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In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by

tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it

encodes information about the body’s internal structure. We present a relativistic theory of Love numbers,

which applies to compact bodies with strong internal gravities; the theory extends and completes a recent

work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be

measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an

external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type

Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes

as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.
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I. INTRODUCTION AND SUMMARY

A. Context of this work

The exciting prospect of using gravitational-wave detec-
tors to measure the tidal coupling of two neutron stars
during the inspiral phase of their orbital evolution was
recently articulated by Flanagan and Hinderer [1,2]. The
idea is as follows. The orbital motion of a binary system of
neutron stars produces the emission of gravitational waves,
which remove energy and angular momentum from the
system. This causes the orbits to decrease in radius and
increase in frequency, and leads to the inspiraling motion
of the compact bodies. Late in the inspiral the gravitational
waves enter the frequency band of the detector, and de-
tailed features of the orbital motion are revealed in the
shape and phasing of the wave. At the large orbital sepa-
rations that correspond to the low-frequency threshold of
the instrument, the tidal interaction between the bodies is
negligible, and the bodies behave as point masses. As the
frequency increases, however, the orbital separation de-
creases sufficiently that the influence of the tidal interac-
tion becomes important. The bodies acquire a tidal
deformation, and this affects their gravitational field and
orbital motion; the effect is revealed in the shape and
phasing of the gravitational waves.

Flanagan and Hinderer have provided a quantitative
analysis of this story, and they have shown that the tidal
coupling between neutron stars is accessible to measure-
ment by the current generation of Earth-based
gravitational-wave detectors (such as Enhanced LIGO).
This prospect is exciting, because the details of the tidal
interaction depend on the internal structure of each body,
and the measurement can thus reveal important informa-
tion regarding the compactness of each body, as well as its

equation of state; and this information is released cleanly,
during the inspiral phase of the orbital evolution, well
before the messy merger of the two companions.

B. Newtonian theory of tidal Love numbers

The effect of the tidal interaction on the orbital motion
and gravitational-wave signal is measured by a quantity
known as the tidal Love number of each companion [3]. In
Newtonian gravity (see, for example, Ref. [4]), the tidal
Love number is a constant of proportionality between the
tidal field applied to the body and the resulting multipole
moment of its mass distribution. In the quadrupolar case,
the tidal field is characterized by the tidal moment
EabðtÞ :¼ �@abUext, in which the external Newtonian po-
tential Uext is sourced by the companion body and eval-
uated (after differentiation with respect to the spatial
coordinates) at the body’s center of mass. Because the
external potential satisfies Laplace’s equation in the body’s
neighborhood, the tidal-moment tensor is not only sym-
metric but also tracefree; it is a symmetric-tracefree (STF)
tensor.
The quadrupole moment is Qab :¼ R

�ðxaxb �
1
3�

abr2Þd3x, where � is the mass density inside the body,

xa is a Cartesian coordinate system whose origin is at the

center of mass, and r :¼ ð�abx
axbÞ1=2 is the distance to the

center of mass; the quadrupole moment is another STF
tensor. In the absence of a tidal field, the body would be
spherical, and its quadrupole moment would vanish. In the
presence of a (weak) tidal field, the quadrupole moment is
proportional to the tidal field, and dimensional analysis
requires an expression of the form Qab ¼ � 2

3 k2R
5Eab.

(We use relativistic units and set G ¼ c ¼ 1.) Here R is
the body’s radius, and the factor of 2

3 is conventional; the
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dimensionless constant k2 is the tidal Love number for a
quadrupolar deformation. Using these expressions, the
Newtonian potential outside the body can be written as a
sum of body and external potentials, and we have

U ¼ M

r
� 1

2
½1þ 2k2ðR=rÞ5�EabðtÞxaxb: (1.1)

The first term is evidently the monopole piece of the
potential, which depends on the body’s mass M. Within
the square brackets, the first term represents the applied
tidal field, and the second term is the body’s response,
measured in terms of the Love number k2.

In Eq. (1.1) the total potential was truncated to the
leading, quadrupole order in a Taylor expansion of the
external potential; additional terms would involve tidal
moments of higher multipole orders, and higher powers
of the coordinates xa. When the tidal field is a pure multi-
pole of order l, Eq. (1.1) generalizes to

U ¼ M

r
� 1

ðl� 1Þl ½1þ 2klðR=rÞ2lþ1�ELðtÞxL: (1.2)

Here kl is the Love number for this multipolar configura-
tion, and L :¼ a1a2 � � �al is a multi-index that contains a
number l of individual indices. The tidal moment is now
defined by ELðtÞ :¼ �@LUext=ðl� 2Þ!, and it is symmetric
and tracefree in all pairs of indices. We also introduced
xL :¼ xa1xa2 � � � xal . In this generalized case the l-pole

moment of the mass distribution is the STF tensor QL :¼R
�xhLid3x, where the angular brackets indicate that all

traces must be removed from the tensor xL; it is related
to the tidal moment by QL ¼ �½2ðl� 2Þ!=ð2l�
1Þ!!�klR2lþ1EL.

C. Purpose of this work

Our purpose in this paper is to introduce a precise notion
of tidal Love numbers in general relativity, something that
was not pursued in the original work by Flanagan and
Hinderer [1,2]. In fact, we provide precise definitions for
two types of tidal Love numbers: an electric-type Love
number kel that has a direct analogy with the Newtonian
Love number introduced previously, and a magnetic-type
Love number kmag that has no analogue in Newtonian

gravity. Magnetic-type Love numbers were introduced in
post-Newtonian theory in the works of Damour, Soffel, and
Xu [5] and Favata [6]. Our definitions apply to gravita-
tional fields that are arbitrarily strong, and to (weak) tidal
deformations of any multipolar order.

Our relativistic Love numbers are defined within the
context of linear perturbation theory, in which an initially
spherical body is perturbed slightly by an applied tidal
field. Our definitions are restricted to slowly changing tidal
fields; this means that while a tidal moment such as ELðtÞ
does depend on time, to reflect the changes in the external
distribution of matter, the dependence is sufficiently slow
that the body’s response presents only a parametric depen-

dence upon time. This allows us to ignore time-derivative
terms in the field equations, because they are much smaller
than the spatial-derivative terms. For all practical purposes
the perturbation is stationary, and t appears as an adiabatic
parameter.
Gravitational perturbations of spherically symmetric

bodies are described by a metric perturbation p�� that

can be decomposed into tensorial spherical harmonics;
each multipole can be considered separately. The complete
spacetime metric is g�� ¼ g0�� þ p��, with g0�� denoting

the (spherically symmetric) metric of the unperturbed
body. We work in the body’s immediate neighborhood,
and the external bodies that create the (multipolar) tidal
field are assumed to live outside this neighborhood. To
define the relativistic Love numbers it is sufficient to con-
sider the vacuum region external to the body, and to con-
struct g�� in this region only; this metric will be a solution

to the vacuum field equations, and will represent the rela-
tivistic generalization of Eq. (1.2). To compute the Love
numbers it is necessary to construct g�� in the body’s

interior also, and this requires the formulation of a stellar
model. The external problem therefore applies to any type
of body, while the internal problem refers to a specific
choice of equation of state.

D. External problem

We review the external problem first. We erect a coor-
dinate system ðv; r; �; �Þ that is intimately tied to the
behavior of light cones: The advanced-time coordinate v
is constant on past light cones that converge toward the
center at r ¼ 0, r is both an areal radius and an affine-
parameter distance along the null generators of each light
cone, and the angular coordinates �A ¼ ð�;�Þ are constant
on each generator. This choice of coordinates is inherited
from previous work on the tidal deformation of black holes
[7].
In these coordinates the external metric of the unper-

turbed body is given by ds20 ¼ �fdv2 þ 2dvdrþ r2d�2,

in which f :¼ 1� 2M=r and d�2 :¼ d�2 þ sin2�d�2;
this is the Schwarzschild metric presented in Eddington-
Finkelstein coordinates. To construct the perturbation we
impose the light-cone gauge conditions pvr ¼ prr ¼
pr� ¼ pr� ¼ 0 to ensure that the coordinates keep their

geometrical meaning in the perturbed spacetime [8]. (This
property makes the light-cone gauge superior to the popu-
lar Regge-Wheeler gauge, which does not provide the
coordinates with any geometrical meaning.) A perturbation
of multipole order l can be decomposed into even-parity
and odd-parity sectors, and each sector must be a solution
to the Einstein field equations linearized about the
Schwarzschild metric.
The even-parity sector is generated by the electric-type

tidal moment ELðvÞ, an STF tensor defined in a quasi-
Cartesian system xa related in the usual way to the spheri-
cal coordinates ðr; �AÞ. The ð2lþ 1Þ independent compo-
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nents of this tensor can be encoded in the functions EðlÞ
m ðvÞ,

in which the azimuthal index m is an integer within the

interval�l � m � l; the encoding is described by ELx
L ¼

rl
P

mE
ðlÞ
m Ylmð�AÞ, in which Ylm are the usual spherical-

harmonic functions. We define the tidal potentials

EðlÞðv; �AÞ ¼ X
m

EðlÞ
m ðvÞYlmð�AÞ; (1.3a)

EðlÞ
A ðv; �AÞ ¼ 1

l

X
m

EðlÞ
m ðvÞYlm

A ð�AÞ; (1.3b)

EðlÞ
ABðv; �AÞ ¼

2

lðl� 1Þ
X
m

EðlÞ
m ðvÞYlm

ABð�AÞ; (1.3c)

in which Ylm
A and Ylm

AB are vector and tensor spherical
harmonics of even parity; these are defined in Sec. II.

The odd-parity sector is generated by the magnetic-type
tidal moment BLðvÞ, another STF tensor whose indepen-
dent components can be encoded (as previously) in the

functions BðlÞ
m ðvÞ. The odd-parity tidal potentials are

BðlÞ
A ðv; �AÞ ¼ 1

l

X
m

BðlÞ
m ðvÞXlm

A ð�AÞ; (1.4a)

BðlÞ
ABðv; �AÞ ¼

2

lðl� 1Þ
X
m

BðlÞ
m ðvÞXlm

ABð�AÞ; (1.4b)

in which Xlm
A and Xlm

AB are vector and tensor spherical
harmonics of odd parity; these also are defined in Sec. II.

There is no scalar potential BðlÞ in the odd-parity sector.
The metric outside any spherical body deformed by a

tidal environment characterized by the tidal moments EL

and BL is calculated in Sec. III. It is given by

gvv ¼ �f� 2

ðl� 1Þl r
le1ðrÞEðlÞ; (1.5a)

gvr ¼ 1; (1.5b)

gvA ¼ � 2

ðl� 1Þðlþ 1Þ r
lþ1e4ðrÞEðlÞ

A

þ 2

3ðl� 1Þ r
lþ1b4ðrÞBðlÞ

A ; (1.5c)

gAB ¼ r2�AB � 2

lðlþ 1Þ r
lþ2e7ðrÞEðlÞ

AB þ 2

3l
rlþ2b7ðrÞBðlÞ

AB:

(1.5d)

The radial functions are

e1 ¼ A1 þ 2kelðR=rÞ2lþ1B1; (1.6a)

e4 ¼ A4 � 2
lþ 1

l
kelðR=rÞ2lþ1B4; (1.6b)

e7 ¼ A7 þ 2kelðR=rÞ2lþ1B7; (1.6c)

b4 ¼ A4 � 2
lþ 1

l
kmagðR=rÞ2lþ1B4; (1.6d)

b7 ¼ A7 þ 2kmagðR=rÞ2lþ1B7; (1.6e)

with

A1 :¼ f2Fð�lþ 2;�l;�2l; 2M=rÞ; (1.7a)

B1 :¼ f2Fðlþ 1; lþ 3; 2lþ 2; 2M=rÞ; (1.7b)

A4 :¼ Fð�lþ 1;�l� 2;�2l; 2M=rÞ; (1.7c)

B4 :¼ Fðl� 1; lþ 2; 2lþ 2; 2M=rÞ; (1.7d)

A7 :¼ lþ 1

l� 1
Fð�l;�l;�2l; 2M=rÞ

� 2

l� 1
Fð�l;�l� 1;�2l; 2M=rÞ; (1.7e)

B7 :¼ l

lþ 2
Fðlþ 1; lþ 1; 2lþ 2; 2M=rÞ

þ 2

lþ 2
Fðl; lþ 1; 2lþ 2; 2M=rÞ: (1.7f)

Here R is the body’s radius, and Fða; b; c; zÞ is the hyper-
geometric function. The functions An are finite polyno-
mials in 2M=r, while the functions Bn have nonterminating
expansions in powers of 2M=r; for selected values of l they
can be expressed in terms of elementary functions such as
lnð1� 2M=rÞ and finite polynomials (see Table I in
Sec. III). Each one of these functions goes to 1 as r goes
to infinity. And while An is finite at r ¼ 2M, we observe
that Bn diverges logarithmically when r ! 2M.
The metric of Eqs. (1.5) is valid in a neighborhood of the

deformed body, and it provides a definition for the electric-
type Love numbers kel and the magnetic-type Love num-
bers kmag; these refer to the multipole order l, but we

suppress the use of this label to keep the notation clean.
While the definitions seem to rely on a specific choice of
gauge for the metric perturbation, we prove in Sec. III that
our Love numbers are gauge invariant.
When the tidal moments are switched off, the metric

reduces to the Schwarzschild metric expressed in the light-
cone coordinates ðv; r; �AÞ. When the mass parameterM is
set equal to zero, the metric describes the neighborhood of
a geodesic world line in a Ricci-flat spacetime. In this limit
the tidal moments can be related to the derivatives of the
Weyl tensor evaluated at r ¼ 0. According to Eq. (1.3) of
Ref. [9], we have that EL ¼ ½ðl� 2Þ!��1ðCta1ta2;a3���alÞSTF
and BL ¼ ½23 ðlþ 1Þðl� 2Þ!��1ð�a1bcCbc

a2t;a3���alÞSTF,
where �abc is the permutation symbol and the tensor com-
ponents are listed in the quasi-Lorentzian coordinates (t :¼
v� r, xa); the STF superscript indicates that the an indices
are symmetrized and all traces are removed. In the space-
time of Eq. (1.5) the tidal moments EL and BL retain a
similar relationship with the Weyl tensor, with the under-
standing that the relations are now approximate and refer to
the asymptotic behavior of the Weyl tensor for r � M.
The perturbed metric of Eq. (1.5) can be compared with

the Newtonian potential of Eq. (1.2). We define an effective
Newtonian potential Ueff by gvv ¼ �ð1� 2UeffÞ, and our
expression for gvv implies that, in general relativity,

Ueff ¼ �M

r
� 1

ðl� 1Þl ½A1 þ 2kelðR=rÞ2lþ1B1�ELðvÞxL:
(1.8)
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In the nonrelativistic limit, A1 and B1 are both approxi-
mately equal to unity, and we recover Eq. (1.2); the
electric-type Love number kel reduces to the Newtonian
number kl. In the strong-field regime we still recognize the
A1 term as coming from the applied tidal field, while the B1

term is clearly associated with the body’s response. There
is no confusion between these terms, because the structure
of A1 is that of the finite polynomial 1þ � � � þ �ð2M=rÞl,
which does not contain a term of order ð2M=rÞ2lþ1; � is a
numerical factor that can be determined by expanding the
hypergeometric function. Because r is geometrically well
defined, we can always distinguish the tidal terms from the
body terms in the metric.

The light-cone coordinates ðv; r; �AÞ are well behaved
across an eventual event horizon of the perturbed space-
time, and our formalism is capable of handling black holes
as well as material bodies. In general, however, the metric
of Eqs. (1.5) is not regular at the event horizon, because of
the presence of the Bn functions, which diverge logarithmi-
cally in the limit r ! 2M. To represent a perturbed black
hole the metric must be devoid of these terms, and this can
be accomplished by assigning kel ¼ kmag ¼ 0 to a black

hole. This is one of the major conclusions of this work: The
relativistic Love numbers of a nonrotating black hole are
all zero. This result is contained implicitly in Ref. [7], but
the formalism of this paper permits a much clearer articu-
lation of this property.

