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Abstract

The thesis presents a wide scope of topics all falling under the subject of AdS/CFT . Specifically,
the focus will be on the AdS4/CFT3 case dubbed ABJM, where a review will be done mainly
regarding the general aspect of the AdS/CFT correspondence, ABJM and tools to motivate
it such as Superstrings, Supergravity and M-theory. Next, the spin-chain and Penrose limit
framework is established as it will be important for calculations and interpretations. In the last
part, the focus will lie on Spin Matrix theory, and how to use it to study decoupling limits in
the context of Partition functions on R × S2 and BPS-backgrounds for AdS4 × CP 3. We find
new backgrounds that exhibit a peculiar case compared to what is already known.
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Chapter 1

Introduction

In the field of physics, one is often led to believe in radical and at first sight, crazy ideas. Going
through the ages, certain figures come to mind. Aristotle, Copernicus, Newton, Maxwell, Bohr,
Einstein, etc. all which have made their own contribution to the field, and revolutionized how
we think about fundamental properties of nature. The foundation for all progress done today
has its roots in these same crazy ideas. In more recent times 60 years or so, people have aimed
higher than ever in the quest to find the pinnacle, a theory of everything. This task at first seems
daunting and incomprehensible, and still to this day is an unsolved paradigm haunting physics.
Nevertheless, bravery still resides within the human heart, and the boundaries are being pushed
day by day to uncover the apogee of understanding nature.

A first attempt in a modern sense, was done throughout the 60´s and 70´s where through the
work of Weinberg, Salam, Georgi, Glashow, Gross, Wilczek and many others great names, the
electroweak unification saw the first daylight together with the strong force. It was attempted
to unify all the fundamental forces leading to the Standard Model[132, 68, 67, 60, 61, 63], but
there will always be a member not willing to cooperate. Gravity did not seem to get involved
in the party, so the search was still on. Instead, supergravity became a realization[44], where
quantization of General relativity took place with the help of supersymmetry. While this was
happening, string theory came about as a relatively new idea that circulated around academic
masses. But it was not until the mid 90´s that the equivalent of the renaissance took place in
theoretical physics amounting to the second superstring revolution. This sparked new life in
supergravity again since they became two sides of the same coin. Many proposals and crazy
ideas seemed to have gained popularity, some with more experimental evidence to back up than
others.

Turning to the main problem of this thesis, the most crazy idea was yet to be proposed. In the
early 90´s, t´Hooft came up with idea of a Holographic principle while later on Susskind provided
the bridge to connect with string theory[140, 85]. This seemingly crazy line of thought, was used
to argue that our 3-dimensional universe is a hologram described by a distant 2-dimensional
boundary. This certainly goes beyond even the wildest sci-fi. But as it stands, this led to what
has since bloomed into a big field in theoretical physics. During the late 90´s, a remarkable
connection was made [106]. Through the holographic principle, Maldacena conjectured that
gravity and gauge theories were dual to each other in consecutive dimensions. By viewing the
world as a hologram, it was possible to interpret a gravity theory in the bulk of space-time to be
equivalent to a gauge theory on the boundary of the volume of such space-time. This came to
be known as the AdSd+1/CFTd correspondence. This specifically connects a certain space-time,
known as Anti-de Sitter space, to Conformal field theories.

Since Maldacena´s proposal, a countless amount of work has been initiated in the name of
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AdS/CFT . But before it truly took off, Gubser, Klebanov, Polyakov and Witten (GKPW)[144,
69] refined the idea which formalized the essence of the duality for later use. In the first 10 years,
it was mainly N = 4 Super Yang-Mills (SYM) who was the star of the show corresponding to
AdS5/CFT4. Various surprising results were unveiled, such as the connection to spin-chains[111,
24, 99], establishing a connection to condensed matter and material physics. Even further,
Penrose limits, partition functions, Hagedorn temperatures and magnons are aspects considered
worth noting[84, 139, 29, 80, 4]. While SYM became an established milestone in the duality, an
example in a dimension lower saw the first light 17 years ago. It came to be known as ABJM
after its creators (Aharony, Bergman, Jafferis, Maldacena)[5]. The same program was then used
to understand, this time for the AdS4/CFT3 case, if it had the same properties as N = 4 SYM.
ABJM proved to be the tedious little brother. Anyhow, major progress has been made and it
still stands as a hot topic today, ergo why this thesis was written in the first place.

Due to the lack of supersymmetry in ABJM, that is present in SYM, one finds a rougher
journey in obtaining direct correspondence between the field/operator map. This could mean
that the spectrum for operators on the gauge side is different than for what is found on the
string side [120]. Interpolating between weak and strong coupling does in general become a more
difficult task, but still possible nevertheless. But as for SYM, the same field of interest has been
applied and elaborated on [28, 15, 81, 47, 1, 59, 66, 93]. Another interesting aspect of AdS/CFT
which has gained popularity over the years, is considering non-relativistic strings[83, 121]. Using
the framework of Spin Matrix Theory [79], it becomes possible to study decoupled BPS sectors
for different backgrounds given by the Geometry prescribed by pp-waves of AdS5×S5 and U(1)
Galilean backgrounds as well.

The main idea of the thesis is to explore the general landscape of AdS/CFT and then specify
to ABJM. With the structure established, it should be possible to analyze previous work done
for N = 4 SYM [83, 79, 80, 78] and establish to some extent how this can be modified for
ABJM instead. The structure of the thesis goes as follows. In chapter 2,3,4, the foundation
will be established to know what language we speak in gauge/gravity duality. We briefly review
the build-up of AdS/CFT , which includes superstrings, type IIA and B SUGRA, T-duality
and M-theory. Then we motivate the conjecture through holography and give a dictionary for
translation between gravity and fields. Lastly, a deep dive is taken into the specific structure
ABJM has as a theory, to be able to use this for later chapters.

In chapter 5,6, both spin-chains and Penrose limits will be the main stars of the show,
since they become valuable tools for analyzing and interpretation in the upcoming computation.
chapter 7 introduces Spin Matrix theory and its connection to SYM, where we in the end twist
the story towards ABJM and find some new connections for the structure of the theory. chapter
8 is a more technical and heavy computation-filled part, where the calculations from [81] are
reproduced. One finds via a Sigma model limit and Penrose limit Landau-Lifshitz spin chains
models in the SU(2) × SU(2) sector. An extension of this sector has been calculated where
spin has been added. chapter 8 is devoted to the work of [80, 78], where the corresponding
partition function for ABJM is derived in agreement with known results [47, 32]. The last
chapters, chapter 10,11 are the main results found in this thesis, which extends the previously
known decoupled backgrounds in SMT [82], to AdS4×CP 3, where previously known result show
up. We comment on how the geometry alters the computations and why the same truncation
from the maximal BPS-sector in the Super Yang-Mills case is not present in ABJM.
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Chapter 2

From the Gauge/Gravity Cradle to a
Stack of M2-Branes: The Road to
ABJM

2.1 Pre AdS/CFT: Strings and Supergravity

Before arriving at the main entrance, we have to make a detour first to a more familiar landscape,
namely strings and supergravity, and then get a feel for they relate to each other. This will be
foundational for the whole buisness of the thesis and in general AdS/CFT

2.1.1 Superstrings, GSO projections and SUGRA

We start from a well known place, namely the familiar superstring. As it is known, going from
the 26- dimensional bosonic string, cutting down to 11 dimensions is possible by adding fermions
to theory via supersymmetry

S = −T
2

∫
d2ξ(∂αXµ∂αXµ − iψ̄µρα∂αψµ) (2.1.1)

Here ψ is as usual the two-component Dirac spinor for for fermion, and ρ is the two-dimensional
representation of the Dirac matrices. By the addition of fermions, one needs periodicity con-
ditions on the left and right moving sectors from the EOM´s [21, 141]. This leads to what
is called the Ramond (R) and Neveu-Schwarz (NS) conditions. Counting gives four types of
periodic conditions namely NS −NS,R−R,NS −R,R−NS. Consider now the spectrum of
the closed string, which also motivates the SUGRA-theory. In the process a problem will be
encountered when level matching is established. Depending on the choice of sector, part of the
spectrum seems to be projected out. To ensure consistency, including modular invariance and
the removal of unphysical states (tachyons), the GSO projection is applied on either NS or R
states. In the R sector, it enforces a chirality condition via the Γ11 operator, analogous to γ5
in four dimensions. The choice of chirality for the left- and right-moving sectors determines the
type of theory through the parameter s = ±1: if both sectors have the same chirality (s = 1),
one obtains Type IIB (chiral) supergravity; if they have opposite chirality (s = −1), the result
is Type IIA (non-chiral) supergravity. We briefly go through the actions for both superstrings
and motivate the content through irreducible representations. Then we proceed to connect the
two sides via T-duality and in the end describe M-theory and branes shortly
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2.1.2 Supergravity theories and different species

Since the late 70´s, supersymmetry has been used to construct various supergravity (SUGRA)
theories. Originally, the 11-dimensional SUGRA was constructed, which was shown to be super-
symmetric which sparked a vast amount of work in the field[44, 50, 118, 92, 70, 117]. SUGRA
has had its era of ups and downs, especially in the wake of the second superstring revolution due
to Witten [145]. We briefly review type IIA/B SUGRA, since it will be an essential underlying
frame for the entire theory and thesis

Type IIB Supergravity

Let us start with the most classical type of SUGRA namely type IIB. Looking at the mass
spectrum results in the decomposition of the irreducible representations. The mass spectrum
transforms as a vector in SO(D− 2) as the Wigner little group. In 10 dimensions this is SO(8).
These irreducible representations are given by {1,8v,8c,8s,28,35v,35s,56c,56s}. The table
below translates into field content for the respective irreps. For SO(N), decomposing tensor
products into direct sums is given as N⊗N = (12N(N+1)−1)⊕(12N(N−1)⊕1. IIB superstrings
have the following structure

(8v ⊕ 8c)⊗ (8v ⊕ 8c) (2.1.2)

The first term that will be common in both cases is the tensor product for the (NS,NS) sector

8v ⊗ 8v = 1⊕ 28⊕ 35v (2.1.3)

Specifying for the remainder of bosonic DOF from the R−R sector for type IIB gives

8c ⊗ 8c = 1⊕ 28⊕ 35c (2.1.4)

Lastly are the fermionic fields. They are found in either (or both) NS −R or R−NS, and for
IIB it is

8v ⊗ 8c = 8v ⊕ 56c (2.1.5)

Field content of type IIB supergravity

Field SO(8) representation content

gmn 35 metric (graviton)

C(0) + exp(−iϕ) 12 Axion and Dilaton

B(2), C(2) 282 two-form

C(4) 35+ self-dual four-form

λMIα, I = 1, 2 56′2 Majorana–Weyl gravitinos

λIα, I = 1, 2 8′2 Majorana–Weyl dilatinos

Table 2.1: Summary of the bosonic and fermionic fields in type IIB supergravity and their SO(8)
representations

The low-energy action for type IIB superstrings can now be obtained in the string frame,
using the direct sums decomposed from the various sectors, and using table (1.1), one builds the
SUGRA action from the components[6]

SIIB =
1

2κ210

[ ∫
d10X

√
−g
(
e−2ϕ(R+ 4∂Mϕ∂

Mϕ− 1

2
|H(3)|2 −

1

2
|F(1)|2−

1

2
|F̃(3)|2 −

1

4
|F̃(5)|2)−

1

2

∫
C(4) ∧H(3) ∧ F(3)

] (2.1.6)
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The factor in front is the ten-dimensional gravitational constant 2κ210 = (2π)7α′4. To get the
Newton constant one simply modifies with the coupling constant. The final part is to introduce
the fields composed in one-forms

F(p) = dC(p−1), H(3) = dB(2), F̃(3) = F(3) − C(0)H(3),

F(1) = dC(0), F̃(5) = F(5) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3)

(2.1.7)

Here the d is the exterior derivative, and further one must impose a self-duality constraint for
∗F̃(5) = F̃(5). This is added as a constraint on the solutions and not imposed on the action,
which leads to wrong EOM´s [127]. It is also worth mentioning the EOM´s which will provide
the metric that a stack of Dp-branes will provide by curving space-time. The general ansatz is

ds2 = F (r)
[
− dt2 +

p∑
i=1

dz2i

]
+G(r)

[
dr2 + r2dΩ2

D−p−2

]
, Ctz1...zp = C(r), eΦ = I(r) (2.1.8)

It is a relatively straightforward exercise to determine the unknown functions by inserting them
in the EOM´s which produces

F (r) = H(r)
p−7
8 , G(r) = H(r)

p+1
8 , C(r) = 1−H(r)−1, I(r) = H(r)

3−p
4 (2.1.9)

One obtains the characteristic harmonic function on the transverse space H(r) = 1 + α
r7−p

and α = (4π)
5−p
2 Γ(7−p2 )l7−ps gsN . In the context of AdS/CFT , we consider the case D = 10

and p = 3. This will describe a stack of D3-branes curving a 10-dimensional spacetime with
resulting solutions being

ds2 = H(r)−1/2
[
− dt2 +

3∑
i=1

dz2i

]
+H(r)1/2

[
dr2 + r2dΩ2

5

]
, Ctz1...zp = 1−H(r)−1, Φ = 0

(2.1.10)
In this context, the harmonic function takes the value

H(r) = 1 +
α

r4
, α = 4πl4sgsN (2.1.11)

This is a starting point for the original Ads5/CFT4 where Maldacena saw the connection between
open and closed strings[106]. For further elaboration see Appendix E1

Type IIA Supergravity

Similarly, one can construct an action for type IIA supergravity given the product representations
as done for type IIB. For type IIA the general structure is

(8v ⊕ 8c)⊗ (8v ⊕ 8s) (2.1.12)

As before, we can find the remaining bosonic DOF and fermion fields by considering the remain-
ing sector

R−R : 8c ⊕ 8s = 8v ⊕ 56v, NS −R : 8v ⊗ 8s = 8c ⊕ 56s (2.1.13)

Then as before, interpreting the SUGRA action via the irreps. an explicit expression can be
written

SIIA =
1

2κ210

[ ∫
d10X

√
−g
(
e−2ϕ(R+ 4∂Mϕ∂

Mϕ− 1

2
|H(3)|2)

−1

2
|F(2)|2 −

1

2
|F̃(4)|2 −

1

2

∫
B ∧ F(4) ∧ F(4)

] (2.1.14)

1An interesting sidenote: Type IIB SUGRA has a global SL(2,R) (Möbius) symmetry (not manifestly) and is
holographically related to the Montonen-Olive duality of N = 4 SYM[113]
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One defines F̃(4) = dA(3) − A(1) ∧ F(3). We will see below that the action can be obtained by
dimensional reduction of an eleven-dimensional supergravity that is unique in the sense that it is
the only (local) supersymmetric theory in eleven dimensions containing only massless particles
of spin ≤ 2. In particular, it contains two bosonic fields, the metric GMN and a three-form
potential A(3) = AMNRdx

M ∧ dxN ∧ dxR. This will arise in the context of M-theory2

2.1.3 The Bridge between A and B: T-duality

To make a full circle, string theory manages to connect both types of SUGRA theories[141,
21]. The idea is to consider the Minkowski background in R1,8 ×S1 without any Kalb-Ramond,
Dilaton or other field strengths turned on. The circle comes from assuming X9 ≡ X9 + 2πR.
Using this on the embedding coordinates in target space, a winding number appears through
X9(τ, σ + 2π) = X9(τ, σ) − 2πmR,m ∈ Z. As a consequence, the mass spectrum acquires an
extra term, depending on the sector of the form ( kR ± mR

l2s
)2. Hence, T-duality can be stated

as the symmetry where momentum and winding modes can be interchanged k ↔ m. But the
caveat is M2 should stay invariant. Looking at ( kR ± mR

l2s
)2 this becomes possible if we also

exchange R ↔ l2s
R . It can also be shown that the chirality operators change signs under T-

duality, meaning that s→ −s. The conclusion is that type IIA string theory on R1,8 × S1 with

radius R, is dual to type IIB string theory on R1,8×S1 with radius l2s
R . Physics on either type of

strings can be mapped to another since they are T-dual. It can be inferred that the target space
is not a fundamental property in string theory surprisingly, following this compactification of
one-dimension. This means that there isn´t a unique correct space-time since one can translate
between them which is a powerful implication. T-duality is just one of the few dualities used in
the realm of string theories. Famously S and U-dualities exist as well, but for the purpose we
just review the connection between type II A and B strings. To finish the story of string theory
and start the story of AdS/CFT , we consider the connecting piece; M-theory

2.1.4 M-Theory, M2-Branes, BLG and Near-Horizon Geometry

Whenever people talk about M-theory, some mythical beast seems to be thought of. The reason
seems to be that nobody understands its structure properly. A good way of representing how
M-theory relates to known physics is through the following diagram displaying the connection
to 11 d SUGRA and type IIA backgrounds Thus M- theory, depending on a low energy limit or

compactification, can relate to either of them, or doing both, to a 10 d type IIA supergravity.
Originally M-theory was found to spit out a relation between the radius and the string coupling
constant after a Kaluza-Klein reduction also;

Rs/lp = g2/3s , l3p = gsl
3
s . (2.1.15)

Here Rs is the radius associated to an extra compact dimension with finite coupling in units of
an eleven-dimensional Planck length lp. The relation is obtained by comparing coefficients from

2Foreshadowing BPS bounds, for type IIA theories, one can establish M ≥ c0
λ
|W |, where is the central charge

of the supersymmetry algebra, λ = eΦ/2 is the ten-dimensional string coupling and c0 some constant. One can find
soliton solution (black hole) of type-IIA supergravity with the required properties, mimicking the Kaluza-Klein
mechanism for the spectrum of BPS-states M = c

λ
|n|, n ∈ Z[94]
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the action of low energy 11 D string theory and 10 D SUGRA.
In the context of this thesis, the center of attention will be onM2-branes. There are various ways
to argue for the existence of them. Looking at the EOM´s of 11 D SUGRA magnetic and electric
branes are found, that exactly correspond to either M2 or M5-branes[107]. This can also be

seen from the SUGRA action containing a 3-form antisymmetric field A
(3)
µνk which couples to the

M2 3. Prior to ABJM, what led up to the conjecture was a proposal by Baggert, Lambert and
Gustavsson (BLG) [15, 14, 71], that proposed M2-branes and Chern-simons theories were dual.
The connection was established as follows. Consider first as motivation pure CS field theory in
2 + 1 dimensions The lagrangian contains 3-form field strengths4 which seemingly implies that
the Lagrangian can be integrated over a 3-manifold. It preserves topological invariance without
needing a coupling to a metric. The moment such a theory couples to scalar or fermionic matter
fields, the topological invariance is broken, since the metric is needed to define the matter kinetic
terms and couplings. But, preserving conformal invariance remains a viable option. Theories
of this kind would prove to be crucial candidates when thinking of world volume field theories
on multiple membranes in M-theory. With this observation, the BLG program proceeded by
considering supersymmetries that M2-branes preserved. By introducing terms that are non-
linear in the scalar fields (mimicking interactions), a peculiar triple-product or 3-bracket was
constructed from cubic terms arising5. As a consequence, after going through supersymmetry
transformations, a Chern-Simons term appears in the full Lagrangian, which is the first sign of
an interacting Lagrangian in quantum field theory not dependent on SYM-terms. Furthermore,
the desired structure of bi-fundamental and anti bi-fundamental fields has its origin in the
gauge transformations which fixes two separate terms one for each representation each at level
k. The cutting point happens at the level of supersymmetry where N = 8 fails at describing
an arbitrary number of M2´s. This establishes the N = 6 supersymmetry which we discuss
in the next section. To establish a bridge from gravity to gauge fields, we first want obtain a
near-horizon limit that will serve an important purpose. It is through the brane construction of
ABJM that it was found to be dual to a stack of M2´s transverse to a C4/Zk orbifold geometry.
In terms of an eleven-dimensional metric, this is best described by [95, 6]

ds2 = H(r)−2/3(−dt2 + dx21 + dx22) +H(r)1/3(dr2 + r2dΩ2
7)

H(r) = 1 +
L6

r6
, L6 = 32π2Nl6p, F(4) = −dt ∧ dx1 ∧ dx2 ∧ dH(r)−1

(2.1.16)

In the near-horizon limit where r ≪ L, the harmonic function can be approximated to(
1 +

L6

r6

)−2/3

≃ r4

L4
, and

(
1 +

L6

r6

)1/3

≃ L2

r2
,

Which simplifies the metric to

ds2 =
r4

L4
(−dt2 + dx21 + dx22) +

L2

r2
(dr2 + r2dΩ2

7). (2.1.17)

Recalling that the Anti-de Sitter metric in Poincaré coordinates can be written

ds2AdS4
=
L2

r2
dr2 +

r2

L2
dxµdxνηµν

3Another way is considering a D2-brane [16]. Relating the coupling in SYM to type IIA string via g2YM = gs√
α′ ,

and writing the lagrangian for a non-dynamical field Bµν , the EOM´s and Equation 2.1.15 generate the lagrangian
for a single M2-brane

4Lcs =
k
4π

(A ∧ dA− 2i
3
A ∧A ∧A)

5The structure is the same as usual commutators constituting a lie algebra, this time only with three elements
[T a, T b, T c] = fabc

d T d (this also constitutes a lie algebra)
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and using the transformation z = L3/2r2 =⇒ dz2 = L6/r6dr2, the M2-brane metric in the
near-horizon limit can be found as

ds2 =
L2

4z2
dxµdxνηµν +

L2

4z2
dz2 + L2dΩ2

7

= L2

(
1

4
ds2Ads4 + ds2S7

)
. (2.1.18)

So it can be seen that a stack of M2-branes in a near horizon limit probes a geometry just like
D3-branes does. This will constitute the gravity side when ABJM is established later on.

2.2 Aspects of AdS/CFT and Motivation

Arriving at the front step, we must confront the conceptual landscape before actually getting
dirty with any calculations. Thus, we introduce The Holographic Principle as the leading guide
to the whole arena

2.2.1 The holographic principle and motivation for AdS/CFT

If we want to trace the origin of holography and for that case AdS/CFT , one must go back
to t´Hooft and Susskind in their seminal papers[85, 140]. Given some quantum theory, and
remembering thermodynamics with its third law, it is possible to relate the entropy S of a system
to the total number of DOF; Following t´Hooft, we first consider the Hilbert space dimension N .
Assuming a discrete model of boolean variables, for instance, n spins taking only two values, this
is regarded as sufficient. Entropy and boolean DOF are related by eS = N = 2n[85]. Bekenstein
and Hawking famously derived the bound that showed that entropy of a black hole[26], is
proportional to its area SBH = A

4G . A is the surface area of the black hole and G is the Newton
constant. Further, it is postulated that the generic entropy of a system cannot violate S < SBH .
Combining the bound for entropy and DOF we can get the relation N ≤ e

A
4G . Going to Susskind

[140], the world, which by default is taken to be 3-dimensional, is a lattice of binary quantum
DOF. For concreteness assume that the lattice spacing is the Planck length lP with the same kind
of discretized model. Thus, the number of quantum states in a volume V is N (V ) = 2n, n = V

ldp
,

so n just counts the lattice sites in V. The logarithm of N(V ) is the maximum possible entropy,
so one obtains in the system logN(V ) = V

l3P
log 2. Combining with the previous bound we get

S ≤ log(N (V )) =
V

ldP
log 2 (2.2.1)

Rather than being bounded by the area A, the largest possible entropy scales as the volume V it
seems. Above the Planck threshold, it holds that A ≤ V amounting to a larger entropy bound.
Suppose that the entropy estimate holds. Then by our first bound, the dimensionality of the
Hilbert space describing the region is N ∼ eV . But, supposing that the region collapses to a

black hole, the total entropy has decreased to e
A
4G together with the number of states. This seems

to mean, that the second law has been violated. Thus the original bound Bekenstein proposed
must be valid. Concluding with the radical idea from t´Hooft, one can describe all phenomena
within V by a set of DOF which resides on the surface with area A bounding V . The DOF
should not exceed that of a two-dimensional lattice with approximately one boolean DOF per
Planck area. This leads to the interpretation that the world can be seen as a two-dimensional
lattice of spins. To sum up the holographic principle we can state:

Susskind–’t Hooft Holographic Principle: A region of spacetime with boundary of
area A is fully described by at most A/4G degrees of freedom
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Taking the holographic principle at face value, we are led to conclude that if we have a theory
of quantum gravity on some manifold M, the theory will be entirely determined by some other
theory living on the boundary ∂M, and the theories are said to be dual. This would rather seem
to be a good place to start if one would construct a theory concerning dualities between gravity
in bulk space-time and some more mystical landscape at the boundary. This would be the case
for AdS/CFT at least. If one tries to count the number of DOF per Planck area, it becomes
tedious since a CFT has an infinite amount. The solution is then to make a cutoff for the DOF
on the field theory side and compare to the bulk. Writing the metric in an approriate form with
singularities 6, will amount to the UV7. It can be shown that the entropy scales the same for
N = 4 SYM in both the field and gravity theories, saturating the holographic bound8[3]

Another argument given by Polchinski [128] bypassing string theory has its ties to a no-go
theorem by Witten and Weinberg. As with so many no-go theorems, there always seems to be
a slick way out of things by going beyond the underlying hidden assumption. A great example
is the S-matrix. Going beyond bosonic symmetries, supersymmetry was realized, hence the
Coleman-Mandula lemma was beaten. Back to Witten and Weinberg, a No-go theorem was
established for a system of gravitons being bound states of gauge bosons:

(Witten & Weinberg): All theories with a Lorentz-covariant energy-momentum tensor,
such as all known renormalizable quantum field theories, composite as well as elementary mass-
less particles with j > 1 are forbidden

So can it be beaten one might ask. The answer is yes, but the idea is to realize that if one has a
gauge boson propagating through spacetime in dimension d, then the graviton will have to move
in one dimension higher, to circumvent the no-go theorem. As holography constrains entropy
to be most that of a black hole proportional to its area in Planck units, one gets that quantum
gravity in any volume is naturally formulated in terms of DOF on its surface, one per Planck
unit as well. Thus QG lives in a dimension higher than the gauge theory. One might ask what
this extra dimension is. There seems to be an interpretation in terms of Wilson Renormalization
and RG equations. Having motivated AdS/CFT as a consequence of the holographic principle,
establishing the general correspondence between fields and operators will be the next task at
hand.

2.2.2 The Correspondence

As the name suggests, AdS/CFT makes a connection between gauge theories and gravity as
prescribed by holography. But to translate between the two, objects of use need to be identified.
Since CFT´s do not have asymptotic states or an S-matrix, the natural objects to consider are
operators. Operators as it turns out are dual to closed strings or particles in the bulk. Further,
the mass of particles in the bulk is related to the conformal dimension of the gauge theory on the
boundary. We proceed to show this and further state how correlation functions of field theories
relate to partition functions of strings with diagrammatic interpretations as well.

6Singularities at r = 1 or z = 0 correspond to metrics ds2 = R2
[
− ( 1+r2

1−r2
)2dt2 + 4

(1−r2)2
(dr2 + r2dΩ2)

]
and

ds2 = R2 −dt2+dx⃗2+dz2

z2
7What is meant is setting r = 1− δ and taking the limit δ → 0 makes the field theory flow to the UV
8Using δ as the UV-cutoff one finds that the entropy scales like S ∼ N2δ−3
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Boundary asymptotics and Breitenlohner-Freedman bound

To relate mass and conformal dimensions, start by considering a scalar field dual to a primary
operator in the CFT for an action toy model

S[ϕ] = −1

2

∫
dzddx

√
−g(gmn∂mϕ∂nϕ+m2ϕ2) (2.2.2)

The idea behind the action is splitting the integration up into a ”radial” coordinate which
in the Ads metric contains the z-coordinate, we associate this to some kind of energy scale
r = L2

z ∼ µ. Now to continue we find the Euler Lagrange equations given as ∂m
δL
δ∂mϕ

= δL
δϕ .

Using that L =
√
−g(gmn∂mϕ∂nϕ + m2ϕ) and taking the appropriate derivative while also

reminding ourselves that the Laplace-Beltrami operator can be written as

□gϕ =
1√
−g

∂µ(
√
−ggµν∂νϕ) (2.2.3)

The EOM is just the Klein-Gordon equation (□g −m2)ϕ = 0. It may be convenient to express
box at the boundary of the metric

□g|AdS =
1

L2
(z2∂2z − (d− 1)z∂z + z2ηµν∂

µ∂ν) (2.2.4)

Doing a plane wave-ansatz for the scalar field ϕ(z, x) = eip
µxµϕp(z), and inserting this into the

KG equation one finds

z2∂2zϕp − (d− 1)z∂zϕp − (m2l2 + p2z2)ϕp = 0 (2.2.5)

The main interest will be to look for asymptotic solutions as z → 0. Surely in that case the
term p2z2 becomes very small and can be neglected, leaving us with

z2∂2zϕp − (d− 1)z∂zϕp −m2l2ϕp = 0 (2.2.6)

Assuming a power-law ansatz as a solution of the form ϕp(z) = z∆ leaves us with.

z2∂2zz
∆−(d−1)z∂zz

∆−m2l2z∆ = ∆(∆−1)z∆−(d−1)∆z∆−m2l2z∆ = 0 ⇐⇒ ∆(∆−d) = m2l2

(2.2.7)
Solving the standard quadratic equation in ∆ one finds two roots admitting the solutions

∆± =
d

2
±
√
d2

4
+m2l2, ∆+ > ∆− (2.2.8)

The general solution can be written as a linear combination in the asymptotic limit ϕ ∼ ϕ0z
∆−+

ϕ0z
∆+ . Using the ansatz in the Poincaré AdS action, it may be written as

S[ϕ] = − l
d−1

2

∫
dzddx

1

zd+1
(z2∂zϕ∂zϕ+m2l2ϕ2) (2.2.9)

Splitting up the integral into some uv-cutoff and letting the second integral run, the integral
becomes

∫∞
0 dzI(z) =

∫ ϵ
0 dzI(z) +

∫∞
ϵ dzI(z). This computation boils down to finding a dimen-

sional bound such that the integral is normalizable

S[ϕ] = − l
d−1

2

∫ ϵ

0
dzddx

1

zd+1
(z2(∂zz

∆)2 +m2l2z2∆) = (2.2.10)

− ld−1

2(2∆− d)
(∆2 +m2l2)

∫
ddx[z2∆−d]ϵ0 (2.2.11)

15



So in order not to get any logarithmic divergence in the integral, we impose that the bound
∆ > d

2 , such that the integral is normalizable.

Consider performing integration by parts in the action

S[ϕ] = − l
d−1

2

∫
dzddx

1

zd+1
(−z2ϕ∂2zϕ+ (d− 1)zϕ∂zϕ+m2l2ϕ2) (2.2.12)

The ansatz we use here goes to next order, such that ϕ(x, z) ∼ C1e
∆ + C2e

∆+2. Inserting this
into the action, expanding and doing some gymnastics, one may find the reduced expression

S[ϕ] = − l
d−1

2
C1C2

∫
ddx

∫ ϵ

0
dz(2d− 4(∆ + 1)−m2l2)z2∆−d+1 = (2.2.13)

− l
d−1

2

2d− 4(∆ + 1)−m2l2

2∆− d+ 1
C1C2

∫
ddx[z2∆−d+2]ϵ0 (2.2.14)

For the integral to be normalizable, the bound ∆ > d−2
2 must be satisfied. Requiring that the

square root in the solution for ∆ must be positive, exactly gives the Breitenlohner-Freedman
bound

m2l2 > −d
2

4
(2.2.15)

in the case of the positive solution of ∆+. Note further that ∆+ ≥ ∆− as well as ∆− = d−∆+,
which implies that under boundary conformal rescaling x→ x′ = λx (same for z), the boundary
field ϕ(0)(x) transforms as

ϕ′(0)(λx) = lim
z′→0

(z′)−∆−ϕ′(z′, x′) = λ−∆− lim
z′→0

z−∆−ϕ(z, x) = λd−∆+ϕ(0)(x) (2.2.16)

where we have used the fact that the bulk field is invariant under the AdS isometry. One can
infer that ϕ(0)(x) transforms as a source for a primary operator with dimension ∆+, leading
us to identify the boundary field ϕ(0)(x) as a source for a dual field theory operator O∆+ and
similarly ϕ+(x) is the VEV of O∆+ . Turning to the other case, for (d − 2)/2 ≤ ∆ < d/2, it
turns out that we have to identify the conformal dimension of the field with ∆, so on the overlap
d2/4 ≤ m2l2 ≤ d2/4 + 1, the identification of VEV and sources of the field theory operator can
be interchanged, thus modifying the boundary conditions of the problem. We make a summary
for fields and how they change in the case of N = 6 Chern-Simons and N = 4 SYM

Mass-Dimension Relations

Field N = 6 CS: m–∆ Relation N = 4 SYM: m–∆ Relation

Scalars, massive spin-2 fields m2L2 = ∆(∆− 3) m2L2 = ∆(∆− 4)

Massless spin-2 fields ∆ = 3 ∆ = 4

p-form fields m2L2 = (∆− p)(∆ + p− 3) m2L2 = (∆− p)(∆ + p− 4)

Spin-12 , spin-
3
2 |m|L = ∆− 3

2 |m|L = ∆− 2

Rank-s symmetric traceless tensor (∆ + s− 2)(∆− s− 1) (∆− 2)2 − s2

Table 2.2: Mass-dimension relations in N = 6 Chern–Simons and N = 4 SYM.

