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Preface

These lecture notes were prepared originally for a six-hour course for the Ph.D School “Advanced Topics

in Theoretical Physics 2025” held in April 2025 at the University of Perugia, Italy. The course is intended
to give a concise yet self-contained introduction to the spinor description of general relativity, oriented
towards applications to black hole and gravitational wave physics. The first and second two-hour sessions
were dedicated to Sections 2 and 3 of the notes, while the last two-hour session discussed Section 4 together
with a demonstration using the appended mathematica notebook.

Conventions. We use geometric units where c = G = 1. The spacetime signature is (+,−,−,−), as is
customary in the spinor literature, to ensure that the rising and lowering operations with the spinor and
spacetime metrics are consistent with one another. Following likewise standard conventions, normal-font
upper (lower) case latin characters are abstract spinor (tensor) indices, while their boldface counterparts
label components relative to a dyad (vector basis). The sign of the Riemann tensor is chosen to match the
convention in the original paper by Newman and Penrose [1],

∇a∇bXc − ∇b∇aXc = RabcdX
d , (0.1)

which is unfortunately the opposite one chosen in the original work by Penrose [2] as well as the main
reference on the topic, the monograph by Penrose and Rindler [3]. The convention taken here follows
that of many established references in spinor applications to gravitational physics (besides [1] see also
Chandrasekar’s monograph [4] and Valiente Kroon’s one [5]), but has the undesirable issue of endowing de
Sitter space with negative curvature. It is what it is.

References. For Section 2 I found Chapter 3 of Valiente Kroon’s book [5] particularly useful, as well as
Chapter 13 of Wald’s book [6]. Section 3 follows closest the discussions in Penrose and Rindler’s book [3].
Stewart’s book [7] was also helpful. More specific references are indicated throughout the text.
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1 Introduction

1 Introduction

The spinor approach to general relativity started being developed around the 1960s, with an influential
work by Penrose [2]. One of its most important advantages, noticed slightly earlier [8], is that spacetime
curvature is described in remarkably simple terms. This point of view has lead to groundbreaking
advancements in the description of gravity, that go from exploring the space of solutions of Einstein’s
theory to understanding aspects of gravitational radiation that are crucial for gravitational wave science.
Furthermore, besides providing a deep and useful formulation of general relativity, spinor techniques have
also been instrumental in establishing other important results in gravity, such as the positivity of energy [9],
and continue to be used actively in today’s research.

An outstanding application of spinors concerns some problems in gravitational radiation, especially
about gravitational waves in Kerr’s spacetime. The latter turns out to be relatively simple when written
in terms of its spinor variables, and this has made it possible to study in a very precise manner what are
the characteristics of gravitational fluctuations that generate and propagate in the vicinity of black holes.
In order to write spinor equations in a way that is suitable for some computations (e.g., solving them
numerically), one translates them into scalar ones via the so-called Newman–Penrose (NP) formalism [1]
or its “refined” version, the Geroch–Held–Penrose (GHP) formalism [10]. These scalar equations are often
taken as the starting point in both research applications and textbooks (Chandrasekar’s monograph [4]
is one example, although Chapter 10 contains a brief introduction to spinors). The advantage of this
approach is that only prior knowledge of tensor calculus is required, but it has some drawbacks, in our view.
First, the NP and GHP variables are only natural from a spinor perspective. When these are introduced
instead as contractions of tensors and null frames, they seem rather arbitrary, and it is far from clear why
such an approach should be useful. This is arguably undesirable from an educational perspective. A second
disadvantage is that some times dealing with NP or GHP equations directly requires more guesswork than
if working with spinors first, benefiting form their higher simplicity, and translating the equations to NP
or GHP variables at the end of the day. We will exemplify this by providing an alternative derivation
of Teukolsky’s equations [11]. Although it might be counter-argued (and justifiably so) that translating
spinor equations into NP or GHP ones is a computationally demanding task, currently available software
for efficient symbolic manipulation allows one to perform those operations automatically.

These lecture notes are intended to provide a concise yet self-contained introduction to the spinor
description of general relativity, oriented towards applications to black hole and gravitational wave physics.
They come with a mathematica notebook based on SpinFrames (one of the xAct packages) where some
examples are given on how to manipulate spinor equations and their NP and GHP projections efficiently.
The notes are organised as follows. In Section 2 we introduce spinors as elements of a complex vector
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2 Spinors at a Point

space, we review their most important properties and show how Lorentzian spaces emerge naturally from
spinor space. In Section 3 we extend those notions to the entire spacetime manifold, and introduce the
spinor covariant derivative. The main result is the decomposition of the Riemann curvature tensor in its
irreducible spinor components. This allows us to derive Petrov’s classification in a natural way, and obtain
the wave equation satisfied by Weyl’s spinor in vacuum. The section is concluded by introducing the
GHP formalism, and discussing some theorems rephrased in terms of GHP variables (the NP formalism is
introduced as a restriction of the GHP one). In Section 4 we apply the previous notions to black holes
and gravitational waves. First, we characterise the class of vacuum type D spacetimes in terms of their
GHP variables, with an emphasis on Kerr’s solution. Next, starting from the wave equation satisfied by
Weyl’s spinor in vacuum, we derive non-perturbative wave equations describing the propagation of GHP
curvature scalars in empty space (these were first obtained by Stewart and Walker [12], although we correct
a typo that has propagated to some works in the literature). The notes only report the results, while the
derivation is given in detail in the example notebook. Finally, we obtain Teukolsky’s equations on any
vacuum type D space as an immediate linearisation of the curvature wave equations derived previously,
and conclude by discussing their implications for gravitational waves in Kerr’s spacetime.

2 Spinors at a Point

Spinors provide a decomposition of the gravitational field into “irreducible pieces”. Working in terms of
these smaller elements, some apparently complicated properties of spacetime can be described in strikingly
simple terms. However, before applying these ideas to describe the spacetime geometry it is necessary
to establish a link between spinors and Lorentzian metric spaces. Spinors are elements in the vector
representation of SL(2,C), the group of unimodular 2×2 complex matrices, and this is related to the
proper Lorentz group Λ(1, 3) by a two-to-one map

Λ(1, 3) ∼= SL(2,C)/{I ∼ −I} , (2.1)

where I is the identity in SL(2,C). Mathematically, we say SL(2,C) is the universal covering of Λ(1, 3),
and this is the main reason underlying the spinor description of Lorentzian spaces. Reviewing these facts
in some detail is the goal of the present section.

2.1 Spinors and Index Notation

A spinor ξ is an element of a 2-dimensional vector space W over the complex numbers C. Besides the
dual space W ∗ of linear maps from W to C, W also has associated a complex conjugate dual space W̄ ∗.
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2 Spinors at a Point

This is the set of maps ψ from W to C which are antilinear, that is, satisfying

ψ (aξ + bη) = āψ (ξ) + b̄ψ (η) , (2.2)

for all ξ, η ∈ W, and a, b ∈ C. The complex conjugate space of W , denoted W̄ , is simply the dual of W̄ ∗.
Every element ξ in W has associated a complex conjugate, the element ξ̄ in W̄ given by ξ̄ (ψ) := ψ(ξ)
for all ψ ∈ W̄ ∗. Similarly, the complex conjugate of α ∈ W ∗ is the element ᾱ ∈ W̄ ∗ acting on ξ ∈ W as
ᾱ(ξ) := α(ξ). These maps are natural bijections that we call (as well as their inverses) complex conjugation.
We notice that these notions apply to any vector space over C, so in particular they extend to the tensor
product space Wn1 ⊗ W̄n2 ⊗W ∗n3 ⊗ W̄ ∗n4 (with ni natural numbers).

In order to make things more explicit, it is convenient to use abstract index notation, where a spinor ξ
is represented by ξA, the index refering to the vector space it belongs to (W in this case). It is customary
to use primed indices to refer to elements in the complex conjugate space, ϕA′ ∈ W̄ , and denote the
complex conjugate of a spinor ξA by ξ̄A′ , that is,

ξ̄A′ := ξA . (2.3)

A basis of spinors is called a dyad, and consists of a pair of spinors ϵ A
0 , ϵ A

1 that generate W . We will use
boldface upper-case latin characters to label the basis elements as ϵ A

A , and also to label spinor components.
For example, the dual basis of ϵ A

A , denoted ϵ A
A , satisfies ϵ A

B ϵ A
A = δ A

B and the components of SAB′
C

are SAB′
C = ϵ A

A ϵ B′
B′ ϵ C

C SAB′
C .1

Remark 2.1. Primed and unprimed indices refer to different vector spaces. Therefore, their ordering is
irrelevant and their contraction is ill-defined. Taking a spinor SAB′

C ∈ W ⊗ W̄ ⊗W ∗ as example, one has
that SAB′

C = SB′A
C , and SAB′

A ∈ W̄ , but a contraction between its W̄ -upper index and W ∗-lower index
is not defined. We may often write SAA′

C to save index characters, since the presence of the prime avoids
any confusion. Likewise, sometimes we may ommit the bar to denote complex conjugation, since the index
structure again avoids any confusion, e.g. both S̄A′A

C′ and SA′A
C′ denote the conjugate of SAA′

C . An
exception are the spinors with the same number of primed and unprimed indices, in that case the bar is
necessary to avoid confusion.

Exercise 2.1. Let ϵ A
A be a dyad in W , ϵ A

A its dual, together with their conjugates ϵ̄ A′
A′ := ϵ A

A and
ϵ̄ A′
A′ := ϵ A

A . (i) Show that ϵ̄ A′
A′ is a basis in W̄ and ϵ̄ A′

A′ its dual. (ii) Show that if ξA and αA are the
components of ξA and αA, then the components of ξ̄A′ and ᾱA′ are ξ̄A′ = ξA and ᾱA′ = αA (that is, the
components of the complex conjugate of a spinor are simply the complex conjugate of its components).

1Our convention in the position of indices in a dyad is that of Penrose and Rindler [3], since in that case one has the
convenient property explained below in part (ii) of Exercise 2.3.
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2 Spinors at a Point

2.2 Spinor Space

The fact that W has a low dimension will be crucial. In particular, the space of skew-symmetric, valence-2
spinors is 1-dimensional, and the choice of a representative gives raise to the notion of spinor space.

Definition 2.1. A spinor space is a pair (W, ϵAB) where W is a 2-dimensional complex vector space and
ϵAB a non-vanishing, skew-symmetric valence-2 spinor (ϵAB = −ϵBA).

Given that the ϵ-spinor ϵAB is non-degenerate, we can use it to correspond W with W ∗ uniquely by
lowering and raising spinor indices, just as we do in (pseudo-)Riemannian metric spaces. However, since
ϵAB is skew-symmetric it is necessary to establish a convention in the index positionings. We choose to
correspond a spinor ξA ∈ W to one ξA ∈ W ∗ by the relation

ξA = ϵBAξ
B . (2.4)

We will write the inverse of this map in terms of ϵAB, defined as (minus) the inverse of ϵAB in the sense
that it satisfies

ϵBCϵ
AC = δ A

B , (2.5)

where δ A
B is the identity in W . Thus, we can correspond a spinor ξA ∈ W ∗ to one ξA ∈ W via

ξA = ϵABξB . (2.6)

It is customary to introduce the following notation for the complex conjugate of the ϵ-spinors,

ϵA′B′ := ϵ̄A′B′ , ϵA
′B′ := ϵ̄A

′B′
, (2.7)

where the bars are omitted for convenience. Using ϵAB, ϵA′B′ and their inverses the operations of raising
and lowering indices can be extended to spinors of arbitrary structure. It should be stressed that the index
positions in the relations above are crucial in order to make the operations well-defined, as shown in the
following exercise.

