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Abstract

Tidal Love numbers encode gravitational response to external tidal fields generated by companions. These depend
on the structure of the gravitating object, such as a black hole or a neutron star, and in a binary coalescence
are measurable in the last stages of the inspiral before the merger. Quite strikingly, the black hole tidal Love
numbers are zero. By now, they have been calculated for Schwarzschild, Reissner-Nordström, and Kerr black
holes. Several of these calculations are reviewed here. Special emphasis is given to the case of Kerr black holes,
where the Love numbers have been a matter of debate. Zero tidal and nonzero dissipative Love numbers for Kerr
black holes have been obtained. This computation, however, relies on a specific regularisation scheme, namely
analytic continuation in the harmonic quantum numbers. Here, the response of the Kerr-Newman black holes
to charged scalar field perturbations is described. This is used to obtain the Kerr Love numbers for scalar field
perturbations in the zero-charge limit. The black hole charge serves as a regularisation parameter and, unlike the
analytic continuation approach, this procedure is physically well-defined. Zero tidal and nonzero dissipative Love
numbers are obtained in full agreement with the method of analytic continuation.
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1 Introduction

1.1 Black hole detection and tidal imprints

Over the past century, several big leaps have been made in our understanding of the physical world. New theories
have emerged, with general relativity [1] being one of the more noteworthy. It introduces the idea that spacetime
is curved. Finding actual spacetime geometries that conform to general relativity is a formidable task, and only a
handful have been found. However, associated with them is a variety of features, many of which initially sparked
controversy, but with time have gained acceptance and even been observed.

The first exact curved spacetime [2] that was formulated was designed to represent the gravitational field
around a star and describe interactions with it in the context of general relativity. A remarkable implication of
this spacetime, which became clear only years later, is that a compact enough object creating the curvature would
become hidden inside a region where gravity is so intense that nothing can escape it. This is a black hole.

The formation of black holes depends on whether such compact objects can be created at all. Even theo-
retically, this is not possible in Newtonian gravity [3], but it is in general relativity [4]. Stars collapse after their
nuclear fuel has run out and the nuclear reactions cannot provide enough pressure to counteract their own gravity.
Not all collapsing stars, however, turn into black holes. The lighter stars become white dwarfs, heavier stars end
their life as neutron stars, and only even heavier stars form black holes [5]. Besides the collapse of self-gravitating
objects, there are other channels for black hole formation. It is believed that black holes of very different sizes
exist in nature. At the center of most galaxies, almost certainly, are supermassive black holes, with as much as
ten billion solar masses. Then again, primordial black holes possibly many orders of magnitude lighter than stars
can also exist. Primordial black holes could have formed in the early universe, these are among the candidates
for dark matter [6–8].

Black holes are thought to be simple objects, characterized by very few parameters. This is known as the
no-hair conjecture [9]. The first black hole spacetime was fully characterized by its mass. Since then, other black
hole spacetimes have been described [10–12], nevertheless, even the most general one depends only on the mass,
angular momentum, and charge. The most prominent feature of a black hole is its boundary - the event horizon.
Once an object crosses the event horizon, it is forever trapped inside the region from which not even passing
information to outside observers is possible.

Exact spacetimes depend on conditions that hold only approximately in nature, and they can be generically
used to represent some particular regions of the actual spacetime only if they are stable. The stability of the exact
spacetimes can be studied by exploring the dynamics of slight deviations in the spacetime geometry. Analytically
this is done with perturbation theory. Studying black holes and their dynamics is important for a better grasp of
general relativity’s predictions about the nature of gravity and observing them is a way to test the theory [13–17].

Since black holes trap light, it is impossible to see them with telescopes, except for the indirect observations
of the motion of luminous objects near them, or images of the black hole shadows on the distorted backgrounds
of their accretion disks. Such images for the supermassive black holes at the centers of M87 [18] and Milky Way
[19] were recently taken with the Event Horizon Telescope. While this already strongly indicates that black holes
exist, it required the LIGO and VIRGO observation of gravitational waves, to definitively confirm black hole
existence [20, 21].
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6 CHAPTER 1. INTRODUCTION

Gravitational waves are a fundamentally relativistic concept, theorized already in the early days of general
relativity. They are ripples in spacetime that emanate from accelerating massive objects, particularly ones in
periodic motion. The properties of the sources, such as distribution of mass, angular momentum, and orbital
parameters, are reflected in the shape of the gravitational waves they emit. Black holes, neutron stars, and white
dwarfs are the most compact objects there can be. Therefore, they are the most efficient sources of gravitational
waves. Strong gravitational waves are produced where spacetime curvature is large, which requires masses to
be compressed into small regions. The emitted waves can traverse vast distances without much attenuation or
scattering, making it possible to observe far-away cosmic events. The detection of gravitational waves from binary
coalescences allows, for the first time, to explore the properties of black holes.

In a binary coalescence, two closely orbiting compact objects release gravitational waves causing them to
spiral toward one another and eventually merge into a single object. The coalescence is broken down into three
phases - inspiral, merger, and ringdown. This way the complex analysis of the dynamics of the coalescence
can be treated with different modeling methods appropriate for each phase. During the initial inspiral, the
two objects orbit each other, gradually losing energy to the emitted gravitational waves, causing their orbits to
shrink, consequently increasing the orbital frequency. Analytically, this phase is treated in the post-Newtonian
approximation. As the binary becomes tighter, the gravitational wave emission becomes more intense. The
inspiral ends with the plunge, where the orbit rapidly shrinks, and the emitted gravitational waves reach their
peak amplitude and frequency. This phase is followed by the merger where the objects collide. A gravitational
wave burst is produced. During this period, quasi-circular binary motion transitions into quasinormal ringing
of a single object. Due to the large curvature and the fast dynamics, the perturbative treatment is no longer
valid. The analysis relies on numerics. In the ringdown phase, the object formed in the merger is vibrating in
quasinormal modes. Gravitational waves are produced with decreasing intensity as the compact object settles
down. This phase is described in the context of perturbation theory.

Gravitational waves from events such as binary coalescences have distinct waveforms corresponding to
specific sources. The waveform analysis of gravitational wave detectors relies on perturbative methods to predict
and confirm the detected signals. Through gravitational wave observations, the properties of the merging objects
can be explored. Already the first gravitational wave detection, GW150914, allowed identifying the coalescing
objects as black holes, proving their existence and also that of gravitational waves [22].

One way to study the properties of black holes is by analyzing quasinormal modes, probing, in particular,
the light ring. The dynamics of the event horizon can be explored by considering tidal effects caused by external
perturbations. These provide ways to test the stability of black holes and the no-hair conjecture, which are of
tremendous theoretical significance. Tidal effects are the focus of this thesis.

Tidal deformations induced by the companions in binary coalescences would cause orbital changes and leave
traces in the gravitational waves emitted from the binaries in the late stages of the inspiral. The fact that these
orbital changes could be observable with Earth-based gravitational wave detectors was quantitatively established
in a study on the tidal coupling of neutron stars [23]. Tidal deformations hold information about the intrinsic
structure of objects and their equation of state. This, in particular, is important in the study of neutron stars
as it could provide a way to determine, among other, their size. The imprints in gravitational waves from tidal
deformations are present long enough before the merger to make their effect discernible on background inspiral
models without tides. The GW170817 event [24] was the first detection of a neutron star coalescence. With both
a gravitational and an electromagnetic observation, this event placed the first constraints on neutron star size
and structure.

In the context of black holes, with the establishment of a relativistic framework in which to study tides [25],
tidal deformations of various kinds of black holes have been explored [25–31]. The generally accepted conclusion
is that neither non-rotating black holes nor rotating uncharged ones can be tidally deformed, though, dissipative
effects can be expected in the rotating case. Studies exploring whether rotating black holes would have a dissipative
response have been carried out and concluded that it is present [29]. However, there has been a debate about the
robustness and meaning of this result and the method employed to derive it. By first describing the dynamics of
charged scalar field perturbations for the most general charged and rotating black hole spacetimes, this thesis aims
to then determine the response for the uncharged rotating black holes as a limit, using the charge as a physical
regularization parameter, and thus provide an alternative physical method for finding the dissipative response.
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1.2 Outline

After a short introduction to black holes, tidal deformations, and the prospects of their observation in chapter 1,
the basic principles of general relativity, the Einstein equation, and black holes as exact solutions to the Einstein
equation are discussed in chapter 2. A review of basic concepts in differential geometry, the highlights of the
derivation of the Einstein equation from the Hilbert action, the formulation of general relativity in the tetrad
formalism and in Newman-Penrose formalism, as well as the Goldberg-Sachs theorem, are given in appendix A.

Chapter 3 focuses on black hole perturbation theory, where the linearized Einstein equation, gauge choices,
and unphysical perturbations are discussed. Then scalar field, vector field, and metric perturbations are described.
The two conventional methods for treating perturbations on a background with spherical and axial symmetry
are introduced together with the master equations including the Regge-Wheeler and Zerilli equations for the
spherically symmetric case and the Teukolsky equation for the axially symmetric case. The dynamics of charged
scalar fields on a dyonic Kerr-Newman background spacetime are described last. Key steps in the derivations of
the master equations are summarized in appendix B.

In chapter 4, the relativistic formulation of tidal effects is introduced. The response of black holes is
expressed in terms of tidal and dissipative Love numbers. The surprising results of zero Love numbers for the
various black holes so far investigated are summarized. Some details of finding the Schwarzschild black hole Love
numbers are presented. The method for finding the Kerr black hole love numbers is shown. The tidal response of
charged scalar field perturbations on dyonic Kerr-Newman black hole backgrounds is described for the first time.
The result of the analytic continuation approach conventionally used in the Kerr case is confirmed as a limit of the
Kerr-Newman charged scalar field response calculation providing an alternative, physically motivated method.

Chapter 5 contains a summary of the results, conclusions, and outlook.

1.3 Conventions and notation

Throughout the thesis natural units c = G = 1 are adopted and exclusively four-dimensional spacetime with the
mostly plus convention (− + ++) is used. Tetrad components are denoted with lowercase Latin letters from the
beginning of the alphabet (abc), tensor components are denoted with lowercase Latin letters from the latter part of
the alphabet (ijk), spacetime coordinate components are denoted with lowercase Greek letters from the latter part
of the alphabet (µνρ), while the three-dimensional space coordinate components following the common convention
are denoted with lowercase Latin letters from the latter part of the alphabet (ijk), to be distinguished from general
tensor components based on context. For the treatment of spherically symmetric metrics, the components of the
Lorentz part of the metric are denoted with uppercase Latin letters from the latter part of the alphabet (IJK),
and components of the spherical part of the metric are denoted with uppercase calligraphic Latin letters (IJK).
To indicate particular coordinates, letters (t, r, ϑ, φ) are used, to indicate specific tetrad components, numbers
(1, 2, 3, 4) are used, Newman-Penrose tetrad basis vectors are named (l, n,m, m̄), the naming of various other
objects in Newman-Penrose formalism follows the convention established by Newman and Penrose [32]. Indices in
equations imply the object type, the objects in text are often referred to without indices, abstract index notation
is used when necessary. When a specification is required, perturbations are marked with ..B , and the background
quantities with ..A, in particular, this distinction is used in the treatment of perturbations with the Newman-
Penrose formalism. Regarding the naming of often used quantities, uppercase letters (M,C, J,G,R, S, T ) are used
for observable quantities and geometric objects that are not related to position. Lowercase letters are used for
naming quantities like position x, velocity u, angular velocity a, metric g. Square brackets are used to indicate
the variables of functions.





2 Black holes in general relativity

2.1 The Einstein equation

General relativity is the theory for gravity. It describes how matter content determines the geometry of spacetime
and how, in this spacetime, the matter evolves and propagates [1, 33, 34]. This two-way interaction follows the
fundamental equation of the theory - the Einstein equation

Gµν [g] = Tµν [g, ϕ] . (2.1.1)

Here, T is the energy-momentum tensor and G is the Einstein tensor. Both are represented in a coordinate
basis. The energy-momentum tensor depends on the metric g and some matter field ϕ. The Einstein tensor is
metric-dependent, it combines quantities describing spacetime curvature.

In developing the theory, Einstein incorporated several key physics concepts and mathematical tools he and
others had worked on in recent years. In 1905, he presented special relativity [35], a theory that describes the
physics of objects moving at constant speeds, particularly those moving at speeds comparable to the speed of
light. This brought a new understanding of space and time. In 1908, Minkowski formulated spacetime as a four-
dimensional continuum where time is treated analogously to the three spatial dimensions [36]. The equivalence
principle, which states that in a small enough region of spacetime, the effects of gravity are indistinguishable from
acceleration, was refined by Einstein in 1907 [37]. It led to the consideration of a curved spacetime making it
possible to dispense with the treatment of gravity as a force. The mathematical formalism for curved spaces, which
Einstein needed for his theory of gravity, was already well-established. By 1900, mathematicians like Riemann,
Ricci, and Levi-Civita had developed the formalism of tensor calculus on Riemannian manifolds [38, 39]. Einstein’s
theory of general relativity heavily relies on the tensor formalism. Grossmann’s work in collaboration with Einstein
laid the groundwork for the development of general relativity [40]. A review of the differential geometry basics
used in general relativity is given in appendix A.1. The synthesis of these ideas with Einstein’s groundbreaking
insight into the nature of gravity as the curvature of spacetime resulted in the theory of general relativity.

The Einstein equation was found independently with different methods by Hilbert and Einstein [41]. Ein-
stein’s approach was primarily based on the equivalence principle. He started with the idea that the laws of
physics should be the same for all observers at rest or in uniform motion. The key insight was to consider gravity
not as a force between masses, as described thus far, but as a curvature of spacetime. While the priority is often
given to Einstein, who gave a more physically motivated derivation, almost simultaneously Hilbert presented an
independent derivation of the Einstein equation using the variational principle [42]. His method is discussed in
appendix A.2.

The study of gravity in the context of general relativity before all else entails finding solutions to the Einstein
equation. Each solution represents a distinct spacetime geometry that relates the curvature of spacetime to the
distribution of matter within it. Due to the nonlinear and coupled nature of its components, solving the Einstein
equation is a formidable task, making exact analytical solutions difficult to find. Spacetime is viewed as a dynamic
entity that curves in response to changing matter distribution, leading to different physical phenomena such as
gravitational attraction, cosmological expansion, gravitational waves, and black holes.

The Einstein equation is typically solved under the constraints of some specific properties that the spacetime
is assumed to have. Geometric constraints, such as spherical or axial symmetry, reduce the number of independent
components of the metric tensor. Further algebraic constraints of the constituent parts of the equation can be
used to find simpler forms of the Einstein equation components. Using such methods, over the last century, several
exact solutions to the Einstein equation have been found.

9
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2.2 Classification of spacetimes

With the evolution of general relativity, several frameworks for it have been developed. In some circumstances,
instead of the standard coordinate treatment, the tetrad formalism [43] can be used. The tetrad formalism in
more detail is introduced in appendix A.4. Another formalism, one that has been key in finding exact solutions to
the Einstein equation as well as in studying gravitational waves in perturbation theory, is the Newman-Penrose
formalism [44]. A tetrad basis of complex null vectors (la, na,ma, m̄a) is chosen, and the quantities such as the
Weyl tensor and the Ricci tensor are projected onto this basis forming scalars. The equations of general relativity
are split into components that can be treated individually. The Newman-Penrose quantities are introduced in
appendix A.5 and the Newman-Penrose equations are available in the sources by Newman and Penrose [32] and
Chandrasekhar [45].

The Petrov classification [46], developed in 1954, characterizes the Weyl tensor based on algebraic properties.
Extending beyond gravitational radiation, commonly associated with the Weyl tensor, Petrov classification makes
it possible to analyze and interpret the solutions to the Einstein equation by identifying specific characteristics
and behaviors associated with the spacetimes of the different Petrov types. The Petrov classification is most easily
described in the Newman-Penrose formalism. Some basic properties can be seen in the tensor variant, a more
in-depth treatment can be done in the spinor variant of the formalism [32, 47]. The values of the Weyl scalars
Ψ0,Ψ1,Ψ2,Ψ3,Ψ4 determine the Petrov type of the spacetime. The six different Petrov types (I, II, D, III, N, O)
are distinguished by which combinations of the Weyl scalars are zero:

Type I: Ψ0 = 0 ,

Type II: Ψ0 = Ψ1 = 0 ,

Type D: Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 , (2.2.1)

Type III: Ψ0 = Ψ1 = Ψ2 = 0 ,

Type N: Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0 ,

Type O: Ψ0 = Ψ1 = Ψ2 = Ψ3 = Ψ4 = 0 .

These specific combinations of Weyl scalars are associated with a particular Newman-Penrose tetrad, however,
the Lorentz symmetry mentioned in appendix A.4 makes choosing this tetrad always possible.

The algebraically different Petrov types carry distinct physical implications. Type D regions are linked to
the gravitational fields surrounding localized massive objects. The tidal effects within a Type D region exhibit
tension in one direction and compression in the orthogonal directions. Thus such gravitational fields closely mirror
those described in Newtonian gravity. If the gravitating object is rotating, in addition to tidal effects, various
gravitomagnetic effects, such as spin-spin forces, appear. Type III regions are linked to a form of longitudinal
gravitational radiation. In these regions, tidal forces induce shear. Type N regions are associated with transverse
gravitational radiation. The quadruple principal null direction leads to the wave vector determining the propaga-
tion direction. Type II regions intricately combine the effects of types D, III, and N. For type O regions, the Weyl
tensor is zero. In such cases, the curvature is described solely by the Ricci scalar, corresponding to conformally
flat geometry, where all gravitational effects arise from non-gravitational matter fields. Long-range influences are
damped, and gravitational fields of distant regions cannot be detected.

