
ar
X

iv
:0

80
5.

33
37

v2
  [

gr
-q

c]
  1

7 
Ju

n 
20

08

Two timescale analysis of extreme mass ratio inspirals in Kerr. I. Orbital Motion
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Inspirals of stellar mass compact objects into massive black holes are an important source for
future gravitational wave detectors such as Advanced LIGO and LISA. Detection of these sources and
extracting information from the signal relies on accurate theoretical models of the binary dynamics.
We cast the equations describing binary inspiral in the extreme mass ratio limit in terms of action
angle variables, and derive properties of general solutions using a two-timescale expansion. This
provides a rigorous derivation of the prescription for computing the leading order orbital motion. As
shown by Mino, this leading order or adiabatic motion requires only knowledge of the orbit-averaged,
dissipative piece of the self force. The two timescale method also gives a framework for calculating
the post-adiabatic corrections. For circular and for equatorial orbits, the leading order corrections
are suppressed by one power of the mass ratio, and give rise to phase errors of order unity over a
complete inspiral through the relativistic regime. These post-1-adiabatic corrections are generated
by the fluctuating, dissipative piece of the first order self force, by the conservative piece of the first
order self force, and by the orbit-averaged, dissipative piece of the second order self force. We also
sketch a two-timescale expansion of the Einstein equation, and deduce an analytic formula for the
leading order, adiabatic gravitational waveforms generated by an inspiral.

I. INTRODUCTION AND SUMMARY

A. Background and Motivation

Recent years have seen great progress in our under-
standing of the two body problem in general relativ-
ity. Binary systems of compact bodies undergo an inspi-
ral driven by gravitational radiation reaction until they
merge. As illustrated in Fig. 1, there are three different
regimes in the dynamics of these systems, depending on
the values of the total and reduced massesM and µ of the
system and the orbital separation r : (i) The early, weak
field regime at r ≫M , which can be accurately modeled
using post-Newtonian theory, see, for example, the re-
view [1]. (ii) The relativistic, equal mass regime r ∼ M ,
µ ∼ M , which must be treated using numerical relativ-
ity. Over the last few years, numerical relativists have
succeeded for the first time in simulating the merger of
black hole binaries, see, for example, the review [2] and
references therein. (iii) The relativistic, extreme mass
ratio regime r ∼M , µ ≪M . Over timescales short com-
pared to the dephasing time ∼M

√

M/µ, systems in this
regime can be accurately modeled using black hole per-
turbation theory[3], with the mass ratio ε ≡ µ/M serving
as the expansion parameter. The subject of this paper is
the approximation methods that are necessary to treat
such systems over the longer inspiral timescale ∼ M2/µ
necessary for computation of complete inspirals.

This extreme mass ratio regime has direct observa-
tional relevance: Compact objects spiraling into much
larger black holes are expected to be a key source for
both LIGO and LISA. Intermediate-mass-ratio inspirals
(IMRIs) are inspirals of black holes or neutron stars into
intermediate mass (50 ≤ M ≤ 1000M⊙) black holes;
these would be visible to Advanced LIGO out to dis-
tances of several hundred Mpc [4], where the event rate

FIG. 1: The parameter space of inspiralling compact binaries
in general relativity, in terms of the inverse mass ratio M/µ =
1/ε and the orbital radius r, showing the different regimes
and the computational techniques necessary in each regime.
Individual binaries evolve downwards in the diagram (green
dashed arrows).

could be about 3 − 30 per year [4, 5]. Extreme-mass-
ratio inspirals (EMRIs) are inspirals of stellar-mass com-
pact objects (black holes, neutron stars, or possibly white
dwarfs) into massive (104 ≤ M ≤ 107M⊙) black holes
in galactic nuclei; these will be visible to LISA out to
redshifts z ≈ 1 [6, 7, 8]. It has been estimated [9, 10]
that LISA should see about 50 such events per year,
based on calculations of stellar dynamics in galaxies’ cen-
tral cusps[11]. Because of an IMRI’s or EMRI’s small
mass ratio ε = µ/M , the small body lingers in the large
black hole’s strong-curvature region for many wave cy-
cles before merger: hundreds of cycles for LIGO’s IM-
RIs; hundreds of thousands for LISA’s EMRIs [6]. In
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this relativistic regime the post-Newtonian approxima-
tion has completely broken down, and full numerical rel-
ativity simulations become prohibitively difficult as ε is
decreased. Modeling of these sources therefore requires
a specialized approximation method.

Gravitational waves from these sources will be rich
with information [7, 8]:

• The waves carry not only the details of the evolving
orbit, but also a map of the large body’s spacetime
geometry, or equivalently the values of all its mul-
tipole moments, as well as details of the response
of the horizon to tidal forces [12, 13]. Extracting
the map (bothrodesy) is a high priority for LISA,
which can achieve ultrahigh accuracy, and a mod-
erate priority for LIGO, which will have a lower
(but still interesting) accuracy [4]. Measurements
of the black hole’s quadrupole (fractional accuracy
about 10−3 for LISA [14, 15], about 1 for Advanced
LIGO [4]) will enable tests of the black hole’s no
hair property, that all of the mass and current mul-
tipole moments are uniquely determined in terms
of the first two, the mass and spin. Potentially,
these measurements could lead to the discovery of
non-black-hole central objects such as boson stars
[16, 17] or naked singularities.

• One can measure the mass and spin of the cen-
tral black hole with fractional accuracies of order
10−4 for LISA [18, 19] and about 10−2–10−1 for
Advanced LIGO [4]. Observing many events will
therefore provide a census of the masses and spins
of the massive central black holes in non-active
galactic nuclei like M31 and M32. The spin can
provide useful information about the hole’s growth
history (mergers versus accretion) [20].

• For LISA, one can measure the inspiralling ob-
jects’ masses with precision about 10−4, teaching
us about the stellar population in the central par-
sec of galactic nuclei.

• If the LISA event rate is large enough, one can
measure the Hubble constant H0 to about 1% [21],
which would indirectly aid dark energy studies [22].
The idea is to combine the measured luminosity
distance of cosmological (z ∼ 1/2) EMRIs with a
statistical analysis of the redshifts of candidate host
galaxies located within the error box on the sky.

To realize the science goals for these sources requires
accurate theoretical models of the waveforms for matched
filtering. The accuracy requirement is roughly that the
theoretical template’s phase must remain accurate to ∼ 1
cycle over the ∼ ε−1 cycles of waveform in the highly
relativistic regime (∼ 102 cycles for LIGO, ∼ 105 for
LISA). For signal detection, the requirement is slightly
less stringent than this, while for parameter extraction
the requirement is slightly more stringent: The wave-
forms are characterized by 14 parameters, which makes

a fully coherent search of the entire data train compu-
tationally impossible. Therefore, detection templates for
LISA will use short segments of the signal and require
phase coherence for ∼ 104 cycles [10]. Once the presence
of a signal has been established, the source parameters
will be extracted using measurement templates that re-
quire a fractional phase accuracy of order the reciprocal
of the signal to noise ratio [10], in order to keep system-
atic errors as small as the statistical errors.

B. Methods of computing orbital motion and

waveforms

A variety of approaches to computing waveforms have
been pursued in the community. We now review these ap-
proaches in order to place the present paper in context.
The foundation for all approaches is the fact that, since
ε = µ/M ≪ 1, the field of the compact object can be
treated as a small perturbation to the large black hole’s
gravitational field. On short timescales ∼ M , the com-
pact object moves on a geodesic of the Kerr geometry,
characterized by its conserved energy E, z-component of
angular momentum Lz, and Carter constant Q. Over
longer timescales ∼ M/ε, radiation reaction causes the
parameters E, Lz and Q to evolve adiabatically and the
orbit to shrink. The effect of the internal structure of
the object is negligible1, so it can be treated as a point
particle. At the end of the inspiral, the particle passes
through an innermost stable orbit where adiabaticity
breaks down, and it transitions onto a geodesic plunge
orbit [27, 28, 29, 30]. In this paper we restrict attention
to the adiabatic portion of the motion.

Numerical Relativity: Numerical relativity has not yet
been applied to the extreme mass ratio regime. How-
ever, given the recent successful simulations in the equal
mass regime ε ∼ 1, one could contemplate trying to per-
form simulations with smaller mass ratios. There are a
number of difficulties that arise as ε gets small: (i) The
orbital timescale and the radiation reaction timescale are
separated by the large factor ∼ 1/ε. The huge number of
wave cycles implies an impractically large computation
time. (ii) There is a separation of lengthscales: the com-
pact object is smaller than the central black hole by a
factor ε. (iii) Most importantly, in the strong field region
near the small object, the piece of the metric perturba-
tion responsible for radiation reaction is of order ε, and

1 There are two exceptions, where corrections to the point-particle
model can be important: (i) White dwarf EMRIs, where tidal
interactions can play a role [23]. (ii) The effect due to the
spin, if any, of the inspiralling object, whose importance has
been emphasized by Burko [24, 25]. While this effect is at most
marginally relevant for signal detection [26], it is likely quite im-
portant for information extraction. We neglect the spin effect in
the present paper, since it can be computed and included in the
waveforms relatively easily.
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since one requires errors in the radiation reaction to be of
order ε, the accuracy requirement on the metric pertur-
bation is of order ε2. These difficulties imply that numer-
ical simulations will likely not be possible in the extreme
mass ratio regime in the foreseeable future, unless major
new techniques are devised to speed up computations.

Use of post-Newtonian methods: Approximate waveforms
which are qualitatively similar to real waveforms can
be obtained using post-Newtonian methods or using hy-
brid schemes containing some post-Newtonian elements
[26, 31, 32]. Although these waveforms are insufficiently
accurate for the eventual detection and data analysis of
real signals, they have been very useful for approximately
scoping out the detectability of inspiral events and the
accuracy of parameter measurement, both for LIGO [4]
and LISA [10, 26]. They have the advantage that they
can be computed relatively quickly.

Black hole perturbation theory – first order: There is
a long history of using first order perturbation theory
[3] to compute gravitational waveforms from particles
in geodesic orbits around black holes [33, 34, 35, 36].
These computations have recently been extended to fully
generic orbits [37, 38, 39]. However first order pertur-
bation theory is limited to producing “snapshot” wave-
forms that neglect radiation reaction.2 Such waveforms
fall out of phase with true waveforms after a dephasing
time ∼M/

√
ε, the geometric mean of the orbital and ra-

diation reaction timescales, and so are of limited utility.3

Black hole perturbation theory – second order: One can
in principle go to second order in perturbation theory
[41, 42, 43]. At this order, the particle’s geodesic mo-
tion must be corrected by self-force effects describing
its interaction with its own spacetime distortion. This
gravitational self force is analogous to the electromag-
netic Abraham-Lorentz-Dirac force. Although a formal
expression for the self force is known [44, 45], it has
proved difficult to translate this expression into a practi-
cal computational scheme for Kerr black holes because
of the mathematical complexity of the self-field regu-
larization which is required. Research into this topic
is ongoing; see, for example the review [46] and Refs.
[43, 47, 48, 49, 50, 51, 52, 53, 54] for various approaches
and recent progress.

When the self-force is finally successfully computed,
second order perturbation theory will provide a self-
consistent framework for computing the orbital motion

2 The source for the linearized Einstein equation must be a con-
served stress energy tensor, which for a point particle requires a
geodesic orbit.

3 Drasco has argued that snapshot waveforms may still be useful
for signal detections in certain limited parts of the IMRI/EMRI
parameter space, since the phase coherence time is actually ∼
100M/

√
ε [40].

and the waveform, but only over short timescales. The
second order waveforms will fall out of phase with the
true waveforms after only a dephasing time ∼ M/

√
ε 4

[55, 56]. Computing accurate waveforms describing a full
inspiral therefore requires going beyond black hole per-
turbation theory.

Use of conservation laws: This well-explored method al-
lows tracking an entire inspiral for certain special classes
of orbits. Perturbation theory is used to compute the
fluxes of E and Lz to infinity and down the horizon for
geodesic orbits, and imposing global conservation laws,
one infers the rates of change of the orbital energy and
angular momentum. For circular orbits and equatorial
orbits these determine the rate of change of the Carter
constant Q, and thus the inspiralling trajectory. The
computation can either be done in the frequency domain
[33, 34, 35, 36], or in the time domain by numerically
integrating the Teukolsky equation as a 2+1 PDE with
a suitable numerical model of the point particle source
[57, 58, 59, 60, 61, 62, 63, 64, 65, 66]. However, this
method fails for generic orbits since there is no known
global conservation law associated with the Carter con-
stant Q.

Adiabatic approximation – leading order: Over the last
few years, it has been discovered how to compute inspi-
rals to leading order for generic orbits. The method is
based on the Mino’s realization [67] that, in the adia-
batic limit, one needs only the time averaged, dissipative
piece of the first order self force, which can be straight-
forwardly computed from the half retarded minus half
advanced prescription. This sidesteps the difficulties as-
sociated with regularization that impede computations
of the full, first order self force. From the half advanced
minus half retarded prescription, one can derive an ex-
plicit formula for a time-average of Q̇ in terms of mode
expansion [37, 68, 69, 70, 71]. Using this formula it will
be straightforward to compute inspirals to the leading
order.

We now recap and assess the status of these various
approaches. All of the approaches described above have
shortcomings and limitations [56]. Suppose that one
computes the inspiral motion, either from conservation
laws, or from the time-averaged dissipative piece of the
first order self-force, or from the exact first order self-
force when it becomes available. It is then necessary to
compute the radiation generated by this inspiral. One
might be tempted to use linearized perturbation theory
for this purpose. However, two problems then arise:

4 The reason is as follows. Geodesic orbits and true orbits become
out of phase by ∼ 1 cycle after a dephasing time. Therefore, since
the linear metric perturbation is sourced by a geodesic orbit,
fractional errors in the linear metric perturbation must be of
order unity. Therefore the second order metric perturbation must
become comparable to the first order term after a dephasing time.
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• As noted above, the use of linearized perturba-
tion theory with nongeodesic sources is mathemat-
ically inconsistent. This inconsistency has often
been remarked upon, and various ad hoc methods
of modifying the linearized theory to get around
the difficulty have been suggested or implemented
[45, 72, 73].

• A related problem is that the resulting waveforms
will depend on the gauge chosen for the linearized
metric perturbation, whereas the exact waveforms
must be gauge invariant.

It has often been suggested that these problems can be
resolved by going to second order in perturbation theory
[43, 46]. However, as discussed above, a second order
computation will be valid only for a dephasing time, and
not for a full inspiral.

Of course, the above problems are not fatal, since the
motion is locally very nearly geodesic, and so the incon-
sistencies and ambiguities are suppressed by a factor ∼ ε
relative to the leading order waveforms.5 Nevertheless,
it is clearly desirable to have a well defined approxima-
tion method that gives a unique, consistent result for the
leading order waveform. Also, for parameter extraction,
it will be necessary to compute the phase of the waveform
beyond the leading order. For this purpose it will clearly
be necessary to have a more fundamental computational
framework.

C. The two timescale expansion method

In this paper we describe an approximation scheme
which addresses and resolves all of the theoretical dif-
ficulties discussed above. It is based on the fact that
the systems evolve adiabatically: the radiation reac-
tion timescale ∼ M/ε is much longer than the orbital
timescale ∼ M [67]. It uses two-timescale expansions,
which are a systematic method for studying the cumula-
tive effect of a small disturbance on a dynamical system
that is active over a long time [74].

The essence of the method is simply an ansatz for the
dependence of the metric gab(ε) on ε, and an ansatz for
the dependence of the orbital motion on ε, that are jus-
tified a posteriori order by order via substitution into
Einstein’s equation. The ansatz for the metric is more
complex than the Taylor series ansatz which underlies
standard perturbation theory. The two timescale method
has roughly the same relationship to black hole pertur-
bation theory as post-Newtonian theory has to pertur-
bation theory of Minkowski spacetime. The method is
consistent with standard black hole perturbation theory
locally in time, at each instant, but extends the domain

5 This is true both for the instantaneous amplitude and for the
accumulated phase of the waveform.

of validity to an entire inspiral. The method provides
a systematic procedure for computing the leading order
waveforms, which we call the adiabatic waveforms, as
well as higher order corrections. We call the O(ε) cor-
rections the post-1-adiabatic corrections, the O(ε2) cor-
rections post-2-adiabatic, etc., paralleling the standard
terminology in post-Newtonian theory.

The use of two timescale expansions in the extreme
mass ratio regime was first suggested in Refs. [55, 75].
The method has already been applied to some simplified
model problems: a computation of the inspiral of a point
particle in Schwarzschild subject to electromagnetic ra-
diation reaction forces by Pound and Poisson [76], and
a computation of the scalar radiation generated by a in-
spiralling particle coupled to a scalar field by Mino and
Price [77]. We will extend and generalize these analyses,
and develop a complete approximation scheme.

There are two, independent, parts to the the approx-
imation scheme. The first is a two timescale analysis
of the inspiralling orbital motion, which is the focus of
the present paper. Our formalism enables us to give a
rigorous derivation and clarification of the prescription
for computing the leading order motion that is valid for
all orbits, and resolves some controversies in the litera-
ture [76]. It also allows us to systematically calculate
the higher order corrections. For these corrections, we
restrict attention to inspirals in Schwarzschild, and to
circular and equatorial inspirals in Kerr. Fully generic
inspirals in Kerr involve a qualitatively new feature – the
occurrence of transient resonances – which we will discuss
in the forthcoming papers [78, 79].

The second part to the approximation scheme is the
application of the two timescale method to the Einstein
equation, and a meshing of that expansion to the analysis
of the orbital motion. This allows computation of the
observable gravitational waveforms, and is described in
detail in the forthcoming paper [80]. We briefly sketch
this formalism in Sec. I E below, and give an analytic
result for the leading order waveforms.

We note that alternative methods of attempting to
overcome the problems with standard perturbation the-
ory, and of going beyond adiabatic order, have been de-
veloped by Mino [56, 72, 81, 82, 83]. These methods
have some overlap with the method discussed here, but
differ in some crucial aspects. We do not believe that
these methods provide a systematic framework for going
to higher orders, unlike the two-timescale method.

D. Orbital Motion

We now turn to a description of our two timescale anal-
ysis of the orbital motion. The first step is to exploit the
Hamiltonian structure of the unperturbed, geodesic mo-
tion to rewrite the governing equations in terms of gen-
eralized action angle variables. We start from the forced



5

geodesic equation

d2xν

dτ2
+ Γν

σρ

dxσ

dτ

dxρ

dτ
= εa(1) ν + ε2a(2) ν +O(ε3). (1.1)

Here τ is proper time and a(1) ν and a(2) ν are the first
order and second order self-accelerations. In Sec. II we
augment these equations to describe the leading order
backreaction of the inspiral on the mass M and spin a
of the black hole, and show they can be rewritten as [cf.
Eqs. (2.47) below]

dqα
dτ

= ωα(Jσ) + εg(1)
α (qr, qθ, Jσ) + ε2g(2)

α (qr, qθ, Jσ)

+O(ε3), (1.2a)

dJλ

dτ
= εG

(1)
λ (qr, qθ, Jσ) + ε2G

(2)
λ (qr, qθ, Jσ)

+O(ε3). (1.2b)

Here the variables Jλ are the three conserved quantities
of geodesic motion, with the dependence on the particle
mass scaled out, together with the black hole mass and
spin parameters:

Jλ = (E/µ,Lz/µ,Q/µ
2,M, a). (1.3)

The variables qα = (qr, qθ, qφ, qt) are a set of general-
ized angle variables associated with the r, θ, φ and t
motions in Boyer-Lindquist coordinates, and are defined
more precisely in Sec. II D below. The variables qr, qθ,
and qφ each increase by 2π after one cycle of motion of the
corresponding variable r, θ or φ. The functions ωα(Jσ)
are the fundamental frequencies of geodesic motion in the

Kerr metric. The functions g
(1)
α , G

(1)
λ are currently not

known explicitly, but their exact form will not be needed
for the analysis of this paper. They are determined by
the first order self acceleration [44, 45]. Similarly, the

functions g
(2)
α and G

(2)
λ are currently not known explic-

itly, and are determined in part by the second order self
acceleration [84, 85, 86, 87, 88]; see Sec. II F for more
details.

In Secs. IV – V below we analyze the differential equa-
tions (1.2) using two timescale expansions. In the non-
resonant case, and up to post-1-adiabatic order, the re-
sults can be summarized as follows. Approximate solu-
tions of the equations can be constructed via a series of
steps:

• We define the slow time variable τ̃ = ετ .

• We construct a set of functions ψ
(0)
α (τ̃ ), J (0)

λ (τ̃ ),

ψ
(1)
α (τ̃ ) and J (1)

λ (τ̃ ) of the slow time. These func-
tions are defined by a set of differential equations

that involve the functions ωα, g
(1)
α , G

(1)
λ , g

(2)
α and

G
(2)
λ and which are independent of ε [Eqs. (5.26),

(5.31), (5.29), (5.39), (5.37) below].

• We define a set of auxiliary phase variables ψα by

ψα(τ, ε) =
1

ε
ψ(0)

α (ετ) + ψ(1)
α (ετ) +O(ε), (1.4)

where the O(ε) symbol refers to the limit ε→ 0 at
fixed τ̃ = ετ .

• Finally, the solution to post-1-adiabatic order is
given by

qα(τ, ε) = ψα +O(ε), (1.5a)

Jλ(τ, ε) = J (0)
λ (ετ) + εJ (1)(ετ)

+Hλ[ψr, ψθ,J (0)
σ (ετ)] +O(ε2), (1.5b)

where the O(ε) and O(ε2) symbols refer to ε → 0
at fixed τ̃ and ψα. Here Hλ is a function which is
periodic in its first two arguments and which can

computed from the function G
(1)
λ [Eq. (7.3) below].

We now turn to a discussion of the implications of
the final result (1.5). First, we emphasize that the pur-
pose of the analysis is not to give a convenient, practical
scheme to integrate the orbital equations of motion. Such
a scheme is not needed, since once the self-acceleration is
known, it is straightforward to numerically integrate the
forced geodesic equations (1.1). Rather, the main benefit
of the analysis is to give an analytic understanding of the
dependence of the motion on ε in the limit ε → 0. This
serves two purposes. First, it acts as a foundation for the
two timescale expansion of the Einstein equation and the
computation of waveforms (Sec. I E below and Ref. [80]).
Second, it clarifies the utility of different approximations
to the self-force that have been proposed, by determining
which pieces of the self-force contribute to the adiabatic
order and post-1-adiabatic order motions [37, 68]. This
second issue is discussed in detail in Sec. VII below. Here
we give a brief summary.

