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Abstract

In 1915, Einstein formulated the general theory of relativity, which describes how massive objects

bend and curve the fabric of spacetime. One of the main predictions of general relativity is the existence

of black holes, which are dense regions of spacetime in which not even light can escape. Several detections

and observations confirm the existence of black holes, including the trajectory of stars in the center of

the Milky Way galaxy, the observation by the Event Horizon Telescope, and the direct detection of

gravitational waves released from the merger of binary black holes. Black holes emit gravitational waves

at certain frequencies when perturbed, and we will explore whether those frequencies change depending

on the environment. The results found in this thesis mainly show that the quasinormal modes of the black

hole get redshifted when the black hole is placed at the center of a Hernquist-type density distribution.

Source-driven oscillations also affect the amplitude at which the power-law decay dominates over the

ringdown phase.
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1 Introduction

1.1 The Birth of Gravitational Waves

In the late 17th century, Newton formulated the universal law of gravity. His law was able to describe the

trajectory of apples falling from a tree, and the trajectory of planets and stars in the universe. In Newton’s

formulation, space and time are like a theater stage on which objects like planets and stars move, and

the stage does not affect the objects moving through it. Hence, space and time are static and absolute in

Newton’s formulation.

Later, at the beginning of the 20th century, Albert Einstein formulated the special theory of relativity,

which he discovered by studying Maxwell’s theory of electromagnetism. According to the special theory of

relativity, the speed of light is constant in all inertial frames of reference, and to hold that postulate, Einstein

had to reconsider the common notion of space and time. Speed is distance over time, and if the speed of

light is constant in all internal frames, distance or space and time must adjust to keep the equality true.

Hence, space and time are relative to the observer and not absolute like Newton thought. Einstein not only

changed our perspective of space and time but also joined space and time into one entity called spacetime.

Although special relativity successfully resolved the conflict between Newton’s theory and Maxwell’s

theory, which revolved around the speed of light being constant, it remained in conflict with Newton’s law of

gravitation. According to Newton’s law of gravitation, gravity travels at an infinite speed, however, according

to special relativity nothing can travel faster than light. Also, Newton does not explain how the Sun exerts

the gravitational force on the planets. It took Einstein 10 years to solve this issue, and the solution is known

as the general theory of relativity.

In general relativity, spacetime is relative, and massive objects can warp and curve spacetime. For

example, the Earth follows the warps and curves in spacetime created by the Sun, and if the Sun suddenly

disappears, it would create ripples in the fabric of spacetime which travel at the speed of light, and hence

the Earth will not feel the change in gravity before the light from the Sun has reached it. These ripples in

spacetime are now called gravitational waves (GWs).

1.2 Astrophysical sources of Gravitational Waves

The first prediction of black holes came from a paper Einstein published in 1916, after Karl Schwarzschild

came up with the first exact solution of General Relativity (GR). Schwarzschild’s solution is now known

describe a non-rotating and non-charged black hole, but at that time, the existence of black holes was still

questionable. In electromagnetism, an accelerating charge releases an electromagnetic wave, however, in GR

it is not sufficient for a mass to accelerate to release GWs, but it must also accelerate asymmetrically to

change the curvature of spacetime. More formally, the second derivative of the quadrupole moment must be

non-zero, and the quadrupole moment measures the spherical symmetry of a system, and it is given by

Qij =

∫
ρ(x⃗)

(
xixj −

1

3
δijxkx

k

)
d3x, (1.1)

with ρ being the mass density, xi is the spatial coordinate, and in xkx
k we are summing over the indices

using Einstein summation convention. δij is the Kronecker delta function which is 1 if i = j and 0 if i ̸= j.

The quadrupole moment is zero for a spherically symmetric distribution [1]. The strain or the strength of a
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GW in natural units (G ≡ c ≡ 1) is

h =
2

r

d2Q

dt2
, (1.2)

where r is the distance from the source. The first direct detection of GWs was detected by the LIGO team

in 2015, and the GW signal had a peak strain of 10−21. The signal originated from the merger of two

binary black holes around 1.3 billion light-years away [2], and this was also the first detection of a black hole

merger. The weak strength of GWs make it difficult to detect, but thanks to the advanced sensitivity of the

LIGO interferometer, we can now observe GWs consistently. So far, the LIGO detector (along with the Virgo

detector) has detected over 200 GW signals originating from binary black hole mergers, neutron star mergers,

and black hole and neutron star mergers. Merging binaries fall within LIGO’s frequency sensitivity from 10

Hz to 5000 Hz, yet there are many other astrophysical sources of GWs to which LIGO is not sensitive. For

example, low-frequency GWs from inspiraling super-massive black holes or GWs from the Big Bang. These

low-frequency GWs might be detected through the Cosmic Microwave Background, pulsar timing arrays,

or using future space detectors like LISA. Additionally, there are astrophysical sources like (asymmetric)

supernovae and X-ray bursts which fall into LIGO’s sensitivity but have not been detected yet, and that is

probably due to their weak amplitude or unpredictable waveform.