Petrov type I spacetimes are algebraically general, the rest are algebraically special. The Goldberg-Sachs
theorem [48], described in more detail in appendix A.5, relates specific geometric properties of spacetimes with
the algebraic properties of the Weyl tensor, in particular, it states that an algebraically special vacuum spacetime
contains at least one geodesic, shear-free null congruence, and the other way round. With this, algebraic properties
can be incorporated as specific complementary constraints to those from symmetries for solving the Einstein
equation. They have been used in deriving exact black hole solutions and black hole perturbation equations.
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2.3 Black holes

Black hole spacetimes are the ones relevant to this thesis. They are solutions to the Einstein-Maxwell equations
with a region from which no events can reach future null infinity. The boundary of this region is a null surface
known as the event horizon.

In four dimensions with an asymptotically flat boundary, the most general solution is the Kerr-Newman
black hole. Its line element in Boyer-Lindquist coordinates (t, r, ϑ, φ) is

ds2KN = −∆− a2 sin2 ϑ

Σ
dt2 − 2a sin2 ϑ

r2 + a2 −∆

Σ
dtdφ+

Σ

∆
dr2 +Σdϑ2 + sin2 ϑ

(r2 + a2)2 −∆a2 sin2 ϑ

Σ
dφ2 , (2.3.2)

where M is the mass, J = aM is the angular momentum, Q and P are the electric and magnetic charges, and
the abbreviations Σ = r2 + a2 cos2 ϑ, ∆ = r2 + a2 − 2Mr + Q2 + P 2 are used. In the intermediate gauge [49], the
associated Maxwell field is

A = −Qr
Σ

(
dt− a sin2 ϑdφ

)
+
P cosϑ

Σ

(
adt− (r2 + a2)dφ

)
. (2.3.3)

The field strength is

Fµν = ∇µAν −∇νAµ . (2.3.4)

Then the electric and magnetic charges are defined1 as

Q =
1

4π

∫
S2

⋆F , P =
1

4π

∫
S2

F , (2.3.5)

Magnetic charges are included as they are allowed by the Einstein-Maxwell equations. While in the intermediate
gauge A is not regular everywhere, the physical F is. This geometry has two horizons defined by

∆ = 0 ⇒ r± =M ±
√
M2 − a2 − P 2 −Q2 , (2.3.6)

the outer one of which is the event horizon.

The Kerr-Newman black hole was the last to be found. All the earlier black hole solutions are special cases
of the Kerr-Newman black hole.

The Schwarzschild black hole solution was found in 1916 [2]. It is the first non-trivial exact solution to the
Einstein equation. It describes an asymptotically flat vacuum spacetime geometry outside a spherically symmetric,
non-rotating, uncharged mass. Spherical symmetry is the key constraint that leads to enough simplification in
the Einstein equation components, that the solution can be found. Furthermore, the Birkhoff-Jebsen theorem
states that any spherically symmetric solution to the vacuum Einstein equation is necessarily Schwarzschild in
the region outside the mass [50, 51].

Each following black hole solution is linked to a reduction of the constraints used in solving the Einstein
equation. The Reissner-Nordström black hole describes the spacetime outside a non-rotating, charged mass. The
metric was derived independently by Reissner [10], Weyl [52], Nordström [53], and Jeffery [54]. Some complication
comes from the introduction of an electromagnetic field - instead of the vacuum Einstein equation, the Einstein-
Maxwell equations have to be solved. Nevertheless, the same assumption as in the Schwarzschild case, that the
asymptotically flat spacetime has spherical symmetry holds.

Systems with angular momentum only retain axial symmetry. The Kerr metric is a solution to the Einstein
equation that describes the geometry of spacetime around a rotating, uncharged mass. It was presented in 1963
[11], considerably later than the spherically symmetric black hole solutions. All attempts using the same approach
as Schwarzschild did of restricting the form of the metric using symmetry arguments, and then solving the Einstein
equation were largely unsuccessful [55]. While some stationary, axially symmetric solutions were found, the first

1The Hodge dual of a p-form Xa1...ap is a (d−p)-form given by ⋆Xb1...bd−p
= 1

p!
ϵb1...bd−pa1...apX

a1...ap , where d is the manifold’s

dimension.
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one by Lewis [56] and others after that [57–59], these had singularities and were not asymptotically flat. What
proved essential in finding a physically meaningful solution was Kerr’s introduction of the condition for the
spacetime to be algebraically special - Petrov type II. Symmetries of the metric are linked to algebraic properties
of the Weyl tensor, which therefore complement one another. Petrov classification is not easily incorporated in
the Schwarzschild-like way of finding solutions. Instead, a null tetrad can be used to start. The approach is to
first identify a coordinate basis, then impose stationarity and axial symmetry of the spacetime and express the
metric in terms of the associated conserved quantities - the mass and the angular momentum [60].

Finding a charged generalization of the Kerr solution by solving Einstein equations directly was difficult.
However, in 1965 it was shown that with a complex coordinate transformation, the Kerr solution could be obtained
from the Schwarzschild result, in what is known as the Newman-Janis algorithm [61]. The same transformation
can be applied to the Reissner-Nordström solution. Then the Maxwell equation has to be solved to find the
corresponding electromagnetic field. It is most straightforwardly done with Keane’s extension of the Newman-
Janis algorithm [62]. This leads to the full Kerr-Newman black hole solution, found in 1965 [12].

The no-hair conjecture states that black holes are characterized at most by their mass [63], charge [64], and
angular momentum [65]. The static, uncharged Schwarzschild black holes are fully described by their mass, the
static, charged Reissner-Nordström black holes - by mass and charge, the stationary, uncharged Kerr black holes
- by mass and angular momentum, and the most general stationary, charged Kerr-Newman black holes - by mass,
angular momentum, and charge.

Black holes are Petrov type D stationary solutions to the Einstein-Maxwell equations. This can be seen
by choosing the Kinnersley frame B.2.131 [66] and calculating the spin coefficients. The ones that are zero with
Goldberg-Sachs theorem imply zero Weyl scalars Ψ0,Ψ1,Ψ3,Ψ4 corresponding to Petrov type D. Black holes are
instances of the Kerr-Schild class of metrics [67], which can be expressed as

gµν = ηµν + Flµlν ,

where η is the flat Minkowski metric, F is a scalar, and l is a null vector with respect to η.



3 Relativistic theory of perturbations

3.1 Linearized Einstein equation

So far, only exact solutions of the Einstein equation have been considered. Finding exact solutions, however, is
often not possible. In particular, this is the case when the spacetime lacks symmetry. In general, symmetries
cannot be assumed in dynamical systems. However, small fluctuations can be described with perturbation the-
ory. This approach can be used to compute the gravitational wave emission from sources and the gravitational
fluctuations on black hole spacetimes.

When the spacetime has some small deviations h from a known background metric ḡ, these metric pertur-
bations h can be found by perturbatively expanding and then solving the Einstein equation along with any other
equations of motion for the coupled matter fields. The metric perturbations can be thought of as being induced by
perturbations δT of the energy-momentum tensor T̄ , but perturbations without a source are also possible. Small
field perturbations δϕ of the background fields ϕ̄ induce small perturbations of the energy-momentum tensor. In
general, fields appear to second order in the expressions for the energy-momentum tensor, as in equations A.3.5
and A.3.10. Therefore, if the background field value is ϕ̄ = 0, to linear order, small field perturbations do not in-
fluence the energy-momentum tensor, and the field perturbations δϕ are decoupled from the metric perturbations
h. The fields with nonzero background values are unavoidably coupled. Taking g = ḡ + h and ϕ = ϕ̄ + δϕ, with
the known background variables ḡ, ϕ̄ solving the Einstein equation, and then expanding the Einstein equation to
linear order leads to the linearized Einstein equation

δGµν [h] = δTµν [δϕ] . (3.1.1)

When the background energy-momentum tensor is zero, the perturbations of the energy-momentum tensor are
gauge invariant. The components of the metric, however, have gauge freedom. It may be possible to define a
slightly perturbed metric in one coordinate system, that has the same form as only the unperturbed part of the
metric in another coordinate system. It must be that in this case, the metric perturbations are unphysical since
a small transformation of coordinates can produce them. True metric perturbations do not include contributions
from coordinate transformations. Small changes in variables are characterized by the Lie derivative:

hµν → hµν + LX ḡµν = hµν + 2∇(µXν) , (3.1.2)

δϕ→ δϕ+ LX ϕ̄ = δϕ+Xµ∇µϕ̄ , (3.1.3)

and by the gauge freedom of a linear theory, variables h, δϕ and h+LX ḡ, δϕ+LX ϕ̄ can be regarded as describing
the same physical solution. If ϕ̄ = 0, then δϕ is gauge-invariant.

In general, the perturbation of the Einstein tensor is complicated, but for vacuum backgrounds, it is

δGµν = δRµν − 1

2
gµνδR = δRµν − 1

2
gµνg

ρσδRρσ . (3.1.4)

Indices in the perturbation equations are raised and lowered with the unperturbed metric and its inverse. In a
locally inertial frame, the Ricci tensor involves the derivatives of the Christoffel connections. Then its perturbation
consists only of the derivatives of the perturbed Christoffel connections. By promoting the derivatives to covariant
derivatives a tensor is obtained:

δRµν = δΓλµν;λ − δΓλµλ;ν . (3.1.5)

This is the Palatini identity [68] defining the perturbed Ricci tensor. The perturbed Christoffel connection is

δΓλµν =
1

2
gλρ(hνρ;µ + hρµ;ν − hµν;ρ) . (3.1.6)

With the above expressions the perturbation of the Einstein tensor for vacuum background cases can be written
in terms of the metric perturbation as

δGµν =
1

2

(
−h ρ

µν;ρ + h
ρ

ρµ;ν + h
ρ

ρν;µ − h
ρ
ρ;µν + gµνh

ρ σ
ρ;σ − gµνh

ρσ
;ρσ
)
. (3.1.7)
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3.2 Gravitational waves

Gravitational waves were first theoretically predicted by Einstein in 1916, shortly after he published his theory
of general relativity. This precedes even the first exact solution of the Einstein equation - the Schwarzschild
spacetime. Einstein’s original approach to deriving gravitational waves involved linearizing his field equations
and examining the propagation of small perturbations on a flat spacetime background. Analogously, gravitational
waves can be considered on known curved backgrounds as well. He demonstrated that disturbances in the
curvature of spacetime could propagate as waves with, to a first approximation, the speed of light. The solutions
he derived suggested that massive accelerating bodies, such as binary systems of compact objects could emit
gravitational waves. This work represented a significant step in understanding the theory’s implications. Over the
subsequent decades, other physicists built upon Einstein’s foundational work, refining the theory of gravitational
waves and exploring their implications.

The perturbed metric g assuming small perturbations h and a flat background spacetime η is

gµν = ηµν + hµν . (3.2.8)

In the following, the approach is to always retain quantities up to first order in small parameters. It is always
possible to select the Lorentz gauge by an appropriate coordinate transformation:

h̄µν , ν = 0 , (3.2.9)

where h̄µν is the trace-free part of the perturbation:

h̄µν = hµν − 1

2
ηµνh

ρ
ρ . (3.2.10)

With this choice, the linearized Einstein equation reduces to the wave equation

2h̄µν = −2δTµν . (3.2.11)

If the source is zero, a solution with k2 = 0 is

h̄µν = Re{Aµνeik·x} . (3.2.12)

This is a gravitational wave. The perturbations cannot be gauged away, gravitational waves are not coordinate
waves, but they are physical. They have two degrees of freedom, in the traceless-transverse gauge they are h+
and h×. The effects of passing gravitational waves can be seen by considering a set of measuring test particles.
Gravitational waves move at about the speed of light. The relative motion of the test particles can be described
by choosing a frame where the test particles are at rest and using the geodesic deviation equation. Checking for
various directions in which the test particle can be offset, the quadrupolar behavior in both the h+ and the h×
polarizations becomes apparent. The passing of a gravitational wave has the effect of stretching in one direction
while simultaneously squeezing in the other.

The production of gravitational waves requires sources. These are most straightforwardly described in
spherical coordinates. Correspondingly, in the spherically transverse gauge, the perturbation is related to the
source through the quadrupole formula

h̄ij =
2

r
Ïij(t− r) , (3.2.13)

where I is the reduced quadrupole moment, which in terms of the energy density ρ is

Iij =

∫
d3xρ

(
xixj −

1

3
δijr

2
)
. (3.2.14)

It is calculated by defining a surface around the source and using Gauss’ theorem to integrate the linearized
Einstein equation. The flux of energy from the source to gravitational waves is

dE

dt
= −1

5

〈
∂3t Iij∂

3
t I

ij
〉
, (3.2.15)
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and the flux of angular momentum correspondingly is

dLi
dt

= −2

5
ϵijk

〈
∂2t I

jl∂3t I
k
l

〉
, (3.2.16)

where the time averaging is denoted with the angled brackets [69].

The quadrupole moment of a source can be estimated to be proportional to the moving mass M in a system
and the square of its size R. Taking a period where the changes to the source are slight, the power radiated with
the gravitational waves can be estimated as

dE

dt
∼
(
M

R

)5
. (3.2.17)

The more compact the source the more power radiated. Black holes are the most compact objects there can be,
and thus the most efficient gravitational wave sources. This makes the study of gravitational wave emission by
black holes important.

3.3 Black hole perturbation theory

Black hole perturbation theory is a framework in which black hole stability and uniqueness can be studied
[70]. The linearized Einstein equation describing the dynamics of the perturbations is a complicated equation
with coupled components dependent on the coordinate variables in an intricate way. Nevertheless, in the case of
Schwarzschild and Reissner-Nordström [71, 72], as well as Kerr black hole perturbations [73], using symmetries and
algebraic properties, the components of the linearized Einstein equation can be decoupled, and the variables can be
separated leading to single variable dependent master equations governing the perturbations of the Schwarzschild,
Reissner-Nordström, and Kerr black holes. In the case of Kerr-Newman black hole perturbations, one is left with
a system of two coupled differential equations [45]. While Schwarzschild and Reissner-Nordström black holes are
static and spherically symmetric, the Kerr and Kerr-Newman black holes are stationary and axisymmetric.

Since the symmetries of the black holes are not the same, the methods used in obtaining the master equations
by simplifying the Einstein equation or other equations of motion depending on the perturbation type are also
different. These are the subject of this section with more details on the derivations in appendix B.

A choice of sources and boundary conditions specifies perturbations, but all perturbations obey the master
equations. Therefore, the formalism presented here has a wide variety of applications. These include studying
black hole oscillations described with quasinormal modes and the tidal effects of external perturbations. The
latter are considered in this thesis.

3.3.1 Perturbations of spherically symmetric black holes

The spherical symmetry of the background can be used to decompose objects in tensor spherical harmonics. The
method of decomposition is described by Martel and Poisson in [74, 75], and summarized in appendix B.1. The
master equations described here and derived in appendix B.1 closely follow Berti’s presentation [3].

Scalar field perturbations are discussed first, followed by vector field perturbations, and metric perturbations.
The various perturbations of spherically symmetric spacetimes each follow one master equation that depends only
on the radial coordinate. Although these equations are derived by considering the equation of motion of the
specific field, which for scalar field perturbations is the Klein-Gordon equation, for vector perturbations the
Maxwell equation, and for metric perturbations the Einstein equation, all resulting master equations have the
same general form:

∂2r∗ψs± +
(
ω2 − Vs±

)
ψs± = S . (3.3.1)

Here the master equations are written in the Fourier time-decomposed form with the frequency ω dependence for
each master variable ψs± implied. The radial tortoise coordinate r∗ is introduced to remove the first-derivative
term in the equations. Vs± are the potentials and S represent sources. The considered perturbing field type
is indicated with s, s = 0 for scalar, s = 1 vector, and s = 2 tensor perturbations. The even or odd sectors
of the perturbations are indicated with ±, they behave differently under coordinate transformations and are
thus independent from one another. While in principle massive vector fields could be considered with the Proca
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equation [76] replacing the Maxwell equation, this would cause issues with considering interactions covering the
entire spacetime, only interactions mediated by the massless vector fields are long-range. The master variable ψs±
relations to the corresponding field perturbations as well as the associated potentials Vs± are described below.

The master equations can be considered with the source term set to zero S = 0. In this work, no other
sources but the fields themselves are considered, and they are interpreted as being infinitely far away, by having
boundary conditions to the master equations that allow the solutions to grow asymptotically.

There are two spherically symmetric black hole solutions, and the decomposition of the variables as described
below can be used for both. However, while the Schwarzschild background is a vacuum solution, the Reissner-
Nordström is not. As a result, finding the master equations in the latter case is a more elaborate process. Here
the Schwarzschild case is considered first.

When perturbations are sourced by scalar and vector fields that are zero in the background, since they
appear to second order in the expressions for the charged current and the energy-momentum tensor, to first order
these perturbing fields do not influence the sources. This for the Schwarzschild black hole implies that there is no
mixing between the scalar field, the vector field, and the metric perturbations, they can be considered separately.

The Klein-Gordon equation for the scalar field ϕ reduces to the scalar field master equation with the master
variable ψ0 related to the scalar field as

ϕ[t, r, ϑ, φ] =

∫
dw e−iwt

ψ0ℓm
[r]

r
Y ℓm , (3.3.2)

where the Fourier time decomposition and the spherical harmonic decomposition are performed. The potential
for the scalar field perturbation master equation on a Schwarzschild background is

V0Sc
=

(
1− 2M

r

)(
µ2 +

ℓ(ℓ+ 1)

r2
+

2M

r3

)
. (3.3.3)

The derivation of the master equation for Schwarzschild scalar field perturbations is outlined in appendix B.1.2.

