source needs to cross

the Einstein radius of the lens. If the outer orbit is bound, Po can be calculated by Kepler’s Law in

the Newtonian case. The window crossing time can be derived by τlens =
ξE

vorb,o
, ξE is the Einstein

radius for the lens, and vorb,o is the outer orbital velocity when the source is inside the window. τobs is

related to the LIGO or LISA sensitive band. Then three different lensing cases can be defined as:

• Repeated-lensing: Po ≤ τobs

• Slowly Moving Lensing: τlens ≤ τobs ≤ Po

• Stationary Lensing: τobs ≤ τlens, τobs ≤ Po
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O B V I O U S L E N S I N G W I N D O W

Amplification factor F is a crucial factor to be calculated in order to get the lensed GW signal. In the

previous section, Eq.30 shows amplification factor is a function of both frequency parameter ω and

position parameter y. Fig.6 shows how the amplification factor changes with fixed y but various ω,

each line in it can be considered as BBH evolving at the same position, i.e. COM doesn’t move.

So the natural question is what will happen if we fix the ω but change the position y?

Figure 7: Figure of how the amplification factor changes with position parameter y when frequency parameter

ω is fixed.

Fig.7 shows how the amplification factor changes with position parameter y when frequency

parameter ω is fixed. Each line gives the changing trend of amplification factor F at a certain ω value

21



22

of 0.1, 1, 10 and 100. It can be seen when the ω is smaller than 1, the amplification factor F almost

doesn’t change with y, and both for ω = 0.1 and ω = 1 case the F are very close to 1, leading to the

magnification not obvious, which is consistent with the previous results.

When ω is larger than 1, apparent oscillation behavior of the magnification value occurs. The

obvious amplification effect, which means F > 1 happens in the region of |y| < 1. Since y = η
ξ0

DL
DS

,

DL ∼ DS ∼ 1Gpc, DLS ≤ 1AU and ξ0 = θEDL, |y| < 1 refers to the region inside the Einstein

radius. When |y| > 1, there is still oscillation behavior but the F value is smaller than 1 so the

magnification gradually vanishes. Therefore, Einstein angle θE (Eq.26) and corresponding Einstein

radius ξE = θEDL ∼ θEDs can be used to define the obvious lensing window: θ < θE, |y| < 1 or

|η| < ξE, here θ is the angular position of the source (COM of the BBH). As a result, the window

boundary is defined as θ = θE, |y| = 1 or |η| = ξE.
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B B H E V O L U T I O N P R O P E R T I E S

Peter’s BBH evolution equations 13,14 lead to how the SMA changes with eccentricity e in Fig.2. In

our project, we use Python odeint to solve these differential equations. In order to test the accuracy

of the numerical calculation, we compare the a(e) in Fig.2 with our simulation calculation results in

Fig.8:

Figure 8: Compare semi-major axis a as a function of the eccentricity e during the binary evolution from

numerical and analytical calculation method. The parameters for the BBH is m1 = m2 = 10M⊙,

initial eccentricity e0 = 0.99 and initial period as P0 = 12s.

23
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The red points come from the numerical calculation and the blue continuous line is from plotting

Eq.18. c0 depends on the initial conditions of the BBH. By testing several values, we finally use

c0 ∼ 370. The numerical calculation satisfies the analytical results well for the most part. However,

we lack abundant values when e is close to 0.

If we choose initial eccentricity as e0 = 0.999, the SMA and eccentricity evolution are shown in

Fig9. The lifetime of the BBH with this parameter has a very short lifetime, and during the final stage,

both the eccentricity and the SMA decay very rapidly. Compared with Fig.8, the a(e) figure shows

some unsmooth when e ∼ 0, which is a consequence of both Python numerical methods to solve

differential equations and sample numbers we choose. It is not a very stable method to solve these

differential equations by odeint, especially when e0 ≥ 0.999.

