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Abstract

Tides are ubiquitous in nature. Indeed, any extended object in a non-uniform
gravitational field will be subject to tidal effects, whether it be the moon
giving Earth its tides or entire galaxies giving each other tidal tails. A third
example of particular interest in the age of gravitational wave astronomy,
is the tidal interaction between black holes. Although this thesis wont go
into detail regarding the effects of tides on gravitational wave signals, we
will cover the theoretical foundations of tidal interactions in EMR binary
systems of Schwarzschild black holes. We consider a large Schwarzschild black
hole, referred to as the background black hole, and a much smaller black,
referred to as the (tidally) deformed black hole, in orbit around the background
black hole. As we will see, a vacuum region of an arbitrary spacetime can
be described by a set of tidal moments. In particular, the tidal moments of
the background spacetime will serve as building blocks for the metric around
the tidally deformed black hole. The resulting metric is referred to as the
Poisson-Vlasov metric and will serve as the foundation of much of this thesis.
We mainly work under the assumption that the deformed black hole follows a
radial geodesic in the background spacetime, implying that all magnetic tidal
moments and potentials vanish identically. We compute the tidal shifts in
the ISCO parameters of a test-particle orbiting the deformed black hole to
quadrupole and octupole order. Furthermore, we compute the specific energy
of the test-particle as a function of the Euler angles that specify the orientation
of the ”deformed black hole + test-particle” binary system with respect to
the background black hole. We find that the specific energy is minimized for
co-planar orbits, i.e. configurations for which the inclination angle vanishes.
Furthermore, we compute the specific energy of the test-particle to octupole
order. In particular, the specific energy is found to be increasing as a function
of advanced time. Finally, we study the geometry of the deformed horizon.
With the precision maintained in this text, the horizon is located at r = 2m as
in the unperturbed case. However, the mass of the deformed black hole now
acquires a non-trivial time-dependence. Using the approach of Poisson, we
compute the change in m to leading order for a radial infall and for a circular

orbit.
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Conventions and notation

A given spacetime is, as always, modelled by some Lorentzian manifold (., g) equipped
with a metric g. We take the signature of g to be (—,+,+,+). With respect to some
coordinate system {z"},cq0,1,2,3) on an open neighborhood & C .#, the components of
the metric are written g,,. The spacetime indices on an arbitrary tensor defined on &
may be lowered (raised) using g,, (¢"”). On the other hand, frame indices are raised and
lowered using n = diag[—1, 1,1, 1]. We work with the following index convention for the

Riemann tensor:

0 0 . .
Rpcr;w = @Fp,uo - %Fpua + FPI/HF po Fpunr vo (1)

For the Ricci tensor, we use the following convention:
Ry = R0 (2)

Finally, we work in geometrical units, such that G = ¢ = 1.



Below is a notation key, featuring commonly used symbols and their descriptions.

Notation Description

(A, q) Lorentzian manifold

o, N Open subsets of .#

(<, q") Hypersurface of (., g) where ¢’ is the induced metric on .%
D Levi-Civita connection on (., g)

v, ... (Indices) Spacetime indices, taking values in {0, 1,2, 3}
Uy Jye e (Indices) Spatial indices, taking values in {1, 2,3}

a,b, ... (Indices) Frame indices, taking values in {0, 1,2, 3}

xt Coordinate system on a coordinate patch &

T Components of a (0,2) tensor T" with respect to z*

Tow) Symmetrization symbol, defined by T\, := 3(Tp + 1))
T Antisymmetrization symbol, defined by T, := %(TW -T,,)
TSVT F The symmetric and trace free part of 7},

Two = 05T = B%,T w Partial differentiation

Tw.e = DT, Covariant differentiation

Eaps Components of the Levi-Civita tensor with respect to x*
€aBs Permutation symbol in four dimensions

€ijk Permutation symbol in three dimensions

AL Orthonormal tetrad

el Carter’s basis

Eij (Eijk) Quadrupole (octupole) order electric tidal moments

Bi; (Bix) Quadrupole (octupole) order magnetic tidal moments

E Specific energy

L Specific angular momentum




Chapter 1

Introduction

The overarching theme of this text is that of tidal effects in two-body systems. Tides can
be found in a plethora of physical systems, whether it be the tidal interaction between the
Earth and the moon, between stars in a binary system, between entire galaxies or between
black holes. In this text, we will concern ourselves with the latter of these, specifically the
tidal interaction between a pair of extreme mass ratio Schwarzschild black holes. To this
end, we review and extensively use the results obtained by Eric Poisson and Igor Vlasov
in [15].

Suppose we consider a binary system as described above. The larger of the black
holes, referred to as the background black hole, is treated as a background source of a
gravitational field. A much smaller black hole, treated as a test-particle with respect to
the background black hole, is then placed in this field. We refer to this black hole as the
tidally deformed (or simply deformed) black hole. An equivalent formulation would be
that we consider a Schwarzschild black hole and then turn on a tidal field, given rise to by
a much larger Schwarzschild black hole. As a consequence of turning on this tidal field,
the mass of the deformed black hole seizes to be constant in time, an effect known as tidal
heating which will be explored in section 7.

Additionally, we will observe tidally induced deformations in the orbits around the
deformed black hole. In particular, we consider a third black hole with mass even less
than that of the deformed black hole (so that the entire system can be described as a
three-body hierarchical system). This black hole is then considered a test-particle with
respect to the deformed black hole and we explore how the orbit of this test-particle is

effected by the presence of a tidal field. For example, we will observe a tidally induced



shift in each of the ISCO parameters of the test-particle.

The tidal environment itself is described by the tidal moments of the background
spacetime. Below, we give a brief overview of tides in Newtonian mechanics, closely
following the section ”Tensors in Newtonian mechanics” from [20]. This overview will
result in the introduction of the non-relativistic tidal tensor. With our Newtonian intuition
in mind, we go on to consider a relativistic generalization of tides, resulting in the

introduction of the relativistic tidal tensors.

1.1 Newtonian tides

In Newtonian mechanics, tides arise when the gravitational force experienced by a body
is non-uniform across the extent of the body. For example, the gravitational field from
the moon is stronger at a point on Earth that faces the moon, than at a point which
faces away from the moon. As a result, Earth is stretched in the direction of the moon.
Furthermore, every point on Earth will be pulled toward the center of gravity of the moon.
This results in a squishing of the Earth in the direction perpendicular to the direction of
stretching. Figure 1.1 gives an illustration of this. We take this squishing (and stretching)
as a defining feature of the tidal interaction between the moon and the Earth, and more

generally between any two bodies.

Moon

D

Figure 1.1: Tidal effects on Earth due to the gravitational influence of the moon. The
strength of the gravitational attraction from the moon is greater at point A than at point
B. Furthermore, points C and D are pulled toward each other.

Suppose we have a spacetime inhabited by two test-particles, call them test-particle A
and test-particle B which are at rest relative to each other. Now suppose a non-uniform

gravitational field, ® is introduced. As a result, the two test-particles will begin to move



relative to each other, i.e. the separation distance between them becomes a non-trivial
function of time. In the following, we set out to determine an evolution equation for this
separation distance.

We adopt a coordinate system, (¢,z") where ¢ is the universal coordinate time of
Newtonian mechanics and z*,i € {1,2,3} are spatial coordinates centred on the center
of mass of the source of the gravitational field. Now, we would like to describe how the
distance between the two test-particles changes as a function of ¢. We denote by 7 ()
and rg(t) the respective positions of test-particle A and test-particle B at time ¢. Their
separation vector S at time t is then defined as S(t) = rg(t) — ra(t). The acceleration of
test-particle B is then given by

dz’l"B
dt?

= —Vd(rg) = —VO(rs + S) (1.1)

In many cases, it is appropriate to assume || S| < ||ra], [|rs]|. In other words, the
test-particles are much farther from the source of the gravitational field than they are
from each other. In this case, we perform a Taylor expansion of (1.1) to first order, which
in component form reads

d*rly 0P foaix

T (ra) = 0xI 0zt

J
= (r2)S (1.2)

The evolution of S is then readily obtained:

==&, (1.3)
where

, L 0*P

i . Stk

£y =6t (1.4)

are the components of the non-relativistic tidal tensor. Notice that &;; is symmetric and
also traceless owing to ® satisfying Laplace’s equation. In conclusion, we see that the
tidal environment around a source of gravitation is described by the tidal tensor £. In
general relativity, we continue to have a tidal tensor £ in analogy with the above. A new
feature, exclusive to general relativity, is that we need also consider a second tidal tensor

B. These then serve to describe the tidal environment around a source of gravitation in



general relativity.

1.2 Relativistic tides

Guided by our Newtonian intuition, we expect tidal effects to be directly tied to the
relative acceleration of test-particles in spacetime. It is clear that a single test-particle is
insufficient to detect a gravitational field. Indeed, an observer travelling along a timelike
geodesic may adopt a set of Fermi normal coordinates. Let z* be such a set of coordinates.
Then at a point p in a normal convex neighborhood of the geodesic, the components of

the metric for the spacetime at hand evaluate to [16]:

goolp = —1 — Roijlar's? + O(s?) (1.5a)
2 )
g()i|p = —§R0j1k|q$jxk + 0(83) (15b)
1
Gijlp = 01 — 3 Rijlye"a’ + O(”) (1.5¢)

where R is the Riemann tensor and where s measures the spatial distance between the
geodesic and p. Notice in particular that the metric reduces to the Minkowski metric
along the geodesic. This shows the inadequacy of using a single particle to detect gravity.
Appendix A gives a more detailed description of Fermi normal coordinates as well as a
derivation of (1.5).

We are thus compelled to instead compare two closely separated test-particles and
their trajectories. More precisely, we will compare two closely separated (non-intersecting)
timelike geodesics. We will refer to them as v and 5. An observer travelling along ~ picks
a coordinate system z*, u € {0,1,2,3} and chooses to parameterize 7 by its proper time.
For each 7 in the domain of 7, we construct a spacelike vector S(7) with components given
by SH(1) := 2" o B(7' = 7) — 2" o y(7) where 7’ is proper time along 3. We interpret S(7)
as a separation vector between v and [ along a line of constant time equal to 7. One then
computes (see appendix B):

DS+
o u* Dy (u’ DgS*) = — R¥ o puu’ S¥ (1.6)

where wu is the four-velocity along v and D is the Levi-Civita connection on the spacetime.

We thus see that the tides of general relativity are completely described by the Riemann



curvature tensor of the spacetime. We define the relativistic analogue of (1.4) by
Er, = R“a,,ﬂuauﬁ (1.7)

and refer to it as the gravito-electric tidal tensor. In this text, we exclusively consider
vacuum solutions to Einstein’s field equations in which case R has ten independent
degrees of freedom. However £,,, being symmetric and trace-free, can at most have nine
independent components. The remaining degrees of freedom are encoded in the tensor B

with components
B, = (R, 5uu’ (1.8)

where R* is the dual Riemann tensor (more details can be found in section 2.4). We refer
to B as the gravito-magnetic tidal tensor and it is unique to general relativity, with no
analogue in Newtonian mechanics, unlike £. We have already seen how & is responsible
for the stretching and squishing of objects, so a natural question to ask is what physical
interpretation B has. As it turns out, B describes the "twisting” of objects subject to a
tidal field [2]. This effect occurs as a consequence of frame-dragging, which is especially
prevalent in the Kerr solution. As we shall see later on, B vanishes identically for radial

geodesics in the Schwarzschild spacetime, leaving only £ non-zero.

1.3 Motivation for studying relativistic two-body sys-
tems

We have seen how tidal tensors arise naturally in the study of two-body systems. This
allows for a succinct and efficient way of describing the tidal interaction between the
two bodies in question. The motivation for studying two-body systems in the first place
is plentiful and we mention one of the experimental avenues in which tidal heating, in
particular, is likely to play an important role. Suppose we have an astrophysical source
of gravitational radiation. In particular, we might imagine a small black hole spiralling
around a much larger black hole. The tidal heating of the smaller black hole may then
likely be responsible for the generation of low frequency gravitational waves [17], which

could be measured by space-based gravitational wave observatories, such as LISA [9]. In



fact, for a close encounter between a black hole travelling on a parabolic orbit around a
much larger black hole, tidal heating can account for about 5% of the loss in orbital energy,
while the remainder of the lost orbital energy is carried away in the form of gravitational
waves [11]. In turn, this may then be used as a benchmark for high-precision numerical
simulations of gravitational wave sources; one should expect to observe a time dependence

in the mass of each black hole [15].



Chapter 2

Preliminaries and the Poisson-Vlasov

metric

The main goal of this chapter is to introduce the Poisson-Vlasov metric, the metric that
describes the spacetime around a tidally deformed Schwarzschild black hole. To this
end, we start by covering some preliminaries. Firstly, the tidal environment around the
Schwarzschild black hole is described by a set of tidal moments and corresponding tidal
potentials. These are covered in section 2.4, which closely follows the outline given in [15].
As we will see, the aforementioned section relies heavily on the the use of orthonormal
tetrads which are introduced in section 2.1, closely following part I of [16]. The Poisson-
Vlasov metric will be put forth as an ansatz, motivated in part by the fact that it reduces
to the background metric in the appropriate limit. For this reason, we explicitly introduce
the background metric in section 2.5, closely following [15]. The construction of the
background metric relies on some of the features of Synge’s world function and bitensors in
general. These are introduced in section 2.2 which closely follows [16]. The components of
the metric (both the background metric and the Poisson-Vlasov metric) will be expressed
in a set of lightcone coordinates which are introduced in section 2.3, closely following [14].

Finally, the Poisson-Vlasov metric is introduced in section 2.6, closely following [15].

2.1 Orthonormal tetrads

This section covers orthonormal tetrads and their role in decomposing tensors along a

world-line. The core idea is to take a geodesic 7y, construct a vectorial basis at some point

10



along v and then parallel transport the basis along «. The result is a vectorial basis that
can be used at each point of the geodesic. In this sense, a tetrad is a convenient choice of
basis for a freely falling observer travelling along ~. For this reason, tetrads are intimately
related to Fermi normal coordinates as well as lightcone coordinates and allow us to adopt
a frame in which the metric of spacetime is locally flat in a neighborhood around ~. The
tetrad formalism will prove particularly useful when we compute the tidal moments of
the background spacetime. Indeed, these tidal moments will be defined as components of
the Riemann tensor with respect to a tetrad erected along a geodesic of the background
spacetime. A more precise description of orthonormal tetrads now follows.

Let (.#,g) be a Lorentzian manifold and consider a neighborhood .4 C .# equipped
with a coordinate system x* p € {0,1,2,3}. Then consider a future-directed timelike

geodesic v : [a,b] — A”. The proper time of ~ is defined in the usual way:

nom [ oo ot )

The parameter for v is chosen to be proper time 7 € [0, 7, along . The components of

the four velocity along v are then defined as

d(z" o)
dr

ut(T) =
The four velocity is normalized according to
g (VT (T)u’ (1) = =1, 7 €0,7)] (2.3)
and of course u is parallel propagated along ~,
D’ =0 (2.4)

The first task in establishing an orthonormal tetrad along <, is to construct an
orthonormal basis at some point on -, consisting of one timelike vector and three spacelike
vectors. Without loss of generality, this initial point is taken to be v(0) and the members
of the basis at (0) are denoted by A\, a € {0,1,2,3}. The index a is referred to as a frame
index and such indices will be raised and lowered using the matrix n = diag[—1,1, 1, 1].

By convention, A\ := u(0). Parallel transporting each member of the basis along ~, yields

11



an orthonormal basis along the whole of 7. Hence, A, is promoted to be a function of 7 for
all a € {0,1,2,3}. The basis vectors thus constructed are referred to as an orthonormal

tetrad on v and explicitly we have the following defining equations:

D

)‘BL(T) = U'LL(T), %)‘5(7) =0, AZ<T)/\Z(T)QMV(7(T)) = Tab, T E [07 T’Y] (25>

where a,b € {0,1,2,3}. Given a tetrad {\q}acqo,1,2,3}, its dual is then defined by

X(T) = 0" gu (YDA (1), T E[0,7)] (2.6)

Note that M\% = §% and )\éf/\z = 6%, As a consequence of the last equality in (2.5) together

with (2.6), the following two completeness relations hold along ~:

g = —ufu” + SINNY (2.8)

On v, we will often want to decompose tensors with respect to {A;}acqo,1,2,33- Let A be

some arbitrary tensor defined on « with components given by A#*#n» where m,n € N.

Vi Um

Then the frame components of A with respect to {\;}aco,1,2,3) are defined by

Ao1an — AM1En 2oL )\Zz)\Zi ce )\Z:Z (29)

bi-bm * v1Um

where ay,...,a,,b1,...,b, € {0,1,2,3}. We will also take frame components of the first

covariant derivative of tensors on . To this end, we define

o1-an g PUTREED VD VR VD (2.10)

bi-bmle * Vi vmio

These definitions will be central in defining the tidal moments of the background spacetime.

2.2 Bitensors

This section briefly covers bitensors and the notation associated with these. In particular,
Synge’s world function is introduced and some of its properties are derived. The motivation

for doing so is two-fold. Firstly, Synge’s world function plays a central role in the

12



construction of the lightcone coordinates to be introduced in chapter 2.3. Secondly,
Synge’s world function and its derivatives enter in the components ¢g”* and ¢* of the inverse
background metric which are computed in chapter 2.5. In particular, the components g/
will be computed as an expansion in the radial coordinate r, to be introduced later. In
order to accomplish this, we will need to expand the second derivatives of Synge’s world
function in r. As we will see, the parallel propagator provides an efficient way of computing
one of these expansions, which is why it is included in this discussion. It will pay dividends
to have the formalities in check, which is why we often start out by discussing bitensors
in general and then specializing to Synge’s world function. Indeed, we start by defining
bitensors in general.

