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ABSTRACT

This thesis firstly reviews the underlying physics that set the framework for the AdS/CFT
correspondence, including conformal field theories, anti-de Sitter space, supergravity the-
ories, and the holographic principle. Specifically, we review literature of computations
done on the AdS5× S5 geometry. We study the metrics of the complex projective space,
and exhibit the field contents, subsectors and decoupling limits ofN = 4 super Yang-Mills
and N = 6 super Chern-Simons theory. This is followed by a theoretical introduction of
Penrose limits and description of Spin Matrix theory. Lastly, the corresponding Spin Ma-
trix and Penrose limits and flat gauge string actions for various BPS-bounds for ABJM
theory with AdS4×CP3 background are computed, finding also the respective TNC data.
These findings generally compare well to other limits and procedures in the literature.
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1
Introduction

As stated in any introduction found in any thesis in theoretical physics, the great dream
of modern theoretical physics is to formulate a theory that models the nature of the
Universe in the form of a grand unification of all fundamental forces. Being a promising
and hopeful yet perhaps seemingly far-fetched idea for the great physicists who laid the
groundwork and foundation many decades before us, this idea is now more studied and
better captivated than ever. The big problem has always been the attempt to unify the
theory of General Relativity (GR) with the theory of Quantum Mechanics (QM). While
the unification of QM and Special Relativity (quantum field theory) has been seen to
produce the greatest model of science to ever describe the underlying mechanics of the
Universe, the Standard Model, GR apparently does not possess the same inclination to
play nice in its role in a grand unified theory of everything. However, as time progresses
and more and more research was and is done in this field of study, some promising and
interesting ideas started and still start to arise. One great achievement was accomplished
by Juan Maldacena in the late 90’s [1]. Through the scope of the holographic principle he
formulated a correspondence, or duality, between a special type of quantum field theory
called conformal field theories (CFT’s) and string theory on an anti-de Sitter spacetime
(AdS). While string theory already is a theory whose spectrum produces both gravitons
and other fundamental bosons, the AdS/CFT correspondence provides a strong compu-
tational tool to calculate something non-perturbative using a perturbative framework for
example. In this thesis, we start by reviewing the underlying foundational principles
that lead up to the AdS/CFT correspondence. Thereafter and throughout we compare
computations already done in the duality discovered by Maldacena, AdS5×S5 ↔ N = 4
super Yang-Mills theory with another duality, AdS4×CP3 ↔ N = 6 super Chern-Simons
theory (ABJM theory). We walk through the subsectors and decoupling limits of both
CFT’s, introduce the concept of Penrose limits and Spin Matrix, then take various Spin
Matrix and Penrose limits on the subsectors, showing computations in the framework of
ABJM that have not been carried out before. The aim is to end up with results that
make physical and intuitive sense comparatively.
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2
Gauge-Gravity Duality

As stated, one of the greatest achievements in the history of string theory is the so-
called AdS/CFT correspondence, which simply put is the use of holography to investigate
strongly coupled quantum field theories. This correspondence posits a computational du-
ality between strongly coupled quantum field theories and classical gravitational theories
[2]. In this chapter, we review the underlying foundation for this correspondence, start-
ing with conformal field theories, and end up arriving at the correspondence between
AdS5 × S5 and N = 4 super Yang-Mills Theory.

2.1 Conformal Field Theories
The behavior of quantum field theories can vary drastically at different energy scales,
and a small change in the energy scale of a theory changes the coupling constants of that
theory, name according to beta function

∂g

∂ log(µ)
= β(g). (2.1)

This determines a trajectory in the space of the coupling constants which is known as
the renormalization group flow. However, in our case, we are interested in theories where
the beta function vanishes, meaning a change in the energy scale no longer affects the
theory. An example of this is a scalar field with a quartic interaction:

S =

∫
dx4

(
(∂φ)2 +

λ

4!
φ4

)
. (2.2)

By rescaling the space-time coordinates and the field with a scaling dimension ∆

φ(x)→ λ−∆φ(λx), (2.3)

the action remains invariant provided, in this case, ∆ = 1. This theory would not
be invariant with a mass term, however. Generally, this scale invariance is enhanced
into what is called conformal symmetry, which allows us to put further constraints on
the theory. Quantum field theories invariant under conformal transformrations are called
conformal field theories (CFTs). What constitutes a conformal transformation is its angle
preservation, which we can represent as

gαβ(x)→ g̃αβ(x) = e2σ(x)gαβ(x), (2.4a)
gµν(x)→ g′µν = Ω2(x)gµν(x). (2.4b)
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On top of this it is natural to let fields transform under the Weyl transformation

φ(x) = Ω(x)−∆φ(x). (2.5)

Combining this with (2.4) we thus require that

φ(x)→
∣∣∣∣∂x′∂x

∣∣∣∣−∆/d

φ(x). (2.6)

Hence, this scalar number ∆ is also referred to as the conformal weight of φ.
If we want to know the infinitesimal transformations in flat space, we should take the

Lie derivative of the Minkowski metric and solve the killing equation to get the isometries:

Lεηµν = ηµν + ∂µεν + ∂νεµ and e2σ(x)ηµν(x) ≈ (1 + 2σ(x))ηµν . (2.7)

After tracing the metric to relate σ to ε we get

∂µ∂µεν =
1

d
(2− d)∂ν∂λελ. (2.8)

We see that there are two different cases to consider, d < 2 and d > 2. The case for d < 2
is known for an infinitesimal conformal transformation given by

εµ(x) = aµ + σµνx
ν + λxµ + bµx2 − 2xµb · x (2.9)

We can link each term to an operator corresponding to a generator of the conformal
group. The first term we recognize as aµ ↔ pµ which is nothing but translation, and
secondly we have the Lorentz transformations σµνxν ↔ Jµν . The third term λxµ ↔ is
linked to the dilatation operator D which has the property of scaling the coordinates.
Lastly we have what we call special conformal transformations (bµx2 − 2xµb · x) ↔ Kµ.
These objects are the building blocks for conformal field theory. This will be the start-
ing point for the algebra. D and Jµν correspond to the subgroup SO(1, 1) × SO(1, 3)
of SO(2, 4), though sometimes it is convenient to use the maximal compact subgroup
SO(2)×SU(2)×SU(2) ⊂ SO(2, 4). The quantum numbers defining a state are (∆, j1, j2),
viewed as eigenvalues of the aforementioned maximal compact subgroup. The generator
H = (P0 +K0)/2 of SO(2) is called the conformal energy [2]. Since the Poincaré algebra
is a subalgebra of the conformal group, we have all the same commutators, but with our
new operators, we get non-vanishing commutation relations

[D,Pµ] = −iPµ, (2.10a)
[Jµν , Kρ] = −i(ηµρKν − ηνρKµ), (2.10b)
[D,Kµ] = iKµ, (2.10c)
[Pµ, Kν ] = 2i(Jµν − ηµνD). (2.10d)

The conformal algebra is isomorphic to ISO(d, 2) with signature {−,+, ...,+,−}. One
can construct elements of the Lorentz matrix consisting of the other generators to manifest
the isomorphism such that

Jµd =
Kµ − Pµ

2
, Jµ(d+1) =

Kµ − Pµ
2

Jd(d+1) = D. (2.11)

This can be used to derive the correlator between two or more conformal fields and
what kind of function one might expect. First we start by expecting states of the form
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φ(x) = eix
µPµφ(0). One can find that the commutator is now a field at x = 0 where the

dilatation operator obeys [D,φ(0)] = −i∆φ(0). This implies that

[D,φ(x)] = [D, eix
µPµφ(0)] = ([D, eix

µPµ ] + eix
µPµD)φ(0) + eix

µPµφ(0)D. (2.12)

We can expand the exponential and get

[D, eix
µPµ ] =

∞∑
i=0

in

n!
xµ1 ...xµn [D,Pµ1 ...Pµn ], (2.13)

where we define [D,Pµ1 ...Pµn ] = [D,P n]. Since [D,Pµ] = −iPµ, one can prove that
[D,P n] = inP n through mathematical induction: Consider for n+ 1

[D,P n+1] = [D,P n]P + P n[D,P ] = inP n + iP n = i(n+ 1)P n. (2.14)

With these identities, eq. (2.12) becomes

[D,φ(x)] =
∞∑
i=0

in+1n

n!
(xµPµ)

nφ(0) + eix
µPµ [D,φ(0)]

= i2xµPµ

∞∑
i=1

in−1

(n− 1)!
(xµPµ)

n−1φ(0)− i∆φ(x)

= i(xµ∂µ −∆)φ(x).

(2.15)

Now we can turn ourselves to look at the two-point function for scalar operators and see
what we might expect. From rotational and translational invariance we get

〈φ1(x)φ2(y)〉 = f(|x− y|). (2.16)

To find the function, we are aided by a general Ward identity concerning dilatation,
namely

0 =
n∑
i=1

(
xi

∂i
∂xµi
−∆i

)
〈φ(x)...φi(xi)...φn(xn)〉 . (2.17)

It reads easily for the two-point case by considering the commutator between the dilata-
tion operator and the fields at hand

0 = 〈0| [D,φ1(x)φ2(y)] |0〉 = 〈0|φ1(x)[D,φ2(y)]− [D,φ1(x)]φ2(y) |0〉
= (xµ∂(x)µ −∆1 + yµ∂(y)µ −∆2) 〈φ1(x)φ2(y)〉 . (2.18)

The superscripts refer to the on which variable the derivatives act. One finds that the
solutions of the differential equation (xµ∂

(x)
µ −∆1 + yµ∂

(y)
µ −∆2)f(|x− y|) = 0 take the

form
f(|x− y|) = C

|x− y|2∆
. (2.19)

The exponent is actually ∆1 + ∆2 but by special conformal transformations we can fix
them to be ∆1 = ∆2. This procedure can also be done for 3-point functions, but the
story does change for the 4-point. Lastly we mention primary operators and how one
can lower and raise the conformal dimension from the commutations. If we consider the
following

[D,Kµφ(0)] = Kµ[D,φ(0)]− [D,Kµ]φ(0) = −i(∆− 1)Kµφ(0), (2.20)

4



then one can deduce that by applying an arbitrary number ofKµ operators on an operator,
this process must eventually terminate giving us [Kµ, φ(0)] = 0, meaning that φ(0) is a
primary operator. From primary operators, it is then possible to construct what is called
descendants, which can be obtained by applying consecutive momentum operators on
such primaries Pµ1 ...Pµnφ(0) giving us a conformal weight of ∆+ n. This can be stated
in commutator language as [D,Pµφ(0)] = −i(∆ + 1)Pµφ(0). So, for an operator to be
primary it must meet these conditions:

[D,φ(0)] = −i∆φ(0), [Jµν , φ(0)] = Jµνφ(0), [Kµ, φ(0)] = 0. (2.21)

We see that conformal invariance gives many constraints on the theory, namely the
Ward identities giving constraints on the Green functions and also the possible dimensions
of the primary fields. However, there is one more important object that is affected in the
conformal space. Consider the translation

xµ → xµ + εµ(x). (2.22)

Normally we can identify the energy-momentum tensor as the associated Noether currrent
(assuming flat spacetime)

δS = −
∫
ddxT µν ∂µε

ν . (2.23)

If we assume the tensor is symmetric, then eq. (2.23) can be written in a general spacetime
as

δS = −1

2

∫
ddx
√
−gT µνδεgµν , (2.24)

where g = det(gµν) and the variation δεgµν corrresponds to the Lie deriative Lεgµν which
standardly is defined as

Lεgµν = ∇µεν +∇νεµ. (2.25)

This leads us to the definition of the energy-momentum tensor

T µν = − 2
√
g

δS

δgµν
. (2.26)

Plugging the Lie derivative (2.25) into eq. (2.24) gives the known conservation law∇µT
µν ,

meaning the energy-momentum tensor is conserved under diffeomorphisms. However, in
a theory with Weyl invariance, the transformation (2.4b) is a symmetry of the action,
and thus eq. (2.26) implies that

0 = δS = −1

2

∫
ddx
√
−gT µν Ω2 =⇒ T µν = 0, (2.27)

since Ω(x) is arbitrary. In a classical theory, this just means the energy-momentum
tensor is traceless in theories with conformal symmetry. In quantum theories, however,
this traceless condition gets modified by quantum effects in even spacetime dimensions
[3, 4, 5, 6].
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2.2 Anti-de Sitter Spacetime
We now turn to the foundation of the other part of the duality, namely gravity. As
described by Einstein in 1915 [7] gravity in empty space is described by the following
field equations:

Rµν −
1

2
Rgµν + Λgµν = 0 (2.28)

By taking the trace we obtain the relation

R = 2Λ
d+ 1

d− 1
(2.29)

and see that the sign of the cosmological constant Λ determines the sign of the Ricci
scalar R. Now, for this project we are interested in maximally symmetric solutions to
the field equations (2.28). This means they have the property that the Riemann tensor,
normally defined as [8]

Rρ
σµν ≡ ∂µΓ

ρ
νσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ,

now becomes fully expressed in terms of the Ricci scalar such that it can be written as
[9]

Rµνρσ =
R

d(d− 1)
(gνσgµρ − gνρgµσ). (2.30)

It turns out such geometries can be described conveniently as an embedding in a higher
dimensional geometry, which gives us a convenient way of deriving the present isometries.
In our case we will be interested in solutions where Λ < 0 such that we get geometries
described by negative curvature. Spacetimes that are maximally symmetric have the
property that they look the same at every point and in every direction at every point, and
the metric of interest in this project is the so-called anti-de Sitter spacetime (anti meaning
negative curvature), abbreviated as AdS. The metric can be expressed in different ways,
but the probably most often used and the one that will be used in future calculations of
this paper is the one with Lorentzian signature in d+ 1 dimensions:

ds2 = L2(− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
d−1), (2.31)

where L, ρ, and t come from the embedding coordinates

x = L cosh ρ cos t, (2.32a)
y = L cosh ρ sin t (2.32b)
z = L sinh ρ, (2.32c)

used in the embedding equation

− x2 − y2 + z2 = −L2, (2.33)

but where the z-direction in (2.31) has been replaced by the (d− 1)-sphere dΩ2
d−1. One

can consider the (d+ 1) dimensional anti-de Sitter space (AdSd+1) being embedded into
an Rd,2 which is just (d + 2)-dimensional Minkowski space. The metric signature is
η = diag(−,+,+, ...,+,−) and is given by

ds2 = (dx0)2 + (dx1)2 + (dx2)2 + ...+ (dxd + 1)2 = ηMNdx
MdxN . (2.34)

6



AdSd+1 can also be written in coordinates as a hypersurface

ηMNx
MxN = −(x0)2 +

d∑
i=1

(xi)2 − (xd+1)2 = −L2, (2.35)

where L is the radius of curvature of AdSd+1. The embedding is clearly invariant under
the Lorentz group for Rd,2, SO(d, 2), which has dimension 1

2
(d + 1)(d + 2). This is the

number of Killing vectors associated to AdSd+1, leading us to conclude that the space
is maximally symmetric. SO(d, 2) is the conformal group of d-dimensional Minkowski
space, pointing in the right direction with regards to the symmetries of the dulaity.

One can parametrize the coordinates in multiple ways. Let us introduce the coor-
dinates t ∈ R, ~x = (x1, ..., x

d−1) ∈ Rd−1 and r ∈ R+. The parametrization in these
coordinates is given by

X0 =
L2

2r

(
1 +

r2

L4
(~x2 − t2 + L2)

)
, X i =

rxi

L
, i ∈ {1, ..., d− 1},

Xd =
2r

L2

(
1 +

r2

L4
(~x2 − t2 + L2)

)
, Xd+1 =

rt

L
.

(2.36)

Due to the restriction that r be positive, we cover only half of the AdSd+1 spacetime.
These local coordinates are referred to as Poincaré patch coordinates. In the Poincaré
patch, the metric of the space reads

ds2 =
L2

r2
dr2 +

r2

L2
(d~x2 − dt2) = L2

r2
dr2 +

r2

L2
(ηµνdx

µdxν), (2.37)

where we recognized the metric of d-dimensional Minkowski space. Using this metric,
we can compute the Ricci scalar, which becomes R = −d(d+ 1)/L2, implying that L2 is
indeed the radius of curvature. Another useful form of the Poincaré metric is obtained
by inverting the radial coordinate, z = L2/r, thus yielding the metric in Poincaré z-
coordinates,

ds2 =
L2

z2
(dz2 + ηµνdx

µdxν). (2.38)

Note that the boundary in these coordinates is located at z = 0
Another possibility is to introduce global coordinates τ, ρ, θi, and describe the space-

time through hyperbolic functions

X0 = L cosh ρ cos τ, (2.39a)
Xd+1 = L cosh ρ cos τ, (2.39b)
X i = LΩi sinh ρ. (2.39c)

Here, Ωi (i = 1, ..., d) are angular coordinates satisfying
∑

iΩ
2
i = 1. In other words, Ωi

parametrize a (d − 1) dimensional sphere. These coordinates are referred to as global
coordinates of AdSd+1 since all points of the hypersurface of the eq. (2.35) are taken into
account exactly once. From this one finds that the induced metric then becomes

ds2 = L2(− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
d−1). (2.40)

Since the metric above does not depend on τ , we infer the existence of a timelike Killing
vector ∂τ , and since this Killing vector is defined globally on the manifold, τ acts as a

7



sensible global time coordinate. Near the center ρ = 0, the metric assumes the form
ds2 = −L2(dτ 2 + dρ2 + ρ2dΩ2

Sd−1), implying that the spacetime has topology, since τ is
periodic of S1 × Rd, where S1 is the periodic time; in particular, since ∂τ is everywhere
timelike, keeping ρ and θi fixed while varying τ will produce closed time-like curves. This
is, however, not an intrinsic property of this spacetime but merely a consequence of our
embedding: Rd,2 has two timelike directions, so the appearance of closed timelike curves
is not so surprising after all.

2.3 Supersymmetry
Before diving into (super) strings we will quickly review a symmetry which plays an
important role in the gauge/gravity duality and the realm of M -theory. As of today
the Standard Model unites all fundamental forces of Nature except gravity in which the
typical electroweak scale is Mew ∼ 250 GeV, and at which the model is tested very well.
Since the gravitational force is so much weaker than the other fundamental forces, the
energy scale for which gravity would be expected to become non-negligeble is at the
Planck scale MPl ∼ 1019 GeV. Since this scale is so much greater than the electroweak, it
would be reasonable to except new interactions between them. After renormalization in
perturbation theory, masses of scalar particles usualy diverge in a quadratic manner, for
example a fermion coupled to a Higgs boson through the Yukawa interaction −λfHf̄f ,
whose one-loop correction is ∆m2

H ∼ −2λ2fΛ2, with Λ being the UV cutoff. This means
that to conserve the experimentally found Higgs mass at mH ∼ 125 GeV, the UV cutoff
would have to be in the TeV scale, rendering the Standard Model an effective theory at
energy scales less then TeV. Going beyond this scale would induce new interactions that
fit to protect otherwise divergent perturbation corrections to the Higgs mass, resulting
in new fermionic and bosonic degrees of freedom, which means more couplings to the
Higgs boson. These will induce other pertubartive corrections of the Planck scale order
(the new UV cutoff), and this would entail a lot of work done simply to keep the Higss
mass to the original value. This hierarchy problem could be solved by assuming that the
model admits couplings of a form that cancel the UV divergences. The introduction of
supersymmetry [10] manifests such a solution by being represented with a generator Q,
called supercharge, that has the property

Q |f〉 = |b〉 , Q |b〉 = |f〉 , (2.41)

where f is for fermion and b is for boson. Note that it changes the spin of a particle, and
this matches the level of bosonic and fermionic degrees of freedom.

In 1967, Coleman and Mandula [11] proved that it is impossible to combine spacetime
and internal symmetries of the S-matrix in any but a trivial way, a theorem known as a
no-go theorem. This means that an internal symmetry generator G has to commute with
the Poincaré generators:

[G,Pµ] = [G, Jµν ] = 0. (2.42)

It turns out that by including anti-commutators in the algebra, thus softening the as-
sumptions of the no-go theorem, we can evade the theorem. In 1975 Haag, Lopuszanski,
and Sonhius [12] showed that the possible combinations of symmetries in the no-go the-
orem are enhanched to super-Poincaré and internal symmetries. Recall the standard
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translation and Lorentz group algebras

[Ji, Jj] = iεijkJk, [Ki, Kj] = −iεijkJk, [Ji, Kj] = iεijkKj, (2.43)
[Pµ, Pν ] = 0, (2.44)
[Ji, Pj] = iεijkPk, [Ji, P0] = 0, [Ki, Pj] = −iP0, [Ki, P0] = −iPj, (2.45)

with Ji being rotations, Ki being boosts, and Pµ translations. We want to enlarge this
Poincaré algebra with generators that transform under the Lorentz group and commute
with translations. These will be the spinors QI

α and Q̃I
α̇. The index I runs from 1 to N

and labels the number of copies of pairs of supersymmetric generators. The number is
constrained by the fact that a supermultiplet contains particles that have spin ≥ N /4.
In four dimensions this means in particular that a theory with N ≤ 4 describes a local
gauge theory with maximum spin one particles. In general, the supersymmetric algebra
looks like

{QA
α , Q

B
β } = εαβZ

AB, {Q̃α̇A, Q̃β̇B} = εα̇β̇(Z
AB)∗

{QA
α , Q̃α̇B} = 2(σµ)αα̇Pµδ

A
B,

[QA
α , J

µν ] = (σµν)βαQ
A
β , [QA

α , P
µ] = 0.

(2.46)

Here, ZAB = −ZBA is the central charge (we elaborate on this term in the next section),
σ are the Pauli matrices. For the case N = 1, the centrally extended algebra (2.46) looks
simpler due to the fact that now Z = 0 by its anti-symmetric nature (though this is not
necessarily the case [13, 14]).

Generically, if a theory is supersymmetric it means that its action is invariant under
some supersymmetric spacetime transformations that, as per (2.41), relate bosons and
fermions. An example is the Wess-Zumino model (see [15] for a more in-depth review)

L = −|∂φ|2 − iψ̄σ̄µ∂µψ + |F 2| −m
(
1

2
ψψ +

1

2
ψ̄ψ̄ + Fφ+ F̃ φ̃

)
,

which is invariant under the transformations

δεφ =
√
2εαψα,

δεψα =
√
2εαF +

√
2i(σµ)αβ̇ ε̄

β̇∂µφ,

δεF =
√
2iε̄β̇(σ̄

µ)β̇α∂µψα.

(2.47)

One can obtain the algebra by defining the transformations through δεφ = i[εQ+ ε̄Q̃, φ]
and likewise for ψ. In the N = 1 case, the algebra is invariant under phase rotations
Qα → eiλQα. This symmetry is called R-symmetry, and in the general case this symmetry
is a U(N ) global symmetry.

2.3.1 Representations and Multiplets

Obtaining the irreducible representations of the supersymmetry algebra is done by looking
at the (anti)commutators (2.46) and defining the Casimir operators. In the standard
Poincaré group these Casimir operators are P 2 = P µPµ and W 2 = W µWµ, where

Wµ =
1

2
εµνρσP

νMρσ, Mij = εijkJk,Mµν = −Mνµ,M0i = Ki. (2.48)
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But now in the supersymmetric case, W 2 is no longer a Casimir operator since Mµν does
not commute with the supercharges Q, Q̃. So, in the N = 1 case, it is replaced by [16]

C2 = CµνC
µν ,

Cµν = BµPν −BνPµ,

Bµ = Wµ −
1

4
Q̃α̇σ̃

α̇α
µ Qα.

(2.49)

To get the irreducible representations one can employ Wigner’s technique of induced
representations (see e.g. [17, 18]). Note that, as stated, every irreducible representation
contains the same number of bosonic states as fermionic states. This can be seen be
defining the fermion number operator (−)Nf with the properties

(−)Nf |b〉 = + |b〉 , (−)Nf |f〉 = − |f〉 . (2.50)

From this it follows that

(−)NfQα = −Qα(−)Nf , (−)Nf Q̃α̇ = −Q̃α̇(−)Nf , (2.51)

which imply that

0 = Tr
[
(−)Nf{Qα, Q̃α̇}

]
= 2σµαα̇δ

ijPµTr(−)Nf . (2.52)

For non-zero Pµ this means that Tr(−)Nf = 0. The interpretation of the equal number
of bosons and fermions is naturally that every particle has a superpartner, which should
be detectable at high enough energies. The superpartner for e.g. the graviton is called
the gravitino1 (which is fermionic).