Consider first the motion to adiabatic order, given by

the functions ψ
(0)
α and J (0)

λ . These functions are obtained
from the differential equations [Eqs. (5.26), (5.31) and
(5.29) below]

dψ
(0)
α

dτ̃
(τ̃ ) = ωα[J (0)

σ (τ̃ )], (1.6a)

dJ (0)
λ

dτ̃
(τ̃ ) =

〈

G
(1)
λ

〉

[J (0)
σ (τ̃ )], (1.6b)

where 〈. . .〉 denotes the average6 over the 2-torus

〈

G
(1)
λ

〉

(Jσ) ≡ 1

(2π)2

∫ 2π

0

dqr

∫ 2π

0

dqθ G
(1)
λ (qr, qθ, Jσ).

(1.7)
This zeroth order approximation describes the inspi-
ralling motion of the particle. In Sec. II G below we show
that only the dissipative (ie half retarded minus half ad-
vanced) piece of the self force contributes to the torus

6 This phase space average is uniquely determined by the dynam-
ics of the system, and resolves concerns in the literature about
inherent ambiguities in the choice of averaging [76].



6

average (1.7). Thus, the leading order motion depends
only on the dissipative self-force, as argued by Mino [67].
Our result extends slightly that of Mino, since he advo-
cated using an infinite time average on the right hand
side of Eq. (1.6b), instead of the phase space or torus
average. The two averaging methods are equivalent for
generic geodesics, but not for geodesics for which the
ratio of radial and azimuthal periods is a rational num-
ber. The time-average prescription is therefore correct
for generic geodesics, while the result (1.6) is valid for
all geodesics. The effect of the nongeneric geodesics is
discussed in detail in Refs. [78, 79].

Consider next the subleading, post-1-adiabatic correc-

tions to the inspiral given by the functions ψ
(1)
α and J (1)

λ .
These corrections are important for assessing the accu-
racy of the adiabatic approximation, and will be needed
for accurate data analysis of detected signals. The dif-

ferential equations determining ψ
(1)
α and J (1)

λ are Eqs.
(5.39) and (5.37) below. These equations depend on (i)
the oscillating (not averaged) piece of the dissipative, first
order self force; (ii) the conservative piece of the first or-
der self force, and (iii) the torus averaged, dissipative
piece of the second order self force. Thus, all three of
these quantities will be required to compute the inspi-
ral to subleading order, confirming arguments made in
Refs. [37, 68, 89, 90]. In particular, knowledge of the full
first order self force will not enable computation of more
accurate inspirals until the averaged, dissipative piece of
the second order self force is known.7

E. Two timescale expansion of the Einstein

equations and adiabatic waveforms

We now turn to a brief description of the two timescale
expansion of the Einstein equations; more details will be
given in the forthcoming paper [80]. We focus attention
on a region R of spacetime defined by the conditions (i)
The distance from the particle is large compared to its
mass µ; (ii) The distance r from the large black hole is
small compared to the inspiral time, r ≪ M2/µ; and
(iii) The extent of the region in time covers the entire
inspiral in the relativistic regime. In this domain we make
an ansatz for the form of the metric that is justified a
posteriori order by order.

At distances ∼ µ from the particle, one needs to use
a different type of analysis (eg black hole perturbation
theory for a small black hole), and to mesh that analy-
sis with the solution in the region R by matching in a
domain of common validity. This procedure is very well
understood and is the standard method for deriving the
first order self force [44, 46, 91]. It is valid for our metric
ansatz (1.8) below since that ansatz reduces, locally in

7 This statement remains true when one takes into account reso-
nances [79].

time at each instant, to standard black hole perturbation
theory. Therefore we do not focus on this aspect of the
problem here. Similarly, at large distances, one needs
to match the solution within R onto an outgoing wave
solution in order to read off the asymptotic waveforms.8

Within the region R, our ansatz for the form of the
metric in the non-resonant case is

gαβ(t̄, x̄j ; ε) = g
(0)
αβ (x̄j) + εg

(1)
αβ (qr, qθ, qφ, t̃, x̄

j)

+ε2g
(1)
αβ (qr, qθ, qφ, t̃, x̄

j) +O(ε3). (1.8)

Here g
(0)
αβ is the background, Kerr metric. The coordi-

nates (t̄, x̄j) can be any set of coordinates in Kerr, subject
only to the restriction that ∂/∂t̄ is the timelike Killing
vector. On the right hand side, t̃ is the slow time variable
t̃ = εt̄, and the quantities qr, qθ and qφ are the values of
the orbit’s angle variables at the intersection of the inspi-
ralling orbit with the hypersurface t̄ = constant. These
are functions of t̄ and of ε, and can be obtained from
the solutions (1.4) and (1.5a) of the inspiral problem by
eliminating the proper time τ . The result is of the form

qi(t̄, ε) =
1

ε
f

(0)
i (t̃) + f

(1)
i (t̃) +O(ε), (1.9)

for some functions f
(0)
i , f

(1)
i . On the right hand side of

Eq. (1.8), the O(ε3) refers to an asymptotic expansion
associated with the limit ε → 0 at fixed qi, x̄

k and t̃.

Finally the functions g
(1)
αβ and g

(2)
αβ are assumed to be

multiply periodic in qr, qθ and qφ with period 2π in each
variable.

By inserting the ansatz (1.8) into Einstein’s equations,
one obtains a set of equations that determines the free
functions, order by order. At leading order we obtain an
equation of the form

Dg(0)
αβ = 0, (1.10)

where D is a linear differential operator on the six di-
mensional manifold with coordinates (qr, qθ, qφ, x̄

j). In
solving this equation, t̃ is treated as a constant. The
solution that matches appropriately onto the worldline
source can be written as

g
(1)
αβ =

∂g
(0)
αβ

∂M
δM(t̃) +

∂g
(0)
αβ

∂a
δa(t̃) + . . .

+Fαβ[qr, qθ, qφ, x̄
j , E(t̃), Lz(t̃), Q(t̃)]. (1.11)

Here the terms on the first line are the secular pieces of
the solution. They arise since the variable t̃ is treated as
a constant, and so one can obtain a solution by taking
the perturbation to the metric generated by allowing the

8 This matching is not necessary at the leading, adiabatic order,
for certain special choices of time coordinate in the background
spacetime, as argued in Ref. [77]. It is needed to higher orders.
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parameters of the black hole (mass, spin, velocity, center
of mass location) to vary as arbitrary functions of t̃. For
example, the mass of the black hole can be written as
M(t̃) = M+δM(t̃), where M = M(0) is the initial mass.
The functions δM(t̃), δa(t̃) etc. are freely specifiable at
this order, and will be determined at the next (post-1-
adiabatic) order.

The second line of Eq. (1.11) is the oscillatory piece of
the solution. Here one obtains a solution by taking the
function Fαβ to be the function

Fαβ(qr, qθ, qφ, x̄
j , E, Lz, Q)

that one obtains from standard linear perturbation the-
ory with a geodesic source. This function is known
analytically in Boyer-Lindquist coordinates (t, r, θ, φ) in
terms of a mode expansion.9, 10

The gauge freedom in this formalism consists of those
one parameter families of diffeomorphisms which preserve
the form (1.8) of the metric ansatz. To the leading order,
these consist of (i) gauge transformations of the back-
ground coordinates that are independent of ε, which pre-
serve the timelike Killing vector, and (ii) transformations
of the form

xα → xα + εξα(qr, qθ, qφ, t̃, x
j) +O(ε2). (1.12)

Note that this is not the standard gauge freedom of lin-
ear perturbation theory, since ξα depends on 4 “time
variables” instead of one. This modified gauge group al-
lows the two timescale method to evade the two problems
discussed at the end of Sec. I B above, since the gradual
evolution is described entirely by the t̃ dependence, and,
at each fixed t̃, the leading order dependence on the vari-
ables qr, qθ, qφ, r, θ and φ is the same as in standard
perturbation theory with the same gauge transformation
properties.

9 In coordinates t̄ = t− r, r, θ, φ, the explicit form of the asymp-
totic solution can be obtained by taking Eq. (3.1) of Ref. [40],
eliminating the phases χlmkn using Eq. (8.29) of Ref. [68], and
making the identifications qr = Ωr [t − r − t0 + t̂r(−λr0) −
t̂θ(−λθ0)] −Υrλr0, qθ = Ωθ[t− r− t0 + t̂r(−λr0)− t̂θ(−λθ0)]−
Υθλθ0, and qφ = Ωφ[t − r − t0 + t̂r(−λr0) − t̂θ(−λθ0)] + φ0 −
φ̂r(−λr0) + φ̂θ(−λθ0).

10 The function Fαβ depends on qφ and φ only through the combi-
nation qφ−φ. This allows us to show that the two-timescale form
(1.8) of the metric reduces to a standard Taylor series expansion,
locally in time near almost every value t̃0 of t̃. For equatorial
orbits there is no dependence on qθ, and the ε dependence of
the metric has the standard form up to linear order, in coordi-

nates (t′, r′, θ′, φ′) defined by t′ = (t̃ − t̃0)/ε + [f
(0)
r (t̃0)/ε]/ωr0,

φ′ = φ + ωφ0[f
(0)
r (t̃0)/ε]/ωr0 − [f

(0)
φ (t̃0)/ε], r′ = r, θ′ = θ,

where ωr0 = f
(0)′
r (t̃0), ωφ0 = f

(0)′
φ (t̃0), and for any number x,

[x] ≡ x+2πn where the integer n is chosen so that 0 ≤ [x] < 2π.
A similar construction works for circular orbits for which there is
no dependence on qr. For generic orbits a slightly more involved
construction works, but only if ωr0/ωφ0 is irrational [80], which
occurs for almost every value of t̃0.

F. Organization of this Paper

The organization of this paper is as follows. In Sec. II
we derive the fundamental equations describing the in-
spiral of a point particle into a Kerr black hole in terms of
generalized action-angle variables. In Sec. III we define
a class of general, weakly perturbed dynamical systems
of which the inspiral motion in Kerr is a special case.
We then study the solutions of this class of systems us-
ing two-timescale expansions, first for a single degree of
freedom in Sec. IV, and then for the general case in Sec.
V. Section VI gives an example of a numerical integra-
tion of a system of this kind, and Sec. VII gives the final
discussion and conclusions.

G. Notation and Conventions

Throughout this paper we use units with G = c = 1.
Lower case Roman indices a, b, c, . . . denote abstract in-
dices in the sense of Wald [92]. We use these indices
both for tensors on spacetime and for tensors on the
eight dimensional phase space. Lower case Greek indices
ν, λ, σ, τ, . . . from the middle of the alphabet denote com-
ponents of spacetime tensors on a particular coordinate
system; they thus transform under spacetime coordinate
transformations. They run over 0, 1, 2, 3. Lower case
Greek indices α, β, γ . . . from the start of the alphabet la-
bel position or momentum coordinates on 8 dimensional
phase space that are not associated with coordinates on
spacetime. They run over 0, 1, 2, 3 and do not transform
under spacetime coordinate transformations. In Sec. V,
and just in that section, indices α, β, γ, δ, ε, . . . from the
start of the Greek alphabet run over 1 . . .N , and indices
λ, µ, ν, ρ, σ, . . . from the second half of the alphabet run
over 1 . . .M . Bold face quantities generally denote vec-
tors, as in J = (J1, . . . , JM ), although in Sec. II the bold
faced notation is used for differential forms.

II. EXTREME-MASS RATIO INSPIRALS IN

KERR FORMULATED USING ACTION-ANGLE

VARIABLES

In this section we derive the form of the fundamental
equations describing the inspiral of a point particle into
a Kerr black hole, using action-angle type variables. Our
final result is given in Eqs. (2.47) below, and the prop-
erties of the solutions of these equations are analyzed in
detail in the remaining sections of this paper.

The description of geodesic motion in Kerr in terms
of action angle variables was first given by Schmidt [93],
and has been reviewed by Glampedakis and Babak [94].
We follow closely Schmidt’s treatment, except that we
work in an eight dimensional phase space instead of a
six dimensional phase space, thus treating the time and
spatial variables on an equal footing. We also clarify the
extent to which the fundamental frequencies of geodesic
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motion are uniquely determined and gauge invariant, as
claimed by Schmidt.

We start in subsection II A by reviewing the geometric
definition of action angle variables in Hamiltonian me-
chanics, which is based on the Liouville-Arnold theorem
[95]. This definition does not apply to geodesic motion
in Kerr, since the level surfaces defined by the conserved
quantities in the eight dimensional phase space are non-
compact. In subsection II B we discuss how generalized
action angle variables can be defined for non-compact
level surfaces, and in subsection II C we apply this to
give a coordinate-independent construction of general-
ized action angle variables for generic bound geodesics in
Kerr. Subsection II D specializes to Boyer-Lindquist co-
ordinates on phase space, and describes explicitly, follow-
ing Schmidt [93], the explicit canonical transformation
from those coordinates to the generalized action angle
variables.

We then turn to using these variables to describe a
radiation-reaction driven inspiral. In subsection II E we
derive the equations of motion in terms of the general-
ized action angle variables. These equations define a flow
on the eight dimensional phase space, and do not explic-
itly exhibit the conservation of rest mass. In subsection
II F we therefore switch to a modified set of variables
and equations in which the conservation of rest mass is
explicit. We also augment the equations to describe the
backreaction of gravitational radiation passing through
the horizon of the black hole.

A. Review of action-angle variables in geometric

Hamiltonian mechanics

We start by recalling the standard geometric frame-
work for Hamiltonian mechanics [95]. A Hamiltonian
system consists of a 2N -dimensional differentiable man-
ifold M on which there is defined a smooth function
H (the Hamiltonian), and a non-degenerate 2-form Ωab

which is closed, ∇[aΩbc] = 0. Defining the tensor Ωab by

ΩabΩbc = δa
c , the Hamiltonian vector field is defined as

va = Ωab∇bH, (2.1)

and the integral curves of this vector fields give the mo-
tion of the system. The two form Ωab is called the sym-
plectic structure. Coordinates (qα, pα) with 1 ≤ α ≤ N
are called symplectic coordinates if the symplectic struc-
ture can be written as Ω = dpα ∧ dqα, i.e. Ωab =
2∇[apα∇b]qα.

We shall be interested in systems that possess N − 1
first integrals of motion which, together with the Hamil-
tonian H , form a complete set of N independent first
integrals. We denote these first integrals by Pα, 1 ≤ α ≤
N , where P1 = H . These quantities are functions on M
for which the Poisson brackets

{Pα, H} ≡ Ωab(∇aPα)(∇bH) (2.2)

vanish for 1 ≤ α ≤ N . If the first integrals satisfy the
stronger condition that all the Poisson brackets vanish,

{Pα, Pβ} = 0 (2.3)

for 1 ≤ α, β ≤ N , then the first integrals are said to
be in involution. If the 1-forms ∇aPα for 1 ≤ α ≤ N
are linearly independent, then the first integrals are said
to be independent. A system is said to be completely
integrable in some open region U in M if there exist N
first integrals which are independent and in involution at
every point of U .

For completely integrable systems, the phase space M
is foliated by invariant level sets of the first integrals. For
a given set of values p = (p1, . . . , pN ), we define the level
set

Mp = {x ∈ M| Pα(x) = pα, 1 ≤ α ≤ N} , (2.4)

which is an N -dimensional submanifold of M. The level
sets are invariant under the Hamiltonian flow by Eq.
(2.2). Also the pull back of the symplectic structure Ω

to Mp vanishes, since the vector fields ~vα defined by

va
α = Ωab∇bPα (2.5)

for 1 ≤ α ≤ N form a basis of the tangent space to Mp

at each point, and satisfy Ωabv
a
αv

b
β = 0 for 1 ≤ α, β ≤ N

by Eq. (2.3).
A classic theorem of mechanics, the Liouville-Arnold

theorem [95], applies to systems which are completely
integrable in a neighborhood of some level set Mp that
is connected and compact. The theorem says that

• The level set Mp is diffeomorphic to an N -torus
TN . Moreover there is a neighborhood V of Mp

which is diffeomorphic to the product TN×B where
B is an open ball, such that the level sets are the
N -tori.

• There exist symplectic coordinates (qα, Jα) for 1 ≤
α ≤ N (action-angle variables) on V for which the
angle variables qα are periodic,

qα + 2π ≡ qα,

and for which the first integrals depend only on the
action variables, Pα = Pα(J1, . . . , JN ) for 1 ≤ α ≤
N .

An explicit and coordinate-invariant prescription for
computing a set of action variables Jα is as follows [95].
A symplectic potential Θ is a 1-form which satisfies
dΘ = Ω. Since the 2-form Ω is closed, such 1-forms
always exist locally. For example, in any local symplec-
tic coordinate system (qα, pα), the 1-form Θ = pαdqα is
a symplectic potential. It follows from the hypotheses of
the Liouville-Arnold theorem that there exist symplec-
tic potentials that are defined on a neighborhood of Mp

[96]. The first homotopy group Π1(Mp) is defined to
be the set of equivalence classes of loops on Mp, where
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two loops are equivalent if one can be continuously de-
formed into the other. Since Mp is diffeomorphic to the
N -torus, this group is isomorphic to (ZN ,+), the group
of N -tuples of integers under addition. Pick a set of
generators γ1, . . . , γN of Π1(Mp), and for each loop γα

define

Jα =
1

2π

∫

γα

Θ. (2.6)

This integral is independent of the choice of symplectic
potential Θ.11 It is also independent of the choice of loop
γα in the equivalence class of the generator of Π1(Mp),
since if γα and γ′α are two equivalent loops, we have

∫

γα

Θ−
∫

γ′

α

Θ =

∫

∂R

Θ =

∫

R

dΘ =

∫

R

Ω = 0. (2.7)

Here R is a 2-dimensional surface in Mp whose boundary
is γα − γ′α, we have used Stokes theorem, and in the last
equality we have used the fact that the pull back of Ω to
the level set Mp vanishes.

Action-angle variables for a given system are not
unique [97]. There is a freedom to redefine the coor-
dinates via

qα → Aαβqβ , Jα → BαβJβ , (2.8)

where Aαβ is a constant matrix of integers with deter-
minant ±1, and AαβBαγ = δβγ . This is just the free-
dom present in choosing a set of generators of the group
Π1(Mp) ∼ (ZN ,+). Fixing this freedom requires the
specification of some additional information, such as a
choice of coordinates on the torus; once the coordinates
qα are chosen, one can take the loops γα to be the curves
qβ = constant for β 6= α. There is also a freedom to re-
define the origin of the angle variables separately on each
torus:

qα → qα +
∂Z(Jβ)

∂Jα
, Jα → Jα. (2.9)

Here Z(Jβ) can be an arbitrary function of the action
variables.

B. Generalized action-angle variables for

non-compact level sets

One of the crucial assumptions in the Liouville-Arnold
theorem is that the level set Mp is compact. Unfortu-
nately, this assumption is not satisfied by the dynami-
cal system of bound orbits in Kerr which we discuss in
Sec. II C below, because we will work in the 8 dimen-
sional phase space and the motion is not bounded in the

11 The type of argument used in Ref. [96] can be used to show that
the pullback to Mp of the difference between two symplectic
potentials is exact since it is closed.

time direction. We shall therefore use instead a general-
ization of the Liouville-Arnold theorem to non-compact
level sets, due to Fiorani, Giachetta and Sardanashvily
[96].

Consider a Hamiltonian system which is completely
integrable in a neighborhood U of a connected level set
Mp, for which the N vector fields (2.5) are complete on
U , and for which the level sets Mp′ foliating U are all
diffeomorphic to one another. For such systems Fiorani
et. al. [96] prove that

• There is an integer k with 0 ≤ k ≤ N such that
the level set Mp is diffeomorphic to the product
T k × RN−k, where R is the set of real numbers.
Moreover there is a neighborhood V of Mp which
is diffeomorphic to the product T k × RN−k × B
where B is an open ball.

• There exist symplectic coordinates (qα, Jα) for 1 ≤
α ≤ N (generalized action-angle variables) on V for
which the first k variables qα are periodic,

qα + 2π ≡ qα, 1 ≤ α ≤ k,

and for which the first integrals depend only on the
action variables, Pα = Pα(J1, . . . , JN ) for 1 ≤ α ≤
N .

Thus, there are k compact dimensions in the level sets,
andN−k non-compact dimensions. In our application to
Kerr below, the values of these parameters will be k = 3
and N − k = 1.

The freedom in choosing generalized action-angle vari-
ables is larger than the corresponding freedom for action-
angle variables discussed above. The first k action vari-
ables can be computed in the same way as before, via the
integral (2.6) evaluated on a set of generators γ1, . . . , γk

of Π1(Mp), which in this case is isomorphic to (Zk,+).
This prescription is unique up to a group of redefinitions
of the form [cf. Eq. (2.8) above]

qα →
k

∑

β=1

Aαβqβ, Jα →
k

∑

β=1

BαβJβ, (2.10)

for 1 ≤ α ≤ k, where the k × k matrix Aαβ is a
constant matrix of integers with determinant ±1, and
AαβBαγ = δβγ . There is additional freedom present in
the choice of the rest of the action variables Jk+1, . . . , JN .
As a consequence, the remaining freedom in choosing
generalized action-angle variables consists of the trans-
formations (2.9) discussed earlier, together with trans-
formations of the form

qα → Aαβqβ, Jα → BαβJβ , (2.11)

where Aαβ and Bαβ are constant real N × N matrices
with AαβBαγ = δβγ such that J1, . . . , Jk are preserved.

In generalized action-angle variables, the equations of
motion take the simple form

q̇α =
∂H(J)

∂Jα
(2.12)
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and

J̇α = −∂H(J)

∂qα
= 0. (2.13)

We define the quantities

Ωα(J) ≡ ∂H(J)

∂Jα
, (2.14)

which are angular frequencies for 1 ≤ α ≤ k but not for
k+1 ≤ α ≤ N . The solutions of the equations of motion
are then

qα(t) = Ωα(J0)t+ qα0 (2.15a)

Jα(t) = Jα0, (2.15b)

for some constants J0 and q0.

C. Application to bound geodesic motion in Kerr

We now apply the general theory discussed above to
give a coordinate-invariant definition of action-angle vari-
ables for a particle on a bound orbit in the Kerr space-
time. We denote by (MK, gab) the Kerr spacetime, and
we denote by ξa and ηa the timelike and axial Killing
vector fields. The cotangent bundle over MK forms an
8-dimensional phase space M = T ∗MK. Given any co-
ordinate system xν on the Kerr spacetime, we can define
a coordinate system (xν , pν) on M, such that the point
(xν , pν) corresponds to the covector or one form pνdx

ν

at xν in MK. The natural symplectic structure on M
is then defined by demanding that all such coordinate
systems (xν , pν) be symplectic [95]. The Killing vector
fields ξa and ηa on MK have natural extensions to vec-
tor fields on phase space which Lie derive the symplectic
structure.