From Quantum Fields to Conformal Fields: GKPW

Even though Maldacena put forward the conjecture[106], it was not until a little while after,
that the realization of a ”precise” statement for the link between the conformal field operators
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and the bulk gravity action could be stated. In the notorious paper of Witten[144], we get
the missing link for the partition function that binds the two sides. The generating functional
W[ϕ0] for connected Green’s functions has the scalar ϕ(0) in the bulk source the operator O∆ of
composite fields at the boundary. Then the partition function in Euclidean signature for the
CFT takes the form

ZCFT [ϕ0] = eW[ϕ0] =

〈
exp

(∫
ddxϕ(0)(x)O∆

)〉
CFT

(2.2.17)

Moving to the bulk, gravity dominates so the expected partition function is the one for string
theory. But as it turns out, the partition function for strings is unknown. For the weak form
of the correspondence, a saddle point approximation is used to get the superstring partition
function Zstring which is given by the low energy string namely type IIB supergravity. The
action is SSugra[ϕ], which relates to connected Green’s function W[ϕ0] as

W[ϕ0] = SSugra[ϕ]

∣∣∣∣
limz→0(z∆−dϕ(z,x))=ϕ(0)(x)

(2.2.18)

The story might be more involved than what is suggested. The On-Shell action for Supergravity
is flooded with IR divergences, and this needs to be taken care of as one does in QFT. To this
mean, holographic renormalization is used to cancel out whatever infinities might arise. Another
interesting pictorial aspect of AdS/CFT is that Feynmann diagrams have been substituted with
Witten diagrams, which we touch upon in the next section. But in the end, the starting point
for the holographic calculation of n-point correlation functions of composite gauge invariant
operators is done by taking derivatives to the sources of the connected greens function.

〈
O1(x1)...On(xn)

〉
CFT

=
δSsugra[ϕ∆i ]|limz→0(z∆−dϕ∆i

(z,x))=ϕ(0)∆i
(x)

δϕ(0)∆1
(x1)...δϕ(0)∆n

(xn)

∣∣∣∣
ϕ(0)∆i

=0

(2.2.19)

With this under the belt, the natural progression is to establish how to organize correlators with
Witten diagrams.

Witten Diagrams: Feynmann Diagrams Imprisoned

As analogously for QFT, to compute correlators establishing a sense of propagation in the system
is crucial. The theory at hand is a bit different than the usual Feynmann rules, since processes
depend on the whereabouts in the space that is being considered. Whereas only different particles
had different propagators depending on their nature, one must also take into account the fact
that we have a conformal boundary where operators exist. The previous argument establishes
that the whole picture is governed by both bulk and boundary propagators. This is the root for
computations of holographic amplitudes in AdSd+1 space, that are dual to correlation functions
in the conformal field theory living on the boundary of AdS. Witten diagrams are represented
by a circle denoting the conformal boundary of AdSd+1 and the interior denoting the bulk.
Since the supergravity approximation is being used, we do not go beyond tree-level. The points
on the boundary are labeled by chiral primaries dual to the bulk field ϕ(z), sourced by ϕ0(z).
The solid line propagators that emanate from a source on the boundary to a point in the bulk
are called bulk-boundary propagators, and the dotted lines in the bulk (z and w) are called
bulk-bulk propagators. The vertices in the bulk are governed by the interaction terms in the
SUGRA action. As an example, take the vertices in (b) and (d) that arise from cubic coupling
terms.

The starting point is the euclidean AdSd+1 metric ds2 = L2

z2
(dz2 + δµνdx

µdxν). We want
to follow geodesic from boundary to bulk, and bulk-bulk also. To this mean defining a chordal
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distance ξ due to the isometry of the AdS space makes computations more convenient. We
define the length d(z, x;w, y) for a geodesic connecting the points (z, xµ) and (w, yµ) as

d(z, x;w, y) =

∫ (w,y)

(z,x)
ds = log

(
1 +

√
1− ξ2

ξ

)
(2.2.20)

From this one can extract the chordal distance as

ξ =
2zw

z2 + w2 + (x− y)2
(2.2.21)

The general method to compute these propagators[57] is to first find the terms containing the
bulk field ϕ in the action Ssugra, derive the EOM, and then compute the boundary propagator
G the EOM with appropriate source J. We see how this is the case for scalars, and comment
for gauge fields with S = 1 and tensor fields with S = 2 in D, not to exceed the purpose of the
thesis.

2.2.3 Outlook

So far, we have established the underlying principles of what structures AdS/CFT builds upon,
plus what motivated the search for a duality. Over the years, countless applications have been
found in various fields to extend its use, and to maybe even gain observable quantities that can
give a clue about a phenomenological side to the story. Nevertheless, the search is still ongoing,
and the field is still evolving. From the cradle when N = 4 SYM was subjected as patient zero
to the framework, other dualities have found their way to the table. We proceed to investigate
certain aspects of the AdS/CFT framework in the context of a newer duality dubbed ABJM.

2.3 ABJM: AdS4 × CP3 and N = 6 Chern-Simons

The road starts at a place in pure mathematics, where due to Chern and Simons [40], it became
possible to get a whole framework for multiple areas in physics. As always in physics, we are
interested in an action or Lagrangian. To that mean, consider a topological field theory in 2+1
dimensions, described by a gauge group G and level k. Written compactly in differential forms,
the celebrated Chern-Simons theory has either the following action or Lagrangian

Scs =
k

4π

∫
M

Tr(A ∧ dA+
2

3
A ∧A ∧A), Lcs = κϵµνρTr(Aµ∂νAρ +

2

3
AµAνAρ) (2.3.1)

The domain of integration is over a topological 3-manifold M, a 1-form associated with the
gauge field A which also transforms in the adjoint representation of G. A rather interesting
feature compared to usual QFT´s, is the absence of a metric, hence why the theory i called
topological. One is also led to question if the action is gauge invariant because it involves the
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gauge field Aµ itself, rather than just the (manifestly gauge invariant) field strength Fµν . Luckily
this is the case[51]. An important feature is to consider a gauge transformation that will have
a great consequence for the rest of the thesis. The gauge field and action transforms as 9

Aµ → Agµ = g−1Aµg + g−1∂µg, Lcs → Lcs − w(g)

w(g) =
k

24π2
ϵµνρTr(g−1∂µgg

−1∂νgg
−1∂ρg), Scs → Scs − 8π2kN

(2.3.2)

Under the gauge transformation, one picks up w(g) which is commonly known as the winding
number10. In terms of QFT´s, for the path integral to remain gauge invariant, it must be required
that the level takes discrete values k ∈ Z11. This will have a big influence on supersymmetry
for the theory which will become apparent shortly.

2.3.1 N = 2 Chern-Simons action from superspace: A First Glance towards
ABJM

To go from the pure CS theory, we need to add fermionic degrees of freedom, which will come
through the vector and chiral multiplets.

V : {Aµ, χ, σ,D}, Φ : {ϕ, ψ, F} (2.3.3)

For the vector multiplet, Aµ is the gauge field, χ is the two Majorana spinors combined into one
complex spinor and σ is a real scalar and D is a real auxiliary scalar. For the chiral superfield we
have that ϕ is a complex scalar, ψ is the two Majorana spinors combined into a complex spinor
and F is a complex auxiliary scalar. To proceed, one is in dire need of superspace formalism
Appendix G. The first attempt to construct such theories came from[119, 12, 133, 90]. They
constructed it by considering (d,N ) = (3, 2) vector superfields can be obtained by dimensional
reduction from (d,N ) = (4, 1) vector superfields. Thus, N = 2 Chern-Simons matter theory can
be obtained by dimensional reduction of SYM, besides the kinetic part of the vector multiplet
which is replaced by the supersymmetric version in the pure Chern-Simons lagrangian. One can
ponder what superspace action would do this, and in a very non-trivial way it can be chosen to
be [58]”

SN=2
CSM =

∫
d3x

∫
d4θ{ k

2π

∫ 1

0
dtTr[V D̄α(e−tVDαe

tV )] +

Nf∑
i=1

Φ̄ieV Φi} (2.3.4)

The index i is a global U(Nf ) flavor symmetry acting on Φ. The trace is in the fundamental
representation for either U(N) or SU(N). Thus the generators T a obeys Tr(T aT b) = 1

2δ
ab. Φi

is a vector which is acted on by the representation Ri of the group. This reduces in components
after integrating out the superfields, where for the kinetic part we get

SN=2
CS =

∫
d3x

∫
d4θ{ k

2π

∫ 1

0
dtTr[V D̄α(e−tVDαe

tV )]

=
k

4π

∫
Tr(AaT a ∧ dAaT a + 2

3
AaT a ∧AbT b ∧AcT c) + χ̄aχbδab +Daσbδab

=
k

4π

∫
Tr(A ∧ dA+

2

3
A3 + χ̄χ+ 2Dσ)

(2.3.5)

Here a ∈ {1, 2, ...dim(G)} is the index related to the fundamental generators, such that as an
example Aµ = AaµT

a, and the same for the rest of the components in the multiplets. Focusing

9In the Lagrangian, one finds an additional term containing a total derivative −kϵµνρ∂µTr(∂νgg
−1Aρ), which

vanishes with suitable boundary conditions
10This is purely an artifact of the theory being non-abelian
11It is conventionally written with a factor k

4π
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on the chiral field, we note that the covariant derivative is defined by

Dµ{ϕi, ψi} = ∂µ{ϕi, ψi}+
i

2
AaµT

a
Ri
{ϕi, ψi} (2.3.6)

Using the covariant derivative, it is possible to spill out the superspace integral and get∫
d4θ

Nf∑
i=1

Φ̄ieV Φi =

Nf∑
i=1

(Dµϕ̄
iDµϕi − iψ̄iγµDµψ

i − 1

4
ϕ̄iσaσbT aRi

T bRi
Φi +

1

2
ϕ̄iDaT aRi

Φi

− 1

2
ψ̄iσaT aRi

ψi +
i√
2
ϕ̄iχaT aRi

ψi − i√
2
ψ̄iT aRi

χ̄aϕi + F̄ iF i)

(2.3.7)

T aRi
, a ∈ {1, 2, ...dim(G)} are the generators of gauge group G in the Ri representation and

furthermore Aiµ = AaµT
a
Ri

and so forth. By solving the EOM´s it is found that

Dα : σa = −2π

k
ϕ̄iT aRi

ϕi, F, F̄ : F = 0, F̄ = 0

χa : χ̄a =
4πi√
2k
ϕ̄iT aRi

ψi, χ̄a : χa = − 4πi√
2k
ψ̄iT aRi

ϕi
(2.3.8)

For the grand finale, after all the parts have been manipulated, we can combine and integrate
out the fields. This will in the end yield[5]

SN=2
CSM = SCS +

∫
d3x(Dµϕ̄

iDµϕi − iψ̄iγµDµψ
i +

π2

k2
(ϕ̄iT aRi

ϕi)(ϕ̄jT bRj
ϕj)(ϕ̄kT aRk

T bRk
ϕk)

+
π

k
(ϕ̄iT aRi

ϕi)(ψ̄jT aRj
ψj) +

2π

k
(ψ̄iT aRi

ϕi)(ϕ̄jT aRj
ψj))

(2.3.9)

This concludes the case for N = 2 CS in superspace. But to be compatible with ABJM, the
theory has to be enhanced to N = 3. The trick is to replace the kinetic part of N = 4 SYM
with the trilinear gauge field and derivatives, which in return breaks supersymmetry to N = 3.
It has been argued, compared to the N = 2, that the enhancement requires adding an auxiliary
chiral multiplet ϕ in the adjoint representation to the vector. Additionally one must assume that
the chiral multiplets come in pairs in the conjugate representation of the gauge group forming
a hpyermultiplet

V : {Aµ, χ, σ,D}, ϕ :{ q, λ, S}
Φi : {ϕi, ψi, F i}, Φ̃i : {ϕ̃i, ψ̃i, F̃ i}

(2.3.10)

The relevant action can be found in [59], where extra terms have been added corresponding to
the hypermultiplet contributions and a N = 4 superpotential WN=4 = Φ̃iϕΦi. The breaking of
supersymmetry comes from the Chern-simons superpotential WN=3 = − k

8πTr(ϕ
2). By integrat-

ing out the superfields, the superpotentials can be reduced to a single term with dependence on
the Chern-Simons level

W =
4π

k
(Φ̃iT

a
Ri
Φi)(Φ̃jT

b
Rj
Φj) (2.3.11)

Using the same prescription as was done for the N = 2 and going through rather lengthy
computations, an expression for the full action can be obtained [114]. This will set us up for
how to proceed when considering the construction of the ABJM action. For further details, one
can consult [89, 88, 90]

2.3.2 The Conjecture

N=6 superconformal Chern–Simons matter theory in 2+1 dimensions with gauge group U(N) ×
U(N) and Chern–Simons levels (k,−k), referred to as ABJM theory is dynamically equivalent to
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M-theory on AdS4 × S7/Zk with N units of R-R four-form flux F(4) through AdS4.The ’t Hooft

coupling is given by λ = N
k and is related to the AdS4 radius L and the eleven-dimensional

Planck length lp by

L3

l3p
= 4π

√
2kN = 4πk

√
2λ, gs ∼

(
N

k5

)1/4

=
λ5/4

N
,

R2

α′ = 4π
√
2λ (2.3.12)

2.3.3 General aspects of ABJM

As it was teased in M-theory, what pushed the forthcoming of ABJM, was the previous work
of BLG an others [15, 14, 16, 13, 71, 5]. Looking at the conjecture, we lay out the general
structure and aspects of the theory to reach as many corners of both gravity and gauge theory
as possible. Starting as general as possible, both theories are controlled by two parameters, k
and N (where N is the number of M2-branes), which take integer values. These parameters
determine all other quantities like coupling constants and the effective string tension. Here 1/k
acts like a coupling constant. Considering the ’t Hooft limit N → ∞, where the t´Hooft coupling
is defined as λ = N

k and is kept fixed, gives leading contributions of planar Feynmann diagrams.
In the language of λ, this constitutes a continuous coupling. ABJM theory is weakly coupled
for λ ≪ 1 giving the emerging pertubative regime of N = 6 Chern-Simons. As the conjecture
states, ABJM is dual to M-theory on AdS4 × S7/Zk with N units of four-form flux F(4). In
the limit of large k one has roughly speaking that S7/Zk ≃ CP 3 × S112 making ABJM dual to
type IIA string theory on AdS4 × CP 3. This duality is valid for λ≫ 1 and the type IIA string
description holds when k5 ≫ N . With these general remarks, we delve deep and investigate
both scenarios which will constitute the N = 6 CS and AdS4 × CP 3 gravity.

The Superconformal Group OSp(4|6) and the algebra

Facing ABJM, one might find this duality to contain more peculiarities than SYM due to the
lack of supercharges. We start by Considering both global bosonic and fermionic symmetries
which can be encapsulated by the Lie superalgebra OSp(4|6)[147, 34]. The bosonic sub-algebra
is SO(6)× Sp(4) ∼= SU(4)× SO(3, 2). SU(4) × SO(3, 2). This is nothing but the 3D conformal
algebra. It has 10 components, 6 of which belong to the Poincaré algebra which contains the
Lorentz group so(2, 1) ∼= sl(2,R) with generators Mµν . Additionally, there is also the space-time
generators Pµ. The remainder is the dilatation operatorD and special conformal transformations
Kµ. It is a standard exercise to derive the commutation relations, but they are just stated for
convenience in terms of spinor indices[34]

[Kαβ, Pδγ ] = 4δ
[α
[γM

β]
δ] + 4δα[γδ

β
δ]D [D,Pαβ] = Pαβ [D,Kαβ] = −Kαβ [D,Mαβ] = 0

[Mβ
α ,M

γ
δ ] = δ

[β
[γM

δ]
α], [Mαβ, Pγδ] = δβ[δPγ]α − δβαPγδ [Mαβ,Kγδ] = δβ[δKγ]α − δβαKγδ

(2.3.13)

Moving on, we have the SU(4) part of the algebra which contains the R-symmetry generators.
They are denoted as RIJ , where I, J = {1, 2, 3, 4} and RII = 0. Thus the commutators of the
R-symmetry generators can be written as

[RIJ , RKL] = i(δI[LRK]J − δJ [LRK]I) (2.3.14)

Lastly, we have 2N 13 supercharges or fermionic generators QαI and SαI whose conformal di-
mension is {1/2,−1/2}. This can be seen from the commutator with the dilatation operator

[D,QαI ] =
1

2
QαI , [D,SαI ] = −1

2
SαI (2.3.15)

12This is accomplished by hopf fibrating along a U(1) fiber bundle
13For N = 6 we have 24 supercharges indicating that supersymmetry has been partially reduced or broken from

the maximal case of 32
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Since they have fermionic nature, they obey anti-commutation relations and generate all the
bosonic operators as well

{QαI , QβJ} = 2δIJPαβ {SαI , SβJ} = −2δIJKαβ

{QαI , SβJ} = 2i(Mαβ − ϵαβD)− 2ϵαβRIJ
(2.3.16)

Lastly, the only remaining commutators are the Poincare generators and the supercharges. They
will give us

[Mβ
α , QγI ] = δβγ , QαI −

1

2
δβα, QγI [Kαβ, QγI ] = −iδ[αγ S

β]
I

[Mβ
α , S

γ
I ] = −δγαSIβ +

1

2
δβαS

γ
I [Pαβ, S

γ
I ] = −iδγ[αSβ]I

(2.3.17)

A nice way of categorizing the operators of the superconformal algebra, is by grouping them in
terms of the dimension of the corresponding operators. This can be put in a form of a diagram

− 1 Kαβ

− 1

2
SIα

0 Mαβ ∆ RIJ
1

2
QIα

1 Pαβ

(2.3.18)

The left column represents how each operator raises or lowers the conformal dimension. Using
the oscillator picture, one can find relations between operators through the hermitian conjugates

(Pαβ)
† = Kαβ, (Kαβ)

† = Pαβ, (Mαβ)
† =Mαβ, D† = D

(QIα)
† = −iSIα, (SIα)

† = −iQIαm (RIJ)
† = RIJ

(2.3.19)

This means that if a superconformal primary state is considered, then {Kαβ, S
I
α} will annihilate

the state and {Pαβ, QIα} will raise the conformal dimensions of the primary to make descendants.
Finding unitary irreducible representations (irrep.), one faces the problem of OSp(N|4) being
non-compact, hence the irreps are infinite-dimensional, but this obstacle can be bypassed. Our
final goal is to somewhat classify a general notion BPS-operators in OSp(6|4)14. This means that
there exist unitary multiplets that will obey certain inequalities specific to the superconformal
algebra[47, 42]. Each multiplet can be described by the Cartan generators given by the vector
{∆, s, r, q, p}. In total one finds three types of multiplets which are defined below

∆ > s+ r +
1

2
(q + p) + 1 − Long Multiplet

∆ = s+ r +
1

2
(q + p) + 1 − Semishort Multiplet (A-Type)

∆ = r +
1

2
(q + p) − Short Multiplet (B-Type)

(2.3.20)

We see that depending on the type of multiplet and the choice of spin and SU(4) Dynkin labels,
different BPS operators can be obtained. We list the possible choices and their BPS fractions
in the table below[34]

14A finite dimensional subspace of states VB called the (OSp(N|4), B) module (Harish-Chandra module), con-
sisting of B-finite vectors with respect to a maximal compact subgroupB ⊂ OSp(N|4), is enough to recover the
entire original state space V
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Type ∆ Spin Multiplet SU(4)R BPS

Long > ∆B + s+ 1 s Long [r, q, p] 0

A ∆B + s+ 1 s

(A,1)
(A,2)
(A,+)
(A,-)

(a,const.)

[r, q, p]
[0, q, p]
[0, q, 0]
[0, 0, p]
[0, 0, 0]

1/12
1/6
1/4
1/4
1/3

B ∆B 0

(B,1)
(B,2)
(B,+)
(B,-)
Trivial

[r, q, p]
[0, q, p]
[0, q, 0]
[0, 0, p]
[0, 0, 0]

1/6
1/3
1/2
1/2
1

Table: Multiplets of osp(6|4) and the quantum numbers of their superconformal primary, where
∆B = r + 1

2(p+ q).

Field and matter content

To follow up where we left for the N = 3 case, we briefly state how things change. From the
brane-construction of ABJM, it is prescribed that CS theories arise naturally in the low-energy
limit15. Requiring parity invariance, one gets that the action must be of a product gauge group[5,
16]. In terms of CS theories, this corresponds to different levels for each gauge group (k,−k)
of the moduli space16 U(N)k × U(N)−k. Looking at the matter content, it can be recognized
that it has the structure of a quiver gauge theory with two nodes corresponding to the product
gauge groups, and arrows indicating bifundamental fields. The field contents consist of gauge

Figure 2.1: Quiver Gauge diagram for ABJM theory containing Gauge fields {Aµ, Âµ} on the

nodes and matter fields along the arrows between nodes {Y a, Y †
a }

fields Aµ and Âµ transforming in the adjoint representation of the groups U(N)k and U(N)−k
respectively. Then we have four complex scalars accompanied by the same amount of Weyl
fermions given by Y A, ψA, A ∈ {1, 2, 3, 4}. Firstly, one identifies the N × N̄ chiral superfields
containing the complex scalars A1, A2. Same goes for N̄ ×N with B1, B2. They can be grouped
into supermultiplets of the SU(4) R-symmetry which transform in the 4 and 4̄ of SU(4)17

Y a = (A1, A2, B
†
1, B

†
2) Y †

a = (A†
1, A

†
2, B1, B2) (2.3.21)

The fermions are superpartners of the scalars so they transform in the fundamental and anti-
fundamental of SU(4) as well. The difference lies in the fact that scalars have conformal di-
mensions ∆ = 1/2 and transform in the trivial representation of SO(3)18. On the other hand,

15To be more precise, the brane construction of Type IIB string theory can have at most N = 3 supersymmetry,
but when generalized to U(N) × U(N) gauge group with CS terms at levels (k,−k) and matter in the bi-
fundamental rep. the theory flows in the IR to N = 6 CS

16The discussion is more involved but can be extended to SU(N)k × SU(N)−k as well
17Representations and dimensions of scalars and operators can be found in Appendix I
18The SO(3) isometry is manifesting on the geometry side through S2 ⊂ AdS4
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fermions have conformal dimension ∆ = 1 and transform in spin 1/2 representation of SO(3).
As known from Klebanov-Witten theory[96] with the same structure, a superpotential must be
added to maintain the N = 6 symmetry.

W =
2π

k
ϵabϵȧḃTr(AaBȧAbBḃ) (2.3.22)

which exhibits SU(2)×SU(2) symmetry separately acting on the A´s and B´s. Lastly, we have
in addition a covariant derivative Dµ transforming in the spin 1 representation of SO(3) and
in the trivial representation of SU(4). with conformal dimension ∆ = 1. We write the three
components as D, D0 and D+ according to the Cartan generator S of SO(3) with eigenvalues
(1, 0, 1) This should sum up the most important notions of the matter and field content.

The Action and additional components

Obtaining the action for ABJM was consequently done in the aftermath of its creation. Using
the BLG construction in van Raamsonk´s product gauge formalism [142, 28] it was shown that
breaking the global SO(8) symmetry to SU(4)R×U(1)R precisely achieved what was conjectured
to be the case for ABJM. The action can be separated into three main components accounting
for the full expression. Writing it as S = SCS + Smat + Spot, we will have a chern-simons
contribution, matter part and potential part, being the main sources of ABJM. Spilling them
out separately gives

SCS = −iK
∫
d3xd4θ

∫ 1

0
dtTr

[
VD̄α(etVDαe

−tV)− V̂D̄α(etV̂Dαe
−tV̂)

]
(2.3.23)

Smat = −
∫
d3xd4θTr

[
− Z̄Ae−VZAeV̂ − W̄Ae−V̂WAe

V
]

(2.3.24)

Spot = L

∫
d3xd2θW(Z) + L

∫
d3xd2θ̄W̄(Z̄) (2.3.25)

It is worth mentioning the promoting features going from BLG to ABJM. First of all, the CS
action is unchanged, but the matter and potential action acquires additional terms. In BLG,
only a single chiral superfield is present whereas in the product gauge group languages, an
extra anti-chiral superfield W is present. The difficulty in the transition was giving up SU(4)
invariance in the superpotential, by splitting the BLG scalars into complex combinations of
bifundamental fields

Z1 = X1 + iX5, Z2 = X2 + iX6, W1 = X3† + iX7†, W 1 = X4† + iX8† (2.3.26)

In the matter sector, one gets contribution from both Z and W as the promoting feature then.
For the superpotentials, there seems only to be a SU(2)×SU(2)×U(1) global symmetry. This
can be enhanced however by relating the normalization factors as K = 1

L to SU(4)R. It can be
shown by combining the scalars as in 2.3.21, the R-symmetry gains the symmetry enhancement.
Since the isomorphism SU(4)r ≃ SO(6)R is viable, the 2 + 1 dimensional theory has a N = 6
supersymmetry19. This will then be the building blocks for the full action. It is quite long and
hairy to get to the final expression writing out all the components of the superfields and so forth.
Nevertheless, in its full glory, it can compactly be written as

S =
k

4π

∫
d3x
[
ϵµνλTr(Aµ∂νAλ +

2i

3
AµAνAλ − Âµ∂νÂλ −

2i

3
ÂµÂνÂλ

− Tr(DµY
†)DµY − iTr(ψ†γµDµψ)− Vferm − Vbos

] (2.3.27)

19Interestingly enough, at levels k = 1 supersymmetry is revived to N = 8 for M2-branes in R8, while for k = 2
the space becomes R8/Z2
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The fermionic and bosonic potentials are expressions containing combinations of scalar and
fermionic fields coupled to each other. They as well have the manifest SU(4) invariance. Writing
out the sextic bosonic and quartic mixed potentials one obtains

Vbos = − 1

12
Tr(Y AY †

AY
BY †

BY
CY †

C + Y †
AY

AY †
BY

BY †
CY

C

+ 4Y AY †
BY

CY †
AY

BY †
C − 6Y AY †

BY
BY †

AY
CY †

C)
(2.3.28)

Vferm = − i

2
Tr(Y †

AY
Aψ†BψB + Y AY †

AψBψ
†B + 2Y AY †

BψAψ
†B − 2Y †

AY
Bψ†AψB

− ϵABCDY †
AψBY

†
CψD + ϵABCDY Aψ†BY Cψ†D)

(2.3.29)

It has been mentioned many times by now, but the construction of the U(N) × U(N) CS
action accomplishes describing N coincident M2-branes at the Zk orbifold of C4 which further
solidifies the conjecture. The whole story can be accompanied by the brane configuration, which
is explained in [16, 5, 2]. The next step is to summarize the emergence of CP 3 geometry
accompanied by type IIA strings in the k5 ≫ N limit

Geometry of AdS4 × S7/Zk

Going from the gauge theory side, the focus will be on gravity now. As it was seen through
M-theory and BLG, a stack of M2-branes on a Zk orbifold of C4, give in a near horizon limit

ds2 = R2(
1

4
ds2AdS4

+ ds2S7/Zk
), R2 =

√
32π2N

k
= 4π

√
2λ (2.3.30)

Let us first remark how the orbifolding or quotient acts. If the S7 is defined as four complex
coordinates zi which satisfy the condition

∑4
i=1 |Xi|2 = 1, then Orbifolding is implemented20 as

R-symmetry rotations for the scalars

zi → e2πi/kzi (2.3.31)

Using the quotient Zk21 on S7 it can be interpreted as a S1 hopf fibration over CP3. The circle
has a constant radius, where the orbifolding then decreases it. This means that the ds2S7 metric
can be written as [5, 62]

ds2S7 = (dγ′ + ω)2 + ds2CP 3 , ds2CP 3 =

∑
i dXidX̄i

ρ2
+

∑
i |XidX̄i|2

ρ2
, ρ2 ≡

4∑
i=1

|Xi|2 (2.3.32)

ω is related, if considered as a one-form dω, to the Kahler form on CP 3 and γ′ is periodic with
period 2π. The action of Zk changes the periodicity of S1 from 2πL → 2π

k L. The regime of
supergravity is valid in the N → ∞ so the radius of S1 in M-theory is L

k . In the Nk ≫ 1
limit, the CP 3 radius becomes large. On the other hand, the radius of dγ becomes very small
when k increases, so the regime becomes k5 ≫ N22 and the theory essentially reduces to a

20For a more elegant geometric implementation, one defines zi = µie
iϕi where each angle generates an isometry

in terms of angular momenta Ji = −i∂ϕi , which can be related to {R1, R2, R3} with additional features [81]
21Another way orbifolding can be implemented is using 2.3.31 on spinors which transform as ψ →

e2πi(s1+s2+s3+s4)/kψ, with si = ±1/2. Demanding the chirality sum to be even
∑4

i=1 si (mod k), only six
spinors are left invariant and break N = 8 to N = 6 (for k = 1, 2, N = 8 still holds)

22The radius of γ in Planck units is of the order R
klp

∝ (Nk)
1
6 /k, so M-theory is valid when k5 ≪ N
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ten-dimensional background describing Type IIA string theory (supergravity) on AdS4 × CP 3

with the string frame metric, dilaton and field strengths

ds2 = R2(
1

4
ds2AdS4

+ ds2CP 3), e2ϕ =
1

N2

(
N

k

)5/2

, F4 =
3

8
R3ϵ̂4, F(2) = kdγ = kJ (2.3.33)

The compactification to type IIA super string theory has N units of F(4) flux on AdS4 and
k units of F(2) on CP 1 ⊂ CP 3. Furthermore, ϵ̂4 is the unit radius of AdS4. The radius of

curvature for the string can also be expressed in terms of the t´Hooft coupling R3 = 25/2πk
√
λ.

This turns out to have the same scaling for λ as for N = 4 SYM. With the general picture
established, it would be convenient to express the metric for both AdS4 and CP3 in terms of
angular coordinates (this will prove handy later).

AdS4 metric and parametrization:

Having established the general notion of the metric, it becomes straightforward to parametrize
the coordinates. Start by writing the components as

Z0 = R cosh ρ cos t, Z1 = R cosh ρ sin t

Z2 = R sinh ρ cos θ, Z3 = R sinh ρ sin θ cosϕ

Z4 = R sinh ρ sin θ sinϕ

(2.3.34)

Inserting each component and summing over it in ds2 =
∑4

i=0 |dzi|2, will add the needed con-
tributions to obtain the metric

ds2AdS4
= − cosh ρdt2 + dρ2 + sinh2 ρdΩ2

2, dΩ2
2 =

1

4
(dθ2 + sin θdϕ2) (2.3.35)

Instead of S3, the geometry has a S2 or rather a S1 hopf fibration over CP1. The AdS part
of the metric is in this context not changing, whereas the expression for CP 3 space can vary
depending on the physical system considered. But this makes us able to write the near-horizon
limit as

ds2 = R2(
1

4
ds2AdS4

+ ds2S7/Zk
)

=
R2

4
(− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2

2) +R2ds2S7/Zk

(2.3.36)

CP 3 metric and parametrization in Homogenous coordinates:

There is a freedom of choice when it comes to picking the CP3. Describing it can be done by

a coset space using the hopf fibration S7 U(1)−−−→ CP 3 such that CP 3 = S7

U(1) . Similarly this can

be described by another coset CP 3 = SU(4)
U(3) . For the first parametrization of the metric, it can

be found using[120, 45]

X1 = cos ξ cos
θ1
2
eiα1 X2 = cos ξ sin

θ1
2
eiα2

X3 = sin ξ cos
θ2
2
eiα3 X4 = sin ξ sin

θ2
2
eiα4

(2.3.37)

Using the formula for generating the CP 3 metric and inserting the elements will amount to

ds2CP 3 = dξ2 +
1

4
cos2 ξ(dθ21 + sin2 θ1dα

2
1 + cos2 θ1dα

2
2)

+
1

4
sin2 ξ(dθ22 + sin2 θ2dα

2
3 + cos2 θ2dα

2
4)

(2.3.38)
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This expression has its benefits for upcoming interpretation and can be used when considering
BPS-bounds for string backgrounds.

CP 3 metric and parametrization in Inhomogenous coordinates: Lastly, using inho-

mogenous coordinates, the amount of components needed to describe the metric is reduced by
considering ratios Xi/X4. The coordinates are

X1/X4 = tan ξ cosαeiα1

X2/X4 = tan ξ sinα sin(θ/2)eiα2

X3/X4 = tan ξ cosα cos(θ/2)eiα3

(2.3.39)

For now, the full metric does not need to be explicitly written, but it will be used when consid-
ering transformations of angles in computations later on.

Isometries Having assembled all the parts, one can deduce that AdS4 × CP 3 admits five
different Killing vectors for this background

∆ = −i∂t, S = −i∂ϕ, J1 = −i∂ϕ1 , J2 = −i∂ϕ2 , J3 = −i∂χ (2.3.40)

The last charge will only be relevant to the last mentioned parametrization of CP 3, so we put
χ as the angle associated too the charge. But these are the generators that make up the Cartan
subalgebra of the isometries. The condition for S7 and CP 3 are both met by SO(3, 2) and SU(4)
which as we already know was the R-symmetry and 3-dimensional conformal symmetry. The
charge ∆ gives the space-time energy of a string state23.

2.3.4 Subsectors and Decoupling Limits for N = 6 Chern-Simons

Consider the letters in N = 6 Chern-Simons. The procedure is the same, but the weights and
Dynkin labels change. In the literature, different weights can be used, but they will amount to
the same physics, even though there might be a difference in the values of coefficients on the
chemical potentials. Using data from [97], tables can be arranged as follow

D− D0 D+

SO(3) -1 0 1

SU(4) (0,0,0) (0,0,0) (0,0,0)

Table 2.3: Weight of derivative operators in SO(3) and SU(4) representation

Y1 ψ
†
1± Y2,ψ

†
2± Y3,ψ

†
3± Y4,ψ

†
4±

SU(4) (1,0,0) (-1,1,0) (0,1,-1) (0,0,-1)

Table 2.4: Weight of Scalars in bi-fundamental representation

Y †
1 ,ψ1± Y †

2 ,ψ2± Y †
3 ,ψ3± ψ4±,Y

†
4

SU(4) (-1,0,0) (1,-1,0) (0,1,-1) (0,0,1)

Table 2.5: Weight of Scalars in Anti Bi-Fundamental representation

23Or the dimension of the corresponding operator on the gauge side
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Y A, Y †
A ψA±, ψ

†A±

SO(3) 0 ±1/2

Table 2.6: SO(3) weights of scalars and fermions.

