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Abstract

The spectral instability of Quasinormal mode (QNM) is an interesting phenomenon
in black hole (BH) physics and gravitational wave (GW) physics. Despite the dynamic
stability of black hole spacetimes under perturbations, the spectra of perturbations in the
form of the QNMs exhibit drastic changes under a minor perturbation of the background
spacetime. We employ the hyperboloidal framework and the Analytical Mesh Refinement
(AnMR) technique to control the geometry of spacetimes in a systematic and robust way,
and to ensure enough numerical capability of solving the QNM problem under different
geometrical limits of SdS spacetime. We are able to learn the behaviors of QNM spectra
under different background perturbations. In short, when a small cosmological constant
perturbs the Schwarzschild spacetime, the branch cut structure in its QNM spectrum
gets destroyed and purely imaginary de Sitter modes emerges from rHω = 0, which is
interpreted as a manifestation of QNM instability.
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1 Introduction
Black hole perturbation theory provides us with a well-established probe of black hole space-
times, as it can extract the key feature quasinormal modes from gravitational waves outside
of the black hole, where the feature is determined only by the black hole spacetime itself and
independent of the perturbative source. The method is extensively employed in analyzing real
world observational data of GW signals from astronomical events like binary compact object
mergers [1, 2, 3, 4], and has the potential to probe the mass, charge, angular momentum of the
black hole as well as the cosmological constant of the background.

When accessed at a fixed spatial position, the time evolution of the GWs of scalar field
perturbations usually show three distinct phases, the initial prompt phase, the ringdown phase
characterized by the QNMs, and the late time tail phase. The predicted ringdown phase by
calculations of perturbative method, as a superposition of exponentially decaying QNM wave
forms, has seen a good success agreeing with observational data in refs. [1, 5, 6]. With a
Fourier transformation, the ringdown phase GW wave form could be decomposed into a set of
discrete quasinormal modes, which has been proved with dynamical stability in many different
scenarios in refs. [7, 8, 9, 10].

The Schwarzschild-de Sitter (SdS) spacetime describes a non-spinning, non-charged black
hole living on the background of a de Sitter spacetime. It is found by combining the met-
rics of the Schwarzschild spacetime and the de Sitter spacetime. Geometrically the regime
of SdS spacetime could be entered by deforming the Schwarzschild spacetime with a small
parameter

√
Λ or equivalently with the inverse of cosmological horizon 1/rΛ. The other ap-

proach is to deform the de Sitter spacetime with a small parameter M or equivalently with
the black hole horizon rH . Speaking of the quasinormal modes associated with the spacetime,
the Schwarzschild spacetime has a set of complex modes associated with the spacetime light
ring [7, 8, 9, 10], as well as a branch cut along the imaginary axis emerging from ω = 0 [7].
The dS spacetime only shows a discrete set of modes along the imaginary axis [11, 12, 13]. The
SdS spacetime combines the two sets of discrete modes, and this thesis aims at studying the
emergence of these two families from the perspective of QNM instability.

The study of the aforementioned QNMs in SdS spacetime implies real world application
since cosmological observations assume a positive cosmological constant, or an asymptotically
de Sitter spacetime for our universe. All black holes live with a small but non-zero cosmological
constant in a cosmological scale, whose GWs should be therefore affected. There is current
interest in the late time tail decay of gravitational waves in refs. [14, 15, 16, 17], which studies
the effect on GW tails from a positive cosmological constant. In [18] a significant change in the
behavior of the late time tail is found with even a small cosmological constant added compared
to Schwarzschild spacetime.

There has been numerous studies on the behaviors of QNM families for black hole spacetimes
with more than one parameter. Ref. [13] identified 3 families of QNMs in the Reisnners-
Nördstrom-de Sitter spacetime, one family directly related to the light ring modes associated
with the presence of the black hole horizon, a second family of purely imaginary modes related
to the new time scales introduced by the de Sitter horizon, and also a third family of QNMs
resulting from the electric charge of Reisnners-Nördstrom black hole. Here only the first two
families are relevant in our scenario: the light ring modes and the de Sitter modes. Refs. [19, 20,
21] elaborately introduced a geometrical framework to deal with the perturbations on Kerr-de
Sitter spacetime, and proved the stability of such spacetime in the sense that asymptotically
Kerr-de Sitter spacetimes must decay to an exact Kerr-de Sitter solution. The papers also
introduced a general scheme to find out the parameters of the exponentially decaying tails of
GWs on perturbed Kerr-de Sitter family of black hole spacetimes.

The boundary conditions has always been a delicate issue for solving the QNM eigenfunc-
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tions in black hole perturbation theory, because within the formulation with Schwarzschild-
like coordinates, the eigenfunctions diverge to infinity near the BH and cosmological horizon.
Ref. [22] performed a systematic study of these QNM families, where the authors employed a
spectral method numerical technique based on the so-called Bernstein polynomials. The use-
fulness of these non-orthogonal basis functions was highlighted in numerical studies [23] with
focus on their capability of handling boundary conditions in ordinary differential eigenvalue
problems.

Recently, the hyperboloidal framework has emerged as robust geometrical approach to study
QNMs in BH pertubation theory allowing us to overcome the ill-representation of the QNM
eigenfunctions at the horizons. In the framework, the treatment of the boundary conditions
is accomplished by an appropriate spacetime parameterization in terms of hyperboloidal time
surfaces, with a compact radial coordinate defined thereon. The appropriate coordinates allow
the QNM eigenfunctions to become regular at the horizons [24, 25, 26], see sec. 4. Recently
refs. [27, 28] employed the hyperboloidal approach and pseudospectrum analysis to investigate
the spectral instability of QNMs under external perturbations for asymptotically flat spacetimes
and asymptotically de Sitter spacetimes. Following the interpretation on QNM instability put
forward in ref. [27, 28, 29], this thesis focuses on the perturbation on the background spacetime,
specifically the de Sitter parameter as a perturbation on Schwarzschild spacetime, or vice-versa,
the Schwarzschild parameter as a perturbation on de Sitter spacetime.

In this thesis we will show that the choice of radial compactification offers us a freedom
to parametrically study all limits of the spacetime within a robust framework akin to the
rigorous geometrical approach put forward by Geroch [30]. With the geometrical aspects
under our control, we employ numerical techniques from spectral methods based on standard
orthogonal basis functions (such as the Chebyshev polynomials), without having to employing
more intricate non-orthogonal basis as suggested in ref. [23]. In particular, this thesis performs
a comprehensive study of the so-called Analytical Mesh Refinement technique in the context of
QNM. While this technique had been employed in different contexts [31, 32, 33], a systematic
study of its applicability in the QNM context was missing. The QNM problem in SdS spacetime
offers a well-defined setup for such studies, see sec. 6. In the context of perturbation theory,
the AnMR shows distinct advantages over the traditional approach in the self-force program
as it allowed to accurately resolve the solution of particles orbiting a black hole with extremely
large orbital radii or having angular modes with very high spherical harmonic mode index [33].
On the technical side, our work finds that the utilization of AnMR helps improve numerical
capabilities in the QNM problem, especially for numerically difficult situations such as QNMs
with high overtone indexes.

The hyperboloidal framework provides a clean setup to study the spacetime limits of the
Schwarzschild-de Sitter spacetime. One important finding of this thesis is the interpretation of
the behaviors of QNMs in the Schwarzschild limit. Compared to the branch cut that arises in
Schwarzschild spacetime, SdS spacetime has a clean discrete set of QNM frequencies. Therefore
the setup allows us to delve on this issue. We find that with the perturbation of the cosmological
constant, the light ring modes deform smoothly, while the de Sitter modes along the imaginary
axis emerge and destroy the branch cut. Under the limit of Λ → 0, the de Sitter modes
accumulate at ω = 0 which corresponds to the branch cut structure in the limit to Schwarzschild
spacetime.

2 Schwarzschild-de Sitter spacetime
The Schwarzschild spacetime is a spherically symmetric solution of the vacuum Einstein field
equations with a vanishing cosmological constant. It describes a non-spinning, non-charged
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black hole spacetime that is asymptotically flat if measured from far away. The de Sitter
spacetime is a maximally symmetric solution of the vacuum Einstein field equations with a
positive cosmological constant. It is the simplest spacetime with a constant positive curvature.

The Schwarzschild-de Sitter spacetime could be interpreted as a natural combination of the
two spacetimes, where the spherically symmetric black hole lives on a background spacetime
with a positive constant curvature rather than a flat background. The spacetime has two
horizons, the black hole horizon and the cosmological horizon. A typical observer, who hasn’t
fallen into the black hole while still could see the black hole, lives between the two horizons.
Given current cosmological observations that are supporting a positive cosmological constant,
the Schwarzschild-de Sitter spacetime could model simple black holes living on our Universe
that is asymptotically de Sitter.