E. Internal problem

To compute the relativistic Love numbers for a selected
stellar model requires the construction of the internal met-
ric (also expressed as a sum of unperturbed solution and
linear perturbation) and its matching with the external
metric at the perturbed boundary of the matter distribution.
We carry out this exercise in Secs. IV and V, adapting the
formalism of Thorne and Campolattaro [10] to our light-
cone coordinates. We take the body to consist of a perfect
fluid with a polytropic equation of state

p ¼ K�1þ1=n: (1.9)

Here p is the fluid’s pressure, � its proper energy density,K
is a constant, and n is the polytropic index (another
constant).

Our results are presented in Figs. 1–8, and tables of
values are provided in the Appendix (Tables III–XXX).
In each figure we plot the Love number for a selected
multipole order (from l ¼ 2 to l ¼ 5), and for selected
values of the polytropic index n (from n ¼ 0:5 to n ¼
2:0), as a function of the stellar compactness parameter
C :¼ 2M=R; this ranges from C ¼ 0—a weak-field,
Newtonian configuration—to C ¼ Cmax, with Cmax repre-
senting the compactness of the maximum-mass configura-
tion for the selected equation of state.

For the electric-type Love numbers we observe the
following features. (i) At C ¼ 0 we recover the

Newtonian values for polytropes, as tabulated by Brooker
and Olle [11]. (ii) For a constant C, kel decreases as the
polytropic index increases; this reflects the fact that as n
increases, the matter distribution becomes increasingly
concentrated near the center, which inhibits the develop-
ment of large multipole moments. (iii) For a constant n, kel
decreases as the compactness parameter increases; this
reflects the fact that as C increases, the strength of the
internal gravity increases, which produces an increased
resistance to tidal deformations.
For the magnetic-type Love numbers we observe the

following features. (i) At C ¼ 0 the Love numbers are all
zero; this reflects the fact that the magnetic-type tidal
coupling is a purely relativistic effect that has a vanishing
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FIG. 1 (color online). Electric-type Love numbers for l ¼ 2,
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FIG. 6 (color online). Magnetic-type Love numbers for l ¼ 4.
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FIG. 3 (color online). Electric-type Love numbers for l ¼ 3.
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FIG. 4 (color online). Magnetic-type Love numbers for l ¼ 3.
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FIG. 5 (color online). Electric-type Love numbers for l ¼ 4.
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FIG. 7 (color online). Electric-type Love numbers for l ¼ 5.
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FIG. 8 (color online). Magnetic-type Love numbers for l ¼ 5.
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Newtonian limit. (ii) For a constant C, kmag decreases as

the polytropic index increases; this is explained as in the
preceding paragraph. (iii) For a constant n, kmag first in-

creases as C increases, but then it decreases after reaching
a maximum; this reflects the fact that the magnetic-type
tidal coupling is the result of an internal competition: A
strong field is required to produce an effect in the first
place, but it eventually causes a large resistance to tidal
deformation.

F. Damour and Nagar

After this work was completed we witnessed the appear-
ance of an article by Damour and Nagar [12] in which
almost identical work is presented. Their paper, like ours,
is concerned with the tidal deformation of compact bodies
in full general relativity, and presents precise definitions
for electric-type and magnetic-type Love numbers. And
their paper, like ours, presents computations of Love num-
bers for selected matter models. Their coverage of the
parameter space is wider: Damour and Nagar examine
two types of polytropic equations of state, and two tabu-
lated equations of state for realistic nuclear matter. In
addition, Damour and Nagar define and compute ‘‘shape
Love numbers,’’ something that we did not pursue in this
work.

There are superficial differences between our treat-
ments. One concerns the choice of coordinates: Damour
and Nagar work in Schwarzschild coordinates and adopt
the Regge-Wheeler gauge for the metric perturbation; we
work in Eddington-Finkelstein coordinates and the light-
cone gauge. Another concerns notation: We adopt different
normalization conditions for the Love numbers and the
tidal moments. These differences are not important.

A more significant difference concerns the conclusion
that the tidal Love numbers of a black hole must be zero. In
this paper we boldly proclaim this conclusion, which we
firmly believe to be a correct interpretation of our results.
Damour and Nagar, however, shy away from the conclu-
sion, although they agree with us on the basic results. We
do not understand the reasons behind this reluctance.
Damour and Nagar comment on the need to understand
‘‘diverging diagrams that enter the computation of inter-
acting black holes at the five-loop (or 5PN) level’’ before
reaching a conclusion. But since the results presented here
do not rely at all on a post-Newtonian expansion of the field
equations, the fate of 5PN terms in a post-Newtonian
representation of interacting black holes seems to us to
be irrelevant. We point out, also, that the Damour-Nagar
work does not provide a very clean foundation for the tidal
deformation of black holes, because their coordinate sys-
tem is ill behaved on the event horizon. Our light-cone
coordinates were selected precisely because they permit a
unified treatment of material bodies and black holes.

Aside from this issue of interpretation, and as far as we
can judge, the results presented here are in complete agree-

ment with the Damour-Nagar results. The Damour-Nagar
work was carried out in complete independence from us,
and our work was carried out in complete independence
from them. The near-simultaneous completion of our
works provides evidence that the problem is interesting
and timely, and the agreement is a reassuring confirmation
that each team performed their calculations without error.

G. Fang and Lovelace

The deformation of a black hole produced by an applied
tidal field was previously examined by Fang and Lovelace
[13], who concluded thatQab ¼ 0when the perturbation is
expressed in Regge-Wheeler gauge. Fang and Lovelace
therefore anticipated our result that the quadrupole,
electric-type Love number of a black hole is zero. These
authors, however, qualified their conclusion by raising
doubts about the gauge invariance of the result, and claim-
ing that the induced quadrupole moment of a tidally de-
formed black hole is inherently ambiguous. We do not
share these reservations.
We first discuss the issue of gauge invariance. The argu-

ment advanced by Fang and Lovelace in favor of a gauge
dependence of the tidal Love number goes as follows. In

Newtonian theory, the coordinate transformation r ¼
�r½1þ 2	ðR=�rÞ5�1=2, where 	 is an arbitrary constant, turns
a pure tidal potential Eabx

axb into ½1þ 2	ðR=�rÞ5�Eab �x
a �xb,

which appears to describe a sum of tidal and body poten-
tials; the transformation shifts the Love number by 	. Fang
and Lovelace correctly dismiss this coordinate dependence
as irrelevant in Newtonian theory, because r has a well-
defined meaning, but they point out that in a relativistic
context, the coordinate transformation could be viewed as a
change of gauge. The implication, then, is that the relativ-
istic Love number can be altered by a gauge transforma-
tion. Notice that the argument applies to all types of
compact bodies: material bodies and black holes.
We do not accept the validity of this argument. The

coordinate transformation considered by Fang and
Lovelace is not of a type that can be associated with a
gauge transformation of the perturbation theory. A gauge
transformation necessarily involves coordinate displace-
ments that are of the same order of magnitude as the
perturbation field. But the transformation from r to �r
does not involve the perturbation at all, and represents a
large change of the background coordinates. The new
coordinate �r does not share the geometrical properties of
the original r, and one would easily be able to distinguish
the two coordinate systems. The argument, therefore, does
not make a case for the gauge dependence of the Love
numbers. And in fact, the gauge invariance of kel and kmag

for all types of compact bodies (material bodies and black
holes) is established in Sec. III.
We next discuss the issue of ambiguity. Unlike Fang and

Lovelace, we believe that the relativistic Love numbers of
compact bodies, as defined in this paper, are well defined
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and completely devoid of ambiguity. The reason is that the
metric of Eqs. (1.5), which is presented in coordinates that
have clear geometrical properties, defines a perfectly well-
defined spacetime geometry. Given this spacetime, one
could, in principle, monitor the motion of test masses
and light rays and thereby measure its detailed features,
including the mass M, the tidal moments EL and BL, and
the Love numbers. These measurements would contain no
ambiguities.

The ambiguity identified by Fang and Lovelace con-
cerns the coupling of Qab, the induced quadrupole mo-
ment, to Eabc, the octupole moment of the applied tidal
field. According to Newtonian ideas, this coupling should
lead to a force Fa ¼ � 1

2 E
a
bcQ

bc acting on the compact

body. (Once more, the argument applies to all types of
compact bodies.) Fang and Lovelace associate Fa with
_PaðrÞ, the rate of change of three-momentum contained
within a world tube of radius r that surrounds the compact
body; this is calculated by integrating the flux of Landau-
Lifshitz energy-momentum pseudotensor across the world
tube. They observe that the result is indeed proportional to
Ea

bcQ
bc, but that the coefficient in front depends on r.

They interpret this as a statement that the force is ambig-
uous, assign the ambiguity to Qab, and conclude that the
induced quadrupole moment of a tidally deformed compact
body is inherently ambiguous.

We believe that the ambiguity in _PaðrÞ is genuine—the
result does depend on the world tube’s radius. It is hasty,
however, to conclude from this that Fa itself is ambiguous,
because force calculations that rely on techniques of
matched asymptotic expansions [14,15] must involve a
limiting procedure in which both M and r are taken to
approach zero. Although ambiguities remain in this proce-
dure, they are much smaller than those claimed by Fang
and Lovelace. At the accuracy level of our calculations, the
induced quadrupole moment of a tidally deformed compact
body is not ambiguous.

H. Suen

An earlier determination of the induced quadrupole mo-
ment of a tidally deformed black hole was made by Suen
[16], who examined the specific case of a black hole
perturbed by an axisymmetric ring of matter. Suen found
that the black-hole quadrupole moment is Qab ¼
þ 4

21M
5Eab, so that it gives rise to a negative Love number,

kel ¼ � 1
122 . This result contradicts our own results.

Suen’s result is wrong. The starting point of Suen’s
analysis is the perturbed metric presented in Eq. (2.6) of
his paper. It is easy to show that while the metric does
indeed satisfy the Einstein field equations (up to terms that
are quadratic in the small parameter A), it fails to be regular
at the event horizon. The metric does not, therefore, rep-
resent a perturbed black hole, and the nonzero result for kel
is a consequence of this fact. The regularity of the metric
perturbation p�� at r ¼ 2M can be judged by examining

its components in the light-cone coordinates ðv; r; �; �Þ,
which are regular on the event horizon. A simple calcu-
lation reveals that in Suen’s notation, prr ¼ �2ð2U�
VÞ=f, where f ¼ 1� 2M=r. This is singular at r ¼ 2M
unless 2U� V vanishes there, but Eqs. (2.7) of Suen’s
paper show instead that 2U� V ! AM2 in the limit. The
perturbation is singular.

I. Organization of the paper

In the remaining sections of this paper we present the
details of our analysis, and describe how the results re-
viewed previously were obtained. We begin in Sec. II with
a discussion of tidal moments and tidal potentials, and
motivate the definitions presented in Eqs. (1.3) and (1.4).
In Sec. III we solve the external problem, and show that the
metric of Eqs. (1.5) is a solution to the vacuum field
equations linearized about the Schwarzschild metric. In
Sec. IV we formulate the internal problem for general
stellar models, and we specialize this to polytropes in
Sec. V. In Sec. VI we review the numerical techniques
that were employed to generate the figures and the tables
displayed in the Appendix.

II. TIDAL MOMENTS AND POTENTIALS

A spherical stellar model is perturbed by an external
tidal field characterized by the electric-type tidal moments
ELðvÞ and the magnetic-type tidal moments BLðvÞ. These
are STF tensors, and L is a multi-index that contains a
number l of individual indices. The tidal moments depend
on v (and not on the spatial coordinates), but this time
dependence is taken to be so slow that all v derivatives will
be ignored in the Einstein field equations.
We begin our discussion of tidal potentials by adopting

quasi-Cartesian coordinates xa related in the usual way to
our spherical coordinates ðr; �AÞ. We write the transforma-
tion as xa ¼ r�að�AÞ, with �a ¼ ½sin� cos�; sin� sin�;
cos�� denoting the unit radial vector. We introduce


ab :¼ �ab ��a�b (2.1)

as the projector to the transverse space orthogonal to �a,
and we let�a

A
:¼ @�a=@�A. We note the helpful identities

�a�
a
A ¼ 0; (2.2a)

�AB ¼ 
ab�
a
A�

b
B ¼ �ab�

a
A�

b
B; (2.2b)

�AB�a
A�

b
B ¼ 
ab: (2.2c)

Here �AB ¼ diag½1; sin2�� is the metric on the unit two-
sphere, and �AB is its inverse. We introduce DA as the
covariant-derivative operator compatible with �AB, and
�AB as the Levi-Civita tensor on the unit two-sphere
(with nonvanishing components ��� ¼ ���� ¼ sin�). In

addition to Eqs. (2.2) we also have
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�AB ¼ �abc�
a
A�

b
B�

c; (2.3a)

�A
B�b

B ¼ ��a
A�ap

b�p; (2.3b)

DADB�
a ¼ DBDA�

a ¼ ��a�AB: (2.3c)

Here and below, uppercase Latin indices are raised and
lowered with �AB and �AB, respectively. Finally, we note
that DC�AB ¼ DC�AB ¼ 0.

For an electric-type tidal moment EL of degree l � 2,
the Cartesian versions of the tidal potentials are defined by

EðlÞ :¼ EL�
L; (2.4a)

EðlÞ
a :¼ 
a

cEcL�1�
L�1; (2.4b)

EðlÞ
ab

:¼ 2
a
c
b

dEcdL�2�
L�2 þ 
abEðlÞ: (2.4c)

Here EðlÞ is a scalar potential, EðlÞ
a is a transverse vector

potential, and EðlÞ
ab is a transverse-tracefree tensor potential.

The angular versions of the tidal potentials are

EðlÞ ¼ EL�
L; (2.5a)

EðlÞ
A

:¼ EðlÞ
a �a

A ¼ �a
AEaL�1�

L�1; (2.5b)

EðlÞ
AB

:¼ EðlÞ
ab�

a
A�

b
B ¼ 2�a

A�
b
BEabL�2�

L�2 þ�ABEðlÞ:
(2.5c)

For a magnetic-type tidal moment BL of degree l � 2,
the Cartesian versions of the tidal potentials are defined by

BðlÞ
a :¼ �apq�

pBq
L�1�

L�1; (2.6a)

BðlÞ
ab

:¼ ð�apq�pBq
dL�2


d
b þ �bpq�

pBq
cL�2


c
aÞ�L�2:

(2.6b)

Here BðlÞ
a is a transverse vector potential, and BðlÞ

ab is a

transverse-tracefree tensor potential; there is no scalar
potential in the magnetic case. The angular versions of
the tidal potentials are

BðlÞ
A

:¼ BðlÞ
a �a

A ¼ �a
A�apq�

pBq
L�1�

L�1; (2.7a)

BðlÞ
AB

:¼ BðlÞ
ab�

a
A�

b
B ¼ ð�a

A�apq�
pBq

bL�2�
b
B

þ�b
B�bpq�

pBq
aL�2�

a
AÞ�L�2: (2.7b)

The tidal potentials can all be expressed in terms of
(scalar, vector, and tensor) spherical harmonics. Let Ylm

be the standard (scalar) spherical-harmonic functions.
The vector and tensor harmonics of even parity are Ylm

A
:¼

DAY
lm,�ABY

lm, and Ylm
AB

:¼ ½DADB þ 1
2 lðlþ 1Þ�AB�Ylm;

notice that �ABYlm
AB ¼ 0 by virtue of the eigenvalue equa-

tion satisfied by the spherical harmonics. The vector and
tensor harmonics of odd parity are Xlm

A
:¼ ��A

BDBY
lm

and Xlm
AB

:¼ � 1
2 ð�ACDB þ �B

CDAÞDCY
lm; Xlm

AB also is

tracefree: �ABXlm
AB ¼ 0.

