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iii



iv



Acknowledgments

I must start by expressing my gratitude to my supervisors Vı́tor Cardoso and José Natário. Learning
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Resumo

Nesta tese, estudamos a reação à radiação eletromagnética de partı́culas carregadas em movimento

circular em torno de um buraco negro de Schwarzschild imerso num campo magnético assintoticamente

uniforme. As órbitas circulares neste sistema podem ser caracterizadas como estando na configuração

positiva ou negativa. Se incluirmos a radiação, a equação de movimento é a equação de DeWitt-

Brehme, que inclui um termo de cauda complexo; há resultados na literatura que afirmam que esse

termo pode ser negligenciado.

Assim, neste trabalho realizamos uma análise do limite Newtoniano que mostra que a cauda não

pode ser negligenciada nesse limite, a menos que toda a radiação seja ignorada, ou a curvatura em si

seja negligenciável.

Também estudamos a reação à radiação no regime de campo forte, usando teoria de perturbações

de buracos negros. Encontramos expressões para o fluxo de energia no horizonte e no infinito us-

ando métodos analı́ticos (limitados a movimentos lentos e a modos de baixa frequência) e métodos

numéricos, que produziram resultados compatı́veis. Também descobrimos que, para órbitas na configuração

positiva, o aumento do raio orbital leva a que a razão entre o fluxo de energia no horizonte e em infinito

se aproxime de um valor constante para o modo dipolar, enquanto que tende para infinito para os mul-

tipólos de ordem superior. Finalmente, em relação ao termo de cauda na equação de DeWitt-Brehme,

o caso de campo forte apenas reforça que ele não pode ser negligenciado no estudo da reação de

radiação na solução de Schwarzschild em qualquer cenário não trivial.

Palavras-chave: Radiação, buracos negros magnetizados, extração de ener-

gia, teoria de perturbações.
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Abstract

In this thesis, we study the electromagnetic radiation reaction of charged particles in circular motion

around a Schwarzschild black hole immersed in an asymptotically uniform magnetic field. Without con-

sidering radiation, circular orbits in this system are restricted to the equatorial plane and can be char-

acterized as being in a plus or minus configuration. If we include radiation, the equation of motion is

the DeWitt-Brehme equation, which includes a complicated tail term; there are results in the literature

claiming this term can be neglected.

We perform an analysis of the Newtonian limit that shows the tail cannot be neglected in this limit,

unless all radiation is ignored or curvature itself is negligible.

We also study radiation reaction in the strong field regime, using BH perturbation theory. We find

expressions for the energy flux on the horizon and at infinity using analytical methods (restricted to slow

motion and low frequency modes) and numerical methods, and the two produced compatible results.

We also find that, for plus configuration orbits, increasing the orbital radius leads to the ratio between the

energy flux on the horizon and at infinity going to a constant for the dipole mode, and to infinity for the

higher order multipoles. Finally, regarding the tail term in the DeWitt–Brehme equation, the strong field

case only strengthens the previous claim that it cannot be neglected in the study of radiation reaction in

the Schwarzschild spacetime in all non-trivial scenarios.

Keywords: Radiation, magnetized black holes, energy extraction, pertur-

bation theory.
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(Ė∞
ℓm), normalized to the energy flux at infinity in the dipole mode (Ė∞
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ℓ ℓ−1/Ė
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Chapter 1

Introduction

In the broadest sense, Physics is about striving to understand the fundamental workings of our Universe.

It must be said that since the birth of the scientific method and Galileo’s works on mechanics, we as a

species have taken great steps toward that goal. In particular, quantum field theory and the Standard

Model of particle physics describe, with outstanding accuracy, three of the four fundamental interactions

in the Universe. It only leaves out gravity, which was elegantly described in 1915, through General

Relativity (GR) [1]. Einstein’s brilliant idea was to use the framework of Riemannian geometry to express

gravity as a manifestation of the curvature of space and time in the presence of energy and momentum.

Since then, for over 100 years, GR has described all known observations with remarkable accuracy, and

with the detection of gravitational waves at LIGO in 2015 [2, 3] we entered a new age of gravitational

wave astrophysics, allowing for more and more precise tests of GR.

Together, the Standard Model and GR provide a good description of the fundamental nature of the

Universe. However, at very high energies, of the order of the Planck scale, the two theories are in-

compatible, and a fully quantum theory of gravity has to emerge. This is one of the most exciting open

questions in modern physics, but we will not try to answer it in this thesis; instead, we will just use it

as justification to state that we are still very far from having a complete understanding of how the 4

fundamental forces of nature interact with each other, and that, moreover, GR is most likely an effective

theory in the low energy limit of a quantum theory of gravity which is valid at Planck scale energies. This

last claim can be supported by one of the most exciting predictions of GR: the existence of black holes

(BH) [4, 5]. These are solutions of the Einstein field equations describing the most compact objects in

the cosmos: the gravitational field surrounding them is so strong that beyond the surface of no escape –

the event horizon – nothing, not even light, can escape. Beyond the event horizon, everything is falling

towards the central singularity, a “place” where curvature and energy density are infinite. Singularities

are present in many physical theories, but only as a result of ill-posed or incomplete problems (e.g.

the Coulomb field in electromagnetism or renormalization in quantum field theory); however, in GR, the

theorems of Hawking and Penrose [6–8] show that the existence of singularities is an intrinsic property

of the theory. At the singularity, energies reach the Planck scale, and so a quantum theory is most

likely needed. As Hawking once said, “(..) the theory probably breaks down, but only when quantum
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gravitational effects become important.”.

All of this is to say that GR is most likely not the ultimate theory of gravity, and it is important to keep

putting it to the test of experiment, by exploring the inherent phenomenology. Perhaps one day we will be

able to improve upon this centenary theory, developed by arguably the most brilliant mind in the history

of science. And what better place to do so than by looking at BHs, not only because of the extreme

dynamics they can power, but also because of the new burst of gravitational wave detections? On that

topic, the gravitational field around BHs is so strong that it can accelerate particles to velocities very

close to the speed of light. They are therefore good particle accelerators, and can efficiently convert

gravitational energy to electromagnetic (EM) radiation [9]. Rotating Kerr BHs [10] are also prone to

energy extraction mechanisms, whereby their rotational energy can be converted to kinetic energy of

particles or occupation number of fields [11–14].

This makes energy extraction from rotating BHs a particularly appealing explanation for the produc-

tion of high-energy cosmic rays with energies exceding 1020 eV [15–18] or for other violent astrophysical

phenomena. Understanding the origin of such extremely high-energy processes may even allow us to

probe a little bit further into the structure of the elusive compact objects. However, mechanisms for en-

ergy extraction, relying on rotation alone (either via the original Penrose process or variants thereof) are

not efficient enough to explain the origin of cosmic rays or extremely energetic phenomena [19–24].