2.1 Derivation of Schwarzschild-de Sitter metric
The Schwarzschild-de Sitter spacetime features a static and spherically symmetric metric with a
positive constant scalar curvature. In Schwarzschild-like coordinates (t, r, θ, φ), the line element
of the SdS spacetime reads in its most common form

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dϖ2, (1)

f(r) = 1 − 2a
r

− br2 (2)

with dϖ2 = dθ2 + sin2 θdφ2 the line element of the 2-sphere. The two parameters inside the
function f(r), which characterizes the geometry of the spacetime, have physical implications
through the following relation with the black hole mass M and the cosmological constant Λ,

a = M, b = Λ
3
. (3)

Under the limitations of either of the above two parameters vanishes, the line element will be
reduced to that of the de Sitter metric or the Schwarzschild metric.

In a similar manner with the Birkhoff’s theorem of the Schwarzschild spacetime, we can
prove that any spherically symmetric metric that solves the Einstein field equations with a
positive cosmological constant could be written in the form of eq. (1).

A metric that is spherically symmetric, i.e. invariant under rotations, can be dependent
only on dϖ2 = dθ2 + sin2 θdφ2 with respect to the angular coordinates θ and φ if written in
spherical coordinates (t, r, θ, φ). That is, in another way, the most generic form of such a metric
will read,

ds2 = −A(t, r)dt2 + 2B(t, r)dtdr + C(t, r)dr2 +D(t, r)dϖ2. (4)

We assume the function D(t, r) cannot be constant on any 3-dimensional space-like submanifold
of the whole spacetime, which would correspond to a spacetime with a constant radius. This
assumption could be derived directly from the asymptotic behavior of the spacetime metric that
we would like to see, in this case asymptotically de Sitter. However in extremal cases it does
not hold, e.g. the Nariai spacetime discussed in sec. 5.3. On the aforementioned assumption
we could define a set of new coordinates

t′(t, r) = t, r′(t, r) =
√
D(t, r). (5)

Then the line element will read

ds2 = −A′(t′, r′)dt′2 + 2B′(t′, r′)dt′dr′ + C ′(t′, r′)dr′2 + r′2dϖ2. (6)
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To eliminate the cross term in the line element, we could find the coordinate transformation by
leaving the spatial coordinate unchanged and integrating to get the time coordinate through

dt′′ = E(t′, r′)
[
A′(t′, r′)dt′ −B′(t′, r′)dr′

]
, (7)

where the function E(t′, r′) is determined by the relation ∂
∂r′

(
∂t′′

∂t′

)
= ∂

∂t′

(
∂t′′

∂r′

)
to make a closed

differential form. Therefore the most generic line element eq. (4) could then be written in a
form of

ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dϖ2, (8)

where we are left with two undetermined functions α(t, r) and β(t, r) in the metric.
To derive the Schwarzschild-de Sitter metric as the form in eq. (1), we need to impose on it

the restrictions coming from the Einstein field equations with a non-zero cosmological constant

Rµν − 1
2
Rgµν + Λgµν = 8πTµν . (9)

Since the stress-energy tensor Tµν vanishes for a vacuum solution, we could get the restrictions
on Rµν by contracting eq. (9) with the metric gµν , which leads to

R = 4Λ, Rµν = Λgµν . (10)

With the line element eq. (8), we can compute the Ricci tensor as following listed

Rtt = e2α−2β
{
∂2

rα− ∂rα∂rβ + (∂rα)2 + 2
r
∂rα

}
+
{
∂2

t β − ∂tα∂tβ + (∂tβ)2
}
, (11)

Rrr = −
{
∂2

rα− ∂rα∂rβ + (∂rα)2 − 2
r
∂rβ

}
+ e−2α+2β

{
∂2

t β − ∂tα∂tβ + (∂tβ)2
}
, (12)

Rtr = 2
r
∂tβ, (13)

Rθθ = 1 + e−2β
[
r(∂rβ − ∂rα) − 1

]
, (14)

Rφφ = sin2 θ
{

1 + e−2β
[
r(∂rβ − ∂rα) − 1

]}
, (15)

and the scalar curvature as well

R = −2e−2β
[
∂2

rα− ∂rα∂rβ + (∂rα)2 + 2
r

(∂rα− ∂rβ) + 1
r2 (1 − e2β)

]
. (16)

First of all, the restriction Rtr = 0 leads directly to the function β being dependent only on
the spatial coordinate

∂tβ = 0, β(t, r) = β(r). (17)

Then if we take the partial derivative with respect to time t on the equation Rθθ = Λgθθ = Λr2,
we immediately get

∂t∂rα = 0, α(t, r) = αt(t) + αr(r). (18)

Combining the conditions in eqs. (17) and (18), we find that the line element eq. (8) could be
further simplified through defining a new time coordinate t̃ with dt̃ = αt(t)dt. Or in another
way, we are therefore able to find a time coordinate t̃ for which α̃(t̃, r) = αr(r). Now that we
have proven that the line element of eq. (4) can always be expressed in a static form, i.e. a
form not dependent on the time coordinate, in the following discussions we will use the static
line element as a starting point. We could then find the exact forms of the functions α(r) and
β(r) by imposing the rest of the restrictions from the Einstein field equations.
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We could notice that according to eq. (10), each of Rtt and Rrr doesn’t vanish individu-
ally, but a combination of both vanishes just like the case in the Birkhoff’s theorem of the
Schwarzschild spacetime.

0 =
(
e−2α+2βgtt + grr

)
Λ = e−2α+2βRtt +Rrr = 2

r
(∂rα + ∂rβ). (19)

This will require the sum of the two functions α(r) + β(r) to be a constant. Such a constant
could be eliminated by changing the time coordinate t → t′ = ect, where c is a specific constant
chosen to vanish the sum of α(r) + β(r). Therefore, we could safely impose

α(r) = −β(r). (20)

We only need to set the following to obtain a generic line element eq. (1) for spherically
symmetric spacetimes.

α(r) = 1
2

ln f(r). (21)

Both the restrictions on Rθθ and Rφφ requires the same thing, which reads with eq. (20)

e2α (2r∂rα + 1) = 1 − Λr2. (22)

Noting that the LHS of the above equation equals ∂r(re2α), the equation finally solves with

e2α = 1 − r0

r
− Λ

3
r2, (23)

where r0 is the constant of integration that we recognize as the Schwarzschild radius under
the trivial condition of a zero cosmological constant. It is easy to check the rest of conditions
eq. (11) is also satisfied (in fact it is equivalent to taking the derivative of eq. (22)). Therefore,
we have finally derived the line element eq. (1) as a solution of the Einstein field equations
with a non-zero cosmological constant.

2.2 Geometry of the Schwarzschild-de Sitter spacetime
As an alternative way of describing the the function f(r) in eq. (1), we could instead use the
two real and positive roots of f(r), which helps us to track the geometry of the spacetime more
conveniently in most cases. Specifically, the metric function reads

f(r) = 1 − 2M
r

− Λ
3
r2

= −Λ
3
r2
(

1 − rH

r

)(
1 − rΛ

r

)(
1 − ro

r

)
.

(24)

with the two positive roots rΛ ≥ rH ≥ 0 representing the cosmological horizon and the black
hole horizon respectively, and ro = −(rH + rΛ) the third and negative root of f(r). It is also
convenient to define the tortoise coordinate r∗(r) via dr∗/dr = 1/f(r), which integrates to

r∗ = 3rH

Λ(rΛ − rH)(rH − ro)
ln
∣∣∣∣1 − rH

r

∣∣∣∣
+ 3rΛ

Λ(rH − rΛ)(rΛ − ro)
ln
∣∣∣∣1 − rΛ

r

∣∣∣∣
+ 3rΛ

Λ(rH − ro)(ro − rΛ)
ln
∣∣∣∣1 − ro

r

∣∣∣∣ . (25)
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By comparing the coefficients of each term in eq. (24), one directly derives the relation
between the parameters Λ and M and the horizons via

Λ = 3
r2

H + rHrΛ + r2
Λ
, (26)

M = rHrΛ (rH + rΛ)
2 (r2

H + rHrΛ + r2
Λ)
. (27)

Alternatively, Cardano’s formular for a cubic equation gives for ϕ = arccos(3M
√

Λ)

rH = 1√
Λ

(
cos

(
ϕ

3

)
−

√
3 sin

(
ϕ

3

))
, (28)

rΛ = 1√
Λ

(
cos

(
ϕ

3

)
+

√
3 sin

(
ϕ

3

))
. (29)

It is evident that the horizons’ coordinate location changes with respect to the parameters M
and Λ, i.e., rh(M,Λ) and rΛ(M,Λ). As expected, eqs. (28) and (29) yields

lim
Λ→0+

rH(M,Λ) = 2M, lim
Λ→0+

rΛ(M,Λ) = +∞, (30)

lim
M→0

rH(M,Λ) = 0, lim
M→0

rΛ(M,Λ) =
√

3
Λ
, (31)

which corresponds to the respective limits to Schwarzschild spacetime and de Sitter spacetime.
From the two characteristic length scales provided by the horizons, in this work we introduce

a description of SdS geometry by an one-parameter family of solution via the dimensionless
variable

η = rH

rΛ
. (32)

Even though η ∈ [0, 1], there are actually three different limits of the spacetime to be considered
for a geometrical completeness. The limit η → 0 corresponds either to the Schwarzschild limit
via eqs. (30) or de Sitter limit via eqs. (31). Moreover, the Nariai solution arises in the extremal
limit η → 1 if we choose the typical length scales to study the near horizon regions. Under
such limit, the black hole singularity goes to infinity and the surface areas of both horizons are
the same.