Exercise 2.2. (i) Show that given a spinor ξA ∈ W , then ξA = ϵABξB where ξB is as in (2.4). This shows
that the operations of raising and lowering indices (equations (2.4) and (2.6)) are the inverse of each other.
(ii) Show that for all ξA ∈ W one has ξAξA = 0. (iii) Show that ϵ A

A = ϵABϵAB = 2, ϵ A
C = −ϵAC = δ A

C

and δ A
B = −δA

B . (iv) Show that for any spinor SA
B ∈ W ⊗W ∗, one has SA

A = −S A
A . This is known

as the see-saw rule.

Finally, a spinor space has a family of distinguished basis, the orthonormal ones with respect to ϵAB.
A orthonormal spinor dyad is a spinor basis {oA, ιA} satisfying

oAι
A = 1 . (2.8)
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2 Spinors at a Point

Exercise 2.3. (i) Denoting an orthonormal dyad as ϵ A
A = {oA, ιA}, and its dual by ϵ A

A , show that the
components of ϵAB and ϵAB are

ϵAB = ϵAB =

 0 1
−1 0

 , (2.9)

where we are assuming that the first index labels rows and the second columns. (ii) Show that the basis
and its dual are related by ϵ A

A = −ϵABϵBAϵ
B

B , so one can write ϵAA = −ϵAA. (iii) Show that

δ B
A = oAι

B − ιAo
B , ϵAB = oAιB − ιAoB , ϵAB = oAιB − ιAoB . (2.10)

2.3 Irreducible Decomposition of Spinors

The decomposition of spinors into its “irreducible pieces” plays a central role in most of the things that
will be discussed later. It can be formulated in the following way.

Proposition 2.1. Any spinor ξA...B can be decomposed as the sum of the spinor ξ(A...B) and products of

ϵ-spinors with symmetrised contractions of ξA...B.

Proof. That this is true for a skew-symmetric valence-2 spinor ξAB = ξ[AB] is clear: the space of skew-
symmetric 2-spinors is one dimensional, so ξ[AB] = fϵAB for some scalar f , and contracting both sides
with ϵAB gives f = (1/2)ϵABξAB. To extend the proof to a spinor of valence n, ξA...B, we first note that

n!ξ(AB...CD) = (n− 1)!
(
ξA(B...CD) + ξB(A...CD) + ...+ ξD(AB...C)

)
, (2.11)

and apply the result of skew-symmetric valence-2 spinors to write the second term in the brackets as

ξB(A...CD) = ξA(B...CD) −2ξ[A(B]...CD) = ξA(B...CD) −ϵEF ξE(F...CD)ϵAB = ξA(B...CD) +ξE
(E...CD)ϵAB . (2.12)

Applying this to all terms in the brackets of (2.11) but the first gives

ξ(AB...CD) = ξA(B...CD) + 1
n

(
ξE

(E...CD)ϵAB + ...+ ξE
(B...CE)ϵAD

)
. (2.13)

This formula can now be applied on ξA(B...CD), to write it as ξAB(...CD) plus ϵ-spinors and symmetrised
contractions of ξA...B . Doing this recursively one obtains an expression for ξA...B only in terms of products
of its symmetrised contractions and ϵ-spinors. The proof extends in the exact same way to spinors carrying
primed indices.

The irreducible components of a spinor are the symmetrised contractions that appear in the irreducible
decomposition, and they are independent in the sense that the spinor vanishes if and only if all of its
irreducible components vanish. In addition, the number of independent components of each irreducible
piece is obtained immediately after noticing the following.
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2 Spinors at a Point

Proposition 2.2. The number of independent components of a valence-n, fully symmetric spinor ξ(A....B)

is n+ 1.

Proof. Taking a dyad {oA, ιA}, a basis of the space of fully-symmetric spinors of valence n is

{o(AoB...oC), ι(AoB...oC), ι(AιB...oC), ..., ι(AιB...ιC)} , (2.14)

which contains n+ 1 elements.

Exercise 2.4. Show that the irreducible decomposition of a valence-4 spinor ξABCD is

ξABCD =ξ(ABCD) + 1
2ξ

P
(AB)P ϵCD + 1

2ξ
P

P (CD)ϵAB + 1
4ξ

P Q
P Q ϵABϵCD

+ 1
2ϵA(CξD)B + 1

2ϵB(CξD)A − 1
3ϵA(CϵD)Bξ ,

(2.15)

where ξAB := ξ Q
Q(AB) , and ξ := ξ P Q

P Q .

2.4 Relation to Lorentzian Spaces

We are now in conditions to establish the relation between spinor spaces and Lorentzian ones (in our context,
these are 4-dimensional real vector spaces with a non-degenerate metric with signature (+,−,−,−)). For
that, the notion of real spinor is crucial and we introduce it next.

2.4.1 Real Spinors and Lorentizan Spaces

A spinor ξAA′ ∈ W ⊗ W̄ is real if it is equal to its complex conjugate,

ξ̄AA′ = ξAA′
. (2.16)

We shall denote by V ⊂ W ⊗ W̄ the subset of all real spinors. Since complex conjugation is a linear
opeartion, it follows that V has the structure of vector space over the field of real numbers. This notion
extends naturally to spinors of higher valences, as long as these have the same number of primed and
unprimed indices, but is ill-defined otherwise. In other words, real spinors are labelled by pairs of indices
of the form AA′, and may be thought of as a single index labeling a real vector space. The following
proposition shows that Lorentzian spaces emerge naturally from the notions of spinor space and real
spinors.

Proposition 2.3. The vector space V of real spinors satisfying (2.16), together with the metric spinor

gAA′BB′ = ϵABϵA′B′ , (2.17)

form a real four-dimensional Lorentzian space with signature (+,−,−,−).
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2 Spinors at a Point

Proof. We will prove this using the following basis of W ⊗ W̄ , constructed out of an orthonormal dyad
{oA, ιA} of (W, ϵAB):

TAA′ = 1√
2

(
oAoA′ + ιAιA

′)
,

XAA′ = 1√
2

(
oAιA

′ + ιAoA′)
,

Y AA′ = i√
2

(
oAιA

′ − ιAoA′)
,

ZAA′ = 1√
2

(
oAoA′ − ιAιA

′)
,

(2.18)

That this is a basis of W ⊗ W̄ is manifest by its relation to the natural basis {oAoA′
, oAιA

′
, ιAoA′

, ιAoA′}.
However, observe that all elements in (2.18) are real, that is, T̄AA′ = TAA′

, X̄AA′ = XAA′
..., so they also

form a basis of V . In particular, any ξAA′ ∈ V is expressed as ξAA′ = tTAA′ + xXAA′ + yY AA′ + zZAA′

with t, x, y, z ∈ R. Next, we first notice that the metric (2.17) is manifestly real and symmetric in the
pairs AA′ and BB′. A direct computation (recalling that oAι

A = 1) then shows that its components on
the basis (2.18) are diag[+1,−1,−1,−1].

As we will see in the following sections, the description of Lorentzian spaces in terms of spinors is very
powerful. The reason is that it allows one to trade tensors by their constituent spinors, which are simpler
objects that often make certain proofs and computations more manageable. As illustrative examples we
can take the cases of symmetric and skew-symmetric tensors, such as the energy-momentum tensor Tab

and the Maxwell field strength Fab, respectively. Their spinor counterparts are TAA′BB′ and FAA′BB′ with
the properties

TAA′BB′ = TBB′AA′ , FAA′BB′ = −FBB′AA′ . (2.19)

To obtain their irreducible decomposition, we first notice that (2.19) imply

TAB(A′B′) = T(AB)A′B′ = T(AB)(A′B′) , TAB[A′B′] = T[AB]A′B′ = T[AB][A′B′] , (2.20)

and

FAB(A′B′) = F[AB]A′B′ = F[AB](A′B′) , FAB[A′B′] = F(AB)A′B′ = F(AB)[A′B′] . (2.21)

Then, recalling that the ordering between primed and unprimed indices is irrelevant, we can write

TABA′B′ =TAB(A′B′) + TAB[A′B′]

=T(AB)(A′B′) + T[AB][A′B′]

=T(AB)(A′B′) + 1
4
(
ϵCDϵC

′D′
TCDC′D′

)
ϵABϵA′B′

≡SABA′B′ + τϵABϵA′B′ ,

(2.22)
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2 Spinors at a Point

where in the third equality we applied the irreducible decomposition of a skew-symmetric 2-spinor (recall
the proof in Proposition 2.1) relative to both AB and A′B′ indices, and in the last equality we introduced
the fully symmetric spinor SABA′B′ = T(AB)(A′B′) and τ = (1/4)T C C′

C C′ . These are the spinor irreducible
components of a symmetric tensor. For a skew-symmetric tensor, we have

FABA′B′ =FAB(A′B′) + FAB[A′B′]

=F[AB](A′B′) + F(AB)[A′B′]

≡ψA′B′ϵAB + ϕABϵA′B′ ,

(2.23)

where we used again the irreducible decomposition of a skew-symmetric 2-spinor and introduced the
symmetric spinors

ϕAB = 1
2F

C′
ABC′ , ψA′B′ = 1

2F
C

A′B′C , (2.24)

whose symmetry follows by virtue of (2.19) and the see-saw rule (see Exercise 2.2). It will also prove
useful to have an expression for the volume form of V in terms of ϵ-spinors.

Exercise 2.5. Show that the metric volume form in V is

ϵAA′BB′CC′DD′ = i (ϵABϵCDϵA′C′ϵB′D′ − ϵACϵBDϵA′B′ϵC′D′) . (2.25)

Hint: use the identity ϵA[BϵCD] = 0, which follows immediately from the fact that W is two-dimensional.

We will employ all of these results later on for the more complicated task of decomposing the curvature
tensor. Before moving on, we notice another important example, that of null vector fields, which turn out
to be describable in terms of a single spinor.

Exercise 2.6. Let kAA′ be a null vector in (V, gAA′BB′). Show that it can be expressed as

kAA′ = ±κAκ̄A′
. (2.26)

Remark 2.2. Notice that, although a single spinor defines two null vectors through (2.26), a null vector
has associated a 1-parameter family of spinors, eiθκA, with θ real. A pictorial interpretation of this can be
given in terms of Penrose’s flags and poles, that we will not discuss here. We refer the reader to [3].

2.4.2 The Infeld-van der Waerden Symbols

Above we have seen that out of an orthonormal dyad in spinor space ϵ A
A it is possible to construct an

orthonormal basis in the Lorentzian space (V, gAA′BB′). We did so identifying the basis (2.18). This
construction can be generalisation in terms of the so-called Infeld-van der Waerden symbols (IvW). These
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2 Spinors at a Point

are a collection of complex numbers, denoted σ AA′
a , which relate a spinor basis ϵ A

A in (W, ϵAB) to an
orthonormal basis in (V, gAA′BB′), via

σ AA′
a = σ AA′

a ϵ A
A ϵ A′

A′ . (2.27)

Here, the index a takes values from 0 to 3, and labels the orthonormal basis σ AA′
a . Since (2.27) is a basis

of V by assumption, it must be real, and from σ̄ AA′
a = σ AA′

a it follows that IvW symbols can be seen as
a collection of Hermitian matrices,

σ AA′
a = σ A′A

a . (2.28)

The basis (2.18) corresponds to a particular choice of IvW symbols, as stated in the following exercise.

Exercise 2.7. Given an orthonormal dyad ϵ A
A = {oA, ιA}, show that the basis (2.18) emerges from (2.27)

with the following choice of IvW symbols:

σ AA′
0 = 1√

2

1 0
0 1

 , σ AA′
1 = 1√

2

0 1
1 0

 ,
σ AA′

2 = 1√
2

 0 i

−i 0

 , σ AA′
3 = 1√

2

1 0
0 −1

 .
(2.29)

Notice these are, up to global factors, the Pauli matrices. Recall, though, that this is a particular choice of
IvW symbols, and that other possibilities exist.