Next, we will compare the evolution time and process with different initial conditions in Fig.10 11

12 13. Figure 10 and 11 show the evolution of the period and eccentricity respectively with the same

initial period P0 but different eccentricity e0. Larger e0 will lead to a more rapid merger. The line

parallel to the horizontal axis refers to the BBH already merged so both the period and eccentricity

are equal to 0. By comparing the line of e0 = 0.1 and e0 = 0.5, it is apparent that smaller e0 means

the BBH will maintain this eccentricity for a longer time and only at the end of its lifetime both the

period and eccentricity decrease rapidly, which is consistent with the inspiral phase and final merger

phase for the binary black hole. Figure 12 and 13 show the evolution of the period and eccentricity

respectively with the same eccentricity e0 but different initial period P0. The larger P0 is, the longer

lifetime the BBH will have.
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Figure 9: The evolution of a binary black hole by solving the differential equations derived from Peter’s equation.

The figure shows the evolution of a BBH with m1 = m2 = 10M⊙, initial eccentricity e0 = 0.999

and initial SMA (semi-major axis) as a0 = 107m.

Figure 10: Period evolution with same initial period

P0 but different initial eccentricity e0.

Figure 11: Eccentricity evolution with same initial pe-

riod P0 but different initial eccentricity e0.



26

Figure 12: Period evolution with different initial pe-

riod P0 but same initial eccentricity e0.

Figure 13: Eccentricity evolution with different initial

period P0 but same initial eccentricity e0.
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M O V I N G C A S E S

7.1 S I M U L AT I O N M E T H O D

The amplification factor is the main lensing difference between the static and moving cases. In

the static case, the source position is considered as the fixed position so the amplification factor is

described as F(t) = F[ω(t), y], ω(t) depends on the source BBH evolution. However, in the moving

case, due to the relative motion between the source and the lens object, the magnification is described

as F(t) = F[ω(t), y(t)]. So for a moving case, we need to combine both the motion effects as well

as BBH evolution. To be more specific, ω(t) = 8πML fGW can be derived from Peter’s equations

13,14, y(t) is highly related with the actual orbits.

Regarding the possible lensing results for moving cases with circular orbit, we still need to

concentrate on the ratio between window passing time and total orbital time. According to Eintein

angle calculation equation Eq.48, if we choose ML = 105M⊙, DL ∼ DS ∼ 1Gpc, DLS = 0.1AU,

1Gpc = 4.8 × 1014AU and 1arcsec = 1.5 × 10−6π, then θE = 2.98 × 10−17π, the corresponding

angular position between source and lens is β = DS
DLS

θE = 0.14π, which is a small angle. As a

consequence, the possible lensing types when combining BBH evolution include:

• The merger point is located at the window boundary y = ±1.

• The merger happens inside the window |y| < 1.

27
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• The merger happens outside the window |y| > 1. To be more specific, cases include: 1. The

binary passes the window and merges outside the window. 2. The binary merged before it

entered the window.

Because different parameter combinations (M1, M2, M3, DLS, and starting point) will lead to

different lifetime and merger points, it is difficult to set the actual starting point as our starting point

(t=0) because we cannot make sure whether the binary enters the window or where is the merger point.

One solution is to make the binary evolve backward. To be more specific, we fix the merger (ending)

point and make time-reverse simulations, which means the starting point is t=0 (the actual merger

point) and the ending point is t = −T, T is the total time which BBH needs to evolve from a = a0 to

a ∼ 0, a is the semi-major axis of the inner BBH.

Therefore, the simulation can be divided into the following four steps:

1. Set the initial conditions, including the angular diameter distance DL, DS, DLS, the initial and

eventual frequency f0 and fend, the ending point position as well as the mass combination

M1, M2, M3 (M3 = ML).

2. Set time steps to make BBH evolve and SMA evolve from a0 to aend, then a(t), f(t), and

corresponding ω(t) will be calculated.

3. Select different orbits in which inner BBH moves along. η(t) and equivalent y(t) will be got in

this step.