3 Black Hole Perturbation Theory
Given the metric of the SdS spacetime, we would like to investigate the perturbations of such
spacetime to study the stability of the gravitational system and analyze the gravitational waves
that propagate through the spacetime. Such analysis is performed within the framework of
linearized gravitational perturbations of spherically symmetric black hole spacetimes [9] and
analysis tools of the quasinormal modes (QNMs).

In a general form, we are trying to address a spacetime with the metric gµν and matter
fields cumulatively noted as Φ. The Einstein-Hilbert action of such system reads

S =
∫
d4x

√
−g

{ 1
16π

(R − 2Λ) + LM

}
, (33)

where LM represents the Lagrangian associated with all matter fields at present. The equations
of motion associated with the action eq. (33) are the Einstein field equations eq. (9) and
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the corresponding equations of motion for all the matter fields with a possible coupling with
spacetime curvature.

For perturbations on the background spacetime, we can write the fields as

gµν = gBG
µν + hµν , Φ = ΦBG + Ψ, (34)

where the superscript “BG” represents the fields of the background spacetime. Assuming small
enough perturbations, we can linearize the system with respect to the perturbation fields hµν

and Ψ to get the equations of motion for these fields.
In this work we will focus on the study case of scalar field perturbations, whose Lagrangian

reads
Lscalar = −(∂µΦ)† ∂µΦ − ξRΦ†Φ −m2 Φ†Φ, (35)

where ξ is the curvature coupling constant and m is the mass of the scalar field. The equations
of motion for the scalar field read(

∇µ∇µ − ξR −m2
)

Φ = 0, (36)

and together with the Einstein field equations eq. (9) form a full set of equations of motion for
such a system. With the perturbations gµν = gBG

µν + hµν and Φ = ΦBG + Ψ where ΦBG = 0, we
find that the background gBG simply needs to satisfy the vacuum Einstein field equations

RBG
µν − 1

2
RBGgBG

µν + ΛgBG
µν = 0, (37)

while the linearized equations of motion for hµν and Ψ decouple. Assuming a massless scalar
field m = 0 and a vanishing curvature coupling ξ = 0, the equation of motion for the scalar
field will read

1√
−gBG

∂µ

(√
−gBG g

µν
BG ∂νΨ

)
= 0. (38)

For a background of spherically symmetric black hole spacetime, the second order partial
derivative equation eq. (38) in terms of (t, r, θ, φ) could be separated with a decomposition
with spherical harmonics and a Fourier transformation on the time coordinate t

Ψ(t, r, θ, φ) =
∑
ℓ,m

Ψℓm(t, r)
r

Yℓm(θ, φ), (39)

Ψℓm(t, r) =
∫
dω e−iωtψℓmω(r). (40)

Therefore, by plugging eq. (39) into eq. (38) in our case of a spherically symmetric spacetime
eq. (1), it will lead to the Schrödinger-like equation

d2

dr2
∗
ψℓmω −

(
Vℓ − ω2

)
ψℓmω = 0, (41)

with the effective potential

Vℓ(r) = f(r)
(
ℓ(ℓ+ 1)
r2 + f ′(r)

r

)
. (42)
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3.1 Quasinormal modes
Quasinormal modes of black holes are eigensolutions of eq. (41) which satisfy certain boundary
conditions at the black hole event horizon (r∗ → −∞) and the asymptotic region (r∗ → +∞)
[9, 8, 7]. The latter boundary can be varying for different cases, for example at spatial infinity
for asymptotically flat spacetimes or at the cosmological horizon in our case of SdS spacetime.
General quasinormal modes describe a perturbed system with a dissipating total energy. For
perturbations of black hole spacetimes, that will correspond to ingoing waves at the black hole
horizon and outgoing waves in the asymptotic region.

Since the effective potential vanishes at both horizons (r∗ → ±∞) according to eq. (42) in
SdS spacetime, the solutions of eq. (41) approximate to

ψℓmω(r) ∼ e±iωr∗ or Ψℓm(t, r) ∼ e−iω(t∓r∗). (43)

Combining this with the physical condition of the direction of energy flows, we will get

ψℓmω(r) ∼ e+iωr∗ , Ψℓm(t, r) ∼ e−iω(t−r∗) , (pure outgoing waves), for r∗ → +∞,

ψℓmω(r) ∼ e−iωr∗ , Ψℓm(t, r) ∼ e−iω(t+r∗) , (pure ingoing waves), for r∗ → −∞.
(44)

The above conditions in eq. (44) ensure that energy flows into the black hole at rH and out
across the cosmological horizon rΛ. By applying the boundary conditions, the eigensolutions
of eq. (41) are found with a discrete set of QNM frequencies ωn. The imaginary part of the
QNM frequency determines how fast the perturbation field is damped and has to be negative
in order for the solution to be dynamically stable. However, the boundary conditions eq. (44)
on ψℓmω(r) also imply that it would grow exponentially to infinity at r∗ → ±∞. This problem
is caused by the singular properties of the Schwarzschild-like coordinates, about which we will
discuss in details later in sec. 4. 1

In the next section we discuss the SdS spacetime from the perspective of the hyperboloidal
framework. Not only does this strategy provides a natural geometrical approach to incorporate
the boundary conditions eq. (44), but the hyperboloidal framework also offers a clean route to
describe the three spacetime limits similar to the geometrical prescription by Geroch [30], as
discussed in sec. 4 and sec. 5.

4 Hyperboloidal Framework
The traditional approach to solve the quasinormal modes is performed in the coordinate system
of (t, r∗, θ, φ). In such a coordinate system, problem arises when we try to impose the boundary
condition at r∗ → ±∞ due to the singularities of the coordinate system that infinite constant t
surfaces accumulate at the spatial infinity i0 and the bifurcation sphere B. The hyperboloidal
coordinate system is free from such coordinate singularity since the hyperboloidal constant
time surface will penetrate smoothly into the horizons, as later shown in Fig. 1. From a
numerical perspective it is also some extra trouble to deal with the infinite domain r∗ ∈
(−∞,∞). The problems are rooted in the choice of the coordinate system we’re using, and
thus the hyperboloidal coordinate system gained attention over the past decades for its robust
geometrical approach to deal with black hole QNM problems. The hyperboloidal framework not
only serves as a powerful tool for rigorous mathematical analysis for black hole perturbation,
a systematic and robust way of controlling spacetime limits, but also a suitable basis for high
efficiency and high accuracy numerical calculations on QNM solutions.

1From now on, we will omit the ℓmω index for the radial wave function ψ for simplicity.
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A generic transformation into hyperboloidal coordinates (τ, σ, θ, φ) [24], in the notation
introduce in ref. [25] reads

t = λ
(
τ −H(σ)

)
, r = λ

ρ(σ)
σ

, (45)

with λ a typical length scale of the spacetime to be fixed according to the particular spacetime
limit under consideration. The height functionH(σ) and radial function ρ(σ) represents degrees
of freedom fixing the hyperboloidal slice τ = constant, and the radial compactification. The
radial compactification can also be represented in terms of the dimensionless tortoise coordinate

x(σ) = r∗(r(σ))
λ

. (46)

From eq. (25), we observe that the dimensionless tortoise coordinate assumes the form [25]

x(σ) = xH(σ) + xΛ(σ) + xo(σ), (47)

with the functions xH(σ) and xΛ(σ) singular at the black-hole σH and cosmological σΛ horizons,
respectively. The function xo(σ), on the other hand, is regular in the entire radial domain.

Under the transformation eq. (45), the line element eq. (1) conformally re-scales as

ds̄2 = σ2ds2

= λ2β(σ)
(

− p(σ)dτ 2 + 2γ(σ) + w(σ)dσ2
)

+λ2ρ(σ)2dϖ2, (48)

with the hyperboloidal metric functions given by [25]

β(σ) = ρ(σ) + σρ′(σ), p(σ) = − 1
x′(σ)

(49)

γ = p(σ)H ′(σ), w(σ) = 1 − γ(σ)2

p(σ)
. (50)

The conformal re-scalling in eq. (48) differs slightly from the one suggested in ref. [25]. Here,
we explicitly retain the length scale λ in eq. (48), keeping the conformal line element a quantity
with dimension [ds2] = (Length)2. This choice will play an important role when studying the
extremal limit η → 1 in sec. 5.3.

To fix the hyperboloidal degrees of freedom, we restrict ourselves to the minimal gauge
class [25].

4.1 The minimal gauge
The minimal gauge [25] fixes the radial transformation by imposing β(σ) = constant, which
implies

ρ(σ) = ρ0 + ρ1σ. (51)

The free parameters ρ0 and ρ1 are useful to map specific spacetime hypersurfaces into surfaces
at a fixed σ value. Such a freedom provides us with the necessary elements to study the two
possible limits η → 0, and the extremal limit η → 1.

More specifically, there are four spacetime surfaces of particular importance: the singularity
r = 0, horizons r = rH and rΛ, and the asymptotic region r → ∞. Eq. (45) maps them
from the set {0, rH , rΛ,∞} into {σsing, σH , σΛ, 0}. Recall that in the original Schwarzschild
coordinates, the horizons rH(M,Λ) and rΛ(M,Λ) coordinate locations depend parametrically
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on the mass and cosmological constant, whereas the singularity and the asymptotic region are
fixed, respectively, at r = 0 and r → ∞, regardless of M and Λ.