Let (., g) be a Lorentzian manifold. A tensor field A which is defined on .# x .#
is known as a bitensor. In other words, A is a tensor field which depends on two points
in .#. We denote the two points by p’ and p. The point p’ is referred to as the base
point while p is referred to as the field point. It is always assumed that p lies within a
normal convex neighborhood N, of p such that the two points can be linked by a unique
geodesic. This geodesic will be denoted by 5 and is taken to be parameterized by some
affine parameter ¢ € [to, t1]. By construction, we have §(ty) = p’ and 5(t1) = p.

Suppose now that 2, € {0,1,2,3} is a coordinate system on N,. Any bitensor
defined on N, may then be decomposed with respect to z*. However, care must be taken
in assigning indices to the tensor for the following reason. Generally, a bitensor which
transforms as e.g. a vector at p’ need not transform as a vector at p. To account for this,
p’ is assigned indices o/, 3’,... while p is assigned indices «, 3,.... An arbitrary point

along § will be assigned indices u, v, .. ..

2.2.1 The parallel propagator

Say we are given a vector (or a tensor in general) at p and wish to parallel transport it
to p’. This section covers the parallel propagator which accomplishes this task using the
tetrad formalism.

Suppose A is a vector field on 3, the unique geodesic connecting p and p’, with
components A" with respect to 2z, u € {0,1,2,3}. Furthermore, suppose an orthonormal
tetrad {Aq}acqo,1,2,3) is installed on 3. Then A may be decomposed with respect to this
tetrad according to A* = A*Al. The coefficients A* are given by A* = A*A]. If A is

13



parallel transported along 3, then the coefficients A* must be constant along 3 since the

tetrad is parallel transported along . We then obtain the components of A at p as
A%(p) = A% (D) )N (p) = 9% (0, 0) A” () (2.11)

where g%, (p,p') := Ao (p) A% (p) = g ®(p, ') is a bitensor known as the parallel propagator.
The interpretation is clear from the above. The parallel propagator g%, (p,p’) takes a
vector at p’ and parallel transports it along 3 to p. Similarly, the components of A at p’

can be written

/

A% (p) = g% o (p, ) A% (p) (2.12)

where g% (p, p/ )= )\Z(p))\g‘l (p') takes a vector at p and parallel transports it along 8 to

p'. Hence, g* ,(p,p') can be interpreted as the inverse of ¢®,,(p,p') and indeed we see that

!

ga agﬁa’ = 55, ga OégO[/@w/ = 55/ (213)
The argument can be extended to tensors of arbitrary rank. For instance,

A(p) = g% (p, 99" 5 (p, 0 ) AYP () (2.14)

2.2.2 Synge’s world function

Synge’s world function o is an example of a biscalar. With the same setup as above, it is

defined by

(o) = 5t 10) [ O OT O (2.15)

to

where T is the tangent vector field to «, defined by T# := d(z" o «)/dt. Since 7 is a

geodesic, € 1= ¢, T"T" is constant along . Explicitly then,
! 1 2
o(p,p) = 5e(ts —to) (2.16)

If 7 is timelike, then we may choose t to be proper time 7 so that o (p, p’) = —%(tl —19)2. If vy

is spacelike, then we may choose ¢ to be proper distance s in which case o(p,p’) = %(tl —t9)%

14



If v is null, then o(p,p’) = 0. In general, o(p,p’) is half the squared geodesic distance
between p and p’. The world function may be differentiated with respect to either of its

arguments. To this end, we define

/ 8 /
oa(p,p') = a—;(p,p) (2.17)

as the derivative of o with respect to the first of its arguments. Notice that o, transforms

as a one-form at p but as a scalar at p’. Similarly, we define

oo

O/ (p,P/) = @(Pap/) (2-18>

as the derivative of o with respect to its second argument. Notice that o, transforms as a
scalar at p but as a one-form at p’. Continuing, we take the covariant derivative of o, and

o, and define

Oap = Daog (2.19)

Oua/g! = Da/(fﬁ/ (2.20)
Both of these are symmetric in their respective indices. Indeed,
Oap = Daop = 0,030 — F)\ag(f)\ = D30, = 084 (2.21)

owing to the symmetry of mixed partial derivatives and the symmetry in the lower indices
of the Christoffel symbols. Similarly for .4 . Additionally, we define 0,5 := Dy og and
0ap = Daog. Since o, transforms as a scalar at p’, we have 0,3 = Ou0 = 04, This
last identity generalizes to arbitrary bitensors with an arbitrary number of primed and
unprimed indices. Indeed if €2 is a bitensor and if 2_,p . are its components where . ..

denotes an arbitrary arrangement of both primed and unprimed indices, then

It will prove useful to explicitly compute o, which is accomplished in the following.
Start by considering the variation of (2.15) as p is varied. In particular we consider a small

displacement of p such that the new field point is p + dp. This results in a corresponding

15



change in o, described by do := o(p+ dp,p’) — o(p, p'). The change in p will also induce a
change in . In particular, we denote by 3 + 65 the unique geodesic that connects p + dp
and p’. We scale the affine parameter of this new geodesic such that it runs from ¢y to ¢;.

Since p’ is kept fixed, 65(ty) = dp' = 0. We then compute

o = S / TR 0)T (8)99,0 (B(1)) + 20,0 (BT ()T (1)

to

= At [ OT @0 (BOI (B0 (5(0) + g (30)T (06T (1)

to

= Atlgu BOT (05 GEN] ~ At [ [T(6) = TAOTTOF 0 510))] 824 (3(0)) e

to

(2.23)

where At :=t; — to and where the last equality follows from an application of integration
by parts. The integral vanishes since T satisfies the geodesic equation. In particular, since
T"D,T, =0 for all v € {0, 1,2,3}. Furthermore, §z*(5(ty)) = 0 by assumption so we are
left with

60 = Atgaps(B(t:))T(t1)02° (B(t1)) (2.24)
or equivalently,
Ta(p, 1) = (t1 = t0)gap(B(11)) T (1) (2.25)
In particular, o®(p, p’) is simply a rescaled tangent vector of 3 at p. Similarly,
00 (1) = (t1 = to)garsr (B(11))T7 (1) (2.26)
From these expressions, we conclude that
0q0% = 00" =20 (2.27)
Notice also that

Oapa’ = 04 (2.28)
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The proof is as follows. Firstly we compute
Oap0” = (0a0g)0” — 7, p0.,0° (2.29)
Owing to (2.27), the first term is simply o,. We expand the second term as follows:

1
FVQBJVJB = =(0agps + 09as — Osgap)o’c”
2

1
= §(aa9ﬂ5)050ﬁ

= 51@0u02)” — (@as)o4]

—0 (2.30)

This finishes the proof. Similarly, o,/ ﬁaﬁ =0u.

2.2.3 Coincidence limits and the expansion of Synge’s world

function near coincidence

As mentioned at the beginning of this chapter, we seek to derive expressions for the
expansions of the second derivatives of Synge’s world function. In particular, we seek
to derive expansions for 0,5 (p,p’) and o4 s(p, p"). Analogously to the procedure in real
analysis, we will treat p’ as a base-point and expand ouws (p,p') (cas(p,p’)) around this
base-point. The expansion will be carried out near the coincidence limit of 0,5 (p,p’)
(0a(p,p")). The coincidence limit is the limit in which p — p’ and will be the subject of
study in this section.

Consider some arbitrary bitensor Q(p,p’) with components Q;y(p,p’) where I =
aj...api€Nand I'=af ... 04;, j € N are multi-indices representing an arbitrary number
of unprimed and primed indices respectively. As already mentioned, a primed index and
an unprimed index always commute so there is no loss of generality in this notation. It is
then reasonable to ask what happens if we let p — p’. This leads us to the definition of
coincidence limits. A set of assumptions must be made about €2 before the coincidence

limit can be defined in a meaningful way. We include them in the following definition:

e Assume that Q7 (p,p') — Q. (p) as p — p’ where Q7 (p') is an ordinary tensor at p’

and where I’ is a multi-index with i + j primed indices. In other words, €2 approaches

17



an ordinary tensor at p’ as p — p'.

e Assume that the limit tensor Q7 (p') is unique in the sense that Q;(p, p’) — Qz(p)
as p — p’ independent of the direction in which the limit is taken. Explicitly, if
B : [to,t] = A is a geodesic connecting p = ((t) and p’ = B(ty), then Qp can
be viewed as a function of t. We then assume that the limit of Q;p as ¢t — tg is

independent of the choice of f3.

e If the assumptions above are satisfied, then we define
[Q[]/] = llml Q[[/(p,p/) (231)
p—p

and refer to [Q;7] as the coincidence limit of Q7 (p, p').

For future reference, the coincidence limit of Synge’s world function and the first few of
its derivatives are computed in the following. From the definition of o, we immediately
get [o] = 0. From (2.25) and (2.26) we get [0,] = [0o] = 0. Next, from (2.28), we obtain
aagaﬁ =0, = gagaﬂ or 0 = (0up — gag)aﬂ. Recall that o is simply a rescaled tangent
vector to 5. Hence, when we take the coincidence limit of (0,5 — gaﬂ)aﬂ , the dependence
on o must drop out. In conclusion, [04s] = garp. Similarly, [Fag] = [0as] = —garg- The
procedure can be continued by repeated differentiation of (2.27) and by using the Ricci

identity which, in the case of o,, reads 043y — 0ayg = R apy0.. We obtain the following:

[oapy] =0 (2.32)
1
[O—O/,B”ylél] = —g(Ra/,YIB/&/ + Ralélﬁ/,y/) (233)
1
I:O-alﬁl,ylé/el] = —Z(Ra/,y/ﬁlél;e/ —|— Ralélﬂl,yl;el + Ralé'lﬂlelwl + Ralelﬂ/él;,yl + Ralelﬁl,y/;é'/ + Ra/,ylﬂlel;61>
(2.34)

The corresponding coincidence limits with any number of unprimed indices can then be
computed by using Synge’s rule, which we state without proof (the proof can be found in

section 4.2 of [16]):

[U...a’] = [U...];a’ - [0...a] (235)

where the dots can be any combination of primed and unprimed indices.
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As before, consider a generic bitensor Qqg (p,p'). In real analysis, the expansion of
this object would be carried out in powers of the separation between the base-point p’ and
the free point p. The Lorentzian analogue to this, is an expansion in powers of —o® (p,p).

The expansion will thus take the form

! 1 / !
Qs (0,7) = Aws (V') + Agrgry ()07 + §A3ww (p)o" o’
]_ / !/ /
+ 6142/5/7/5/6/ (p/>0.’)/ 0'6 0'6 + e (236)
where the coefficients A, A', A%, A%, ... are all ordinary tensors at p’. Our task is then to

compute these coefficients. It follows immediately by taking the coincidence limit of both
sides of (2.36) that [, 5] = Ay . Differentiating (2.36) and taking the coincidence limit
of the resulting expression yields [Qa/g,y] = Aargry + Al Differentiating once more
and taking the coincidence limit yields [Qug 5] = Aargriys + A prory + Ay s + Al g1y

Differentiating a third time yields

1 ! 1 1 1
[Qa/ﬁlwl(g/el] = Aalﬁl;,ylalel —l— AO/B’H’ [O”i 7/516/] + Aa’,@'s’;’y’5’ + Aa’ﬂ’(s’;’y’el + Aalﬂ/,y/;dl€/

2 2 2 3
+ Aalﬁltglelwl + Aa//gl,ylel;él + Aa/B/,Y/(;/;e/ + Aa’ﬁ”y’(s’e’ (237)

The expressions derived above can then be solved for the expansion coefficients which in
turn are substituted into equation (2.36). This gives an expression for 2,4 to third order
in —o near coincidence. For the purposes at hand, this is a sufficient level of precision.

Now consider a bitensor with one primed and one unprimed index, €2,/3. Then the
bitensor Q with components Qalﬁx = ¢ 5 €l s can be expanded in precisely the same way

as above, namely

~ ’ 1 ’ost
QD/,@’ (p’p/) = Balﬁl (p/) —+ Bg/ﬁ”y’ (p’)aw —+ §B§/ﬁl,y/5/ (p/)O"y 0'5
1 3 / ,y/ 6/ e/
+ gBalﬂ/,Y/é/E/(p )0 O- O- + e (238)

And then the original bitensor 2 can be recovered as

/ ! 1 ! !
Qalﬂ(p7p,) = gﬁ 8 <Ba’,8’ (p,) + Bol/ﬁ"y’ (p,)Cﬂ + 532/@7/5/ (]9/)0"y g
1 / ! !
+6B§/B/’y/6l€,<p,)0ﬁ 0'(S 0'6 ) 4+ ... (239)
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To compute the expansion coefficients directly in terms of {4, the coincidence limits of
the parallel propagator and its derivatives must first be obtained. We start by expanding

the definition of the parallel propagator as follows:
95 (0,0) = X2 ()A% () = X (0)™ s N (1) (2.40)
Taking the coincidence limit and using the completeness relation (2.8), we obtain
[9%5] = 03 (2.41)

Since the tetrad {\;}ac{o,1,2,3} is parallel transported along 3, we evidently have O'B/\Z:B =0

at p and o” /)\2‘: g =0 at p’. This then implies
gaa/;ﬁgﬂ = gaa/;ﬁ/gﬂ = O, ga a;/gaﬁ = ga a;ﬁl(fﬁ =0 (242)

Repeated differentiation of each expression in (2.42) will yield the coincidence limits of
the derivatives of the parallel propagator. For instance, we get from g"‘a,;ﬁ,oﬁl = 0 that

go‘ﬁlwl(ya'yl + g“ 5,;7,072;/ = (. Taking the coincidence limit reveals that
(9% ] =0 (2.43)
A second differentiation yields
gaﬁ’w’%’ay + gaﬁ’w’é’avle' + gaﬁ’w’s’(ﬂ/‘s' + gaﬁ’;”/"ﬂ/tg’d =0 (2.44)

Taking the coincidence limit, this reduces to [¢%4 .5 + [9%4.5.,/] = 0. Using the Ricci

identity for g%4../s, treated as a vector at p, we conclude

a 1 o’
9% 150 = ER B8 (2.45)
Similarly, [¢ Bsr] = —1RY 4.5 Completely analogously, we obtain
o 1 o o
g /3/§6/'Y/6/] - g(R gy + R prorery) (2.46)
and similarly, [¢% Bbinter) = —%(Ra' g + RY grgrerr). We are now ready to compute the

20



coefficients in (2.39). Firstly, [Q2as] = Bag . Differentiating (2.39) once and taking the

coincidence limit gives [Qup./] = Bargryr + B g+ Differentiating once again, we obtain
Q — Ry 5B — B B, B B 2.4
[ a/IB;,ylél] — 5 ﬁ/'yl(;/ QIE/ - a/ﬁ/;»y/é/ - a/ﬁ/,yl;él - alﬁ/é/;,y/ - a/ﬂ/.}//é/ ( . 7)
A final differentiation yields

1_ 1_ 1_
[Qa’ﬁ;(j)’e’n/] = BCW,B’;(i)’O’H’ — §Rw ,B’¢/9’Ba’w’;li’ — éRw ﬁ/G’N’Ba’w’;df — §Rw 5’¢’H/Ba/w’;9’

1 / / 1 ! !
a §(R” goow + B powe)Baw — §(R” 0w + R wg0)Bargry

1 . 1.
1 1 1 1 1
+ Balﬁln/;(i)/el + Balﬁ/9/;¢)lﬁ/ + Ba/5/¢/;gln/ - §Rw BIQL’,G/BC&/W/N' - §Rw B’@’K’Ba’w/¢/
1 ! 1 1 2 2 2 3
- §Rw Bld)lN/Ba/w/H’Ba,w/:‘i/ + Ba’ﬁ’elﬁl;(ﬁ’ + Ba’ﬁ/(blli/;el _|‘ Balﬁl¢/6/;ﬁl + Ba/ﬁ/(ﬁ/elﬁl

(2.48)

In the following, we specialize to (2,3 = 0o/5. Putting all the previous results together,

the expansion of o,/5 near coincidence is given by

1

Y 1
1
O-CV’,B’ = galﬁl — g“al,}/ﬁléloﬁ/ [0} —|—

ﬁRa/,Y/B/(;/;E/O"Y/U[;/O'e/ —+ ... (249)

Similarly, for Q2,3 = 0.3 We obtain the expansion

1

’ ’ / ]_
1
O-CV,IB — gﬁ 6 —galﬁl — gRa/,YIB/é,O"Y o +

ERa/,\//lB/(;/;e/O"y/O'yO'el + ... (250)

Equipped with these expansions, we are able to compute the components of the inverse
metric in section 2.5. Before then, we introduce the lightcone coordinates, advertised at

the beginning of the chapter.

