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1 Introduction: History and Motivation

Albert Eintein firstly predicted gravitational waves (GWs) in his theory of general relativity (GR)
[1]. GWs represent perturbations in the spacetime fabric, which are caused by the acceleration
of massive, compact objects. In 1916, Einstein developed the field equations of GR. He predicted
that GW amplitudes would be extremely small. That same year, Schwarzschild introduced a
solution to the GR equations [2], which was later recognized as the description of a black hole
(BH) [3, 4]. Kerr extended this solution to account for rotating BHs in 1963 [5]. Subsequent
theoretical advancements in the 1970s led to a deeper understanding of BH quasinormal modes
[6, 7, 8]. By the 1990s, more sophisticated post-Newtonian (PN) calculations [9] were developed,
leading to significant progress in the analytical study of relativistic two-body systems [10, 11].
Despite the identification of numerous BH candidates through electromagnetic means [12, 13, 14],
direct observation of BH mergers remained elusive until recent advancements [15].

In the 1960s, scientists began efforts to observe GWs, with Weber taking a leading role in
developing resonant mass detectors [16]. The concept of interferometric detectors emerged in
the early 1960s [17] and 1970s [18]. Subsequent studies focused on the noise characteristics [19]
and performance optimization of these detectors [20], which eventually led to the proposal of long-
baseline broadband laser interferometers capable of achieving far greater sensitivity [21, 22, 23, 24].
By the early 2000s, several interferometric detectors were established. Among the operational
detectors were Virgo [24] in Italy, GEO 600 in Germany, Laser Interferometer Gravitational-Wave
Observatory (LIGO) [23] in the United States, and TAMA 300 in Japan. These detectors, working
in conjunction, began joint observation runs between 2002 and 2011, progressively improving and
contributing to the formation of a global observational network [15, 25, 26, 27, 28].

The first indirect evidence of GWs was provided by the observation of PSR B1913+16 [29],
a neutron star (NS) binary whose orbit was found to be shrinking due to energy loss via GW
emission. This observation indirectly confirmed the existence of GWs. As the orbit of a binary
neutron star (BNS) system gradually contracts, the emission of GWs intensifies, speeding up the
inspiral phase. This phase was long anticipated to generate GW signals detectable by ground-
based observatories during the final moments leading up to the stars’ merger. The detection of
GW170817 [30], near the end of Advanced LIGO’s (ALIGO) second observing run (O2), offered
direct evidence supporting these theoretical predictions. The inspiral signal was observed in the
detectors’ sensitive band for about 100 seconds, culminating in a coalescence that was followed by
a gamma-ray burst 1.7 seconds later.

In 2015, GWs were directly detected by the LIGO observatories in Hanford (H1) and Livingston
(L1) for the first time. The observation, known as GW150914 [31], confirmed a major prediction
of Einstein’s GR and marked the beginning of GW astronomy. This discovery has since been
followed by numerous detections, including the first observation of a NS merger, which provided
insights into the origin of heavy elements like gold and platinum [32]. LIGO’s observations have
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also allowed scientists to test the properties of BHs and explore the strong-field regime of GR in
ways that were previously impossible [15, 33, 34].

2 Gravitational Waves

2.1 What are gravitational waves?

GWs are solutions to the Einstein Field Equations (EFEs) within the theoretical framework of GR,
providing profound insights into how the geometry of spacetime is influenced by the existence and
distribution of matter and energy [10]. The EFEs are fundamental to understanding the interplay
between mass-energy content and the curvature of spacetime and are mathematically expressed
as:

Gµν =
8πG

c4
Tµν (1)

In this equation, Gµν denotes the Einstein tensor, which encapsulates information about the
curvature of spacetime resulting from mass and energy. The stress-energy tensor Tµν , provides
a detailed description of the distribution and flow of energy and momentum within spacetime.
Together, these tensors bridge the geometric and physical aspects of general relativity, illustrating
how mass-energy dictates the curvature that GWs propagate through.

Mathematically, Gµν can also be defined using Ricci tensor, metric tensor and Ricci scalar:

Gµν = Rµν −
1

2
gµνR, (2)

where Rµν represents the Ricci tensor. Using the Riemann curvature tensor, one can obtain the
Ricci tensor and it serves as a measure of the degree to which spacetime is curved in a specific
region. By measuring the difference in volume between a small geodesic ball in curved spacetime
and flat space, it quantifies the effect of curvature.

The metric tensor gµν is a essential entity in GR that defines the geometric properties of space-
time, including distances and angles between nearby points. It essentially provides the ”shape” of
spacetime, determining how objects move and how light propagates within it. The Ricci scalar R,
derived from the Ricci tensor through the relation:

R = gµνRµν , (3)

By contracting the Ricci tensor with the inverse metric tensor gµν , it provides a scalar measure
of spacetime curvature.

When dealing with weak gravitational fields and negligible spacetime curvature, the metric
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tensor gµν can be modeled as a small perturbation around the flat Minkowski metric ηµν [35]:

gµν = ηµν + hµν , |hµν | � 1 (4)

here, hµν is small perturbation representing the gravitational field. This approximation is known
as linearized gravity, where the spacetime metric is treated as a small perturbation around flat
spacetime. It simplifies the complex, highly nonlinear EFEs Eq.1 into linear equation sets that
can be resolved with greater ease.

In linearized gravity, the perturbation hµν must satisfy a wave equation similar to the wave
equation in electromagnetism due to the structure of the linearized EFEs and the physical nature
of small perturbations propagating through spacetime. The Lorentz gauge condition is a constraint
applied to simplify the equations in both electromagnetism and general relativity. In the context
of linearized gravity, it is used to simplify the EFEs Eq.1 by imposing a condition on the metric
perturbation hµν .

The Lorentz gauge condition plays a pivotal role in simplifying the EFEs within the context
of general relativity. As delineated by Misner et al. [35], the Lorentz gauge condition is mathe-
matically formulated as:

∂ν h̄µν = 0 (5)

In this formulation, h̄µν represents the trace-reversed perturbation of the metric tensor, defined
by:

h̄µν = hµν −
1

2
ηµνh (6)

Here, The perturbation’s trace, h, is expressed as h = ηµνhµν , where ηµν is the inverse Minkowski
metric tensor. The trace-reversed perturbation h̄µν serves to decouple EFEs, facilitating a more
straightforward analysis of GW propagation.

Under the Lorentz gauge condition, the linearized EFEs simplify significantly. Specifically,
they reduce to the wave equation:

�h̄µν = 0 (7)

In this equation, � denotes the d’Alembertian operator, defined as � = ∂α∂α. Weinberg [36]
provides an extensive discussion on the properties and applications of the d’Alembertian operator
in the context of wave propagation in spacetime.

In the framework of Minkowski space, and using standard Cartesian coordinates (t, x, y, z), the
d’Alembertian operator takes the explicit form:

� = ∂µ∂µ = ηµν∂ν∂µ =
1

c2
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
=

1

c2
∂2

∂t2
−∇2 (8)

In this expression, ∇2 represents the three-dimensional Laplacian operator, which accounts for
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spatial derivatives. The Minkowski metric tensor ηµν is defined with components:

η00 = 1, η11 = η22 = η33 = −1, ηµν = 0 for µ 6= ν (9)

This signature of the Minkowski metric ensures that the spacetime interval retains its invariant
form under Lorentz transformations, a cornerstone of special relativity.

The resultant wave equation �h̄µν = 0 characterizes the propagation of GWs in a flat spacetime
background. Solutions to this equation describe pacetime ripples that propagate at light speed,
transmitting energy and information from their sources in the cosmos. The linearized approach,
utilizing small perturbations hµν around the Minkowski metric, is essential for studying GWs in
weak-field regimes where spacetime deviations from flatness are minimal.

In the analysis of GWs, the transverse-traceless (TT) gauge [37] is typically employed, ensuring
that the perturbation hµν meets supplementary conditions :

1. Transverse condition:
∂µhµν = 0 (10)

this divergence-free condition ensures that the GW is transverse to its direction of propagation.
2. Traceless condition:

hµµ = 0 (11)

the perturbation has zero trace, eliminating scalar modes and focusing on tensor modes.
3. Temporal gauge condition:

h0µ = 0 (12)

this sets the time components of the perturbation to zero, isolating spatial oscillation.
The conditions imposed by the TT gauge is important in simplifying the representation of GWs.

Specifically, these conditions restrict the GW to possess only two independent polarization states,
commonly denoted as h+ and h×. This reduction is fundamental for analyzing the physical effects
of GWs on spacetime and for facilitating their detection through interferometric observatories.

In the TT gauge, the metric perturbation hij characterizing a plane GW propagating in the
z-direction is elegantly expressed as:

hij(t, z) =

h+(t− z) h×(t− z) 0

h×(t− z) −h+(t− z) 0

0 0 0

 (13)

At a given time t and position z along the propagation direction, hij(t, z) describes the spatial
components of the metric perturbation tensor. The GW possesses two non-zero components, h+
and h×, which correspond to its two distinct polarization states.

Plus Polarization (h+): The h+ polarization describes a stretching and squeezing effect along
the x- and y-axes. As the GW passes through a region of space, objects aligned along the x-axis are
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alternately stretched and compressed along the y-axis, and vice versa. This oscillatory behavior
creates a ”plus” shaped distortion pattern.

Cross Polarization (h×): The h× polarization induces a similar stretching and squeezing effect
but rotated by 45◦ relative to the h+ polarization. This results in a ”cross” shaped distortion
pattern, where the principal axes of stretching and compression are oriented diagonally with
respect to the x- and y-axes.

The matrix form of hij(t, z) in Eq. (13) succinctly encapsulates the essence of GW polarizations
in the TT gauge. The off-diagonal terms h×(t− z) introduce shear distortions, while the diagonal
terms h+(t−z) and −h+(t−z) account for the stretching and squeezing along perpendicular axes.
The zeros in the third row and column indicate that there is no perturbation in the z-direction,
consistent with the transversality condition of the TT gauge, which stipulates that GWs are purely
transverse to the direction of propagation.

The dependence of h+ and h× on t − z signifies that these polarization states propagate as
waves moving in the positive z-direction at the speed of light. This wave-like propagation is a
direct consequence of the linearized EFEs under the TT gauge, which describe how disturbances
in spacetime curvature propagate through the vacuum.

The influence of GW on matter can be described using the geodesic deviation equation [37],
which shows how nearby free-falling particles oscillate due to the passage of GWs:

D2ξµ

dτ 2
= −Rµ

νρσξ
ρuσ (14)

where ξµ is the separation vector between neighboring geodesics, uν = dxν

dτ
is the four-velocity of

the reference geodesic, τ is the proper time along the geodesic, D
dτ

denotes the covariant derivative
along the geodesic.

Applying the metric perturbation Eq.4 and transverse-traceless gauge, the geodesic deviation
equation reduces to:

d2ξi

dt2
= −Ri

0j0ξ
j (15)

where ξj represents the separation vector between two particles, and Ri
0j0 are the components of

the Riemann curvature tensor [35], which are directly related to the wave amplitude hij.
In the linear approximation, the Riemann tensor is expressed in terms of the metric perturba-

tion:
Rµ

νρσ =
1

2
(∂ρ∂νh

µ
σ + ∂σ∂

µhνρ − ∂σ∂νh
µ
ρ − ∂ρ∂

µhνσ) (16)

and the relevant components are:

Ri
0j0 = −1

2

∂2hij
∂t2

(17)
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the geodesic deviation equation Eq.15 becomes:

d2ξi

dt2
=

1

2

∂2hij
∂t2

ξj (18)

and the components of the equation become:

d2ξ1

dt2
=

1

2

(
∂2h11
∂t2

ξ1 +
∂2h12
∂t2

ξ2
)

(19)

d2ξ2

dt2
=

1

2

(
∂2h21
∂t2

ξ1 +
∂2h22
∂t2

ξ2
)

(20)

using the expression for hij in Eq.13, the equations become:

d2ξ1

dt2
=

1

2

(
∂2h+
∂t2

ξ1 +
∂2h×
∂t2

ξ2
)

(21)

d2ξ2

dt2
=

1

2

(
∂2h×
∂t2

ξ1 − ∂2h+
∂t2

ξ2
)

(22)

For a GW propagating in the z-direction, the geodesic deviation equation results in oscillatory
motion for test particles in the x and y directions, showing the characteristic stretching and
squeezing effect associated with the h+ and h× polarizations.

Assume a monochromatic GW:

h+(t) = h0 cos(ωt) (23)

then
d2ξ1

dt2
= −1

2
h0ω

2 cos(ωt)ξ1 (24)

the solution to this equation is:
ξ1(t) = ξ1(0) + δξ1(t) (25)

where δξ1(t) represents the oscillatory motion induced by the GW.
The fractional change in separation ∆ξi/ξi scales with the GW’s amplitude h0:

∆ξi

ξi
≈ 1

2
h0 (26)

this shows that the GWs produce extremely small deformations.
GWs carry energy, momentum, and angular momentum. In linearized theory, the energy flux

of a GW can be described by the Isaacson stress-energy pseudo tensor [38], tµν , in the short-
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wavelength approximation, it approximates the effective energy-momentum carried by GWs:

〈tµν〉 = c4

32πG
〈∂µhij∂νhij〉. (27)

The energy density is:

ρGW = t
(GW)
00 =

1

32πG

〈
∂hij
∂t

∂hij

∂t

〉
(28)

The energy density of a plane wave moving in the z-direction is given by:

ρGW =
1

16πG

〈
(
∂hij
∂t

)2
〉

(29)

Along the z-axis, the energy flux is:

Fz = c t0z
(GW) =

c

16πG

〈
(
∂hij
∂t

)2
〉

(30)

The total energy passing through a surface S over time T is given by:

E =

∫ T

0

dt

∫
S

Fi n
i dA =

∫ T

0

dt

∫
S

t
(GW)
0i ni dA (31)

The angular momentum flux density is related to the stress-energy pseudo tensor:

J i = εijkxjt
(GW)
0k (32)

where εijk is the Levi-Civita symbol, and xj are spatial coordinates. The total angular momentum
is:

J i =

∫ T

0

dt

∫
S

J idA =

∫ T

0

dt

∫
S

εijkxjt
(GW)
0k dA (33)

2.2 Gravitational waves from compact binary coalescence: binary black
hole, binary neutron star

CBC, which stands for compact binary coalescence, involves the merging of a pair of compact
objects.These can be BHs, NSs, or one of each. BHs have strong gravity, preventing even light
from escaping. NSs are supernova remnants made mostly of neutrons. Their densities are similar
to those of atomic nuclei.