4. Combine ω(t) and y(t) to calculate F(t).

For the second step, we need first to calculate a0 and aend from f0 and fend. From Eq.53, if the

inner BBH has a circular orbit the dominant frequency emitted should be f =
√

GM
π

√
1

a(t)3 , so:

a(t) = (
1

f 2(t)
GM
π2 )1/3 (38)

Therefore the value region for a is [a0, aend], a0 = a[ f (0)], aend = a[ f (end)]. Next, we need to set

the time steps to make BBH evolve from a = a0 to a = aend. According to Fig.9, when the evolution
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is closer to the merger, the changes on both SMA and dominant frequency will be more rapid. So we

should choose time steps in the log scale to make enough points describing the final stage changes

such as in Fig.14:

Figure 14: One of the time step selections in our simulation for M1 = M2 = 10M⊙, M3 = 105M⊙, DL ∼

DS ∼ 1Gpc, DLS = 0.01AU, f0 = 10Hz, fend = 60Hz. In this figure t=0 refers to the ending

point and t ∼ −35s refers to the actual starting point.

Figure 15: Schematic figure to show the time list and corresponding SMA list a(t).

Since the sampling points are scattered rather than continuous, we are considering several BBHs

with virtual full orbit at each time point, leading to a corresponding SMA list a(t) such as Fig.15
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shows. Once we have the SMA list a(t), we can also get the frequency list f (t) =
√

GM
π

√
1

a(t)3 and

corresponding ω list omega(t) = 8πML f (t) for natural unit system and omega(t) = 8πML f (t) G
c3

for ISU.

For the third step in our simulation, we need to consider the motion and different orbits, along

which the inner BBH moves. The simplest case includes CC (both inner and outer orbits are circular)

and straight case (inner BBH moving trajectory is straight) shown in Fig.16. For simplicity, we only

consider the Newtonian motion here.

Figure 16: Schematic figure to show different cases, including C-C (both inner and outer orbits are circular)

and straight orbit with certain velocity angle.

7.2 C C C A S E

For the CC case, we use the angle β to represent the relative angular position between the COM

of inner BBH and the lens BH. Since for outer circular orbit DLS = rc, here rc is the radius of the

outer orbit, the Einstein angle θE =
√

DLS
DLDS

4GM
c2 will be a constant during the motion. Therefore the
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position parameter y(t) = η(t)
ξ0

DL
DS

only relates with η(t). If we set the ending point as β = β0, then

the η(t) is calculated as:

Ω =
2π

Tout
(39)

Tout = 2π

√
D3

LS
G(M1 + M2 + M3)

(40)

β(t) = β0 + Ωt (41)

η(t) =
β(t)DLS

θEDL
(42)

Mention that if the left boundary η = −1 is the ending point, β0 = −βmax and βmax = DL
DLS

θE.

We choose parameter combination M1 = M2 = 10M⊙, M3 = 104M⊙, DL ∼ DS ∼ 1Gpc, DLS =

0.1AU as an instance here. In order to avoid math range error due to large ω value in Python, we

choose initial frequency and ending frequency as f0 = 10Hz, fend = 500Hz, which means the ending

point is near the actual merger point but not the exact one. Then if the ending point locates at the

window boundary η = −1 and the incoming direction is from η = 1 to η = −1, the amplification

factor F(t) and position η(t) will be shown in Fig.19:
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Figure 17: If the ending point is η = −1, the lifetime from f0 = 10Hz to merger is approximately 37s for

a BBH with M1 = M2 = 10M⊙. The SMA evolution is consistent with the results of Peter’s

equations. For the circular orbit, the starting point will be close to η = 0.2.

The next step is to change the ending point from ηend = −1 to ηend = 0.4 which is shown in

Fig.18, representing the case when a merger happens inside the window. Comparing Fig.19 and 18

sees under this parameter combination choice, the η(t) changes linearly, so the circular orbit section

inside the window is equivalent to the straight motion. When the COM of inner BBH passes η = 0

during its evolution period, the amplification factor value peak occurs at the η = 0 point.