1.3 The Importance of Gravitational Waves

Before the GW detection in 2015, the universe was being observed through photons, neutrinos, and cosmic

rays (high-energy protons), and so the detection of GWs opened up a new window into looking at the

universe. There some advantages into observing the universe through GWs, for example, unlike photons,

GWs can pass through matter without being scattered, and GW detectors are not affected by weather

conditions, which could obstruct optical telescopes. GWs are usually easier to detect than neutrinos, and

GWs are uncharged thus they do not get deflected by magnetic fields like cosmic rays. There are many

applications to observing GWs, including multi-messenger astronomy and testing GR. GWs are especially

important when studying black holes, because black holes do not emit any light, and so GWs are the ”light”

of black holes. The GW signal from the first detection is shown in fig.1, the first phase of the signal from

time = −0.14 to time = −0.01 consists of the inspiral phase, where the black holes spiral into each other and

then merge. The frequency of the GW depends on the frequency of the orbit of the black holes, and so the

frequency increases until the black holes merge together. At the merger, the maximum amount of energy is

released, and it is when the strain is at its peak. After the merger, the ringdown phase dominates, and it is

where the black hole relaxes and returns to its ground state. Also, the ringdown phase will be the focus of

this thesis. The ringdown is a crucial phase, because according to GR the frequency and the decay rate of

the ringdown is purely determined by the mass and spin of the black hole only, and this provides a perfect

opportunity to test GR and the no-hair theorem, which states that black holes only have three properties,

spin, mass, and electric charge. The ringdown is analogous to the sound heard from a bell after striking it,

and the characteristic frequencies at which the black hole oscillates at correspond to the fading notes heard

from the bell. These characteristic frequencies are called quasinormal modes (QNMs). Thus, the ringdown

consists of different combinations of QNMs. In this thesis, we will explore whether the mass surrounding a

black hole can effect its QNMs.
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Figure 1: This is a plot of the first GW detection. The blue plot is the signal from the LIGO detector in

Livingston, and the grey plot is the predicted waveform used to extract the signal. The time 0 indicates

when there is a maximum correlation between the template and the signal. The ringdown phase dominates

after the peak strain around time = −0.01 [2].

2 Echoes from Black holes

2.1 What is a black hole?

While the philosopher John Michell probably made the first prediction of black holes in the 18th century, the

first prediction of black holes as we understand them today came in 1916, when Karl Schwarzschild solved

the Einstein field equations. The Einstein field equations are a set of 10 independent equations, relating the

curvature of spacetime with the matter or the energy distribution, and it is given by

Rµν − 1

2
Rgµν + Λgµν = 8πTµν , (2.1)

where Rµν is the Ricci tensor, and it is related to the Riemann curvature tensor. It basically describes how

nearby geodesics deviate in a volume of spacetime. gµν is the metric tensor, and it defines how lengths are

measured in a specific geometry, for example, the square of an infinitesimal distance in spacetime is given by

ds2 = gµνdx
µdxν , (2.2)

where ds2 is known as the line element. The metric tensor also defines the dot product between two vectors

xµxµ = gµνx
µxν . (2.3)

The Ricci scalar R is the trace of the Ricci tensor given by

R = gµνRµν , (2.4)

where gµν is the inverse of the metric tensor gµν such that

gµαgαν = δµν , (2.5)
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with δµν being the Kronecker delta function. The Ricci tensor is related to the Riemann curvature tensor

through the inverse metric tensor

Rµν = gαβRαµβν , (2.6)

with Rαµβν being the lower-indexed Riemann curvature tensor, and it is directly related to the deviation of

geodesics. The Riemann curvature tensor Rµ
ναβ = gµσRσναβ is given by

Rµ
ναβ = ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

ραΓ
ρ
νβ − Γµ

ρβΓ
ρ
να (2.7)

with

∂α =
∂

∂xα
, (2.8)

and Γµ
να is the Christoffel symbol given by

Γµ
να =

1

2
gµβ

(
∂gνβ
∂xα

+
∂gαβ
∂xν

− ∂gνα
∂xβ

)
, (2.9)

hence in essence the metric tensor is the most important quantity, since the L.H.S. of eq.(2.1) can be rewritten

in terms of the metric tensor only.

The cosmological constant Λ was not included in the first publication of GR by Einstein. However, it was

later introduced by Einstein to counteract the pull of gravity, because according to GR the universe should

collapse because of the attractive force of gravity, but scientists back then thought that the universe was

static and unchanging. Thus, the cosmological constant acts as a repulsive force to gravity. Nevertheless,

now it is known that the universe is expanding at an accelerating rate, and hence the cosmological constant

is indeed required in the Einstein field equations. A positive value of the cosmological constant represents

a repulsive force, and it describes the universe we live in. A negative value of the cosmological constant

represents an attractive force. The stress-energy tensor Tµν describes the energy content [1].

The first solution of Einstein field equations is known as the Schwarzschild metric, and the line element

for the Schwarzschild metric is

ds2 = −a(r)dt2 +
dr2

b(r)
+ r2dθ2 + r2 sin2 θdφ2, (2.10)

where t is the time coordinate, r is the radial distance, θ is the polar coordinate, and φ is azimuthal angle.This

is the general form of a spherically symmetric metric, and for the Schwarzschild metric, the functions a(r)

and b(r) are given by

a(r) = b(r) =

(
1− 2MBH

r

)
, (2.11)

with MBH being the mass of the black hole. The Schwarzschild metric has two singularities, one at r = 0

which represents the singularity of the black hole, and one at r = 2MBH , which represents the event horizon

and will be denoted as rh = 2MBH [3]. Hence, the Schwarzschild metric describes a non-rotating, uncharged,

and static black hole. However, in our universe, black holes are known to have a spin, because black holes are

usually formed from stars which have an angular momentum, due to the conservation of angular momentum,

the black hole must have a spin. A black hole could have an electric charge, but a black hole with a non-zero

electric charge will quickly be neutralized by attracting charged ions. The metric for a spinning black hole
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is given by the Kerr metric, discovered by Roy Kerr in 1963, and the metric for a charged and non-spinning

black hole is given by the Reissner-Nordström metric, discovered in 1916 and 1918. There are many other

metrics describing all different types of black holes, however in this thesis we will focus on non-spinning and

uncharged black holes, which are described by the Schwarzschild metric (2.10).