When the objects orbit each other, their mutual gravitational attraction causes them to ac-
celerate, this acceleration leads to the release of GWs, resulting in the system losing energy. As
a result, the orbiting objects lose energy, and their orbits decay, causing them to spiral inward
toward each other.
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For a binary system involving two compact masses, m1 and m2, the total mass M is the sum
M = m1 +m2, and the reduced mass µ is expressed as µ = m1m2

M
. The distance between the two

objects is r, and they orbit each other in nearly circular orbits.
The quadrupole moment tensor is:

Qij =
2∑

a=1

ma(x
i
ax

j
a −

1

3
δijr

2
a)

and the third time derivative for a circular orbit in the x-y plane is:

...
Qxx = 4µr2ω3 sin(2ωt) (34)
...
Qyy = −4µr2ω3 sin(2ωt) (35)
...
Qxy = −4µr2ω3 cos(2ωt) (36)

The quadrupole formula for power P radiated is:

P = − G

5c5

〈 ...
Q ij

...
Q
ij
〉

(37)

since
...
Q ij is a symmetric tensor and only xx, yy, xy components are non-zero, the sum is:

...
Qij

...
Q
ij
= (

...
Qxx)2 + (

...
Qyy)2 + 2(

...
Qxy)2 (38)

we will get:

...
Q ij

...
Q
ij
= 16µ2r4ω6

(
2 sin2(2ωt) + 2 cos2(2ωt)

)
(39)

= 32µ2r4ω6 (40)

P = − G

5c5
× 32µ2r4ω6 = −32G

5c5
µ2r4ω6 (41)

Eq.41 can be simplified and since power is positive, we can drop the negative sign:

P =
32G

5c5
µ2(GM)4/3ω10/3 (42)

The power radiated by GWs depends on the square of the reduced mass, so systems with more equal
masses emit GWs more efficiently, and more massive systems emit more gravitational radiation. As
the masses spiral inwards due to energy loss, orbital frequency increases, and the power radiated
increases rapidly with ω.
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Likewise, The system’s orbital energy, E, is defined as [35]:

E = −Gm1m2

2r
(43)

According to GR, the system loses energy due to the emission of gravitational radiation, which is
given by the quadrupole formula [39]:

dE

dt
= −32

5

G4

c5
(m1m2)

2(m1 +m2)

r5
(44)

The rate of the energy loss dE
dt

is proportional to 1
r5

, meaning as the objects get closer together,
the energy loss increases rapidly [10].

Due to the system’s energy loss, the two bodies draw nearer by spiraling towards one another
and the orbital angular frequency ω increases [37]:

ω2 =
G(m1 +m2)

r3
(45)

The frequency of the GWs emitted by a BBH system is intrinsically linked to the orbital dynamics
of the system. Specifically, the GW frequency is observed to be twice the orbital frequency of the
binary system [40]. This relationship arises due to the nature of the GW generation mechanism,
which is fundamentally rooted in the time-varying quadrupole moment of the mass distribution
within the system [41]:

fGW =
ωGW

2π
=

2ω

2π
= 2forbital (46)

The quadrupole moment repeats itself every half orbit due to the symmetry of the system. As the
system rotates by 180◦ the configuration looks the same from the perspective of the quadrupole
moment.

As the two objects spiral closer together, the simultaneous increase in GW frequency and
amplitude leads to a characteristic chirp waveform illustrated in Fig.1, detectable by observatories
like LIGO and Virgo.

hTTij , representing the metric perturbation in the transverse-traceless gauge, is expressed as:

hTT
ij (t, x) = 2G

c4D
Q̈TT
ij

(
t− D

c

)
(47)

where D is the distance from the source to the observer and tret = t −D/c is the retarded time,
which refers to the time it takes for information to propagate through space at a finite speed.
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Figure 1: The amplitude of frequency f(t) of the GW signal generated by a BBH merger with
component masses of 35M� and 30M�. As the binary system spirals inward due to gravitational
radiation, the frequency increases steadily, producing a characteristic ”chirp” signal. The frequency
peaks sharply near the time of coalescence, and is associated with the rapid dynamics occurring
during the merger phase.

The components hTTij are:

hTT
xx (t) = −4Gµr2ω2

c4D
cos(2ωtret) (48)

hTT
yy (t) =

4Gµr2ω2

c4D
cos(2ωtret) (49)

hTT
xy (t) =

4Gµr2ω2

c4D
sin(2ωtret) (50)

The strain h(t) is related to the metric perturbation components:

h(t) = hTT
ij (t)

1

2
(ûiûj − v̂iv̂j) (51)

=
1

2

(
hTT
xx − hTT

yy

)
(52)

where the unit vectors û and v̂ are oriented along the arms of the detector and û = (1, 0, 0),
v̂ = (0, 1, 0).

Then we will get,

h(t) =
1

2

(
−4Gµr2ω2

c4D
cos(2ωtret)−

4Gµr2ω2

c4D
cos(2ωtret)

)
(53)

= −4Gµr2ω2

c4D
cos(2ωtret) (54)
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The chirp mass is defined as:

M =
(m1m2)

3/5

(m1 +m2)1/5
(55)

= µ3/5M2/5 (56)

and we can express h(t) in terms of chirp mass and frequency:

h(t) = −4G5/3M5/3ω4/3

c4D
cos(2ωtret) (57)

The strain h(t), as energy is lost from the system, the two bodies spiral inward toward each other,
with the parameter measuring the fractional length change caused by a GW increasing over time.
This strain is proportional to [37]:

h(t) ∝ G5/3

c4
µM2/3f(t)2/3

D
(58)

Formula 58 represents a simplified model that does not account for cosmological effects such as
redshift. For distant sources, redshift can affect the observed strain and frequency, leading to
modifications in the signal properties as detected by observatories.

Thus, the luminosity distance DL to a binary system can be inferred from the GW signal [42]:

h ∝ 1

DL

(59)

where DL is defined as the distance an object needs to be to produce the observed flux given its
known luminosity, assuming no cosmological effects. In cosmology, DL is related to the redshift z
of the light emitted by a distant object, expressed as [43]:

DL = (1 + z)DM (60)

where DM is the comoving distance, which accounts for the actual distance between two points in
a universe that is expanding.

In the analysis of GWs, particularly from distant astrophysical sources, the observed frequencies
are impacted by redshift, which in turn influences the inferred mass measurements of source objects
such as BHs or NSs. The observed mass Mobs from Earth is related to the actual source mass M
by the relation

M = (1 + z)Mobs (61)

This equation underscores the importance of accounting for redshift to accurately determine the
intrinsic properties of the source objects.
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The TT projection is influenced by the observer’s direction. To simplify, we use the coordinate
system is defined such that the orbital plane is oriented at an angle ι in relation to the observer’s
line of sight. The observer’s position is described by spherical coordinates (θ, φ), with θ = ι and
φ = 0 chosen for simplicity. The projection is given by:

Q̈ijTT = Λij, klQ̈kl (62)

where Λij,kl is the projection operator:

Λij,kl = PikPjl −
1

2
PijPkl (63)

and Pij = δij − ninj is the projection operator onto the plane perpendicular to the propagation
direction n = (sin ι, 0, cos ι).

Thus we will derive Λij,kl components:

Λxx,xx = PxxPxx −
1

2
PxxPxx =

1

2
PxxPxx =

1

2
(cos2 ι)2 (64)

Λxx,yy = PxyPxy −
1

2
PxxPyy = −1

2
PxxPyy = −1

2
cos2 ι (65)

Λxx,xy = PxxPxy −
1

2
PxxPxy =

1

2
PxxPxy = 0 (66)

Λxy,xy = PxxPyy −
1

2
PxyPxy = cos2 ι (67)

And polarization tensors are defined as:

eij+ = êθiêθj − êφiêφj (68)

eij× = êθiêφj + êφiêθj (69)

hTTij can be expressed in terms of h+ and h×:

hTTij = h+e
ij
+ + h×e

ij
× (70)

The spherical basis vectors are:

êθ = (cos ι, 0,− sin ι), êφ = (0, 1, 0) (71)
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Components of eij+ are:

exx+ = êθxêθx − êφxêφx = cos2 ι (72)

eyy+ = êθyêθy − êφyêφy = −1 (73)

ezz+ = êθz êθz − êφz êφz = sin2 ι (74)

exy+ = eyx+ = êθxêθy − êφxêφy = 0 (75)

Like wise we can compute the components of eij×:

exy× = eyx× = êθxêφy + êφxêθy = cos ι (76)

exz× = ezx× = êθxêφz + êφxêθz = 0 (77)

eyz× = ezy× = êθyêφz + êφyêθz = − sin ι (78)

Finally we will get the expressions for h+ and h× in terms of chirp mass:

h+ = −4Gµr2ω2

c4D
(1 + cos2 ι) cos(2ωt) (79)

= −4G5/3M5/3ω2/3

c4D
(1 + cos2 ι) cos(2ωt) (80)

h× = −8Gµr2ω2

c4D
cos ι sin(2ωt) (81)

= −4G5/3M5/3ω2/3

c4D
cos ι sin(2ωt) (82)

Figure 2 presents the time-domain waveform of a GW emanating from a BBH system. This
waveform encompasses the three fundamental phases of the BH coalescence process: inspiral,
merger, and ringdown. Each phase is distinctly characterized by its unique temporal and ampli-
tude features, providing a comprehensive depiction of the GW signal generated during the BBH
interaction.

Inspiral Phase: The inspiral phase marks the initial stage of the coalescence, where the pair of
BHs revolve around each other while steadily approaching closer. During this phase, the system
loses energy through the emission of GWs, causing the orbital frequency and GW amplitude to
increase progressively. The inspiral waveform exhibits a chirping pattern, as the BHs move closer
in their spiral, the frequency and amplitude escalate.

Merger Phase: In due course, the two objects become sufficiently close to unite into a single,
larger mass. This phase produces a burst of high-frequency GWs with a peak amplitude, especially
in the case of BH mergers. The peak frequencies of these GWs typically lie in the range of hundreds
of Hz, around 100 Hz to 1000 Hz, depending on the masses and types of the merging objects. For
BH mergers, the frequencies are generally in the range of 100 Hz to a few hundreds Hz, while NS
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Figure 2: The GW strain h+ over time is illustrated for a BBH merger. This system has a chirp
mass of 25 M� at a redshift of z = 0.5. The orbital plane is tilted at an angle of θJN = π/3
relative to the observer’s line of sight and has a polarization angle ψ = 1.5. The waveform was
generated using the IMRPhenomXPHM approximant [44], commencing at a frequency of 10 Hz
and incorporating the modes (`,m) = (2, 2), (2, 1), (3, 3), (3, 2), (4, 3).

mergers can reach frequencies up to 1 kHz or higher. The waveform during this phase reflects the
highly the nonlinear behavior of spacetime curvature during the interaction of BHs merge.

Ringdown Phase: After the merger, the resulting black hole enters the ringdown phase, where
it settles into a stable state. This phase is characterized by damped oscillations in the GW signal,
corresponding to the emission of quasi-normal modes of the BH. The amplitude of the wave-
form decreases exponentially over time as the BH radiates away residual distortions, ultimately
stabilizing into a Kerr black hole, which is uniquely identified by its mass and spin properties.

GWs cannot be fully described by a single harmonic; instead, they are more accurately ex-
pressed as a combination of spin-weighted spherical harmonics [45]. While the dominant contri-
bution comes from the ` = 2,m = ±2 harmonic, higher-order harmonics, such as the (2,1), (3,2),
(3,3), and (4,4) harmonics, also carry significant power [46, 47]. The ` and m are quantum num-
bers that specify the properties and shape of the spherical harmonic function which is denoted
as Y m

l (θ, φ). ` is a non-negative integer which determines the degree of the spherical harmonic,
related to the number of angular nodes. m is an integer that satisfies −` ≤ m ≤ ` which deter-
mines the azimuthal variation of the spherical harmonics. As the mass ratio between the two BHs
diminishes, the relevance of these additional harmonics escalates and becomes more significant
during the binary system’s late inspiral and merger phases.

The amplitude of the GW signal can be modified by higher-order modes and constructively
or destructively be interfered with the dominant mode, leading to variations in the observed
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amplitude. Each mode oscillates at a frequency proportional to m × ω, where ω is the orbital
frequency, so higher modes introduce higher-frequency components to the GW signal.

The GW strain h(t) is formulated through a sum over various modes:

h(t) =
1

D

∞∑
`=2

∑̀
m=−`

h`m(t)−2Y`m(θ, φ) (83)

where h`m(t) is the complex amplitudes of the modes, dependent on the source dynamics, −2Y`m(θ, φ)

is the spin-weighted spherical harmonics, which encode how each mode hlm(t) varies with the ob-
server’s angular position (θ, φ).

Each hlm(t) can be further broken down:

h`m(t) = A`me
−imΦ(t) (84)

A`m(t) ≈ ω2−l (85)

for higher order modes (` > 2), A`m is suppressed by negative powers of ω. Generally, A`m
decreases as the multipole order ` increases, and vary with the azimuthal number m, though this
dependence is typically less pronounced than that on `.

Figure 3: GW strain in frequency domain for two different mass ratios in binary coalescence. The
left panel shows the strain for a mass ratio q = 0.8 and the right panel for a mass ratio q = 0.2.
Different colored lines represent the strain of GW under various modes.

Fig.3 shows the GW strain containing different modes as a function of frequency for mass
ratios q = 0.8 and q = 0.2. The waveform is dominated by (2, 2) mode, and higher order modes
are less essential compared to the dominant mode. For q = 0.2, higher order modes contributes
more compared to higher mass ratio q = 0.8. The higher order modes introduce oscillations in the
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total strain, highlighting the effect of asymmetry in the system.
To detect GWs, we need a theoretical framework. This involves solving the EFEs in a way that

applies to many matter systems. The solution must explain how GWs are emitted and propagated.
It must also account for how these waves affect their source [10]. Solving this problem exactly
in GR is almost impossible for most sources. Instead, we rely on approximation methods. The
PN approximation is widely regarded as the standard approach [48]. It is crucial for analyzing
GWs from inspiraling compact binaries. This requires a detailed understanding of the equations
of motion and the radiation field at high PN orders.

The PN expansion approximates the EFE by expanding them in powers of v/c. Each order in
expansion corresponds to a successive correction to Newtonian gravity:

gµν = gµνNewtonian + ε1 gµν1PN + ε2 gµν2PN + . . . (86)

where ε = (v/c)2.
In the PN framework, the perturbation is expressed as:

hµν =
∞∑
n=1

(
v

c
)nhnµν (87)

the order n refers to the n/2-PN term.
At 0PN order (Newtonian Approximation), the dynamics are governed by Newton’s laws of

gravitation, recovering the Possion equation for the gravitational potential Φ:

∇2Φ = 4πGρ (88)

and the metric is approximately:

ds2 = −(1 +
2Φ

c2
)c2dt2 + (1− 2Φ

c2
)dx2 (89)

And at 1PN order, the effects of general relativity start to appear. Corrections account for factors
such as time dilation, perihelion precession, and gravitational redshift [10]. Corrections to the
metric gµν include terms of O(v2/c2), and for example the time-time component of the metric
becomes:

g00 = −(1 +
2Φ

c2
+

2Φ2

c4
) (90)

The total energy E of the system is corrected by relativistic terms:

E = −Gm1m2

2r
(1 + PN terms) (91)

2PN order includes further corrections to the motion and gravitational field, including the spin-
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spin interactions [49]. 2.5PN order is inclusion of radiation reaction effects, where the energy
carried away by GWs is considered, leading to inspiral due to gravitational radiation. Moreover,
3PN order and higher includes even finer corrections that might be necessary for high-precision
modelling or when dealing with systems with strong fields and high velocities.