Alternatives to the above simple scenario include the addition of external magnetic fields, which can

increase the efficiency of energy extraction via Penrose-like mechanisms [25–34]. Accretion disks can

support magnetic fields, and there is ample evidence that these are ubiquitous around stellar-mass and

supermassive BHs [35–38], with typical intensities of 104 − 108 Gauss. It is a standard result of classical

electrodynamics that an accelerated charged particle experiences a radiation reaction force as a result

of radiating EM waves [39–42]. In flat space, the energy carried by the EM field is always positive, so the

particle loses energy as a result of the radiation reaction force. However, if the particle is moving inside

the ergoregion of a BH, where negative energy states are allowed, we could, in principle, find that the

particle gains energy as a result of the radiation reaction force. This was precisely the idea presented

in Ref. [29] for the radiative Penrose process, where the authors take a charged particle moving in the

field of a Kerr BH, also assuming the presence of a magnetic field which could enhance the efficiency of

the energy extraction.

In order to study this phenomenon, it is of the utmost importance to have a good understanding of

the motion of radiating charged particles around BHs surrounded by magnetic fields. To do so, one must

start by understanding the motion without the inclusion of radiation, first for non-rotating Schwarzschild

BHs [43–49], and only afterward for rotating Kerr BHs [50, 51]. The next step is to include radiation

reaction in the equations of motion for the Schwarzschild case, which was attempted for the simplest

case of an asymptotically uniform magnetic field surrounding the BH in Refs. [52, 53]; however, those

works reported a seemingly unphysical “orbit widening”, which appeared to us a clear violation of energy

conservation. Indeed, we ultimately called these results into question in our published paper [54].

Thus, the aim of this work is to perform a consistent analysis of the motion of radiating charged

particles around magnetized Schwarzschild BHs, with a view to studying the Kerr case and the asso-

2



ciated energy extraction mechanisms. Including radiation reaction leads to the complicated non-linear

DeWitt-Brehme equation of motion [55–59], which in turn makes the problem of solving for the general

motion of a point charge highly non-trivial; therefore we focused on the simplest case of circular orbits

and asymptotically uniform magnetic fields. The external magnetic fields are always treated as fixed

test fields, meaning they do not influence the geometry of spacetime and they are not perturbed by the

particle motion nor by its EM radiation field [50, 60]. Regarding the radiation reaction force, its treatment

in curved space is a very complicated subject and has been the topic of intense research [61]. The

DeWitt-Brehme equation can be solved analytically in the Newtonian limit [62, 63]. Still, for the strong

field case, the problem is more challenging, especially because of the non-local tail term, as it involves

the complicated task of directly calculating the retarded Green’s function [64]. Alternatively, when we are

studying a small object around a BH, the more popular approach is using BH perturbation theory. In the

case of Schwarzschild spacetime, the odd and even parity gravitational perturbations are governed by

the Regge-Wheeler [65] and Zerilli [66] equations, respectively. The perturbations of rotating Kerr BHs

are described by the Teukolsky equation [67, 68], which governs perturbations of both scalar, spinor,

vector and tensor nature. If one takes the limit where the BH is not spinning (i.e. a Schwarzschild BH),

one finds the Bardeen-Press equation [69], which was shown to be equivalent to the Regge-Wheeler

and Zerilli equations by Chandrasekhar [70]. Using the BH perturbation formalism, it is possible to cal-

culate the radiation field of the particle, see how much energy is escaping to infinity and being absorbed

by the BH [71], and with that obtain an estimate for the radiation reaction force. This was done to study

particle orbits in a large number of works [20, 72–86], some of which by D. V. Gal’tsov and collaborators

even included the presence of an external magnetic field [87–90].

With all of this in mind, we will start by discussing some of the background needed for our work

in Chapter 2. There, we will start by looking into cyclotron motion and radiation reaction in flat space;

then we move on to a characterization of the circular orbits around magnetized Schwarzschild BHs,

starting with the unmagnetized case and including a discussion of the magnetic field configuration as

well as the validity of the test field approximation; finally, we give an introduction of the topic of radiation

reaction in curved space. Next, in Chapter 3, we make use of the Newtonian limit to show how some

of the previous results on the subject of radiating charged particles around magnetized Schwarzschild

BHs give an incorrect picture of the problem. We then give an overview of the Teukolsky equation, its

solutions describing EM waves around Schwarzschild BHs, and how those can be used to determine

energy fluxes at infinity and on the horizon in Chapter 4. This is ultimately used to find analytical and

numerical results which we present in Chapters 5 and 6, respectively, where the analytical results are

obtained in the low-frequency and slow-motion approximation. We give a final discussion and concluding

remarks in Chapter 7.

We use a system of units with G = c = 1, and use Gaussian units for electromagnetism, meaning

that we have 4πε0 = 1 and µ0 = 4π. The metric signature is (−,+,+,+), Greek indices run from 0 to 3,

and boldface quantities are three-vectors.
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Chapter 2

Background

2.1 Charged particle motion in a uniform magnetic field in flat

space

We begin by looking at the case of a single test particle of mass m and charge q moving under the

influence of a uniform magnetic field in flat space. In this section, we follow the standard book by

Jackson [42].

2.1.1 Motion without radiation reaction

We start by considering the motion of the charged particle without including radiation reaction so that

the only force present is the Lorentz force. Thus, using Cartesian coordinates {t, x, y, z}, the equation

of motion is
duµ

dτ
=

q

m
Fµ

νu
ν , (2.1)

where uµ(τ) is the 4-velocity, τ is the proper time, and Fµν is the EM field tensor. By introducing the

4-potential Aµ, Maxwell’s equations in vacuum can be written as

Fµν = ∂µAν − ∂νAµ , ∂µF
µ
ν = 0 . (2.2)

For a uniform magnetic field along the z direction, B = B0ẑ, where B0 can be positive or negative, we

have that the EM field tensor and the 4-potential are given, respectively, by

Fxy = −Fyx = B0 (2.3)

and

Ax = −B0

2
y, Ay =

B0

2
x , (2.4)

with all other components set equal to zero. This can very easily be verified to satisfy Maxwell’s equa-

tions in vacuum Eq. (2.2).
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Replacing the EM field in the equation of motion we get

dux

dτ
= ωcu

y ,
duy

dτ
= −ωcu

x ,
duz

dτ
=

dut

dτ
= 0 , (2.5)

where we introduced the cyclotron frequency of the particle

ωc ≡
qB0

m
. (2.6)

This frequency can be negative if q and B0 have opposite signs. This system of differential equations

is very easy to solve, yielding circular motion in the xy plane and uniform motion along the ẑ direction.

Without loss of generality, we can shift the origin and rotate the spatial axes so that we have

x(τ) = r0 cos (ωcτ) , y(τ) = −r0 sin (ωcτ) , z(τ) = uzτ , and t(τ) = utτ , (2.7)

where uz and ut are constants, and r0 is the radius of the orbit. Finally, we boost the frame so we have

uz = 0, and are left with just circular motion in the equatorial plane.