Interestingly enough, depending on the use of SO(6) or SU(4), the weights will take a
completely different look. But using the following relation [r, q, p] → [q + r, r − q, q − p]24,
which in general is related to the Gelfand-Tsetlin Map[47], changing between weights in the
two representations becomes possible and equivalent due to the isomorphism between SO(6) ∼=
SU(4). The supergroup OSp(4|2) will be the main frame, that is the maximal subgroup of
the full OSp(6|4) considered. From the geometry side of ABJM, a thorough analysis was done

Figure 2.2: A specific choice for the OSp(6|4) Dynkin diagram, related to the SU(4) spin chain
in [110]

relating angular momentum generators to R-symmetry generators of SU(4) through orbifolding
of S7. The inequality for operators takes the form[81]

∆0 ≥ m1R1 +m2R2 +m3R3 +m4S (2.3.41)

The Cartan generators manifest themselves as Ri for SU(4) while S is the Cartan generator for
SO(3). This can alternatively be written in the language of the angular momenta

∆0 ≥ n1J1 + n2J2 + n3J3 + n4J4 + n5S (2.3.42)

But this comes with the restriction
∑4

i=1 Ji = 0. Using the same prescription as for SYM, it
becomes a matter of systematically obtaining the subsectors. The problem can be solved in two
ways. Either constructing a matrix with Dynkin labels as columns and weights as rows and
then diagonalizing the matrix gives you the BPS-vector (m1R1,m2R2,m3R3,m4S) that can be
used to determine the letter content and spin group. Otherwise, reverse engineering by putting
restrictions on coefficients and generators will also work. An example is determining all sectors
with derivatives, which immediately gives S = ±1. We summarize the result in the table below,
where BPS-vector, Spin group and letter content are presented

One can look at the type of operators appearing for different cases in the subsectors25. An
example is the SU(2) × SU(2) sector which has been studied extensively. In later sections, we
review calculations that will show features chosen for the SU(2)×SU(2) sector involving finding

24The SO(6) representation has HWS [1/2, 1/2, 1/2] → [1, 0, 0]
25A graphical way of representing the full BPS-landscape is using Dynkin diagrams, where blank dots are

bosonic roots, and those with a cross are fermionic. One can separate the root system so it admits the subsectors
obtained in this section. For supergroups, it is not unique how one constructs such diagrams, as it was considered
in [110]. Depending on the choice of root- system, this changes the diagram and corresponding Bethe equations
as well
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BPS-vector (m1R1,m2R2,m3R3,m4S) Gs Letter Content

(1/2,m2R2, 1/2, 0) Vacuum Y1, Y
†
4

(1/2, 0, 1/2, 0) SU(2)× SU(2) Y1, Y
†
4 , Y2, Y

†
3

(1/2, 1, 1/2, 0) SU(2) Y1, Y
†
4 , Y2

(1/2, 0, 1/2, 1/2) SU(1, 1) Y1, Y
†
4 , ψ4+

(1/2, 1, 1/2, 1) SU(2|1) Y1, Y
†
4 , Y2, ψ4+

(1/2, 1/2, 1/2, 1/2) OSp(4|2) Y1, Y
†
4 , Y2, Y

†
3 , ψ4+, ψ

†1
+ , ψ3+, ψ

†2
+ , D+

(1/2, 0, 1, 1/2) OSp(2|2) Y1, Y
†
4 , ψ4+, ψ

†1
+ , D+

(m1R1,m2R2,m3R3,m4S)? SU(3|2) Y1, Y
†
4 , Y2, Y

†
3 , ψ4+, ψ

†1
+

Table 2.7: Subsectors of the full OSp(6|4) group, with letter content, spin group and bps vector

a spectrum for operators on the string side. On the other hand, more extensive use will be done
with upcoming sectors when considering non-relativistic string backgrounds arising from Spin
Matrix theory in the last section. In the spirit of [81], we end the section by writing the operator
structure for specific and clean BPS-sectors26

SU(3) BPS-Sector : ∆ ≥ R1 +R2 +R3 → O = Tr(Y A1B2 . . . Z
ALB2)χA1A2...AL

, Aj = 1, 2, 3

OSp(2|2) BPS-Sector : ∆ ≥ R1 +R2 + S → O = Tr(Y A1Y †
B1
Y A2Y †

B2
. . . Y ALY †

BL
)χB1...BL

A1...AL

OSp(4|2) BPS-Sector : ∆ ≥ R1 +R2 +R3 + S → O = Tr(Y A1Y †
B1
Y A2Y †

B2
. . . Y ALY †

BL
)χB1...BL

A1...AL

(2.3.43)
It looks strange why the two last BPS-sectors have the same looking operators, but we can
distinguish them by writing up their respective modules27

OSp(2|2) BPS-Sector : V = {Dn
+A1,2, D

n
+ψA1,2}, V̄ = {Dn

+B1,2, D
n
+ψB1,2}

OSp(4|2) BPS-Sector : V = {Dn
+(A1,2, B

†
1), D

n
+ψ(A1,2,B

†
1)
}, V̄ = {Dn

+B2, D
n
+ψB2}

(2.3.44)

The barred modules live on the even sites, while unbarred on the odd. All superpartners to the
scalars have S = 1/2 as well. This was a taste of how the structure of operators looks when
restricting to certain charges in the BPS language. Later chapters will utilize this to a great
extent.

26In the table above, it seems impossible to determine the BPS-vector due to solving the set of linear equations
a = 1/2,−a+ b = 1/2,−b+ c = 1/2, which ambiguously gives both b = 1 and b = 0. Either conventions are not
followed properly, or weights are off. Maybe having used SO(6) would have given more aesthetic BPS-vectors

27This is explained in section 3.1 about spin-chains
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Chapter 3

Peculiarities of AdS/CFT : The
Emergence of Spin Chains and
pp-waves

3.1 The Planar Limit: Here Comes The Spin Chain and Inte-
grability

A surprising result that came in the early 2000´s presented a peculiar side of AdS/CFT . Taking
the planar limit when N → ∞1, it was found that one can get a spin chain description by
interpreting the gauge invariant operators consisting of scalars and other letters as spin particles.
We set out to show how one might construct these types of operators which may differ depending
on the particular duality (for a detailed and brilliant reviews see [125, 126, 138]).

3.1.1 From Spin-Chains and operators to N = 4 SYM

The first link between Spin chains and operators in N = 4 SYM was found by Minahan and
Zarembo[111]. Considering operators of the form

O[ψ] = ψi1,...,iLTr(ϕi1 ...ϕi1) (3.1.1)

The holographic dictionary states that ϕij are scalars in the bulk of AdS. Many operators, most
notably chiral primary and BMN operators, belong to this class. Knowing the letter content, the
six scalars are defined as three complex ones namely {Z,W,X} along with their conjugates2.
Knowing that correlators between such operators give conformal n-point functions. As it is
known, the dilatation operator (D) makes the two-point function depend on ∆, which can
receive corrections from higher loop orders in D. In pertubation theory, the dilatation operator
can be expanded in powers of the coupling constant[22, 24]

D =

∞∑
k=0

(
g2ym
16π2

)
D2k (3.1.2)

The sum denotes for k-loop order. As it was found, the one-loop renormalization can be cal-
culated by considering the two-point correlation function between in and out states with the
bosonic part of N = 4 SYM as the interaction part[111, 112]. Renormalized operators in general

1The t´Hooft coupling for SYM is defined through the coupling constant in the theory λ = g2ymN where in the
planar limit λ is kept fixed

2One defines the scalars as Z = ϕ1 + iϕ2,W = ϕ3 + iϕ4, X = ϕ5 + iϕ6, where conjugates are with signs flipped
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are linear combinations of bare operators considered above. Choosing a particular operator basis
OA

Ren = ZABOB, one requires finiteness of the correlation function and gets Z. All renormalization
factors depend on the UV cutoff Λ and the t´Hooft coupling in the large-N limit. The renor-
malization factor determines the matrix of anomalous dimensions by extracting logarithmically
divergent pieces from it, giving the expression

Γ =
dZ

d ln Λ
Z−1 (3.1.3)

To calculate this, one shows that contractions between flavor indices of the fields that arise from
the quartic terms, lead to defining permutation and trace operators. Once this has been found,
it is possible to renormalize all the relevant Feynmann diagrams via dim-reg in d = 4− 2ϵ. The
computation is usually done in momentum space[102] using a Fourier transform, which after
evaluating all relevant integrals arising from interaction pieces in the SYM action, will give the
anomalous dimension

Γ =
λ

8π2

L∑
l=1

(1− Pl,l+1 +
1

2
Kl,l+1) (3.1.4)

In all generality, Pl,l+1 and Kl,l+1 could contribute to operator mixing, but this is avoided at
one loop level. Nevertheless, they are defined as follows Pl,l+1 is the exchange operator, and as
its name implies it exchanges the flavor indices of the l and the l + 1 sites inside the trace. Its
action on the δ-functions appearing when contracting indices is

Pl,l+1δ
J1
I1
...δJlIl δ

Jl+1
Il+1 ...δ

JL
IL

= δJ1I1 ...δ
Jl+1
Il

δJlIl+1...δ
JL
IL

(3.1.5)

Kl,l+1 is the trace operator that contracts the flavor indices of neighboring fields. Its action on
the δ-functions is

Kl,l+1δ
J1
I1
...δJlIl δ

Jl+1
Il+1 ...δ

JL
IL

= δJ1I1 ...δIlIl+1
δJlJl+1 ...δJLIL (3.1.6)

Facing the dilation operator, it commutes with the Lorentz and R-symmetry generators. Since
this is true for all λ, all loop orders of D2k are commuting as well. Hence, the Lorentz and
R-charges are preserved by the mixing[112]. It appears then that mixing only occurs between
operators with the same R-charges, Lorentz charges, and bare dimensions. From this fact,
closed subsectors can be found, where the range of operators is restricted to the weights chosen,
described by the Dynkin labels. Take for instance the SU(2) sector. It contains Z andW scalars
that have weights (1, 0, 0; 1, 0, 0) and (1, 0, 0; 0, 1, 0). But here comes the big twist. Looking at
D2 for this sector, there is no contribution from Kl,l+1 since there are no conjugate fields for Z
and W . Thus, the SU(2) sector has the reduced D2

ΓSU(2) =
λ

8π2

L∑
l=1

(1− Pl,l+1) (3.1.7)

Amazingly this can exactly be interpreted as the XXX1/2 Heisenberg spin chain Appendix C.
We make the identification between spin up and down states with the scalar operators. Looking
at vacuum defined as |0⟩ =

∣∣↑L〉 = TrZL one is led to identify the scalar Z with a spin up state.
Then excitations would be cases where operators Tr(ZZW...Z), such that W is a spin down
state. This idea extends beyond this particular case and can be analyzed while conjugate fields
are present as well as fermions etc. This has led to a whole business in AdS/CFT concerning how
operators and spin-chains interplay. For concreteness, various operators can be analyzed, but
we just mention some classical examples. Consider a chiral primary and the Konishi operator
defined as

Qnm = Tr(ϕnϕm)−
1

6
δnmTr(ϕkϕk) and K = Tr(ϕkϕk) (3.1.8)
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Using an alternate form of D2 involving normal-ordering of traces of products between fields[22],
it can be found that the chiral primary is protected to quantum correctionsD2Qnm = 0 while the
Konishi scalars take contributions D2K = 12NK. Using the pre-factor of the coupling constant
then amount to

∆Q = 2 and ∆K = 2 +
3λ

4π2
(3.1.9)

This process can be carried on for more complex operators containing either more fields or
rather being multi-trace operators. There is also a whole class of operators called BMN, which
plays an important role as we will see in the context of Penrose limits and pp-waves. For more
details, see C where the SU(2) Heisenberg spin chain and Yang Baxter equations are discussed
asserting integrability. An important thing to note is that there is a non-planar case to consider
as well which goes as 1/N2 compared to the 1/N in the planar limit. In the N → ∞, these
contributions can be neglected. But this is valid only when L << N . If L ∼ N , then the
number of non-planar diagrams exceeds those for planar cases and this regime is broken. The
field of non-planarity is also considered extensively in the literature [22, 24, 25] Finally, it is
worth noting that Sigma models also appear in the context of spin chains. It was shown [99]
defining coherent states, that an action can be obtained in direct correspondence to the action
obtained by spinning strings on a submanifold of AdS5 × S5. Sigma models will also appear
later on related to spin-chains but in the case of N = 6 CS instead.

3.1.2 From operators in N = 6 Chern-Simons to the SU(4) Spin-Chain

When considering operators in N = 6 CS, one finds a significant difference in the composition
of operators compared to N = 4 SYM. As a consequence of the gauge theory and representation
U(N)× U(N̄), we have alternation for the matter fields on the odd and even sites in the trace
operators. This means that the general class of gauge invariant operators are constructed from
fields that transform in an alternating fashion in the representations (N, N̄) and(N̄,N)

O = Tr(Y A1Y †
B1
Y A2Y †

B2
...Y ALY †

BL
)χB1...BL

A1...AL
(3.1.10)

The operator is of even length, and we will see that they correspond to (in the planar limit), spin
chains. The matter allowed on even and odd sites are the 4B+8F fields (Y A, ψAα) for sites 2li+1,

and on the even sites, we can have any of the 4B +8F fields (Y †
A, ψ

A†
α ) for sites 2li. Finally, both

derivatives and field strength insertions can be acted onto the fields, but this will not introduce
extra sites. We can express this in terms of modules and BPS-operators. Considering the Dynkin
labels [∆, S, J1, J2, J3], states that are 1/2-BPS3 are of interest. The highest-weight state can

be written for Y 1 as [J, 0, 2J, 0, 0] and for the anti-fundamental Y †
4 as [J, 0, 0, 0, 2J ]. Choosing

J = 1/2 exactly matches the weights in [97] giving {[1/2, 0, 0, 0, 1], [1/2, 0, 1, 0, 0]}. This makes
it possible to create modules, by acting with lowering operators, providing the 4B + 8F matter
fields on the odd and even sites

V = {DnY A, DnψAα}, V̄ = {DnY †
A, D

nψA†α } (3.1.11)

The scalars and gauge fields obey transformations corresponding to the product gauge group of
(U, Û) ∈ U(N)× Û(N)

U(N) : Y A → UY AÛ †, Aµ → UAµU
† − iU∂µU

†

Û(N) : Y †
A → ÛY †

AU
†, Âµ → Û ÂµÛ

† − iÛ∂µÛ
† (3.1.12)

The bare dimension of the operators is L and one considers it a chiral primary if χ is symmetric
in all Ai, Bi indices and all traces are zero. What will be interesting is when this is not the case,

3The condition ∆ = J exactly defines a BPS-operator as we will see in decoupling limits and subsectors
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where operators pick up quantum loop contributions from the anomalous dimension. Going to
the dimension of operators, one can In SU(4) language express the dimension of the operators in
terms of the generic SU(4) Dynkin labels [r, q, p], where we state the most important for ABJM
4

Dim[0, 0, 0] = 1 Trivial representation

Dim[1, 0, 0] = 4 Fundamental representation

Dim[0, 0, 1] = 4̄ Anti-fundamental representation

(3.1.13)

Considering the vacuum, it can be seen that operators of length L can be described as (Dim(1, 0, 0)⊗
Dim(0, 0, 1))⊗L = (4 ⊗ 4̄)⊗L. The usual choice and convention for ground state operators is

|0⟩ = Tr(Y 1Y †
4 )
L, which is considered a 1/3-bps state since {Q12

± , Q
13
± } annihilates (Y 1Y †

4 )
L and

is thus a chiral primary. It also has the weights of the considered Dynkin Labels, [97]. Then
building more complicated operators is just a matter of changing respectively on odd and even
sites scalars or fermions that coincide in the same module and introducing derivatives or field
strengths. As it stands, it might not come as a surprise that this description exactly fits spin-

Figure 3.1: The single trace operator of (Y 1Y †
4 )
L can be interpreted as having spin-up states on

all sites, which is the lowest energy-configuration E = ∆− J = 0

Figure 3.2: Adding impurities such as {Y 2, Y †
3 } alters the Energy with δE = 1/2 for each

impurity, such that the vacuum is broken, seen by spin down states

chains in the planar limit5. After their original work for SYM in d = 4 [111], it was found in
the wake of ABJM, spin-chains and integrability should hold for the d = 3 CS case as well[110].
Using the vacuum identification found for operators, it so happens that the full ABJM symmetry
group OSp(6|4) is broken down to SU(2|2)× U(1) for the spin chain model6.

Switching gears, we want to establish integrability and deduce what the anomalous dimension
for the system is. The same procedure lies ahead as the case for SYM. But this time, due to the
CS action, things turn out to be different. First of all, considering contributions to the anomalous
dimensions from Feynmann diagrams, it appears that the lowest loop order contributing to the
mixing matrix is at two-loop compared to one-loop in SYM7. This peculiar feature stems from a
difference in the quartic interaction in the SYM action whereas the bosonic potential has sextic
interaction terms (Y 6) in CS. Going through the Feynmann diagrams in dim-reg again, the
anomalous dimension is found to be[54, 110]

Γ =
λ2

2

2L∑
i=1

(2− 2Pl,l+2 + Pl,l+2Kl,l+1 +Kl,l+1Pl,l+2) (3.1.14)

Integrability for the spin chain is established with the R-matrix[55]. Defining the spectral
parameter u and using the mapping Rab(u) : Va⊗Vb → Va⊗Vb, gives rise to defining the matrix

4see Appendix I for details on SU(4) group
5Just to remind, the planar limit or t´Hooft limit is k,N → ∞, λ = N

k
Fixed

6For further discussion on the sub-groups of SU(2|2)× U(1) and different kind of exications, see [97, 58]
7The four-loop has also been considered as the next order [103, 104]
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Figure 3.3: Feynmann diagrams in the planar limit contributing to mixing at two-loop for the
SU(4) spin chain. Only diagram (a),(b) and (d) affects the anomalous dimension[110]

as Rab(u) = u − Pab, such that it satisfies the usual YB equation (section C.2) with additional
spectral parameter v.

Rab(u− v)Rac(u)Rbc(v) = Rbc(v)Rac(u)Rab(u− v) (3.1.15)

The twist to the story is that for SYM, the vector space considered did not have a U(N)k ×
U(N)−k gauge theory associated to it. Taking into account that the fundamental and anti-
fundamental representations occur such that indices can mix as {ab, ab̄, āb̄}, additional R-
matrices are defined as Rab̄(u) = u + Kab̄ and Rāb̄(u) = u − Pāb̄. This will add two extra
YB equations to the system, plus modified versions as well[110]. Defining appropriate mon-
odromy matrices, and solving the system of equations for the odd and even sited Hamiltonians,
given in terms of Bethe-like solutions, amounts to the same structure of the energy as it was
found in N = 4 SYM

E = λ2

(
Mu∑
j=1

1

u2j +
1
4

+

Mv∑
j=1

1

v2j +
1
4

)
(3.1.16)

The conclusion is that this represents a SU(4) spin chain where, alternating on the odd and even
sites, letters transform in the fundamental and anti-fundamental respectively without mixing,
as anticipated from the structure of operators. Considering BPS-sectors, one can just as well

Figure 3.4: SU(4) spin chain with bi and anti Bi-fundamental fields on odd and even sites

find such regimes, where the most notorious and well-studied example is the SU(2) × SU(2)
sector. Operators for spin-chains are considered of this form (following notation [58])

Tr(Ai1B1Ai2B1Ai3B1...) (3.1.17)

These are chiral, but in general not primaries due to the existence of a superpotential in the
theory. Due to the sextic interactions between scalar potential one gets contributions to Γ

16π2

k2
Tr
[
(A1B1A2 −A2B1A1)(A1B1A2 −A2B1A1)

†] (3.1.18)
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The anomalous dimension reduces to the familiar one that was found for theXXX1/2 Heisenberg
spin chain as in SYM, but with a twist. Consider sending B1 → B2. This translation does not
affect the amplitude across the potential8, hence it can be argued that there is a double structure
of what was found in SYM. Instead of a single SU(2) spin chain, one finds two decoupledXXX1/2

Heisenberg spin chains in the fundamental and anti-fundamental representation respectively,
living up to the SU(2) × SU(2) name. As a little teaser, this can be translated into a BPS
bound related to the anomalous dimension as

∆− J = λ2
2J∑
l=1

(1− Pl,l+2) = λ2
J∑
l=1

(1− P2l−1,2l+1 + 1− P2l,2l+2) (3.1.19)

One can also study an infinite SU(2|2) chain as was done in [58] and. In conclusion, depending
on the specific duality at hand, outcomes from the spin-chain picture can vary significantly,
making it an interesting task to establish integrable models for AdS/CFT . A whole side to
the story which will not be touched upon, is magnons arising as spin chain excitations. In the
context of AdS/CFT this has been considered in various aspects of both SYM and ABJM [84,
98, 23, 81, 58, 65, 134, 101, 105, 131]. We will see how the magnon dispersion emerges in the
next two sections for both dualities. As a concluding remark, it seems that the cases for d = 3, 4
which are the established cases for SYM and ABJM are well understood, while d = 2 is under
construction. Beyond this, for AdS6,7 and other cases, integrability seems not to be an emerging
feature. This should nevertheless not discourage the study of these theories.

3.2 Penrose Limits and PP-waves

From the revolutionary work Penrose did in his famous work [124], it was quickly adapted in
the AdS/CFT field for extensive use. In this section, we look at a particular type of metric that
arises in certain decoupled theories when considering both SYM and ABJM. They are known
as pp-wave backgrounds. We will investigate and define the notion of a Penrose limit, which
essentially is a zoom on null geodesics in the space-time. The introductory part on pp-waves
can be found here [37, 35, 36]. Lastly, the spectrum of operators will be seen through the eyes
of BMN[29] in the case of SYM and ABJM[120]

3.2.1 Linearized gravity and pp-waves

Usually one talks about plane wave solutions when one considers the linearized Einstein equa-
tions. This is accompanied by adding a small pertubation to the flat Minkowski background
gµν = ηµν + hµν . Finding solutions to what is reduced to a wave equation gives transversally
polarised gravitational waves. Taking a specific solution in the (t, z)-direction for instance, will
reduce the metric, employing light cone coordinates, it can be written as

ds2 = 2dUdV + gij(U)dyidyj (3.2.1)

This is a plane wave metric written in what is called Rosen coordinates. But more conventionally,
there lies a translation between what is called Brinkman coordinates and Rosen coordinates. The
metric can take on a more familiar look

ds2 = 2dudv +Aab(u)x
axbdu2 + d⃗x2 (3.2.2)

In Brinkmann coordinates, a plane wave metric is characterized by a single symmetric matrix-
valued function Aab(u). There is very little redundancy in the description of plane waves in

8exchanging A1 and A2 across B1 and B2 and vice versa
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Brinkmann coordinates. Only a few residual coordinate transformations are left, which leaves
the form of the metric invariant. Lastly, the metric is specified almost uniquely by Aab(u). In
particular a plane wave metric is flat if and only if Aab(u) = 0. Why this is useful in the first
place, is due to Penrose as mentioned. That any space-time has emerging pp-wave, making it a
tractable feature to use when looking for null geodesics e.g. The physical origin will be explored
in the next section

3.2.2 Penrose limit and the emergence of pp-waves

Given a metric gµν or a line element ds2 = gµνx
µxν , one can consider the Penrose Limit for a

choice of null geodesic γ, that amounts to a plane wave metric. One first writes the coordinates
adapted to γ as

ds2 = 2dUdV + a(U, V, Y k)dV 2 + 2bi(U, V, Y
k)dV dY i + gij(U, V, Y

k)dY idY j (3.2.3)

One then performs a set of coordinate transformation with rescaling rescaling (U, V, Y k) =
(u, λ2ṽ, λyk). Then the Penrose limit of the metric is defined as

ds̄2 = lim
λ→0

λ−2ds2γ,λ = 2dudṽ + gij(U)dyidyj (3.2.4)

We recognize this as a plane wave metric in Rosen coordinates[36]. As a rule of thumb, one
can almost algorithmically get the Penrose limit by writing the metric into adapted coordinates,
set a, b to 0, and restricting gij to the null-geodesic. Then readily it is a matter of translating
between Rosen and Brinkmann coordinates to obtain the wanted metric. Having established
this fact, we might want to take a step back and reflect upon the physical meaning of these
Limits for space-time. Penrose put it best into words himself.

We envisage a succession of observers travelling in a space-time M whose world lines approach the

null geodesic γ,more and more closely; so we picture these observers as travelling with greater

and greater speeds,approaching that of light. As their speeds increase they must correspondingly

recalibrate their clocks to run faster and faster (assuming that all space-time measurements are referred

to clock measurements in the standard way), so that in the limit the clocks measure

the affine parameter x0 along γ.( Without clock recalibration a degenerate space-time metric would result)

In the limit the observers measure the space-time to have the plane wave structure Wγ

(3.2.5)
In other words, the Penrose limit can be understood as a boost accompanied by a commensurate
uniform rescaling of the coordinates in such a way that the affine parameter along the null
geodesic remains invariant. To implement this procedure in practice, we consider a Lorentzian
space-time with a metric gµν , choose some null geodesic γ, and locally write the metric in an
adapted coordinates xµ → (U, V, Y k). If we use the Penrose prescription one starts by making
a boost

(U, V, Y k) → (λ−1U, λV, Y k) (3.2.6)

Trying to take the infinite boost limit λ→ 0 without recalibrating one’s coordinates(clocks and
measuring rods) seems to result in a singular metric. To avoid singularities arising, we rescale
again such that

(U, V, Y k) → (λU, λV, λY k) (3.2.7)

What is found is an asymmetric scaling that overall goes as

(U, V, Y k) → (U, λ2V, λY k) (3.2.8)
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This leaves our affine parameter U = u invariant. As before, it leads back to the coordinates
(U, V, Y k) → (u, λ2ṽ, λyk). The metric now contains the rescaling parameter ds2γ → ds2γ,λ,
boiling the problem down counting and book-keeping. Making the last overall rescaling

ds2γ,λ → λ−2ds2γ,λ (3.2.9)

gives the metric in powers of λ

ds2 = 2dUdV + λ2a(U, V, Y k)dV 2 + 2λbi(U, V, Y
k)dV dY i + gij(U, V, Y

k)dY idY j (3.2.10)

The combined infinite boost and large volume limit λ → 0 results in a well-defined and non-
degenerate metric that provides Equation 3.2.4 again

3.2.3 pp waves as limits of AdS space-times

To narrow in on the the problem related to space-times in AdS we consider different pp-waves
emerging, from the classic AdS5 × S5 and variations together with AdS4 × CP3. Further, we
investigate BMN theory and see how strings and operators arise for N = 4 SYM and N = 6 CS

The starting point: pp waves in AdS5 × S5 and BNM

Consider the trajectory of a particle that is moving very fast along S5 focusing on the geometry
that it sees. Suppose it sits at the center of AdS, and rotates in S3 ⊂ S5 along an angular
direction ψ. Following Bernstein, Maldacena and Nastase (BMN)[29], this was realized starting
with the AdS5 × S5 metric

ds2 = R2
[
− dt2 cosh2 ρ+ dρ2 + sinh2 ρdΩ2

3 + dψ2 cos2 θ + dθ2 + sin2 θdΩ′2
3

]
(3.2.11)

One looks at a particle moving along the ψ direction while being placed at ρ = 0 and θ = 0.
The geometry near this trajectory will soon resemble a null geodesic. To do this, introduce light
cone coordinates x̃± = t±ψ

2 and then perform a rescaling of the coordinates w

x+ = x̃+, x− = R2x̃−, ρ =
r

R2
, θ =

y

R2
(3.2.12)

Taking the R → ∞ limit is exactly what the Penrose limit is equivalent to. Expanding around
the parameters in the rescaled variables amounts to

ds2 = R2
[
− dt2(1− ρ2) + dr2 + r2dΩ2

3 + dψ2(1− θ2) + dy2 + y2dΩ′2
3

]
(3.2.13)

By the new coordinate x̃± we see that −dt2 + dψ2 = −4dx̃+dx̃−. The squared terms will
contribute via the light cone coordinates which can easily be seen by

dt = dx+ − dx−

R2
, dψ = dx+ +

dx−

R2
(3.2.14)

Inserting this and keeping terms to the order of O( 1
R2 ) exactly gives

ds2 = R2
[
− 4dx̃+dx̃− − (y2 + r2)(dx+)2 + dr⃗2 + dy⃗2

]
(3.2.15)

This is following the geodesic around ρ = 0 and θ = 0 where y and r parametrize points on
R4. Equivalently, one can also introduce a mass parameter via transformations x− → x−/µ and
x+ → µx+ and parameterize to a coordinate z⃗ for points in R8, such that the metric takes the
form (as well as the fluxes)

ds2 − 4dx̃+dx̃− − µ2z⃗2(dx+)2 + dz⃗2, F+1234 = F+5678 = cµ (3.2.16)
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Generally throughout the next sections, we will be interested in BPS-bounds, motivating us to
understand, how the energy and angular momentum along ψ scale in the rescaling limit. Energy
is associated to time through E = i∂t and angular momenta J = −i∂ψ. The beauty lies in the
interpretation of the CFT where the dual of the geometry becomes the energy and R-charge of
a state of the field theory on R × S3. Alternatively, we can say that E = ∆ is the conformal
dimension of an operator on R4. This will prove very useful when considering decoupling limits.
It is easily seen, if the light cone momenta and Hamiltonian are defined as

H = 2p− = i∂x+ = i(∂t + ∂ψ) = ∆− J, 2p+ =
1

R2
i∂x− =

1

R2
i(∂t + ∂ψ) =

∆+ J

R2
, (3.2.17)

From BPS condition |∆| ≥ J , the momenta are positive. Amazingly, considering a pp-wave
background, the quantization of strings yields a σ-model that can be quantized, and provides a
light-cone Hamiltonian by expanding all fields in Fourier modes accompanied by a level matching
condition such that the total momentum of the string vanishes9

2p− = Hlc =

∞∑
n=−∞

Nn

√
µ2 +

n2

(α′p+)2
, P =

∞∑
n=−∞

nNn = 0 (3.2.18)

n is the Fourier mode label, while Nn denotes the total occupation number of modes. A limit to
consider now is 1 ≪ µα′p+, where it was found that the contributions of (∆−J)n for the curved
background are the frequencies of each oscillator. To build a bridge between gauge and gravity,
it is realized that the eight transverse directions in the metric are just eight gauge bosons in the
action. Similarly, the coupling to the RR-background provides the mass of the eight transverse
fermions. This can be utilized by employing the Hamiltonian to find the spectrum of operators
with finite ∆ − J . To excite the particles, a vacuum must be considered first corresponding
to ∆ − J = 0 given by a scalar operator |0⟩ = Tr[ZJ ] which is a chiral primary. Vacuum in
light-cone gauge corresponds to

1√
JNJ/2

Tr[ZJ ] ↔ |0, p+⟩lc (3.2.19)

Where then normalization comes from combinatorics of field contractions. Now consider ∆ −
J = 1 with eight bosonic and fermionic oscillators ai0, b

j
0, i, j ∈ {1, ..., 8}. Applying the zero

momentum bosonic and fermionic operators gives for instance results in

ai0 |0, p+⟩lc =
1√

JNJ/2+1/2
Tr[ϕiZ

J ], a†i0 b
†j
0 |0, p+⟩lc =

1√
JNJ/2+1/2

J∑
l=1

Tr[ϕiZ
lψbJ=1/2Z

J−l]

(3.2.20)
With this procedure at hand, it enables one to build towers of operators for different values of
finite ∆ − J in N = 4 SYM. Lastly, note that the two-point correlator, for insertions of fields,
contributes to the one-loop anomalous dimension

(∆− J)n = µ+
2πgNn2

µJ2
(3.2.21)

Due to to insertion of impurities, operator mixing occurs giving corrections at one-loop level
under the dilatation operator. But Equation 3.2.21 exactly matches the 1 ≪ µα′p+ limit. It can
be seen that the spectrum is uniform for strongly and weakly coupled theories in λ. Due to this
accomplishment, BMN became a celebrated framework. For this reason, ABJM went through
the same machinery. But as we will see, the spectrum might behave very differently for Penrose
limits on AdS4 × CP 3

9When only the n = 0 modes are excited then one reproduces the spectrum of massless supergravity modes
propagating on the plane wave geometry
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pp waves in AdS4 × CP3

Through a Penrose limit, it was first after ABJM was established that the subsequent analysis
came. We elaborate on it and consider the differences to BMN on a AdS4 × CP 3 geometry.
Interestingly enough, the geometry admitted has 24 supercharges [120, 86] which breaks the full
32 which distinguishes type IIA and B backgrounds in the Penrose limits10. Starting at the type
IIA considered in Equation 2.3.38, a null geodesic can be considered where ρ = 0, θ1 = θ2 =
0, ξ = π/4 and further for convenience a new angular coordinate can be defined as ψ̃ = ψ+ ϕ1−ϕ2

2 .
This can be implemented as a Penrose limit with rescaled coordinates

t+ ψ̃

2
= x+, R̃2 t− ψ̃

2
= x−, ρ =

r

R̃
, θi =

√
2yi

R̃
, ξ =

π

4
+
y3

2R̃
(3.2.22)

Expanding the metric in 1/R̃, and taking the R̃→ ∞ limit, the type IIA metric is

ds2 = −dt2(1− r2/R̃2) + dr2/R̃2 + r2dΩ2
2/R̃

2 +
dy23
R̃2

+
1

4

(
1− y23

R̃2

)(
dψ +

1

2

(
1− y1

R̃

)
dϕ1 −

1

2

(
1− y2

R̃

)
dϕ2

)2

+
1

2

(
1− y3

R̃

)(
2(dy21 + y21dϕ

2
1)

R̃2

)
+

1

2

(
1 +

y3

R̃

)(
2(dy22 + y22dϕ

2
2)

R̃2

) (3.2.23)

In the limit, this will reduce to a light-cone metric

ds2IIA = −4dx+dx− − (r2 + y23)(dx
+)2 + dx+(−y21dϕ1 + y22dϕ2)

+ dr2 + r2dΩ2
2(dy

2
1 + y21dϕ1) + (dy22 + y22dϕ2) + dy23

(3.2.24)

The RR fluxes change accordingly. To get the recognizable pp-wave, defining new angles ϕ̃1 =
ϕ1 − x+

2 and ϕ̃2 = ϕ2 +
x+

2 will produce a metric reminiscent of the Brinkman coordinates. We
can also express this in cartesian coordinates (x1, ..., x8)

ds2IIA = −4dx+dx− − (r2 + y23 +
y21 + y22

4
)(dx+)2

+ dr2 + r2dΩ2
2(dy

2
1 + y21dϕ̃1) + (dy22 + y22dϕ̃2) + dy23

= −4dx+dx− −

(
4∑
i=1

x2i +
1

4

8∑
i=5

x2i

)
(dx+)2 +

8∑
i=1

(dx2i )

(3.2.25)

The procedure follows the same framework as BMN now. The obvious detail with two repre-
sentations for scalars changes the light cone momenta as follows

2p−b =
∞∑

n=−∞
N (1)
n

√
1 +

n2

(p+)2
+

∞∑
n=−∞

N (2)
n

√
1

4
+

n2

(p+)2

=
∞∑

n=−∞
N (1)
n

√
1 +

2π2n2

J2
λ+

∞∑
n=−∞

N (2)
n

√
1

4
+

2π2n2

J2
λ

(3.2.26)

with level matching condition
∞∑

n=−∞
n(N (1)

n +N (2)
n ) = 0 (3.2.27)

10Due to toroidal compactification, 8 of the supercharges are inevitably broken on the spatial isometry direction
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Stating the light cone momenta in terms of gauge theory quantities is crucial as we will see
in a moment. The bosons and fermions arise in the same fashion as excitations of the eight
transverse directions, but the impurity operators this time will be Tr(A1B1)

J which is the chiral
primary with ∆− J = 0. An example of the type of operators are

On =
1

2
√
J

J∑
l=0

Tr[((A1B1)
lA1B1(A1B1)

J−lA1B1]e
2πiln/J (3.2.28)

For the anomalous dimension, the story does get peculiar. Computing the two-point correlator,
it was obtained that the leading order correction to the anomalous dimension is δCSn = 4π2N

2n2

k2J2 .
Curiously, this does not seem to match what was found in the type IIA spectrum. This gives a
non-trivial dependence on the t‘Hooft coupling as was noted in [64]

f(λ) =

{
4λ2, λ→ ∞
2λ, λ→ 0

(3.2.29)

What the cause is, still poses as a mystery. Some argue that it is due to the violation of
BMN scaling, others might say reduction to 24 supersymmetry generators is the cause etc. But
this poses a crucial difference compared to what what found in BMN. Nevertheless, it has still
proven fruitful to apply the formalism of BMN to ABJM through type IIA pp-waves. Later on,
we compute how the spectrum on the string side can be extracted concretely
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Chapter 4

Spin Matrix theory (SMT): A
Quantum Model of the AdS/CFT
Correspondence

4.1 Spin Matrix Theory: QuantumMechanical Theory for AdS/CFT

So far we have been discussing the gauge/gravity duality in the Maldacena case, where one takes
two opposite limits and gets that massive stings curving d+ 1 dimensional AdS space which is
conjectured to be dual to a d-dimensioal CFT at two different limits of the t´Hooft coupling,
usually taken in the planar limit N → ∞. The link between this duality is interpreted in terms
of integrable spin chains, thus the integrability is the interpolation from going from one side of
the duality to the other. But what if we want the case when N < ∞, then we need to start
revising our strategy. To interpolate between strong and weak t´Hooft coupling at finite N, must
consider new possibilities then. And the motivations for doing this are plenty [79]. Thus the
idea is to consider non-relativistic limits of the AdS/CFT correspondence in the grand canonical
ensemble, such that it corresponds to the approach of critical temperatures T = 0. Here we will
let Ω⃗ denote the respective chemical potentials conjugate to the global symmetry charges. In
the original work for SMT, one considers N = 4 SYM, And the following limit is considered

(T, Ω⃗) → (0, Ω⃗(c)), λ = 0, with
λ

T
,
Ω⃗− Ω⃗(c)

T
kept fixed (4.1.1)

This will give a simple spin chain with nearest-neighbour interaction, based on the fact that we
build our Hilbert space out of harmonic oscillators giving a non-relativistic quantum mechanical
theory. The idea is to go over the case for N = 4 SYM and see if the same procedure can be
applied to N = 6 Chern-simons theory. For details of the construction, see [79].