In the hyperboloidal coordinates, the asymptotic region is, by construction, fixed at a
coordinate (σ = 0), completely independent from the choice of M and Λ. However, the
parameters ρ0 and ρ1 offer a freedom to place two of the remaining relevant surfaces at fixed
values. As detailed in sec. 5, this freedom is essential to ensure the correct spacetime limits as
η → 0 or η → 1.

To fix the height function in eq. (45), we recall that as σ → σH , the hyperboloidal hy-
persurface τ =constant must behave as the ingoing null coordinate τ ∼ v = t + r∗, whereas
for σ → σΛ, the surface must behave as the outgoing null coordinate τ ∼ u = t − r∗. A
straightforward way to ensure this properties is by reverting the sign of xΛ(σ) in eq. (47),
i.e H(x) = xH(σ) − xΛ(σ) + xo(σ). This line of reasoning is in accordance with the in-out
strategy [25] and it fixes a hyperboloidal coordinate system for η ̸= 0.

As we will show, however, this strategy does not yield a well-define limit to the Schwarzschild
geometry as η → 0. Instead, one needs to resort to the out-in strategy [25]. In practical terms,
this approach amounts to also reverting the sign of the regular term xo(σ) in eq. (47), i.e., the
height function is given by

H(σ) = xH(σ) − xΛ(σ) − xo(σ). (52)

With the expressions eq. (51) and eq. (52) fixing the the hyperboloidal transformation
eq. (45) in the minimal gauge, one can study the limits of the SdS geometry with respect to
the parameter η.

The only remaining parameter in eq. (45) is the typical length scale λ, which can be as-
sociated either with the horizon or the cosmological length rH or rΛ, respectively. Thus, the
choice of λ plays an important role in the limiting process, as well. In particular, fixing the
unit of length also affects how dimension observables, such as the QNM frequencies ωn, scale.

4.2 Solving the Quasinormal modes
Since the time slices τ = constant penetrate the black hole and cosmological horizons, the
boundary conditions eq. (44) are automatically satisfied. Indeed, as a direct consequence of
the coordinate transformation eq. (45) the scalar field ψℓ(r) transforms as2

ψℓ(r) = Z(σ)ψ̄ℓ(σ), Z(σ) = esH(σ), (53)

with Z(σ) responsible for ensuring eq. (44) [24, 25]. In terms of the field ψ̄ℓ(σ), eq. (41) is
re-expressed in terms of the eigenvalue problem L [34](

0 1
w−1L1 w−1L2

)(
ψ̄

ζ̄

)
= s

(
ψ̄

ζ̄

)
, (54)

with the operators

L1 = d

dσ

(
p(σ) d

dσ

)
− V̄ℓ(σ), (55)

L2 = 2γ(σ) d
dσ

+ γ′(σ), (56)

(57)
2The relation r(σ) is assumed in eqs. (53) and (58).
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and the re-scaled potential V̄ℓ given by

V̄ℓ(σ) = λ2

p(σ)
Vℓ(r). (58)

The dimensionless frequency s is fixed by the length scale λ via

λω = is. (59)

As already mentioned, fixing λ with respect to the black hole or cosmological horizon scales
will impact how the QNMs behave in the limiting process η → 0 or η → 1.

5 Spacetime Limits
We will now demonstrate how the hyperboloidal framework provides a clean geometrical strat-
egy to study the limits of the SdS spacetime akin to the rigorous approach by Geroch [30]. In
particular, we explore the freedom in eq. (51) given by the parameters ρ0 and ρ1 to fix relevant
spacetime surfaces at constant coordinate values. Then we will be able to get a natural descrip-
tion of all limits of the SdS spacetime within our geometrical framework, as is demonstrated
in Fig. 1.

5.1 The Schwarzschild scenario
In the Schwarzschild scenario, the parameter η is understood as a small deviation from the
Schwarzschild geometry. Therefore, the characteristic length scale of the space time is given
by λ = rH . Moreover, to recover the Schwarzschild geometry as η → 0, one must ensure that
the black hole horizon is at a fixed surface σH , independent of κ.

The most simple choice is to fix the horizon surface at σH = 1, achieved trivially by a the
radial transformation eq. (51) with parameters

(ρ0, ρ1) = (1, 0) ⇒ r = rH

σ
. (60)

Eq. (60) maps the singularity r = 0 to σsing → ∞, whereas the cosmological horizon’s depends
on the spacetime parameter η directly via σΛ = η. Therefore, the limit η → 0 corresponds
to having the cosmological horizon degenerating into future null infinity as σΛ → 0. The top
panel of Fig. 1 shows the Penrose diagram illustrating such a process.

This limit corresponds to a discontinuous change in the topology of future null infinity.
While the surface σ = 0 is spacelike for η ̸= 0, it becomes null when η = 0.

Despite the topology change, the dimensionless tortoise function has a well defined limit as
η → 0. With the radial compactification eq. (60), the terms in eq. (47) read

xH(σ) = (1 + η + η2)
(1 − η) (2η + 1)

ln |1 − σ| , (61)

xΛ(σ) = − (1 + η + η2)
η (1 − η) (2 + η)

ln
∣∣∣∣∣ση − 1

∣∣∣∣∣ , (62)

xo(σ) = (1 + η + η2) (1 + η)
η(2η + 1)(η + 2)

ln
∣∣∣∣∣1 + σ

1 + η

η

∣∣∣∣∣ . (63)
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Figure 1: Penrose Diagrams for the Schwarzschild-de Sitter spacetime and their respective
limits achieved within the hyperboloidal framework. Solid points represent surfaces with a
fixed coordinate value, whereas surfaces with an empty dot move freely in the grid. In all case,
I + is fixed at a coordinate location σ = 0. Top Panel - The Schwarzschild scenario. The
black hole horizon fixes the spacetime length scale λ = rH . The event horizon H+ and the
singularity are fixed, but the cosmological horizon is free. The corresponding limit η → 0 is the
Schwarzschild space time, where the cosmological horizon degenerates into I +. Middle Panel
- The de Sitter scenario. The cosmological horizon fixes the spacetime length scale λ = rΛ.
The cosmological horizon H+ and the singularity are fixed, but the event horizon is free. The
corresponding limit η → 0 is the de Sitter space time, where the event horizon tends to the
surface r = 0. Bottom Panel - The Nariai scenario. The cosmological and event horizons H+

are fixed, but the singularity is moves freely. The spacetime length scale incorporates a singular
behaviour λ = rH/(1 − η), but the corresponding limit η → 1 is finite into the de Nariai space
time.
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The function xH(σ) is well behaved at η = 0. Even though the functions xΛ(σ) and xo(σ)
individually diverge as η → 0, these divergences have exactly opposite signs, i.e.

xΛ(σ) = − 1
2η

ln
(
σ

η

)
+ O(η0), (64)

xo(σ) = 1
2η

(
σ

η

)
+ O(η0). (65)

Therefore the contribution from the sum xΛ(σ) + xo(σ) is regular as η → 0 and one recovers
the Schwarzschild expression for the tortoise coordinate [25]

lim
η→0

x(σ) = 1
σ

− ln(σ) + ln(1 − σ). (66)

The regularity of the combination xΛ(σ)+xo(σ) plays a fundamental role when taking the limit
η → 0 within the hyperboloidal coordinate system. The height function defined in eq. (52) via
the out-in strategy has precisely a factor −xΛ(σ)−xo(σ), which ensures a regular Schwarzschild
limit into the expected minimal gauge expression in the Schwarzschild spacetime [25]

lim
η→0

H(σ) = − 1
σ

+ ln(σ) + ln(1 − σ). (67)

However, hyperboloidal foliations may arise from different choices of height functions H(σ),
some of which with a ill-defined limit η → 0. Indeed, as mentioned in sec. 4, the in-out strategy
does provide a functioning hyperboloidal coordinate system when η ̸= 0, but the combination
−xΛ(σ) + xo(σ) ∼ η−1 in the height function has a singular limit η → 0.

Eqs. (61) – (63) provides all the necessary ingredients to formulate the QNM eingenvalue
problem (54). With xH(σ), xΛ(σ) and xo(σ) one constructs x(σ) and H(σ) in eqs. (47) and
(52). From these quantities, the line elements eqs. (49) and (50), as well as the re-scaled
potential eq. (58) building up the operator in eq. (54) follow directly. Having fixed the reference
length scale to the horizon’s size λ = rh, the resulting QNM frequencies eq. (59) associated
with the configuration appropriated to the Schwarzschild limit are expressed in terms of the
dimensionless values

ωSch = rHω. (68)

5.2 The de Sitter scenario
To study the de Sitter scenario, the cosmological horizon is the natural characteristic spacetime
length scale λ = rΛ. Since the parameter η is understood as a small deviation from the de Sitter
geometry, one must ensure that the cosmological horizon is fixed at surface σΛ, independent of
κ.