From the assumption that (2.27) is orthonormal with respect to gAA′BB′ , it follows immediately that

ηab = σ AA′
a σ BB′

b ϵABϵA′B′ , (2.30)

where ϵAB, ϵA′B′ are given by (2.9). The following exercise introduces the dual of basis of σ AA′
a , and the

inverse IvW symbols.

Exercise 2.8. Show that σa
AA′ := ηabϵBAϵB′A′σ BB′

b is the dual of (2.27), that is,

σ AA′
b σa

AA′ = δ a
b . (2.31)

Show that one can write σa
AA′ = σa

AA′ ϵ A
A ϵ A′

A′ , where the inverse IvW symbols σa
AA′ are

σa
AA′ := ηabϵBAϵB′A′σ BB′

b . (2.32)

Given that σ AA′
a and σa

AA′ are the dual of each other, they realise the identity operator in V as

δ AA′
BB′ = σa

BB′σ AA′
a , (2.33)

and from this one obtains an analogue of the completeness relation (2.30), satisfied by the inverse IvW
symbols,

ϵABϵA′B′ = σa
AA′σb

BB′ηab . (2.34)
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Exercise 2.9. Obtain the inverse of the IvW symbols given in (2.29), and show they satisfy the completeness
relations (2.30) and (2.34).

2.4.3 Lorentz Transformations From Spinor Transformations

At the beginning of this section we advanced that the proper Lorentz and spinor groups are intimately
related. We are now in conditions of making that relation more precise. Our starting point is the notion
of spinor transformation.

Definition 2.2. A spinor transformation is a map relating two orthonormal dyads.

Spinor transformations can be written explicitly as

ϵ̃ A
A = L B

A ϵ A
B , ϵ̃ A

A = L−1A
Bϵ

B
A , (2.35)

where L B
A and L−1A

B denote a complex invertible 2×2 matrix and its inverse, respectively. The condition
that both basis ϵ̃ A

A and ϵ A
A are orthonormal implies that spinor transformations preserve the canonical

form (2.9) of the ϵ-spinor,

ϵAB = L C
A L D

B ϵCD . (2.36)

Proposition 2.4. The group of spinor transformations is SL(2,C), that is, the group of complex 2 × 2
matrices with unit determinant.

Proof. By definition,

det (L) = 1
2ϵABϵ

CDL A
C L B

D . (2.37)

It follows that if det (L) = 1, then
(
ϵABL

A
C L B

D
)
ϵCD = 2, where the term in brackets is skew-symmetric

in CD so one has ϵABL
A

C L B
D = ϵCD, that is, L B

A satisfies (2.36). Conversely, from (2.36) it follows
that (det (L))2 = 1, so either det (L) = ±1. However, −1 is excluded because from (2.37) we would be
lead to conclude ϵAB = −L C

A L D
B ϵCD, contradicting our initial assumption (2.36).

Consider now two orthonormal spin dyads related by a spinor transformation (2.35). Through the IvW
symbols they define two orthonormal basis of V , σ̃ AA′

a = σ AA′
a ϵ̃ A

A ϵ̃ A′
A′ and σ AA′

a = σ AA′
a ϵ A

A ϵ A′
A′ ,

related by

σ̃ AA′
a = σ AA′

a ϵ̃ A
A ϵ̃ A′

A′ = σ AA′
a L B

A L̄ B′
A′ ϵ A

B ϵ A′
B′ = Λ b

a σ AA′
b , (2.38)

where in the last equality we employed the completeness relation (2.34) and introduced

Λ b
a := σ AA′

a L B
A L̄ B′

A′ σb
BB′ . (2.39)
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Since σ̃ AA′
a and σ AA′

a are both orthonormal with respect to gAA′BB′ , it follows that

ηab = gAA′BB′ σ̃ AA′
a σ̃ BB′

b = Λ c
a Λ d

b gAA′BB′σ AA′
c σ BB′

d = Λ c
a Λ d

b ηcd . (2.40)

That is, we have shown that a spinor transformation in W induces a Lorentz transformation in V through
(2.39). This makes explicit the relation between spinor and Lorentz transformations. However, this is
not a one-to-one correspondance, since the two elements ±L B

A ∈ SL(2,C) induce the same Lorentz
transformation. More precisely, it can be shown that L B

A ,M B
A ∈ SL(2,C) induce the same Lorentz

transformation if and only if L B
A = ±M B

A , so (2.39) is exactly a two-to-one map from SL(2,C) into the
proper Lorentz group.

2.4.4 The Soldering Form

So far we have restricted our discussion to spinor space (W, ϵAB), and the relation to Lorentzian spaces
has been established in terms of (V, gAA′BB′), with V ⊂ W ⊗ W̄ the vector subspace of real spinors and
gAA′BB′ = ϵABϵA′B′ . It is also convenient to establish a formal connection between (V, gAA′BB′) and any
Lorentzian space (V, gab) (where lower-case latin indices denote abstract indices in V).

Let e a
a be an orthonormal basis of V and ϵ A

A an orthonormal dyad in W , and denote their duals by
e a

a and ϵ A
A . The dyad defines an orthonormal basis of V through σ AA′

a = σ AA′
a ϵ A

A ϵ A′
A′ . We introduce

the soldering form σ AA′
a and its inverse σa

AA′ relative to e a
a and ϵ A

A as the following tensors in V∗ ⊗ V

and V ⊗ V ∗,

σ AA′
a := e a

a σ AA′
a = σ AA′

a e a
a ϵ A

A ϵ A′
A′ , σa

AA′ := e a
a σa

AA′ = σa
AA′e a

a ϵ A
A ϵ A′

A′ . (2.41)

From its definition, it is clear that the soldering form satisfies the completeness relations

δ a
b = σ AA′

b σa
AA′ , δ AA′

BB′ = σa
BB′σ AA′

a , (2.42)

so it can be used to correspond tensors between V and V . For example, a real spinor TAA′
BB′ in V and

its tensorial counterpart T a
b in V are related via

T a
b = σa

AA′σ BB′
b TAA′

BB′ , TAA′
BB′ = σ AA′

a σb
BB′T a

b . (2.43)

The relation between metrics, given in the following exercise, is particularly important.

Exercise 2.10. Show that the metrics in V and V correspond through the soldering form, that is,

gAA′BB′ = σa
AA′σb

BB′gab , gab = σ AA′
a σ BB′

b gAA′BB′ . (2.44)

From that, show that the soldering form and its inverse are related through the usual notion of raising
and lowering indices with respect to gab and gAA′BB′ , that is,

σ AA′
a = gAA′BB′

gabσ
b
BB′ . (2.45)
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There is certain arbitrariness in the relation between tensors in V and V. This is due to the fact that
there is no natural way to make a unique choice of orthonormal frame and dyad with which one constructs
the soldering form. However, some choices yield equivalent answers, and some relations are universal, in
the sense that they do not depend on the choice of basis. This stated in the following exercise.

Exercise 2.11. Let (ẽ a
a , ϵ̃ A

A ) and (e a
a , ϵ A

A ) be two pairs of orthonormal basis and dyads. Assume they
are related by a spinor transformation L A

B and the corresponding Lorentz transformation Λ a
b (see (2.39)).

Show that they define the same soldering form. Show that the relations (2.44) do not depend on the choice
of basis employed to construct the solder form.

Remark 2.3. It is customary that, once a solder form is constructed, the tensors in V and corresponding
spinors in V are identified, and regarded as one and the same. From that perspective, one can fearlessly
write equations of the form

gab = gAA′BB′ , Tab = TAA′BB′ , ka = kAA′
, ... (2.46)

Both conventions will be employed extensively throughout the rest of the notes.

2.4.5 Null Frames

In the previous sections we have related orthonormal dyads in spinor space to orthonormal frames in
Lorentz space. Another notion that will be very useful is that of a null frame relative to an orthonormal
dyad {oA, ιA}. It is defined as the following set of vectors constructed out of {oA, ιA},

la := σa
AA′oAōA′

, na := σa
AA′ ιAῑA

′
, ma := σa

AA′oAῑA
′
, m̄a := σa

AA′ ιAōA′
. (2.47)

These constitute an orthonormal null basis, in the sense that the only non-vanishing metric products
among them are

lana = −mam̄a = 1 , (2.48)

as can be verified explicitly, so one has

gab = 2l(anb) − 2m(am̄b) , gab = 2l(anb) − 2m(am̄b) . (2.49)

In particular, la and na are real null vectors, while ma and its conjugate m̄a are also null, but complex-
valued. Strictly, (2.47) forms a basis of the complexification of Lorentzian space V , which contains the real
space as a subspace.

Exercise 2.12. Choosing the Pauli matrices (2.29) as IvW symbols to construct the soldering form, show
that the null tetrad is related to the orthonormal basis through

la = 1√
2

(e a
0 + e a

3 ) , na = 1√
2

(e a
0 − e a

3 ) , ma = 1√
2

(e a
1 − ie a

2 ) . (2.50)
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3 Spinors in Spacetime

3 Spinors in Spacetime

So far we have considered spinors as elements in an abstract vector space. Now we wish to associate a
spinor space to each point of the spacetime manifold M , in a similar way to how we define tangent space
(abstractly just a four-dimensional vector space) as the vector space of derivations at each point. This
is done most naturally in the language of principal bundles, which is not assumed as a pre-requisite in
these lecture notes. However, introducing such notions would yield a long digression that departs from our
main objectives. Thus, here we will simply assume that such construction can be made consistently, so
that each point in spacetime x has associated a spinor space, S(M)|x. The collection of all such spinor
spaces accross spacetime forms the spinor bundle, denoted S(M), similarly to how the collection of all
tangent spaces T (M)|x accross spacetime forms the tangent bundle T (M). Then, a spinor in spacetime is
a smooth map

ξA : M → S(M)

x 7→
(
x, ξA|x

) (3.1)

where ξA|x ∈ S(M)|x. Notice that this is in complete analogy to how we define vector fields in spacetime.
In addition, the construction of S(M) is such that the action of a Lorentz transformation of frames in
tangent space at each point is accompanied by the action of a spinor transformation of dyads in spinor
space,

e a
a |x 7→ Λ b

a (e a
b |x) , ϵ A

A |x 7→ L B
A

(
ϵ A
B |x

)
, (3.2)

where Λ b
a and L B

A correspond according to (2.39). However, it should be stressed that there are some
global (topological) obstructions in associating tensors to spinors consistently everywhere in spacetime.
Roughly, one must require spacetime to be suitably orientable in order to admit a spinor structure. Here
we will simply note that every globally hyperbolic spacetime has a spinor structure [13] and that this is
unique if, in addition, M is simply connected [14]. We will not elaborate more on this here, but we refer
the reader to Chapter 13 of Wald’s book [6] for a detailed introduction to the spinor bundle, and [3] for a
more complete discussion.

Under these assumptions, all the concepts introduced above have a smooth extension to the entire
manifold M and apply at each point. However, there is still no natural way of relating spinors at different
spacetime points. Just as in the case of ordinary tensors, such relation can be defined in terms of a spin
connection, or spinor covariant derivative, that we introduce next.
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3.1 Spinor Covariant Derivative

Similarly to the case of ordinary tensor fields, the spinor covariant derivative of a spinor ξA...B′
C...D′ along

a vector field X is another spinor field with the same structure, denoted ∇Xξ
A...B′

C...D′ , which provides
a well defined notion of propagation of ξA...B′

C...D′ along X. Furthermore, by using either the tensor or
spinor representation of X, this can be written as

∇Xξ
A...B′

C...D′ = Xa∇aξ
A...B′

C...D′ = XEE′∇EE′ξA...B′
C...D′ , (3.3)

where ∇ξA...B′
C...D′ is the covariant derivative of ξA...B′

C...D′ . It is customary to formalise the previous
concepts axiomatically as follows.