2.3 Lightcone coordinates

This section introduces the coordinates with respect to which the components of the
background metric as well as the Poisson-Vlasov metric will later be written. The
coordinates are referred to as lightcone coordinates and, as the name suggests, are closely
tied to the geometry of (past) lightcones. We start by giving a heuristic overview of the

coordinates, followed by a formal definition.
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2.3.1 Heuristic overview

Consider a Lorentzian manifold (.#, g) and an open neighborhood .4 C .# of a smooth
timelike geodesic ~ : [a,b] — A4". To each point p on 7, there is a corresponding past
lightcone with apex at p. Since such a lightcone is a null hypersurface of .#, it is generated
by a congruence of null geodesics as discussed in section 7.2. The quasi-spherical lightcone
coordinates of .4, denoted by (v,r,0, ), are a set of coordinates specifically tailored to
describe the geometry of the generators of the past lightcones of .4". In particular, v, r, 0
and ¢ are defined such that the following properties hold:

e v is constant on each lightcone. In particular, if a given lightcone has its apex at

(), T € [a,b], then v = 7 on this lightcone.

e O and ¢ are both constant on the null generators of each lightcone. In this sense,

they can be viewed as generator labels.
e —r is an affine parameter of the null generators of each lightcone.

In the case of Schwarzschild, these coordinates correspond to the ingoing Eddington-
Finkelstein coordinates. The lightcone coordinates also come in a quasi-Cartesian variant,
(v, 2, 2%, 2*). The construction of both variants will be formally carried out in the following

section.

2.3.2 Formal definition

Consider again a Lorentzian manifold (.#, g) and an open neighborhood .4~ C .# equipped
with a coordinate system z*, € {0,1,2,3}. Unless otherwise specified, all components
will be taken with respect to this coordinate system. For the construction below to be
successful, we demand that .4 be a normal convex neighborhood of . Consider now a
smooth future directed timelike geodesic v : [a,b] — -4 on which an orthonormal tetrad
{Aatacqo1,2,3 is installed. The goal is to assign to each point p € 4" a set of lightcone
coordinates. Initially, we will assign p a set of quasi-Cartesian lightcone coordinates
(v, 2t 22, 2%).

Consider an arbitrary point p € 4. Since .4 is normal convex, there is a unique
future directed null geodesic § which starts at p and intersects . The point of intersection

will be denoted by p’. The advanced time coordinate v of p is then defined indirectly by
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p' = (7 = v). In other words, v is equal to the value of 7 at the point where 5 and v

intersect. Next, the spatial lightcone coordinates are defined by
==X, o%(p,p), ie€{l1,2,3} (2.51)

Furthermore, since p and p’ are linked by a null geodesic, we have o(p,p’) = 0. The
quasi-spherical variant of the lightcone coordinates are defined in the following.
The advanced time coordinate continues to be defined as above. We then make the

following definition:

r(p) = —ow (p,p)u” (1) (2.52)
which, for the moment, is simply a scalar field defined on 4. In the following, it will be

made clear that —r in fact serves as an affine parameter along the null generators of the

past lightcone with apex at p’. Using (2.7), we compute

5ij0'w! = (garp + )\g,)\%l)aalaﬁl = ugugyo® o® =r? (2.53)
having used that owo® =0 and /\g, = —u,. We then define
. 7t
= — 2.54
- (2.54)

which, owing to (2.53), satisfies §;;Q'Q = 1. Furthermore, using (2.8), we may decompose

0% in terms of the tetrad {Aa}tacqo,1,2,3) as follows:

o = galﬁ/cr,g/ = (—uo"uﬁ/ + (5ij)\?//\fl)05/ =r(u® — Qi)\?/) (2.55)

Consider now a small displacement of p so that we end up at a new point p + dp. This
point will have lightcone coordinates (v + v, 2* + dz"). Correspondingly, 3 is displaced to
a new null geodesic, denoted by 3 + 3. This further induces a displacement in p’ which
becomes p' + 6p’. The coordinates of p’ + 6p’ are denoted by 2 + §z* and it follows from

the definition of v that 62" = u® év. This is then used in the following computation:

0=0(p+0p,p + 0p') = 0a02® + 0002% = 0,02% + ou® 0v = 0402% —rév  (2.56)
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to first order in the displacements. In other words,
OV = —l, (2.57)

where [, := —0,/r is future-directed and tangent to 8 at p. In a similar fashion, we seek

an expression for d,z". Firstly,
or' = —AL,60Y = —X\,0% g v — N0 3028 = N0 g 1505° — N, 0% 502°  (2.58)
which is equivalent to
Dot = N0 g 1y, — N0, (2.59)
Completely analogously, we obtain

857’ = Ja/gu“/uﬁllg — Uargua/ (260)

From eq. (2.28), we also obtain

Oapl’® =1, (2.61)
and similarly,
ol = —% (2.62)

Using the latter of these in (2.60) yields
1P05r = —1 (2.63)

having used that 151” = 0.
The next step will be to compute the covariant derivative of [,. We start by observing

how [, changes under a small displacement as described earlier:

rol, = —00, — l,0r = [—Uaﬁ + Uaﬁluﬁllﬁ — la(aa/@uo‘/uﬁ,lﬁ — O'O/ﬁua,)]éiBﬁ (264)

24



In other words,
rDgly = —0ap + aptl® lg — oagu®u” lnls + 00rsu® 1y (2.65)
Contracting with 1°, we find that [ satisfies the geodesic equation in affine parameter form:
1°Dgl* =0 (2.66)

Taken together with equation (2.63), this implies that —r is an affine parameter along g.
Hence a displacement along a given null generator of the past lightcone that converges to

p’ is described by
oz = —1%r (2.67)

Using this in (2.56) and (2.58), we obtain dv = 0 and dz" = Q'6r. Integrating these, we
obtain v = constant and z' = 7Q(6*). The two angles 0, A € {1,2} are constants with
respect to r and serve to parameterize the unit vector €.

In conclusion, the geodesics to which [® is tangent are the generators of the lightcone
described by v = constant. A particular generator is chosen by fixing the two angles #*
and on this generator, —r is an affine parameter. The tuple (v, r, 6", 6?) thus constitutes

the advertised quasi-spherical lightcone coordinates. See figure 2.1 for an illustration.
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Figure 2.1: A particular lightcone, chosen by setting v equal to some constant. A particular
generator on this lightcone is then chosen by specifying the two angles #' and #*. Then
—7r serves as an affine parameter on this generator.

2.4 Tidal moments and tidal potentials

This section covers the set of tidal moments and corresponding tidal potentials that serve
to characterise the tidal environment of the background spacetime. The tidal potentials
will serve as the building blocks for the Poisson-Vlasov metric.

Let (#,g) be a Lorentzian manifold and consider a coordinate system z*,pu €
{0,1,2,3} defined on an open neighborhood & C .Z. It is assumed that & is a vacuum
region of spacetime, i.e. the Ricci tensor vanishes identically on .4#". Now consider a
smooth timelike geodesic v in &, parameterized by proper time. The first step will be
to establish an orthogonal tetrad {\q}ac{o,1,2,33 on 7 analogously to how we did it for the
lightcone coordinates. In particular, we choose \y = u. The three remaining tetrad vectors
will be explicitly constructed for a geodesic in the Schwarzschild spacetime in chapter 3.

In four dimensions, the Weyl tensor C' has ten independent components. We encode these
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components in the two symmetric-tracefree tensors whose components are given by

Eij = Coppp N N0 (2.68)
Bij = Cl o Nout N (2.69)

where 7,7 = {1,2,3} and C” is the dual Weyl tensor with components given by

1

:z,u,By = 55%70(“0705” (270)

Here, ¢ is the Levi-Civita tensor with components given by

Epvop = + vV — det(g)euuap (271)

where ¢ is the matrix representation of the metric tensor in the coordinate system
xz#, € {0,1,2,3} and € is the permutation symbol with convention €193 = 1. The sign
in front of the square root depends on the orientation of the coordinate system. We
refer to &; and B;; as the quadrupole tidal moments of electric type and magnetic type
respectively along v. Note that since & is Ricci flat, the Weyl tensor and the Riemann
tensor coincide on &'. Henceforth, we will therefore simply use the Riemann tensor in the
construction of tidal moments. Notice also that (2.68) and (2.69) are related to the tidal
tensors (1.7) and (1.8) simply by &;; = Aa/g)\f‘/\? and B;; = l’;’aﬁ)\?)\f , having introduced
hats to distinguish between the the full spacetime tensors of the introduction and the tidal

moments introduced here. Next comes the definitions of the octupole tidal moments:

STF

Eip = (Rawyﬁvuwﬁuu@ (2.72)

STF
Biji := ( anpricNi W Afu”)\}i) (2.73)

where the STF symbol instructs us to symmetrize in all free indices and remove all traces.
For future reference, we also use angled brackets around indices to serve the same purpose.
For example, A.)ap is obtained by symmetrizing A,,.s in ¢ and v and removing the
trace over i and v. We refer to &, and B;;, as the octupole tidal moments of electric
type and magnetic type respectively along 7.

In the following, the tidal moments introduced above will be used to define a set of
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tidal potentials. To get started, the coordinate system z* is assumed to be quasi-Cartesian,
namely it is assumed that 2° is a temporal coordinate and z*,i € {1,2, 3} are Cartesian

coordinates (later we will specialize to quasi-Cartesian lightcone coordinates). Then define

)

Q= x? ie{1,2,3} (2.74)

to be a radial unit vector where r := /d;;2'27. The radial direction will be referred to as
the longitudinal direction while the orthogonal space will be referred to as the transverse

directions. Next, define a projector v which projects to the transverse space, orthogonal

to

We may transform the Cartesian coordinates z*,i € {1,2,3} to spherical coordinates,

(r,0,0) by
't = rQi(64) (2.76)

where A € {1,2} and 6' = 0, 6% = ¢. This implies

ox’ ; ox’ ;
07’ = Q s W = TQA (277)
where
- o)’
QY = — 2.
A opA ( 78)

Since z;z° = r* which is independent of 6%, we have
Q04 =0 (2.79)

In later sections, we will explicitly set Q' = cosf, O = sinfsin ¢ and Q* = sinf cos ¢.
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With this choice, two additional identities hold:

U = Qg (2.80a)

QABQL Q) = Y (2.80b)

where Q45 is defined through the matrix representation, Q45 ~ diag[l, sin® 0].
The tidal moments can be split into two sectors, namely the even parity sector and
the odd parity sector. To see this, we first define a parity transformation as follows. A

parity transformation is defined by the following change in tetrad vectors:
Ao — Ao, Ai = =N, 1 € {1,2,3} (281)

That is, the timelike vector remains unchanged while the three spacelike vectors change

sign. Under such a transformation, the tidal moments change as follows:

Eij — Eijy Eij — —Eiji (2.82)

Bij — —Bij, Bijk: — Bijk (283)

Hence, &;; and &, both transform as Cartesian tensors under a parity transformation.
For this reason, they are said to have even parity. Meanwhile, B;; and B;j; transform as
pseudotensors and are therefore said to have odd parity. The goal is now to construct a
set of tidal potentials out of the tidal moments and Q. As a consequence of the parity
transformation properties above, the potentials will be divided into an even parity sector
and an odd parity sector. We demand that each scalar potential should transform as a
scalar under a parity transformation. Likewise, each vector potential should transform
as a vector under a parity transformation. Furthermore, each vector potential should be
orthogonal to . Finally, each tensor potential should transform as a tensor under a
parity transformation and should be orthogonal to Q' as well as being tracefree. Each
tidal potential, regardless of type, should correspond to an irreducible representation of

SO(3), labeled by multipole order . In the following, we spell out this last point in a bit
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more detail. Generically, the even parity potentials are constructed as follows:

ED = &y QR QM (2.84)
eV = 7€ Q2 QR (2.85)
&(;) - 2%j7jm5jmk3-~k19k3 c Q4 %‘jg(l) (2.86)

where &, p,..k, are the components of a constant STF tensor of rank I. The potentials

satisfy the following eigenvalue equations (see appendix C):

Py DDED +1(1+1)ED =0 (2.87)
r2y D DEW + 114+ 1) — 1)€Y =0 (2.88)
P2y DDED + 11+ 1) —4ED, =0 (2.89)

where D; is a derivative operator defined through
DT} gy = % 0™ Y, " Op Ty oy (2.90)

where Tj,,...;,,q € N are the components of an arbitrary tensor. The odd-parity sector is

constructed in a similar way:

BO — By Q- QM (2.91)
Bz(l) = GianmBnkz"-leb e le (292)
Bz(jl) = (GianmBnqks-..k17? + EjanmBnpk:s"-klﬁ)/f)ng e le <293)

satisfying a set of eigenvalue equations completely analogous to (2.87)-(2.89), simply by
replacing £ with B.

As an example, a scalar potential is constructed in the following. For the even-parity
sector, the simplest case involves the quadrupole tidal moments &;;. As we have seen, &;;
transforms as a tensor under a parity transformation and so £9 := £;Q'Q) transforms
as a scalar under a parity transformation. Since, by construction, &;; is symmetric and
trace-free, it also satisfies the scalar potential eigenvalue equation for [ = 2. Hence, £
satisfies all the criteria demanded of a tidal scalar potential. Similarly, &' := ~"&,,,Q"

satisfies all the requirements for a vector tidal potential. Going through this procedure, we
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end up with the potentials listed in table 2.1. We will primarily work with quasi-spherical

£ = glele B? = EilekBlQO
— . . .. £q
Eij = 20775 Eu + i€ B = deu B, Q"
E° = gklkaQlQm B?J - %(eilekBlmnfymj + EjlekBlmn'ym»Qn

& = %’kgklleQm
&y = 27 Ehm Q™ + 73, E°

Table 2.1: Potentials constructed from &;;/&;;x (left) and from B;;/B; ;i (right). Superscript
q means quadrupole, while superscript o means octupole.

lightcone coordinates in the chapters to come. For this reason, it will be useful to convert

the potentials to spherical coordinates. This is accomplished using 2. For example,
EL =8, &l = E5QL0% (2.94)

The potentials constructed in this chapter will serve as the building blocks for both the

background metric and the Poisson-Vlasov metric.

2.5 The background metric

This section covers the metric of the tidal background. The main goal will be to express
the components of the background metric in a set of lightcone coordinates. The notation
used closely follows that introduced in section 2.3.2.

Firstly, the components of the inverse metric in quasi-Cartesian lightcone coordinates

are given by

9" = g*?0,v05v (2.95)
g"" = g™ 0,v0pa’ (2.96)
g7 = g*P 0,7 g2 (2.97)

By virtue of (2.57) and the fact that [, is null, g"* = 0 identically. Using (2.57) and (2.59),

we compute

G = NP = — ALY = = (2.98)
r T
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where the second equality follows from (2.62). Similarly,
gij = )\21)\%,9(150&,&06,5 - )\glaalﬁ/uﬁ/Qj - )\i,Jal,gluﬁlQi (299)

For these components, we will use (2.49), (2.50) and (2.55) and write the result as a power

series in r. For notational convenience, we thus write

¢9 =GI 4+ rGT 4+ 2GY +3GT + .. (2.100)
and compute
Gy =69 (2.101)
Gi = (2.102)
GY = 3[Ry — (R + R0 + R, J,
(Rl = Ry o QP Q™) + (R0 Q™ — Ry, 02500 (2.103)
Gy = _% [Q(Riojo — (R, + R )Y + R QIOF) + (R — R Q' QM) Q7
(R — Ry Q) QY + 2(_Rioj0|lQl + (Rimjou + ijioll)Qle - Rimjk\leQle)
+ (~Romou Q" + Rl ")V + (= R 0" + RjkmO\leQle)Qi]
(2.104)

where the components of the Riemann tensor are frame components with respect to the
tetrad {)\a}ae{071’2,3} and overdots denote differentiation with respect to proper time. For

example,

!