4.1.1 Spin Matrix Theory for N = 4 SYM

The framework developed has a gateway to N = 4 SYM if considered at near-zero temperatures
critical points in the grand canonical ensemble. In this ensemble, a partition function can be
constructed with chemical potentials present, given by the bosonic subalgebra for the field theory.
It was previously established what generators are present given by the SU(4) R-symmetry and

SO(4, 2) conformal group. The partition function is Z(β, Ω⃗) = Tr(e−βD+βΩ⃗·J⃗), with T = 1
β and

the dot product for chemical potentials are given by a weight Ω⃗ = (ω1, ω2,Ω1,Ω2,Ω3) times the
generators J⃗ = (S1, S2, J1, J2, J3). This is obviously Ω⃗ · J⃗ = ω1S1+ω2S2+Ω1R1+Ω2R2+Ω3R3.
The theory is considered on R×S3 due to isometries of the geometry and groups as well. Like in
the case of renormalizing the conformal two-point function, it becomes the dilatation operator
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that is expanded in powers of the t´Hooft coupling λ such that D = D0+ δD. Working only up
to one-loop gives δD = λD2 +O(λ3/2). To obtain one loop corrections, an explicit form of D2

is needed, which luckily has been studied intensively for PSU(2, 2|4)[22, 24]. Acting with D2

hits two letters at a time in the singleton representation A of PSU(2, 2|4). The product of two
singletons are irreps. Vj , labelled uniquely by the quadratic Casimir. This gives

A⊗A =
∞∑
j=0

Vj (4.1.2)

. Having asserted this, D2 has the following structure

D2 = − 1

8π2N

∞∑
j=0

h(j)(pj)
AB
CD : Tr[WA, ∂Wc ][WB, ∂WD

] : (4.1.3)

Here h(j) =
∑j

k=1
1
k , h(0) = 0 are the harmonic numbers, Pj is the projection operator from

the product of singletons to the irreps. and WA, A ∈ A represents all letters in SYM while
maintaining normal ordering. Amazingly, one can identify components between SMT and SYM.
Raising operators becomes letters a†s ↔ Ws, D2 can be interchanged with Hint if J ↔ j and
VJ ↔ Vj such that Cj = 1

8π2h(j), j = 0, 1, 2. The twist to the naive story is that it only
holds in a non-relativistic limit when λ = 0. This restricts us to subsectors of the space of
operators simplifying matters. Using this, SMT has found many applications in non-relativistic
string theory, which we demonstrate later on. The essential features of ner BPS-limits will be
considered now

4.1.2 Near BPS-limit for subsectors and zero-temperature critical points

From the definition of the partition function, it becomes apparent that confinement/deconfinement
might happen considering certain bounds, such that the system undergoes a phase transition.
The zero-temperature critical points is defined as a continuation of a submanifolds of phase
transitions to zero temperature meaning (T, Ω⃗) → (0, Ω⃗(c)). The critical points exactly corre-
spond to choices of weight-vectors for Cartan generators when obtaining subsectors for a theory.
By specific choices, the BPS-bound considered is given by D ≥ Ω⃗(c) · J⃗ for all operators while
there should still be some that saturate the bound. This will be the most crucial feature. The
discussion of spin matrix theory is long and can be extended to find SMT theories for subsec-
tors by appropriate use of the translation between D2, Hint and the respective representations.
Consider now raising the temperature. One encounters a singularity in Z(β, Ω⃗) at TH(g) then.
This is known as the Hagedorn temperature. This had already been analyzed for both ends
of coupling regimes in earlier works[78, 77, 80]. The resemblance between this and AdS/CFT
is evident in the planar limit interpretation of spin chains. This motivates the investigation of
how to extend the formalism to fit for N = 6 Chern-Simons theories as well. We will see the
construction of the Free letter partition function later, but first, the first attempt at connecting
pieces from SMT to the structure in ABJM is done.

4.1.3 Spin Matrix Theory for N = 6 Chern-Simons

We proceed as for SYM and list the obvious differences. Constructing the grand canonical
partition function will be identical, up to differences in the bosonic subalgebra. The same R-
symmetry is present, but the conformal theory goes down a dimension SO(3, 2). The weights and
generators are shortened to Ω⃗ = (ω,Ω1,Ω2,Ω3,Ω4) times the generators J⃗ = (S1, J1, J2, J3, J4).
This is obviously Ω⃗ · J⃗ = ωS +Ω1J1 +Ω2J2 +Ω3J3 +Ω4J4. One can reformulate this in terms
of R-generators, but due to orbifolding, we have a translation between Ji and Ri by a linear set
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of equations. This theory now is considered on R × S2, due to one less DOF of S. The major
differences occur when we consider loop-order of D, since the first contribution D2 comes at
two-loop. Another major difference occurs when translating the singleton representations of the
theory. The global symmetry is now OSp(6|4) which tied to N = 6 CS has both a fundamental
and anti-fundamental representation (N, N̄) and (N̄,N). This will in all give three different
types of ways, D2 can act on two letters (or modules) at a time. Following Zwiebel[147], the
tensor product of a conjugate pair of modules Vϕ and Vϕ̄ has one highest-weight state for each
nonnegative integer spin j. Similarly, a like pair of modules has one highest-weight state with
spin (j − 1/2) for each nonnegative integer j. This gives the combinations

Vϕ ⊗ Vϕ̄ =

∞∑
j=0

Vj , Vϕ ⊗ Vϕ =

∞∑
j=0

Vj−1/2, Vϕ̄ ⊗ Vϕ̄ =

∞∑
j=0

Vj−1/2 (4.1.4)

The structure of the tensor products both accounts for nearest and next to nearest neighbour
interactions since the vector space is composed as (V ⊗ V̄)L. The irreducible representation is
again labeled uniquely by the quadratic Casimir which in OSp(6|4) takes the form

J2 =
1

8
([Qij,α, S

ij,α]− 2RijR
j
i + 2Mα

βM
β
α + 4D2 − {Pαβ,Kαβ}) (4.1.5)

Acting with J2 on highest weight states (HWS), this reduces to an expression in terms of Dynkin
labels

J2 =
1

2

(
D(D + 3) + s(s+ 2) + 3J1

1 + 2J2
2 + J3

3 +
1

2

4∑
i=1

(J ii )
2

)
=

1

2

(
D(D + 3)

+ s(s+ 2) +
1

4
q1(q1 + 2) +

1

4
q2(q2 + 2) +

1

8
(2p+ q1 + q2)

2 − (2p+ q1 + q2)

) (4.1.6)

D is the dimension and s is the Lorentz spin. The first expression uses eigenvalues of all diagonal
entries of the traceless matrix of R-symmetry generators, while the second uses the standard
SU(4) Dynkin labels

q1 = J2
2 − J1

1 , q2 = J3
3 − J2

2 , q3 = J4
4 − J3

3 (4.1.7)

which satisfies the relation j(j + 1) = J2. With this in mind, we can write the full OSp(6|4)
two-loop dilatation operator

D2 =

2L∑
i=0

(
2 log 2 +

∞∑
j=0

h(j)P(j)
i,i+1 +

∞∑
j1,j2,j3=0

(−1)j1+j3
1

2
h(j2 − 1/2)

×
(
P(j1)
i,i+1P

(j2−1/2)
i,i+2 P(j3)

i,i+1 + P(j1)
i+1,i+2P

(j2−1/2)
i,i+2 P(j3)

i+1,i+2

)) (4.1.8)

We see to some extent the same structure as in SYM, but this time, it becomes altered by
the SU(4) spin-chain picture. h(j) are still the harmonic numbers, and the projectors P come
from one of the tensor products combinations. But, the same type of one-to-one mapping is
not as trivial1. The terms in D2 can be summarized as nearest and next to nearest types of
interactions, thus the coefficient Cj has to be split up into two pieces

Cj = C0 + CNear
j + CNext Near

j = (2 log 2 + h(j)) + (−1)j1+j3
1

2
h(j2 − 1/2) (4.1.9)

1The author of [147] notes that it would be nice to have an expression for these projectors in components,
which are given for OSp(4|2) in appendix D
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This seems to be the only natural way of describing the coefficients of the interactions in terms of
SMT language. But the same problem is still facing us, as it was originally noted. N = 6 cannot
be a SMT since it is a QFT. Following the same line of reasoning, it becomes only sensible at
critical points and BPS-limits, to consider the validity of SMT. No more work has been done
as of yet, but it seems like a possibility using the derived subsectors, to accordingly construct
an SU(2)×SU(2) (and the remaining sectors as well) spin matrix theory by right identification
and further elaborations.

4.2 Subsector in the string dual of N=6 superconformal Chern-
Simons theory

In this section, we go through explicit calculations [64] to show that in a large wavelength limit,
a specific spin chain namely the Landau-Lifshitz model emerges from a type IIA string theory
on AdS4×CP 3. Both a Sigma-model limit and a Penrose limit of the SU(2)×SU(2) sector are
considered. We infer from the letters, that this corresponds to the BPS-bound ∆ ≥ J1 + J2. It
will be apparent that the same picture emerges in the two cases. We extend what is known to
the same bound with the addition of spin

4.2.1 Sigma-Model limit

The starting point is considering the geometry of M-theory background AdS4 × S7 as we know
it. In getting the SU(2)× SU(2) sector one can split C4 = C2 ×C2. Each SU(2) correspond to
certain parts of our SU(4) multiplets, the first being for A1,2 which is associated to z1,2, while
B1,2 is associated to z̄3,4. This motivates S7 to be split into two S3´s giving the metric

ds2s7 = dθ2 + cos2(θ)dΩ2
3 + sin2(θ)dΩ′2

3 (4.2.1)

After various manipulations of angle and definitions, one is led to consider an 11-dimensional
metric of the form

ds211 = −R̂
2

4
dt2 +

R̂2

2
(dΩ

2

3 + dΩ′2
3 ) (4.2.2)

Using the definitions of the S3´s from [64], the final form of the metric becomes

ds211 = −R̂
2

4
dt2 + R̂2(dγ +A)2 + R̂2[

1

8
dΩ

2

2 +
1

8
dΩ′2

2 + (dδ + ω)2] (4.2.3)

There is a presence from one-forms A = 1
4(sinθ1dϕ1− sinθ2dϕ2) and ω = 1

4(sinθ1dϕ1+sinθ2dϕ2).
To obtain a type IIA background, the prescription from ABJM states that the radius of dγ
becomes very small. The term effectively drops out giving the ten-dimensional type IIA back-
ground

ds2 = −R̂
2

4
dt2 + R̂2[

1

8
dΩ

2

2 +
1

8
dΩ′2

2 + (dδ + ω)2] (4.2.4)

Getting back to the sigma-model limit, the zoom we have to make to get a narrow window
of momenta, such that we will see individual magnon states in the spin chain, is given by the
coordinate transformations t̄ = 1

J2 t and χ = δ − 1
2 t. Defining J ≡ J1 + J2 and letting J → ∞,

this precisely give us the correct SU(2)×SU(2) BPS-bound ∆−J regime. Using the coordinate
transformations one obtains a type IIA metric

ds2 = R2

[
(J2dt̄+ dχ+ ω)(dχ+ ω) +

1

8
dΩ2

2 +
1

8
dΩ′2

2

]
= R2

[
J2dt̄dχ+ J2ωdt̄+ ω2 + 2ωdχ+ dχ2 +

1

8
dΩ2

2 +
1

8
dΩ′2

2

] (4.2.5)
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Consider now the standard bosonic sigma-model Lagrangian.

L = −1

2
hαβGµν∂αx

µ∂βx
ν (4.2.6)

Apparently a good gauge choice is the one where t̄ = κτ , pχ = const, hαβ = ηαβ with 2πl2spχ =
∂L/∂∂τχ. Via the metric and gauge, one can write out the respective coordinates and retrieve
the full Lagrangian. The gauge choice makes hαβ diagonal giving us two cases to consider2

2

R2
L = κJ2∂τχ+ κJ2ωτ + ∂τχ

2 + ω2
τ + 2ωτ∂τχ− χ′2 − ω2

σ − 2ωσχ
′

+
2∑
i=1

(∂τθi)
2 − θ′2i + cos2θi[(∂τϕi)

2 − ϕ′2i ] = (κJ2 + ∂τχ+ ωτ )(∂τχ+ ωτ )

− (χ′ + ωσ)
2 +

1

8

2∑
i=1

(∂τθi)
2 − θ′2i + cos2θi[(∂τϕi)

2 − ϕ′2i ]

(4.2.7)

We write ω = ωτdτ + ωσdσ where letters with primes translate to derivatives with respect
to σ. Proceeding, one considers the Virasoro constraints. This is done by taking the energy-
momentum tensor and imposing conformal symmetry by traceless condition Tαα = 0 (off-diagonal
elements contribute as well). In the case of the given metric, this becomes

Tαβ = Gµν∂αx
µ∂βx

ν − 1

2
ηαβη

δγGµν∂δx
µ∂γx

ν = Gµν∂αx
µ∂βx

ν − ηαβL =

κJ2dτdχ+ J2ωτdτ
2 + κJ2ωτdτdσ + dχ2 + 2ωτdτdχ

+ 2ωσdσdχ+ ω2
τdτ

2 + ω2
σdσ

2 + 2ωτωσdτdσ +
1

8

2∑
i=1

dθ2i + cos2θidϕi

(4.2.8)

Looking at the contributions one gets the corresponding Virasoro constraints.

Tττ = Gµν∂τx
µ∂τx

ν − L = (∂τχ)
2 + (κJ2 + 2ωτ )∂τχ+ κJ2ωτ + ω2

τ +
1

8

2∑
i=1

∂τθ
2
i + cos2θi∂τϕi − L

Tσσ = Gµν∂τx
µ∂τx

ν + L = χ′2 + 2ωσχ+ ω2
σ +

1

8

2∑
i=1

θ′
2

i + cos2θiϕ
′2
i + L

(4.2.9)
Adding the two diagonal elements, using the traceless condition will give us the first constraint

Tσσ+Tττ = (κJ2+∂τχ+ωτ )(∂τχ+ωτ )+(χ′+ωσ)
2+

1

8

2∑
i=1

(∂τθi)
2+θ‘

2

i +cos2θi[(∂τϕi)
2+ϕ‘

2

i ] = 0

(4.2.10)
For the off-diagonal element, the second constraint immediately follows

Tστ = κJ2ωσ + 2ωσωτ + κJ2χ′2 + 2ωτχ
′ + 2ωσ∂τχ+ ∂τχχ

′ +
1

8

2∑
i=1

[∂τθiθ
′
i + cos2θi∂τϕiϕ

′
i]

= (κJ2 + ∂τχ+ ωτ )(χ
′ + ωσ) +

1

8

2∑
i=1

[∂τθiθ
′
i + cos2θi∂τϕiϕ

′
i] = 0

(4.2.11)

2We also multiply by 2
R2 to remove as much redundancy from LHS
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These will prove handy. But first, our attention is directed to the momentum constraint. Explicit
computation shows

2πl2spχ = ∂L/∂∂τχ =
R2

2
(κJ2 + 2∂τχ+ 2ωτ ) → pχ =

R2

2πl2s
(
1

2
κJ2 + ∂τχ+ ωτ ) (4.2.12)

Using an argument of time scales relevant to the energy scale of H̃ one can consider in the
J → ∞ velocities of t̃ to be finite. Thus ∂τχ = κ∂t̃χ→ 0. Using also that 2J =

∫ 2π
0 pχ

2J =
R2

l2s

1

2
κJ2 → κ =

4l2s
JR2

(4.2.13)

This goes to zero in the J → ∞ as considered. Applying the limit we can reduce both the
Lagrangian and the Virasoro constraints such that terms with κ and J with the same power
survive

2

R2
L =

16l4s
R4

(χ̇+ ωτ )− (χ′ + ωσ)
2 − 1

8

2∑
i=1

[θ‘
2

i + cos2θiϕ
‘2

i ]

χ′ + ωσ = 0
16l4s
R4

(χ̇+ ωτ ) +
1

8

2∑
i=1

[θ‘
2

i + cos2θiϕ
‘2

i ] = 0

(4.2.14)

The dot denotes the derivative with respect to t̃. Further χ is constrained by the angular
variables, such that we can gauge away the non-dynamical angle and get a gauge fixed Lagrangian

2

R2
L =

16l4s
R4

ωt̃ −
1

8

2∑
i=1

[θ‘
2

i + cos2θiϕ
‘2

i ] (4.2.15)

In the end, we can obtain an action for the Sigma-model in the J → ∞ limit as, using also the

relation l4s
R4 = 1

64π2λ

I =
J

4π

2∑
i=1

∫
dt̃

∫ 2π

0
dσ
[
sin θiϕ̇− π2λ(θ‘

2

i + cos2θiϕ
‘2

i )
]

(4.2.16)

supplemented by a momentum constraint

2∑
i=1

∫ 2π

0
dσ sin θiϕ

‘
i = 0 (4.2.17)

this amazingly can be interpreted in the SU(2) × SU(2) sigma-model limit as two Landau
Lifshitz models added together for each SU(2). The LL spin chain is just a long wavelength
limit J → ∞ which reduces to the standardXXX1/2 Heisenberg spin chain. What might be even
more amazing, is that by a Penrose limit of AdS4 ×CP 3, we might find the same interpretation

4.2.2 SU(2)× SU(2) Penrose limit

Instead of attacking the problem at hand with a sigma-model limit we consider a Penrose limit
where through certain coordinate transformations and rescaling, a pp-wave background emerges.
Start by considering the CP 3 ×AdS4 metric

ds2 =
R2

4
(−cosh2ρdt2 + dρ2 + sinh2ρdΩ̂2

2) +R2ds2CP 3 (4.2.18)
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Writing the CP 3 in the following way will be useful

ds2CP 3 = dθ2 +
cos2 θ

4
dΩ2

2 +
sin2 θ

4
dΩ‘2

2 + 4 cos2 θ sin2 θ(dδ + ω)2 (4.2.19)

The one-form ω is the same as in the previous calculation for the sigma model. In addition, the
same transformations apply for coordinates t and χ. We group terms that go as dt′2 together
and write cosh2 ρ = 1− sinh2 ρ. Then the metric reads.

ds2 =
R2

4
dt′2(1− 4 cos2 θ sin2 θ + sinh2 ρ) +

R2

4
(dρ2 + sinh2 ρdΩ̂2

2)

R2[dθ2 +
cos2 θ

4
dΩ2

2 +
sin2 θ

4
dΩ′2

2 + 4 cos2 θ sin2 θ(dt′ + dχ+ ω)(dχ+ ω)]

(4.2.20)

As noted before we still have the same conserved quantities in terms of killing vectors and
isometries, namely ∆− J = i∂t′ and 2J = −i∂χ. The quantity ∆− J is of course the energy we
want to measure for the SU(2)× SU(2) sector. From this peculiar space-time, one might zoom
in to a null geodesic that corresponds to the SU(2) × SU(2) limit at hand. This will be done
by considering a Penrose limit of the metric. Introducing rescaled coordinates

v = R2χ, u4 = R(θ − π

4
), r =

R

2
ρ, xa = Rϕa, ya = Rθa, a = 1, 2 (4.2.21)

The Penrose limit is realized when the R→ ∞ limit is performed which exactly corresponds to
zooming in on the null geodesic. The metric will reduce down to a type IIA pp-wave background
when the terms have been expanded to first (second) order around the respective coordinates.
This reduces the metric

ds2 =
R2

4
dt′2(4u4 + 4r2)

1

R2
+
R2

4
(4dr2 + 4r2dΩ̂2

2)
1

R2

R2[du24 + dy21 + dx21 + dy22 + dx22 + 2dt′(y1dx1 + y2dx2) + dt′dv]
1

R2

(4.2.22)

The full calculation is a little tedious, but essentially it boils down to keeping terms that have
a 1
R2 dependence such that they don´t vanish in the R → ∞ limit. If we define r2 =

∑3
i=1 u

2
i

and dr2 + r2dΩ̂2
2 =

∑3
i=1 du

2
i , the metric can compactly be written as

ds2 = dt′dv +
4∑
i=1

(du2i − u2i dt
′2) +

1

8

2∑
a=1

(dx2a + dy2a + 2dt′yadxa) (4.2.23)

To accommodate the pp-wave on type IIA background, there is a RR-field strength unique to
the type of SUGRA theory as we know, which in these coordinates read

F(2) = dt′du4, F(4) = dt′du1du2du3 (4.2.24)

Compared to the type IIB background that contain 32 supercharges, as we noted the type IIA
background only has 24. Proceeding, one picks the gauge

t′ = cτ, hα,β = ηα,β (4.2.25)

Using the Lagrangian in Equation 4.2.6 we find

L =
1

2

4∑
i=1

[
(∂τui)

2−u′2+ c2u2i
]
+
c

8

2∑
i=1

ya∂τxa+
1

16

4∑
i=1

[
(∂τxa)

2+(∂τya)
2−x′2a − y′2a

]
(4.2.26)
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The final goal is to obtain the spectrum, so we both need to determine the mode expansions and
the light cone Hamiltonian3 The relevant components at hand are u, x, y. Using the standard
Legendre transform and integrating over σ, gives

Hlc =
1

2πl2s

∫ 2π

0
dσ

{ 4∑
i=1

[
(∂τui)

2+u′2+c2u2i
]
+

1

16

4∑
i=1

[
(∂τxa)

2+(∂τya)
2+x′2a +y′2a

]}
(4.2.28)

The spectrum can be retrieved by the mode expansion from the fields. It will be convenient to
define za(τ, σ) = xa(τ, σ) + iya(τ, σ). Finding the EOM for ui, z is the last piece of the puzzle
before assembling. For ui this is just a plane wave equation (∂2τ − ∂2σ − c)ui = 0. Doing a
standard plane wave ansatz in terms of raising and lowering operators given by

ui(τ, σ) =
i√
2

∑
n∈N

1√
Ωn

âine
−i(Ωnτ−nσ) − (âin)

†ei(Ωnτ−nσ) (4.2.29)

one can by the ansatz find from (Ω2
n − n2 − c2)ui = 0 the dispersion Ωn =

√
n2 + c2. This can

similarly be done for za(τ, σ), this time the EOM just changes along with the dispersion. One
finds

zi(τ, σ) = 2
√
2ei

cτ
2

∑
n∈N

1
√
ωn
aane

−i(ωnτ−nσ) − (ãan)
†ei(ωnτ−nσ) (4.2.30)

where ωn =
√

c2

4 + n2. The mode expansions contain three types of raising and lowering oper-

ators in total. This will establish the following commutation relations between the fields and
conjugates and the operators themselves.

[xa(τ, σ), pxb(τ, σ
′)] = iδabδ(σ − σ′), [ya(τ, σ), pyb(τ, σ

′)] = iδabδ(σ − σ′)

[ui(τ, σ), pj(τ, σ
′)] = iδijδ(σ − σ′)

(4.2.31)

[âim, (â
j
n)

†] = iδmnδij , [ãam, (ã
b
n)

†] = iδmnδab, [aam, (a
b
n)

†] = iδmnδab (4.2.32)

Using these relations, one can expand the fields in the Hamiltonian, and expand in terms of
dispersions and number operators

cHlc =

4∑
i=1

∑
n∈N

√
n2 + c2N̂ i

n +
2∑

a=1

∑
n∈N

(√
c2

4
+ n2 − c

2

)
Ma
n +

2∑
a=1

∑
n∈N

(√
c2

4
+ n2 +

c

2

)
Na
n

(4.2.33)

The number operators are defined as N̂ i
n = (âin)

†âin, M
a
n = (aa)†naan,N

a
n = (ãa)†nãan and supple-

mented with the level matching condition∑
n∈N

n

[ 4∑
i=1

N̂ i
n +

2∑
a=1

(Ma
n +Na

n)

]
= 0 (4.2.34)

As we did for κ, the constant c can be fixed via the constraint on the term that has been omitted
c
2∂τv coming from dt′dv in the full lagrangian. Using 2πl2spv = ∂L/∂∂τv gives c = 4l2sJ

R = J
π
√
2λ
,

where momentum conservation
∫ 2π
0 dσpχ = 2J was used. Using these pieces, the spectrum reads

cHlc =

4∑
i=1

∑
n∈N

√
1 +

2π2λ

J2
n2N̂ i

n+

2∑
a=1

∑
n∈N

[(√
1

4
+

2π2λ

J2
n2−1

2

)
Ma
n+

(√
1

4
+

2π2λ

J2
n2+

1

2

)
Na
n

]
(4.2.35)

3The Hamiltonian can be found via the Legendre transform

Hlc =
∂L

∂(∂τxµ)
∂τx

µ − L (4.2.27)
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We can connect the spectrum, to the spin-chain description we found previously by writing

∆ =
√

1
4 + λ

2p
2, p2 = 2πn/J , where p is the momentum of the magnons arising. One finds that

this is consistent with the sigma-model approach. The spectrum also corresponds to the result
presented for BMN operators on a slightly different Penrose limit in [120]. But the dichotomy
still stands with the gauge theory side as we saw. To end things off, a way to bridge the two
sides, is by looking at a large charge limit J → ∞ where the action

I =
J

16π2
√
2λl2s

2∑
i=1

∫
dt′dσ

[
yi∂t′xi −

π2λ

J2
(x′2i + y′2i )

]
(4.2.36)

The same structure will also appear in a different context of non-relativistic strings as we will
see later on

4.2.3 New sector: OSp(2|2) Sigma-Model limit

Picking up where we left the SU(2)×SU(2) sector, it should not be difficult to extend the BPS
bound such that we have a spin DOF included. One can use the same geometry constructed
as in the previous case; we only consider extra effects from S2 ⊂ AdS4. To zoom in, we take
θ = π/2 and ξ = π/4. This should correspond to a null geodesic in our sector. With this in
mind, we can write up the type IIA background for our 10-Dimensional metric

ds2/R2 = −1

4
(− cosh2 ρdt2 + dρ2 + sinh2 ρdΦ2) + [

1

8
dΩ

2

2 +
1

8
dΩ′2

2 + (dδ + ω)2] (4.2.37)

Considering the same coordinates as before, we only need to adjust for our spin-parameter. This
is just the polar angle on the S2 that transforms as ϕ = Φ− t. The Hamiltonian and −i∂χ are
the same, but we include an additional parameter for the new polar angle

H̃ = J2(∆− J − S), 2J = −i∂χ, S = −i∂ϕ (4.2.38)

We still want to preserve the 1/J2 scaling to be able to see the magnon states in the J → ∞
limit. We see that the extra zoom is happening around Φ = t which is a null geodesic in the
metric. This probably corresponds on the field theory side to a chiral primary where ∆ = S,
such that we get a connection to H̃. Employing the coordinate we write the type IIA metric as

ds2 = R2

[
1

4
(dρ2+sinh2 ρdϕ(2J2dt̃+ dϕ))+ (J2dt̃+ dχ+ω)(dχ+ω)+

1

8
dΩ2

2+
1

8
dΩ′2

2

]
(4.2.39)

If we consider the same Sigma-model Lagrangian and gauge as for the other BPS sector, with
the addition of pϕ = const with 2πl2spϕ = ∂L/∂∂τϕ Then one can find the Lagrangian to be

2

R2
L = (κJ2 + ∂τχ+ ωτ )(∂τχ+ ωτ )− (χ′+ωσ)

2 +
1

8

2∑
i=1

(∂τθi)
2 − θ‘

2

i + cos2θi[(∂τϕi)
2 − ϕ‘

2

i ]

+(∂τρ)
2 − ρ‘

2

i + sinh2 ρ[(∂τϕ)
2 − (ϕ‘)2 + 2κJ2∂τϕ]

(4.2.40)
The Virasoro constraints can be directly copied and used again, this time we only need to add
the AdS-part to the diagonal and off-diagonal pieces

(κJ2 + ∂τχ+ ωτ )(∂τχ+ ωτ ) + (χ′ + ωσ)
2 +

1

8

2∑
i=1

(∂τθi)
2 + (θ‘i)

2 + cos2 θi[(∂τϕi)
2 + ϕ′

2

i ]

+(∂τρ)
2 + (ρ′i)

2 + sinh2 ρ[(∂τϕ)
2 + (ϕ′)2 + 2κJ2∂τϕ] = 0

(4.2.41)
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(κJ2+∂τχ+ωτ )(χ
′+ωσ)+

1

8

2∑
i=1

[∂τθiθ
′
i+cos2 θi∂τϕiϕ

′
i]+(∂τρ)ρ

′
i+sinh2 ρ[(∂τϕ)ϕ

′+2κJ2ϕ′] = 0

(4.2.42)
Using the standard relation for κ found with pχ, we can reduce the Lagrangian and constraints
to the following

2

R2
L =

16l4s
R4

(χ̇+ ωτ )− (χ′ + ωσ)
2 − 1

8

2∑
i=1

[θ‘
2

i + cos2θiϕ
‘2

i ]− (ρ′)2 − sinh2 ρ(ϕ′)2 + 2κ2J2 sinh2 ρϕ̇

16l4s
R4

(χ̇+ ωτ )+
1

8

2∑
i=1

[θ‘
2

i + cos2θiϕ
‘2

i ] + (ρ′)2 + sinh2 ρ(ϕ′)2 + 2κ2J2 sinh2 ρϕ̇ = 0

χ′ + ωσ +
8l2s
R2

sinh2 ρϕ′ = 0

(4.2.43)
The gauge fixed Lagrangian, using the constraints, is now available to us

2

R2
L = ωt̃−π

2λ

2∑
i=1

[θ‘
2

i +cos2θiϕ
‘2

i ]−(ρ′)2−sinh2 ρ(1+π2λ sinh2 ρ)(ϕ′)2+2κ2J2 sinh2 ρϕ̇ (4.2.44)

The construction of the action is the same as for the sigma-model in the J → ∞

I =
J

4π

∫
dt̃

∫ 2π

0
dσ
[ 2∑
i=1

[sin θiϕ̇−π2λ(θ′i
2
+cos2 θiϕ

′
i
2
)]−(ρ′)2+

1

2
sinh2 ρϕ̇−sinh2 ρ(1+π2λ sinh2 ρ)(ϕ′)2

]
(4.2.45)

The Action, as it can be seen, contains the previous Landau-Lifshitz model as expected, but
contains Wess-Zumino like terms given by hyperbolic coordinates from AdS. This Structure is
reminiscent of the coherent state representation of an integrable spin chain Hamiltonian with
symmetry group SL(2,R), which was also found in a sigma model limit on AdS5 × S5[27]. As
for the SU(2) × SU(2) sector, this action will emerge once again in the spin matrix context of
non-relativistic backgrounds

4.3 Partition functions, Decoupling, and Hagedorn Tempera-
ture in AdS/CFT

On a thermodynamic level, systems in AdS/CFT can be regarded in finite temperature regimes
where confined theories undergo a phase transition to deconfinment states. Over the last two and
a half decades, intensive studies of this phenomenon have been performed with great advance-
ment. Usually, this is analyzed via free theory partition functions, since strong coupling regimes
break pertubative methods, making it harder to extract exact results. Through a logarithmic
partition function, Hagedorn temperatures occur at which point, in the standard setting[73],
hadronic matter turns into a quark-gluon plasma. This motivates us to study the same effect in
the context of the bulk scalars and fields of AdS/CFT . This is well established for N = 4 SYM
where numerous authors have contributed to the thermodynamic aspect [4, 139, 136, 146]. The
focus at hand will lie in applying the framework used in [80, 78, 74, 77, 76, 75]. The spirit is to
establish this for ABJM, since work on this was last done more than 15 years ago in this specific
context.