Consider now a particle of mass µ on a bound geodesic
orbit. A Hamiltonian on M that generates geodesic mo-
tion is given by

H(xν , pν) =
1

2
gνσ(xρ)pνpσ; (2.16)

this definition is independent of the choice of coordinate
system xν . If we interpret pν to be the 4-momentum of
the particle, then the conserved value of H is −µ2/2, and
the evolution parameter is the affine parameter λ = τ/µ
where τ is proper time.

As is well known, geodesics on Kerr possess three first
integrals, the energy E = −ξapa, the z-component of
angular momentum Lz = ηapa, and Carter constant Q =
Qabpapb where Qab is a Killing tensor [98]. Together with
the Hamiltonian we therefore have four first integrals:

Pα = (P0, P1, P2, P3) = (H,E,Lz, Q). (2.17)

An explicit computation of the 4-form dH∧dE∧dLz∧dQ
on M shows that it is non vanishing for bound orbits ex-
cept for the degenerate cases of circular (i.e. constant

Boyer-Lindquist radial coordinate) and equatorial or-
bits. Also the various Poisson brackets {Pα, Pβ} vanish:
{E,H} and {Lz, H} vanish since ξa and ηa are Killing
fields, {E,Lz} vanishes since these Killing fields com-
mute, {Q,H} vanishes since Qab is a Killing tensor, and
finally {E,Q} and {Lz, Q} vanish since the Killing ten-
sor is invariant under the flows generated by ξa and ηa.
Therefore for generic orbits the theorem due to Fiorani
et. al. discussed in the last subsection applies.12 The rel-
evant parameter values are k = 3 and N = 4, since the
level sets Mp are non-compact in the time direction only.
Thus geodesic motion can be parameterized in terms of
generalized action-angle variables.

We next discuss how to resolve in this context the
non-uniqueness in the choice of generalized action an-
gle variables discussed in the last subsection. Consider
first the freedom (2.10) associated with the choice of gen-
erators of Π1(Mp). One of these generators can be cho-
sen to be an integral curve of the extension to M of
the axial Killing field ηa. The other two can be chosen
as follows. Let π : M → MK be the natural projec-
tion from phase space M to spacetime MK that takes
(xν , pν) to xν . A loop (xν(λ), pν(λ)) in the level set Mp

then projects to the curve xν(λ) in π(Mp). Requiring
that this curve intersect the boundary of π(Mp) only
twice determines the two other generators of Π1(Mp).13

The resulting three generators coincide with the gen-
erators obtained from the motions in the r, θ and φ
directions in Boyer-Lindquist coordinates [93]. We de-
note the resulting generalized action-angle variables by
(qt, qr, qθ, qφ, Jt, Jr, Jθ, Jφ).

The remaining ambiguity (2.11) is of the form

Ji → Ji, Jt → γJt + viJi, (2.18)

where i runs over r, θ and φ and the parameters γ and vi

are arbitrary. The corresponding transformation of the
frequencies (2.14) is

Ωt → γ−1Ωt, Ωi → Ωi − γ−1viΩt. (2.19)

A portion of this ambiguity (the portion given by γ = 1,
vr = vθ = 0) is that associated with the choice of rota-
tional frame, φ→ φ+ Ωt where Ω is an angular velocity.
It is not possible to eliminate this rotational-frame am-
biguity using only the spacetime geometry in a neighbor-
hood of the orbit. In this sense, the action angle variables
are not uniquely determined by local geometric informa-
tion. However, we can resolve the ambiguity using global
geometric information, by choosing

Jt =
1

2π

∫

γt

Θ, (2.20)

12 One can check that the two other assumptions in the theorem
listed in the second paragraph of Sec. II B are satisfied.

13 This excludes, for example, loops which wind around twice in
the r direction and once in the θ direction.
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where γt is an integral curve of length 2π of the extension
to M of the timelike Killing field ξa.14 The definition
(2.20) is independent of the choice of such a curve γt and
of the choice of symplectic potential Θ.

To summarize, we have a given a coordinate-
invariant definition of the generalized action-angle vari-
ables (qt, qr, qθ, qφ, Jt, Jr, Jθ, Jφ) for generic bound orbits
in Kerr. These variables are uniquely determined up to
relabeling and up to the residual ambiguity (2.9). A
similar construction has been given by Schmidt [93], ex-
cept that Schmidt first projects out the time direction
of the level sets, and then defines three action variables
(Jr, Jθ, Jφ) and three angle variables (qr , qθ, qφ).

D. Explicit expressions in terms of

Boyer-Lindquist coordinates

In Boyer-Lindquist coordinates (t, r, θ, φ), the Kerr
metric is

ds2 = −
(

1 − 2Mr

Σ

)

dt2 +
Σ

∆
dr2 + Σ dθ2

+

(

r2 + a2 +
2Ma2r

Σ
sin2 θ

)

sin2 θ dφ2

−4Mar

Σ
sin2 θ dt dφ, (2.21)

where

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2, (2.22)

and M and a are the black hole mass and spin parame-

ters. The timelike and axial Killing fields are ~ξ = ∂/∂t
and ~η = ∂/∂φ, and so the energy and angular momentum
are

E = −~ξ · ~p = −pt (2.23a)

and

Lz = ~η · ~p = pφ. (2.23b)

The Carter constant is given by [98]

Q = p2
θ + a2 cos2 θ

(

µ2 − p2
t

)

+ cot2 θp2
φ, (2.23c)

and the Hamiltonian (2.16) is

H =
∆

2Σ
p2

r +
1

2Σ
p2

θ +
(pφ + a sin2 θpt)

2

2Σ sin2 θ

−
[

(r2 + a2)pt + apφ

]2

2Σ∆
. (2.23d)

14 The Killing field ξa encodes global geometric information since
it is defined to be timelike and of unit norm at spatial infinity.

Following Schmidt [93], we can obtain an invertible
transformation from the Boyer-Lindquist phase space co-
ordinates (xν , pν) to the generalized action angle vari-
ables (qα, Jα) as follows. Equations (2.23) can be in-
verted to express the momenta pν in terms of xν and the
four first integrals

Pα = (H,E,Lz, Q) =

(

−1

2
µ2, E, Lz, Q

)

(2.24)

up to some signs [98]:

pt = −E, pφ = Lz, pr = ±
√

Vr(r)

∆
, pθ = ±

√

Vθ(θ).

(2.25)
Here the potentials Vr(r) and Vθ(θ) are defined by

Vr(r) =
[

(r2 + a2)E − aLz

]2

−∆
[

µ2r2 + (Lz − aE)2 +Q
]

, (2.26a)

Vθ(θ) = Q−
[

(µ2 − E2)a2 +
L2

z

sin2 θ

]

cos2 θ.(2.26b)

Using these formulae together with the symplectic poten-
tial Θ = pνdx

ν in the definitions (2.6) and (2.20) gives

Jr =
1

2π

∮
√
Vr

∆
dr (2.27a)

Jθ =
1

2π

∮

√

Vθdθ (2.27b)

Jφ =
1

2π

∮

pφdφ = Lz (2.27c)

Jt =
1

2π

∫ 2π

0

ptdt = −E. (2.27d)

These expressions give the action variables as functions of
the first integrals, Jα = Jα(Pβ). The theorem discussed
in Sec. II B above guarantees that these relations can be
inverted to give

Pα = Pα(Jβ). (2.28)

Next, to obtain expressions for the corresponding gen-
eralized angle variables, we use the canonical transforma-
tion from the symplectic coordinates (xν , pν) to (qα, Jα)
associated with a general solution of the Hamilton Jacobi
equation

H

[

xν ,
∂S
∂xν

]

+
∂S
∂λ

= 0. (2.29)

As shown by Carter [98], this equation is separable and
the general solution15 can be written in terms of the first

15 As indicated by the ± signs in Eq. (2.31), there are actually four
different solutions, one on each of the four coordinate patches
on which (xν , Pα) are good coordinates, namely sgn(pr) = ±1,
sgn(pθ) = ±1.
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integrals Pα

S(xν , Pα, λ) = −Hλ+ W(xν , Pα) (2.30)

where H = −µ2/2,

W(xν , Pα) = −Et+ Lzφ±Wr(r) ±Wθ(θ), (2.31)

Wr(r) =

∫ r

dr

√
Vr

∆
, (2.32)

and

Wθ(θ) =

∫ θ

dθ
√

Vθ. (2.33)

Using the relation (2.28) the function W can be expressed
in terms of the Boyer-Lindquist coordinates xν and the
action variables Jα:

W = W(xν , Jα). (2.34)

This is a type II generating function that generates
the required canonical transformation from (xν , pν) to
(qα, Jα):

pν =
∂W
∂xν

(xν , Jβ) (2.35a)

qα =
∂W
∂Jα

(xν , Jβ). (2.35b)

Equation (2.35a) is already satisfied by virtue of the def-
inition (2.31) of W together with Eqs. (2.25). Equation
(2.35b) furnishes the required formulae for the general-
ized angle variables qα.16

Although it is possible in principle to express the first
integrals Pα in terms of the action variables Jα using Eqs.
(2.27), it is not possible to obtain explicit analytic expres-
sions for Pα(Jβ). However, as pointed out by Schmidt
[93], it is possible to obtain explicit expressions for the
partial derivatives ∂Pα/∂Jβ, and this is sufficient to com-
pute the frequencies Ωα. We review this in appendix A.

E. Application to slow inspiral motion in Kerr

The geodesic equations of motion in terms of the gen-
eralized action angle variables (qα, Jα) are [cf. Eqs. (2.12)
– (2.14) above]

dqα
dλ

= Ωα(Jβ), (2.36a)

dJα

dλ
= 0, (2.36b)

16 The freedom (2.9) to redefine the origin of the angle variables on
each torus is just the freedom to add to W any function of Pα.
We choose to resolve this freedom by demanding that qr = 0 at
the minimum value of r, and qθ = 0 at the minimum value of θ.

for 0 ≤ α ≤ 3. Here λ = τ/µ where τ is proper time and
µ is the mass of the particle. In this section we derive the
modifications to these equations required to describe the
radiation-reaction driven inspiral of a particle in Kerr.
Our result is of the form

dqα
dλ

= Ωα(Jβ) + µ2fα(qβ , Jβ), (2.37a)

dJα

dλ
= µ2Fα(qβ , Jβ). (2.37b)

We will derive explicit expressions for the forcing terms
fα and Fα in these equations.

The equation of motion for a particle subject to a self-
acceleration aν is

d2xν

dλ2
+ Γν

σρ

dxσ

dλ

dxρ

dλ
= µ2aν . (2.38)

Rewriting this second order equation as two first order
equations allows us to use the Jacobian of the coordinate
transformation {xν , pν} → {qα, Jα} to relate the forcing
terms for the two sets of variables:

dxν

dλ
= gνσpσ, (2.39a)

dpν

dλ
= −1

2
gσρ

,νpσpρ + µ2aν . (2.39b)

We start by deriving the equation of motion for the
action variables Jα. Taking a derivative with respect to
λ of the relation Jα = Jα(xν , pν) and using Eqs. (2.39)
gives

dJα

dλ
=

∂Jα

∂xν
pν +

∂Jα

∂pν

dpν

dλ

=

[

∂Jα

∂xν
gνσpσ − 1

2

∂Jα

∂pν
gσρ

,νpσpρ

]

+µ2 ∂Jα

∂pν
aν . (2.40)

The term in square brackets must vanish identically since
Jα is conserved in the absence of any acceleration aν .
Rewriting the second term using Jα = Jα(Pβ) and the
chain rule gives an equation of motion of the form (2.37b),
where the forcing terms Fα are

Fα =
∂Jα

∂Pβ

(

∂Pβ

∂pν

)

x

aν . (2.41)

Here the subscript x on the round brackets means that
the derivative is to be taken holding xν fixed. When the
sum over β is evaluated the contribution from P1 = H
vanishes since aνp

ν = 0, and we obtain using Eqs. (2.17)
and (2.27)

Ft = at, (2.42a)

Fr = −∂Jr

∂E
at +

∂Jr

∂Q
aQ +

∂Jr

∂Lz
aφ, (2.42b)

Fθ = −∂Jθ

∂E
at +

∂Jθ

∂Q
aQ +

∂Jθ

∂Lz
aφ, (2.42c)

Fφ = aφ. (2.42d)
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Here we have defined aQ = 2Qνσpνaσ and the various
coefficients ∂Jα/∂Pβ are given explicitly as functions of
Pα in Appendix A.

We use a similar procedure to obtain the equation of
motion (2.37a) for the generalized angle variables qα. Dif-
ferentiating the relation qα = qα(xν , pν) with respect to
λ and combining with the two first order equations of
motion (2.39) gives

dqα
dλ

=

[

∂qα
∂xν

gνσpσ − 1

2

∂qα
∂pν

gσρ
,νpσpρ

]

+µ2 ∂qα
∂pν

aν . (2.43)

By comparing with Eq. (2.36a) in the case of vanishing
acceleration we see that the term in square brackets is
Ωα(Jβ). This gives an equation of motion of the form
(2.37a), where the where the forcing term fα is

fα =

(

∂qα
∂pν

)

x

aν . (2.44)

Using the expression (2.35b) for the angle variable qα
together with Jα = Jα(Pβ) gives

(

∂qα
∂pν

)

x

=

(

∂Pγ

∂pν

)

x

[

∂Pβ

∂Jα

(

∂2W
∂Pβ∂Pγ

)

x

+

(

∂W
∂Pβ

)

x

∂

∂Pγ

(

∂Pβ

∂Jα

)]

. (2.45)

This yields for the forcing term

fα = aν

(

∂Pγ

∂pν

)

x

∂Pδ

∂Jα

[(

∂2W
∂Pδ∂Pγ

)

x

−
(

∂W
∂Pβ

)

x

∂Pβ

∂Jε

∂2Jε

∂Pγ∂Pδ

]

. (2.46)

In this expression the first two factors are the same as
the factors which appeared in the forcing term (2.41) for
the action variables. The quantities ∂Pδ/∂Jα, ∂Pβ/∂Jε

and ∂2Jε/(∂Pγ∂Pδ) can be evaluated explicitly as func-
tions of Pα using the techniques discussed in Appendix
A. The remaining factors in Eq. (2.46) can be evaluated
by differentiating the formula (2.31) for Hamilton’s prin-
cipal function W and using the formulae (2.26) for the
potentials Vr and Vθ.

F. Rescaled variables and incorporation of

backreaction on the black hole

We now augment the action-angle equations of motion
(2.37) in order to describe the backreaction of the gravi-
tational radiation on the black hole. We also modify the
equations to simplify and make explicit the dependence
on the mass µ of the particle. The resulting modified

equations of motion, whose solutions we will analyze in
the remainder of the paper, are

dqα
dτ

= ωα(P̃j ,MB) + εg(1)
α (qA, P̃j ,MB)

+ε2g(2)
α (qA, P̃j ,MB) +O(ε3), (2.47a)

dP̃i

dτ
= εG

(1)
i (qA, P̃j ,MA) + ε2G

(2)
i (qA, P̃j ,MB)

+O(ε3), (2.47b)

dMA

dτ
= ε2ĜA(qA, P̃j ,MB) +O(ε3). (2.47c)

Here α runs over 0, 1, 2, 3, i, j run over 1, 2, 3, A, B
run over 1, 2, qA = (qr , qθ), MA = (M1,M2) and P̃i =

(P̃1, P̃2, P̃3). Also all of the functions ωα, g
(1)
α , g

(2)
α , G

(1)
i ,

G
(2)
i and ĜA that appear on the right hand sides are

smooth functions of their arguments whose precise form
will not be needed for this paper (and are currently un-
known aside from ωα).

Our final equations (2.47) are similar in structure to
the original equations (2.37), but there are a number of
differences:

• We have switched the independent variable in the
differential equations from affine parameter λ to
proper time τ = µλ.

• We have introduced the ratio

ε =
µ

M
(2.48)

of the particle mass µ and black hole mass M , and
have expanded the forcing terms as a power series
in ε.

• The forcing terms g
(1)
α , g

(2)
α , G

(1)
i , G

(2)
i , and ĜA de-

pend only on the two angle variables qA ≡ (qr, qθ),
and are independent of qt and qφ.

• Rather than evolving the action variables Jα, we
evolve two different sets of variables, P̃i and MA.
The first of these sets consists of three of the first
integrals of the motion, with the dependence on the
mass µ of the particle scaled out:

P̃i = (P̃1, P̃2, P̃3) ≡ (E/µ,Lz/µ,Q/µ
2). (2.49)

The second set consists of the mass and spin pa-
rameters of the black hole, which gradually evolve
due to absorption of gravitational radiation by the
black hole:

MA = (M1,M2) = (M,a). (2.50)

We now turn to a derivation of the modified equations
of motion (2.47). The derivation consists of several steps.
First, since the mapping (2.27) between the first integrals
Pα and the action variables Jα is a bijection, we can use
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the Pα as dependent variables instead of Jα.17 Equation
(2.37a) is unmodified except that the right hand side is
expressed as a function of Pα instead of Jα. Equation
(2.37b) is replaced by

dPα

dλ
= µ2

(

∂Pα

∂pν

)

x

aν . (2.51a)

Second, we switch to using modified versions P̃α of
the first integrals Pα with the dependence on the mass µ
scaled out. These rescaled first integrals are defined by

P̃α = (H̃, Ẽ, L̃z, Q̃)

≡ (H/µ2, E/µ, Lz/µ,Q/µ
2). (2.52)

We also change the independent variable from affine pa-
rameter λ to proper time τ = µλ. This gives from Eqs.
(2.37) and (2.44) the system of equations

dqα
dτ

=
1

µ
Ωα(Pβ) + µ

(

∂qα
∂pν

)

x

aν , (2.53a)

dP̃α

dτ
= µ1−nα

(

∂Pα

∂pν

)

x

aν , (2.53b)

where we have defined nα = (2, 1, 1, 2).
Third, we analyze the dependence on the mass µ of

the right hand sides of these equations. Under the trans-
formation (xν , pν) → (xν , spν) for s > 0, we obtain
the following transformation laws for the first integrals
(2.24), the action variables (2.27), and Hamilton’s prin-
cipal function (2.31):

Pα → snαPα with nα = (2, 1, 1, 2), (2.54a)

Jα → sJα, (2.54b)

W → sW . (2.54c)

From the definitions (2.14) and (2.35b) of the angular
frequencies Ωα and the angle variables qα we also deduce

Ωα → sΩα, (2.55a)

qα → qα. (2.55b)

If we write the angular velocity Ωα as a function ωα(Pβ)
of the first integrals Pβ , then it follows from the scalings
(2.54a) and (2.55a) that the first term on the right hand
side of Eq. (2.53a) is

Ωα

µ
=
ωα(Pβ)

µ
=
ωα(µnβ P̃β)

µ
= ωα(P̃β). (2.56)

This quantity is thus independent of µ at fixed P̃β , as we
would expect.

17 Note that since the variables Jα are adiabatic invariants, so are
the variables Pα.

Similarly, if we write the angle variable qα as a func-
tion q̄α(xν , pν) of xν and pν , then the scaling law (2.55b)
implies that q̄α(xν , spν) = q̄α(xν , pν), and it follows that
the coefficient of the 4-acceleration in Eq. (2.53a) is 18

µ
∂q̄α
∂pν

(xσ , pσ) = µ
∂q̄α
∂pν

(xσ, µuσ) =
∂q̄α
∂pν

(xσ, uσ), (2.57)

where uσ is the 4-velocity. This quantity is also indepen-
dent of µ at fixed P̃β . We will denote this quantity by

fν
α(qβ , P̃β). It can be obtained explicitly by evaluating

the coefficient of aν in Eq. (2.46) at Pα = P̃α, pν = uν .
A similar analysis shows that the driving term on the
right hand side of Eq. (2.53b) can be written in the form

F ν
α (qβ , P̃β)aν ≡ (0,−at, aφ, 2Q

νσuνaσ). (2.58)

The resulting rescaled equations of motion are

dqα
dτ

= ωα(P̃β) + fν
α(qβ , P̃β)aν , (2.59a)

dP̃α

dτ
= F ν

α (qβ , P̃β)aν . (2.59b)

Note that this formulation of the equations is completely
independent of the mass µ of the particle (except for the
dependence on µ of the radiation reaction acceleration
aν which we will discuss below).

Fourth, since P0 = H = −µ2/2, the rescaled variable

is P̃0 = −1/2 from Eq. (2.52). Thus we can drop the

evolution equation for P̃0, and retain only the equations
for the remaining rescaled first integrals

P̃i = (P̃1, P̃2, P̃3) = (Ẽ, L̃z, Q̃). (2.60)

We can also omit the dependence on P̃0 in the right hand
sides of the evolution equations (2.59), since P̃0 is a con-
stant. This yields

dqα
dτ

= ωα(P̃j) + fν
α(qβ , P̃j)aν , (2.61a)

dP̃i

dτ
= F ν

i (qβ , P̃j)aν . (2.61b)

Fifth, the self-acceleration of the particle can be ex-
panded in powers of the mass ratio ε = µ/M as

aν = εa(1)
ν + ε2a(2)

ν +O(ε3). (2.62)

Here a
(1)
ν is the leading order self-acceleration derived by

Mino, Sasaki and Tanaka [44] and by Quinn and Wald
[45], discussed in the introduction. The subleading self-

acceleration a
(2)
ν has been computed in Refs. [84, 85, 86,

18 Note that µ ∂/∂pν cannot be simplified to ∂/∂uν because we are
working in the eight dimensional phase space M where µ is a
coordinate and not a constant.
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87, 88]. The accelerations a
(1)
ν and a

(2)
ν are independent

of µ and thus depend only on xν and uν , or, equivalently,
on qα and P̃i. This yields the system of equations

dqα
dτ

= ωα(P̃j) + εg(1)
α (qβ , P̃j) + ε2g(2)

α (qβ , P̃j)

+O(ε3), (2.63a)

dP̃i

dτ
= εG

(1)
i (qβ , P̃j) + ε2G

(2)
i (qβ , P̃j)

+O(ε3). (2.63b)

Here the forcing terms are given by

g(s)
α = fν

αa
(s)
ν , (2.64a)

G
(s)
i = F ν

i a
(s)
ν , (2.64b)

for s = 1, 2.
The formula (2.62) for the self-acceleration, with the

explicit formula for a
(1)
ν from Refs. [44, 45], is valid when

one chooses the Lorentz gauge for the metric pertur-
bation. The form of Eq. (2.62) is also valid in a vari-
ety of other gauges; see Ref. [99] for a discussion of the
gauge transformation properties of the self force. How-
ever, there exist gauge choices which are incompatible
with Eq. (2.62), which can be obtained by making ε-
dependent gauge transformations. We shall restrict at-
tention to classes of gauges which are consistent with our
ansatz (1.8) for the metric, as discussed in Sec. I E above.
This class of gauges has the properties that (i) the devia-
tion of the metric from Kerr is . ε over the entire inspi-
ral, and (ii) the expansion (2.62) of the self-acceleration is
valid. These restrictions exclude, for example, the gauge

choice which makes a
(1)
ν ≡ 0, since in that gauge the

particle does not inspiral, and the metric perturbation
must therefore become of order unity over an inspiral
time. We note that alternative classes of gauges have
been suggested and explored by Mino [56, 72, 81, 83].