Similar to the previous section, a simple choice is to fix σΛ = 1, which could be easily
achieved by a transformation r = rΛ/σ. As before, this choice pushes the coordinate location
of the surface r = 0 into σsing → ∞. Apart from that, it also maps the black-hole horizon
into the surface σh = η−1, which make σH divergent in the limit η → 0. Such a divergence is
consistent with our expectations. For η ̸= 0, r = 0 is a spacelike hypersurface corresponding
to the BH singularity. As η → 0, the black-hole horizon degenerates into the singularity r = 0
(σsing → ∞), and the surface r = 0 changes topology, becoming a regular timelike hypersurface,
representing the origin of the coordinate system.

However, this radial compactification is not optimal for numerical studies, where the nu-
merical domain is defined in the exterior BH region σ ∈ [σΛ, σh]. As η → 0, the domain
stretches out with σh assuming very high values.

16



To solve this issue, we use the freedom in eq. (51) to map the singularity r = 0 into a fixed,
but finite coordinate value 1 < σsing < ∞. By imposing r(σsing) = 0 and r(1) = rΛ into the
radial eqs. (45) and (51), one obtains

(ρ0, ρ1) =
(

σsing

σsing − 1
,

−1
σsing − 1

)
⇒ r = rΛ

σ

σsing − σ

σsing − 1
. (69)

In this way, the coordinate location of the event horizon becomes

σH = σsing

1 + η(σsing − 1)
, (70)

and as expected, 1 < σH = σsing < ∞ when η = 0. The process is demonstrated in the middle
panel of Fig. 1.

With eq. (69) substituted into eq. (28) on reads the individual terms of the dimensionless
tortoise coordinate

xH(σ) = η (1 + η + η2)
(1 + 2η)(1 − η)

ln
∣∣∣∣∣1 − ησ

σsing − 1
σsing − σ

∣∣∣∣∣ , (71)

xΛ(σ) = − (1 + η + η2)
(η + 2)(1 − η)

ln
∣∣∣∣∣1 − σ

σsing − 1
σsing − σ

∣∣∣∣∣ , (72)

xo(σ) = (1 + η)(1 + η + η2)
(2 + η)(1 + 2η)

× ln
∣∣∣∣∣1 + (1 + η)σ σsing − 1

σsing − σ

∣∣∣∣∣ . (73)

All these terns have a well-defined limit η → 0, in particular with xH(σ) → 0. Thus, the
dimensionless tortoise coordinate and the height function in the de Sitter spacetime becomes

lim
η→0

x(σ) = − lim
η→0

H(σ) = 1
2

ln
∣∣∣∣∣σsing + σ (σsing − 2)

σsing(σ − 1)

∣∣∣∣∣ . (74)

Without loss of generality we fix the parameter σsing = 2, which simplifies the above a results.
Eq. (74) shows that at η = 0, the height function coincides with the tortoise function up to

an overall minus sign. This result implies that the time hypersurfaces τ =constant becomes an
outgoing null coordinate as η → 0, when the hyperboloidal coordinate is constructed within
the out-in minimal gauge strategy according to eq. (52).

As in the previous section, eqs. (71) – (73) provide all the elements to formulate the QNM
eingenvalue problem (54). However, the setup appropriated to the dS limit has λ = rΛ as the
reference length scale, so the resulting dimensionless QNM frequencies (59) are

ωdS = rΛω

= η−1ωSch. (75)

5.3 The Nariai scenario
Neither of the previous configurations is appropriate to study the extremal limit η → 1. In
both cases, eqs. (61) – (63) or eqs. (71) – (73) yield a line element (48) behaving as

ḡτσ ∼ (1 − η)−1 , ḡσσ ∼ (1 − η)−2 . (76)

This result is not surprising, as it reflect the degeneracy of the horizon coordinate values
rH = rΛ = rext with

rext = 3M =
√

Λ−1. (77)
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In the Schwarzschild scenario, the coordinate value for the cosmological horizon σΛ(η) depends
explicitly on the parameter η, with the two surfaces degenerating in the limit η → 1, i.e.,
σΛ(1) = σh = 1. The same occurs in the de Sitter scenario, now with the black hole coordinate
value σh(η) having the explicit η dependence. The limiting process shows the same degeneracy
σh(1) = σΛ = 1.

To properly obtain the spacetime in the extremal limit η → 1, one must map the two hori-
zons rH and rΛ into two distinct hypersurfaces σh ̸= σΛ, fixed at coordinate values independent
of the parameter η. Without loss of generality, we can keep the event horizon at σh = 1, and
fix the cosmological horizon at the value σΛ = 1/2. By imposing r(1) = rH and r(1/2) = rΛ
for η ̸= 1 into the radial eqs. (45) and (51), we obtain

(ρ0, ρ1) =
(
rH(1 − η)

λη
,−rH(1 − 2η)

λη

)
, (78)

r =
rH

(
(1 − σ) − η(1 − 2σ)

)
ησ

. (79)

In the limit η → 1, the above transformation is actually singular since eq. (79) reduces to
r(σ) = rH . This behaviour is well-known, and typical for obtaining the near-horizon geometry
of extremal black holes [35]. A regular spacetime arises once one combines the singular radial
transformation (79) with a singular map in the time coordinate t → t/(1 − η). As we will
show, the characteristic length scale λ will incorporate the troublesome factor (1 − η). Indeed,
eq. (79) determines the individual terms of the dimensionless tortoise coordinate

xH(σ) = rH (1 + η + η2)
λ(1 + 2η)(1 − η)

ln |1 − σ| , (80)

xΛ(σ) = − rH (1 + η + η2)
λη(2 + η)(1 − η)

ln |2σ − 1| , (81)

xo(σ) = rH(1 + η) (1 + η + η2)
λη(1 + 2η)(2 + η)

ln
∣∣∣∣∣1 + 3ησ

1 − η

∣∣∣∣∣ . (82)

As a consequence, the dimensionless tortoise coordinate and height function behave as

x = rH

λ(1 − η)

(
ln
∣∣∣∣2σ − 1

1 − σ

∣∣∣∣+ O(1 − η)
)
, (83)

H = rH

λ(1 − η)

(
ln |(2σ − 1)(1 − σ)| + O(1 − η)

)
. (84)

To ensure a well-behaved limit η → 1, one must set the characteristic length scale to

λ = rH

1 − η
. (85)

A similar argument follow from the line element (48), as its components behave as

ḡττ = −λ2(1 − η)2
(

(1 − σ)(2σ − 1) + O(1 − η)
)
, (86)

ḡτσ = λrH(1 − η)
(

(3 − 4σ)
)
, (87)

ḡσσ = 8r2
H + O(1 − η). (88)
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With eq. (85), the limit η → 1 yields the dimensionless physical metric for the Nariai spacetime
in hyperboloidal coordinates, if we recognize the black hole horizon rH as the Nariai horizon
rE,

ds2

r2
E

= −(1 − σ)(2σ − 1)
σ2 dτ 2 (89)

+2(3 − 4σ)
σ2 dσdτ + 8

σ2dσ
2 + dϖ2,

The limiting strategy outlined so far provides all the necessary tools to calculate QNMs as the
eigenvalue problem eq. (54) up to η = 1. However, the choice for a characteristic length scale
as eq. (85) implies that the dimensionless QNM frequencies in extremal limiting scenario scale
as

ωExtLimit = rHω

1 − η

= ωSch

1 − η
(90)

compared to the frequencies with respect to SdS time.
To verify that Eq. (89) indeed corresponds to the Nariai spacetime, we considers the Nariai

line element in its tradional form

ds2
N = −r2

E − r2
N

r2
E

dt2N + r2
E

(r2
E − r2

N)
dr2

N + r2
Edϖ

2. (91)

Then, the hyperboloidal transformation could be found by our strategy introduced in sec. 4.1,
when we map the horizons {rE,−rE} into {1/2, 1}. With the characteristic length scale λ =
rE/2, the coordinate transformation reads

tN
rE

= 1
2

(τ − h(σ)) , h(σ) = ln(1 − σ) + ln
(
σ − 1

2

)
,

rN

rE

= 2
σ

− 3, (92)

which indeed transforms the line element eq. (91) into eq. (89). The bottom panel of Fig. 1
illustrates this limiting process from SdS spacetime to Nariai spacetime. In this context, the
extremal limit frequencies will be related to the Nariai frequencies ωN in traditional form as

ωExtLimit = rE

2
ωN (93)

with our length scale λ = rE/2.
The QNM problem of the aforementioned spacetimes in this subsection is solved analyti-

cally, by dealing with the PDE of the scalar field Ψ(x) in the time domain. The scalar field’s
wave equation is determined by the Klein-Gordon equation □Ψ = 0, or a more detailed form
which is useful in our calculations

1√
−g

∂µ

(√
−ggµν∂νΨ

)
= 0. (94)

The line element in the form of eq. (91) would then yield the wave equation(1 − r2
N

r2
E

) ∂

∂(rN/rE)

[
(1 − r2

N

r2
E

) ∂

∂(rN/rE)

]

− ∂2

∂(tN/rE)2 − l(l + 1)(1 − r2
N

r2
E

)

Ψℓ = 0 (95)
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with a standard separation of variables in terms of the spherical harmonics Ψ(tN , rN , θ, φ) =
Ψℓ(tN , rN)Yℓm(θ, φ).