Definition 3.1. A spinor covariant derivative ∇AA′ is a map

∇AA′ : SB′...C′
D...E′ → SB′...C′

AD...A′E′

ξB...C′
D...E′ 7→ ∇AA′ξB...C′

D...E′

(3.4)

that for any spinors ξB...C′
D...E′ , χB...C′

D...E′ ∈ SB′...C′
D...E′ satisfies:

(i) Linearity:

∇AA′

(
ξB...C′

D...E′ + χB...C′
D...E′

)
= ∇AA′ξB...C′

D...E′ + ∇AA′χB...C′
D...E′ (3.5)

(ii) Leibniz rule:

∇AA′

(
ξB...C′

D...E′χE...F ′
G...H′

)
= χE...F ′

G...H′∇AA′ξB...C′
D...E′ + ξE...F ′

G...H′ ∇AA′χB...C′
D...E′ (3.6)

(iii) Hermiticity:
∇AA′ξB...C′

D...E′ = ∇AA′ξ
B′...C

D′...E (3.7)

(iv) Action on scalars: ∇AA′ϕ is the spinor counterpart of ∇aϕ for any function ϕ in M .

(v) Representation of derivations: the action of any derivationD on spinors can be written asDξB′...C
D′...E =

ζAA′∇AA′ξB′...C
D′...E for some spinor ζAA′ ∈ SAA′ .

This definition does not single out a unique derivative operator. However, in a way analogous to
the covariant derivative of tensors, if one further requires that ∇ has vanishing torsion and that ϵAB is
covariantly constant,

∇AA′ϵBC = 0 , (3.8)

then ∇ is uniquely determined and, when acting on tensor fields, reduces to the Levi-Civita connection
associated to gab. This is the connection that will be used in the remainder of the text.
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Remark 3.1. Relating the tensorial Levi-Civita connection to the torsion-free spinor connection satisfying
(3.8) is not entirely trivial, and can be approached from either an abstract perspective or via component
analysis. We will not elaborate further on this here, but we refer the reader to [3] for an extensive discussion
(Section 4.4 for the abstract approach, and Section 4.5 for the component derivation).

Let ϵ A
A be a spinor dyad, and consider the associated basis on SAA′ , denoted e AA′

AA′ := ϵ A
A ϵ A′

A′ . It
is possible to specify ∇AA′ in terms of its components relative to the dyad, also called the spin connection

coefficients, given by
Γ B

AA′ C := ϵ B
B e AA′

AA′ ∇AA′ϵ B
C . (3.9)

For instance, the components of ∇AA′ξB are

∇AA′ξB =ϵ B
B e AA′

AA′ ∇AA′ξB

=e AA′

AA′ ∇AA′

(
ξBϵ B

B

)
− e AA′

AA′ ξB∇AA′

(
ϵ B
B

)
=e AA′

AA′ ∇AA′

(
ξB
)

− e AA′

AA′ ξCϵ B
C ∇AA′

(
ϵ B
B

)
=e AA′

AA′ ∇AA′

(
ξB
)

+ e AA′

AA′ ξCϵ B
B ∇AA′

(
ϵ B
C

)
=e AA′

AA′ ∇AA′

(
ξB
)

+ Γ B
AA′ Cξ

C ,

(3.10)

where in the fourth equality we used that ∇AA′(δ B
C ) = 0. Another important example is that of a spinor

with structure ξAA′ , which includes the case of real vectors. A computation similar to (3.10) yields

∇AA′ξBB′ = e AA′
AA′ ∇AA′

(
ξBB′)+ Γ BB′

AA′ CC′ξCC′
, (3.11)

where we introduced
Γ BB′

AA′ CC′ = Γ B
AA′ Cδ

B′
C′ + Γ̄ B′

AA′ C′δ B
C . (3.12)

The last expression can be seen as the spinor counterpart of the connection components of ∇ when
restricted to tensor fields.

Exercise 3.1. Obtain the components of ∇AA′ξB. Use this and (3.10) to obtain the components of the
covariant derivative of a general spinor field.

Exercise 3.2. Let ϵ A
A be a rigid dyad, meaning that the associated components of ϵAB are constants.

Show that its spin coefficients satisfy

ΓAA′(BC) = ΓAA′BC . (3.13)

3.2 Irreducible Decomposition of the Riemann Tensor

The spinor version of the Riemann tensor is RAA′BB′CC′DD′ . It satisfies the spinor equivalent of all
algebraic and differential identities of the Riemann. One of the most powerful results of the spinor
formalism is the irreducible decomposition of the curvature tensor, given in the following proposition.
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Proposition 3.1. Let RAA′BB′CC′DD′ be the spinor counterpart of the Riemann tensor. Its irreducible

decomposition is

RAA′BB′CC′DD′ = − ΨABCDϵA′B′ϵC′D′ − Ψ̄A′B′C′D′ϵABϵCD

− ΦABC′D′ϵA′B′ϵCD − ΦCDA′B′ϵABϵC′D′

+ 2Λ (ϵACϵBDϵA′C′ϵB′D′ − ϵADϵBCϵA′D′ϵB′C′)

(3.14)

where ΨABCD is a fully symmetric spinor, ΦABC′D′ is a real and fully symmetric spinor, and Λ is a real

function the are given in terms of the Riemann tensor by

ΨABCD = −1
4R

X′ Y ′

(ABCD)X′ Y ′ ,

ΦABC′D′ = −1
4R

X Y ′
ABX C′D′Y ′ ,

Λ = 1
24R

AB X′ Y ′
AB X′ Y ′ .

(3.15)

Proof. This can be shown by implementing on RAA′BB′CC′DD′ the algebraic symmetries of the Riemann,
namely (i) Rabcd = −Rbacd = −Rabdc, (ii) Rabcd = Rcdab and (iii) Ra[bcd] = 0. To implement (i) we will use
the decomposition of a skew-symmetric tensor deduced previously in (2.23). Applying it first on the pair
of indices AA′ and BB′ and subsequently on CC ′ and DD′ gives

RAA′BB′CC′DD′ =1
2R

X
X CDA′B′C′D′ϵAB + 1

2R
X′

ABCDX′ C′D′ϵA′B′

=1
4R

X Y
X Y A′B′C′D′ϵABϵCD + 1

4R
X

X CDA′B′X′X′ϵABϵC′D′

+ 1
4R

X X′
ABX X′ C′D′ϵA′B′ϵCD + 1

4R
X′ Y ′

ABCDX′ Y ′ ϵA′B′ϵC′D′

= −XABCDϵA′B′ϵC′D′ − ΦABC′D′ϵA′B′ϵCD

− X̄A′B′C′D′ϵABϵCD − Φ̄A′B′CDϵABϵC′D′ ,

(3.16)

where we introduced the so called curvature spinors,

XABCD := −1
4R

X′ Y ′
ABCDX′ Y ′ , ΦABC′D′ := −1

4R
X X′

ABX X′ C′D′ . (3.17)

The Riemann symmetries (i) imply

XABCD = −1
4R

X′ Y ′
ABCDX′ Y ′ = 1

4R
X′ Y ′

BACD X′Y ′ = −1
4R

X′ Y ′
BACDX′ Y ′ = XBACD , (3.18)

and, similarly, XABCD = XABDC . An analogous argument applies to ΦABC′D′ so, in sum, we have

XABCD = X(AB)(CD) , ΦABC′D′ = Φ(AB)(C′D′) . (3.19)

On the other hand, from the symmetries (ii) one finds

XABCD = −1
4R

X′ Y ′
ABCDX′ Y ′ = −1

4R
Y ′ X′

CDABY ′ X′ = XCDAB ,

ΦABC′D′ = −1
4R

X X′
ABX X′ C′D′ = −1

4R
X X′

X ABC′D′X′ = Φ̄ABC′D′ .
(3.20)
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In words, we have found that ΦABC′D′ is a real, symmetric (and therefore trace-free) spinor. By the
symmetries of (3.19), it also follows that the only trace of XABCD is X A

ABC . Moreover, this must be
skew-symmetric in BC, since

2X A
A(BC) = X A

ABC +X A
ACB = X A

BA C +X A
B AC = 0 , (3.21)

where we used (3.19) and (3.20) in the second equality, and the see-saw rule in the third. Thus, one has

X A
ABC = −3ΛϵBC , Λ := −(1/6)X AB

AB . (3.22)

In order to implement the last algebraic symmetry, (iii), it is convenient to rewrite it in terms of its dual,
which reads R⋆ab

bc = 0, where R⋆
abcd = (1/2!)R ef

ab ϵcdef is the right dual of the Riemann tensor (remind
yourself why R⋆ab

bc = 0 is equivalent to the cyclic identity (iii)!). The spinor version of R⋆ab
bc = 0 is, using

the spinor analogue of the volume form (2.25),

0 = R⋆AA′BB′
BB′CC′

= 1
2R

AA′BB′DD′EE′
ϵBB′CC′DD′EE′

= 1
2
(
−XABDEϵA

′B′
ϵD

′E′ + ΦABD′E′
ϵA

′B′
ϵDE

)
ϵBB′CC′DD′EE′ + c.c.

= iΦA A′
C C′ + iδ A′

C′ XA D
D C + c.c.

= iδ A′
C′ XA D

D C − iδ A
C X̄A′ D′

D′ C′

= 3iδ A
C δ A′

C′

(
Λ − Λ̄

)

(3.23)

where in the third equality we used (3.16), in the fourth (2.25), in the fifth the reality condition for Φ
coming from (3.20), and in the last (3.22). We thus conclude that Λ is real. Using the decomposition of a
valence-4 spinor, given in (2.15), taking into account the symmetries of XABCD from (3.19) and (3.20),
we arrive at

XABCD = ΨABCD + 2ΛϵA(CϵD)B (3.24)

where we introduced
ΨABCD := X(ABCD) . (3.25)

Plugging (3.24) into (3.16) we arrive at

RAA′BB′CC′DD′ = − ΨABCDϵA′B′ϵC′D′ − Ψ̄A′B′C′D′ϵABϵCD

− ΦABC′D′ϵA′B′ϵCD − ΦA′B′CDϵABϵC′D′

− 2Λ
(
ϵA(CϵD)BϵA′B′ϵC′D′ + ϵA′(C′ϵD′)B′ϵABϵCD

) (3.26)

Finally, the last term above can be imrpoved to make the symmetries (i) and (ii) of the Riemann manifest.
Using that ϵA[BϵCD] = 0 (from the 2-dimensionality of W ) or, equivalently,

ϵABϵCD − ϵACϵBD + ϵADϵBC = 0 (3.27)
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and the complex conjugate version of this equation, the bracket in the last term of (3.26) can be recast in
the form(

ϵA(CϵD)BϵA′B′ϵC′D′ + ϵA′(C′ϵD′)B′ϵABϵCD

)
=

=1
2 (ϵACϵDB + ϵADϵCB) (ϵA′C′ϵB′D′ − ϵA′D′ϵB′C′) + 1

2 (ϵA′C′ϵD′B′ + ϵA′D′ϵC′B′) (ϵACϵBD − ϵADϵBC)

= − ϵACϵBDϵA′C′ϵB′D′ + ϵADϵBCϵA′D′ϵB′C′ ,

(3.28)
and this completes the proof.