Sixth, from the formula (2.35b) for the generalized an-
gle variables qα together with Eqs. (2.31) and (2.27d) it
follows that qt can be written as

qt = t+ ft(r, θ, Pα) (2.65)

for some function ft. All of the other angle and action
variables are independent of t. Therefore the vector field
∂/∂t on phase space is just ∂/∂qt; the symmetry t →
t + ∆t with xi, pµ fixed is the same as the symmetry
qt → qt + ∆t with qr, qθ, qφ and Jα fixed. Since the self-
acceleration as well as the background geodesic motion
respect this symmetry, all of the terms on the right hand
side of Eqs. (2.63) must be independent of qt. A similar
argument shows that they are independent of qφ. This
gives

dqα
dτ

= ωα(P̃j) + εg(1)
α (qA, P̃j) + ε2g(2)

α (qA, P̃j)

+O(ε3), (2.66a)

dP̃i

dτ
= εG

(1)
i (qA, P̃j) + ε2G

(2)
i (qA, P̃j)

+O(ε3), (2.66b)

where qA ≡ (qr, qθ).
Seventh, consider the evolution of the black hole back-

ground. So far in our analysis we have assumed that the
particle moves in a fixed Kerr background, and is subject

to a self-force aν = εa
(1)
ν + ε2a

(2)
ν +O(ε3). In reality, the

center of mass, 4-momentum and spin angular momen-
tum of the black hole will gradually evolve due to the
gravitational radiation passing through the event hori-
zon. The total change in the mass M of the black hole
over the inspiral timescale ∼ M/ε is ∼ Mε. It follows
that the timescale for the black hole mass to change by
a factor of order unity is ∼ M/ε2. The same timescale
governs the evolution of the other black hole parameters.

This effect of evolution of the black hole background
will alter the inspiral at the first subleading order (post-1-
adiabatic order) in our two-timescale expansion. A com-
plete calculation of the inspiral to this order requires solv-
ing simultaneously for the motion of the particle and the
gradual evolution of the background. We introduce the
extra variables

MA = (M1,M2) = (M,a), (2.67)

the mass and spin parameters of the black hole. We
modify the equations of motion (2.66) by showing explic-
itly the dependence of the frequencies ωα and the forcing

functions g
(n)
α and G

(n)
i on these parameters (the depen-

dence has up to now been implicit). We also add to the
system of equations the following evolution equations for
the black hole parameters:

dMA

dτ
= ε2ĜA(qB , P̃j ,MB) +O(ε3), (2.68)

where A = 1, 2. Here ĜA are some functions describing
the fluxes of energy and angular momentum down the
horizon, whose explicit form will not be important for
our analyses. They can in principle be computed using,
for example, the techniques developed in Ref. [100].19

The reason for the prefactor of ε2 is that the evolution
timescale for the black hole parameters is ∼ M/ε2, as

discussed above. The functions ĜA are independent of
qt and qφ for the reason discussed near Eq. (2.66): the
fluxes through the horizon respect the symmetries of the
background spacetime. Finally, we have omitted in the
set of new variables (2.67) the orientation of the total

19 These techniques naturally furnish the derivatives of MA with
respect to Boyer Lindquist time t, not proper time τ as in Eq.
(2.68). However this difference is unimportant; one can easily
convert from one variable to the other by multiplying the func-
tions ĜA by the standard expression for dt/dτ [101],

dt

dτ
=
Ẽ

Σ

„

̟4

∆
− a2 sin2 θ

«

+
aL̃z

Σ

„

1 − ̟2

∆

«

,

where ̟ =
√
r2 + a2. This expression can be written in terms

of of qA, P̃i and MA, and is valid for accelerated motion as well
as geodesic motion by Eqs. (2.25) and (2.39a).
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angular momentum, the location of the center of mass,
and the total linear momentum of the system, since these
parameters are not coupled to the inspiral motion at the
leading order. However, it would be possible to enlarge
the set of variables MA to include these parameters with-
out modifying in any way the analyses in the rest of this
paper.

These modifications result in the final system of equa-
tions (2.47).

Finally we note that an additional effect arises due to
the fact that the action-angle variables we use are de-
fined, at each instant, to be the action-angle variables
associated with the black hole background at that time.
In other words the coordinate transformation on phase
space from (xν , pν) → (qα, Jα) acquires an additional de-
pendence on time. Therefore the Jacobian of this trans-
formation, which was used in deriving the evolution equa-
tions (2.37), has an extra term. However, the correspond-
ing correction to the evolution equations can be absorbed

into a redefinition of the forcing term g
(2)
α .

G. Conservative and dissipative pieces of the

forcing terms

In this subsection we define a splitting of the forc-
ing terms gα and Gi in the equations of motion (2.47)
into conservative and dissipative pieces, and review some
properties of this decomposition derived by Mino [67].

We start by defining some notation. Suppose that we
have a particle at a point P with four velocity uµ, and
that we are given a linearized metric perturbation hµν

which is a solution (not necessarily the retarded solution)
of the linearized Einstein equation equation for which the
source is a delta function on the geodesic determined by
P and uµ. The self-acceleration of the particle is then
some functional of P , uµ, hµν and of the spacetime metric
gµν , which we write as

aµ [P , uµ, gµν , hµν ] . (2.69)

Note that this functional does not depend on a choice of
time orientation for the manifold, and also it is invari-
ant under uµ → −uµ. The retarded self-acceleration is
defined as

aµ
ret [P , uµ, gµν ] = aµ

[

P , uµ, gµν , h
ret
µν

]

, (2.70)

where hret
µν is the retarded solution to the linearized Ein-

stein equation obtained using the time orientation that
is determined by demanding that uµ be future directed.
This is the physical self-acceleration which is denoted by
aµ throughout the rest of this paper. Similarly, the ad-
vanced self-acceleration is

aµ
adv [P , uµ, gµν ] = aµ

[

P , uµ, gµν , h
adv
µν

]

, (2.71)

where hadv
µν is the advanced solution. It follows from these

definitions that

aµ
ret [P ,−uµ, gµν ] = aµ

adv [P , uµ, gµν ] . (2.72)

We define the conservative and dissipative self-
accelerations to be

aµ
cons =

1

2
(aµ

ret + aµ
adv) , (2.73)

and

aµ
diss =

1

2
(aµ

ret − aµ
adv) . (2.74)

The physical self-acceleration can then be decomposed as

aµ = aµ
ret = aµ

cons + aµ
diss. (2.75)

A similar decomposition applies to the forcing functions
(2.64):

g(s)
α = g(s)

α cons + g
(s)
α diss, (2.76a)

G
(s)
i = G

(s)
i cons +G

(s)
i diss, (2.76b)

for s = 1, 2.
Next, we note that if ψ is any diffeomorphism from the

spacetime to itself, then the self acceleration satisfies the
covariance relation

aν
ret[ψ(P), ψ∗uν , ψ∗gµν ] = ψ∗aν

ret[P , uν, gµν ]. (2.77)

Taking the point P to be (t0, r0, θ0, φ0) in Boyer-
Lindquist coordinates, and choosing ψ to be t→ 2t0 − t,
φ → 2φ0 − φ, then ψ is an isometry, ψ∗gµν = gµν . It
follows that

aν
ret(−ut, ur, uθ,−uφ) = −ǫνaν

ret(ut, ur, uθ, uφ), (2.78)

where

ǫν = (1,−1,−1, 1) (2.79)

and there is no summation over ν on the right hand side.
Combining this with the identity (2.72) gives

aν
adv(ut, ur, uθ, uφ) = −ǫνaν

ret(ut,−ur,−uθ, uφ). (2.80)

Now, under the transformation pr → −pr, pθ → −pθ

with other quantities fixed, the action variables and the
quantities Pα are invariant, the angle variables qr and qθ
transform as qr → 2π− qr, qθ → 2π− qθ, while qt − t and
qφ − φ flip sign. This can be seen from the definitions
(2.31) and (2.35b). Explicitly we have

q̄t(x
γ , ǫδpδ) − t = −[q̄t(x

γ , pδ) − t], (2.81a)

q̄φ(xγ , ǫδpδ) − φ = −[q̄φ(xγ , pδ) − φ], (2.81b)

q̄A(xγ , ǫδpδ) = 2π − q̄A(xγ , pδ), (2.81c)

Pi(x
γ , ǫδpδ) = Pi(x

γ , pδ), (2.81d)

where we use the values (2.79) of ǫα, the functions q̄α are
defined before Eq. (2.57), and qA = (qr, qθ). If we now
differentiate with respect to pα holding xα fixed and use



17

the definitions (2.57), (2.53b) and (2.59b) of the functions
fν

α and F ν
i we obtain

fν
α(xβ , ǫγuγ) = −ǫνfν

α(xβ , uγ), (2.82a)

F ν
i (xβ , ǫγuγ) = ǫνF

ν
i (xβ , uγ). (2.82b)

We now compute the conservative and dissipative

pieces of the forcing functions g
(1)
α and G

(1)
i , using the

definitions (2.64) and (2.76). Using the results (2.80)
and (2.82) we obtain

g
(1)
α adv(uγ) = fν

α(uγ) a
(1)
ν adv(uγ)

= [−ǫνfν
α(ǫγuγ)]

[

−ǫνa(1)
ν ret(ǫγuγ)

]

= g
(1)
α ret(ǫγuγ). (2.83)

A similar computation gives

G
(1)
i adv(uγ) = −G(1)

i ret(ǫγuγ), (2.84)

and using that the mapping xν → xν , uµ → ǫµuµ corre-

sponds to P̃j → P̃j , qr → 2π − qr, qθ → 2π − qθ finally
yields the identities

g(1)
α cons(qA, P̃j) =

[

g(1)
α (qr, qθ, P̃j) + g(1)

α (2π − qr, 2π − qθ, P̃j)
]

/2, (2.85a)

g
(1)
α diss(qA, P̃j) =

[

g(1)
α (qr, qθ, P̃j) − g(1)

α (2π − qr, 2π − qθ, P̃j)
]

/2, (2.85b)

and

G
(1)
i cons(qA, P̃j) =

[

G
(1)
i (qr, qθ, P̃j) −G

(1)
i (2π − qr, 2π − qθ, P̃j)

]

/2, (2.86a)

G
(1)
i diss(qA, P̃j) =

[

G
(1)
i (qr, qθ, P̃j) +G

(1)
i (2π − qr, 2π − qθ, P̃j)

]

/2. (2.86b)

Here we have used the fact that the forcing functions
are independent of qt and qφ, as discussed in the last

subsection. Similar equations apply with g
(1)
α and G

(1)
i

replaced by the higher order forcing terms g
(s)
α and G

(s)
i ,

s ≥ 2.
It follows from the identity (2.86a) that, for the action-

variable forcing functions G
(1)
i , the average over the 2-

torus parameterized by qr and qθ of the conservative piece
vanishes. For generic orbits (for which ωr and ωθ are in-
commensurate), the torus-average is equivalent to a time
average, and so it follows that the time average vanishes,
a result first derived by Mino [67]. Similarly from Eqs.
(2.85) it follows that the torus-average of the dissipative

pieces of g
(1)
α vanish.

III. A GENERAL WEAKLY PERTURBED

DYNAMICAL SYSTEM

In the remainder of this paper we will study in detail
the behavior of a one-parameter family of dynamical sys-
tems parameterized by a dimensionless parameter ε. We
shall be interested in the limiting behavior of the sys-
tems as ε → 0. The system contains N +M dynamical

variables

q(t) =
(

q1(t), q2(t), . . . , qN(t)
)

, (3.1a)

J(t) =
(

J1(t), J2(t), . . . , JM (t)
)

, (3.1b)

and is defined by the equations

dqα
dt

= ωα(J, t̃) + εgα(q,J, t̃, ε), 1 ≤ α ≤ N,(3.2a)

dJλ

dt
= εGλ(q,J, t̃, ε), 1 ≤ λ ≤M. (3.2b)

Here the variable t̃ is the “slow time” variable defined by

t̃ = εt. (3.3)

We assume that the functions gα andGλ can be expanded
as

gα(q,J, t̃, ε) =
∞
∑

s=1

g(s)
α (q,J, t̃)εs−1

= g(1)
α (q,J, t̃) + g(2)

α (q,J, t̃)ε+O(ε2),

(3.4)
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and

Gλ(q,J, t̃, ε) =
∞
∑

s=1

G
(s)
λ (q,J, t̃)εs−1

= G
(1)
λ (q,J, t̃) +G

(2)
λ (q,J, t̃)ε+O(ε2).

(3.5)

These series are assumed to be asymptotic series in ε
as ε → 0 that are uniform in t̃.20 We assume that the
functions ωα, g

(s)
α and G

(s)
λ are smooth functions of their

arguments, and that the frequencies ωα are nowhere van-
ishing. Finally the functions gα and Gλ are assumed to
be periodic in each variable qα with period 2π:

gα(q + 2πk,J, t̃) = gα(q,J, t̃), 1 ≤ α ≤ N, (3.6a)

Gλ(q + 2πk,J, t̃) = Gλ(q,J, t̃), 1 ≤ λ ≤M, (3.6b)

where k = (k1, . . . , kN ) is an arbitrary N -tuple of inte-
gers.

The equations (2.47) derived in the previous sec-
tion describing the inspiral of a point particle into
a Kerr black hole are a special case of the dy-
namical system (3.2). This can be seen using the
identifications t = τ , q = (qt, qr, qθ, qφ), J =

(P̃2, P̃3, P̃4,M1,M2), G
(1)
λ = (G

(1)
2 , G

(1)
3 , G

(1)
4 , 0, 0) and

G
(2)
λ = (G

(2)
2 , G

(2)
3 , G

(2)
4 , Ĝ1, Ĝ2). The forcing functions

g
(s)
α and G

(s)
λ are periodic functions of qα since they de-

pend only on the variables qA = (qr , qθ) which are angle
variables; they do not depend on the variable qt which is
not an angle variable. Note that the system (3.2) allows

the forcing functions g
(s)
α , G

(s)
λ and frequencies ωα to de-

pend in an arbitrary way on the slow time t̃, whereas
no such dependence is seen in the Kerr inspiral system
(2.47). The system studied here is thus slightly more
general than is required for our specific application. We
include the dependence on t̃ for greater generality and
because it does not require any additional complexity in
the analysis.

Another special case of the system (3.2) is when N =
M and when there exists a function H(J, t̃) such that

ωα(J, t̃) =
∂H(J, t̃)

∂Jα
(3.7)

for 1 ≤ α ≤ N . In this case the system (3.2) represents
a Hamiltonian system with slowly varying Hamiltonian
H(J, t̃), with action angle variables (qα, Jα), and subject

20 In other words, there exists T̃ > 0 such that for every q, J, every
integer N , and every δ > 0 there exists ǫ1 = ǫ1(q,J, N, δ) such
that

˛

˛

˛

˛

˛

gα(q,J, t̃, ε) −
N

X

s=1

g
(s)
α (q,J, t̃)εs−1

˛

˛

˛

˛

˛

< δεN−1

for all t̃ with 0 < t̃ < T̃ and for all ε with 0 < ε < ǫ1.

to arbitrary weak perturbing forces that vary slowly with
time. The perturbed system is not necessarily Hamilto-
nian.

Because of the periodicity conditions (3.6), we can
without loss of generality interpret the variables qα to
be coordinates on the N -torus TN , and take the equa-
tions (3.2) to be defined on the product of this N-torus
with an open set. This interpretation will useful below.

In the next several sections we will study in detail the
behavior of solutions of the system (3.2) in the limit ε→
0 using a two timescale expansion. We follow closely
the exposition in the book by Kevorkian and Cole [74],
except that we generalize their analysis and also correct
some errors (see Appendix B). For clarity we treat first,
in Sec. IV, the simple case of a single degree of freedom,
N = M = 1. Section V treats the case of general N and
M , but with the restriction that the forcing functions
gα and Gλ contain no resonant pieces (this is defined in
Sec. VC). The general case with resonances is treated in
the forthcoming papers [78, 79]. Finally in Sec. VI we
present a numerical integration of a particular example
of a dynamical system, in order to illustrate and validate
the general theory of Secs. IV and V.

IV. SYSTEMS WITH A SINGLE DEGREE OF

FREEDOM

A. Overview

For systems with a single degree of freedom the general
equations of motion (3.2) discussed in Sec. III reduce to

q̇(t) = ω(J, t̃) + εg(q, J, t̃, ε), (4.1a)

J̇(t) = εG(q, J, t̃, ε), (4.1b)

for some functions G and g, where t̃ = εt is the slow time
variable. The asymptotic expansions (3.4) and (3.5) of
the forcing functions reduce to

g(q, J, t̃, ε) =

∞
∑

s=1

g(s)(q, J, t̃)εs−1

= g(1)(q, J, t̃) + g(2)(q, J, t̃)ε+O(ε2),

(4.2)

and

G(q, J, t̃, ε) =

∞
∑

s=1

G(s)(q, J, t̃)εs−1

= G(1)(q, J, t̃) +G(2)(q, J, t̃)ε+O(ε2).

(4.3)

Also the periodicity conditions (3.6) reduce to

g(q + 2π, J, t̃) = g(q, J, t̃), (4.4a)

G(q + 2π, J, t̃) = G(q, J, t̃). (4.4b)
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In this section we apply two-timescale expansions to
study classes of solutions of Eqs. (4.1) in the limit ε→ 0.
We start in Sec. IVB by defining our conventions and
notations for Fourier decompositions of the perturbing
forces. The heart of the method is the ansatz we make
for the form of the solutions, which is given in Sec. IVC.
Sec. IVD summarizes the results we obtain at each or-
der in the expansion, and the derivations are given in Sec.
IVE. Although the results of this section are not directly
applicable to the Kerr inspiral problem, the analysis of
this section gives an introduction to the method of anal-
ysis, and is considerably simpler than the multivariable
case treated in Sec. V below.

B. Fourier expansions of the perturbing forces

The periodicity conditions (4.4) apply at each order in
the expansion in powers of ε:

g(s)(q + 2π, J, t̃) = g(s)(q, J, t̃), (4.5a)

G(s)(q + 2π, J, t̃) = G(s)(q, J, t̃). (4.5b)

It follows that these functions can be expanded as Fourier
series:

g(s)(q, J, t̃) =

∞
∑

k=−∞

g
(s)
k (J, t̃)eikq , (4.6a)

G(s)(q, J, t̃) =

∞
∑

k=−∞

G
(s)
k (J, t̃)eikq , (4.6b)

where

g
(s)
k (J, t̃) =

1

2π

∫ 2π

0

dq e−ikq g(s)(q, J, t̃), (4.7a)

G
(s)
k (J, t̃) =

1

2π

∫ 2π

0

dq e−ikq G(s)(q, J, t̃). (4.7b)

For any periodic function f = f(q), we introduce the
notation

〈f〉 =
1

2π

∫ 2π

0

f(q)dq (4.8)

for the average part of f , and

f̂(q) = f(q) − 〈f〉 (4.9)

for the remaining part of f . It follows from these defini-
tions that

〈g(s)(q, J, t̃)〉 = g
(s)
0 (J, t̃), 〈G(s)(q, J, t̃)〉 = G

(s)
0 (J, t̃),

(4.10)
and that

ĝ(s)(q, J, t̃) =
∑

k 6=0

g
(s)
k (J, t̃)eikq, (4.11a)

Ĝ(s)(q, J, t̃) =
∑

k 6=0

G
(s)
k (J, t̃)eikq . (4.11b)

We also have the identities

〈f,q〉 = 〈f̂〉 = 0 (4.12a)

〈fg〉 = 〈f̂ ĝ〉 + 〈f〉〈g〉 (4.12b)

for any periodic functions f(q), g(q).
For any periodic function f , we also define a particular

anti-derivative If̂ of f̂ by

(If̂)(q) ≡
∑

k 6=0

fk

ik
eikq , (4.13)

where fk =
∫

dqe−ikqf(q)/(2π) are the Fourier coeffi-
cients of f . This operator satisfies the identities

(If̂),q = f̂ , (4.14a)

〈(If̂)ĝ〉 = −〈f̂(Iĝ)〉, (4.14b)

〈f̂(If̂)〉 = 0. (4.14c)

C. Two timescale ansatz for the solution

We now discuss the ansatz we use for the form of the
solutions of the equations of motion. This ansatz will be
justified a posteriori order by order in ε. The method
used here is sometimes called the “method of strained
coordinates” [74].

We assume that q and J have asymptotic expansions
in ε as functions of two different variables, the slow time
parameter t̃ = εt, and a phase variable Ψ (also called
a “fast-time parameter”), the dependence on which is
periodic with period 2π. Thus we assume

q(t, ε) =

∞
∑

s=0

εsq(s)(Ψ, t̃)

= q(0)(Ψ, t̃) + εq(1)(Ψ, t̃) +O(ε2), (4.15a)

J(t, ε) =
∞
∑

s=0

εsJ (s)(Ψ, t̃)

= J (0)(Ψ, t̃) + εJ (1)(Ψ, t̃) +O(ε2).(4.15b)

These asymptotic expansions are assumed to be uniform
in t̃. The expansion coefficients J (s) are each periodic in
the phase variable Ψ with period 2π:

J (s)(Ψ + 2π, t̃) = J (s)(Ψ, t̃). (4.16)

The phase variable Ψ is chosen so that angle variable q
increases by 2π when Ψ increases by 2π; this implies that
the expansion coefficients q(s) satisfy

q(0)(Ψ + 2π, t̃) = q(0)(Ψ, t̃) + 2π, (4.17a)

q(s)(Ψ + 2π, t̃) = q(s)(Ψ, t̃), s ≥ 1. (4.17b)

The angular velocity Ω = dΨ/dt associated with the
phase Ψ is assumed to depend only on the slow time
variable t̃ (so it can vary slowly with time), and on ε.
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We assume that it has an asymptotic expansion in ε as
ε→ 0 which is uniform in t̃:

dΨ

dt
= Ω(t̃, ε) =

∞
∑

s=0

εsΩ(s)(t̃) (4.18)

= Ω(0)(t̃) + εΩ(1)(t̃) +O(ε2). (4.19)

Equation (4.19) serves to define the phase variable Ψ
in terms the angular velocity variables Ω(s)(t̃), s =
0, 1, 2 . . ., up to constants of integration. One constant
of integration arises at each order in ε. Without loss
of generality we choose these constants of integration so
that

q(s)(0, t̃) = 0 (4.20)

for all s, t̃. Note that this does not restrict the final
solutions q(t, ε) and J(t, ε), as we show explicitly be-
low, because there are additional constants of integra-
tion that arise when solving for the functions q(s)(Ψ, t̃)
and J (s)(Ψ, t̃).