Rio = R 5o N N N ¥ e (2.105)
We introduce the potentials
Pij = Rz’OjO — (Riij + iji(])Qm + Rzmijka (2106&)
P, := PV = RipnoQ™ — RimioQ"QF (2.106b)
Qij = —RiojomQ™ + (Rimjoir + iji0|k)Qka - RimijQkaQl (2.106¢)
Qi = QY = — Riomop Q™" + Rippop Q" QFQ! (2.106d)
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allowing us to write
G = g(Pw + P 4+ PIQY) (2.107)
GY = —E(2P” + P'QY + PPQY) — E(2Q” + Q'Y 4+ Q') (2.108)
Notice that the inverse metric takes the form

g*" =0 + p? (2.109)

where n°? are the components of the inverse Minkowski metric in lightcone coordinates
(" = 0,7" = Q and " = 6Y) and h" = r2GY +r3G¥ + O(r*) with all other components
vanishing. Hence to order 7*, the background metric is then given by gus = Mg — hags

where indices are lowered using the Minkowski metric. Explicitly, we have

1 .. 1
g ==L =P+ 2P+ 21°Q + O(r") (2.110a)
2 1 .. 1
goi = Qi +7) [_§T2Pk + Zr3Pk + ZT?’Qk + O(T4)} (2.110Db)
kom |1 2 L sy L3 1
9ij = Yij T Vi —37“ Pim + 67” Py + 67“ Qrkm + O(r") (2.110¢)

where P := P,Q' and Q := Q;€". It will be useful to express (2.110) in terms of the
tidal potentials of table 2.1. Firstly, with the notation employed in this section, the tidal

moments of quadrupole order are written as

(C/’ij - RinO (2111)
1
Bij = §€imannj0 (2112)

and the tidal moments of octupole order are written as

Eijie = (Raojow)™" (2.113)

3
Bijx = g(eimannjO\k)STF (2.114)

The next step will be to express the Riemann tensor and its derivatives in terms of these
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tidal potentials. Of course, R;pjo = &;;. Inverting (2.112), we obtain
Rijko = €ijmB™k (2.115)

having made use of the identity eijkem”k = 6;"07 — 0;'0;". To obtain an expression for
Rimjn, we start by making the following observations. Firstly, by using the completeness

relation of equation (2.8), we have
0= Ry = —uu" Rpjor + 07 NN Ry (2.116)
Taking frame components then yields
0™ Rimjn = Eij (2.117)
Additionally, the following tracelessness condition holds:
§96™ Ripin = 0 (2.118)

Hence the number of independent components of R, is five, the same number of
independent components as that of &;. This then implies that (2.117) can be inverted to

give an expression for Rj,,;, in terms of &;. From (2.117), we obtain

Ry313 = En+En= —833 Ri213 = 523, Ri293 = —513

Rigos = E12,  Rogos = Exn + E33 = —En (2.119)
as the independent components of R;,,j,. These are summarized as
Ripji = 0ij&r + 0y — 0air. — djx€a (2.120)

Moving on to the derivatives of the Riemann tensor, we start by expanding the definition
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of gl]k

1

Eijk = g(R’L'OjOUC + Riokolj + Rjokols)
1 . .
= Riojor — g(Rjkz'O + Rikjo)
1 . .
= Ri0j0|k - g(ﬁjkmBmi + EikmBm]’) (2121)

where the second equality follows from the second Bianchi identity. Hence,
1 o o
Riojor = Eiji + g(ﬁjkmB i + €emB j) (2.122)

In a similar fashion, we have

4 1 : .
Rz‘jko\l = Q’jm |:§Bmkl — g <€mln5nk + Ekln(c/‘nm>:| (2.123)
1 : .
Rijriym = —€ijP e’ |:5pqm + 3 <epmn8"q + eqmnB"p)} (2.124)

Inserting these expressions into (2.106) results in the background metric (2.110) taking

the following form:

1... 1

Goo = =1 =€ 4 21N — o€ + O(r) (2.125a)
2 1o e o 1

Goi = s — 57“2(5? - B) + 3 (& - BY) - ;17“3(5? - B7) + O(r") (2.125b)
1 5 - ; 1 o o

9ij = Vij — 57"2(5% —Bj) + 1—87"3(5{} — B}) — éri‘(eij — B) + 0@ (2.125¢)

For future reference, we also note the components of the background metric in quasi-

spherical coordinates. As is always the case, the metric transforms according to

~ ~ﬁ
spherical __  Cartesian 0z 07
Gy Joup ozt Oxv

(2.126)

where % o € {v,2', 27, 2°} are quasi-Cartesian coordinates and =", u € {v,r,6"',6%} are

quasi-spherical coordinates. We then use (2.77) as well as (2.94) to arrive at the following
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non-vanishing components of the background metric in quasi-spherical coordinates:

G = —1 — 1289+ %7"350‘ — %r3€° + O (2.127a)
Gor =1 (2.127Db)
gua = —31¥(€4 — BY) + 57 (€1~ BY) - 7r'(€3— BY) + O) (2.1270

915 = Qs — 5Ly — Blp) + 157" (En — Bls) — 5% — Bis) + O0°)
(2.127d)

Note that g,, = 1 is exact.

2.6 The Poisson-Vlasov metric

This section introduces the metric that describes the spacetime around a tidally deformed
Schwarzschild black hole, namely the Poisson-Vlasov metric. A detailed derivation of the
metric lies outside the scope of this text and we instead give a brief overview of some of
the steps taken in deriving it.

To start with, we again consider a smooth timelike geodesic v : [a,b] — .# in some
background spacetime, as described in the previous sections. We then consider a Ricci
flat normal convex neighborhood 4 C .# of ~, equipped with a set of quasi-spherical
lightcone coordinates (v, 7,60, ¢). In contrast to the previous sections, we now place a black
hole of mass m on . This black hole will be referred to as the tidally deformed black
hole (or simply, the deformed black hole) and will be the centerpiece of the remainder of
the text. The horizon of the deformed black hole will trace out a world tube as depicted
in figure 2.2. We demand that this world tube fit well within N, which is achieved by

imposing the following:

m< R (2.128)

where R is the length scale that characterizes the tidal environment. More precisely, R is

the local radius of curvature of the background spacetime evaluated at the position of the
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deformed black hole. In particular, R is defined by

R? = NI (2.129)

where K is the Kretschmann scalar (evaluated at the position of the deformed black hole).
It is also required that the neighborhood .4 itself should be small as compared to R. In

particular, we demand that
r<<R (2.130)

Two further implications of (2.128) and (2.130) are that the black hole is weakly perturbed
by the background, and that the world tube is small as viewed on the scale of R. It is in
this sense that it is sensible, at least approximately, to speak of the black hole following a

worldline.

World tube, traced by
the horizon

v = constant

Figure 2.2: The world tube traced by the black hole horizon. The corresponding lightcones
are generated by a congruence of null geodesics. On each lightcone, v is constant and
along each generator, the angles ' and 6* are constant. Furthermore, r still serves as an
affine parameter along each generator. The generators now converge toward the world
tube and not a worldline.

Despite the fact that there is no longer a worldline for the lightcone coordinates to

be calibrated with respect to, each surface of constant v is still a lightcone. The main
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difference from the background case, is that the generators of each lightcone now converge
towards the world tube traced by the deformed black hole, as opposed to a worldline.
Nevertheless, we can still make sure that on each lightcone, v is constant (this is true by
definition) and on each generator, the angles #* and 62 are constant. Furthermore, r can
still be made to serve as an affine parameter along each generator. Shortly, we will see
that this is accomplished by imposing a set of gauge conditions on the tidal perturbations.
Firstly, however, we make a comment on the "rigidity” of the lightcone coordinates in the
black hole spacetime. As already mentioned, the lightcone coordinates on each lightcone
are no longer as well behaved as we might like. For instance, we are no longer able to
say that r» = 0 corresponds to a point on a worldline v. We can make up for this, at
least partially, by matching the asymptotic behaviour of the black hole spacetime to the
behaviour of the background spacetime in the following sense. Far from the deformed
black hole in a region where r > m (but still » < R, of course), the gravitational influence
of the deformed black hole will be small compared to that of the background. Namely,
light rays will behave (nearly) the same in this region as they would in the background
spacetime. This motivates the choice to tune the black hole lightcone coordinates so
that the asymptotic description of each generator of a given lightcone coincides with the
corresponding description in the background spacetime. This choice will manifest itself in
the components of the Poisson-Vlasov metric, which will be required to reduce to those of
the background metric in the asymptotic region r > m.

In going from the spacetime around an unperturbed Schwarzschild black hole to the
spacetime around a tidally perturbed Schwarzschild black hole, we would like for the
lightcone coordinates around the black hole to retain their geometrical properties, as
mentioned above. In the following we will see how this leads to the so-called lightcone
gauge. Start by considering the metric of an unperturbed Schwarzschild black hole, denoted

¢°. In Eddington-Finkelstein coordinates, the line element corresponding to ¢° is given by

ds® := g), da*da” = — fdv* + 2dvdr 4 r*dQ? (2.131)
where
2
fi=1- Tm d02 = d6? + sin® d¢? (2.132)
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Furthermore, the advanced time v is related to the usual coordinate time through

v=t+r+2mln (L—1) (2.133)
2m

We then introduce a perturbation with components p,,, and write the full metric of the

tidally deformed black hole as

G = Gy + Dy (2.134)

In our case, the perturbation components p,, will be functions of the tidal potentials of
section 2.4 as well as a set of radial functions to be introduced later. Furthermore, it is
assumed that any v-dependence of the metric is entirely contained in the tidal moments
and that this v-dependence is slow in the sense that it has a characteristic time scale of
order R. In particular, this implies that any process which occurs over time scales of
order 2m cannot be described using this metric. The perturbation is constructed as a
power series in r/R and in this text, we only consider terms through order (r/R)?. Terms
of order (r/R)? will be referred to as quadrupole order terms. These terms will contain
the quadrupole moments &;; and B;;. Next, the terms of order (r/R)® will be referred
to as octupole order terms and will, in addition to the quadrupole moments, contain the
octupole moments &;;; and B;j;;, as well as the v-derivatives of the quadrupole moments.
In the unperturbed case, corresponding to p,, = 0, we recall that the vector field { with

components given by

l,:=—D,v=—0du (2.135)

is null. As we saw in section 2.3.2, this implies that each surface of constant v is a null-
hypersurface of the spacetime. In particular, these null hypersurfaces are past lightcones.

The index of [, is raised according to
= —(g")" = -5 (2.136)

making it clear that 6 and ¢ are constant on each generator of the null congruence
corresponding to the lightcone and that —r is an affine parameter along each generator.

The geometrical meaning of the lightcone coordinates is thus encapsulated in equations
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(2.135) and (2.136). For this to carry over to the perturbed spacetime, we then require
that (2.135) and (2.136) continue to hold when the perturbation is introduced. Allowing

for a non-vanishing perturbation, we have

Lo = (g0, + D)l (2.137)

Hence the requirement to be imposed is equivalent to demanding that p,, " = 0. Written

out more explicitly, this amounts to the following:

Por = Drr = Pro = Préo = 0 (2138)

Collectively, these four conditions are known as the lightcone gauge conditions. As shown
by Poisson and Preston, there is in fact some residual gauge freedom which allows one to

further impose
Pvv = DvA = 0 at r = 2m (2139)

These are known as the horizon-locking conditions and imply that the black hole horizon

is located at
Thorizon = 2m + @ [(m/R>5} (2140)

In other words, even in the perturbed case, the horizon continues to be described by
r = 2m at the level of precision maintained here. The following ansatz is then put forth
for the metric around a tidally deformed Schwarzschild black hole, utilizing the lightcone

gauge from above (including only terms through octupole order):

1 1
oo = — (L2 4 Lreg Lga— Lireqeo (2.141a)
Gor =1 (2.141D)
2 3 qeq _ 1apa Ly adeq  1qd g L 4, opo  ropo
Goa = =37 (ef€4 — b3BY) + 3" (65%5,4 - b5%BA) 1" (e9€a —03BY)  (2.141c)
1
gap = 1r°Qap — §7°4 (e7€4p — b7B4p)
5 d d 1 (0] (e} O (e}
+ 5 18 (esd 533 bsd B%B) 67"5<€75AB — b7B%pR) (2.141d)
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where the radial functions, e}, €7, b} and b are all required to approach unity in the limit
2m/r — 0. Note that g, = 1 is exact, owing to the properties of the lightcone coordinates
with respect to which the components are given. The motivation for the ansatz above
is threefold. Firstly, it reduces to the Schwarzschild metric when the perturbation is
switched off, corresponding to setting all tidal moments to zero. Secondly, it reduces to
the background metric in the limit 2m/r — 0. Thirdly, the expansion in tidal moments
as above, amounts to a decomposition of the metric into a basis of spherical harmonic
modes. This last point is not one we will dwell further on, but simply mention it for
completeness sake. The main task at hand is then to impose Einstein’s field equations in
order to determine the radial functions. We will not go through the computations here,

but simply list the results obtained by Poisson and Vlasov. They can be seen in table
(2.2).

el = f?

3= f[1+L(5+12loga) — (27 + 12log z) + 15 + 2]
es=1f

eg_j[1+- L(13+ 12log z) — 227 — 35 — 7]

ed=1— 5 2$2

eg =1+ 2(4+3loga) — 22 — =(7+ 3logz) + 2
@—ﬂ(—ﬂ

ef=f1-3)

e&9=f+ 1=

bl =f

bi=f[1+ &(T+12logz) — 525 — 555 — 7]
w_1_§§

bi=1+2(5+6logzr) — % — 25(2+3logz) + ¢
by = ﬂl——)

by = f — 10:63

Table 2.2: Radial functions. Here, x :=r/(2m) and f:=1—1/x.

In certain cases, it will prove useful to express the metric in standard Schwarzschild

spherical coordinates (t,r, 0, ¢). Denote by g the metric in these coordinates. Then using
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vi=t+r+2mln(r/(2m) — 1), we get

gtt = Gwv
g L +1
Gtr = ZG9vv
/
1 /1
g?‘r == | 79w T 2)
f (f
JtA = Gua
5 1
GrA = ZG9vA
/
9AB = JAB
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Chapter 3

Computing tidal potentials for a

Schwarzschild perturber

In this section, we compute the tidal potentials for a Schwarzschild black hole of mass
M > m. That is, we consider the case in which the Schwarzschild black hole of mass m
is perturbed by a much larger, background, Schwarzschild black hole of mass M. The
resulting binary system is thus an EMR and the tidally deformed black hole can be viewed
as a test-particle orbiting the background black hole.

Sections 3.2 and 3.3 closely follow [10].

3.1 Introducing a second coordinate system

Since we are considering a binary system of black holes, it will prove useful to introduce two
coordinates systems, namely one for the background black hole and one for the deformed
black hole.

First erect a Schwarzschild coordinate system around the background black hole. With
respect to this coordinates system, the coordinates of the tidally deformed black hole will
be denoted (¢',7', 6", ¢"). Next, establish a second Schwarzschild coordinate system around
the deformed black hole. With respect to this coordinate system, the coordinates of a
test-particle orbiting the deformed black hole will be denoted (¢, 1,0, ¢). See figure 3.1 for
an illustration.

Furthermore, with reference to the background black hole, we denote the specific energy

and specific angular momentum of the deformed black hole as £’ and L' respectively.
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Similarly, with reference to the deformed black hole, the specific energy and specific angular

momentum of the test-particle will be denoted E and L respectively.

Deformed black hole Test-particle

Background black hole

| |
| I
: Deformed black hole '

|
| |

| |
Ao | |
~ ~

Figure 3.1: Coordinates of the tidally deformed black hole in relation to the background
black hole (left). Coordinates of a test-particle in orbit around the deformed black hole
(right).

With respect to the coordinate system of the background black hole, the non-vanishing

components of the background metric ¢' are given by [18]:

Yoo = — (1 - QM) (3.1)

/r:/
, 1
911 = 1 _ 2M (3.2)
Gy = 1" (3.3)
G = "% sin” 0f (3.4)

where it is understood that the components are evaluated at the position of the deformed

black hole. Furthermore, the independent, non-vanishing components of the Riemann
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tensor are then easily computed:

2M

Royo1 = B (3.5)
M 2M

Rppgr = o (1 T ) (3.6)
M sin? ¢’ 2M

Riges = — (1 T ) (3.7)

M

Rigp = S — (3.8)
M sin® ¢’

Rig3 = M — 1 (3.9)

Rlysos = 2M7' sin® ¢/ 3.10

2323

Assuming the deformed black hole follows a geodesic v : [a,b] — ., the usual integrals of
motion apply [10]:

= N _E;M (3.11)
i = B — %2 (1 — g) (" + K) (3.12)
02 = r—h (K - Si;f'g,) (3.13)
¢ = %IHQQ, (3.14)

where L, is the specific angular momentum about the axis of symmetry of the deformed

black hole and K is Carter’s fourth constant (see appendix D) given by

%

sin? @/

K =7pj+ (3.15)

where py, is the latitudinal component of the deformed black hole’s specific angular

momentum. Finally, overdots denote differentiation with respect to the proper time along

7.

3.2 Constructing an orthonormal tetrad

In accordance with the procedure outlined in section 2.4, we start by constructing an

orthonormal tetrad, {Aq}ac{o,1,2,33 along 7. Denote the four-velocity of the deformed black
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hole by u" and set \g := v'. To construct the next vector of the tetrad, we introduce the
Killing-Yano tensor field f for the Schwarzschild geometry (see appendix E for more on
Killing-Yano tensors). With respect to the Schwarzschild coordinates (t',7,6',¢"), the
components of f may be denoted f,,. The defining equations for f are then f,, = —f,,

and
Dyfov +Dyfo =0 (3.16)

For the Schwarzschild spacetime, the nonvanishing components of f are fo3 = —f33 =
"3 sin§. Consider then the vector X with components X* = K~Y2f# y”. This vector is
parallel transported along . Indeed, since u obeys the geodesic equation, since K is a

constant of motion and since the connection D by assumption is metric compatible, we get

D
EX“ = K '2g"uPu’ D, f,, =0 (3.17)

having used the anti-symmetry of D, f,, in p and v. Furthermore, X is normalized:

X,uXM = K_lf,uvfuguuua = K_IQ,UVUNUV =1 (318>

where @, = fuu f", is the Killing tensor corresponding to Carter’s constant (see appendices

D and E). Finally, X is orthogonal to A:

XN =KV fu"u" =0 (3.19)
having used the antisymmetry of f. In conclusion, we can justifiably set Ay = X.
Explicitly,
L// T/ e
A= 10,0 = — 0 3.20
? ( T KY2rsind” K12 sin ¢ ) (3:20)

In order to construct the remaining two members of the tetrad, we put forth two candidates,

A and \j, solely inspired by the fact that they are normalised and orthogonal to both
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each other as well as to A\g and A\y. They are given by the following:

N, = r v 00 (3.21)
C\VEreaoE) VR |

E’ K K K412 . \/K 42 .,
L= 4 ! z

They are, however, not parallel transported along ~. To remedy this, we introduce a

time-dependent rotation angle W. The final two members of the tetrad are then given by

A = N cos U — \;sin W (3.23)

A3 = A sin U + X} cos W (3.24)

Owing to the properties of A}, \;, these vectors are normalized and orthogonal to both
each other and to A\g and A,. Now, we would like to determine a condition on ¥ which

ensures that they are parallel transported along . Explicitly, we demand that
u'D,N, =0, ie{l,3} (3.25)

for all v € {0,1,2,3}. It is straightforward, albeit tedious, to show that we must then

have:

. Kl/ZE/
U=
K+ r?