However, if the inner BBH doesn’t pass η = 0 during its evolution period, which means η0 > 0

and the moving direction is from η > 0 to η < 0, then the amplification factor value peak occurs at

the final stage of its evolution. Except for the case when the ending point is exactly at η = 0, there

will also be some oscillation behavior at the final evolution stage.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 18: Different amplification factor results for CC case when the ending point changes from ηend = −1 to

ηend = 0.4, which represents several cases when the merger happens inside the obvious magnification

window. The bottom axis is the evolution time, t=0 refers to the ending point, and t ∼ −37s is the

starting point.

7.3 S T R A I G H T C A S E

For the straight case, we set the ending point is inside the region η ∈ [−1, 0). For simplicity, the

constant velocity is equal to the orbital velocity for the CC case with the same parameter combination
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vstr = vCC. The main differences between CC and straight case include: 1. The η(t) are different

at each same time due to the orbital curvature, but how large is the difference depends on the actual

parameter combination and velocity angle γ. 2. The angular diameter distance between source and

lens DLS are changing for the straight case, but in the CC case, it is a constant parameter. As a

consequence, we need to make some changes when it comes to the simulation codes for straight cases.

Figure 19: Schematic figure of how to calculate the DLS(t) in the straight case.

If the angle between the velocity direction and the horizontal axis is γ, the ending point is located at

the window boundary y=-1, the incoming direction is from y=1 to y=-1, then the DLS(t) is calculated

as Eq.43 according to the cosine theorem:

DLS(t) =
√
(vt)2 + (DLS0)2 − 2(vt · DLS0) · cos(γ +

π

2
− |β0|) (43)

Then the Einstein radius and corresponding position parameter η at time t are:

θE(t) = θE =

√
DLS(t)
DLDS

4GM
c2 (44)

η(t) =
DLS0 · sin(β0) + vstr · t

DL · θE(t)
(45)
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D I S T I N G U I S H D I F F E R E N T M O V I N G O R B I T S

The previous section has shown that in order to get F(t) for moving cases, we need to first concentrate

on ω(t) and y(t). ω(t) can be directly obtained from Peter’s equation, however, y(t) is highly

dependent on the orbital types, since different trajectories will have different orbital curvature and

passing time inside the obvious magnification window. Even for the same kind of orbit, for instance,

the eccentric orbit, different inclination angles will lead to differences inside the window, just as

Fig.20 shows.

Figure 20: Schematic figure shows the same eccentric orbit with different inclination angles will lead to

difference inside the window. These differences include both orbital curvature and window passing

time. Solid lines refer to the orbiting part inside the obvious lensing window.

Then comes the question: how do we distinguish different orbits?

35
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8.1 T W O C H A L L E N G E S

Our next goal is to distinguish different moving orbits for COM of the inner BBH, the specific method

is to find whether there is a differentiable difference between the magnification factor of difference. So

we choose the same initial M1, M2, M3, DL, DS, DLS and frequency region f0, Fend, but the orbital

types are different.

8.1.1 High ω

The first challenge comes from the high ω. BBH dominant frequency Eq.53 shows during the

lifetime of a BBH, the dominant frequency will increase continuously until the merger happens. Since

ω = 8πML f G/c3, the omega will also increase continuously.

According to the simulation results, if we choose the initial frequency as f0 = 10Hz for a system

of M1 = M2 = 10M⊙, M3 = 105M⊙, DL ∼ DS ∼ 1Gpc, DLS = 0.1AU, the initial ω is around

123 and will be increased by several orders of magnitude in the subsequent evolution. If the lens mass

is larger than this lens value, ML = 105M⊙, the ω increases even faster according to Eq.48. In order

to avoid the math range error in Python when calculating the amplification factor, we need to also

set a maximum value for the frequency and corresponding ω value. Therefore, the ending point in

our simulation is not the actual merger point, but some point in the final stage and close to the actual

merger point.
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8.1.2 High Oscillation Behavior

Another challenge comes from the high oscillation behavior when ω > 1. High oscillation behavior

means the amplification factor is very sensitive to both position changes and ω changes. In the

following part, we will select several examples to see whether we can analyze the difference.