4.3.1 Subsectors and Decoupling Limits for N = 6 Chern-Simons

Following the discussion from [80, 79], and defining the t´Hooft coupling to be λ = N
k , it can be

established as was done for SYM, how decoupling limits emerge for N = 6 CS. Firstly; the type
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of operators that are present on S2 are gauge singlets. This gives all possible linear combinations
of the multi-trace operators for the alternating fundamental and anti-fundamental structure of
the operators

k∏
i=1

Tr(A
(i)
i B

(i)
i ...A

(i)
Lk−1

B
(i)
Lk
) (4.3.1)

The quantum numbers associated are found in 2.3.40. If we wish to construct the partition
function in the grand canonical ensemble for U(N)× U(N̄) (or SU(N)× SU(N̄) we can write

Zλ,N (β, ω,Ω1,Ω2,Ω3) = TrM [exp(−βD + βωS + β

3∑
i=1

ΩiJi)] (4.3.2)

The factors in front of generators will be chemical potentials analogous to the construction in
statistical mechanics. To get to the point of decoupled theories, we set the chemical potentials
to be equal to the same parameter such that (ω,Ω1,Ω2,Ω3) = Ω(n1, n2, n3, n4), here ni are
real numbers and Ω ∈ [0, 1] (this can be done in the language of Ji as well). For Ω → 1 we
approach critical values of the set of chemical potentials. Employing this and defining a charge
J = n1S + n2J1 + n3J2 + n4J3, we write

Zλ,N (β, ω1, ω1,Ω1,Ω2,Ω3) = TrM [e−β∆+βΩJ ] = TrM [e−β(∆−J)−β(1−Ω)J ] (4.3.3)

It becomes clear that in the limit, a decoupled theory appears, where the contribution purely
comes from ∆ − J . In general, the dilatation operator can be expanded in powers for small λ
such that ∆ = ∆0+λ∆2+λ

3
2∆3+ .... The coupling only enters through the dilatation, thus for

each term we take into account, e another loop-order is considered. We will look at two cases

Zλ=0,N (β, ω1, ω1,Ω1,Ω2,Ω3) = TrM [e−β(D0−J)−β(1−Ω)J ]

Zλ,N (β, ω1, ω1,Ω1,Ω2,Ω3) = TrM [e−β(D0−J)−βλD2−β(1−Ω)J+βO(λ
3
2 )]

(4.3.4)

In the case of no interactions, we restrict to choices such that ∆0 ≥ J from the choices of
(n1, n2, n3, n4). Letting β → ∞ all states with our chosen condition will decouple from the
partition function. Avoiding total decoupling, it is demanded that our choice of the integers or
half-integers must satisfy, that some states obey ∆0 = J . To get a non-trivial partition function,
we keep β(1−Ω) fixed in the β → ∞ limit. This enables us to write ZN (β̃) = TrM [e−β̃D0 ], β̃ =
β(1−Ω). Considering N = 6 Chern-simons, D2 corresponds to the two-loop[147, 109] dilatation
operator, while still demanding the same from the λ = 0 case. To get a non-trivial interaction
the only term needed is βλ. Hence, in the β → ∞ limit we find

β → ∞, β̃ = β(1− Ω)fixed, λ̃ =
λ

1− Ω
fixed, N fixed (4.3.5)

This will give us ZN (β̃) = TrM [e−β̃D0+λ̃D2 ], bringing us close to the zero temperature, Ω = 1 and
zero coupling. The following remarks may be good to sum up now. Higher loop terms for n ≥ 3
in the dilatation operator will be negligible in the considered limit. Further, no assumption on N
has been made. This indicates that it works out in finite cases, and ZN (β̃) will in the decoupled
theory depend on λ̃, N, β̃. Lastly from our choices of ni this will mean that (T,Ω) = (0, 1) is a
critical point or rather (T, ω,Ω1,Ω2,Ω3) = (0, n1, n2, n3, n4, )

4.3.2 Partition function for N = 6 Chern-Simons and Hagedorn temperatures
in free theories

As it stands, Thermal partition functions have been considered in the literature for ABJM. We
review and state known results at tree level and two-loops with no chemical potentials present.
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Other authors have via exotic techniques been able to obtain compact expressions for the ABJM
partition function [91, 129, 38]. What we face, is the case where Z turns on chemical potentials,
making it possible to derive the letter partition function such that it agrees with the result in
[47].

Tree level and two-loop with no chemical potential for N = 6 Chern-Simons

The tree-level Hagedorn was first found in [120]. Considering the weak coupling limit k → ∞
on S1 × S2, one proceeds by writing the free action of two copies of Chern-Simons terms. The
partition function can be expressed as a matrix model in a plethystic exponential

Z =

∫
[dU ][dV ] exp

[ ∞∑
n=1

1

n
zn(x)(trU

ntrV −n + trU−ntrV n)

]
(4.3.6)

The single particle partition function zn(x) = 4zB(x
n)+ (−)n+14zF (x

n) is given by bosonic and
fermionic single particle versions

zF (x
n) =

2x

(1− x)2
, zB(x

n) =
x1/2(1 + x)

(1− x)2
(4.3.7)

The temperture enters as x = e−β,. In the large-N limit it is stated that the Hagedorn singularity
can be found by z1(x) = 1. This gives

4(2x+ x1/2(1 + x))

(1− x)2
= 1 ↔ x =

1

17 + 12
√
2

↔ TH =
1

log
(
17 + 12

√
2
) ≈ 0.283648

(4.3.8)
This is the tree-level Hagedorn temperature TH . Extending on this, one must consider loop-
corrections in the dilatation operator at two-loops. It was shown in [123] how to obtain an
expression for < D2(x) >, which was found to be

< D2(x) >= 8
√
x
(1 +

√
x)2

(1−
√
x)6
[√
x+ x+ (1− 6

√
x+ x) log

(
1−

√
x
)]

(4.3.9)

With this result, and taking the limit λ → 0 and N → ∞, the partition function Z of ABJM
on S2 is given by a simple expression

δTH
TH

=
λ2√
2
< D2(xh) >= 2λ2(

√
2− 1) (4.3.10)

Hagedorn has also been considered on the string side, where pertubation theory and the use
of Quantum spectral curve (QSC) has proven useful4, in the context of ABJM, where corrections
to higher loops were computed [52].

Constructing partition function with added chemical potential for N = 6 Chern-
Simons

Going beyond what has already been done, consider a partition function in the grand canonical
ensemble with chemical potentials turned on. Following [47] we look at how characters give the
emergence of the single particle free field partition function. The starting point is Superconformal
Characters with SO(2N) R-symmetry for ABJM. It is specified to work in N = 3 such that
characters for unitary irreducible representations of the conformal group are in three dimensions

4See [83, 82] for application to Hagedorn for SYM on AdS5 × S5
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SO(3, 2) and have SO(6) manifest R-symmetry. For arbitrary N this can compactly be written
as

χ
(N,B,±)

( 1
2
;0; 1

2
,... 1

2
,± 1

2
)
(s, x, y) = Drac(s, x)χ

(N)

( 1
2
;0; 1

2
,... 1

2
,± 1

2
)
(y) +DDi(s, x)χ

(N)

( 1
2
;0; 1

2
,... 1

2
,∓ 1

2
)
(y) (4.3.11)

This is composed of characters for the free field representations of SO(3, 2), and the Di and Rac,
singleton representations. The terms can be expressed as

DRac(s, x) =
s+ s3

(1− s2x2)(1− s2x−2)
, DDi(s, x) =

s2(x+ x−1)

(1− s2x2)(1− s2x−2)
(4.3.12)

The expression for the characters of the 3d conformal representation turns out to be 1/2- BPS.
For ABJM, we restrict to N = 3. The field content is already known to us, but it is worth noting
how scalars and fermions transform in the ± states of (3, B,±), which can be seen in the table.

Field ∆ SO(3, 2) rep. SO(6) rep. U(n)× U(n) rep.

ϕ1
1
2 Rac (12 ,

1
2 ,

1
2) (N, N̄)

ψ1 1 Di (12 ,
1
2 ,−

1
2) (N, N̄)

ϕ2
1
2 Rac (12 ,

1
2 ,

1
2) (N̄,N)

ψ2 1 Di (12 ,
1
2 ,−

1
2) (N̄,N)

The character we consider is a trace of what will be interpreted as fugacities to the power of
Cartan generators. For free field theory, the single particle partition function is then given by

zFree(s, x, y, u, v) = Tr(s2Dx2J3yH1
1 yH2

2 yH3
3 uL1

1 ...uLn
n vM1

1 ...vMn
n ) (4.3.13)

In the context of the letter partition function, contributions from u, v will not be considered.
The trace can be expressed in terms of a function given by the characters for (3, B,±)

zFree(s, x, y) = f+(s, x, y) + f−(s, x, y) (4.3.14)

where
f±(s, x, y) = χ

(N,B,±)

( 1
2
;0; 1

2
,... 1

2
,± 1

2
)
(s, x, y)

= (y1y2y3)
∓1/2

( 3∑
i=1

y±1
i + (y1y2y3)

±1
)
DRac(s, x)

+ (y1y2y3)
±1/2

( 3∑
i=1

y∓1
i + (y1y2y3)

∓1
)
DDi(s, x)

(4.3.15)

The expression for the partition function can be factorized nicely which will motivate what terms
to include in the letter partition function later on. In the latter, we will make the substitution
to new letters, such that we are in accordance with [80], giving (s, x, y) → (x, ρ, y)

4.3.3 Letter Partition Function for N = 4 SYM on R× S3

To motivate the following calculation, it might be insightful to first state what is known. Consider
the partition function for N = 4 SYM on R× S3 in the presence of non-zero chemical potential
for R-charges of the SU(4) R-symmetry and the Cartan generators of SO(4) group on S3. A
method to attack the problem is by spherical harmonic expansion where we expand each field
and associate its spherical harmonic to it. There are 3 parts of this calculation before we can
add everything up. Partition function for scalars, vectors and fermions has to be considered.
It is worth noting that one does not do this for Cartan generators of SO(4) but splits it up
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into SU(2)L × SU(2)R. The detailed derivation can be found in Appendix B. Using the letter
representations that dictate the spherical harmonics on S3, will contribute to the overall letter
partition function which in all its glory is

z(x, ωj , yi) =

2∏
k=1

((1− xeβωk)(1− xe−βωk))−1{(x− x3)

3∑
l=1

(yl + y−1
l )

+ 2x2
[
1 + 2 cosh(βω1) cosh(βω2)− x(cosh(βω1) + cosh(βω1)) + x2

]
+ 2Y1x

3
2

[
cosh[β(

ω1 − ω2

2
]− x cosh[β(

ω1 + ω2

2
)]

]

+ 2Y2x
3
2

[
cosh[β(

ω1 + ω2

2
]− x cosh[β(

ω1 − ω2

2
)]

]}
(4.3.16)

4.3.4 Letter Partition Function for N = 6 Chern-Simons on R× S2

We proceed to compute the letter partition function and derive the same expression as 4.3.14.
Considering the Symmetries, we include the SO(3) group on S2 with an effective spin S. Oth-
erwise, one obtains the same as for SYM. The exponential parameters involving temperature,
spin and R-symmetry can be defined as

x = e−β, ρ = eβω, yi = e−βΩi , i = 1, 2, 3 (4.3.17)

We proceed to motivate and argue for the structure of R-symmetry generators and then use it
when computing the different contributions from scalars and fermions

R-symmetry Chemical potential and structure

To motivate why given a non-abelian group, one introduces chemical potentials to the maximal
abelian subgroup[146, 100]. Consider a system with a Hamiltonian H and internal symmetry
group G. Assuming G is a semi-simple and compact lie group makes it possible to write the
elements as exponentials. Defining a unitary operator U(g) gives a way of defining the partition
function z(β, g) = Tr[U(g)e−βH]. Using group theoretical arguments, one can choose an element
h of the maximal abelian subgroup which in return can be written as the exponential of a sum
of generators of a Cartan subalgebra h = eiγpQp , p ∈ {1, ..., rank(G)} where Q are the generators.
Doing analytic continuation γp → −iβµp, a more familiar Grand Canonical partition function
appears

z(β, µp) = Tr exp[−β(H−Qpµp)] (4.3.18)

with chemical potentials µp associated with a maximal set of commuting conserved charges Qp.
Hence, given a non-Abelian symmetry group, introducing chemical potentials corresponds to a
Cartan subalgebra of the group. Having motivated the need for R-symmetry chemical potentials,
the structure is needed to implement it.

As for N = 4 SYM, the structure of the Generators of R-symmetry can vary in how they
couple to fields[78]. Most notable is the SYM example, where scalars transform in the 6 and 6̄
of SU(4) and fermions transform in 4. The consequence is presented explicitly in the partition
function5. But this problem does not occur in N = 6 Chern-Simons, since both fermions and
scalars transform in the same (or dual) representation. Thus, the structure is unchanged. The

5For characters in the 6 representation one finds W[0,1,0] =
∑3

i=1(yi + y−1
i ) and for (4, 4̄) one finds W[1,0,1] =∏3

i=1(y
1/2
i + y

−1/2
i ) [78]

54



effective potentials defined in [146], can explicitly be realized through S7/Zk. The orbifolding
imposes a quantization condition on the R-symmetry charges (expressed in terms of angular
momenta) such that the quantization condition holds[64]

4∑
i=1

Ji ∈ kZ (4.3.19)

Introducing three charges generated by the angles ϕi that further generate Ji, given by Rj =
−i∂ηj , this is immediately recognized as the three Cartan generators for the SU(4) subgroup
of SO(8) which is know to be dual to the R-symmetry of ABJM. This allows us to write
geometrical angles as effective chemical potentials with the extra constraint that

∑4
i=1 Ji = 0

as linear combinations

J1 = (R1 +R2 +R3), J2 = (R1 −R2 −R3), J3 = (−R1 +R2 −R3), J4 = (−R1 −R2 +R3)
(4.3.20)

Conversely, one can also express Ri in terms of Ji. This leads to expressions for the fermionic
partition function to have the R-symmetry structure of

3∏
i=1

(y
1/2
i + y

−1/2
i ) (4.3.21)

This will not follow automatically in the letter partition function, but via factorization, it can
be shown that the added contribution will have this form.

Partition function for scalars and fermions

To compute the Letter Partition Function, spherical harmonic expansion is used for each field.
For SYM this was done on S3, where the authors split SO(4) = SU(2)L × SU(2)R. Since
we operate on S2, there is no trivial decomposition as before. But we do note that the spin
index will change from integers working with scalars, to half-integers for fermions. The usual
spherical harmonics should be considered Yjm with appropriately replaced quantum numbers.
The representations are denoted as [r, p, q]s for SU(4) and SO(3). Since only one ρ is present,
the latter case simplifies to one sum wherem ∈ {−j, j}. As argued in [80], the R-charge chemical
potential in [0, 0, 1] or rather 4̄ is given by

Y1 = (y1y2y3)
1/2 + y

1/2
1 (y2y3)

−1/2 + y
1/2
2 (y1y3)

−1/2 + y
1/2
3 (y1y2)

−1/2 (4.3.22)

Using this, we compute the scalar partition function

ηs(x, ρ, yi) = Y1

∞∑
j=0

j∑
m=−j

x2(j+1/2)ρ2m (4.3.23)

The factor of 2 follows the convention of [47], to match the results. Evaluating the sum one
finds

ηs(x, ρ, yi) = Y1
x+ x3

(1− x2ρ2)(1− x2ρ−2)
(4.3.24)

Turning to the fermions, the sum essentially stays the same besides the half-integer contribution
giving us

ηf (x, ρ, yi) = Y1

∞∑
j∈Z+1/2

j∑
m=−j

x2(j+1/2)ρ2m (4.3.25)
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The numerator changes to have an explicit ρ dependence in the following fashion

ηf (x, ρ, yi) = Y1
x2(ρ+ ρ−1)

(1− x2ρ2)(1− x2ρ−2)
(4.3.26)

This takes care of the contributions from [0, 0, 1]1/2. Luckily the other case is an exact replication,
besides substituting the expression for Y1 → Y2, which is defined as for SYM. Putting this
together the full letter partition function seems to agree with what we aimed for

z(x, ρ, yi) =

(
x+ x3

(1− x2ρ2)(1− x2ρ−2)
+

x2(ρ+ ρ−1)

(1− x2ρ2)(1− x2ρ−2)

)
× (Y1 + Y2) (4.3.27)

Using the fugacities defined above, we can put the partition function in the form of the cartan
Generators explicitly.

z(x, ρ, yi) =
cosh(β) + cosh(βω)

cosh(2β)− cosh(2βω)
× (Y1 + Y2) =

3∏
i=1

cosh
(
β(1+ω)

2

)
cosh

(
β(1−ω)

2

)
sinh(β[1 + ω]) sinh(β[1− ω])

cosh

(
βΩi
2

)
(4.3.28)

The partition function presents itself in a nice formula with ordinary functions, explicitly de-
pending on the chemical potentials. One interesting aspect to consider, compared to SYM on
R × S3, is that no monopole operators appeared in the theory. By inclusion of the baryonic
U(1)b, one gets a charge generated by the gauge transformations at the boundary, which gives
rise to quantized field strengths. For ABJM this means there exist a non-zero magnetic flux
on S2 surrounding the insertion point of the operator. This is exactly the monopole operators
appearing. In [93], it was shown through quantization of the field strengths and the use of Gauss
constraint, that an additional term in f± proportional to x|ni−ñj | appears. But this is accompa-
nied by monopole spherical harmonics, which seems to be a different beast than the usual one
when writing and evaluating the sums. This could be interesting for future investigation.

Hagedorn temperature: No Chemical Potentials:

For good sport we look at the easy case which is when the chemical potentials are turned
off, which corresponds to ω = Ωi = 0, and is just the essential same calculation as was done in
[120]. This gives a polynomial where TH can be extracted

8(x+ 2x2 + x3)

(1− x2)2
= 1 → x = 5± 2

√
6 (4.3.29)

Choosing the minimal solution, the Hagedorn temperature is calculated to be TH = −1
log(5−2

√
6)

≈
0.436218. It is worth noting though that the same expression has been derived in an altered form.
In [31, 32], the partition functions were found to contain an extra t-parameter which can be
interpreted as R-symmetry chemical potentials. The authors set the parameters to t→ 1/x and
y → −1 where y = ρ. This is the same case as we just considered, but with the identifications,
the partition function boils down to

z(x) =
x1/2 + x3/2

1− x2
=

x1/2

1 + x
(4.3.30)

One can similarly find the Hagedorn temperature to be TH = −3
2 log(−1) ≈ 0.477464.

As it has been advertised, there are various cases to consider where we turn on different
chemical potentials and make numerical solutions of dependence on either {ω,Ωi} or both simul-
taneously. Further one can investigate how the partition functions might look for the decoupled
sectors, all inspired by [80, 78].
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4.4 Spin Matrix String Backgrounds

Using SMT, a novel way of evaluating near BPS-bounds in the AdS/CFT correspondence has
been developed. It has already been established for SYM with super lie algebra PSU(2|2, 4) that
in certain BPS-bounds, one can establish connections to spin chains as an example. This relates
to non-relativistic string theory with a non-relativistic target space described by a U(1) Galilean
geometries. One direct way to observe it is to look at magnon dispersions [79] which exhibit
non-relativistic features in the SMT-limit. The starting point is the Torsional Newton Cartan
(TNC) string which was used to derive SMT strings. We briefly review the non-relativistic
approach and establish a manifold that will be useful when going to BPS-bounds that describe
an emerging U(1) geometry. Calculations for N = 4 which has been established are done in
A. The extension for geometries dual to N = 6 Chern-Simons theory is done here. We look at
the spin subgroups of OSp(4|6) in certain limits which we will use to parametrize and isolate
specific isometries of AdS4 × CP3.

4.4.1 Brief review of TNC strings and BPS-bounds in SMT limit

The starting point is to consider a relativistic string that couples to a non-relativistic TNC
geometry. To this mean, it will be convenient to consider a (d + 1)-dimensional Lorentzian
geometry with null isometry ∂u as

ds2 = 2τµdx
µ(du−mµdx

µ) + hµνdx
µdxν (4.4.1)

By our null reduction along u, we see an emerging Torsional Newton-Cartan (TNC) geometry
characterized by a clock one-form τµ, a symmetric tensor hµν of rank d − 1 and the U(1)
connection mµ. Without going into great detail, one can write up gauge transformations for
the TNC data which makes the decomposition non-unique. For further elaboration see [83].
The important thing to note is that this will make the Galilean boost and U(1) transformations
visible. The trick that was considered was to make the constant momentum Pu off-shell by
exchanging a single winding mode in a direction η dual to u. But the question is now how to
ensure that when we pick a specific BPS-bound that u will be null on the background geometry.
In the SMT-limit [83] it was established that introducing the following new coordinates one
could ensure that we face no trouble. Consider the BPS-bound

gs = 0, N = fixed,
E −Q

gs
= fixed (4.4.2)

Depending on the specific duality one can define Q in various ways. ABJM and SYM align in
terms of Cartan generators considered in Q = S + J . From the time coordinate one can extract
that E = i∂t, S = i∂γ̄ and J = i∂γ . Making a coordinate change will give a non-relativistic
string on the world sheet. Introduce x0 and u such that

i∂x0 = E −Q = E − S − J, −i∂u =
1

2
(E − S + J) (4.4.3)

Then one can rescale x0 such that the conserved charge scales as gs when the limit gs → 0.
Introducing x0 =

x̃0
4πgsN

one obtains in the SMT limit

c→ ∞, x0 = c2x̃0, c =
1

4πgsN
, N and x̃0 fixed (4.4.4)

Using these coordinates, when taking a certain BPS-bound, transforms our global coordinates
of the geometry to something depending on x0 and u. Using the coordinates 2.3.34 and the
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isometries 2.3.40, it is convenient to define, with the global AdS4 time t, transformations to
{x0, u, w}6 such that 4.4.3 is satisfiedtγ̄

γ

 =

1 −1/2 0
1 −1/2 1
1 1/2 0

x0u
w

 →
− i∂x0 = E −Q = E − S − J,

− i∂u =
1

2
(E − S + J), −i∂w = S

(4.4.5)

Lastly, a Polyakov action also exists for the SMT-string [83]. In the context we operate in, it
will be convenient to write it in a flat worldsheet gauge. Following the original work, the flat
worldsheet gauge-fixed SMT string action was found to be

Sflat,gf = − J

2π

∫
d2σ(mµx

µ +
1

2
hµνdx

µdxν) (4.4.6)

This will be enough to proceed and analyze various BPS-sectors to find reduced geometries on
non-relativistic backgrounds

4.4.2 SMT-limits of N = 6 Chern-Simons theory and ABJM

As for the N = 4 SYM, we set out to do the same computations, this time in the context of
ABJM theory, where one considers a AdS4 × S7/Zk or rather AdS4 × CP3 geometry for large
k. Thus the starting point is to establish a general metric depending on the Cartan generators.
The same formalism will be used in this correspondence where we instead now have a S7 which
is associated to the angular momentum Jj = −i∂αj and also S2 ⊂ AdS4 which associates to spin
S = −i∂ϕ. In contrast to SYM, we only have one spin degree of freedom from the AdS part,
but a further addition of angular momentum DOF. We proceed by first analyzing the ”simplest
case” namely the SU(2)× SU(2) sector.

4.4.3 The SU(2)× SU(2) background and penrose-limit

We start by considering a doubling of the cousin from SYM, namely the SU(2) × SU(2) case.
ABJM has the same BPS-bound as for SYM Q = J1 + J2, which is purely constituted by the
S7 part of the metric. From previous calculations and review, our starting point is writing S7

as two S3´s and then further to two S2[64]. This reduced geometry is a type IIA background
obtained via M-theory relations considered in 4.2.1

ds2/R2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ̂2
2 + ds2CP3 = − cosh2 ρdt2 + dρ2

sinh2 ρdΩ̂2
2 + dθ2 +

1

4
(cos2 θdΩ2

2 + sin2 θdΩ′2
2 ) + 4 cos2 θ sin2 θ(dδ + ω)2

(4.4.7)

The 2 S2´s and the 1-form ω are parametrized by

ω =
1

4

2∑
i=1

sin θidϕi, dΩ2
2 = dθ21 + cos2 θ1dϕ

2
1, dΩ′2

2 = dθ22 + cos2 θ2dϕ
2
2

Having established the metric one may introduce and transform the global AdS time and the
fibration over δ via the coordinates x0 and u as follows(

t
δ

)
=

(
1 −1/2
1 1/2

)(
x0

u

)
(4.4.8)

6Originally there was need of gauge fixing, for the w direction since it was a mix of both S5, S3. This meant
that −i∂w = c1S + c2J , but it was found that c1 = 1 and c2 = 0 which we take as default setting throughout the
computatios

58



Reading off from the second column, we get the same type of condition as for N = 4 SYM such
that ∂u is null when the following inequality is satisfied

4(∂u)
2/R2 = − cosh2 ρ+ 4 cos2 θ sin2 θ ≤ 0 (4.4.9)

This is exactly met when ρ = 0 and θ = π/4. Using this and transforming to the new coordinates
yield

ds2/R2 = −(dx0 − 1

2
du)2 + (dx0 +

1

2
du+ ω)2 +

1

8
(dΩ2

2 + dΩ′2
2 )

= du(2dx0 + ω) + ω2 + 2dx0ω +
1

8
(dΩ2

2 + dΩ′2
2 )

= 2τ(du−m) + hijdx
idxj

(4.4.10)

It is easy to identify the TNC-variables

τ = dx0 +
1

2
ω, m = −ω, hijdx

idxj =
1

8
(dΩ2

2 + dΩ′2
2 ) (4.4.11)

For comparison, the same corresponding action [82, 75] has been considered. The obvious
difference is the addition of a S2, which stems ABJM-theory. From the construction in 2.3,
both the geometry and product gauge group seem to indicate this. That would suggest that
the additional sphere represents the same kind of SU(4) spin chain picture that was found in
[110], or rather the R-symmetry multiplets of scalars (and fermions) grouped in 2.3.21 in the
fundamental and anti-fundamental representation. If we proceed to consider the flat gauge fixed
action for the non-relativistic SMT string using the TNC-variables one obtains

Sflat,gf = − J

2π

∫
d2σ(mµx

µ +
1

2
hµνdx

µdxν)

=
J

8π

2∑
i=1

∫
d2σ(sin θiϕ̇i −

1

2
[θ′2i + cos2 θiϕ

′2])

(4.4.12)

The structure is in agreement with (4.4.1) which was the Landau-Lifshitz model on odd and
even sites. The two regimes both for the sigma model limit and SMT-limit for the BPS-bounds
SU(2)× SU(2) seem to overlap.

4.4.4 The OSp(2|2) Background

The subsector defined for the OSp(2|2) background is given by the BPS bound Q = J1+J2+S,
that is, we extend the SU(2) × SU(2) sector by introducing spin. Our starting point will be
the metric used in the previous section. The main difference will be the contribution from
dΩ̂2

2 = dθ2 + sin2 θdϕ2. Thus, 4.4.7 can be expanded to

ds2/R2 =− cosh2 ρdt2 + dρ2 sinh2 ρ(dθ2 + sin2 θdϕ2)

+ dξ2 +
1

4
(cos2 ξdΩ2

2 + sin2 ξdΩ′2
2 ) + 4 cos2 ξ sin2 ξ(dδ + ω)2

(4.4.13)

The isometries that need to be accounted for includes the azimuthal part of S2 as well.
This makes us extend the linear transformations to include the w-parameter as in SYM, this
time only controlling how the w-direction is aligned along S2 ⊂ AdS4. The matrix translating
between global isometries and coordinates on the submanifold with TNC variables is

 tϕ
δ

 =

1 −1/2 0
1 −1/2 1
1 1/2 0

x0u
w

 , (4.4.14)
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Reading off from the second column, we get ∂u is null under the following condition

4(∂u)
2/R2 = − cosh2 ρ+ sinh2 ρ sin2 θ + 4 cos2 ξ sin2 ξ ≤ 0 (4.4.15)

This condition will exactly be met when θ = π/2 and ξ = π/4. Setting the angles to the found
constants, the metric reduces to

ds2/R2 = − cosh2 ρ(dx0 −
1

2
du)2 + dρ2 + sinh2 ρ(dx0 −

1

2
du+ dw)2

+
1

8
(dΩ2

2 + dΩ′2
2 ) + (dx0 +

1

2
du+ ω)2

(4.4.16)

After grouping terms such that it will align with the metric, one finds

ds2 =du(2dx0 − sinh2 ρdw + ω) + 2 sinh2 ρdwdx0 + 2dx0ω + ω2

+ dρ2 +
1

8
(dΩ2

2 + dΩ′2
2 ) + sinh2 ρdw2

(4.4.17)

In this form, it can easily be seen what the structure of the TNC-variables are for τ and m
especially. With some rewriting one finds that the geometry has gained some terms due to the
null isometry from −i∂ϕ

τ = dx0 − 1

2
(sinh2 ρdw − ω)

m = −(sinh2 ρdw + ω)

h = dρ2 +
1

8
(dΩ2

2 + dΩ′2
2 ) + cosh2 ρ sinh2 ρdw2.

(4.4.18)

Notice how the contributions exactly match the combination of structure from the SU(1, 1) in
SYM and SU(2)×SU(2) backgrounds from CS. To finish up, we state the flat gauge fixed action
on this background to be

Sflat,gf = − J

2π

∫
d2σ

[
ẇ sinh2 ρ− 1

2

(
(ρ′)2 + (w′)2 sinh2 ρ cosh2 ρ

)
+

2∑
i=1

[
sin θiϕ̇i −

1

16
(θ′2i + cos2 θiϕ

′2)
]]
.

(4.4.19)

The result is exactly contributions that combines the two sectors found in [81, 27]7.

4.4.5 The SU(2|3) Background

The last example before going to the all background case, we consider the maximal R-symmetry
admitted by the bps-sectors, namely Q = J1 + J2 + J3. This sector admits SU(3) symmetry
and is purely connected to the S7, thus most of the AdS4 geometry will be redundant. In
2.3, it was discussed that there are two distinct ways of writing the metric of CP 3. For the
particular choice of Q, we tried using the previous metric, that a type IIA background cannot

7The action can take another form by using the set of coordiantes defined in [120] given by

Sflat,gf = − J

2π

∫
d2σ

[
ẇ sinh2 ρ− 1

2

(
(ρ′)2 + (w′)2 sinh2 ρ cosh2 ρ

)
+

1

2
ϕ̇1 cos θ1 −

1

2
ϕ̇2 cos θ2 +

1

16

2∑
i=1

(
(θ′i)

2 + (ϕ′
i)

2 sin2 θi
) ]
.