(3.26)

This finishes the construction of the tetrad. Before moving on to calculate any tidal

moments, it will prove useful to express the tetrad in Carter’s basis {ed}ae{071,273}, given by

ep(T) = (;,0,0,0 (3.27)
(0, 2 ,o,o) (3.28)
eﬁ(f):(o,o, ! ,0) (3.29)

0,0,0, — (3.30)
T 7! (7) sin 0 '




Explicitly, we decompose each A, with respect to Carter’s basis according to
A= Naek (3.31)

where 5\3 are the components of \, with respect to Carter’s basis. We also decompose
tensors on 7 with respect to Carter’s basis. If T' is an arbitrary rank (k,[) tensor on vy

with components given by 7" "#*, ., then we write

B _anedr 0 Hk b b
T vy =T Bty €y T CarEt  EL (3.32)

where

et = n"guel (3.33)

defines the dual of Carter’s basis. For future reference, we explicitly write the components

of our tetrad in Carter’s basis:

~ E r ., L
= (i g ) o
A = N cos U — Nysin ¥ (3.35)
. L, 26/
Ao = (o,o, e K1/2> (3.36)
A3 = N, sin W + A} cos U (3.37)
where
~ 1.0 E/ /
N = i , L ,0,0 (3.38)
VU +2) (1= 20) (5 4 02) (1 - 2

. = , K y
e (\/(K+r/2) (1—27~_A/4)E7\/(K+7"2) (1_1_]\’4)7“7

K+, |[K+r? L,
K e, K r'sin 9’) (3:39)
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Furthermore, the nonvanishing components of the Riemann tensor in Carter’s basis are

4 - R =_"
0101 — 2323 r/3 (3.40)
M
4 =R - R = _R... ="
0202 — R0303 - 1212 1313 '3 (3-41)

3.3 Tidal moments

In this section, we put together the pieces from the previous section in order to compute
the tidal moments for a Schwarzschild perturber. Having introduced Carter’s basis, we

first note that the tidal moments of section 2.4 can be written as follows:

gij = Rdi)éd:\?j\gj\?;\o (342)

By = Rt XA (3.43)
~ et e i\ STFE

Eige = (Raac NN (3.44)
~ e e 2\ STF

By, = (R;Bé d,éAgAngAgAQ (3.45)

Without loss of generality, it will be assumed that v lies in the ' = 7/2-plane and that
¢’ > 0. With this choice, L', = L' = 1"2¢/ is the total angular momentum of the orbiting
body and K = L. From this point forth, we will exclusively be working in Carter’s
basis and so we drop the tildes for notational convenience. The electric quadrupole tidal
moments are given by:

_M
=3

FAPAN0 = AL+ 20202) + 2000 (AL + AIN0) — AN (AZA2 + AZAD)

E; AD2(=2AA1 4 AZAZ 1233 — (AD2(20000 4 2202 + A202)

FAN (AL + A?A})] (3.46)
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Explicitly, the nonvanishing components are

12 L/Q M
En = (1 - BL cos? \I!) —

7"/2 7“’3
L?\ M
12 L/2 M
E33 = (1 _ 3 2 sin? \IJ) 5
r r
2 L/2
Ei3 = —3LM cos ¥ sin U
7’5
with
E'L
= L/2 +TIQT

Furthermore, the nonvanishing electric octupole moments are given by

Ein = %ﬂi&w [(L’2 +7%) (E'r' cos ¥ — L't sin ¥) cos® ¥
—QT;E/ (I/2 - 3;/2) cos ¥ + L/zrlz sin ‘Il]
sz = %ﬂi’?r@ [(L’2 + r'Q) (E'r'sin U + L't cos ¥) cos* ¥
_21;7;/ (L’2 + 110/2> cos ¥ — 27:5E/ (L’2 + 37;2) sin \I’}
Ei99 = —% {E'r' (L'2 + 37;2) cos U — 57.;[/ <L'2 + %/2) sin \P}
Eig3 = _%ﬂi/?r'ﬁ {(L’2 +7%) (E'r' cos ¥ — L't sin ¥) cos® ¥
_13E C508 (D) (L’2 N 1?2’2) N f’L’;in\If (L’2 N 42’2)}

3
15M

5333 - /L/2 + 7“’27“’6
—'L <L’2

) (E'r"sin U + L7 cos ¥) cos® ¥

3Ev// 2/2
i >COS\II— E <L’2—i— g>sin\111

5223 = \/WT’G |:

20

I/ /2 2
oL (L’2 ) cos U + E'y' (L’2 + 3%) sin \111

(3.47)
(3.48)
(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)



Similarly, the nonvanishing quadrupole magnetic tidal moments are

3ML

Biz = ————VL?+1r"?cos ¥ (3.58)
r
3ML'
Byy = ————VL?+r?sin¥ (3.59)
,

whereas the octupole magnetic moments all vanish identically. We will primarily concern
ourselves with the case in which + is radial, in particular we assume that ¢’ = 0 along 7.
This implies L' = 0 and ¥ = 0. Hence, ¥ is an arbitrary constant which we take to be

zero. With this choice, only the following tidal moments remain nonvanishing:

2M M
En=— e Expp = E33 = e (3.60)
and
6ME' 3ME'
Eim=—p— &m=C&zm=-— (3.61)

3.4 Tidal potentials

In this section, we convert the previously computed tidal moments into tidal potentials.
We start by placing a test-particle in orbit around the tidally deformed black hole and then
assign to this test-particle the coordinates (t,r,6, ¢) as described earlier. We will need to
decide on an orientation of the resulting binary system with respect to the background

black hole. Two common choices are [4]:

e Polar configuration. This amounts to setting Q' = cosf, Q? = sinfsin¢ and

0 = sin 6 cos ¢.

e Equatorial configuration. This amounts to setting Q' = sin 6 cos ¢, Q? = sinfsin ¢

and Q3 = cos®.
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We will choose to consider a polar companion (see figure 3.2). In spherical coordinates,

the electric quadrupole potentials are then given by

£l = %[1 — 3cos? 0] (3.62)
g - g% in 20 (3.63)
&L = —3% sin® 6 (3.64)
Esh = 3% sin® 0 (3.65)

The electric octupole potentials are given by

3ME'
E=——15 cos*§ — 3] cos 6§ (3.66)
r
o 3SME' ,
& =— o [5cos?6 — 1] sin 6 (3.67)
T50ME" |1 1
& = —— {Z (sin 2¢ — sin® 2¢ + 4) cos® 0 + 3 sin 26 sin 2¢ (sin ¢ + cos ¢) cos* §
r
1
o (52sin*2¢ — 52sin 2¢ — 198) cos™
73 1 198 125
+—500 sin 26 cos® 0 <cos3 o — 5 cos ¢sin2¢ — g COS o — s sin gz5>
83 83 271 73 73
+ (% sin 2¢ — =00 sin? 2¢ + ﬁ) cos? 0 + 500 sin 26 (cos ¢ + sin ¢) — ﬁ} cos 6
(3.68)
375ME' 208 83 1 73
E9y = i |:<COS4 6 — o cos 0 + 55> cos* ¢ — 1 (0052 0 — 35) sin 26 cos® ¢
I . 4 73 . _ 208 83 9
+ (4 cos” 0 sin 20 sin ¢ — cos™ ¢ £o0 S 20sin ¢ + 125 °°8 0 195 ) c08 o
1 1 104 73 83
+ (Z cos” 0 sin 20 — 3 cos* 0 sin ¢ + o5 cos” 0 sin ¢ — =00 sin 20 — 250 sin gb) cos ¢
27 83
50 cos? 0 + ﬁ] sin 26 sin 6 (3.69)
. STHME'[1 , 1.
£ = o {5 (cos ¢ — sin ¢) cos® O + e 20 cos 2¢ cos 0
+E (sin ¢ — cos @) cos  — 83 sin @ cos 2¢ | sin® 26 sin 2¢ (3.70)
250 250 '

where E’ is the specific energy of the tidally deformed black hole.
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Binary

Background black hole

Figure 3.2: TIllustration of the binary system in the polar configuration.
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Chapter 4

ISCO shifts

In this chapter, we consider the shifts in the radial position, specific energy and specific

angular momentum that are brought on by the presence of a tidal field. We start by

considering the problem at quadrupole order and then later move on to octupole order.
Sections 4.1 and 4.3 closely follow the methods of [4]. Section 4.2 is based off a

conversation with Troels Harmark and Daniele Pica.

4.1 Quadrupole order ISCO shift

Suppose a test-particle is orbiting an unperturbed Schwarzschild black hole of mass m in
the 6 = 7/2-plane along a geodesic 8 : [a,b] — .#. Then the innermost stable circular

orbit (ISCO) of the test-particle is located at 1o = 6m. While orbiting in the ISCO, the

specific energy of the test-particle must be Fy = %ﬁ while the specific angular momentum

of the test-particle must be Ly = v/12m. In this section, we seek to find the corrections to
these quantities, brought on by the presence of a tidal field. We do this perturbatively,
first noticing that (2.128) together with M > m implies

Mm?
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for any ' > 2M. Hence € is a valid expansion parameter. To quadrupole order, we may

write

risco = 6m +rie€ (4.2)

LISC’O =vV12m+ L16 (43)
2v/2

Ersco = — Eqe (4.4)

where 1, Ly and E; are the shifts in the radial coordinate, specific angular momentum
and specific energy respectively. Given the current setup, the non-vanishing components

of the metric (2.141) are as follows:

goo = —f (1 + ﬂgf) (4.5)
gor = —erff (4.6)
g = % (1 - %) (4.7)
ga2 =17 {1 — T—Ag(zm‘z — 7’2)] (4.8)
gss =17 {1 + %mm? — 7“2)} (4.9)

with respect to the usual Schwarzschild spherical coordinates. The metric is independent
of both ¢ and ¢, giving rise to two Killing vectors, & and £ with components given by
& = 0y and &} = d5. The two corresponding conserved quantities are the specific energy

E and specific angular momentum L:

. ) r2fMYN . r fM
E = —U'ft:—goot—9017’:f<1+ 7{3 )t"‘ ;3 r (4.10)
; 2 oMY 5
L:=u-& =gsp= |14+ (2m —r)773 ¢ (4.11)

Overdots now denote differentiation with respect to the proper time of the test-particle.
Note that by setting M = 0, we recover the usual conservation of specific energy and

specific angular momentum for the unperturbed Schwarzschild solution.
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Inserting £ and L into u"u, = —1, yields the following differential equation:

E? =74+ V(r) (4.12)
where the potential V' is given by
Ly
Vi(r):=—1+-—L") goo (4.13)
933

Expanding V' to quadrupole order, we get the following:

2(L2+1r?) (5 —m)  (2m —7r) (2L* (m? +rm — r?) + 2mr® — 1)

_ 2
V(r) = 3 + o e+ O(e)
(4.14)
Stable circular orbits are characterized by
av (r) d*V (r)
E*=V(r)=0 =0 0 4.15
R (1.15)
Inserting (4.2)-(4.4) into (4.15), we find
ry = —1536m (4.16a)
Ly = 174/3m (4.16D)
2
B, = 0V2 (4.16¢)
3
Furthermore, the ISCO frequency, Q;s5c0 = ng/ t evaluated at the ISCO, is then
14491
29 (4.17)

Qrsco = —
1SCO 6\/6m

A straightforward modification of the above procedure lets us compute the shift in the
photon-sphere for the tidally deformed black hole. Indeed, we simply impose v u, = 0

instead of u"u, = —1. We obtain (where PS stands for photon sphere):

bps = 3v/3m(1 — 5e) (4.19)
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where b := L/E is the impact parameter. The photon sphere frequency is:

1+ 5e

3\/§m

Ops = (4.20)

4.2 Time dependence in octupole order computations

This section is an interlude pertaining to the advanced-time parameterization of v. When
we defined the tidal moments in section 2.4, we considered a test-particle travelling on a
geodesic v in the background spacetime. Having parameterized 7 in terms of its proper
time 7', it naturally follows that the tidal moments are functions of 7. However, we
are really considering a binary system consisting of a tidally deformed black hole and a
test-particle. In the region where the binary is far away from the background black hole,
these two descriptions match. In other words, we may in this case consider the binary as
a point particle and use 7’ to parameterize v. However, as the binary moves closer to the
background black hole, the tidal field increases in strength and the structure of the binary
becomes important. Hence, we can no longer describe the binary as a point-particle. As
mentioned earlier, this means we have to consider a world tube around ~ traced by the
tidally deformed black hole. For this reason, 7’ loses its usefulness as a parameter and we
must instead switch to the advanced time coordinate v. The two regimes thus described

are illustrated in figure 4.1.

. @
® LDinary

e lest-particle

Y | Y.

y = ~y(v)
&ij = &;(v)
‘Sr_',l == S(j ["—r)

M

Figure 4.1: Left: Asymptotic region where v and the tidal moments are parameterized by
proper time. Right: Binary region where v and the tidal moments are parameterized by
advanced time, v.
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In the intermediary region between the two regions above, both descriptions must be

valid, which implies that
v="1"+7r+2mlog(r/(2m)—1) (4.21)

At quadrupole order, this distinction is not of importance since time-dependence is
neglected altogether. However, in the next section we go on to octupole order where it

becomes important.

4.3 Octupole order ISCO shift

In this section, we go through the same procedure as in section 4.1 but this time to
octupole order. To be precise, the question we are addressing in this section is: If the
binary is at some point 7" with instantaneous velocity dr’/dv, then what are the ISCO

parameters rrsco, Frsco and Lisco at this point. To octupole order, we write

risco = 1o + ri€ + roe'’? (4.22)
Lisco = Lo+ Lie + Lye*/? (4.23)
Ersco = Eo + Eje + Eyé'? (4.24)

where ry, Ly and E5 are the octupole order shifts to r», L and E respectively. The

nonvanishing components of (2.141) with respect to the usual Schwarzschild spherical
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coordinates are:

oo = — :f (1 + f’ff) + Af—jg—ge%} (4.25)
o1 = — fri—fy + ]}{f Z—Zeg] (4.26)
g = % - frify - %i%e%] (4.27)
Jo2 = _%Af (1 - Z;—T) ]\j{f, (4.28)
G2 = —27"4 (1 - t—?) Affl (4.29)
Goo = 17 [1 — r—]\g(Qm2 —r) + gr?’%é—zeg} (4.30)
g3g = 17 [1 + 74—]\,/2(2m2 —7r?) — gTST—]\ii—zeg} (4.31)
For concreteness, it will be assumed that £/ = 1. The specific energy and angular
momentum of the test-particle are given by
E = —goot — g7 (4.32)
L= 93?,@.5 (4.33)
Similarly to before, we obtain the following differential equation:
E? =74+ V(r) (4.34)
where
Vi(r) = — (1 + LLQ) doo (4.35)
gs3
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Expanding the potential to octupole order, yields

Vir) = 2(L2+1?) (5 —m) N (2m —r) (2L* (m® + mr — r?) + 2mr® — 'r’4)E
3 73m2
6

dr' 36 (r —2 1 1 2 5mr®
+—TM {— (L2 (m2+7“m—7“2)+m7’3——7"4) rmln—m+r—+ o
dv (Mm2)s m2rt 13 2 r 36 72

7L 3m?*\ 7 7 1 5
L Im ay L o3).3 St~ 212m2 ) 2
+(72 4)7“ +(24 m+18m>r +<3m Lmer

TL2m3r
18

+ L2m4} €3 (4.36)

Imposing (4.15), we then find

rog = —72V (1281n (3) + 469) (4.37a)
Ly = 4V (2611n (3) 4 746) v/3 (4.37b)
E, = % (191n (3) + 45) V2 (4.37¢)

where

dr' (mt\ 3

Notice, in particular, that the octupole order shifts have opposite signs as compared to
their quadrupole order counterparts. For instance, r; is negative while ry is positive.
Recall that 7' satisfies the differential equation (3.12) with E' = 1. Differentiating this
equation and using that # < 0 we have i/ < 0 which implies d*'/dv® < 0. In other words,
the deformed black hole speeds up along it’s radial trajectory. We thus see that ry is an

increasing function of v, while Ly and Es both are decreasing functions of v.

4.4 A lower bound on the energy required to keep
test-particle from inspiralling

In this section, we consider the binary system in the polar configuration with 6 = 7/2 to
octupole order. Subject to a set assumptions made clear below, we seek to find a lower
bound on the energy of the test-particle such that it will not spiral into its deformed

companion.
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We assume that the binary starts at rest a distance ry from the the background
with £ = 1. Hence, the results of the previous section apply. For clarity, we switch
expansion parameter from € to A\ = m/M to avoid having time-dependence in the expansion

parameter. A quantity A may be expanded with respect to A as follows:

4

A= A°+Aq )\2+A° A3 (4.39)

to octupole order. Here A%, A% and A° are the expansion coefficients of A at orders 0,
quadrupole and octupole respectively.

We assume the test-particle has energy

E:£+5 5<1 (4.40)

where § is a function of v. In accordance with (4.39), we write

M3 o M?
0 =B =\ + E°(v )FA?’ (4.41)
We wish to find a lower bound, dy, on 6 such that if 6 > &y for all v then the radial
coordinate of the test-particle will never be smaller than that of the ISCO of the deformed
black hole. As we have seen, the quadrupole order ISCO shift, F; is positive while the
octupole order ISCO shift F5 is negative. Hence, the ISCO energy will be greatest at the

initial distance r; where the positive E; dominates over the negative Ey. We thus conclude

764/2 Mm?

b= 35

(4.42)

having used that Fy is zero at ry.
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Chapter 5

Orbital stability considerations

Thus far, the the deformed black hole and its test-particle companion have been assumed
to be in the polar configuration with # = 7/2. In this section, we consider the more general
situation in which this binary system has some generic orientation with respect to the
background black hole. In particular, we seek an expression for the specific energy of the
test-particle as a function of the Euler angles that specify the orientation of the binary. In
addition, we find that the specific energy of the test-particle is minimal for a co-planar
orientation, i.e. one in which the inclination angle of the binary is zero. In this sense, one
may refer to co-planar orbits as stable. The approach will be to write down and minimize
the Hamiltonian for the test-particle with respect to the inclination angle. We thus start
this chapter by giving a brief review of the Hamiltonian formalism, following chapter three

of [7].