Minkowski spacetime has 10 different Killing vector fields (see Appendix A), but for the purposes of

our work we only make use of

Xµ = δµt and Y µ = δµφ , (2.8)

which are associated with the conservation laws for energy and angular momentum along the ẑ direction,

respectively. According to Appendix. A, these conserved quantities are given by

E = −m
󰀓
uµ +

q

m
Aµ

󰀔
δµt =

m󰁳
1− v20

(2.9)

and

L = m
󰀓
uµ +

q

m
Aµ

󰀔
δµφ = −1

2
mr20ωc , (2.10)

where v0 is the velocity as measured by stationary observers,

v0 ≡ r0Ω0 , (2.11)

and Ω0 is the angular velocity measured by the same observers,

Ω0 = − ωc󰁳
1 + (r0ωc)2

≡ ΩMC . (2.12)

The notation ΩMC will be explained further ahead. In the flat space case, all circular orbits with r0 > 0

are stable, and by looking at Eqs. (2.9), (2.11) and (2.12), we can see that the energy of the orbit grows

with the radius. This means that if the particle loses energy by radiation we expect it to fall to the center

of the trajectory. We will look into this in the next subsection.
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2.1.2 Motion with radiation reaction

If we include electromagnetic radiation reaction, the equation of motion of the particle becomes

duµ

dτ
=

q

m
Fµ

νu
ν +

2q2

3m

󰀕
d2uµ

dτ2
+ uµuν

d2uν

dτ2

󰀖
, (2.13)

where the term proportional to q is the usual Lorentz force and the one proportional to q2 is the radiation

reaction force, also known as the Abraham-Lorentz-Dirac force, which we derive in Appendix B. This is

a third-order differential equation, famously plagued with runaway solutions. For more than 100 years,

possible solutions to this problem have been discussed; today, it is believed that its root lies in the

consideration point particles, which are fundamentally unphysical both from the point of view of quantum

mechanics and GR 1. Indeed, if the limit of point particles is taken consistently, we should perform an

order reduction of the Abraham-Lorentz-Dirac term by taking [92]

d2uµ

dτ2
=

d

dτ

󰀓 q

m
Fµ

νu
ν
󰀔
. (2.14)

This order reduction procedure dates back to the late 1940s [93]. Initially, it was seen as a mere approx-

imation [92, 94–96] but it has become more and more established as the correct description of radiation

reaction in flat space. In the end, the equation of motion becomes

duµ

dτ
=

q

m
Fµ

νu
ν +

2q3

3m2
(∇αF

µνuαuν) +
2q3

3m2

󰀓 q

m
(FµνFνρ + F ναFαρuνu

µ)uρ
󰀔
. (2.15)

Looking at the individual coordinates separately and replacing the EM field in Eq. (2.3) we find

dux

dτ
= ωcu

y − 2q2

3m
ω2
c

󰀃
1 + u2

⊥
󰀄
ux, (2.16)

duy

dτ
= −ωcu

x − 2q2

3m
ω2
c

󰀃
1 + u2

⊥
󰀄
uy, (2.17)

duz

dτ
= −2q2

3m
ω2
cu

2
⊥u

z, (2.18)

dut

dτ
= −2q2

3m
ω2
cu

2
⊥u

t, (2.19)

where u2
⊥ = u2

x + u2
y is the squared velocity in the xy plane. Although uz is not constant, vz = uz/ut, the

speed seen by a stationary observer, is constant:

d

dτ

󰀕
uz

ut

󰀖
=

1

ut

duz

dτ
− uz

(ut)2
dut

dτ
= 0 , (2.20)

which means that again we can boost to a frame where the particle is moving only in the xy plane

(because radiation only affects that component of the motion).

The quantities defined in Eqs. (2.9) and (2.10) are no longer conserved and we can use Eq. (2.19), to

study the rate of energy change of the particle. We find that after some algebra we recover the relativistic

1In quantum mechanics we can see this from the perspective of the Heisenberg uncertainty principle. In GR, to put it simply, an
infinitely dense object would always collapse to a BH with a finite radius. A more general study of the pathologies of point particles
in GR can be found in Ref. [91].
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Larmor formula (RLF)
dE

dt
= −2

3
q2 γ4(r0Ω

2
0)

2 , (2.21)

where γ = 1/
󰁳
1− v20 is the Lorentz factor. When we take the Newtonian limit γ → 1, we recover the

usual Larmor power formula
dE

dt
= −2

3
q2(r0Ω

2
0)

2 . (2.22)

Both the relativistic and non-relativistic Larmor formulas are derived in Appendix B. As for the rate of

change of angular momentum along the ẑ direction, we get

dL

dt
=

1

Ω0

dE

dt
. (2.23)

If we translate the rate of energy change and the rate of angular momentum change into the rate of

change of the radius of the orbit, r0, we find that the two results are compatible with the particle remaining

in a circular orbit.

We found that our result for the angular momentum (Eq. (2.10)) is in disagreement with the result

presented in Eq.(13) of Ref. [53].

2.2 The Schwarzschild solution

Throughout this work, we will be almost always looking at the Schwarzschild solution of the Einstein field

equations. This solution was found by Karl Schwarzschild in 1916 [4] and it describes a one-parameter

family of static, spherically symmetric, and asymptotically flat vacuum BH spacetimes. According to

Birkhofff’s theorem [97], a vacuum spherically symmetric solution is necessarily static and asymptoti-

cally flat, and the Schwarzschild solution is the only non-trivial case. This means that any spherically

symmetric astrophysical body is described by the Schwarzschild metric in the exterior region (outside

the surface of the body) [98].

We mainly follow Wald [99] for the characterization of the solution. Using standard Schwarzschild

coordinates {t, r, θ,φ}, this solution is described by the line element

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dθ2 + r2 sin2 θ dφ2 , (2.24)

f(r) = 1− 2M

r
, (2.25)

where M is the BH mass. The Schwarzschild solution admits four Killing vector fields (see Appendix A):

one corresponding to the stationarity of the metric (invariance under time translations) and three corre-

sponding to its spherical symmetry (invariance under rotations). In the coordinate system we are using,

only two of these are evident: the generator of time translations and the generator of rotations about ẑ;

their definition in these coordinates coincides with the flat space definition given in Eq. (2.8):

Xµ = δµt and Y µ = δµφ . (2.26)
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2.2.1 Timelike circular geodesics

Now take a particle of rest mass m in free fall under the action of the gravitational field of a Schwarzschild

BH. The particle’s equation of motion is just the geodesic equation

Duµ

dτ
= 0 , (2.27)

where uµ(τ) is the 4-velocity, τ is the proper time and D/dτ ≡ uµ∇µ is the covariant derivative along the

velocity of the particle. The proper time is just the affine parameter along the trajectory of the particle for

which

gµνu
µ(τ)uν(τ) = −1 . (2.28)

We can use the Killing vector fields we defined above to construct two different conserved quantities

(see Appendix A):

E = −muµX
µ = mf(r)ut , (2.29)

L = muµY
µ = mr2 sin(θ)uφ . (2.30)

These correspond, respectively, to the energy and angular momentum along ẑ, as measured by a sta-

tionary observer at infinity.

Because of the spherical symmetry of the spacetime, there must be two other independent Killing

vector fields, associated with the conservation of the two other components of the angular momentum.

Since we will not need them for our analysis, we will not dwell on this topic, and will instead focus on the

equations of motion for a particle in the equatorial plane.

For a trajectory in the equatorial plane (θ = π/2 , uθ = 0), the equations of motion for a free-falling

particle are obtained from Eq. (2.27) and take the form

dut

dτ
= −2M

r2f
, (2.31)

dur

dτ
= −M

r2
f(ut)2 +

M

r2f
(ur)2 + rf(uφ)2 , (2.32)

duφ

dτ
= −2

r
uruφ . (2.33)

Note that the equation for uθ in the equatorial plane is just duθ/dτ = 0, so it is compatible with the orbit

remaining in the equatorial plane. Now suppose that the particle is following a circular orbit of radius r0.