The leading-order power radiated by GWs is given by Eq.44 and at 2.5PN order, due to energy
being lost through GW emission, the orbit of the binary system shrinks, and the rate at which
the orbital radius r changes is determined by [39]:

dr

dt
= −64

5

G3m1m2(m1 +m2)

c5r3
(92)

The waveform of GWs from CBC can be described using Post-Newtonian expansion:

h(t) = A+

[
πfgw(t)

c

]2/3
cos [Φ(fgw(t)) + Φ0] + A×

[
πfgw(t)

c

]2/3
sin [Φ(fgw(t)) + Φ0] (93)

where Φ(fgw) and fgw(t) are known up to 3.5PN order.
The gravitational waveform h(t) is contingent upon the chirp mass M of the binary system,

which is the most important parameter in the gravitational waveform because it determines the
leading order amplitude and frequency evolution of the GWs. It appears at the 0PN order in the
waveform [10].

The symmetric mass ratio η enters at the 1PN order and affects higher-order terms in the
expansion. It is critical in determining PN corrections to the gravitational waveform’s phase [50].

η =
m1m2

(m1 +m2)2
, (94)

The compact objects’ angular momentum is described by their dimensionless spins χ1,2. Spin
effects begin at 1.5PN order. Spin-orbit coupling affects the phase at 1.5PN, and spin-spin inter-
actions contribute at 2PN [51].

χ1,2 =
cS1,2

Gm2
1,2

(95)

where S1,2 is the angular momentum of the compact objects.
It is defined as the projection of the individual spins along the orbital angular momentum,

weighted by their masses, the effective spin parameter χeff enters at the 1.5PN order [52]:

χeff =
m1χ1 cos θ1 +m2χ2 cos θ2

m1 +m2

(96)

Spin’s impact on the waveform additionally relies on the mass ratio of the binary compact objects.
Starting from the 1PN order and higher, the mass ratio q influences both the system’s dynamics
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and the waveform characteristics.
q =

m2

m1

(97)

Parameters that shape the signal’s amplitude and phase at the detector are adjusted during the
matched-filter search. These are further refined through thorough parameter estimation analysis.
[53].

When one or both of the merging compact objects are not BHs, the orbital dynamics are
significantly affected. In such scenarios, each star is distorted by the tidal field generated by its
companion, which extracts energy from the orbit and induces a quadrupole moment that enhances
GW emission. This effect is particularly relevant in BNS systems.

To first approximation, the induced quadrupole moment Qij scales with the tidal field σij and
is defined by:

Qij = −λσij (98)

where λ signifies the tidal deformability.
The tidal deformability is contingent upon the equation of state (EOS) and the star’s mass,

and it is expressed as:

Λ =
λ

m5
∼
(
R

m

)5

(99)

where R and m denote the star’s radius and mass, respectively.
Thus, less massive NSs, which have larger deformability, are easier to measure. Specifically,

the tidal deformability Λ is given by:

Λ =

(
2

3

)
k2

[(
c2

G

)(
R

m

)5
]
,

In this context, k2 stands for the second Love number, while R refers to the stellar radius. For
realistic NSs, k2 typically ranges from 0.05 to 0.15. BHs, on the other hand, are expected to have
k2 = 0, meaning this tidal effect is absent for them [30].

NSs are thought to form from explosive supernova events caused by the implosion of iron cores
in large stars. A widely accepted scenario begins with a binary system of two massive stars (8–25
M�). The larger star undergoes a supernova explosion, resulting in the formation of a NS. This
NS and the companion star enter a ”common envelope” phase, where the NS orbits within the
extended layers of the secondary star. Later, the second star also undergoes a supernova. If the
stars remain gravitationally bound after both explosions, a BNS system forms [54]. Observations
confirm the existence of BNS systems, but their exact formation is not fully understood. Another
proposed pathway is ”dynamical capture,” where two isolated NSs interact in dense regions like
globular clusters. This often leads to BNS systems with high orbital eccentricities.

The inspiral phase, where the stars spiral towards each other due to gravitational-radiation
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losses, is largely unaffected by magnetic fields or neutrinos and has been extensively studied
through a combination of numerical simulations and analytical calculations based on PN expan-
sions or other approximation methods.

The result of the merger is determined by the total mass of the binary M in comparison to the
maximum mass of a non-rotating NS MTOV . Depending on this mass ratio, the merger can lead
to several outcomes: the system can immediately collapse into a BH with a surrounding torus.
Alternatively, it may form a hypermassive or supramassive NS that later collapses into a BH. If
the total mass is below the critical limit, a stable NS may form instead.

During the late stages of inspiral, tidal forces become so strong that tidal waves are generated
on the stellar surfaces, accompanied by the emission of matter and the formation of shocks. These
shocks are generated by small sound waves originating in the stars’ central regions, which steepen
as they travel outward into areas of lower density. During the merger, the stars collide with a
significant impact parameter, resulting in a vortex sheet where the tangential velocity component
is discontinuous. This setup is susceptible to the Kelvin-Helmholtz instability (KHI), potentially
giving rise to vortices across a range of wavelengths. An initially poloidal magnetic field can
cause the KHI to exponentially amplify the toroidal magnetic field component, the magnetic field
within a core-collapse supernova can undergo significant amplification, increasing by approximately
three orders of magnitude. High-resolution simulations of such supernovae reveal that parasitic
instabilities play a crucial role in this process by suppressing the Magneto-Rotational Instability
(MRI). The suppression of MRI by these instabilities effectively limits the extent of magnetic
field growth, resulting in a magnetic field amplification factor of around 100. Importantly, this
amplification factor remains largely independent of the initial magnetic field strength, suggesting
that the underlying mechanism governing this process is robust across varying initial conditions.

2.3 Detection of gravitation waves

The GW detector generate a time series signal, reflecting the state of oscillation of a resonant
mass or the phase change in light that is recombined from the two arms of the interferometer [39].
It contains a mix of the true GW signal and noise [39].

s(t) = h(t) + n(t) (100)

Here, s(t) represents the aggregate signal captured by the detector, h(t) denotes the GWsignal,
and n(t) stands for the detector’s noise. For ease of analysis, the time-domain signals s(t), h(t),
and n(t) are converted into the frequency domain via the Fourier transform.:

s̃(f) =

∫ ∞

−∞
s(t)e−2πiftdt (101)
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h̃(f) =

∫ ∞

−∞
h(t)e−2πiftdt (102)

ñ(f) =

∫ ∞

−∞
n(t)e−2πiftdt (103)

The noise is modeled as a stationary Gaussian random process with an average of zero. Its
statistical characteristics are defined by the noise power spectral density (PSD) Sn(f) [55], which
is given by [56]:

〈ñ∗(f)ñ(f ′)〉 = δ(f − f ′)
1

2
Sn(f) (104)

Here, 〈·〉 represents an ensemble average, and δ(f − f ′) denotes the Dirac delta functio, which
ensures that the expression is only non-zero when f = f ′. It describes the auto-correlation function
of the noise in the frequency domain.

To detect h(t) in s(t), we construct a matched filter Q(t) that maximize the SNR [57]. The
matched filter is defined as the correlation of s(t) with a template h(t):

z =

∫ ∞

−∞
s(t)h(t)dt (105)

In the frequency domain, this becomes:

z = 4Re

∫ ∞

0

s̃(f)h̃∗(f)

Sn(f)
df (106)

where h̃∗(f) is the complex conjugate of the signal template in the frequency domain, and Sn(f)

weights the contribution of each frequency according to the detector’s sensitivity.
The SNR, denoted by ρ, quantifies the likelihood of signal detection, which is defined as:

ρ =
〈z〉
σz

(107)

where 〈z〉 is the expected value of the matched filter output when a signal is present, and σz is
the standard deviation of z due to noise.

The expected value is:

〈z〉 = 4Re

∫ ∞

0

|h̃(f)|2

Sn(f)
df (108)

The noise-induced variance σ2
z of the filter output is given by:

σ2
z = 4

∫ ∞

0

|h̃(f)|2

Sn(f)
df
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Thus, the SNR becomes:

ρ2 = 4

∫ ∞

0

|h̃(f)|2

Sn(f)
df (109)

The GWsignal h(t) detected by an observatory is a superposition of two distinct polarization
modes, h+(t) and h×(t), each modulated by the detector’s response functions, F+(θ, φ, ψ) and
F×(θ, φ, ψ):

h(t) = h+(t)F+(θ, φ, ψ) + h×(t)F×(θ, φ, ψ) (110)

These independent polarizations, h+(t) and h×(t), are governed by the intrinsic properties of the
binary system. The detector’s sensitivity to each polarization is contingent upon its orientation
relative to the source. The response functions F+ and F× are specifically influenced by three key
parameters: θ, which represents the inclination angle of the source relative to the detector; φ, the
azimuthal position of the source with respect to the detector; and ψ, the polarization angle of the
GW [58].

The mathematical expressions for the response functions are as follows:

F+(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ (111)

F×(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ + cos θ sin 2φ sin 2ψ (112)

A single detector measures an output h(t), which, as described by Eq.110, depending on
the two functions h+,×(t), and the angles (θ, φ, ψ) [59]. To resolve these quantities, coincident
observations from a network of detectors are required. Using three interferometers, five quantities
can be measured: the three signals hi(t) (i = 1, 2, 3) and two independent time delays. These
measurements enable the determination of h+(t), h×(t), θ, φ, and ψ.

Each LIGO site houses a single Advanced LIGO detector [60]. The detector records GW strain
by measuring the difference in length between two perpendicular arms. Each arm, made up of
mirrors acting as test masses, is 4 km in length. As a gravitational wave traverses the detector, it
alters the lengths of its arms, resulting in a measured difference of ∆L(t) = δLx − δLy = h(t)L.
In this equation, h(t) represents the GW strain amplitude as projected onto the detector, and L

is the unperturbed arm length [15].
LIGO was designed as a facility capable of supporting multiple generations of detectors. Af-

ter an initial period of scientific data collection and incremental upgrades to the original LIGO
detectors, the Advanced LIGO (aLIGO) upgrade began in 2010. The aLIGO detectors started
operations in 2015 during the first observing run (O1) [61]. These advanced detectors are sensitive
to GWs at frequencies as low as 10 Hz, although achieving this sensitivity is extremely challenging
in practice. They offer a tenfold increase in sensitivity across the frequency band. This marks
a significant improvement compared to the 40 Hz lower cutoff frequency of the initial LIGO de-
tectors [60]. Between the O1 and O3 observing runs, substantial upgrades were made. These
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enhancements extended the angle-averaged BNS range to over 100 Mpc for LIGO H1 and 125
Mpc for LIGO L1.

The forth observing run(O4) is divided into two phases: O4a and O4b. The improvements
made to the detectors include upgrades to the optical systems to surpass the quantum noise
sensitivity limits and isolation of noise sources within the vacuum chambers [62, 63].

Looking forward, LIGO is expected to undergo several upgrades to further increase its sensitiv-
ity, allowing it to detect a greater number and variety of GW events. In parallel, other detectors
such as the European Virgo [24] and the Japanese KAGRA [64, 65] observatories are contributing
to a global network that will enhance localization and parameter estimation of GW sources. Addi-
tionally, plans for next-generation detectors like the Einstein Telescope and the space-based LISA
mission promise to open new windows into the universe, detecting GWs from sources currently
beyond LIGO’s reach.

Virgo [66] is an interferometric GW detector situated in Italy, with 3 km long arms and a
design optimized for detecting signals in the low-frequency range. The Advanced Virgo project [67]
introduced upgrades that significantly enhanced its sensitivity. Advanced Virgo commenced data
collection on August 1, 2017, collaborating with the two LIGO interferometers during the latter
part of the O2 run, achieving a sensitivity equivalent to a BNS inspiral range of approximately 30
Mpc.

Virgo made its first GW detection with the event GW170814 [68]. This event, which was also
observed by both LIGO interferometers, represented the first triple detection of a GW signal. Only
three days later, the three detectors observed GW170817 [30], a binary NS merger that heralded
the advent of multi-messenger astronomy.

KAGRA [64, 65] stands out from LIGO and VIRGO due to two technological innovations:
Firstly, KAGRA is located deep underground to reduce seismic disturbances; secondly, its test
masses consist of sapphire mirrors designed to function at cryogenic temperatures (approximately
20K) to lower thermal noise. As a result, KAGRA is expected to attain sensitivity levels compa-
rable to those of ALIGO and Virgo, reaching 2× 10−24/

√
Hz at 100 Hz. The designed sensitivity

corresponds to a BNS range of 140 Mpc.
The plot 4 illustrates the amplitude spectral density (ASD) of five GW detectors in relation

to frequency, representing the square root of the power spectral density (PSD).

A(f) =
√
S(f) (113)

The detectors represented in the plot include Advanced LIGO (aLIGO) from its fourth (O4)
observing runs, Virgo during its fourth (O4) and fifth (O5) observing runs, and KAGRA at 80
Mpc sensitivity which is used in O5 runs, and A+ from its O5 runs. The PSD is a key metric in
evaluating the sensitivity of GW detectors across different frequencies, with lower values indicating
higher sensitivity.
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Figure 4: The amplitude spectral density (ASD) of five GW detectors across the frequency domain,
based on publicly available noise curve data. The plot illustrates the sensitivity of each detector
as a function of frequency. The selected detection runs include: O5 simulations using Virgo and
A+, O4 simulations using Virgo, LIGO and KAGRA.

In this plot, the x-axis represents the frequency in Hz, while the y-axis shows the ASD in units of
Hz−1/2. It highlights the improvements made in detector sensitivity across different observing runs
and the comparison between different detectors. For instance, the A+ O5 and Advanced Virgo O5
runs demonstrate significant advancements in sensitivity compared to earlier runs, particularly at
lower frequencies where sensitivity improvements are crucial for detecting BNS mergers and other
low-frequency GW sources.

Fig.4 is essential for understanding the performance and limitations of each detector, guiding
the development of future upgrades and the interpretation of GW data from these observatories.

GW detection is an extremely sensitive process, and LIGO must contend with various noise
sources, including seismic activity, thermal noise, and quantum noise. LIGO employs several
strategies to mitigate these effects, such as suspending the mirrors on quadruple pendulums to
isolate them from seismic vibrations and using high-power lasers to reduce quantum noise. Addi-
tionally, the detectors are located at separate sites, which allows for cross-correlation of signals to
distinguish true GW events from local noise.

GW detectors are influenced by various noise sources, but the sensitive frequency band is
primarily determined by three key types of noise. Fig. 5 provides a comprehensive visualization of
how different types of noise affect the sensitivity of GW detectors across various frequency ranges.