5.1 The Hamiltonian formalism

Let (A, g) be a Lorentzian manifold and consider a free test-particle of mass m., travelling
along a worldline 7 : [a,b] — .#. Furthermore, let & be an neighborhood of v equipped
with coordinates z#, u € {0,1,2,3}. Denoting the parameter of « by ¢, the action for ~ is
then given by

b
S() = / ALt (1), u(t)) (5.1)
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where £ = L(t,q,u) is the Lagrangian for the system, ¢ being the canonical position of

the particle and u being the four-velocity of the particle. Explicitly, £ is defined by [3]:

e

L(t,q,u) : 5

G (@) u” (5.2)

The Hamiltonian for the particle is then obtained as the Legendre transform with respect

to u of the Lagrangian. For our purposes this simply amounts to

H(t,q,p) = ult,q,p) - p— L(t,q ul(t, q,p)) (5.3)
where p is the canonical momentum of the particle and where u is given as the unique

solution to

oL
Pu = a_q#(t> q, U) (54)

For the Lagrangian (5.2), we compute p,, = m.g,,u” which is the familiar result for the

four-momentum. Hence,

! 9" (Q)pupy (5.5)

H(t,q,p) = o

The motion of the test-particle is then determined by Hamilton’s equations which read

%(t) = %(t,q(t),p(t)), %(t) = —g—g(t,q(t),p(t)) (5.6)

Applying (5.6) to (5.3) then yields the following:

dg* OH I
< == = gy, 5.7
i g mdP (5.7)
dp, _ OH PuPv A
e e 5.8
dt 0q° i \ (58)
Using the chain rule, these equations can then be combined to yield
v
0= pM (aq# I ;wpa> - puDupl/ (59)
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which is the geodesic equation in affine parameter form. We may take the corresponding

affine parameter to be the proper time along . In this case,
H=——m, (5.10)

owing to the normalization of u. Going forward, we will predominantly be working with
the dimensionless Hamiltonian H := H /M.

For the binary system at hand, g is the Poisson-Vlasov metric and m, is the mass of
the test-particle orbiting the deformed black hole. When considering the dynamics of the
binary over timescales much larger than the orbital timescale of the test-particle, it will

be of interest to consider the secular orbital average of the Hamiltonian, defined by [19]:

(H) == %/O Wd¢ﬁ|7 (5.11)

where H |, is H evaluated along 7. We explicitly compute (H) in the following section.

5.2 Energy of inclined orbits

We are now in a position to tackle the problem mentioned at the beginning of the chapter.
Firstly, we will need to define a set of Euler angles to describe the orientation of the
binary. Consider a reference plane, defined as the orbital plane of the binary around
the background black hole. Install on this reference plane a Cartesian coordinate system
oriented as in the equatorial configuration; the z-axis is perpendicular to the reference
plane, the y-axis points from the binary to the background black hole and the z-axis is
determined by the right-hand rule. We then perform three rotations in order to arrive at
a generic orientation: Firstly, rotate the coordinate system around the z-axis by an angle
9. The rotated coordinate system then has axes 2’, 1/ and z. Secondly, rotate this new
coordinate system around the z’-axis by an angle I, known as the inclination angle. This
results in a new coordinate system with axes 2’, ¥” and 2”. Finally, perform a rotation
around the z’-axis by an angle . This then results in a final coordinate system with axes

X,Y and Z := 2". See figure 5.1 for an illustration.
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Figure 5.1: TIllustration of the Euler angles used to rotate the binary system.

Since the reference plane and the corresponding reference coordinate system is defined

as in the equatorial configuration, a generic configuration is given by the vector

cosy siny 0 1 0 0 costy sind 0 sin 6 cos ¢
Q=] —siny cosy 0 0 cosl sinl/ —sind cosv 0 sin #sin ¢
0 0 1 0 —sin/l cosl 0 0 1 cos
(5.12)

The Hamiltonian H is then computed using (5.5). We will assume that the test-particle

follows a circular orbit in the § = m/2-plane. In this case,

1

0= 5 [Lu® = Eu'] (5.13)

where
L = gguut = ggu' + gppu® (5.14)
E = —gpu* = —gyu' — gt¢u¢ (5.15)

with metric components given by (2.141) where the tidal potentials are computed using
(5.12). Taking the secular average yields the following:
~ L? E? M

2
(H) = 57 2(1 2m) -+ 17 (2—30052[sin27—|—30082’y) {E27‘2+ <1 — —) LZ}
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We then impose (5.10) and find the following expression for E?:

EQ_L2—|—7”2 (1_2_m)

72 r
M 2 (2 2 3 4 272 9 2m
+2r’3r2 [2L (m +rm—r)+2rm—r}(3cos Isin” v + 3 cos 7—2) 1_T
(5.17)

Since £ > 0, maximizing (minimizing) E is equivalent to maximizing (minimizing) E?. It
then follows from (5.17) that E has local extrema at [; = 0 and I, = 7/2. The second

derivative of E? with respect to I is given by

d*E® 3SM- 2 (2 2 3 4 2m 2
77 = g Sl fy[QL (m +rm—r ) +2r°m —r ] (1—7> (2cos [—1)
(5.18)
The term in square parentheses is negative for all » > 2m and so
d*E? d*E?
> 0, <0 (5.19)
I I1=0 I I=m/2

In other words, orbits with zero inclination (i.e. co-planar orbits) are stable. On the other
hand, orbits for which the orbital plane of the test-particle is perpendicular to the orbital

plane of the binary are unstable.
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Chapter 6

Evolution of energy at octupole order

In this section, we return to the polar configuration with § = 7/2. At octupole order, the
energy E of the test-particle will no longer be conserved as the binary moves towards the
background black hole. We seek to find an expression for E as a function of advanced time
v, using the Hamiltonian approach. It is assumed that the test-particle starts in a circular
orbit. We will be working in an adiabatic approximation, allowing us to assume that
the radial velocity of the test-particle can be neglected, " = 0. The physical reasoning
behind this choice is as follows. Recall that there are two distinct timescales in play for the
problem at hand. Firstly, there is the short timescale associated with the motion of the
test-particle in the binary system. Secondly, there is the long timescale associated with the
motion of the binary with respect to the background black hole. A possible change in the
radial coordinate r will only enter at octupole order (given an initially circular orbit) and
must therefore happen over the long timescale. However, viewed over short time-scales,
u” = 0. To a reasonable degree of accuracy, we can thus assume that the test-particle
adiabatically moves between circular orbits over long timescales so that we may assume
u” = 0, even over long timescales. The test-particle Hamiltonian is computed using (5.5)
and we obtain

~ L E* M 2m? rM
=2 o gy (1- 22 ) 12
22 2y 2 { g +( = ) }+ 4p7

Er\’ dr’
2 (TT) eg+5L2eg] % (6.1)
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where

E = —gyu' = —gyu’ — gv¢u¢ (6.2)

L = guou" = gopu’ (6.3)

Imposing (5.10) yields the following expression for E?:

L2 2 M 2 2
EQZH_QHMTS f(yw)“z(l_ﬁ)}f
r r
M dr’
[r (5fed + 2e) L? + 2r’ef] o (6.4)

+ 24 dv

In the adiabatic approximation, the v-dependence of E comes entirely from the v-
dependence in . We therefore start by deriving an expression for 7'(v). Owing to
(4.21), dr’/dv = 1 in the adiabatic approximation and so from (3.12), we obtain

dr’ 2M

> 6.5
dv ! (6.5)

having set K = 0 and assuming £’ = 1. Integrating from v = 0 to v nonzero and imposing

the initial condition r'(0) = rj, we obtain

r'(v) =

(8r’§ — 12\/Wv>g (6.6)

| =

The time at which the deformed black hole merges with the background black hole will be

denoted Vperge and is given by ' (vmerge) = 2M. This yields the following:

3

2 [ 2M N\ 2
merge = = 1 - 6.7
fmerge = 3 2M< (m)) 6.7

Using (6.6) and (6.7) in (6.4), yields the following:

. [ (L2 +7r?) N A B (6.8)

r? (1—wz)® (1—wz2)’
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where w 1= v/Unerge and

Mf
A= s [fr*+ L* (f + 1) r* — 2L*m?) (6.9)
3
r (2M\2 [5
B := 5 ( 73 ) {ELQegf +e5 (L +1r?) (6.10)
3
2M \ 2
Z::1_< / ) (6.11)
To

This is the general expression for the energy (squared) of the test-particle to octupole
order. Note that since 2M < (), z < 1 and s0 for v < Vmerge, W := wz < 1. In this case,

(6.8) has the following series expansion:

E*=ag+ ) a,W" (6.12)

n=1

where

L? + 12 B
ag ::f(—;Hn)—I—A—B, Ay = A(n+1)—§(n+1)(n+2) (6.13)
r
Note that the convergence of the series expansion (6.12) happens very slowly. We illustrate
this with a numerical example in which we fix m = 1, r := 6m, L := V12m, M = 10°m

and ry = 10°M. This results in a merger time of Umerge = 1.490578651 x 10%. The

corresponding values of a,, for 0 < n < 5 are listed in table (6.1). Figure (6.1) shows E* as

an

0.888888888892
5.777712398 x 10712
8.666535907 x 10712
1.155533763 x 107!
1.155533763 x 10711
1.733287567 x 10~

T W~ oS

Table 6.1: Numerical values of a,, for 0 < n <35.

a function of v both for the exact solution and the approximate solution to orders v° and
v, Notice that the energy is increasing with v. At order v°, the approximate solution
already starts deviating significantly from the exact solution around v ~ 10°. At order v*,

the approximation is accurate for much longer but still differs significantly for v ~ vperge.
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(0.888888888915

0.8888588888910
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0.588888888900

0.883888888895 1

L — — LI - 1
0 2.%x10° 4.x10° 6.x10° 8.x10° 1.x10°
Vv

|— exact approximation to order 5 I

(a) Red curve shows exact solution while blue

curve shows the approximate solution to order

v,

0.5888888910

0.88888388905

0.883R838900

(.8888888895

(.8838888890+

— . :
6. % 10° 1. x 10° 1.4 x 108

v

0 2.x10°

(b) Red curve shows exact solution while blue

curve shows the approximate solution to order
40
v,

exact approximation to order 40 I

Figure 6.1: Specific energy (squared) as a function of v. Both the exact solution and
the approximate solution have been plotted. The approximate solution is plotted at two
different orders, namely 5 and 40.
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Chapter 7

Dynamics of the tidally deformed
Schwarzschild black hole

This section is restricted to the background black hole and its tidally deformed companion,
thus leaving out the test-particle in orbit around the deformed black hole. The deformed
black hole is subject to a number of dynamical effects, not present in the unperturbed
Schwarzschild solution. In particular, we will see that the surface gravity of the deformed
black hole is non-uniform over its horizon with tidal contributions starting at order (r/R)>.
Furthermore, we will see that the mass of the deformed black hole acquires a non-trivial
time-dependence, an effect which is known as tidal heating. Much of this chapter boils
down to giving a description of the geometry of the horizon of the tidally deformed black
hole. For this reason, it will prove useful to start by covering some general preliminaries. In
particular, section 7.1 covers null geodesic congruences, closely following [13]. Associated
with a given null geodesic congruence is an expansion scalar which will be central in the
study of how the geometry of the horizon evolves. As we will see, the horizon of the
deformed black hole is a null hypersurface of the background spacetime and is generated
by a null geodesic congruence. For this reason, it will prove useful to review hypersurfaces
and some of their properties in general. This is accomplished in section 7.2, which closely
follows [13].

Having gone through the preliminaries, we then consider the geometry of the deformed
horizon in section 7.3. Subsequently, we present a derivation of the surface gravity of the
deformed black hole in section 7.4. Both sections closely follow [15]. Finally, we cover

tidal heating in section 7, closely following both [15] and [12].
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7.1 Null geodesic congruences

Let (., g) be a Lorentzian manifold and consider an open subset & C .#. Then a family
of curves in & is called a congruence in O, if for every p € €, exactly one member of
the family passes through p. Clearly a congruence always gives rise to a vector field on
0. In particular, the tangent vectors to the members of the congruence yield a vector
field on &. The converse is also true, in the sense that given a smooth vector field v on
O, one can construct a corresponding congruence on ¢. Indeed the integral curves of v
exactly yield a congruence on & (section 2.2 of [18]). If every member of the family is a
null geodesic, then the congruence is called a null geodesic congruence. In this section,
we exclusively work with null geodesic congruences. The goal will be to determine how
such null congruences evolve in time. In particular, we will determine how the separation
between neighboring members of the congruence changes in time.

Consider a null geodesic congruence on &'. Then pick two geodesics 7 and 7; belonging
to the null geodesic congruence. By the defining property of congruences, each point
between vy and ~; will have exactly one null geodesic going through it. This then gives
rise to a two-parameter family of null geodesics which we denote by v(\, s) where s € [0, 1]
specifies a null geodesic and A is a parameter for the given null geodesic. We choose s such

that y(A,0) = v and (A, 1) = ;. See figure 7.1 for an illustration of the setup.
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Figure 7.1: Two-parameter family of geodesics (], s) labeled by s and parameterised by
A. The vector k is tangent to the null geodesics, while £ is tangent to the curves connecting

Yo and 7.

For a given value of s, we define the tangent to the corresponding null geodesic by

d(x* 07)

k¥ (N, s) = B

(A, s) (7.1)

with respect to some coordinate system z* € {0,1,2,3} on &. Of course, this implies

that k satisfies the geodesic equation in its general form:
kK5 = kk® (7.2)

where k is some scalar. For a given value of A, we can interpret s — y(\, s) as describing
a curve (generically this will not be a geodesic) going from vy to 7;. The tangent to this

curve is defined as

(N, s) == —)()\, s) (7.3)

We interpret £(A,0) as a deviation vector between vy and 7, for A € [a,b]. It is this

deviation vector which will be the object of study in the following.
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As already mentioned, since k is tangent to the members of a congruence, k constitutes
a vector field on &. This then allows a decomposition of the metric ¢ into a transverse

part and a longitudinal part on &
Gapg = hag — (k’aNﬁ + Nal{iﬁ) (74)

where h is the transverse part and N is an auxiliary null vector field chosen such that
kN = —1. By construction, hag N = hogk® = 0 showing that h is indeed purely
transverse in the sense that it is orthogonal to both £ and N. We will mainly be concerned
with the transverse behaviour of the null geodesic congruence which is why we went

through the trouble of introducing h. Next, define a tensor B with components
Bog = ka:p (7.5)

and note that it measures the extent to which £ fails to be parallel transported along the

congruence, since
£ gk" = k56" = Bp¢” (7.6)

The first equality follows directly from the definitions of k and £. For later use, note that

B satisfies the following evolution equation:

k' Bagy = Kapyk”
= (kawﬂ - RJavﬁké)kv
= (komkﬁ);ﬁ - kocwkﬂ;ﬁ - R&wﬁk(skv

= kBag + F.gkea — BayB75 — Rsan k" (7.7)

where we recall that & is given by k% 3k” = kk®. The transverse part of B will be denoted

B and has components

Bap = h*oh” 3By, = Bag + kaN*Bg + kg BayN* + koksB, N*N” (7.8)

We then decompose B into its irreducible parts, i.e. its trace, its symmetric trace free part
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and its antisymmetric part:

1
Ba/g = §@ha5 + Oap + Wag (79)

where © = Baa is the expansion scalar, 0,5 1= B(ag) - %@hag are the components of
the shear tensor and wyg = B[am are the components of the rotation tensor. We note
without proof that © measures the fractional rate of change of the cross-sectional area of
the congruence (see section 2.4.8 of [13]). In the following, we derive an evolution equation

for ©. Firstly, expanding the definition of © yields
O =k +k*N'B,, + E*By, N' =k — Kk (7.10)
Taking the trace of (7.7) and using (7.10) then yields
2 Ok « a8
— + v =K + KO+ —~ — By, B — R,pkk (7.11)
A straightforward computation reveals that
By, B = B, B + K* (7.12)
and furthermore,
5, DY 1 2 af af
BQ,YB = 5@ + 0ap0" — WapWw (713)

Hence, (7.11) reduces to the following:

1
Z_? — /‘i@ - 5@2 _ O_aﬁa,aﬁ + wa/@waﬁ _ Raﬁkakﬁ (714)

This is known as Raychaudhuri’s equation for null geodesic congruences. Before moving
on, we note some of the implications of (7.14). Firstly, if A is an affine parameter, then
t = 0. Furthermore, since o is purely transverse, cragao‘ﬁ > 0. Additionally, in the next
section, we will see that the hypersurfaces of relevance to us have vanishing rotation.
Finally, assume that the spacetime in question satisfies the null energy condition then

Ragkakﬁ > 0. This will, in particular, hold for vacuum spacetimes. In conclusion, we then
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observe that:

00

— <0 7.15

o\ — ( )
Say the members of the congruence are initially converging, so that © < 0. Then (7.15)
implies that this convergence will happen ever more rapidly into the future, serving to

focus the members of the congruence. Notice that under the assumptions above, we in

fact have a stronger bound:

1
o < —562 (7.16)

Integrating this inequality yields the following:

11
(A) ~ ©(0)

DO | >

(7.17)

showing that if ©(0) < 0 (i.e. the congruence is converging at A = 0), then O(\) — —o0

as A — \eTQ(m from the left. This usually happens when a so-called caustic forms in the

congruence, a caustic being a point at which the members of the congruence cross each

other. See figure 7.2 for an illustration.