The Maxwell equation for the massless vector field A without source reduces to two decoupled vector field
master equations that together fully specify the vector perturbations. The vector field is expanded in vector
spherical harmonics that split it into an odd and an even sector respectively:

Aµ[t, r, ϑ, φ] = A−
µ +A+

µ =


0

0
aℓm[t, r]

sinϑ
Y ℓm

,φ

−aℓm[t, r] sinϑY ℓm
,ϑ

+


bℓm[t, r]Y ℓm

cℓm[t, r]Y ℓm

dℓm[t, r]Y ℓm
,ϑ

dℓm[t, r]Y ℓm
,φ

 . (3.3.4)

The coefficients a, b, c, d are coordinate t and r-dependent. In the absence of sources, the dynamics of the two
sectors are independent. The master equation for the odd sector is obtained from the Maxwell equation with the
variable ψ1− related to the vector field A simply through the coefficient a:

ψ1− = a . (3.3.5)

The master equation for the even sector is obtained from the Maxwell equation with the variable ψ1+ related to
the vector field A through coefficients b and c:

ψ1+ = r2
ċ− b′

ℓ(ℓ+ 1)
. (3.3.6)

The coefficient d can be expressed in terms of b and c. The Fourier time decomposition can then be used to treat
the perturbations for each frequency mode independently. The master equation potentials for both odd and even
cases, with this choice of variables, on a Schwarzschild background are

V1±Sc
=

(
1− 2M

r

)
ℓ(ℓ+ 1)

r2
, (3.3.7)

The derivation of the master equations for vector field perturbations is outlined in appendix B.1.3.
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The Einstein equation also reduces to two master equations - the Regge-Wheeler equation [71] for the odd
metric perturbations and the Zerilli equation [72] for the even ones. The metric perturbation is expanded in
tensor spherical harmonics, and the Regge-Wheeler gauge B.1.70 is adopted. Analogously to the vector case, the
metric perturbation is split into an even and an odd sector respectively:

hµν =



0 0
h0ℓm
sinϑ Y

ℓm
,φ −h0ℓm sinϑY ℓm

,ϑ

0 0
h1ℓm
sinϑ Y

ℓm
,φ −h1ℓm sinϑY ℓm

,ϑ

h0ℓm
sinϑ Y

ℓm
,φ

h1ℓm
sinϑ Y

ℓm
,φ 0 0

−h0ℓm sinϑY ℓm
,ϑ −h1ℓm sinϑY ℓm

,ϑ 0 0


+



−fH0ℓm
Y ℓm −H1ℓm

Y ℓm 0 0

−H1ℓm
Y ℓm − 1

fH2ℓm
Y ℓm 0 0

0 0 −r2KℓmY
ℓm 0

0 0 0 −r2 sin2 ϑKℓmY
ℓm


, (3.3.8)

where h0, h1, H0, H1, H2,K are coordinate t and r-dependent coefficients, and f is the function that holds the
specifics about the chosen Lorentz part of the background metric, which in the Schwarzschild case is fSc = 1− 2M

r .
The dynamics of the odd and even sectors are independent.

The Regge-Wheeler equation is obtained for the variable ψ2− related to the metric perturbation through
the coefficient h1. The other odd sector coefficient h0 can be expressed in terms of h1. The master variable in the
Schwarzschild background case is

ψ2−Sc
[t, r] =

(
1− 2M

r

)
h1[t, r]

r
. (3.3.9)

The time dependence as before separates with the Fourier transform. The Regge-Wheeler potential for the
Schwarzschild black hole background spacetime is

V2−Sc
=

(
1− 2M

r

)(
ℓ(ℓ+ 1)

r2
− 6M

r3

)
. (3.3.10)

Analogously, the Zerilli equation is obtained for the variable ψ2+ related to the metric perturbation through
coefficients H1 and K :

ψ2+Sc
= ζ1H1 + ζ2K , (3.3.11)

with ζ1 and ζ2 being

ζ1 =
r − 2M

iω(nr + 3M)
, ζ2 =

r2

nr + 3M
, (3.3.12)

where the abbreviation n =
(ℓ−1)(ℓ+2)

2 is used. The coefficients H0 and H2 are functions of H1 and K. The Zerilli
potential is

V2+Sc
=

(
1− 2M

r

)
n3r3 + n2r3 + 3n2Mr2 + 9nM2r + 9M3

(nr + 3M)2r4
. (3.3.13)

The Regge-Wheeler and the Zerilli equations fully describe metric perturbations. The more important steps in
the derivations of these equations are given in appendix B.1.4. The Zerilli equation derivation is much more
involved, it is not surprising that it was found only seven years after the Regge-Wheeler equation. The fact that
this equation could be found at all is related to some hidden symmetries. Chandrasekhar in his 1984 book [45]
demonstrated that the two metric perturbation master equations have the same eigenvalues, they are isospectral.
With a coordinate transformation of the Zerilli variable ψ2+ the Zerilli equation can be written in an alternate
form, which is the same as that of the Regge-Wheeler equation. These two seemingly different equations are in
fact linked. The above are the Schwarzschild black hole perturbations master equation variables and potentials.

The procedure for obtaining the master equations for the Reissner-Nordström black hole perturbations
is analogous. The scalar field perturbation master equation is found exactly in the same way. However, due
to the nonzero background vector field, there is a mixing between the vector field and metric perturbations,
and while master equations are obtained, their master variables are a combination of the metric and vector
field perturbations. The perturbations can be expanded analogously to the Schwarzschild case. The scalar
perturbations decouple as the background scalar field is zero. The same master variable 3.3.2, for the scalar field
master equation, can be used. The coupled vector field and metric perturbations require solving the Einstein and
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Maxwell equations together. However, for a particular choice of variables, as described by Chandrasekhar [45],
the equations can be decoupled and put in the general master equation form 3.3.1. The variables are [45, 77]

ψ1±RN
= q1 χ1± +

√
−q1q2 χ2± , (3.3.14)

ψ2±RN
= −

√
−q1q2 χ1± + q1 χ2± , (3.3.15)

where the abbreviations q1,2 = 3M ±
√

9M2 + 4Q2µ2 and µ2 = 2n = (ℓ − 1)(ℓ + 2) are used. The coefficients χ
depend on the specifics of the decompositions of the vector field and the metric perturbations, and they determine
how the two types of perturbations are combined in the master variables. The Reissner-Nordström potentials are

V0RN
= f

(
µ2 +

ℓ(ℓ+ 1)

r2
+

2M

r3
− Q2

r4

)
, (3.3.16)

V1±RN
= f

(
∓q2W

′
1 +

q22
f
W 2

1 +
ℓ(ℓ+ 1)

f
µ2W1

)
, (3.3.17)

V2±RN
= f

(
∓q1W

′
2 +

q21
f
W 2

2 +
ℓ(ℓ+ 1)

f
µ2W2

)
, (3.3.18)

where W1 = f

r(µ2r+q2)
, W2 = f

r(µ2r+q1)
, and the function f in the Reissner-Nordström case is fRN = 1− 2M

r + Q2

r2
.

3.3.2 Perturbations of axially symmetric black holes

With only axial symmetry of the background, the method of expanding quantities in tensor spherical harmonics
cannot be adopted. Since the Kerr spacetime has two Killing vectors associated with the t and φ coordinates,
Fourier methods can be used to separate the time and azimuthal dependence. Radial and polar dependence is not
easily separable. Nevertheless, at least in the case of Kerr background, the perturbation master equations were
obtained by Teukolsky in 1973 [73, 78, 79]. He took an entirely different approach than that for perturbations
of spherical spacetimes. As in the derivation of the Kerr metric itself, algebraic speciality was again the key
constraint used in conjunction with axial symmetry. Naturally, the Newman-Penrose formalism was employed.
After the Kerr solution was found, it was established that it is not only algebraically special but is of Petrov type
D with two principal null directions, one of which is described at the end of appendix A.5 in connection with the
Goldberg-Sachs theorem. Teukolsky expanded the variables in the Newman-Penrose formalism in a background
and a perturbative part, and for the Weyl scalars used the implication of the background metric being Petrov
type D, that only the background ΨA

2 is nonzero. He then could solve the Newman-Penrose equations involving

ΨB
0 and, by making the coordinate choice B.2.131 for the tetrad vectors, the Teukolsky equation was obtained1:(
(r2 + a2)2

∆
− a2 sin2 ϑ

)
∂2t Ψ

B
0 +

4Mar

∆
∂t∂φΨ

B
0 +

(
a2

∆
− 1

sin2 ϑ

)
∂2φΨ

B
0 −∆−s∂r

[
∆s+1∂rΨ

B
0

]
− 1

sinϑ
∂θ

[
sinϑ∂ϑΨ

B
0

]
− 2s

(
a(r −M)

∆
+
i cosϑ

sin2 ϑ

)
∂φΨ

B
0 − 2s

(
M(r2 − a2)

∆
− r − ia cosϑ

)
∂tΨ

B
0 + (s2 cot2 ϑ− s)ΨB

0 = ΣS ,

(3.3.1)

where the conventional abbreviations Σ = r2 + a2 cos2 ϑ and ∆ = r2 + a2 − 2Mr are used. In the above equation,
metric perturbations are implied. These are associated with spin s = 2. The parameter s, which describes the
spin of the field, is written explicitly for future convenience. With the same idea as in the previous section, the
equation can be considered without the source term ΣS. Using the symmetry of the background the variable in
a Fourier decomposed way can be written as

ΨB
0 = e−iωtR[r]Θ[ϑ]eimφ . (3.3.2)

1As Teukolsky recalled in a recent talk, he was first looking for ΨB
4 , which is slightly more involved due to the particular choice

of principal null directions, thus delaying finding the Teukolsky equation by a few months [80].
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Then the Teukolsky equation can be decoupled into

∆−s∂r
[
∆s+1∂rR

]
+

(
K2 − 2is(r −M)K

∆
+ 4isωr − a2ω2 + 2amω − λ

)
R = 0 , (3.3.3)

1

sinϑ
∂ϑ

[
sinϑ∂ϑΘ

]
+

(
a2ω2 cos2 ϑ− m2

sin2 ϑ
− 2aωs cosϑ− 2ms cosϑ

sin2 ϑ
− s2 cot2 ϑ+ s+ λ

)
Θ = 0 , (3.3.4)

with K = (r2+a2)ω−am. In general, both eigenvalue problems need to be solved simultaneously as both λ and ω
appear in the equations. The situation is much simpler in the static case ω = 0. This is the only case considered
in this work. Then the polar equation is treated as an eigenvalue problem, the solutions are the spin-weighted
spherical harmonics. The eigenvalues λ = (ℓ− s)(ℓ+ s+1) are the separation constants that can be inserted in the
radial equation.

The Teukolsky equation applies to other variables as well. These include Σ−2ΨB
4 involving the Weyl scalar

associated with the metric perturbation, ϕ0 and Σ−1ϕ2 involving the Maxwell scalars associated with the vector
field perturbation, as well as ϕ of the scalar field perturbations. Thus the radial and polar Teukolsky equations can
be used to describe scalar field, vector field, and metric perturbations. With these equations, the perturbations
are described fully.

The derivation of the Teukolsky equation starts from some of the Newman-Penrose equations. While it is
not always entirely transparent what physical properties the Newman-Penrose equations describe, the motivation
for looking for perturbations of the Weyl scalars Ψ0 and Ψ4 has to do with the fact that these scalars are invariant
under infinitesimal tetrad rotations of the Kinnersley frame [66], given in B.2.131, relative to which they are
defined. The scalars are independent of gauge choices, and thus represent physical observables [73]. In particular,
these Weyl scalars can be associated with gravitational waves. For asymptotically flat geometries, the tetrad
at infinity can be identified with the flat spacetime spherical coordinates, the metric perturbations on a flat
background can be related to the Riemann tensor components, and the Weyl scalar Ψ4 can be expressed in terms
of the metric perturbations as [45]

Ψ4 =
ḧϑϑ − ḧφφ

2
+ iḧϑφ = −ḧ+ + iḧ× . (3.3.5)

Thus the scalar Ψ4 at infinity encodes all outgoing gravitational wave power.

The interpretation of the Weyl scalars and other variables is more convoluted in regions where curvature
cannot be neglected. By the peeling theorem [32] gravitational as well as electromagnetic radiation can have
intricate structure close to the source, but it progressively diminishes with increasing distance from it. Eventually,
only type N radiation remains.

After a successful method for dealing with perturbations on axially symmetric backgrounds has been es-
tablished and decoupled and separated master equations for the perturbations of the Kerr spacetime found, it
could seem possible to apply the same procedure to find perturbations of the charged Kerr-Newman spacetime.
However, this is not the case. In the presence of both charge and rotation, the coupling between metric and
vector field perturbations is complex, no clear approaches to disentangle the perturbations are known. While
Kerr spacetime metric and vector field perturbations can be excited independently they are intertwined in the
Kerr-Newman case [81]. The only Kerr-Newman spacetime perturbations that have decoupled master equations
are the scalar perturbations [82]. For metric perturbations of the Kerr-Newman spacetime decoupled master
equations have not been discovered. Since in principle, there is no reason to assume such master equations have
to exist, chances of finding them are slight. Two coupled equations 2 are used instead [45].

Studying the dynamics of the most general black hole of Einstein-Maxwell theory, the dyonic Kerr-Newman
black hole, without encountering major technical complications, is feasible only for scalar fields. In this work,
charged scalar field perturbations are studied. The associated perturbation master equations are described in the
following section.

2For arbitrary type D spacetimes analogous coupled equations were described by Dudley and Finley in 1979 [83, 84].
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3.3.3 Dynamics of charged scalar fields on a dyonic Kerr-Newman background

Here scalar field dynamics coupled to Einstein-Maxwell theory is considered. The action is [49]

S[g, ϕ,A] =
1

16π

∫
d4x

√
−g(R− FµνF

µν)− 1

2

∫
d4x

√
−g(Dµϕ̄D

µϕ− V [ϕ̄ϕ]) . (3.3.6)

The action depends on the metric g, a complex scalar field ϕ, and a coupled vector field A. The field strength
tensor of the vector field is

Fµν = ∇µAν −∇νAµ . (3.3.7)

With the symmetries of the fields under the simultaneous local transformations with real θ being

ϕ→ eiθϕ , Aµ → Aµ − 1

q
∇µθ , (3.3.8)

the scalar field is gauge coupled to electromagnetism with the gauge covariant derivative

Dµ = ∇µ + iqAµ . (3.3.9)

The variation of the action with respect to the metric and the fields leads to the coupled equations of motion

Gµν = T
ϕ
µν + TA

µν , (3.3.10)

DµD
µϕ− V ϕ = 0 , (3.3.11)

d ⋆F = −4πq ⋆Jϕ . (3.3.12)

The scalar and vector field contributions to the energy-momentum tensor Tϕ
µν and TA

µν and the current Jϕµ are

T
ϕ
µν = 4π

(
Dµϕ̄Dνϕ+DµϕDν ϕ̄−

(
Dρϕ̄D

ρϕ+ V
)
gµν

)
, (3.3.13)

TA
µν = FµρF

ρ
ν + ⋆Fµρ ⋆F

ρ
ν , (3.3.14)

J
ϕ
µ =

i

2

(
ϕ̄Dµϕ− ϕDµϕ̄

)
. (3.3.15)

Scalar electrodynamics on a dyonic Kerr-Newman black hole background (2.3.2) permits perturbations of the
scalar field, the vector field, and the metric. When the background scalar field is zero, the scalar perturbations
at linear order decouple from the remaining two. The potential is reduced to only a mass term V [ϕ, ϕ̄] = µ2ϕ̄ϕ,
as linear perturbations are not affected by any higher-order terms. The Kerr-Newman spacetime charged scalar
field perturbation master equation is derived from the Klein-Gordon equation 3.3.11. With the vector field A in
the intermediate gauge [49]

Aµ =

(
−Qr + aP cosϑ

Σ
, 0, 0,

Qra sin2 ϑ− P (r2 + a2)a cosϑ

Σ

)
, (3.3.16)

and the ansatz for a particular mode of the scalar field

ϕ = e−iωtR[r]Θ[ϑ]eimφ , (3.3.17)

the master equation is obtained:

∂r
[
∆∂rϕ

]
+

1

∆

(
ω2(a2 + r2)2 − 2aωm(a2 + r2) + a2m2 + 2qQωr(a2 + r2)− 2qQmar + q2Q2r2

)
ϕ− µ2Σϕ+ q2P 2ϕ

+
1

sinϑ
∂ϑ

[
sinϑ∂ϑϕ

]
+

1

sin2 ϑ

(
−m2 − 2qPm cosϑ− q2P 2 − ω2a2 sin4 ϑ+ 2mωa sin2 ϑ+ 2qPωa sin2 ϑ cosϑ

)
ϕ = 0 ,

(3.3.18)

where the abbreviations Σ = r2 + a2 cos2 ϑ and ∆ = r2 + a2 − 2Mr +Q2 + P 2 are used. The master equation can
be decoupled into the radial and polar equations for the variables R and Θ respectively [49]:

∂r
[
∆∂rR

]
+

(
((r2 + a2)ω −ma+ eQr)2

∆
− µ2r2 − λ− a2ω2 + 2aωm

)
R = 0 , (3.3.19)

1

sinϑ
∂ϑ

[
sinϑ∂ϑΘ

]
−

(
(m+ qP cosϑ− aω sin2 ϑ)2

sin2 ϑ
+ µ2a2 cos2 ϑ− λ− a2ω2 + 2aωm

)
Θ = 0 , (3.3.20)

where in the static case when ω = 0 and with the mass of the scalar field set to zero µ = 0, the polar equation
eigenfunctions reduce to the spherical harmonics and the corresponding eigenvalues λ become λ = ℓ(ℓ+ 1).



4 Tidal response of black holes

4.1 Tidal deformations

Foundational work on describing tidal effects in Newtonian gravity was done by Love in 1911 [85–87]. He studied
tidal effects in the context of the Earth-Moon system and described the elastic deformations of the Earth as its
gravitational potential changes due to the presence of the Moon. He characterized the Earth’s response with
parameters now called Love numbers. With the prospects of gravitational wave astronomy growing, Flanagan
and Hinderer studied the possibility of observing tidal effects in binary coalescences [23]. If tidal effects could
be detected, the information could be used to infer some properties about neutron stars and their equation of
state. In light of Flanagan’s and Hinderer’s 2008 analysis on the detection of tidal effects on neutron stars with
Earth-based gravitational wave detectors, the framework for investigating tidal deformations was extended to
general relativity by Binnington and Poisson in 2009 [25]. It is reviewed here.