2.2 Basic Form of Gravitational Waves

The basic form of a GW can extracted by solving the Einstein field equation in a weak limit, where the self-

interaction of GWs can be neglected. The metric tensor in a weak gravitational field can be approximated

as

gµν(x) = ηµν + hµν(x), (2.12)

where gµν(x) is a generic metric which depends on the vector x = xµ, ηµν is the Minkowski metric which

describes spacetime in the absence of matter. Here we define the Minkowski metric as ηµν = diag (−1, 1, 1, 1).

hµν(x) is a small perturbation in spacetime (|hµν(x)|≪ 1). The dot product between vectors is defined in

terms of the Minkowski metric

xµxµ = ηµνx
µxν , (2.13)

and the indices are also raised and lowered using the Minkowski metric

hµν = ηµαηνβhαβ . (2.14)

Then, to a first order approximation, the Chirstoffel symbol can be defined in terms of the perturbed metric

Γα
µν =

1

2
ηαβ (∂µhνβ + ∂νhµβ − ∂βhµν) . (2.15)

Since we are only considering a first order perturbation, we can neglect the products of the Chirstoffel

symbol in the Riemann tensor, because they will be of a second order in the perturbation hµν . Hence, the

lower-indexed Riemann tensor simplifies to

Rαµβν =
1

2
(∂β∂µhαν − ∂ν∂µhαβ − ∂β∂αhµν + ∂ν∂αhµβ) , (2.16)

and the Ricci tensor Rµν = ηαβRαµβν becomes

Rµν =
1

2
(∂µ∂ρhν

ρ + ∂ν∂ρhµ
ρ − ηµν∂µ∂νhµν − ∂µ∂νhρ

ρ) , (2.17)

where

hν
ρ = ηρσhνσ, (2.18)

and ηµν∂µ∂ν = □ is the d’Alembet operator. Eq.(2.17) can be simplified by imposing the following Lorenz

gauge

∂ν

(
hµν − 1

2
ηµνhρ

ρ

)
= 0, (2.19)
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and thus eq.(2.17) simplifies to

Rµν = −1

2
□hµν , (2.20)

which is L.H.S of the Einstein field equations (2.1). The R.H.S can be found by using the stress-energy tensor

to leading order, so it does not depend on the perturbed metric, and this gives Einstein field equations in

the weak limit

□hµν = 16π

(
Tµν − 1

2
ηµνη

ρσTρσ

)
. (2.21)

This is also known as the linearized Einstein equations. In the absence of matter Tµν = 0 or in vacuum,

eq.(2.21) becomes

□hµν = 0, (2.22)

and one possible solution for this relativistic wave equation is

hµν = Aµν exp (ikρx
ρ) , (2.23)

with Aµν being the amplitude of the GW, and kµ = (ω, k1, k2, k3), with ω being angular frequency, and

(k1, k2, k3) is the wave number of the GW. In addition to Lorenz gauge (2.19), we can limit hµν to only

spatial perturbations, and we can impose a transverse-traceless gauge

h0µ = 0 (2.24)

∂ihij = 0 (2.25)

hi
i = 0. (2.26)

Then, for a wave propagating in the z-direction the wave solution becomes

hij (t, z) =

h+ h× 0

h× −h+ 0

0 0 0

 cos (kz − ωt) , (2.27)

with k being the wave number in the z-direction, and h+ and h× are the two polarizations of the GW [1].

2.3 Ringdown of Black Holes

In GR, the Schwarzschild metric describes a non-rotating black hole, and the Schwarzschild metric is spher-

ically symmetric, and it does not change in time. Thus, a black hole by itself does not create a time-varying

quadrupole moment which is necessary for the emission of GWs. Hence, we can consider a small perturbation

to the Schwarzschild metric

gµν = g(0)µν + hµν , (2.28)

where g0µν is the Schwarzschild metric, and we can follow a similar process like in section 2.2. However, this

process is more complicated in a Schwarzschild background. Thus, we will consider a simpler approach, we

will consider a small particle falling into a black hole, such that the mass of the particle is much smaller than
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the small of the black hole, and the gravitational field of the particle can be ignored. The falling particle

will cause the black hole to oscillate, and these oscillations are the QNMs of the black hole. To find the wave

equation that grovens the oscillations of the black hole, we will use the least action principle, and we start

with Einstein-Hilbert action

SEH =
1

16π

∫
d4x

√
−g (R− 2Λ) , (2.29)

with g being the determinant of gµν . Here we will assume that gµν is the Schwarzschild metric given by

eq.(2.10). The Einstein-Hilbert action describes how matter and energy affect spacetime, and the Einstein

field equations can be obtained by varying this action with respect to the metric tensor. Since we are

considering a matter field falling into the black hole, we will also need the action for the matter field

Sϕ =

∫
d4x

√
−gLϕ, (2.30)

where here we will assume that Lϕ is the Lagrangian for scalar field

Lϕ = −1

2
gµν∂µϕ∂νϕ− 1

2
µ2
0ϕ

2, (2.31)

with µ0 = mh̄, and with m being the mass of the scalar field. The first term in the Lagrangian is the kinetic

term, and the second term is the potential term. Hence, the total action for the system is