Remark 3.2. The artificial minus signs in the definitions of ΨABCD,ΦABC′D′ are there to match their
definitions in [3], who use the opposite sign for the Riemann. Thus, the spacetime spinors ΨABCD,ΦABC′D′

constructed from either convention are guaranteed to coincide. The sign of Λ has been chosen so that it is
related to the trace of the Ricci tensor as in [1].

Exercise 3.3. The left and right duals of the Riemann tensors are defined respectively as R⋆ abcd =
(1/2)ϵ ef

ab Refcd and R⋆
abcd = (1/2)ϵ ef

cd Rabef . Show that, in terms of the curvature spinors (3.17), their
spinorial versions are

R⋆ AA′BB′CC′DD′ =iXABCD ϵA′B′ϵC′D′ + iΦABC′D′ϵA′B′ϵCD

− iX̄A′B′C′D′ ϵABϵCD − iΦA′B′CDϵABϵC′D′ ,

R⋆
AA′BB′CC′DD′ =iXABCD ϵA′B′ϵC′D′ − iΦABC′D′ϵA′B′ϵCD

− iX̄A′B′C′D′ ϵABϵCD + iΦA′B′CDϵABϵC′D′ .

(3.29)

From Proposition 3.1, it is straightforward to obtain the irreducible decomposition of the Ricci tensor,

RAA′BB′ = RCC′
AA′CC′BB′ = 2ΦABA′B′ + 6ΛϵABϵA′B′ , (3.30)

from which we conclude that ΦABA′B′ and Λ are its irreducible components (ΦABA′B′ is the traceless part
and Λ gives its trace by R = RCC′

CC′ = 24Λ). It follows that the spinorial version of Einstein’s equations
in vacuum is

ΦABA′B′ = 0 , Λ = 0 , (vacuum Einstein’s equations) . (3.31)

The spinor ΨABCD is the Weyl spinor, since it turns out to be the only irreducible component of the Weyl
tensor, as you are encouraged to verify next.

Exercise 3.4. Recall that the Weyl tensor is defined as the traceless part of the Riemann tensor via

C cd
ab := R cd

ab − 2R [c
[a g

d]
b] + 1

3Rδ
c

[a δ
d

b] . (3.32)
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Show that its spinorial counterpart is

CAA′BB′CC′DD′ = −ΨABCDϵA′B′ϵC′D′ − Ψ̄A′B′C′D′ϵABϵCD . (3.33)

From this, and Exercise 3.3, conclude that the left and right duals of the Weyl tensor coincide.

Exercise 3.5. Show that the Weyl and Riemann tensors have ten and twenty real independent components,
respectively. (Hint: recall Proposition 2.2).

The irreducible decomposition of the curvature (Propostion 3.1) together with the vacuum Einstein’s
equations yield the most important lesson of this section: according to general relativity, the curvature

of spacetime in the absence of matter is described by a single, fully symmetric spinor ΨABCD. In other
words, we have learned that the curvature of spacetime in vacuum is unexpectedly simple (that ΨABCD is,
in many respects, a simple object will be even more clear in the next sections). The spinorial description
of gravity is a natural one precisely because it makes this simplicity manifest. Note that deriving, or even
writing, this result by tensorial methods would be extremely involved and not natural. Next, in Sections
3.3 and 3.4, we will derive two relatively immediate consequences of this fact that had groundbreaking
implications in gravitational physics.

3.3 Petrov’s Classification of the Weyl Tensor

We start by stating the following property of fully symmetric spinors, such as ΨABCD.

Proposition 3.2. Let ξAB..C = ξ(AB...C) be a non-vanishing, fully symmetric spinor of valence n. Then

ξAB...C = α(AβB...γC) , (3.34)

where the n spinors αA, βA, ...γA are unique up to proportionality.

Proof. This follows as a simple consequence of the fundamental theorem of algebra, see Proposition 3.5.18
of [3].

In the case of the Weyl spinor, we shall write this as

ΨABCD = κ
(1)
(Aκ

(2)
B κ

(3)
C κ

(4)
D) . (3.35)

This is sometimes called the canonical decomposition of the Weyl spinor, and κ
(i)
A are the associated

principal spinors. Recall from Exercise 2.6 that any valence-1 spinor ξA yields a real null vector through
±ξAξ̄A′ . Thus, the principal spinors of the Weyl tensor define four null directions, consisting on the
proportionality classes of

k
(i)
AA′ := κ

(i)
A κ̄

(i)
A′ , (i = 1, ..., 4) . (3.36)
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These are called the principal null directions of the Weyl tensor (or PNDs for short). If two PNDs coincide,
we say that is a repeated PND. Therefore, the Weyl tensor at each point (if nonvanishing) belongs to one
of the following five types, depending on the degeneracy structure of its PNDs:

Type I : ΨABCD = κ
(1)
(Aκ

(2)
B κ

(3)
C κ

(4)
D)

Type II : ΨABCD = κ
(1)
(Aκ

(1)
B κ

(2)
C κ

(3)
D)

Type D or II-II: ΨABCD = κ
(1)
(Aκ

(1)
B κ

(2)
C κ

(2)
D)

Type III : ΨABCD = κ
(1)
(Aκ

(1)
B κ

(1)
C κ

(2)
D)

Type N or IV : ΨABCD = κ
(1)
(Aκ

(1)
B κ

(1)
C κ

(1)
D)

(3.37)

where κ(i)
A and κ

(j)
A are assumed not to be aligned if i ̸= j. A spacetime is algebraically general if its

Weyl tensor is everywhere type I, algebraically special of type II if its Weyl tensor is everywhere type
II, etc. This classification of spacetimes based on the algebraic structure of the Weyl tensor is known
as Petrov’s Classification, and types I to N defined above are called the Petrov types. The latter are
sometimes represented with arrow diagrams as shown in Figure 1.

Figure 1: Represeantion of Petrov types, where each PND is associated to the direction of an arrow.

While Petrov’s classification emerges naturally in the language of spinors, establishing it from a tensor
perspective (the way it was originally found) is drastically more complicated. This entails that, when an
algebraically special spacetime is expressed in terms of its spinorial quantities (in the way we will explain
in Section 3.5) it has a simple form. This simplicity is otherwise blurred from the tensor perspective. It
turns out that some of the most important vacuum solutions of general relativity are algebraically special
of some type. A remarkable example is Kerr’s black hole, as we will see later, which is of type D. Thus,
the spinorial description is very useful in studying solutions of general relativity.

Exercise 3.6. Show that in a type D spacetime, choosing {oA, ιA} aligned with the repeated principal
spinors, the Weyl spinor is

ΨABCD = 6Ψ2o(AoBιCιD) , Ψ2 := ΨABCDo
AoBιCιD . (3.38)
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Use this to show that if the spacetime is, in addition, vacuum (Ricci-flat), then the Kretschmann scalar is

RabcdRabcd = 24
(
Ψ2

2 + c.c.
)
. (3.39)

Conclude that Ψ2 is a well-defined physical invariant. In particular, its divergences indicate the existence
of true curvature singularities. Below we will see that Ψ2 is one of the so-called GHP quantities, which
give the description of a spacetime in terms of its spinorial components relative to a dyad.

3.4 The Vacuum Wave Equation for the Weyl Spinor

The physical degrees of freedom of gravity are encoded in the spacetime curvature. Given that, in vacuum,
curvature is described by Weyl’s spinor, it is natural to wonder what equation describes its propagation.
Our starting point is translating the Bianchi identity of the Riemann tensor ∇[aRbcd]e = 0 into its spinorial
counterpart. Such identity can be written equivalently as (again, remind yourselves why!)

∇a R⋆ abcd = 0 . (3.40)

Using (3.29), its spinorial version gives

0 = ∇AA′
R⋆ AA′BB′CC′DD′ = iϵC′D′∇A

B′XABCD + iϵCD∇A
B′ΦABC′D′ + c.c. , (3.41)

and anti-symmetrising in C ′D′, one arrives at

∇A
B′XABCD = ∇A′

BΦCDA′B′ , (3.42)

while symmetrising in C ′D′ one simply gets the conjugate of this equation. Finally, trading X by Ψ and Λ
according to (3.24), we arrive to the spinorial form of the Bianchi identity,

∇A
B′ΨABCD = ∇A′

BΦCDA′B′ + 2ϵB(C∇D)B′Λ . (3.43)

Exercise 3.7. Contract (3.43) with ϵCB and obtain

∇CA′ΦCDA′B′ − 3∇DB′Λ = 0 . (3.44)

Show that this is the spinorial version of the contracted Bianchi identity, that is, the conservation of
Einstein’s tensor ∇aGab = 0.

Restricting the identity (3.43) to a spacetime where the vacuum Einstein equations (3.31) hold, one
obtains the propagation equation of ΨABCD in empty space,

∇AA′ΨABCD = 0 . (3.45)
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This equation can be regarded as a higher-spin generalisation of the usual Dirac equation for a massless
spinor. However, it is written in covariant terms and holds in a fully general (yet vacuum) spacetime.
Thus, unlike in flat space, covariant derivatives do not commute so the formal analogy with a Dirac spinor
in flat space is lost in the second or higher derivative equations that ΨABCD satisfies. In general, (3.45)
does not lead to the wave equation for a free field □ΨABCD = 0, but to one that includes a self-interacting
term. To derive it, we need a spinorial version of Ricci’s identity. We start by writing the commutator of
two covariant derivatives in irreducible pieces using (2.23),

[∇AA′ ,∇BB′ ] = ϵA′B′□AB + ϵAB□A′B′ , (3.46)

where

□AB := ∇X′(A∇ X′

B) , (3.47)

and □A′B′ = □AB is simply its complex conjugate. Then, the action of □AB on a general spinor can be
written purely in terms of the curvature spinors, as stated in the following proposition.

Proposition 3.3. The action of □AB on a spinor χC E′
D F ′ is

□ABχ
C E′

D F ′ = X C
ABQ χQ E′

D F ′ −X Q
ABD χC E′

Q F ′ + Φ E′
ABQ′ χC Q′

D F ′ − Φ Q′

ABF ′ χC E′
D Q′ , (3.48)

and it extends in the natural way to spinors of general valence.

Proof. This is left as an exercise (you can follow Section 4.9 of [3]).

It is now straightforward to obtain the wave equation satisfied by the Weyl spinor in vacuum. From
(3.45) we have

0 = ∇AA′∇ A′
E ΨE

BCD = ∇A′(A∇ A′

E) ΨE
BCD + ∇A′[A∇ A′

E] ΨE
BCD = □AEΨE

BCD − 1
2□ΨABCD (3.49)

where □ := ∇AA′∇AA′ . Now using Proposition 3.3 and the vacuum Einstein equations (3.31) one has

□AEΨE
BCD = ΨEQ

CDΨABEQ + ΨEQ
BDΨACEQ + ΨEQ

BCΨADEQ = 3ΨEQ
(ABΨCD)EQ , (3.50)

where we used the basic symmetries of ΨABCD. Thus, one arrives at

□ΨABCD = 6ΨEQ
(ABΨCD)EQ . (3.51)

As advanced earlier, we have found that the Weyl spinor in any vacuum spacetime satisfies a sourced wave
equation, where the source term arises as a quadratic self-interaction. The existence of such an equation
in terms of a single spinor is, again, very remarkable.
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Equation (3.51) is instrumental in studying the propagation of gravitational waves. For small fluc-
tuations about flat spacetime, where ΨABCD is a small perturbation about zero of the form ΨABCD =
ϵΨ̇ABCD +O(ϵ2) (with ϵ a small parameter and Ψ̇ABCD a fully symmetric spinor), equation (3.51) at order
ϵ gives

□Ψ̇ABCD = 0 . (3.52)

That is, the gravitational degrees of freedom satisfy a massless wave equation, as is well known.