Tidal distortion occurs when a massive body is influenced by an external gravitational field. The source
of the external perturbation can be another massive body and tidal effects are commonly observed in binary
systems, but to discuss tidal effects in general, the source can be left arbitrary. The deformations of the shapes
of bodies depend on their equation of state and various other effects. In Newtonian gravity, tidal deformations
are studied in terms of the full gravitational potential U . For a weakly externally perturbed object with mass M
and equilibrium radius rs, the total Newtonian potential outside it can be written in a spherical harmonic Yℓm
expansion with the primary potential and the response separated one from the other:

U = −M
r

+
(ℓ− 2)!

ℓ!

∑
ℓ=2

ℓ∑
m=−ℓ

YℓmEℓmr
ℓ

(
1 + kℓm

(
r

rs

)−2ℓ−1
)
, (4.1.1)

where the dipole term corresponds to shifts of the center of mass so it is not included, and the monopole term
is explicitly separated. The monopole term corresponds to a potential created by a spherically symmetric self-
gravitating body. In non-spherical cases, the body’s potential is in general more complicated than just a monopole
term, but provided that it is known, it can be separated analogously to the above. The coefficients Eℓm can then
be interpreted as describing the external tidal potential. The body’s response is described with the dimensionless
Love numbers kℓm. The Love numbers are entirely fixed by specifying a boundary condition at the surface of the
deformed body, and they are independent of the magnitude of the tidal potential coefficients Eℓm. This means
that the Love numbers hold information about intrinsic properties of objects, such as the equation of state, and
therefore they are relevant physical observables. If the system is not static, the Love numbers kℓm are in general
complex [30]:

kℓm = κℓm + iνℓm . (4.1.2)

The real part κℓm describes tidal effects, while the imaginary part νℓm represents dissipative effects. For static
objects in static tidal environments, the dissipative Love numbers are zero, and the object response is described
solely with tidal Love numbers.

Through the long-distance limit, the Newtonian gravitational potential U can be linked to the tt-component
of the metric perturbation h:

U = −1

2
htt . (4.1.3)

This relation can be used to directly introduce Newtonian gravitational potentials into a general relativity problem
with the weak-field approximation. The metric component htt can be analogously expanded and the perturbation
part without the body’s own contribution is

−2h̃tt =
(ℓ− 2)!

ℓ!

∑
ℓ=2

ℓ∑
m=−ℓ

YℓmEℓmr
ℓ

((
1 +O

[
r−1

])
+ kℓm

(
r

rs

)−2ℓ−1 (
1 +O

[
r−1

]))
. (4.1.4)

21



22 CHAPTER 4. TIDAL RESPONSE OF BLACK HOLES

The analysis of Love numbers is directly extended to all other field variables:

ψ ∝ rℓ
(
1 + k

(
r

r+ + r−

)−2ℓ−1
)
, (4.1.5)

where r+ and r− represent the radial location of the outer and inner horizons.

With this, tidal deformations have a clear interpretation in general relativity. However, not all tidal effects
of general relativity have counterparts in Newtonian mechanics. Perturbations can have two decoupled parts, the
odd and even sectors described in the previous section, the Newtonian potential is related to one of them, but
the other does not have an analog in Newtonian gravity. For black holes, the rotational contribution, subtracted
in the above expression, can be found directly from the metric [88].

The source and the response can have terms with the same power of r entangling the two. Kol and Smolkin
suggested using higher dimensions to remove the power overlap and therefore avoid the associated ambiguity
between what is considered a source and what a response [89]. This effectively corresponds to allowing the
multipole expansion parameter ℓ to be real, and not only integer-valued. The analytic continuation has become a
popular method having been used by various authors to find Love numbers of the Kerr black hole [29–31]. In this
work, an alternative, entirely physical method for disentangling these source and response effects is presented.

The way that Love numbers for black holes are found is by solving the perturbation master equations. The
solutions are then matched to the expression 4.1.5. All master equations are second-order differential equations
that require two boundary conditions. The perturbation sources can be considered to be infinitely far. This
means that the external tidal perturbations are progressively growing with increasing distance r from the black
hole, while the response is diminishing with increasing distance from the black hole. The boundary condition at
infinity can be to fix the normalization of the growing mode of the solution. The horizon is a one-way membrane,
on the horizon energy and momentum fluxes can be directed only into the black hole. In terms of boundary
conditions, this requires that the solution is regular at the horizon.

4.2 Static response of the Schwarzschild black hole

In their influential article on the relativistic theory of tidal Love numbers, Binnington and Poisson arrive at the
important conclusion that the static Love numbers of the Schwarzschild black hole are zero [25]. These are the first
calculations of Love numbers for black holes, outlining the method widely used in the subsequent Love number
calculations by numerous authors. As an example, the calculation of the odd sector Love numbers for metric
perturbations is summarized here.

The odd metric perturbations obey the Regge-Wheeler equation B.1.86:

∇I∇
Iψ2− −

(
1− 2M

r

)(
λ2

r2
− 6M

r3

)
ψ2− = 0 , (4.2.1)

where λ2 = ℓ(ℓ+ 1). From now on, the variable label marking the type of perturbation is dropped: ψ = ψ2−. For
static perturbations, the equation reduces to

ψ′′[r] +
2M

r(r − 2M)
ψ′[r]− λ2r − 6M

r2(r − 2M)
ψ[r] = 0 . (4.2.2)

Inverting the independent variable ψ[r] → ψ[z] , where z = 2M
r , leads to the expression

ψ′′[z] +
(3z − 2)

(z − 1)z
ψ′[z] +

λ2 − 3z

(z − 1)z2
ψ[z] = 0 . (4.2.3)

This is a Fuchsian equation [90] with three regular singular points at z = 0, z = 1, and z = ∞, where the regularity
of the third can be inferred from the equation before the inversion of the variable. An equation with these singular
points can be brought into hypergeometric form [91]:

z(1− z)u′′[z] + (c− (a+ b+ 1)z)u′[z]− abu[z] = 0 , (4.2.4)

with a, b, c being the coefficients that determine the solutions.
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In this case, the equation is brought to the hypergeometric form for the variable

u[z] = z−lψ[z] (4.2.5)

and with coefficients

a = ℓ− 1 , b = ℓ+ 3 , c = 2(ℓ+ 1) . (4.2.6)

The hypergeometric equations and the properties of their solutions are well studied. The solution to the static
case Regge-Wheeler equation in terms of the hypergeometric functions is [26, 92]

ψ[z] = zℓ
(
c1F [a, b, c; z] + c2z

1−cF [1− a, b, b− a+ 1; z−1]
)
. (4.2.7)

This is a degenerate case. The solution can be regular at the horizon z = 1 only if c1 is zero. This is because
the hypergeometric function in the first term, which behaves as ∼ log [1− z], is logarithmically divergent at the
horizon [26, 90]. Then substituting the values of the coefficients, the solution is a polynomial [92]

ψ[z] = c2z
−ℓ−1F [−ℓ, ℓ+ 3, 5; z−1] = c2z

−ℓ−1
ℓ∑

n=0

(−ℓ)n(ℓ+ 3)n
(5)n

z−n

n!
. (4.2.8)

The polynomial has negative powers of z, and therefore only positive powers of the radial variable r:

ψ2−ℓm
[r] ∝ rℓ+1

ℓ∑
n=0

(−ℓ)n(ℓ+ 3)n
(5)n n!

( r

2M

)n
. (4.2.9)

The solution is purely growing towards infinity and therefore represents the external perturbation. The absence
of decaying modes implies that there is no response, the Love numbers are zero:

k2−ℓm
= 0 . (4.2.10)

4.3 Static response of the Kerr black hole

The significant feature in the calculation of the Love numbers for the Kerr black hole is that while the tidal Love
numbers are zero, the dissipative Love numbers are not. This result was worked out by Le Tiec, Casals, and
Franzin [29], and reproduced by Charalambous, Dubovsky, and Ivanov [30] soon after. It can be reasoned that a
nonzero dissipative response should be expected, as this is in agreement with Newtonian analogs, where due to
tidal torquing, rotation necessarily introduces a dissipative response in the perturbed system. However, to find
this result for the Kerr black hole, analytic continuation was used. This is an unphysical renormalization scheme,
and there has been a discussion about the validity of this approach. Here the main points of the Kerr black hole
Love number calculation are reproduced.

The Teukolsky equation describes perturbations of the Kerr black hole. The equations for the separate
pieces of the full variable ψ[t, r, ϑ, φ] = e−iωtR[r]Θ[ϑ]eimφ are the radial and polar equations 3.3.3 and 3.3.4:

∆−s∂r
[
∆s+1∂rR

]
+

(
K2 − 2is(r −M)K

∆
+ 4isωr − a2ω2 + 2amω − λ

)
R = 0 , (4.3.1)

1

sinϑ
∂ϑ

[
sinϑ∂ϑΘ

]
+

(
a2ω2 cos2 ϑ− m2

sin2 ϑ
− 2aωs cosϑ− 2ms cosϑ

sin2 ϑ
− s2 cot2 ϑ+ s+ λ

)
Θ = 0 , (4.3.2)

where s = 0,±1,±2 determines the perturbation type, r± = M ±
√
M2 − a2 are the inner and outer horizons of

the Kerr black hole, ∆ = (r − r+)(r − r−), K = (r2 + a2)ω − am. For the polar equation, λ are the eigenvalues.
Both the radial and the polar equations are confluent Heun equations, with one irregular and two regular singular
points. If the irregular singularity can be turned into a regular one, the equations become hypergeometric. This
happens in the static limit ω = 0. In the static case, the polar equation has a reduced form and its eigenfunctions
become the spin-weighted spherical harmonics [73]. Their eigenvalues are

λ = (ℓ− s)(ℓ+ s+ 1) . (4.3.3)
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Similarly, with ω = 0, the radial equation becomes simpler:

∆−s∂r
[
∆s+1∂rR

]
+

(
a2m2 − 2isam(r −M)

∆
− λ

)
R = 0 . (4.3.4)

This equation is put in hypergeometric form

z(1− z)R′′[z] + (c− (a+ b+ 1)z)R′[z]− abR[z] = 0 , (4.3.5)

with the following definitions:

a = ℓ+ 1− s , b = ℓ+ 1 + 2imγ , c = 1− s+ 2imγ , (4.3.6)

r − r+
r − r−

= z , R = (r − r−)−iγm−s(r − r+)iγm−sR , γ =
a

r+ − r−
. (4.3.7)

The procedure for obtaining the hypergeometric form, albeit more involved, is analogous to the one described in
the previous section. The radial solution R in terms of the hypergeometric functions is

R[z] = (1− z)−iγm−sziγm−s(1− z)a
(
c1F [a, b, c; z] + c2z

1−cF [a− c+ 1, b− c+ 1, 2− c; z]
)
, (4.3.8)

where c1 and c2 are to be fixed using boundary conditions. Here with analytic continuation ℓ is allowed to be
real. This means the coefficients a, b, c do not have to be integer-valued and the generic hypergeometric equation
is used. Now the boundary conditions can be used. The radial solution R has to be regular across the horizon,
therefore c2 must be zero. The reduced solution is expressed for the large distance variable with the following
relation [29, 30, 92]:

F [a, b,−c+ a+ b+ 1; z] =
Γ[c]Γ[c− a− b]

Γ[c− a]Γ[c− b]
F [a, b, a− b− c+ 1; 1− z] + zc−a−bΓ[c]Γ[a+ b− c]

Γ[a]Γ[b]
F [c− a, c− b, c− a− b+ 1; 1− z] ,

(4.3.9)

which implies an expansion in ℓ = ℓ0 + ϵ taking ℓ0 to be integer, and ϵ to be small. This then gives the radial
solution at infinity r → ∞

R
∣∣∣
r→∞

= αℓmr
ℓ

(
1 +

(
r

r+ − r−

)−2ℓ−1 Γ[−2ℓ− 1]Γ[ℓ+ 1− s]Γ[1 + ℓ+ 2imγ]

Γ[2ℓ+ 1]Γ[−ℓ− s]Γ[−ℓ+ 2imγ]

)
. (4.3.10)

By comparing the form of the radial solution with the expansion for the metric perturbation 4.1.5, the static
response coefficients can be found:

kℓm =

(
r+ − r−
r+ + r−

)2ℓ+1 Γ[−2ℓ− 1]Γ[ℓ+ 1− s]Γ[1 + ℓ+ 2imγ]

Γ[2ℓ+ 1]Γ[−ℓ− s]Γ[−ℓ+ 2imγ]
. (4.3.11)

Now ℓ can be restricted to integer values. Then with the gamma function identity [31, 90]

Γ[l + 1 + ia]

Γ[−l + ia]
= (−1)lia

l∏
n=1

[n2 + a2] , (4.3.12)

where n, l represent any integers, a is any real number, and z is any complex number, the above general expression
4.3.11 for Kerr black hole Love numbers is brought to its final form [29–31]:

κℓm = 0 , (4.3.13)

νℓm = (−1)s+1mγ

(
r+ − r−
r+ + r−

)2ℓ+1 (ℓ+ s)!(ℓ− s)!

(2ℓ+ 1)!(2ℓ)!

ℓ∏
n=1

[
n2 + 4m2γ2

]
. (4.3.14)

Static tidal Love numbers κℓm are zero for Kerr black holes, static dissipative Love numbers are not. The dissi-
pative response can be associated with frame dragging. This is true for scalar, vector, and metric perturbations.

Crucially, the result depends on analytic continuation. This is undesirable since the procedure is unphysical.
In the following section a new and physical way of performing this computation is shown, without analytic
continuation.



4.4 Dyonic Kerr-Newman black hole static response to charged scalar
field perturbations

Here the main calculation of this work is described. The static response of a charged scalar field in the vicinity
of a dyonic Kerr-Newman black hole excited by an external scalar field tide is derived. This is a new result.

The perturbation equations for the charged scalar field perturbations of the Kerr-Newman black hole [49]
are derived in section 3.3.3. The master radial equation 3.3.19 and the master polar equation 3.3.20 respectively
are

∂r
[
∆∂rR

]
+

(
((r2 + a2)ω −ma+ eQr)2

∆
− µ2r2 − λ− a2ω2 + 2aωm

)
R = 0 , (4.4.1)

1

sinϑ
∂ϑ

[
sinϑ∂ϑΘ

]
−

(
(m+ qP cosϑ− aω sin2 ϑ)2

sin2 ϑ
+ µ2a2 cos2 ϑ− λ− a2ω2 + 2aωm

)
Θ = 0 . (4.4.2)

The perturbing charged scalar field is

ϕ = e−iωtR[r]Θ[ϑ]eimϕ . (4.4.3)

The charged scalar field is coupled to the black hole via the electromagnetic gauge coupling, and the vector field
in the intermediate gauge [49] is

A = −Qr
Σ

(
dt− a sin2 ϑdφ

)
+
P cosϑ

Σ

(
adt− (r2 + a2)dφ

)
. (4.4.4)

The two master equations can always be brought to confluent Heun form [91]:

u′′[z] +
(
γ

z
+

δ

z − 1
+ ϵ

)
u′[z] +

αz − β

z(z − 1)
u[z] = 0 . (4.4.5)

For the polar equation, this requires redefining the dependent variable to θ:

Θ[x] = e
ϵ
2xx

γ−1
2 (x− 1)

δ−1
2 θ[x] , (4.4.6)

where the coordinate is changed according to

x =
cosϑ+ 1

2
. (4.4.7)

The polar case confluent Heun equation parameter definitions are

α = 4aqPω − 4a(qP − 1)

√
ω2 − µ2 , β = a2(ω2 − µ2) + 2a

√
ω2 − µ2(1−m− 2qP ) + qP (2aω + 1) + λ ,

γ = 1−m− 2qP , δ = 1 +m , ϵ = 4a

√
ω2 − µ2 . (4.4.8)

Analogously, the radial equation is in confluent Heun form for the complex variable R:

R[z] = e
ϵ
2 zz

γ−1
2 (z − 1)

δ−1
2 R[z] , (4.4.9)

where the coordinate redefinition is

z =
r − r−
r+ − r−

, (4.4.10)

and the radial case confluent Heun equation parameters are

α = 2(r+ − r−)

(√
ω2 − µ2(qQ+ 2Mω + i) + qQω −Mµ2 + 2Mω2

)
,

β = −2(a2 + r2−)

(
ωω− + (ω− + iκ−)

√
ω2 − µ2

)
+ r2−µ

2 + a2ω2 − 2aω(m+ qP ) + i(qQ+ 2Mω) + λ , (4.4.11)

γ = 1− i
ω−
κ−

, δ = 1− i
ω+
κ+

, ϵ = 2i(r+ − r−)

√
ω2 − µ2 ,
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where

Ω± =
a

r2± + a2
, κ± =

r± − r∓
2(a2 + r∓2)

,

Φ± = −At − Ω±Aφ =
r±Q

r2± + a2
, ω± = ω − Ω(m+ qP ) + qΦ± . (4.4.12)

The confluent Heun form is relevant for general calculations. Where static perturbations are concerned,
zero frequency ω = 0 related simplifications occur and the radial equation singular points become those of the
hypergeometric equation. For the calculation here, a further restriction is made, the scalar field is taken to be
massless µ = 0, thus avoiding any mass term-related associated regularity problems for the scalar field ϕ at infinity.
This has the additional benefit of simplifying the eigenvalues of the polar master equation:

λ = ℓ(ℓ+ 1) . (4.4.13)

Then the radial master equation becomes

z(z − 1)R′′[z] + (2z − 1)R′[z] +

(
(am+ qQ((z − 1)r+ − zr−))2

(r− − r+)2(z − 1)z
+ q2P 2 − λ

)
R[z] = 0 . (4.4.14)

A complex variable R can be introduced, that is related to the radial part of the scalar field as

R[z] = (z + 1)dz−eR[z] , (4.4.15)

where

d =
i(qQr− − am)

r+ − r−
, e =

i(qQr+ − am)

r+ − r−
, (4.4.16)

and the coordinate relation is

z =
r − r+
r+ − r−

. (4.4.17)

The radial master equation expressed for this variable is

z(1− z)R′′[z] +
(
r+ − r− − 2iqQr+ + 2iam

r+ − r−
− (2− 2iqQ)z

)
R′[z]− (q2P 2 − λ− iqQ)R[z] = 0 , (4.4.18)

which is the hypergeometric equation

z(1− z)R′′[z] + (c− (a+ b+ 1)z)R′[z]− abR[z] = 0 (4.4.19)

with coefficients

a = −f − iqQ , (4.4.20)

b = f + 1− iqQ , (4.4.21)

c = 1 + 2i(mγ − qQ) , (4.4.22)

f =

√
1 + 4(ℓ(ℓ+ 1)− q2(Q2 + P 2))

2
− 1

2
. (4.4.23)

Importantly, in the zero charge limit Q → 0 , P → 0, the coefficient f reduces to f → ℓ. The general solution to
this hypergeometric equation in terms of the hypergeometric functions is

R[z] = (z + 1)d(z)−e
(
c1F [a, b, c; z] + c2z

1−cF [a− c+ 1, b− c+ 1, 2− c; z]
)
. (4.4.24)

At the inner horizon r = r−, the variable z is z = 1, at the event horizon r = r+ the variable is z = 0, and at
infinity r → ∞ the variable is z → −∞. The solution can be regular at the horizon, only if c2 is set to zero since



z1−cF [a− c+1, b− c+1, 2− c; z] is not analytic for z = 0. To evaluate the regular solution at infinity r → ∞, where
z → −∞ the following hypergeometric function connection formula for the inverse variable can be used [29, 92]:

sin[π(b− a)]

π
F [a, b, c, x] =

(−x)−a

Γ[b]Γ[c− a]
F [a, a− c+ 1, a− b+ 1;x−1]− (−x)−b

Γ[a]Γ[c− b]
F [b, b− c+ 1, b− a+ 1;x−1] .