Stotal = SEH + Sm (2.32)

Stotal =
1

16π

∫
d4x

√
−g (R− 2Λ) +

∫
d4x

√
−gLm. (2.33)

The equations of motion for the scalar field can be found by varying the action with respect to ϕ, or by

simply using the Euler-Lagrange equation for a general spacetime

∂Lm

∂ϕ
−∇µ

(
∂Lm

∂ (∂µϕ)

)
= 0, (2.34)

here the covariant derivative ∇µ for a scalar field is just ∇µϕ = ∂µϕ. Inserting the Lagrangian for the

scalar field (2.31) into the Euler-Lagrange equation (2.34) gives

−µ2
0ϕ+ ∂µ (g

µν∂νϕ) = 0 (2.35)

−µ2
0ϕ+ (∂µg

µν∂νϕ+ gµν∂µ∂νϕ) = 0 (2.36)

∇µ∇µϕ− µ2
0ϕ = 0, (2.37)

which is the Klein-Gordon equation. (2.37) can be rewritten in a more convenient form by using the relation

Γµ
µν =

1√
−g

∂ν
√
−g, (2.38)

and this will allow us to write the Klein-Gordon equation as

1√
−g

∂µ
(√

−ggµν∂νϕ
)
− µ2

0ϕ = 0. (2.39)
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This form will be useful when separating the variables of the scalar field. Now varying the total action (2.33)

with respect to gµν will give us the Einstein field equations. First, the variation of the Einstein-Hilbert

action will consist of a variation of
√
−g, Ricci scalar, and the cosmological constant

δ
(√

−g
)
=

1

2

√
−ggµνδg

µν (2.40)

δR = Rµνδg
µν + gµν□δgµν −∇µ∇νδg

µν (2.41)

δ (−2Λ) = −Λgµνδg
µν , (2.42)

where the d’Alembert operator is defined in terms of the covariant derivative □ = ∇µ∇µ. Varying the matter

field with respect to the metric tensor will give us the stress-energy tensor Tµν

δ
(√

−g
)
Lm +

√
−gδ (Lm) = −δ (

√
−gLm)

δgµν
δgµν (2.43)

=
√
−g

(
1

2
Tµν

)
δgµν , (2.44)

where the stress-energy tensor is defined here as

Tµν = − 2√
−g

δ (
√
−gLm)

δgµν
, (2.45)

which describes the scalar matter content. Inserting these variations in total action (2.33) gives

δStotal =

∫
d4x

√
−g

[
1

16π

(
Rµν − 1

2
gµνR+ Λgµν

)
− 1

2
Tµν

]
δgµν = 0. (2.46)

For δStotal to be equal to zero, implies that

Rµν − 1

2
Rgµν + Λgµν = 8πTµν (2.47)

which are the Einstein field equations. For a spherically symmetric metric, the scalar field can be decomposed

into radial and angular components. This suggests the following ansatz

ϕ (t, r, θ, φ) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

Ψℓm(r)

r
Yℓm (θ) e−iωteiωφ, (2.48)

where Ψℓm is radial part of the solution, Yℓm are the spherical harmonics, ℓ is the orbital number, and m is

the magnetic quantum number [4, 5]. To get the wave equation for Ψ, we can insert the ansatz (2.48) into

the Klein-Gordon equation (2.39), and we find

(2.49)

−ei(−ωt+mφ)

a(r)r3

[
−a(r)Ψℓm(r)Y ′′

ℓm(θ)− b(r)a(a)Yℓm(θ)Ψ′′
ℓm(r)r2

− 1

2

(
Yℓm(θ)r2Ψℓm(r)∂r (a(r)b(r))

)
+Ψℓm(r)

(
1

2
b(r)a′(r)Yℓm(θ)r

+
1

2
a(r)b′(r)Yℓm(θ)r − cot θYℓm(θ)a(r) +

((
m2 csc2 θ + r2µ2

0

)
a(r)− r2ω2

)
Yℓm(θ)

)]
.

The differential equation can be simplified further by replacing Yℓm with the Legendre polynomials which

satisfy

1

sin θ
∂θ (sin θ∂θPℓm)− m2

sin2 θ
Pℓm = −ℓ(ℓ+ 1)Pℓm, (2.50)
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and by using tortoise coordinates defined as

dr

dr∗
≡
√

a(r)b(r), (2.51)

where a(r) and b(r) are given by eq.(2.11). Now, eq.(2.49) becomes

d2Ψl

dr2∗
+
[
ω2 − V0

]
Ψl = 0 (2.52)

where V0 is the Regge-Wheeler potential for a scalar field of mass µ0,

V0 = a(r)µ2
0 + a(r)

ℓ(ℓ+ 1)

r2
+

∂r (a(r)b(r))

2r
. (2.53)

The master wave can be rewritten in the time domain by ω2 with the time derivative because the general

solution in the frequency domain has the form

Ψ(t, r) = e−iωtΨ(r). (2.54)

Thus, eq.(2.52) in the time domain becomes

−∂2Ψl

∂t2
+

∂2Ψl

∂r2∗
− V0Ψl = 0, (2.55)

and this is known as the Regge-Wheeler equation, which describes of the black hole responses to axial (odd-

parity) perturbations. There is a similar equation that governs polar (even) perturbations, but in this thesis,

we will only consider axial perturbations. We have omitted the subscript m because it does not depend on

the orbital number. In a Schwarzschild background, the potential V0 is given by

VSCH. = a(r)

(
µ2
0 +

ℓ(ℓ+ 1)

r2
+

2MBH

r3

)
. (2.56)

The Regge-Wheeler potential for a vector and a gravitational field can be derived by choosing an appropriate

ansatz, however, we will only state the potential for a general massless field in a Schwarzschild background

without proofing it

Vs = a(r)

(
ℓ(ℓ+ 1)

r2
+

2MBH

(
1− s2

)
r3

)
, (2.57)

with s being the spin of the field [4, 5]. Now, the solutions of the Regge-Wheeler equation that are purely

outgoing-wave at infinity, and purely ingoing at the event horizon are the QNMs of the black hole [6].