Here is one of the examples with 10000 sample points:

Figure 21: Direct simulation results of amplification factor F(t) and position parameter η(t) for CC (inner cir-

cular orbit + outer circular orbit) and straight orbit case. The two bottom figures show the difference

of F(t) and η(t) respectively. The parameter we choose here are: M1 = M2 = 10M⊙, M3 =

105M⊙, DL ∼ DS ∼ 1Gpc, DLS = 0.01AU.
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8.2 T W O C O M PA R I S O N M E T H O D

8.2.1 Time Average Comparison

One way to separate the 2 different cases under such a high oscillation behavior is to represent the

results by average values. To be more specific, time points should be separated into several groups,

and the amplification value in each time group is the average value of all the corresponding F values

inside the group. So here comes the question: how to cut the time? In our previous code, the time

point is not linear but log relation, just as Fig.14 shows.

So there will be two different methods to split the time into several groups:

1. Time Linear Split: The time interval in each group is equal. For example, each group contains

the amplification changes in 1s (the interval can also be 0.1s or 0.01s).

2. Time Nonlinear Split: The time number in each group is equal, which means each group has

the same number of time points, as a consequence, the time interval is still in the log scale.

In order to relate actual measurements, here we choose the time linear split, which means the

time range covered in each group is the same. The time intervals in each group are 1s, 0.1s, 0.05s,

0.04s, 0.03s and 0.01s. Parameter combination is chosen as The parameter we choose here are:

M1 = M2 = 10M⊙, M3 = 105M⊙, DL ∼ DS ∼ 1Gpc, DLS = 0.01AU, angle velocity γ = 0.

The comparison between CC and the straight moving case is shown in Fig.22. The difference in the

time average results is shown in Fig.23.
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Figure 22: Comparison of two cases under different group numbers. The time intervals in each group are 1s,

0.1s, 0.05s, 0.04s, 0.03s, and 0.01s. Solid lines refer to the time average results, and the background

dash lines are the initial amplification factor values for CC and straight case directly from the

simulation.
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Figure 23: Difference of the time average results for CC and straight case. The time intervals in each group are

1s, 0.1s, 0.05s, 0.04s, 0.03s, and 0.01s. Solid lines refer to the difference of time average results, and

the background dash lines are the initial amplification factor value difference.
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The two figures above show the amplification factor value is highly related to the sample interval.

If the interval is very large, such as △t = 1s in Fig,22, the results even cannot reveal the actual peak

magnification position. When the sample interval becomes smaller, such as △t = 0.01s, there will be

some phase shift between CC and straight case.

Amplification factor value difference also highly depends on the sample interval. In fig.23 it is

apparent that the difference is largest when △t = 0.01s. However, the difference for △t = 0.04s

is larger than △t = 0.03s shows even a little change in the sample interval will lead to results that

cannot be ignored.

Previous comparison figures are the results of incoming angle velocity γ = 0. If we choose

different incoming velocities for γ ∈ [0, 0.5π], the amplification factor is shown in Fig.24. The line

representing γ = 0.5π doesn’t have a magnification peak because this incoming angle means the

incoming direction is parallel to the line-of-the-sight, so the position parameter y will never reach the

peak position y=0.

Figure 24: The amplification factor F(t) for CC case and straight case with different incoming velocity γ. The

parameter combination is M1 = M2 = 10M⊙, M3 = 105M⊙, DLS = 0.01AU.
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Although Fig.24 shows some difference in the peak magnification position, it will still be difficult

for us to separate the outer circular orbit with outer straight orbits at low incoming angles when the

inner binary has eccentric orbits. The amplification factors we calculated before are the results when

using the dominant frequency of GW emitted from inner BBH. However, the GW frequencies are

different for inner circular and eccentric orbit BBH. For the circular case, GWs are equivalent to

the twice of orbital frequency, which means all of them are emitted at the lowest-order harmonic

n=2 of the orbital frequency. However, for the eccentric orbit case, GWs are a series of harmonics

of the orbital frequency. (Wen 2003). Since the F value is very sensitive to the frequency in the

high oscillation region and the peak position is close to each other at low incoming angles, it will be

difficult to separate different orbits.
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8.2.2 Certain ω Region

Now that high oscillation behavior will lead to a large difficulty in the separation of different orbits,

one method is to focus on the region before the amplification factor enters the high oscillation behavior

region.