Consider the rest frame of a particle with mass m, Pµ = (m, 0, 0, 0). If we act with
particle states |pµ, s, s3〉 on the general supersymmetry algebr, and assuming vanishing
central charges, we get

{QA
α , Q̄β̇B} = 2mδAB(σ0)αβ̇ = 2mδAB

(
1 0
0 1

)
. (2.53)

We expect more states to exist since it is not given that QA
2 |pµ, s, s3〉 = 0 for all A. Thus

we define a pair of creation an annihilation operators

aBα =
QB
α√
2m

, (a†)Aα̇ =
Q̄A
α̇√
2m

. (2.54)

Here, a lowers and a† raises as usual. One can thus raise states and make combinations
of products of these in 2N ways, since α̇ ∈ {1, 2} and A,B ∈ {1, 2, ...,N}. Hence, all in
all we get 22N states compared to half as many in the exponent as one would get for the
massless states. Now, assume on the contrary that we have central charges that do not
vanish. Then we know that they commute with all generators of the SUSY algebra. So
what we want to do then is choose a basis where the central charges are diagonal and

1Some even suggest this as a candidate for dark matter (see e.g. [19, 20]). This goes to show the
possible powerful extend to which supersymmetry goes to solve problems of nature!
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have eigenvalues qi. This can be arranged in the anti-symmetric matrix ZAB giving us
for N = 2

ZAB =

(
0 q1
−q1 0

)
. (2.55)

The same construction follows for N > 2. Here onw would just build block diagonals
consisting of Lego blocks for the N = 2 matrix

ZAB =



0 q1 0 0 0 ...
−q1 0 0 0 0 ...
0 0 0 q2 0 ...
0 0 −q2 0 0 ...
... ... ... ... . . .

. . .
0 qN

2

−qN
2

0


. (2.56)

Thus if we want to make a corresponding set of raising a lowering operators, the only ones
that are non-zero will take the additional term of the eigenvalues for the non-vanishing
central charges. Using a linear combination we then construct

Q̃j
α± = Q2j−1

α ± (Q2j
α )

†, j ∈
{
1, ...,

N
2

}
. (2.57)

Hence taking the anti-commutator we can find that all the non-zero terms goes on the
following form

{Q̃i
α+
, (Q̃j

β+
)†} = δji δ

β
α(2m+ qi), {Q̃i

α− , (Q̃
j
β−
)†} = δji δ

β
α(2m− qi). (2.58)

For unitary particle representations we must insist that both right-hand sides stay pos-
itive, leading to |qj| ≤ 2m for all j. But precisely when equality holds |qj| = 2m we
get the so-called BPS (Bogomolnyi-Prasad-Sommerfield [21, 22]) bound. In the event
that k of the qj are fulfilling the BPS-bound, we see that 2N − 2k of these operators
satisfy the equality such that we now have 22N−2k states. These are referred to as 1/2k

BPS-multiplets. Possible BPS-multiplets are

k = 0 ←→ 22N States Long Multiplet, (2.59)

0 < k <
N
2

←→ 22(N−k) States Short Multiplet, (2.60)

k =
N
2

←→ 2N States Ultra Short Multiplet. (2.61)

For the massless case, Pµ = (−E, 0, 0, E), the algebra reduces to

{QA
α , Q̃β̇B} = 2

(
2E 0
0 0

)
δAB, (2.62)

and the creation and annihilation operators are defined as

aA =
1

2
√
E
QA

1 , a†B =
1

2
√
E
Q̃A

1 . (2.63)
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These generate the algebra

{aA, a†B} = δAB,

{aA, aB} = {a†A, a
†
B} = 0.

(2.64)

The vacuum is per usual defined as

aA |Ωλ〉 = 0, (2.65)

with λ labeling helicity. The multiplets are then defined as∣∣∣Ω(n)
λ+n

2
;i1,...in

〉
=

1√
n!
a†in . . . a

†
i1
|Ωλ〉 . (2.66)

This state has helicity λ+ n/2 and due to the antisymmetry of the exchange of indices,
the total number of states in the irreducible representation is

N∑
k=0

(
N
k

)
= 2N ,

half/half of fermionic and bosonic states. Note that CPT invariance changes the sign
of the helicity, and so if the helicity is not distributed symmetrically around 0, we get
double the amount of states.

2.3.2 N = 4 super Yang-Mills Theory

A model with great importance for the discovery of the correspondence found by Malde-
cena is the N = 4 super Yang-Mills theory (SYM), which as the name indicates is
the supersymmetric extension of Yang-Mills theory. The new constraints imposed by
supersymmetry at N = 4 makes this theory perturbatively finite meaning there is no
renormalization of both the wave function and coupling constants, and there is no UV
divergence either in the computation of correlation functions. On top of that, N = 4
SYM is a superconformal theory; it is supersymmetrically and conformally invariant at
all loops, and as a consequence it has vansishing beta functions. Here we will introduce
the action and in the next section show how it practically can be derived from string
theory.

The field content corresponds to the N = 4 case of the massless vector multiplets. It
has six real scalar fields φi, which transform in the anti-symmetric representation of the
R-symmetry group SO(6) ' SU(4) (these can be combined into three complex fields).
It contains four Weyl fermions ψA, with A = 1 . . . 4 which transform in the fundamental
representation of SU(4). Lastly it has one gauge field Aµ being a singlet under the R-
symmetry group. The action can be obtained in different ways but here we simply state
it. With Grassmann variable θ the Lagrangian is

L = Tr
{
− 1

2g2
F 2
µν +

θ

16π2
FµνF̃

µν − (Dµφi)
2 − iψ†

Aσ̄
µDµψ

A

+ gC i
ABψ

A[φi, ψ
B] + gC̄iABψ†

A[φi, ψ
†
B] +

g2

2
([φi, φj])

2
}
, (2.67)

with the field strengths
Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ], (2.68)
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and the covariant derivatives

Dµφi = ∂µφi + i[Aµ, φi], (2.69)
Dµψ

A = ∂µψ
A + i[Aµ, ψ

A], , (2.70)

and the dual field strength
F̃ µν =

1

2
εµνρσFρσ. (2.71)

The Ci
AB are Clebsch-Gordan coefficients that couple to the R-symmetry group SU(4),

and the fields in the action transform in the ajdoint representation of the gauge group
SU(N). The action (2.67) enjoys Poincaré invariance, N = 4 supersymmetry, global
SU(4) R-symmetry, and conformal invariance. All of these symmetries can be formulated
through the so-called superconformal group PSU(2, 2|4), though we will only comment
briefly on some of the properties of this (see [23] for a thorough review).
One can define the operator

O(x) = Str
(
φi(x) . . . φj(x)

)
, Str(Ta1 . . . Tan) =

∑
σ

Tr
(
Tσ(a1) . . . Tσ(an)

)
, (2.72)

where the sum is over the permutations σ. This forms a completely symmetric object
that makes up an irreducible representation of the so-called superconformal algebra. This
is also a chiral primary operator corresponding to a 1/2 BPS-state. The operator has
dimension ∆ = n and is protected even at the quantum level.

2.4 Supergravity Theories
So far we have gone through most of the gauge side of the gauge/gravity duality, and now
we turn to the gravity side, more precisely, supergravity (SUGRA). Firstly we will briefly
look at string theory, a theory for which the addition of supersymmetry helps solving some
complications that arise naturally without it. We go through Dp-branes, in particular
the D3-brane which we will see constitutes the gravity dual side of its correspondence
with N = 4 SYM on the gauge side. We will see how this gauge theory can be derived
from string theory, and we establish how SUGRA theories arise as low energy limits of
superstring theories for both type IIA and IIB.

2.4.1 String Theory

There is a lot to be said about string theory as it encompasses an enormous field of study
of theoretical physics, but here we will look only briefly at relevant concepts and proper-
ties for this thesis. Many (introductory) papers and notes on string theory can be found
on the internet, the following captures the essence of many of them (warmly recommend
[24]).

An infinitely thin relativistic string spans a two-dimensional surface in a D-dimensional
spacetime. It is parametrized by its so-called worldsheet (τ, σ) which is mapped onto the
target space Xµ(τ, σ). Two types of strings are distinguished from each other; the closed
and open strings. A closed string satisfies the condition

Xµ(τ, σ + 2π) = Xµ(τ, σ), (2.73)
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and for an open string there exists at least one µ for which Xµ(τ, 0) 6= Xµ(τ, π) with
0 ≤ σ ≤ π is true (otherwise it would be closed). These strings generically move according
to the Polyakov action:

Spol = −
T

2

∫
d2ξ
√
−ggαβ∂αXµ∂βX

νηµν , (2.74)

where T (= 1/(2πl2s)) is the tension of the string, ls the length, and the coordinates
ξ0 = τ, ξ1 = σ. gαβ(τ, σ) is a symmetric 2×2 metric on the worldsheet. Also, ∂α = ∂/∂ξα.
From the equations of motion one actually finds that gαβ = λ(τ, σ)2γαβ where

γαβ = ηµν∂αX
µ∂βX

ν (2.75)

is called the induced metric on the worldsheet. A constraint equation that arises for the
Polyakov action is that the energy-momentum tensor

Tαβ = 0. (2.76)

The Euler-Lagrange equations of the corresponding Polyakov Lagrangian in the flat gauge
gαβ = ηαβ,

Lpol = −
T

2
∂αX

µ∂βX
ν , (2.77)

gives the equations of motion in the form of the wave equation:

∂α∂
αXµ = 0. (2.78)

By introducing the lightcone coordinates

ξ± = τ ± σ = ξ0 ± ξ1. (2.79)

This results in the breakdown of the solution to be the sum of a right and left moving
sector:

Xµ(ξ) = Xµ
R(ξ

−) +Xµ
L(ξ

+). (2.80)

The solutions can be written as Fourier expansions. For the open string one gets two
possible boundary conditions know as

Neumann : X ′µ(τ, 0) = 0, (2.81a)
Dirichlet : Ẋµ(τ, 0) = 0. (2.81b)

Here a dot (prime) denotes differentiation with respect to τ (σ).
Now, when quantizing the action and strings by imposing canonical commutation

relations between the operators xµ, pµ and the Fourier modes αµn, n ∈ Z and defining
αµn to be annihilation operators and αµ−n the creation operators, one stumbles into ghost
states. By the relations

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mδm+n,0η

µν (2.82)

(tilde denoting left moving sector), one sees that the state

|g〉 = 1√
n
α0
−n |0; k〉 (2.83)
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produces a negative norm, thus they are known as ghost states. However, Fourier modes
of the energy-momentum tensor, which can be found to be

Ln =
1

2

∑
k∈Z

αn−k · αk, L̃n =
1

2

∑
k∈Z

α̃n−k · α̃k, (2.84)

give the quantum analog of (2.76):

(Ln − aδn,0) |φ〉 = (L̃n − aδn,0) |φ〉 = 0 for n ≥ 0. (2.85)

A theorem known as the no-ghost theorem [25] combined with the adding of conformal
symmetry states that no ghost states exists provided that a = 1 and D = 26. Interest-
ingly, one can compute the algebra of the modes Ln to be generally

[Lm, Ln] = (m− n)Lm+n +
( c
12
m3 + km

)
δm+n,0. (2.86)

Here, c and k are constants and c is known as the central charge. The above relation is
known as the centrally extended Virasoro algebra, with the second term being the central
extension. With the relation being non-zero the conformal symmetry algebra is said to
be anomalous. This is because we need the local symmetries of the Polyakov action to
remain symmetries after quantization in order to keep the physics consistent. One can
resolve this by introducing Fadeev-Popov ghost fields as done in quantum field theory.
When introducting supersymmetry, the algebra (2.87) looks like

[Lm, Ln] = (m− n)Lm+n +
1

2
(cm2 + qm)δm+n,0, (2.87)

To avoid anomalies, after introducing ghost fields, it turns out the necessary conditions
are that q and the central charge must be zero and the dimension reduces to D = 10. So
going from stringtheory to superstring theory reduces the number of dimensions by 16.
Another thing supersymmetry helps with is to get rid of the so-called tachyon state. In
ordinary string theory one finds a state with negative mass, implying it travels beyond
the speed of light. In superstring theory, this state does not exist.

More generally than strings we have the dymnamical p-branes. A 0-brane is a particle,
1-brane is a string and so on. A p-brane is thus parametrized by a (p + 1)-dimensional
worldvolume mapped to D-dimensional target space. The endpoints of the open string
can be thought of as lying on a p-dimensional hyperplane defined by xI = cI with I =
p + 1, . . . , D − 1. A special type of brane which is defined by the open strings that live
on it is the Dp-brane, where D is for Dirichlet (2.81b). These types branes can be seen
as being made out of strings that live on the brane. If we look at a single D-brane in 10
dimensions and split the space directions in to µ ∈ {0, 1, 2, 3} and I ∈ {4, . . . 9}, then the
dynamics are described by the Dirac-Born-Infield (DBI) action [26]:

SDBI = −
1

(2π)3gsls

∫
d4ξ
√
−det(γab + 2πα′Fab), (2.88)

where have the γab is (2.75) and F is the field strength 2-form given as F = dA (following
the standard form notation used in e.g. [27]) of the U(1) gauge field. From the splitting of
directions we must choose our coordinates appropriately. First we specify the embedding
and choose Xa(ξ) = ξa with a ∈ {0, 1, 2, 3}. The transverse directions, which we center
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at the origin for convenience, can be described by six scalars that are fluctuations in the
position of the brane on the worldvolume:

X i+3(ξ) = 2πα′φi(ξ), i ∈ {4, ..., 9}. (2.89)

Applying this to the induced metric we get the Minkowski metric with some fluctuations
that we interpret as the scalars in the theory:

γab = ηab + (2πα′)2∂aφ
i∂bφi. (2.90)

Using these relations, we find that the determinant can be written as

det
[
ηab + 2πα′Fab + (2πα′)2∂aφ

i∂bφi
]
. (2.91)

In the low energy limit where α′ → 0 we can expand around the parameter. For conve-
nience we can look at the determinant and write it as ηab + εΛab = ηac(δ

c
b + εΛcb). Using

this, we can use the homomorphism property of determinants to split it up:

det
[
ηac(δ

c
b + εΛcb)

]
= −det(δcb + εΛcb). (2.92)

This suggest that we should use the identity det(Γ) = exp(Tr[log(Γ)] where Γ is an n×n
matrix. Using that Γ = I+ εΛ, we get

det(I+ εΛ) = exp(Tr[log(I+ εΛ)]) = exp
( ∞∑

n=1

(−1)n+1

n
εTr[Λn]

)
= 1 +

∞∑
n=1

(−1)n+1

n
εTr[Λn]− 1

2

( ∞∑
n=1

(−1)n+1

n
εTr[Λn]

)( ∞∑
m=1

(−1)m+1

m
εTr[Λm]

)
= 1 + εTr[Λ].

(2.93)
Finally, we have to deal with the square root in the action, so we approximate

√
1 + x '

1 + 1
2
x+O(x2). With this in mind, we can write the determinant in the desired form:

√
−det = 1 + (2πα′)2Tr

(
1

2
FabF

ab +
1

2
∂aφ

i∂bφi

)
. (2.94)

Ignoring the identity which integrates to the worldvolume, we find the action

SDBI =
1

4πgs

∫
d4ξ Tr

(
1

4
FabF

ab + ∂aφ
i∂bφi

)
+ Fermions (2.95)

This corresponds to the action of N = 4 SYM with gauge group U(1) given that we make
the identification between the Yang-Mills coupling and string coupling g2ym = 4πgs.

When considering a stack on N D-branes on top of each other, one gets that a non-
abelian gauge theory with U(N) gauge symmetry appears, living on the stack of D-branes.
This is the open string picture of D-branes, and it is described by a weak coupling.
However, D-branes as strings also have a tension, meaning they are massive objects. So
naturally, with many stacked up against each other, they react by curving the spacetime
around them. This is the strong-coupling picture. This dual description are solutions of
the low-energy effective action of string theory. The strings in this picture are closed.
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2.4.2 Type II Supergravity

There generally exists five superstring theories (see Table 2.1). The most common of
these are the type IIA and type IIB strings. By the so-called GSO projection one finds
that what distinguishes the two is an eigenvalue s of the states in the closed superstring
Fock space. By definition s = −1 describes type IIA string theory and s = 1 described
type IIB. For type IIA the massless spectrum is non-chiral which is not the case for type
IIB. Normally type II is a theory of closed strings while type I is a theoy of both open and
closed strings. However, the end points of open strings in type II can be seen to end on
the so-called D-branes. Another related theory of supergravity is the type II supergravity
which can be related to string theory. To begin with we briefly mention Kaluza-Klein
compactification, which can be used to obtain relevant actions for SUGRA theories.
Usually in supergravity theories the dimension of the action far exceeds the dimension
for which we should make phenomenological models in particle physics. For this reason w
could consider what could happen if we shrink the redundant dimensions to be so small
that their effect becomes negligible in the observable theory. One way manifest this is
through Kaluza-klein compactification [28] on certain geometries (Calabi-Yau manifolds,
a torus or spheres/circles). Thus we wish to compactify one space dimension on a circle
S1
R of radius R. This means we turn one of our xµ coordinates into a y-coordinate on a

circle and let the remaining ones be called xµ̄. Hence for example our wave operator can
be written as

2D = 2D−1 +
∂2

∂y2
. (2.96)

Now if we want to investigate how fields transform in the vanishing radius limit R → 0
(dimensional reduction), we start with a scalar field φ(xµ) obeying periodic boundary
conditions on S1

R so that it can be expressed through its Fourier decomposition:

φ(xµ̄, y) =
∑
n∈Z

φn(x
µ̄)e

2πiny
R . (2.97)

Looking at the standard kinetic term of the Klein-Gordon action in d dimensions, we can
use dimensional reduction to get∫

ddxφ(−2D +m2)φ =
∑
n∈Z

2πR

∫
ddxφn

(
−2D−1 +

∂2

∂y2
+m2

)
φne

2πiny
R

=
∑
n∈Z

2πR

∫
ddxφn

(
−2D−1 +

4π2n2

R2
+m2

)
φn. (2.98)

One defines the mass of the nth mode as mn = n2

R2 . Thus we see that as R goes to zero
the only mode that contributes is the n = 0 mode since all others acquire an infinitely
heavy mass and thus decouples. Due to the infinity of every increasing mass, this became
known as the Kaluza-Klein tower of states. When L � 1, the non-zero modes will be
immensely heavy and can be safely neglected. These heavy masses truncates the Kaluza-
Klein spectrum and is known as the Kaluza-Klein reduction ansatz.

Starting off with the maybe most classical type IIB SUGRA, one needs to consider
superstrings to capture all of the dynamics. When adding spinors (fermions) to the theory,
one needs periodicity constraints on the left and right moving sectors from the equations of
motion. This leads to what is called the Ramond (R) and Neveu-Schwarz (NS) conditions.
Thus one can have four type of periodic conditions to work with namely NS-NS, R-R,
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NS-R, R-NS. To help motivate the content for the SUGRA actions we look at the closed
string. According to the periodic conditions chosen, looking at the mass spectrum results
in the decomposition of the representation. The mass spectrum transforms as a vector
in SO(D − 2). In 10 dimensions this becomes SO(8) with 56 generators. Thus, for the
choice of sector, one has either the fundamental representation in the NS-sector or the
chiral represenations in the R-sector. For SO(N) one can decompose a tensor product
into a direct sum N ⊗ N = (1

2
N(N + 1) − 1) ⊕ (1

2
N(N − 1) ⊕ 1. For the (NS⊕, NS⊕)

one obtains 8⊗ 8 = 35⊕ 28⊕ 1. This procedure can be played to find fields, symmetric
and anti-symmetric tensors and correspondingly the particles that will be used for the
SUGRA action. To summarize we give the complete direct sum for both types of string
theories, which will help us associate the components in the SUGRA action:

Type IIA: 1⊕ 8V ⊕ 28⊕ 56t ⊕ 35⊕ 8⊕ 8′ ⊕ 56⊕ 56′,

Type IIB: 12 ⊕ 282 ⊕ 35⊕ 35+8⊕ 8′2 ⊕ 562.
(2.99)

So the low-energy action for type IIB superstrings can now be obtained in the string
frame, using the direct sum

SIIB =
1

2κ210

[ ∫
d10X

√
−g
(
e−2φ(R + 4∂Mφ∂

Mφ− 1

2
|H(3)|2 −

1

2
|F(1)|2−

1

2
|F̃(3)|2 −

1

4
|F̃(5)|2)−

1

2

∫
C(4) ∧H(3) ∧ F(3)

]
.

(2.100)

The prefactor is the 10-dimensional gravitational constant 2κ210 = (2π)7α′4. To get the
Newton constant one simply modifies with the coupling constant. The final part is to
introduce the fields composed in one-forms

F(p) = dC(p−1), H(3) = dB(2), F̃(3) = F(3) − C(0)H(3),

F̃(5) = F(5) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3), (2.101)

and further one must impose a self-duality constraint for ∗F̃(5) = F̃(5). Similarly, one can

open closed String theory Low energy limit
x IIA N = 2 IIA SUGRA
x IIB N = 2 IIB SUGRA

x x Type I N = 1 SO(32) YM
x Heterotic SO(32) N = 1 SO(32) YM
x Heterotic E8 × E8 N = 1 E8 × E8 YM

Table 2.1: Table of the five different string theories and their low energy limits.

construct an action for type IIA supergravity that is build from the grounds of product
representations as we wrote in eq. 3.5. The SUGRA action reads

SIIA =
1

2κ210

[ ∫
d10X

√
−g
(
e−2φ(R + 4∂Mφ∂

Mφ− 1

2
|H(3)|2)

−1

2
|F(2)|2 −

1

2
|F̃(4)|2 −

1

2

∫
B ∧ F(4) ∧ F(4)

]
.

(2.102)
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Here we define F̃(4) = dA(3)−A(1)∧F(3). We will see below how the action can be obtained
by dimensional reduction of a eleven-dimensional supergravity that is unique in the sense
that it is the only (local) supersymmetric theory in eleven dimensions containing only
massless particles of spin ≤ 2. In particular, it contains two bosonic fields, the metric
GMN and a three-form potential A(3) = AMNRdx

M ∧ dxN ∧ dxR. We will see below how
this arises in the context of M -theory and branes, and also how the near-horizon limit
emerges in a certain regime given the type IIA SUGRA.

2.4.3 M-Theory and M-Branes

Let us say we compactify the x9 coordinate on a circle with radius R. Then the fields on
this circle can be expanded in terms of their eigenvalues and each term is proportional
to exp(im/R) where m ∈ Z is the m’th term. In the limit R→∞ we simply obtain the
uncompactified theory. In the limit R→ 0 however, the momentum will be either zero of
infinitely large, thus this is a decoupling limit. In the case of closed strings, the strings
can wrap around the circle, and this changes the periodicity condition to

X9(τ, σ + 2π) = X9(τ, σ) + 2πmR. (2.103)

m is called the winding number of the string as it counts how many times it wraps
around the circle. When imposing the condition (2.103), one gets that the mass M2 of
the spectrum is

M2 =

(
k

R
− mR

l2s

)2

, (2.104)

where k is the momentum. We see here that exchanging k and m while simultaneously
exchanging R with l2s/R leaves the mass unchanged. This symmetry is called the T -
duality. The transformations result in the chance of the sign of s in type II string theory,
thus the T-duality maps the two different type II string theories to each other. We say
that type IIA and type IIB are T-dual to each other. They describe the same physics
but with inverse radii and exchanged values of k and m. The T stands for target space,
as target space clearly is not a fundamental property in string theory since the radius
of the metric does not seem to affect the physics it describes. This duality is part of
the concept that the five different superstring theories should be able to be unified if
they aim to describe the same physics. The big unification that relates them all to each
other was first proposed by Horava and Witten in [29] as M -theory. They show that
heterotic E8 × E8 string theory is related to an eleven-dimensional supergravity theory
by the so-called S-duality. This is a strong-weak duality that maps a strongly coupled
regime in one theory to a weakly coupled regime in another theory. This makes it useful
for obtaining non-perturbative information in one theory by the means of perturbative
theory in the other theory. There also exists an S-duality between type I and heterotic
SO(32) string theory. And type IIB turns out to be self-dual. Further, type IIA is S-
dual to eleven-dimensional SUGRA, and the two heterotic theories are T-dual to each
other. Thus we see all five string theories are related to each other with dualities with
the connecting branch SUGRA in D = 11. This eleven-dimensional theory is said to be
the low energy effective description of M -theory. It is also the only possible theory for
supergravity in eleven dimensions, suggesting M -theory is unique. It is not known what
M -theory is, though suggestions have been proposed [30].
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M -theory can be described as originally being an 11D supergravity theory that was
found to spit out a relation between the radius and the string coupling constant after a
Kaluza-Klein reduction [31];

Rs/lp = g2/3s , l3p = gsl
3
s . (2.105)

Here, M -theory is seen as the strong coupling limit of type IIA superstring theory at
E � 1/lp, which is also what happens with type IIA superstring and supergravity. which
can be obtained from a dimensional reduction on a circle from 11D SUGRA. Hence M -
theory reduces to 11D SUGRA while type IIA superstring theory reduces to 10D type IIA
SUGRA at low energy. By compactification M-theory reduces to type IIA superstring
theory while 11D SUGRA reduces to 10D type IIA SUGRA. The action of the bosonic
sector of 11D supergravity is given by

S11 =
1

l9p

∫
d11x

{√
−g
(
R−

l6p
48
F 2
4

)
+

1

6
F4 ∧ F4 ∧ A3

}
. (2.106)

Here, the 3-form antisymmetric gauge potential A3 comes with the gauge transformation
δA3 = dΛ2, and the field strength is given by F4 = dA3. If we consider for the metric the
ansatz

ds211 = R2
s(dx

s +Aµdxµ)2 + ds210, (2.107)

where Rs is the fluctuating radius of compatification measured in the 11D metric, and A
is the Kaluze-Klein U(1) gauge field coming from the isometry and xs (s denoting string
theory), then we can perform a dimensional reduction of the action (2.106). Dimension-
ally, the scalar curvature of this is

R(gMN) = R(gµν) +

(
∂Rs

Rs

)2

+R2
s(dA)2. (2.108)

From here, the action now reads

S10 =
1

l9p

∫
d10xRs

√
−g

{
R +

(
∂Rs

Rs

)2

+R2
s(dA)2+l6pF 2

4 +
l6p
R2
s

(dB)2

}
+

∫
B ∧ F4 ∧ F4.