The seismic noise is given by:

Sseismic(f) = Aseismic(
f

fref
)−2 (114)

where Sseismic(f) is the PSD of seismic noise at frequency f , and Aseismic is the baseline amplitude
of seismic noise at a reference frequency (typically chosen based on the local seismic activity and
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Figure 5: Power Spectral Density (PSD) for Advanced Virgo in the 5th run, illustrating the
contribution of three key types of noise: Seismic Noise, Thermal Noise, and Photon Shot Noise.
Seismic Noise: (blue line) dominates at low frequencies (below 10 Hz), where ground vibrations
are most significant. It decreases approximately with f−2 as frequency increases, due to isolation
systems designed to reduce ground motion. Thermal Noise: (orange line) dominated by mirror
coatings and suspensions, especially around 30–500 Hz. The frequency f0 = 100 Hz serves as a
reference for the resonant behavior of thermal noise, which increases as f 2 beyond f0. Quantum
Noise: (green line) combines shot noise at high frequencies (due to photon counting uncertainty)
and radiation pressure noise at low frequencies (from photon momentum fluctuations impacting
the mirrors). These two effects create a characteristic “U-shaped” noise curve. The Total Noise:
(red line) represents the combined effect of all noise sources, determining the overall sensitivity of
the detector to GWs.

the isolation system’s performance). In this case, we chose 10−18. fref is the reference frequency,
often set to 10 Hz.

The thermal noise in the coatings and suspensions is usually described by a model that includes
a resonance frequency, the PSD is:

Sthermal(f) = Athermal(1 +
f

f0

2

) (115)

where Athermal is the baseline amplitude of thermal noise, typically derived from material properties
and the design of the suspension system, in this case, we chose 10−22. f0 is the resonance frequency,
often set around 100 Hz, where thermal noise peaks due to resonance effects.

The quantum noise consists of two main components: radiation pressure (dominant at low
frequencies) and shot noise (dominant at high frequencies). It is often modeled as:

Squantum(f) = Aquantum((
flow

f
)2 + (

f

fhigh
)2) (116)

where Aquantum is influenced by the laser power and interferometer optics, here, we set to 10−24,
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flow represents the frequency where radiation pressure noise becomes significant (typically around
50 Hz), fhigh represents the frequency where shot noise becomes dominant (around 200 Hz).

And the total noise is:

Stotal(f) = Sseismic(f) + Sthermal(f) + Squantum(f) (117)

Photon shot noise is one of the primary noise sources in laser interferometric detectors. This
noise originates from the light source and results from fluctuations in the interference pattern mon-
itored for GW signals. Since photon interference follows a Poisson process, it produces variations
referred to as photon shot noise. At high frequencies, the sensitivity of the detector is constrained
by this noise, which depends on the number of photons collected—a factor influenced by both the
laser power and the GW frequency. To mitigate photon shot noise, increasing laser power and
employing power recycling techniques, which recover light escaping through the symmetric output
port, can be effective. However, increasing the laser power introduces a trade-off, as it can lead to
increased radiation pressure on the mirrors, which in turn limits the sensitivity at low frequencies.

The second major noise source is thermal noise, which is caused by the vibrations of the detector
components due to heat. This type of noise is particularly impactful in the mid-frequency range
(around 100 Hz). To mitigate thermal noise, LIGO and Virgo have focused on selecting materials
with low internal losses. KAGRA, on the other hand, has implemented a cryogenic system that
cools its mirrors to approximately 20K, significantly reducing thermal noise through successful
cryogenic operations.

The third type of noise is seismic noise, which originates from the vibrations of the ground. The
Earth is constantly in motion due to various factors, and these vibrations are further influenced by
the surrounding environment. To address seismic noise, sophisticated vibration isolation systems
have been developed. These systems are designed to suppress seismic vibrations by several orders
of magnitude, thereby extending the detector’s sensitivity down to frequencies around 10 Hz, while
still maintaining the necessary control over the mirrors.

Ground-based detectors such as LIGO, Virgo [24], and KAGRA [64, 65] are highly sensitive
to GWs in the frequency range of approximately 10 Hz to several kHz. These detectors are well-
suited for observing events such as BBH mergers and NS collisions. However, they are limited by
terrestrial noise sources, including seismic vibrations and atmospheric disturbances, which restrict
their sensitivity at lower frequencies.

Alternatively, the Laser Interferometer Space Antenna (LISA), a space-based detector, is set to
operate in a significantly lower frequency range, from 0.1 mHz to 1 Hz. LISA will comprise three
spacecraft arranged in an equilateral triangle with arm lengths measuring millions of kilometers.
The configuration is designed to detect GWs from a variety of sources, including supermassive
black hole (SMBH) mergers, extreme mass ratio inspirals (EMRIs), and potentially primordial
GWs that could have originated in the early universe. The absence of terrestrial noise sources
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will enable LISA to explore a different range of astrophysical phenomena, complementing the
discoveries made by ground-based detectors.

3 Gravitational Lensing

As GWs propagate across cosmological distances, they interact with the cosmological expansion
and inhomogeneities in the universe [58]. Galaxies and galaxy clusters can act as gravitational
lenses. This results in multiple images of the GW signal, time delays, and phase shifts. Detecting
lensed signals is essential to avoid biases in binary parameter estimation. These signals also
affect cosmological measurements. One method to identify lensing is to analyze the entire GW
population statistically [58]

With the designed sensitivities for Advanced LIGO and Virgo, it is expected that between
1.3+0.6

−0.4 to 1.7+0.9
−0.6 detections of BBH lensed by galaxies could occur annually [69]. The addition of

the KAGRA [70, 71] and LIGO-India [72] detectors to the network will enhance these prospects.
Moreover, third-generation detectors, like the Cosmic Explorer (CE) [73] and the Einstein Tele-
scope (ET) [74], are expected to have sensitivities an order of magnitude better than the current
detector network, potentially enabling the observation of hundreds of thousands of mergers per
year. Despite these advances, our understanding of the universe remains constrained by the sen-
sitivity of our detectors. Fortunately, the largest structures in the Universe, such as galaxies or
clusters of galaxies, can act as massive magnifying glasses, allowing us to observe objects at much
greater distances. Through the gravitational lensing effect, we have been able to detect the most
distant galaxies at redshifts of z ≈ 13 and even individual stars at z ≈ 6 [75]. In these cases, the
light from stars can be amplified by a factor of more than µ ∼ 104−105. Gravitational lensing thus
provides an opportunity to explore the distant universe, revealing sources that would otherwise
be too faint to detect.

3.1 Geometric optics

If we consider all possible paths from a source S to an observer located at O, as shown in Fig.6,
each path defines a path integral. This integral measures the time taken for light to travel from S

to O when emitted at a fixed time. According to Fermat’s principle, the travel time is extremized
for paths that correspond to actual light rays. In the following discussion, we assume the existence
of angular diameter distances. These distances relate the proper distance at the source to the angle
it subtends at the observer, as is the case in a homogeneous cosmological model [76].

The angular diameter distances between the observer and the source is denoted by dOS, the
observer is represented by dOL and the lens is expressed as dLS, and the lens and the source [1].
The angular position of the source in the sky, θS, represents the direction from which a ray would
have been observed if no lens were present. As the ray passes through the lens plane, it is deflected
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Figure 6: The plot is from Blandford’s work, which shows a ray originating from the source S,
located at a redshift zs, is deflected by a gravitational angle α as it travels past the lens at redshift
zL before reaching the observer O. The observed image is positioned at an angular coordinate θI ,
measured relative to a reference direction. In the absence of the lens, the source would be seen at
the angular position θS [76]

by an angle α, leading it to reach the observer from the direction θI [76].
The lens equation relates θS to the θI due to the deflection caused by the lensing mass is

θS = θI − α(θI) (118)

and the defection angle α(θI) is derived from the gravitational potential ψ(θI) of the lens:

α(θI) = ∇ψ(θI) (119)

where
ψ(θI) =

1

π

∫
κ(θ′) ln |θI − θ′|d2θ′ (120)

and κ(θ′) is convergence, defined as the dimensionless surface mass density, represents the isotropic
focusing of light rays due to the mass density of the lens, is expressed as:

κ =
1

2
∇2ψ (121)

We consider the lensing mass distribution to be confined within a thin layer positioned between
the source at redshift zs and the observer. This distribution is characterized by a projected two-
dimensional density on a lens plane at redshift zL. Light propagation paths are described by null
geodesics in the uniform background universe, traveling from S to points on the lens plane, and
then continuing as null geodesics from the lens plane to O. These paths are parameterized by
the two-dimensional angular coordinate θI , representing the ray’s direction at O, relative to an
arbitrarily defined origin, typically chosen as the center of the lens [76].

For any given path, there are two sources of time delay. The first is the geometrical time delay,
which arises from the extra path length that light travels when it is deflected from a background
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geodesic by a massive object. The second is the gravitational time delay, which results from the
local distortion of spacetime caused by the mass of the lens.

Under the small-angle approximation, the geometrical time delay caused by the additional
path length of the deflected ray, compared to the direct path from the source (S) to the observer
(O), is measured by an observer in the lens plane as αξ/2. Here, we use units where c = G = 1

and define ξ = (θI − θS)dOL [77].
The time delay is given by:

tgeom(θI ; θS) =
(1 + zL)dOLdOS

2dLS
(θI − θS)

2 (122)

The gravitational time delay in the observer frame is [78]:

tgrav(θI) = −2(1 + zL)

∫
dsψ(θI) (123)

where the integral is along the line of sight.
The total time delay is obtained by adding the geometrical and gravitational contributions

[77]:
τ(θI ; θS) =

1

2
|θI − θS)|2 − ψ(θI) (124)

where τ(θI ; θS) is the time surface.
According to Fermat’s principle, for a given source position θS, the locations of the images

correspond to the stationary points of τ(θI ; θS) with respect to variations in θI . In the absence of
any intervening mass, τ(θI ; θS) forms a paraboloid, and the single image appears at the minimum,
where θI = θS. As mass is gradually introduced, the arrival time surface is elevated, and new
extrema emerge, corresponding to additional images [79].

The scaled (extrinsic) curvature tensor [79]:

Kij = τij = δij −
∂2ψ

∂θIi∂θIj
=
∂θSi
∂θIj

(125)

Kij is the Hessian of the transformation θI → θS. The Jacobian matrix Kij describes how small
changes in the image position map to changes in the source position.

Defined as the flux ratio between a lensed image and its corresponding unlensed source, the
magnification µ is calculated by taking the inverse of the Jacobian matrix Kij’s determinant:

µ =
1

|det(K)|
(126)
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For a two-dimensional lens plane, the Jacobian matrix can be written as:

K =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)

where γ1 and γ2 represent the anisotropic distortion of images (being stretched or squeezed), they
are defined as:

γ1 =
1

2
(
∂2ψ

∂θ2I1
− ∂ψ

∂θ2I2
) (127)

γ2 =
∂2ψ

∂θI1∂θI2
(128)

The magnification formula is:
µ =

1

|(1− κ)2 − (γ21 + γ22)|
(129)

Rewriting in terms of the eigenvalues ρ1 and ρ2, the magnification can be written as

µ = (κ2 − µ2)−1 (130)

where κ = 1/2(ρ−1
1 + ρ−1

2 ) is the expansion, and µ = 1/2(ρ−1
1 − ρ−1

2 ) is the shear.
The principal radii of curvature of the time-delay surface, ρ1 and ρ2, are utilized to deter-

mine the parity of the image. In gravitational lensing, the parity of a lensed image describes its
orientation relative to the source, indicating whether the image is inverted or retains the same
orientation. The partial parities of the image are defined by the signs of ρ1 and ρ2, while the total
parity is determined by the sign of the product ρ1ρ2. At the minimum of the time-delay surface,
both partial parities and the total parity are positive. At a maximum, the partial parities are
negative, but the total parity remains positive. For a saddle point, the total parity is negative,
and the partial parities have opposite signs [76].

In the absence of a lens, there exists a single image with positive parity. The introduction of
lensing mass generates additional images in pairs, each with opposite parity. Furthermore, the
earliest image always possesses positive partial parities and, therefore, a positive total parity; in
other words, the first image to form must carry the majority parity. Images with positive partial
parities contain more flux than the original source, whereas those with negative partial parities are
associated with rays passing through regions where the mass density exceeds the critical density
[76].

When the gravitational field of a massive object, such as a galaxy or galaxy cluster, bends the
path of light (or other electromagnetic radiation) from a distant source, the gravitational lensing
happens. This bending of light can produce multiple images of the same astronomical object,
each differing in position, magnification, and time delay relative to one another. These multiple
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images are categorized into three distinct types—Type I, Type II, and Type III—based on their
time delays in comparison to a reference event [80].

Image Classification Based on Time Delays: The classification into Type I, Type II, and Type
III images corresponds to the nature of their respective time delays. Specifically:

• Type I: These images are associated with the minimum time delay. They typically appear
brighter and are often referred to as the ”primary” images.

• Type II: These images correspond to saddle points in the lensing potential and exhibit
intermediate time delays. They are sometimes called ”saddle-point” images.

• Type III: These images are linked to maximum time delays and are generally fainter, often
termed ”secondary” images.

The parity of an image refers to the orientation of its image relative to the source. Type I
and Type III images exhibit positive parity, meaning they maintain the original orientation of
the source. In contrast, Type II images display negative parity, resulting in a mirror-image or
inverted orientation relative to the source. This distinction in parity is crucial for understanding
the distortion and magnification effects induced by gravitational lensing.

In the context of GWs, phase shifts play a significant role in the observed waveform’s character-
istics. Type II images experience a phase shift of π/2, which differs from the phase shifts observed
in Type I and Type III images, which undergo phase shifts of 0 and π radians, respectively [81].
These phase shifts arise due to the differing paths and gravitational potentials traversed by the
GWs as they form each image type.

The distinctive π/2 phase shift experienced by Type II images leads to observable distortions
when compared to unlensed images. These distortions manifest as alterations in the amplitude
and phase of the GW signal, making Type II images particularly notable for their unique imprint
on the waveform [80]. Such distortions are instrumental in identifying and classifying lensed GW
events, as they provide critical information about the lensing mass distribution and the geometry
of the lensing configuration.

In cases where GW signals are dominated by the fundamental harmonics (specifically the
(2,±2) modes). Through adjustments to parameters like the coalescence phase or polarization
angle, Type I or unlensed GW signals can emulate these distortions introduced by gravitational
lensing [58]. However, for signals that include significant contributions from higher harmonics,
precession, or orbital eccentricity, these lensing-induced distortions cannot be accurately repro-
duced by Type I signals alone [58]. In such instances, incorrectly assuming that a detected signal
is unlensed can lead to considerable biases in the inferred astrophysical parameters. Moreover,
these complex lensed signals might be missed by the conventional LIGO-Virgo search algorithms
[82, 58].
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Figure 7: Time-domain waveforms of the h+ polarization strain for three types of lensed GW
signals: Type-I (blue), Type-II (orange), and Type-III (green).

Fig.7 illustrates the time-domain waveforms of the h+ polarization strain for three types of
lensed GW signals: Type-I (blue), Type-II (orange), and Type-III (green). These waveforms,
representing different lensing scenarios, exhibit the characteristic phases of a compact binary
coalescence—namely inspiral, merger, and ringdown. While the overall shapes of the waveforms
are similar, the Type-II and Type-III signals display noticeable phase shifts. These variations,
caused by gravitational lensing, highlight the impact of lensing on the observed signals, affecting
the apparent time of arrival and phase. Understanding these distortions is crucial for accurately
interpreting lensed GW events.