_ 2
A= 1500

Figure 7.2: A caustic where the members of a congruence cross each other.
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In the next section, it will be made clear how null-hypersurfaces are generated by

null-geodesic congruences.

7.2 Embedded submanifolds

Let (#,g) be a Lorentzian manifold of dimension n and consider a second Lorentzian
manifold (., ¢’) of dimension p where p € {1,...,n} and .¥ C .#. The manifold
(#,4") is called an embedded submanifold of (.Z,g) if there exists a diffeomorphism
0 = () C M. Furthermore, the structure of (., ¢’) is inherited from that of
(A , g) by choosing ¢ to be the pullback by ¢ of g to .. We will also refer to ¢ as the
induced metric of the embedded submanifold, with the understanding that it is induced
by the metric g. We compute the induced metric later in this section. If the codimension
of (,¢") in (A, g) is one, then (7, ¢') is called a hypersurface of (.#Z,g). In particular,
a hypersurface (.7, ¢') is called a null-hypersurface of (#,g) if ¢, as defined above, is
degenerate. Equivalently, a hypersurface is a null-hypersurface if its normal is everywhere
null.

In practical applications, one typically opts for a local description of a given hypersurface
(,4'). Indeed, suppose . is contained in an open subset & C .# equipped with a
coordinate system z*, u € {0,1,2,3}. Then . can be specified by imposing a condition

on the coordinate functions z* o p for p € &. Concretely,
S ={pe0:P(z"op)=0} (7.18)

where ® : R* — R is a smooth function. Hence, in this local description, .# can be viewed
as a level set of some smooth scalar function ®. This implies that the gradient of ® is
everywhere normal to .. In the following, we take (., ¢’) to be null. Inspired by the
observation above, we define a normal vector k to . by k, = —0,®. The sign is chosen

such that & is future-directed when ® is an increasing function of time. We then compute
8 1 8
k" Dgko = §Da(kﬁk ) (7.19)

Since kgkﬁ is identically zero (and hence constant) on ., its gradient must point in the

direction normal to .. In other words, D, (ksk”) = 2kk, for some scalar . This then
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implies
k° Dgk®™ = kk® (7.20)

which is the geodesic equation in its general form. Since (7, ¢’) is null, we have k k% = 0
and so k is also tangent to ./, meaning that the geodesics whose tangents are given by k
lie within &'. In light of this, we say that . is generated by null geodesics and k serves as a
tangent to the geodesic generators. Since k as given above serves to define a vector field on
O, we know that there is a corresponding congruence on &'. Hence, what we have shown
is that every null hypersurface is generated by a corresponding null geodesic congruence
(which might have caustics). Since the tangent vector field & is proportional to the normal
of the null hypersurface, the corresponding congruence is called hypersurface orthogonal.
As we will see below, it is a general result that such congruences have vanishing rotation.

The setup is the same as above, except we now assume the more general statement
that k simply be proportional to the normal of the null hypersurface. In particular, we

write
ko = —p®q (7.21)
for some scalar p. Explicitly writing out w, using (7.8) yields the following:
Wap = Blap) = Bujakg)N" — ko Bg N (7.22)
We note that
Fia;pky = %(ka;/gk,y — kankp + kyaks — kygka + kgnka — kgaky) =0 (7.23)

having used that ®.,3 = .3, owing to the symmetry of the mixed partial derivatives and
the symmetry of the lower indices of the Christoffel symbols. Using the definition of B

and contracting with N7, this implies
0= —B[am + B,y[akm]\n + ]{3[0435}7]\/'7 (724)
Inserting this into (7.22), we obtain w,g = 0 as desired.
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Finally, we compute the induced metric of the null hypersurface. On ., we may choose
to use a coordinate system y“, a € {1,2,3} which is intrinsic to .. It will prove useful to
construct these coordinates in a way that is well suited to the behaviour of the generators
of the hypersurface. To this end, we choose one of the coordinates to be the parameter
A. The two remaining coordinates will be denoted 64, A € {2,3} and serve to label the
generators of the congruence, in the sense that they are constant on each generator.

When restricted to ., the ambient coordinates 2, u € {0,1,2,3} can be viewed as
functions of the intrinsic coordinates y®,a € {1,2,3}. This then defines a coordinate

transformation with corresponding Jacobian given by

a «
Jo =2 (7.25)
oy,
We also introduce the notation
oz
JY = — (7.26)
004 &
The induced metric ¢’ is then given by
gy = Gapl s JOTP, a,b e {1,2,3} (7.27)

So far, the discussion applies to any hypersurface. We now impose the condition that the

hypersurface be null. In this case, we have J{* = 0x%/0X = k“ by definition. Hence,

G171 = Gapl kK" =0 (7.28)
since k is null. Furthermore,
0P 0z 0P
A ko‘ B —_ - = - = 2
914 = 9sl K4 = = 5 5 ppa |, =~ aga |, = 729

since ® only changes in the direction normal to .. Hence, the induced metric is degenerate

and effectively two-dimensional as expected. Motivated by this observation, we write

VAB = Gasl# IS TS (7.30)
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for the non-vanishing components of the induced metric.

7.3 Geometry of the deformed horizon

Once again, we consider the spacetime around a tidally deformed Schwarzschild black
hole. Let (., g) be the corresponding Lorentzian manifold where g is the Poisson-Vlasov
metric. In lightcone coordinates, the condition r» = 2m defines a hypersurface of (., g)
in accordance with the discussion of section 7.2. This hypersurface has a corresponding
induced metric ¢, given by (7.27). Since we are simply restricting the value of r and
leaving the other coordinates unchanged, J§ = 6% and J® = §°*. Evaluating (2.141)
at r = 2m and using (7.27), we see that the only non-vanishing components of ¢’ are
G915 = 9AB|r=2m. In particular, the metric is degenerate and effectively two-dimensional.
Hence, the hypersurface defined by r = 2m is null and we can justifiably refer to it as the
horizon of the deformed black hole. As encapsulated by equation (2.140), this conclusion
holds through order (r/R)* 1In light of the observations made above, we can use the
notation reserved for null-hypersurfaces in section 7.2. The non-vanishing components of
¢’ are thus denoted by vap:

8 8
YAB ‘= gAB‘rr-zzm = 4m2QAB — §m4(€33 + BZB) — EmS(ng + BEXB) (731)

We refer to v as the horizon metric. We emphasize that k* = J* = ¢°* is null on the
horizon and tangent to the generators of the horizon. This will be used in the next section.

Since the horizon is a null-hypersurface of (.#, g), it is generated by a (hypersurface
orthogonal) congruence of null geodesics. Following the procedure outlined in section 7.1,

we define a tensor field B with components given by
Bap = kagJSJ. (7.32)

Note that this corresponds to the B of section 7.1, but we have omitted the tilde for

notational convenience. Next, B is decomposed into its irreducible parts:

1
Bag = 5@’7,434-0’,43 (733)
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having used that the null congruence has vanishing rotation as argued in section 7.2.
Notice that by (7.29), J is transverse to £ and so the metric + is in fact transverse to
the generators of the horizon. This justifies the appearance of v as the transverse metric

in (7.33).

7.4 Surface gravity

In this section, we will see how the surface gravity of the deformed horizon becomes
non-uniform at octupole order.

Firstly, recall the defining equation for :
kK5 = k™ (7.34)

Completely analogously to the unperturbed case, this is also the defining equation for the
surface gravity of the black hole. Hence, we are justified in identifying x as the surface
gravity of the deformed black hole. Using the metric (2.141) and k* = §°*, we explicitly

compute,

1
= - ) (90131900) (7-35)

r=2m

_ 10
H_FOOTZQm

having used that the metric only implicitly depends on time through the time-dependence
of ', ¢ and ¢'. Now by definition, the metric g and its inverse satisfy g*7gg, = 5 and

using (2.141), we immediately get ¢g”* = 1. We thus obtain

1 16 = .d&;; v

to octupole order. To quadrupole order, the surface gravity of the deformed black hole is
uniform across the horizon with the same value as in the unperturbed case. However at

octupole order, this uniformity no longer holds.

7.5 Tidal heating

As a consequence of the tidal interaction between the two black holes, the mass m of the

tidally deformed black hole should be regarded as a function of time, m = m(v). We only
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consider long-term changes in m, such that the black hole starts in some initial stationary
state with mass m and then after a time Aw settles into another stationary state with

mass 0m. The averaged change of mass over the time period Aw is then defined by

dm om
To leading order, Poisson has shown that [12]:
dm 16 d . d d
N 2 @ cij 2 i
i) 16 (4 4, i ) o

The main objective of this section is to give an outline of the proof for this equation.

Having done this, we finish the section with two applications of the equation.

7.5.1 Outline of Poisson’s proof

Firstly, we set out to find an evolution equation for the horizon metric. To this end, we

compute the following:

= k*(9asl# T4 )
= ga5’=7JX;'yk’ng + gaﬁ‘,sﬂjjjgwky
= 29a5|ijngk”y

(1) a
= 2gaﬂ|7<]gk WJX

= 2k T3]
— 92B.p (7.39)
where (1) uses
I k" = k571 (7.40)
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which follows from a straightforward computation using J = 0% and k* = 6°*. Hence, we

arrive at the following evolution equation for ~:

aVAB
ov

= Oyap + 2048 (7.41)

Now contract with the inverse of v to arrive at an expression for the expansion scalar:

1 459748 Ioval
_ L ap%ap 1 42
0= 00 T Ao (7.42)

where v is the determinant of the matrix representation of y4p in some basis. Explicitly,

V7 = 4m®sin 6 [1 +0 (%)] (7.43)

which is shown in appendix F. Using this in (7.42), we conclude that

0=0 (%) (7.44)

This will be important later, when we decide which terms should be included and which
should be omitted given our level of precision.

We turn now to the shear tensor. Using the previous results, eq. (7.41) implies

1 1 4 ,(d d 1
OAB — 5 v YAB + O (%) = —gm (%SXB + %823> + O (@) (745)

The indices on 045 should be raised using the inverse of the induced metric. Given the

present level of precision, it will prove sufficient to take

1 1
AB AB
S — 4
v g +O< 2) (7.46)
This then results in
1 d d
AB AB AB

= —— [ =& — B4 7.47
’ 12 (dv * dv ) (7.47)

where indices on 4, and B4, have been raised with Q47
Next, we turn to Raychaudhuri’s equation. As was argued in section 7.2, the congruence

of generators of the horizon will have vanishing rotation. Furthermore, we are considering
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a vacuum solution to Einstein’s field equations so the Ricci tensor vanishes. In this case,
Raychaudhuri’s equation simplifies to

% = KO — 5@2 — 0ABO (748)

We write Kk = Ko + Keorrection Where Kq : (4m) is the surface gravity of the unperturbed
black hole and Kcorrection 18 the tidally induced correction to kg, as given by (7.36). Owing
to (7.44), kO = ke©® + O(1/R¥). Since the desired equation (7.38) is of order 1/R°, we
can justifiably set x = g in (7.48). Similarly, the ©%-term in (7.48) can be completely
neglected. We are thus left with the following:

8—9 = Ko© — oapoB

o (7.49)

Below, we will see that the evolution of the area of the deformed horizon is intimately tied
to the expansion scalar ©.
On the horizon, the area element /ydfd¢ is given in terms of the induced metric. The

area A(v) of the deformed horizon as a function of v is then defined by

- / JAdods (7.50)

Using (7.42), we then compute the advanced time derivative of A:

= / O./7dbds (7.51)

Furthermore,

£ 00
T3 AW) = [ 5oy/7dbds + / 02\ /7didep (7.52)

Once again, we neglect the term containing ©2. Using (7.49) and (7.43), we then have

KO—A — WA / oapoB\/ydodg

d d d

d
= —m / [ 5gBd—5qAB+ BB 4 2 £, B | 0

(7.53)
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where df) = sinfdfd¢. In the following, we evaluate these angular integrals and express
them in terms of their corresponding derivatives of quadrupole tidal moments.

Firstly, by definition

d d Py d d P
which implies
d q d GAB d 4 d . aB d d . ..
— — = _—_gi ) —_gaiAb — g4~ cqu '
dv Ean dvg dv g” A deg dv g” dvg (7.55)

and similarly for B. We then use the expressions for the tidal potentials as listed in table

(2.1) to compute the following:

—EL 9T — (27l 8 4 75— E Q) (29— E . + 7 —E 2"
20 do (V%dy kH—%dU kl ) (27" o +7 dv )
_ d%c‘sz % Enn (471 24RO O" 4 24MmQRQ! 4 20mO"ORQY)
- d%é’kz%Smn [4(5Fmsi — sFmQiQr — gmQFQ™ + QMR
+2(SQTON — QROIQTQ") + 25RO — QMM 4 20m QMY
_ d%ﬁkz%SmnM(ékmal" — §Fmr — §mORQ™) 4 20mQMORY (7.56)

Note that v in the above is not the induced metric, but rather the projector defined in
(2.75). We also made use of the fact that the tidal moments are traceless. We then wish to
integrate the above with respect to the surface measure df2. To do so, note the following

two identities, which can be established by straightforward computation:
e kOl AT i Im gk In gk
sin 0Q" Q" QY dOdo = 1—5(5 L S M S M (7.57)
o Jo
2 s 4
/ / sin 0" Q" d0dp = — 5 (7.58)
o Jo 3

We thus obtain

d d 32md . d
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Completely analogously, we compute

d d 32r d . d
—BY,— BB =" B BY
/ dv B du 5 dv Y dv

and

d d
—BY,—E1BIQ0 =0
/dv 4B dy

Putting the preceding results together, we have

Ko d 1 & 16 5(d, d d . d
DA A= Ei—ET 4 —By——BY
s’ srar T B \ @S w T wPi g

To continue, it will be useful to introduce the flux function, F defined by

6 o(d.d_. d_ d,
.F(U) = 4—5m6 (d €Zjd_5] d—BU’d—B])

Then the general solution to (7.62) is
d dA v /
_d’UA — e”‘ov—dv (0) — 87r/0 F@)emo=v) dy!

Integrating by parts, we get:

4= 5y o [HAi0) - Z (0] g [ W i

dv Ko v Ko dv’

(7.60)

(7.61)

(7.62)

(7.63)

(7.64)

(7.65)

The last term can be neglected as it is of order 1/R”. Furthermore, the term in brackets,

proportional to e’ grows exponentially over time scales v ~ 1/kg = 4m which is
g y

unphysical for our setup. Rather, we would expect small changes in the surface area over

long time scales. Hence, we impose the initial condition that

dA &
T =TF0)
whereby
d 81
%.A == 5—0]:(?])
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Identifying ro/(87)-A with (42), we get the result in (7.38). Notice that the shear
tensor entered quadratically in (7.53). In other words, tidal moments will only appear
quadratically in (dm/Av). This is the justification for using a metric of octupole order to

derive (7.38), which starts at order 1/R°.

7.5.2 Tidal heating for a radial infall

In the case of a radial infall, we simply plug (3.60) into (7.38) and obtain:

dm 96mSM2 [ dr'\”
7.5.3 Tidal heating for circular orbit

For a circular orbit, we use (3.47)-(3.50) and (3.58)-(3.59) with ' > 2M equal to some

constant. Note that by the chain rule,

v _ ;(1_2]‘4) (7.69)

dv t Nz + 2 r!

We then compute

<Z—T> - 35—2 (%)6 pisld = 2(V121_2 (v12>+ V) (7.70)

where V = ¢/t = /M /" is the orbital speed.
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Chapter 8

Conclusion and outlook

We have seen how the metric of a vacuum region of an arbitrary spacetime can be
constructed in terms of a set of tidal moments and corresponding tidal potentials. This
is, in particular, true for the Poisson-Vlasov metric which was introduced to describe the
spacetime around a tidally deformed Schwarzschild black hole. We have seen how the
components of the Poisson-Vlasov metric are conveniently written with respect to a set
of lightcone coordinates. The advanced-time coordinate plays an especially important
role in octupole order computations and above, where it replaces the usual proper time
coordinate.

In chapter 3.4, we computed the tidal potentials for a Schwarzschild perturber. This
was done by taking frame components of the Riemann tensor along a geodesic in the
Schwarzschild spacetime. These moments were subsequently converted to potentials which
could then be substituted into the Poisson-Vlasov metric. For many of the practical
applications in this text, we chose to work with a radially infalling deformed black hole.
With this choice, we have seen that all magnetic tidal moments vanish identically.

In chapter 4, we used the Poisson-Vlasov metric to compute the tidally induced shifts
in the ISCO parameters of a test-particle orbiting the deformed black hole. This was first
done to quadrupole order where the deformed black hole could be assumed stationary
with respect to the background black hole. This allowed us to utilize two Killing vectors
to identify the specific energy and specific angular momentum of the test-particle. The
quadrupole order ISCO shifts are listed in (4.16). At octupole order, the distance between
the deformed black hole and the background black hole has to be regarded as a function

of advanced time, v. At a given point along the trajectory of the deformed black hole,
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the octupole order ISCO shifts were computed and are listed in (4.37). Having computed
the ISCO shifts, we computed a lower bound on the specific energy of the test-particle in
orbit around the deformed black hole such that its radial coordinate would never decrease
below the ISCO radius. This specific energy threshold is given in (4.42).