We first express the electric-type tidal potentials in terms

of the even-parity spherical harmonics. We begin with EðlÞ,

which we decompose as

E ðlÞðv; �AÞ ¼ X
m

EðlÞ
m ðvÞYlmð�AÞ; (2.8)

in terms of harmonic components EðlÞ
m ðvÞ. There are 2lþ 1

terms in the sum, and the 2lþ 1 independent components
of EL are in a one-to-one correspondence with the 2lþ 1

coefficients EðlÞ
m . Returning to the original representation of

Eq. (2.4), we find after differentiation that DAEðlÞ ¼
l�a

AEaL�1�
L�1, and we conclude that

E ðlÞ
A ¼ 1

l
DAEðlÞ ¼ 1

l

X
m

EðlÞ
m Ylm

A : (2.9)

An additional differentiation using the last of

Eqs. (2.3) reveals that DADBEðlÞ ¼ �l�ABEðlÞ þ lðl�
1Þ�a

A�
b
BEabL�2�

L�2. From this we conclude that

E ðlÞ
AB ¼ 2

lðl� 1Þ
�
DADB þ 1

2
lðlþ 1Þ�AB

�
EðlÞ

¼ 2

lðl� 1Þ
X
m

EðlÞ
m Ylm

AB: (2.10)

We next express the magnetic-type potentials in terms of

the odd-parity spherical harmonics. We begin with BðlÞ :¼
BL�

L and its decomposition BðlÞ ¼ P
mB

ðlÞ
m Ylmð�AÞ.

Differentiating the first expression, multiplying this
by the Levi-Civita tensor, and involving the second

of Eqs. (2.3) returns �A
BDBBðlÞ ¼

�l�a
A�apq�

pBq
L�1�

L�1. From this we conclude that

B ðlÞ
A ¼ 1

l
ð��A

BDBÞBðlÞ ¼ 1

l

X
m

BðlÞ
m Xlm

A : (2.11)

A second differentiation yields ��A
CDBDCBðlÞ ¼

l�ABBðlÞ þ lðl� 1Þ�a
A�apq�

pBq
bL�2�

b
B�

L�2, and after

symmetrization we obtain

B ðlÞ
AB ¼ � 1

lðl� 1Þ ð�A
CDB þ �B

CDAÞDCBðlÞ

¼ 2

lðl� 1Þ
X
m

BðlÞ
m Xlm

AB: (2.12)

III. EXTERNAL PROBLEM

A. Even-parity sector

In this subsection we determine the tidal deformation of
the metric outside the matter distribution, in the even-
parity sector. The unperturbed external solution is the
Schwarzschild metric

ds20 ¼ �fdv2 þ 2dvdrþ r2d�2; (3.1)

with f :¼ 1� 2M=r and M denoting the body’s mass; the
metric is valid for r > R, where R is the body’s radius. We
employ the perturbation formalism of Martel and Poisson
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[17], and implement the light-cone gauge of Preston and
Poisson [8].

In the light-cone gauge the even-parity metric perturba-
tion is given by

pvv ¼ X
m

hlmvvðrÞYlmð�AÞ; (3.2a)

pvA ¼ X
m

jlmv ðrÞYlm
A ð�AÞ; (3.2b)

pAB ¼ r2
X
m

KlmðrÞ�ABY
lmð�AÞ þ r2

X
m

GlmðrÞYlm
ABð�AÞ:

(3.2c)

We consider each l mode separately, and we henceforth
omit the label lm on the perturbation variables hvv, jv, K,
and G, which depend on r only. As discussed by Preston
and Poisson, Klm can always be set equal to zero when the
perturbation satisfies the vacuum field equations; this rep-
resents a refinement of the light-cone gauge, and we shall
make this choice here.

To simplify the task of solving the field equations, we set

hvv ¼ � 2

ðl� 1Þl r
le1ðrÞEðlÞ

m ; (3.3a)

jv ¼ � 2

ðl� 1Þlðlþ 1Þ r
lþ1e4ðrÞEðlÞ

m ; (3.3b)

G ¼ � 4

ðl� 1Þl2ðlþ 1Þ r
le7ðrÞEðlÞ

m ; (3.3c)

where the functions e1ðrÞ, e4ðrÞ, and e7ðrÞ are to be deter-
mined. Substitution of Eqs. (3.3) into Eq. (3.2) produces

pvv ¼ � 2

ðl� 1Þl r
le1ðrÞEðlÞ; (3.4a)

pvA ¼ � 2

ðl� 1Þðlþ 1Þ r
lþ1e4ðrÞEðlÞ

A ; (3.4b)

pAB ¼ � 2

lðlþ 1Þ r
lþ2e7ðrÞEðlÞ

AB; (3.4c)

where EðlÞ, EðlÞ
A , and EðlÞ

AB are the tidal potentials introduced

in Eq. (2.5).
The motivation behind the introduction of the functions

e1, e4, and e7 goes as follows. We first observe that when
we set e1 ¼ e4 ¼ e7 ¼ 1, the perturbation defined by
Eqs. (3.3) or Eqs. (3.4) satisfies the equations of linearized
theory for a perturbation of Minkowski spacetime. This
exercise reveals that hvv must be proportional to rl, jv to
rlþ1, and G to rl; the relative numerical coefficients be-
tween these fields are also determined by solving the
perturbation equations in flat spacetime. The remaining
absolute numerical coefficient that relates the perturbation
to the tidal moment EL is determined by the definition of
the tidal moment in terms of the Weyl tensor of the
perturbed spacetime; this coefficient—the factor�2=½ðl�
1Þl� in hvv—can be read off Eq. (3.26a) of Ref. [9].
Inserting the functions e1, e4, and e7 in Eqs. (3.3) allows

the perturbation to be a solution to the Einstein field
equations linearized about the Schwarzschild metric in-
stead of the Minkowski metric. We impose the boundary
conditions

e1ðr ! 1Þ ¼ e4ðr ! 1Þ ¼ e7ðr ! 1Þ ¼ 1: (3.5)

The field equations do not determine these functions
uniquely. The light-cone gauge comes with a class of

TABLE I. Functions An and Bn for selected values of l, expressed in terms of z :¼ 2M=r. The numbers �l and �l are given by
�l ¼ ð2lÞ!ð2lþ 1Þ!=½ðl� 2Þ!ðl� 1Þ!ðlþ 1Þ!ðlþ 2Þ!� and �l ¼ ðlþ 1Þ�l=l.

l ¼ 2 �2 ¼ 30, �2 ¼ 20
A1 ¼ ð1� zÞ2 z5B1 ¼ ��2A1 lnð1� zÞ � 5

2 zð2� zÞð6� 6z� z2Þ
A4 ¼ 1� z z5B4 ¼ �2A4 lnð1� zÞ þ 5

3 zð12� 6z� 2z2 � z3Þ
A7 ¼ 1� 1

2 z
2 z5B7 ¼ ��2A7 lnð1� zÞ � 5zð6þ 3z� z2Þ

l ¼ 3 �3 ¼ 840, �3 ¼ 630
A1 ¼ 1

2 ð1� zÞ2ð2� zÞ z7B1 ¼ ��3A1 lnð1� zÞ � 7zð120� 240zþ 130z2 � 10z3 � z4Þ
A4 ¼ 1

3 ð1� zÞð3� 2zÞ z7B4 ¼ �3A4 lnð1� zÞ þ 7
2 zð180� 210zþ 30z2 þ 5z3 þ z4Þ

A7 ¼ 1� zþ 1
10 z

3 z7B7 ¼ ��3A7 lnð1� zÞ � 14zð60� 30z� 10z2 þ z3Þ
l ¼ 4 �4 ¼ 17 640, �4 ¼ 14 112
A1 ¼ 1

14 ð1� zÞ2ð14� 14zþ 3z2Þ z9B1 ¼ ��4A1 lnð1� zÞ � 21zð2� zÞð420� 840zþ 440z2 � 20z3 � z4Þ
A4 ¼ 1

28 ð1� zÞð28� 35zþ 10z2Þ z9B4 ¼ �4A4 lnð1� zÞ þ 42
5 zð1680� 2940zþ 1370z2 � 90z3 � 9z4 � z5Þ

A7 ¼ 1� 5
3 zþ 5

7 z
2 � 1

42 z
4 z9B7 ¼ ��4A7 lnð1� zÞ � 14zð1260� 1470zþ 270z2 þ 65z3 � 3z4Þ

l ¼ 5 �5 ¼ 332 640, �5 ¼ 277 200
A1 ¼ 1

12 ð1� zÞ2ð2� zÞð6� 6zþ z2Þ z11B1 ¼ ��5A1 lnð1� zÞ � 66zð5040� 15 120zþ 16 380z2 � 7560z3

þ 1288z4 � 28z5 � z6Þ
A4 ¼ 1

30 ð1� zÞð30� 54zþ 30z2 � 5z3Þ z11B4 ¼ �5A4 lnð1� zÞ þ 22zð12 600� 28 980zþ 21 840z2 � 5670z3

þ 210z4 þ 14z5 þ z6Þ
A7 ¼ 1� 9

4 zþ 5
3 z

2 � 5
12 z

3 þ 1
168 z

5 z11B7 ¼ ��5A7 lnð1� zÞ � 66zð5040� 8820zþ 4410z2 � 420z3 � 77z4 þ 2z5Þ
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residual gauge transformations that preserve the light-cone
nature of the coordinate system (see Preston and Poisson
[8]). In the even-parity sector, and for static perturbations,
the residual gauge freedom that keeps K ¼ 0 is a one-
parameter family described by

e1 ! e1 � la1ð2M=rÞlþ2; (3.6a)

e4 ! e4 þ a1½ðl� 1Þðlþ 2Þ þ 4M=r�ð2M=rÞlþ1; (3.6b)

e7 ! e7 þ 2la1ð2M=rÞlþ1; (3.6c)

in which a1 is the (dimensionless) parameter. The residual
gauge freedom does not interfere with the boundary con-
ditions of Eq. (3.5).

When K is allowed to change, the residual gauge free-
dom becomes a three-parameter family. In this case we
have

e1 ! e1 � la1ð2M=rÞlþ2 þ a3ð2M=rÞlþ2; (3.7a)

e4 ! e4 þ a1½ðl� 1Þðlþ 2Þ þ 4M=r�ð2M=rÞlþ1

� ðlþ 1Þa3ð2M=rÞlþ1; (3.7b)

e7 ! e7 þ 2la1ð2M=rÞlþ1 þ 2a2ð2M=rÞl; (3.7c)

and K becomes

K ¼ 4ð2MÞl
ðl� 1Þl ½a2 þ a3ð2M=rÞ�EðlÞ

m : (3.8)

Here a2 and a3 are two additional gauge parameters.
The differential equations satisfied by e1, e4, and e7 can

be extracted from the perturbation equations. These equa-
tions are coupled, and some effort must be devoted to their
decoupling before an attempt is made to find solutions. We
shall not describe these routine steps here. We state simply
that the solutions are the ones that were displayed in
Eqs. (1.6) and (1.7). These are given in a minimal imple-
mentation of the light-cone gauge, in which all constants of
integration are set equal to zero. The most general form of
the solution is obtained from this by effecting the shifts
described by Eqs. (3.7) and (3.8). The functions An and Bn

are displayed for selected values of l in Table I.
The metric perturbation can be represented in terms of

gauge-invariant variables. We employ the set defined by
Eqs. (4.10)–(4.12) of Martel and Poisson [17]. According
to these equations, and as can be directly verified from
Eq. (3.7), the variables

~hvv :¼ hvv þ 2M

r2
jv �MfG0; (3.9a)

~hvr :¼ MG0 � j0v; (3.9b)

~hrr :¼ 2rG0 þ r2G00; (3.9c)

~K :¼ � 2

r
jv þ 1

2
lðlþ 1ÞGþ rfG0 (3.9d)

are gauge invariant; a prime indicates differentiation with
respect to r. We express them as

~hvv :¼ � 2

ðl� 1Þl r
levvðrÞEðlÞ

m ; (3.10a)

~hvr :¼ 2

ðl� 1Þl r
levrðrÞEðlÞ

m ; (3.10b)

~hrr :¼ � 4

ðl� 1Þl r
lerrðrÞEðlÞ

m ; (3.10c)

~K :¼ � 2

ðl� 1Þl r
leKðrÞEðlÞ

m ; (3.10d)

in terms of new radial functions evv, evr, err, and eK.
Calculation reveals that these are given in terms of the
old ones by

evv ¼ e1 þ 1

lþ 1

2M

r
e4 � 1

lþ 1

2M

r
fe7 � 1

lðlþ 1Þ2Mfe07;

(3.11a)

evr ¼ e4 þ 1

lþ 1
re04 �

1

lþ 1

2M

r
e7 � 1

lðlþ 1Þ2Me07;

(3.11b)

err ¼ e7 þ 2

l
re07 þ

1

lðlþ 1Þr
2e007 ; (3.11c)

eK ¼� 2

lþ 1
e4 þ 1

lþ 1
ðlþ 3� 4M=rÞe7 þ 2

lðlþ 1Þrfe
0
7:

(3.11d)

It is easy to see that these functions, like the old ones, all go
to 1 as r goes to infinity.
Substitution of our expressions for e1, e4, and e7 into

Eqs. (3.11) and repeated use of the properties of hyper-
geometric functions reveal that

evv ¼ fevr ¼ f2err ¼ A1 þ 2kelðR=rÞ2lþ1B1 (3.12)

and

eK ¼ A7 þ 2kelðR=rÞ2lþ1B7: (3.13)

Notice that evv, fevr, and f
2err are all equal to the minimal

implementation of e1, and eK is equal to the minimal
implementation of e7. All this shows that the relativistic
Love numbers kel possess gauge-invariant significance.

B. Odd-parity sector

In the light-cone gauge the odd-parity metric perturba-
tion is given by

pvA ¼ X
m

hlmv ðrÞXlm
A ð�AÞ; (3.14a)

pAB ¼ X
m

hlm2 ðrÞXlm
ABð�AÞ: (3.14b)

We consider each l mode separately, and we henceforth
omit the label lm on the perturbation variables hv and h2,
which depend on r only. To simplify the task of solving the
field equations, we set
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hv ¼ 2

3ðl� 1Þl r
lþ1b4ðrÞBðlÞ

m ; (3.15a)

h2 ¼ 4

3ðl� 1Þl2 r
lþ2b7ðrÞBðlÞ

m ; (3.15b)

where the functions b4ðrÞ and b7ðrÞ are to be determined.
Substitution of Eqs. (3.15) into Eq. (3.14) produces

pvA ¼ 2

3ðl� 1Þ r
lþ1b4ðrÞBðlÞ

A ; (3.16a)

pAB ¼ 2

3l
rlþ2b7ðrÞBðlÞ

AB; (3.16b)

where BðlÞ
A and BðlÞ

AB are the tidal potentials first introduced

in Eq. (2.7).
The motivation behind the introduction of the functions

b4 and b7 is identical to what was done in the even-parity
sector. When we set b4 ¼ b7 ¼ 1, the perturbation defined
by Eqs. (3.15) or Eqs. (3.16) satisfies the equations of
linearized theory for a perturbation of Minkowski space-
time. This exercise reveals the relative numerical coeffi-
cients between hv and h2. The remaining absolute
numerical coefficient that relates the perturbation to the
tidal moment BL is determined by the definition of the
tidal moment in terms of the Weyl tensor of the perturbed
spacetime; this coefficient—the factor 2=½3ðl� 1Þl� in
hv—can be read off Eq. (3.26b) of Ref. [9].

Inserting the functions b4 and b7 in Eqs. (3.15) allows
the perturbation to be a solution to the Einstein field
equations linearized about the Schwarzschild metric in-
stead of the Minkowski metric. We impose the boundary
conditions

b4ðr ! 1Þ ¼ b7ðr ! 1Þ ¼ 1: (3.17)

The field equations do not determine these functions
uniquely. As in the even-parity case, we have a residual
gauge freedom that preserves the nature of the light-cone
coordinates. It is described by

b4 ! b4; (3.18a)

b7 ! b7 þ �

�
2M

r

�
l
; (3.18b)

in which � is a (dimensionless) parameter. The residual
gauge freedom does not interfere with the boundary con-
ditions of Eq. (3.17).