2.4 The Regge-Wheeler Potential

The Regge-Wheeler potential is probably the most important quantity in the Regge-Wheeler equation, and

it can be thought of as a scattering potential, where a wave can either be transmitted or reflected by the

potential. The shape of the potential is mainly affected by the mass of the black hole and the orbital number.

For MBH = 1, the potential usually has a maximum around the light ring r = 3 as shown in fig.2, and goes to

zero at infinity (for all black hole masses). Although the Regge-Wheeler potential is mathematically defined

inside the black hole, fig.2 only shows the values outside the event horizon because the boundary conditions

for ingoing and outgoing waves do not hold (or have to be reconsidered) inside the event horizon, and the

boundary conditions are necessary for the computation of the QNMs of the black hole. In the next section,

we will explore how a mass surrounding a black hole can affect the Regge-Wheeler potential, and in return

affect the QNMs of the black hole.
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Figure 2: This a plot of the Regge-Wheeler potential (2.57) near the event horizon for a scalar field (s = 0),

ℓ = 2, and MBH = 1.

3 Effects of the Environment

The Schwarzschild metric is perfect for describing an isolated black hole, however, black holes that are

observed through GWs by LIGO and other detectors do not exist in isolation. Most galaxies are known to

have a supermassive black hole at their center, and dark matter is also known to cluster around black holes

[7]. QNMs are the fingerprints of black holes, and according to the no-hair theorem, all the properties of a

black hole can be determined from its QNMs. For this reason, it is important to explore whether the QNMs

of a black hole are affected by the environment, and to test how the black hole responds in a non-isolated

environment. To model the geometry of a galaxy, we will use a Hernquist density distribution given by

ρa0 =
M0

2πr(r + a0)3
, (3.1)

with M0 being the mass of the halo, and a0 is a lengthscale that describes the distribution of the matter.

Now, to place the black hole at the center of the distribution, we will have to modify the functions a(r) and

b(r) in the following way

a (r) =

(
1− 2MBH

r

)
exp (Υ(r)) , (3.2)

b(r) = 1− 2m(r)

r
, (3.3)

where Υ(r) is the redshift given by,

Υ(r) =

√
M0

ξ

(
2 arctan

(
r + a0 +M0√

M0ξ

)
− π

)
, (3.4)

and ξ = 2a0 −M0 + 4MBH. The mass in function b(r) now depends on both the mass of the black hole and

the halo, and it given by

m(r) = MBH +
M0r

2

(a0 + r)2

(
1− 2MBH

r

)2

. (3.5)
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Near the black hole, the mass function m(r) is approximately equal to the mass of the black hole, and at

infinity the mass function is approximately MBH +M0. Now to explore the effect of the environment on the

QNMs of the black hole, we can insert the modified functions a(r) and b(r) into the Regge-Wheeler potential

given by eq.(2.53), but first we will rewrite b(r) in terms of a new function B(r) defined as

B(r) = 1− 2

(
1− 2MBH

r

)
M0r

(a0 + r)
2 , (3.6)

so

b(r) =

(
1− 2MBH

r

)
B(r). (3.7)

We also define a new function K(r) given by

K(r) =
√
exp (Υ(r))B(r). (3.8)

These functions will simplify the calculations later [8]. Now using eq.(2.53), we find

V
(m)
0 = a(r)

ℓ(ℓ+ 1)

r2
+

2MBH

2r3
K(r) + a(r)

Υ′(r)B(r) +B′(r)

4rK(r)
, (3.9)

where the superscript indicates that the potential is for a matter halo, and the subscript indicates that it

is for scalar perturbations. We also assumed that the scalar field is massless (µ0 = 0). The potential for

gravitational perturbations can also be found using a different equation, however, we will just state it here

without providing a proof

V
(dm)
2 =

a(r)

r2

(
ℓ(ℓ+ 1)− 6m(r)

r
+m′(r)

)
, (3.10)

where the subscript 2 indicates that the potential is for gravitational perturbations [9].

4 Finding the quasi-normal modes of a black hole

4.1 Hyperboloidal Coordinates

The QNMs of a black hole are found by solving eq.(2.55), but, it will be more convenient to solve it in

hyperboloidal coordinates, because it avoids the coordinate singularity at rh = 2MBH and at r = ∞. The

line element in hyperboloidal coordinates (τ, σ, θ, φ) is given by

ds2 =

(
λ

σ

)2 {
Ξ
[
−p (σ) dτ2 + 2γ (σ) dτdσ + w(σ)dσ2

]
+ ρ (σ)

2
dω2

}
(4.1)

with λ = 2rh, and dω2 being

dω2 =
(
dθ2 + sin2 θ dφ2

)
. (4.2)
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The hyperboloidal functions Ξ, p, γ, w and ρ are given by