3.2 Wave optics

Ground-based detectors are presently investigating frequencies between 10 Hz and 10 kHz. On
the other hand, space-based observatories like LISA are designed to function within the 0.1 mHz
to 100 mHz range, while DECIGO targets frequencies from 1 mHz up to 100 Hz.These frequency
ranges correspond to GW wavelengths of 104 m < λ < 107 m for ground-based detectors and
106 m < λ < 1012 m for space-based detectors [83]. Therefore, when the Schwarzschild radius of
the deflectors is comparable to λ, the wave optics regime becomes essential [1].

The perturbed space-time line element due to the lens is described by

ds2 = −(1 + 2U)dt2 + (1− 2U)dr2 = gµνdx
µdxν (131)

In this equation, U(r) represents the Newtonian gravitational potential associated with the lens.
The disturbance in the background metric gµν caused by the GWs is given by hµν = φeµν [84].
Since the null geodesic is the path along which the polarization tensor eµν is parallel transported,
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its variation can be ignored, permitting the examination of the scalar wave’s propagation equation
as shown below [1]:

(∇2 + ω2)φ̃ = 4ω2Uφ̃ (132)

In the phenomenon of gravitational lensing, the bending of a wave induced by the lens’s gravita-
tional potential is considered to occur instantaneously, a premise known as the thin-lens approxi-
mation. This simplification is valid because the cosmological distances separating the lens, source,
and observer vastly exceed the actual size of the area where lensing occurs [77]. Under this model,
the mass of the lens is projected onto a two-dimensional surface, termed the lens plane [1].

As a waveform interacts with a gravitational lens, its path and amplitude are distorted. In
the absence of lensing, the wave’s amplitude is described by Φ̃0(r) = Aeiωr/r. Consequently, the
lens-induced amplitude is defined as [1]

F (r) =
Φ̃(r)

Φ̃0(r)
(133)

Rewriting the propagation equations using F leads to [78]:

∂2F

∂r2
+ 2iω

∂F

∂r
+

1

r2
∇2
θF = 4ω2UF (134)

Provided that ω/|∂ lnF/∂r| ∼ (the characteristic length over which F changes) divided by the
wavelength is much larger than one, the first term can be omitted. Consequently, Equation 155
resembles the Schrödinger equation [79]. Specifically, the amplification factor can be computed by
solving the relevant path integral formulated from the classical Lagrangian [1], hence,

F (r0) =

∫
Dθ(r) exp

{
i

∫ r0

0

drL[r, θ(r), θ̇(r)]

}
(135)

Equation 135 employs the standard methodology introduced by Feynman and Hibbs [85] alongside
the thin lens approximation [1], and can be expressed as:

F (r0) =

[
N−1∏
j=1

∫
d2θj
Aj

]
exp

{
iω

[
ε
N−1∑
j=1

rjrj+1

2

∣∣∣∣θj − θj+1

ε

∣∣∣∣2 − ψ̂(θL)

]}
(136)

The initial l − 1 integrals are Gaussian in nature, and the remaining terms can similarly be
transformed into Gaussian integrals, and the final result is Kirchhoff diffraction integral [86]:

F (r0) =
ω

2πi

DLDS

DLS

∫
d2θ exp

{
iω

[
DLDS

2DLS

|θ − β|2 − ψ̂(θ)

]}
(137)

In this context, θ represents the angular distance between the lens and the observed image, while
β denotes the angle between the observer’s line of sight to the source’s true position and the lens.
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The symbols DL corresponds to the distances to the lens, DS represents the distance to the source,
and DLS denotes the distacne between the lens and the source, respectively [77, 1].

Within Eq. 137, the first component inside the square brackets denotes the geometrical delay.
This delay arises from the difference in the distance traveled by the direct, unlensed path from
the source to the observer compared to the lensed path that passes through the lens plane at
an angle θ. The second component accounts for the gravitational time delay resulting from the
gravitational potential of the lens [1].

Detectable gravitational lensing events are thought to occur when the source, lens, and observer
are roughly in alignment, and the source lies within the Einstein radius of the lens [77, 1].

θE =

√
4GML

DLS

DLDS

≡
√

2RS
DLS

DLDS

. (138)

where RS is the Schwarzschild radius of the lens. Einstein radius sets the scale of strong lensing
phenomenon [79], thus we can obtain:

x =
θ

θE
; y =

β

θE
; w ≡ ω(1 + zL)

DSDL

DLS

θ2E; ψ =
1

1 + zL

DLS

DSDL

1

θ2E
ψ̂ (139)

x is the dimensionless position of the image, y is the impact parameter, ω is the dimensionless
frequency, and ψ is the lens potential [78].

Within the framework of geometric optics, the formation of images occurs at the stationary
points of the time delay function:

x± =
1

2

∣∣∣y ±√y2 + 4
∣∣∣ (140)

T±(y) =
1

4

[
y2 + 2∓ y

√
y2 + 4

]
− lnx± − ln θE (141)

Here, the shared delay term for both images, (− ln θE), is generally disregarded. Furthermore, the
dimensionless diffraction integral will be written as [86]:

F (w, y) =
w

2πi

∫
d2x eiwT±(y) (142)

The analytical expression for a point mass lens is:

F (w, y) = exp
(πw

4
− i

w

2
ln
(w
2

))
Γ

(
1− iw

2

)
1F1

(
iw

2
, 1;

iwy2

2

)
(143)

• Γ(z): Gamma function.

• 1F1(a, b; z): Confluent hypergeometric function (Kummer’s function).
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• y: Dimensionless impact parameter, representing the source’s position relative to the lens.

• w: Dimensionless frequency, defined as:

w =
4πGMf

c3
(144)

Figure 8: The amplification factor changes with the dimensionless frequency for wave optics
waveform. The impact parameters are 0.1, 0.3, 0.5. The lens mass is 500 M�.

Fig.8 illustrates the frequency-dependent amplification factor in wave optics. As the frequency
increases, the amplification factor begins at 1 for lower values of w, representing no amplification.
As w increases, the amplification factor gradually rises and begins to oscillate, indicating the
interference effects characteristic of wave optics. This behavior highlights how GWs, when lensed,
can experience variations in amplitude due to the wave nature of light, resulting in constructive
and destructive interference patterns as seen in the oscillations.

Fig.9 and Fig.10 compares the normalized frequency-domain waveforms and amplitudes of
the h+ polarization for wave optics and the unlensed GW signals. The wave optics signal shows
distortions compared to the unlensed signal, particularly noticeable as the GWs interfere with each
other. This interference causes an increase in amplitude, emphasizing the effects of wave optics,
which differ from the predictions of geometric optics. The plot clearly demonstrates that GWs in
the wave optics regime can exhibit enhanced amplitudes and complex structures due to lensing
effects, which are not present in the geometric optics limit.

4 Parameter Estimation

Parameter estimation (PE) is the process of using sample data to estimate the values of parameters
that define a statistical model or distribution for a population. Simply put, it involves finding
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Figure 9: The normalized waveforms for wave optics (orange) and unlensed waveform (blue) in
frequency domain. The lens mass is 500 M�, and the impact parameter is 0.3.

Figure 10: The strain amplitude in h+ polarization as a function of frequency.

numerical values for these parameters that best describe the data collected from observations [87].
In GW astronomy, parameter estimation is used to determine the properties of astrophysical

sources, such as BBHs or NSs, that generate GWs detected by observatories like LIGO and Virgo
[88]. These parameters typically include the masses and spins of the binary components, luminosity
distance, orbital parameters, sky location, merger time, and phase [89].

GW parameter estimation relies on comparing observed data to theoretical waveforms. Bayesian
inference is commonly used, combining prior information about possible parameter values with
the likelihood of the observed signal given each set of parameters [90]. Accurate models of GW
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signals, known as waveform templates, are essential for this process. These waveforms depend
on the source parameters and are matched against the detected signal. By finding the waveform
template that best fits the data, we can estimate the most possible values of the source parameters.

For Bayesian parameter estimation, tools like Bilby [91] and LALInference [92] are widely used.
Algorithms such as Markov Chain Monte Carlo (MCMC) and Nested Sampling [55] are popular for
efficiently exploring the high-dimensional parameter space [93] The result of parameter estimation
is often a posterior distribution for each parameter, describing the interval of values that match
the observed data, allowing scientists to quantify uncertainties in the estimated source properties.

4.1 Bayesian inference

To estimate the parameters of a model based on observed data, Bayesian inference is a robust
method, and it is rooted in Bayes’ theorem. Bayes’ theorem connects the conditional probability
of event A occurring given that event B has happened, expressed as:

P(A | B) =
P(B | A)P(A)

P(B)
=

P(B | A)P(A)
P(B | A)P(A) + P(B | Ac)P(Ac)

. (145)

In a practical scenario, such as medical diagnostics, A may represent the event of a patient having
a particular disease, while Ac represents the event of the patient not having the disease. Similarly,
B denotes the event of a diagnostic test yielding a positive result. The likelihood is given by
P(B | A), and the prior probability of A is denoted by P(A). Bayes’ theorem facilitates the
transformation of the prior probability into the posterior probability P(A | B) upon the evidence
of B [94]. Within the Bayesian framework, uncertainty regarding unknown parameters is expressed
through probabilities, treating the parameters as random variables.

Bayes’ theorem allows us to express the posterior probability density p(θ | d) for a parameter
set θ given data d as:

p(θ | d) = π(θ)L(d | θ)
Z(d)

, (146)

where π(θ) denotes the prior probability density, L(d | θ) represents the likelihood of observing
the data d given the parameters θ, and Z(d) is the evidence [55].

The evidence, also referred to as the marginal likelihood, is defined as [55]:

Z(d) =

∫
dθ π(θ)L(d | θ), (147)

which normalizes the posterior distribution, ensuring that it integrates to one over the parameter
space.

The likelihood function is a choice we make. It describes the measurement process. Defining a
likelihood implicitly establishes a noise model. In GW astronomy, this noise is generally considered
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to follow a Gaussian distribution. This assumption leads to a likelihood function of the following
form [55].,

L(d|θ) = 1

2πσ2
exp

(
−1

2

|d− µ(θ)|2

σ2

)
(148)

Here, µ(θ) represents a template for the gravitational strain waveform parameterized by θ, while
σ denotes the detector noise level. Note that π without any subscripts or parentheses refers to the
mathematical constant (approximately 3.14159) and not a prior distribution. The normalization
factor does not include a square root because d is typically complex, reflecting a two-dimensional
Gaussian distribution, namely the Whittle likelihood. This likelihood function reflects the as-
sumption that the noise in GW detectors follows a Gaussian distribution.

The choice of prior, like the likelihood function, is also a subjective decision. The prior distri-
bution π(θ) encodes our prior knowledge or assumptions about θ before performing any measure-
ments. In certain contexts, there is a natural choice for the prior. For instance, when considering
the sky location of a BBH merger [55], an isotropic prior that assigns equal probability to every
point on the sky is a reasonable choice. In other situations, selecting an appropriate prior is less
straightforward. For instance, before the first detection of GWs, determining a suitable prior for
the primary BH mass, π(m1), would have been challenging. In cases where we have little to no
prior knowledge about θ, a common practice is to use a uniform or log-uniform distribution to
express this uncertainty [55].

Although θ may consist of many parameters, we are often interested in only a subset of them.
In the analysis of GW signals, understanding the posterior distribution is crucial for parameter
estimation. An example is the posterior distribution for a BBH merger, which may be a fifteen-
dimensional function integrating data on BH masses, their positions in the sky, spins, and other
relevant parameters. This high-dimensional distribution allows for a comprehensive characteriza-
tion of the merger event, facilitating accurate inference of the BHs’ properties. To extract the
posterior distribution for the primary mass, we perform marginalization by integrating over the
parameters of no interest, often called ”nuisance parameters” [55].

The posterior probability density p(θi|d) for parameter θi given data d is obtained by integrating
over all other parameters:

p(θi|d) =
∫ (∏

k 6=i

dθk

)
p(θ|d) = L(d|θi) π(θi)

Z
(149)

Here, L(d|θi) denotes the marginalized likelihood, defined as:

L(d|θi) =
∫ (∏

k 6=i

dθk

)
π(θk)L(d|θ) (150)

When integrating out a variable θα to determine the posterior for θβ, the resulting estimate for θβ
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incorporates the uncertainty associated with θα. If θα and θβ are correlated, marginalizing over
θα increases the uncertainty in the posterior distribution of θβ. Consequently, the marginalized
posterior p(θβ|d) becomes more spread out compared to the conditional posterior p(θβ|d, θα). The
conditional posterior corresponds to a specific slice of p(θβ|d), evaluated at a fixed value of θα [55].

In Bayesian model comparison, the evidence Z plays a pivotal role. For two competing hy-
potheses, H1 and H2, the odds ratio O1

2 is defined as the ratio of their respective evidences. When
O1

2 � 1, it indicates strong preference for model H1 over H2, and the opposite holds true when
the ratio is much smaller than one. This ratio of evidences is also referred to as the Bayes factor,
which serves as a measure of the relative likelihood of one model being supported by the data
compared to the other.

In practical terms, Bayesian evidence is represented as a single numerical value. By itself, it
typically has little interpretive value, but it becomes meaningful when compared to the evidence
of another model. The evidence is formally defined as a likelihood function, specifically the fully
marginalized likelihood. It is expressed as L(d), which is independent of θ. Bayesian evidence is
also a critical tool for model selection. In the context of BBHs, we may compare a ”signal model,”
which assumes the presence of a BBH signal in the data with a prior π(θ), to a ”noise model,”
which assumes no BBH signal. The signal model has 15 binary parameters. The noise model,
however, has no parameters [55]. Consequently, the signal evidence and noise evidence are defined
as:

ZS ≡
∫
dθL(d|θ)π(θ) (151)

ZN ≡ L(d|0) (152)

Bayes factor is
BF S

N ≡ ZS

ZN

(153)

and in the log form is
log BFSN ≡ log(ZS)− log(ZN) (154)

A large absolute value of log BF suggests a strong preference for one model compared to the
other. A commonly used threshold of | log BF| = 8 is considered as providing ”strong evidence”
in support of one hypothesis compared to another. Similarly, Bayes factors can be computed to
compare identical models but with differing priors.

Bayesian evidence conveys two important insights. First, it evaluates how well the model
aligns with the observed data through the likelihood. Second, marginalization reveals the effective
parameter space utilized during the fitting process.

With the development of phenomenological GWforms, predicting the expected data d for a
given set of parameters θ has become computationally straightforward. However, calculating the
posterior probability for the 15 parameters describing a BBH merger remains computationally
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challenging. For example, creating a grid with ten bins in each dimension and evaluating the
likelihood at every grid point would require 1015 likelihood evaluations, making the process com-
putationally infeasible due to the curse of dimensionality. To address this, stochastic samplers
are employed. Commonly used sampling techniques fall into two main categories: The algorithms
Markov-chain Monte Carlo and nested sampling produce sets of posterior samples {θ}. These
samples are extracted from the posterior distribution such that the density of samples in the
range (θ, θ +∆θ) aligns proportionally with p(θ) [55].

〈f(x)〉p(x) =
∫
dx p(x)f(x) ≈ 1

ns

ns∑
k

f(xk) (155)

In this context, p(x) represents the posterior distribution being sampled, f(x) is the function
whose expectation value is to be computed, and the summation over k spans ns posterior samples
[95].