Let us review the figure Fig.6 here. When we focus on one line with changing ω value and fixed y

value, we will see a region before it shows oscillation behavior. We can define this region as from

when the F value is just larger than 1, to the first few peak region. We define the first peak ω as the ω

value when it reaches the first peak. Then the relation between the first peak ω value and position

parameter y is shown in Fig.25. The larger y is, the smaller the first peak ω will be, which is consistent

with Fig.6 that higher position parameter y will lead the first peak towards the left-hand side.

Figure 25: The relation between first peak ω value and position parameter y. The first peak ω is defined as the

ω value when it reaches the first peak when the y is fixed.

In the next step, we define the region in which the amplification factor hasn’t entered the high

oscillation region. It is reasonable to choose region ω ∈ [0.5, 20] which contains all the first peak ω

values for y ∈ [0.1, 1]. Then comes the question: what is the parameter combination to make both the
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ω value inside the region we want and the difference of magnification large enough to separate one

orbit from another?

One method is using characteristic time parameters as a criterion for judgment, in order to make the

peak magnification inside the window must be included and the window time is roughly comparable

to the time inside the ω region we need. So here we choose two time parameters: Pwin−pass, the time

when inner BBH is inside the window, and tω, the time BBH needs to evolve in certain ω region, for

example, ω ∈ [0.5, 20].

Now let’s calculate the parameters above for the CC case. First for the Pwin−pass:

Pwin−pass =
2βmax

Ω
(46)

βmax =
DS

DLS
θE (47)

Here θE is the corresponding Einstein angle and Ω is the angular velocity for the outer orbit:

θE = (
ML

1011.09M⊙
)1/2(

DLDS/DLS

Gpc
)−1/2arcsec (48)

Pout = 2π

√
D3

LS
G(M1 + M2 + M3

(49)

Ω =
2π

Pout
= D− 3

2
LS

√
G(M1 + M2 + M3) (50)

Pwin−pass = 3 × 10−6π

√
Gpc

1011.09M⊙

√
GM3(M1 + M2 + M3)D2

LS (51)

Next for the tω:

ω = 8πMLz f
G
c3 (52)

f =

√
GM
π

(1 + e)1.1954

[ain(1 − e2)]3/2 (53)

ω =
8G

3
2

c3 M3(M1 + M2)
1
2 a−

3
2

in (54)

tω =
a(ωmin)

4 − a(ωmax)4

4β
(55)

Then we define the criteria for judgment as tω
Pwin−pass

, which describes How much part of ω ∈ [0.5, 20]

is inside the window. One reasonable choice is to set tω
Pwin−pass

∈ [0.5, 5], which means the motion
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(a) Only change M1,2 (b) Only change M3

(c) Only change DLS

Figure 26: How the M1,2, M3, DLS

changes the value of tω
Pwin−pass

. In each subfigure, we only change one of the three parameters and

make the other two fixed.

must cover the largest magnification position η = 0 and avoid too many sample points outside the

window region (η > 1).

Previous calculations have shown that parameters affecting this time ratio include: M1, M2, M3, DLS.

For simplicity, we consider M1 = M2 so there are three groups of variables. In the following parts,

we will show how the three groups influence the value of tω
Pwin−pass

and find the suitable region to satisfy

both ω ∈ [0.5, 20] and tω
Pwin−pass

∈ [0.5, 5].

In each subfigure of fig.26, we only change one of the parameters and make the other two fixed.