One could easily transform eq. (95) into the Pöschl-Teller form in ref. [36] through the
dimensionless tortoise coordinates,

T̃ = tN
rE

, X̃ = tanh−1(rN

rE

). (96)

The wave equation will then read(
∂2

∂T̃ 2
− ∂2

∂X̃2
+ U0

cosh2 X̃

)
Ψℓ(T̃ , X̃) = 0, (97)

where we have the Pöschl-Teller potential with U0 = l(l + 1), and Ψℓ(T̃ , X̃) is the coefficients
when Ψ(tN , rN , θ, φ) is decomposited with spherical harmonics Yℓm(θ, φ).

To find the analytical solution of eq. (97), we follow the strategy in ref. [34] with a coordinate
transformation

T = T̃ + 1
2

ln(1 − tanh(X̃)2),

X = tanh(X̃). (98)

Then the wave equation will be transformed into a second order linear PDE,(
∂2

T + 2X∂T∂X + ∂T + 2X∂X

− (1 −X2)∂2
X + U0

)
Ψℓ(T,X) = 0. (99)

With a Fourier transformation in T , eq. (99) becomes a second order linear ODE with three
singular points at −1, 1 and ∞. Such equation could be solved analytically with the Gaussian
hypergeometric function as in the works of ref. [34]

Ψℓ(T,X) = 2F1(a, b ; c ; z)eiωP T T , X = 1 − 2z,

a, b = (2iωP T + 1) ± i
√

4U0 − 1
2

, c = 1 + iωP T , (100)

and the Nariai frequencies are therefore determined as

ωN = r−1
E ωPT

= r−1
E

(
±

√
4U0 − 1

2
+ i

(
n+ 1

2

))
(101)

when we force the hypergeometric series to be truncated into a polynomial to meet the regu-
larity conditions of the QNM solutions.

In a straightforward manner, eq. (99) could also be derived if we start from the wave
equation eq. (94) of the SdS extremal spacetime eq. (89)8∂2

τ − (2(3 − 4σ)∂σ − 4)∂τ + (−1 + σ)(−1 + 2σ)∂2
σ

+ (−3 + 4σ)∂σ + l(l + 1)
σ2

Ψℓ(τ, σ) = 0, (102)
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and apply the combined coordinate transformations eq. (92), eq. (96), and eq. (98)

T = 1
2

(τ − 2 log σ + log 8) , X = 2
σ

− 3, (103)

then we will recover the form of eq. (99) as we expected. It is clear in eq. (103) the factor of
1/2 in the time coordinate transformation leads to the same overall factor we observe between
the SdS extremal frequencies and Pöschl-Teller frequencies as in eq. (93) and eq. (101).

6 Spectral Methods
The (pseudo-)spectral methods are a powerful tool in numerical analysis, where we truncate the
infinite series expansion of a function f(x) by N basis functions as a numerical approximation.

f(x) =
N∑

i=0
c

(N)
i ϕi(x) +R(N)(x), (104)

where N is the expansion order, c(N)
i are the spectral coefficients, and R(N)(x) is the residual

term. As per the collocation point method, for a set of discrete grid points ξk where k = 0, . . . N ,
imposing a vanishing residual term leads to

f(ξk) =
N∑

i=0
c

(N)
i ϕi(ξk), or fk =

N∑
i=0

ϕki c
(N)
i . (105)

By inversing the matrix ϕki we could find the spectral coefficients c(N)
i . Therefore we get an

approximation of f(x) of order N by

f̃(x) =
N∑

i=0
c

(N)
i ϕi(x). (106)

To solve the QNM eigenvalue problem (54) we employ a collocation point spectral method
having the Chebyshev polynomials of the first kind as a set of basis approximating the un-
derlying functions. For that purpose, we fix a numerical resolution N and introduce the
Chebyshev-Lobbato grid

χi = cos
(
πi

N

)
, i ∈ {0, 1, . . . , N}. (107)

parametrising the domain χ ∈ [−1, 1], where the Chebyshev polynomials of first kind Tk(χ)
are defined. By imposing that the approximated functions are exactly represented at the grid
points (107) one can represent the derivative operator ∂χ by the differentiation matrix

Dij
χ =



−2N2 + 1
6

, i = j = N

2N2 + 1
6

, i = j = 0

− χj

2(1 − χj)2 , 0 < i = j < N

αi

αj

(−1)i−j

χi − χj

, i ̸= j

, (108)

where

αi =
{

2 , i ∈ {0, N}
1 , i ∈ {1, . . . , N − 1} . (109)
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The hyperboloidal radial coordinates, however, are defined in σ ∈ [σΛ, σH ]. Typically, a
linear map

σ(χ) = σh
1 + χ

2
+ σΛ

1 − χ

2
(110)

σ(χ) from the spectral coordinate χ into σ is employed, but as we will discuss, this choice is
not ideal to explore configuration in the limit η → 0.

Indeed, the functions in the wave equations, such as the conformal potential V̄ℓ, develop
strong gradient around the domain boundaries as η → 0. The left panel of Fig. 2 displays
the conformal potential V̄ℓ with eq. (58) calculated with the Schwarzschild scenario. Since
future null infinity σ = 0 and the cosmological σΛ(η) are close to each other as η → 0,
V̄ℓ develops strong gradients around σ = σΛ. The plot brings examples for the cases η =
1/3, 1/10 and 1/100 where the effect becomes visible. The inset shows the corresponding spec-
tral coefficients obtained when the linear map (110) is employed. One observes a significant
loss of accuracy as η → 0. An accurate numerical result for the QNMs would then require
increasing the numerical truncation parameter N to prohibitive high values. A similar effect
happens also in the de Sitter scenario, as shown in the right panel of Fig. 2. In this case,
however, strong gradients develop around the value σ = σsing (here σsing = 2) because the black
hole horizon σh(η) approaches σsing as η → 0.

Thus, to enhance the numerical solver, we introduce the so-called analytical mesh-refinement
(AnMR), which we discuss in the next section.
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Figure 2: The conformal potential V̄ℓ(σ) develops strong gradients in around the horizons as
η → 0. In the Schwarzschild scenario (left panel), the strong gradient develop around the
cosmological horizon as σΛ approaches future null infinity. In the de Sitter scenario, it develops
around the event horizon as σh approaches the singularity. The inset figures show the rate of
convergence of the corresponding spectral coefficients representing V̄ℓ(σ) without AnMR. As
η → 0, the strong gradient near the horizons yields a loss of accuracy, which forces one to
allocate much more computing power to get a proper accuracy for a QNM solver.

6.1 Analytical Mesh Refinement
Instead of using the linear map (110), we now consider the relation

σ(χ) = σh
1 + x(χ)

2
+ σΛ

1 − x(χ)
2

, (111)
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Figure 3: The optimization of the AnMR parameter κ based on the convergence rate of spectral
coefficients representing the conformal potential V̄ℓ(σ). Both panels illustrate the case for
η = 1/100. Different values of the AnMR parameter κ are tested numerically for the best
accuracy in each case. The numerical test shows the optimized values roughly as κ ≈ 3.0 for
the Schwarzschild scenario (left panel). For the the de Sitter scenario the best value κ ≈ 2.3 is
qualitatively close κ = 3, which allows to assume the generic scaling (113).

with x(χ) the AnMR mapping the interval [−1, 1] into itself via

x = xB

1 − 2 sinh [κ(1 − xBχ)]
sinh(2κ)

, (112)

When κ → 0, one recovers the identity x(χ) = χ. For κ > 0, x(χ) accumulates the grid points
towards the left boundary for xB = −1, or the right boundary for xB = 1.

Fig. 3 brings the spectral coefficients associated with the conformal potential V̄ℓ(σ) for the
Schwarzschild scenario (left panel) and de Sitter scenario (right panel) for η = 1/100. Without
the AnMR (κ = 0), these coefficients are of order ck ∼ 10−6 for a rather high numerical
resolution N = 100. As κ increases and grid points accumulate around the region with steep
gradients, we obtain an enhanced convergence rate up to an optimal value κ∗. For values
κ > κ∗, the convergence rate gets worse. A systematic studied of the parameter κ for the
Schwarzschild scenario yields the relation for the optimal value as

κ∗(η) = 1 − ln η. (113)

In the de Sitter scenario, the optimal parameter κ∗ assumes values slightly bellow the relation
in eq. (113). However, as displayed in the right panel of fig. 3 for η = 1/100, the results arising
from (113) κ = 3 are qualitatively similar to the optimal value κ∗ = 2.3. Hence, one can also
use the model (113) in the de Sitter scenario, and avoid a tedious optimisation procedure for
each individual η.

With the AnMR mappings (111) and (112), one then obtains a discrete representation for
the derivative operator ∂σ via

Dσ =
−−→
J−1 ◦ Dχ,

(−−→
J−1

)
i

= 1
dσ(χi)/dχ

. (114)

with the circle ◦ denoting the Hadamard (element-wise) product. Second order derivates follow
directly from the product between two matrices Dσ. With the discrete representation of the
derivative operators, one can approximate the operators (54), (55) and (56) via matrices. The
QNM then correspond directly to the eigenvalues of the resulting matrix.
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The ultimate test about the use of the AnMR for an efficient calculation of the QNMs is
given by studying their numerical convergence.