(4.4.20)
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be obtained. With three angular momenta and four complex coordinates to parametrize S7,
one falls short of obtaining a null isometry. This leads to the shift in metric, such that 2.3.39
will be favourable to use. as in the SU(2|3) case of SYM, the metric can be seen decomposed
into CP3 ∼ CP2 + (dχ + A)2, such that we can obtain the Fubini-Study for CP2 with a non-
dynamic angle dχ which can be factored with Kahler potential. Using the metric, we employ a
transformation from angular coordinates on CP 3, namely the αj´s into three new coordinates

α1

α2

α3

 =

1 −1/2 0
1 1/2 −1/2
1 1/2 1/2

χψ
ϕ

 →

z1/z4 = tan ξ cosαeiχ−ψ/2

z2/z4 = tan ξ sinα sin
θ

2
eiχei(ψ−ϕ)/2

z3/z4 = tan ξ cosα cos
θ

2
eiχei(ψ+ϕ)/2

(4.4.21)

Following [45], this expression becomes comparable to the AdS5×S5 geometry which is identical
up to numerical factors. The resulting metric is then

ds2CP3 = 4dξ2 + 4 sin2 ξ cos2 ξ(dχ+
1

2
(sin2 α(dψ + cos θdϕ)− dψ))2

+ 4 sin2 ξ
[
dα2 +

1

4
sin2 α(dθ2 + sin2 θdϕ2 + cos2 α(dψ + cos θdϕ)2)

]
,

(4.4.22)

Note that the factor of 4 is a consequence of rescaling the overall radius in the near-horizon
geometry as for the previous metric. In this case, we take advantage of it for the null conditions.
The metric can be put in a nicer form following [82] by defining the quantities corresponding to
the Kahler potential

B = sin2 α(dψ + cos θdϕ)− dψ, A = cos θdϕ (4.4.23)

Looking at the second line of the metric, we can recognize this exactly as the Fubini-Study
metric over CP2 defined as

dΣ2
2 = dα2 + sin2 αdΣ2

1 +
1

4
sin2 α cos2 α(dψ +A)2, dΣ2

1 =
1

4
(dθ2 + sin2 θdϕ2) (4.4.24)

Putting all this together we obtain for the full AdS4 × CP3 metric on the SU(3|2) background

ds2/R2 = − cosh2 ρdt2+dρ2+sinh2 ρdΩ2
2+dξ

2+4 sin2 ξ cos2 ξ(dχ+
1

2
B)2+4 sin2 ξdΣ2

2. (4.4.25)

Using the same type of transformation as for the SU(2)× SU(2) background

(
t
χ

)
=

(
1 −1/2
1 1/2

)(
x0

u

)
(4.4.26)

we see that the null condition becomes

4(∂u)
2/R2 = − cosh2 ρ+ 4 sin2 ξ cos2 ξ ≤ 0, (4.4.27)

This holds when ρ = 0 and ξ = π/4. Our Metric reduces as a consequence to the following

ds2/R2 = −dt2 + (dχ+
1

2
B)2 + 2dΣ2

2. (4.4.28)

Inserting this into the metric will reduce in terms of new coordinates

ds2/R2 = 2dx0du+
1

2
Bdu+Bdx0 +

1

4
B2 + 2dΣ2

2, (4.4.29)
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which can readily be written in the TNC form

ds2/R2 = 2τ(du−m) + h (4.4.30)

with the identifications

τ = dx0 +
1

4
B, m = −1

2
B, h = 2dΣ2

2, (4.4.31)

The last step is to find the flat gauge fixed action, given by

Sflat,gf = − J

2π

∫
d2σ(mµx

µ +
1

2
hµνdx

µdxν)

=
J

4π

∫
d2σ
(
sin2 α cos θϕ̇− cos2 αψ̇ − 2

[
(α′)2

1

4
sin2 α(θ′2 + sin2 θϕ′2) +

1

4
cos2 α sin2 α(ψ′ + cos θϕ′)2

]) (4.4.32)

This action is equivalent in structure to the case of SU(2|3) case considered in the A. But this
time, the term that would usually go as − cos(2α)ψ̇ is replaced by − cos2 αψ̇ since the Kahler
potentials do not have the exact structure to make it identical8

4.4.6 All backgrounds From the OSp(2|4) background

For the grand finale, we obtain the U(1) Galilean geometry for S + J1 + J2 + J3 = Q ≤ E. This
BPS bound leads to the OSp(4|2) spin matrix theory which can be used to obtain the other
bounds in spin matrix theory previously considered, by considering different manipulations for
angles that give the different backgrounds. The full geometry will be parametrized via a hopf
coordinate for the S2 ⊂ AdS4 and the CP3 using a S1-fibration over CP2 for the full in the
Fubini-Study coordinates. This will result in the isometries −i∂ϕ = S and −i∂χ = J1 + J2 + J3.
The metric will be written in terms of Fubini-Study potentials

ds2/R2 = − cosh2 ρdt2+dρ2+sinh2 ρ(dθ̄2+sin2 θ̄dϕ2)+dξ2+4 sin2 ξ cos2 ξ(dχ+
1

2
B)2+4 sin2 ξdΣ2

2

(4.4.33)
Following the transformations we have used before, we get tϕ

χ

 =

1 −1/2 0
1 −1/2 1
1 1/2 0

x0u
w

 , (4.4.34)

Compared to the PSU(1, 2|3) case we do not have that −i∂ϕ and −i∂χ are of constant length in
ABJM, so the null condition we are met with is

4(∂u)
2/R2 = − cosh2 ρ+ sinh2 ρ sin2 θ̄ + 4 sin2 ξ cos2 ξ ≤ 0 (4.4.35)

This is satisfied when ξ = π/4 and θ̄ = π/2 Using the transformation reduces our expression for
the metric

ds2/R2 = 2dx0du+ dρ2 + sinh2 ρ(dw2 + 2dw(dx0 − 1

2
du))

1

4
B2 +B(dx0 +

1

2
du) + 2dΣ2

2 =

2τ(du−m) + h

(4.4.36)

8In the case of SYM the Kahler potentials are defined as B = sin2 ξ(dψ + A)− 1
2
dψ and A = 1

2
cos θdϕ. Here

one finds sin2 ξdψ − 1
2
dψ = − 1

2
cos(2ξ) while in our case this will only amount to sin2 α− 1 = − cos2 α
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Where the TNC variables are given by

τ = dx0 +
1

4
B +

1

2
sinh2 ρdw

m = −
(
1

2
B + sinh2 ρdw

)
h = dρ2 + sinh2 ρ cosh2 ρdw + 2dΣ2

2,

On this background the flat gauge-fixed SMT string action gives

Sflat,gf =
J

4π

∫
d2σ
(
2 sinh2 ρẇ + sin2 α cos θϕ̇− cos2 αψ̇ − (ρ′)2 − sinh2 ρ cosh2 ρ(w′)2

− 2
[
(α′)2 +

1

4
sin2 α((θ′)2 + sin2 θ(ϕ′)2) +

1

4
sin2 α cos2 α(ψ′ + cos θϕ′)2

]) (4.4.37)

It is interesting to consider how this compares (up to numerical factors) to the case for the
PSU(1, 2|3) background in SYM. All the terms that appear in the action are present in the
full background of SYM as well, but the geometry is still not null on the whole space due to
4.4.35. Further, due to the larger isometry, there are additional terms from the S3 present in
SYM that is inherently not part of the AdS4 ×CP 3 geometry. It is worth reflecting upon some

of the results we have arrived at. First, the obvious deviation from the case considered in N = 4
SYM, is the fact that there is not a direct way to go from the maximal BPS-bound and then
truncate to all other subsectors. As we saw, the change of coordinates was crucial in obtaining
the remaining subsectors where the charge contained {J1, J2, J3}, such that a U(1) Galilean
background could be obtained. Seen from the perspective of the supercoset construction[137, 7],
it is found in comparison to the Supercoset of SYM, that it only preserves 24 fermionic DOF (As
seen for type IIA backgrounds as well). It would seem that the OSP(6|4)/SO(1, 3)×U(3) is not
a supercoset manifold[135]. In this context, looking at the coset structure SU(4)/U(3), reducing
the S7 into two S3 consequently reduced the coset to the subset SU(2) × SU(2) × U(1) or in
terms of BPS language ∆ ≥ J1+J2. The emergent U(1), is nothing but the hopf fibration along
a fiber bundle for S1. This would shrink through M -theory such that the type IIA background
emerged. Turning on J3, the culprit becomes the orbifolding, removing one of the four U(1)
Cartan isometries. Hence, J3 would move along the U(1) fiber which seems to decouple the
S2 interpretation. This forced the switch, which did not make it possible to make a consistent
truncation to the rest of the BPS landscape. These interpretations need to be revised since the
physical picture is somewhat elusive to the naked eye and should be taken with a grain of salt.

4.5 Penrose Limits of Spin Matrix String Backgrounds

As was done for N = 4 SYM, we have been (almost) able to succeed in finding the U(1) Galilean
backgrounds corresponding to the Spin Matrix limits. We do face some complicated and non-
linear theories when going to the flat gauge-fixed action. But as was considered, one can take a
large charge limit for J and zoom in on excitations around specific angles. One expects that we
might obtain free theories that will resemble Penrose limits where we zoom in on the geometry
around the null geodesic. Starting from AdS4 ×CP 3 and zooming in on the null geodesic along
AdS4 and CP 3, the resulting geometry should become the 10-dimensional maximally symmetric
PP-wave. But it is important to remember that the expression will depend on the coordinates
we start with for our null geodesic, since it depends on the coordinate pair (x0, u). When one
zooms in around ∂u on a submanifold where the vector is null we can expect a background of
the form

ds2/R2 = dx0(du0 + xidyi) + dxidx
i + dyidy

i + dxadx
a − xax

a(dx0)2 (4.5.1)
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where i = 1, ..., n and a = 1, ..., 8 − 2n The pp-wave can be written in the form of the above

metric and has the 2n flat directions (xi, yi). There will also be a quadratic potential contained

in the 8−2n remaining transverse directions xa. In the rescaling x0 = x̃0

c2
one gets that the slope

diverges in the SMT-limit, thus we get dynamics that is suppressed and only the flat directions
contribute. In terms of the TNC-data we expect the following structure to appear then

τ̃ = dx̃0, m = −
n∑
i=1

xidyi, h =

n∑
i=1

((dxi)2 + (dyi)2) (4.5.2)

This is what originally has been dubbed the flat fluxed (FF) backgrounds, since they contain a
mass flux term xidy

i that supports the dynamics in the flat directions of both components. The
goal is now to show that the SMT and large charge limit compared with the Penrose limit should
correspond to the same FF U(1) Galilean Geometry. This is done for the cases considered in
the previous section

4.5.1 The SU(2)× SU(2) flat background

Considering the simplest of cases, namely the SU(2)× SU(2) sector, it was found in a previous
section, that the TNC-data can be written as

τ̃ = dx̃0, m = −ω, hijdx
idxj =

1

8
(dΩ2

2 + dΩ′2
2 ) (4.5.3)

For the large charge limit of J → ∞, we define the following coordinate transformations

θi = xi/
√
J − π/2, ϕi = yi/

√
J (4.5.4)

Using this for m and h we get

m0 = lim
J→∞

Jm =
1

4

2∑
i=1

xidyi

h0 = lim
J→∞

Jm =
1

8

2∑
i=1

dx2i + dy2i

(4.5.5)

This corresponds to zooming in on the excitations around θ = π/2 and ϕ = 0

Sflat,gf =
J

8π

2∑
i=1

∮
dσ
[
xiẏi −

1

2
[(x′i)

2 + (y′i)
2]
]

(4.5.6)

This is the same action up to factors as in [81]. Now we take the Penrose limit and show that we
retrieve the same geometry from a SMT limit of the corresponding pp-wave. To get the pp-wave,
the metric can be written in the adapted coordinates we used previously and then zoom in on
a null geodesic on the submanifold of M corresponding to ρ = 0 and ξ = π/4 by defining

R = R′/ϵ, u = Uϵ2, ϕa = yaϵ, θa = xaϵ, ρ = rϵ, ξ = π/4 + zϵ (4.5.7)

Writing out the metric first and then taking the limit ϵ→ 0 we get

ds2/R2 = − cosh2 ρ(dx0 − 1

2
du)2 + dρ2 + sinh2 ρ(dθ̄22 + sin2 θ̄(dx0 − 1

2
du+ dw)2)

+ dξ2 +
1

4
(cos2 ξdΩ2

2 + sin2 ξdΩ′2
2 ) + 4 cos2 ξ sin2 ξ(dx0 +

1

2
du+ ω)2

(4.5.8)
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Expanding in ϵ, and collecting terms that scale like ϵ2, since this is the global factor defined on
the radius of the geometry, one finds

ds2/R2 = 2dx0dU + dr2 + r2dΩ̂2
2 + 4dz2 +

1

8
dx21 +

1

8
dx22

+
1

2
dx0(x1dy1 + x2dy2) +

1

8
dy21 +

1

8
dy22 − z2(dx0)2

= 2dx0(dU −m0) + h0 − z2(dx0)2 + 4dz2 + dr2 + r2dΩ̂2
2. (4.5.9)

It can be seen that freezing the Z-direction, one can obtain a similar expression with an infinitely
steep potential as noted in [82].

4.5.2 The OSp(2|2) flat background

Turning to the case where we keep the same amount of generators over CP 3, but additionally
we add a spin DOF from the CP1 ⊂ AdS4. The relevant quantities to look at are the TNC-data

τ = dx̃0, m = −(sinh2 ρdw + ω), h = dρ2 +
1

8
(dΩ2

2 + dΩ′2
2 ) + cosh2 ρ sinh2 ρdw2. (4.5.10)

Defining in the large charge limit for J → ∞ the following new coordinates, we find

r =
√
Jρ, xi =

√
J(θi − π/2), ya =

√
Jϕa (4.5.11)

After taking the limit, we are left with a much simpler

m0 = lim
J→∞

Jm =
1

4

2∑
i=1

xidyi + r2dw

h0 = lim
J→∞

Jh =
1

8

2∑
i=1

(dx2i + dy2i ) + dr2 + r2dw2

(4.5.12)

The situation is not much different than before, only this time we have mixed both the sphere
and the AdS part. This will give us the following background action with the addition of
zooming in on the region ρ = 0

Sflat,gf =
J

8π

2∑
i=1

∮
dσ

[
xiẏi + r2ẇ − 1

2

(
[(x′i)

2 + (y′i)
2] + r2(w′)2 + (r′)2

)]
(4.5.13)

The corresponding Penrose limit can be obtained from theAdS4×CP3 coordinates by introducing

R = R′/ϵ, u = Uϵ2, ϕa = yaϵ, θi = xiϵ− π/2, ρ = rϵ, ξ = π/4 + qϵ (4.5.14)

In the ϵ→ 0 limit, we obtain the metric

ds2/R2 = 2dx0(dU +
1

2
r2 sin2 θ̄dw +

1

4

2∑
i=1

xidyi) +
1

8

2∑
i=1

(dx2i + dy2i )

+ dr2 + r2(dθ̄2 + sin2 θ̄dw2) + (q2 + r2 sin2 θ̄)(dx0)2

(4.5.15)

We see that when q2 = −r2 and θ̄ = π/2, one exactly retrieve the U(1) Galilean data we derived
from the large J limit above.
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4.5.3 The SU(3|2) flat background

Instead of adding a spin degree of freedom this time, we extend to the maximal amount of
generators for S7 giving us the SU(3) sector from the BPS-bound Q = J1 + J2 + J3 ≤ E. If we
consider the large charge limit again of the TNC-data

τ̃ = dx̃0, m = −1

2
B, h = 2dΣ2

2,

One can write coordinates in the J → ∞ limit as

α =
π

4
+

q√
j
, θ =

x√
j
+
π

2
, ϕ = y/

√
J, ψ = p/

√
J (4.5.16)

and from this obtain

m0 = lim
J→∞

Jm =
1

4
xdy − 1

2
qdp

h0 = lim
J→∞

Jh =
1

2
dq2 +

1

4
(dx2 + dy2) +

1

8
dp2

(4.5.17)

The action subsequently takes the form

Sflat,gf =
J

4π

∮
dσ
[1
2
xẏ − qṗ− 1

2
((x′)2 + (y′)2) + (q′)2 +

1

4
(p′)2

]
(4.5.18)

Similarly, the coordinates that are chosen for the specific Penrose limit will be

R = R′/ϵ, u = Uϵ2, ϕa = yaϵ, θi = xiϵ+ π/2

ψ = pϵ, ρ = rϵ, α = π/4 + qϵ, ξ = π/4 + zϵ
(4.5.19)

After painstakingly expanding and bookkeeping powers of ϵ2, the terms that are left after using
the (x0, u) is

ds2 = 2dx0(dU −m0) + h0 + 2dq2 +
1

2
dz2 + dr2 + r2dΩ2

2 − (r2 + 4z2)(dx0)2 (4.5.20)

The same kind of phenomena occurs in the three-charge case as for SYM, where the relativistic
string experiences a quadratic potential r2 in the now three transverse directions dr2 + r2dΩ2

2.

In the SMT limit with x0 = x̃0/c2, c→ ∞, the potential becomes infinitely steep as well. Hence,
the geometry is restricted to a U(1) Galilean geometry described by the coordinates in the limit
J → ∞. The only notable difference is the extra coordinate dz2 as an artifact of the geometry
and the fact that we are a factor 2 off for some peculiar reason (this will be resolved at some
point).

4.5.4 The OSp(4|2) flat background

The last background which corresponds to the OSp(4|2) sector, has to be considered as the
maximal one, From the type IIA condition in 4.3.19. Using the TNC-data for the BPS bound
∆− J1 − J2 − J3 − S.

τ̃ = dx̃0, m = −(
1

2
B + sinh2 ρdw), h = dρ2 + sinh2 ρ cosh2 ρdw + 2dΣ2

2, (4.5.21)

Then defining the coordinates that will go into play when taking the large charge limit

α =
π

4
+

q√
j
, θ =

x√
j
+
π

2
, ϕ = y/

√
J, ψ = p/

√
J, ρ = r/

√
J (4.5.22)
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Inserting into m and h, we find in the J → ∞ limit

m0 = lim
J→∞

Jm =
1

4
xdy − 1

2
qdp+ r2dw

h0 = lim
J→∞

Jh = dr2 + r2dw2 + 2dq2 +
1

4
(dx2 + dy2) +

1

8
dp2

(4.5.23)

In the large charge limit, we find the maximal extension of the action which we hint towards
having a interpretation in action-angle variables and symplectic potential in phase space is given
by

Sflat,gf =
J

4π

∮
dσ
[1
2
xẏ − qṗ+ r2ẇ − (r′)2 − r2(w′)2 − (q′)2 − 1

2

(
(x′)2 + (y′)2

)
− 1

4
(p′)2

]
(4.5.24)

Going to the Penrose limit we define as previously all the coordinates in the same fashion

R = R′/ϵ, u = Uϵ2, ϕa = yaϵ, θi = xiϵ+ π/2

ψ = pϵ, ρ = rϵ, α = π/4 + qϵ, ξ = π/4 + zϵ
(4.5.25)

Taking ϵ→ 0, we finally obtain the grand piece

ds2/R2 = 2dx0(dU + r2 sin2 θ̄dw − 1

4
xdy +

1

2
qdp) + dr2 +

1

2
dz2

+ r2(dθ̄2 + sin2 θ̄dw2) +
1

4
(dx2 + dy2) + 4dq2 +

1

8
dp2 + (r2 sin2 θ̄ − z2)(dx0)2

= 2dx0(dU −m0) + h0 + 2dq2 + dr2 +
1

2
dz2 + (r2 sin2 θ̄ − z2)(dx0)2

(4.5.26)

In the ”maximal” case we are restricted to submanifolds where by setting θ̄ = π/2 and z = 1
2r,

this exactly reproduces the result obtained in the large charge limit. Compared to SYM, this
inherently does not exhibit the pure background as an immediate effect after taking the Penrose
limit. One can speculate that due to 4.4.35, making −i∂u not null on the entirety of AdS4×CP 3,
exactly gives these extra terms which have to be removed in a by choosing certain planes in the
geometry. And the factor of 2dq2 is still following, so for consistency, this has to be removed,
but this is hopefully a technical little detail

Phase space, Symplectic Potentials and Action Angle variables:

As it was established in the inspirational work [82] laying the ground for these results, the flat
gauge fixed action can be interpreted as phase space coordinates, which has dynamics described
by a symplectic form and Hamiltonian

ω = − J

2π
dm, H =

J

4π

∮
dσ1hµνX

′µX ′ν (4.5.27)

The actions found in the large charge limit, also resemble that of action-angle variables. This
is natural considering the phase space language exhibited by our action linear in velocities of
the target space embedding fields Xµ. This begs the question whether or not more complicated
Sigma models can be quantized, and what kind of integrable models and phase space structures
are hiding behind these theories.
To end the last chapter, we can make a form of sanity check. The Coordinates obtained in the
large charge limit seem to appear as for SYM, besides terms that couple the extra spin DOF.
Due to restrictions on operators in the BPS ∆ ≥ J + S, the maximal space is still restricted to
a submanifold such that ∂u is not null on the entire AdS4×CP 3, which can be seen from 4.4.35,
and makes additional terms vanish. Other than numerical constants also, the structure that is
found might be aligned with SYM. For further investigation, it might be useful to extend from
the work of [66], and see if there are possible directions to follow.
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Chapter 5

Conclusion and Outlook

And thus the end has arrived. The culmination of a whole year of academic work is reaching
its end. So what have we achieved and done? and have we not? First and foremost, since the
start of this project, we have traversed the vast landscape of the AdS/CFT correspondence. It
has been a great pleasure to catch up with what has happened in theoretical modern physics
over the last 30 years or so. The thesis has been angled toward the unknown superstar of the
gauge/gravity duality, namely ABJM.
The thesis was intended to be told as much as a fluent story as possible. The intention was to
start the story in a familiar place, where everyone is comfortable. Thus superstrings, type II
A and B SUGRA, T-duality, M-theory and supersymmetry were introduced in rather layman
terms, seen from the perspective of an ordinary physicist. This supposedly lays the ground
for partial ingredients needed to motivate and arrive at the actual AdS/CFT correspondence
that Maldacena famously conjectured. But to get a sense of the physical idea, t´Hooft and
Susskind had to, via holography, take us on a journey for our eyes to be opened. Through
the conjecture, it was also possible to connect quantities from gravity and gauge theory, most
notably the conformal dimension ∆ and the mass of particles m. To end the general story,
GKPW was needed to formalize the precise statement, such that nobody was left confused.
Following right up, Chern-Simons theory was constructed in superspace, since this is the main
act of the ABJM action. With the help of this, and BLG theory involving M2-branes as well,
the ABJM conjecture was stated and unpacked as reasonable as possible, but with some aspects
still missing, such as the brane construction1. Nevertheless, the full algebra, action, field and
matter content, geometry and subsectors have been displayed as pedagogical as possible.
With this established, we saw how peculiarities arise in AdS/CFT , when it becomes possible to
realize spin-chains in the planar limit. This builds a whole bridge between operators interpreted
as spin particles as was seen. Furthermore, Penrose limits were considered as they presented
themselves as useful ways to obtain pp-wave backgrounds. Constructing the quantized light-cone
Hamiltonian spectrum for strings became possible, which was compared to the gauge theory side
where corrections of spectra to loop orders can be compared. The case of SYM was straight
forward and caused no harm, while ABJM presented that at strong and weak t´Hooft coupling,
the spectrum scaled differently.
Moving on to the main part of the show, non-relativistic quantum mechanics became the main
framework for AdS/CFT (in our case), which was realized by Spin Matrix theory. It was
attempted to link the spin-chain gas to notions considered for ABJM, and while some obvious
remarks were made, much work is needed to be established for a satisfactory comprehension of
the structure.
The first real new contribution came when considering the computations done in [81], where a
new subsector ∆ ≥ J1 + J2 + S was considered in a sigma model limit. This was low-hanging

1For the interested reader see [16, 5, 2]
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fruit which was nothing but a simple extension of the previous analysis.
Switching gears and feeling inspired by [80, 78], we set out to find the Hagedorn dependence
on chemical potentials for ABJM. While there are known results for the partition function, we
could derive it through spherical harmonics, and obtain a similar expression to [47, 32] as a
first step toward the desired results. The tree level Hagedorn was computed with no chemical
potentials turned on, but numerical work is still in progress to identify the behavior with explicit
dependence on (ω,Ωi)
Lastly, the crown jewel of the project was applying the same framework as in [82], this time only
for AdS4 × CP 3. The peculiar results which are found, do not amount to the same satisfaction
as for the case of SYM for obvious reasons. The culprit seems to be M-theory giving a 10
dimensional type IIA background with the CP 3 metric. But even if this seems like the case, we
obtain results that align with structures known from the literature up to numerical factors.

Even though it took some time to pick up the pace, we are at an exciting stage where several
directions can be taken to extend this work. First, for future work, a Penrose limit could also
be explored of the OSp(2|2) case considered in 2.3, revealing if this sector might have a different
dispersion. Furthermore, one could generate a new giant magnon as well. If this is carried
out, the spin element can be implemented in various finite-size corrections to both the string,
magnons etc. [11, 10, 8, 9, 81].
Second, to advance on the question of Hagedorn, a proper analysis will have to be made of
the tree-level structure with all chemical potentials considered, and further look into decoupling
limits. Additionally, it seems like a natural progression to consider how the one-loop contribution
for TH changes in the case of chemical potentials corresponding to the bosonic generators of the
geometry. Using what was done in [123], this should be possible, but the extension is as of yet
still not clear. Using the decoupled sectors, it would also be possible to find TH for each case
and extend to different coupling regimes in λ one could hope. Lastly, some subsectors might
have a nice spin-chain description coupled to an external magnetic field e.g. or other interesting
configurations. Generally, following and extending results from [78, 80, 77, 75] would be a nice
addition to the literature.
On a different note, the whole SMT program has been busy over the last few years [19, 20,
17] providing near-BPS limits of N = 4 SYM which enables the probing of finite N effects like
D-branes and black hole physics. The authors of [18] seemed to be hopeful for the extension to
ABJM, which also seems to be the motivation for this thesis in the first place and a starting
point for a new era in SMT. With the result obtained for the SU(2) × SU(2) Landau-Lifshitz
model etc. one could be hopeful for exciting new work in the near future.

69



Appendix A

SMT Limits of N = 4 SYM

We go through some of the computations done in [82] for Spin Matrix backgrounds in SYM, to
illustrate how the original computations were carried out. The starting point from here is to
consider a parametrization of AdS5 × S5, in the following way

z0 = Rcoshρeit, w1 = Rsin(β1/2)sin(β2/2)e
iα1

z1 = Rsinhρsin(β̄/2)eiᾱ1 , w2 = Rsin(β1/2)cos(β2/2)e
iα2

z2 = Rsinhρsin(β̄/2)eiᾱ2 , w3 = Rcos(β1/2)e
iα3

(A.0.1)

The geometry exhibits both features from S5 which is associated to the angular momentum
Jj = −i∂αj and also S3 ⊂ AdS5 which associates to spin Si = −i∂ᾱi . By combination of angles
appropriately we can define γ and γ̄ from αj and ᾱi. In addition if we consider the global
time coordinate, we can define new coordinates as per the discussion of null isometries of the
non-relativistic strings tγ̄

γ

 =

1 1/2 0
1 −1/2 c1
1 1/2 c2

x0u
w

 (A.0.2)

This matrix equation precisely leads to the relations established in 4.5. The only addition is
introducing the parameter w which is aligned along S3 and is controlled by c1 and c2. It turns
out that the parameters can be gauge fixed to c1 = 1 and c2 = 0 such that s = −i∂w. From
here on out we should be able to study specific subsectors employing what we have established
so far. This leads to reviewing some calculations for specific cases of PSU(2|2, 4).

The SU(2) Background

The maybe simplest example is to consider the BPS-bound E ≥ Q = J1 + J2. Since we only
concern ourselves with Angular momentum generators we can focus solely on the S5 part. One
can decompose it in terms of a Fubini-Study metric and a fibration over one of the directions
on the sphere. Thus we can write

dΩ2
5 = dα2 + sin2αdβ2 + cos2α[dΣ2

1 + (dγ +A)2], A =
1

2
cosθdϕ, dΣ2

1 =
1

4
(dθ2 + sin2θdϕ2)

(A.0.3)
Thus we will focus on t and γ. If we write them as linear combination of the coordinates x0 and
u we get

t = x0 − 1

2
u, γ = x0 +

1

2
u (A.0.4)
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If we want to get conditions for when we exactly have a manifold being null, we impose conditions
on the full metric (i will write explicitly what) such that guu = 0 when ρ = α = 0 Thus if we
insert our transformations in the metric and try to reformulate it in terms of TNC variables

ds2/R2 = −cosh2ρ(dx0 − 1

2
du)2 + dρ2 + sinh2dΩ2

3 + dα2 + sin2αdβ2

+ cos2α[dΣ2
1 + (dx0 +

1

2
du)2 +A2 + 2A(dx0 +

1

2
du)]

(A.0.5)

We describe in detail how one might identify The TNC variable in this case which will be the same
procedure used in the other cases too. If we group terms firstly that have a factor of du attached
we can group terms and get du(dx0 + A), thus meaning we can identify τ = dx0 + 1

4cosθdϕ
then we look at the rest of the terms left. Since the structure of the TNC variable is of the
form 2τ(du − m) we look at terms that fit with τ when factorized. Terms that are left are
A2 + 2Adx0, so we need to satisfy the equation 2τ(du−m) = dx0du+A2 + 2Adx0 +Adu. The
choice can easily be seen to be m = −1

2cosθdϕ. Lastly we have the term hµνdx
µdxν . We look

for squared elements in the range of µ, ν meaning that our transformed coordinates are out of
question. It can easily be seen that the Fubini-study metric precisely has the structure needed
meaning hµνdx

µdxν = 1
4(dθ

2 + sin2θdϕ2). We can also group the cosh2ρ term and cos2α and
using standard trig-identities to get −(sinh2ρ + sin2α)(dx0 + 1

2du)
2. Thus assembling it all we

get the metric in terms of the TNC variables

ds2/R2 = 2τ(du−m) + hµνdx
µdxν (A.0.6)

A more elaborate continuation is given in ”cite”, but we just want to show how one can get
this type of metric to begin with. The only thing that could be missing is to take the SMT limit
now and obtain τ = dx̃0 when combining the BPS-bound with the coordinate transformation.
Further one can gauge fix the World-sheet by fixing the zweibeins and and taking a gauge choice
on η. This will reduce the sigma-model lagrangian to a Landau-Lifshitz model describing spin
chains.

The SU(2|3) Background

From the previous example, we extend the BPS-bounds and consider now the maximal choice
of S5 where E ≥ Q = J1+J2+J3. This subsectors is a SU(2|3) theory with the largest possible
compact spin group of N = 4 SYM. Thus we are zooming in on all the commuting generators
of S5 seen from the bulk perspective. There will be an emergence of CP2 as the compact
spatial section parametrized by a Fubini study-metric giving us the U(1)-Galilean background.
The strategy is to perform a Hopf-fibration such that the S5 is described as a circle fibration
(parametrized by χ) over the CP2 space. The way we want to define the fibration coordinate is
through Q = J1 + J2 + J3 = −i∂χ. The reasoning leads back to this vector being of constant
length on particular submanifolds on the geometry. When defining u, this will ensure that ∂u will
be null on specific submanifolds as well. To this mean we perform a set of linear transformations
of the αi´s by the following matrix

α1

α2

α3

 =

1 1/2 −1/2
1 −1/2 1/2
1 1/2 0

χψ
ϕ

 (A.0.7)

Since only considering angles on S5, AdS5 can be disregarded, leading to the background
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ds2/R2 = dξ2 + sin2(ξ)(dθ + sin2(θ/2)dα2
1 + cos2(θ/2)dα2

2) + cos2(ξ)dα2
3

= dξ2 + sin2(ξ)(dθ + sin2(θ/2)(dχ+
1

2
dψ − 1

2
dϕ)2

+ cos2(θ/2)(dχ− 1

2
dψ +

1

2
dϕ)2) + cos2(ξ)(dχ+

1

2
dψ)2

(A.0.8)

The angles range from ξ ∈ (0, π/2) and θ ∈ (0, π). Expanding and gathering terms in the
fashion such that we have the circle fibration over χ, we can rewrite the full metric in the
following form

ds2/R2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ̄2
3 + (dχ+B)2 + dΣ2

2 (A.0.9)

The metric can be expressed in terms of a Fubini study metric an potentials defined as

B = sin2 ξ(dψ +A), A =
1

2
cos θdϕ

dΣ2
2 = dξ2 + sin2 ξdΣ2

1 + cos2 ξ sin2 ξ(dψ +A), dΣ2
1 =

1

4
(dθ2 + sin2 θdϕ2)

(A.0.10)

To obtain a U(1) Galilean background, one relates the coordinates considered to a pair of
new ones related to a submanifold where you will have null geodesics along the isometry of the
considered subsector. Introducing x0 and u we get

(
t
χ

)
=

(
1 1/2
1 −1/2

)(
x0

u

)
(A.0.11)

Since u is of constant length across CP2 ⊂ S5 the following condition has to be met

4(∂u)
2/R2 = − cosh2 ρ+ 1 ≤ 0 (A.0.12)

u will be null if and only if ρ = 0. This six-dimensional manifold is now described by
coordinates {x0, u, θ, ϕ, ξ, ψ}, where the last angle is part of the CP2. One obtains a metric that
can be written using the condition on ρ

ds2/R2 = −(dx0 − 1

2
du)2 + (dx0 +

1

2
du+B)2 + dΣ2

2

= du(2dx0 +B) +B2 + 2Bdx0 + dΣ2
2

= 2τ(du−m) + hijdx
idxj

(A.0.13)

It is easy to read off what the three different TNC-variables are

τ = dx0 +
1

2
B, m = −B, h = dΣ2

2 (A.0.14)

As a check to see if one is on the right path, one can look for a structure of subsector which
in this case would be SU(2) ⊂ SU(2|3). This seems plausible since it has been engineered via
a hopf fibration of CP1 inside the S3, corresponding to the previous BPS-bound we considered.
Setting ξ = π/2 and fixing ψ, realizes the same potentials and study-metrics. This is a general
trend that can be derived starting from the maximal PSU(1, 2|3) background and reducing on
it
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The SU(1, 1) Background

The last real subsector we will look at before the full beast, is a background mixed between the
spin and angular momentum mixing both the S5 and AdS5. This will correspond to a SU(1, 1)
background with the particular choice Q = S1 + J1. Taking the embedding coordinates, one
finds the induced metric to be

ds2/R2 = − cosh2 ρdt2 + dρ2 + sinh2 ρ(
dβ̄2

4
+ sin2(β̄/2)dᾱ2

1 + cos2(β̄/2)dᾱ2
2)

+
dβ21
4

+ sin2(β1/2)(
dβ22
4

+ sin2(β2/2)dα
2
1 + cos2(β2/2)dα

2
2)

+ cos2(β1/2)dα
2
3

(A.0.15)

From the definitions S1 = −i∂ᾱ1 and J1 = −i∂α1 . Given this, performing the transformation
x0, u, w to the choices that correspond to our choice in the near BPS-limit gives t

ᾱ1

α1

 =

1 −1/2 0
1 −1/2 c1
1 1/2 c2

x0u
w

 (A.0.16)

Reading off from the second column and gathering the pre-factors in front of our original coor-
dinates, gives the null condition on u

4(∂u)
2/R2 = − cosh2 ρ+ sinh2 ρ sin2(β̄/2) + sin2(β1/2) sin

2(β2/2) ≤ 0 (A.0.17)

The condition for u being null is exactly satisfied when β̄ = β1 = β2 = π. Inserting this into the
metric and using the conditions one finds

ds2/R2 = − cosh2 ρ(dx0 − 1

2
du)2 + dρ2 + sinh2 ρ(dx0 − 1

2
du+ c1dw)

2

+ (dx0 +
1

2
du+ c2dw)

2

= 2dx0du+ dρ2 + sinh2 ρ(c21dw
2 + 2c1dw(dx

0 − 1

2
du)) + c22dw

2 + 2c2dw(dx
0 +

1

2
du)

= du(2dx0 − (c1 sinh
2 ρ− c2)dw) + (c21 sinh

2 ρ+ c22)dw
2 + 2dx0dw(c1 sinh

2 ρ+ c2)
(A.0.18)

It can easily be read off what the TNC-data on the submanifold is

τ = dx0 − 1

2
(c1 sinh

2 ρ− c2)dw

m/R2 = −(c1 sinh
2 ρ+ c2)dw

h/R2 = dρ2 + c21 sinh
2 ρ cosh2 ρdw2

(A.0.19)

Apparently, the spatial slices of the geometry parametrized by ρ, w are non-compact compared
to the SU(3|2). Also, it can be shown that the constants can be fixed such that they have the
values c1 = 1 and c2 = 0. If we insert this into the gauge-fixed action on this background we
arrive at the result

Sflat,gf = − J

2π

∫
d2σ(mµx

µ +
1

2
hµνdx

µdxν)

= − J

2π

∫
d2σ
[
sinh2 ρẇ − 1

2

(
(ρ′)2 + sinh2 ρ cosh2 ρ(w′)2

) ]
.