(4.4.25)

The hypergeometric functions at x = ∞ are F [a, b, c;x−1] = 1. Then

Rℓm[r]

∣∣∣∣
∞

=
πc1

sin[π(b− a)]

1

Γ[b]Γ[c− a]
(r − r−)d(r − r+)−e

(
r

r+ − r−

)−a
(
1−

(
− r

r+ − r−

)a−b Γ[b]Γ[c− a]

Γ[a]Γ[c− b]

)
.

(4.4.26)

where a− b = −2f − 1 and Γ[a] = −f − iqQ. This expression is not analytical for integer values of f . As the second
term in the parentheses tends to zero as f → n, the overall coefficient in front of this expression containing the
sine function in the denominator approaches infinity.

The integer f case is important for reproducing the Kerr black hole Love numbers for scalar field perturba-
tions as a zero-charge limit of the Kerr-Newman perturbations, thus the expression needs to be regularized. This
can be done using the charges Q and P as physical regularization parameters. As noted previously, the coefficient
f reduces to f → ℓ as Q → 0 , P → 0. Thus small charges can be chosen as expansion parameters, such that
f = ℓ+ ϵ. Expanding the gamma function near any of its poles then gives the expressions

sin[π(2f + 1)]

π
=

1

Γ[2f + 1]Γ[−2f ]
= −2ϵ+O[ϵ2] , (4.4.27)

1

Γ[−f ] = (−1)l+1ℓ! ϵ , (4.4.28)

and the expansion formula 4.4.25, with a further specification of charges to ensure a→ −f and b→ f + 1, can be
rewritten as [30]

F [a, b, c, x] =
Γ[c]Γ[b− a]

Γ[b]Γ[c− a]
(−x)−aF [a, a− c+ 1, a− b+ 1;x−1] +

Γ[c]Γ[a− b]

Γ[a]Γ[c− b]
(−x)−bF [b, b− c+ 1, b− a+ 1;x−1] .

(4.4.29)

Thus a regularized expression of the solution valid for f = ℓ+ ϵ is obtained:

Rℓm[r]

∣∣∣∣
∞

= c1
Γ[c]Γ[b− a]

Γ[b]Γ[c− a]
(r − r−)d(r − r+)−e

(
− r

r+ − r−

)−a
(
1 +

(
− r

r+ − r−

)a−b Γ[b]Γ[a− b]Γ[c− a]

Γ[a]Γ[b− a]Γ[c− b]

)
,

(4.4.30)

and corresponding to the decaying modes, the Love numbers are

kℓm =

(
−r+ − r−
r+ + r−

)b−a Γ[b]Γ[a− b]Γ[c− a]

Γ[a]Γ[b− a]Γ[c− b]
. (4.4.31)

Substituting the values for a, b, and c, this expression becomes

kℓm =

(
−r+ − r−
r+ + r−

)2f+1 Γ[−2f − 1]

Γ[2f + 1]

Γ[f + 1]

Γ[−f ]
Γ[f + 1 + 2imγ]

Γ[−f + 2imγ]
. (4.4.32)

Then using the gamma function identities the following asymptotic expression for f → ℓ can be obtained

Γ[−2f − 1]

Γ[2f + 1]

Γ[f + 1]

Γ[−f ] → (ℓ)!(ℓ)!

(2ℓ+ 1)!(2ℓ)!
. (4.4.33)

In the uncharged limit Q = 0, P = 0, which implies that the real f reduces to exactly the integer multipole number
f = ℓ, using identity 4.3.12, the Love numbers become

kℓm = −imγ
(
r+ − r−
r+ + r−

)2ℓ+1 (ℓ)!(ℓ)!

(2ℓ+ 1)!(2ℓ)!

ℓ∏
n=1

[
n2 + 4m2γ2

]
. (4.4.34)

Kerr Love numbers for scalar field perturbations are obtained. They are purely imaginary, thus only dissipative
effects are present. Tidal Love numbers of the Kerr black hole for scalar perturbations are zero. This result
precisely matches the expression 4.3.11 for the Kerr Love numbers in the scalar case obtained by Le Tiec using
analytic continuation [29]. However, here the regularization parameters are physical.
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5 Conclusion

In this thesis, the static response of black holes to external tides has been studied. First, the basic concepts
of black holes in general relativity were reviewed, including the classification of solutions of the Einstein equation
and the Kerr-Newman black hole. Afterwards, a summary of the perturbation theory framework in general
relativity was presented. The black hole perturbation equations in the spherical as well as the axially symmetric
case were discussed. Then the theory of tides in general relativity was introduced, revising some specific cases.
For the Kerr black hole, the conclusion is that the dissipative response to external perturbations is nonzero. But
the result crucially depends on analytic continuation. Charged scalar perturbations on a dyonic Kerr-Newman
black hole background were considered next. A new calculation of Love numbers for this case was presented.

The dyonic Kerr-Newman black hole response to static charged scalar field perturbations represents the
most general case of static scalar field perturbations of black holes in four dimensions with asymptotically flat
boundaries, that are not charged under scalar fields themselves. It is described in this work for the first time. In
this case, Love numbers are generally not zero. The Kerr black hole response to scalar perturbations was explored
in this context as an asymptotic zero-charge case. The result is that the Love numbers are purely imaginary, and
tidal Love numbers are zero. This is in full agreement with previously described findings, such as in the work
by Le Tiec [29]. Importantly though, those results relied on the use of analytic continuation. While there can
be some doubts about the physicality and uniqueness of the analytic continuation, the asymptotic zero-charge
approach is completely physical. The matching results help validate both methods and establish an alternative
renormalization scheme for finding Kerr Love numbers.

While only static response has been investigated in this work, the more general Heun form perturbation
equations have been established. These can be used to investigate dynamical behavior as one of the most direct
future perspectives. In the static case, the tidal Love numbers of Schwarzschild, Reissner-Nordström, and Kerr
black holes are all zero. Recent studies [31] suggest that, perhaps, the dynamical tidal Love numbers are not
zero, but have a logarithmic behavior. Some preliminary findings of the static response for non-zero charge cases
indicate a similar trend. Studying charged cases in more detail is another direction in which this work could be
expanded on.
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A Tools in general relativity

A.1 Review of differential geometry

The notion that leads to a quantitative description of the curvature of spacetime is that curvature affects the
direction and length of vectors as they are moved from point to point. While vectors can be represented in any
basis that spans the spacetime, using a coordinate basis provides a convenient way to track the changes in vectors.
A coordinate basis is aligned with coordinate axes, the tangent space basis vectors are identified with the partial
derivatives of the coordinates, and the cotangent basis vectors with coordinate differentials:

eµ = ∂µ , (A.1.1)

eµ = dxµ . (A.1.2)

The chain rule defines the transformations to new coordinate bases:

∂µ =
∂xν

∂xµ
∂ν , (A.1.3)

dxµ =
∂xµ

∂xν
dxν . (A.1.4)

By the fundamental theorem of Riemannian geometry [93], a coordinate basis is associated with a unique, metric-
compatible, torsion-free Christoffel connection Γ describing the change to the coordinate basis vectors:

∂µeν = Γ
ρ
µνeρ , (A.1.5)

Γ
ρ
µν =

1

2
gρσ (∂µgνσ + ∂νgσµ − ∂σgµν) . (A.1.6)

In the covariant derivative ∇ both changes of a vector v and the coordinate basis are considered together:

∇µv
ν = ∂µv

ν + Γνµρv
ρ . (A.1.7)

A shorthand notation ”,” for the derivative and ”;” for the covariant derivative is often used:

vν;µ = vν,µ + Γνµρv
ρ . (A.1.8)

The covariant derivative along a curve x[τ ] is

∇vµ

dτ
=
dvµ

dτ
+ Γ

µ
νρ
dxν

dτ
vγ . (A.1.9)

The connection is chosen to make the covariant derivative annihilate the metric. The Christoffel connection is the
most basic element capturing curved spacetime features, however, it is not a tensor. The commutation relations
of the covariant derivatives provide a covariant way to quantify the curvature of spacetime [94]. For each type of
tensor component, they are

∇[µ∇ν]s = −Sρµν∇ρs , (A.1.10)

∇[µ∇ν]v
σ = Rσ

ρµνv
ρ − 2S

ρ
µν∇ρv

σ , (A.1.11)

∇[µ∇ν]vσ = −Rρ
σµνvρ − 2S

ρ
µν∇ρvσ . (A.1.12)

The rank-4 Riemann tensor is constructed from Christoffel connections and their derivatives:

R
µ
νρσ = ∂ρΓ

µ
σν − ∂σΓ

µ
ρν + Γ

µ
ρυΓ

υ
σν − Γ

µ
συΓ

υ
ρν . (A.1.13)

The contraction of the Riemann tensor in its first and third indices is the rank-2 Ricci tensor

Rµν = R
ρ
µρν . (A.1.14)
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The contraction of the Ricci tensor is the rank-0 Ricci scalar

R = R
µ
µ . (A.1.15)

The Weyl tensor C is the traceless part of the Riemann tensor

Cµνρσ = Rµνρσ − 1

2
(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ) +

1

6
R(gµρgνσ − gµσgνρ) . (A.1.16)

These comprise the family of curvature tensors R. The Ricci scalar provides a measure of the curvature, the Ricci
tensor encapsulates the curvature associated with sources, and the Weyl tensor describes source-free effects of
curvature, such as tidal effects and gravitational waves.

The skew-symmetric part of connections and the Lie bracket, which is the symmetric part of the covariant
derivative, make up the torsion tensor S. In general relativity, it is taken to be zero. When a coordinate system is
used, since partial derivatives commute, the Lie bracket is zero meaning that paths in loops close and the labeling
of spacetime is unique. Then the torsion tensor is purely the skew-symmetric part of the Christoffel connection

S
ρ
µν = Γ

ρ
µν − Γ

ρ
νµ = 0 . (A.1.17)

Being torsion-free, the Christoffel connection is symmetric in its lower indices. Consequently, the Riemann tensor
also exhibits a set of symmetries and skew-symmetries. Its component relations are

Rµνρσ = Rρσµν = −Rµνσρ = −Rνµρσ . (A.1.18)

Additionally, the Riemann tensor satisfies the Bianchi identity

Rµ[νρσ] = 0 , (A.1.19)

and the contracted Bianchi identity

∇[υRµν]ρσ = 0 , (A.1.20)

which consider the tensor in a cyclic sum [95].

The Lie derivative of the metric being zero is the Killing equation:

LKgµν = 0 ⇔ ∇νKµ +∇µKν = 0 , (A.1.21)

For every Killing vector field Kµ there is a constant of motion K:

K = Kµ
dxµ

dλ
, (A.1.22)

dK

dλ
= 0 . (A.1.23)

If the metric does not depend on a particular coordinate, then the vector field related to the direction of the
coordinate is a Killing vector field.

Spacetime curvature manifests in the emergence of gravity. Inertial motion is described by geodesics, which
are intrinsically unchanging smooth vector fields. All alterations in the geodesics can then be attributed to
curvature. Inertial motion follows the geodesic equation

∇uµ

dτ
=
d2xµ

dτ
+ Γ

µ
νρ
dxν

dτ

dxρ

dτ
= 0 , (A.1.24)

where u is the four-velocity associated with the motion. The geodesic deviation equation describes how in a
curved spacetime nearby geodesics diverge from one another:

∇2ξµ

dτ2
+R

µ
νρσξ

ρuνuσ = 0 . (A.1.25)

The deviations of inertial paths lead to tidal effects, a hallmark of gravity.

The abstract treatment of curvature can be made physically meaningful only after a spacetime geometry
and the complementary sources of the geometry are introduced. The two influence one another, and the Einstein
equation 2.1.1 ensures their compatibility.
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A.2 The Einstein equation from the Hilbert action

Hilbert’s approach to finding the Einstein equation is outlined here. The presentation closely follows that of
Caroll [94].

The Hilbert action is

SH =

∫
d4xLH , (A.2.1)

where the Hilbert Lagrange density is

LH =
√
−gR . (A.2.2)

The motivation for using this Lagrange density is the principle of general covariance. To maintain the laws of
physics in a covariant form, the Lagrange density must be a scalar. Any equation of motion, compatible with
gravity as a source of acceleration, must be a second-order equation. The Ricci scalar R is the simplest quantity
that can be formed from the metric and its derivatives. Due to the presence of the metric, the Ricci scalar
encodes the properties of spacetime curvature and leads to a second-order Euler-Lagrange equation. To preserve
the invariance of the action under general coordinate transformations, the Lagrange density includes the Jacobian
determinant of the metric

√
−g = det

∣∣∣∣∂xµ∂xν

∣∣∣∣ . (A.2.3)

The variation of the action with respect to the inverse metric is

δSH =

∫
d4x(

√
−ggµνδRµν +

√
−gRµνδg

µν +Rδ
√
−g) . (A.2.4)

The variation of the action involves the variations of the Christoffel connections. While the Christoffel connection
is not a tensor, its variation, being a difference of two Christoffel connections, is a tensor since the non-tensor
terms cancel. The covariant derivative of the variation of the Christoffel connection is

∇σδΓ
ρ
µν = ∂σδΓ

ρ
µν + Γ

ρ
συδΓ

υ
µν − ΓυσµδΓ

ρ
υν − ΓυσνδΓ

ρ
υµ . (A.2.5)

In turn, the variation of the Riemann tensor can be expressed as

δR
ρ
µσν = ∇σδΓ

ρ
µν −∇νδΓ

ρ
µσ . (A.2.6)

One of the terms in the variation of the action can be identified as the volume element of the covariant divergence.
Using Stokes’ theorem [96] which relates an integral over a region to an integral around the boundary of that
region, this volume element term can be substituted by a boundary term at infinity. Requiring the variation of
the action to be zero at infinity this term disappears from the action:∫

d4x
√
−ggµνδRµν =

∫
d4x

√
−ggµν(∇ρδΓ

ρ
µν −∇νδΓ

ρ
µρ) =

∫
d4x

√
−g∇ρ(g

µνδΓ
ρ
µν − gµρδΓνµν) = 0 . (A.2.7)

The variation of the determinant can be expressed as

δ
√
−g = δ[−g−1]

−1
2 = −1

2
(−g−1)

−3
2 δ[−g−1] = −1

2

√
−ggµνδgµν . (A.2.8)

Using the above expression, the variation of the action can be reduced to

δSH =

∫
d4x

(√
−gRµνδg

µν − 1

2
R
√
−ggµνδgµν

)
=

∫
d4x

(
Rµν − 1

2
gµνR

)√
−gδgµν . (A.2.9)

Extremizing the Hilbert action, i.e. setting its variation to zero, leads to the Einstein equation without source:

Gµν = Rµν − 1

2
gµνR = 0 . (A.2.10)
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The Hilbert action can be extended with an action Sϕ for matter fields

S =
SH
8π

+ Sϕ . (A.2.11)

Analogously, this leads to the expression

8πδS√
−gδgµν

= Rµν − 1

2
gµνR+

8πδSϕ√
−gδgµν

= 0 . (A.2.12)

Identifying the energy-momentum tensor as

Tµν = −8π
δSϕ√
−gδgµν

, (A.2.13)

the full Einstein equation is obtained:

Gµν = Rµν − 1

2
gµνR = Tµν . (A.2.14)

Deriving the energy-momentum tensor from the action principle assures gauge invariance.

By the Lovelock theorem, which considers what form, in general, can a metric-dependent tensor have, in the
case of a four-dimensional spacetime, the only possible equation of motion obtainable from an arbitrary metric-
dependent scalar Lagrange density L = L [g] is the Einstein equation [97]. This implies that in four dimensions
the Hilbert action is the most general action that leads to a second-order equation of motion describing gravity.