(2.109)

Compare this now to the action of the low energy limit of type IIA string theory which
can be written as

SIIA =
1

l8s

∫
d10x
√
−g

{
e−2φ

(
R + 4(∂φ)2 − l4s

12
(dB)2

)
− l2s

4
(dA)2 − l6s

48
F 2
4

}
+

∫
B ∧ F4 ∧ F4.

(2.110)

Identifying the dilaton field φ with ln(RS) up to numerical factors and matching the two
actions (2.109) and (2.110) one gets the following relations:

Rs

l9p
=

1

g2s l
8
s

,
1

Rsl3p
=

1

g2s l
4
s

,
R3
s

l9p
=

1

l6s
, (2.111)
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with g2s = e2φ.

Looking again at action (2.106), the equation of motion for A3 is

d∗F4 +
1

2
F4 ∧ F4 = 0, (2.112)

and this EOM leads to the conserved charge

U =

∫
∂Ms

(∗F4 +
1

2
A3 ∧ F4), (2.113)

which is of "electric" type. The integral over the second term which is 7-form is over the
boundary at infinity of an infinite spacelike 8-dimensional subspace of the 11-dimensional
spacetime. The Bianchi identity dF4 = 0 leads to another conserved current,

V =

∫
∂M̃s

F4, (2.114)

where the integral is the same but over a 5-dimensional subspace of the 11-dimensional
spacetime. This charge is of "magnetic" type. The charges U and V are 2- and 5-form
charges which can be seen by the fact that the supersymmetry algebra {Q,Q} can be
written in terms of the one-form momentum vector as ΓAPA, and the two charges as
ΓABUAB and ΓABCDEVABCDE. Topologically speaking, one might validly say that the 2
and 5 indices come from the ways that the 8 and 5 dimensional integration volumes might
be embedded into a 10-dimensional surface. We now turn to solutions in supergravity
that namely carry the charges (2.113) and (2.114). These are of course the p-branes. To
make the system easier to study, we consider the action

S =

∫
DDx

√
−g
[
R− 1

2
∇Mφ∇Mφ− 1

2n!
eaφF 2

n

]
, (2.115)

where the field strength is Fn = dAn−1. This action we call a consistent truncation from
a full D-dimensional supergravity theory. The solutions of this consistent truncation
are (definitionally) also solutions of the original theory. Notice here the action (2.115)
is described by (gMN , φ, An−1). We ignore here the inconsistent solutions for which
n = D/2. Varying (2.115) one gets the following equations of motion:

SMN =
1

2(n− 1)!
eaφ(FM...F

...
N −

n− 1

n(D − 2)
F 2gMN), (2.116)

RMN =
1

2
∂Mφ∂Nφ+ SMN , (2.117)

∇M1(e
aφFM1···Mn) = 0, (2.118)

2φ =
a

2n!
eaφF 2. (2.119)

To solve these we make an ansatz requiring (Poincaré)d× SO(D− d) symmetry. We can
then view the solutions we are looking for as flat d = p + 1 dimensional hyperplanes
embedded in the D-dimensional spacetime, and these hyperplanes can then be viewed
as the worldvolumes of the p-dimensional surfaces. We split the spacetime coordinates
into two parts: xM = (xµ, ym), with µ = 0, 1, . . . , d − 1 and m = d, . . . , D − 1. Here,
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xµ correspond to the Poincaré isometries on the worldvolume and ym correspond to the
coordinates transverse to the worldvolume. A viable ansatz is then

ds2 = e2A(r)dxµdxνηµν + e2B(r)dymdynδmn, (2.120)

where µ = 0, 1, . . . p and m = p + 1, . . . D − 1, and r =
√
ymym is the isotropic radial

coordinate in the transverse space. The components of this metric depend only on r
we are guaranteed to have translational invariance in the xµ directions and SO(D − d)
symmetry in the ym directions. From here one computes the Ricci tensor by introducing
vielbeins with tangent-space indices and constructing the corresponding 1-forms. After
computations one gets that the source is given by

ρ =

{
C ′e

1
2
aφ−dA+C electric: d = n− 1, ζ = +1

λr−d̃−1e
1
2
aφ−d̃B magnetic: d = D − n− 1, ζ = −1

. (2.121)

One finds further that
e

ζ∆
2a
φ ≡ H(y) = 1 +

k

rd̃
, k > 0. (2.122)

Here and before, d̃ = D − d − 2. Returning now to the original action (2.106), which is
absent of any scalar fields. To make this absence consistent with our truncated solutions,
we simply identify the scalar coupling parameter a with zero. This implies ∆ = 4 in
D = 11. Dropping the last term in (2.106), we identify n = 4, which leads to the electric
solutions with d = 3, that is, a 2 membrane. Using also D = 11, the magnetic solutions
becomes of dimension d = 11− 4− 1 = 6, that is, a 5-membrane. In both of these cases
the last term of the action vanishes and thus this term does not destroy our previous
study and ansatz. All in all, the two M -branes we get are the M2- and M5-branes:

M2-brane: ds2 =
(
1 +

k

r6

)−2/3

dxµdxνηµν +

(
1 +

k

r6

)1/3

dymdym, (2.123)

Aµνλ = εµνλ

(
1 +

k

r6

)−1

, (2.124)

where k = κ2T/(3Ω7), with T being the tension of the action, and Ω7 being the volume
of the unit 7-sphere S7. Further:

M5-brane: ds2 =
(
1 +

k

r3

)−1/3

dxµdxνηµν +

(
1 +

k

r3

)2/3

dymdym, (2.125)

Fm1...m4 = 3kεm1...m4p
yp

r5
. (2.126)

In general we have

Hp(r) = 1 +

(
Lp
r

)7−p

, (2.127)

where
L7−p
p = (4π)(5−p)/2Γ

(
7− p
2

)
gsNα

′(7−p)/2. (2.128)

Using this and writing a stack of N coincident M2-branes in flat spacetime we can write
the M2-brane metric as

ds2 =

(
1 +

L6

r6

)−2/3

dxµdxνηµν +

(
1 +

L6

r6

)1/3

(dr2 + r2dΩ2
7). (2.129)
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The gauge field is A3 = (1 + L6/r6)−1dx0 ∧ dx1 ∧ dx2. In the near-horizon limit where
r � L, we have that the H(r) factors reduce to(

1 +
L6

r6

)−2/3

' r4

L4
, and

(
1 +

L6

r6

)1/3

' L2

r2
,

and (2.129) reduces to

ds2 =
r4

L4
dxµdxνηµν +

L2

r2
(dr2 + r2dΩ2

7). (2.130)

Recalling that the Anti-de Sitter metric in Poincaré coordinates can be written

ds2AdS4
=
L2

r2
dr2 +

r2

L2
dxµdxνηµν

and using the transformation z = L3/2r2 =⇒ dz2 = L6/r6dr2, we can write the M2-
brane in the near-horizon limit as

ds2 =
L2

4z2
dxµdxνηµν +

L2

4z2
dz2 + L2dΩ2

7

= L2

(
1

4
ds2Ads4 + ds2S7

)
. (2.131)

Perhaps interesting to note that one can also derive the relation L = 32π2Nl6p [32] by
requiring g00 to be related to the Newtonian potential in the asymptotic limit. In this limit
the M2-brane can be thought of as a source in eight dimensions, and the Schwarzschild
solution can be generalized to

lim
r→∞

g00 ' −1 +
2L6

3r6
= −1 + 16πG11NTM2

9Ω7r6
,

where TM2 is the tension of the M2-brane and G11 is Newton’s constant in eleven dimen-
sions.

2.5 AdS/CFT Correspondence and the Holographic Principle
With the knowledge of conformal field theories and gravity we are now ready to make the
link between them. The principle of this link originates from the holographic principle
[33, 34]. It goes something like the following: the degrees of freedom of any given quantum
theory can be related to its entropy through the third law of thermodynamics. The
dimension of the Hilbert space is the exponent of the entropy eS = N . By the so-
called Bekenstein bound [35], the entropy must be smaller than that of a black hole:
S < SBH = A/(4G), where A is the surface area of the black hole. This implies that
N ≤ eA/(4G). Suppose now that the universe is a lattice with Planck length scaling and
with each site having either spin up or down. The total number of states in a volume V
is N (V ) = 2n with n = V/ldp. The limit on the entropy is S ≤ ln(N (V )) = V ln(2)/ldp.
The entropy grows with volume. Above the Planck threshold the volume is larger than
the area, resulting in a larger entropy bound. By the first relation, we have that N ∼
eV . However, if the region collapsed to a black hole, the entropy would have decreased
to eA/(4G), meaning the number of states would have decreased as well. This violates
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unitarity, so we must assume that the Hilbert space had dimension eA/(4G) from the
beginning. This leads us to conclude that a quantum gravity theory on some manifold
will be determined by another theory living on the boundary of that manifold, and we
have a duality. With duality we mean a relation between two different theories that
predict the same values for the same physical observables. Here, we will refer to the fields
living in AdSd+1 space as the bulk fields, and we assume that they interact with each
other according to some effecive action SAdSd+1

(gµν , Aµ, φ, ψ, . . . ), where the vacuum is
AdSd+1. The fields living on the corresponding CFT will be called the boundary fields,
and these will be described with the d-dimensional action SCFT. Now we associate a field
h in AdS with an operator O in the CFT with same quantum numbers, and they are
related to each other through behavior near the boundary. We can write this from the
CFT perspective as

SCFT +

∫
ddxh(x)O(x). (2.132)

This leads us to the correlation function〈
e
∫
hO
〉

QFT
= eW (h), (2.133)

with
〈O . . .O〉 = δnW

δhn
∣∣
h=0

. (2.134)

But if we now change the perspective to the Ads side, h is the boundary value of the
higher dimensional bulk field ĥ(x, xd+1), which is a solution to the effective AdSd+1 action.
With boundary condition this bulk field is unique for every boundary field h(x). Thus
we have 〈

e
∫
hO
〉

QFT
= eW (h) = e−SAdSd+1(ĥ). (2.135)

This states an equivalence between a conformal field theory and a gravitational theory.
Note that we assume the gravity theory is weakly coupled and assuming a UV completion
(2.135) can be interpreted at quantum level. The boundary theory is off-shell, while the
gravity side is on-shell as we stated.

The most common example first found by Maldecena is the correspondence between
N = 4 SYM with coupling constant gYM and type IIB string theory on AdS5 × S5 with
coupling gs and string length ls =

√
α′. The correspondence states that dynamics of the

two theories are equivalent. The five-sphere on the gravity side comes from Kaluza-Klein
reduction of the 10-dimensional type IIB action. The duality also relates

g2YM = 2πgs, 2g2YMN = 2λ =
L4

l4s
. (2.136)

Here λ = g2YMN is the t’Hooft coupling, L is the radius, and N is the number of units of
F5 flux on S5.

The radial coordinate in AdS plays the role of an energy scale, r ∼ µ. Further it leads
to the mass-conformal weight relation for scalars

ml2 = ∆(∆− d). (2.137)

Different relations exist for other types of fields. When gYM � 1 and λ → ∞, we get
gs � 1 and L/ls →∞, which means the strirngs become pointlike and the only states to
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practically exist are the massless ones. This resembles type II SUGRA. This is only one
example of an AdS/CFT correspondence, and later we will turn to the one example that
is the focus of this project.
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3
ABJM Theory and AdS4 × CP3

In this section we study the correspondence that lies the foundation for this thesis. ABJM
theory, named after Aharony, Bergman, Jafferis, and Maldecena [36], is the dual between
M -theory on AdS4 × S7 and N = 6 super Chern-Simons theory. However, for some
calculations in this paper the seven-sphere can be reduced to CP3. We first look at what
this means.

3.1 Complex Projective Space
CPn is loosely defined as the set of all lines in Cn+1. A point in the projective plane
has coordinates (u1, u2, . . . , un) with equation u1X1 + u2X2 + · · ·unXn = 0. The points
(u1, u2, . . . , un) and (u1, u2, . . . , un)k where k is a real number represent the same point.
An inclusion Cm+1 ⊂ Cn+1 induces an inclusion CPm ⊂ CPn, the image of which is a
linear subspace. One can consider CPn as a compactification of Cn. The hyperplane H
at infinity is added to Cn, so we have [37]

CPn = C ∪ Cn−1 ∪ · · · ∪ C0. (3.1)

We have that CP1 is diffeomorphic to S2, as S2 can be described via stereographic pro-
jection from the north and south pole (0, 0, 1) and (0, 0,−1) through [38]

φ1(x
1, x2, x3) =

(
x1

1− x3
,

x2

1− x3

)
, (3.2)

φ2(x
1, x2, x3) =

(
x1

1 + x3
,

x2

1 + x3

)
, (3.3)

with transition map z → 1/z. But this is the same as [1, z]→ [1/z, 1] of CP1.
We can write the projective plane as CPn ∼= S2n+1/S1; they are isomorphic. Each line in
Cn+1 intersects S2n+1 in a circle (S1), and this line defines the point of CPn. CPn is also
a homogeneous U(n+ 1)-space (the Lie group).
We can define a Hopf map by the projection

π : S2n+1 → CPn. (3.4)

By realising CP1 is isomorphic to S2, we obtain the known π : S3 → S2 projection with
fiber S1.
Hopf fibration can be dfined as H : C2 \ {0} → S2,

H : (u, v)→
(
|v|2 − |u|2

|u|2 + |v|2
,

2uv

|u|2 + |v|2

)
. (3.5)
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3.1.1 Metric Interpretation of CPm+n+1

One can write the metric of the (p+ q+1) unit sphere in terms of the foliation of Sp×Sq
for integers p and q as

dΩ2
p+q+1 = dξ2 + cos(ξ)sdΩ2

p + sin(ξ)2dΩ2
q. (3.6)

Here, the angle is bounded 0 ≤ ξ ≤ π/2. If we consider the specific case where both p
and q are odd such that p = 2m+ 1 and q = 2n+ 1 for some integers m and n, then we
can write the metrics dΩ2

p and dΩ2
q of the Sp and Sq unit spheres and the Fubini study

metrics for CPm and CPn, dΣ2
m and dΣ2

n, as [39]

dΩ2
p = (dτ1 + A)2 + dΣ2

m, dΩ2
q = (dτ2 + Ã)2 + dΣ2

n. (3.7)

The A terms are usually called a connection, and they are related to something called
the Kähler form defined as dA = 2J and dÃ = 2J̃ which are related to CPm and CPn
respectively. Thus if one starts with the unit sphere in an odd dimension, one can
generally write this as a U(1) fiber connection or Hopf fibration with the addition of a
Fubini study metric. In [39] a closed form for any choice of index of m and n of the
Fubini study metric is given on CPm+n+1

dΣ2
m+n+1 = dξ2 + cos(ξ)2dΣ2

m + sin(ξ)2dΣ2
n + sin(ξ)2 cos(ξ)2(dψ + A− Ã). (3.8)

This will come in handy since working in ABJM theory gives rise to the AdS4 × S7/Zk
geometry. Here we have an orbifolding singularity [40] which will affect the coordinates.
But the point is that when we have S7, we can employ the foliation of the spheres and
get a geometry of the form AdS4 × CP 3. Moreover, the use of the CP2 turns out to be
useful when considering Spin Matrix Theory (see section hej) in the geometries of non-
relativistic strings for SYM. Considering the cases when m = 0, n = 1 and m = n = 1 we
get

dΣ2
2 = dξ2 + sin(ξ)2(dθ + sin2θdφ)2 +

1

4
sin(ξ)2 cos(ξ)2(dψ + cosθ)2, (3.9)

dΣ2
3 = dξ2 + cos(ξ)2(dθ1 + sin2θ1dφ1)

2 + sin(ξ)2(dθ2 + sin2θ2dφ2)
2

+
1

4
sin(ξ)2 cos(ξ)2(dψ − cosθ1dφ1 + cosθ2dφ2)

2. (3.10)

This way of parameterizing the geometry of the gravity side of the correspondence will
prove to be quite helpful later on, but we must consider the fact that there exist other
ways to express the metric in cases of different BPS-bounds.

3.2 The Correspondence
The AdS4/CFT3 correspondence conjectures the following [9]: N = 6 superconformal
Chern-Simons matter (CSM) theory in 2+1 dimensions with gauge group U(N)× U(N)
and Chern-Simons levels (k,−k), referred to as ABJM theory is dynamically equivalent
to M -theory on AdS4 × S7/Zk with N units of R-R four-form flux F(4) through AdS4.
The ’t Hooft coupling is given by λ = N

k
and is related to the AdS4 radius L and the

eleven-dimensional Planck length lp by

L3

l3p
= 4π

√
2kN = 4πk

√
2λ, gs ∼

(
N

k5

)1/4

=
λ5/4

N
,

R2

α′ = 4π
√
2λ. (3.11)
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The two dualities, ABJM and SYM, contain two free parameters each. In the SYM case
one finds on the AdS part the string coupling gs amd the dimensionless parameter L2/α′.
In ABJM this conversely corresponds to the Chern-Simons Levels (k,−k) since we are
now dealing with a so-called a quiver gauge theory [41] living in two different represen-
tations. We are led to the conclusion that the two sides of the duality describe the same
physics. This is a bit surprising since we have a gravitational theory on one side, but
no gravitational degrees of freedom on the other. Further, the holographic principle is in
some way satisfied. In SYM, the information of the five-dimensional theory obtained from
KaluzaKlein reduction of type IIB string theory on S5 is mapped to a four-dimensional
theory that lives on the conformal boundary of the five-dimensional spacetime. In ABJM
we take a low energy limit of M -theory and obtain eleven-dimensional type IIA SUGRA,
which via KaluzaKlein reduction reduces to a ten-dimensional type IIA SUGRA. This in
despite all its glory unfortunately not very practical.

To apply the framework, we must consider weaker regimes instead of assuming arbitrary
values of the ’t Hooft coupling and the rank of the gauge group. On the string side for
SYM we usually keep to tree-level computations and restrict higher genus expansions.
This is the weak coupling regime gs � 1 while keeping L2/α′ fixed. We call it the strong
form of the duality. On the CFT side this corresponds to gYM � 1 while keeping gYMN
fixed. This indicates that N →∞ for a fixed λ which is known as the ’t Hooft limit and
corresponds to the planar limit of the gauge theory. ’t Hooft might have been right when
he said that the planar limit of a quantum field theory is a string theory [42]. Conversely
for ABJM, in order to approximate M -theory by weakly coupled type IIA string theory
on AdS4 × CP3, we must take the limit where k5 � N . This is because the S7/Zk
manifold is equivalent to an S1 Hopf fibration over CP3 with the periodicity of S1 going
from 2πL to 2πL/k. As the supergravity regime holds validity in the large N limit, we
have that the radius of the S1 circle in M -theory is L/k, but this is small for large k and
therefore the theory reduces to type IIA supergravity on AdS4 × CP3.

3.2.1 N = 6 CSM vs N = 4 SYM

We now consider the actions for the ABJM and SYM and compare their structures.

The AdS5/CFT4 Action: We already stated the action of N = 4 SYM in the previous,
but there are different ways to derive the action other than the route of going through the
DBI-action and splitting up your directions into transverse and perpendicular coordinates.
This produces keeps both the gauge field and the scalars in the bosonic sector. Historically
it seems that there have been two ways of obtaining this action, however. Either one
starts from N = 1 superspace for N = 4 SYM and express the action in terms of chiral
superfields Φ, as well as a gauge superfield V with associated field strength W

SN=4 =

∫
d4x

[ ∫
d4θΦi†eVΦie−V +

1

8π
Im
(
τ

∫
d2θWαWα

)
+(

igYM

√
2

3!

∫
d2θεijkΦ

i[Φj,Φk] + h.c
)]
. (3.12)

Or one considers dimensional reduction of the N = 1 SYM in ten dimensions:

S10D =

∫
d10xTr

(
− 1

2
FmnF

mn + iΨ̄ΓmDmΨ

)
, (3.13)
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where the Γm are the Dirac matrices in ten dimensions. The field strength tensor has got
additional structure in terms of a coupling constant glued to the commutators, resulting
in a manifest non-abelian gauge theory. This can be compared to the derivation of the
bosonic part from DBI. We define it as Fmn = ∂mAn − ∂nAm + ig[Am, An]. Ψ represents
a Majorana-Weyl fermion which is a spinor and has 16 real independent components.
Both Ψ and Fmn transform in the adjoint representation of the gauge group and thus
the covariant derivative Dm on Ψ reads DmΨ = ∂mΨm + ig[Am,Ψ]. To obtain the final
action, one must in Kaluza-Klein style do dimensional reduction on the six-dimensional
torus T 6. The idea is the same as for the DBI-action. We split the space into two
ranges for µ ∈ {0, 1, 2, 3} and φi+3 ∈ {1, ..., 6}, which decompose the gauge field as
Am = (Aµ(x

ν), φi(xν). Following this line of thought for the fermions and calculating the
contributions will lead us to the same destination as for the superspace route. With the
prescription down, we get

SSYM =

∫
d4ξTr

{
− 1

g2YM
FµνF

µν +
θI
8π2

FµνF̃
µν −

∑
a

iλ̄aσ̄muDµλ−
∑
i

DµX
iDµX i

+
∑
a,b,i

gCab
i λa[X

i, λb] +
∑
a,b,i

gC̄i,abλ̄
a[X i, λ̄b] +

g

2

∑
i,j

[X i, Xj]2
}
.

(3.14)
The constants Cab

i and C̄iab are related to the Clifford Dirac matrices for SO(6)R =
SU(4)R. g is the gauge coupling and θI is the instanton angle. Further, λ arises as
the gaugino fields from the N = 1 superspace expansion one gets from supersymmetry
considerations.

The AdS4/CFT3 Action: Things turn out to be more complicated in this instance. First
of all, the amount of preserved supersymmetry is not maximal in ABJM. Whereas one
has 32 generators in SYM, we only have 24 generators in ABJM where the global SO(8)
R-symmetry only has a U(1)R × SU(4) subgroup manifesting. Secondly, as mentioned,
we have a quiver gauge theory, so we get contributions from fields that live in the bifunda-
mental and anti-bifundamental representations. Lastly, Chern-Simons theories are topo-
logical quantum field theories ordinarily [43], but when introducing a coupling to matter,
topological contributions are dismissed. Nevertheless, superconformal symmetry is still
preserved. We first write up the components for the full action S = SCS + Smat + Spot.
The superspace actions are given by

SCS = −iK
∫
d3xd4θ

∫ 1

0

dtTr
[
VD̄α(etVDαe

−tV)− V̂D̄α(etV̂Dαe
−tV̂)

]
, (3.15)

Smat = −
∫
d3xd4θTrZ̄Ae−VZAeV̂ , (3.16)

Spot = L

∫
d3xd2θW(Z) + L

∫
d3xd2θ̄W̄(Z̄). (3.17)

These will be the building blocks for the full action. It is quite long and hairy to get to
the final expression, but in its full we have

S =
k

4π

∫
d3x
[
εµνλTr(Aµ∂νAλ +

2i

3
AµAνAλ − Âµ∂νÂλ −

2i

3
ÂµÂνÂλ)

− Tr(DµY
†)DµY − iTr(ψ†

��Dψ)− Vferm − Vbos

]
.

(3.18)
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Here we have obtained fermionic and bosonic potentials that are expressions containing
combinations of scalar fields coupled to each other. Writing out the sextic bosonic and
quartic mixed potentials one obtains

Vbos = −
1

12
Tr(Y AY †

AY
BY †

BY
CY †

C + Y †
AY

AY †
BY

BY †
CY

C

+ 4Y AY †
BY

CY †
AY

BY †
C − 6Y AY †

BY
BY †

AY
CY †

C),
(3.19)

Vferm = − i
2

Tr(Y †
AY

Aψ†BψB + Y AY †
AψBψ

†B + 2Y AY †
BψAψ

†B − 2Y †
AY

Bψ†AψB

− εABCDY †
AψBY

†
CψD + εABCDY Aψ†BY Cψ†D).