The differential equations satisfied by b4 and b7 can be
extracted from the perturbation equations. The solutions
are displayed in Eqs. (1.6) and (1.7). They are given in a
minimal implementation of the light-cone gauge, in which
all constants of integrations are set equal to zero. The most
general form of the solution is obtained from this by
effecting the shifts described by Eqs. (3.18).

The metric perturbation can be represented in terms of
gauge-invariant variables. We employ the set defined by
Eq. (5.7) of Martel and Poisson [17]. According to this, and
as can be directly verified from Eq. (3.18), the variables

~hv :¼ hv; (3.19a)

~hr :¼ 1

r
h2 � 1

2
h02 (3.19b)

are gauge invariant. We express them as

~hv :¼ 2

3ðl� 1Þl r
lþ1bvðrÞBðlÞ

m ; (3.20a)

~hr :¼ � 2

3ðl� 1Þl r
lþ1brðrÞBðlÞ

m ; (3.20b)

in terms of new radial functions bv and br. Calculation
reveals that these are given in terms of the old ones by

bv ¼ b4; (3.21a)

br ¼ b7 þ r

l
b07: (3.21b)

It is easy to see that these functions, like the old ones, all go
to 1 as r goes to infinity.
Substitution of our expressions for b4 and b7 into

Eqs. (3.21) and repeated use of the properties of the hyper-
geometric functions reveal that

bv ¼ fbr ¼ A4 � 2
lþ 1

l
kmagðR=rÞ2lþ1B4: (3.22)

Notice that bv and fbr are both equal to b4, which is gauge
invariant. This shows that the relativistic Love numbers
kmag possess gauge-invariant significance.

IV. INTERNAL PROBLEM

A. Background metric for relativistic stellar models

We begin with an examination of the internal gravita-
tional field of a body that is not yet perturbed by an external
tidal field. The body is spherically symmetric, and the
matter consists of a perfect fluid. In light-cone coordinates
ðv; r; �AÞ, the metric is expressed as

ds20 ¼ �e2c fdv2 þ 2ecdvdrþ r2d�2; (4.1)

with f ¼ 1� 2mðrÞ=r and c ¼ c ðrÞ. The Einstein field
equations are

m0 ¼ 4�r2�; c 0 ¼ 4�r

f
ð�þ pÞ; (4.2)

and the equation of hydrostatic equilibrium is

p0 ¼ �mþ 4�r3p

r2f
ð�þ pÞ: (4.3)

Here � is the fluid’s proper energy density, and p is the
pressure.
These equations can be integrated once an equation of

state is specified. The boundary conditions aremðr ¼ 0Þ ¼
0 and c ðr ¼ 0Þ ¼ c 0, where c 0 is chosen so that c
vanishes at the stellar surface: c ðr ¼ RÞ ¼ 0.
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B. Light-cone gauge

The internal light-cone gauge is a modified version of
the external gauge constructed by Preston and Poisson [8].
We define it properly in this section.

The metric of Eq. (4.1) reveals the meaning of the
coordinates ðv; r; �AÞ in the background spacetime. We
note first that l� ¼ �@�v is a null vector, so that the
surfaces v ¼ constant are null hypersurfaces; they de-
scribe light cones that converge toward r ¼ 0. The vector

l� ¼ ð0;�e�c ; 0; 0Þ (4.4)

is tangent to the null generators of these light cones, and
the expression reveals that �A is constant along the gen-
erators. In addition, the affine parameter � that runs along
the generators is related to r by d� ¼ �ec dr. In the
interior portion of the spacetime, r is no longer an affine
parameter on the null generators; but it still possesses the
property of being an areal radius, in the sense that the area
of a surface of constant ðv; rÞ is given by 4�r2.

In the internal light-cone gauge, the metric of the per-
turbed spacetime is presented in coordinates ðv; r; �AÞ that
possess the same geometrical meaning as in the back-
ground spacetime. In particular, v continues to label null
hypersurfaces, �A continues to be constant along the null
generators, and r continues to be related to the affine
parameter by d� ¼ �ec dr. It is easy to show that these
statements imply the same conditions,

pvr ¼ prr ¼ prA ¼ 0; (4.5)

that were employed in the external problem. The nonvan-
ishing components of the metric perturbation are therefore
pvv, pvA, and pAB. The radial coordinate, however, will
lose its meaning as an areal radius in the stellar interior.

In the even-parity sector the perturbation is decomposed
as in Eq. (3.2), and the fields hlmvv, j

lm
v , Klm, Glm depend (in

general) on the coordinates ðv; rÞ. An even-parity gauge
transformation is generated by the vector field ��, with
components

�v ¼ X
lm


lm
v ðv; rÞYlmð�AÞ; (4.6a)

�r ¼
X
lm


lm
r ðv; rÞYlmð�AÞ; (4.6b)

�A ¼ X
lm


lmðv; rÞYlm
A ð�AÞ: (4.6c)

It can be shown that the condition hvr ¼ 0 determines 
v,
that hrr ¼ 0 determines 
r, and that jr ¼ 0 determines 
.
The gauge, however, is not determined uniquely. There
exists a residual gauge freedom that preserves the geomet-
rical meaning of the coordinates. In the case of
v-independent perturbations, the residual gauge freedom
is a three-parameter family described by


v ¼ �a1e
2c fþ a2; (4.7a)


r ¼ a1e
c ; (4.7b)


 ¼ �a1r
2
Z r

r0�2ec ðr0Þdr0 þ a3r
2: (4.7c)

Here we suppressed the lm labels on 
v, 
r, and 
, as well
as the constants a1, a2, and a3.
In the odd-parity sector the perturbation is decomposed

as in Eq. (3.14), and the fields hlmv , hlm2 depend (in general)
on the coordinates ðv; rÞ. An odd-parity gauge transforma-
tion is generated by the vector field ��, with components

�v ¼ �r ¼ 0; �A ¼ X
lm


lmðv; rÞXlm
A ð�AÞ: (4.8)

It can be shown that the condition hr ¼ 0 determines 
. In
this case also there exists a residual gauge freedom that
preserves the geometrical meaning of the coordinates. In
the case of v-independent perturbations, the residual gauge
freedom is a one-parameter family described by


 ¼ �r2: (4.9)

Here also we suppressed the lm labels on 
 and the
constant �.
The decompositions of Eqs. (3.2) and (3.14) can be used

to compute �G��, the perturbation of the Einstein tensor

inside the body. The even-parity sector decouples from the
odd-parity sector, and the perturbation takes the form of

�Gvv ¼ X
lm

Alm
vvY

lm; (4.10a)

�Gvr ¼
X
lm

Alm
vrY

lm; (4.10b)

�Grr ¼
X
lm

Alm
rr Y

lm; (4.10c)

�GvA ¼ X
lm

ðAlm
v Ylm

A þ Blm
v Xlm

A Þ; (4.10d)

�GrA ¼ X
lm

ðAlm
r Ylm

A þ Blm
r Xlm

A Þ; (4.10e)

�GAB ¼ X
lm

ðAlm
[ �ABY

lm þ Alm
# YAB þ BlmXlm

ABÞ: (4.10f)

Here the even-parity fields Avv, Avr, Arr, Av, Ar, A[, A# and
the odd-parity fields Bv, Br, B depend on v and r only. In
the case of a stationary perturbation, they depend on r only.
The expressions are too long to be displayed here. In

practice, they are easily generated with GRTENSORII [18] by
specializing the perturbation to an axisymmetric mode
m ¼ 0 with a specific multipole order l. With Ylm ¼
Yð�Þ we have Y� ¼ Y0, Y� ¼ 0, Y�� ¼ � cos�Y0= sin��
1
2 lðlþ 1ÞY, Y�� ¼ 0, and Y�� ¼ sin� cos�Y0 þ 1

2 lðlþ
1Þsin2�Y in the even-parity case, and X� ¼ 0, X� ¼
sin�Y0, X�� ¼ 0, X�� ¼ � cos�Y0 � 1

2 lðlþ 1Þ sin�Y, and
X�� ¼ 0 in the odd-parity case. The definition of the

metric implements the constraint Y00 ¼ � cos�Y0= sin��
lðlþ 1ÞY on the spherical-harmonic functions, and this
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simplifies the final expression for the perturbed Einstein
tensor.

C. Energy-momentum tensor

We consider stationary tides raised by a tidal environ-
ment characterized by an electric-type tidal moment EL

and a magnetic-type tidal moment BL; these are actually
time dependent, but the dependence is sufficiently slow
that it can be neglected in the process of integrating the
Einstein field equations. The perturbed metric will there-
fore carry a parametric dependence upon v.

The fluid’s velocity vector in the background configura-

tion is given by u� ¼ ðe�c f�1=2; 0; 0; 0Þ. In the perturbed
configuration it becomes û� ¼ ðûv; 0; 0; 0Þ, reflecting the
fact that the tide is stationary and does not create motion
within the fluid. The time component of the vector changes
by virtue of the fact that the metric changes; we have that

ûv ¼ e�c f�1=2 þ �uv, with �uv ¼ 1
2 e

�3c f�3=2pvv.

After lowering the index on û� with the perturbed metric

g0�� þ p��, we find that ûv ¼ �ec f1=2 þ �uv, ûr ¼
f�1=2 þ �ur, and ûA ¼ �uA, with

�uv ¼ 1
2e

�c f�1=2pvv; (4.11a)

�ur ¼ 1
2e

�2c f�3=2pvv; (4.11b)

�uA ¼ e�c f�1=2pvA: (4.11c)

These expressions are valid in the light-cone gauge. The
perturbation �uA can be decomposed into even-parity and
odd-parity components; the perturbations �uv and �ur are
necessarily of even parity.

The perturbation in the energy-momentum tensor is
generated by the perturbation in u�, but also by a pertur-
bation in the density � and pressure p created by the tide;
these are related by the equation of state. We have

�T�� ¼ ð�þ pÞðu��u� þ u��u�Þ þ pp��

þ ð��þ �pÞu�u� þ ð�pÞg��; (4.12)

and in the light-cone gauge this reads

�Tvv ¼ ��pvv þ e2c f��; (4.13a)

�Tvr ¼ �ec��; (4.13b)

�TvA ¼ ��pvA; (4.13c)

�Trr ¼ ð�þ pÞe�2c f�2pvv þ f�1ð��þ �pÞ; (4.13d)

�TrA ¼ e�c f�1ð�þ pÞpvA; (4.13e)

�TAB ¼ ppAB þ r2�p�AB: (4.13f)

The perturbations �TvA, �TrA, and �TAB can be decom-
posed into even-parity and odd-parity components; the
perturbations �Tvv, �Tvr, and �Trr are necessarily of
even parity.

From Eqs. (4.13) we find that �T�� is given by

�Tvv ¼ X
lm

Qlm
vvY

lm; (4.14a)

�Tvr ¼
X
lm

Qlm
vrY

lm; (4.14b)

�Trr ¼
X
lm

Qlm
rr Y

lm; (4.14c)

�TvA ¼ X
lm

ðQlm
v Ylm

A þ Plm
v Xlm

A Þ; (4.14d)

�TrA ¼ X
lm

ðQlm
r Ylm

A þ Plm
r Xlm

A Þ; (4.14e)

�TAB ¼ X
lm

ðQlm
[ �ABY

lm þQlm
# Ylm

AB þ PlmXlm
ABÞ: (4.14f)

The even-parity fields are

Qvv ¼ ��hvv þ e2c f�; (4.15a)

Qvr ¼ �ec�; (4.15b)

Qrr ¼ ð�þ pÞe�2c f�2hvv þ f�1ð�þ qÞ; (4.15c)

Qv ¼ ��jv; (4.15d)

Qr ¼ e�c f�1ð�þ pÞjv; (4.15e)

Q[ ¼ r2ðpK þ qÞ; (4.15f)

Q# ¼ r2pG; (4.15g)

and the perturbations in the density and pressure were also
decomposed into spherical harmonics:

�� ¼ X
lm

�lmYlm; �p ¼ X
lm

qlmYlm: (4.16)

The odd-parity fields are

Pv ¼ ��hv; (4.17a)

Pr ¼ e�c f�1ð�þ pÞhv; (4.17b)

P ¼ ph2: (4.17c)

Information about �� and �p, or � and q, can be
obtained from the equation of hydrostatic equilibrium. In
the perturbed spacetime the equation states that ð�̂þ
p̂Þâ� þ @�p̂ ¼ 0, where �̂ ¼ �þ �� is the perturbed
density, p̂ ¼ pþ �p is the perturbed pressure, and â� is
the perturbed acceleration of the fluid elements. The equa-
tion becomes

ð�þ pÞ�a� þ ð��þ �pÞa� þ @��p ¼ 0 (4.18)

when expressed in terms of the perturbations ��, �p, and
�a�. The unperturbed acceleration has ar ¼
1
2 e

�2c f�1ðec fÞ0 as its only nonvanishing component,

and the perturbation has components

�av ¼ 0; (4.19a)

�ar ¼ �1
2e

�2c f�1@rpvv þ 1
2e

�4c f�2ðe2c fÞ0pvv; (4.19b)

�aA ¼ �1
2e

�2c f�1@Apvv: (4.19c)
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Substitution of Eqs. (4.16) and (4.19), as well as pvv ¼P
lmh

lm
vvY

lm, into Eq. (4.18) reveals that

q0 ¼ 1
2ð�þ pÞe�2c f�1h0vv � 1

2ð�þ pÞe�4c f�2ðe2c fÞ0hvv
� 1

2e
�2c f�1ðe2c fÞ0ð�þ qÞ (4.20)

and

q ¼ 1
2ð�þ pÞe�2c f�1hvv: (4.21)

If we next differentiate Eq. (4.21) and insert the result
within Eq. (4.20), we discover that

ð�þ pÞ0hvv ¼ �ðe2c fÞ0ð�þ qÞ: (4.22)

The last two equations allow us to express �lm and qlm

directly in terms of hlmvv; hydrostatic equilibrium implies
that these are not independent variables.

D. Perturbation equations: Even-parity sector

The useful combinations of Einstein field equations are

E1 :¼ ðAvv � 8�QvvÞ þ ec fðAvr � 8�QvrÞ ¼ 0; (4.23a)

E2 :¼ ðAvv � 8�QvvÞ þ 2ec fðAvr � 8�QvrÞ
þ e2c f2ðArr � 8�QrrÞ ¼ 0; (4.23b)

E3 :¼ ðArr � 8�QrrÞ ¼ 0; (4.23c)

E4 :¼ e�c rE2 þ 2fðAv � 8�QvÞ þ 2ec f2ðAr � 8�QrÞ
¼ 0: (4.23d)

These are a set of coupled differential equations for the
variables hvvðrÞ, jvðrÞ, KðrÞ, and GðrÞ; the remaining field
equations are redundant by virtue of the Bianchi identities.
The explicit forms reveal that E1 ¼ 0 is a first-order dif-
ferential equation for jv, E2 ¼ 0 is a first-order differential
equation for hvv, E3 ¼ 0 is a second-order differential
equation for K, and E4 ¼ 0 is a first-order differential
equation for G.