In summary, Bayesian inference furnishes a comprehensive framework for examining GW data,
enabling precise parameter estimation and model comparison. With the increase in the number
of observed events, the methods described here will become even more crucial for understanding
the underlying physics of GW sources and the broader cosmological implications.

4.2 Methods

4.2.1 Markov Chain Monte Carlo (MCMC)

A significant challenge in Bayesian posterior computation, especially when dealing with a high-
dimensional parameter space, is solving complex integration problems. While these problems can
be analytically addressed using low-dimensional numerical integration or Gaussian-based approxi-
mations [96], high-dimensional cases often require simulation-based computational techniques such
as MCMC or nested sampling [93].

In MCMC methods, particles traverse the posterior distribution via a random walk. The
likelihood of transitioning to a specific point is determined by the Markov chain’s transition prob-
abilities. By recording the positions of these particles, often called walkers, at each step, samples
are extracted from the posterior probability distribution [97].

For sampling from a target probability density function p(θ | d), the Monte Carlo technique
of rejection sampling is one approach. In this method, a candidate parameter set θ∗ ∼ q(θ)

is generated from a proposal probability density function q(θ), which is chosen to majorize the
target distribution. This means that p(θ | d) ≤ Mq(θ) for all θ and some constant M > 0. The
candidate θ∗ is accepted with a probability:

α =
p(θ∗ | d)
Mq(θ∗)

, (156)
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and otherwise, it is rejected, prompting the generation of a new candidate. The acceptance
probability is 1/M , indicating that the rejection method is efficient when M is close to 1. However,
in high-dimensional spaces, it becomes difficult to find a proposal density that is sufficiently close
to the target distribution to maintain efficiency [98].

The Metropolis-Hastings (MH) algorithm extends rejection sampling by generating dependent
samples instead of independent ones, thereby avoiding the need for a majorizing proposal density.
The algorithm starts with an initial parameter set θ0. A new candidate θ∗ ∼ q(θ | θ0) is proposed,
where the proposal distribution q(θ | θ0) can depend on the current state θ0 and does not need
to majorize the target distribution. The candidate θ∗ is accepted with probability:

α(θ0) = min
{
1,
p(θ∗ | d)
p(θ0 | d) ·

q(θ0 | θ∗)

q(θ∗ | θ0)

}
, (157)

where M(θ0) is the ratio of the target densities at θ∗ and θ0, adjusted by the proposal densities.
When the candidate is accepted, the new state becomes θ1 = θ∗; otherwise, the Markov chain
remains at the previous state, θ1 = θ0. This process generates a Markov chain that, under mild
conditions on the proposal distribution, converges to the target posterior distribution p(θ | d)
[99, 100].

4.2.2 Nested Sampling

Nested sampling, introduced by John Skilling [93], is a computational technique initially designed
for calculating the evidence, or marginal likelihood, in Bayesian models. Over time, it was discov-
ered that this method also produces samples from the posterior distribution as a natural by-product
[101]. By weighting each sample according to its posterior probability, nested sampling effectively
converts these into posterior samples.

This method systematically explores the parameter space by focusing on regions with higher
likelihood values, making it particularly effective for problems with complex likelihood landscapes,
such as those with multiple peaks or difficult integrals [102]. As the algorithm progresses, it
incrementally refines the regions of interest, efficiently estimating the evidence while concurrently
generating posterior samples.

Nested sampling is an important method used in Bayesian inference, especially when dealing
with parameter spaces that have a large number of dimensions. The process starts by initializing
the parameter space with a set of ”live points,” which are drawn from the prior distribution [93].
During each iteration, the point with the smallest likelihood is eliminated, and a new sample
is generated until one with a higher likelihood is discovered. The algorithm then computes the
Bayesian evidence by associating a prior volume with each eliminated point. The evidence is
determined by summing the product of the likelihood and prior volume for each sample. This
process is repeated iteratively until the algorithm converges, resulting in an efficient estimation of
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both the Bayesian evidence and the posterior distributions. This method is particularly useful for
models where the parameter space is complex and multidimensional.

Nested sampling offers the significant benefit of being able to estimate an upper bound on the
evidence at each step of the algorithm. This is done by assuming that the remaining prior volume
has a likelihood matching the highest likelihood found among the current live points [93]. This
upper bound estimate is crucial for deciding when to stop the algorithm, specifically when the
ongoing evidence estimate exceeds a predetermined fraction of this bound [55].

On the downside, unlike MCMC approaches, nested sampling does not parallelize efficiently,
and the collection of posterior samples does not grow linearly with the amount of computational
time invested. This makes it a more computationally intensive approach, but its efficiency in
exploring complex likelihood landscapes can outweigh these drawbacks in certain applications
[101].

4.3 Parameter estimation for binary black holes

Matched filtering technique assumes the form of h(t) is known, however, in practise, h(t) depends
on several free parameters. Therefore, a family of possible waveforms or templates are considered.
Consequently, there exists a corresponding family of optimal filters K(t; θ). The θ-space must be
discretized and the filtering procedure be repeated in practise. Starting with the prior distribution
p(0)(θt), the posterior probability distribution for the true parameter value θt is determined based
on the observed data s, the PDF is:

p(θt|s) = N p(0)(θt) exp
{
〈ht|s〉 −

1

2
〈ht|ht〉

}
(158)

where N is the normalization factor.
The GW strain h(t), as depicted in Eq. 110, is a multifaceted function that encapsulates

various parameters defining both the source’s intrinsic properties and its orientation relative to
the observer. These parameters include:

• Distance to the Source (r): The strain amplitude h(t) is inversely proportional to the distance
r between the GW source and the observer. This relationship implies that more distant
sources produce weaker GW signals, while closer sources yield stronger detections.

• Source Location Angles (θ, φ): The celestial coordinates (θ, φ) specify the position of the
GW source in the sky relative to the observer. These angles are integral to the pattern func-
tions, which modulate the GW strain based on the source’s location, affecting the observed
amplitude and phase of the waveform.

• Orbital Orientation: Two angles define the orientation of the binary system’s orbital plane
in relation to the observer’s line of sight:
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1. Inclination Angle (ι): This angle measures the tilt of the binary’s orbital plane relative
to the observer. An inclination of ι = 0 degrees indicates a face-on orientation, while
ι = 90 degrees corresponds to an edge-on view. The inclination angle significantly
influences the polarization and amplitude of the GW signal.

2. Polarization Angle: This angle determines the orientation of the plus (h+) and cross
(h×) polarization axes relative to a fixed coordinate system on the sky. It affects how
the GW polarizations are projected onto the detector’s arms, thereby influencing the
observed waveform.

• Reference Time (t∗): The reference time t∗ denotes the moment when the GW signal enters
the detector’s sensitive frequency band. This parameter is embedded within the phase Φ(t)

and the GW frequency fgw(t), dictating the signal’s timing and frequency evolution as it is
recorded by the detector.

• Constant Phase (ϕ): The constant phase offset ϕ sets the initial phase of the GW waveform.
This phase factor is crucial for accurately aligning the theoretical waveform with the observed
signal, ensuring that the waveform’s oscillations match the detector’s response.

• Masses of the Binary Components: The masses of the two compact objects in the binary
system (m1 and m2) are fundamental parameters that shape the GW signal. These masses
influence the inspiral rate, merger dynamics, and the resulting waveform’s frequency and
amplitude evolution. The total mass and mass ratio determine how quickly the binary
spirals inward and how the GW frequency increases over time.

• Spins of the Binary Components: The intrinsic spins (~S1 and ~S2) of the binary objects add
another layer of complexity to the GW signal. Spin magnitudes and orientations relative
to the orbital angular momentum can lead to precession effects, modulating the waveform’s
amplitude and phase. These spin-induced effects are vital for understanding the dynamics
of the binary system and for accurately extracting source properties from the GW data.

Parameter estimation for BBHs involves the following parameter space: table.1
We consider a BBH merger with parameters in the source frame M1 = 36M�, M2 = 29M�,

dL = 2000Mpc, θjn = 0.4, ψ = 2.659, phase = 1.3, and the optimal SNR is 15.57, including the
detector network of H1 and L1. The priors for M1 and M2 are constraint from 5 to 100 M�, while
for other parameters (expect for θjn and δ) are uniform. Fig.11 illustrates the results posterior
distributions of the full-space parameters and the joint posterior distributions of the parameter
pairs. The analysis of the parameters using BILBY [103], the waveform of ”IMRPhenomXPHM”,
the default design sensitivity PSDs of the interferometers (H1 and L1), and Dynesty sampler. The
waveform indicates the model covers all three phases of a compact binary coalescence (Inspiral-
Merger-Ringdown), and using a phenomenological approach, including precession.
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Parameter Description

Chirp Mass (M)
Combination of component masses that primarily
determines the frequency evolution of the inspiral
phase (see eq.56).

Mass Ratio (q) Ratio of the secondary mass to the primary mass,
defined as q = m2

m1
(see eq.97).

Dimensionless Spin
Magnitudes (a1, a2)

Magnitudes of the dimensionless spin parameters for
each BH, ai = cJi

Gm2
i
, where i = 1, 2.

Spin Tilt Angles (θ1, θ2)
Angles between each spin vector and the orbital
angular momentum [34].

Spin Azimuthal Angles
(∆φ, φJL)

∆φ is the azimuthal angle between the two spin vectors
in the orbital plane. φJL is the angle between the total
angular momentum and the orbital angular momentum
[34].

Inclination Angle (θJN) Angle between the total angular momentum and the
line of sight to the observer [34].

Orbital Phase (φ) Phase of the orbit at a given reference time, often
taken at the time of coalescence.

Polarization Angle (ψ) Angle describing the orientation of the wave’s
polarization frame relative to the detector.

Luminosity Distance (dL) Distance from the source to the observer, affecting the
amplitude of the GW signal.

Right Ascension (α) Sky position of the binary system in the celestial
coordinate system, defining the east-west direction.

Declination (δ) Sky position of the binary system in the celestial
coordinate system, defining the north-south direction.

Coalescence Time (tc) Time at which the two BHs merge into a single entity.

Table 1: Parameter space for BBH parameter estimation.

4.4 Relative Binning

Determining the source characteristics of extended-duration signals, including those originating
from BNS events, in ground-based GW detectors can be computationally demanding. And this
challenge is expected to grow as we advance towards next-generation (XG) GW detectors, such as
A+, Cosmic Explorer, and the Einstein Telescope. These detectors will have increased sensitivity
at lower frequencies, leading to longer in-band signals and a higher detection rate due to the overall
increase in strain sensitivity.
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Figure 11: Marginalized posterior distribution for full parameters and joint posteriors for all pairs
of these parameters. The red lines and red dots represent the injection value. The off-diagonal
plots include contours representing 1σ and 2σ confidence intervals for each parameter pairs.

General-purpose algorithms are designed to generate samples from a distribution by evalu-
ating the probability density at arbitrary points within the parameter space. These samplers
efficiently explore the parameter space by leveraging the results of previous evaluations to inform
new proposals.

In likelihood-based parameter estimation (PE), the bulk of the computational effort is typically
spent on evaluating the likelihood function. To optimize this process, some techniques focus on
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accelerating individual likelihood evaluations, while others aim to reduce the number of evaluations
required for the sampler to converge.

One such technique is relative binning, which speeds up likelihood evaluations by approximat-
ing the ratio of neighboring waveforms in the parameter space as a smooth function, allowing it
to be approximated by a piecewise linear function [104]. This method enables the a computation
in advance of certain terms in the likelihood. As a result, fewer frequency points are needed for
waveform evaluation during sampling. This approach is particularly beneficial for the parameter
estimation of compact binary coalescences (CBCs), especially those involving NSs, allowing for
rapid parameter estimation.

To illustrate the effectiveness of this method in achieving both computational efficiency and
accuracy, we analyzed a simulated 32-second duration strain signal from the LIGO L1, LIGO H1,
and Virgo detectors, sampled at 2048 Hz. Our analysis focused on a frequency range of 20 Hz
to 900 Hz, using 8 CPU cores. We employed fiducial parameters consistent with the injection
parameters, the IMRPhenomPv2_NRTidal waveform model, and the Dynesty sampler, integrated
with the Bilby analysis framework. The posterior distributions obtained from both the traditional
method and relative binning showed strong agreement, validating the accuracy and efficiency of
the relative binning technique.

Figures 12 and 13 present the corner plot of the posterior distributions for a BNS event,
comparing the results obtained using the traditional computational method with those using
relative binning. The total sampling time using relative binning was 49 minutes, in contrast to 8
hours and 25 minutes with the normal computational approach. This demonstrates that relative
binning can significantly reduce computational costs while maintaining a fair accuracy. A bias in
recovering the chirp mass is observed when using relative binning. In this case, the chirp mass is
1.215 M� and the mass ratio is q = 0.876. To investigate this further, we examined a scenario
with a different chirp mass value of 1.5 M� and a mass ratio of q = 0.75 , while keeping all other
parameters unchanged. The results of this analysis are presented in Fig.14 and Fig.15. And within
this injection values, it is well recovered for all parameters.

Relative binning is based on the idea that waveforms with high posterior probabilities are
similar in the frequency domain. The main difference between these waveforms comes from small
changes in their parameters. A stochastic sampler looks closely at a small region around the best-
fitting waveform, where the likelihood is high. In this region, the variations between waveforms
are minor and depend on the parameters. This results in a smooth ratio function between the
waveforms.

Any smooth function can be approximated as a piecewise linear function by choosing suitable
breakpoints. The space between two adjacent breakpoints forms a frequency bin, denoted as bi.

Let’s consider a reference waveform µ0(f) = µ(f,θ0) and a nearby waveform µ(f,θ) within a
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Figure 12: A comparison of posterior distributions—mass ratio, chirp mass, dimensionless spin pa-
rameters of the two NSs, and luminosity distance—is shown for a simulated signal analyzed using
relative binning parameter estimation in Bilby (blue) and full likelihood computation (red). The
diagonal panels display marginalized 1-dimensional histograms for each parameter, with dashed
vertical lines representing the injected parameter values. The 2-dimensional joint posterior distri-
butions are displayed in the off-diagonal panels, with the 1σ and 2σ credible regions represented
by contours. The black dot within the contours indicates the injected values, with q = 0.867 and
M = 1.215M�.

region of high likelihood. The ratio of these waveforms, r(f) = µ(f)
µ0(f)

, can be approximated as:

r(f) ≈


r0(b1) + r1(b1)(f − fm(b1)), if f ∈ b1,

r0(b2) + r1(b2)(f − fm(b2)), if f ∈ b2,
...

Here, fm(bi) represents the midpoint of bin bi. The coefficients r0(bi) and r1(bi), which are constant
within each bin, are independent of frequency. By assuming linearity, these coefficients can be
derived directly from the values of r(f) at the edges of the bins. This approach enables µ(f,θ)
to be evaluated only at the bin edges rather than across the entire frequency range, thereby
significantly reducing computational effort.

In the work of Barak Zackay and collaborators [105], this idea is extended by computing
summary data in coarse frequency bins for a chosen fiducial waveform. Typically, this fiducial
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Figure 13: Comparison of posterior distributions for inclination angle, polarization, orbital phase,
right ascension and declination.

waveform is selected to maximize the likelihood, although any waveform that closely approximates
the best-fit solution may be used. It is shown that these summary data allow for accurate likelihood
evaluations of any waveform sufficiently close to the fiducial one. As a result, the number of
frequency bins needed to compute the data likelihood for a NS merger event can be reduced by
about four orders of magnitude compared to a direct, naive computation.