(3.20)

First note that the gauge fields come in a copy with one of them being hatted. This
comes from the two gauge vector superfields V and V̂ which is written in the so-called
Wess-Zumino gauge (see [44]). The Y and their conjugate fields are composed of scalars
(ZA,WA) that are complex combinations of the bifundamental fields that appear from
SU(4) R-symmetry. Another interesting thing to note is that while in the SYM case we
have through the Chern-Simons action gained an almost fully topological quantity that
has to be quantized and only take integers values. This is referred to as the level.

3.2.2 Field Content and Global Symmetries

To get a better hang of the differences, we look how the two dualities are split by the
amount of supersymmetry that is preserved by the algebra and overall global symmetry,
and what corresponding matter turns out to be present in each case.

Operators, charges and global symmetries of SYM
The three main components of the superconformal algebra in SYM are the supersym-
metry, conformal symmetry ,and R-symmetry. Together they are part of the bigger
Lie supergroup PSU(2, 2|4). By considering the bosonic subalgebra of the supergroup
SU(2, 2) × SU(4) ' SO(4, 2) × SO(6), one can through the similarity explicitly see the
appearance of both the R-symmetry, manifesting as the SO(6), and the conformal group
manifesting as SO(4, 2). Ten of the generators belong to Poincaré group of SO(3, 1),
whereof four generators are spacetime translations, and the last 6 are Lorentz trans-
formations. The remaining generators are devoted to dilatations and special conformal
transformations For completeness, one also finds 32 supercharges (Qαa, Q̃

a
α̇, S

a
α, S̃α̇a), and

also R-symmetry generators RIJ .

To get the full algebra, we must consider all the commutators (see [45] for more).
Now, we state the field content and matter. Readily from both the action and global
symmetry, it is given that there is one gauge field Aµ in the singlet 1 representation of
SU(4). One also finds the Weyl fermions λaα, a ∈ {1, 2, 3, 4} transforming in the funda-
mental 4 representation and scalars φi, i ∈ {1, ..., 6} transforming in the antisymmetric 6
representation. For the operators, we require that they must be gauge invariant as well,
since all the matter content in the theory is gauge invariant. The way we build them is
by taking the trace of a product of such covariant fields evaluated at the same spacetime
point. However, we note that since these fields all lie in the adjoint representation, they
transformunder a gauge transformation according to χ(x) → χ(x) + [E(x), χ(x)] where
χ(x) is one of the covariant fields and E(x) is a generator of gauge transformations. The
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local single trace operator then takes the form as O(x) = Tr(χ1(x)χ2(x)...χL(x)). A spe-
cific class of operators only contains scalars defined as O(x) = Str(φ{i1φi2 ...φik}), where
Str stands for the symmetrised trace for the gauge algebra defined in (2.72). This ensures
that operators are totally symmetric. We want to construct the simplest operators now
in terms of the scalars φi that combine into three complex scalars defined as

Z =
1√
2
(φ1 + iφ2), W =

1√
2
(φ3 + iφ4), X =

1√
2
(φ5 + iφ6). (3.21)

Now we can start building operators, but before we look at a specific example, we might
also want to know the dimensions of these. Given the bosonic subgroup, we know that it
has rank six and thus has six Cartan generators (or charges) (∆, S1, S2, J1, J2, J3). Here, ∆
is the conformal dimension, S1, S2 are the two charges of the SO(1, 3) Lorentz group which
we call spin, and J1, J2, J3 are the R-symmetry generators. These will become important
when we study subsectors of SYM (and correspondingly ABJM). The scalars in SU(4)
transformed as [0, 1, 0], so the dimension was Dim(0, L, 0) = 1

12
(L + 1)(L + 2)2(L + 3).

For concreteness, in the case L = 2 we get the 20 representation of SU(4). Generally, in
cases when the planar limit is taken, one can interpret the trace operators as spin chains.
Doing this makes it natural to construct a general ground state |0〉 = TrZL, which is
just a spin chain with no excitations on the sites. These are the 1/2 BPS-operators.
One can also make 1/4 and 1/8 BPS-operators, by considering different configurations
of the dimensions of operators. They turn out to also be products of single trace operators.

Operators, charges and global symmetries of Chern-Simons
Gazing at ABJM theory, one might find this duality to contain more peculiarities than
SYM due to the lack of supersymmetry. We have the same kind of symmetries, but as
mentioned ABJM is a quiver gauge theory with a non-semisimple group U(N) × U(M)
where in this case M = N . We get a superalgebra OSp(6|4) that has bosonic subalgebra
SU(4)R×SO(3, 2) ' SO(6)R×Sp(4). One sees the manifest three-dimensional conformal
algebra as SO(3, 2) which is just a dimension smaller than for SYM, reducing the amount
of generators from 15 to 10. Otherwise the R-symmetry is the same as in SYM. In terms
of supercharges we now have 2 × 12 = 24 supercharges, indicating that as mentioned
supersymmetry has been partially reduced or broken from the maximal case of 32. But
again the same amount of R-symmetry generators are present. One can obtain the full
algebra again by considering all the commutators between elements. Turning to the action
it can be seen that the two Chern-Simons terms exist at levels (k,−k). The gauge fields
Aµ and Âµ respectively transform as a connection under the U(N) × U(N) subgroups.
In the matter sector we have four complex scalars accompanied by the same amount of
fermions given by Y A, ψA, A ∈ {1, 2, 3, 4}. The bifundamental matter fields transform in
the representation (N, N̄) while the conjugate fields transforms in the anti-bifundamental
(N̄ ,N). It is worth noticing that one can similarly construct a SU(N)× SU(N) group,
but then one must take into account altercations to conditions on the moduli space, which
is beyond the scope here. Most important will be the scalars which can be grouped in
pairs of two complex scalars given by A1 and A2 in the N×N̄ representation, and B1 and
B2 in the N̄ ×N representation. We can group them into multiplets of the R-symmetry
group as [46]

Y a = (A1, A2, B
†
1, B

†
2) Y †

a = (A†
1, A

†
2, B1, B2). (3.22)

Now a significant difference appears when looking at what type of operators we can build.
As a consequence of the gauge theory, we have an alternation for the matter fields on the
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odd and even spacings in the trace operators. This mean that the general class of gauge
ivariant operators are

O = Tr(Y A1Y †
B1
Y A2Y †

B2
...Y ALY †

BL
)χB1...BL

A1...AL
. (3.23)

The bare dimension of the operators is L and it is considered a chiral primary if χ is
symmetric in all Ai, Bi indices and all traces are zero. What will be interesting is when
this is not the case, in which case the operators will pick up quantum loop contributions
from the anomalous dimension. This first appears at two-loop in ABJM compared to
one-loop in SYM.
For the dimension of operators we have the Cartan charges [∆, S, J1, J2, J3]. From the
geometry side, one gets a restriction on J4 such that due to orbifolding when considering
a type IIA background we have [47]

J1 + J2 + J3 + J4 = 0. (3.24)

Using the same expression for the dimension as for SYM one finds that the trivial rep-
resentation will have dim(0, 0, 0) = 1 and fundamental and anti-fundamental will have
dim(1, 0, 0) = 4 and dim(0, 0, 1) = 4̄. From the way we construct operators, we must
consider the dimension of the vacuum to be of the form dim(L, 0, L) since the bi- and
anti-bifundamentals transform like this. The usual choice and convention for ground state
operators is |0〉 = Tr(Y 1Y †

4 )
L. From here building more complicated operators is just a

matter of changing respectively on odd and even sites scalars or fermions that coincide
in the same representation.

3.3 Super Chern-Simons Theories
To get a better grasp of ABJM theory it might be helpful to look at Cherm-Simons theory
in general. In this section we review some general theory and different supersymmetrical
versions, and also briefly take a look at superspace formalism. We finish it off by stating
the algebra of ABJM.

3.3.1 Chern-Simons Action, Invariance and Quantization

Originally the notion of topological manifolds with boundary terms was introduced by
Chern and Simons [48]. This led to a surprising use of this manifold action in theoretical
physics, in particular quantum field theories. For the sake of the AdS/CFT correspon-
dence we will focus solely on the non-abelian case of the Chern-Simons(CS)-Lagranigan.
It has the following form

Lcs = κεµνρTr
(
Aµ∂νAρ +

2

3
AµAνAρ

)
. (3.25)

The aim from here is to reach a point where we can argue that under a gauge transfor-
mation of the Lagrangian, the introduction of a quantization condition is needed for the
path integral of the Lagrangian, such that it behaves as a quantum theory and does not
contain ambiguities. The first step is to consider an infinitesimal variation δAµ. This
implies δLcs = κεµνρTr(δAµFνρ) with Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. We see the equa-
tions of motion are reduced to a familiar looking term of κεµνρFµν = jµ. The source-free
equation will then give us Fµν = 0, and the solutions give a pure gauge or rather flat
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connections Aµ = g−1∂µg. This was sort of an interlude between abelian and non-abelian
elements, but now we see what happens to the Lagrangian under a gauge transformation
associated to the group in the non-abelian case (usually SU(N)). Such a transformation
is given by Aµ → Agµ = g−1Aµg + g−1∂µg. The Lagrangian then transforms as

Lcs = κεµνρ(Tr((g−1Aµg + g−1∂µg)∂ν(g
−1Aρg + g−1∂ρg))

+
2

3
Tr((g−1Aµg + g−1∂µg)(g

−1Aνg + g−1∂νg)(g
−1Aρg + g−1∂ρg))) (3.26)

We can write the result of this gauge transformation as the Lagrangian itself plus some
boundary terms:

Lcs → Lcs − κεµνρ∂µTr(∂νgg−1Aρ)−
κ

24π2
εµνρTr(g−1∂µgg

−1∂νgg
−1∂ρg) (3.27)

The total spacetime derivative vanishes under some appropriate boundary conditions as in
the case for abelian Chern-Simons theories. However, the last term is a new contribution
which we denote as the winding number density

w(g) =
κ

24π2
εµνρTr(g−1∂µgg

−1∂νgg
−1∂ρg). (3.28)

With appropriate boundary conditions the integral of the winding number density will
be an integer. Thus, considering the path integral, the action will transform into itself
plus an additive constant Scs → Scs− 8π2κN . Thus for the path integral exp(iS) to stay
gauge invariant, we demand that the parameter in the CS-Lagrangian must take discrete
values: κ =

k

4π
, k ∈ N.

3.3.2 Superspace Formalism

We briefly comment on the formalism of superspace as we have to introduce the notion
of superfields and superspaces in ABJM. In a usual sense, when one is not dealing with
supersymmetry, the input in functions one might deal with has input xµ; coordinates
of Minkowski space. The idea is now to extend Minkowski such that we also get anti-
commuting fields. Thus the set of variables will now be a triplet (xµ, θα, θ̄

α̇), which
consists of the Minkowski coordinates and Grassmann spinors. A brief mentioning of the
geometry of superspace may be convenient now. Usually when given a Lie group we want
to know what manifold would be useful in that situation when knowing the action of
the group G. So it would be natural to just equate the group manifold to the manifold
itself. However, one can also create something called a coset space, which means letting
the manifold be a quotient between the Lie group and a subgroup of G. Formally this is
written asM = G/H with H ⊂ G. This will be helpful in formulating a general element
of the superspace. The coset that generates the superspace is the quotient between the
super-Poincaré group and the Lorentz group. For the Poincaré group we know that the
algebra gives generators for Lorentz boosts Mµν and translations P µ. Now we only need
to add the supersymmetry generators accompanied by the Grassmann spinors, and this
will constitute the generator of the superspace:

g(ω, xµ, θ, θ̄) = exp
(
− i
2
ωµνM

µν + ixµP
µ + iθαQα + iθ̄α̇Q

α

)
. (3.29)
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What we are interested in now is figuring out how the generators work on the coordinates.
As in Poincaré we know that momentum generates translation, and this is still the case.
However, what about the Grassmann valued spinors? It is relatively straightforward to
show how they transform. First we split the generator into two pieces:

g(ω, xµ, θ, θ̄) = g̃(xµ, θ, θ̄)h(ω). (3.30)

Here, h(ω) is the Lorentz transformation while the rest is the coset structure with the
form g̃(xµ, θ, θ̄) = exp(ixµP µ + iθαQα + iθ̄α̇Q

α). This gives us points in superspace. To
see how our coordinates are now affected by suiting generators, we can try to act with
the following objects U(a) = exp(iaµpµ) and V (ε, ε̄). It is an easy exercise to see that
acting with the momentum generator gives U(a)g̃(x, θ, θ̄) = g̃(x+a, θ, θ̄). It is a bit more
involved but still simple to show what happens for V (ε, ε̄)g̃(x, θ, θ̄). Due to the anti-
commutative nature of the supersymmetry generators, we have to use the BCH-formula
to first order when calculating this. One gets

V (ε, ε̄)g̃(x, θ, θ̄) = g̃(x+ iθσµε̄− iεσµθ̄, θ + ε, θ̄ + ε̄). (3.31)

This asserts how the generators act on the coordinates. The Grassmann spinor not only
affects the spinor part of the space but also the normal spacetime coordinates. The last
thing worth mentioning before moving on to the actual Chern-Simons action are the
superfields. Grassmann valued objects truncate after quadratic order, that is to say that
the highest order terms are of the form θ2 = θαθα. This will help when investigating a
superfield Y (x, θ, θ̄). If we Taylor expand in θ and θ̄, we the find a finite expression for
the superfield containing a mix of particle multiplets:

Y (x, θ, θ̄) = φ(x) + θαψα(x) + θ̄α̇χ̄
α̇(x) + θ2M(x) + θ̄2N(x)

θαθ̄α̇Vαα̇(x) + θ2θ̄α̇λ̄
α̇(x) + θ̄2θαρα(x) + θ2θ̄2D(x).

(3.32)

It becomes apparent that what comes out of this, such that all indices match, is a total
of four complex scalars, φ, M , N , and D. Then there are two left-handed spinors ψ, ρ
and two right-handed spinors χ̄ and λ̄. At last there will also be a vector Vαα̇ = σµαα̇Vµ.
Now we have a basic understanding of the matter content in the superspace formulation.
Before we conclude the section there is still some things left to be noted. One can, as
with the generators, formulate the same transformations for superfields in a manner such
that

V Y (x, θ, θ̄)V † = Y (x+ iθσµε̄− iεσµθ̄, θ + ε, θ̄ + ε̄). (3.33)

Through the commutation with the supersymmetry generators and treating εα as an
infinitesimal spinor, one can find the following relations

[Qα, Y ] =

(
−i ∂
∂θα
− σµαα̇θ̄α̇∂µ

)
Y, [Q̄α̇, Y ] =

(
−i ∂
∂θ̄α̇
− θασµαα̇∂µ

)
Y. (3.34)

3.3.3 N = 2 Chern-Simons Action in Superspace

To go from pure CS theory, we need to add fermionic degrees of freedom, which will come
through the vector and chiral multiplets:

V : {Aµ, χ, σ,D}, Φ : {φ, ψ, F}. (3.35)
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For the vector multiplet, Aµ is the gauge field, χ is the two Majorana spinors combined
into one complex spinor, σ is a real scalar, and D is a real auxiliary scalar. For the chiral
superfield we have that φ is a complex scalar, ψ is the two Majorana spinors combined
into a complex spinor, and F is a complex auxiliary scalar. The Lorentz group in 2 + 1
dimensions is SO(2, 1), and its covering group for fermions is Spin(2, 1) ∼= SL(2,R).
Hence, the spinor representations correspond to 2-component Majorana spinors, and so
therefore we start from N = 2, as this superspace consists of four fermionic degrees of
freedom. To proceed from here, we introduce the super-covariant derivatives and charges,
and also the chiral and corresponding vector superfields:

D̄α = − ∂

∂θ̄α
− θβγµβα∂µ, Dα =

∂

∂θ̄α
+ θ̄βγµαβ∂µ,

Q̄α = − ∂

∂θ̄α
+ θβγµβα∂µ, Qα =

∂

∂θ̄α
− θ̄βγµαβ∂µ.

(3.36)

Here, {γ0, γ1, γ2} = {iσ2, σ1, σ3}, where σi are the usual Pauli matrices. To lower and
raise indices we use the two-dimensional Levi-Civita symbol εαβ, εαβ : ε12 = ε21 = 1.
As mentioned in the original paper, the form of the replaced kinetic term in the vector
multiplet, which is replaced by supersymmetric Chern-Simons term, will look akward in
superspaace, but will take a nice form in the Wess-Zumino Gauge in component form.
The chrial superfield will then read Φ : D̄αΦ = 0 and DαΦ̄ = 0:

V (x, θ, θ̄) = −θγµθ̄Aµ − θθ̄σ(x) + iθ2θ̄χ̄(x)− iθ̄2θχ(x) + 1

2
θ̄2θ2D(x), (3.37)

Φ(x, θ, θ̄) = φ(x) +
√
2θψ(x) + θ2F (x) + iθγµθ̄∂µφ(x)−

i√
2
θ2∂µψ(x)γ

µθ̄ − 1

4
θ2θ̄2∂2φ(x),

(3.38)
Φ̄(x, θ, θ̄) = φ̄(x) +

√
2θ̄ ¯ψ(x) + θ̄2F̄ (x) + iθγµθ̄∂µφ̄(x)−

i√
2
θ̄2γµθ∂µψ̄(x)−

1

4
θ̄2θ2∂2φ̄(x).

(3.39)
Here the notation is θ2 = θαθα, θ̄

2 = θ̄αθ̄α, ∂
2 = ∂µ∂µ. An interesting feature of all this

is that the d = 3 N = 2 vector superfield can be obtained by dimensional reduction from
d = 4 N = 1 vector superfield. Thus it can be seen that the D = 3 N = 2 Chern-Simons
matter theory can be obtained by dimensional reduction of SYM, with the exception that
the kinetic part of the vector multiplet is replaced the supersymmetric version in the pure
CS-Lagrangian. One can ponder what superspace action would do this, and in a very
non-trivial way it can be chosen to be [49]

SN=2
CSM =

∫
d3x

∫
d4θ

 k

2π

∫ 1

0

dtTr[V D̄α(e−tVDαe
tV )] +

Nf∑
i=1

Φ̄ieVΦi

 . (3.40)

The index i is a global U(Nf ) flavor symmetry acting on Φ. The trace is in the fundamen-
tal representation for U(N) and SU(N). Thus the generators T a obey Tr(T aT b) = 1

2
δab.

Φi is a vector which is acted upon by the representation Ri of the group. Using what has
been established by the superfields and the super-covariant derivatives, we can proceed
for each term and calculate how this reduces in components after integrating out the
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superfields. Starting with the kinetic part we get

SN=2
CS =

∫
d3x

∫
d4θ

{
k

2π

∫ 1

0

dtTr[V D̄α(e−tVDαe
tV )]

}
=

k

4π

∫
Tr(AaT a ∧ dAaT a + 2

3
AaT a ∧ AbT b ∧ AcT c) + χ̄aχbδab +Daσbδab

=
k

4π

∫
Tr(A ∧ dA+

2

3
A3 + χ̄χ+ 2Dσ).

(3.41)

Here a ∈ {1, 2, ...dim(G)} and is the index related to the fundamental generators, such
as Aµ = AaµT

a, and the same for the rest of the components in the multiplet. Now, if we
focus on the chiral field, we note that the covariant derivative goes as follows

Dµ{φi, ψi} = ∂µ{φi, ψi}+
i

2
AaµT

a
Ri
{φi, ψi}. (3.42)

Using this we can split up the superspace integral and get

∫
d4θ

Nf∑
i=1

Φ̄ieVΦi =

Nf∑
i=1

(Dµφ̄
iDµφi − iψ̄iγµDµψ

i − 1

4
φ̄iσaσbT aRi

T bRi
Φi +

1

2
φ̄iDaT aRi

Φi

− 1

2
ψ̄iσaT aRi

ψi +
i√
2
φ̄iχaT aRi

ψi − i√
2
ψ̄iT aRi

χ̄aφi + F̄ iF i). (3.43)

Here, T aRi
, a ∈ {1, 2, ... dim(G)} are the generators of gauge group G in the Ri representa-

tion, and Aiµ = AaµT
a
Ri

etc. Now going on to solve the equations of motion we find

Dα : σa = −2π

k
φ̄iT aRi

φi, F, F̄ : F = 0, F̄ = 0,

χa : χ̄a =
4πi√
2k
φ̄iT aRi

ψi, χ̄a : χa = − 4πi√
2k
ψ̄iT aRi

φi.
(3.44)

To get the full action, after all the parts have been manipulated, we can combine them
and integrate out the fields. This will in the end yield

SN=2
CSM = SCS +

∫
d3x
{
Dµφ̄

iDµφi − iψ̄iγµDµψ
i +

π2

k2
(φ̄iT aRi

φi)(φ̄jT bRj
φj)(φ̄kT aRk

T bRk
φk)

+
π

k
(φ̄iT aRi

φi)(ψ̄jT aRj
ψj) +

2π

k
(ψ̄iT aRi

φi)(φ̄jT aRj
ψj)
}
. (3.45)

This concludes the case for N = 2 superspace. What we will proceed with is to look at
how we can construct the ABJM action in broad terms by enhancing the supersymmetry
from N = 2 to N = 4 and then decrease the symmetry to N = 3.

3.3.4 N = 3 Chern-Simons Action in Superspace

As mentioned, there are several ways to attack the problem of the breaking of supersym-
metry so we get an N = 3 Chern-Simons matter theory. One way which is feasible is to
start from N = 4 SYM and replace the kinetic term with the Chern-Simons one which
precisely breaks the symmetry to the desired one [50]. So to proceed as in the case from

36



last section, we organize our three-dimensional N = 3 multiplet in the language of N = 2
superspace in the following manner:

V : {Aµ, χ, σ,D}, Q :{ q, λ, S}, (3.46)

Φi : {φi, ψi, F i}, Φ̃i : {φ̃i, ψ̃i, F̃ i}. (3.47)
V and Q are respectively N = 2 vector and chiral multiplets in the adjoint representation
of G, and Φi and Φ̃i are N = 2 chiral multiplets, transforming under the representation
Ri and conjugate representation R̄i of G, respectively. By comparison we see that an
auxillary chiral multiplet Q has been added to the matter content. So if we want to write
up the corresponding CS-action for the N = 3 we get [51]

SN=3
CSM = SN=2

CS +

∫
d3x

∫
d4θ

Nf∑
i=1

(
Φ̄ieVΦi + Φ̃ie−V

¯̃i
Φ
)

(3.48)

+

∫ d3x

∫
d4θ

 k

2π
TrQ2 −

Nf∑
i=1

Φ̃iQΦi

+ c.c

 . (3.49)

Here c.c stands for complex conjugation. To symmetrize the V|Q multiplet with the
Chern-Simons term, the {q, λ, S} have to introduce terms in the action similar to how
the original chiral multiplet did in the N = 2 case. Here, the addition of TrQ2 + c.c
does this for us with its coefficient fixed by supersymmetry and its form fixed by the
requirement of holomorphicity of a superpotential. This can be seen by writing the
Taylor superspace expansion for Q:[∫

d3x

∫
d4θ

(
k

2π
TrQ2

)]
+ c.c =

k

4π
(−λaαλbα − λ̄aαλ̄bα + Saqb + S̄aq̄b)δab . (3.50)

This term is exactly what will break the N = 4 to N = 3. Now we can proceed to
integrate out Q since it is an auxillary field with no dynamical degrees of freedom:

Q : Qa =
2π

k
(Φ̃iT aRi

Φi) (3.51)

W =
k

2π
TrQ2 −

Nf∑
i=1

Φ̃iQΦi = −π
k
(Φ̃iT aRi

Φi)(Φ̃jT aRi
Φj) (3.52)

From this we can conclude that the N = 3 Chern-Simons matter theory is nothing but
an additional superpotential term added to the N = 2 theory where matter is organized
in a hypermultiplet now (Φ, Φ̃). By procedure as for the terms in the previous section,
we expand (Φ, Φ̃, Q) in superspace and insert them into the matter action to obtain∫
d4θ

Nf∑
i=1

(
Φ̄ieVΦi + Φ̃ie−V ¯̃Φi

)
=

Nf∑
i=1

(
Dµφ̄

iDµφi +Dµφ̃
iDµ ¯̃φi − iψ̄iγµDµψ

i

− iψ̃iγµDµ
¯̃ψi + F̄ iF i − 1

4
φ̄iσaσbT aRi

T bRi
φi − 1

4
φ̃iσaσbT aRi

T bRi

¯̃φi

+
1

2
φ̄iDaT aRi

φi +
1

2
φ̃iDaT aRi

¯̃φi − 1

2
ψ̄iσaT aRi

ψi − 1

2
ψ̃iσaT aRi

¯̃ψi

+
i√
2
φ̄iχaT aRi

ψi − i√
2
ψ̃iχaT aRi

¯̃φi − i√
2
ψ̄iT aRi

χ̄aφi +
i√
2
φ̃iT aRi

χ̄a ¯̃ψi
)

+ F̃ i ¯̃F i.
(3.53)
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3.3.5 The Superconformal Group Osp(4|6)

Considering both global bosonic and fermionic symmetries of the ABJM theory one finds
that this will constitute the Lie superalgebra OSp(4|6). If we first consider the bosonic
subalgebra we get SO(6) × Sp(4) ∼= SU(4) × SO(3, 2). SU(4) × SO(3, 2) is the 3D
conformal algebra and has ten components. Six of these belong to the Poincaré algebra
which contains the Lorentz algebra so(2, 1) ∼= sl(2,R) with generators Mµν . Additionally
we have spacetime generators Pµ. The remainder is the dilatation operator D and spe-
cial conformal transformations Kµ. It is a standard exercise to derive the commutation
relations, but we just state them here:

[Pµ, Kν ] = 2δµν + 2Mµν , [D,Pµ] = Pµ, [D,Kµ] = −Kµ,

[Mµν ,Mρσ] = δµ[νMρ]µ, [Pµ,Mνρ] = δµ[νPρ], [Kµ,Mνρ] =δµ[νKρ].
(3.54)

Then we consider the su(4) part of the algebra which contains the R-symmetry generators.
We denote them as RI

J , where I, J = {1, 2, 3, 4} and RI
I = 0. Thus the R-symmetry

generators have commutation relations

[RI
J , R

L
K ] = δLI R

J
K − δJKRL

I . (3.55)

Lastly we have the supercharges QIJ
α and SIJα . Since they have fermionic nature they

obey anti-commutation relations:

{QIJ
α , Q

KLβ} = 2εIJKL(γµ)βαPµ, {SIJα , SKLβ} = 2εIJKL(γµ)βαKµ,

{QIJ
α , S

KLβ} = εIJKL(γµ)βαMµν + 2δβα
(
εIJKLD − εNJKLJ IN − εINKLJJN

)
.