The fixed values for the other two parameters are shown in the upper titles of each figure. The orange
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dashes region refers to tω
Pwin−pass

∈ [0.5, 5]. The overlap region reveals suitable variable values to satisfy

our conditions. It is conveyed that M3 has the largest effect when its value changes a few orders of

magnitudes. When M3 increases, tω
Pwin−pass

increases linearly. However, this time ratio will decrease

nonlinearly if either M1,2 or DLS increases.

Since all three variables influence the time ratio value monotonically, we are able to combine all

three parameters in Fig.27:

Figure 27: Suitable parameter combination to satisfy both ω ∈ [0.5, 20] and tω
Pwin−pass

∈ [0.5, 5].

The overlap region gives us the M3 value if M1,2 ∈ [10, 100]M⊙ and DLS ∈ [0.01, 0.1]AU, in

order ω ∈ [0.5, 20] and tω
Pwin−pass

∈ [0.5, 5]. Any parameter combination inside or very close to this

band will lead to the binary motion containing the largest magnification inside the window, and ω

values inside the window haven’t entered the high oscillation region.
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R E S U LT S

9.1 R E S U LT S

In this section, we will choose a group of parameters inside the overlap region in Fig.27 and calculate

how the position parameter y and amplification factor F change with time t when the incoming

direction is different for the straight orbit case, i.e. angle γ is changing. Then we will compare them

with the CC case when they have the same orbital velocity.

The parameter we choose is: M1 = M2 = 10M⊙, M3 = 700M⊙, DL ∼ DS ∼ 1Gpc, DLS =

0.1AU, angle velocity γ ∈ [0, 0.5π]. Then Fig.28 shows y(t), Fig.29 and 30 shows F(t) for different

velocity direction case and F(t) difference when compared with CC case respectively.

y(t) in Fig.28 is consistent with the actual cases when it comes to different incoming angles. If

γ = 0 due to the small Einstein angle and corresponding β angle, the y(t) will be very close to

the circular trajectory if the central object mass is not large enough to make a significant orbital

curvature difference. If γ = 0.5π, it can be considered as the incoming direction is along the LOS

(line-of-the-sight) and y can be considered nearly constant.

Fig.29 and 30 show significant differences among different incoming directions, especially the peak

magnification factor position and corresponding peak values. The smaller γ is, the larger the F peak

48
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Figure 28: How the position parameter y changes with t for CC and straight orbit case with different incoming

directions.

Figure 29: How the amplification factor F changes with t for CC and straight orbit case with different incoming

directions.

value will be. Besides, due to the different time inside the window, the rate of change is also different.

The orbits close to the CC case show the most active changes.
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Figure 30: How the amplification factor F changes with t for CC and straight orbit case with different incoming

directions.

When it comes to the comparison between different orbits, the most extreme case γ = 0 still cannot

be separated from the circular case due to the lens mass we choose here M3 = 700M⊙ is not large

enough to lead to a significant orbital curvature difference between circular orbit and straight orbit

with the same constant velocity. If we combine Fig.27, the lens mass large enough to make significant

curvature difference will also lead tω
Pwin−pass

increase several orders of magnitude. If we still want to

observe the time for ω ∈ [0.5, 20], repeated lensing is also possible to occur.

9.2 D I S C U S S I O N A N D F U T U R E W O R K

A circular orbit is used in this work when we consider the bound orbital motion for inner BBH.

However, in actual cases, high eccentricity is the most crucial parameter to distinguish the BBH

formation channel between the isolated stellar channel and the gravitational dynamical channel. If

we are going to infer the formation channel from the gravitational lensing, inner BBH with high

eccentricity is the best choice. This choice will also lead to some challenges, including: a) How to



9.2. DISCUSSION AND FUTURE WORK 51

distinguish different orbits. Even for the elliptical orbits with the same SMA and eccentricity, different

inclination angles will lead to different orbit parts inside the obvious lensing window. We need to

separate different orbits. b) For the eccentric BBH, GW frequency is no longer only twice of the

orbital frequency, instead, the actual frequency will be a range of harmonics, which will increase the

difficulty of distinguishing different orbits since the high oscillation behavior of amplification factor

at high ω region.