Ξ =
1

2
(4.3)

p(σ) =
λ

rh
σ2 (1− σ)K (σ) (4.4)

γ(σ) = 1− 2σ2K(σ)

Kh
(4.5)

w(σ) =
4rh
λ

1

(1− σ)Kh

(
1− σ2K(σ)

Kh

)
(4.6)

ρ(σ) =
rh
λ
. (4.7)

The function K(σ) = K(r(σ)) is given by

K(σ) =
√

eυ(σ)B(σ), (4.8)

where

υ(σ) = Υ(r(σ)) (4.9)

=

√
µ

ξ

(
2 arctan

(
2 + (α0 − µ)σ

σ
√
µξ

)
− π

)
(4.10)

B(σ) = B(r(σ)) (4.11)

= 1− 4σ(1− σ)µ

(2 + α0σ)2
, (4.12)

with µ = M0/MBH, α0 = a0/MBH and ξ = ξMBH. The parameter Kh is the value of the function K(σ) at

the horizon (σ = 1), and it is given by

Kh = K(1) = exp

{√
µ

ξ

(
arctan

(
2 + (α0 − µ)√

µξ

)
− π

2

)}
. (4.13)

The hyperboloidal time and radial spatial coordinates are related to the Schwarzschild time and radial

coordinates through the following equations

t = λ(τ −H(σ)) (4.14)

r = λ
ρ(σ)

σ
, (4.15)

and for our choice of ρ(σ) function, r is simply given by

r =
rh
σ
. (4.16)

Hence, the radial coordinate σ has the domain [0, 1], where σ = 0 is r = ∞ and σ = 1 is the event horizon

r = rh. The height function H(σ) is constructed in terms of the dimensionless tortoise coordinate x(σ) given

by

x(σ) = x0(σ) + xh(σ) + xreg(σ), (4.17)
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where x0 and xh represent the singular contributions (the contributions from σ = 0 and σ = 1), and xreg

represents the regular contributions. Although the explicit form of the function xreg(σ) might not always be

obtainable, the value of xreg can be always obtained by numerically integrating dxreg/dσ given by

dxreg

dσ
=

rh
λ

1

σ2(1− σ)

[
σ2

Kh
− 1

K(σ)
+ (1− σ) (1 + (1 + µ)σ)

]
. (4.18)

The functions x0 and xh are given by

x0 =
rh
λ

[
1

σ
− (1 + µ) log(σ)

]
(4.19)

xh =
rh
λ

log(1− σ)

Kh
. (4.20)

Now, the height function can be defined as

H(σ) = −x0(σ) + xh(σ)− xreg(σ). (4.21)

The Regge-Wheeler equation in hyperboloidal coordinates has the form

−wΨ̈ + pΨ
′′
+ 2γΨ̇′ + γ′Ψ̇ + p′Ψ′ − V̄Ψ = 0, (4.22)

where Ψ̇ is the derivative with respect to τ , and Ψ′ is the derivative with respect to σ. The potential V (σ)

is given by

V (σ) =
λ2

p(σ)
V (r). (4.23)

Hence, the scalar potential given by eq.(3.9) in hyperboloidal coordinates is

V
(m)

0 (σ) =
λ

2MBH

√
exp(υ)

B(σ)

[
ℓ(ℓ+ 1)− σ

(
−K(σ) + (1− σ)

dK(σ)

dσ

)√
exp(υ)

B(σ)

]
. (4.24)

Similarly, the gravitational potential in hyperboloidal coordinates is

V
(m)

2 (σ) =
λ

rh

√
exp(υ)

B(σ)

(
ℓ(ℓ+ 1)− σ

3m(r(σ))

MBH
+

dm(r(σ))

dσ

)
. (4.25)

4.2 Homogeneous solution

In this section, we will find solutions to the source-free Regge-Wheeler equation (4.22), and those solutions

are the natural modes of the black hole that are not influenced by an external particle falling into it. It can

be thought of as ”striking” the black hole. Although an analytical solution does exist for the Regge-Wheeler

equation, the boundary conditions might not actually describe the physical situation we are interested in

[10]. Thus, the Regge-Wheeler equation will be solved numerically using the spectral methods described in

[11, 12]. We use an initial data of compact support (Gaussian wave-packet) given by

Ψ(0, σ) =



0 σ = 0

1

λr∗

√
2π

exp

(
− (r∗(σ)− r∗(σ0))

2

λ2
r∗

)
0 < σ < 1

0 σ = 1

(4.26)

Ψ̇(0, σ) = 0, (4.27)
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where r∗(σ) = λx(σ) = 2rhx(σ) is the tortoise coordinate, which depends on the mass of the halo, σ0 is the

initial position of the Gaussian, and λr∗ is the width of the Gaussian. The initial data takes the value zero

at the event horizon and null infinity, and in all simulations we will assume MBH = 1 and ℓ = 2. The initial

data can be thought of as a perturbation in a small region outside the black hole. To test how much the halo

affects the QNMs of the black hole, we will compare the angular frequency of different halo configurations

with the vacuum state. Also, we will compare the angular frequency we found with the known results. First,

we will extract the real part of the angular frequency ωr by calculating the average distance between the

peaks,

MBHωr =

n∑
j

∆tp,j/(n− j + 1), (4.28)

where

∆tp,j = tp,j+1 − tp,j , (4.29)

and tp,j is the position of the j-th peak. The imaginary part of the angular frequency ωI is found by fitting

the peaks using the following linear equation

log|Ψp|= ωItp + c, (4.30)

where Ψp is the value of the peak at tp, and c is the y-intercept.Then we will calculate the following

numerical quantity δR,I, which determines directly how much the black hole frequency deviates from the

natural frequency

δR ≡ 1−
∣∣∣∣ ωR

ωR,s

∣∣∣∣ (4.31)