(3.56)

The only remaining commutators to look at are the bosonic ones from the conformal
group and the supercharges. They will finally give us

[D,QIJ
α ] =

1

2
QIJ
α , [Mµν , Q

IJ
α ] = −1

2
(γµν)

β
αQ

IJ
β , [Kµ, Q

IJ
α ] = (γµ)

β
αS

IJ
β ,

[D,SIJα ] = −1

2
SIJα , [Mµν , S

IJ
α ] = −1

2
(γµν)

β
αS

IJ
β , [Kµ, S

IJ
α ] = (γµ)

β
αQ

IJ
β ,

[JJI , Q
KL
α ] = δKI Q

JL
α + δLI Q

KJ
α −

1

2
δJIQ

KL
α , [JJI , S

KL
α ] = δKI S

JL
α + δLI S

KJ
α − 1

2
δJI S

KL
α .

(3.57)
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4
Subsectors and Decoupling Limits

To motivate why we are interested in subsectors is best done by example. Through the
framework of Spin Matrix Theory (see chapter 6), one considers near BPS-bounds or, in a
thermodynamic sense, a near critical point in temperature. This realizes decoupling limits
in the whole theory to the full symmetry group. This is well described in [52], where it is
stated that a subsector is a set of fields that are closed under the action of the spin-chain
Hamiltonian , i.e. there is no overlap between spin-chains from within a subsector with
spin-chains from outside. One defines a semi-definite charge from the eigenvalues of all
operators (Cartan generators) that commute with the spin-chain Hamiltonian E = ∆−J .

0 ≤ k∆+
∑
i

niJi +
∑
a

naSa + other = P. (4.1)

Here, we are just reformulating the condition of energy from above, where J is a specific
choice of Cartan generators that constitutes the exact subsector. Here the coefficients in
front are related to the weights and Dynkin Labels of the specific bosonic subalgebra of
the correspondence.

The use of this has been explored in various contexts, both in the contexts of gravity
and spacetime manifolds but also free partition functions, confinement/deconfinement
transition related to the Hagedorn temperature and more [53, 54, 55, 56]. We proceed
by analyzing the subsectors for both SYM and Chern-Simons, where we find decoupling
limits and subsectors that will be relevant in later calculations.

4.1 Subsectors and Decoupling Limits for N = 4 SYM
We consider N = 4 SYM on R × S3 with gauge group SU(N). We will consider the
thermal partition function in the grand canonical ensemble. This means non-zero chem-
ical potentials, which are given by the generators of the SU(4) R-symmetry and Cartan
generators of SO(4) of the S3. We will find that only a subset of subsectors will sur-
vive given contributions from tree-level and one-loop interactions. To start we have the ’t
Hooft coupling λ =

g2ymN

4π2 , where gYM is the Yang-Mills coupling. The set of letters for the
theory is given by the full psu(2, 2|4). It is important to know what kind of operators we
will be dealing with, since they will generate the crucial quantum numbers associated to
the symmetry. Such operators can be constructed from linear combination of multi-trace
operators of the form

k∏
i=1

Tr
(
A

(1)
1 A

(2)
2 ...A

(k)
Lk

)
. (4.2)

39



The quantum numbers associated is the energy E, two angular momenta S1 and S2 given
by the SO(4) of S3, three R-symmetry charges J1, J2, J3 corresponding to the Cartan
generators of SU(4), and lastly a dilatation operator D. If we wish to construct the
partition function in the grand canonical ensemble for SU(N) we can write

Zλ,N(β, ω1, ω1,Ω1,Ω2,Ω3) = TrM

[
exp

(
−βD + β

2∑
a=1

ωaSa + β

3∑
i=1

ΩiJi

)]
. (4.3)

The pre-factors in front of the generators will be the chemical potentials. To get to
the point of decoupled theories, we set the chemical potentials to be equal to the same
parameter such that (ω1, ω2,Ω1,Ω2,Ω3) = Ω(n1, n2, n3, n4, n5), where ni are real numbers
and Ω ∈ [0, 1]. Apparently, it is the case that for Ω → 1 we approach critical values of
the set of chemical potentials. Employing this and defining J = n1S1 + n2S2 + n3J1 +
n4J2 + n5J3, we have

Zλ,N(β, ω1, ω1,Ω1,Ω2,Ω3) = TrM
[
e−βD+βΩJ

]
= TrM

[
e−β(D−J)−β(1−Ω)J

]
. (4.4)

Here it becomes clear that in the limit Ω → 1, we get a decoupled theory, where the
contribution purely comes fromD−J . In general, the dilatation operator can be expanded
in powers for small λ such that D = D0 + λD2 + λ

3
2D3 + .... We see that the coupling

enters through only the dilatation, thus for each term we take into consideration, this
will be another loop-order considered. We will look at two cases:

Zλ=0,N(β, ω1, ω1,Ω1,Ω2,Ω3) = TrM
[
e−β(D0−J)−β(1−Ω)J

]
, (4.5a)

Zλ,N(β, ω1, ω1,Ω1,Ω2,Ω3) = TrM

[
e−β(D0−J)−βλD2−β(1−Ω)J+βO(λ

3
2 )
]
. (4.5b)

In the case of no interactions, we restrict ourselves to choices of (n1, n2, n3, n4, n5) that
satisfy D0 ≥ J . If we let β →∞ then all states with our chosen condition will decouple
from the partition function. However, this would not be useful, so we need to furthermore
demand that our choice of the integers or half-integers must fulfill that some states obey
D0 = J . This means that to get a non-trivial partition function, we keep β(1− Ω) fixed
in the β →∞ limit. Thus we can write ZN(β̃) = TrM [e−β̃D0 ], β̃ = β(1−Ω). Considering
the other case where we include the one-loop dilatation operator, we still demand the
same from the λ = 0 case, now we only need to include the βλ term to get a non-trivial
interaction. Thus in the large β limit we find

β →∞, β̃ = β(1− Ω)fixed, λ̃ =
λ

1− Ω
fixed, N fixed. (4.6)

This will in the end give us ZN(β̃) = TrM [e−β̃D0+λ̃D2 ], bringing us close to the zero tem-
perature, Ω = 1 and zero coupling. Higher loop terms for n ≥ 3 in the dilatation operator
will be negligible in the considered limit. Also, no assumption on N has been made, hence
it works in finite cases, and in the decoupled theory the partition function will depend
on λ̃, N, β̃. Lastly, from our choices of ni this will mean that (T,Ω) = (0, 1) is a critical
point, or rather (T, ω1, ω2,Ω1,Ω2,Ω3) = (0, n1, n2, n3, n4, n5).

We now list the respective weights of letters in the theory for both the R-symmetry SU(4)
and S3 SO(4) that we use to construct the subsectors. Following [57] we can organize
that data into tables through the reprsentations.
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F+ F0 F− F̃+ F̃0 F̃−
SO(4) (1,-1) (0,0) (-1,1) (1,1) (0,0) (-1,-1)
SU(4) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

Table 4.1: Weight of gauge field strength components.

Z X W Z̄ X̄ W̄
SO(4) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
SU(4) (1,0,0) (0,1,0) (0,0,1) (-1,0,0) (0,-1,0) (0,0,-1)

Table 4.2: Complex scalars in N = 4 SYM.

χ1,χ3,χ5,χ7 χ2,χ4,χ6,χ8 χ̄1,χ̄3,χ̄5,χ̄7 χ̄2,χ̄4,χ̄6,χ̄8

SO(4) (1
2
,−1

2
) (−1

2
,1
2
) (1

2
,1
2
) (−1

2
,−1

2
)

Table 4.3: SO(4) weights of fermions in N = 4 SYM.

χ1,χ2 ,χ3,χ4 χ5,χ6 χ7,χ8

SU(4) (1
2
,1
2
,1
2
) (1

2
,−1

2
,−1

2
) (−1

2
,1
2
,−1

2
) (−1

2
,−1

2
,1
2
)

Table 4.4: SO(4) weights for χ1, ..., χ8 fermions in N = 4 SYM.

χ̄1,χ̄2 χ̄3,χ̄4 χ̄5,χ̄6 χ̄7,χ̄8

SU(4) (1
2
,1
2
,1
2
) (1

2
,−1

2
,−1

2
) (−1

2
,1
2
,−1

2
) (−1

2
,−1

2
,1
2
)

Table 4.5: SO(4) weights for χ1, ..., χ8 fermions in N = 4 SYM.

d1 d2 d̄1 d̄2
SO(4) (1,0) (0,1) (-1,0) (0,-1)
SU(4) (0,0,0) (0,0,0) (0,0,0) (0,0,0)

Table 4.6: Derivative operators of N = 4 SYM.

The way to read these tables is for the SU(4) one has a vector with entries (J1, J2, J3) and
for SO(4) one has (S1, S2). From the decoupling prescription, we see that the choices of
coefficients will pick out the letters for the specific subsector by matching it with ∆0 = J .
We illustrate by example: Take the vector (0, 0, 1, 1, 0). This corresponds to J = J1 + J2
which is the classic SU(2) sector. Once we have this, we go through all the letters and see
which are the ones that satisfy ∆0 = J1 + J2. We only take use of the SU(4), since there
is no dependence on spin in this case. Looking at the gauge fields, we see that all the
components equate to 0 while ∆0F = 2. Thus no gauge fields are found. It is important
to note that the conformal dimension is different for different letters due to the different
representations they occupy. For the scalars one finds that Z and X satisfy our condition
since ∆0(x,z) = 1 and J1 + J2 = 1 for both. In the end, after going through all of this,
these remain as the only letters contained in this subsector. This is the general fashion
of how to determine the complete landscape. One could do a more thorough analysis
by considering inequalities of the coefficients and thereby determine different numbers of
fermions present in each case.
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4.2 Subsectors and Decoupling Limits for N = 6 Chern-Simons
Consider the letters in N = 6 Chern-Simons. The procedure is the same, but the weights
and Dynkin labels change. In the literature, different weights can be used, but they will
amount to the same physics, even though there may be a difference in the values of the
coefficients on the chemical potentials. Using data from [52], tables can be arranged.

D− D0 D+

SO(3) -1 0 1
SU(4) (0,0,0) (0,0,0) (0,0,0)

Table 4.7: Weight of derivative operators in SO(3) and SU(4) representation.

Y1 ψ
†
1± Y2,ψ†

2± Y3,ψ†
3± Y4,ψ†

4±
SU(4) (1,0,0) (-1,1,0) (0,1,-1) (0,0,-1)

Table 4.8: Weight of scalars in bifundamental representation.

Y †
1 ,ψ1± Y †

2 ,ψ2± Y †
3 ,ψ3± ψ4±,Y †

4

SU(4) (-1,0,0) (1,-1,0) (0,1,-1) (0,0,1)

Table 4.9: Weight of scalars in anti-bifundamental representation.

Lastly, the SO(3) weights are 0 for all the scalars, and ±1
2

for fermions. The su-
pergroup OSp(4|2) will be the main frame, that is the maximal subgroup of the full
OSp(6|4). From the geometry side of ABJM, a thorough analysis was done relating an-
gular momentum generators to R-symmetry generators of SU(4) through orbifolding of
S7. The inequality for operators takes the form

∆0 ≥ m1R1 +m2R2 +m3R3 +m4S. (4.7)

The Cartan generators manifest themselves as Ri for SU(4) while S is the Cartan genera-
tor for SO(3). This can alternatively be written in the language of the angular momenta
as

∆0 ≥ n1J1 + n2J2 + n3J3 + n4J4 + n5S. (4.8)

But this comes with the restriction
∑4

i=1 Ji = 0. Using the same prescription as for
SYM, it becomes a matter of systematically obtaining the subsectors. The problem can
be solved in two ways, either by constructing a matrix with Dynkin labels as columns
and weights as rows, after which diagonalizing the matrix then gives the BPS-vector
(m1R1,m2R2,m3R3,m4S) that can be used to determine the letter content and spin
group. Or one can reverse engineer by putting restrictions on coefficients and generators,
this will also work. An example is determining all sectors with derivatives, which imme-
diately gives S = ±1. We summarize the result in the table below, where BPS-vector,
spin group and letter content is presented.
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BPS-vector (m1R1,m2R2,m3R3,m4S) Gs

Letter Content
(1/2, q, 1/2, 0) Vacuum Y1, Y

†
4

(1/2, 0, 1/2, 0) SU(2)× SU(2) Y1, Y
†
4 , Y2, Y

†
3

(1/2, 1, 1/2, 0) SU(2) Y1, Y
†
4 , Y2

(1/2, 0, 1/2, 1/2) SU(1, 1) Y1, Y
†
4 , ψ4+

(1/2, 1, 1/2, 1) SU(2|1) Y1, Y
†
4 , Y2, ψ4+

(1/2, 1/2, 1/2, 1/2) OSp(4|2) Y1, Y
†
4 , Y2, Y

†
3 , ψ4+, ψ

†1
+ , ψ3+, ψ

†2
+ , D+

(1/2, 0, 1, 1/2) OSp(2|2) Y1, Y
†
4 , ψ4+, ψ

†1
+ , D+

SU(3|2) Y1, Y
†
4 , Y2, Y

†
3 , , ψ4+, ψ

†1
+

One can look at the type of operators appearing for different cases in the subsectors.
An example is the SU(2) × SU(2) sector which has been studied extensively. From the
content we found one can build single trace operators O = W j1j2...jJ

i1i2...iJ
Tr(Ai1Bj1 ...AiJBjJ )

[58] (here the A’s and B’s correspond to the Y ’s). The interpretation is that one has
two decoupled ferromagnetic XXX1/2 Heisenberg spin-chains [59] living on odd and even
sites respectively:

∆− J = λ2
2J∑
l=1

(1− Pl,l+2) = λ2
2J∑
l=1

(1− P2l−1,2l+1 + 1− P2l,2l+2). (4.9)

Other sectors that might be interesting could be the SU(3) sector. Operators that sat-
urate this condition on even sites is Y †

4 and on the odd it is (Z1, Z2, Z3) = (A1.A2, B
†
1).

Single trace operators will be of the form

O = Wa1a2...anTr(Za1B2...Z
anB2), aj = 1, 2, 3. (4.10)

Adding derivatives is also an option. This sets n5 ∈ {−1, 1} corresponding to OSp(2|2)
sector. This sector just extends the previous SU(2)× SU(2) to include superpartners of
the scalars and the D+. We will return to subsectors later.
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5
Penrose Limits

In 1976 Sir Roger Penrose showed that every spacetime has a limit at which a neigh-
bourhood of a null geodesic becomes a so-called pp-wave spacetime [60]. These are plane
waves with parallel propagation. In the context of this project, it was shown [61] that
eleven-dimensional supergravity admits a maximally supersymmetric Hpp-wave back-
ground, where the Hpp-waves describes solutions where the geometry is a Lorentzian
symmetric one and the four-form field strengths are parallel and null. The weird thing
about these solutions is that their transverse geometry is not asymptotically flat, but
they have to be treated the way wave as flat space solutions and AdS × S solutions.
However, the Hpp-waves can be shown to be obtained as Penrose limits of the maximally
supersymmetric AdS solutions of M -theory (11D SUGRA) [62]. In this chapter we go
through the standard formalism of pp-waves and look at how they can be obtained by
Penrose limits.

5.1 pp-waves
Let the pair of M and g constitute a Lorentzian spacetime. If γ is a null geodesic that
contains no conjugate points, it turns out that it is possible to introduce some local
coordinates U, V, and Y i so that the metric g takes the form [63]

ds2 = dV

(
dU + αdV +

∑
i

βidY
i

)
+
∑
i,j

CijdY
idY j. (5.1)

Here, α, β, and Cij are functions of the coordinates and C is a symmetric and positive
matrix. Now, at the moment the determinant of C vanishes, the metric breaks down
as this suggests that the number of conjugate points is non-zero [64]. The U -coordinate
is the affine parameter along a congruence of null geodesics which are labelled by the
other two coordinates; we see that γ is null when V = Y i = 0. In supergravity theories
we need to take into account other fields than only the metric, such as the dilaton field
and field strengths. For a gauge invariant field strength Fp+1 = dAp the gauge potentials
transform as Ap → Ap + dλp−1. We can choose a local gauge where

i
∂A

∂U
= 0, (5.2)

and obtain similar conditions for interactive field strengths. We can now rescale the
coordinates:

U = u, V = Ω2v, Y i = Ωyi, (5.3)
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with Ω ∈ R+. If we act with this rescaling on the tensor fields of the theory we then get
a family of fields g, Φ, and Ap which all depend on Ω. The coordinates and choice of
gauge then makes sure that the following limits are well-defined:

ds2 → ds̄2 = lim
Ω→0

Ω−2g,

Φ→ Φ̄ = lim
Ω→0

Φ,

Ap → Āp = lim
Ω→0

Ω−pAp.

(5.4)

This is the Penrose limit. The limiting fields now only depend on the u-coordinate being
the affine parameter along the null geodesic. We get that the metric now takes the form

ds̄2 = dudv +
∑
i,j

C̄ijdy
idyj. (5.5)

The gauge forms Āp only have non-vanishing components in the transverse directions yi,
so their derivatives with respect to u or v vanishes. The metric in (5.5) is written in
Rosen coordinates. There are both advantages and disadvantages by writing the pp-wave
in Rosen coordinates. On the one hand, it is manifest what the killing vector fields/sym-
metries are, but on the other hand, one encounters spurious coordinate singularities.
Historically this led to the mistaken belief in the past that there are no non-singular
plane wave solutions of the non-linear Einstein equations, which turned out to be wrong.
Therefore one can turn to other coordinates, and in this case we turn to Brinkmann
coordinates.

The way to get to the Brinkmann coordinates is by assuming that there is a parallel
null vector Z of the Lorentzian metric which implies ∇µZ

µ = 0. This is the same as Z
being a killing and gradient vector field:

∇µZν +∇µZν = 0,

∇µZν −∇µZν = 0.
(5.6)

We can assume that since Z is non-zero everywhere, it can be set equal to Z = ∂v.
In terms of coordinates, this means that Zµ = gµν . The fact that Z is null means that
Zv = gvv = 0, and from the killing equation it can be seen that the metric is independent of
the v-coordinate; ∂vgµν = 0. We can now change the previous condition to the following:
∇µZν + ∇µZν = 0 → ∂µZν + ∂µZν = 0. Locally this means that there is a function
u = u(xµ) such that Zµ = gvµ = ∂µu. There are now no other constraints, and changing
xµ to {u, v, xa}, a ∈ 1, ...d we find [65]

ds2 = 2dudv +K(u, xc)du2 + 2Aa(u, x
c)dxadu+ gab(u, x

c)dxadxb. (5.7)

This metric is expressed in what is usually called the Brinkmann coordinates. There are
still transformations left which leave the metric invariant; one could e.g. eliminate K and
Aa in favor of gab. The special class of metrics where gab = δab are called pp-waves. They
are plane-fronted in the sense the wave fronts are planar at constant u. They are parallel
rays in the sense that there exists a parallel null vector. We also note that plane waves
are a special kind of pp-waves. Plane waves are pp-waves with Aa = 0 and K quadratic
in xa, thus their metric has the form

ds2 = 2dudv + Aab(u)x
axbdu2 + ~dx2. (5.8)
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This is a plane wave expressed in Brinkmann coordinates. The reason we are interested in
these plane waves is as mentioned due to the fact that they are emerging from any space-
time in the Penrose limit. Besides this, we see very little redundancy left in terms of data
and coordinate transformations that leave the metric invariant, since we have acquired a
symmetric matrix-valued function Aab(u) that contains all of this. This indeed contrasts
the Rosen coordinates making the Brinkman ones more applicable in computations.

5.2 Geodesics and String Mode Plane Waves
Starting from the plane wave metric, one can solve the geodesic equation and find xµ(τ)
to get a sense of the trajectory for particles in this particular spacetime. However, this
involves computing Christoffel symbols which can be quite tedious as everyone who has
ever taken a GR course can testify to. Instead, we can try to see what might be provided
by the Euler-Lagrange equation, supplemented by a constraint:

L =
1

2
ḡµν ẋ

µẋν = u̇v̇ + Aab(u)x
axbu̇2 +

1

2
~̇x2, 2L = ε, ε ∈ {0, 1}. (5.9)

The constraint is for massless and massive particles taking either the values 0 or 1. Next,
we define the light-cone momentum, observing that nothing depends on v, such that
pv =

∂L
∂v̇

= u̇ is conserved. In the case where the geodesic are not straight lines meaning
pv 6= 0 we choose light-cone gauge u = pvτ . This makes us translate the geodesic equation
for the transverse coordinates into the Euler-Lagange equations:

ẍa(τ) = Aab(pvτ)x
b(τ)p2v = −ω2

ab(τ)x
b(τ). (5.10)

We recognize obviously as the equations of motion for a harmonic oscillator with a (pos-
sibly time-dependent) frequency matrix ωab. Now, the constraint for null geodesics,

pvv̇(τ) + Aab(pvτ)x
a(τ)xb(τ)p2v +

1

2
ẋa(τ)ẋa(τ) = 0, (5.11)

implies the equation of motion for v. By multiplying the harmonic oscillator equation by
xa(τ) and inserting it into the constraint we find by integration that

pvv(τ) = pvv0 −
1

2
xa(τ)ẋa(τ). (5.12)

There exists a specific solution xµ(τ) of the null geodesic equation with the properties u =
pvτ, v = v0, x

a = 0; this has vanishing Christoffel symbols in Brinkmann coordinates. This
motivates us to extend the formalism to strings, where we might hope that splitting the
coordinates as we have done in Brinkmann can help us quantize easier when considering
the equations of motion for the Polyakov action. For a curved background described by
gµν we can write the usual action for a string in conformal gauge as

S(X, h) =
1

2π

∫
d2zgµν(X)ηαβ∂αx

µ∂βx
ν . (5.13)

To find the equations of motion of the embedding coordinates Xµ(τ, σ), one gets

(∂2τ − ∂2σ)Xµ(τ, σ) = −Γµνλ(X)(∂τX
ν∂τX

λ − ∂σXν∂σX
λ). (5.14)

46



These equations need to be supplemented by the equations of motion for the two-
dimensional worldsheet metric, that is by the condition that Tαβ = δS

δhαβ = 0. Since
the action is conformally invariant, Tαβ enjoys the tracesless condition

Tαα = hαβTαβ = 0, (5.15)

hence there are only two independent conditions:

gµν(∂τX
µ∂τX

ν − ∂σXµ∂σX
ν) = 0, (5.16)

gµν∂τX
µ∂σX

ν = 0. (5.17)

One would think that these equations are not the ideal starting point since they exhibit
non-linear coupled differential equations for the embedding. But with our new coordinates
(U, V,Xa), this simplifies enormously. For U we get

(∂2τ − ∂2σ)U(τ, σ) = 0, (5.18)

We can here again choose the light-cone gauge U(τ, σ) = pvτ . For the transverse coordi-
nates we simply get the linear equations

(∂2τ − ∂2σ)Xµ(τ, σ) = Aab(pvτ)x
b(τ)p2v. (5.19)

Expanding in Fourier modes for the transverse embedding Xa(τ, σ),

Xa(τ, σ) =
∑
n

xan(τ)e
inσ, (5.20)

leads one to obtain
Ẍa
n = (p2vAab(pvτ)− δabn2)Xb

n(τ) (5.21)

One can also find the equation for v, though this is a bit more complicated and we leave it
out here. The point was to show explicitly that all modes expand in terms of a complete
set of solutions to the classical equations of motion. Then one can take these modes as
a starting point for the canonical quantization of strings in the light-cone gauge. Lastly
we quickly mention curvature of space-time.