In that case, the equations for ut and uφ above become trivial, and the circular orbit condition is taken

from Eqs. (2.28) and (2.32), yielding

Ω0 ≡ uφ

ut
=

dφ

dt
=

󰁶
M

r30
≡ ωK , (2.34)

ut =

󰀕
1− 2M

r0
− v20

󰀖−1/2

, (2.35)
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where ωK is the Keplerian angular frequency, Ω0 is the angular velocity as seen by a stationary observer

at infinity, and v0 is the 3-velocity as seen by the same family of observers (see Eq. (2.11)).

The remaining question is the stability of circular orbits under small perturbations. In Sec. 2.2.2 we

go over how this is done for the case of a uniformly magnetized Schwarzschild BH, of which the unmag-

netized case is obtained by taking the cyclotron frequency to zero (ωc = 0). When that is done, one finds

that the innermost stable circular orbit (ISCO) for an unmagnetized Schwarzschild BH is rISCO = 6M .

It is also easy to show from Eqs. (2.29) and (2.35) that the energy of a stable orbit increases with the

radius; this means that if the particle loses energy by radiation, it will ultimately fall into the BH.

2.2.2 Asymptotically uniform magnetic field

In this subsection, we follow Ref. [100] to show how a solution to Maxwell’s equations can be constructed

from a Killing vector field in a vacuum spacetime. This will allow us to describe a Schwarzschild BH in

an asymptotically uniform magnetic field.

The EM fields are always treated as test fields, meaning they don’t influence the geometry of

spacetime, which will continue to be a vacuum solution of the Einstein field equations, namely the

Schwarzschild solution. This places a bound on the strength of the magnetic field, B0, as the energy of

the EM field must always be negligible when compared to the energy of the BH. Consider a cylinder of

height ∼ 2M and radius R; it contains EM energy ∼ πMR2B2
0/µ0, where µ0 is the vacuum permeability.

This energy must be small when compared with the energy of the BH that is sourcing the gravitational

field, that is, its mass M . Taking R ∼ 2M we find the bound originally obtained in Ref. [60],

󰀕
B0

1Gauss

󰀖
≪ 2.4× 1019

󰀕
M⊙
M

󰀖
, (2.36)

where M⊙ is the mass of the sun. It must be noted that this bound is for the magnetic field near the

BH, where the curvature is large; for large distances, r ≫ M , the approximation will always break down.

We are far more interested in understanding, for a given value of B0, what is the value of R up to which

we can use the test field approximation. Indeed we can restate the condition above as a function of the

radius, yielding 󰀕
R

GM/c2

󰀖
≪ 4.7× 1019

󰀕
1Gauss

B0

󰀖󰀕
M⊙
M

󰀖
. (2.37)

This gives us plenty of room to study circular orbits within the test field approximation, especially given

that the typical values of magnetic fields around BHs are in the 104G – 108G range [35–38].

Moving on to the actual calculation of the EM field, the covariant formulation of Maxwell’s equations

in vacuum is obtained by replacing the ordinary derivatives in Eq. (2.2) with covariant derivatives:

Fµν = ∇µAν −∇νAµ, ∇νF
µν = 0. (2.38)

If the spacetime being considered contains a Killing vector field ξµ (see Appendix A), we can systemati-
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cally use it to obtain a solution to these equations by taking A = ξ:

Fµν = ∇µξν −∇νξµ = −2∇νξµ , (2.39)

which, when replaced, in Eq. (2.38), yields

∇νF
µν = −2gνρ∇ν∇ρξ

µ = 2R ρµ
ρα ξα = 0, (2.40)

where we use the definition of the Riemann tensor, the Killing equation, the first Bianchi identity, and the

fact that we are studying a vacuum spacetime so Rµν = 0.

This procedure can be tested in Minkowski space, and we find that while the translation Killing vector

fields generate no EM field, rotations generate uniform magnetic fields, and boosts generate uniform

electric fields. Using Cartesian coordinates
󰀋
x0, x1, x2, x3

󰀌
= {t, x, y, z}, we find:

Translations → No field,

ξµ = δαµ ⇒ Fµν = 0 , (2.41)

Rotations → Uniform B-field,

ξµ = xiδjµ − xjδiµ ⇒ Fµν = 2
󰀃
δjµδ

i
ν − δiµδ

j
ν

󰀄
, i ∕= j , (2.42)

Boosts → Uniform E-field,

ξµ = xiδ0µ − x0δiµ ⇒ Fµν = 2
󰀃
δ0µδ

i
ν − δiµδ

0
ν

󰀄
. (2.43)

In this work, we are interested in surrounding a Schwarzschild BH with an asymptotically uniform

magnetic field. Thus, since the Schwarzschild solution is asymptotically flat, we can take inspiration

from the result for Minkowski spacetime and guess that the desired EM field can be constructed from

the Killing vector fields Xµ and Y µ (see Eq. (2.8)), that is

F (X)
µν = −2∇νXµ , (2.44)

F (Y )
µν = −2∇νYµ , (2.45)

which can easily be seen to satisfy

LX,Y F
(X)
µν = LX,Y F

(Y )
µν = 0 . (2.46)

This allows us to conclude that the test fields being generated are both stationary and axisymmetric.

Furthermore, as the spacetime is asymptotically flat, F (X) must generate an EM field that vanishes

asymptotically (X is the generator of t-translations in Minkowski) while F (Y ) must approach a uniform

magnetic field asymptotically (Y is the generator of rotations around ẑ in Minkowski). In Ref. [100], the

author studies the EM field around rotating Kerr BHs which are also stationary and axisymmetric vacuum

solutions of the Einstein field equations. Here we just present that analysis in Schwarzschild spacetime.

With that in mind, the properties of the EM fields in Eq. (2.45) are:

10



• F (X) - stationary, axisymmetric test field which vanishes asymptotically, has no magnetic monopole

moment and has electric charge Q(X) = −2M .

• F (Y ) - stationary, axisymmetric test field which asymptotically approaches a uniform magnetic field

along the ẑ direction and has no magnetic monopole moment and no electric charge.

At this point, we need to invoke the following theorem [101]:

Theorem: Let F be a Maxwell test field on a stationary, axisymmetric, vacuum BH spacetime. Sup-

pose F satisfies:

1. F is stationary and axisymmetric.

2. F is non-singular in the exterior region and the BH event horizon.

3. F vanishes asymptotically at large distances from the BH.

4. F has no charge or magnetic monopole moment.

Then F = 0.