If instead one considers gravitational fluctuations about a spacetime with a nontrivial Weyl spinor
◦
ΨABCD, as is the case of black holes, then (3.52) is no more true, since now ΨABCD =

◦
ΨABCD + ϵΨ̇ABCD +

O(ϵ2) and (3.51) at first order contains terms ∼
◦
ΨΨ̇ (among other additional terms). Such an equation is,

in general, rather complicated and difficult to solve. However, above we have seen that algebraically special
spacetimes possess simple Weyl spinors. It turns out that if the background spacetime is algebraically
special the linear equations obtained from (3.51) undergo drastic simplifications. An important example
of this are vacuum type D backgrounds (which include Kerr’s solution) where, as we will see later on, one
is lead to only one equation for a single scalar variable.

3.5 From Spinors to Scalars: the Geroch–Held–Penrose Formalism

The Geroch–Held–Penrose (GHP) formalism [10] consists in using an orthonormal dyad to translate
spinorial equations into scalar ones in terms of a number of functions called GHP scalars. This has the
advantage of making equations more explicit and easier to manipulate in some computations, but the
price to pay is that the spinorial structure becomes less manifest. However, the connection to spinors is
maintained in a clear way, since GHP scalars are simply the components of the spinors introduced above.

The starting point is an orthonormal dyad {oA, ιA}, its associated basis in conjugate space {ōA′
, ῑA

′},
and the corresponding null frame (see Section 2.4.5),

la = oAōA′
, na = ιAῑA

′
, ma = oAῑA

′
, m̄a = ιAōA′

. (3.53)

To such orthonormal dyad we associate two other ones, their primed and starred counterparts, defined as
(you can check that they are indeed orthonormal)

o′A := iιA , ι′A := ioA , o′A′ := −iῑA′
, ι′A

′ := −iōA′
,

o∗A := oA , ι∗A := ιA , o∗A′ := ῑA
′
, ι∗A′ := −ōA′

.
(3.54)

The operations of priming and starring consist in the following formal replacements of orthonormal dyads,

Priming: {oA, ιA} 7→ {o′A, ι′A} , {ōA′
, ῑA

′} 7→ {o′A′
, ι′A

′} ,

Starring: {oA, ιA} 7→ {o∗A, ι∗A} , {ōA′
, ῑA

′} 7→ {o∗A′
, ι∗A′} .

(3.55)
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Thus, the primed and starred null frames are related to the original one by

l′a = o′Ao′A′
= na , n′a = ι′

A
ι′

A′
= la , m′a = o′Aι′

A′
= m̄a , m̄′a = ι′

A
o′A′

= ma , (3.56)

and

l∗a = o∗Ao∗A′ = ma , n∗a = ι∗Aι∗A′ = −m̄a , m∗a = o∗Aι∗A′ = −la , m̄∗a = ι∗Ao∗A′ = na . (3.57)

The reason for introducing the primed and starred versions of a dyad is that, as we will see next, some
GHP scalars and equations correspond under the priming and starring operations. This allows one to
work with a smaller number of equations, and give the remaining ones simply as their complex conjugate,
primed and starred versions.

To introduce the GHP quantities, we start by associating Greek characters to the spin coefficients
defined previously in (3.9),

ΓAA′BC =



AA′\BC 00 10 or 01 11

00′ κ ϵ −τ ′

01′ σ β −ρ′

10′ ρ −β′ −σ′

11′ τ −ϵ′ −κ′


, (3.58)

where, since we work with an orthonomral dyad, we have the symmetry ΓAA′(BC) = ΓAA′BC (see Exercise
3.2). We observe that, thanks to the notion of primed dyad, half of the spin coefficients can be written as
primed versions of other ones. Focusing on κ as an example, we have

κ := Γ00′00 = −Γ 1
00′ 0 = −oAoA′

oB∇AA′oB . (3.59)

Then, we can check that κ′ indeed follows by priming κ,

κ′ := −Γ11′11 = −Γ 0
11′ 1 = ιAιA

′
ιB∇AA′ιB =

(
−oAoA′

oB∇AA′oB
)′

= (κ)′ , (3.60)

and similarly for the other spin coefficients. Next, we introduce the GHP scalars that encode the
independent components of the curvature spinors. The Weyl spinor ΨABCD is described by five complex
scalars,

Ψ0 := ΨABCDo
AoBoCoD , Ψ1 := ΨABCDo

AoBoCιD , Ψ2 := ΨABCDo
AoBιCιD ,

Ψ3 := ΨABCDo
AιBιCιD , Ψ4 := ΨABCDι

AιBιCιD ,
(3.61)

· 25 · David Pereñiguez



3 Spinors in Spacetime

while the spinor ΦABC′D′ is encoded in the following nine real scalars,2

Φ00 := −ΦABC′D′oAoBoC′
oD′

, Φ01 := −ΦABC′D′oAoBoC′
ιD

′
, Φ02 := −ΦABC′D′oAoBιC

′
ιD

′
,

Φ10 := −ΦABC′D′oAιBoC′
oD′

, Φ11 := −ΦABC′D′oAιBoC′
ιD

′
, Φ12 := −ΦABC′D′oAιBιC

′
ιD

′
,

Φ20 := −ΦABC′D′ιAιBoC′
oD′

, Φ21 := −ΦABC′D′ιAιBoC′
ιD

′
, Φ22 := −ΦABC′D′ιAιBιC

′
ιD

′
,

(3.62)

which together with Λ give the ten (real) independent components of the Ricci tensor. The spin coefficients
(3.58), Weyl scalars (3.61) and Ricci scalars (3.62) are very natural quantities from the spinor perspective.
From the tensor approach they instead appear as rather arbitrary combinations, as you are encouraged to
check in the following exercise.

Exercise 3.8. Use the spinorial versions of the null frame, Weyl and Ricci tensors to show that the spin
coefficients can be written as

κ = malb∇bla , ρ = mam̄b∇bla , σ = mamb∇bla , τ = manb∇bla ,

β = 1
2
(
namb∇bla +mamb∇bm̄a

)
, ϵ = 1

2
(
nalb∇bla − m̄alb∇bma

)
,

(3.63)

the Weyl scalars as

Ψ0 = −Cabcdl
amblcmd , Ψ1 = −Cabcdl

amblcnd , Ψ2 = −Cabcdl
ambm̄cnd ,

Ψ3 = −Cabcdl
anbm̄cnd , Ψ4 = −Cabcdm̄

anbm̄cnd ,
(3.64)

and the Ricci scalars as

Φ00 = −1
2Rabl

alb , Φ01 = −1
2Rabl

amb , Φ02 = −1
2Rabm

amb ,

Φ10 = −1
2Rabl

am̄b , Φ11 = −
(1

2Rabl
anb − 3Λ

)
, Φ12 = −1

2Rabm
anb ,

Φ20 = −1
2Rabm̄

am̄b , Φ21 = −1
2Rabm̄

anb , Φ22 = −1
2Rabn

anb .

(3.65)

3.5.1 GHP Weights and Derivatives

A very useful organising principle in managing GHP quantities is to classify them based on how they
transform under a dyad scaling,

{oA, ιA} 7→ {λoA, λ−1ιA} , (3.66)
2There seems to be a very unfortunate chain of typos in the literature at this point, involving (and implying inconsistencies

among) [1, 3, 5]. It involves a sign when writing Φ00, Φ01, ... in terms of dyad contractions with ΦABC′D′ . Here we chose that
sign in such a way that when Φ00, Φ01, ... are written in terms of contractions of the Ricci tensor and the null frame, they
coincide with the corresponding expressions in the original paper by Newman and Penrose [1] (who use our sign conventions
for the Riemann). We recall that the sign in the definition of Λ has also been chosen according to that criterion.
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which preserves the orthonormal condition oAι
A = 1 as long as the complex function λ is non-vanishing.

We say that a quantity η has GHP weight (p, q), and write η ◦= (p, q), if under (3.66) it transforms as

η 7→ λpλ̄qη . (3.67)

For example, under (3.66) the null frame is mapped into

{la, na,ma, m̄a} 7→ {λλ̄la, λ−1λ̄−1na, λλ̄−1ma, λ−1λ̄m̄a} , (3.68)

so their GHP weights are

la
◦= (1, 1) , na ◦= (−1,−1) , ma ◦= (1,−1) , m̄a ◦= (−1, 1) . (3.69)

It can also be verified that

κ
◦= (3, 1) , σ

◦= (3,−1) , ρ
◦= (1, 1) , τ

◦= (1,−1) ,

Ψi
◦= (4 − 2i, 0) (i = 0, ..., 4) ,

Φs,r
◦= (2 − 2s, 2 − 2r) (s, r = 0, 1, 2) .

(3.70)

The GHP weights of the complex conjugate, primed and starred versions of the quantities above follow by
noticing that such operations change the weights as

η
◦= (p, q) 7→ η̄

◦= (q, p) , η′ ◦= (−p,−q) , η∗ ◦= (p,−q) . (3.71)

The spin coefficients ϵ and β do not have definite GHP weights, since they do not transform as (3.67)
under (3.66), and similarly for ϵ′ and β′. We say they are not propertly weighted. However, they can
be used to introduce derivative operators that act within properly weighted quantities (again assuming
η

◦= (p, q)),
þη := (la∇a − pϵ− qϵ̄) η , þ′η :=

(
na∇a + pϵ′ + qϵ̄′

)
η ,

ðη :=
(
ma∇a − pβ + qβ̄′

)
η , ð′η :=

(
m̄a∇a + pβ′ − qβ̄

)
η .

(3.72)

The operators þ and ð are called thorn and eth, and are well defined derivatives as shown in the next
exercise.

Exercise 3.9. Obtain the transformation laws of ϵ and β under (3.66) and show that if η ◦= (p, q) is a
properly weighted quantity, then their thorn and eth derivatives are also properly weighted quantities
with weights

þη ◦= (p+ 1, q + 1) , þ′η
◦= (p− 1, q − 1) , ðη ◦= (p+ 1, q − 1) , ð′η

◦= (p− 1, q + 1) . (3.73)

Furthermore, show that

(þη)′ = þ′η′ ,
(
þ′η
)′ = þη′ , (ðη)′ = ð′η′ ,

(
ð′η
)′ = ðη′ , (3.74)
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and

þη = þη̄ , þ′η = þ′η̄ , ðη = ð′η̄ , ð′η = ðη̄ . (3.75)

so that þ̄ = þ, þ̄′ = þ′ and ð̄ = ð′, ð̄′ = ð.

Remark 3.3. There is a more systematic way of introducing the GHP derivatives in the language of
principal line bundles. Although this approach will not be taken here, it clarifies the geometric origin of þ
and ð, so we review briefly this idea in Appendix A.

3.5.2 GHP Structure Equations

The GHP quantities introduced above are not independent, since they are subject to the usual geometric
structure equations: the commutation relations associated to the null frame, the relation between the
curvature and (derivatives of) the spin coefficients, and the Bianchi identities. Equipped with the operators
defined above, it is possible to write the geometric structure equations in terms of properly weighted
quantities. Applying the definitions, one finds that the GHP frame derivatives are

þla = −κ̄ma − κm̄a, þma = −τ̄ ′la − κna,

þ′la = −τ̄ma − τm̄a, þ′ma = −κ̄′la − τna,

ðla = −ρ̄ma − σm̄a, ðma = −σ̄′la − σna,

ð′la = −σ̄ma − ρm̄a, ð′ma = −ρ̄′la − ρna.