We saw for Brinkmann coordinates that all data about our spacetime was contained in
the matrix-valued function Aab(u). If we relate this to the Riemann tensor, we get one
non-vanishing component. The null structure of the metric also provides that there is
one non-trivial term for the Ricci tensor. One also finds that Ricci scalar is zero, and
additionally that there is only one non-trivial term for the Einstein tensor:

Ruaub = Aab Ruu = −δabAab = −TrA, R = 0, Gµν = Ruu. (5.22)

5.3 Penrose Limits of AdS Spacetimes
Given a metric gµν or a line element ds2 = gµνx

µxν , we can consider the Penrose Limit
for a choice of null geodesic γ that amounts to a plane wave metric. We first write the
coordinates adapted to γ as

ds2 = 2dUdV + a(U, V, Y k)dV 2 + 2bi(U, V, Y
k)dV dY i + gij(U, V, Y

k)dY idY j. (5.23)
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We then perform a set of coordinate transformations with rescaling
(U, V, Y k) = (u, λ2ṽ, λyk). The Penrose Limit of the metric is then

ds̄2 = lim
λ→0

λ−2ds2γ,λ = 2dudṽ + gij(U)dy
idyj. (5.24)

To narrow in on the the problem related to spacetimes in AdS we consider different
pp-waves emerging from two different types of AdS spacetimes.

5.3.1 pp-waves of AdS5 × S5

Let us first take a look at the case of AdS5 × S5. The metric can be written as [66]

ds2 = R2
[
− dt2 cosh2 ρ+ dρ2 + sinh2 ρdΩ2

3 + dψ2 cos2 θ + dθ2 + sin2 θdΩ′2
3

]
. (5.25)

We look at a particle moving along the ψ direction and sitting at ρ = 0 and θ = 0.
We will focus on the geometry near this trajectory. We can do this systematically by
introducing light-cone coordinates x̃± = (t ± ψ)/2 and then performing the rescaling of
the coordinates:

x+ = x̃+, x− = R2x̃−, ρ =
r

R2
, θ =

y

R2
. (5.26)

Taking the R→∞ limit is exactly the Penrose limit. Expanding around the parameters
in the rescaled variables yields

ds2 = R2
[
− dt2(1− ρ2) + dr2 + r2dΩ2

3 + dψ2(1− θ2) + dy2 + y2dΩ′2
3

]
. (5.27)

By the new coordinate x̃± we see that −dt2 + dψ2 = −4dx̃+dx̃−. The squared terms will
contribute through the light-cone coordinates which can easily be seen by

dt = dx+ − dx−

R2
, dψ = dx+ +

dx−

R2
. (5.28)

Inserting this and keeping to the order of O( 1
R2 ) exactly gives

ds2 = R2
[
− 4dx̃+dx̃− − (y2 + r2)(dx+)2 + d~r2 + d~y2

]
. (5.29)

This is following the geodesic around ρ = 0 and θ = 0 where y and r parametrize points
on R4.

5.3.2 pp-waves of AdS4 × CP3

Here we look at a case we will return to later in the project from a different perspective.
We consider the metric of AdS4 × CP3 [47],

ds2 =
R2

4

(
− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ̂2

2

)
+R2ds2CP3 , (5.30)

where
ds2CP3 = dθ2 +

cos2 θ

4
dΩ2

2 +
sin2 θ

4
dΩ′

2
2
+ 4 cos2 θ sin2 θ(dδ + ω)2, (5.31)

with
ω =

1

4
sin θ1dϕ1 +

1

4
sin θ2dϕ2. (5.32)
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We now introduce the coordinates

t′ = t, χ = δ − 1

2
t, (5.33)

which will be a common thing we will do in later computations as well. In these coordi-
nates, the metric (5.30) takes the form

ds2 =
R2

4
dt′2(1− 4 cos2 θ sin2 θ + sinh2 ρ) +

R2

4
(dρ2 + sinh2 ρdΩ̂2

2)

R2

[
dθ2 +

cos2 θ

4
dΩ2

2 +
sin2 θ

4
dΩ′2

2 + 4 cos2 θ sin2 θ(dt′ + dχ+ ω)(dχ+ ω)

]
.

(5.34)

Now, introducing the rescaled coordinates

v = R2χ, u4 = R(θ − π

4
), r =

R

2
ρ, xa = Rφa, ya = Rθa, a = 1, 2. (5.35)

The Penrose limit is again realized when the R → ∞ limit is performed which exactly
corresponds to zooming in on the null geodesic. The metric will reduce down to a type
IIA pp-wave background when the terms have been expanded around the respective
coordinates. This reduces the metric to

ds2 =
R2

4
dt′2(4u4 + 4r2)

1

R2
+
R2

4
(4dr2 + 4r2dΩ̂2

2)
1

R2

R2[du24 + dy21 + dx21 + dy22 + dx22 + 2dt′(y1dx1 + y2dx2) + dt′dv]
1

R2
.

(5.36)

The full calculation is a little tedious, but essentially it boils down to keeping terms that
have a 1

R2 dependence such that they do not vanish in the limit. If we define r2 =
∑3

i=1 u
2
i

and dr2 + r2dΩ̂2
2 =

∑3
i=1 du

2
i as done in [47], the metric can compactly be written as

ds2 = dt′dv +
4∑
i=1

(du2i − u2i dt′2) +
1

8

2∑
a=1

(dx2a + dy2a + 2dt′yadxa). (5.37)

.

5.3.3 pp-waves of AdSp × Sq

One can also look at general AdS spacetimes. In general, the radius of AdSp is not
necessarily going to be the same as the radius of the sphere. For AdS3 × S3 though the
radii are equal and the computation is the same as for AdS5 × S5. In the context of
ABJM, the near horizon geometry of M2- and M5-(and D3-)brane solutions take the
form AdSp+2 × SD−p−2. For the three values of p this means we have

p = 2 =⇒ AdS4 × S7 (D = 11),

p = 3 =⇒ AdS5 × S5 (D = 10),

p = 5 =⇒ AdS7 × S4 (D = 11).

(5.38)

It turns out the Penrose limit for AdS4 × S7 is the same for the limit on AdS7 × S4. To
see this, consider the general metric of AdSp+2 × SD−p−2 in the form [62]

ds2/R2 = ρ2
[
−dτ 2 + sin2 τ

(
dr2

1 + r2
+ r2dΩ2

p

)]
+ dφ2 + sin2 φdΩ2

D−p−3, (5.39)
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where ρ is the ratio between the radius of the AdS spacetime and the radius of the sphere
denoted R. The last two terms in (5.39) correspond to the round metric on the sphere.
By changing coordinates to

u = ψ + ρτ, v = ψ − ρτ, (5.40)

the metric becomes

ds2/R2 = dudv + ρ2 sin2

(
u− v
2ρ

)[
dr2

1 + r2
+ r2dΩ2

p

]
+ sin2

(
u− v
2ρ

)
dΩ2

D−p−3. (5.41)

Practically speaking, taking the Penrose limit corresponds to dropping the dependence
on all coordinates other than u, and when doing it one finds

ds̄2/R2 = dudv + ρ2 sin2(u/2ρ)ds2(Ep+1) + sin2(u/2)ds2(ED−p−3), (5.42)

where E is Euclidean space. We see that for the AdS4 × S7 case we have p = 2, and the
metric becomes

p = 2 : ds̄2/R2 = dudv + sin2(u/2)[ds2(E3) + ds2(E6)]. (5.43)

For the AdS7 × S4 case we have p = 5 and the metric becomes

p = 5 : ds̄2/R2 = dudv + sin2(u/2)[ds2(E6) + ds2(E3)]. (5.44)

See that (5.43) and (5.44) are the same. For more on this see [62, 61, 67, 68].
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6
Spin Matrix Theory

So far we have been discussing the gauge/gravity duality in the Maldacena case, where one
takes two opposite limits and gets that massive strings curving the AdS space background
is conjectured to be compatible with N = 4 SYM at two different limits of the ’t Hooft
coupling, usually taken in the planar limit N →∞. Usually the link between this duality
is interpreted in terms of integrable spin-chains, so the integrability is the interpolation
from going from one side of the duality to the other. However, in the case when N <∞
we need to start revise our strategy. To interpolate between strong and weak ’t Hooft
coupling at finite N , we must consider new possibilities. And the motivations for doing
this are plenty. Non-perturbative effects on black holes [69], emergence of D-branes as
giant gravitons [70] etc. are just a few examples. Hence the idea is to consider non-
relativistic limits of the AdS/CFT correspondence in the grand canonical ensemble, such
that it corresponds to the approach of critical temperatures T = 0. Here we will let ~Ω
denote the respective chemical potentials conjugate to the global symmetry charges for
the certain theory. If we consider for starters N = 4 SYM, we can take limit of the form

(T, ~Ω)→ (0, ~Ω(c)), λ = 0, with λ

T
,
~Ω− ~Ω(c)

T
fixed. (6.1)

This will give a simple spin-chain with nearest-neighbour interaction apparently, based
on the fact that we build our Hilbert space out of harmonic oscillators giving us the
non-relativistic quantum mechanical theory that we want. Having introduced this, we go
through the construction and some consequences. The idea is to take the case for N = 4
SYM and see if the same procedure can be applied to N = 6 Chern-Simons theory.

6.1 Definitions and Construction
We build the Spin Matrix theory (SMT) [71] on representation Rs of a semi-simple graded
Lie group Gs, also called the spin group. Furthermore, we also have matrix indices that
are in the adjoint representation of Rm of the U(N) group (could also be generalized
to others). If we first look at the bosonic part of the Hilbert space, it is natural to
formulate it in terms of raising and lowering operators (a†s)

i
j. Here, s ∈ Rs and i, j ∈ Rm

where i, j = (1, ..., N) and i labels the fundamental while i labels the anti-fundamental
represenations of U(N). To complete the construction we need a vacuum and a lowering
operator that satisfies (as)ji |0〉 = 0 and commutation relation [(as)ji , (a

†
s)
k
l ] = δssδ

k
i δ

l
j. Thus

for each s and i, j we can have a new harmonic oscillator, making it natural to construct
a Hilbert space as the symmetric product between the two representations:

H̄ =
∞∑
L=1

sym[(Rs ⊗Rm)]
L. (6.2)
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The basis for H̄ can be written as
L∏
k=1

(a†sk)
ik
jk
|0〉 . (6.3)

The Hilbert space H that we will use for SMT will be a linear subspace of H̄ with a
singlet condition on Rm for a state |φ〉

Φi
j |φ〉 = 0, Φi

j ≡
∑
s∈Rs

N∑
k=1

[(a†s)
i
k(a

s)kj − (a†s)
k
j (a

s)ik]. (6.4)

Apparently H is spanned by states of the form

N∑
i1,i2,...,iL=1

L∏
k=1

(a†sk)
ik
iσ(k)
|0〉 . (6.5)

Here, σ ∈ S(L) are elements of the permutation group of L elements. This can also be
written in terms of product of traces

Tr(a†s1a
†
s2...a

†
sl)Tr(a†sl+1...)Tr(a†sk+1, ...a

†
L) |0〉 , L = 1, 2, ... (6.6)

Note that the traces run over the Rm indices. The connection to previous equations is
that the individual cycles of the permutation elements correspond to single traces, and
one can establish a linear relation in the L > N case. Last thing to note is that we
can extend the bosonic language to also include fermionic excitations. We simply split
Rs = Bs ⊗ Fs of the spin group represenation, so the rules of the framework we have
established is relevant for s ∈ Bs. The only difference now is that for s ∈ Fs we have

(as)
j
i |0〉 = 0, {(as)ji , (a†)kl } = δssδ

k
i δ

l
j, (6.7)

asserting anti-commutation relations. Note that by doing this split, we can now work in
the framework of Lie supergroups of the type SU(p, q|r) with p+ q and r non-zero. The
generators of the respective su(p, q) and su(r) algebras are bosonic, while the remaining
part will be fermionic. Now we focus our attention to what kind of interactions and thus
Hamiltonian constructions we can do, and then in the end consider the content of the
partition function

6.2 Hamiltonian of Spin Matrix Theory
We now walk through the construction of the Hamiltonian. One considers a 2 to 2 creation
and annihilation of states, and further demands that such interactions are commuting
with generators Gs, and that spin and matrix part separate such that the Hamiltonian
will look like

Hint =
1

N
U s′r′

sr

∑
σ∈S(4)

Tσ(a
†
s′)

iσ(1)

i3
(a†r′)

iσ(2)

i4
(as)

iσ(3)

i1
(ar)

iσ(4)

i2
. (6.8)

Here, Tσ, σ ∈ S(4) are coefficients, and there are implicit sums over r, s, r′, s′, i1, i2, i3, i4.
The Hamiltonian preserves singlet conditions such that we know it is within our desired
Hilbert space. For the spin part, U is a linear operator, and taking an element from
U : Rs⊗Rs → Rs⊗Rs, which can be expanded into a sum of irreducible representations
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labelled by J , gives Rs ⊗Rs =
∑

J VJ . Imposing that Hint commutes with Gs makes U
proportional to I in all Vj.
In general, a diagonal term is added, giving the length of a spin-chain state with the same
properties as U :

L =
∑
s

Tr(a†sas). (6.9)

Finally, Cartan generators are also included (Kp). The Hamiltonian is then

H = gHint + µ0L−
∑
p

µpKp. (6.10)

But we notice that the structure of the partition function is invariant under a rescaling of
a parameter such that T, g, µ0, µ0 → αT, αg, αµ0, αµ0, hence we can remove a parameter.
Different choices can be made, but here we chose µ0 = 1. In this way one connects high
(low) temperature to long (short) average lengths of the states. At large N , non-planar
effects set in, but for T � 1 the theory is effectively planar. The opposite holds for
T � 1. Thus the modified version of the Hamiltonian is

H = gHint + L−
∑
p

µpKp. (6.11)

Considering µp as chemical potentials gives an interpretation in the language of statistical
mechanics to construct a partition function

Z(β, µp) = Tr(e−βH) = Tr(e−β(gHint+L−
∑

p µpKp)), (6.12)

where the trace is over the Hilbert space H.

6.3 Spin Matrix Theory for N = 4 SYM
The framework developed has a gateway to N = 4 SYM when considered at close to
zero temperature critical points in the grand canonical ensemble. In this ensemble, a
partition function can be constructed with chemical potentials present, given by the
bosonic subalgebra for the field theory. It was previously established what generators are
present given by the SU(4) R-symmetry and SO(4, 2) conformal group. The partition
function is Z(β, ~Ω) = Tr(e−βD+β~Ω· ~J), with T = 1

β
and the dot product for chemical

potentials given by a weight ~Ω = (ω1, ω2,Ω1,Ω2,Ω3) dotted with the generators ~J =

(S1, S2, J1, J2, J3). This gives normally ~Ω · ~J = ω1S1 + ω2S2 +Ω1R1 +Ω2R2 +Ω3R3. The
theory is considered on R× S3 due to isometries of the geometry and groups as well. As
in the case of renormalizing the conformal two-point function, we expand the dilatation
operator in powers of the ’t Hooft coupling λ such that D = D0+δD. Doing this only up
to one-loop order gives δD = λD2 +O(λ3/2). To obtain one-loop corrections, an explicit
form of D2 is then needed, which luckily has been studied intensively for PSU(2, 2|4) [72].
Acting with D2 hits two letters at a time in the singleton representation A of PSU(2, 2|4).
The product of two singletons are the irreducible represenations Vj, labelled uniquely by
the quadratic Casimir. This gives

A⊗A =
∞∑
j=0

Vj. (6.13)
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Having asserted this, D2 can then be found as [73]

D2 = −
1

8π2N

∞∑
j=0

h(j)(pj)
AB
CD : Tr[WA, ∂Wc ][WB, ∂WD

] : . (6.14)

Here, h(j) =
∑j

k=1
1
k
, h(0) = 0 are the harmonic numbers, Pj is the projection operator

from the product of singletons to the irreducible representations, and WA, A ∈ A repre-
sent all letters in SYM while maintaining normal ordering [74]. Amazingly, one can iden-
tify components between SMT and SYM. Raising operators become letters a†s ↔ Ws, D2

can be interchanged with Hint if J ↔ j, and VJ ↔ Vj such that Cj = 1
8π2h(j), j = 0, 1, 2.

The caveat to this story though is that it only holds in a non-relativistic limit when λ = 0.
This restricts us to subsectors of the space of operators, simplifying matters. Using this,
SMT has found many applications in non-relativistic string theory, which we demonstrate
later on.

6.4 Near BPS-limit for Subsectors and Zero-Temperature
Critical Points

We now briefly consider the essential features of near BPS-limits. From the definition
of the partition function it becomes apparent that confinement/deconfinement might
happen considering certain bounds, such that the system undergoes a phase transition.
The zero-temperature critical points is defined as a continuation of a submanifold of phase
transitions to zero temperature, meaning (T, ~Ω) → (0, ~Ω(c)). The critical points exactly
correspond to choices of weight-vectors for Cartan generators when obtaining subsectors
for a theory. By specific choices, the BPS-bound considered is given by D ≥ ~Ω(c) · ~J for
all operators while there should still be some that saturate the bound. This will be the
most crucial feature. The discussion of SMT is long and can be extended to find SMT
theories for subsectors by appropriate use of the translation between D2, Hint and the
respective representations. Particularly interesting was the connection to the XXX1/2

ferromagnetic spin chain in the planar limit that was found from SU(2) SMT theory [71].
By raising the temperature, one encounters a singularity in Z(β, ~Ω) at TH(g). This is
known as the Hagedorn temperature [75]. This had already been analyzed for both ends
of the coupling regimes in earlier works. The resemblance between this and AdS/CFT is
evident in the planar limit connecting to the integrable spin-chain interpretation. With
these results already on the table, we can become hopeful and want to see if this can be
continued for N = 6 Chern-Simons theories.

6.5 Spin Matrix Theory for N = 6 Chern-Simons
We proceed as for SYM and list the immediate differences. Constructing the grand
canonical partition function will be identical up to differences in the bosonic subalgebra.
The same R-symmetry is present, but the conformal theory goes down a dimension to
SO(3, 2). The weights and generators are shortened to ~Ω = (ω,Ω1,Ω2,Ω3,Ω4) times the
generators ~J = (S1, J1, J2, J3, J4). This is of course ~Ω· ~J = ωS+Ω1J1+Ω2J2+Ω3J3+Ω4J4.
One can reformulate this in terms of R-generators, but due to orbifolding, we have a
translation between Ji and Ri by a linear set of equations. This theory is now considered
on R × S2, due to one less degree of freedom of S. The major differences occur when
we consider loop-order of D, since the first contribution D2 comes at two-loop. Another
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major difference occurs when translating the singleton representations of the theory. The
global symmetry is now OSp(6|4) which tied to N = 6 CS has both a fundamental and
anti-fundamental representation (N, N̄) and (N̄,N). This will all in all give three different
types of ways D2 can act on two letters (or modules) at a time. Following [76], the tensor
product of a conjugate pair of modules Vφ and Vφ̄ has one highest-weight state for each
nonnegative integer spin j. Similarly, a like pair of modules has one highest-weight state
with spin (j − 1/2) for each nonnegative integer j. This gives the combinations

Vφ ⊗ Vφ̄ =
∞∑
j=0

Vj, Vφ ⊗ Vφ =
∞∑
j=0

Vj−1/2, Vφ̄ ⊗ Vφ̄ =
∞∑
j=0

Vj−1/2. (6.15)

The structure of the tensor products both accounts for nearest and next to nearest neigh-
bour interactions since the vector space is composed as (V ⊗ V̄)L. The irreducible rep-
resentation is again labelled uniquely by the quadratic Casimir which in OSp(6|4) takes
the form

J2 =
1

8
([Qij,α, S

ij,α]− 2Ri
jR

j
i + 2Mα

βM
β
α + 4D2 − {Pαβ, Kαβ}). (6.16)

Acting with J2 on highest weight states (HWS), this reduces to an expression in terms
of Dynkin labels

J2 =
1

2

(
D(D + 3) + s(s+ 2) + 3J1

1 + 2J2
2 + J3

3 +
1

2

4∑
i=1

(J ii )
2

)
=

1

2

(
D(D + 3)

+ s(s+ 2) +
1

4
q1(q1 + 2) +

1

4
q2(q2 + 2) +

1

8
(2p+ q1 + q2)

2 − (2p+ q1 + q2)

)
.

(6.17)

Here D is the dimension and s is the Lorentz spin. The first expression uses eigenvalues
of all diagonal entries of the traceless matrix of R-symmetry generators, while the second
uses the standard SU(4) Dynkin labels

q1 = J2
2 − J1

1 , q2 = J3
3 − J2

2 , q3 = J4
4 − J3

3 , (6.18)

which satisfy the relation j(j+1) = J2. With this in mind, we can write the full OSp(6|4)
two-loop dilatation operator as

D2 =
2L∑
i=0

(
2 log 2 +

∞∑
j=0

h(j)P(j)
i,i+1

+
∞∑

j1,j2,j3=0

(−1)j1+j3 1
2
h(j2 − 1/2)

(
P(j1)
i,i+1P

(j2−1/2)
i,i+2 P(j3)

i,i+1 + P
(j1)
i+1,i+2P

(j2−1/2)
i,i+2 P(j3)

i+1,i+2

))
.

(6.19)
We see to some extent the same structure as in SYM, however this time the structure
seems to be more rich. h(j) is still the harmonic numbers, and the projectors P come
from one of the tensor products combinations. But the same type of one-to-one mapping
is not as trivial. The terms in D2 can be summarized as nearest and next to nearest
types of interactions, thus the coefficient Cj has to be split up into two pieces:

Cj = C0 + CNear
j + CNext Near

j = (2 log 2 + h(j)) + (−1)j1+j3 1
2
h(j2 − 1/2). (6.20)

This seems to be the only natural way of describing the coefficients of the interactions in
terms of SMT language.
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7
Spin Matrix Theory String Backgrounds
and Penrose Limits

As we saw in chapter 6, Spin Matrix theory (SMT) provides a way for one to evaluate
near BPS-bounds in the AdS/CFT correspondence. It has already been established for
SYM with super Lie algebra PSU(2|2, 4) that in certain BPS-bounds one can establish
connections to spin-chains as an example. SMT is a theory that is described by a Hamil-
tonian consisting of harmonic oscillator operators. They transform in both the adjoint
representation of SU(N) and also in particular spin subgroups Gs of PSU(2|2, 4) that
is determined by the choice of Cartan generators. Apparently it appears that SMT can
take the form of a non-relativistic string theory with a non-relativistic target space de-
scribed by a U(1) Galilean geometry. One direct way to observe it is to look at magnon
dispersions [77] which exhibit non-relativistic features in the SMT limit. The starting
point in the string theory side starts from the torsional Newton-Cartan (TNC) string
which led to the SMT string which will be considered. In this chapter we consider this
non-relativistic approach and establish a manifold that will be useful when going to BPS-
bounds to describe the apparent emerging U(1) geometry. Continuing on we look at the
already known N = 4 SYM and review some cases and calculations, and then turn to
N = 6 Chern-Simons theory and use the needed geometry to get backgrounds for ABJM
theory. Here we consider OSp(4|6) and look at the spin subgroups in certain limits which
we will use to parametrize the AdS4 × S7/Zk which we reduce to AdS4 × CP3. In these
instances we will perhaps find non-trivial background geometries as for N = 4 SYM.