Roughly speaking, the meaning of these assumptions
is the following. The solution of the equations of motion
consists of a mapping from (t, ε) to (q, J). That map-
ping contains dynamics on two different timescales, the
dynamical timescale ∼ 1 and the slow timescale ∼ 1/ε.
The mapping can be uniquely written the composition of
two mappings

(t, ε) → (Ψ, t̃, ε) → (q, J), (4.21)

such that the first mapping contains all the fast dynam-
ics, and is characterized by the slowly evolving frequency
Ω(t̃, ε), and the second mapping contains dynamics only
on the slow timescale.

D. Results of the two-timescale analysis

By substituting the ansatz (4.15b) – (4.20) into the
equations of motion (4.1) we find that all of the assump-
tions made in the ansatz can be satisfied, and that all of
the expansion coefficients are uniquely determined, or-
der by order in ε. This derivation is given in Sec. IVE
below. Here we list the results obtained for the various
expansion coefficients up to the leading and sub-leading
orders.

1. Terminology for various orders of the approximation

We can combine the definitions just summarized to
obtain an explicit expansion for the quantity of most in-
terest, the angle variable q as a function of time. From
the periodicity condition (4.17a) it follows that the func-
tion q(0)(Ψ, t̃) can be written as Ψ+ q̄(0)(Ψ, t̃) where q̄(0)

is a periodic function of Ψ. [We shall see that q̄(0) in fact

vanishes, cf. Eq. (4.27) below.] From the definitions (3.3)
and (4.19), we can write the phase variable Ψ as

Ψ =
1

ε
ψ(0)(t̃) + ψ(1)(t̃) + εψ(2)(t̃) +O(ε2), (4.22)

where the functions ψ(s)(t̃) are defined by

ψ(s)(t̃) =

∫ t̃

dt̃′Ω(s)(t̃′). (4.23)

Inserting this into the expansion (4.15a) of q and using
the above expression for q(0) gives

q(t, ε) =
1

ε
ψ(0)(t̃) +

[

ψ(1)(t̃) + q̄(0)(Ψ, t̃)
]

+ε
[

ψ(2)(t̃) + q(1)(Ψ, t̃)
]

+O(ε2). (4.24)

We will call the leading order, O(1/ε) term in Eq. (4.24)
the adiabatic approximation, the sub-leading O(1) term
the post-1-adiabatic term, the next O(ε) term the post-2-
adiabatic term, etc. This choice of terminology is moti-
vated by the terminology used in post-Newtonian theory.

It is important to note that the expansion in powers
of ε in Eq. (4.24) is not a straightforward power series
expansion at fixed t̃, since the variable Ψ depends on ε.
[The precise definition of the expansion of the solution
which we are using is given by Eqs. (4.15a) – (4.20).]
Nevertheless, the expansion (4.24) as written correctly
captures the ε dependence of the secular pieces of the
solution, since the functions q̄(0) and q(1) are periodic
functions of Ψ and so have no secular pieces.

2. Adiabatic Order

First, the zeroth order action variable is given by

J (0)(Ψ, t̃) = J (0)(t̃), (4.25)

where J (0) satisfies the differential equation

dJ (0)(t̃)

dt̃
= G

(1)
0 [J (0)(t̃), t̃]. (4.26)

Here the right hand side denotes the average over q of
the forcing term G(1)[q,J (0)(t̃), t̃], cf. Eqs. (4.6) above.
The zeroth order angle variable is given by

q(0)(Ψ, t̃) = Ψ, (4.27)

and the angular velocity Ω that defines the phase variable
Ψ is given to zeroth order by

Ω(0)(t̃) = ω[J (0)(t̃), t̃]. (4.28)

Note that this approximation is equivalent to the follow-
ing simple prescription: (i) Truncate the equations of
motion (4.1) to the leading order in ε:

q̇(t) = ω(J, t̃) + εg(1)(q, J, t̃), (4.29a)

J̇(t) = εG(1)(q, J, t̃); (4.29b)
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(ii) Omit the driving term g(1) in the equation for the
angle variable; and (iii) Replace the driving term G(1) in
the equation for the action variable with its average over
q.

3. Post-1-adiabatic Order

Next, the first order action variable is given by

J (1)(Ψ, t̃) =
IĜ(1)[Ψ,J (0)(t̃), t̃]

Ω(0)(t̃)
+ J (1)(t̃), (4.30)

where the symbol I on the right hand side denotes the in-
tegration operator (4.13) with respect to Ψ. In Eq. (4.30)
the quantity J (1)(t̃) satisfies the differential equation

dJ (1)(t̃)

dt̃
− ∂G

(1)
0

∂J
[J (0)(t̃), t̃]J (1)(t̃)

=
〈∂Ĝ(1)

∂J IĜ(1)〉
Ω(0)(t̃)

− 〈Ĝ(1)ĝ(1)〉
Ω(0)(t̃)

+G
(2)
0 . (4.31)

Here it is understood that the quantities on the right
hand side are evaluated at q = q(0) = Ψ and J = J (0)(t̃).
The sub-leading correction to the phase variable Ψ is
given by

Ω(1)(t̃) =
∂ω

∂J
[J (0)(t̃), t̃]J (1)(t̃) + g

(1)
0 [J (0)(t̃), t̃]. (4.32)

Finally, the sub-leading term in the angle variable is

q(1)(Ψ, t̃) = q̂(1)(Ψ, t̃) + Q(1)(t̃), (4.33)

where

q̂(1)(Ψ, t̃) =
1

Ω(0)(t̃)2
∂ω

∂J
[J (0)(t̃), t̃] I2Ĝ(1)[Ψ,J (0)(t̃), t̃]

+
1

Ω(0)(t̃)
Iĝ(1)[Ψ,J (0)(t̃), t̃] (4.34)

and

Q(1)(t̃) = −q̂(1)(0, t̃). (4.35)

4. Discussion

One of the key results of the general analysis of this
section is the identification of which pieces of the external
forces are required to compute the adiabatic and post-1-
adiabatic solutions. From Eqs. (4.26), (4.28) and (4.24),
the adiabatic solution depends only on the averaged piece

G
(1)
0 (J, t̃) = 〈G(1)(q, J, t̃)〉 of the leading order external

force G(1). This quantity is purely dissipative, as can be
seen in the Kerr inspiral context from Eqs. (2.86) and
(2.85). More generally, if the perturbing forces g and

G arise from a perturbation ε∆H =
∑

s ε
s∆H(s) to the

Hamiltonian, then the forcing function G(s) is

G(s)(q, J, t̃) = −∂∆H(s)(q, J, t̃)

∂q
,

and it follows that the average over q of G(s) vanishes.
At the next order, the post-1-adiabatic term ψ(1)(t̃)

depends on the averaged piece G
(2)
0 (J, t̃) = 〈G(2)(q, J, t̃)〉

of the sub-leading force G(2), again purely dissipative, as
well as the remaining conservative and dissipative pieces
of the leading order forces G(1)(q, J, t̃) and g(1)(q, J, t̃).
This can be seen from Eqs. (4.31) and (4.32). These re-
sults have been previously discussed briefly in the EMRI
context in Refs. [37, 68]. For circular, equatorial orbits,
the fact that there is a post-1-adiabatic order contribu-
tion from the second order self-force was first argued by
Burko [89].

5. Initial conditions and the generality of our ansatz

We will show in the next subsection that our ansatz
(4.15a) – (4.20) is compatible with the one parameter
family of differential equations (4.1). However, it does
not necessarily follow that our ansatz is compatible with
the most general one parameter family [q(t, ε), J(t, ε)] of
solutions, because of the possibility of choosing arbitrary,
ε-dependent initial conditions q(0, ε) and J(0, ε) at the
initial time t = 0.21 In general, the ε dependence of
the solutions arises from both the ε dependence of the
initial conditions and the ε dependence of the differential
equations. It is possible to choose initial conditions which
are incompatible with our ansatz.

To see this explicitly, we evaluate the expansions (4.24)
and (4.30) at t = t̃ = 0. This gives

q(0, ε) = ε−1ψ(0)(0) + ψ(1)(0) +O(ε), (4.36a)

J(0, ε) = J (0)(0) + εJ (1)(0)

+ε
IĜ(1)[ε−1ψ(0)(0) + ψ(1)(0),J (0)(0), 0]

ω[J (0), 0]

+O(ε2). (4.36b)

Recalling that parameters ψ(0)(0), ψ(1)(0), J (0)(0) and
J (1)(0) are assumed to be independent of ε, we see that
the conditions (4.36) strongly constrain the allowed ε de-
pendence of the initial conditions. We note, however,
that the choice of constant (ε independent) initial condi-
tions

q(0, ε) = q0, J(0, ε) = J0 (4.37)

21 More generally we could consider specifying initial conditions at
some time t = t0. In that case we would modify the definition of
the rescaled time coordinate to t̃ = ε(t− t0).
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can be accommodated, which is sufficient for most appli-
cations of the formalism. To achieve this one chooses

ψ(0)(0) = 0, ψ(1)(0) = q0, J (0)(0) = J0, (4.38)

and

J (1)(0) = −IĜ(1)[q0, J0, 0]

ω[J0, 0]
. (4.39)

E. Derivation

In this subsection we give the derivation of the results
(4.25) – (4.35) summarized above. At each order s we
introduce the notation J (s)(t̃) for the average part of
J (s)(Ψ, t̃):

J (s)(t̃) ≡ 〈J (s)(Ψ, t̃)〉 =
1

2π

∫ 2π

0

J (s)(Ψ, t̃)dΨ. (4.40)

We denote by Ĵ (s) the remaining part of J (s), as in Eq.
(4.9). This gives the decomposition

J (s)(Ψ, t̃) = J (s)(t̃) + Ĵ (s)(Ψ, t̃) (4.41)

for all s ≥ 0. Similarly for the angle variable we have the
decomposition

q(s)(Ψ, t̃) = Q(s)(t̃) + q̂(s)(Ψ, t̃) (4.42)

for all s ≥ 1. [We do not use this notation for the s = 0
case for the angle variable, since q(0) is not a periodic
function of Ψ, by Eq. (4.17a)].

Using the expansions (4.15a) and (4.15b) of q and J
together with the expansion (4.19) of dΨ/dt, we obtain

dq

dt
= Ω(0)q

(0)
,Ψ + ε

[

Ω(1)q
(0)
,Ψ + Ω(0)q

(1)
,Ψ + q

(0)

,t̃

]

+ε2
[

Ω(2)q
(0)
,Ψ + Ω(0)q

(2)
,Ψ + Ω(1)q

(1)
,Ψ + q

(1)

,t̃

]

+O(ε3). (4.43)

Here we use commas to denote partial derivatives. We
now insert this expansion together with a similar expan-
sion for dJ/dt into the equations of motion (4.1) and use
the expansions (4.2) and (4.3) of the external forces g
and G. Equating coefficients22 of powers of ε then gives
at zeroth order

Ω(0)q
(0)
,Ψ = ω, (4.44a)

Ω(0)J
(0)
,Ψ = 0, (4.44b)

22 As is well known, this procedure is valid for asymptotic series as
well as normal power series.

at first order

Ω(0)q
(1)
,Ψ − ω,JJ

(1) = −Ω(1)q
(0)
,Ψ − q

(0)

,t̃
+ g(1),(4.45a)

Ω(1)J
(0)
,Ψ + Ω(0)J

(1)
,Ψ = −J (0)

,t̃
+G(1), (4.45b)

and at second order

Ω(0)q
(2)
,Ψ − ω,JJ

(2) =
1

2
ω,JJ(J (1))2 + g(1)

,q q
(1) + g

(1)
,J J

(1)

+g(2) − Ω(2)q
(0)
,Ψ − Ω(1)q

(1)
,Ψ

−q(1)
,t̃
, (4.46a)

Ω(2)J
(0)
,Ψ + Ω(0)J

(2)
,Ψ = G(1)

,q q
(1) +G

(1)
,J J

(1) − Ω(1)J
(1)
,Ψ

−J (1)

,t̃
+G(2). (4.46b)

Here it is understood that all functions of q and J are
evaluated at q(0) and J (0).

1. Zeroth order analysis

The zeroth order equations (4.44) can be written more
explicitly as

Ω(0)(t̃)q
(0)
,Ψ (Ψ, t̃) = ω[J (0)(Ψ, t̃), t̃], (4.47a)

Ω(0)(t̃)J
(0)
,Ψ (Ψ, t̃) = 0. (4.47b)

The second of these equations implies that J (0) is inde-
pendent of Ψ, so we obtain J (0)(Ψ, t̃) = J (0)(t̃). The

first equation then implies that q
(0)
,Ψ is independent of Ψ,

and integrating with respect to Ψ gives

q(0)(Ψ, t̃) =
ω[J (0)(t̃), t̃]

Ω(0)(t̃)
Ψ + Q(0)(t̃), (4.48)

where Q(0) is some function of t̃. The periodicity con-
dition (4.17a) now implies that the coefficient of Ψ in
Eq. (4.48) must be unity, which gives the formula (4.28)
for the angular velocity Ω(0)(t̃). Finally, the assumption
(4.20) forces Q(0)(t̃) to vanish, and we recover the for-
mula (4.27) for q(0)(Ψ, t̃).

2. First order analysis

The first order equation (4.45b) can be written more
explicitly as

Ω(0)(t̃)J
(1)
,Ψ (Ψ, t̃) = −J (0)

,t̃
(t̃)

+G(1)[Ψ,J (0)(t̃), t̃], (4.49)

where we have simplified using the zeroth order solutions
(4.25) and (4.27). We now take the average with respect
to Ψ of this equation. The left hand side vanishes since
it is a total derivative, and we obtain using the definition



23

(4.7) the differential equation (4.26) for J (0)(t̃). Next,
we subtract from Eq. (4.49) its averaged part, and use
the decomposition (4.41) of J (1). This gives

Ω(0)(t̃)Ĵ
(1)
,Ψ (Ψ, t̃) = Ĝ(1)[Ψ,J (0)(t̃), t̃]. (4.50)

We solve this equation using the Fourier decomposition
(4.11b) of Ĝ(1) to obtain

Ĵ (1)(Ψ, t̃) =
∑

k 6=0

G
(1)
k [J (0)(t̃), t̃]eikΨ

ikΩ(0)(t̃)
. (4.51)

This yields the first term in the result (4.30) for J (1) when
we use the notation (4.13).

Next, we simplify the first order equation (4.45a) using
the zeroth order solutions (4.25) and (4.27), to obtain

Ω(0)(t̃)q
(1)
,Ψ (Ψ, t̃) − ω,J [J (0)(t̃), t̃]J (1)[Ψ, t̃]

= −Ω(1)(t̃) + g(1)[Ψ,J (0)(t̃), t̃]. (4.52)

Averaging with respect to Ψ and using the decomposi-
tions (4.41) and (4.42) of J (1) and q(1) now gives the
formula (4.32) for Ω(1)(t̃). Note however that the func-
tion J (1)(t̃) in that formula has not yet been determined;
it will be necessary to go to one higher order to compute
this function.

Finally, we subtract from Eq. (4.52) its average over
Ψ using the decompositions (4.41) and (4.42) and then
integrate with respect to Ψ using the notation (4.13).
This gives

q̂(1)(Ψ, t̃) =
1

Ω(0)(t̃)

{

ω,J [J (0)(t̃), t̃] IĴ (1)[Ψ, t̃]

+Iĝ(1)[Ψ,J (0)(t̃), t̃]

}

. (4.53)

Using the result for Ĵ (1) given by the first term in Eq.
(4.30) now yields the formula (4.34) for q̂(1)(Ψ, t̃), and the
result (4.33) for q(1) then follows from the decomposition
(4.42) together with the initial condition (4.20).

3. Second order analysis

We simplify the second order equation (4.46b) using
the zeroth order solutions (4.25) and (4.27), average over
Ψ, and simplify using the decompositions (4.41) and
(4.42) and the identities (4.12). The result is

J (1)

,t̃
(t̃) = G

(1)
0,J [J (0)(t̃), t̃]J (1)(t̃) +G

(2)
0 [J (0)(t̃), t̃]

+
〈

q̂(1)(Ψ, t̃) Ĝ(1)
,q [Ψ,J (0)(t̃), t̃]

〉

+
〈

Ĵ (1)(Ψ, t̃) Ĝ
(1)
,J [Ψ,J (0)(t̃), t̃]

〉

. (4.54)

Using the expressions (4.34) and (4.30) for q̂(1) and Ĵ (1)

and simplifying using the identities (4.14) now gives the
differential equation (4.31) for J (1).

4. Extension to arbitrary order

In this subsection we prove by induction that solutions
are uniquely determined at each order in ε. Our inductive
hypothesis is that, given the equations up to order s, we
can compute all of the expansion coefficients q(u)(Ψ, t̃),
J (u)(Ψ, t̃) and Ω(u)(t̃) for 0 ≤ u ≤ s, except for the av-
eraged piece J (s)(t̃) of J (s)(Ψ, t̃), and except for Ω(s)(t̃),
which is assumed to be determined by J (s)(t̃). From the
preceding subsections this hypothesis is true for s = 0
and for s = 1. We shall assume it is true at order s− 1
and prove it is true at order s.

The equations of motion at order s, when simplified
using the zeroth zeroth order solutions (4.25) and (4.27),
can be written as

Ω(0)q
(s)
,Ψ + Ω(s) − ω,JJ

(s) = ω,JJJ
(1)J (s−1) + g(1)

,q q
(s−1)

+g
(1)
,J J

(s−1) − Ω(1)q
(s−1)
,Ψ

−Ω(s−1)q
(1)
,Ψ − q

(s−1)

,t̃
,

+S (4.55a)

Ω(0)J
(s)
,Ψ = G(1)

,q q
(s−1) +G

(1)
,J J

(s−1)

−Ω(s−1)J
(1)
,Ψ − Ω(1)J

(s−1)
,Ψ

−J (s−1)

,t̃
+ T . (4.55b)

Here S = S(Ψ, t̃) and T = T (Ψ, t̃) are expressions in-
volving the forces G(u) and g(u) for 0 ≤ u ≤ s evaluated
at q = q(0) = Ψ and J = J (0) = J (0), and involving the
coefficients q(u), J (u) and Ω(u) for 0 ≤ u ≤ s − 2 which
by the inductive hypothesis are known. Therefore we can
treat S and T as known functions.

Averaging Eq. (4.55b) over Ψ yields the differential
equation

J (s−1)

,t̃
−G

(1)
0,JJ (s−1) = 〈T 〉 + 〈Ĝ(1)

,q q̂
(s−1)〉

+〈Ĝ(1)
,J Ĵ

(s−1)〉. (4.56)

By the inductive hypothesis all the terms on the right
hand side are known, so we can solve this differential
equation to determine J (s−1).

Next, averaging Eq. (4.55a) yields

Ω(s) − ω,JJ (s) = ω,JJ〈Ĵ (1)Ĵ (s−1)〉 + ω,JJJ (1)J (s−1)

+〈ĝ(1)
,q q̂

(s−1)〉 + 〈ĝ(1)
,J Ĵ

(s−1)〉

+g
(1)
0,JJ (s−1) −Q(s−1)

,t̃
+ 〈S〉. (4.57)

Since J (s−1) has already been determined, the right hand
side of this equation is known and therefore the equation
can be used to solve for Ω(s) once J (s) is specified, in
accord with the inductive hypothesis. Next, Eq. (4.55b)
with the average part subtracted can be used to solve
for Ĵ (s), and once Ĵ (s) is known Eq. (4.55a) with the
average part subtracted can be used to solve for q̂(s).
Finally, the averaged piece Q(s)(t̃) of q(s)(Ψ, t̃) can be
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computed from q̂(s) using the initial condition (4.20) and
the decomposition (4.42). Thus the inductive hypothesis
is true at order s if it is true at order s− 1.

V. SYSTEMS WITH SEVERAL DEGREES OF

FREEDOM SUBJECT TO NON-RESONANT

FORCING

A. Overview

In this section we generalize the analysis of the preced-
ing section to the general system of equations (3.2) with
several degrees of freedom. For convenience we reproduce
those equations here:

dqα
dt

= ωα(J, t̃) + εg(1)
α (q,J, t̃) + ε2g(2)

α (q,J, t̃)

+O(ε3), 1 ≤ α ≤ N, (5.1a)

dJλ

dt
= εG

(1)
λ (q,J, t̃) + ε2G

(2)
λ (q,J, t̃)

+O(ε3), 1 ≤ λ ≤M. (5.1b)

For the remainder of this paper, unless otherwise spec-
ified, indices α, β, γ, δ, ε, . . . from the start of the Greek
alphabet will run over 1 . . .N , and indices λ, µ, ν, ρ, σ, . . .
from the second half of the alphabet will run over 1 . . .M .

The generalization from one to several variables is
straightforward except for the treatment of resonances
[74]. The key new feature in the N variable case is that
the asymptotic expansions now have additional terms
proportional to

√
ε, ε3/2, . . . as well as the integer pow-

ers of ε. The coefficients of these half-integer powers of
ε obey source-free differential equations, except at reso-
nances. Therefore, in the absence of resonances, all of
these coefficients can be set to zero without loss of gen-
erality. In this paper we develop the general theory with
both types of terms present, but we specialize to the case
where no resonances occur. Subsequent papers [78, 79]
will extend the treatment to include resonances, and de-
rive the form of the source terms for the half-integer
power coefficients.

We start in Sec. VB by defining our conventions and
notations for Fourier decompositions of the perturbing
forces. In Sec. VC we discuss the assumptions we make
that prevent the occurrence of resonances in the solu-
tions. The heart of the method is the ansatz we make
for the form of the solutions, which is given in Sec. VD.
Section V E summarizes the results we obtain at each
order in the expansion, and the derivations are given in
Sec. VF. The implications of the results are discussed in
detail in Sec. VII below.