The field equations can be manipulated to yield a de-
coupled equation for the master function

~hvv :¼ hvv þ e�c ðe2c fÞ0jv � 1

2
r2fðe2c fÞ0G0

¼ hvv þ 2ec

r2
ðmþ 4�r3pÞjv � e2c fðmþ 4�r3pÞG0:

(4.24)

This function is gauge invariant, and it joins smoothly with
the external version of Eq. (3.9) at r ¼ R. The master
equation is

r2 ~h00vv þ Ar~h0vv � B~hvv ¼ 0; (4.25)

where

A ¼ 2

f

�
1� 3m

r
� 2�r2ð�þ 3pÞ

�
; (4.26a)

B ¼ 1

f

�
lðlþ 1Þ � 4�r2ð�þ pÞ

�
3þ d�

dp

��
: (4.26b)

The master equation is equivalent to Eq. (27) of Ref. [12],

in whichH :¼ e�2c f�1 ~hvv is used as an alternative choice
of dependent variable.
The master equation can be derived by the following

procedure. First, integrate the field equation E# :¼ A# �
8�Q# ¼ 0 and obtain jv ¼ 1

2 r
2fecG0. This implies that

~hvv ¼ hvv. Second, make the substitution in the other field
equations. The result is that E1 now involves hvv, G

0, and
G00; E2 involves hvv, h

0
vv, K, K

0, and G0; E3 involves hvv,
K0, and K00; and E4 involves hvv, K, K0, G, and G0. Third,
differentiate E2 with respect to r, and use E1 to eliminate
the terms in G00, and E3 to eliminate the terms in K00. The
result is that E0

2 now involves hvv, h
0
vv, h

00
vv, K, K0, G, and

G0. Fourth, construct the linear combination rE0
2 þ aE2 þ

bE4 and determine the functions a and b that eliminate all
terms involving K, K0, G, G0. The solution is unique, and
the final result is Eq. (4.25).
For numerical integration it is advantageous to make the

same substitution as in Eq. (3.10),

~h vv ¼ � 2

ðl� 1Þl r
levvðrÞEðlÞ

m ; (4.27)

and to rewrite Eq. (4.25) as a second-order differential
equation for evvðrÞ. This function joins smoothly with
the external version of Eq. (3.12), and kel is determined
by matching the values of the internal and external func-
tions (along with their first derivatives) at r ¼ R.

E. Perturbation equations: Odd-parity sector

The useful combinations of field equations are

O1 :¼ ðBv � 8�PvÞ ¼ 0; (4.28a)

O2 :¼ ðBv � 8�PvÞ þ ec fðBr � 8�PrÞ ¼ 0: (4.28b)

The first is a second-order differential equation for hv,
while the second is a first-order differential equation for h2.
The equation O1 ¼ 0 is fully decoupled, and the pertur-

bation variable hv is easily shown to be gauge invariant, as
it was in the external problem. The master variable for the

odd-parity sector is therefore ~hv :¼ hv, and the master
equation is

r2 ~h00v � Fr~h0v �G~hv ¼ 0; (4.29)

where

F ¼ 4�r2

f
ð�þ pÞ; (4.30a)

G ¼ 1

f

�
lðlþ 1Þ � 4m

r
þ 8�r2ð�þ pÞ

�
: (4.30b)
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This equation is equivalent to Eq. (31) of Ref. [12], in

which c :¼ r~h0v � 2~hv is used as an alternative choice of

dependent variable. The function ~hv joins smoothly with
the external version of Eq. (3.19) at r ¼ R.

For numerical integration it is advantageous to make the
same substitution as in Eq. (3.20),

~h v ¼ 2

3ðl� 1Þl r
lþ1bvðrÞBðlÞ

m ; (4.31)

and to rewrite Eq. (4.29) as a second-order differential
equation for bvðrÞ. This function joins smoothly with the
external version of Eq. (3.22), and kmag is determined by

matching the values of the internal and external functions
(along with their first derivatives) at r ¼ R.

V. IMPLEMENTATION FOR POLYTROPES

The relativistic Love numbers kel and kmag are deter-

mined by the numerical integration of Eqs. (4.25) and
(4.29) and matching with the external solutions at r ¼ R.
This defines a simple computational procedure that can be
implemented for any choice of equation of state. In this
section we describe the steps that are involved when the
polytropic form

p ¼ K�1þ1=n (5.1)

is adopted; hereK and the polytropic index n are constants.
We choose, however, to deviate from the procedure just
outlined: Instead of integrating the master equations for the

variables ~hvv and ~hv, we integrate the complete set of
independent field equations. This allows us to calculate
all components of the metric perturbation, and matching
them across r ¼ R determines, in addition to the Love
numbers, the gauge parameters a1, a2, a3, and � that are
automatically selected by the internal solution.1

A. Unperturbed stellar model

The numerical integration of Eqs. (4.2) and (4.3) is
conveniently accomplished by introducing the dimension-
less variables �, �, and 
 defined by

� ¼ �c�
n; p ¼ pc�

nþ1; m ¼ m0�; r ¼ r0
:

(5.2)

Here �c :¼ �ðr ¼ 0Þ is the central density, and pc :¼
K�1þ1=n

c is the central pressure. The units of mass and
radius are chosen to be

m0 :¼ 4�r30�c; r20 :¼
ðnþ 1Þpc

4��2
c

; (5.3)

so as to simplify the form of the field equations.
It is useful to introduce also a ‘‘relativistic factor’’

b :¼ pc=�c; (5.4)

which determines the degree with which the stellar model
is relativistic. In terms of this we have �c ¼ bn=Kn, pc ¼
bnþ1=Kn, and b can be used in place of �c to label a stellar
model, given a choice ðK; nÞ of equation of state. We also
note the relation m0=r0 ¼ ðnþ 1Þb. We find that the units
m0 and r0 vary with b even when the equation of state is
fixed. To eliminate this dependence it is useful to define the
alternative units

M0 ¼ ðnþ 1Þ3=2ffiffiffiffiffiffiffi
4�

p Kn=2; R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

4�

s
Kn=2; (5.5)

which do not depend on b. We have that m0 ¼ M0b
ð3�nÞ=2

and r0 ¼ R0b
ð1�nÞ=2.

In terms of the dimensionless variables, the field equa-
tions (4.2) and (4.3) become

d�

d

¼ 
2�n; (5.6a)

dc

d

¼ ðnþ 1Þb 
�

nð1þ b�Þ
f

; (5.6b)

d�

d

¼ �ð�þ b
3�nþ1Þð1þ b�Þ


2f
; (5.6c)

with f ¼ 1� 2ðnþ 1Þb�=
. The boundary conditions are
�ð
 ¼ 0Þ ¼ 1, �ð
 ¼ 0Þ ¼ 0, and c ð
 ¼ 0Þ ¼ c 0. In the
limit b ! 0 the model becomes nonrelativistic, and the
equations for � and � can be combined into the well-
known Lane-Emden equation; in the limit the equation
for c becomes irrelevant.
The formulation of Eq. (5.6) is not optimal from a

numerical point of view. For accurate integrations it is
better to use the variable � :¼ �=
3 instead of�, and x :¼
ln
 instead of 
. The system of equations becomes

d�

dx
¼ �n � 3�; (5.7a)

dc

dx
¼ ðnþ 1Þb
2f�1�nð1þ b�Þ; (5.7b)

d�

dx
¼ �
2f�1ð�þ b�nþ1Þð1þ b�Þ; (5.7c)

with f ¼ 1� 2ðnþ 1Þb
2�. The integration begins at a
large and negative value of x, so that 
 ¼ ex is small, with
the starting values

1There is no strong rationale for proceeding in this way. The
honest truth is that we became aware of Eq. (4.25) only after
completing the numerical work. We derived the master equation
after noticing its appearance in Refs. [2,12] and wondering why
our formulation was more complicated than theirs.
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� ¼ 1

3
� n

30
ð1þ bÞð1þ 3bÞ
2 þ n

2520
ð1þ bÞð1þ 3bÞ½8n� 5þ ð18n� 20Þbþ ð15þ 30nÞb2�
4 þOð
6Þ; (5.8a)

� ¼ 1� 1

6
ð1þ bÞð1þ 3bÞ
2 þ 1

360
ð1þ bÞð1þ 3bÞ½3n� 2nbþ ð30þ 15nÞb2�
4 þOð
6Þ; (5.8b)

c ¼ c 0 þ 1

2
ðnþ 1Þbð1þ bÞ
2 � 1

24
ðnþ 1Þbð1þ bÞ½n� 3bþ ð3þ 3nÞb2�
4 þOð
6Þ: (5.8c)

The integration stops at 
 ¼ 
1, where � goes to zero, and
c 0 is chosen so that c ð
1Þ ¼ 0. The stellar mass and
radius are then given by

M ¼ M0b
ð3�nÞ=2
3

1�ð
1Þ; R ¼ R0b
ð1�nÞ=2
1; (5.9)

in the units of Eq. (5.5). The compactness of the body is
measured by C :¼ 2M=R ¼ 2ðnþ 1Þb
2

1�ð
1Þ; this is di-
mensionless, and therefore independent of the unitsM0 and
R0.

B. Perturbation: Even-parity sector

The perturbation equations (4.23) are simplified by in-
volving the background field equations (4.2) and (4.3).
They are also simplified by making the substitutions of
Eqs. (5.2), (5.3), and (5.4); we therefore write � ¼ �c�

n,
p ¼ pc�

nþ1, r ¼ r0
, and m ¼ m0

3�, where �c ¼ ðnþ

1Þb=ð4�r20Þ, pc ¼ ðnþ 1Þb2=ð4�r20Þ, and m0 ¼
ðnþ 1Þbr0, with � and � (as well as c ) depending on 
.

Finally, we use the fact that a term �0 in the perturbation
equations can be related to p0 by the equation �0 ¼
ðd�=dpÞp0, with d�=dp determined by the equation of
state.
Another useful set of substitutions is the one displayed

in Eqs. (3.3), along with

r20K ¼ 2

ðl� 1Þlðlþ 2Þðlþ 3Þ r
lþ2e10ð
ÞEðlÞ

m ; (5.10)

in which we replace the original variables with the radial
functions e1, e4, e7, and e10. These replacements are mo-
tivated by an analysis of the perturbation equations for
small values of r, which reveals that hvv behaves as rl,
jv as rlþ1, G as rl, and K as rlþ2. The numerical factor in
front of e10 is inserted to simplify the form of the small-r
expansion of K, as we shall see below.
The final expression of the perturbation equations is

0 ¼ E1 ¼ �
e04 þ ðlþ 1Þe�c f�1e1 � f�1A1e4; (5.11a)

0 ¼ E2 ¼ �
e01 þ
1

2
f�1A2e1 þ lec f�1B2e4 � 1

2
ðl� 1Þðlþ 2Þe2c e7 þ 1

2ðlþ 3Þ e
2cC2


2e10

� 1

ðlþ 2Þðlþ 3Þ e
2cB2


3e010; (5.11b)

0 ¼ E3 ¼ �
2e0010 þ ðlþ 2Þðlþ 3Þe�2c f�2A3e1 � ðlþ 2Þf�1B3e10 � f�1C3
e
0
10; (5.11c)

0 ¼ E4 ¼ �
e07 þ
lðlþ 1Þ

2ðl� 1Þðlþ 2Þ e
�2c f�2A4e1 þ l

ðl� 1Þðlþ 2Þ e
�c f�2B4e4

� 1

2
l½lþ 3� 4ðnþ 1Þb
2��f�1e7 þ lðlþ 1Þ

2ðl� 1Þðlþ 2Þðlþ 3Þ f
�1C4


2e10

� lðlþ 1Þ
ðl� 1Þðlþ 2Þ2ðlþ 3Þ ½ðnþ 1Þbð�þ b�nþ1Þ�f�1
5e010; (5.11d)

where a prime indicates differentiation with respect to 
, and
EQ-TARGET;temp:intralink-;d5.12,d5.12a,d5.12b,d5.12c,d5.12d,d5.12e,d5.12f,d5.12g,d5.12h,d5.12i,d5.12j;52;243

A1 ¼ lþ 1� 2ðnþ 1Þb
2½ðlþ 2Þ�þ b�nþ1�; (5.12a)

A2 ¼ ðl� 2Þðlþ 1Þ þ 2ðnþ 1Þb
2½2ðlþ 1Þ�� �nð1þ b�Þ�; (5.12b)

B2 ¼ 1� ðnþ 1Þb
2ð�� b�nþ1Þ; (5.12c)

C2 ¼ l� 3þ 2ðnþ 1Þb
2ð�� b�nþ1Þ; (5.12d)

A3 ¼ n�n�1 þ ð4nþ 3Þb�n þ 3ðnþ 1Þb2�nþ1; (5.12e)

B3 ¼ lþ 3� ðnþ 1Þb
2½2ðlþ 3Þ�þ �nð1þ b�Þ�; (5.12f)

C3 ¼ 2ðlþ 3Þ � ðnþ 1Þb
2½4ðlþ 3Þ�þ �nð1þ b�Þ�; (5.12g)

A4 ¼ ðl� 1Þðlþ 2Þ þ 2ðnþ 1Þb
2½2�� �nð1þ b�Þ�; (5.12h)

B4 ¼ ðl� 1Þðlþ 2Þ � ðnþ 1Þb
2½ðl2 þ l� 4Þ�� lðlþ 1Þb�nþ1�; (5.12i)

C4 ¼ l� 1� 2ðnþ 1Þb
2ð�þ b�nþ1Þ: (5.12j)
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A small-
 expansion of these equations, using Eqs. (5.8),
reveals that e1 ¼ a0 þOð
2Þ, e4 ¼ a0e

�c 0 þOð
2Þ, e7 ¼
a0e

�2c 0 þOð
2Þ, and e10 ¼ a0e
�2c 0ð1þ bÞ½3ðnþ 1Þbþ

n� þOð
2Þ, where a0 is a parameter that must be deter-
mined by matching the internal and external perturbations
at the stellar boundary.

The perturbation equations are easily written as a first-
order dynamical system for the variables u1 :¼ e1, u2 :¼
e4, u3 ¼ e7, u4 :¼ e10, and u5 :¼ 
e010. The numerical

integration is carried out with x :¼ ln
 as the independent
variable, and the differential equations are integrated si-
multaneously with Eqs. (5.7) to determine the unperturbed
stellar model. The integration proceeds from a large and
negative value of x, for which 
 ¼ ex is small, and it stops
at 
 ¼ 
1 where � goes to zero.

The term n�n�1 in A3 originates from a term involving
d�=dp / ��1 that multiplies � / �n in the field equation
for K (or e10). This term diverges at the stellar boundary
when n < 1. The singularity is integrable, however, and it
can be shown that the solution for KðrÞ (or e10) is actually
well behaved at the boundary. The divergence of A3 never-
theless causes issues in the numerical integration of the
perturbation equations. For this reason, the accuracy
achieved for n < 1 is limited compared with the accuracy
obtained for n > 1.

The internal perturbation must match the external per-
turbation at 
 ¼ 
1, or r ¼ R, the position of the stellar
boundary. The five internal functions e1, e4, e7, e10, and

e010 depend on one free parameter a0. The external func-
tions, on the other hand, depend on three gauge parameters
a1, a2, and a3, as well as the electric-type Love number kel.
The five matching conditions determine the five parame-
ters uniquely, including the Love number.