(A.0.20)

To compare, one can make the correct coordinate choices and obtain/reproduce the action
obtained from coherent states in the sl(2) spin chain[27] and spinning strings on AdS5 × S5.
The discussion can be extended to the maximal PSU(1, 2|3) case as well, but this case just
contains all the cases we have reviewed so far. The interested reader is referred to [82] for the
details, where by our calculations, it should be realtively easy to understand the details and
even go through the computation by one self.
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Appendix B

Letter partition function for N = 4
SYM on R× S3

Consider the partition function for N = 4 SYM on R× S3 in the presence of non-zero chemical
potential for R-charges of the SU(4) R-symmetry and the Cartan generators of SO(4) group
on S3. We go through the computations to arrive at 4.3.16 for SYM. A method to attack
the problem is by spherical harmonic expansion where we expand each field and associate its
spherical harmonic to it. There are 3 parts of this calculation before we can add everything
together, one partition function for scalars, vectors and fermions. It is worth noting that the
Cartan generators for SO(4) is split into SU(2)L × SU(2)R.

Partition function for scalars

Scalar partition function in terms of its spherical harmonics are given by Sj,m,m̄(α), where α
is the coordinates on S3 and m and m̄ are the eigenvalues of SU(2)L × SU(2)R. Here m, m̄ =
− j

2 ,−
j
2 + 1, ..., j2 . This gives the Partition function

ηs(x, ρ, ρ̄, yi) =

3∑
i=1

∞∑
j=0

j
2∑

m=− j
2

j
2∑

m̄=− j
2

xj+1ρmρ̄m̄(yi + y−1
i ) (B.0.1)

For convenience, introducing the two functions makes lif easier

ρ = eβ(ω1−ω2), ρ̄ = eβ(ω1+ω2) (B.0.2)

To evaluate this, the two first sums that are finite can be handled which are nothing but geometric
series

j
2∑

m̄=− j
2

ρ̄m̄ = −ρ̄−
j
2
1− ρ̄j+1

1− ρ̄
and

j
2∑

m=− j
2

ρm = −ρ−
j
2
1− ρj+1

1− ρ
(B.0.3)

Inserting this into B.0.1 we get

ηs(x, ρ, ρ̄, yi) =
x

(1− ρ̄)(1− ρ)

3∑
i=1

∞∑
j=0

xj+1ρ−
j
2 ρ̄−

j
2 (1− ρ̄j+1)(1− ρj+1)(yi + y−1

i ) (B.0.4)
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Multiplying everything and splitting it into 4 terms, we recognize each of them as a geometric
series for the index j, which can be performed

ηs(x, ρ, ρ̄, yi) =
3∑
i=1

x

(1− ρ̄)(1− ρ)

×
(

1

1− xe−βω1
− ρ

1− xe−βω2
− ρ̄

1− xeβω2
+

ρ̄ρ

1− xeβω1

)
(yi + y−1

i )

(B.0.5)

This is a tedious expression to evaluate, so instead Mathematica was used to evaluate the sums,
which in the end result in

ηs(x, ρ, ρ̄, yi) =
e2βω1(x− x3)

(eβω1 − x)(−eβ
ω1+ω2

2 + xeβ
ω1−ω2

2 )(eβ
ω1−ω2

2 − xeβ
ω1+ω2

2 )(−1 + xeβω1)
(B.0.6)

We want to have the structure of the denominator in all of the expressions to be the same if
possible, so by factorizing everything out and writing it as

2∏
k=1

((1− xeβωk)(1− xe−βωk))−1 =
1

(1− xeβω1)(1− xe−βω1)(1− xeβω2)(1− xe−βω2)
(B.0.7)

To obtain the desired denominator, a e2βω1 term is picked up that will cancel in the numerator

ηs(x, ρ, ρ̄, yi) =
x− x3

(1− xeβω1)(1− xe−βω1)(1− xeβω2)(1− xe−βω2)

3∑
i=1

(yi + y−1
i ) (B.0.8)

This is precisely the reduced scalar partition function that was needed.

Partition function for Vectors

Apparently it seems that vectors are neutral under R-charges. Also the spherical harmonics
corresponding to the gauge boson in the representation [0, 0, 0](1,0) are denoted with V L

j,m,m̄(α)

where m̄ = − j−1
2 , ..., j−1

2 and m = − j+1
2 , ..., j+1

2 Using this we write the partition function

ηV R(x, ρ, ρ̄, yi) =
∞∑
j=1

j+1
2∑

m=− j+1
2

j−1
2∑

m̄=− j−1
2

xj+1ρmρ̄m̄ (B.0.9)

To use the same trick for the geometric series over the j-sum, we must re-index the sum which
on the contrary will affect the m-sums. Set i = j−1, then we can set the j-sum to go from i = 0.
But this will change m̄ = − j−1

2 , ..., j−1
2 → −( i2 +1), ..., i2 +1 and m = − j+1

2 , ..., j+1
2 → − i

2 , ...,
i
2

and also xj+1 → x2 · xi giving us

ηV R(x, ρ, ρ̄, yi) = x2
∞∑
i=0

i
2∑

m=− i
2

i
2
+1∑

m̄=−( i
2
+1)

xiρmρ̄m̄ (B.0.10)

Again the two inner sums can be performed as finite geometric series and get

i
2∑

m=− i
2

ρm = ρ−
i
2
1− ρi+1

1− ρ
and

i
2
+1∑

m̄=−( i
2
+1)

ρ̄m̄ = ρ̄−( i
2
+1) 1− ρ̄i−1

1− ρ̄
(B.0.11)
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Thus if we put this into the computer and let it do the geometric series over the index i, we get
after factorizing the denominator and multiplying out the numerator

x2[1 + 2 cosh(βω1) cosh(βω2)− 2x(cosh(βω1) + cosh(βω2)) + x2]

(1− xeβω1)(1− xe−βω1)(1− xeβω2)(1− xe−βω2)
(B.0.12)

Before going any further, we can check the other sum for the vector which is the su(2)L sector.
We see that it is given by the following sum after re-indexing as before

ηV L(x, ρ, ρ̄, yi) = x2
∞∑
i=0

i+2
2∑

m=− i+2
2

i
2∑

m̄=−( i
2
)

xiρmρ̄m̄ (B.0.13)

Thus only the index on the m and m̄ sum get switched, resulting in the same expression, giving
us only an additional factor of 2

x2[1 + 2 cosh(βω1) cosh(βω2)− 2x(cosh(βω1) + cosh(βω2)) + x2]

(1− xeβω1)(1− xe−βω1)(1− xeβω2)(1− xe−βω2)
(B.0.14)

This provides the second piece of the puzzle.

Partition function for Fermions

Now for the fermion. The peculiar feature compared to the rest is that they appear in 2
representations, namely both in [0, 0, 1]( 1

2
,0) and [0, 0, 1](0, 1

2
). We can introduce the spherical

harmonics as usual. One can for the [0, 0, 1]( 1
2
,0) representation write for the eigenvalues for SL

and SR given by m̄ = − j−1
2 , ..., j−1

2 and m = − j
2 , ...,

j
2 . One have to take into account that the

R-charge chemical potentials for fermions in this representation is given by

Y1 = (y1y2y3)
1
2 + y

1
2
1 (y2y3)

− 1
2 + y

1
2
2 (y1y3)

− 1
2 + y

1
2
3 (y1y2)

− 1
2 (B.0.15)

This will give the sum for fermions

ηF1(x, ρ, ρ̄, yi) = Y1

∞∑
j=1

j
2∑

m=− j
2

j−1
2∑

m̄=−( j−1
2

)

xiρmρ̄m̄ (B.0.16)

Doing the re-indexing as for the vector part, we find setting i = j−1, we get m̄ = − j−1
2 , ..., j−1

2 →
−( i2), ...,

i
2 and m = − j

2 , ...,
j
2 → − i+1

2 , ..., i+1
2 and also xj+1 → x

3
2xi giving us

ηF1(x, ρ, ρ̄, yi) = Y1x
3
2

∞∑
i=0

i+1
2∑

m=− i+1
2

i
2∑

m̄=−( i
2
)

xiρmρ̄m̄ (B.0.17)

Following the previous steps, we solve for the two innermost sums and evaluate the i-sum for
the whole thing and find

x
3
2 (e

1
2
β(ω1−ω2) + e−

1
2
β(ω1−ω2) − xe

1
2
β(ω1+ω2) − xe

1
2
β(ω1+ω2)

(1− xeβω1)(1− xe−βω1)(1− xeβω2)(1− xe−βω2)
=

2x
3
2 (cosh[β(ω1−ω2

2 ]− x cosh[β(ω1+ω2
2 )])

(1− xeβω1)(1− xe−βω1)(1− xeβω2)(1− xe−βω2)
(B.0.18)

This assembles by combining with the SU(4) terms to

ηF1(x, ωj , yi) = Y1
2x

3
2 (cosh[β(ω1−ω2

2 ]− x cosh[β(ω1+ω2
2 )])

(1− xeβω1)(1− xe−βω1)(1− xeβω2)(1− xe−βω2)
(B.0.19)
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This is the exact expression we were looking for. But what about the other sum for the other
representation. The only difference is the sign in the exponents between the two chemical
potentials swap, making the calculation essentially the same. Thus we can finish the calculation
to gain the full letter partition function. Defining Y2

Y2 = (y1y2y3)
− 1

2 + y
− 1

2
1 (y2y3)

1
2 + y

− 1
2

2 (y1y3)
1
2 + y

− 1
2

3 (y1y2)
1
2 (B.0.20)

makes it possible to gather the full expression given by the sum of all the pieces to obtain the
full letter partition function

z(x, ωj , yi) =
2∏

k=1

((1− xeβωk)(1− xe−βωk))−1{(x− x3)
3∑
l=1

(yl + y−1
l )

+ 2x2
[
1 + 2 cosh(βω1) cosh(βω2)− x(cosh(βω1) + cosh(βω1)) + x2

]
+ 2Y1x

3
2

[
cosh[β(

ω1 − ω2

2
]− x cosh[β(

ω1 + ω2

2
)]

]

+ 2Y2x
3
2

[
cosh[β(

ω1 + ω2

2
]− x cosh[β(

ω1 − ω2

2
)]

]}
(B.0.21)
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Appendix C

The SU(2) Heisenberg XXX1/2 spin
chain, Integrability and Yang-baxter

We review some basics on spin-chains, integrability and Yang-Baxter to connect to the discussion
in section 3.1 to give the reader a more complete understanding of the whole landscape

C.1 XXX1/2 spin chain

A classic problem appearing in fields like condensed matter physics has to do with spin chains
which is of interest in AdS/CFT as well. Thus, it is worth reviewing the original work of Bethe
[30]. The story starts at the Hamiltonian for the Heisenberg ferromagnetic XXX1/2 spin-chain.
This has a ground state with all L sites containing spin-up |↑↑ ... ↑⟩. We sketch out how to get
the S-matrix, Bethe equation and momentum constraints in terms of rapidity comes forth. This
will be done for the one-magnon, two-magnon and M-magnon case[112] One-magnon state:

Consider a spin-chain where single excitations occur. This gives an eigenvector of the form

|p⟩ = 1√
L

L∑
l=1

eiplS+
l |0⟩ (C.1.1)

The ground state is defined as |0⟩ = |↑↑↑ ... ↑⟩, where the Hamiltonian is needed such that the
energy spectrum can be derived. The Hamiltonian for this system was found to be

H =
λ

8π2

L∑
l=1

(1− Pl,l+1) =
λ

8π2

L∑
l=1

(
1

2
− 1

2
S⃗l · S⃗l+1) (C.1.2)

One Defines a permutation operator that switches the position of neighboring sites. This trans-
lates into spin operators as well, in a classical QM sense.

Γ |p⟩ = λ

8π2
(2 |↑ ... ↓↑ ... ↑⟩ − |↑ ... ↓↑ ... ↑⟩ − |↑ ... ↑↓ ... ↑⟩

=
λ

8π2
(2− eip − e−ip) |p⟩ = λ

8π2
(2(1− cos(p)) |p⟩ = λ

2π2
sin2

p

2
|p⟩

(C.1.3)

Lastly, one imposes periodic boundary conditions such that eip(l+L) = eipl providing quantization
condition 2πn

L , n ∈ {0, 1, ..., L − 1}. |p⟩ is a single magnon state. Via a quantization argument,
the only allowed state is p = 0. So there are no operators that are not chiral primaries when
only having a single Y excitation.
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Two Magnon state:

Next, we investigate the double magnon state. Some subtleties arise, namely that we can
only have scattering if the two magnons are in close proximity. If the two Y -excitations are far
from each other, we might as well say that the magnons are independent. But in the case where
they are in proximity on sites (l, l+1), new features present themselves. A priori, one considers
a superposition of all two-body states parameterized by two momenta p1, p2 at sites l1, l2

|p1, p2⟩ =
∑
l1<l2

ψ(l1, l2)S
−
l1
S−
l2
|0⟩ =

[ ∑
l1<l2

ei(p1l1+p2l2) + s(p1, p2)
∑
l1>l2

ei(p1l1+p2l2)

]
S−
l1
S−
l2
|0⟩

(C.1.4)
There is freedom in adding a phase factor eiϕ, which usually associates to the scattering matrix.
Following [30], one can consider two situations where either magnons are situated right next to
each other, or where they are split apart by more than one site. This gives two equations that
will determine both the energy and the S-Matrix

E(p1, p2)ψ(l1, l2) = 4ψ(l1, l2)− ψ(l1 + 1, l2)− ψ(l1 − 1, l2)− ψ(l1, l21)− ψ(l1, l2 − 1)

E(p1, p2)ψ(l1, l2) = 2ψ(l1, l2)− ψ(l1 − 1, l2)− ψ(l1, l2 + 1)
(C.1.5)

Inserting the ansatz into the first equation, the energy is found to be

E(p1, p2)ψ(l1, l2) = (4− e−ip1 − eip2 − eip1 − eip2)ψ(l1, l2) = 4

2∑
i=1

sin2
pi
2
ψ(l1, l2) (C.1.6)

For the S-matrix, the equation can be derived through the second constraint

eip2(2− eip2 − e−ip1) + eip1(2− eip1 − e−ip2)s(p1, p2))

= (4− e−ip1 − eip2 − eip1 − eip2)(eip2 + eip1s(p1, p2)) ↔

s(p1, p2) =
ei(p1+p2) − 2eip1 + 1

ei(p1+p2) − 2eip2 + 1
= s(p2, p1)

−1

(C.1.7)

Alternatively, an expression for the S-Matrix depending explicitly on trigonometric functions is
also possible to derive

s(p1, p2) =
cot p22 − cot p22 − 2i

cot p12 − cot p22 + 2i
(C.1.8)

Typically this also associates a phase to the S-matrix eiϕ, which implies that for real momenta we
have s(p1, p2)s(p2, p1) = 1. Imposing periodic boundary conditions by putting the two magnons
back on a cyclic spin chain of length L. To quantize p1, transport the magnon once around the
circle leaving the state invariant. But, transporting will bring the first magnon past the second
one, so it also picks up a phase eiϕ. This gives eiϕeip1L = 1. Using the momentum constraint,
one finds eip1L = s(p1, p2) and similarly eip2L = s(p2, p1) giving the allowed quantized values
p1 =

2πl
L−1 (same for p2), making the eigenvalues take the form E = 4

∑2
i=1 sin

2 πl
L−1 . Introducing

the rapidity as u = 2 cot p2 in the Bethe equation will provide an expression for the S-matrix as

s(p2, p1) =
u1 − u2 − i

u1 − u2 + i
(C.1.9)

Using this we can finally obtain the Bethe equation[
u1 + i/2

u1 − i/2

]L
=
u1 − u2 + i

u1 − u2 − i
,

[
u2 + i/2

u2 − i/2

]L
=
u2 − u2 + i

u2 − u1 − i
(C.1.10)

M-body problem:
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Ending with the M-body problem, which at first glance seems daunting, amazingly turns
out to have all the relevant data of the scattering and spectrum which is fully encoded in the
dispersion relation and the two-body scattering. Considering the M-body problem, the general
magnon state as a superposition of all M-excitation states given momenta pi can be written as

|pi⟩ =
∑

1≤x1≤...≤xm≤L
ψ(x1, ..., xm)

M∏
n

a†xn |0⟩ (C.1.11)

Using the Bethe ansatz, we can generalize the whole system to have a wave-function

ψ(x1, ..., xm) =
∑
{τ}

A(τ)
M∏
i=1

eipτixi (C.1.12)

{τ} represents all possible permutations of the excitations in the M-body state. A(τ) is the
amplitude that will relate to the S-matrix ”cite”. In the end one obtains periodic boundary
conditions for the momenta such that the total phase factor picked up by a magnon when going
around the chain is equal to the product of scattering with all of the other magnons

eipkL =
M∏
j ̸=k

s(pk, pj) (C.1.13)

Using the same trick for rapidity, and defining uk = 1
2 cot

pk
2 , will in exchange give the full

M-body Bethe equation and additionally the trace condition(
uk + i/2

uk − i/2

)L
=

M∏
j ̸=k

uk − uj + i

uk − uj − i
,

M∏
j=1

uj + i/2

uj − i/2
= 1 (C.1.14)

The energy just becomes the sum of the two-body scattering we considered, giving us

M∑
k

E(pk) =
M∑
k

4 sin2
pk
2

=
M∑
k

4

1 + cot2 pk2
=

M∑
k

1

u2k +
1
4

(C.1.15)

Thus we have encoded a very big problem into information containing the data of 2-body
scattering. This is why Bethe equations and ansatz are so celebrated since they provide a
gateway to integrability at a relatively low price. One can consider other possible sectors where
other types of interactions might enter. We touch upon this when the link to conformal field
theory is done. But we explore classical integrability and yang-Baxter equations first

C.2 Integrability and the Yang-Baxter Equation

Integrability stems from the classical notion of Hamiltons equations[53, 130], supplemented by
Liouvilles Theorem. Considers a function F (qi, pi) which are defined by conjugate variables.
Then Finding the EOM´s gives

Ḟ (qi, pi) =
n∑
i=1

(
∂F

∂qi
q̇i −

∂F

∂pi
ṗi) (C.2.1)

Using Hamiltons equations q̇i =
∂H
∂pi

and ṗi = −∂H
∂qi

, makes it possible to reformulate it in terms
of Poisson brackets, which are the classical analogue to commutators

Ḟ (qi, pi) =
n∑
i=1

(
∂F

∂qi

∂H
∂pi

− ∂F

∂pi

∂H
∂qi

) = {F,H} (C.2.2)
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Then Liouvilles theorem states that the equations of motion of a Liouville integrable system can
be solved by quadratures. This is very powerful since it provides a way to analyze and solve
various systems. But other approaches are possible as well. Promoting the functions to N ×N
matrices, and Poisson brackets to commutators, one can define a set of Lax pairs H,L such that
L̇ = [H,L]. The Lax pairs can either be free of or depend upon an additional complex variable,
called spectral parameter, λ. This proves as a stronger form of integrability. It is possible to
relate the lax pairs, to something called the r-matrix. From [130] it can be seen that through
the Jacobi identity, assuming rij does not depend on the dynamical variables and satisfying
rij = −rji, then one can obtain the classical Yang-Baxter equation.

[r12(λ− µ), r13(λ)] + [r12(λ− µ), r23(µ)] + [r13(λ), r23(µ)] = 0 (C.2.3)

Having motivated this, we move on to the quantum promotion. Defining the quantum R-matrix
can be thought of as a function again depending on spectral parameters R(λ, µ) and taking
a linear mapping from a tensor product of two Hilbert space H ⊗ H → H ⊗ H. Taking the
R-matrix again, a quantum Yang-Baxter (qYBE) equation can be defined which just takes
H⊗H⊗H → H⊗H⊗H instead. In all its glory the qYBE is

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ) (C.2.4)

As in the classical part, we will also have a Lax operator. It can be interpreted as the transport
between two consecutive sites |vi+1⟩ = Li |vi⟩. In a similar fashion to the RRR-equation, one can

Figure C.1: Graphical representation of the Yang-baxter equation as scattering in 1 + 1 dimen-
sional QFT which factorize into two-body scattering. The order of scattering is associative,
meaning that the S-matrix is not concerned with. Thus physical observables are independent of
the order of pairwise scattering

do the same and construct a RLL-equation. Lastly, the lax operators can define a new object
called the monodromy matrix. If transport needs to happen over far apart sites, consecutive
uses of the lax operator can be used. This gives the monodromy matrix

Tα(λ) =
N∏
i=1

Lα,N+1−i(λ) (C.2.5)

This will also satisfy a Yang-Baxter equation of the form RTT. One could ask why bother,
and just proceed with the coordinate Bethe ansatz. It turns out that there are various types of
Bethe ansatz, where in this case, the algebraic version is considered. Through ABA, it is allowed
to find both the eigenvalues and eigenvectors of the transfer matrix. But more than that, to
find not only the spectrum of the Hamiltonian but the spectrum of all the conserved charges of
our model in a straightforward manner. Maybe it lacks the physical intuition that one can get
through the S-matrix and magnon states, but using Monodromy-matrices, R-matrices and lax
operators, we can prove integrability for relevant systems.
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Appendix D

Massive Scalar Field: Propagators
for S = 0 et al.

D.1

Taking the simplest example for scalars, one might try to solve the source-free Klein-Gordon
equation starting from the same action as was considered in the computation for the boundary
asymptotics. The usual EOM is (□g−m2)ϕ∆(x, z) = 0 subject to boundary conditions ϕ(x, z) =
ϕ(0),∆z

d−∆ for z → 0

ϕ(x, z)∆ =

∫
∂AdS

ddyK∆(z, x; y)ϕ(0),∆(y) (D.1.1)

Seemingly the scalar only depends on the boundary value yµ now. In the same fashion, bulk-
to-bulk processes can be considered by a KG equation with a source (□g−m2)ϕ∆(x, z) = J(x, z)

ϕ(x, z)∆ =

∫
∂AdS

dwddy
√
gG∆(z, x;w, y)J(x, z) (D.1.2)

where the coordinates (z, x) denote a point with bulk coordinate z and boundary coordinates
xµ, while (w, y) denotes a point with bulk coordinate w and boundary coordinates yµ. This
means that the bulk-to-bulk propagator must satisfy boundary conditions

(□g −m2)G∆(z, x;w, y) =
δ(z − w)δd(x− y)

√
g

(D.1.3)

It turns out that this boundary value problem in the end is a hypergeometric equation. Using
the chordal distance defined we can express the bulk-to-bulk propagator as a hypergeometric
with ξ as[56, 144]

G∆(ξ) =
C∆

2∆(2∆− d)
ξ∆F1(

∆

2
,
∆+ 1

2
,∆− d

2
+ 1; ξ2), C∆ =

Γ(∆)

πd/2Γ(∆− d
2)

(D.1.4)

From bulk-to-boundary propagator one obtains the bulk-to-bulk propagator by taking the limit
w → 0

K∆(z, x− y) = lim
w→0

2∆− d

w∆
G∆(z, x;w, y) (D.1.5)

An illuminating way to obtain the exact expression is by use of Greens second identity∫
M
dzddx

√
g[ϕ(□g −m2)ψ − ψ(□g −m2)ϕ] =

∫
∂M

ddx
√
γ[ϕ∂nψ − ψ∂nϕ] (D.1.6)
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Here γ is the determinant of the induced metric on the boundary, and ∂n is the derivative normal
to the boundary which would correspond to ∂z. One could also just explicitly take the limit
given. But doing either one will finally give

K∆(z, x; y) = C∆

(
z

z2 + (x− y)2

)∆

(D.1.7)

We notice that for the interior points, there seems to be no obstruction making the propagator
regular for z → ∞. In the other limit z → 0 it is found

lim
z→0

(z∆−dK∆(z, x; y)) = δd(x− y) (D.1.8)

This provides near the boundary, a correspondence to a source with a delta-like distribution.
This provides a framework for doing n-point correlators. A standard exercise is to derive the
conformal two-point function which remarkably doesn´t need holographic renormalization, which
makes it a prime example [116]. Furthermore, the case at hand limits a theory only to scalars,
but this is possible to extend for gauge and tensor fields. The procedure is the same as for the
scalars, but the structure becomes more involved. The main differences are briefly mentioned
For the Gauge field, one considers the appropriate part of the action that contains derivatives

and masses coupled to Aµ

Svector =

∫
dd+1z

√
g
(1
2
(∇µAν)

2 − 1

2
(∇µAµ)

2 +
1

2
m2AµAµ −AµJ

µ
)

(D.1.9)

As mentioned above, working in the restricted space of covariantly-conserved currents ∇µJν = 0,
acting on the EOM with ∇µ from the left, leads to the gauge ∇µAν = 0. Another thing to note
is the mass relation. This gives us m2 = (∆ − 1)(∆ + 1 − d). Lastly, the action is modified
with a vector function that reflects the gauge freedom but vanishes when the above equation is
multiplied by the covariantly conserved current and integrated over. For further details check
[43, 46]

For the tensor field, the mass relation stays the same as for scalars, But we change the
action instead. Usually gravitons are the most considered particle with S = 2 in the tensor field
representation, so one consider an Einstein-Hilbert action with negative cosmological constant

SAdsd+1
=

∫
dd+1z

√
g

(
1

2κ2d+1

(R− 2Λ) + LM
)

(D.1.10)

where LM is the matter lagrangian and κd+1 is the d − dimensional gravitational constant.
Besides this the most notable difference is that the solution to this equation is obtained by
decomposing G∆

µν:µ′ν′ onto a basis of five irreducible SO(d, 1) tensors Tµν:µ′ν′ . For further details
check [39, 115]
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Appendix E

The Vanilla Example: AdS5 × S5 and
N = 4 SYM

Starting with the Birth of AdS/CFT from its cradle[106], we state the conjecture that Maldacena
famously did almost 28 years ago. The perspective for open and closed string and stack of D3
branes is reviewed as well as the action and field content with operators and subsectors

E.1 The Conjeture

N=4 Super Yang-Mills (SYM) theory with gauge group SU(N) and Yang–Mills coupling constant
gym is dynamically equivalent to type IIB superstring theory with string length ls =

√
α′ and

coupling constant gs on AdS5 × S5 with radius of curvature L and N units of F(5) flux on S5.
The parameters of each side of the correspondence are mapped to each other via

2g2YMN = 2λ =
L4

α′2 and g2YM = 2πgs (E.1.1)

E.2 The heuristic derivation for Open String and closed strings

It shouldn´t be surprising that open and closed strings are the constituents of duality at hand.
The correspondence already prescribes the dual theories between bulk a boundary. In this
case, it just specifies different physical scenarios for a stack of N D3 branes in R9,1. Going
back to Susskind and t´Hooft, one can assert the realization of the holographic principle as
the information of the five-dimensional theory obtained from Kaluza–Klein reduction of type
IIB string theory on S5, is mapped to a four-dimensional theory which lives on the conformal
boundary of the five-dimensional spacetime. Unfortunately, only weak/strong duality can be
established between the gauge and gravity side. We consider the two sides separately

The open String:

Open strings have endpoints on the D3-branes and are excitations of them also. Considering
small energies E << l−1

s , we get only massless string modes excitations. In the regime of small
coupling constant gs << 1, one finds that the DBI (Dirac-Born-Infeld) action describes the
dynamics of the string. We outline for a single D-brane and generalize for multiple straight
after. We motivate the particles via the mass spectrum here. Taking the gauge field Aµ, this
corresponds to open string excitations parallel to the D brane. This can be seen starting from
the physical state conditions that require a = 1 and n = 0. with this one can write the spectrum

84



for physical states as

M2 |ϕ⟩ = −papa |ϕ⟩ =
1

l2s
(N∥ +N⊥ − 1) (E.2.1)

First, take the case where N∥ = 1 and N⊥ = 0. Using the physical state conditions one can for
a general linear superposition Aµ(k)α

a
−1 |0; k⟩, make a Fourier transform to position space, and

get in Lorentz gauge ∂aA
a = 0, that the corresponding gauge transformation is nothing but a

U(1) gauge boson with associated field strength Fab = ∂aA
b − ∂bA

a. For the other case when
N∥ = 0 and N⊥ = 1 the general linear superposition of states can be written as

25∑
I=p+1

ΦI(k)α
I
−1 |0; k⟩ (E.2.2)

Going to position space again via the Fourier transform, one can solve the EOM, and find the
usual Klein-Gordon equation in p+1 dimension ∂a∂

aΦI = 0. Thus scalars arise as transverse
excitations on the brane, while the gauge bosons and field arise parallel to the brane. To extend

this, we must consider what happens in the case of N coincident D3-branes. Now that the fock
space is larger than before one must introduce Chan-Paton factors, which are non-dynamical
degrees of freedom assigned to the endpoints of the string and labels strings that go between
brane i and j. One can show that λij has the Lie algebra U(N), resulting in U(N) gauge theory
with effective coupling gsN .

The Closed String

On the other hand, one can also regard closed D-branes as solitonic solutions to SUGRA
theories. To make a description that makes sense, we require that the scale of space-time must
be large compared to curvature at which the branes exhibit a source of the gravitational field.
This should imply that we are at low energy also. We can relate the proportionality between the
size of the space-time and the coupling of N D-branes as L4

α′2 ∝ gsN . This leads us to conclude
that we work in a regime where gsN >> 1.

Figure E.1: Open vs. closed strings. Open strings act as transverse and perpendicular fluctu-
ations to produc gauge fields, where closed strings act as gravitational sources in the flat and
throat region

To be more concrete, one can also derive the metric in a near horizon geometry that we
outline. In the strongly couple limit, N D3 branes arise as BPS solutions to type IIB supergravity.
The whole story is quite lengthy, but making an ansatz to the EOM from the SUGRA action,
helps one establish the following metric

ds2 = H(r)−1/2ηµνdx
µdxν +H(r)1/2(dr2 + r2dΩS5), H(r) = 1 +

L4

r4
, L4 = 4πgsNα

′2

e2ϕ = g2s , C(4) = (1−H(r)−1)dx0 ∧ dx1 ∧ dx2 ∧ dx3 + F5 Self duaity terms
(E.2.3)

dC(4) is the four-form gauge field, which is related to the self-dual five-form R-R field via
F(5) = dC(4). The D3-branes act as sources for the self-dual five-form F(5), which has a flux
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on the five-sphere. Taking the near horizon limit r << L, the harmonic function reduces to
H(r) ≈ L4

r4
. This give a reduced metric of the form

ds2NH = (
r2

L2
ηµνdx

µdxν +
L2

r2
dr2) + L2dΩ2

S5 (E.2.4)

But this is nothing but AdS5 × S5 in Poincare patch coordinates. In the other limit r ≫ L
the metric becomes flat space due to H(r) = 1. Hence, two strings seem to propagate in the
space-time. One in ten-dimensional Minkowski space (the asymptotically flat region) far away
from the horizon and closed strings propagating in the near-horizon geometry AdS5 × S5. The
regions decouple in what is known as the Maldacena limit where α′ → 0 and u = r

α′ is fixed. To
obtain all details in its full glory, interested readers may be guided to [3]

E.3 The Action

To derive the N = 4 SYM action, the usual freshman route is going through the DBI-action,
and chopping up your directions into transverse and perpendicular coordinates. This produces
both the gauge field and the scalars in the bosonic sector. To get the whole beast there seems
to be two ways of obtaining it. Either one starts from N = 1 superspace for N = 4 SYM and
express the action in terms of chiral superfields Φ, as well as a gauge superfield V with associated
field strength W [6]

SN=4 =

∫
d4x

[ ∫
d4θΦi†eVΦie−V+

1

8π
Im
(
τ

∫
d2θWαWα

)
+
(
igym

√
2

3!