We now have all the tools to discuss what sort of EM field arises when a Schwarzschild BH is placed

in an initially uniform magnetic field of strength B0 along the ẑ direction. On physical grounds only, the

following can be said about the resulting field F :

1. F must be stationary and axisymmetric.

2. F must be non-singular in the exterior region and the BH event horizon.

3. F must asymptotically approach a uniform magnetic field of strength B0 parallel to the ẑ direction.

4. The net charge of the BH must be zero.

Given these conditions, we start by noting that if a solution is found, then it is unique, since if two EM

fields F and F ′ satisfy the above conditions then F − F ′ satisfies the conditions for the theorem above,

and hence F = F ′. Indeed it is easy to see that the EM field

Fµν =
B0

2
F (Y )
µν = −B0 ∇νYµ , (2.47)

satisfies all the conditions listed above. Thus it corresponds to the EM field that is generated around a

Schwarzschild BH which is placed in an initially uniform magnetic field. This EM field corresponds to the

vector potential

Aµ =
B0

2
Yµ =

B0

2
r2 sin2 θδφµ. (2.48)

Before discussing the radiation reaction force in curved spacetime, we want to study the dynamics

of charged particles in magnetized Schwarzschild BHs without radiation reaction. The topic of particle

motion in magnetized BH spacetimes has been the focus of much research in the past and present

[43–47, 50, 60].
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Equations of motion

To obtain the equations of motion, we will use the Hamiltonian formalism and follow Ref. [46]. We start

by writing the Lagrangian for a free particle

LFP =
1

2
mgαβu

αuβ , (2.49)

where gµν is the Schwarzschild metric, given in Eq. (2.24), uµ is the 4-velocity of the particle and m is

its mass. For a free particle, the canonical 4-momentum, πµ, coincides with the kinematic momentum,

pµ and is defined as

pµ = πµ =
∂LFP

∂uµ
= muµ . (2.50)

By performing a Legendre transformation we obtain the free particle’s Hamiltonian

HFP = παu
α − LFP =

1

2m
gαβπαπβ . (2.51)

Since adding a constant to the Hamiltonian does not change the resulting equations of motion, and

multiplying it by a constant only rescales the time parameter, we choose to rewrite the Hamiltonian as

HFP =
1

2
gαβπαπβ +

1

2
m2, (2.52)

so we always have H = 0. This rescaling implies that we must also transform the Hamilton equations,

which now read

m
dxµ

dτ
=

∂H

∂πµ
, m

dπµ

dτ
= − ∂H

∂xµ
. (2.53)

If we replace the free particle Hamiltonian, we recover the conservation laws for the energy, E = pt = πt,

and angular momentum along ẑ, L = pφ = πφ, of free-falling particles we had obtained in Eqs. (2.29)

and (2.30).

Introducing an EM interaction is easy because the particle is minimally coupled to the EM field.

Thus, even though the kinematic momentum is defined in the same way, we must redefine the canonical

momentum as πµ = pµ + qAµ, finally yielding the Hamiltonian

HEM (πµ, xµ) =
1

2
gαβ (πα − qAα) (πβ − qAβ) +

1

2
m2. (2.54)

The redefinition we did of the canonical momentum to include EM interactions was precisely the trans-

formation we performed in Appendix A to obtain the conservation laws associated with Killing vectors in

the presence of EM fields.

This was to be expected, as if the spacetime possesses a symmetry (i.e. a Killing vector), and the

4-potential also shares the same symmetry (i.e. it commutes with the Killing vector), then, in the appro-

priate coordinates, the Hamiltonian will be cyclic in the position variable associated with this symmetry,

and so the conjugate momentum associated to it will be conserved.

Returning to the problem at hand, if we substitute the expression (2.48) for the 4-potential in the
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Hamiltonian we obtain the Hamiltonian for a charged particle moving around a Schwarzschild BH im-

mersed in an asymptotically uniform magnetic field:

HMS (πµ, xµ) =
1

2
f(r)π2

r +
1

2r2
π2
θ −

1

2

m2

f(r)

󰀃
E2 − Veff (r, θ;L,ωc)

󰀄
, (2.55)

where we recall ωc is the cyclotron frequency which can be negative (see Eq. (2.6)). We also define E

and L, the energy and angular momentum along ẑ per unit mass,

E =
E

m
= −πt

m
= f(r)ut,

L =
L

m
=

πφ

m
= r2 sin2 θ

󰀓
uφ +

ωc

2

󰀔
,

(2.56)

(both conserved quantities, as a result of the Hamiltonian not depending on t or φ, that is, of the

Schwarzschild metric and the 4-potential being stationary and axisymmetric), and the effective potential

is given by

Veff = f(r)

󰀥
1 +

󰀕
L

r sin θ
− r sin θ

ωc

2

󰀖2
󰀦
. (2.57)

It is clear from Eq. (2.55) that we must generally have E2 ≥ Veff, so the effective potential governs the

region of phase space accessible to the particle.

Circular orbits

Looking back at Eq. (2.55), it is clear that circular orbits in the equatorial plane can only ever exist if

E2 = Veff. (2.58)

This condition however does not tell us anything about the characteristics of the orbit itself, it is just a

statement of the normalization of the 4-velocity. To get more information, we obtain the equations of

motion for the system from the Hamilton equations (2.53). To study circular orbits, we don’t need the full

equations of motion: we can just consider small perturbations around a circular orbit,

xµ =
󰀃
t(τ), r0 + εr(τ), θ0 + εθ(τ),φ(τ)

󰀄
, (2.59)

where r0 and θ0 are constants and 󰂃r ≪ r0 and 󰂃θ ≪ θ0 are small perturbations from circular orbit

motion. The equation of motion for r results in

ε̈r = −1

2

󰀃
∂rVeff(r0, θ0) + ∂2

rVeff(r0, θ0)ε
r
󰀄
+O(ε2). (2.60)

The equation for θ results in a similar expression:

ε̈θ = −1

2

1

r2f(r)

󰀃
∂θVeff(r0, θ0) + ∂2

θVeff(r0, θ0)ε
θ
󰀄
+O(ε2). (2.61)
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(a) Minus configuration (MC): ωc < 0. (b) Plus configuration (PC): ωc > 0.

Figure 2.1: Schematic representation of the two configurations of circular orbits
discussed in this thesis. They lie in the equatorial plane of a Schwarzschild BH
immersed by an asymptotically uniform magnetic field along ẑ. The charged parti-
cle (grey dot) is assumed to orbit the BH (black disk) anticlockwise; The cyclotron
frequency is ωc = qB0/m, where B0 is the magnetic field strength at infinity, q is
the charge of the particle, and m is its mass. The configurations are invariant un-
der inversion of the direction of the orbit and of the sign of ωc. We also include a
Newtonian interpretation of the difference between the two configurations: F N and
F L represent the gravitational and Lorentz forces respectively, with the latter being
attractive (resp. repulsive) in MC (resp. PC) orbits.