We suppose that the internal functions u1; � � � ; u5 are
determined by setting a0 � 1 in the numerical integrations.
The desired functions e1; � � � ; e10 then differ from these by
an overall multiplicative factor that we denote ��1. We
have

ein1 ¼ ��1u1; (5.13a)

ein4 ¼ ��1u2; (5.13b)

ein7 ¼ ��1u3; (5.13c)

ein10 ¼ ��1u4; (5.13d)



dein10
d


¼ ��1u5; (5.13e)

and the matching conditions are

ein1 ¼ eout1 ; (5.14a)

ein4 ¼ eout4 ; (5.14b)

ein7 ¼ eout7 ; (5.14c)

ein10 ¼ eout10 ; (5.14d)



dein10
d


¼ 

deout10

d

; (5.14e)

where each side of the equation is evaluated at 
 ¼ 
1. The
external expressions for e1, e4, and e7 are presented in
Eqs. (1.6) and (1.7), and these must be modified by the
gauge adjustments of Eqs. (3.7).
The function e10 is related to K by Eq. (5.10), and the

external expression for K is given by Eq. (3.8). This
equation and its derivative with respect to r imply that at

 ¼ 
1,

eout10 ¼ 2ðlþ 2Þðlþ 3ÞCl
�2
1 ½a2 þ a3ð2M=RÞ�; (5.15a)



deout10

d

¼ �2ðlþ 2Þðlþ 3ÞCl
�2

1

� ½ðlþ 2Þa2 þ ðlþ 3Þa3ð2M=RÞ�; (5.15b)

where C :¼ 2M=R is the compactness factor. These equa-
tions can be solved for a2 and a3. Involving also the
matching equations and Eqs. (5.13), we arrive at

�a2 ¼ 
2
1

2ðlþ 2Þðlþ 3ÞCl
½ðlþ 3Þu4 þ u5�; (5.16a)

�a3 ¼ � 
2
1

2ðlþ 2Þðlþ 3ÞClþ1
½ðlþ 2Þu4 þ u5�: (5.16b)

We see that the gauge parameters a2 and a3, rescaled by the
unknown coefficient �, are determined by the numerical
values obtained for u4 and u5.
To solve the remaining matching equations we transfer

the a2 and a3 terms from the right-hand side of Eqs. (3.7) to
the left-hand side. Taking Eqs. (5.16) into account, we form
the combinations

w1 :¼ u1 þ C
2
1

2ðlþ 2Þðlþ 3Þ ½ðlþ 2Þu4 þ u5�; (5.17a)

w2 :¼ u2 � ðlþ 1Þ
2
1

2ðlþ 2Þðlþ 3Þ ½ðlþ 2Þu4 þ u5�; (5.17b)

w3 :¼ u3 � 
2
1

ðlþ 2Þðlþ 3Þ ½ðlþ 3Þu4 þ u5�; (5.17c)

which can be determined numerically. Involving now
Eqs. (1.6), the matching conditions take the explicit form

w1 ¼ A1 � �þ 2B1 � ð�kelÞ � lC � ð�Clþ1a1Þ; (5.18a)

w2 ¼ A4 � �� 2
lþ 1

l
B4 � ð�kelÞ

þ ½ðl� 1Þðlþ 2Þ þ 2C� � ð�Clþ1a1Þ; (5.18b)

w3 ¼ A7 � �þ 2B7 � ð�kelÞ þ 2l � ð�Clþ1a1Þ; (5.18c)

in these expressions the functions An and Bn are evaluated
at r ¼ R, or 2M=r ¼ C.
If we define a vector w ¼ ðw1; w2; w3Þ of numerical

quantities, and another vector p ¼ ð�; �krel; �Clþ1a1Þ of
unknown parameters, these equations take the form of the
matrix equation w ¼ Mp, with a matrix M that is known
analytically. Solving for p, the Love number is finally
determined by kel ¼ p2=p1.
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C. Perturbation: Odd-parity sector

To arrive at the final form of the perturbation equations
(4.28), we follow the same steps as in the even-parity
sector. These include making the substitutions of
Eqs. (3.15), to replace the original variables hv and h2
with the radial functions b4 and b7.

The perturbation equations are

0 ¼ O1 ¼ �
2b004 � f�1F1
b
0
4 þ f�1G1b4; (5.19a)

0 ¼ O2 ¼ �
b07 � lb7 þ le�c f�1b4; (5.19b)

with

F1 ¼ 2ðlþ 1Þ � ðnþ 1Þb
2½4ðlþ 1Þ�þ �nð1þ b�Þ�;
(5.20a)

G1 ¼ ðnþ 1Þb
2½2ðl� 1Þðlþ 2Þ�þ ðlþ 3Þ�nð1þ b�Þ�:
(5.20b)

A small-
 expansion of these equations reveals that b4 ¼
�0 þOð
2Þ and b7 ¼ �0e

�c 0 þOð
2Þ, where �0 is a
parameter that must be determined by matching the inter-
nal and external perturbations at the stellar boundary.

The perturbation equations are easily written as a first-
order dynamical system for the variables v1 :¼ b4, v2 :¼

b04, and v3 :¼ b7.

The internal perturbation must match the external per-
turbation at 
 ¼ 
1, or r ¼ R, the position of the stellar
boundary. The three internal functions b4, 
b

0
4, and b7

depend on one free parameter, �0. The external functions,
on the other hand, depend on one gauge parameter, �, as
well as the magnetic-type Love number kmag. The three

matching conditions determine the three parameters
uniquely, including the Love number.

We suppose that the perturbation equations for v1, v2,
and v3 are integrated with �0 � 1. The desired internal
functions b4 and b7 are then given by

bin4 ¼ ��1v1; (5.21a)



dbin4
d


¼ ��1v2; (5.21b)

bin7 ¼ ��1v3; (5.21c)

where � is an unknown constant. The matching conditions
are

bin4 ¼ bout4 ; (5.22a)



dbin4
d


¼ 

dbout4

d

; (5.22b)

bin7 ¼ bout7 ; (5.22c)

where each side of the equation is evaluated at 
 ¼ 
1.
The external expressions for b4 and b7 are presented
in Eqs. (1.6), together with the gauge adjustment of
Eq. (3.18). We observe that b4 is gauge invariant, and

that the purpose of the matching equation for b7 is to
determine the (uninteresting) gauge parameter �.
We focus on the two equations involving b4. Using

Eqs. (1.6), we find that the explicit form of the matching
conditions is

v1 ¼ A4 � �� 2
lþ 1

l
B4 � ð�kmagÞ; (5.23a)

v2 ¼ �CA0
4 � �þ 2

lþ 1

l
½CB0

4 þ ð2lþ 1ÞB4� � ð�kmagÞ:
(5.23b)

In these expressions the functions A4, A
0
4
:¼ dA4=dz, B4,

and B0
4
:¼ dB4=dz are evaluated at z :¼ 2M=r ¼ C.

If we define a vector v ¼ ðv1; v2Þ of numerical quanti-
ties, and another vector p ¼ ð�; �kmagÞ of unknown pa-

rameters, these equations take the form of the matrix
equation v ¼ Mp, with a matrix M that is known analyti-
cally. Solving for p, the Love number is finally determined
by kmag ¼ p2=p1.

To evaluate the derivatives of A4 and B4 with respect to
z, we use the well-known property of hypergeometric
functions that ðd=dzÞFða; b; c; zÞ ¼ ðab=cÞFðaþ 1; bþ
1; cþ 1; zÞ.

VI. NUMERICAL RESULTS

The computations presented in this work were generated
with two independent codes, one written by each author.
Consistency between our results provides evidence that
each set of computations was carried our correctly, and
the comparison allows us to estimate the numerical accu-
racy of our results.
The background spacetime is constructed by solving the

Einstein field equations for a spherical matter configuration
with a polytropic equation of state. The equations were
formulated in Sec. VA, and the system of equations (5.7) is
integrated numerically for selected values of the polytropic
index n. The integration begins at a large and negative
value of the radial variable x ¼ ln
, using the starting
values listed in Eqs. (5.8). It proceeds until � changes
sign at the stellar boundary, x ¼ x1. In the first code, the
integration is performed using the Bulirsh-Stoer method as
implemented in the Numerical Recipes routine bsstep,
which is embedded within odeint; we use the Second
Edition of Numerical Recipes [19], and the code is written
in C++. In the second code, the integration is performed
using the embedded Runge-Kutta Prince-Dormand method
as implemented in the GNU Scientific Library routine
rk8pd, which is embedded within odeiv; we use version
1.9 of the libraries [20], and the code is written in C. In
each code all floating-point operations are carried out with
double precision. The accuracy of the integration is deter-
mined by the integrator’s tolerance � and the errors of order

6 that are incorporated in the starting values. As Eqs. (5.7)
are exceptionally well conditioned toward numerical inte-
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gration, a high degree of accuracy can easily be achieved.
We estimate that our stellar configurations are computed
accurately to at least 12 significant digits.

The stellar boundary is identified with the help of a
bisection search for the solution to �ðxÞ ¼ 0. In the first
code this is carried out with the Numerical Recipe routine
zbrent; the search is loosely bracketed between the
values x0 < x1 (where � is positive) and x2 > x1 (where
� is negative). In the second code this is carried out with the
GNU Scientific Library routine brent, using a similar
bracketing method. The search is carried out with high
accuracy, again of the order of 12 significant digits.

The even-parity perturbation equations (5.11) are next
integrated for selected values of n and l, simultaneously
with the background field equations (5.7). Once more, the
integration begins at a large and negative value of x, using
the starting values derived in Sec. VB, and it proceeds up
to x ¼ x1. In the first code we continue to use bsstep and
odeint, and the caption of Table II discusses the accu-
racy of these integrations. In the second code we continue
to use rk8pd and odeiv; the tolerance of the integrator is
set uniformly to � ¼ 1:0e� 12, and all integrations begin
at x ¼ �10:0. Each code returns the values of u1, u2, u3,
u4, and u5 at the stellar boundary.

The odd-parity equations (5.19) are integrated in exactly
the same way. Here the codes return the values of v1, v2,
and v3 at the stellar boundary.
The matching problem of Eqs. (5.18) requires the nu-

merical solution of the matrix equation w ¼ Mp, where w
is constructed from the perturbations, M is known analyti-
cally, and p is the vector of unknown parameters, which
include the electric-type Love number kel. In the first code
the system of equations is solved by performing an LU
decomposition of the matrix M, and this is handled by the
Numerical Recipes routines ludcmp and lubksb. In the
second code the LU decomposition is handled by the GNU
Scientific Library routines gsllinalgLUdecomp and
gsllinalgLUsolve. In view of the small number of
equations involved (three), this task is essentially carried
out at machine precision. The final output is kel.
The matching problem of Eqs. (5.23) is handled in

exactly the same way. Here the final output is the
magnetic-type Love number kmag.

Our results are presented in the figures displayed in
Sec. I and in the tables provided in the Appendix. The
electric-type and magnetic-type Love numbers are com-
puted for selected values of n and l, as functions of the
relativistic parameter b :¼ pc=�c and the compactness

TABLE II. Integration errors for even-parity perturbations. For each selected value of n, the
first row shows the value of �, the integrator’s tolerance. When � ¼ 1:0e� 12 the integrations
are started at x ¼ �7:0, so that the errors in the starting values are of the order of 1:0e� 12.
When � > 1:0e� 12 the integrations are started at x ¼ �6:5, so that the errors in the starting
values are of the order of 1:0e� 11. For the odd-parity equations the tolerance of the integrator
is set uniformly to � ¼ 1:0e� 12, and all integrations begin at x ¼ �7:0. The second column
shows �, an intrinsic measure of the accuracy of our results. This is defined as � :¼ j�model �
�pertj=�model, where �model is the value of � at the stellar boundary 
 ¼ 
1 as determined with

exquisite precision by integrating the stellar-model equations only, while �pert is the value as

determined by also integrating the perturbation equations. The least accurate determinations are
for small values of b; the accuracy typically improves by 2 orders of magnitude at larger values
of b. For reasons that were explained in Sec. VB, when n < 1 the accuracy that can be achieved
for the even-parity perturbations is more limited than what is achieved for �; for these cases �
gives an overestimate of the true accuracy. For n > 1, and for the odd-parity perturbations, �
should be an accurate measure of our accuracy.

l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

n ¼ 0:50 � ¼ 1:0e� 10 � ¼ 1:0e� 10 � ¼ 1:0e� 10 � ¼ 1:0e� 10
� < 1:2e� 10 � < 1:2e� 10 � < 1:2e� 10 � < 1:2e� 10

n ¼ 0:75 � ¼ 3:0e� 11 � ¼ 3:0e� 11 � ¼ 3:0e� 11 � ¼ 3:0e� 11
� < 8:6e� 11 � < 6:6e� 11 � < 8:6e� 11 � < 8:6e� 11

n ¼ 1:00 � ¼ 1:0e� 12 � ¼ 3:0e� 11 � ¼ 3:0e� 11 � ¼ 3:0e� 11
� < 1:6e� 09 � < 1:7e� 09 � < 2:7e� 10 � < 4:0e� 11

n ¼ 1:25 � ¼ 1:0e� 12 � ¼ 3:0e� 11 � ¼ 3:0e� 11 � ¼ 3:0e� 11
� < 9:5e� 11 � < 9:6e� 11 � < 9:5e� 11 � < 9:5e� 11

n ¼ 1:50 � ¼ 1:0e� 12 � ¼ 3:0e� 11 � ¼ 3:0e� 11 � ¼ 3:0e� 11
� < 7:2e� 11 � < 7:2e� 11 � < 7:2e� 11 � < 7:2e� 11

n ¼ 1:75 � ¼ 1:0e� 12 � ¼ 1:0e� 12 � ¼ 7:0e� 11 � ¼ 7:0e� 11
� < 9:2e� 11 � < 9:2e� 11 � < 9:2e� 11 � < 9:2e� 11

n ¼ 2:00 � ¼ 1:0e� 12 � ¼ 1:0e� 12 � ¼ 1:0e� 12 � ¼ 3:0e� 11
� < 2:4e� 12 � < 2:4e� 12 � < 2:4e� 12 � < 2:4e� 12
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C :¼ 2M=R. The allowed interval begins at b ¼ 0 and
C ¼ 0, where the equations reduce to their Newtonian
limit, and ends at b ¼ bmax and C ¼ Cmax, where the
stellar configuration achieves its maximum mass. Each
table caption discusses the estimated accuracy of our re-
sults. Overall, we claim an approximate accuracy of nine
significant digits for the Love numbers (with some excep-
tions, as detailed in the table captions).
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APPENDIX: TABLES OF RELATIVISTIC LOVE NUMBERS

TABLE III. Love numbers for n ¼ 0:50 and l ¼ 2. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 4:491 539 995 415e� 01. This provides evidence that our
results for the electric-type Love numbers are accurate to five significant digits. We believe that
our results for the magnetic-type Love numbers are accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 4:491 529 558 4e� 01 0:000 000 000 0eþ 00
0.016 296 296 3 0.062 785 986 5 3:685 759 957 3e� 01 1:689 683 155 6e� 03
0.065 185 185 2 0.208 540 613 2 2:211 710 364 3e� 01 4:159 652 537 2e� 03
0.146 666 666 7 0.363 616 545 4 1:152 849 348 4e� 01 4:852 293 159 3e� 03
0.260 740 740 7 0.488 341 406 6 6:019 568 639 3e� 02 4:258 349 339 5e� 03
0.407 407 407 4 0.577 286 792 3 3:382 566 057 1e� 02 3:375 910 374 8e� 03
0.586 666 666 7 0.637 953 773 6 2:087 983 094 9e� 02 2:627 166 653 9e� 03
0.798 518 518 5 0.678 953 959 1 1:410 789 275 2e� 02 2:080 927 163 2e� 03
1.042 962 963 0 0.706 817 126 4 1:031 160 579 8e� 02 1:700 416 110 3e� 03
1.320 000 000 0 0.725 950 238 2 8:045 374 229 2e� 03 1:437 217 362 2e� 03

TABLE IV. Love numbers for n ¼ 0:75 and l ¼ 2. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 3:434 291 771 770e� 01. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 3:434 291 776 1e� 01 0:000 000 000 0eþ 00
0.009 259 259 3 0.036 329 314 4 3:052 845 667 2e� 01 8:495 821 704 4e� 04
0.037 037 037 0 0.129 439 333 2 2:211 467 798 4e� 01 2:515 174 743 9e� 03
0.083 333 333 3 0.245 587 844 2 1:405 570 291 8e� 01 3:645 594 442 6e� 03
0.148 148 148 1 0.356 460 354 9 8:489 011 906 4e� 02 3:870 055 810 6e� 03
0.231 481 481 5 0.448 520 088 7 5:170 838 371 9e� 02 3:528 278 134 8e� 03
0.333 333 333 3 0.519 439 341 0 3:285 745 402 5e� 02 3:002 696 363 3e� 03
0.453 703 703 7 0.571 983 982 7 2:209 137 445 5e� 02 2:497 930 521 5e� 03
0.592 592 592 6 0.610 158 941 0 1:575 596 721 5e� 02 2:082 769 608 7e� 03
0.750 000 000 0 0.637 610 726 0 1:188 236 781 2e� 02 1:762 906 267 7e� 03
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TABLE VI. Love numbers for n ¼ 1:25 and l ¼ 2. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 1:943 393 766 752e� 01. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 1:943 393 766 5e� 01 0:000 000 000 0eþ 00
0.003 703 703 7 0.014 091 088 1 1:848 704 632 3e� 01 2:290 853 886 0e� 04
0.014 814 814 8 0.053 521 847 7 1:600 756 489 2e� 01 8:022 688 031 6e� 04
0.033 333 333 3 0.110 978 273 3 1:281 855 820 3e� 01 1:464 663 439 8e� 03
0.059 259 259 3 0.177 467 002 7 9:702 996 948 1e� 02 1:989 458 244 0e� 03
0.092 592 592 6 0.244 978 923 6 7:104 924 782 7e� 02 2:276 223 272 3e� 03
0.133 333 333 3 0.307 905 147 2 5:137 647 658 6e� 02 2:339 329 319 8e� 03
0.181 481 481 5 0.363 176 478 1 3:728 843 898 0e� 02 2:247 229 145 6e� 03
0.237 037 037 0 0.409 693 436 0 2:747 749 791 5e� 02 2:072 270 384 8e� 03
0.300 000 000 0 0.447 597 273 6 2:070 876 832 5e� 02 1:868 293 101 2e� 03