B. Fourier expansions of perturbing forces

The periodicity condition (3.6) applies at each order in
the expansion in powers of ε, so we obtain

g(s)
α (q + 2πk,J, t̃) = g(s)

α (q,J, t̃), (5.2a)

G
(s)
λ (q + 2πk,J, t̃) = G

(s)
λ (q,J, t̃), (5.2b)

for s ≥ 1, 1 ≤ α ≤ N , and 1 ≤ λ ≤ M . Here
k = (k1, . . . , kN ) can be an arbitrary N -tuple of inte-
gers. It follows from Eqs. (5.2) that these functions can
be expanded as multiple Fourier series:

g(s)
α (q,J, t̃) =

∑

k

g
(s)
αk(J, t̃)eik·q, (5.3a)

G
(s)
λ (q,J, t̃) =

∑

k

G
(s)
λ k(J, t̃)eik·q, (5.3b)

where

g
(s)
αk(J, t̃) =

1

(2π)N

∫

dNq e−ik·q g(s)
α (q,J, t̃), (5.4a)

G
(s)
λ k(J, t̃) =

1

(2π)N

∫

dNq e−ik·qG
(s)
λ (q,J, t̃). (5.4b)

Here we adopt the usual notations

∑

k

≡
∞
∑

k1=−∞

. . .

∞
∑

kN =−∞

, (5.5)

∫

dNq ≡
∫ 2π

0

dq1 . . .

∫ 2π

0

dqN . (5.6)

and

k · q ≡
N

∑

α=1

kαqα. (5.7)

For any multiply periodic function f = f(q), we intro-
duce the notation

〈f〉 =
1

(2π)N

∫

dNqf(q) (5.8)

for the average part of f , and

f̂(q) = f(q) − 〈f〉 (5.9)

for the remaining part of f . It follows from these defini-
tions that

〈g(s)
α (q,J, t̃)〉 = g

(s)
α 0(J, t̃), 〈G(s)

λ (q,J, t̃)〉 = G
(s)
λ 0(J, t̃),

(5.10)
and that

ĝ(s)
α (q,J, t̃) =

∑

k 6=0

g
(s)
αk(J, t̃)eik·q, (5.11a)

Ĝ
(s)
λ (q,J, t̃) =

∑

k 6=0

G
(s)
λ k(J, t̃)eik·q. (5.11b)
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We also have the identities
〈

∂f

∂qα

〉

= 〈f̂〉 = 0 (5.12a)

〈fg〉 = 〈f̂ ĝ〉 + 〈f〉〈g〉 (5.12b)

for any multiply periodic functions f(q), g(q).
For any multiply periodic function f and for any vector

v = (v1, . . . , vN ), we also define the quantity Ivf̂ by

(Ivf̂)(q) ≡
∑

k 6=0

fk
ik · ve

ik·q, (5.13)

where fk =
∫

dN qe−ik·qf(q)/(2π)N are the Fourier co-
efficients of f . The operator Iv satisfies the identities

Iv(v · ∇f̂) = f̂ , (5.14a)

〈(Iv f̂)ĝ〉 = −〈f̂(Ivĝ)〉, (5.14b)

〈f̂(Ivf̂)〉 = 0. (5.14c)

C. The no-resonance assumption

For each set of action variables J and for each time t̃,
we will say that an N-tuple of integers k 6= 0 is a resonant
N-tuple if

k · ω(J, t̃) = 0. (5.15)

where ω = (ω1, . . . , ωN ) are the frequencies that appear
on the right hand side of the equation of motion (3.2a).
This condition governs the occurrence of resonances in
our perturbation expansion, as is well known in context of
perturbations of multiply periodic Hamiltonian systems
[95]. We will assume that for a given k, the set of values
of t̃ at which the quantity

σk(t̃) ≡ k · ω[J (0)(t̃), t̃] (5.16)

vanishes (i.e. the resonant values) consists of isolated

points. Here J
(0)(t̃) is the leading order solution for

J given by Eq. (5.29) below. This assumption excludes
persistent resonances that last for a finite interval in t̃.
Generically we expect this to be true because of the time

dependence of J
(0)(t̃).

Our no-resonance assumption is essentially that the
Fourier components of the forcing terms vanish for res-
onant N-tuples. More precisely, for each fixed k and for
each time t̃r for which σk(t̃r) = 0, we assume that

g
(s)
αk

[

J
(0)(t̃), t̃

]

= 0, (5.17a)

G
(s)
λ k

[

J
(0)(t̃), t̃

]

= 0, (5.17b)

for s ≥ 1 and for all t̃ in a neighborhood of t̃r. Our no-
resonance assumption will be relaxed in the forthcoming
papers [78, 79].

In our application to inspirals in Kerr black holes, the
no-resonance condition will be automatically satisfied for
two classes of orbits: circular and equatorial orbits. This
is because for these orbits there is either no radial mo-
tion, or no motion in θ, and so the two-dimensional torus
(qr, qθ) reduces to a one-dimensional circle. The reso-
nance condition krωr + kθωθ = 0 reduces to krωr = 0
for equatorial orbits, or kθωθ = 0 for circular orbits, and
these conditions can never be satisfied since the funda-
mental frequencies ωr and ωθ are positive.

D. Two timescale ansatz for the solution

We now discuss the two-timescale ansatz we use for the
form of the solutions of the equations of motion. This
ansatz will be justified a posteriori order by order in

√
ε.

Our ansatz essentially consists of the assumption that
the mapping from (t, ε) to (q,J) can be written as an
asymptotic expansion in

√
ε, each term of which is the

composition of two maps, the first from (t, ε) to an ab-
stract N -torus with coordinates Ψ = (Ψ1, . . . ,ΨN ), and
the second from (Ψ, t̃, ε) to (q,J). Here t̃ = εt is the
slow time parameter. All the fast timescale dynamics is
encapsulated in the first mapping. More precisely, we
assume

qα(t, ε) =

∞
∑

n=0

εn/2q(n/2)
α (Ψ, t̃)

= q(0)α (Ψ, t̃) +
√
εq(1/2)

α (Ψ, t̃) + εq(1)α (Ψ, t̃)

+ε3/2q(3/2)
α (Ψ, t̃) +O(ε2), (5.18a)

Jλ(t, ε) =

∞
∑

n=0

εn/2J
(n/2)
λ (Ψ, t̃)

= J
(0)
λ (Ψ, t̃) +

√
εJ

(1/2)
λ (Ψ, t̃) + εJ

(1)
λ (Ψ, t̃)

+ε3/2J
(3/2)
λ (Ψ, t̃) +O(ε2). (5.18b)

These asymptotic expansions are assumed to be uni-

form in t̃. The expansion coefficients J
(s)
λ , where s =

0, 1/2, 1, . . ., are multiply periodic in the phase variables
Ψα with period 2π in each variable:

J
(s)
λ (Ψ + 2πk, t̃) = J

(s)
λ (Ψ, t̃). (5.19)

Here k = (k1, . . . , kN ) is an arbitraryN -tuple of integers.
The mapping of the abstract N -torus with coordinates
Ψ into the torus in phase space parameterized by q is
assumed to have a trivial wrapping, so that the angle
variable qα increases by 2π when Ψα increases by 2π;
this implies that the expansion coefficients q(s) satisfy

q(0)α (Ψ + 2πk, t̃) = q(0)α (Ψ, t̃) + 2πkα, (5.20a)

q(s)α (Ψ + 2πk, t̃) = q(s)α (Ψ, t̃), s ≥ 1/2, (5.20b)

for arbitrary k. The variables Ψ1, . . . ,ΨN are sometimes
called “fast-time parameters”.
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The angular velocity

Ωα = dΨα/dt (5.21)

associated with the phase Ψα is assumed to depend only
on the slow time variable t̃ (so it can vary slowly with
time), and on ε. We assume that it has an asymptotic
expansion in

√
ε as ε→ 0 which is uniform in t̃:

Ωα(t̃, ε) =

∞
∑

n=0

εn/2Ω(n/2)
α (t̃) (5.22)

= Ω(0)
α (t̃) +

√
εΩ(1/2)

α (t̃) + εΩ(1)
α (t̃)

+ε3/2Ω(3/2)
α (t̃) +O(ε2). (5.23)

Equations (5.21) and (5.23) serve to define the phase vari-

able Ψα in terms the angular velocity variables Ω
(s)
α (t̃),

s = 0, 1/2, 1 . . ., up to constants of integration. One con-
stant of integration arises at each order in

√
ε, for each

α. Without loss of generality we choose these constants
of integration so that

q(s)α (0, t̃) = 0 (5.24)

for all α, s and t̃. Note that this does not restrict the
final solutions qα(t, ε) and Jλ(t, ε), as we show explicitly
below, because there are additional constants of integra-

tion that arise when solving for the functions q
(s)
α (Ψ, t̃)

and J
(s)
λ (Ψ, t̃).

E. Results of the two-timescale analysis

By substituting the ansatz (5.18b) – (5.24) into the
equations of motion (3.2) we find that all of the assump-
tions made in the ansatz can be satisfied, and that all of
the expansion coefficients are uniquely determined, or-
der by order in

√
ε. This derivation is given in Sec. VF

below. Here we list the results obtained for the various
expansion coefficients up to the first three orders.

1. Terminology for various orders of the approximation

We can combine the definitions just summarized to
obtain an explicit expansion for the quantity of most in-
terest, the angle variables qα as a function of time. From
the periodicity condition (4.17a) it follows that the func-

tion q
(0)
α (Ψ, t̃) can be written as Ψα + q̄

(0)
α (Ψ, t̃) where

q̄
(0)
α is a multiply periodic function of Ψ. From the defi-

nitions (3.3) and (5.23), we can write the phase variables
Ψα as

Ψα =
1

ε
ψ(0)

α (t̃) +
1√
ε
ψ(1/2)

α (t̃) + ψ(1)
α (t̃) +

√
εψ(3/2)

α (t̃)

+εψ(2)
α (t̃) +O(ε3/2), (5.25)

where the functions ψ
(s)
α (t̃) are defined by

ψ(s)
α (t̃) =

∫ t̃

dt̃′Ω(s)
α (t̃′). (5.26)

Inserting this into the expansion (5.18a) of qα gives

qα(t, ε) =
1

ε
ψ(0)

α (t̃) +
1√
ε
ψ(1/2)

α (t̃)

+
[

ψ(1)
α (t̃) + q̄(0)α (Ψ, t̃)

]

+
√
ε
[

ψ(3/2)
α (t̃) + q(1/2)

α (Ψ, t̃)
]

+ε
[

ψ(2)
α (t̃) + q(1)α (Ψ, t̃)

]

+O(ε3/2). (5.27)

We will call the leading order, O(1/ε) term in Eq. (5.27)
the adiabatic approximation, the sub-leading O(1/

√
ε)

term the post-1/2-adiabatic term, the next O(1) term
the post-1-adiabatic term, etc. Below we will see that the

functions q̄
(0)
α and q

(1/2)
α in fact vanish identically, and

so the oscillatory, Ψ-dependent terms in the expansion
(5.27) arise only at post-2-adiabatic and higher orders.

As before we note that the expansion in powers of ε in
Eq. (5.27) is not a straightforward power series expansion
at fixed t̃, since the variable Ψ depends on ε. [The precise
definition of the expansion of the solution which we are
using is given by Eqs. (5.18a) – (5.24).] Nevertheless,
the expansion (5.27) as written correctly captures the ε
dependence of the secular pieces of the solution, since

the functions q̄(0), q
(1/2)
α and q

(1)
α are multiply periodic

functions of Ψ and so have no secular pieces.

2. Adiabatic Order

The zeroth order action variables are given by

J
(0)
λ (Ψ, t̃) = J (0)

λ (t̃), (5.28)

where J
(0)(t̃) =

(

J (0)
1 (t̃), . . . ,J (0)

M (t̃)
)

satisfies the set of
coupled ordinary differential equations

dJ (0)
λ (t̃)

dt̃
= G

(1)
λ 0[J (0)(t̃), t̃]. (5.29)

Here the right hand side denotes the average over q of

the forcing term G
(1)
λ [q,J (0)(t̃), t̃], cf. Eqs. (5.4) above.

The zeroth order angle variables are given by

q(0)α (Ψ, t̃) = Ψα, (5.30)

and the angular velocity Ωα that defines the phase vari-
able Ψα is given to zeroth order by

Ω(0)
α (t̃) = ωα[J (0)(t̃), t̃]. (5.31)

Note that this approximation is equivalent to the fol-
lowing simple prescription: (i) Truncate the equations of

motion (5.1) to the O(ε); (ii) Omit the driving terms g
(1)
α

in the equations for the angle variables; and (iii) Replace

the driving terms G
(1)
λ in the equations for the action

variables with their averages over q.
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3. Post-1/2-adiabatic order

Next, the O(
√
ε) action variables are given by

J
(1/2)
λ (Ψ, t̃) = J (1/2)

λ (t̃), (5.32)

where J
(1/2)(t̃) =

(

J (1/2)
1 (t̃), . . . ,J (1/2)

M (t̃)
)

satisfies the
set of coupled, source-free ordinary differential equations

dJ (1/2)
λ (t̃)

dt̃
− ∂G

(1)
λ 0

∂Jµ
[J (0)(t̃), t̃]J (1/2)

µ (t̃) = 0. (5.33)

Equation (5.33) will acquire a source term in Ref. [79]
where we include the effects of resonances. The O(

√
ε)

angle variables are given by

q(1/2)
α (Ψ, t̃) = 0, (5.34)

and the angular velocity Ωα that defines the phase vari-
able Ψα is given to O(

√
ε) by

Ω(1/2)
α (t̃) =

∂ωα

∂Jλ
[J (0)(t̃), t̃]J (1/2)

λ (t̃). (5.35)

Note that Eqs. (5.33) and (5.35) can be obtained sim-
ply by linearizing Eqs. (5.29) and (5.31) about the ze-

roth order solution. That is, J
(0) +

√
εJ (1/2) and

Ω
(0) +

√
εΩ(1/2) satisfy the zeroth order equations (5.29)

and (5.31) to O(
√
ε). This means that setting J

(1/2)

and Ω(1/2) to zero does not cause any loss of generality
in the solutions (under the no-resonance assumption of
this paper), as long as we allow initial conditions to have
sufficiently general dependence on ε.

4. Post-1-adiabatic order

The first order action variable is given by

J
(1)
λ (Ψ, t̃) = I

Ω(0)
(t̃)
Ĝ

(1)
λ [Ψ,J (0)(t̃), t̃] +J (1)

λ (t̃), (5.36)

where the symbol I on the right hand side denotes the

integration operator (5.13) with respect to Ψ, Ĝ
(1)
λ is the

non-constant piece of G
(1)
λ as defined in Eq. (5.9), and

Ω
(0) is given by Eq. (5.31). In Eq. (5.36) the quantity

J
(1)(t̃) satisfies the differential equation

dJ (1)
λ (t̃)

dt̃
− ∂G

(1)
λ 0

∂Jµ
[J (0)(t̃), t̃]J (1)

µ (t̃)

= G
(2)
λ 0 +

1

2

∂2G
(1)
λ 0

∂Jµ∂Jσ
J (1/2)

µ J (1/2)
σ

+

〈

∂Ĝ
(1)
λ

∂Jµ
I
Ω(0)Ĝ(1)

µ

〉

+

〈

∂Ĝ
(1)
λ

∂qα
I
Ω(0) ĝ(1)

α

〉

+
∂ωα

∂Jµ

〈

∂Ĝ
(1)
λ

∂qα
I
Ω(0)IΩ(0)Ĝ(1)

µ

〉

. (5.37)

Here it is understood that the quantities on the right

hand side are evaluated at J = J
(0)(t̃) and q = q(0) =

Ψ. The last three terms on the right hand side of Eq.
(5.37) can be written more explicitly using the definition
(5.13) of I and the definition (5.8) of the averaging 〈. . .〉
as

∑

k 6=0

1

Ω(0) · k

{

ikα
∂ωα

∂Jµ

G
(1) ∗
λ k G

(1)
µ k

Ω(0) · k
− kαG

(1) ∗
λ k g

(1)
αk

−iG(1)
µk

∂G
(1) ∗
λk

∂Jµ

}

. (5.38)

The O(ε) correction to the angular velocity Ωα is given
by

Ω(1)
α (t̃) = g

(1)
α0[J (0)(t̃), t̃] +

∂ωα

∂Jλ
[J (0)(t̃), t̃]J (1)

λ (t̃)

+
1

2

∂2ωα

∂Jλ∂Jµ
[J (0)(t̃), t̃]J (1/2)

λ (t̃)J (1/2)
µ (t̃).

(5.39)

Finally, the sub-leading term in the angle variable is

q(1)α (Ψ, t̃) = q̂(1)α (Ψ, t̃) + Q(1)
α (t̃), (5.40)

where

q̂(1)α (Ψ, t̃) =
∂ωα

∂Jλ
[J (0)(t̃), t̃]

×I
Ω(0)

(t̃)
I
Ω(0)

(t̃)
Ĝ

(1)
λ [Ψ,J (0)(t̃), t̃]

+I
Ω(0)

(t̃)
ĝ(1)

α [Ψ,J (0)(t̃), t̃] (5.41)

and

Q(1)
α (t̃) = −q̂(1)α (0, t̃). (5.42)

5. Discussion

One of the key results of the general analysis of this
section is the identification of which pieces of the exter-
nal forces are required to compute the adiabatic, post-
1/2-adiabatic and post-1-adiabatic solutions. From Eqs.
(5.29), (5.31) and (5.27), the adiabatic solution depends

only on the averaged piece G
(1)
λ 0(J, t̃) = 〈G(1)

λ (q,J, t̃)〉 of

the leading order external forceG
(1)
λ . Only the dissipative

piece of the force G
(1)
λ normally contributes to this aver-

age. For our application to inspirals in Kerr, this follows
from the identity (2.86a) which shows that the average

of the conservative piece of G
(1)
λ vanishes. For a Hamil-

tonian system with N = M , if the perturbing forces gα

and Gβ arise from a perturbation ε∆H =
∑

s ε
s∆H(s)

to the Hamiltonian, then the forcing function G
(s)
β is

G
(s)
β (q,J, t̃) = −∂∆H(s)(q,J, t̃)

∂qβ
,
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and it follows that the average over q of G
(s)
β vanishes.

At the next, post-1/2-adiabatic order, it follows from

Eqs. (5.33) and (5.35) that the term ψ
(1/2)
α (t̃) depends

again only on the averaged, dissipative piece G
(1)
λ 0 of the

leading order force. However, we shall see in the forth-
coming paper [79] that when the effects of resonances
are included, additional dependencies on the remaining
(non-averaged) pieces of the first order self forces will
arise.

At the next, post-1-adiabatic order, the term ψ
(1)
α (t̃)

in Eq. (5.27) depends on the averaged piece G
(2)
λ 0(J, t̃) =

〈G(2)
λ (q,J, t̃)〉 of the sub-leading force G

(2)
λ , again nor-

mally purely dissipative, as well as the remaining conser-
vative and dissipative pieces of the leading order forces

G
(1)
λ (q,J, t̃) and g

(1)
α (q,J, t̃). This can be seen from Eqs.

(5.37) and (5.39). These results have been previously
discussed briefly in the EMRI context in Refs. [37, 68].
For circular, equatorial orbits, the fact that there is a
post-1-adiabatic order contribution from the second or-
der self-force was first argued by Burko [89].

Finally, we consider the choice of initial conditions for
the approximate differential equations we have derived.
The discussion and conclusions here parallel those in the
single variable case, given in Sec. IVD5 above, and the
results are summarized in Sec. VII C below

F. Derivation

We will denote by R(t̃) the set of resonant N-tuples
k at time t̃, and by Rc(t̃) the remaining non-resonant
nonzero N-tuples. The set of all N-tuples can therefore
be written as the disjoint union

ZN = {0} ∪̇R(t̃) ∪̇Rc(t̃). (5.43)

At each order s we introduce the notation J (s)
λ (t̃) for

the average part of J
(s)
λ (Ψ, t̃):

J (s)
λ (t̃) ≡ 〈J (s)

λ (Ψ, t̃)〉 (5.44)

=
1

(2π)N

∫ 2π

0

dΨ1 . . .

∫ 2π

0

dΨNJ
(s)
λ (Ψ, t̃).

We denote by Ĵ
(s)
β the remaining part of J

(s)
β , as in Eq.