7 Results

−2 −1 0 1 2

Re (rHω)

0

1

2

3

4

5

6

Im
(−
r H
ω

)

QNMs for η = 0.1 without AnMR

N = 100

N = 300

−3 −2 −1 0 1 2 3

Re (rHω)

0

1

2

3

4

5

6

Im
(−
r H
ω

)

QNMs with or without AnMR (N = 300)

w/o AnMR

w/ AnMR

Figure 4: Top panel: Light ring and the de Sitter QNM modes resolved without AnMR, under
numerical resolutions of N = 100 (light blue) and N = 300 (dark blue). A “noise brunch"
in a V shape emanates from given critical value at the imaginary axis. Reliable data only
exist under the “noise” branch, which increases with numerical resolution. Bottom panel:
Comparison of QNM values with or without AnMR (red and blue, respectively), for numerical
resolution N = 300. The “noise” branch changes its shape but the offset remains at same
order of magnitudes. The AnMR technique allows us to calculate the light ring modes more
accurately and we also find further values of light ring modes beyond the noise branch. The de
Sitter modes are still valid only below the noise branch, but their evaluation is more precise,
see Fig. 5.

In this section we present the results for the SdS QNMs. We begin by discussing the effects
of the AnMR as an innovative numerical technique to calculate QNMs in extreme limiting
conditions. For that purpose, a systematic convergence analysis is performed. Then, we explore
the QNMs limiting behaviour, with the studies divided into the two families of QNMs: the
light ring (LR) and the de Sitter (dS) modes.

7.1 Convergence tests
The calculated solutions of the eigenvalue problem (54) are shown in Fig. 4, for a configuration
with a moderate value of η = 0.1. The calculated solutions without AnMR are displayed in
the top panel with the numerical resolutions N = 100 (light blue) and N = 300 (dark blue).
In the figure we identify the two families of physical QNMs: the LR and dS modes. Their
values agree with the literature up to a region delimited by spurious data point, which we
dubbed “noise branch”. This noise branch starts at a given critical value at the imaginary axis,
spreading across the complex plane in a sort of V shape, and reliable data only exist under the
“noise” branch. We observe that this critical value increases with the numerical resolution, so
that further physically relevant QNMs are calculated.

When we turn on the AnMR as shown in the bottom panel of Fig. 4, the noise branch
changes slightly the shape, but stays at the same order. However, we also obtain data points
above the noise. In particular, we are able to calculate more physically relevant values for the
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LR modes, while the pure imaginary points above the “noise” branch do not correspond to the
de Sitter modes, as they don’t agree with predictions and they don’t converge with numerical
resolution N .

After such qualitative study, we proceed to a more detailed convergence test of the corre-
sponding numerical values. The internal consistency of our numerical methods are examined
through convergence tests. To see how the numerical results change with numerical resolu-
tion, the maximum resolution that we have is used as a reference Nref . The numerical values
of quasinormal modes ωn (N ; η) computed at different resolutions are compared against the
results of the reference resolution. The numerical error is therefore defined as

εn (N ; η) =
∣∣∣∣∣1 − ωn (N ; η)

ωn (Nref; η)

∣∣∣∣∣ , (115)

where the index n refers to the n-th mode. Then we can depict the numerical error as a function
of resolution. We choose scalar perturbation as an example for the following demonstration,
and the angular mode of the potential is fixed as l = 2. The maximum numerical resolution is
setup as N = 300.

We first focus on the convergence rates of LR modes. The top panel of Fig. 5 shows the
results without the AnMR, where the dot markers represent the fundamental mode n = 0, and
the plus markers represent the first overtone n = 1. The result of η = 0.5 (blue) shows a very
rapid convergence rate, with error dropping ∼ 30 order of magnitude when N goes from 20 to
60. For η = 0.1 (orange) the accuracy is still acceptable, from order ∼ 10−5 to ∼ 10−10, but one
clearly observes how the convergence rate worsens. As η → 0, the convergence rate gets even
worse. Besides, the noise branch starts at very low values around ω ∼ 0, contaminating the
extraction of QNM overtones. Thus, the numerical calculation eventually becomes prohibitive
as it requires rather high numerical resolution N to achieve a moderate accuracy for a meaninful
set of QNMs.

Fig. 5’s middle panel shows the result with the AnMR implemented. The result of η = 0.1
(orange) has a much better convergence rate, going to the order of ∼ 10−30 near N = 60. We
are also able to calculate the results with smaller values of η = 0.01 (green) and η = 0.001
(red) with a decent convergence rate. This allows us to accurately calculate scenarios with
η → 0. We observe the same behaviour for the de Sitter modes, whose results with AnMR are
illustrated in the bottom panel of Fig. 5.

Even though these convergence tests were performed only within the setup adapted to the
Schwarzschild limit, cf. Sec. 5.1, the same conclusions are also valid in the case of the Sitter
scenario. Indeed, for η ̸= 0 the QNMs calculated in either setup are related to each other
only by an overall re-scaling factor as in Eq. (75). Hence, the relative error (115) remains
unchanged.

With the geometry and numerics optimised to study the limiting cases of the SdS spacetime,
we proceed to a comprehensive study of LR and dS modes in the limit η → 0 and η → 1 from
the perspective of QNM spectra instability.

7.2 Limits into Schwarzschild and de Sitter spacetimes
As described in sec. 5, the resulting spacetime in the limit η → 0 depends on how the geometry
is fixed via the hyperboloidal foliation, and it may lead either to the Schwarzschild or de Sitter
spacetimes. The LR modes are characteristic QNMs in the former geometry, whereas the dS
modes characteristic frequencies in the latter. Here, we scrutinise the behaviour of LR and dS
modes in the limit η → 0 as we approach either the Schwarzschild spacetime or the de Sitter
spacetime (sec. 5.1 and sec. 5.2, respectively).
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Figure 5: The convergence tests for QNMs, with dot markers representing the fundamental
mode n = 0, while plus markers the first overtone n = 1. Color codes are kept for each
value of η across panels. Top panel Converge results for light ring modes without AnMR.
Though exponential, the convergence rate reduces significantly for as η → 0 b) Middle panel
shows the same content except that the light ring modes are calculated with AnMR. c) Bottom
panel shows the test results of de Sitter modes with AnMR applied. The AnMR significantly
enhances the numerical convergence of both light ring and de Sitter modes, with particular
relevance for the limit η → 0.

To distinguish the two family of QNMs, each of them studied within the two limiting
scenarios, we employ the following notation, summirised in Table 7.2. As defined in secs. 5.1
and 5.2, upper script text as in ωSch and ωdS referes to the underlying geometrical scenario
the limit is being take, see eq. (68) and (75); lower script text refers to the particular family
of QNMs, either the light ring modes ωLR or the de Sitter modes ωdS.

Table 1: Notation for QNMs values
Schwarzschild Scenario de Sitter Scenario

Light Ring modes ωSch
LR ωdS

LR
de Sitter modes ωSch

dS ωdS
dS

7.2.1 Light ring modes

In the Schwarschild limiting scenario, the light ring modes converge to the corresponding modes
we could find in pure Schwarschild spacetime. This is what we expect as the stability of the light
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ring modes in the sense that a small deviation from Schwarschild spacetime to Schwarschild-de
Sitter spacetime will lead to small deformation of light ring modes.

In Fig. 6 (left panel) we could see the smooth deformation of light ring modes with the
parameter η tracking the geometry of the spacetime. Such deformation is defined as δωn(η) =
|ωn(η) − ωn(0)|

|ωn(0)|
as a function of η, where the QNMs discussed here are ωSch

LR = rHωLR with rH

used as the typical length scale.
As per our numerical results, we find the following linear relation between the deformation

of the light ring modes δωn(η) and the de Sitter parameter Λ to the leading order, as shown in
Fig. 6 (left panel):

δωn(η) ∼ η2 ∼ Λ. (116)
This could be seen as the stability of the light ring family of QNMs under the perturbation of
a small Λ.

According to the relation in eq. (75), the light ring modes calculated in de Sitter limiting
scenario must scale as O (η−1), as shown in Fig. 6 (right panel). In this way, it is a case of
QNM instability where a small deviation from pure de Sitter spacetime introduces a whole new
family of QNMs coming from the infinity.
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Figure 6: Left Panel: Deformation of the light ring modes as a function of η with the typical
length scale rH . Deformations of all different overtones scale roughly as η2, with slightly
different coefficients. The numerical resolution is set up with N = 300 here. Right Panel:
Behaviour of QNMs in the limit η → 0 when calculating either within the Schwarzschild
scenario, or de Sitter scenario according to scaling given by eq. (75). The light ring modes
must diverge as O (η−1) when calculated within the de Sitter scenario as η approaches 0,
because these modes are finite when calculated in the Schwarzschild scenario. In a word, the
light ring modes are stable with η added as a perturbation on Schwarzschild spacetime.