A.3 Matter field sources of gravity

Gravitational coupling to a real scalar field ϕ with the Lagrangian

Lϕ = −∇µϕ∇µϕ− V [ϕ] (A.3.1)

leads to the action

S[g, ϕ] = SH + Sϕ =
1

16π

∫
d4x

√
−gR− 1

2

∫
d4x

√
−g(∇µϕ∇µϕ+ V [ϕ]) , (A.3.2)

and subsequently to the coupled equations of motion

Gµν = Tµν , (A.3.3)

(2− V )ϕ = 0 , (A.3.4)

where 2 = ∇µ∇µ is the d’Alembertian, and the energy-momentum tensor in terms of the scalar field ϕ is

Tµν [ϕ] = −8π
δ[
√
−gLϕ]√

−gδgµν
=

−8π√
−g

(
δ
√
−g

δgµν
Lϕ +

√
−g

δLϕ

δgµν

)
=

−8π√
−g

(
1
2
√
−ggρσδgρσ

−gµρgνσδgρσ
Lϕ +

√
−g

δLϕ

δgµν

)

= 8π

(
1

2
gµν(−∇ρϕ∇ρϕ− V ) +∇µϕ∇νϕ

)
. (A.3.5)

Analogously, the action for a Maxwell field is

S[g, ϕ,A] =
1

16π

∫
d4x

√
−g(R− FµνF

µν) , (A.3.6)

where the field strength tensor of the vector field is

Fµν = ∇µAν −∇νAµ . (A.3.7)

This leads to the equations of motion

Gµν = Tµν , (A.3.8)

∇νF
µν = 0 . (A.3.9)

The coupling of electromagnetism to gravity is through the energy-momentum tensor, which is

Tµν = FµρF
ρ

ν − 1

4
gµνFρσF

ρσ . (A.3.10)
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A.4 Tetrad formalism and the Cartan structure equations

In the most widely recognized formulation of general relativity coordinate bases are used, but this is not the
only possibility. Non-coordinate bases can be employed in what is known as the tetrad formalism [43, 98]. In
some circumstances, using alternative bases may be advantageous, for instance, to reflect a symmetry that can
be used to simplify a particular physical problem. The standard method is to adopt an orthonormal basis at each
spacetime point. The rationale for this choice and the introduction of the tetrad formalism is that it provides
a way to describe fermions in curved spacetime. In the well-established spinor formalism on flat space, the
gamma matrices have anti-commutation relations that tie them to the Minkowski metric, as spinors transform
according to the spin representation of the Lorentz group with generators proportional to the commutators of the
gamma matrices. The Lorentz transformations preserve the Minkowski metric. Modifying the gamma matrices to
account for curvature is conceptually challenging, to sidestep this issue, orthonormal bases can be used, effectively
concealing the curvature with the choice of basis. This strategy allows to preserve the intrinsic properties of gamma
matrices. Furthermore, in addition to the local coordinate invariance of general relativity, another symmetry is
revealed - local Lorentz invariance. The spin connection one-forms encapsulate the geometric effects of curvature,
that manifest in the derivative operator of the spinors. Beyond providing a method for introducing fermions in the
theory, tetrad formalism provides a complementary interpretation of the curvature, in particular, via the Cartan
structure equations [99]. The basic ingredients of the tetrad formalism and their relation to a coordinate basis
are highlighted in the following summary based on [9, 43, 94, 100], where the topics are discussed in more detail.
A concise introduction to the calculus of forms can be found in [45].

It is possible to locally choose an orthonormal basis by a coordinate transformation. Abstractly, an analog
global transformation can be defined, but this transformation in a curved spacetime depends on the location and
is no longer a coordinate transformation A.1.3. This is known as a tetrad. Tetrad basis vectors in terms of the
coordinate basis vectors can be expressed as

ea = e
µ

a ∂µ , (A.4.1)

ea = eaµdx
µ , (A.4.2)

with e µ
a and eaµ being the components of the tangent and cotangent tetrad basis vectors. The metrics of the two

are related via

ηab = e
µ

a e ν
b gµν , (A.4.3)

gµν = eaµe
b
νηab . (A.4.4)

where gµν are the coordinate metric components, and ηab are the the tetrad metric components. Since the tetrad
basis vectors are chosen to be orthonormal, the latter are the Minkowski metric components. The above-mentioned
Lorentz symmetry can be seen from the transformation

ηab = Λa
cΛ

b
dηcd = Λa

cΛ
b
de

µ
ce

ν
dgµν , (A.4.5)

where Λ represents a Lorentz transformation. This is an equally valid transformation to the one defined in A.4.3.
Unlike in the generic treatment of spinors, where the Lorentz symmetry is global, here the transformations are
position-dependent, thus the Lorentz symmetry is local.

While here the tetrad formalism is introduced starting from a coordinate basis, in a broader approach
no assumptions about the basis are needed, as long as the differentiation operation is defined to link adjacent
spacetime regions. A general tensor basis is related to a tetrad basis through

ea = e i
a ei , (A.4.6)

ea = eaie
i , (A.4.7)

The tensor and tetrad components of a tensor t are related as

tab = eaie
j
b t

i
j . (A.4.8)

The covariant derivative of a tensor can be expressed with spin connections ω a
i b replacing the connections ωkij

associated with the tensor basis:

∇it
a
b = ∂it

a
b + ω a

i ct
c
b − ω c

i bt
a
c . (A.4.9)



38 APPENDIX A. TOOLS IN GENERAL RELATIVITY

By comparison to the covariant derivative of the same tensor with tensor basis components, the connection ω a
i b

in terms of the connection ωkij and vice versa are

ω a
i b = eake

j
bω

k
ij − e

j
b∂ie

a
j , (A.4.10)

ωkij = eka∂ie
a
j + ekae

b
jω

a
i b . (A.4.11)

This implies that the covariant derivative of the tetrad is zero

∇ie
a
j = 0 . (A.4.12)

With the above, it is possible to project tensors involving covariant derivatives onto the tetrad basis. In particular,
this is relevant to be able to express quantities describing curvature. Having set torsion to zero, the Riemann
tensor as the commutator of the covariant derivatives A.1.11, generalized to an arbitrary tensor basis, is

Rijklv
j = ∇[k∇l]vi . (A.4.13)

The projection of the Riemann tensor onto a tetrad basis is

Rabcd = Rijkle
i
ae

j
be

k
ce

l
d = (∇[k∇l]e

i
a)e

j
be

k
ce

l
d =

= ωabd,c − ωabc,d + ωeacωbed − ωeadωbec + ωedcωbae − ωecdωbae , (A.4.14)

where the connections are used to replace the covariant derivatives of tetrads, and the non-commutativity of the
tetrads is expressed with a Lie bracket accounting for the additional terms compared to the coordinate definition
of the Riemann tensor A.1.13. The Riemann tensor in terms of the Ricci scalar, Ricci tensor, and Weyl scalar in
tetrad basis is:

Rabcd = Cabcd +
1

2
(ηacRbd − ηbcRad − ηadRbc + ηbdRac)−

1

6
(ηacηbd − ηadηbc)R . (A.4.15)

The covariant derivative of the metric in terms of the tetrad components is

∇iηab = ∂iηab − ωicaη
c
b − ωicbη

c
a . (A.4.16)

When the metric compatibility requirement holds:

∇iηjk = 0 , (A.4.17)

and when the components of the tetrad metric are constant, the partial derivative term vanishes and it follows
that the spin connection must be skew-symmetric in the tetrad components:

ωiab = −ωiba , (A.4.18)

the spin connection therefore has six independent tetrad components. A tensor that is skew-symmetric in its
covariant coordinate indices can be thought of as a tensor-valued differential form, whose exterior derivative
transforms as a form under coordinate transformations, however, it does not transform as a tensor under Lorentz
transformations. Covariant differentiation preserves tensor transformations, and to preserve all transformation
properties, the exterior derivative should be complemented with a tetrad connection. For the tensor-valued form
t the exterior derivative is

(dt)aij = ∂it
a
j − ∂jt

a
i , (A.4.19)

but the covariant object containing the exterior derivative is

(dt+ ω ∧ t)aij = ∂it
a
j − ∂it

a
j + ωabit

b
j − ωabj t

b
i . (A.4.20)

This can be applied to the two tensors made of the Christoffel connections - the torsion S and the curvature R.
With the definitions A.1.17 and A.1.13 of the two together with the expression for the Christoffel connection in
the tetrad basis A.4.11, these can be brought to a mixed form with two tetrad and two tensor indices. Considering
them as forms the Cartan structure equations can be obtained. Leaving only the tetrad indices, they are

Sa = dea + ωab ∧ e
b , (A.4.21)

Ra
b = dωab + ωac ∧ ωcb . (A.4.22)

Cartan structure equations hold information about the curvature of the spacetime. They relate the spin connection
and the torsion to the derivatives of the dual basis. This provides a way of computing connection components.
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A.5 Newman-Penrose formalism

The Newman-Penrose formalism is a variation of the tetrad formalism [32, 44]. It has been extensively used in
gravity research since its development in 1962, crucially, in finding exact solutions to the Einstein equation and
developing the perturbative framework used, among others, for describing Kerr black hole perturbations. Here
the tensor variant of the formalism is introduced, based on the descriptions by Newman and Penrose [32] and
Chandrasekhar [45], where more details and the Newman-Penrose equations can be found.

The innovation is in the use of a null basis. For this, the key is to allow the basis vectors to be complex,
then all four basis vectors can be made null. Null vectors allow for a natural decomposition of four-component
spinors into two-component spinors. This decomposition simplifies the representation of spinors, which motivates
the introduction of the Newman-Penrose formalism. The objects in the Newman-Penrose formalism are given
explicit names. The tensor indices are dispensed, and tensor equations are treated one component at a time.

The Newman - Penrose tetrad λ is

λai = (la, na,ma, m̄a) . (A.5.1)

The first two basis vectors l, n are real. The other two basis vectors m, m̄ are complex and conjugate to one
another. The real null vectors describe the lightcone. The tetrad vector null condition is

lala = nana = mama = m̄am̄a = 0 , (A.5.2)

the orthogonality condition is

lama = lam̄a = na ·ma = na · m̄a = 0 , (A.5.3)

and the normalization convention is

−lana = mam̄a = 1 . (A.5.4)

Then the metric of the tangent space is

ηab = −lanb − nalb +mam̄b + m̄amb =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 . (A.5.5)

Raising and lowering indices is equivalent to the permutations 1, 2, 3, 4 → 2, 1,−4,−3, and complex conjugates are
obtained by permuting 1, 2, 3, 4 → 2, 1, 3, 4. The directional derivatives are

∇i = λai = (D,∆, δ, δ̄) , (A.5.6)

and the covariant derivative along x is

∇x = xi∇i . (A.5.7)

The spin connection definition is

γijk = λajλ
b
k∇aλ

i
b = ηilγljk = −ηilγjlk . (A.5.8)

The spin connection components are referred to as spin coefficients. They are the basic objects with which other
quantities and equations are expressed. Their naming convention is

κ = γ 131 = −maDla, π = γ 421 = m̄aDna , ϵ = 1
2 (γ 121 − γ 341) =

1
2 (m̄

aDma − naDla) ,

τ = γ 132 = −ma∆la , ν = γ 422 = m̄a∆na , γ = 1
2 (γ 122 − γ 342) =

1
2 (m̄

a∆ma − na∆la) ,

σ = γ 133 = −maδla , µ = γ 423 = m̄aδna , β = 1
2 (γ 123 − γ 343) =

1
2 (m̄

aδma − naδla) ,

ρ = γ 134 = −maδ̄la , λ = γ 424 = m̄aδ̄na , α = 1
2 (γ 124 − γ 344) =

1
2 (m̄

aδ̄ma − naδ̄la) .

(A.5.9)
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The Riemann tensor is comprised of the Weyl tensor, Ricci tensors, and Ricci scalar as in equation A.4.15.
The distinct Riemann tensor components in the Newman-Penrose tetrad basis are

R1212 = C1212 +R12 − 1
6R ,

R1213 = C1213 + 1
2R13 ,

R1223 = C1223 − 1
2R23 ,

R1234 = C1234 ,

R1313 = C1313 ,

R1314 = 1
2R11 ,

R1324 = C1324 + 1
12R ,

R1334 = C1334 + 1
2R13 ,

R2323 = C2323 ,

R2324 = 1
2R22 ,

R2334 = C2334 + 1
2R23 ,

R3132 = −1
2R33 ,

R3434 = C3434 −R34 − 1
6R .

(A.5.10)

These can be complex, and the remainder of the nonzero components are the complex conjugates. The Weyl
and Ricci tensors obey additional cyclic relations that relate some of their components. Each has ten degrees of
freedom, that are represented using the Newman-Penrose scalars. The Weyl tensor is represented by five complex
Weyl scalars Ψ:

Ψ0 = C1313 = Cabcdl
amblcmd ,

Ψ1 = C1213 = Cabcdl
anblcmd ,

Ψ2 = C1342 = Cabcdl
ambm̄cnd ,

Ψ3 = C1242 = Cabcdl
anbm̄cnd ,

Ψ4 = C2424 = Cabcdn
am̄bncm̄d .

(A.5.11)

The Ricci tensor is represented with the Ricci scalars Φ and Λ:

Φ00 = 1
2R11 = 1

2Rabl
alb ,

Φ01 = 1
2R13 = 1

2Rabl
amb ,

Φ02 = 1
2R33 = 1

2Rabm
amb ,

Φ11 = 1
4 (R12 +R34) =

1
4Rab(l

anb +mam̄b) ,

Φ12 = 1
2R32 = 1

2Rabm
anb ,

Φ22 = 1
2R22 = 1

2Rabn
anb ,

Λ = 1
24R .

(A.5.12)

Three scalars Φ01,Φ02,Φ12 are complex, and four scalars Φ00,Φ11,Φ22,Λ are real. In the Newman-Penrose for-
malism, the choice of basis sets the Ricci tensor equal to the Einstein tensor G. The electromagnetic field strength
F is expressed with three Maxwell scalars ϕ:

ϕ0 = F13 = Fabl
amb ,

ϕ1 = 1
2 (F12 + F43) =

1
2Fab(l

anb + m̄amb) ,

ϕ2 = F42 = Fabm̄
anb .

(A.5.13)

Through the energy-momentum tensor T the Ricci and Maxwell scalars are related as Φij = 2ϕiϕj .

The equations of general relativity can be grouped into the transportation equations that describe parallel
transport, the spin coefficient equations that encode the information of the Ricci identity with the Cartan structure
equations, and the Bianchi identity equations.
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The Newman-Penrose tetrad vector null length A.5.2 can be viewed as the directional derivatives of the
corresponding tetrad vectors being zero. The connection is chosen to annihilate the metric, consequently, the
covariant derivatives along the direction of the basis vectors are zero. This gives the transportation equations.
The metric compatibility can also be expressed in terms of commutators of the directional derivatives. The
Riemann tensor components expressed in terms of the commutator of the covariant derivatives, as in equation
A.4.14, relate the Weyl scalars to the spin coefficients in the spin coefficient equations. The contracted Bianchi
identity A.1.20 can be recast into the Bianchi identity equations. In addition to the Einstein equation, the Maxwell
equation can be written as a set of Newman-Penrose equations.

The transportation equations are available in the book on spinors by O’Donnel [101]. The remainder of the
equations are available in the Newman-Penrose Scholarpedia article [32] with the additional nonzero Ricci scalar
contributions in the Bianchi identities available in Chandrasekhar’s book [45].

The Newman-Penrose quantities can be greatly simplified if the lightcone structure integrated into the
Newman-Penrose formalism is exploited. Many of the Newman-Penrose quantities disappear if the spacetime is
algebraically special. Black holes are of Petrov type D. In terms of the Weyl scalars, that means that only Ψ2 is
nonzero. The zero Weyl scalars are associated geometrically with particular tetrad vectors being principal null
directions. This is frame-dependent, but Lorentz symmetry allows performing tetrad transformations to obtain
the above identification of the Weyl scalars. The Lorentz transformations are divided into class I rotations that
leave vector l unchanged, class II rotations that leave n unchanged, and class III rotations that leave both l and
n unchanged [45].

A principal null direction at a point in spacetime is a null vector tangent to a null geodesic such that the
expansion, rotation, and shear of the congruence of null geodesics containing this vector are simultaneously zero.
A null vector v is tangent to an affinely parametrized null geodesic when the geodesic equation is satisfied:

va∇av
b = 0 . (A.5.14)

From the Newman-Penrose transportation equations [101], the covariant derivative of the vector l along its direc-
tion, expressed with the directional derivatives and spin coefficients, is

Dla = (ϵ+ ϵ̄)la − κ̄ma − κm̄a . (A.5.15)

If the spin coefficient κ = 0, the tetrad vector l is tangent to a geodesic. If ϵ + ϵ̄ = 0, the geodesic has an affine
parameter. Similarly, for the vector n, the covariant derivative in its direction is

∆na = −(γ + γ̄)na + νma + ν̄m̄a . (A.5.16)

The tetrad vector is tangent to an affinely parametrized null geodesic if ν = 0 and γ + γ̄ = 0.

The lightcone is most straightforwardly associated with the two real tetrad vectors. This is why these
particular Weyl scalars are identified with the Petrov types. The complex vectors can also be used for this
purpose if they are split into components, which can be done after performing a basis change to represent them
on a sphere, but then Petrov classification would involve different combinations of Weyl scalars. The algebraic
properties of the Weyl tensor and the geometric properties of spacetime are linked through The Goldberg-Sachs
theorem formulated in 1962. It states that a vacuum spacetime is algebraically special if it contains at least one
geodesic, shear-free null congruence and vice versa [48]. This can be seen from the Bianchi identity equations [32]
of the Newman-Penrose formalism. If Ψ0 = Ψ1 = 0, then l is the principal null direction. The geodesic property
k = 0 follows from the equation

δ̄Ψ0 −DΨ1 = (4α− π)Ψ0 − 2(2ρ+ ϵ)Ψ1 + 3κΨ2 ⇒ (A.5.17)

0 = 3κΨ2 . (A.5.18)

The zero shear σ = 0 follows from the equation

∆Ψ0 − δΨ1 = (4γ − µ)Ψ0 − 2(2τ + β)Ψ1 + 3σΨ2 ⇒ (A.5.19)

0 = 3σΨ2 . (A.5.20)

With a class III rotation, the tetrad basis can be chosen to also have zero expansion τ = 0.
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B Black hole perturbation master equations

B.1 Spherically symmetric black hole perturbation master equations

In this section, the highlights of the derivations of the master equations for background black hole spacetimes
with spherical symmetry are presented. The conventions here are analogous to the ones established by Martel
and Poisson [74, 75], the definitions of the various objects are as described by Pereñiguez [77], and the derivations
of the master equations of Schwarzschild black hole perturbations follow closely the presentation by Berti [3].