(5.9). This gives the decomposition

J
(s)
λ (Ψ, t̃) = J (s)

λ (t̃) + Ĵ
(s)
λ (Ψ, t̃) (5.45)

for all s ≥ 0. Similarly for the angle variable we have the
decomposition

q(s)α (Ψ, t̃) = Q(s)
α (t̃) + q̂(s)α (Ψ, t̃) (5.46)

for all s ≥ 1/2. For the case s = 0 we use the fact that

q
(0)
α (Ψ, t̃) − Ψα is a multiply periodic function of Ψ, by

Eq. (5.20a), to obtain the decomposition

q(0)α (Ψ, t̃) = Ψα + Q(0)
α (t̃) + q̂(0)α (Ψ, t̃), (5.47)

where q̂
(0)
α (Ψ, t̃) is multiply periodic in Ψ with zero av-

erage.
Using the expansions (5.18a) and (5.18b) of qα and Jβ

together with the expansion (5.23) of dΨα/dt, we obtain

dqα
dt

= Ω
(0)
β q

(0)
α,Ψβ

+
√
ε
[

Ω
(1/2)
β q

(0)
α,Ψβ

+ Ω
(0)
β q

(1/2)
α,Ψβ

]

+ε
[

Ω
(1)
β q

(0)
α,Ψβ

+ Ω
(1/2)
β q

(1/2)
α,Ψβ

+ Ω
(0)
β q

(1)
α,Ψβ

+ q
(0)

α,t̃

]

+ε3/2
[

Ω
(3/2)
β q

(0)
α,Ψβ

+ Ω
(1)
β q

(1/2)
α,Ψβ

+ Ω
(1/2)
β q

(1)
α,Ψβ

+Ω
(0)
β q

(3/2)
α,Ψβ

+ q
(1/2)

α,t̃

]

+ ε2
[

Ω
(2)
β q

(0)
α,Ψβ

+Ω
(3/2)
β q

(1/2)
α,Ψβ

+ Ω
(1)
β q

(1)
α,Ψβ

+ Ω
(1/2)
β q

(3/2)
α,Ψβ

+Ω
(0)
β q

(2)
α,Ψβ

+ q
(1)

α,t̃

]

+O(ε5/2). (5.48)

We now insert this expansion together with a similar ex-
pansion for dJλ/dt into the equations of motion (3.2) and
use the expansions (3.4) and (3.5) of the external forces
gα and Gλ. Equating coefficients of powers23 of

√
ε then

gives at zeroth order

Ω
(0)
β q

(0)
α,Ψβ

= ωα, (5.49a)

Ω
(0)
β J

(0)
λ,Ψβ

= 0, (5.49b)

at order O(
√
ε)

Ω
(0)
β q

(1/2)
α,Ψβ

= −Ω
(1/2)
β q

(0)
α,Ψβ

+ ωα,Jλ
J

(1/2)
λ , (5.50a)

Ω
(0)
β J

(1/2)
λ,Ψβ

= −Ω
(1/2)
β J

(0)
λ,Ψβ

, (5.50b)

at order O(ε)

Ω
(0)
β q

(1)
α,Ψβ

= −Ω
(1/2)
β q

(1/2)
α,Ψβ

− Ω
(1)
β q

(0)
α,Ψβ

− q
(0)

α,t̃
+ g(1)

α

+ωα,Jλ
J

(1)
λ +

1

2
ωα,JλJµ

J
(1/2)
λ J (1/2)

µ ,(5.51a)

Ω
(0)
β J

(1)
λ,Ψβ

= −Ω
(1/2)
β J

(1/2)
λ,Ψβ

− Ω
(1)
β J

(0)
λ,Ψβ

− J
(0)

λ,t̃

+G
(1)
λ , (5.51b)

at order O(ε3/2)

Ω
(0)
β q

(3/2)
α,Ψβ

= −Ω
(1/2)
β q

(1)
α,Ψβ

− Ω
(1)
β q

(1/2)
α,Ψβ

− Ω
(3/2)
β q

(0)
α,Ψβ

−q(1/2)

α,t̃
+ g(1)

α,qβ
q
(1/2)
β + g

(1)
α,Jλ

J
(1/2)
λ

+ωα,Jλ
J

(3/2)
λ + ωα,JλJµ

J
(1/2)
λ J (1)

µ

+
1

6
ωα,JλJµJσ

J
(1/2)
λ J (1/2)

µ J (1/2)
σ , (5.52a)

Ω
(0)
β J

(3/2)
λ,Ψβ

= −Ω
(1/2)
β J

(1)
λ,Ψβ

− Ω
(1)
β J

(1/2)
λ,Ψβ

− Ω
(3/2)
β J

(0)
λ,Ψβ

−J (1/2)

λ,t̃
+G

(1)
λ,qβ

q
(1/2)
β +G

(1)
λ,Jµ

J (1/2)
µ ,

(5.52b)

23 This is justified since both sides are asymptotic expansions in
powers of

√
ε at fixed Ψ, t̃.
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and at order O(ε2)

Ω
(0)
β q

(2)
α,Ψβ

= −Ω
(1/2)
β q

(3/2)
α,Ψβ

− Ω
(1)
β q

(1)
α,Ψβ

− Ω
(3/2)
β q

(1/2)
α,Ψβ

−Ω
(2)
β q

(0)
α,Ψβ

− q
(1)

α,t̃
+ g(2)

α + g(1)
α,qβ

q
(1)
β

+g
(1)
α,Jλ

J
(1)
λ +

1

2
g(1)

α,qβqγ
q
(1/2)
β q(1/2)

γ

+
1

2
g
(1)
α,JλJµ

J
(1/2)
λ J (1/2)

µ + g
(1)
α,qβJλ

q
(1/2)
β J

(1/2)
λ

+ωα,Jλ
J

(2)
λ +

1

2
ωα,JλJµJσ

J
(1)
λ J (1/2)

µ J (1/2)
σ

+
1

2
ωα,JλJµ

J
(1)
λ J (1)

µ + ωα,JλJµ
J

(1/2)
λ J (3/2)

µ

+
1

24
ωα,JλJµJσJτ

J
(1/2)
λ J (1/2)

µ J (1/2)
σ J (1/2)

τ ,

(5.53a)

Ω
(0)
β J

(2)
λ,Ψβ

= −Ω
(1/2)
β J

(3/2)
λ,Ψβ

− Ω
(1)
β J

(1)
λ,Ψβ

− Ω
(3/2)
β J

(1/2)
λ,Ψβ

−Ω
(2)
β J

(0)
λ,Ψβ

− J
(1)

λ,t̃
+G

(2)
λ +G

(1)
λ,qβ

q
(1)
β

+G
(1)
λ,Jµ

J (1)
µ +

1

2
G

(1)
λ,qβqγ

q
(1/2)
β q(1/2)

γ

+
1

2
G

(1)
λ,JµJσ

J (1/2)
µ J (1/2)

σ +G
(1)
λ,qβJµ

q
(1/2)
β J (1/2)

µ .

(5.53b)

Here it is understood that all functions of q and J are
evaluated at q(0) and J(0).

1. Zeroth order analysis

The zeroth order equations (5.49) can be written more
explicitly as

Ω
(0)
β (t̃)q

(0)
α,Ψβ

(Ψ, t̃) = ωα[J(0)(Ψ, t̃), t̃], (5.54a)

Ω
(0)
β (t̃)J

(0)
λ,Ψβ

(Ψ, t̃) = 0. (5.54b)

Since J(0) is a multiply periodic function of Ψ by Eq.
(5.19), we can rewrite Eq. (5.54b) in terms of the Fourier

components J
(0)
λ k(t̃) of J

(0)
λ as

∑

k

[

iΩ(0)(t̃) · k
]

J
(0)
λ k(t̃) eik·Ψ = 0. (5.55)

For non-resonant N-tuples k we have

Ω(0)(t̃) · k 6= 0 (5.56)

by Eqs. (5.15) and (5.31) unless k = 0. This implies that

J
(0)
λ k(t̃) = 0 for all nonzero non-resonant k.

It follows that, for a given k, J
(0)
λ k(t̃) must vanish except

at those values of t̃ at which k is resonant. Since we
assume that J

(0)
λ k(t̃) is a continuous function of t̃, and

since the set of resonant values of t̃ for a given k consists
of isolated points (cf. Sec. VC above), it follows that

J
(0)
λ k(t̃) vanishes for all nonzero k. The formula (5.28)

now follows from the decomposition (5.45).
Next, substituting the formula (5.28) for J(0) and the

decomposition (5.47) of q(0) into Eq. (5.54a) gives

Ω(0)
α (t̃) +

∑

k

[

iΩ(0)(t̃) · k
]

q̂
(0)
αk(t̃) eik·Ψ

= ωα[J (0)(t̃), t̃], (5.57)

where q̂
(0)
α k(t̃) are the Fourier components of q̂

(0)
α (Ψ, t̃).

The k = 0 Fourier component of this equation gives the

formula (5.31) for the zeroth order angular velocity Ω
(0).

The k 6= 0 Fourier components imply, using an argument

similar to that just given for Eq. (5.54b), that q̂
(0)
α k(t̃) = 0

for all nonzero k. The decomposition (5.47) then gives

q(0)α (Ψ, t̃) = Ψα + Q(0)
α (t̃). (5.58)

Finally, the assumption (5.24) forces Q(0)
α (t̃) to vanish,

and we recover the formula (5.30) for q
(0)
α (Ψ, t̃).

2. Order O(
√

ε) analysis

The O(
√
ε) equation (5.50b) can be written more ex-

plicitly as

Ω
(0)
β (t̃)J

(1/2)
λ,Ψβ

(Ψ, t̃) = 0, (5.59)

where we have simplified using the zeroth order solution
(5.28). An argument similar to that given in Sec. V F 1
now forces the Ψ dependent piece of J(1/2) to vanish, and
so we obtain the formula (5.32).

Next, we simplify the order O(
√
ε) equation (5.50a)

using the solutions (5.28), (5.30) and (5.32) to obtain

Ω
(0)
β (t̃)q

(1/2)
α,Ψβ

(Ψ, t̃) = ωα,Jλ
[J (0)(t̃), t̃]J (1/2)

λ (t̃)

−Ω(1/2)
α (t̃). (5.60)

After averaging with respect to Ψ, the term on the left
hand side vanishes since it is a total derivative, and we
obtain the formula (5.35) for Ω(1/2)(t̃). Note however

that the function J
(1/2)(t̃) in that formula has not yet

been determined; it will be necessary to go to two higher
orders in

√
ε to compute this function.

Next, we subtract from Eq. (5.60) its averaged part

and use the decomposition (5.46) of q
(1/2)
α to obtain

Ω
(0)
β (t̃)q̂

(1/2)
α,Ψβ

(Ψ, t̃) = 0. (5.61)

An argument similar to that given in Sec. VF 1 now
shows that q̂(1/2) = 0, and the result (5.34) then follows
from the decomposition (5.46) together with the initial
condition condition (5.24).
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3. Order O(ε) analysis

The first order equation (5.51b) can be written more
explicitly as

Ω
(0)
β (t̃)J

(1)
λ,Ψβ

(Ψ, t̃) = −J (0)

λ,t̃
(t̃)

+G
(1)
λ [Ψ,J (0)(t̃), t̃], (5.62)

where we have simplified using the zeroth order solutions
(5.28) and (5.30) and the O(

√
ε) solution (5.32). We now

take the average with respect to Ψ of this equation. The
left hand side vanishes since it is a derivative, and we
obtain using the definition (5.4) the differential equation

(5.29) for J
(0)(t̃). Next, we subtract from Eq. (5.62) its

averaged part, and use the decomposition (5.45) of J(1).
This gives

Ω
(0)
β (t̃)Ĵ

(1)
λ,Ψβ

(Ψ, t̃) = Ĝ
(1)
λ [Ψ,J (0)(t̃), t̃]. (5.63)

We solve this equation using the Fourier decomposition

(5.11b) of Ĝ
(1)
λ to obtain

Ĵ
(1)
λ (Ψ, t̃) =

∑

k∈Rc(t̃)

G
(1)
λ k[J (0)(t̃), t̃]

ik · Ω(0)(t̃)
eik·Ψ

+
∑

k∈R(t̃)

J
(1)
λk (t̃)eik·Ψ. (5.64)

Here the first term is a sum over non-resonant N-tuples,
and the second term is a sum over resonant N-tuples, for
which the coefficients are unconstrained by Eq. (5.63).
However for each fixed k, the values of t̃ that correspond
to resonances are isolated, and furthermore by the the no-

resonance assumption (5.56) we have G
(1)
β k[J (0)(t̃), t̃] = 0

in the vicinity of those values of t̃. Therefore using the

assumed continuity of J
(1)
λk (t̃) in t̃ we can simplify Eq.

(5.64) to

Ĵ
(1)
λ (Ψ, t̃) =

∑

k 6=0

G
(1)
λ k[J (0)(t̃), t̃]

ik · Ω(0)(t̃)
eik·Ψ, (5.65)

where any terms of the form 0/0 that appear in the coef-
ficients are interpreted to be 0. This yields the first term
in the result (5.36) for J(1) when we use the notation
(5.13).

Next, we simplify the first order equation (5.51a) us-
ing the zeroth order solutions (5.28) and (5.30) and the
O(

√
ε) solutions (5.32) and (5.34), to obtain

Ω
(0)
β (t̃)q

(1)
α,Ψβ

(Ψ, t̃) = g(1)
α [Ψ,J (0)(t̃), t̃] − Ω(1)

α (t̃)

+ωα,Jλ
[J (0)(t̃), t̃]J

(1)
λ [Ψ, t̃]

+
1

2
ωα,JλJµ

[J (0)(t̃), t̃]J (1/2)
λ (t̃)J (1/2)

µ (t̃). (5.66)

Averaging with respect to Ψ and using the decomposi-
tions (5.45) and (5.46) of J(1) and q(1) now gives the

formula (5.39) for Ω(1)(t̃). Note however that the func-

tion J
(1)(t̃) in that formula has not yet been determined;

it will be necessary to go to two higher orders in
√
ε to

compute this function.
Finally, we subtract from Eq. (5.66) its average over

Ψ using the decompositions (5.45) and (5.46), and then
solve the resulting partial differential equation using the
notation (5.13) and the convention described after Eq.
(5.65). This gives

q̂(1)α (Ψ, t̃) =
∂ωα

∂Jλ
[J (0)(t̃), t̃] I

Ω(0)
(t̃)
Ĵ

(1)
λ [Ψ, t̃]

+I
Ω(0)

(t̃)
ĝ(1)

α [Ψ,J (0)(t̃), t̃]. (5.67)

Using the result for Ĵ
(1)
β given by the first term in Eq.

(5.36) now yields the formula (5.41) for q̂
(1)
α (Ψ, t̃), and the

result (5.40) for q
(1)
α then follows from the decomposition

(5.46) together with the initial condition (5.24).

4. Order O(ε3/2) analysis

The O(ε3/2) equation (5.52b) can be written more ex-
plicitly as

Ω
(0)
β (t̃)J

(3/2)
λ,Ψβ

(Ψ, t̃) = −Ω
(1/2)
β (t̃)J

(1)
λ,Ψβ

(Ψ, t̃) − J (1/2)

λ,t̃
(t̃)

+G
(1)
λ,Jµ

[Ψ,J (0)(t̃), t̃]J (1/2)
µ (t̃), (5.68)

where we have simplified using the lower order solutions
(5.28), (5.30), (5.32) and (5.34). We now take the av-
erage with respect to Ψ of this equation. Two terms
vanish since they are total derivatives, and we obtain us-
ing the definition (5.4) the differential equation (5.33) for

J
(1/2)(t̃). The remaining non-zero Fourier components

of Eq. (5.68) can be used to solve for Ĵ(3/2), which we
will not need in what follows.

Next, we simplify the O(ε3/2) equation (5.52a) using
the lower order solutions (5.28), (5.30), (5.32) and (5.34)
to obtain

Ω
(0)
β (t̃)q

(3/2)
α,Ψβ

(Ψ, t̃) = g
(1)
α,Jλ

[Ψ,J (0)(t̃), t̃]J (1/2)
λ (t̃)

−Ω(3/2)
α (t̃) − Ω

(1/2)
β (t̃)q

(1)
α,Ψβ

(Ψ, t̃)

+ωα,Jλ
[J (0)(t̃), t̃]J

(3/2)
λ [Ψ, t̃]

+ωα,JλJµ
[J (0)(t̃), t̃]J

(1)
λ [Ψ, t̃]J (1/2)

µ (t̃)

+
1

2
ωα,JλJµJσ

[J (0)(t̃), t̃]J (1/2)
λ (t̃)J (1/2)

µ (t̃)J (1/2)
σ (t̃).

(5.69)

The k = 0 component of this equation yields a formula

for Ω(3/2)(t̃) in terms of J
(1/2)(t̃) and J

(3/2)(t̃), and the
Fourier components with k 6= 0 yield a formula for q̂(3/2)

which we shall not need.
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5. Order O(ε2) analysis

We simplify the second order equation (5.53b) using
the lower order solutions (5.28), (5.30), (5.32) and (5.34),
average over Ψ, and simplify using the decompositions
(5.45) and (5.46) and the identities (5.12). The result is

d

dt̃
J (1)

λ (t̃) =
∂G

(1)
λ 0

∂Jµ
[J (0)(t̃), t̃]J (1)

µ (t̃) +G
(2)
λ 0[J (0)(t̃), t̃]

1

2

∂2G
(1)
λ 0

∂Jµ∂Jσ
[J (0)(t̃), t̃]J (1/2)

µ (t̃)J (1/2)
σ (t̃)

+

〈

q̂(1)α (Ψ, t̃)
∂Ĝ

(1)
λ

∂Ψα

[

Ψ,J (0)(t̃), t̃
]

〉

+

〈

Ĵ (1)
µ (Ψ, t̃)

∂Ĝ
(1)
λ

∂Jµ

[

Ψ,J (0)(t̃), t̃
]

〉

.(5.70)

Using the expressions (5.41) and (5.36) for q̂
(1)
α and Ĵ

(1)
α

now gives the differential equations (5.37) for J
(1).24

VI. NUMERICAL INTEGRATION OF AN

ILLUSTRATIVE EXAMPLE

In this section we present a numerical integration of
a particular example of a dynamical system, in order to
illustrate and validate the general theory of Secs. IV and
V.

Consider the system of equations

q̇ = ω(J) + εg(1)(q, J) (6.1a)

J̇ = εG(1)(q, J), (6.1b)

24 We remark that a slight inconsistency arises in our solution
ansatz (5.18) at this order, O(ε2). Consider the k 6= 0 Fourier
components of the second order equations (5.53). For resonant
n-tuples k, the left hand sides of these two equations vanish by
definition, but the right hand sides are generically nonzero, due
to the effects of subleading resonances. A similar inconsistency
would arise in the O(ε) equations (5.51), but for the fact that
our no-resonance assumption (5.17) forces the right hand sides
of those equations to vanish for resonant n-tuples. However, the
no-resonance assumption (5.17) is insufficient to make the right
hand sides of the O(ε2) equations (5.53) vanish, because of the
occurrence of quadratic cross terms such as

g
(1)
α k

g
(1)
β k′

ei(k+k
′)·Ψ.

It can be shown, by an analysis similar to that given in Ref. [79],
that the effect of these subleading resonances is to (i) restrict the
domain of validity of the expansion (5.18) to exclude times t̃ at
which subleading resonances occur, and (ii) to add source terms

to the differential equation for J (3/2) which encode the effect of
passing through a subleading resonance. These modifications do
not affect any of the conclusions in the present paper.
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FIG. 2: The exact numerical solution of the system of equa-
tions (6.1). After a time ∼ 1/ε, the action variable J is O(1),
while the angle variable q is O(1/ε).

where

ω(J) = 1 + J − J2/4,

g(1)(q, J) = sin(q)/J,

G(1)(q, J) = −J − J2/4 − J cos(q) − J2 sin(q), (6.2)

together with the initial conditions q(0) = 1, J(0) = 1,
and with ε = 10−3. The exact solution of this system is
shown in Fig. 2.

Consider now the adiabatic approximation to this sys-
tem. From Eqs. (4.23) – (4.28) the adiabatic approxima-
tion is given by the system

dψ(0)

dt̃
= ω(J (0)), (6.3a)

dJ (0)

dt̃
= −J (0) − J (0) 2/4, (6.3b)

where t̃ = εt. The adiabatic solution (qad, Jad) is given
in terms of the functions ψ(0)(t̃) and J (0)(t̃) by

qad(t, ε) = ε−1ψ(0)(εt), Jad(t, ε) = J (0)(εt). (6.4)

To this order, the initial conditions on (qad, Jad) are the
same as those for (q, J), which gives ψ(0)(0) = ε 25 and
J (0)(0) = 1. We expect to find that after a time t ∼ 1/ε,
the errors are of order ∼ 1 for qad(t), and of order ∼ ε
for Jad(t). This is confirmed by the two upper panels in
Fig. 3, which show the differences q − qad and J − Jad.

25 Strictly speaking, our derivations assumed that ψ(0)(t̃) is inde-
pendent of ε, and so it is inconsistent to use this initial condition
for ψ(0)(0). Instead we should set ψ(0)(0) = 0, and take account
of the nonzero initial phase q(0) at the next order, in the variable
ψ(1)(0). However, moving a constant from ψ(1)(t̃) to ε−1ψ(0)(t̃)
does not affect the solution, and so we are free to choose the
initial data as done here.
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FIG. 3: Upper panels: The difference between the solution
of the exact dynamical system (6.1) and the adiabatic ap-
proximation given by Eqs. (6.3) and (6.4). For the action
variable J , this difference is O(ε), while for the angle variable
q, this difference is O(1), as expected. Lower panels: The dif-
ference between the exact solution and the post-1-adiabatic
approximation given by Eqs. (6.3), (6.5) and (6.6). Again the
magnitudes of these errors are as expected: O(ε2) for J and
O(ε) for q.

Consider next the post-1-adiabatic approximation.
From Eqs. (4.31) and (4.32) this approximation is given
by the system of equations

dψ(1)

dt̃
= ω,J(J (0))J (1), (6.5a)

dJ (1)

dt̃
= −(1 + J (0)/2)J (1) +

J (0)(J (0) + 1)

2ω(J (0))
,(6.5b)

together with the adiabatic system (6.3). From
Eqs. (4.24) and (4.30) the post-1-adiabatic solution
(qp1a, Jp1a) is given by

qp1a(t, ε) = ε−1ψ(0)(εt) + ψ(1)(εt), (6.6a)

Jp1a(t, ε) = J (0)(εt) + εJ (1)(εt)

+εH [J (0)(εt), qp1a(t, ε)], (6.6b)

where the function H is given by

H(J , q) =
J 2 cos q − J sin q

ω(J )
. (6.7)

Consider next the choice of initial conditions ψ(0)(0),
ψ(1)(0), J (0)(0) and J (1)(0) for the system of equations
(6.3) and (6.5). From Eqs. (6.6) these choices are con-
strained by, to O(ε2),

q(0) = ε−1ψ(0)(0) + ψ(1)(0), (6.8a)

J(0) = J (0)(0) + εJ (1)(0) + εH [J(0), q(0)]. (6.8b)

We solve these equations by taking ψ(0)(0) = 0, ψ(1)(0) =
q(0) = 1, J (0)(0) = J(0) = 1, and J (1)(0) =

−H [J(0), q(0)]. We expect to find that after a time
t ∼ 1/ε, the errors are of order ∼ ε for qp1a(t), and
of order ∼ ε2 for Jp1a(t). This is confirmed by the two
lower panels in Fig. 3, which show the differences q−qp1a

and J − Jp1a.

VII. DISCUSSION

In Sec. II above we derived the set of equations (2.47)
describing the radiation-reaction driven inspiral of a par-
ticle into a spinning black hole, in terms of generalized
action angle variables. Although those equations contain
some functions which are currently unknown, it is pos-
sible to give a general analysis of the dependence of the
solutions on the mass ratio ε = µ/M as ε → 0, using
two-timescale expansions. That analysis was presented
in Secs. III – VI above, for the general class of equation
systems (3.2) of which the Kerr inspiral example (2.47)
is a special case. In this final section we combine these
various results and discuss the implications for our un-
derstanding of inspirals into black holes.

A. Consistency and uniqueness of approximation

scheme

Our analysis has demonstrated that the adiabatic ap-
proximation method gives a simple and unique prescrip-
tion for computing successive approximations to the ex-
act solution, order by order, which is free of ambiguities.
In this sense it is similar to the post-Newtonian approxi-
mation method.26 This is shown explicitly in Sec. IVE 4,
which shows that the adiabatic method can be extended
to all orders for the case of a single degree of freedom,
and in Sec. VI, which shows how the method works in
practice in a numerical example. In particular there is
no ambiguity in the assignment of initial conditions when
computing adiabatic or post-1-adiabatic approximations.

This conclusion appears to be at odds with a recent
analysis of Pound and Poisson (PP) [76]. These authors
conclude that “An adiabatic approximation to the ex-
act differential equations and initial conditions, designed
to capture the secular changes in the orbital elements
and to discard the oscillations, would be very difficult
to formulate without prior knowledge of the exact so-
lution.” The reason for the disagreement is in part a
matter of terminology: PP’s definition of “adiabatic ap-
proximation” is different to ours.27 They take it to mean
an approximation which (i) discards all the pieces of the
true solutions that vary on the rapid timescale ∼ 1, and

26 The analogy is closer when the two-timescale method is extended
to include the field equations and wave generation as well as the
inspiral motion [80].