4.5 Bias

Bias is the discrepancy between the true value of a parameter and the expected value of the esti-
mator used to approximate it. Suppose you are estimating a set of parameters θ = (θ1, θ2, . . . , θn)

from data D using a likelihood function L(D|θ). By maximizing {L}, the maximum likelihood
estimator θ̂ is obtained, and its bias is defined as:

Bias(θ̂) = E[θ̂]− θ

where E[θ̂] is the expected value (average) of the estimator θ̂ over repeated samples.
Precisely quantifying bias is crucial because it affects the accuracy of our parameter estima-

tions. Accuracy refers to how well the estimator recoveries the injection values. Precision indicates
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Figure 14: Posterior distributions for mass ratio, chirp mass, dimensionless spins, and luminosity
distance for q = 0.75, M = 1.5M�.

how big is the error, or more precisely, refers to the degree of variability in the estimator’s values.
Mathematically,

Var(θ̂) = E[(θ̂ − E[θ̂])2] (159)

the variance quantifies how much the estimator θ̂ fluctuates around its expected value.
The mean squared error combines both bias and variance:

MSE(θ̂) = Bias(θ̂)2 + Var(θ̂) (160)

Obtaining the variance values is crucial for constructing the covariance matrix Σ, which is essential
for quantifying uncertainties, creating confidence intervals, and plotting confidence ellipses in
the parameter estimation. The Fisher Information Matrix is a pivotal tool in statistics that
quantifies how much information observable random variables contain about parameters that are
not directly measurable. It establishes a framework for interpreting the relationship between the
data and the parameters we wish to estimate. The accuracy of parameter estimates is assessed
by the Fisher Information Matrix, which analyzes the expected value of the second derivative of
the log-likelihood function. A larger Fisher Information indicates that the data offer substantial
information about the parameter, thereby enabling more precise estimation. It is widely used to
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Figure 15: Posterior distributions for inclination angle, polarization, phase, and sky location: right
ascension and declination for q = 0.75, M = 1.5M�.

estimate the variances and covariances of parameter estimators, especially under the assumption
that the likelihood function is approximately Gaussian near the maximum likelihood estimate
(MLE). By definition,

Iij = −E
[
∂2 lnL
∂θi∂θj

]
(161)

where E is the expectation over the data and L(D|θ) is the likelihood function of data D given

parameters θ, specifically, for GWforms the inner product in the likelihood is
(

∂h
∂θi

∣∣∣∣ ∂h∂θj).

The inverse of the Fisher information matrix gives the covariance matrix:

Σ = I−1 (162)

the variances are diagonal elements σ2
i = Σii, and covariances are off-diagonal elements σij = Σij.

The covariance matrix for n random variables is thus:

Σ =


Var(θ1) Cov(θ1, θ2) · · · Cov(θ1, θn)

Cov(θ2, θ1) Var(θ2) · · · Cov(θ2, θn)
... ... . . . ...

Cov(θn, θ1) Cov(θn, θ2) · · · Var(θn)


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MCMC methods are also powerful in Bayesian analysis. The posterior distribution is defined:

p(θ|D) ∝ L(D|θ) p(θ) (163)

and we could run MCMC chains to sample from the posterior, then compute sample statistics:

σ2
i = Var(θi) =

1

N − 1

N∑
k=1

(θ
(k)
i − θ̄i)

2 (164)

σij = Cov(θi, θj) =
1

N − 1

N∑
k=1

(θ
(k)
i − θ̄i)(θ

(k)
j − θ̄j) (165)

Correlation between estimated parameters indicates how changes in one parameter affect an-
other, which is quantified using the covariance matrix. For parameters θi and θj:

Cov(θ̂i, θ̂j) = E[(θ̂i − E[θ̂i])(θ̂j − E[θ̂j])] (166)

and correlation coefficient is:

ρij =
Cov(θ̂i, θ̂j)√

Var(θ̂i)Var(θ̂j)
(167)

The covariance matrix can be written in this form, given two parameters θ1 and θ2, with means
µ1 and µ2, variances σ2

1 and σ2
2, and covariance σ12:

Σ =

(
σ2
1 σ12

σ12 σ2
2

)
(168)

The equation of the confidence ellipse provides a graphical representation of the confidence
region for the mean of a bivariate normal distribution. It is also used to describe the relationship
between two variables. This ellipse helps visualize both the variability and the correlation between
the two variables in question. The confidence ellipse is mathematically defined by the following
equation:

(θ − µ)>Σ−1(θ − µ) = χ2 (169)

where θ is the parameter vector (
θ1

θ2

)
(170)

µ is the mean vector (
µ1

µ2

)
(171)
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Σ−1 is the inverse of the covariance matrix, and χ2 is chi-squared value value corresponding
to the desired confidence level.

The confidence ellipse equation defines the joint confidence region for two correlated parameters
estimated from data. The left-hand side of the equation is a quadratic form representing the
squared Mahalanobis distance between the estimated parameters and their mean values. And
right-hand side χ2 corresponds to a value drawn from the chi-squared distribution, where the
degrees of freedom match the number of parameters. The specific value of χ2 determines the
confidence level: χ2 = 2.3 is 68.3% confidence level, χ2 = 5.99 is 95.4% confidence level, and
χ2 = 9.21 is 99.7% confidence level.

Figure 16: Corner plot displaying the posterior distributions for four parameters, θ1, θ2, θ3, and
θ4, sampled from a biased multivariate normal distribution with specified correlations. The plot
shows histograms for the marginalized distributions along the diagonal, with contour plots for
pairwise parameter correlations in the off-diagonal panels. Red lines indicate the true (unbiased)
parameter values. The contours represent confidence regions, with darker shades indicating higher
probability density. The quantiles (68th, and 95th percentiles) are marked by dashed lines on the
histograms to illustrate the distribution spread around the median.

Fig.16 shows an example for posterior distributions and correlations under the influence of
systematic biases. The red dots and lines are the true values and any consistent deviation of the
central tendency of the distributions (blue dashed lines) from these red lines indicates a bias. The
variance of an estimator represents the spread of the posterior distribution around its mean in the
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plot. The true values for four variables are set to 0, while the systematic shifts are introduced,
resulting in the biased parameter values θ1 = 0.5, θ2 = −0.5, θ3 = 0.3, θ4 = −0.3.

The correlations are introduced by the covariance matrix, reflected in the contour plots, where
the ellipses indicate the degree of correlation between parameter pairs. In this plot, θ1 and θ2

exhibit a strong positive correlation r = 0.8, as demonstrated by the narrow elliptical contours
oriented along the diagonal. In contract, θ1 and θ4 show weaker correlation r = 0.2.

5 Parameter estimation for lensing

5.1 Binary black hole

We investigate the impact on source parameter recovery for distinguishable type-II and type-III
image signals when unlensed image templates are employed during parameter estimation. Figures
17 and 18 compare the parameter recovery of the three types of injected images using their
corresponding templates. The injected parameters are a mass ratio of q = 0.81, a chirp mass of
M = 28.1M�, a magnification factor of µ = 2, and a SNR of 29. The injected values fall well within
the posterior PDFs for all three recoveries, except for the sky location parameters—declination
(δ) and right ascension (α). While both type-I and type-II images recover these sky location
parameters accurately, the type-III image signal exhibits a significant bias. In the off-diagonal
plots of Figure 17, the correlation between the polarization angle and the phase reveals a bias of
π/4, which is inherently embedded in the waveform templates.

However, when we increase the magnification factor to µ = 100, resulting in a corresponding
SNR of 205 while keeping all other parameters fixed (as shown in Figures 19, 20), the injected values
for q, dL, and ι fall into regions of low posterior probability. This demonstrates that increasing
the sensitivity can introduce larger biases in certain areas of the parameter space. Notably, the
biases in the sky location parameters—α and δ —become less apparent.

Furthermore, we analyze the case of a lower mass ratio, q = 0.2, increases the inclination angle
to ι = 0.5, while keeping all other parameters unchanged. The resulting SNR is 165, as illustrated
in Fig. 21 and Fig. 22. A noticeable bias is observed only in the luminosity distance (dL), where
the injected value is dL/µ = 200M�, while the recovered value is approximately 2000M�.

When the inclination angle ι is close to 0 (i.e., the binary system is face-on), the Type-II
image signal can be effectively reproduced by adjusting the coalescence phase. In such cases, the
phase shift induced by gravitational lensing can be absorbed by the coalescence phase φc, allowing
the lensed signal to closely resemble an unlensed signal, as demonstrated in [80]. However, as
the inclination angle increases (i.e., the system is viewed more edge-on), additional distortions
appear in the Type-II image that cannot be accounted for by simply adjusting the coalescence
phase. These distortions are not present in the general relativistic (GR) signal, indicating that
the Type-II lensed signals deviate from their unlensed counterparts under these conditions.
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Figure 17: The recovery of source parameters for mass ratio q = 0.81, chirp mass M = 28.1M�,
SNR ρ = 29, inclination angle ι = 0.4, and magnification factor µ = 2 is presented. Results are
shown for Type-I (red), Type-II (blue), and Type-III (grey) injection values, where the black dots
denote the injection values. The plot includes the recovery of key parameters: mass ratio q, chirp
mass M, observed luminosity distance dL√

µ
, inclination angle ι, polarization angle ψ, and phase

φ. The black dashed lines indicate the injected values. The recovery for Type-I, Type-II, and
Type-III image signals aligns consistently with the injection values.

The analysis presented in [80] compares scenarios with a low mass ratio (q = 0.2) high total
mass (M = 100M�), low SNR (ρ = 20) and varying inclination angles (ι = π/6 and ι = 5π/12).
The analysis indicates that increasing the inclination angle while holding other parameters constant
results in the injected masses, distance, and inclination values falling into a region of low posterior
probability. This demonstrates that waveform distortions can introduce substantial biases in
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Figure 18: The plot shows the recovery of the time of arrival tc in the geocenter time, sky location
δ (declination), and α (right ascension). There is no bias in the recovery of both Type-I and
Type-II templates, but the sky location δ and α show a bias for the Type-III image signal.

parameter estimation within specific areas of the parameter space. Additionally, when the SNR is
low (ρ = 20), the phase shift introduced by type-II images has negligible impact on the recovery of
intrinsic parameters and the estimation of distance for BBH systems. This implies that at lower
SNRs, the intrinsic characteristics of the system, such as masses and spins, as well as the distance
to the source, can be accurately inferred without significant interference from phase shifts caused
by type-II lensing images.

However, as the SNR increases to higher values (ρ = 50), the influence of type-II image
phase shifts becomes more pronounced, particularly at larger inclination angles (ι ≥ 5π/12). In
these scenarios, the discrepancies in parameter recovery are substantial, indicating that the phase
shifts introduced by lensing effects start to interfere with the accurate determination of system
parameters.

Furthermore, for BBH systems with greater total mass (M), these differences in parameter
recovery become significant even at lower inclination angles, around ι ∼ π/3. This suggests that
more massive systems are more susceptible to the distortions caused by phase shifts, leading to
greater uncertainties in parameter estimation at moderate inclination angles.

The estimation of distance is particularly affected, showing significant deviations at inclination
angles as low as ι ∼ π/4. This indicates that distance measurements become less reliable when
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Figure 19: The recovery of source parameters using Type-I (red), Type-II (blue), and Type-III
(grey) templates for mass ratio q = 0.81, chirp mass M = 28.1M�, SNR ρ = 29, inclination angle
ι = 0.4, and magnification factor µ = 100

the inclination angle approaches π/4, especially in the presence of strong lensing effects.
Moreover, as the SNR continues to increase beyond ρ = 50, the critical inclination angle at

which these effects become significant decreases. This means that even at lower inclination angles,
higher SNRs exacerbate the impact of phase shifts on parameter recovery, further challenging
the accuracy of intrinsic parameter and distance estimations in highly inclined, high-SNR BBH
systems.

In this study, as shown in Fig.23, we investigate how well parameters are recovered for BBH
systems with inclination angles (ι) varying between 0.5 and 2.5. We also explore different mass
ratios of the injected BBH systems while maintaining all other parameters constant. Additionally,
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Figure 20: The plot shows the recovery of the time of arrival tc in the geocenter time, sky location
δ (declination), and α (right ascension) for µ = 100.

Fig.24 presents the parameter recovery performance under a higher SNR of ρ = 62, using the same
set of inclination angles and mass ratios.

The distance, we defined it as:

distance =
|Qin −Qmode|

σ
(172)

where σ is the standard deviation, and Qin is the injection value, Qmode is the mode of the posterior
distribution for the parameter.

The distance metric utilized in this study serves to quantify the extent of deviation between the
injected parameter value and the mode, or the most probable value, of the posterior distribution.
This measurement is expressed in units of standard deviation, providing a standardized framework
for assessing how closely the injected value aligns with the posterior mode. A smaller value of this
distance metric indicates that the injected parameter is situated near the peak of the posterior
distribution. This proximity suggests that the parameter recovery process is functioning effectively,
as the inferred parameters closely match the true, injected values.

In practical terms, when the distance metric approaches zero, it implies that the injected pa-
rameter value coincides precisely with the mode of the posterior distribution. Such an alignment
signifies a high degree of agreement between the expected parameters—those that were intention-
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Figure 21: The recovery of source parameters using Type-I (red), Type-II (blue), and Type-III
(grey) templates for mass ratio q = 0.2, chirp mass M = 28.1M�, SNR ρ = 29, inclination angle
ι = 0.5, and magnification factor µ = 100

ally introduced—and the parameters that have been accurately recovered through the analysis.
This strong concordance is indicative of reliable parameter estimation, demonstrating that the
inference method successfully identifies the true underlying parameters based on the observed
data.

Conversely, a larger value of the distance metric reveals a substantial separation between
the injected parameter value and the posterior mode. This significant deviation may highlight
potential biases within the parameter estimation process or expose inherent limitations in the
modeling approach employed. Such biases could arise from various sources, including assumptions
made during model construction, the quality or quantity of the data used, or computational
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Figure 22: The plot shows the recovery of the time of arrival tc in the geocenter time, sky location
δ (declination), and α (right ascension) for q = 0.2 and µ = 100.

constraints inherent in the inference algorithms. Identifying instances where the distance metric is
large is crucial, as it underscores areas where the parameter estimation methodology may require
refinement or where additional data might be necessary to achieve more accurate and reliable
results.

Understanding the biases in parameter recovery at varying inclination angles and mass ratios
is crucial for the accurate characterization of BBH systems, especially under low SNR conditions.
As illustrated in Fig. 23, our analysis focuses on how different mass ratios (q) and inclination
angles (ι) impact the precision of parameter estimation in BBH systems.