δI ≡ 1−
∣∣∣∣ ωI

ωI,s

∣∣∣∣ . (4.32)

Where the subscript s represents the spin. The natural frequencies for spin 0 and ℓ = 2 are

MBHωR,0 = 0.4836438722 (4.33)

MBHωI,0 = 0.09675877598 (4.34)

and for spin 2 are

MBHωR,2 = 0.3736716844 (4.35)

MBHωI,2 = 0.08896231569 (4.36)

[13]. Due to the curvature of spacetime, some of the GWs traveling outwards get scattered by the curved

spacetime around the black hole, and this delays the time it takes for the amplitude of GWs to reach zero.

The decay of the tail of the ringdown decays according to Price’s law

Ψ ≈ t−p, (4.37)

which is a power law, and thus the amplitude of the GWs takes an infinite time to reach zero [14]. The

power p can be evaluated by using the following equation

p(t) = −t∂t log|Ψ| (4.38)
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[15]. The time derivative of log|Ψ| is approximated numerically as

∂ log|Ψ|
∂t

→ log|Ψ|k+1− log|Ψ|k
∆t

, (4.39)

here k is an integer ranging from 1 to the length of the array, and ∆t = |(t/MBH)2−(t/MBH)1| is the spacing
of the array, which corresponds to the inverse of the sampling frequency fs = 1/∆t. Table 1 and Fig.3 show

the solution of eq.(4.22), for a scalar perturbation and ℓ = 2. Fig.3 mainly shows that the environment does

not affect the power-law, however, it does affect the decay rate and the frequency of oscillations. The halo

causes a redshift in the oscillations of the black hole, and causes the decay rate to decrease as shown in Fig.1.

The tail also began at a larger amplitude compared to the vacuum case. These results agree with the results

in [9]. Similiar results were found for gravitational perturbations which are shown in table 2 and Fig. 4.

µ α0 MBHωR δR |MBHωI | δI p(t ≈ 6000)

0 0 0.480102 0.007323 0.097069 −0.003206 4.004448

0.1 1 0.466929 0.034561 0.093118 0.037625 4.003083

1 10 0.435093 0.100386 0.086133 0.109815 3.997854

1 100 0.474157 0.019616 0.09615 0.006293 3.988291

10 100 0.426609 0.117927 0.085674 0.114566 3.960853

100 10000 0.474157 0.019616 0.096065 0.007174 2.747862

Table 1: This table shows the quantities extracted from the numerical simulations with the Gaussian initial

data for s = 0 and ℓ = 2. The plots are shown in fig.3. The width and position of the Gaussian are

(λr∗ , r0) = (1, 10). The numerical parameters are N0 = 5 and N = 125, and the temporal array spacing is

∆t=0.2667. The power was extracted at t/MBH = 5999.733.

(a) (b)

Figure 3: This figure shows the plots for s = 0 and ℓ = 2 with a Gaussian initial data. The main figure shows

the ringdown of the black hole, and the sub-figure shows the local decay rate. Plot (a) is for (λr∗ , r0) =

(10, 10), and plot (b) is (λr∗ , r0) = (1, 10). The field was extracted at null infinity.
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µ α0 MBHωR δR |MBHωI | δI p(t ≈ 6000)

0 0 0.37173 0.005197 0.089709 −0.008397 4.004506

0.1 1 0.362921 0.028771 0.086354 0.02932 4.003798

1 10 0.341097 0.087174 0.079655 0.104619 3.998304

1 100 0.368155 0.014762 0.08902 −0.000653 3.983264

10 100 0.333666 0.107061 0.078885 0.113273 3.956509

100 10000 0.368155 0.014762 0.088789 0.001944 2.728322

Table 2: This table shows the quantities extracted from the numerical simulations with the Gaussian initial

data for s = 2 and ℓ = 2. The plots are shown in fig.4. The width and the position of the Gaussian are

(λr∗ , r0) = (1, 10). The numerical parameters are N0 = 5 and N = 125, and the temporal array spacing is

∆t=0.2667. The power was extracted at t/MBH = 5999.733.

(a) (b)

Figure 4: This figure shows the plots for s = 2 and ℓ = 2 with a Gaussian initial data. The main figure shows

the ringdown of the black hole, and the sub-figure shows the local decay rate. Plot (a) is for (λr∗ , r0) =

(10, 10), and plot (b) is (λr∗ , r0) = (1, 10). The field was extracted at null infinity.

4.3 Numerical convergence

The relative error in the simulations is calculated using the following equation

ϵ =

∣∣∣∣1− ΨN (τ, 0)

ΨR(τ, 0)

∣∣∣∣ , (4.40)

where the subscript N represents the number of points in the spatial domain used in a simulation, and R is

the maximum number of points in the spatial domain used in a simulation.
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(a) (b)

Figure 5: These plots show the relative error evaluated using eq.(4.40). Plot (a) is for a constant initial

data and a reference resolution of N = 300. Plot (b) is for a compact support initial data and a reference

resolution of N = 500. Both plots are for s = 0 and ℓ = 2. The physical parameters are (µ, α0) = (1, 10),

and the time resolution domain is N0 = 5 for both plots. From these plots, the relative error in the tail is

around 10−5.