TABLE V. Love numbers for n ¼ 1:00 and l ¼ 2. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 2:599 088 771 480e� 01. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 2:599 088 773 2e� 01 0:000 000 000 0eþ 00
0.005 432 098 8 0.021 188 776 0 2:419 893 748 6e� 01 4:183 250 050 0e� 04
0.021 728 395 1 0.078 832 645 9 1:976 136 279 0e� 01 1:387 454 444 4e� 03
0.048 888 888 9 0.158 617 817 3 1:459 460 111 7e� 01 2:341 856 264 3e� 03
0.086 913 580 2 0.244 994 075 7 1:013 520 147 0e� 01 2:909 202 515 2e� 03
0.135 802 469 1 0.326 497 763 8 6:865 673 891 1e� 02 3:047 077 816 8e� 03
0.195 555 555 6 0.397 110 035 6 4:667 256 471 3e� 02 2:893 214 667 8e� 03
0.266 172 839 5 0.455 036 029 6 3:243 879 869 4e� 02 2:603 059 766 1e� 03
0.347 654 321 0 0.500 890 569 3 2:329 306 332 1e� 02 2:282 421 004 8e� 03
0.440 000 000 0 0.536 309 247 3 1:736 010 515 1e� 02 1:985 444 548 1e� 03

TABLE VII. Love numbers for n ¼ 1:50 and l ¼ 2. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 1:432 787 706 403e� 01. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 1:432 787 705 8e� 01 0:000 000 000 0eþ 00
0.002 592 592 6 0.009 506 130 9 1:382 451 947 2e� 01 1:251 687 977 8e� 04
0.010 370 370 4 0.036 614 471 7 1:245 572 300 4e� 01 4:546 186 196 0e� 04
0.023 333 333 3 0.077 538 708 8 1:056 854 102 8e� 01 8:766 843 745 2e� 04
0.041 481 481 5 0.127 214 130 7 8:549 182 672 0e� 02 1:271 904 978 7e� 03
0.064 814 814 8 0.180 526 269 3 6:686 412 265 4e� 02 1:560 333 479 4e� 03
0.093 333 333 3 0.233 212 456 9 5:126 690 679 2e� 02 1:715 439 047 2e� 03
0.127 037 037 0 0.282 262 783 9 3:901 159 369 7e� 02 1:751 046 409 4e� 03
0.165 925 925 9 0.325 904 247 4 2:975 854 425 7e� 02 1:699 807 886 0e� 03
0.210 000 000 0 0.363 356 780 7 2:292 914 204 5e� 02 1:596 344 970 3e� 03
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TABLE VIII. Love numbers for n ¼ 1:75 and l ¼ 2. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 1:039 154 459 896e� 01. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 1:039 154 459 6e� 01 0:000 000 000 0eþ 00
0.001 851 851 9 0.006 474 329 8 1:012 358 250 5e� 01 6:788 254 152 8e� 05
0.007 407 407 4 0.025 178 838 6 9:375 592 481 6e� 02 2:527 929 253 9e� 04
0.016 666 666 7 0.054 125 998 6 8:292 310 898 6e� 02 5:066 719 366 1e� 04
0.029 629 629 6 0.090 496 283 8 7:053 127 485 7e� 02 7:714 759 206 4e� 04
0.046 296 296 3 0.131 183 213 1 5:817 778 731 1e� 02 9:986 275 228 2e� 04
0.066 666 666 7 0.173 277 121 2 4:695 224 744 7e� 02 1:159 905 733 8e� 03
0.090 740 740 7 0.214 382 563 5 3:739 378 315 5e� 02 1:248 082 969 4e� 03
0.118 518 518 5 0.252 748 994 8 2:961 606 994 9e� 02 1:271 009 109 4e� 03
0.150 000 000 0 0.287 254 858 4 2:347 851 025 4e� 02 1:244 021 476 2e� 03

TABLE IX. Love numbers for n ¼ 2:00 and l ¼ 2. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 7:393 839 192 094e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 7:393 839 192 5e� 02 0:000 000 000 0eþ 00
0.001 358 024 7 0.004 480 612 1 7:250 092 856 0e� 02 3:672 250 461 6e� 05
0.005 432 098 8 0.017 540 397 1 6:841 585 734 2e� 02 1:390 859 297 2e� 04
0.012 222 222 2 0.038 100 582 2 6:229 361 543 1e� 02 2:862 898 229 5e� 04
0.021 728 395 1 0.064 567 369 3 5:494 870 567 9e� 02 4:511 008 982 7e� 04
0.033 950 617 3 0.095 075 847 2 4:719 501 810 4e� 02 6:073 882 584 0e� 04
0.048 888 888 9 0.127 734 411 1 3:969 206 230 6e� 02 7:357 497 711 4e� 04
0.066 543 209 9 0.160 820 644 0 3:287 626 634 7e� 02 8:258 435 716 6e� 04
0.086 913 580 2 0.192 904 403 5 2:696 736 695 2e� 02 8:757 289 764 0e� 04
0.110 000 000 0 0.222 898 218 1 2:201 766 463 2e� 02 8:894 797 762 6e� 04

TABLE X. Love numbers for n ¼ 0:50 and l ¼ 3. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 2:033 844 048 605e� 01. This provides evidence that our
results for the electric-type Love numbers are accurate to five significant digits. We believe that
our results for the magnetic-type Love numbers are accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 2:033 839 942 0e� 01 0:000 000 000 0eþ 00
0.016 296 296 3 0.062 785 986 5 1:561 309 576 4e� 01 7:680 669 586 8e� 04
0.065 185 185 2 0.208 540 613 2 7:929 849 887 2e� 02 1:533 480 218 0e� 03
0.146 666 666 7 0.363 616 545 4 3:387 663 551 8e� 02 1:405 348 459 5e� 03
0.260 740 740 7 0.488 341 406 6 1:480 314 098 1e� 02 1:004 020 760 6e� 03
0.407 407 407 4 0.577 286 792 3 7:269 055 978 4e� 03 6:862 886 728 2e� 04
0.586 666 666 7 0.637 953 773 6 4:097 004 365 9e� 03 4:849 568 168 5e� 04
0.798 518 518 5 0.678 953 959 1 2:618 202 843 0e� 03 3:622 635 482 8e� 04
1.042 962 963 0 0.706 817 126 4 1:855 561 019 4e� 03 2:862 330 783 1e� 04
1.320 000 000 0 0.725 950 238 2 1:426 624 820 0e� 03 2:375 722 634 1e� 04
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TABLE XI. Love numbers for n ¼ 0:75 and l ¼ 3. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 1:479 565 910 794e� 01, and this value was copied in the
first row of the Table. [We were not able to accurately compute the electric-type Love number for
b ¼ 0 for these specific values of n and l. The reason has to do with the fact that for these values,

e010 ¼ Oð
4Þ instead of being of order 
2 near 
 ¼ 0; the integrator then has difficulty moving

out of the small-
 region and the number of steps required exceeds the set limit.] We believe that
our results for the electric-type Love numbers are accurate to nine significant digits, and that our
results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 1:479 565 910 8e� 01 0:000 000 000 0eþ 00
0.009 259 259 3 0.036 329 314 4 1:265 691 247 4e� 01 3:760 600 660 9e� 04
0.037 037 037 0 0.129 439 333 2 8:272 911 834 2e� 02 9:744 265 704 9e� 04
0.083 333 333 3 0.245 587 844 2 4:580 295 440 7e� 02 1:184 710 480 7e� 03
0.148 148 148 1 0.356 460 354 9 2:398 066 130 1e� 02 1:053 366 537 2e� 03
0.231 481 481 5 0.448 520 088 7 1:287 007 278 2e� 02 8:245 103 634 5e� 04
0.333 333 333 3 0.519 439 341 0 7:395 819 627 2e� 03 6:235 520 903 4e� 04
0.453 703 703 7 0.571 983 982 7 4:621 915 449 7e� 03 4:765 400 972 2e� 04
0.592 592 592 6 0.610 158 941 0 3:138 800 981 3e� 03 3:751 039 711 2e� 04
0.750 000 000 0 0.637 610 726 0 2:297 160 362 0e� 03 3:058 957 387 7e� 04

TABLE XII. Love numbers for n ¼ 1:00 and l ¼ 3. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 1:064 540 469 774e� 01. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 1:064 540 470 7e� 01 0:000 000 000 0eþ 00
0.005 432 098 8 0.021 188 776 0 9:692 031 509 0e� 02 1:771 243 610 5e� 04
0.021 728 395 1 0.078 832 645 9 7:435 415 738 5e� 02 5:404 697 362 5e� 04
0.048 888 888 9 0.158 617 817 3 5:016 462 201 6e� 02 8:092 719 728 9e� 04
0.086 913 580 2 0.244 994 075 7 3:141 281 410 0e� 02 8:780 579 415 0e� 04
0.135 802 469 1 0.326 497 763 8 1:919 779 936 2e� 02 8:053 659 877 9e� 04
0.195 555 555 6 0.397 110 035 6 1:189 429 694 7e� 02 6:796 113 267 0e� 04
0.266 172 839 5 0.455 036 029 6 7:652 030 873 8e� 03 5:546 617 288 4e� 04
0.347 654 321 0 0.500 890 569 3 5:174 209 592 1e� 03 4:506 937 018 3e� 04
0.440 000 000 0 0.536 309 247 3 3:691 595 210 7e� 03 3:704 317 655 9e� 04

TABLE XIII. Love numbers for n ¼ 1:25 and l ¼ 3. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 7:558 993 098 406e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to eight significant digits. We believe that
our results for the magnetic-type Love numbers are accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 7:558 993 071 3e� 02 0:000 000 000 0eþ 00
0.003 703 703 7 0.014 091 088 1 7:084 100 030 7e� 02 9:148 443 889 5e� 05
0.014 814 814 8 0.053 521 847 7 5:878 845 653 0e� 02 3:022 057 521 3e� 04
0.033 333 333 3 0.110 978 273 3 4:416 768 436 2e� 02 5:055 394 016 6e� 04
0.059 259 259 3 0.177 467 002 7 3:096 510 712 8e� 02 6:184 860 942 9e� 04
0.092 592 592 6 0.244 978 923 6 2:091 033 115 4e� 02 6:340 227 072 4e� 04
0.133 333 333 3 0.307 905 147 2 1:398 588 846 6e� 02 5:864 435 224 2e� 04
0.181 481 481 5 0.363 176 478 1 9:466 065 677 3e� 03 5:126 460 042 6e� 04
0.237 037 037 0 0.409 693 436 0 6:578 065 620 2e� 03 4:364 191 129 8e� 04
0.300 000 000 0 0.447 597 273 6 4:733 176 758 1e� 03 3:688 159 898 2e� 04
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TABLE XV. Love numbers for n ¼ 1:75 and l ¼ 3. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 3:628 620 386 492e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 3:628 620 385 1e� 02 0:000 000 000 0eþ 00
0.001 851 851 9 0.006 474 329 8 3:510 619 626 3e� 02 2:363 764 362 0e� 05
0.007 407 407 4 0.025 178 838 6 3:186 306 826 1e� 02 8:544 896 729 7e� 05
0.016 666 666 7 0.054 125 998 6 2:730 445 066 7e� 02 1:634 575 774 4e� 04
0.029 629 629 6 0.090 496 283 8 2:230 460 678 2e� 02 2:344 383 005 4e� 04
0.046 296 296 3 0.131 183 213 1 1:757 012 016 9e� 02 2:833 811 659 5e� 04
0.066 666 666 7 0.173 277 121 2 1:350 906 398 1e� 02 3:060 968 476 4e� 04
0.090 740 740 7 0.214 382 563 5 1:025 535 745 5e� 02 3:062 994 276 2e� 04
0.118 518 518 5 0.252 748 994 8 7:765 417 591 1e� 03 2:910 571 080 4e� 04
0.150 000 000 0 0.287 254 858 4 5:914 327 324 6e� 03 2:673 704 758 5e� 04

TABLE XIV. Love numbers for n ¼ 1:50 and l ¼ 3. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 5:284 852 444 148e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to eight significant digits. We believe that
our results for the magnetic-type Love numbers are accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 5:284 852 412 7e� 02 0:000 000 000 0eþ 00
0.002 592 592 6 0.009 506 130 9 5:047 832 843 4e� 02 4:681 860 275 7e� 05
0.010 370 370 4 0.036 614 471 7 4:417 267 636 7e� 02 1:631 454 447 3e� 04
0.023 333 333 3 0.077 538 708 8 3:583 378 452 7e� 02 2:951 680 648 2e� 04
0.041 481 481 5 0.127 214 130 7 2:740 992 807 1e� 02 3:955 317 753 6e� 04
0.064 814 814 8 0.180 526 269 3 2:015 452 354 7e� 02 4:444 848 279 0e� 04
0.093 333 333 3 0.233 212 456 9 1:451 641 881 4e� 02 4:470 235 809 6e� 04
0.127 037 037 0 0.282 262 783 9 1:041 115 380 1e� 02 4:191 650 813 1e� 04
0.165 925 925 9 0.325 904 247 4 7:532 674 992 6e� 03 3:768 044 717 6e� 04
0.210 000 000 0 0.363 356 780 7 5:550 301 817 7e� 03 3:310 750 874 7e� 04

TABLE XVI. Love numbers for n ¼ 2:00 and l ¼ 3. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 2:439 399 851 849e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 2:439 399 852 1e� 02 0:000 000 000 0eþ 00
0.001 358 024 7 0.004 480 612 1 2:380 440 936 3e� 02 1:183 417 301 3e� 05
0.005 432 098 8 0.017 540 397 1 2:214 756 685 3e� 02 4:385 841 814 1e� 05
0.012 222 222 2 0.038 100 582 2 1:971 794 867 6e� 02 8:720 717 087 4e� 05
0.021 728 395 1 0.064 567 369 3 1:689 230 143 1e� 02 1:313 322 271 6e� 04
0.033 950 617 3 0.095 075 847 2 1:402 263 041 1e� 02 1:676 766 088 5e� 04
0.048 888 888 9 0.127 734 411 1 1:136 632 462 3e� 02 1:916 362 256 2e� 04
0.066 543 209 9 0.160 820 644 0 9:066 549 926 7e� 03 2:025 206 213 4e� 04
0.086 913 580 2 0.192 904 403 5 7:169 706 432 6e� 03 2:022 902 204 0e� 04
0.110 000 000 0 0.222 898 218 1 5:658 121 305 0e� 03 1:940 548 540 2e� 04
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TABLE XVIII. Love numbers for n ¼ 0:75 and l ¼ 4. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 8:731 859 904 775e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to eight significant digits. We believe that
our results for the magnetic-type Love numbers are accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 8:731 859 914 7e� 02 0:000 000 000 0eþ 00
0.009 259 259 3 0.036 329 314 4 7:191 615 134 0e� 02 1:982 054 055 1e� 04
0.037 037 037 0 0.129 439 333 2 4:244 873 655 7e� 02 4:568 235 862 9e� 04
0.083 333 333 3 0.245 587 844 2 2:046 764 817 4e� 02 4:741 821 173 2e� 04
0.148 148 148 1 0.356 460 354 9 9:263 622 910 8e� 03 3:571 879 844 9e� 04
0.231 481 481 5 0.448 520 088 7 4:351 789 099 2e� 03 2:404 565 342 2e� 04
0.333 333 333 3 0.519 439 341 0 2:237 488 002 3e� 03 1:604 667 011 0e� 04
0.453 703 703 7 0.571 983 982 7 1:281 223 438 2e� 03 1:112 320 244 6e� 04
0.592 592 592 6 0.610 158 941 0 8:146 858 195 5e� 04 8:139 489 461 4e� 05
0.750 000 000 0 0.637 610 726 0 5:683 382 483 1e� 04 6:295 493 247 6e� 05