The takeaway from these equations is that for the circular orbit to even exist we must ensure that

∂rVeff(r0, θ0) = ∂θVeff(r0, θ0) = 0 , (2.62)

for otherwise, the particle drifts away from circular motion even without an initial perturbation. The

condition ∂θVeff(r0, θ0) = 0 implies θ0 = π/2, so all circular orbits lie in the equatorial plane. The other

condition yields

L2(r0 − 3M) +MLωcr
2
0 − ω2

cr
4
0(r −M)/4−Mr20 = 0 . (2.63)

This means that if we want to find a circular orbit of radius r0 then the particle must have one of two

specific angular momenta, the two roots of the polynomial above:

L∓ =
−Mωcr

2
0 ∓ r0F (r0)

2 (r0 − 3M)
, F (r) =

󰁳
ω2
cr

2(r − 2M)2 + 4M(r − 3M). (2.64)

Given the symmetry of the effective potential, which is invariant under the transformation (L,ωc) →

(−L,−ωc), it is important to distinguish between two fundamentally different types of circular motion

that may arise in this system and which exhibit the same symmetry: minus configuration (MC), where

L > 0 and ωc < 0; this configuration exists in flat space as the Lorentz force is attractive in this case;

plus configuration (PC), where L > 0 and ωc > 0; this configuration does not exist in flat space, as the

Lorentz force is repulsive in this case. We show schematic representations of the two configurations in

Figure 2.1.
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We choose to always show positive angular frequencies and angular momenta so the sign of the

cyclotron frequency is what distinguishes minus (ωc < 0) and plus (ωc > 0) configuration orbits. In that

regard, in Eq. (2.64) we only need the solution with the “+” sign: the solution with the “-” sign refers to the

orbits obtained when we take (L,ωc) → (−L,−ωc). With that in mind, the angular frequency, as seen by

a stationary observer at infinity (that is, dφ/dt), is

Ω0 =

󰀥
1

2 + 2r20ω
2
c

󰀓
2ω2

K + ω2
c (1− 2M/r0)− ωc

󰁴
ω2
c (1− 2M/r0)

2
+ 4ω2

K (1− 3M/r0)
󰀔󰀦1/2

, (2.65)

where we recall that the typical frequencies of the problem are the Keplerian and cyclotron frequencies,

ωK =

󰁶
M

r30
and ωc =

qB0

m
. (2.66)

These two timescales determine the relative importance of the two competing forces in the system: the

gravitational and the Lorentz force. The gravitational force is stronger closer to the BH, and associated

with the frequency ωK. Conversely, since the magnetic field being considered is uniform, the Lorentz

force does not depend explicitly on r0, and neither does its associated frequency ωc. Thus, we expect

gravitational effects to dominate closer to the BH, while magnetic effects ought to become more relevant

further away from the BH2. If that is the case, for what value of r0 can we tell these two regimes apart,

that is, what do we mean by close/far from the BH? The natural answer is to find for which value of r0

the absolute values of the two frequencies coincide. This yields a critical radius

rc =

󰀕
M

ω2
c

󰀖1/3

. (2.67)

Now what happens if we take limits of Eq. (2.65) with respect to this value? We find

Ω0
MC−−−−→

r0≪rc
ωK , Ω0

MC−−−−→
r0≫rc

ΩMC ,

Ω0
PC−−−−→

r0≪rc
ωK , Ω0

PC−−−−→
r0≫rc

ΩPC .
(2.68)

In the limit r0 ≪ rc we find that the Keplerian frequency is recovered, as in this limit we have dominance

of the gravitational effects. This goes for both PC and MC orbits, as they do not differ in this limit. For

MC orbits, in the limit r0 ≫ rc we get cyclotron motion with the same angular frequency as in flat space

Eq. (2.12),

ΩMC = − ωc󰁳
1 + (r0ωc)2

. (2.69)

The velocity as seen by a stationary observer at infinity (v0 = r0Ω0) of particles traveling with orbital

frequency ΩMC approaches the speed of light for r0 → ∞. For PC orbits, the asymptotic frequency in

the limit r0 ≫ rc doesn’t yield any familiar result, as this type of orbit doesn’t exist in flat space; instead,

2We must be careful not to say that magnetic effects dominate far away from the BH. While that is true for MC orbits, which
do approach cyclotron motion in flat spacetime (see Sec. 2.1) for sufficiently far away orbits, the same is not true for PC orbits,
because of the repulsive nature of the Lorentz force.
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we find that the orbital frequency asymptotically approaches

ΩPC =
ω2

K
ωc

=
M

r30 ωc
. (2.70)

Having established the limits of Eq. (2.65), we now turn to the study of the stability of circular orbits.

If (2.62) is satisfied, then (2.60) and(2.61) reduce to harmonic oscillator equations with frequencies

ω2
r =

∂2
rVeff(r0, θ0)

2
=

(r0 − 2M)2(3L2
+ + r40ω

2
c/4)− 2Mr0(L+ − r20ωc/2)

2 − 2Mr30
(r0 − 2M)r50

, (2.71)

ω2
θ =

∂2
θVeff(r0, θ0)

2 r20f(r0)
=

L2
+

r40
− ω2

c

4
= uφ

󰀃
uφ + ωc

󰀄
. (2.72)

Note that L+ is the specific angular momentum at the circular orbit (see Eq. (2.64)). When we are at a

minimum of the potential, these frequencies are real and the circular orbit is stable under perturbations.

Conversely, if either frequency is not real, the orbit is unstable and, when perturbed, the particle will drift

away from circular motion.

Thus we must study the sign of the RHS of Eqs. (2.71) and (2.72). We can easily see that angular

perturbations are always stable in both PC and MC orbits: for PC orbits uφ and ωc have the same sign,

and so the problem is trivial; for MC orbits, gravitational and magnetic effects work together to speed up

the particle, so it only makes sense that uφ > |ωc|, as uφ = |ωc| in flat space (see Eq. (2.7)).

Regarding radial perturbations, the RHS of Eq. (2.71) is positive for r0 → ∞, so all orbits are stable

up to the innermost stable circular orbit (ISCO). We calculated the location of the ISCO (see Fig. 2.2)

and found that for PC orbits increasing the absolute value of the cyclotron frequency allows for the ISCO

to be pulled in arbitrarily close to the BH horizon rISCO
0 /M → 2; for MC orbits, we find the radius of the

ISCO approaches

rISCO
0 /M → 5 +

√
13

2
≈ 4.30 , (2.73)

hence corroborating and further extending the results in Refs. [43, 47, 60].

The question we ask next is: what is the velocity of the particles traveling at the ISCO? This can be

answered easily once we know the value of the ISCO, and we present results concerning the velocity

as seen by a stationary observer at infinity in Fig. 2.3a. We find that for PC orbits the velocity becomes

smaller as the EH is approached, which is a direct result of the repulsive nature of the Lorentz force. For

MC orbits, the velocity tends to the constant value

vISCO
0 →

󰁴
6 +

󰀃
3 +

√
13
󰀄

5 +
√
13

≈ 0.732 , (2.74)

as the particle approaches the barrier at rISCO
0 .

The reason why particles in the ISCO of MC orbits cannot get any closer to the EH is that in order

for this to happen the stationary observers at the orbit of the particle would see it traveling faster than

the speed of the light. Gravitational redshift hides this effect from stationary observers at infinity, but if

we plot the velocity seen by local stationary observers at the ISCO (vL = v0/
√
f ) we obtain the results
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Figure 2.2: Radius of the innermost stable circular orbit of a charged particle around
a Schwarzschild BH of mass M in an asymptotically uniform magnetic field as a
function of |ωc|. The red and blue curves correspond to PC and MC orbits, re-
spectively. The black dashed line indicates the position of the event horizon of the
BH.

(a) Stationary observers at infinity. (b) Stationary observers at the ISCO.

Figure 2.3: Orbital velocity of particles at the ISCO, as seen by two families of
observers, as a function of |ωc|. The red and blue curves correspond to PC and MC
orbits, respectively.

in Fig. 2.3b. Indeed, stationary observers at the ISCO see particles in the MC approaching the speed of

light; perhaps more surprisingly, they see particles in the PC approaching half the speed of light.