27 In a later version of their paper they call it instead a “secular
approximation”.
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retains the pieces that vary on the slow timescale ∼ 1/ε;
and (ii) is globally accurate to some specified order in ε
over an inspiral time – throughout their paper they work
to the first subleading order, i.e. post-1-adiabatic order.
In our terminology, their approximation would consist
of the adiabatic approximation, plus the secular piece
of the post-1-adiabatic approximation [given by omitting
the first term in Eq. (5.36)].

The difference in the terminology used here and in PP
is not the only reason for the different conclusions. Our
formalism shows that PP’s “adiabatic approximation”
is actually straightforward to formulate, and that prior
knowledge of the exact solution is not required. The rea-
son for the different conclusions is as follows. By “exact
solution” PP in fact meant any approximation which in-
cludes the rapidly oscillating pieces at post-1-adiabatic
order. Their intended meaning was that, since the secu-
lar and rapidly oscillating pieces are coupled together at
post-1-adiabatic order, any approximation which com-
pletely neglects the oscillations cannot be accurate to
post-1-adiabatic order [102]. We agree with this con-
clusion.

On the other hand, we disagree with the overall pes-
simism of PP’s conclusion, because we disagree with their
premise. Since the qualitative arguments that were orig-
inally presented for the radiative approximation involved
discarding oscillatory effects [37, 67], PP chose to exam-
ine general approximation schemes that neglect oscilla-
tory effects28 and correctly concluded that such schemes
cannot be accurate beyond the leading order. However,
our viewpoint is that there is no need to restrict atten-
tion to schemes that neglect all oscillatory effects. The
two timescale scheme presented here yields leading order
solutions which are not influenced by oscillatory effects,
and higher order solutions whose secular pieces are. The
development of a systematic approximation scheme that
exploits the disparity in orbital and radiation reaction
timescales need not be synonymous with neglecting all
oscillatory effects.

B. Effects of conservative and dissipative pieces of

the self force

As we have discussed in Secs. IVD4 and VE5 above,
our analysis shows rigorously that the dissipative piece of
the self force contributes to the leading order, adiabatic
motion, while the conservative piece does not, as argued
in Refs. [37, 67]. It is possible to understand this fun-
damental difference in a simple way as follows. We use
units where the orbital timescale is ∼ 1 and the inspiral
timescale is ∼ 1/ε. Then the total phase accumulated

28 In the strong sense of neglecting the influence of the oscillatory
pieces of the solution on the secular pieces, as well as neglecting
the oscillatory pieces themselves.

during the inspiral is ∼ 1/ε, and this accumulated phase
is driven by the dissipative piece of the self force.

Consider now the effect of the conservative piece of the
self force. As a helpful thought experiment, imagine set-
ting to zero the dissipative piece of the first order self
force. What then is the effect of the conservative first
order self-force on the dynamics? We believe that the
perturbed motion is likely to still be integrable; argu-
ments for this will be presented elsewhere [78, 79]. How-
ever, even if the perturbed motion is not integrable, the
Kolmogorov-Arnold-Moser (KAM) theorem [95] implies
that the perturbed motion will generically be confined to
a torus in phase space for sufficiently small ε. The effect
of the conservative self force is therefore roughly to give
an O(ε) distortion to this torus, and to give O(ε) correc-
tions to the fundamental frequencies.29 If one now adds
the effects of dissipation, we see that after the inspiral
time ∼ 1/ε, the corrections due to the conservative force
will give a fractional phase correction of order ∼ ε, corre-
sponding to a total phase correction ∼ 1. This correction
therefore comes in at post-1-adiabatic order.

Another way of describing the difference is that the
dissipative self-force produces secular changes in the or-
bital elements, while the conservative self-force does not
at the leading order in ε. In Ref. [37] this difference was
overstated: it was claimed that the conservative self-force
does not produce any secular effects. However, once one
goes beyond the leading order, adiabatic approximation,
there are in fact conservative secular effects. At post-1-
adiabatic order these are described by the first term on
the right hand side of Eq. (5.39). This error was pointed
out by Pound and Poisson [76, 103].

C. The radiative approximation

So far in this paper we have treated the self force as
fixed, and have focused on how to compute successive
approximations to the inspiralling motion. However, as
explained in the introduction, the first order self force is
currently not yet known explicitly. The time-averaged,
dissipative30 piece is known from work of Mino and oth-
ers [37, 67, 68, 69, 70]. The remaining, fluctuating piece
of the dissipative first order self force has not been com-
puted but will be straightforward to compute31. The con-
servative piece of the first order self force will be much
more difficult to compute, and is the subject of much
current research [46, 49, 50, 51, 52].

29 This corresponds to adding to the frequency ωα in Eq. (5.1a) the

average over q of the term εg
(1)
α .

30 We use the terms radiative and dissipative interchangeably; both
denote the time-odd piece of the self force, as defined by Eq.
(2.74) above.

31 For example, by evaluating Jωlmkn from Eq. (8.21) of Ref. [68]
at ω = ωmk′n′ instead of ω = ωmkn.
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It is natural therefore to consider the radiative approx-
imation obtained by using only the currently available,
radiative piece of the first order self force, as suggested
by Mino [67], and by integrating the orbital equations ex-
actly (eg numerically). How well will this approximation
perform?

From our analysis it follows that the motion as com-
puted in this approximation will agree with the true mo-
tion to adiabatic order, and will differ at post-1-adiabatic
order. At post-1-adiabatic order, it will omit effects due
to the conservative first order force, and also effects due
to the dissipative second order self force. It will include
post-1-adiabatic effects due to the fluctuating pieces of
the first order, dissipative self force, and so would be ex-
pected to be more accurate than the adiabatic approxi-
mation.32 EMRI waveforms computed using this approx-
imation will likely be the state of the art for quite some
time.

Our conclusions about the radiative approximation ap-
pear to differ from those of PP [76], who argue that “ The
radiative approximation does not achieve the goals of an
adiabatic approximation”. Here, however, the different
conclusions arise entirely from a difference in terminol-
ogy, since PP define “adiabatic approximation” to in-
clude slowly varying pieces of the solution to at least post-
1-adiabatic order. The radiative approximation does pro-
duce solutions that are accurate to adiabatic order, as we
have defined it.

We now discuss in more detail the errors that arise in
the radiative approximation. These errors occur at post-
1-adiabatic order. For discussing these errors, we will
neglect post-2-adiabatic effects, and so it is sufficient to
use our post-1-adiabatic dynamical equations (5.37) and
(5.39). These equations have the structure

D
[

ψ
(1)
α (t̃)

J (1)
λ (t̃)

]

= S, (7.1)

where D is a linear differential operator and S is a source
term. The appropriate initial conditions are [see Sec.
IVD5]

ψ(0)
α = 0, J (0)

λ (0) = Jλ(0), (7.2a)

ψ(1)
α = qα(0), J (1)

λ (0) = −Hλ[q(0),J(0)], (7.2b)

where q(0) and J(0) are the exact initial conditions and
the function Hλ is given by, from Eq. (5.36),

Hλ(q,J) = I
Ω(0)

(0)
Ĝ

(1)
λ [q,J, 0]. (7.3)

32 It is of course possible that, due to an accidental near-
cancellation of different post-1-adiabatic terms, the adiabatic ap-
proximation may be closer to the true solution than the radiative
approximation.

In terms of these quantities, the radiative approxima-
tion is equivalent to making the replacements

g(1)
α (q,J) → g

(1)
α diss(q,J), (7.4a)

G
(1)
i (q,J) → G

(1)
i diss(q,J), (7.4b)

G
(2)
i (q,J) → 0. (7.4c)

These replacements have two effects: (i) they give rise to
an error in the source term S in Eq. (7.1), and (ii) they
give rise to an error in the function Hλ and hence in the
initial conditions (7.2). There are thus two distinct types
of errors that occur in the radiative approximation.33

The second type of error could in principle be removed
by adjusting the initial conditions appropriately. For
fixed initial conditions q(0) and J(0), such an adjust-
ment would require knowledge of the conservative piece
of the self force, and so is not currently feasible. However,
in the context of searches for gravitational wave signals,
matched filtering searches will automatically vary over
a wide range of initial conditions. Therefore the second
type of error will not be an impediment to detecting grav-
itational wave signals. It will, however, cause errors in
parameter extraction.

This fact that the error in the radiative approxima-
tion can be reduced by adjusting the initial conditions
was discovered by Pound and Poisson [104], who numer-
ically integrated inspirals in Schwarzschild using post-
Newtonian self-force expressions. Their “time-averaged”
initial conditions, which they found to give the highest
accuracy, correspond to removing the second type of er-
ror discussed above, that is, using the initial conditions
(7.2) with the exact function Hλ rather than the radia-
tive approximation to Hλ.

Finally, we note that given the radiative approxima-
tion to the self force, one can compute waveforms us-
ing the radiative approximation as described above, or
compute waveforms in the adiabatic approximation by
solving equations (5.26), (5.29) and (5.31) using the re-
placement (7.4b). This second option would be easier
although somewhat less accurate.

D. Utility of adiabatic approximation for detection

of gravitational wave signals

The key motivation for accurate computations of wave-
forms from inspiral events is of course their use for de-
tecting and analyzing gravitational wave signals. How
well will the adiabatic and radiative approximations per-
form in practice? In this section, we review the stud-
ies that have been made of this question. These studies

33 These two errors are both secular, varying on long timescales.
There is in addition a rapidly oscillating error caused by the

correction to the first term in the expression (5.36) for J
(1)
λ .
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are largely consistent with one another, despite differ-
ences in emphasis and interpretation that can be found
in the literature. We restrict attention to inspirals in
Schwarzschild, and to circular or equatorial inspirals in
Kerr; fully general orbits present additional features that
will be discussed elsewhere [78, 79].

First, we note that in this paper we have focused on
how the post-1-adiabatic error in phase scales with the
mass ratio ε = µ/M . However, one can also ask how the
error scales with the post-Newtonian expansion parame-
ter v/c ∼

√

M/r. From Eq. (A10) of Ref. [68] it follows
that the post-1-adiabatic phase errors scale as

∼
( µ

M

)0 (v

c

)−3

;

this scaling is consistent with the more recent analysis of
Ref. [104]. This scaling does imply that the error gets
large in the weak field regime, as correctly argued in Ref.
[104]. However, it does not necessarily imply large er-
rors in the relativistic regime v/c ∼ 1 relevant to LISA
observations.

The first, order of magnitude estimates of the effects
of the conservative piece of the self force were made by
Burko in Refs. [105, 106]. Refs. [37, 68] computed the
post-1-adiabatic phase error within the post-Newtonian
approximation for circular orbits, minimized over some
of the template parameters, and evaluated at frequencies
relevant for LISA. The results indicated a total phase
error of order one cycle, not enough to impede detec-
tion given that maximum coherent integration times are
computationally limited to ∼ 3 weeks [10]. This result
was extended to eccentric orbits with eccentricities . 0.4
in Refs. [107, 108], with similar results. Similar compu-
tations were performed by Burko in Refs. [25, 109], al-
though without minimization over template parameters.

These analyses all focused on extreme mass ratio inspi-
rals for LISA. For intermediate mass ratio inspirals, po-
tential sources for LIGO, the post-1-adiabatic corrections
were studied within the post-Newtonian approximation
in Refs. [4, 110]. Ref. [4] computed fitting factors in ad-
dition to phase errors, found that the associated loss of
signal to noise ratio would be less than 10% in all but the
most rapidly spinning cases, and concluded that it would
be “worthwhile but not essential” to go beyond adiabatic
order for detection templates.

The most definitive study to date of post-adiabatic er-
rors for LISA in the Schwarzschild case was performed
by Pound and Poisson (PP1) [104]. PP1 numerically
integrated the geodesic equations with post-Newtonian
expressions for the self force, with and without conser-
vative terms. PP1 found large phase errors, δφ & 100,
in the weak field regime. However, the regime relevant
to LISA observations is p . 30 [6]34, where p is the di-
mensionless semilatus rectum parameter defined by PP1,

34 It is true that there will be some binaries visible to LISA at
higher values of p, that do not merge within the LISA mission

and PP1’s results are focused mostly on values of p larger
than this35. It is therefore difficult to compare the results
of PP1 with earlier estimates or to use them directly to
make inferences about signal detection with LISA. PP1’s
results do show clearly that the errors increase rapidly
with increasing eccentricity.

We have repeated PP1’s calculations, reproducing the
results of their Fig. 6, and extended their calculations
to more relativistic systems at lower values of p. More
specifically, we performed the following computation: (i)
Select values of the mass parameters M and µ, and the
initial eccentricity e; (ii) Choose the initial value of semi-
latus rectum p to correspond to one year before the last
stable orbit, which occurs on the separatrix p = 6 + 2e
[111]; (iii) Choose the radiative evolution and the exact
evolution to line up at some matching time tm during
the last year of inspiral; (iv) Start the radiative and ex-
act evolutions with slightly different initial conditions in
order that the secular pieces of the evolutions initially
coincide – this is the “time-averaged” initial data pre-
scription of PP1; (v) Compute the maximum of the ab-
solute value of the phase error δφ incurred during the
last year; (vi) Minimize over the matching time tm; and
(vii) Repeat for different values of M , µ and e. As an
example, for M = 106M⊙ and µ = 10M⊙, an inspiral
starting at (p, e) = (10.77, 0.300) ends up at (6.31, 0.153)
after one year. We match the two evolutions at 0.2427
years before plunge, with the exact evolution starting at
(p, e) = (8.81933, 0.210700) and the radiative evolution
starting at (p, e) = (8.81928, 0.210681). The maximum
phase error incurred in the last year is then 0.91 cycles.

The phase error incurred during an inspiral from some
initial values of e and p to the plunge is independent
of the masses M and µ in the small mass ratio limit.
However the phase error incurred during the last year of
inspiral is not, since the initial value of p depends on the
inspiral timescale ∼ M2/µ. The result is that the phase
error depends only on the combination of masses M2/µ
to a good approximation.

Our results are shown in Fig. 4. This figure shows,
firstly, that the computational method of PP1 gives re-
sults for low eccentricity systems that are roughly con-
sistent with earlier, cruder, estimates, with total phase
errors of less than one cycle over most of the parameter
space. It also shows that for large eccentricity systems
the total phase error can be as large as two or three cy-
cles.

How much will the phase errors shown in Fig. 4 impede

lifetime. However post-Newtonian templates should be sufficient
for the detection of these systems.

35 The second panel of their Fig. 6 does show phase shifts for smaller
values of p, but these are all for a mass ratio of ε = 0.1, too large
to be a good model of LISA observations; although the phase
shift becomes independent of ε as ε → 0, their Fig. 6 shows that
it can vary by factors of up to ∼ 10 as ε varies between 0.1 and
0.001.
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FIG. 4: The maximum orbital phase error in cycles, δN =
δφ/(2π), incurred in the radiative approximation during the
last year of inspiral, as a function of the mass M6 of the
central black hole in units of 106M⊙, the mass µ10 of the
small object in units of 10 M⊙, and the eccentricity e of the
system at the start of the final year of inspiral. The exact
and radiative inspirals are chosen to line up at some time
tm during the final year, and the value of tm is chosen to
minimize the phase error. The initial data at time tm for
the radiative evolution is slightly different to that used for
the exact evolution in order that the secular pieces of the two
evolutions initially coincide; this is the “time-averaged” initial
data prescription of Pound and Poisson [104]. All evolutions
are computed using the hybrid equations of motion of Kidder,
Will and Wiseman [112] in the osculating-element form given
by Pound and Poisson.

the use of the radiative approximation to detect signals?
There are two factors which will help. First, Fig. 4 shows
the maximum phase error during the last year of inspi-
ral, while for detection phase coherence is needed only
for periods of ∼ 3 weeks [10]. Second, the matched fil-
tering search process will automatically select parameter
values to maximize the overlap between the template and
true signal, and parameter mismatches will therefore be
likely to reduce the effect of the phase error36. On the
other hand, for large eccentricities, the phase error δφ(t)
is typically a rapidly oscillating function, rather than a
smooth function, which may counteract the helpful ef-
fects of smaller time windows or parameter mismatches.
Also we note that a sign flip will occur in the integrand of
an overlap integral once the gravitational wave phase er-
ror 2δφ exceeds π, corresponding to the number of cycles
plotted in Fig. 4 exceeding 1/4. This occurs in a large
part of the parameter space.

36 We note that there are already two minimizations over parame-
ters included in the phase errors shown in Fig. 4: a minimization
over tm as discussed above, and the replacement m1 → m1 +m2

used by PP1 in the derivation of their self-force expressions in
order to eliminate the leading order piece of the self-force.

Thus, there is a considerable amount of uncertainty
as to whether the radiative approximation will be suffi-
ciently accurate for signal detection. A detailed study
would require computation of fitting factors and opti-
mizing over all template parameters, and modeling the
hierarchical detection algorithm discussed in Ref. [10].
Such a study is beyond the scope of this paper. Based
on the results shown in Fig. 4, we agree with the conclu-
sions of PP1 that the early estimates based on circular
orbits [37, 68] were too optimistic, and that it is not clear
that the radiative approximation is sufficiently accurate.
(Moreover parameter extraction will clearly require going
beyond the radiative approximation.)

For gravitational wave searches, it might therefore be
advisable to use hybrid waveforms, computed using the
fully relativistic dissipative piece of the self force, and
using post-Newtonian expressions for the conservative
piece. Although the post-Newtonian expressions are not
expected to be very accurate in the relativistic regime,
improved versions have been obtained recently based on
comparisons between post-Newtonian and fully numeri-
cal waveforms from binary black hole mergers; see, for
example, the effective one body approximation of Refs.
[113, 114, 115, 116, 117, 118]. It seems likely that hy-
brid EMRI waveforms incorporating such improved post-
Newtonian expressions for the conservative self force will
be more accurate than radiative waveforms. Hybrid
waveforms may be the best that can be done until the
fully relativistic conservative self-force is computed.

VIII. CONCLUSIONS

In this paper we have developed a systematic two-
timescale approximation method for computing the in-
spirals of particles into spinning black holes. Future pa-
pers in this series will deal with the effects of transient
resonances [78, 79], and will give more details of the two-
timescale expansion of the Einstein equations [80] that
meshes consistently with the approximation method for
orbital motion discussed here.
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APPENDIX A: EXPLICIT EXPRESSIONS FOR

THE COEFFICIENTS IN THE ACTION-ANGLE

EQUATIONS OF MOTION

From the formulae (2.27) for the action variables to-
gether with the definitions (2.26) of the potentials Vr and
Vθ we can compute the partial derivatives ∂Jα/∂Pβ. The
non-trivial derivatives are

∂Jr

∂H
=

Y

π
, (A1a)

∂Jr

∂E
=

W

π
, (A1b)

∂Jr

∂Lz
= −Z

π
, (A1c)

∂Jr

∂Q
= −X

2π
, (A1d)

∂Jθ

∂H
=

2
√
z+a

2

πβ
[K(k) − E(k)] , (A1e)

∂Jθ

∂E
=

2
√
z+Ea

2

πβ
[K(k) − E(k)] , (A1f)

∂Jθ

∂Lz
=

2Lz

πβ
√
z+

[K(k) − Π(π/2, z−, k)] , (A1g)

∂Jθ

∂Q
=

1

πβ
√
z+
K(k). (A1h)

Here the quantities W , X , Y and Z are the radial inte-
grals defined by Schmidt 37 as [93]

W =

∫ r2

r1

r2E(r2 + a2) − 2Mra(Lz − aE)

∆
√
Vr

dr, (A2a)

X =

∫ r2

r1

dr√
Vr

, (A2b)

Y =

∫ r2

r1

r2√
Vr

dr, (A2c)

Z =

∫ r2

r1

r [Lzr − 2M(Lz − aE)]

∆
√
Vr

dr, (A2d)

where r1 and r2 are the turning points of the radial mo-
tion, i.e. the two largest roots of Vr(r) = 0. In these
equations K(k) is the complete elliptic integral of the
first kind, E(k) is the complete elliptic integral of the
second kind, and Π(φ, n, k) is the Legendre elliptic inte-

37 There is a typo in the definition ofW given in Eq. (44) of Schmidt
[93].

gral of the third kind [119]:

K(k) =

∫ π/2

0

dθ
√

1 − k2 sin2 θ
, (A3)

E(k) =

∫ π/2

0

dθ
√

1 − k2 sin2 θ, (A4)

Π(φ, n, k) =

∫ φ

0

dθ

(1 − n sin2 θ)
√

1 − k2 sin2 θ
. (A5)

Also we have defined β2 = a2(µ2−E2) and k =
√

z−/z+,
where z = cos2 θ 38 and z− and z+ are the two roots of
Vθ(z) = 0 with 0 < z− < 1 < z+.

Combining the derivatives (A1) with the chain rule in
the form

∂Pα

∂Jβ

∂Jβ

∂Pγ
= δα

γ (A6)

yields the following expression for the frequencies (2.14)
as functions of Pα:

Ωt =
K(k)W + a2z+E [K(k) − E(k)]X

K(k)Y + a2z+ [K(k) − E(k)]X
, (A7a)

Ωr =
πK(k)

K(k)Y + a2z+ [K(k) − E(k)]X
, (A7b)

Ωθ =
πβ

√
z+X/2

K(k)Y + a2z+ [K(k) − E(k)]X
, (A7c)

Ωφ =
K(k)Z + Lz[Π(π/2, z−, k) −K(k)]X

K(k)Y + a2z+[K(k) − E(k)]X
. (A7d)

APPENDIX B: COMPARISON WITH

TREATMENT OF KEVORKIAN AND COLE

As explained in Sec. III above, our two-timescale analy-
sis of the general system of equations (3.2) follows closely
that of the textbook [74] by Kevorkian and Cole (KC),
which is a standard reference on asymptotic methods. In
this appendix we explain the minor ways in which our
treatment of Secs. IV and V extends and corrects that of
KC. Section 4.4 of KC covers the one variable case. We
simplify this treatment by using action angle variables,
and also extend it by showing that the method works to
all orders in ε. Our general system of equations (3.2) is
studied by KC in their section 4.5. We generalize this
analysis by including the half-integer powers of ε, which
are required for the treatment of resonances. A minor
correction is that their solution (4.5.54a) is not generally
valid, since it requires Ωi and τi to be collinear, which will
not always be the case. However it is easy to repair this
error by replacing the expression with one constructed

38 Here we follow Drasco and Hughes [38] rather than Schmidt who
defines z = cos θ.
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using Fourier methods, cf. Eq. (5.65) above. Finally, our
treatment of resonances [78, 79] will closely follow KC’s
section 5.4, except that our analysis will apply to the gen-

eral system (3.2), generalizing KC’s treatment of special
cases.
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