7.1 Brief review of TNC strings and BPS-bounds in SMT
limit

The starting point is to consider a relativistic string that couples to a non-relativistic
TNC geometry. To this mean it will be convenient to consider a (d + 1)-dimensional
Lorentzian geometry with null isometry ∂u as

ds2 = 2τµdx
µ(du−mµdx

µ) + hµνdx
µdxν . (7.1)

By our null reduction along u, we see an emerging TNC geometry characterized by a clock
one-form τµ, a symmetric tensor hµν of rank (d−1) and the U(1) connection mµ. Without
going into details, one can write up gauge transformations for the TNC data which
makes the decomposition non-unique. For further elaboration see [78]. The important
thing to note however is that this will make the Galilean boost and U(1) transformations
visible. The trick that was considered was to make the constant momentum Pu off-shell by
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exchanging a single winding mode in a direction η dual to u. But the question is now how
to ensure that when we pick a specific BPS-bound that u will be null on the background
geometry. If we look at the SMT limit we establish the following and introduce new
coordinates that will ensure that we face no trouble. Consider the BPS-bound

gs = 0, N = fixed, E −Q
gs

= fixed. (7.2)

Depending on the specific duality one can define Q in various ways, but for ABJM and
SYM the cases for the Cartan generators will be the same, such that Q = S + J . From
the time coordinate one can extract E = i∂t and also S = i∂γ̄ and J = i∂γ. Now we
make the coordinate change that will give a non-relativistic string on the world sheet.
Introduce x0 and u such that

i∂x0 = E −Q = E − S − J, −i∂u =
1

2
(E − S + J). (7.3)

Then one can rescale x0 such that the conserved charge scales as gs when the limit gs → 0.
So we introduce x0 = x̃0

4πgsN
. In the SMT limit one can then obtain

c→∞, x0 = c2x̃0, c =
1

4πgsN
, N and x̃0 fixed. (7.4)

So using these coordinates, we will, when taking a certain BPS-bound, transform our
global coordinates of the geometry to something depending on x0 and u. With all these
components, we can outline the general procedure for each correspondence in the following
sections.

7.2 SMT Limits of N = 4 SYM
The starting point from here is to consider a parametrization of AdS5×S5, in the following
way

z0 = Rcosh(ρ)eit, w1 = Rsin(β1/2)sin(β2/2))eiα1 ,

z1 = Rsinh(ρ)sin(β̄/2)eiᾱ1 , w2 = Rsin(β1/2)cos(β2/2))eiα2 ,

z2 = Rsinh(ρ)sin(β̄/2)eiᾱ2 , w3 = Rcos(β1/2))eiα3 .

(7.5)

The geometry exhibits both features from S5 which is associated to the angular momen-
tum Jj = −i∂αj

and also S3 ⊂ AdS5 which associates to spin Si = −i∂ᾱi
. By appropiate

combination of angles we can define γ and γ̄ from αj and ᾱi. Additionally, if we consider
the global time coordinate, we can define new coordinates as per the discussion of null
isometries of the non-relativistic strings:tγ̄

γ

 =

1 1/2 0
1 −1/2 c1
1 1/2 c2

x0u
w

 . (7.6)

This matrix equation precisely leads to the relations established in the previous section.
The only addition is introducing the parameter w which is aligned along S3 and is con-
trolled by c1 and c2. It turns out that the parameters can be gauge fixed to c1 = 1 and
c2 = 0 such that s = −i∂w. From here we should be able to study specific subsectors
employing what we have established so far. This leads to reviewing some calculations for
specific cases of PSU(2|2, 4).
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7.2.1 The SU(2) Background

The maybe simplest example is to consider the BPS-bound E ≥ Q = J1 + J2. Since we
only concern ourselves with Angular momentum generators we can focus solely on the S5

part. One can decompose it in terms of a Fubini-Study metric and a fibration over one
of the directions on the sphere. This means we can write

dΩ2
5 = dα2 + sin2αdβ2 + cos2α[dΣ2

1 + (dγ + A)2],

A =
1

2
cosθdφ,

dΣ2
1 =

1

4
(dθ2 + sin2θdφ2).

. (7.7)

Thus we will focus on t and γ. If we write them as linear combination of the coordi-
nates x0 and u we get

t = x0 − 1

2
u, γ = x0 +

1

2
u. (7.8)

If we want to get conditions for when we exactly have a manifold being null, we impose
conditions on the full metric such that guu = 0 when ρ = α = 0. Hence we insert our
transformations in the metric and try to reformulate it in terms of TNC variables:

ds2/R2 = −cosh2ρ

(
dx0 − 1

2
du

)2

+ dρ2 + sinh2dΩ2
3 + dα2 + sin2αdβ2

+ cos2α
[
dΣ2

1 +

(
dx0 +

1

2
du

)2

+ A2 + 2A

(
dx0 +

1

2
du

)]
.

(7.9)

We describe in detail how we might identify The TNC variable in this case, as this
will be the same procedure used in the other cases as well. Firstly, if we group terms
that have a factor of du attached we can group terms and get du(dx0 + A), meaning
we can identify τ = dx0 + 1

4
cosθdφ. Then we look at the rest of the terms left. Since

the structure of the TNC variable is of the form 2τ(du − m) we look at terms that fit
with τ when factorized. Terms that are left are A2 + 2Adx0, so we need to satisfy the
equation 2τ(du−m) = dx0du+A2 + 2Adx0 +Adu. The choice can easily be seen to be
m = −1

2
cosθdφ. Lastly, we have the term hµνdx

µdxν . We look for squared elements in
the range of µ, ν meaning that our transformed coordinates are out of question. It can
easily be seen that the Fubini-Study metric precisely has the structure needed, meaning
hµνdx

µdxν = 1
4
(dθ2 + sin2θdφ2). We can also group the cosh2ρ term and cos2α and using

standard trigonometry identities to get −(sinh2ρ+ sin2α)(dx0 + 1
2
du)2. Thus assembling

it all we get the metric in terms of the TNC variables

ds2/R2 = 2τ(du−m) + hµνdx
µdxν . (7.10)

A more elaborate continuation is given in [78], but here we just show how one can get
this type of metric to begin with. The only thing that could be missing is to take the
SMT limit now and obtain τ = dx̃0 when combining the BPS-bound with the coordinate
transformation. Further one can gauge fix the worldsheet by fixing the zweibeins and
and taking a gauge choice on η. This will reduce the sigma-model Lagrangian to a
Landau-Lifshitz model describing spin chains.

58



7.2.2 The SU(2|3) Background

From the previous example, we extend the BPS-bounds and now consider the maximal
choice of S5 where E ≥ Q = J1 + J2 + J3. This subsector is a SU(2|3) theory with the
largest possible compact spin group of N = 4 SYM. Hence we are zooming in on all the
commuting generators of S5 seen from the bulk perspective. There will be an emergence
of CP2 as the compact spatial section parametrized by a Fubini-Study metric gives the
U(1)-Galilean background. The strategy is to perform a Hopf fibration such that the S5 is
described as a circle fibration (parametrized by χ) over the CP2 space. The way we want
to define the fibration coordinate is through Q = J1+J2+J3 = −i∂χ. The reasoning leads
back to this vector being of constant length on particular submanifolds on the geometry.
When defining u, this will ensure that ∂u will be null on specific submanifolds as well.
Doing this we perform a set of linear transformations of the αi’s by the following matrixα1

α2

α3

 =

1 1/2 −1/2
1 −1/2 1/2
1 1/2 0

χψ
φ

 . (7.11)

Since only considering angles on S5, the AdS5 can be disregarded and this leads us
to the background

ds2/R2 = dξ2 + sin2(ξ)(dθ + sin2(θ/2)dα2
1 + cos2(θ/2)dα2

2) + cos2(ξ)dα2
3

= dξ2 + sin2(ξ)(dθ + sin2(θ/2)

(
dχ+

1

2
dψ − 1

2
dφ

)2

+ cos2(θ/2)

(
dχ− 1

2
dψ +

1

2
dφ

)2

+ cos2(ξ)

(
dχ+

1

2
dψ

)2

.

(7.12)

The angles lie in the ranges ξ ∈ (0, π/2) and θ ∈ (0, π). Expanding and gathering terms
in a way such that we have the circle fibration over χ, we can rewrite the full metric in
the following form:

ds2/R2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ̄2
3 + (dχ+B)2 + dΣ2

2. (7.13)

The metric can be expressed in terms of a Fubini-Study metric and potentials defined as

B = sin2 ξ(dψ + A), A =
1

2
cos θdφ,

dΣ2
2 = dξ2 + sin2 ξdΣ2

1 + cos2 ξ sin2 ξ(dψ + A), dΣ2
1 =

1

4
(dθ2 + sin2 θdφ2).

(7.14)

To obtain a U(1) Galilean background, we relate the coordinates considered to a pair of
new ones related to a submanifold where the null are geodesics along the isometry of the
considered subsector. Introducing x0 and u we get(

t
χ

)
=

(
1 1/2
1 −1/2

)(
x0

u

)
. (7.15)

Since u is of constant length across CP2 ⊂ S5, we need to have

4(∂u)
2/R2 = − cosh2 ρ+ 1 ≤ 0. (7.16)
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From this we see that u will be null if and only if ρ = 0. This six-dimensional manifold is
now described by coordinates {x0, u, θ, φ, ξ, ψ}, where the last angle is part of the CP2.
One obtains a metric that can be written using the condition on ρ

ds2/R2 = −
(
dx0 − 1

2
du

)2

+

(
dx0 +

1

2
du+B

)2

+ dΣ2
2

= du(2dx0 +B) +B2 + 2Bdx0 + dΣ2
2

= 2τ(du−m) + hijdx
idxj.

(7.17)

It is easy to read off what the three different TNC-variables are:

τ = dx0 +
1

2
B, m = −B, h = dΣ2

2. (7.18)

To check to see if we are not completely off, we can look for a structure of a subsector
which in this case would be SU(2) ⊂ SU(2|3). This seems plausible since it has been
engineered via a Hopf fibration of CP1 inside the S3, corresponding to the previous BPS-
bound we considered. Setting ξ = π/2 and fixing ψ realizes the same potentials and
Fubini-Study metrics. This is a general trend that can be derived starting from the
maximal PSU(1, 2|3) background and reducing on it.

7.2.3 The SU(1, 1) Background

The last real subsector we will look at before the full is a background mixed between
the spin and angular momentum mixing both the S5 and AdS5. This will correspond
to a SU(1, 1) background with the particular choice Q = S1 + J1 with the definitions
S1 = −i∂ᾱ1 and J1 = −i∂α1 . Taking the embedding coordinates defined in the (7.5), one
finds the induced metric can be written as

ds2/R2 = − cosh2 ρdt2 + dρ2 + sinh2 ρ

(
dβ̄2

4
+ sin2(β̄/2)dᾱ2

1 + cos2(β̄/2)dᾱ2
2

)
+
dβ2

1

4
+ sin2(β1/2)

(
dβ2

2

4
+ sin2(β2/2)dα

2
1 + cos2(β2/2)dα

2
2

)
+ cos2(β1/2)dα

2
3.

(7.19)

Given this, performing the transformation x0, u, w to the choices that correspond to our
choice in the near BPS-limit gives t

ᾱ1

α1

 =

1 −1/2 0
1 −1/2 c1
1 1/2 c2

x0u
w

 . (7.20)

Reading off from the second column and gathering the pre-factors in front of our original
coordinates gives the null condition on u:

4(∂u)
2/R2 = − cosh2 ρ+ sinh2 ρ sin2(β̄/2) + sin2(β1/2) sin

2(β2/2) ≤ 0. (7.21)

60



The condition for u being null is exactly satisfied when β̄ = β1 = β2 = π. Inserting this
into the metric and using the conditions we find

ds2/R2 = − cosh2 ρ

(
dx0 − 1

2
du

)2

+ dρ2 + sinh2 ρ

(
dx0 − 1

2
du+ c1dw

)2

+

(
dx0 +

1

2
du+ c2dw

)2

= 2dx0du+ dρ2 + sinh2 ρ

(
c21dw

2 + 2c1dw

(
dx0 − 1

2
du

))
+ c22dw

2 + 2c2dw

(
dx0 +

1

2
du

)
= du(2dx0 − (c1 sinh

2 ρ− c2)dw) + (c21 sinh
2 ρ+ c22)dw

2 + 2dx0dw(c1 sinh
2 ρ+ c2).

(7.22)
Now it can easily be read off what the TNC data are on the submanifold considered:

τ = dx0 − 1

2
(c1 sinh

2 ρ− c2)dw,

m/R2 = −(c1 sinh2 ρ+ c2)dw,

h/R2 = dρ2 + c21 sinh
2 ρ cosh2 ρdw2.

(7.23)

Apparently the spatial slices of the geometry parametrized by ρ, w are non-compact
compared to the SU(3|2). Also it can be shown that the constants can be fixed such that
they have the values c1 = 1 and c2 = 0. If we insert this into the gauge-fixed action on
this background we arrive at the result

Sflat,gf = −
J

2π

∫
d2σ(mµx

µ +
1

2
hµνdx

µdxν)

= − J

2π

∫
d2σ
[
sinh2 ρẇ − 1

2

(
(ρ′)2 + sinh2 ρ cosh2 ρ(w′)2

) ]
.

(7.24)

To compare, one can make the correct coordinate choices and reproduce the action
obtained from coherent states in the sl(2) spin chain and spinning strings on AdS5 × S5.

7.2.4 All backgrounds from PSU(1, 2|3) Background

We now look at the final great BPS-bound E ≥ Q = S1 + S2 + J1 + J2 + J3. This bound
leads to PSU(1, 2|3) SMT, and this has the property of course that it can be restricted to
obtain the other theories associated to the other bounds. We here use Hopf coordinates
for S3 ⊂ AdS5 and parametrize the five-sphere using a one-sphere fibration over CP2 in
Fubini-Study coordinates:

z0 = R cosh ρeit, w1 = R sin ξ sin(θ/2)ei(χ+ψ/2−ϕ/2),

z1 = R sinh ρ sin
(
θ̄/2
)
ei(ψ̄−ϕ̄/2), w2 = R sin ξ cos(θ/2)ei(χ+ψ/2+ϕ/2),

z2 = R sinh ρ cos
(
θ̄/2
)
ei(ψ̄+ϕ̄/2), w3 = R cos ξei(χ−ψ/2).

(7.25)

This means we have −i∂ψ̄ = S1 + S2 and −i∂χ = J1 + J2 + J3. The total metric is given
by

ds2/R2 = − cosh2 ρdt2 + dρ2 + sinh2 ρ
[
dΣ̄2

1 +
(
dψ̄ + Ā

)2]
+ dΣ2

2 + (dχ+B)2. (7.26)
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By defining  t
ψ̄
χ

 =

1 −1/2 0
1 −1/2 c1
1 1/2 c2

x0u
w

 , (7.27)

we get the following TNC data:

τ = dx0 − 1

2

(
c1 sinh

2 ρ− c2
)
dw +

1

2
sinh2 ρĀ+

1

2
B,

m/R2 = −
(
c1 sinh

2 ρ+ c2
)
dw − sinh2 ρĀ−B,

h/R2 = dρ2 + sinh2 ρdΣ̄2
1 + sinh2 ρ cosh2 ρ

(
c1dw + Ā

)2
+ dΣ2

2.

(7.28)

The resulting big SMT string action of this is

Sflat,gf =
J

4π

∫
d2σ
[
2 sinh2 ρẇ + sinh2 ρ cos θ̄ ˙̄ϕ− cos(2ξ)ψ̇ + sin2 ξ cos θϕ̇

− (ρ′)2 − 1

4
sinh2 ρ

(
(θ̄′)2 + sin2 θ̄(ϕ̄′)2

)
− sinh2 ρ cosh2 ρ

(
w′ +

1

2
cos θ̄ϕ̄′

)2

− (ξ′)2 − 1

4
sin2 ξ

(
(θ′)2 + sin2 θ(ϕ′)2

)
− sin2 ξ cos2 ξ

(
ψ′ +

1

2
cos θϕ′

)]
.

(7.29)

7.3 SMT Limits of N = 6 Chern-Simons Theory and ABJM
Now we shift the scope and consider what has not been considered before. As for the N =
4 SYM case, the vast landscape has been explored and all subsectors and backgrounds
can be considered starting from the most general BPS-bound, namely the PSU(2|2, 4).
Furthermore, the Penrose limits have also been studied and are known now. Here, we
set out to do the same but in the context of ABJM theory, where we consider now an
AdS4 × S7/Zk or rather AdS4 × CP3 geometry for large k. Thus the starting point is
to establish a general metric depending on the Cartan generators. The same formalism
will be used in this correspondence where we instead now have an S7 which is associated
to the angular momentum Jj = −i∂αj

, and also S2 ⊂ AdS4 which is associated to spin
S = −i∂φ. In contrast to SYM, we only have one spin degree of freedom from the
AdS part, but a further addition of angular momentum freedom. But this is not to say
that we are not without restrictions. From the orbifolding condition one finds that the∑4

i=1 Ji = 0 [47]. So when considering BPS bounds, the maximal number of angular
momenta generators that can go into a subsector is 3. With this in mind we define in
complex coordinates, following [79], the S7 as

X1 = cos(ξ) cos

(
θ1
2

)
eiα1 , X2 = cos(ξ) sin

(
θ1
2

)
eiα2 ,

X3 = sin(ξ) cos

(
θ2
2

)
eiα3 , X4 = sin(ξ) sin

(
θ2
2

)
eiα4 .

(7.30)
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For the AdS part, we proceed as follows:

Z0 = R cosh(ρ) cos(t), Z1 = R cosh(ρ) sin(t),

Z2 = R sinh(ρ) cos

(
θ

2

)
, Z3 = R sinh(ρ) sin

(
θ

2

)
cos(φ),

Z4 = R sinh(ρ) sin

(
θ

2

)
sin(φ).

(7.31)

From this point onward, it is straightforward obtaining the metric element from the
parametrization of the geometry. It is done most easily by using a software such as
Mathematica, but it can be done in hand too. The overall expression for the metric can
be found by

ds2 =
4∑
i=0

|dzi|2 +
4∑
i=1

|dxi|2. (7.32)

After finding all the infinitesimal elements and adding all the contributions together we
arrive at the metric

ds2 = − cosh(ρ)dt2 + dρ2 + sinh2(ρ)

(
1

4
dθ2 + sin

(
θ

2

)
dφ2

)
+ dξ2

+cos2(ξ)

(
1

4
dθ21 + sin2

(
θ1
2

)
dα2

1 + cos2
(
θ1
2

)
dα2

2

)
+sin2(ξ)

(
1

4
dθ22 + sin2

(
θ2
2

)
dα2

3 + cos2
(
θ2
2

)
dα2

4

)
.

(7.33)

Now that we have established this, we can proceed as for the case of SYM. We turn
our attention to the case of submanifolds having the TNC structure. The idea is to
again identify the metric in specific subsectors, such that it factorizes to a U(1)-Galilean
geometry. We proceed by first analyzing the “simplest case”, namely the SU(2)×SU(2)
sector.

7.3.1 The SU(2)× SU(2) Background and Penrose Limit

We start by considering a double-copy of the cousin from SYM, namely the SU(2)×SU(2)
case. In ABJM theory this subsector has the same BPS-bound as for SYM Q = J1 + J2,
which purely consists of the S7/CP3 part of the metric. From previous calculations and
review, our starting point is writing S7 as two 3-spheres and then further to two two-
spheres. But instead of starting here, one can just consider the type IIA background
described by a 10D metric. This will not pose any trouble, since doing it as was done
in [47] introduces an 11D metric with a fibration term (dγ + A)2. As was considered
this can not be fixed such that the one-form disappears, leading to the needs of relations
between the M-theory metric and type IIA metric along with relations such as l3p = gsl

3
s

and R11 = gsls such that we can obtain the type IIA background

ds2/R2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ̂2
2 + ds2CP3 = − cosh2 ρdt2 + dρ2

+ sinh2 ρdΩ̂2
2 + dθ2 +

1

4
(cos2 θdΩ2

2 + sin2 θdΩ′2
2 ) + 4 cos2 θ sin2 θ(dδ + ω)2.

(7.34)

The two two-spheres and the 1-form ω are given by
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ω =
1

4

2∑
i=1

sin θidφi, dΩ′2
2 = dθ22 + cos2 θ2dφ

2
2, dΩ2

2 = dθ21 + cos2 θ1dφ
2
1. (7.35)

Having established the metric one may introduce and transform the global AdS time and
the fibration over δ via the coordinates x0 and u as follows:(

t
δ

)
=

(
1 −1/2
1 1/2

)(
x0

u

)
. (7.36)

Reading off from the second column, we get the same type of condition as for N = 4
SYM such that ∂u is null

4(∂u)
2/R2 = − cosh2 ρ+ 4 cos2 θ sin2 θ ≤ 0. (7.37)

This is exactly met when ρ = 0 and θ = π/4. Using these conditions and transforming
to the new coordinates yields

ds2/R2 = −
(
dx0 − 1

2
du

)2

+ (dx0 +
1

2
du+ ω)2 +

1

8
(dΩ2

2 + dΩ′2
2 )

= du(2dx0 + ω) + ω2 + 2dx0ω +
1

8
(dΩ2

2 + dΩ′2
2 )

= 2τ(du−m) + hijdx
idxj.

(7.38)

One can see that the same structure appears as for SU(2) case in SYM, but with a
copy such that we have two S2’s instead of a single one. On top of this, the 1-form has
a richer structure. Moving forward, we can identify the TNC variables

τ = dx0 +
1

2
ω, m = −ω, hijdx

idxj =
1

8
(dΩ2

2 + dΩ′2
2 ). (7.39)

The addition of a two-sphere can be seen as a consequence of the ABJM theory. It builds
around a bifundamental and an anti-bifundamental representation, each having their
own multiplets with scalars. This would suggest that the additional sphere represents
the splitting between the two representations. As was shown in [47], in a certain limit one
finds a spin-chain description expressed as two separate Landau-Lifshitz models living on
odd and even sites on the spin-chain, corresponding to the two different representations
that can affect each other through momentum constraints. Hence we would expect this
to be our result as well. If we proceed to consider the flat gauge fixed action for the
non-relativistic SMT string using the TNC-variables we get

Sflat,gf = −
J

2π

∫
d2σ(mµx

µ +
1

2
hµνdx

µdxν)

J

8π

2∑
i=1

∫
d2σ

(
sin θiφ̇i −

1

2
[θ′2i + cos2 θiφ

′2]

) (7.40)

We see that one exactly retrieves the Landau-Lifshitz model on odd and even sites in
this regime considering an SMT limit on the BPS-bounds SU(2)× SU(2) for the ABJM
theory.
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7.3.2 The OSp(2|2) Background

The subsector defined for the OSp(2|2) background is given by the BPS bound Q =
J1 + J2 + S, that is, we extend the SU(2) × SU(2) sector by introducing spin. Our
starting point will be the general metric we wrote and performing a transformation as
follows 

α1

α2

α3

α4

 =


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1



χ1

φ1

χ2

φ2

 . (7.41)

This linear transforamtion will result in the following new metric:

ds2S7 = dξ2 + cos2(ξ)

(
1

4
dθ21 + sin2

(
θ1
2

)
(dχ1 + dφ1)

2 + cos2
(
θ1
2

)
(dχ1 − dφ1)

2

)
+ sin2(ξ)

(
1

4
dθ22 + sin2

(
θ2
2

)
(dχ2 + dφ2)

2 + cos2
(
θ2
2

)
(dχ2 − dφ2)

2

)
(7.42)

If we expand everything and manipulate it we can rewrite this in such a way that the
half-angles disappear using the standard sin2( θ2

2
) + cos2( θ2

2
) = 1 and sin2( θ

2
)− cos2( θ

2
) =

cos θ. The idea is that we want terms that parameterize two-spheres for φ1 and φ2. So
in the end we can rewrite the metric as

ds2S7 = dξ2 +
1

4
cos2(ξ)

[(
dχ1 + cos

(
θ1
2

)
dφ1

)2

+ dθ21 + sin2 θ1dφ
2
1

]
+

1

4
sin2(ξ)

[
(dχ2 + cos θ2dφ2)

2 + dθ22 + sin2 θ2dφ
2
2

]
.

(7.43)

Next we introduce coordinates which will act as the circle fibration to construct a CP3

metric such that we can obtain a type IIA background

χ1 = 2y + ψ, χ2 = 2y − ψ. (7.44)

It is through these transformations that we make the connection to J1 and J2 by defining
that −i∂χ1 − i∂χ2 = −i∂y. This will exactly be the fibration coordinate that we look for.
A thing to note is that one could have performed the transformations from the beginning
instead of first defining χ1 and χ2 and just inserted their respective definition in the 4×4
matrix. Now the Zk orbifold also becomes y ∼ y + 2π/k, and in the large limit of k this
reduces to y. Then we can write the S7 metric in the following way:

ds2 = ds2CP3 + (dy + A)2. (7.45)

Here we will not state what the fibration terms involve (these can be found in [79]), but
the CP3 metric reads [80]

ds2CP3 = dξ2 + 4 cos2 ξ sin2 ξ

(
dψ +

cos θ1
2

dφ1 −
cos θ2
2

dψ2

)2

+
1

4
cos2 ξ(dθ21 + sin2 θ1dφ

2
1) +

1

4
sin2 ξ(dθ22 + sin2 θ2dφ

2
2).