To get a better understanding of the structure of circular orbits, we also looked at the velocity profiles

as seen by stationary observers at infinity for MC and PC orbits (Fig. 2.4). In these plots, we compare

the results obtained with Eq. (2.65) with the limits given in Eq. (2.68), while also showing the value of

rc (see Eq. (2.67)). We find that, in general, the results recover what was expected from the discussion

given after Eq. (2.65).

In particular, for MC orbits the velocity profile changes from monotonically decreasing (ωc = 0), to

non-monotonic (M |ωc| = 10−3) and then monotonically increasing (M |ωc| = 10−1). This change in

monotonicity happens because the inclusion of a magnetic field makes asymptotic orbits in the MC

relativistic. As for PC orbits, we find that the velocity profile is always monotonically decreasing, so that

increasing ωc simply causes the velocity to decay more rapidly towards asymptotically stationary orbits.

Regarding the comparison with the limiting formulas, we find that in the ωc = 0 case, the “Keplerian”
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result is exactly recovered, as expected. For M |ωc| = 10−3 the Keplerian curve gives a good approxima-

tion close to the BH; as r0 = rc is approached, the “Keplerian” curve starts to diverge from the velocity

profile, which is when we start to see the “magnetic” curve become a better approximation for v0; for

r0 ≫ rc the “magnetic” curve is good approximation. For M |ωc| = 10−1 we don’t see the Keplerian result

ever being a good approximation, because now rc is very close to the EH; instead we see the “magnetic”

curve becoming closer and closer to the actual velocity profile.

2.3 Radiation reaction force in curved space

2.3.1 The DeWitt – Brehme equation of motion

The generalization to curved space of the dynamics of a radiating charged particle of mass m and

charge q in the presence of an EM field was obtained in [55, 56] (see also the review article [59]), and

reads

Duµ

dτ
=

q

m
Fµ

νu
ν +

2q2

3m

󰀕
D2uµ

dτ2
+ uµuν

D2uν

dτ2

󰀖
+

q2

3m
(Rµ

νu
ν +Rν

αuνu
αuµ) +

2q2

m
fµν
tailuν , (2.75)

where uµ(τ) is the particle’s four-velocity, τ is the proper time, Fµν = ∂µAν − ∂νAµ is the Faraday tensor

with EM four-potential Aµ, and Rµν is the Ricci tensor (identically zero for vacuum spacetimes). The first

two terms on the RHS of Eq. (2.75) were already present in flat space (see Eq. (2.13)), and correspond,

respectively, to the Lorentz and Abraham-Lorentz-Dirac forces. The last two terms are curved spacetime

effects: one coupling to the Ricci curvature tensor and another corresponding to the tail term, given by

fµν
tail =

󰁝 τ−

−∞
∇[µG

ν]
λ′ (z(τ), z(τ

′))uλ′
dτ ′ , (2.76)

where square brackets denote anti-symmetrization, z(τ) is the world line of the particle, Gν
λ′ (x, x′) is

the retarded Green’s function for the vector wave equation in curved space, and the integral is taken

over the entire history of the particle. For a modern derivation of Eqs. (2.75) and (2.76) see the review

by Poisson [59].

Equation (2.75) is a third order equation for the position of the particle, and so it has several unwanted

features, such as the existence of runaway solutions. This issue is solved by performing an order

reduction of the equation, identical to what we did in flat space to obtain Eq. (2.15). The idea is to make

the substitution
D2uµ

dτ2
→ q

m

D

dτ
(Fµ

νu
ν) . (2.77)

The validity of this approximation in flat space has been widely studied [92–96], and some analysis has

also been done in the curved space case [59, 102]. Replacing Eq. (2.77) in Eq. (2.75) leads to the

reduced equation of motion, which in vacuum spacetimes (Rµν = 0) takes the form

Duµ

dτ
=

q

m
Fµ

νu
ν +

2q3

3m2
(∇αF

µ
νu

αuν) +
2q3

3m2

󰀓 q

m
(FµνFνρ + F ναFαρuνu

µ)uρ
󰀔
+

2q2

m
fµν

tail uν . (2.78)
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(a) MC orbits with ωc = 0. (b) PC orbits with ωc = 0.

(c) MC orbits with Mωc = −10−3. (d) PC orbits with Mωc = 10−3.

(e) MC orbits with Mωc = −10−1. (f) PC orbits with Mωc = 10−1.

Figure 2.4: Velocity profiles, as seen by a stationary observer at infinity, of circular
orbits with radius r0 for different values of ωc. Left column – MC orbits. Right
column – PC orbits. The blue and red curves correspond to the velocity profiles for
MC and PC orbits, respectively; the “Keplerian” curves (black dashed) are obtained
by taking Ω0 = ωK ; the “Magnetic” (black dotted) curves are obtained by taking
Ω0 = ΩMC in MC orbits and Ω0 = ΩPC in PC orbits. Finally, the black solid thin
vertical line indicates the position of the critical radius rc/M = ∞, 100, 4.64, for the
top, center, and bottom cases, respectively. The “Keplerian” result is recovered for
r0 ≪ rc and the “Magnetic” result is recovered for r0 ≫ rc.

Here, the only new term when compared to the reduced Abraham-Lorentz-Dirac equation in flat space

(Eq. (2.13)) is the tail term. This non-local term happens to be very complicated, both from a numerical

and from an analytical point of view, due to the integral over the entire history of the particle. With that in

19



mind, it would make the study of the dynamics of charged particles way simpler if we could exclude the

tail term (Eq. (2.76)) from our analysis.

2.3.2 Motion without the tail term

We will now assume the tail term can be neglected and see what sort of dynamics arise in that case.

This is precisely what was done in Ref. [53] 3 , where the tail term is neglected based on an estimate for

this force taken from the works by DeWitt and DeWitt [62] and Smith and Will [57] 4,

F tail ∼
q2M

r3
r̂ , (2.79)

and then comparing it to the Newtonian expression for the gravitational force, with respect to which it is

often negligible.

The estimate of the tail term in Eq. (2.79) was shown in Ref. [57] to be the expression for the radiation

reaction force acting upon a static charge outside a Schwarzschild BH, as seen by an instantaneously

comoving inertial observer at the position of the particle. However, in Ref. [62] it had already been

shown that, even in the weak field limit, this does not account for the radiation reaction force completely,

as another term exists which is non-zero only if the particle is moving. So the question is clear: if the

charge is moving, can the tail term still be neglected? More precisely, can it be neglected if the particle

is moving in a circular orbit?

If the tail term is indeed neglected, the equation of motion is just Eq. (2.78) without the last term on

the RHS, with the EM field replaced by the result Eq. (2.47), explicitly given by

Frφ = Br sin2 θ, Fθφ = Br2 sin θ cos θ , (2.80)

with all other independent components of Fµν equal to zero. Consider now the motion of a particle in the

equatorial plane (θ = π/2) 5 , in which case Frφ = Br is the only non-zero component of the EM field.