The line element of spherically symmetric black hole spacetimes can be expressed with the Lorentz part and
the spherical part explicitly separated [75]:

ds2 = gµν [x]dx
µdxν = ĝIJ [y]dy

IdyJ + r[y]2g̃KL[z]dz
KdzL , (B.1.1)

where r[y] is a real function, ĝ is the two-dimensional Lorentz metric with capital Latin letters used for the
corresponding Lorentz indices, and g̃ is the spherical metric with calligraphic capital Latin letters used for the
corresponding spherical indices. The Lorentz indices are lowered and raised with the Lorentz metric, and the
spherical indices are lowered and raised with the spherical metric. In Schwarzschild coordinates (t, r, ϑ, φ) the
Lorentz metric is

ĝIJ [y]dy
IdyJ = −fdt2 +

1

f
dr2 , (B.1.2)

f = r;Ir
I
; , (B.1.3)

and the spherical metric is

g̃KL[z]dz
KdzL = dϑ2 + sin2 ϑdφ2 . (B.1.4)

Both the uncharged and the charged spherical black holes are represented with the above, with the expressions
defining f for the Schwarzschild black hole and the Reissner-Nordström respectively being

fSc = 1− 2M

r
,

fRN = 1− 2M

r
+
Q2

r2
. (B.1.5)

The relations between various full curvature objects and their Lorentz and spherical parts are given below.

The full Christoffel connections are related to the Lorentz and spherical metric Christoffel connections through

ΓIJK = Γ̂IJK , (B.1.6)

ΓIJK = −rr I
; g̃JK , (B.1.7)

ΓIJK =
1

r
r;J δ

I
K , (B.1.8)

ΓIJK = Γ̃IJK . (B.1.9)

Similarly, the full Riemann tensor components have the following relations to the Riemann tensor components of
the Lorentz and spherical metrics:

RI
JKL = R̂I

JKL , (B.1.10)

RI
JKL = −rr I

;K g̃JL , (B.1.11)

RI
JKL = (1− f)

(
δIKg̃JL − δILg̃JK

)
. (B.1.12)

43
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The expressions for the full Ricci tensor components are

RIJ = R̂IJ − 2

r
r;JI , (B.1.13)

RIJ =
(
(1− f)− rr K

;K

)
g̃IJ . (B.1.14)

The expressions for the full Einstein tensor components are

GIJ = ĜIJ +
f − 1

r2
ĝIJ − 2

r

(
r;JI − r K

;K ĝIJ

)
, (B.1.15)

GIJ =

(
rr K

;K − r2

2
R

)
g̃IJ . (B.1.16)

The energy-momentum tensor split into the Lorentz and spherical parts is

T = T̂IJ [y]dy
IdyJ + r2T̃ [y]g̃KLdz

KdzL , (B.1.17)

with T̃ [y] describing the scalar degree of freedom of the energy-momentum tensor on the sphere. The conservation
of the energy-momentum tensor is

r2T̂ J
JI; + r2 J

; T̂JI − 2rT̃ r;I = 0 . (B.1.18)

The Einstein equation components as functions of the Lorentz and spherical coordinates are

ĜIJ + ĝIJ
f − 1

r2
− 2

r

(
r;JI − ĝIJr

K
;K

)
= T̂IJ , (B.1.19)

r I
;I

r
− R

2
= T̃ . (B.1.20)

B.1.1 Tensorial spherical harmonics

The idea in decoupling the scalar, vector, and tensor sectors is to use the spherical symmetry and expand all fields
using basis functions that are eigenfunctions of the Laplace operator, making it possible to treat each expansion
mode separately. On a sphere, the spherical harmonics satisfy the Legendre equation

∇I∇
IY ℓm = −ℓ(ℓ+ 1)Y ℓm , (B.1.21)

where Y ℓm are the spherical harmonics defined with Legendre polynomials P ℓm as

Y ℓm[ϑ, φ] = P ℓm[ϑ]eimφ , (B.1.22)

and ℓ and m are integers satisfying ℓ ≥ 0 and −ℓ ≤ m ≤ ℓ. The spherical harmonics are a complete set of
orthonormal functions. They are a natural choice for the basis on which to expand the spherical parts of the
fields. To expand not only scalars, but objects up to rank-2 tensors, vector, and tensor harmonics have to be
introduced. There are two orthogonal directions on a sphere, thus two sets of harmonics are required. A vector
can be expanded using the scalar spherical harmonics for the components t and r, that are normal to the sphere.
Then the derivatives of the spherical harmonics provide the first independent set for one of the components along
the sphere. This set transforms as vectors and is known as the even vector harmonics. The set of harmonics for
the other component along the sphere can be obtained by taking the cross-product of the components normal
to the sphere and the even vector harmonics. These transform as pseudovectors and are known as odd vector
harmonics. Analogously, taking more derivatives, higher rank tensor harmonics can be obtained. The conventions
used here are based on the definitions given by Martel [74].
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The even vector harmonics are

Zlm
I = ∇IY

lm . (B.1.23)

The odd vector harmonics are

Xlm
I = ϵ J

I Zlm
I = ϵ J

I ∇J Y
lm . (B.1.24)

The even rank-2 tensor harmonics are

U lm
IJ = Y lmg̃IJ , (B.1.25)

V lm
IJ =

(
∇I∇J +

l(l + 1)

2
g̃IJ

)
Y lm . (B.1.26)

The odd rank-2 tensor harmonics are

W lm
IJ = ∇(IX

lm
J ) . (B.1.27)

The rank-2 tensor spherical harmonics are constructed to be traceless to impose their orthogonality. The normal-
ization of all spherical harmonics is determined from that of Y lm, which here is taken to be∫

dΩY l′m′∗Y lm = δll
′
δmm′

. (B.1.28)

A scalar field with respect to the spherical part of the background metric is then expanded as

S = slmY
lm . (B.1.29)

A vector field is expanded as

VI = ulmZ
lm
I + vlmX

lm
I . (B.1.30)

A rank-2 tensor field is expanded as

TIJ = KlmU
lm
IJ +GlmV

lm
IJ +HlmW

lm
IJ . (B.1.31)

The phase space completeness conditions for the coefficients slm, ulm, vlm,Klm, Glm, Hlm are

slm =

∫
dΩSY ∗

lm , (B.1.32)

ulm =
1

l(l + 1)

∫
dΩVIZ

I∗
lm , (B.1.33)

vlm =
1

l(l + 1)

∫
dΩVIX

I∗
lm , (B.1.34)

Klm =
1

2

∫
dΩTIJ U

IJ ∗
lm , (B.1.35)

Glm =
(l − 2)!

(l + 2)!

∫
dΩTIJ V

IJ ∗
lm , (B.1.36)

Hlm =
(l − 2)!

(l + 2)!

∫
dΩTIJW

IJ ∗
lm . (B.1.37)
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B.1.2 The master equation for scalar field perturbations

Here scalar field perturbations of the Schwarzschild black hole are described. Small perturbations of the back-
ground fields induce small perturbations of the energy-momentum tensor Tµν [g, ϕ]. Scalar fields appear to second
order in the expression for the energy-momentum tensor, therefore to linear order, small perturbations of a scalar
field ϕ do not influence the energy-momentum tensor if the background field is zero, as it is in the Schwarzschild
case. Thus in linear perturbation theory, the scalar field evolution can be considered separately from other
perturbations. The scalar field equation of motion is

(2− V )ϕ = 0 . (B.1.38)

The potential V can be reduced to only the mass term in the potential. Any higher-order terms do not contribute
when linear perturbations are considered:

V [ϕ] =
1

2
µ2ϕ2 , (B.1.39)

where µ is the mass. Thus the equation describing scalar field perturbations is the Klein-Gordon equation

(2− µ2)ϕ = 0 , (B.1.40)

which can be expanded as

1√
−g

∂µ(
√
−ggµν∂νϕ)− µ2ϕ = 0 . (B.1.41)

Employing the spherical symmetry of the background, the scalar field is expanded in the spherical harmonics:

ϕ[t, r, ϑ, φ] = ψℓm[t, r]Y ℓm . (B.1.42)

Since the background is also static, the time dependence can be treated separately. The scalar field can be Fourier
decomposed:

ϕ[t, r, ϑ, φ] =

∫
dw e−iwtψℓm[r]

r
Y ℓm . (B.1.43)

Inserting a particular mode of the time decomposition of the scalar field ϕ into the Klein-Gordon equation leads
to the radial equation

f2ψ + ff ′ψ′ +
(
ω2 − V0

)
ψ = 0 , (B.1.44)

where the potential is

V0[µ] = f

(
µ2 +

ℓ(ℓ+ 1)

r2
+
f ′

r

)
. (B.1.45)

and the labels ℓ,m are implied without explicitly writing them. The first derivative term disappears with the
coordinate transformation to the radial tortoise coordinate r∗, defined through dr

dr∗ = f , leading to the master
equation for the scalar field

∂2r∗ψ0 + (ω2 − V0)ψ0 = 0 , (B.1.46)

where the convention ψ = ψ0 is used to indicate that the variable refers to a scalar field with zero spin. Written
with the d’Alembert operator this equation is

∇I∇
Iψ0 − V0ψ0 = 0 . (B.1.47)

With the Schwarzschild value f = 1− 2M
r the scalar field potential is

V0 =

(
1− 2M

r

)(
µ2 +

ℓ(ℓ+ 1)

r2
+

2M

r3

)
. (B.1.48)
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B.1.3 The master equations for perturbations of vector fields

Here vector field perturbations of the Schwarzschild black hole are described. Vector fields are commonly intro-
duced as gauge fields mediating the interactions of other charged fields. A consistent treatment of interactions
throughout spacetime is possible only for long-range interactions. Long-range interactions are mediated by mass-
less vector fields that obey the Maxwell equation. Similarly to scalar fields, vector fields also appear to second
order in the expression for the energy-momentum tensor 3.3.14. If the background field is zero, as is the case
for the Schwarzschild black hole, to linear order, small perturbations of the vector field do not influence the
energy-momentum tensor. The Maxwell equation for the field strength tensor F of the vector field A is

∇µF
µν = 0 . (B.1.49)

The vector field can be expanded in vector spherical harmonics:

A = AℓmI
Y ℓmdyI +

(
aℓmZ

ℓm
I + dℓmX

ℓm
I
)
dzI . (B.1.50)

Dropping the labels ℓ, m and with the definition for AI :

AI =

(
b

c

)
, (B.1.51)

the vector field can be written in manifestly decoupled odd A−
µ and even A+

µ parts:

Aµ = A−
µ +A+

µ =


0

0
a[t, r]

sin θ
Y,φ

−a[t, r] sin θY,θ

+


b[t, r]Y

c[t, r]Y

d[t, r]Y,θ

d[t, r]Y,φ

 , (B.1.52)

where a, b, c, and d are coordinate t and r-dependent coefficients. The vector field is split into an odd and an
even parity part, with the names referring to their transformation properties with respect to how the spherical
harmonics transform. Since their transformation properties differ, in the absence of sources, the two parts do not
mix. Their evolution is independent and they can be treated separately. With this decomposition of the vector
field, the Maxwell equation can be recast as a set of four equations by taking its t-component, r-component, the
sum of θ and ϕ-components, and the difference of θ and ϕ-components respectively:

ℓ(ℓ+ 1)(b− ḋ)− rf(2b′ + rb′′ − 2ċ− rċ′) = 0 , (B.1.53)

ℓ(ℓ+ 1)(c− d′) +
r2

b
(−ḃ′ + c̈) = 0 , (B.1.54)

2f2(c′ − d′′) + ff ′(c− d′)− ḃ+ d′′ , (B.1.55)

f∂rf(h− ∂rk) + f2(∂rh− ∂2rk)− ∂tf + ∂2t k = 0 , (B.1.56)

ℓ(ℓ+ 1)
f

r2
a− ff ′a′ − f2a′′ + ä = 0 . (B.1.57)

The last equation is an equation of the function a only, this function defines the odd sector of the vector field.
Using the tortoise coordinate r∗, the first-derivative term in the last equation disappears leading to the equation

∂2r∗a− ä− f

r2
ℓ(ℓ+ 1)a = 0 . (B.1.58)

With the conventions ψ1− = a for the variable, and V1− = f

r2
ℓ(ℓ + 1) for the potential, the master equation

governing the spin-one vector field odd perturbations is

∂2r∗ψ1− + (ω2 − V1−)ψ1− = 0 , (B.1.59)

where time Fourier decomposition has been done. Alternatively, this equation can be written with the d’Alembert
operator:

∇I∇
Iψ1− − V1−ψ1− = 0 . (B.1.60)
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An equation for the even sector can be obtained by considering equations B.1.53 and B.1.54. The scalars b, c, d
are related. The time derivative of the second can be subtracted from the radial derivative of the first eliminating
d and giving the equation

(ℓ(ℓ+ 1)− 2f)
(
b′ − ċ

)
− 2rf ′

(
b′ − ċ

)
+ 4rf

(
ċ′ − b′′

)
+ r2f ′

(
ċ′ − b′′

)
+ r2f

(
ċ′′ − b(0,3)

)
+ r2

f

(
b̈′ − c(3,0)

)
= 0 .

(B.1.61)

Defining a variable for the even sector of the vector perturbations as

ψ1+ = −r2 b′ − ċ

ℓ(ℓ+ 1)
(B.1.62)

the above equation becomes

f2ψ′′1+ − ψ̈1+ + ff ′ψ′1+ − f

r2
ℓ(ℓ+ 1)ψ1+ = 0 , (B.1.63)

which has a simpler form using the tortoise radial coordinate r∗:

∂2r∗ψ1+ − ψ̈1+ − V1+ψ1+ = 0 , (B.1.64)

where the potential is V1+ = f

r2
ℓ(ℓ+ 1). This can be Fourier decomposed to

∂2r∗ψ1+ + (ω2 − V1+)ψ1+ = 0 . (B.1.65)

With the d’Alembert operator, this equation is

∇I∇
Iψ1+ − V1+ψ1+ = 0 . (B.1.66)

The above is the master equation for the even vector field perturbations.

B.1.4 Regge-Wheeler and Zerilli equations

The topic of this section is small spacetime deviations from the Schwarzschild black hole geometry. As described in
section 3.1, the linearized Einstein equation 3.1.1 describes the metric perturbations h. The Schwarzschild metric
is a vacuum solution, therefore Tµν = 0. The perturbation of the energy-momentum tensor is not necessarily zero
δTµν ̸= 0, but as was described in the previous sections, when scalar and vector fields that vanish in the background
geometry are the sources since they appear to second order in the expression for the energy-momentum tensor,
their perturbations do not contribute to linear order to the energy-momentum tensor. This is one instance when
the linearized Einstein equation reduces to

δGµν = 0 . (B.1.67)

Writing this explicitly in terms of the metric perturbation using equation 3.1.7 gives:

δGµν =
1

2

(
gµνh

κ λ
κ ;λ − gµνh

κλ
κλ; − h λ

λ ;µν + h λ
λµ;ν + h λ

λν;µ − h λ
µν;λ

)
= 0 . (B.1.68)

It can be seen that the linearized Einstein equation contains terms that all involve taking two covariant derivatives
of the metric perturbation. As before, spherical symmetry can be used to reduce these second-order differential
terms on the sphere by expanding quantities with tensor spherical harmonics. The metric perturbation expansion
in tensor spherical harmonics is

h = hℓmIJ
Y ℓmdyIdyJ + 2

(
hℓmI

Zℓm
J + jℓmI

Xℓm
J
)
dyIdzJ +

(
KℓmU

ℓm
IJ +GℓmV

ℓm
IJ +HℓmW

ℓm
IJ
)
dzIdzJ .