(7.46)

65



As for the case of the SU(2) × SU(2) sector, we can make the same considerations
resulting in the same structure of the metric where the fibration term is dropped through
M -theory considerations:

ds2/R2 = ds2AdS4
+ ds2CP3

= − cosh2 ρdt2 + dρ2 + sinh2 ρdφ2 + 4 cos2 ξ sin2 ξ(dψ + P )2

+
1

4
cos2 ξ(dθ21 + sin2 θ1dφ

2
1) +

1

4
sin2 ξ(dθ22 + sin2 θ2dφ

2
2),

(7.47)

where we set P = cos θ1
2
dφ1 − cos θ2

2
dψ2. We are now ready to introduce the coordinates

that will describe the U(1) Galilean geometry given by the following matrix: t
φ
ψ

 =

1 −1/2 0
1 −1/2 c1
1 1/2 c2

x0u
w

 , (7.48)

Reading off from the second column, we get ∂u is null under the following condition

4(∂u)
2/R2 = − cosh2 ρ+ sinh2 ρ sin2 θ + 4 cos2 ξ sin2 ξ ≤ 0. (7.49)

This condition will exactly be met when θ = π/2 and ξ = π/4. This will reduce the
metric to

ds2/R2 = ds2AdS4
+ ds2CP3

= − cosh2 ρdt2 + dρ2 + sinh2 ρdφ2

+ (dψ + P )2 +
1

8
(dθ21 + sin2 θ1dφ

2
1 + dθ22 + sin2 θ2dφ

2
2),

(7.50)

and immediately our metric explicitly becomes

ds2/R2 = dρ2 +
1

8
(dθ21 + sin2 θ1dφ

2
1 + dθ22 + sin2 θ2dφ

2
2)

+
du2

4
+ (dx0)2 +

(
1

4
du2 + (dx0)2

)
(sinh2 ρ− cosh2 ρ)

+ dudx0(1 + cosh2 ρ− sinh2 ρ) + c2dudw + 2c2dwdx
0 + c22dw

2

+ Pdu+ 2c2Pdw + 2Pdx0 + P 2 + 2c1 sinh
2 ρdwdx0

+ c21 sinh
2 ρdw2 − c1 sinh2 ρdudw.

(7.51)

By employing the identity cosh2 ρ− sinh2 ρ = 1, we get the reduced form

ds2/R2 = dρ2 +
1

8
(dθ21 + sin2 θ1dφ

2
1 + dθ22 + sin2 θ2dφ

2
2)

+ 2dw(c2dx
0 + c2P + c1 sinh

2 ρdx0) + 2Pdx0 + c22dw
2 + P 2

+ du(2dx0 + c2dw + P − c1 sinh2 ρdw) + c21 sinh
2 ρdw2.

(7.52)

Quite readily we determine the clock one-form TNC coordinate by looking at the last
line in the metric and get

τ = dx0 +
1

2

(
P + (c2 − c1 sinh2 ρ)dw

)
= dx0 +

1

4

(
cos θ1dφ1 − cos θ2dφ2 + 2(c2 − c1 sinh2 ρ)dw

)
,

(7.53)
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and we define the m coordinate to be

m = 2(τ − dx0)

=
1

2

(
cos θ1dφ1 − cos θ2dφ2 + 2(c2 − c1 sinh2 ρ)dw

)
.

(7.54)

We can now determine our hijdxidxj term by subtracting our TNC data from the reduced
metric, which gives us (using P again)

ds2 − 2τ(du−m) = dρ2 +
1

8
(dθ21 + sin2 θ1dφ

2
1 + dθ22 + sin2 θ2dφ

2
2)

+ 2c22dw
2 + 4c2dwdx

0 + 4c2Pdw + 4Pdx0 + c21 sinh
2 ρdw2

− 2c1c2 sinh
2 ρdw2 − 2c1P sinh2 ρdw + c21 sinh

4 ρdw2 + 2P 2.

(7.55)

Now we again choose the gauge c1 = 0 and c2 = 0 and the flat gauge η for our metric
in the calculation of the action, this means in our choice of h we drop non-diagonal
terms and terms involving the factor c2. In (7.55) we have a sinh4 term, but this can be
combined with the c21 sinh2 term to get

c21dw
2(sinh2 ρ+ sinh4 ρ) = c21 sinh

2(ρ)dw2(1 + sinh2 ρ) = c21 cosh
2 ρ sinh2 ρdw2

as per the identity, and thus we have (in flat gauge with c1 = 1 and c2 = 0)

τ = dx0 +
1

4

(
cos θ1dφ1 − cos θ2dφ2 − 2 sinh2 ρdw

)
m =

1

2

(
cos θ1dφ1 − cos θ2dφ2 − 2 sinh2 ρdw

)
h = dρ2 +

1

8
(dθ21 + sin2 θ1dφ

2
1 + dθ22 + sin2 θ2dφ

2
2) + cosh2 ρ sinh2 ρdw2.

(7.56)

Using now
Sflat,gf = −

J

2π

∫
d2σ(mµx

µ +
1

2
hµνdx

µdxν)

we get the ’extended’ Landau-Lifshitz model:

Sflat,gf = −
J

2π

∫
d2σ
[
ẇ sinh2 ρ− 1

2

(
(ρ′)2 + (w′)2 sinh2 ρ cosh2 ρ

)
+

1

2
φ̇1 cos θ1 −

1

2
φ̇2 cos θ2 +

1

16

2∑
i=1

(
(θ′i)

2 + (φ′
i)
2 sin2 θi

) ]
.

(7.57)

7.4 The SU(3|2) Background
The last example before going to the all background case, we consider the maximal R-
symmetry admitted by the BPS-sectors, namely Q = J1 + J2 + J3. This sector admits
SU(3) symmetry and is purely connected to the S7, thus most of the AdS4 geometry will
be redundant. In section 3.1, we saw that there are different ways of writing the metric
of CP 3. For the particular choice of Q, one can show, using the previous metric, that a
type IIA background cannot be obtained. With three angular momenta and four complex
coordinates to parametrize S7, one falls short of obtaining a null isometry. This leads
to the shift in metric. It can be seen as for the structure in the SU(3|2) case of SYM
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that the metric decomposes into CP3 ∼ CP2 + (dχ + A)2, such that we can obtain the
Fubini-Study for CP2 with a non-dynamic angle dχ which can be factored with Kähler
potential. Using the metric, we employ a transformation from angular coordinates on
CP 3, namley the αj’s into three new coordinates

α1

α2

α3

 =

1 −1/2 0
1 1/2 −1/2
1 1/2 1/2

χψ
φ

 →

z1/z4 = tan ξ cosαeiχ−ψ/2

z2/z4 = tan ξ sinα sin
θ

2
eiχei(ψ−φ)/2

z3/z4 = tan ξ cosα cos
θ

2
eiχei(ψ+φ)/2

. (7.58)

The resulting metric is then

ds2CP3 = 4dξ2 + 4 sin2 ξ cos2 ξ(dχ+
1

2
(sin2 α(dψ + cos θdφ)− dψ))2

+ 4 sin2 ξ

[
dα2 +

1

4
sin2 α

(
dθ2 + sin2 θdφ2 + cos2 α(dψ + cos θdφ

)2]
.

(7.59)

Note that the factor of 4 is a matter of convention and is sometimes omitted. In this
case, we take advantage of it for the null conditions. The metric can be put in a nicer
form following [78] by defining the quantities corresponding to the Kähler potential

B = sin2 α(dψ + cos θdφ)− dψ, A = cos θdφ. (7.60)

Looking at the second line of the metric, we can recognize this exactly as the Fubini-Study
metric over CP2 defined as

dΣ2
2 = dα2 + sin2 αdΣ2

1 + sin2 α cos2 α(dψ + A)2, dΣ2
1 =

1

4
(dθ2 + sin2 θdφ2). (7.61)

Putting all this together we obtain for the full AdS4 × CP3 metric on the SU(3|2) back-
ground

ds2/R2 = − cosh2 ρdt2 + dρ2 +sinh2 ρdΩ2
2 +4dξ2 +4 sin2 ξ cos2 ξ(dχ+

1

2
B)2 +4 sin2 ξdΣ2

2.

(7.62)
Using the same type of transformation as was done for both SYM and the SU(2)×SU(2)

background, (
t
χ

)
=

(
1 −1/2
1 1/2

)(
x0

u

)
, (7.63)

we see that the null condition becomes

4(∂u)
2/R2 = − cosh2 ρ+ 4 sin2 ξ cos2 ξ ≤ 0, (7.64)

so the null condition is fulfilled when ρ = 0 and ξ = π/4. This means our metric is now

ds2/R2 = −dt2 +
(
dχ+

1

2
B

)2

+ 2dΣ2
2. (7.65)

Inserting this into the metric, the reduced metric in terms of the new coordinates becomes

ds2/R2 = 2dx0du+
1

2
Bdu+Bdx0 +

1

4
B2 + 2dΣ2

2, (7.66)
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which can readily be written in the TNC form
ds2/R2 = 2τ(du−m) + h, (7.67)

with
τ = dx0 +

1

4
B

m = −1

2
B

h = 2dΣ2
2.

(7.68)

It can be seen that the difference from the Yang-Mills case lies in the definition of A and
dΣ2

2 up to some numerical factors. The last step is of course to find the flat gauge fixed
action, given by

Sflat,gf = −
J

2π

∫
d2σ(mµx

µ +
1

2
hµνdx

µdxν)

=
J

4π

∫
d2σ(sin2 α cos θφ̇− cos2(α)ψ̇ − 2[(α′)2

+
1

4
sin2 α(θ′2 + sin2 θφ′2) +

1

4
cos2 α(ψ′ + cos θφ′)2]).

(7.69)

7.5 All Backgrounds From the OSp(4|2) Background
For the grand background, we obtain the U(1) Galilean geometry for S+J1+J2+J3 = Q ≤
E. This BPS-bound leads to the OSp(4|2) spin matrix theory which can be used to obtain
the other bounds in SMT previously considered by considering different manipulations
for angles that gives the different backgrounds. The full geometry will be parametrized
through a Hopf coordinate for the S2 ⊂ AdS4 and the CP3 using an S1-fibration over CP2

for the full in the Fubini-Study coordinates. This will result in the isometries −i∂φ = S
and −i∂χ = J1 + J2 + J3. In terms of the coordinates we write the metric in terms of
Fubini-Study potentials

ds2/R2 = − cosh2 ρdt2 + dρ2 + sinh2 ρ(dθ̄2 + sin2 θ̄dφ2) + 4dξ2

+ 4 sin2 ξ cos2 ξ

(
dχ+

1

2
B

)2

+ 4 sin2 ξdΣ2
2. (7.70)

Following the transformations we have used before, we get t
φ
χ

 =

1 −1/2 0
1 −1/2 c1
1 1/2 c2

x0u
w

 . (7.71)

Compared to the PSU(1, 2|3) case, we do not have that −i∂φ and −i∂χ are of constant
length in ABJM, so the null condition we get this time is

4(∂u)
2/R2 = − cosh2 ρ+ sinh2 ρ sin2 θ̄ + 4 sin2 ξ cos2 ξ ≤ 0. (7.72)

This is satisfied when ξ = π/4 and θ̄ = π/2. Using the transformation one thus arrives
at

ds2/R2 = 2dx0du+ dρ2 + sinh2 ρ

(
dw2 + 2dw

(
dx0 − 1

2
du

))
+

1

4
B2 +B

(
dx0 +

1

2
du

)
+ 2dΣ2

2

= 2τ(du−m) + h,

(7.73)
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where the TNC variables are given by

τ = dx0 +
1

4
B +

1

2
sinh2 ρdw,

m = −
(
1

2
B + sinh2 ρdw

)
,

h = dρ2 + sinh2 ρ cosh2 ρdw + 2dΣ2
2,

(7.74)

On this background the flat gauge-fixed SMT string action gives

Sflat,gf =
J

4π

∫
d2σ
(
2 sinh2 ρẇ + sin2 α cos θφ̇− cos2(α)ψ̇ − (ρ′)2 − sinh2 ρ cosh2 ρ(w′)2

− 2
[
(α′)2 +

1

4
sin2 α((θ̄′)2 +

1

4
sin2 θ̄(φ̄′)2) + sin2 α cos2 α(ψ′ + cos θφ′)2

])
.

(7.75)
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8
Flat Spin Matrix Theory String Back-
grounds and Penrose Limits

As was done forN = 4 SYM, in this project we have also been able to succeed in finding all
the U(1)-Galilean backgrounds corresponding to all of the Spin Matrix limits. However,
we do face some complicated and non-linear theories when considering the flat gauge-
fixed action. But as was considered [78], one can take a large charge limit for J and zoom
in on excitations around specific angles. It is then expected that we might obtain free
theories that will resemble Penrose limits where we zoom in on the geometry around the
null geodesic. Starting from AdS5 × S7 and zooming in on the null geodesic along AdS4

and S7, the resulting geometry should become the 10D maximally symmetric pp-wave
(see chapter 5). However, it is important to remember that the expression will depend
on the coordinates we start with for our null geodesic since it depends on the coordinate
pair (x0, u). When zooming in on a neighbourhood around ∂u on a submanifold where
the vector is null we can expect a background of the form

ds2/R2 = dx0(du0 + xidyi) + dxidx
i + dyidy

i + dxadx
a − xaxa(dx0)2, (8.1)

where i = 1, ..., n and a = 1, ..., 8− 2n.
The pp-wave can be written in the form of the above metric and has the 2n flat directions
(xi, yi). There will also be a quadratic potential contained in the (8 − 2n) remaining
transverse directions xa. In the rescaling x0 = x̃0

c2
one gets that the slope diverges in

the SMT-limit, hence we get dynamics that are suppressed and only the flat directions
contribute. In terms of the TNC-data we expect the following structure to appear:

τ̃ = dx̃0,

m = −
n∑
i=1

xidyi,

h =
n∑
i=1

(dxi)2 + (dyi)2.

(8.2)

This is what originally has been dubbed the flat fluxed (FF) backgrounds, since they
contain a mass flux term xidy

i that supports the dynamics in the flat directions of both
components. The goal is now to show that the SMT and large charge limit compared
with the Penrose limit should correspond to the same FF U(1)-Galilean Geometry. We
do this for SU(2)×SU(2), OSp(2|2), SU(3|2), and OSp(4|2). Remaining subsectors can
be obtained in a similar way.
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8.1 The SU(2)× SU(2) flat background
We consider the simplest of cases, namely the SU(2)×SU(2) sector. As we found in the
previous chapter, we can write the TNC data as

τ̃ = dx̃0, m = −ω, hijdx
idxj =

1

8
(dΩ2

2 + dΩ′2
2 ). (8.3)

For the large charge limit of J →∞, we define the following coordinate transformations:

θi = xi/
√
J − π/2, φi = yi/

√
J. (8.4)

Using this for m and h we get

m0 = lim
J→∞

Jm =
1

4

2∑
i=1

xidyi,

h0 = lim
J→∞

Jm =
1

8

2∑
i=1

dx2i + dy2i .

(8.5)

To finish off we obtain the SMT action

Sflat,gf =
J

4π

2∑
i1

∫
d2σ
[1
2
xiẏi −

1

4
[(x′i)

2 + (y′i)
2]
]
. (8.6)

This is the same action up to some factors as was found in [47].
Now we take the Penrose limit and show that we retrieve the same geometry from

a SMT limit of the corresponding pp-wave. To get the pp-wave, we write the metric in
the adapted coordinates we used previously, and then zoom in on a null geodesic on the
submanifold corresponding to ρ = 0 and ξ = π/4 by defining

R = R′/ε, u = Uε2, φa = yaε, θa = xaε, ρ = rε, ξ = π/4 + qε. (8.7)

The metric we want to transform is

ds2/R2 = − cosh2 ρ(dx0 − 1

2
du)2 + dρ2 sinh2 ρ(dθ̄22 + sin2 θ̄(dx0 − 1

2
du+ dw)2)

+ dξ2 +
1

4
(cos2 ξdΩ2

2 + sin2 ξdΩ′2
2 ) + 4 cos2 ξ sin2 ξ(dx0 +

1

2
du+ ω)2.

(8.8)

When taking the ε → 0 we use the following appropriate expansions in ε in the limit to
write the final metric:

cos2(π/4 + qε) =
1− sin(2qε)

2
≈ 1

2
(1− 2q), sin2(π/4 + qε) =

1 + sin(2qε)

2
≈ 1

2
(1 + 2q)

cos2(π/4 + qε) sin2(π/4 + qε) =
cos2(2qε)

4
≈ 1

4
(1 + 4q2)

cosh2 rε ≈ 1, sinh2 rε ≈ r2 dρ2 ≈ dr2.
(8.9)

Using these we can in the end collect terms that goes as ε2 and ignore higher orders, since
this is the global factor defined on the radius of the geometry. Ultimately, we obtain

ds2/R2 = 2dx0dU + dr2 + r2dΩ̂2
2 + 4du24 +

1

8
dx21 +

1

8
dx22

+
1

2
dx0(x1dy1 + x2dy2) +

1

8
dy21 +

1

8
dy22 − u24(dx0)2

= 2dx0(dU −m0) + h0 − u24(dx0)2 + 4du24 + dr2 + r2dΩ̂2
2. (8.10)
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In the SMT limit, the quadratic potential r2 in the directions parametrized by dr2+r2dΩ̂2
2

becomes infinitely steep, rendering these directions suppressed, and with a vanishing u4
we obtain the U(1)-Galilean form.

8.2 The OSp(2|2) flat background
Next we turn to the case where we keep the same number of generators over the S7, but
additionally we add a spin degree of freedom from the CP1 ⊂ AdS4. We again look at
the TNC data which in this case is

τ = dx̃0,

m =
1

2
(cos θ1dφ1 − cos θ2dφ2)− sinh2 ρdw,

h = dρ2 +
1

8
(dθ21 + sin2 θ1dφ

2
1 + dθ22 + sin2 θ2dφ

2
2) + cosh2 ρ sinh2 ρdw2.

(8.11)

Defining in the large charge limit for J →∞ the following new coordinates we find

r =
√
Jρ, x1 =

√
J(θ1 − π/2), x2 =

√
J(θ2 + π/2), ya =

√
Jφa, (8.12)

=⇒

m0 = lim
J→∞

Jm =
1

4

2∑
i=1

xidyi + r2dw,

h0 = lim
J→∞

Jh =
1

8

2∑
i=1

(dx2i + dy2i ) + dr2 + r2dw2.

(8.13)

The corresponding Penrose limit can be obtained from the AdS4 × CP3 coordinates by
introducing

R = R′/ε, u = Uε2, φa = yaε, θ1 = x1ε− π/2,
θ2 = x2ε+ π/2, ρ = rε, ξ = π/4 + qε.

(8.14)

In the ε→ 0 limit, we obtain the metric

ds2/R2 = 2dx0(dU + r2 sin2 θ̄dw +
2∑
i=1

xidyi) +
2∑
i=1

(dx2i + dy2i )

+ dr2 + r2(dθ̄2 + sin2 θ̄dw2) + (q2 + r2 sin2 θ̄)(dx0)2.

(8.15)

We see that when q2 = −r2 and θ̄ = π/2, we exactly retrieve the U(1) Galilean data we
derived from the large J limit above. One does indeed get the quadratic potential in this
SMT limit.

8.3 The SU(3|2) flat background
Instead of adding a spin degree of freedom this time, we extend to the maximal amount of
generators for S7 giving us the SU(3) sector from the BPS-bound Q = J1 + J2 + J3 ≤ E.
Our TNC data is

τ̃ = dx̃0, m = −1

2
B, h = 2dΣ2

2. (8.16)
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One can write coordinates in the J →∞ limit as

α =
π

4
+

q√
j
, θ =

x√
j
+
π

2
, φ = y/

√
J, ψ = p/

√
J, (8.17)

and from this obtain

m0 = lim
J→∞

Jm =
1

4
xdy − 1

2
qdp

h0 = lim
J→∞

Jh = 2dq2 +
1

4
(dx2 + dy2) +

1

8
dp2.

(8.18)

The action subsequently takes the form

Sflat,gf =
J

4π

∮
dσ
[1
2
xẏ − qṗ− 1

2
(x′)2 − 1

2
(y′)2 − (q′)2 − 1

4
(p′)2

]
. (8.19)

Similarly the coordinates that are chosen for the specific Penrose limit will be

R = R′/ε, u = Uε2, φa = yaε, θi = xiε+ π/2

ψ = pε, ρ = rε, α = π/4 + qε, ξ = π/4 + zε.
(8.20)

After painstakingly expanding and bookkeeping powers of ε2, the terms that are left after
using the (x0, u) in (7.62) are

ds2 = 2dx0(dU −m0) + h0 +
1

2
dz2 + 2dq2 + dr2 + r2dΩ2

2 − (r2 + 4z2)(dx0)2. (8.21)

The same kind of phenomena occurs in the three -charge case as for SYM, where the rel-
ativistic string experiences a quadratic potential r2 in the now three transverse directions
dr2 + r2dΩ2

2. In the SMT limit with x0 = x̃0/c2, c→∞, the potential becomes infinitely
steep as well. Hence, the geometry is restricted to a U(1)-Galilean geometry described
by the coordinates in the limit J → ∞. The extra term of 2dq2 is a problem, as it will
mess up the U(1)-Galilean structure in its corresponding limit. Due to time limitations,
this has not been resolved yet.

8.4 The OSp(4|2) flat background
The last background which corresponds to the OSp(4|2) sector has to be considered as
the maximal one, given the type IIA condition [47]. The TNC data for the BPS-bound
∆− J1 − J2 − J3 − S is

τ̃ = dx̃0,

m = −(1
2
B + sinh2 ρdw),

h = dρ2 + sinh2 ρ cosh2 ρdw +
1

2
dΣ2

2.

(8.22)

Again we define the coordinates that will go into play when taking the large charge limit

α =
π

4
+

q√
j
, θ =

x√
j
+
π

2
, φ = y/

√
J, ψ = p/

√
J, ρ = r/

√
J. (8.23)
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Inserting into m and h, we find in the J →∞ limit

m0 = lim
J→∞

Jm =
1

4
xdy − 1

2
qdp+ r2dw,

h0 = lim
J→∞

Jh = dr2 + r2dw2 +
1

2
dq2 +

1

4
(dx2 + dy2) +

1

8
dp2.

(8.24)

In the large charge limit, we find the maximal extension of the action which hints towards
having an interpretation in action-angle variables and symplectic potential in phase space:

Sflat,gf =
J

8π

∮
dσ

[
qṗ− 1

2
xẏ + r2ẇ − (r′)2 − r2(w′)2

− 1

2

(
(q′)2 +

1

2

(
(x′)2 + (y′)2

)
+

1

4
(p′)2

)]
. (8.25)

Going to the Penrose limit we define as previously all the coordinates in the same manner:

R = R′/ε, u = Uε2, φa = yaε, θi = xiε+ π/2

ψ = pε, ρ = rε, α = π/4 + qε, ξ = π/4 + zε.
(8.26)

Taking ε→ 0, we finally obtain the final piece

ds2/R2 = 2dx0(dU + r2 sin2 θ̄dw − 1

4
xdy +

1

2
qdp) + dr2 +

1

2
dz2 + 4dq2

+ r2(dθ̄2 + sin2 θ̄dw2) +
1

4
(dx2 + dy2) +

1

8
dp2 + (r2 sin2 θ̄ − z2)(dx0)2

= 2dx0(dU −m0) + h0 + dr2 +
1

2
dz2 + 2dq2 + (r2 sin2 θ̄ − z2)(dx0)2.

(8.27)

In the “maximal” case we are restricted to submanifolds in which setting θ̄ = π/2 and
z = 1

2
r exactly reproduces the result obtained in the large charge limit.
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9
Conclusion and Outlook

In this thesis we have presented some of the current work and formalism in the field of
AdS/CFT dualities, focusing on ABJM theory while comparing it to the first discovered
and well known case of AdS5 × S5 dual to N = 4 SYM. By proceding as done in the
literature on SMT and Penrose limits of subsectors of SYM, we have computed the cor-
responding limits in the case of the ABJM subsectors. These have shown to compare
interestingly and in some cases intuitively enough to SYM in the form of extra terms
that make sense given the additional features of various spheres and angles that appear
in the geometry of the supergravity dual of ABJM.

On top of this, we have shown that the computation of spin matrix theory limits in
the form of torsional Newton-Cartan geometry give rise to the same flat gauge action
models as the corresponding computations in the framework of sigma models do. This is
great and an important verification/suggestion that the SMT framework and thereby the
computations done in this project seem to be on the right track, not yielding something
completely different results but giving something that is comprehensive and compatible
with already known literature.

In the future it seems promising to try to extend the work done for SYM in [81, 82, 83]
to ABJM theory. This also includes computing the Penrose limit in the case of OSp(2|2)
and avoiding the extra 2dq2 term for SU(3|2) which the time of the deadline of this thesis
unfortunately did not allow for, though conceptually this should be straight forward.
What could also be done is to generate the new giant magnon. The spin element of this
could be implemented in various corrections to both the string, magnons, etc. It would
also be interesting to look at theory of how magnetic monopoles would contribute to
partition functions in the framework of N = 6 CS [84].
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