For BBH systems with a mass ratio of q = 0.2, parameter recovery for mass ratio demonstrates
superior performance compared to systems with higher mass ratios of q = 0.5 and q = 0.8. This
enhanced performance suggests that lower mass ratios may be inherently more stable against biases
introduced by varying inclination angles at lower SNRs. In contrast, higher mass ratios exhibit
increasing bias in mass ratio recovery as the inclination angle ι rises, peaking around ι = 1.5.
Beyond this peak, as the inclination angle continues to increase towards 2.5, the bias gradually
diminishes.

The chirp mass (M) shows a nuanced pattern of bias across different mass ratios and inclina-
tion angles. Specifically, for q = 0.5, the bias remains minimal when ι < 2.3, indicating effective
parameter recovery at lower inclination angles. Conversely, for q = 0.2 and q = 0.8, the bias in
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Figure 23: Each panel displays the difference between the injected value and the mode of the
posterior distribution as a function of the inclination angle (ι) for the injected BBH systems. The
systems have a fixed chirp mass (M = 28M�) and SNR (ρ = 19.6). The injections utilize the
type-II image template. The results are color-coded based on the mass ratio: blue represents
q = 0.8, green corresponds to q = 0.5, and red indicates q = 0.2. Each subplot illustrates
the parameter estimation outcomes for various parameters, namely the mass ratio, chirp mass,
luminosity distance, inclination angle, and coalescence time. This comparison demonstrates how
parameter estimation accuracy changes with varying inclination angles.

chirp mass estimation peaks at ι = 0.9 before tapering off as ι increases further. This behavior un-
derscores the sensitivity of chirp mass estimation to inclination angles, particularly in moderately
inclined systems.

Luminosity distance (DL) estimation exhibits significant systematic biases across all examined
mass ratios within the inclination angle range of ι = 1.3 to 1.9. This consistent bias suggests
potential challenges in accurately determining distance measurements under these specific incli-
nation conditions at low SNRs. Notably, for q = 0.2, a substantial bias is also observed at ι = 0.5,
indicating that very low inclination angles may pose difficulties in distance estimation for highly
asymmetric BBH systems.

The recovery of the inclination angle (ι) itself is influenced by both mass ratio and the angle’s
magnitude. For higher mass ratios (q = 0.5 and q = 0.8), the bias in inclination angle recovery
generally increases as ι rises from 0.5 to 1.9, reflecting heightened uncertainties in more inclined
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Figure 24: Each panel shows the distance between the injection value and the mode of the posterior
distribution value against the inclination angle (ι) of the injected BBH systems for a given chirp
mass (M = 28M�), and SNR (ρ = 62).

systems. Specifically, for q = 0.8, the bias peaks at ι = 2.5 before declining with further increases
in ι. In contrast, for q = 0.2, the bias is most pronounced at ι = 0.5, suggesting that even slight
inclinations can introduce significant uncertainties in parameter estimation for highly asymmetric
mass ratios.

The estimation of coalescence time (tc) shows varied performance across different mass ratios
and inclination angles. Systems with a higher mass ratio of q = 0.8 exhibit improved recovery ac-
curacy compared to those with lower mass ratios, particularly at inclination angles below 1.5. This
indicates that more symmetric BBH systems may facilitate more precise estimations of coalescence
time under low SNR conditions.

The biases observed in parameter recovery across different mass ratios and inclination angles at
low SNRs highlight critical areas for improvement in our inference methodologies. The substantial
biases in luminosity distance and inclination angle at specific inclination ranges suggest that
current estimation techniques may require refinement to enhance accuracy. Future research should
focus on developing more robust inference algorithms capable of mitigating these biases, especially
for systems with higher mass ratios and varying inclination angles. Additionally, investigating
the impact of different SNR levels on these biases could provide deeper insights into optimizing
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parameter recovery techniques for diverse observational scenarios.
At a higher SNR of ρ = 62, as illustrated in Fig. 24, the parameter recovery dynamics exhibit

distinct behaviors compared to the lower SNR scenario. Specifically, the recovery of the mass ratio
(q) for values q = 0.2 and q = 0.5 shows slightly increased biases relative to the lower SNR case.
This indicates that, despite the higher SNR, certain mass ratios may still encounter challenges
in accurate parameter estimation. Conversely, for the higher mass ratio of q = 0.8, the recovery
process remains robust, particularly at lower inclination angles (ι < 2.3). This suggests that
more symmetric BBH systems benefit from higher SNRs, resulting in more reliable mass ratio
estimations under these conditions.

When examining the chirp mass (M), the results reveal that lower mass ratios (q = 0.2 and
q = 0.5) maintain commendable performance across varying inclination angles. These curves
demonstrate minimal bias, indicating effective parameter recovery even as inclination angles
change. In contrast, the chirp mass recovery for q = 0.8 exhibits a peak bias around ι = 1.9,
slightly surpassing the 2σ threshold. This peak suggests that at certain inclination angles, the es-
timation of chirp mass becomes more susceptible to bias, potentially due to the complex interplay
between mass ratio and orientation at higher SNRs.

The estimation of luminosity distance (DL) presents a more nuanced picture. For a mass
ratio of q = 0.2, the bias in luminosity distance increases steadily as the inclination angle ι rises.
This trend indicates that distance estimation becomes progressively less accurate with increasing
inclination angles for highly asymmetric systems. For q = 0.5, the bias curve reaches its maximum
at ι = 1.1 and subsequently decreases as ι continues to increase. This behavior highlights a peak
sensitivity in distance estimation around this inclination angle, followed by improved accuracy at
higher angles. However, for the highest mass ratio of q = 0.8, significant biases are observed at
multiple inclination angles, notably at ι = 1.3, ι = 1.7, and for ι > 2.1. These pronounced biases
suggest that distance estimation for more symmetric BBH systems can be particularly challenging
at these specific inclination angles, even at higher SNRs.

The recovery of the inclination angle (ι) itself generally shows an increasing bias trend as ι
increases. However, within the range of ι = 1.1 to ι = 1.3, local decreases in bias are observed,
indicating periods of improved estimation accuracy amidst the overall increasing trend. Notably,
all mass ratio curves exceed the 2σ threshold within this inclination angle range, underscoring
significant uncertainties in inclination angle recovery under these conditions. Additionally, for
q = 0.8, even larger biases emerge at inclination angles exceeding ι = 2.1, further emphasizing the
challenges in accurately estimating inclination angles for highly symmetric BBH systems at high
SNRs.

Finally, the recovery of coalescence time (tc) demonstrates favorable performance across all
examined mass ratios. Regardless of the mass ratio, coalescence time is accurately estimated,
indicating that this parameter is less susceptible to the biases observed in mass ratio, chirp mass,
luminosity distance, and inclination angle recoveries. This consistent performance suggests that
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coalescence time remains a robust parameter under high SNR conditions, providing reliable esti-
mates even as other parameters exhibit varying levels of bias.

Overall, the analysis at ρ = 62 reveals that while higher SNRs generally enhance parameter
recovery accuracy, certain mass ratios and inclination angles still pose significant challenges. The
increased biases observed for specific mass ratios and inclination angles highlight the need for
refined inference methods and further investigation to mitigate these discrepancies, ensuring more
accurate and reliable parameter estimations in BBH systems.

In our comparative analysis with the findings documented by Aditya Vijaykumar [80], we
observe consistent outcomes for binary systems characterized by lower total masses and a SNR
of approximately 20. Both studies demonstrate effective recovery of crucial source parameters,
specifically the chirp mass and the mass ratio of the binary system.

Notably, both studies identify an increasing trend in measurement bias for the luminosity
distance as the inclination angle (ι) increases. As ι approaches 90◦ (edge-on orientation), the
projection effects and relativistic beaming can introduce complexities in parameter estimation. In
our analysis, we observe that the bias in luminosity distance measurements grows with increasing
ι, reaching a peak around an inclination angle of ι = 1.3 radians. This peak suggests that there is
a particular orientation where the measurement bias is maximized, potentially due to the interplay
between GW amplitude modulation and the detector’s sensitivity pattern.

Interestingly, while Vijaykumar’s findings indicate a general increase in bias across all mass
ratios with rising inclination angles, our results reveal a deviation in systems with low mass ratios
(q = 0.2). Specifically, for these low mass ratio systems, the inclination angle decreases as ι
increases. This counterintuitive trend suggests that the relationship between inclination angle
and bias is not uniform across different mass ratios. The underlying cause may stem from the
distinct waveform characteristics of low mass ratio binaries, where the secondary object exerts a
significant influence on the overall GW signal morphology. Such systems might exhibit unique
dynamical behaviors or waveform features that mitigate the bias typically introduced by higher
inclination angles. Additionally, this deviation highlights potential variations in system dynamics
that could be influenced by factors such as spin-orbit coupling, or other astrophysical processes
not fully captured in existing waveform models.

For systems with higher SNRs, we observe a notable discrepancy between our results and
those reported in Aditya Vijaykumar’s study [80]. While Vijaykumar noted an increase in biases
across all recovered parameters for very low mass ratios (q) as the inclination angle (ι) increased,
our findings present a contrary trend. Specifically, our analysis reveals a decreasing trend in the
biases associated with the recovery of chirp mass, luminosity distance, and coalescence time at
higher SNRs. This divergence suggests that our modeling approach or data analysis methods
may respond differently under conditions of higher SNR, particularly for systems with low mass
ratios. One possible explanation is that higher SNRs provide more precise GW signal information,
allowing for better disentanglement of parameter degeneracies and thus reducing biases in param-
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eter estimation. Alternatively, differences in the waveform models, noise treatment, or statistical
inference techniques employed between the two studies could account for the observed discrep-
ancies. This divergence underscores the importance of continuous refinement and validation of
GW parameter estimation methods, especially as detectors become more sensitive and capable of
observing a wider variety of binary systems.

Overall, these comparative insights highlight the nuanced interplay between system parameters
such as mass ratio and inclination angle, and their impact on GW parameter estimation biases.
Understanding these relationships is crucial for improving the accuracy of GW measurements
and for refining theoretical models of binary mergers. Future work should focus on exploring
the underlying causes of these discrepancies, potentially through more sophisticated waveform
modeling, enhanced noise mitigation strategies, or the incorporation of additional physical effects
that may influence parameter recovery in GW observations.

5.2 Binary neutron star

We employ the IMRPhenomD_NRTidal waveform model to simulate BNS systems. In this context,
IMR represents the Inspiral-Merger-Ringdown framework. Specifically, IMRPhenomD is a phe-
nomenological model originally developed to describe GWforms from BBH mergers. The NRTidal
component adds corrections to account for tidal effects unique to NSs. As NSs merge, their in-
ternal structure and tidal deformability influence the emitted GWs, making these effects essential
for distinguishing BNS systems from BBHs.

For the simulation, we use sensitivity files from three detectors: H1, L1, and V1, and assume
Gaussian noise to simulate a realistic interferometric noise environment. The signal is sampled
at a frequency of 2048 Hz over a time duration of 32 seconds. The source is modeled using the
LALSuite (LIGO Algorithm Library Suite), with parameters consistent with the injected values.
These injected values include NS masses of 1.5M� and 1.3M�, aligned spins of 0.02 for both stars,
and tidal deformabilities of λ1 = 545 and λ2 = 1346. Additional parameters include a luminosity
distance of 50 Mpc, an inclination angle ι = 0.4 radians, a polarization angle ψ = 2.659 radians,
a phase φ = 1.3, and sky locations α = 1.375 radians and δ = −1.2108 radians.

Parameter estimation was performed using the nested sampler Dynesty.
Figure 25 and Figure 26 illustrate the posterior distributions for the M, q, χ1 and χ2, dL, θJN,

ψ, φ, α and δ, and tidal deformabilities (λ1 and λ2) obtained using Type-I and Type-II templates
for a BNS system. Both Type-I and Type-II images can recover the injected values very well,
except for the mass ratio and tidal deformabilities. In addition, the correlation of ψ and φ from
Type-II image shows an unexpected shape.
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Figure 25: The plots shows the distribution of posteriors of Type-I (red) and Type-II (blue)
templates for BNS. The SNR is 57.15.

6 Conclusion

In this thesis, we aimed to investigate the impact of gravitational lensing on GWs as they traverse
the massive cosmic structures in their journey to Earth. Specifically, we sought to determine
whether gravitational lensing, known to magnify, induce phase shifts, and cause time delays,
could be detected and how these effects might bias the interpretation of GW signals.

We first established a strong theoretical foundation by reviewing the production, propaga-
tion, and detection of GWs, with particular focus on instruments like LIGO and Virgo. Using
Bayesian inference for parameter estimation, we analyzed how effectively the posterior distribu-
tions recovered the injected parameters that define GWs. Additionally, we tested the efficiency
of the relative binning method on non-lensed binary NS systems, demonstrating its potential to
significantly reduce computational sampling time without introducing bias into the parameter
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Figure 26: The injected values of λ1 and λ2 are out of the range of posterior distributions in the
plot.

estimation results.
Our findings are compelling.

• In the wave optics regime, we derived a GW waveform that is magnified and distorted under
the influence of lensing and showed that within different impact parameters and lens masses
the amplification factor varies in both phase shift and magnification.

• In the geometric optics regime, we categorized the resulting lensed waveforms into three dis-
tinct types. Parameter estimation showed that at low SNR, significant bias in the recovered
sky location occurred for type-III images. As SNR increased, sky locations were accurately
recovered; however, key intrinsic parameters, such as mass ratio and chirp mass, remained
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challenging to estimate. For very low mass ratio, a significant bias occurred in recovering
luminosity distance for all images.

• With particular focus on the effects of inclination angles, we found that the biases tend to
increase with inclination angle for most parameters, especially for higher mass ratios (q = 0.5

and q = 0.8). Certain parameters, such as luminosity distance and inclination angle, show
systematic biases at specific ranges of ι when the SNR is low (ρ = 19.6).

• Higher SNR improves the recovery of some parameters, such as chirp mass and coalescence
time, with biases becoming more stable. However, biases in luminosity distance and inclina-
tion angle remain substantial, particularly for q = 0.8, where the highest peaks are observed
at larger inclination angles. Fluctuations in bias curves are more pronounced compared to
the lower SNR case, reflecting the interplay of signal strength and parameter sensitivity.

While gravitational lensing can introduce detectable biases into GW signals, these effects are
detailed and depend heavily on system-specific parameters like SNR, mass ratio, and inclination
angle. Future studies should focus on refining parameter estimation techniques in regimes where
lensing effects are prominent, in order to deepen our understanding of both GWs and the large-scale
structures that lens them.

However, challenges remain. Further investigation is required to improve parameter estimation
in the wave optics regime and gain deeper insights into gravitational lensing in this context. The
relative binning method, while effective for non-lensed events, presents limitations when applied
to lensed events. Future studies should also focus on non-lensed BBH systems to explore how
variations in injected parameter values affect posterior distributions. Additionally, the oscillatory
patterns observed in bias quantification need further simulations to fully understand their nature,
and the current research on BNSs is still incomplete and requires additional work.

In conclusion, this thesis represents a step forward in understanding how GWs interact with the
large-scale structures of the universe. While significant progress has been made, there is still much
to uncover. Future research, supported by next-generation detectors and advanced modeling, will
continue this journey, allowing GWs to be used as a tool not only to observe the universe’s most
violent events but also to map its structure on a cosmological scale. The exploration of GWs is
ongoing, and this work marks only the beginning of a larger scientific endeavor.
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