7.2.2 de Sitter modes

In the context of de Sitter limiting scenario, the parameter η represents a small deviation from
the de Sitter geometry. The de Sitter modes are stable in the sense that a small η leads to small
deviation of the de Sitter family of QNMs, see Fig. 7 (left panel). According to the relation
in Eq. (75), the difference in ωSch and ωdS is only a factor of η. Therefore, the dS modes in
Schwarzschild limiting scenario must shrink to ω = 0 as O(η) when η → 0, see Fig. 7 (right
panel).

For η = 0, the pure Schwarzschild spacetime as a geometrical limit of the Schwarschild-de
Sitter spacetime does not have the family of de Sitter modes, instead it has the family of light
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Figure 7: Left Panel: The convergence of de Sitter modes in de Sitter limiting scenario as η → 0.
The y-axis shows the absolute value of de Sitter modes with rΛ as a typical length scale. The
distance between the first overtone and the fundamental frequency is larger, while the distances
between higher overtones show really good consistency. Right Panel: The equivalence of the
left panel in Schwarschild limiting scenario according to the relation in eq. (75). The de Sitter
modes calculated in Schwarzschild limiting scenario ωSch

dS must shrink to 0 as O(η) when η → 0.
Thus, the equivalent values calculated within the de Sitter scenario ωdS

dS remain finite.

ring modes and a branch cut at ω = 0 up across the positive imaginary axes. This well known
behaviour could be interpreted as a case of QNM instability, where a small deviation from pure
Schwarzschild spacetime to Schwarzschild-de Sitter spacetime “breaks” the continuous spectra
represented by the branch cut emerging from ω = 0 along the positive imaginary axis into the
dS modes as described above.

We could approach the instability phenomenon from the other way round. As η → 0, we
could observe an accumulation of the discrete QNMs near ω = 0. Such accumulation could be
quantified with the density of QNMs within a line segment [a, b) along the imaginary axis

d(η; a, b) = Num of QNMs/(b− a). (117)

Since the QNMs are discretely scattered along the imaginary axis, the density will not make
sense if we put the line segment to be infinitely small. Instead, we track the region where
the QNMs are evenly distributed on the imaginary axis. From Fig. 8 we could see that for
any given η, the density of QNMs are consistent in the region of higher overtones. Therefore,
it is natural to trace the density between certain overtone indices ωn=N and ωn=N+M . Since
Num of QNMs = M in the line segment, and

ωn=N(η), ωn=N+M(η) ∼ O(η), (118)

we find that the density associated with the region
[
ωn=N(η), ωn=N+M(η)

)
explodes as η−1.

In the limit η → 0, both ends of the line segment go to the origin ω = 0, therefore we could
expect a infinite density of QNMs at the origin in the limit, as is observed in Fig. 8.

As a conclusion, the numerical results show consistency between the two scenarios in such
sense when η ̸= 0. In the limit η → 0, the results of the two scenarios go to each of the
geometrical limit. The light ring modes in the Schwarzschild scenario ωSch

LR converges as η → 0.
Their limits are the corresponding modes in pure Schwarzschild spacetime. Therefore, the
light ring modes in the de Sitter scenario ωdS

LR must explode as η−1, which is illustrated in
Fig. 6. On the other hand, the de Sitter modes in the de Sitter scenario ωdS

dS also converges
to the corresponding modes in pure de Sitter spacetime when η → 0. Therefore, these modes
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within the Schwarzschild scenario. The accumulation of ωSch
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ωSch
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dS with η as shown in the top panel.

calculated in Schwarzschild scenario ωSch
dS must shrink to 0 as O (η), which is shown in the left

panel of Fig. 8. We could interpret such a behaviour in the sense of the “density” of the QNMs
on the imaginary axis increasing as η → 0. This idea is examined by counting the number
of QNMs within a certain line segment Im(ω) ∈ (0, δω), which is shown in the right panel of
Fig. 8. The numbers of QNMs turned out roughly proportional to δω indicates an overall even
distribution of ωSch

dS , justifying our usage of the term “density”. Therefore we could see the
accumulation of QNMs near the origin ω = 0, i.e. the density of ωSch

dS near the origin ω = 0
increases as O (η−1) when η → 0.

7.3 the extremal limit
As η approaches 1, the choice of the typical length scale rH or rΛ show no difference as
ωSch = ηωdS, η → 1. Instead we need to take into consideration the rescaling of the length
scale λ = rH/ϵ with ϵ = 1−η. The results show that the light ring modes shrink proportionally
(to the leading order) with regard to ϵ = 1 − η while the de Sitter modes shrink to a non-zero
value as ϵ → 0, as illustrated in Fig. 9. Therefore the rescaled frequency ωExtLimit = ωSch/ϵ of
the light ring modes converges but the de Sitter modes diverge to infinity, which recovers the
results of the Nariai scenario as discussed in sec. 5.3. Comparing to the exact solutions provided
by the theoretical analysis, our numerical strategy on this spacetime limit gives out results with
superb accuracy. The fundamental mode is accurate up to 10−155 when the numerical precision
is set to 10−160, while the worse QNM are the higher overtones, where the error of overtone
n = 50 decays to 10−28.

Hence we have our full picture: the Schwarzschild-de Sitter spacetime have three dis-
tinct limits, the Schwarzschild limit, the de Sitter limit, and the Nariai limit. Moving from
Schwarzschild spacetime to SdS spacetime, i.e. η increasing from 0 and rH seen as the typical
length scale, the de Sitter modes emerge from rHω = 0 and take the position of the fundamen-
tal mode by definition, which is known as a type of “QNM instability”. On the other hand,
the light ring modes deviate smoothly from the pure Schwarzschild QNMs. If we instead start
from de Sitter spacetime, i.e. η increasing from 0 and rΛ seen as the typical length scale, the
light ring modes show up from complex infinity, while the de Sitter modes deviate smoothly
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from the pure de Sitter modes. In such a scenario, the fundamental frequency is always the
fundamental de Sitter mode. Nevertheless, the emergence of a new family of QNMs from the
infinity could still be interpreted as a type of “QNM instability”. The last spacetime limit is
the Nariai limit, where η approaches 1 and the typical length scale is rescaled as rH/ϵ. The
light ring modes approaches the QNMs of the Nariai spacetime, which are known related to
the PT potential, while the de Sitter modes diverge to infinity.
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Figure 9: The convergence of |ωdS| as a function of ϵ = 1 − η. Numerical error becomes
prohibitive in extremal regions η ≈ 1, so we use finite numerical results to fit the series
expansion of |ω|(ϵ). A fit in the form |ω| = a0 +a1ϵ+a2ϵ

2 gives a0 ̸= 0 for the de Sitter modes,
specifically a0 = 1.15 for mode n = 0 but the value depends on the overtone. For all the light
ring modes a0 = 0 indicates the linear relation ωLR ∼ O(ϵ).

8 Conclusion
Our work demonstrates a way of interpreting and understanding, from the QNM instabil-
ity perspective, the new family of QNMs in Schwarzschild-de Sitter spacetime compared to
Schwarzschild spacetime.

In our work we find that the perturbations on the background spacetime lead to both smooth
deformations of existing QNMs and also the emergence of a new family of QNMs, the latter
understood as a form of QNM instability. Specifically, in one way we consider the Schwarzschild
scenario, where η the ratio of horizons rH/rΛ is a small perturbation acting on Schwarzschild
spacetime. Then the light ring modes deform continuously and smoothly from their original
values, while a new family of purely imaginary modes emerge from rHω = 0 and destroy the
branch cut. Equivalently if we approach the Schwarzschild limit from Schwarzschild-de Sitter
spacetime, we find an accumulation with infinite density of these modes towards rHω = 0,
which corresponds to the branch cut structure in the limit to Schwarzschild spacetime. In
another way we consider the de Sitter scenario, where η the ratio of horizons rH/rΛ is a small
perturbation acting on de Sitter spacetime. Then the de Sitter modes deform smoothly while
the light ring modes become the “unstable” family emerging from infinity. Finally with the
Nariai scenario, ϵ = 1 − η is a small perturbation acting on Nariai spacetime. In such case the
light ring modes deforms smoothly from the Pöschl-Teller modes, while the de Sitter modes
are the “unstable” family emerging from infinity.

On the technical side, we employs the hyperboloidal framework and the Analytical Mesh
Refinement technique to robustly solve the quasinormal mode problem. The hyperboloidal
framework provides us with the ability to systematically and robustly control the geometries

30



of the background spacetime to each spacetime limit. On top of this fundamental framework,
we utilize the Analytical Mesh Refinement technique to improve our numerical capability of
handling some extremely difficult situations. Together these technologies provide us with a
working method of studying the QNMs under the geometrical limits of Schwarzschild-de Sitter
spacetime.

Given the assumption of an asymptotically de Sitter background spacetime by current
cosmological observations, what we find about the emergence of de Sitter modes under the
Schwarzschild scenario could have implications in the time domain analysis of gravitational
waves. One specific example is that it would affect the late-time tail evolution of gravita-
tional waves, which might be possible for real-world detection. Besides, our robust geometrical
framework to properly address spacetime limits can be extended to deal with complex space-
time solutions with more parameters, for example RN-de Sitter, or even Kerr-de Sitter and
Kerr-Newman-de Sitter. Therefore it is possible for us to see a thorough interpretation of QNM
instability for different QNM families of different background spacetimes.
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