(B.1.69)

From now on the labels ℓ,m are assumed, but not explicitly written. As described in section 3.1, there is some
redundancy in describing the perturbations due to gauge freedom. The gauge freedom is associated with coordinate
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transformations. There are four coordinates, so four independent coordinate conditions would fix the gauge. A
convenient choice is to use the Regge-Wheeler gauge [71]:

hI = 0 , G = 0 , H = 0 . (B.1.70)

In this gauge, the expression for the perturbation is

h = hIJY dy
IdyJ + 2jIXJ dy

IdzJ +KUIJ dz
IdzJ . (B.1.71)

With the expansions in terms of scalars K and h0, h1, H0, H1, H2, where the latter are defined as the components
of jI and hIJ :

jI =

(
h0
h1

)
, hIJ =

(
H0 H1
H1 H2

)
, (B.1.72)

the metric perturbation can be explicitly written in terms of manifestly decoupled odd h−µν and even h+µν parts:

hµν = h−µν + h+µν =



0 0
h0
sin θY,ϕ −h0 sin θY,θ

0 0
h1
sin θY,ϕ −h1 sin θY,θ

h0
sin θY,ϕ

h1
sin θY,ϕ 0 0

−h0 sin θY,θ −h1 sin θY,θ 0 0


+



−fH0Y −H1Y 0 0

−H1Y − 1
fH2Y 0 0

0 0 −r2KY 0

0 0 0 −r2 sin2 θKY


(B.1.73)

These can be considered separately. The odd metric perturbation involves scalars h0 and h1. The time dependence
separates with time Fourier transform as the background spacetime is static. The nonzero components of the
Einstein perturbation in terms of the scalars h0 and h1 are

δGtt = −f
(
rf ′+f−1

)
r2

, (B.1.74)

δGtφ =

(
r2f ′′+2rf ′+2f+ℓ2+ℓ−2

)
h0−irf

(
−irh′′0+rωh′1+2ωh1

)
2r2

sin2 ϑe−iωtY ′ , (B.1.75)

δGrr = rf ′+f−1

r2f
, (B.1.76)

δGrφ =

(
r2ff ′′+2rff ′+f(ℓ2+ℓ−2)−r2ω2

)
h1+ir2ωh′0−2irωh0

2r2f
sin2 ϑe−iωtY ′ , (B.1.77)

δGϑϑ =
r
(
rf ′′+2f ′

)
2 sin2 ϑ

, (B.1.78)

δGϑφ = −
f
(
h1f

′+fh′1
)
+iωh0

2f e−iωt
(
ℓ(ℓ+ 1)Y − 2 cosϑY ′

)
, (B.1.79)

δGφφ = rsin2ϑ
2

(
rf ′′ + 2f ′

)
. (B.1.80)

In particular the components δGrφ, δGϑφ are relevant. By considering the ϑφ-component of the Einstein equation,
h0 can be expressed as a function of h1:

f
(
h1f

′ + fh′1
)
+ iωh0 = 0 ⇒ h0 =

ff ′h1 + f2h′1
−iω . (B.1.81)

Using this in the rφ-component of the Einstein equation leads to the second-order differential equation

r2f2h′′1 − rf
(
2f − 3rf ′

)
h′1 +

(
r2ω2 + 2f2 + r2ff ′′ + r2f ′2 − fℓ(ℓ+ 1)

)
h1 = 0 . (B.1.82)

Defining a variable for the odd metric perturbations as

ψ2− =
fh1
r

, (B.1.83)

the above equation becomes

f2ψ′′2− + ff ′ψ′2− +

(
ω2 +

3rff ′ − fℓ(ℓ+ 1)

r2

)
ψ2− = 0 . (B.1.84)
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Using the tortoise coordinate r∗ the master equation for the even metric perturbations is obtained:

∂2r∗ψ2− +
(
ω2 − V2−

)
ψ2− = 0 , (B.1.85)

where the potential is V2− = f
ℓ(ℓ+1)−3rf ′

r2
. In terms of the d’Alembert operator, the equation is

∇I∇
Iψ2− − V2−ψ2− = 0 . (B.1.86)

This is the Regge-Wheeler equation [71]. The potential for the Schwarzschild background spacetime is

V2− =

(
1− 2M

r

)(
ℓ(ℓ+ 1)

r2
− 6M

r3

)
. (B.1.87)

The procedure for finding a master equation for the even metric perturbations is analogous, albeit more
mathematically involved. The nonzero Einstein perturbation components in terms of the even metric perturbation
scalars H0, H1, H2,K are

δGtt =

((
1− f − rf ′

)
H0 −

(
f + rf ′ +

ℓ2 + ℓ

2

)
H2 − rfH ′

2 − ℓ2 + ℓ− 2

2
K +

r(f ′ + 6f)

2
K′ + fr2K′′ +

1− f − rf ′

2Y

)
fY

r2
, (B.1.88)

δGtr =

(
−
(
rf ′ + f + ℓ2+ℓ−2

2

)
H1 − rḢ2 +

(
r − r2f ′

2f

)
K̇ + r2K̇′

)
Y
r2
, (B.1.89)

δGtϑ =
(
−f ′H1 − fH ′

1 + Ḣ2 + K̇
)

Y ′
2 , (B.1.90)

δGrr =

(
− ℓ2+ℓ

2r H0 + fH ′
0 − 2Ḣ1 + 1

rH2 + ℓ2+ℓ−2
2r K −

(
1 + rf ′

2

)
K′ + r

f K̈ − 1−f−rf ′
rY

)
Y
fr , (B.1.91)

δGrϑ =

(
2f−rf ′
2rf H0 −H ′

0 + 1
f Ḣ1 − 2f+rf ′

2rf H2 +K′
)

1
2Y ′ , (B.1.92)

δGϑϑ =

(
− cosϑY ′

Y r H0 +

(
f − 3rf ′

2

)
H ′
0 + rfH ′′

0 −
(

rf ′
f + 2

)
Ḣ1 − 2rḢ ′

1 −
(
+2f ′ − rf ′′ − cosϑY ′

Y r

)
H2

+ r
f Ḧ2 + f+rf ′

2 H ′
2 −

(
2f ′ + rf ′′

)
K + r

f K̈ −
(
2f + rf ′

)
K′ − rfK′′ + 2f ′

Y + r2f ′′
Y

)
Y r

2 sin2 ϑ
, (B.1.93)

δGφφ =

((
cosϑY ′

rY
− ℓ2 + ℓ

r

)
H0 +

(
f +

3r

2

)
H ′
0 + rfH ′′

0 −
(
2 +

rf ′

f

)
Ḣ1 − 2rḢ ′

1 +

(
rf ′′ + 2f ′ +

ℓ2 + ℓ

r
− cosϑY ′

rY

)
H2

+
r

f
Ḧ2 +

(
f +

rf ′

2

)
H ′
2 −

(
2f ′ + rf ′′

)
K +

r

f
K̈ −

(
2f + rf ′

)
K′ − rfK′′ +

2f ′ − r

Y

)
sin2 ϑrY

2
. (B.1.94)

Assuming the perturbations are sourced by scalar and vector fields, the energy-momentum perturbation is zero.
Since the background is time-independent, the time differentials can be simplified using the Fourier transform.
The φφ-component can be subtracted from ϑϑ-component to obtain

H0 = H2 . (B.1.95)

Then the tr, tϑ, and rϑ-components of the Einstein equation can be chosen to provide a set of equations for the
three respective derivatives of perturbation scalars:

K′ + f1K + f2H1 + f3H2 = 0 , (B.1.96)

H ′
1 + f4K + f5H1 + f4H2 = 0 , (B.1.97)

H ′
2 + f1K + f6H1 + f7H2 = 0 . (B.1.98)

The identity B.1.95 is used to remove the perturbation scalar H0 from the equations. A further relation between
the perturbation scalars K,H1, H2 can be found with the rr-component:

f8K + f9H1 + f10H2 = f11 . (B.1.99)
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With this, H2 can also be removed from the equations, leading to two equations for the derivatives K′ and H ′
1:

K′ = −
(
f1 − f3f8

f10

)
K −

(
f2 − f3f9

f10

)
H1 − f3f11

f10
, (B.1.100)

H ′
1 = −

(
f4 − f4f8

f10

)
K −

(
f5 − f4f9

f10

)
H1 − f4f11

f10
. (B.1.101)

In the above, f1 − f11 are r-dependent functions that can be identified from the Einstein equation components.
The perturbation scalars K and H1 can be combined into the variable ψ:

ψ = ζ1K + ζ2H1 . (B.1.102)

The derivative ψ′ can be expressed in terms of K and H1 using equations B.1.100 and B.1.101:

ψ′ = η1K + η2H1 + σ , (B.1.103)

where

η1 = ζ′1 − ζ1

(
f1 − f3f8

f10

)
− ζ2

(
f4 − f4f8

f10

)
, (B.1.104)

η2 = ζ′2 − ζ2

(
f5 − f4f9

f10

)
− ζ1

(
f2 − f3f9

f10

)
, (B.1.105)

σ = −ζ1f3 + ζ2f4
f10

f11 . (B.1.106)

The same applies also to the second derivative:

ψ′′ = ι1K + ι2H1 +Σ , (B.1.107)

where

ι1 = η′1 − η1

(
f1 − f3f8

f10

)
− η2

(
f4 − f4f8

f10

)
, (B.1.108)

ι2 = η′2 − η2

(
f5 − f4f9

f10

)
− η1

(
f2 − f3f9

f10

)
, (B.1.109)

Σ = σ′ + σ . (B.1.110)

Using the equations for ψ and ψ′, the perturbation scalars can also be expressed in terms of ψ and ψ′ as

K =
ζ2Z

′ − η2Z + ζ2σ

ζ2η1 − ζ1η2
, H1 =

ζ1Z
′ − η1Z + ζ1σ

ζ1η2 − ζ2η1
. (B.1.111)

Substituting this back into the expression for the second derivative ψ′′ gives an expression purely in terms of ψ, ψ′,
and ψ′′. The second derivative of ψ with respect to the tortoise coordinate r∗ is related to the second derivative
with respect to the radial coordinate r through

∂2r∗ψ = f∂r[f∂rψ] = f2ψ′′ + ff ′ψ′ . (B.1.112)

In the previously found master equations, the transformation to the radial tortoise coordinate leads to the disap-
pearance of the first-order derivative term. An analogous master equation in terms of the radial tortoise coordinate
can also be formulated by a choice of ζ1 and ζ2. This is known as the Zerilli equation [72]:

∂2r∗ψ2+ + (ω2 − V2+)ψ2+ = 0 , (B.1.113)

here specifically identifying that the Zerilli variable as the variable for the spin-two even metric perturbations:
ψ = ψ2+. The Zerilli variable relation to the metric perturbation scalars is ψ2+ = ζ1K + ζ2H1, and in the
Schwarzschild case, the functions ζ1 and ζ2 are

ζ1 =
r2

nr + 3M
, ζ2 =

r − 2M

iω(nr + 3M)
. (B.1.114)

The corresponding potential is [3]

V2+ =

(
1− 2M

r

)
n3r3 + n2r3 + 3n2Mr2 + 9nM2r + 9M3

(nr + 3M)2r4
, (B.1.115)

where, following Zerilli’s notation, n =
(ℓ−1)(ℓ+2)

2 .
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B.2 Axially symmetric black hole perturbation master equations

B.2.1 Teukolsky equation

The master equation for the perturbations on a Kerr background was derived by Teukolsky [73] using the Newman-
Penrose formalism. Here a summary of key considerations described by Teukolsky in his article is given.

The idea is to use the property of the Kerr spacetime, that, being Petrov type D, it has two principal null
directions. By the Goldberg-Sachs theorem if l and n are chosen to align with these two directions, the background
Weyl scalars Ψ0,Ψ1,Ψ3,Ψ4 are zero, and since the principal null directions are shear-free and geodesic, in the
background spacetime the spin coefficients κ, σ, ν, λ are also zero. Instead of the Weyl scalar Ψ4, here Ψ0 is
considered, for which the derivation of the Teukolsky equation is more straightforward. Among the Newman-
Penrose spin coefficient equations, only one involves Ψ0 :

Dσ − δκ = (ρ+ ρ̄)σ + (3ϵ− ϵ̄)σ − (τ − π̄ + ᾱ+ 3β)κ+Ψ0 . (B.2.116)

The Newman-Penrose Bianchi identity nonvacuum equations, that involve the derivatives of the Weyl scalar Ψ0
are

δ̄Ψ0 −DΨ1 − (4α− π)Ψ0 + 2(2ρ+ ϵ)Ψ1 − 3κΨ2 = δΦ00 +DΦ01 + 2(ϵ+ ρ̄)Φ01 + 2σΦ10 − 2κΦ11 − κ̄Φ02 + (π̄ − 2ᾱ− 2β̄)Φ00 ,

(B.2.117)

∆Ψ0 − δΨ1 − (4γ − µ)Ψ0 + 2(2τ + β)Ψ1 − 3σΨ2 = δΦ01 −DΦ02 + 2(π̄ − β)Φ01 − 2κΦ12 − λ̄Φ00 + 2σΦ11 + (ρ̄+ 2ϵ− 2ϵ̄)Φ02 ,

(B.2.118)

where the Ricci tensor is equated with the energy-momentum tensor. As the Kerr spacetime is a vacuum solution,
the background energy-momentum tensor is zero. The above equations can be turned into linear perturbation
equations, dropping all terms that are second order in smallness, then they are

(D − ρ− ρ̄− 3ϵ+ ϵ̄)AσB − (δ − τ + π̄ − ᾱ− 3β)AκB −Ψ B
0 = 0 , (B.2.119)

(δ̄ − 4α+ π)AΨ B
0 − (D − 4ρ− 2ϵ)AΨ B

1 − 3κBΨ A
2 = (δ + π̄ − 2ᾱ− 2β)AΦ B

00 − (D − 2ϵ− 2ρ̄)AΦ B
01 ,

(B.2.120)

(∆− 4γ + µ)AΨ B
0 − (δ − 4τ − 2β)AΨ B

1 − 3σBΨ A
2 = (δ + 2π̄ − 2β)AΦ B

01 − (D − 2ϵ+ 2ϵ̄− ρ̄)AΦ B
02 .

(B.2.121)

The Newman-Penrose Bianchi identities [45]

δ̄Ψ1 −DΨ2 − λΨ0 + 2(α− π)Ψ1 + 3ρΨ2 − 2κΨ3 = δ̄Φ01 −∆Φ00 − 2(α+ τ̄)Φ01 + 2ρΦ11 + σ̄Φ02 − (µ̄− 2γ − 2γ̄)Φ00 − 2τΦ10 − 2DΛ ,

(B.2.122)

∆Ψ2 − δΨ3 − 2νΨ1 + 3µΨ2 − 2(β − τ)Ψ3 − σΨ4 = δΦ21 −DΦ22 + 2(π̄ + β)Φ21 − 2µΦ11 − λ̄Φ20 + 2πΦ12 + (ρ̄− 2ϵ− 2ϵ̄)Φ22 − 2∆Λ ,

(B.2.123)

for the background metric, reduce to

DΨ2 = 3ρΨ2 , (B.2.124)

δΨ2 = 3τΨ2 . (B.2.125)

Multiplying the Ψ0 spin coefficient equation with Ψ2 from the left, commuting Ψ2 with the directional derivatives
D and δ, and then using equations B.2.124 and B.2.125 to replace the directional derivatives of Ψ2 leads to the
expression

(D − 4ρ− ρ̄− 3ϵ+ ϵ̄)Ψ2σ
B − (δ − 4τ + π̄ − ᾱ− 3β)Ψ2κ

B −Ψ2Ψ
B

0 = 0 . (B.2.126)

Multiplying the Bianchi equation B.2.120 with (δ − 4τ + π̄ − ᾱ − 3β) and the Bianchi equation B.2.121 with
(D − 4ρ− ρ̄− 3ϵ+ ϵ̄) and then subtracting gives

((D − 4ρ− ρ̄− 3ϵ+ ϵ̄)(δ − 2β − 4τ)− (δ − 4τ + π̄ − ᾱ+ 3β)(D − 2ϵ− 4ρ))ΨB
1 . (B.2.127)
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The metric compatibility equations [45] have the form of commutation relations and can be used in finding

(D + qρ− ρ̄− (p+ 1)ϵ+ ϵ̄)(δ − pβ + qτ)− (δ + qτ + π̄ − ᾱ+ (p+ 1)β)(D − pϵ+ qρ) = 0 . (B.2.128)

Setting p = 2, q = −4 the two equations above can be identified with one another and the commutation relation
can be used to remove the Ψ1 term leading to(

(D − 4ρ− ρ̄− 3ϵ+ ϵ̄)(∆− 4γ + µ)− (δ − 4τ + π̄ − ᾱ− 3β)(δ̄ + π − 4α)− 3Ψ2
)
Ψ B
0 = T0 . (B.2.129)

This is a decoupled equation for the perturbation Ψ B
0 . With the Einstein equation, the Ricci scalars are identified

with the corresponding energy-momentum tensor tetrad projections, which describe the properties of sources.
These are put together in the source term T0:

T0 =
1

2
(D − 4ρ− ρ̄− 3ϵ+ ϵ̄)

(
(δ + 2π̄ − 2β)T B

01 − (D − 2ϵ+ 2ϵ̄− ρ̄)T B
02

)
+
1

2
(δ − 4τ + π̄ − ᾱ− 3β)

(
(D − 2ϵ− 2ρ̄)T B

00 − (δ + π̄ − 2ᾱ− 2β)T B
01

)
. (B.2.130)

Making the coordinate choice

lµ =

(
r2 + a2

∆
, 1, 0,

a

∆

)
, nµ =

(
r2 + a2,−∆, 0, a

) 1

2Σ
, mµ =

(
ia sinϑ, 0, 1,

1

i sinϑ

) √
2

2(r + ia cosϑ)
, (B.2.131)

the nonzero spin coefficients are

ρ =
−1

r − ia cosϑ
, β =

−
√
2 cotϑρ̄

4
, π =

√
2ia sin2 ϑρ2

2
, τ =

−
√
2ia sinϑρρ̄

2
, µ =

ρ2ρ̄

2∆
, γ = µ+

(r −M)ρρ̄

2
, α = π − β̄ .

(B.2.132)

The only nonzero background Weyl scalar is Ψ2, which obeys

Ψ2 =Mρ3. (B.2.133)

With this, the dynamics of the perturbation ψ = Ψ B
0 can be described with a single equation:(

(r2 + a2)2

∆
− a2 sin2 ϑ

)
∂2t ψ +

4Mar

∆
∂t∂φψ +

(
a2

∆
− 1

sin2 ϑ

)
∂2φψ −∆−s∂r

[
∆s+1∂rψ

]
− 1

sinϑ
∂θ

[
sinϑ∂ϑψ

]
− 2s

(
a(r −M)

∆
+
i cosϑ

sin2 ϑ

)
∂φψ − 2s

(
M(r2 − a2)

∆
− r − ia cosϑ

)
∂tψ + (s2 cot2 ϑ− s)ψ = ΣT .

(B.2.134)

This is the Teukolsky equation. The variable ψ can be identified with scalar field, vector field, metric, and spin-
half field perturbation variables described by Teukolsky [73]. Using the symmetry of the background, the variable
can be written in a Fourier decomposed way:

ψ = e−iωtR[r]Θ[ϑ]eimφ . (B.2.135)

Considering the vacuum case T = 0, the Teukolsky equation can be decoupled into

∆−s∂r
[
∆s+1∂rR

]
+

(
K2 − 2is(r −M)K

∆
+ 4isωr − a2ω2 + 2amω − λ

)
R = 0 , (B.2.136)

1

sinϑ
∂ϑ

[
sinϑ∂ϑΘ

]
+

(
a2ω2 cos2 ϑ− m2

sin2 ϑ
− 2aωs cosϑ− 2ms cosϑ

sin2 ϑ
− s2 cot2 ϑ+ s+ λ

)
Θ = 0 , (B.2.137)

where K = (r2 + a2)ω − am.
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