TABLE XVII. Love numbers for n ¼ 0:50 and l ¼ 4. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 1:250 625 809 919e� 01. This provides evidence that our
results for the electric-type Love numbers are accurate to six significant digits. We believe that
our results for the magnetic-type Love numbers are accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 1:250 623 275 2e� 01 0:000 000 000 0eþ 00
0.016 296 296 3 0.062 785 986 5 8:988 009 903 5e� 02 4:125 971 341 7e� 04
0.065 185 185 2 0.208 540 613 2 3:867 081 937 5e� 02 6:828 549 095 1e� 04
0.146 666 666 7 0.363 616 545 4 1:351 197 383 4e� 02 4:994 894 209 9e� 04
0.260 740 740 7 0.488 341 406 6 4:903 879 670 5e� 03 2:904 588 518 5e� 04
0.407 407 407 4 0.577 286 792 3 2:075 126 315 1e� 03 1:687 809 338 6e� 04
0.586 666 666 7 0.637 953 773 6 1:047 676 252 6e� 03 1:060 079 304 8e� 04
0.798 518 518 5 0.678 953 959 1 6:194 225 935 1e� 04 7:298 038 311 0e� 05
1.042 962 963 0 0.706 817 126 4 4:161 097 667 0e� 04 5:456 503 299 2e� 05
1.320 000 000 0 0.725 950 238 2 3:085 049 690 3e� 04 4:364 309 303 2e� 05

TABLE XIX. Love numbers for n ¼ 1:00 and l ¼ 4. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 6:024 125 532 418e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 6:024 125 539 5e� 02 0:000 000 000 0eþ 00
0.005 432 098 8 0.021 188 776 0 5:364 691 367 1e� 02 9:016 974 230 7e� 05
0.021 728 395 1 0.078 832 645 9 3:868 687 672 1e� 02 2:559 908 457 2e� 04
0.048 888 888 9 0.158 617 817 3 2:385 064 923 6e� 02 3:451 160 951 8e� 04
0.086 913 580 2 0.244 994 075 7 1:345 637 102 6e� 02 3:317 117 092 6e� 04
0.135 802 469 1 0.326 497 763 8 7:399 494 497 6e� 03 2:691 383 165 8e� 04
0.195 555 555 6 0.397 110 035 6 4:156 914 457 1e� 03 2:027 287 550 3e� 04
0.266 172 839 5 0.455 036 029 6 2:456 133 232 9e� 03 1:499 053 528 3e� 04
0.347 654 321 0 0.500 890 569 3 1:547 888 358 1e� 03 1:122 476 794 8e� 04
0.440 000 000 0 0.536 309 247 3 1:044 239 881 6e� 03 8:644 010 426 7e� 05
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TABLE XXI. Love numbers for n ¼ 1:50 and l ¼ 4. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 2:739 306 738 271e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to eight significant digits. We believe that
our results for the magnetic-type Love numbers are accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 2:739 306 729 4e� 02 0:000 000 000 0eþ 00
0.002 592 592 6 0.009 506 130 9 2:590 413 686 4e� 02 2:159 090 574 6e� 05
0.010 370 370 4 0.036 614 471 7 2:202 286 012 7e� 02 7:266 190 073 3e� 05
0.023 333 333 3 0.077 538 708 8 1:708 510 329 8e� 02 1:245 684 841 5e� 04
0.041 481 481 5 0.127 214 130 7 1:235 691 723 3e� 02 1:560 079 641 7e� 04
0.064 814 814 8 0.180 526 269 3 8:536 069 494 7e� 03 1:625 552 653 8e� 04
0.093 333 333 3 0.233 212 456 9 5:765 665 383 7e� 03 1:512 135 065 1e� 04
0.127 037 037 0 0.282 262 783 9 3:885 879 808 6e� 03 1:314 252 653 8e� 04
0.165 925 925 9 0.325 904 247 4 2:655 024 195 4e� 03 1:101 088 200 7e� 04
0.210 000 000 0 0.363 356 780 7 1:859 857 288 9e� 03 9:085 820 027 2e� 05

TABLE XX. Love numbers for n ¼ 1:25 and l ¼ 4. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 4:096 746 123 839e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to eight significant digits. We believe that
our results for the magnetic-type Love numbers are accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 4:096 746 112 0e� 02 0:000 000 000 0eþ 00
0.003 703 703 7 0.014 091 088 1 3:783 153 265 8e� 02 4:444 860 934 5e� 05
0.014 814 814 8 0.053 521 847 7 3:010 200 852 5e� 02 1:396 932 686 8e� 04
0.033 333 333 3 0.110 978 273 3 2:122 482 430 6e� 02 2:167 615 429 1e� 04
0.059 259 259 3 0.177 467 002 7 1:377 827 719 7e� 02 2:420 876 623 7e� 04
0.092 592 592 6 0.244 978 923 6 8:568 826 133 0e� 03 2:250 840 231 3e� 04
0.133 333 333 3 0.307 905 147 2 5:285 702 775 8e� 03 1:891 061 529 7e� 04
0.181 481 481 5 0.363 176 478 1 3:320 225 825 7e� 03 1:512 354 966 7e� 04
0.237 037 037 0 0.409 693 436 0 2:161 115 379 3e� 03 1:190 391 357 3e� 04
0.300 000 000 0 0.447 597 273 6 1:471 838 069 0e� 03 9:414 154 774 9e� 05

TABLE XXII. Love numbers for n ¼ 1:75 and l ¼ 4. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 1:795 919 608 352e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to eight significant digits. We believe that
our results for the magnetic-type Love numbers are accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 1:795 919 579 8e� 02 0:000 000 000 0eþ 00
0.001 851 851 9 0.006 474 329 8 1:725 641 489 1e� 02 1:029 949 246 2e� 05
0.007 407 407 4 0.025 178 838 6 1:535 237 230 3e� 02 3:632 903 887 1e� 05
0.016 666 666 7 0.054 125 998 6 1:274 878 813 4e� 02 6:685 849 630 7e� 05
0.029 629 629 6 0.090 496 283 8 1:000 190 946 8e� 02 9:123 268 303 5e� 05
0.046 296 296 3 0.131 183 213 1 7:521 289 301 5e� 03 1:041 245 608 6e� 04
0.066 666 666 7 0.173 277 121 2 5:503 619 345 3e� 03 1:057 662 957 0e� 04
0.090 740 740 7 0.214 382 563 5 3:975 120 344 7e� 03 9:945 255 506 9e� 05
0.118 518 518 5 0.252 748 994 8 2:869 530 874 3e� 03 8:898 226 899 2e� 05
0.150 000 000 0 0.287 254 858 4 2:091 368 507 6e� 03 7:7283983050e� 05
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TABLE XXIV. Love numbers for n ¼ 0:50 and l ¼ 5. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 8:758 378 097 872e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to five significant digits. We believe that
our results for the magnetic-type Love numbers are accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 8:758 359 747 7e� 02 0:000 000 000 0eþ 00
0.016 296 296 3 0.062 785 986 5 5:895 372 692 3e� 02 2:456 662 541 2e� 04
0.065 185 185 2 0.208 540 613 2 2:150 213 523 3e� 02 3:401 764 953 9e� 04
0.146 666 666 7 0.363 616 545 4 6:143 863 801 6e� 03 2:004 014 503 5e� 04
0.260 740 740 7 0.488 341 406 6 1:848 447 587 8e� 03 9:530 920 570 3e� 05
0.407 407 407 4 0.577 286 792 3 6:714 663 382 5e� 04 4:705 529 018 8e� 05
0.586 666 666 7 0.637 953 773 6 3:020 177 090 0e� 04 2:614 355 243 6e� 05
0.798 518 518 5 0.678 953 959 1 1:641 505 397 5e� 04 1:647 065 169 3e� 05
1.042 962 963 0 0.706 817 126 4 1:038 369 302 7e� 04 1:156 391 300 4e� 05
1.320 000 000 0 0.725 950 238 2 7:377 700 961 8e� 05 8:849 041 163 0e� 06

TABLE XXIII. Love numbers for n ¼ 2:00 and l ¼ 4. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 1:150 774 963 254e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 1:150 774 963 4e� 02 0:000 000 000 0eþ 00
0.001 358 024 7 0.004 480 612 1 1:117 598 624 2e� 02 4:851 734 617 8e� 06
0.005 432 098 8 0.017 540 397 1 1:025 319 916 6e� 02 1:766 687 749 2e� 05
0.012 222 222 2 0.038 100 582 2 8:926 703 037 4e� 03 3:415 521 223 3e� 05
0.021 728 395 1 0.064 567 369 3 7:427 231 982 1e� 03 4:957 678 143 7e� 05
0.033 950 617 3 0.095 075 847 2 5:957 350 631 4e� 03 6:060 538 419 3e� 05
0.048 888 888 9 0.127 734 411 1 4:650 843 277 7e� 03 6:603 541 988 0e� 05
0.066 543 209 9 0.160 820 644 0 3:568 265 716 6e� 03 6:639 610 716 1e� 05
0.086 913 580 2 0.192 904 403 5 2:715 040 067 0e� 03 6:310 084 938 4e� 05
0.110 000 000 0 0.222 898 218 1 2:065 340 446 3e� 03 5:769 693 677 6e� 05

TABLE XXV. Love numbers for n ¼ 0:75 and l ¼ 5. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 5:904 211 079 675e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 5:904 211 083 0e� 02 0:000 000 000 0eþ 00
0.009 259 259 3 0.036 329 314 4 4:683 027 075 3e� 02 1:165 380 927 3e� 04
0.037 037 037 0 0.129 439 333 2 2:497 615 876 2e� 02 2:405 109 713 9e� 04
0.083 333 333 3 0.245 587 844 2 1:049 166 476 8e� 02 2:148 876 029 2e� 04
0.148 148 148 1 0.356 460 354 9 4:103 059 826 6e� 03 1:381 230 645 0e� 04
0.231 481 481 5 0.448 520 088 7 1:684 538 307 3e� 03 8:034 031 504 7e� 05
0.333 333 333 3 0.519 439 341 0 7:727 961 295 7e� 04 4:738 252 082 7e� 05
0.453 703 703 7 0.571 983 982 7 4:039 434 759 1e� 04 2:975 515 817 6e� 05
0.592 592 592 6 0.610 158 941 0 2:394 304 756 3e� 04 2:017 943 102 0e� 05
0.750 000 000 0 0.637 610 726 0 1:584 662 983 6e� 04 1:474 343 322 3e� 05
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TABLE XXVII. Love numbers for n ¼ 1:25 and l ¼ 5. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 2:574 776 897 544e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 2:574 776 889 2e� 02 0:000 000 000 0eþ 00
0.003 703 703 7 0.014 091 088 1 2:343 173 228 9e� 02 2:448 459 439 1e� 05
0.014 814 814 8 0.053 521 847 7 1:788 234 304 5e� 02 7:346 991 367 1e� 05
0.033 333 333 3 0.110 978 273 3 1:183 806 730 0e� 02 1:063 002 581 4e� 04
0.059 259 259 3 0.177 467 002 7 7:117 592 985 6e� 03 1:090 395 836 8e� 04
0.092 592 592 6 0.244 978 923 6 4:076 478 525 6e� 03 9:252 083 099 8e� 05
0.133 333 333 3 0.307 905 147 2 2:318 012 236 7e� 03 7:100 609 930 7e� 05
0.181 481 481 5 0.363 176 478 1 1:350 020 554 2e� 03 5:219 665 186 0e� 05
0.237 037 037 0 0.409 693 436 0 8:218 299 205 9e� 04 3:812 141 741 1e� 05
0.300 000 000 0 0.447 597 273 6 5:287 394 632 7e� 04 2:828 014 368 8e� 05

TABLE XXVI. Love numbers for n ¼ 1:00 and l ¼ 5. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 3:929 250 022 713e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 3:929 250 028 3e� 02 0:000 000 000 0eþ 00
0.005 432 098 8 0.021 188 776 0 3:423 218 679 8e� 02 5:159 527 917 9e� 05
0.021 728 395 1 0.078 832 645 9 2:321 494 691 0e� 02 1:369 134 786 8e� 04
0.048 888 888 9 0.158 617 817 3 1:308 382 167 7e� 02 1:672 578 936 4e� 04
0.086 913 580 2 0.244 994 075 7 6:651 765 835 9e� 03 1:433 945 121 2e� 04
0.135 802 469 1 0.326 497 763 8 3:289 704 373 4e� 03 1:035 579 104 5e� 04
0.195 555 555 6 0.397 110 035 6 1:673 858 664 5e� 03 6:996 284 441 1e� 05
0.266 172 839 5 0.455 036 029 6 9:066 386 282 0e� 04 4:701 213 896 9e� 05
0.347 654 321 0 0.500 890 569 3 5:311 874 279 7e� 04 3:248 140 667 5e� 05
0.440 000 000 0 0.536 309 247 3 3:378 225 320 9e� 04 2:343 282 134 6e� 05

TABLE XXVIII. Love numbers for n ¼ 1:50 and l ¼ 5. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 1:656 876 321 404e� 02. This provides evidence that our
results for the electric-type Love numbers are accurate to eight significant digits. We believe that
our results for the magnetic-type Love numbers are accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 1:656 876 313 5e� 02 0:000 000 000 0eþ 00
0.002 592 592 6 0.009 506 130 9 1:551 374 792 3e� 02 1:139 676 932 1e� 05
0.010 370 370 4 0.036 614 471 7 1:281 710 282 7e� 02 3:714 425 213 6e� 05
0.023 333 333 3 0.077 538 708 8 9:512 335 412 3e� 03 6:059 352 981 5e� 05
0.041 481 481 5 0.127 214 130 7 6:507 168 725 7e� 03 7:129 259 956 6e� 05
0.064 814 814 8 0.180 526 269 3 4:223 689 023 3e� 03 6:926 862 619 7e� 05
0.093 333 333 3 0.233 212 456 9 2:675 124 564 1e� 03 5:993 842 983 1e� 05
0.127 037 037 0 0.282 262 783 9 1:693 534 704 8e� 03 4:854 363 740 2e� 05
0.165 925 925 9 0.325 904 247 4 1:091 813 480 5e� 03 3:808 219 174 3e� 05
0.210 000 000 0 0.363 356 780 7 7:262 529 035 3e� 04 2:962 761 140 2e� 05
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The following tables display our results for the tidal Love numbers of relativistic polytropes. Each table caption contains
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TABLE XXX. Love numbers for n ¼ 2:00 and l ¼ 5. Integration of the Newtonian Clairaut
equation (for b ¼ 0) returns kel ¼ 6:419 966 834 096e� 03. This provides evidence that our
results for the electric-type Love numbers are accurate to nine significant digits. We believe that
our results for the magnetic-type Love numbers are also accurate to nine significant digits.

b 2M=R kel kmag

0.000 000 000 0 0.000 000 000 0 6:419 966 835 0e� 03 0:000 000 000 0eþ 00
0.001 358 024 7 0.004 480 612 1 6:205 468 381 3e� 03 2:327 325 318 0e� 06
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