In chapter 5, we considered the specific energy of the test-particle as a function of
the Euler angles that specify the orientation of the binary system with respect to the
background black hole. In particular, we found that co-planar orbits are stable. That is
to say, configurations for which the inclination angle of the binary is zero, minimize the
specific energy of the test-particle. The specific energy of the test-particle was computed
by first determining the Hamiltonian of the test-particle and then imposing four-velocity
normalization. The specific energy (squared) of the test-particle to quadrupole order is
given in (5.17). In the subsequent chapter, we computed the Hamiltonian of the test-
particle to octupole order. The expression for the specific energy (squared) to octupole
order is given in (6.4). This allowed us to determine the evolution of the specific energy of
the test-particle as the binary moved closer to the background black hole. In particular,
we found that the specific-energy increases as a function of advanced time.

In chapter 7, we considered the dynamics of the tidally deformed black hole itself. We
found that the horizon of the deformed black hole is a null-hypersurface of the background
spacetime, generated by a null-geodesic congruence. The horizon was found to still be
located at r = 2m at the level of precision maintained in this text. However at octupole
order, the surface gravity of the deformed horizon is no longer uniform as can be seen
from (7.36). Furthermore, we have seen how the mass of the deformed black hole seizes
to be constant in time, with changes in mass arising at order (m/R)®. In particular, we
computed (dm/dv) to leading order for a radial infall and for a circular orbit. The results
are given in (7.68) and (7.70), respectively.

Further study, based off this thesis may include the following: Firstly, many of the
results presented in this thesis may be generalized further. For example, one might consider
the deformed black travelling along an arbitrary geodesic in the background spacetime.
One might also consider a Kerr perturber instead of a Schwarzschild perturber as has been
done in [1]. Secondly, higher order terms of the Poisson-Vlasov metric may be included.
Namely one might include contributions at hexadecapole order, the order to which Poisson

and Vlasov originally expressed their metric.
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Appendix A

Fermi normal coordinates

In this appendix, we introduce the Fermi normal coordinates for a free-falling observer,
closely following [16].

Let (.#,g) be a Lorentzian manifold. Now, an observer at some point p € .#
can construct a local inertial coordinate system, z*, u € {0,1,2,3} around p. In these

coordinates, we write the components of the metric as g,,, and

Guwlp = N (A1)
(Do Gy )|p =0 (A.2)

In other words, at p (and in a small neighborhood around p) spacetime looks like flat
Minkowski spacetime. The core idea behind the construction of Fermi normal coordinates,
is to take an observer in free fall and then assign to that observer an inertial system
which applies to their entire worldline instead of just a single point. In other words, the
goal is to construct a coordinate system such that spacetime in a small tube around the
observer’s worldline looks like flat Minkowski spacetime. In this section, we go through the
construction of the Fermi normal coordinates for an observer following a geodesic in . .

Let [a,b] C R be an interval and let v : [a,b] — .# be a (smooth) timelike geodesic
on . . Consider now a coordinate system z*, u € {0,1,2,3} defined on a neighborhood
O C # with v C 0. Since 7 is timelike, we refer to its arc length as the proper time of ~.
We denote the proper time of v by 7, and it is defined in the usual way:

b Tt o ¥ o
r= [ oo e o) g, (A3)
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In the following, we parameterize v by letting the proper time 7 € [0, 7, along ~ serve
as an affine parameter for the curve. With respect to x*, the relativistic velocity on ~ is

defined as

W (r) = W(ﬂ, 7€ 0,7 (A4)
Since -y is timelike, we have
G V() (T)u” (1) = =1, 7€ [0, 7] (A.5)

By assumption, u also satisfies the geodesic equation:

D
—_— /Jl pu—
Tu 0 (A.6)

for all 1 € {0,1,2,3}.

Now, let &’ be a normal convex neighborhood of v and take a point p € &. Then there
is a unique space-like geodesic 3 : [¢,d] — 4, [c,d] C R which intersects v orthogonally
and ends at p. The point of intersection will be labelled ¢ and we define 75 to be the value
of 7 at the intersection point. That is, ¢ := (7). Denote by s the geodesic distance
between ¢ and p measured along 3, or in other words, the arc length of 5. We shall
parameterize by the geodesic distance s € [0, sg| along 5. Furthermore, we define the
tangent to 8 with respect to =" as

d(z" o B)

ts) = ds

(s), s€]0,sg] (A7)

However, we will primarily work with the rescaled tangent, v" := sgt". The requirement

that 3 intersect v orthogonally then reads

Gy ((70))u (70)0"(0) = 0 (A.8)

Now define the Fermi normal coordinates * for p as follows:
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where i € {1,2,3} and {As}acq0,1,2,3) is an orthonormal tetrad on v with Ag := u. Inverting
the last equation in (2.5) and using the definition of the Fermi normal coordinates, we see

that

(SZ‘jJN]ii’j = (Sij)\L(To)vu(O)AI{<To>UV(O)
= [\, (T0) A (T0) + A (70) Ay (7o) 0" (0)0” (0)
= 9 (7(70)) + wu(70)w, (70) 0" (0) 0" (0)

= 9ur(7(70))0"(0)v"(0)
= 53 (A.10)
showing that sg is simply the spatial distance between p and ¢ measured along /3. Gener-
ically, for a point f(s) on the geodesic connecting ¢ = y(7) and p = ((sg), the Fermi
normal coordinates are &’ = 7 and ' = sQ'(7),i € {1,2,3} where Q'(7) := A, (7)t*(0),i €
{1,2,3}.
We still need to show that these coordinates indeed exhibit the local flatness property
mentioned at the start of the section. Indeed, we will see that the metric expressed in

Fermi normal coordinates and evaluated at p is given by the following;:

Goolp = —1 — Z%Oz‘Oj\qi'ii"j + O(s%) (A.11)
. 2 ~ i

g()i|p = —gRojinI]ZEk + 0(83) (A12)
. 1~ s

Gijlp = 0ij — ng'kﬂ\quxl +0(s°) (A.13)

where the components of the Riemann tensor are evaluated in Riemann normal coordinates
centred on ¢. In order to show (A.11)-(A.13), we start by considering a general series

expansion of § around ¢ = y(7), 7 € [0, 7], evaluated at p = (s), s € [0, sg]:

1

Gwly = G (V(70)) + Gpa(Y(10))E + 5 G0 (1(70)) 377 + O(s7) (A.14)
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We start by computing §,. (7(79)). We make the following observation:

F A (10) = v*(0)

d(z" o )
= 0
s———(0)
d(z* o ) di’
= . —(0
* T om 0 ds< )
d(a" o B) i
iy B A (70)t"(0)
n
_ gz dateh) (A.15)
o' |,
Hence,
O(z# o
X220 0) = Ay (A.16)
This construction works for any 7, € [0, 7], showing that
Oxt
- =\ :
SOy (A17)
¥
Together with the definition of )y, we have
Ox#
= )\ A.18
| = (A9

for all a € {0,1,2,3}. Using the usual transformation rule for rank two tensors, we then

find that on ~

0s7
| ot

ox®

Gably = Gasln e = Gaplh AN = Nap (A.19)

Y

Hence, the metric on v is everywhere Minkowski. Next, we turn to the derivatives of the
metric on 7. Since [ is a geodesic and parameterized by proper time, we have
d*(7% o B)

T""f‘gcoﬁ

d(z° o B) d(7¢ o )
ds ds

—0 (A.20)
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with a,b,c € {0,1,2,3}. The first term vanishes and simplifying the second term yields
I'¢. 0 BY (10)Y (19) = 0 (A.21)

Generically, this requires the Christoffel symbols to vanish on g. In particular at q.

Similarly to before, this construction can be repeated for any point on . Hence,
Iyl =0 (A.22)

Furthermore, the tetrad is parallel transported along v and so

L4 T8 oyAb NS = (A.23)

By (A.18), in Fermi normal coordinates, we have A}, = d;;, so the above implies Ty, = 0.
Hence, all the Christoffel symbols vanish on «y. This of course implies §,u.q]y = 0.
Now, as for the second derivatives of the metric on . Since the Christoffel symbols

are all zero on vy, we get
I oly =0 (A.24)
Then, by the coordinate expression for the Riemann tensor components, we have
sz,V”Y = R/O;VO|’Y (A-25)

Considering the derivative of the geodesic equation and permuting some indices we also

find
0= F%,k|"f + F?k,z’|’7 + ng,ﬂv (A-%)
From the coordinate expression for the Riemann tensor, it then follows that

~ 1 ~ ~
Iokly = _g(Rijk + Rl (A.27)

We wish to convert these expressions into statements regarding the second derivatives of
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the metric. Recall the coordinate expression for the Christoffel symbols:

~ 1 o/ ~ ~ ~
Fiu = 59 )\(gu)\,u + v — g;w,/\) (AQS)

On 7, the metric is simply the Minkowski metric. Differentiating this and setting u = v = 0,
yields

Doy = —%5ai§00,w|w (A.29)
Using (A.25), we thus get
Gookily = —2Rkozol, (A.30)
Next, we see that
9 . . N R . . N
=5 (Bojir + Rowij)ly = 200Uk + Tl j)ly = (20i0 + Gogik + Jowis)ly = Goigrly  (A.31)
where the last equality follows from a derivative of Gauss’ lemma. Similarly,
Gijtly = _é(éikﬂ + Riji)|y (A.32)

Since the metric on v is everywhere Minkowski, all the temporal derivatives of the metric

vanish. Plugging the above expressions into (A.14), we arrive at the desired result.
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Appendix B

Derivation of the geodesic deviation

equation

In this appendix, we derive the geodesic deviation equation (1.6). The derivation closely
follows that presented in [13]. We consider the same setup as in section 7.1, although this
time we consider v(\, s) with A varying to be timelike and we set A equal to 7, namely

the proper time along ~ for fixed s. As in the aforementioned section, we have
£ gt = up6? (B.1)

We then carry out a computation, using many of the same tricks as employed in (7.7):

D2§a
a (&7 gu)yu?
= (ua;ﬁfﬁ)wu'y
= UOC;B“/SKBU7 + uoc;ﬁgﬁwuv
= u®, 5EPuT — R " EPu 4 u® puf &7
B HBY BY 5y
= (ua;'ﬂﬂ);ﬂéﬁ - ua;'yu'y;ﬁgﬁ - ua;ﬁuﬁwg’y - Rauﬁ'yuugﬁufy

= —R“gwuﬁu‘séﬁ (BQ)

as desired.
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Appendix C

Eigenvalue equations for tidal

potentials

In this Appendix, we show that eq. (2.87) holds with €% given by (2.84). Using the

definitions, we get

VI DiD;EY = 5919,[D,EV)]

= &y POy O (2 O]

= & O O (L - QM)+ 40,0, (P - Q)] (C.1)
We note that
m 1 m m
g = _;(Qq(sp + Q"bpq) (C.2)

and

1
O (QF - Q) = ~[§MQ% . Q4 gRQRb QM M Fm] (03)
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Furthermore,
1
DO (QF1 - - Q1) = 72{5@15529’63 QR 571215?91:2 N O LSt
k?2 k‘l k?‘ k‘ k:z k k:l k‘ —1
+ Rl Qg gheghib Lk
R W A O S S M VA VA (C4)
From (2.75), it is clear that
V=996 =2, V;Qj =0 (C.5)
Collecting all the pieces, we compute the first term in (C.1):
€D P19 () = — Lty pea 2o C.6
oyt Op g O (271 -+ = =580 =~ 3 (C.6)
The second term in (C.1) is computed as follows:
1
6 P 00 (O ) = 8 RO O g qhkigh b

+ ,yk2k1§2k3 . ka o+ 7’62sz]€1§2/€3 . lefl

+ ,ykl’ﬁka co QR 4.+ ,}/klkl—lQ/ﬂ . ka—z]
(C.7)

Owing to the tracelessness of &,...r,, we are justified in replacing Akmbn with —QFmQF in
the above, where 1 < m,n < [. Furthermore, the sum in brackets has a total of [({ — 1)

terms, so we end up with
1
Enri PP 00 (- Q) = — (1~ 1)ED (C:8)
In conclusion,

) 21 1 1
YID;D;ED = —ﬁg@ - Sl - DED = —5l+ 1)EWD (C.9)
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which yields the desired result. Equations (2.88) and (2.89) are shown similarly.
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Appendix D

Killing tensors and conserved

quantities

In this appendix, we review the concept of Killing tensors and their associated conserved
quantities. We start by reviewing Killing vectors, closely following chapter 8.2 of [8].

Let (#,g) be a Lorentzian manifold and let ~ : [a,b] — .# be a timelike geodesic.
We will work in a neighborhood & C .# with a coordinate system z*, u € {0,1,2,3} and
we denote by t the parameter of . The action for 7 is then given as in (5.1). For the
purposes of varying this action, one usually uses a slightly different Lagrangian than that

introduced in chapter 5.1, namely
‘C(t> q, u) =—-m _guu(Q)uuuu (Dl)
Of course the two produce equivalent Euler-Lagrange equations [3], which read

d (0L oL

— | =— (2, (¢ t — —(t,y(t t)) =0 D.2

i (5o (t20.0(0)) = 550,710, ule) (D2
If g is independent of 2 for some particular a € {0,1,2,3}, then we have a corresponding

Killing vector, £ with components " = ¢/'. We then compute

oL =
s (11, u(t)) = V=G (YO (O)u (1)

§(v(1)) - u(t) (D.3)

In conclusion, we see that £ - u is conserved along ~.

As Carter discovered [5], this procedure doesn’t produce all the conserved quantities
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for a given physical setup. Indeed, Carter’s constant doesn’t have a corresponding Killing
vector. Instead it has a corresponding Killing tensor field. Let ) be a symmetric tensor
field of rank k£ on .# whose components with respect to x/ are denoted @,,,..,,. Then @

is called a Killing tensor field if

DQuyy = 0 (D.4)

thus generalising the Killing equation to symmetric tensor fields [18]. Suppose .# admits

a Killing tensor field and suppose u is the four velocity on 4. Then the scalar
K = Q.. u - - ul* (D.5)

is conserved along ~y. Indeed,

D D

EK B E<QM1‘“MIun1 S ut)
e /u//’tl P u“kuVDVQ'ul.”'uk
=uM- - uukuVD(VQm'"uk)

=0 (D.6)

In the third equality, we simply used that «*! ---u**u” is symmetric in all indices and so
it picks out the symmetric part of D,Q,,..,,. Finally, we made use of (D.4).

The Schwarzschild spacetime admits the following Killing tensor field (see page 321 of
[18]):

Q,ul/ - 2T2l(uny) + 7”29#1/ (D?)

where [ and n are two null vectors given by

1

"= - g 01 + 0 (D.8)
1 1 2
n“ = 5(5“0 — 5 (1 — Tm) (5“1 (Dg)
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The non-vanishing components of () come out to be
Q@ =1" Qa3 =rsin’0 (D.10)
Hence, the corresponding conserved quantity is
K = 1*0% + r* sin® 0¢° (D.11)

This exactly reproduces the expression given in (3.15).
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Appendix E

Killing-Yano tensors

In this appendix, we review Killing-Yano tensors and their connection to Killing tensors,
closely following [6].

Let (.#,g) be a Lorentzian manifold and let & C .# be a neighborhood with coordi-
nates *. Let f be a totally antisymmetric tensor field of rank k on .# whose components

with respect to #* are denoted f,...,,. Then f is called a Killing-Yano tensor field if

Do furyusps =0 (E.1)

Killing-Yano tensors are related to Killing tensors through the following proposition: If f

is a Killing-Yano tensor of rank k, then

Qo = Fpprop [ (B.2)

is a Killing tensor of rank 2. That ), is symmetric in o and 3 is obvious. Using this

symmetry, we then compute

3D(O'QCY6) = DUQaﬁ + DaQﬁg‘ _|_ DﬁQo’a
= fBMTNHkDO'fOCMQ“'Nk + fO‘NQ“'MkDo-fﬂu?"Mk
+ £ Do Fapmiin + apnp Dafo> M

+ fawmukDﬁfcwzmuk + f0u2~~~ukDBfa#2m#k

Using (E.1), we see that the terms cancel pairwise and hence, D,(Qqg = 0. We conclude

that given a Killing-Yano tensor on a spacetime, one can always construct a corresponding
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Killing tensor. The converse is not true in general. However, we note that the Schwarzschild
solution admits a Killing-Yano tensor whose only non-vanishing components are fo3 =

—f32 = r*sin @ [10]. Then f,,f°, exactly yields the Killing tensor in (D.10).
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Appendix F

Determinant of the horizon metric

In this appendix, we compute the (square root of the) determinant v of the horizon metric,

following appendix B of [15]. First, write

Yap = 4m*Qup + pap (F.1)

where

8
PAB = —§m4(533 + Bip) — —=m’(E4s + Bp) (F.2)

15

To minimize cluttering, let 25, and p; be the matrix representations, in some basis, of

4m*Qap and pap respectively. Then,

= \/det(QM +pM)

:VGEFEJJ®N1+QEMW

[1

= /det(Qyr) exp ilndet(l—i-QMpM }
1

= +/det(Qy) exp §Trln 1+QMpM)]
5 1

= /det(Qs) exp éTl“ VDM +O(_4)]

1
det(Qy) [1—|—§Tr wpm) + 0O

:4nﬂ$n9[1+C)(£A)] (F.3)
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since, by construction of the tidal potentials,

Tr(Q]_WlpM) =0*%pap =0
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