∫
d2θϵijkΦ

i[Φj ,Φk]+h.c
)]

(E.3.1)
Or one considers dimensional reduction of the N = 1 SYM in ten dimension

S10D =

∫
d10xTr

(
− 1

2
FmnF

mn + iΨ̄ΓmDmΨ

)
(E.3.2)

where Γm are 32 × 32 Dirac matrices in ten dimensions. The field strength tensor has gotten
additional structure in terms of a coupling constant glued to the commutators giving a manifest
non-abelian gauge theory. This can be compared to the derivation of the bosonic part from DBI.
We define it as Fmn = ∂mAn−∂nAm+ig[Am, An]. Ψ represents the Majorana–Weyl fermion and
the covariant derivative Dm on Ψ reads DmΨ = ∂mΨm + ig[Am,Ψ]. To obtain the final action,
one must in Kaluza-Klein style do dimensional reduction on the six-dimensional torus T 6. The
idea is the same as for the DBI-action. One splits the space into two ranges for µ ∈ {0, 1, 2, 3}
and ϕi+3, i ∈ {1, ..., 6}, which decompose the gauge field as Am = (Aµ(x

ν), ϕi(xν). One can
go through the compactification procedure, but effectively in its full glory, it is found that the
action is give by

SSYM =
1

4πgs

∫
d4ξTr

{
− 1

2g2
FµνF

µν +
θI
8π2

FµνF̃
µν −

∑
a

iλ̄aσ̄muDµλ−
∑
i

DµX
iDµXi

+
∑
a,b,i

gCabi λa[X
i, λb] +

∑
a,b,i

gC̄i,abλ̄
a[Xi, λ̄b] +

g

2

∑
i,j

[Xi, Xj ]2
}

(E.3.3)
The constants Cabi and C̄iab are Clebsch-Gordan coefficients and related to the Clifford Dirac
matrices for SO(6)R ≃ SU(4)R, g is the gauge coupling and θI is the instanton angle. Further, λ
arises as the gaugino fields from the N = 1 superspace expansion one gets from super-symmetry
considerations
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E.4 Global Symmetries with Field and Matter Content

The three main components of the superconformal algebra in SYM, is the supersymmetry,
conformal symmetry and R-symmetry as for ABJM. Together they are a part of the bigger
lie supergroup PSU(2, 2|4)[24, 112]. Considering the bosonic subalgebra of the supergroup
SU(2, 2)×SU(4) ≃ SO(4, 2)×SO(6). One can through the similarity explicitly see the appear-
ance of both the R-symmetry manifesting as the SO(6) and the conformal group manifesting
as SO(4, 2). Ten of the generators belong to Poincaré group of SO(3, 1) where 4 of the gener-
ators are space-time translations, and the last 6 are Lorentz transformations. The remaining
generators are devoted to dilatations and special conformal transformations. To go further for
completeness, one also finds 32 supercharges (Qαa, Q̃

a
α̇, S

a
α, S̃α̇a), and also R-symmetry genera-

tors RIJ . The summary is that SYM seems to be nicer given these features compared to ABJM.
The full algebra can be found in [112]

For the field content and matter, there is one gauge field Aµ in the singlet 1 representation
of SU(4). One also finds the Weyl fermions λaα, a ∈ {1, 2, 3, 4} transforming in the fundamental
4 representation and scalars ϕi transforming in the antisymmetric 6 representation Facing the
operators, we require that they must be gauge invariant. This provides single trace operator
taking the form as O(x) = Tr(χ1(x)χ2(x)...χL(x)). A specific class of operators only contains
scalars defined as O(x) = Str(ϕ{i1ϕi2 ...ϕik}, where Str stands for symmetrized trace for the
gauge algebra, which for the scalars ϕi = ϕiaTa in the adjoint representation is given by the sum
over all permutations

Str(Ta1 , ..., Tan) =
∑

all perm.σ

Tr(Tσ(a1)...Tσ(an)) (E.4.1)

This ensures that operators are totally symmetric. We want to construct the simplest operators
now in terms of the scalars ϕi that combine into three complex scalars defined as

Z =
1√
2
(ϕ1 + iϕ2), W =

1√
2
(ϕ3 + iϕ4), X =

1√
2
(ϕ5 + iϕ6) (E.4.2)

These will be the building blocks, which is not as restrained as seen in ABJM. The dimension
of operators are given by the bosonic subgroup. It has rank 6 which is thesame amount of
Cartan generators or charges (∆, S1, S2, J1, J2, J3). Here ∆ is the conformal dimension, S1, S2
are the two charges of the SO(1, 3) Lorentz group which we call spin, and J1, J2, J3 are the
R-symmetry generators. The scalars in SU(4) transformed as [0, 1, 0] so the dimension was
Dim(0, L, 0) = 1

12(L+ 1)(L+ 2)2(L+ 3) Taking L = 1 we get the notorious 6 representation of
SU(4).

E.5 From DBI and open string to N = 4 SYM

The starting point will be a single D-brane or rather N = 1, and then we extend appropriately
as we go along. Taking a single D-brane on R9,1 we split the directions of XD into namely
D = µ+ I, where µ ∈ {0, 1, 2, 3} and I ∈ {4, ..., 9}. The dynamics are known to be describe by
the DBI-action

SDBI = − 1

(2π)3gsls

∫
d4ξ
√

−det(γab + 2πα′Fab) (E.5.1)

We have the usual induced metric γab = ηµν∂aX
µ∂bX

ν and F is the field strength 2-form
given as F = dA of the U(1) gauge field. From the splitting of directions, we must choose
our coordinates appropriately. First specifying the embedding and choose Xa(ξ) = ξa with
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a ∈ {0, 1, 2, 3}. The transverse directions, which we center at the origin for convenience purposes,
can be described by six scalars that are fluctuations in the position of the brane on the world
volume

Xi+3(ξ) = 2πα′ϕi(ξ), i ∈ {4, ..., 9}

Applying this to the induced metric we get the Minkowski metric with some fluctuations
that we interpret as the scalars in the theory

γab = ηab + (2πα′)2∂aϕ
i∂bϕi

Using these relations, we find that the determinant can be written as

det
[
ηab + 2πα′Fab + (2πα′)2∂aϕ

i∂bϕi
]

In the low energy limit where α′ → 0 we can expand around the parameter. For convenience
we can look at the determinant and write it as ηab + ϵΛab = ηac(δ

c
b + ϵΛcb). Using this, we can

use the homomorphism property of determinants to split it up

det
[
ηac(δ

c
b + ϵΛcb)

]
= −det(δcb + ϵΛcb)

This suggest that we should use the identity det(Γ) = exp(Tr[log(Γ)] where Γ is an n × n
matrix. Using that Γ = I+ ϵΛ, we can compute

det(I+ ϵΛ) = exp(Tr[log(I+ ϵΛ)]) = exp

( ∞∑
n=1

(−1)n+1

n
ϵTr[Λn]

)

= 1 +
∞∑
n=1

(−1)n+1

n
ϵTr[Λn]− 1

2

( ∞∑
n=1

(−1)n+1

n
ϵTr[Λn]

)( ∞∑
m=1

(−1)m+1

m
ϵTr[Λm]

)
= 1 + ϵTr[Λ]

(E.5.2)
Finally, we have to consider the square root in the action, so we use the expansion

√
1 + x =

1 + 1
2x+O(x2). With this in mind, we can write the determinant in the desired form

√
−det = 1 + (2πα′)2(

1

2
FabF

ab +
1

2
∂aϕ

i∂bϕi) (E.5.3)

Dropping the contribution from 1, which just integrates to the world volume, we find the action

SDBI =
1

4πgs

∫
d4ξ(

1

4
FabF

ab + ∂aϕ
i∂bϕi) + Fermions (E.5.4)

This exactly corresponds to the action of N = 4 SYM, with gauge group U(1) given that
we make the identification between yang-mills coupling and string coupling g2ym = 4πgs If we

extend this to N D3-branes, we get a U(N) gauge theory, which can be represented in the
adjoint representation given the generators of the group ϕi = ϕiaTa and Aµ = Aiaµ Ta. For U(N)

there are N2 − 1 generator satisfying the commutator relation [T a, T b] = fabcTc. The main
difference is that one needs to consider covariant derivatives instead of partial only, but the
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same identifications can be made nevertheless. At the same time, one gets a type IIB SUGRA
action which is a free theory in the bulk of R9,1 in the α′ → 0 limit. This is why the limit is also
known as the decoupling limit, since both SUGRA and interactions both do not contribute to
the overall action. This is somewhat the original setup for the conjecture Maldacena proposed.
The story is a bit more involved, but the essence stays the same1

E.6 Subsectors

Moving on, we list the respective weights of letters in the theory for both the R-symmetry SU(4)
and S3 SO(4), that we use to construct the subsectors. Following ”cite” we can organize data
into table through the representations

F+ F0 F− F̃+ F̃0 F̃−
SO(4) (1,-1) (0,0) (-1,1) (1,1) (0,0) (-1,-1)

SU(4) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

Table E.1: Weight of Gauge Field Strength components

Z X W Z̄ X̄ W̄

SO(4) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

SU(4) (1,0,0) (0,1,0) (0,0,1) (-1,0,0) (0,-1,0) (0,0,-1)

Table E.2: Complex Scalars in N = 4 SYM

χ1,χ3,χ5,χ7 χ2,χ4,χ6,χ8 χ̄1,χ̄3,χ̄5,χ̄7 χ̄2,χ̄4,χ̄6,χ̄8

SO(4) (12 ,−
1
2) (−1

2 ,
1
2) (12 ,

1
2) (−1

2 ,−
1
2)

Table E.3: SO(4) weights of Fermions in N = 4 SYM

χ1,χ2,χ̄1,χ̄2 χ3,χ4,χ̄3,χ̄4 χ5,χ6,χ̄5,χ̄6 χ7,χ8,χ̄7,χ̄8

SU(4) (12 ,
1
2 ,

1
2) (12 ,−

1
2 ,−

1
2) (−1

2 ,
1
2 ,−

1
2) (−1

2 ,−
1
2 ,

1
2)

Table E.4: SO(4) weights for χ1, ..., χ8 Fermions in N = 4 SYM

d1 d2 d̄1 d̄2
SO(4) (1,0) (0,1) (-1,0) (0,-1)

SU(4) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

Table E.5: Derivative Operators of N = 4 SYM

The way one reads the tables is for the SU(4) one has a vector with entries (J1, J2, J3)
and for SO(4) one has (S1, S2). From the decoupling prescription, we see that the choices of

1Maldacena considers a stack of N + 1 D3-branes, where one moves away in the X9 direction at a distance r.
This theory is described by U(N) × U(1) gauge theory. For the stack to combine again, one must keep a Higgs
expectation value fixed, < X9 >= r

2πα′ , resulting in the Maldacena limit where α′ = 0 and U = r
α′ is fixed.

This implies that the mass of the stretched strings remains fixed. Apparently, the U(1) ⊂ U(N) corresponds
to singleton fields living on the boundary in the gravity theory that cannot propagate into the bulk and thus
decouple, leaving us with SU(N) four-dimensional N = 4 SYM, which is valid for any N
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coefficients will pick out the letters for the specific subsector by matching it with∆0 = J . We
illustrate by example. Take the vector (0, 0, 1, 1, 0). This corresponds to J = J1 + J2 which is
the classic SU(2) sector. Once we have this, we go through all the letters and see which are the
ones that satisfy ∆0 = J1 + J2. We only take use of the SU(4), since there is no dependence on
spin in this case. Looking at the gauge fields, we see that all the components equate to 0 while
∆0F = 2. Thus no gauge fields are found. It is important to note that the conformal dimension
is different for different letters due to the different representations they occupy. For the scalars
one finds that Z,X satisfy our condition since ∆0(x,z) = 1 and J1 + J2 = 1 for both. In the
end, after going through all of this, these remain as the only letters contained in this subsector.
This is the general fashion of how to determine the complete landscape. One could do a more
thorough analysis by considering inequalities of the coefficients and thereby determine different
numbers of fermions present in each case. The details can be found in [80]
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Appendix F

Gauge/Gravity Duality

As both gravity and Gauge theory is at the heart of the AdS/CFT correspondence, both sides
of the story is touched upon in a general fashion

F.1 AdS and gravity theories in the bulk

Facing gravity first, it is no surprise that the starting point is Einstein´s field equations

Rµν −
1

2
Rgµν + Λgµν = 0 (F.1.1)

We are interested in a maximally symmetric spacetime with Ricci scalar R = 2Λd+1
d−1 . This

corresponds to scenarios where Λ < 0 such that the geometry is described by negative cur-
vature. One can consider a d + 1 dimensional Anti-de Sitter space (AdSd+1) which can be
embedded into Rd,2. This is a (d + 2) dimensional Minkowski space. The metric signature is
η = diag(−,+,+, ...,+,−) and is given by

ds2 = (dx0)2 + (dx1)2 + (dx2)2 + ...+ (dxd+1)2 = ηMNdx
MdxN (F.1.2)

AdSd+1 can also be written in coordinates as a hypersurface

ηMNx
MxN = −(x0)2 +

d∑
i=1

(xi)2 − (xd+1)2 = −L2 (F.1.3)

where L is the radius of curvature of AdSd+1. The embedding is invariant under the Lorentz
group for Rd,2, SO(d, 2), which has dimension 1

2(d + 1)(d + 2). This is the number of Killing
vectors associated to AdSd+1, leading us to conclude that the space is maximally symmetric.
SO(d, 2) is the conformal group of d-dimensional Minkowski space, pointing in the right direction
regarding symmetries of the duality. One can parametrize the coordinates in multiple ways. Let
us introduce the coordinates t ∈ R, x⃗ = (x1, ..., x

d−1) ∈ Rd−1 and r ∈ R+. The parameterization
in these coordinates is given by

X0 =
L2

2r
(1 +

r2

L4
(x⃗2 − t2 + L2)), Xi =

rxi

L
, i ∈ {1, ..., d− 1}

XD =
2r

L2
(1 +

r2

L4
(x⃗2 − t2 + L2)), XD+1 =

rt

L

(F.1.4)

Due to the restriction r > 0, we cover only one-half of the AdSd+1 spacetime. These local
coordinates are referred to as Poincaré patch coordinates. In the Poincaré patch, the metric of
the space reads

ds2 =
L2

r2
dr2 +

r2

L2
(dx⃗2 − dt2) =

L2

r2
dr2 +

r2

L2
(ηµνdx

µdxν) (F.1.5)
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where we have recognized the metric of d-dimensional Minkowski space. Using this metric, one
finds the Ricci scalar to be R = −d(d+1)

L2 , implying that L2 is indeed the radius of curvature.
Another useful form of the Poincaré metric is obtained by inverting the radial coordinate, z =
L2/r, yielding the metric in Poincaré z-coordinates,

ds2 =
L2

z2
(dz2 + ηµνdx

µdxν) (F.1.6)

Note that the boundary in these coordinates is located at z = 0

Another possibility is to introduce global coordinates τ, ρ, θi, and describe the space-time via
hyperbolic functions

X0 = L cosh ρ cos τ, XD+1 = L cosh ρ cos τ, Xi = LΩi sinh ρ (F.1.7)

Here Ωi with i = 1, ..., d are angular coordinates satisfying
∑

iΩ
2
i = 1. In other words Ωi

parametrize a d− 1 dimensional sphere. These coordinates are referred to as global coordinates
of AdSd+1 since all points of the hypersurface are taken into account exactly once. The induced
metric can be found to be

ds2 = L2(− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
d−1) (F.1.8)

Since the metric above does not depend on τ , we infer the existence of a timelike killing vector ∂τ ,
and since this killing vector is defined globally on the manifold, τ acts as a sensible global time
coordinate. Near the center ρ = 0 the metric assumes the form ds2 = −L2(dτ2+dρ2+ρ2dΩ2

Sd−1)

implying that the space-time has topology, since τ is periodic, of S1×Rd, where S1 is the periodic
time; in particular, since ∂τ is everywhere timelike, keeping ρ and θi fixed while varying τ will
produce closed time-like curves. This is, however, not an intrinsic property of this space-time,
merely a consequence of our embedding: Rd,2 has two timelike directions, so the appearance of
closed timelike curves is not so surprising after all.

F.2 Conformal field theories

To start we are interested in understanding how big this conformal algebra is and what bits and
pieces it contains. It would be seen that it is an extension of the Poincaré algebra with extra
features. What constitutes a conformal transformation is that it´s angle preserving, this we can
represent as

gαβ(x) → g̃αβ(x) = e2σ(x)gαβ(x), gµν(x) → Ω2(x)gµν(x) (F.2.1)

If we want to know the infinitesimal transformations in flat space, we should take the lie deriva-
tive of the Minkowski metric and solve the killing equation to get the isometries

Lϵηµν = ηµν + ∂µϵν + ∂νϵµ and e2σ(x)ηµν(x) ≈ (1 + 2σ(x))ηµν (F.2.2)

This leads to the equation after taking the trace of the metric to relate σ to ϵ

∂µ∂µϵν =
1

d
(2− d)∂ν∂λϵ

λ (F.2.3)

There are 2 distinct cases to take into account, d < 2 and d > 2. The case for d < 2 is known
for an infinitesimal conformal transformation given by

ϵµ(x) = aµ + σµνx
ν + λxµ + bµx2 − 2xµb · x (F.2.4)
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We can link each term to an operator which are generators of the conformal group. The first
term we recognize as aµ → pµ which is nothing but translation. Secondly we have Lorentz
transformations σµνxν − Jµν , and thirdly we get a new feature namely dilatations D which has
the property of scaling coordinates as follows

xµ → λxµ (F.2.5)

The last feature is special conformal transformations (bµx2−2xµb·x)−Kµ. These objects are the
building blocks for conformal field theory. This will be the starting point for the algebra. Since
the Poincare algebra is a subalgebra of the conformal group, we have all the same commutators,
but with our new features, we get non-vanishing commutation relation

[D,Pµ] = −iPµ, [Jµν ,Kρ] = −i(ηµρKν−ηνρKµ), [D,Kµ] = iKµ, [Pµ,Kν ] = 2i(Jµν−ηµνD)
(F.2.6)

The conformal algebra is isomorphic to ISO(d,2) with signature {−,+, ...,+,−}. One can con-
struct elements of the Lorentz matrix consisting of the other generators to manifest the isomor-
phism such that

Jµd =
Kµ − Pµ

2
, Jµ(d+1) =

Kµ − Pµ
2

Jd(d+1) = D (F.2.7)

Going from here, deriving the correlator between two or more conformal fields is possible. First
we start by expecting states of the form ϕ(x) = eix

µPµϕ(0). One can find that the commutator
now a field at x = 0 with the dilitation operator obeys [D,ϕ(0)] = −i∆ϕ(0). This implies

[D,ϕ(x)] = [D, eix
µPµϕ(0)] = ([D, eix

µPµ ] + eix
µPµD)ϕ(0) + eix

µPµϕ(0)D (F.2.8)

Expanding the exponential and get

[D, eix
µPµ ] =

∞∑
i=0

in

n!
xµ1 ...xµn [D,Pµ1 ...Pµn ] (F.2.9)

Where we define [D,Pµ1 ...Pµn ] = [D,Pn]. Since [D,Pµ] = −iPµ this leads to proving the
following via induction [D,Pn] = inPn. Consider for n+ 1

[D,Pn+1] = [D,Pn]P + Pn[D,P ] = inPn + iPn = i(n+ 1)Pn (F.2.10)

Using all these identities, proceeding from where we are left with

[D,ϕ(x)] =
∞∑
i=0

in+1n

n!
(xµPµ)

nϕ(0) + eix
µPµ [D,ϕ(0)]

= i2xµPµ

∞∑
i=1

in−1

(n− 1)!
(xµPµ)

n−1ϕ(0)− i∆ϕ(x)

= i(xµ∂µ −∆)ϕ(x)

(F.2.11)

We are prepared to look at the two-point function for scalar operators and see what we might
expect. From rotational and translational invariance we get

< ϕ1(x)ϕ2(y) >= f(|x− y|) (F.2.12)

To find the undetermined function, a general ward identity is useful concerning dilatation namely
that

0 =
n∑
i=1

(xi
∂i
∂xµi

−∆i) < ϕ(x)...ϕi(xi)...ϕn(xn) > (F.2.13)
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For the two-point case, it easily comes out by considering the commutator between the dilatation
operator and the fields at hand

0 = ⟨0|[D,ϕ1(x)ϕ2(y)] |0⟩ = ⟨0|ϕ1(x)[D,ϕ2(y)]− [D,ϕ1(x)]ϕ2(y) |0⟩
= (xµ∂(x)µ −∆1 + yµ∂(y)µ −∆2) < ϕ1(x)ϕ2(y) >

(F.2.14)

The superscripts refer to the variable that the derivatives act on. The solution is the usual
blueprint of a conformal field theory

f(|x− y|) = C

|x− y|2∆
(F.2.15)

The exponent is in actuality ∆1 + ∆2 but by special conformal transformations, one can fix
them to be ∆1 = ∆2. This procedure can also be done for 3-point functions, but the story
does change for the 4-point where one must consider the cross ratios as your restrictions in the
undetermined functions since they are invariants under the symmetry group.
In general one can take a primary field ϕ(x) of scaling dimension ∆ and get the general conformal
transformation

ϕ(x) → ϕ′(x′) =
∣∣∣∂x′
∂x

∣∣∣−∆/d
ϕ(x) (F.2.16)

Where one must introduce the Jacobian for the coordinate transformation and also the space-
time dimension d. This also implies from the coordinate rescaling that ϕ′(λx) = λ−∆ϕ(x).
Lastly, we just mention primary operators and how one can lower and raise the conformal
dimension from the commutations. If we consider the following

[D,Kµϕ(0)] = Kµ[D,ϕ(0)]− [D,Kµ]ϕ(0) = −i(∆− 1)Kµϕ(0) (F.2.17)

From this one can deduce that by applying an arbitrary number of Kµ operators on an oper-
ator, this process must eventually terminate giving us [Kµ, ϕ(0)] = 0, meaning that ϕ(0) is a
primary operator. From primary operators, it is then possible to construct what is called descen-
dants, which can be obtained by applying consecutive momentum operators on such primaries∏n
i=1 Pµiϕ(0) giving a conformal weight of ∆ + n. This can be stated in commutator language

as [D,Pµϕ(0)] = −i(∆+1)Pµϕ(0). To summarize thus, for an operator to be primary, one must
meet these conditions

[D,ϕ(0)] = −i∆ϕ(0), [Jµν , ϕ(0)] = Jµνϕ(0), [Kµ, ϕ(0)] = 0 (F.2.18)
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Appendix G

Supersymmetry and Superspace
formalism

Having encountered the Action in ABJM, one is in great need of both supersymmetry and
superspace fields. Hence, we give a brief review of the general idea of the formalisms

G.1 Supersymmetry and BPS bounds

As it is known, one can extend the Poincaré algebra to contain further symmetries such as
dilatations and SCt´s, which is nothing but the conformal algebras and thus the basis for
conformal field theories. One might wonder if there is an even larger group of symmetries
present. Due to the Coleman-Mandula no-go theorem[41], it was assumed that conformal sym-
metry was the largest extension the S-matrix could fulfill. But as it was shown [72], if the
notion of supercharges is introduced Qa, a new symmetry is introduced, which converts be-
tween fermionic and bosonic states. Taking the general case consider, in weyl notation, the
supercharges {Qaα, Qbβ}, a, b = 1, ...,N with the following commutation relations and algebra
[6].

[Qα, J
µν ] = (σµν)βαQβ, [Q̄α̇, J

µν ] = ϵα̇β̇(σ̄
µν)β̇γ̇ Q̄

γ̇

[Qα, P
µ] = 0, [Q̄α̇, P

µ] = 0

{Qaα, Q̄bβ̇} = 2σµ
αβ̇
Pµδab , {Qaα, Qbβ} = ϵαβZ

ab, {Q̄aα̇, Q̄bβ̇} = ϵα̇β̇Z̄
ab

(G.1.1)

Zab, Z̄ab are called the central charges and commute with all the other generators of the su-
persymmetry algebra, or rather generate the center of the algebra. Respecting anticommutator
symmetry, Zab obey the antisymmetric property Zab = Zba as well as Z

ab = (Z̄†)ab from the fact
that Q̄aα̇ = (Qaα)

∗. An important feature is that the algebra is invariant under the global U(N )
phase rotation of the supercharges

Qaα → Qa
′
α = RabQ

b
α, Q̄aα̇ → Q̄′

aα̇ = Q̄bα̇(R
†)ba (G.1.2)

This non-abelian symmetry is also known as R-symmetry Rab are N ×N matrices. The charges
transform in their respective representations as well,Qaα in the fundamental of U(N ) and Qa

′
α

in the conjugate N̄ , which is indicated by the upper and lower index of a. Further details are
found in [6]

Turning the wheel, we will be interested in the massive representations to get a sense of field
multiplets. For the central charges, it is convenient to pick a basis where Zab are diagonal and
have eigenvalues qi. It can be arranged in an antisymmetric matrix Zab giving us for N = 2

Zab =

(
0 q1

−q1 0

)
(G.1.3)
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The same construction follows for N > 2. Here we just build block diagonals consisting of Lego
blocks for the matrix above[6] Constructing a set of raising a lowering operators, the only ones
that are non-zero, will take the additional term of the eigenvalues for the non-vanishing central
charges. Using a linear combination

Q̃jα± = Q2j−1
α ± (Q2j

α )†, j ∈ {1, ..., N
2
} (G.1.4)

and establishing the anti-commutator, it can be found that all non-zero terms can be written as

{Q̃iα+
, (Q̃jβ+)

†} = δji δ
β
α(2m+ qi), {Q̃iα− , (Q̃

j
β−

)†} = δji δ
β
α(2m− qi) (G.1.5)

For unitary particle representations, we must insist that both the right-hand sides must stay
positive leading to |qj | ≤ 2m for all j. The famous Bogomolnyi–Prasad–Sommerfield (BPS)
bound is obtained, when equality holds for |qj | = 2m. Imagine that k of the qj are fulfilling
the BPS bound, then we see that 2N − 2k of these operators satisfy the equality such that we
now have 22N−2k states. This is referred to as 1/2k BPS multiplets. The space of multiplets
then become {1/2, 1/4, 1/8, 1/16} BPS etc. To summarize for different values of k one finds
BPS-multiplets which has following shortening conditions [48]

k = 0 → 22NStates Long Multiplet

0 < k <
N
2

→ 22(N−k)States Short Multiplet

k =
N
2

→ 2NStates Ultra Short Multiplet

(G.1.6)

The relevance of BPS-solutions has proven immense in the fields of SUGRA and string theory,
specifically related to black holes and branes making it a tool worth using to study phenomena
that exhibit properties characterized by supersymmetry. For further details, there is plenty of
literature to consult for the interested reader [108, 49, 143, 33, 6]

G.2 Superspace Formalism

In ordinary Quantum Field Theory, fields are usually functions of xµ, the coordinates of Minkowski
space. But, as we just extended the conformal group to be a larger symmetry by introducing
supercharges, one can in the same spirit extend Minkowski space to superfields living in super-
space. The idea is to include anti-commuting fields in the mixture. The set of variables will
be a triplet {xµ, θα, θ̄α̇}, which is nothing but space-time coordinates in a Minkowskian sense
with the addition of Grassmann spinors. Superspace becomes not a regular manifold of the
kind that we know, but instead, it is an example of a supermanifold, with both commuting and
anti-commuting dimensions. To get a sense of how to represent the supercharges and covariant
derivatives, we first start by looking at the properties of the Grasmann spinors. Indices are
raised and lowered as θα = ϵαβθβ and θα = ϵαβθ

β with ϵ12 = −ϵ12 = 1. For products, conven-
tions dictate that θαθα = θ2,θαθ̄α = θθ̄ etc. There is also surpressed indices θαγµαβ θ̄

β, where we

use Dirac matrices (γµ)βα = (iσ2, σ1, σ3). This amounts to θαθβ = 1
2ϵαβθ

2 and θαθβ = 1
2ϵ
αβθ2.

Having defined the properties, one can generate operators for both supercharges and covariant
derivatives1, by considering infinitesimal transformations and using the BHC formula. This
provides the basis for writing

D̄α = − ∂

∂θ̄α
− θβγµβα∂µ, Dα =

∂

∂θ̄α
+ θ̄βγµαβ∂µ

Q̄α = − ∂

∂θ̄α
+ θβγµβα∂µ, Qα =

∂

∂θ̄α
− θ̄βγµαβ∂µ

(G.2.1)

1Partial derivative in the superfields are defined as ∂α∂
α = ∂2
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For the purpose of section (2.3.1), we only comment on Vector and Chiral superfields and leave
the details to be studied in [87, 6]. Since grassmann numbers obey anti-commutation θ2i = 0
or rather θαθβ = −θβθα, Grassmann variables at most contains quadratic orders in θ. Thus a
generic superfield Y (x, θ, θ̄) can be taylor expanded in the spinor components which truncates
at the quadratic θ2θ̄2. In terms of ABJM and gauge poduct group for chiral vector superfields
in N = 3 Chern-Simons theory, one gets fields components

V (x, θ, θ̄) = −θγµθ̄Aµ − θθ̄σ(x) + iθ2θ̄χ̄(x)− iθ̄2θχ(x) +
1

2
θ̄2θ2D(x)

Φ(x, θ, θ̄) = ϕ(x) +
√
2θψ(x) + θ2F (x) + iθγµθ̄∂µϕ(x)−

i√
2
θ2∂µψ(x)γ

µθ̄ − 1

4
θ2θ̄2∂2ϕ(x)

Φ̄(x, θ, θ̄) = ϕ̄(x) +
√
2θ̄ ¯ψ(x) + θ̄2F̄ (x)− iθγµθ̄∂µϕ̄(x) +

i√
2
θ̄2γµθ∂µψ̄(x)−

1

4
θ̄2θ2∂2ϕ̄(x)

(G.2.2)
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Appendix H

Kaluza-Klein compactification on a
circle

Usually when one talks about super-gravity, we are dealing with situations where the dimension
of the theory exceeds the one we should make phenomenological models for in particle physics.
Thus one could consider what could happen if we could shrink the redundant dimensions to
be so small, that they would not have an effect in the observable theory. One way is to do
Kaluza-klein (KK) compactification on certain geometries (Calabi-Yau manifolds, a Torus or
spheres/circles). Thus, we wish to compactify one space dimension on a circle S1

R of radius
R[122]. Thus we make one of our xµ coordinates into a y-coordinate on a circle and let the
remaining ones be called xµ̄. Thus our wave operator can be written as

□D = □D−1 +
∂2

∂y2
(H.0.1)

We want to investigate how fields transform in the limit where we let the radius R→ 0 which will
be called dimensional reduction. Starting with a scalar field ϕ(xµ) obeying periodic boundary
conditions on S1

R, which can then be expanded into its Fourier decomposition

ϕ(xµ̄, y) =
∑
n∈Z

ϕn(x
µ̄)e

2πiny
R (H.0.2)

If we look at a standard kinetic term, of the Klein-Gordon form in d dimensions, we can use
dimensional reduction to get∫

ddxϕ(−□D +m2)ϕ =
∑
n∈Z

2πR

∫
ddxϕn(−□D−1 +

∂2

∂y2
+m2)ϕne

2πiny
R

=
∑
n∈Z

2πR

∫
ddxϕn(−□D−1 +

4π2n2

R2
+m2)ϕn

(H.0.3)

One defines the mass of the n’th mode as mn = n2

R2 . In the limit R → 0 the only mode
that contributes is for n = 0 since all others modes acquire an infinitely heavy mass and thus
decouples. Due to the infinity of every increasing mass, this became known as the Kaluza-
Klein tower of states. When L << 1, the non-zero modes will be immensely heavy and can be
safely neglected. These heavy masses truncate the Kaluza-Klein spectrum and are known as the
Kaluza-Klein reduction ansatz
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Appendix I

Representation of SU(4)

As SU(4) seems to be an important player in this whole story, it is worth giving a little back-
ground on all the confusing numbers flying around all the time. This is not intended as a group
theoretic background to SU(N) groups, this can be found in [6]. Given the group SU(4), the
rank is in SU(N) is given by N − 1, so it has rank 3. This exactly represents the three Dynkin
labels [r, q, p]. To find the dimension of an arbitrary representation in SU(N), a deep result
known as the Weyl character formula can be stated

dim[λ1, ...λN−1] =
∏

1≤i≤j≤N

λi − λj + j − i

j − i
(I.0.1)

This is in spirit a very general formula, since it encapsulates all the possible representations,
but for practical purposes, we see how it is used for SU(4)1. Going through all the possible
combinations of indices, it can be found that the dimension of any given representation in SU(4)
is

Dim[r, q, p] =
1

12
(r + 1)(q + 1)(p+ 1)(r + q + 2)(q + p+ 2)(r + q + p+ 3) (I.0.2)

With this formula, it is nice to summarize the most fundamental cases, which is extensively used
in the thesis in the table below

Dynkin Label Representation

[0, 0, 0]

[1, 0, 0]

[0, 0, 1]

[0, 1, 0]

[2, 0, 0]

[0, 0, 2]

[1, 0, 1]

[0, 2, 0]

[1, 1, 0]

1

4

4̄

6

10

10′

15

20

20′

Table I.1: Representation of SU(4) and the dimension of the different representations

1One can find the dimension of representations via Young Tableaux as well, but this is a bit more daunting
than this plug and play game
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