Besides, for the motion part when calculating the position parameter y(t), we only consider the

case under low-velocity cases with Newtonian methods when it comes to the orbital motion with

constant velocity. In future work, we can expand it into the low-velocity case under Post-Newtonian

approximation and high-velocity case by using the General Relativity method.

Another possible situation that is not included in this work is Retro-Lensing. One of the possible

lensing types mentioned in previous sections is repeated lensing, which refers to several times of

lensing if the observation time is larger than both the lifetime of the inner BBH and outer orbital

period, and the lifetime of inner BBH is also larger than the outer orbital period. If repeated lensing

could happen, it is also possible for retro-lensing to happen. Retro-lensing means when the inner

BBH is moving between lens and observer and when they are in highly alignment case, the Gw signal

emitted by BBH and towards the lens will be bent with a deflection angle equal to π and finally

reaches observer (Yu et al. 2021). As a consequence, the final lensed signal received by the observer

should be modified by the retro-lensing effect.

Last but not least is other Environmental influences. The tidal effect, and accretion disk around

SMBH (supermassive black hole) may also influence the final lensing signal. Besides, in some small

probability events, it is also possible for the lensed GW signals to encounter some other massive

objects on their path of propagation. These objects can be considered as the second lens, either the

point-model lens (compact objects like BH) or the Singular Isothermal Sphere Lens (galaxies, star

clusters, etc.)(Takahashi and T. Nakamura 2003). Then the final lensed signal observed by the detector
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is the superposition of two lensing effects. The method to separate signals from only once or twice

lensing effect should be down in the future.



10

C O N C L U S I O N

In this project, we mainly focus on the gravitational lensing effect in a hierarchical triple BH system, in

which the inner BBH moves along certain orbits around the central BH. The central BH is considered

as the gravitational lens and the inner BBH is the source of gravitational waves. GW lensed by the

central BH will finally arrive observers and can provide information about the source parameter as

well as the orbital type.

Due to the wavelength of GW being much larger than light, the wave effect should be included

when calculating the lensed signal. Diffraction will influence the magnification and interference will

result in obvious oscillation behavior for the amplification factor. The most crucial factor during the

calculation process is the amplification factor since the lensed signal is the product of unlensed signal

and amplification factor. This factor is a function of both GW frequency and the source position.

According to whether the F is larger than 1 we are able to define the obvious lensing window.

What makes this work different from most other previous work is we consider the lensing effect in

moving cases, which means not only the evolution of inner BBH, but also the outer motion ought to

be considered in order to calculate the amplification factor. Time is the parameter we use to combine

evolution and motion. For the simulation method, we first set the parameter combination including

mass, relative angular diameter distance, and frequency at the beginning and the end. Then we

simulate the process reversely to make sure the ending point is inside the window. The results will

eventually show how the amplification factor and position parameter evolve.

53
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In order to distinguish different orbits only from the amplification factor, we have tried two different

methods, one is the time-average method, and the other is the low ω method. In the time-average

method, we separate the time into several groups and use the average value in each group to see

the difference. However, due to the high oscillation behavior when ω is much larger than 1, the

amplification factor will be very sensitive to sample numbers and frequency. Whether being able to

distinguish peak magnification position will also be affected by the inner orbital types. In the low ω

method, we only concentrate on the low ω region, in which the amplification factor hasn’t shown

great oscillation but already had the first few peaks. A parameter combination should be chosen to

satisfy both the ω region and the time ratio conditions. One example we chose has shown the obvious

difference for different incoming directions. The incoming direction is represented by the velocity

angle between [0, 0.5π], inside this region smaller angle will lead to a larger difference between

circular and straight outer orbit.

Regarding future work, the improvement could be made in the following parts: the eccentric orbits,

high velocity in relativistic cases, retro-lensing, and other environmental influences. The eccentric

case will be much more complex because not only the GW from inner BBH will no longer be a single

value at the same time, instead a series of harmonics, but also it will lead to a much more complex

moving type inside the window.
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