(3.76)

together with their primed and conjugate versions. The structure equations involving the curvature scalars
will be given in vacuum, for simplicity. In the rest of this section it will be assumed that ΦABC′D′ = 0 and
Λ = 0, and the equations we write are specific to that case. First, from a suitable use of Proposition 3.3
applied to the spinor dyad, and after projecting on the dyad itself, one finds

ðρ− ð′σ = (ρ− ρ̄)τ + (ρ̄′ − ρ′)κ− Ψ1,

þρ− ð′κ = ρ2 + σσ̄ − κ̄τ − κτ ′,

þσ − ðκ = (ρ+ ρ̄)σ − (τ + τ̄ ′)κ+ Ψ0,

þρ′ − ðτ ′ = ρ′ρ̄+ σσ′ − τ ′τ̄ ′ − κκ′ − Ψ2,

(3.77)

which, together with their primed and starred versions, are equivalent to the vacuum Einstein equations
(Φr,s = Λ = 0). Next, projecting on the dyad the spinor version of the Bianchi identity (3.43), one finds

(þ − 4ρ)Ψ1 − (ð′ − τ ′)Ψ0 = −3κΨ2,

(þ − 3ρ)Ψ2 − (ð′ − 2τ ′)Ψ1 = σ′Ψ0 − 2κΨ3,
(3.78)
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together with their primed and starred versions. Finally, one can also verify that the commutator between
GHP derivatives acting on a scalar with weights η ◦= (p, q) is given by

[þ,þ′]η =
[
(τ̄ − τ ′)ð + (τ − τ̄ ′)ð′ − p(κκ′ − ττ ′ + Ψ2) − q(κ̄κ̄′ − τ̄ τ̄ ′ + Ψ̄2)

]
η,

[þ,ð]η =
[
−τ̄ ′þ − κþ′ + ρ̄ð + σð′ − p(ρ′κ− τ ′σ + Ψ1) − q(σ̄′κ̄− ρ̄τ̄ ′)

]
η.

(3.79)

Although obtaining the equations above by projecting the spinor equations on the dyad is unproblematic,
the computations are rather long and tedious. Fortunately, this can be done automatically with the help
of software for symbolic tensor manipulation, as explained in the mathematica notebook that comes with
these lecture notes. This makes use of a number of xAct packages, specially SpinFrames, designed to
manipulate spinor and GHP equations.

Remark 3.4. Before the GHP formalism was conceived in [10], Newman and Penrose [1] had put forward
another approach to transforming spinor equations into scalar ones, the so-called Newman–Penrose (NP)
formalism. However, this follows immediately from the GHP formalism, simply by disregarding the weight
structure of the various quantities, as well as the priming and starring operations. Thus, primed scalars are
given their own name, e.g. ϵ′ = −γ, and instead of þ and ð one uses the directional derivative operators

D := la∇a , ∆ := na∇a , δ := ma∇a , δ̄ := m̄a∇a . (3.80)

The complete relation between the original NP and the subsequent GHP formalisms is spelled out in [10].
In these notes we will always employ the GHP approach, since that allows one to reduce the form and
number of equations significantly by benefiting from the weight structure of GHP scalars.

To conclude this section we will revisit three well-known results, Petrov’s classification (discussed in
Section 3.3), the Golberg–Sachs and peeling theorems, and show that they are expressed in a very natural
(i.e. simple) form when formulated in terms of GHP quantities.

3.5.3 Petrov’s Classification in GHP Language

Choose an orthonormal dyad in such a way that oA is aligned with a principal spinor, oA ∼ κ(1)A, or
equivalently that oAoA′ is aligned with the corresponding PND, oAoA′ ∼ k(1)AA′ . Then using the canonical
decomposition of ΨABCD (see (3.35)) one has

Ψ0 = ΨABCDo
AoBoCoD = κ

(1)
(Aκ

(2)
B κ

(3)
C κ

(4)
D)o

AoBoCoD ∼ κ
(1)
(Aκ

(2)
B κ

(3)
C κ

(4)
D)κ

(1)Aκ(1)Bκ(1)Cκ(1)D = 0 , (3.81)

since κ(1)Aκ
(1)
A = 0. This is true for any spacetime which, in general, will be of Petrov type I. Now assume

the spacetime has a repeated PND (type II), with principal spinor κ(1)A. Choosing oA ∼ κ(1)A, besides
finding Ψ0 = 0 as shown above, one also has

Ψ1 = ΨABCDo
AoBoCιD ∼ κ

(1)
(Aκ

(1)
B κ

(2)
C κ

(3)
D)κ

(1)Aκ(1)Bκ(1)CιD = 0 . (3.82)
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By a similar computation, in the case of a type D spacetime choosing oA and ιA along each PND entails
Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0. Finally, in spacetimes of types III and N , picking oA along the repeated PND
implies that all Weyl scalars vanish except for Ψ3 in the type III case, and Ψ4 in the type N one.

In sum, we have found that if the spinor dyads are properly aligned with the repeated PNDs (if
existent), then the Weyl scalars of the various Petrov types satisfy

Type I : Ψ0 = 0

Type II : Ψ0 = Ψ1 = 0

Type D or II-II: Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0

Type III : Ψ0 = Ψ1 = Ψ2 = Ψ4 = 0

Type N or IV : Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0

(3.83)

The take home message is that, as anticipated in Section 3.3, algebraically special spacetimes have simple
forms in terms of their GHP quantities. As an example of this, later on we will discuss the GHP description
the Kerr black hole, an instance of type D spacetime.

3.5.4 The Peeling Theorem

The peeling theorem establishes that, under certain general assumptions that are expected to hold for
asymptotically flat solutions, the behaviour of the Weyl scalars in a suitable choice of frame and coordinates
is

Ψi = O
(
r−5+i

)
, i = 0, ..., 4 , (3.84)

where it is assumed that infinity lies at r → ∞ (the proof will not be discussed here, but can be found
in [1]). This result can be interpreted as follows. Far away from sources and strong gravitational fields,
the dominant Weyl scalar is Ψ4 and the spacetime is approximately type N . As one moves backwards
from the asymptotic region, Ψ3 becomes important, making the spacetime effectively type III. It occurs
similarly for the remaining Weyl scalars, in such a way that the PNDs “peel off” one by one from the type
N bundle (where all PNDs point in the same direction, see Figure 1) as one falls backwards from infinity.

3.5.5 The Goldberg–Sachs Theorem

The Goldberg–Sachs theorem [15] establishes that in a vacuum spacetime (potentially with a cosmological

constant) that is not conformally flat, a null vector field is a repeated PND if and only if it is geodesic and

shearfree. In terms of GHP quantities, we notice that (from the first of (3.76)) la is geodesic only if κ = 0.
It can also be shown that σ measures the failure of la to be shearfree (see [4] and [1]). Then, in terms of
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GHP quantities the Goldberg–Sachs theorem is simply expressed as

If Rab = 0, then: κ = σ = 0 ⇔ Ψ0 = Ψ1 = 0 . (3.85)

The conciseness thus achieved in the GHP language will be crucial in the applications to gravitational
radiation discussed below .

4 Application to Black Holes and Gravitational Waves

In this section we use the spinorial tools developed above to approach some problems in black hole and
gravitational wave physics. For simplicity, we will focus on vacuum spacetimes. We start in Section 4.1 by
characterising vacuum type D solutions in terms of their GHP quantities, and discuss Kerr’s spacetime as
an important example. Next, in Section 4.2 we derive non-perturbative wave equations describing the
propagation of curvature in vacuum, and in Section 4.3 we use the results in Sections 4.1 and 4.2 to study
gravitational radiation. In particular, we provide a simple derivation of Teukolsky’s equations, by starting
from the curvature wave equations in Section 4.2 and linearising them on a vacuum type D space. We
conclude by discussing their implications to gravitational radiation in Kerr’s spacetime.

4.1 An Important Class: Vacuum Type D Solutions

The class of type D solutions plays a very important role in gravitational physics. It contains some of
the most important solutions, such as the Kerr–Newman family describing charged and rotating black
holes in the Einstein–Maxwell theory. Although these are very nontrivial solutions given by seemingly
complicated spacetime geometries, the fact that they possess two distinct repeated PNDs allows one
to describe them in relatively simple terms, using GHP variables. In particular, restricting to vacuum
solutions and choosing la and na along the repeated PNDs (a choice sometimes referred to as a principal

frame), the Golberg–Sachs theorem (3.85) applied to both geodesic families implies

κ = σ = κ′ = σ′ = 0 , Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 , (4.1)

where we have used that Ψ′
0 = Ψ4 and Ψ′

1 = Ψ3. The Kerr family is an example of spacetime satisfying
these conditions, as we discuss next.

4.1.1 An important example: the Kerr Black Hole

The Kerr spacetime was found by specifically looking after vacuum type D solutions (as can be noticed
from the paper’s title [16]). Its metric in Boyer–Lindquist coordinates looks rather complicated (we use
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x = cos θ),

ds2 = ∆ − a2(1 − x2)
Σ dt2 + 4aMr

1 − x2

Σ dtdϕ− Σ
∆dr2 − Σ

1 − x2dx
2

−
(

(r2 + a2)2 − ∆a2(1 − x2)
Σ

)
(1 − x2)dϕ2 ,

(4.2)

where M and J = aM are the ADM mass and angular momentum, and

∆ = r2 − 2Mr + a2, Σ = r2 + a2x2 . (4.3)

However, we know it must have a simple description in terms of GHP quantities. Using the mathematica

notebook that comes with these notes, you are encouraged to check that the following frame

la = a2 + r2

∆ ∂t + ∂r + a

∆∂ϕ ,

na = a2 + r2

2Σ ∂t − ∆
2Σ∂r + a

2Σ∂ϕ ,

ma = i

√
(1 − x2)/2
r + iax

(
a∂t + 1

1 − x2∂ϕ + i∂x

)
,

(4.4)

is a null frame where la and na are geodesic (with la affinely-parametrised). The non-vanishing, properly-
weighted spin coefficients are

ρ = − 1
r − iax

, τ = − ia
√

(1 − x2)/2
Σ , ρ′ = −∆(r)

2Σ ρ , τ ′ = r + iax

r − iax
τ , (4.5)

while the non-properly weighted ones are

β = x/2
√

2
(r + iax)

√
1 − x2

, ϵ′ = 2∆(r) − (r − iax)∆′(r)
4(r − iax)Σ , β′ = x(r + iax) − 2ia

2
√

2
√

1 − x2(r − iax)2
. (4.6)

In particular, we notice that κ = σ = κ′ = σ′ = 0 so, by the Golberg–Sachs theorem, the only non-trivial
Weyl scalar must be Ψ2. We get

Ψ2 = − M

(r − iax)3 , (4.7)

while the rest indeed vanish. Later on we will use the structure of vacuum type D solutions to describe
the propagation of gravitational fluctuations about such spacetimes, with an emphasis on Kerr’s space.
However, we will first derive general, nonperturbative wave equations describing curvature propagation in
any vacuum spacetime.

4.2 Curvature Wave Equations in Vacuum

Above we have shown that the Weyl spinor in vacuum satisfies the wave equation

□ΨABCD − 6ΨEQ
(ABΨCD)EQ = 0 . (4.8)
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This provides a very natural way of deriving wave equations for the Weyl scalars. Since this is a fully
symmetric spinorial equation, it has five complex independent components (see Proposition 2.2), which
can be obtained by simply computing its five independent full projections with the dyad. This gives an
equation for each of the five Weyl scalars. Although conceptually this is very simple, translating the dyad
projections into GHP quantities is computationally expensive if attempted by hand. In the mathematica

notebook that comes with this notes, we use the SpinFrames subpackage of xAct to do this operations
efficiently. Here we simply report the resulting equations for Ψ0 and Ψ4 with a brief description of the
steps followed, while a detailed explanation can be found in the associated notebook (en passant, we
correct some typos in the literature):

• Equation for Ψ0: Project (4.8) with oAoBoCoD, commute GHP operators so that non-primed ones
act first, eliminate first derivatives of Ψ1 by using Bianchi identities, and finally eliminate first
derivatives of ρ and τ by using Ricci-rotation equations (3.77). The resulting equation is

[
þ′þ − ð′ð − ρ̄′þ − 5ρþ′ + τ̄ð + 5τð′ + 4σσ′ − 4κκ′ − 10Ψ2

]
Ψ0

+
[
4þ′κ− 4ð′σ − 4(ρ̄′ − 2ρ′)κ+ 4(τ̄ − 2τ ′)σ + 10Ψ1

]
Ψ1

+ [−4σþ + 4κð − 12κτ + 12ρσ] Ψ2 = 0.