5 Source-Driven Oscillations

The inhomogeneous Regge-Wheeler equation is given by

−∂2Ψl

∂t2
+

∂2Ψl

∂r2∗
− V0Ψl = S (t, r) , (5.1)

where S (t, r) is the source term. In hyperboloidal coordinates, it is given by

−wΨ̈ + pΨ
′′
+ 2γΨ̇′ + γ′Ψ̇ + p′Ψ′ − V̄Ψ = S (τ, σ) , (5.2)

where the source term in hyperboloidal coordinates is

S (τ, σ) =
λ2

p(σ)
S (t, r) (5.3)

[8].The solutions of the inhomogeneous Regge-Wheeler equation do not directly correspond to the QNMs of

black hole, but they describe how the black hole reacts to non-vanishing external perturbations. Here, we

will use a Gaussian source term given by

S (t, r) =
(1− 2MBH/r)

λx

√
2π

exp

(
− (x− x0 + Uτ +A cos (Ωτ + ϕ))

2

2λ2
x

)
, (5.4)

with λx being the width of Gaussian, U is the speed of the source term, and x is the dimensionless tortoise

coordinate that depends on the mass of the black hole only, and it is given by

x(σ) =
rH
λ

(
1

σ
− log(σ) + log(1− σ)

)
, (5.5)
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with σ = rH/r and λ = 2rH. The position of the Gaussian is x0, and τ is the hyperboloidal time. The source

term is supposed to mimic a highly eccentric orbit. Fig.6 (left side) shows how the oscillations of the particle

cause the tail to start at a larger amplitude, and Fig.7 shows how the halo enhances this effect even further.

The right-hand side of Fig.7 shows that for small values of Ω, increasing A causes the tail to start at a lower

amplitude, and it also suggests that it has the same effect as changing the initial position of the particle r0.

The left-hand side of Fig. 8 shows the effect of varying Ω while keeping A constant, and it shows that the

tail starts at a larger amplitude as Ω increases. The right-hand side of Fig. 8 shows how varying the angle ϕ

effects the tail, and it shows that the tail is the longest at ϕ = π. This might be because the cosine function

has a minimum at ϕ = π, and this causes the initial position of the particle to increase as can be seen from

eq.(5.4).

(a) (b)

Figure 6: Plot (a) shows the ringdown in vacuum for different values of A and Ω for s = 0 and ℓ = 2. The

dashed lines show the plots for U = 1, and the solid lines show the plots for U = 0.5. Plot (b) shows the

position of the sources in the Schwarzschild coordinate r as a function of the hyperboloidal time τ . Both

plots are for (r0, λ, ϕ) = (20, 0.1, 0).
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(a) (b)

Figure 7: Plot (a) shows the effect of the halo on the tail for (A,Ω) = (−30, 0.5) and (r0, λ) = (20, 0.1)

(except the grey dashed line is for A = 0), where r0 is the initial position of the Gaussian in Schwarzschild

coordinate. Plot (b) shows that for |Ω|≪ 1, increasing A has the same effect as decreasing r0. Also, it shows

that the tail shortens as A increases. Plot (b) shows the ringdown in vacuum only, and both plots are for

s = 0, ℓ = 2, U = 1, and ϕ = 0.

(a) (b)

Figure 8: Plot (a) shows that the tail shortens as Ω increases. Plot (b) shows how varying the angle ϕ affects

the tail. Both plots are in a vacuum, and the physical parameters are s = 0, ℓ = 2, and U = 1.

6 Conclusion

To conclude, the discovery of GWs changed our view of the universe and allowed us to discover regions of

spacetime that cannot be explored using light or other cosmic messengers. Since black holes cannot emit

light, GWs act as the light of black holes. Black holes emit gravitational waves at certain frequencies when
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perturbed, and we discovered that those frequencies change depending on the environment. Mainly, they

get redshifted by a factor that depends on the halo configuration. Source-driven oscillations also affect the

amplitude at which the power-law decay dominates over the ringdown phase.
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modes at null infinity on a schwarzschild spacetime,” 2025.

[12] R. Panosso Macedo and M. Ansorg, “Axisymmetric fully spectral code for hyperbolic equations,” Journal

of Computational Physics, vol. 276, p. 357–379, Nov. 2014.

[13] E. Berti, “Ringdown - a numerical relativity resource.” https://pages.jh.edu/eberti2/ringdown/,

2024. Accessed: 2024-11-20.

[14] E. S. C. Ching, P. T. Leung, W. M. Suen, and K. Young, “Late-time tail of wave propagation on curved

spacetime,” Phys. Rev. Lett., vol. 74, pp. 2414–2417, Mar 1995.

[15] V. Cardoso, G. Carullo, M. De Amicis, F. Duque, T. Katagiri, D. Pereñiguez, J. Redondo-Yuste, T. F.
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https://copilot.microsoft.com]  

Describe how generative AI has been used in the exam paper: 

1) Purpose (what did you use the tool for?)

2) Work phase (when in the process did you use GAI?)

3) What did you do with the output? (including any editing of or continued work on the

output)  

Please note: Content generated by GAI that is used as a source in the paper requires correct 

use of quotation marks and source referencing. Read the guidelines from Copenhagen 

University Library at KUnet. 

https://copilot.microsoft.com/
https://kunet.ku.dk/faculty-and-department/copenhagen-university-library/library-access/Pages/AI.aspx
https://kunet.ku.dk/faculty-and-department/copenhagen-university-library/library-access/Pages/AI.aspx