(4.9)

• Equation for Ψ4: From the knowledge of (4.9), an equation for Ψ4 can be obtained just by priming
equation (4.9) and commuting GHP operators so that non-primed ones act first. Alternatively, one
can emulate the steps that lead to (4.9): project (4.8) with ιAιBιCιD, commute GHP operators so
that non-primed ones act first, eliminate first derivatives of Ψ3 by using Bianchi identities, and
finally eliminate first derivatives of ρ′ and τ ′ by using Ricci-rotation equations (3.77). From either
approach, one gets to the same equation for Ψ4,3

[þ′þ − ð′ð − (4ρ′ + ρ̄′)þ − ρþ′ + (4τ ′ + τ̄)ð + τð′ + 4ρρ′ − 4ττ ′ − 2Ψ2]Ψ4

+ [4þκ′ − 4ðσ′ − 4(ρ̄− 2ρ)κ′ + 4(τ̄ ′ − 2τ)σ′ + 10Ψ3]Ψ3

+ [−4σ′þ′ + 4κ′ð′ − 12κ′τ ′ + 12ρ′σ′]Ψ2 = 0.

(4.10)

Proceeding this way it is also possible to obtain equations for Ψ1,2,3, but we shall not discuss this here
since we will not need those equations later on (a discussion of those equations can be found in [17]). To
the best of our knowledge, the equations for Ψ0 and Ψ4 as presented here were first obtained by Stewart
and Walker [12], by a judicious manipulation of GHP equations. Here instead we proceeded in an arguably
more natural way, based on a single projection of (4.8) and subsequent elimination of some variables.

3In Stewart and Walker’s paper [12], instead of τ̄ ′ there is a τ̄ , missing a prime. This typo propagated also to [17].
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We stress that these equations hold exactly on any vacuum spacetime. In addition, as we shall see
next, they are written in such a way that their linearisation on certain algebraically special backgrounds is
immediate, a fact that will prove very useful when considering gravitational waves.

4.3 Gravitational Radiation and Teukolsky’s Equations

Understanding gravitational radiation is one of the main challenges in theoretical physics. From the
perspective of astrophysics, this allows us to interpret the signals registered in gravitational wave detectors
and, to date, this is one of the most promising windows into the strong-field structure of gravity. However,
this is a very hard problem and approaching it requires some simplifying assumptions. Assuming
gravitational wave sources of comparable masses and small separation distances requires employing
numerical methods in constructing solutions. That would be the case of a comparable-mass binary black
hole merger. However, numerical methods are limited by computational power and often fail in resolving
large separation of scales, e.g. if one of the black holes of a binary is much smaller than the other, or
capturing the features of gravitational waves at very late times after a black hole merger. In those cases,
one models gravitational radiation as small fluctuations off a stationary background.

A paradigmatic example is the relaxation of a black hole towards equilibrium in the last stages after
a black hole merger. The remnant black hole converges towards a final, quiescent state by emitting
gravitational waves that oscillate at the hole’s characteristic frequencies, the so-called quasinormal modes
(QNMs). Observing this relaxation process, known as the black hole’s “ringdown”, can yield unprecedented
tests about the nature of gravity if theoretical predictions for the QNMs are available. These include tests
about black hole uniqueness and the high-energy completion of general relativity (you can consult [18]
for a review on QNMs). Another important case is that of extreme-mass-ratio inspirals (EMRIs), which
are black hole binaries where one of the holes is much smaller than the other. The smaller hole spends
thousands of orbits in the deep, strong-field region of the larger hole before plunging and disappearing
past its event horizon. The gravitational waves emitted during those orbits encode invaluable information
about the structure of extreme gravitational fields, a fact that makes EMRIs one of the most important
science cases of the future space-based detector LISA [19].

The theory developed in the previous sections is crucial in solving problems such as black hole relaxation
or EMRIs described above. An instrumental result for that are the so-called Teukolsky equations [11],
which describe the generation and propagation of linear gravitational fluctuations on vacuum type D
spacetimes (in fact, the equations also exist in the presence of a cosmological constant, so they have found
applications in the contexts of cosmology and holography, too).

The original derivation by Teukolsky is based on a judicious combination of some linearised NP
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equations. Here we follow an alternative approach, where most of the work has been done already by
obtaining the nonperturbative curvature wave equations in Section 4.2 above.4 Consider a linear, but
otherwise fully general gravitational fluctuation of a type D background. We will use dots to denote linear
fluctuations of GHP quantities and, in a slight abuse of notation, if no dot is written it will be assumed
that the variable takes its background value (e.g. Ψ0 and Ψ̇0 denote the backgorund value of Ψ0 and its
linear fluctuation, respectively). From the Goldberg–Sachs theorem we know that the background null
frame can be chosen so that

κ = σ = κ′ = σ′ = 0 , and Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 . (4.11)

Taking into account the vanishing of these background quantities, the linearisation of (4.9) yields simply

[
þ′þ − ð′ð − ρ̄′þ − 5ρþ′ + τ̄ð + 5τð′ − 10Ψ2

]
Ψ̇0

+ [−4σ̇þ + 4κ̇ð − 12κ̇τ + 12ρσ̇] Ψ2 = 0 .
(4.12)

However, from the Bianchi identities in GHP form (3.78) the thorn and eth derivatives of Ψ2 on a vacuum
type-D space read

þΨ2 = 3ρΨ2 , ðΨ2 = 3τΨ2 , (4.13)

so the last line in (4.12) vanishes, and one is left with a decoupled equation for Ψ̇0,

[
þ′þ − ð′ð − ρ̄′þ − 5ρþ′ + τ̄ð + 5τð′ − 10Ψ2

]
Ψ̇0 = 0 , (Teukolsky equation for Ψ̇0) . (4.14)

Applying a similar argument to (4.10) one also obtains a decoupled equation for Ψ̇4,5

[þ′þ−ð′ð− (4ρ′ + ρ̄′)þ−ρþ′ +(4τ ′ + τ̄)ð+ τð′ +4ρρ′ −4ττ ′ −2Ψ2]Ψ̇4 = 0 , (Teukolsky equation for Ψ̇4) .

(4.15)
Although we have derived these equations in vacuum for (fluctuations of) the gravitational Weyl spinor,
in a very similar way it is possible to obtain analogous equations for lower-spin fields, such as the
electromagnetic field or neutrinos. It is also possible to account for linear sources, where instead of setting
the fluctuations of the Ricci scalars to zero one trades them by the components of the energy-momentum
tensor of the linear source (e.g. the energy-momentum tensor of a point particle). If these equations are,
furthermore, specialised to the Kerr background with the null frame (4.4), they admit separable solutions
ψ̇ = R(r)S(x)e−i(ωt−mϕ), where ψ̇ denotes generically the variable describing the field’s fluctuation (e.g.

4To the best of our knowledge, an alternative derivation along these lines was first considered by Ryan [20] and shortly
after by Stewart and Walker [12], that we follow here. We also note that an approach to perturbations from curvature wave
equations is likewise efficient and clarifying in other contexts too [21].

5Since our assumptions (4.11) are left invariant under priming, one can also obtain the equation for Ψ̇4 just by priming
(4.14).
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Ψ̇0), ω is its frequency and m its angular momentum along the hole’s rotational axis. This yields two
decoupled ODEs, one for R(r) and one for S(x).6 The equation for S(x) is a smooth deformation of the
harmonic equation of spin-weighted spherical harmonics [22], while the equation for R(r) is

∆−s d

dr

(
∆s+1dR

dr

)
+
(
K2 − 2is(r −M)K

∆ + 4isωr − λ

)
R = 0 , (4.16)

where s is the spin of the fluctuation (for gravity s = ±2), λ a separation constant and K2 = (r2+a2)ω−am.
This equation can be generalised to account for a linear source, which amounts to including a term on the
right-hand-side that is homogeneous in the linear energy-momentum tensor.

Besides having a very clear geometric origin (the wave equation of the Weyl spinor), these equations
describe the behaviour of physically meaningful quantities. In particular, it can be shown that Ψ̇0,4 are
fully gauge-invariant and control the fluxes of incoming and outgoing radiation at infinity. Restricting to
monochromatic waves, one has

d2E(out)

dtdΩ = lim
r→∞

r2

4πω2 |Ψ̇4|2 , d2E(in)

dtdΩ = lim
r→∞

r2

64πω2 |Ψ̇0|2 , (4.17)

where dΩ is the solid angle element [11]. In addition, some work that followed that of Teukolsky [23–27]
established that solutions to (4.14) and (4.15) contain the information of the entire metric fluctuation, and
are enough to reconstruct it in a particular gauge (the spinor description of this is explicitly given in [27]).

The fact that an equation as simple as (4.16) governs the fluctuations of rotating black holes has been
instrumental in obtaining many of the predictions known to date about the behaviour of gravitational waves
in the strong field regime. This includes (but is certainly not restricted to) high-precision computations of
black hole QNMs in general relativity, and also accurate analysis of the gravitational radiation emitted by
several astrophysically promising systems, such as EMRIs. This is, however, only an example of the use of
spinor techniques in gravitational physics, and they are crucial in many other open challenges.

6However, we notice they share a common separation constant. In some cases, such as computing QNMs, this effectively
couples both equations, that need to be solved simultaneously.
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A Line Bundle Approach to the GHP Formalism

Here we follow the introduction of [28], although we also recommend the original discussions in [10,29].
Assume two null directions la and na satisfying lana = 1 have been chosen globally across spacetime.
The set of null frames aligned with la and na, together with the (right) action of the group C× (complex
numbers without the origin)

(ℓa, na,ma;λ) 7→ (λλ̄ℓa, λ−1λ̄−1na, λλ̄
−1ma) ∀λ ∈ C× , (A.1)

form a principal line bundle, consisting in a reduction of the null frame bundle. The associated connection
1-form is

ωa = −ϵ′ℓa + ϵna + β′ma − βm̄a = 1
2
(
nb∇aℓb +mb∇am̄b

)
, (A.2)

which transforms correctly under the action of C×,

ωa 7→ ωa + λ−1∇aλ . (A.3)

The quantities η ◦= (p, q) live in the vector bundle Ep,q associated to the representation of C× with weights
p, q. The covariant derivative on Ep,q is

Θa = ∇a − pωa − qω̄a , (A.4)

where we write ∇a instead of ∂a to include also sections of Ep,q that take values on tensors (e.g. Rabcdℓ
cmd).

We notice that, by construction, Θa preserves GHP weights so in that sense Θa
◦= (0, 0). Then, þ and ð

are introduced in a natural way simply as the directional derivatives associated to Θa,

þ = ℓaΘa , þ′ = naΘa , ð = maΘa , ð′ = m̄aΘa , (A.5)

and it becomes manifest that they are well defined derivatives and that þ ◦= (1, 1),þ′ ◦= (−1,−1), ð ◦=
(1,−1), ð′ ◦= (−1, 1). Finally, the properties (3.74) follow directly from (Θaη)′ = Θaη

′.
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