Then the equations of motion can be written explicitly as

dut

dτ
=− 2M

r2f(r)
utur − 2q2

3m

ωcu
t

r

󰁫
ωc rf(r)

󰀓
f(r)

󰀃
ut
󰀄2 − 1

󰀔
−Muφ

󰁬
, (2.81)

dur

dτ
=uφ

󰀃
ωc rf(r) + (r − 3M)uφ

󰀄
− M

r2
− 2q2

3m

ωcu
r

r

󰁫
ωcrf(r)

2
󰀃
ut
󰀄2 −Muφ

󰁬
, (2.82)

duφ

dτ
=−

2ur
󰀃
uφ + ωc/2

󰀄

r
+

2q2

3m

ωc

r3

󰁫
Mr2

󰀃
uφ

󰀄2 − ωc r
3f(r)2

󰀃
ut
󰀄2

uφ +M
󰁬
. (2.83)

If we now look at the kinematic variables of the charged particles in the equatorial plane (Eq. (2.56)) we

3We report that the equations of motion we obtained differ from theirs by a factor of 3 and a factor of uφ in Eq. (2.82), and by a
minus sign in Eq. (2.83).

4The radiation reaction force is often called the particle’s self-force. This is because that force can be seen as arising from the
interaction of the particle with its own EM field [59].

5For consistency, it is important to note that when we take a particle with uθ = 0 in the equatorial plane, then duθ/dτ = 0, so
that the motion will remain in the equatorial plane.
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find the rate of energy loss is

dE

dt
= −2q2

3
ωcf(r)

󰀗
ωcE2 −

󰀕
ωcf(r) +

M

r
uφ

󰀖󰀘
, (2.84)

while that of angular momentum loss becomes

dL

dt
=

2q2

3

ωc

ut

󰀗
Mr

󰀃
uφ

󰀄2 − ωcr
2f(r)2

󰀃
ut
󰀄2

uφ +
M

r

󰀘
. (2.85)

An interesting feature of Eq. (2.84) is that it allows for the particle to gain energy, that is, it is possible

to have dE/dt > 0. If we restrict to circular orbits of radius r0, the condition for dE/dt > 0 can be written

as

ωc > 0 ∧ 0 < f(r0)u
φ/ΩPC < 1 . (2.86)

This condition can only ever be satisfied in PC orbits, as uφ and ωc must have the same sign. If we

replace the value of uφ corresponding to PC orbits, that is,

uφ → Ω0󰁳
1− 2M/r0 − v20

, (2.87)

where Ω0 was given in Eq. (2.65), then we find that for all PC orbits outside the light ring (r0 > 3M ) this

condition is satisfied, so that the particle gains energy instead of losing.

Since, as we discussed in Sec. 2.2.2, the energy of circular orbits increases with the radius of the

orbit, we expect the orbital radius of a particle in a PC orbit to increase as it gains energy according to

Eq. (2.84). By numerically integrating Eqs. (2.81), (2.82) and (2.83), we found this orbit widening effect

does take place (see Fig. 2.5). Since the energy gain holds for all orbits with r0/M > 3, so does the

orbit widening.

This result is counterintuitive: there seems to be a violation of energy conservation since there is no

clear source of energy in the system that could be feeding the orbit widening. The BH is not rotating, so

it cannot be superradiance, and the EM field is purely magnetic, so it cannot be the EM field either.

This apparent incoherence was the main motivation for this thesis, where we tried to understand how

EM radiation reaction affects the motion of charged particles around magnetized Schwarzschild BHs,

focusing on the simplest case of circular orbits. We will try to establish if this orbit-widening effect can

indeed happen, and, more generally, if there is any scenario where the tail term can be neglected, which

would mean the Eqs. (2.81), (2.82) and (2.83) are the correct equations of motion of the system.
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Figure 2.5: Motion of a radiating charged particle in the equatorial plane of a
Schwarzschild BH surrounded by an asymptotically uniform magnetic field with
M = 1, Mωc = 0.2 and 2q2/3m = 0.1M , neglecting the tail term. The particle
is initially in a PC orbit, but the radiation reaction force causes the radius of the
orbit to increase adiabatically, while the particle gains energy. The black circle in
the center represents the BH region; the black ring at r/M = 5 represents the initial
circular orbit.
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Chapter 3

Radiating charged particle orbiting a

magnetized Schwarzschild black hole

- Newtonian Limit

The results in this chapter were published in [54].

In this chapter, the main aim is to employ the Newtonian limit to try and understand if the energy

gain and associated orbit widening that we found in Sec. 2.3.2 does indeed take place. Just as an initial

sanity check, we replaced the BH with a static charge at the origin and found that this phenomenon no

longer took place (Appendix C). In the Newtonian limit, the charge and BH cases should give rise to the

same results, as long as the value of the static charge is chosen appropriately.

The system is exactly the one studied in Sec. 2.2.2 but including radiation reaction so that the equa-

tion of motion is Eq. (2.78). To obtain the Newtonian limit, we start by recalling the expression for the

gravitational potential of a pointlike particle of mass M placed at the origin:

Φ(r) = −M

r
. (3.1)

Let uµ be the 4-velocity of the charged test particle:

uµ = ut (1,v) , ut =
dt

dτ
∼

󰀃
1− v2

󰀄− 1
2 , (3.2)

where v is the coordinate 3-velocity and v is its norm. We now must impose that the particle is moving

slowly through a weak gravitational field, which can be written as

|Φ| ∼ v2 ∼ r2ω2
c ∼ O (ε) ≪ 1 . (3.3)

The first condition implies a weak gravitational field, the second condition states that the particle is slow-
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moving, and the third condition means that the magnetic field is also weak1. From this point onward we

neglect terms which are O (ε)
2 or smaller. The metric (2.24) is then approximated by

gNewton = − (1 + 2Φ) dt2 + (1− 2Φ) dr2 . (3.4)

If we calculate the action for timelike geodesics using this metric, we retrieve the appropriate Newtonian

action

S =

󰁝 󰁳
−gµνuµuνdτ =

󰁝 󰀕
1− v2

2
− M

r

󰀖
dt , (3.5)

up to O (ε)
2 terms. Now consider a particle in a circular orbit in the equatorial plane with radial coordinate

r0. Note that we will parameterize the motion using the coordinate time t rather than the proper time τ ,

since the O (ε) term in (3.2) always leads to O (ε)
2 terms in the equation of motion. With that in mind,

we use ut ≈ 1 from here on, consistently with the pre-relativistic idea that proper time is the same as

coordinate time.

3.1 Analytical results in the adiabatic approximation

We assume the effects of radiation are small enough for the particle to always be in a circular orbit, but

that the radius r0 of the latter changes adiabatically. In that case the position x(t) and the 3-velocity,

v(t) of the charged particle are

x(t) = r0 (cos(Ω0t) , sin(Ω0t) , 0) , (3.6)

v(t) =
dx(t)

dt
≈ r0Ω0 (− sin(Ω0t) , cos(Ω0t) , 0) , (3.7)

where the angular velocity Ω0 also changes adiabatically. We assume that the orbit satisfies all the

conditions for the Newtonian limit to hold. In that case, the limit of Eq. (2.78) for these circular orbits is

easy to find:

m
dv

dt
= F N + F L + F RR + F tail . (3.8)

Here, the first two forces on the RHS are, respectively, the Newtonian gravitational force and the Lorentz

force, which, in this case, take the form

F N = −m
M

r20
r̂ , F L = qv0B0r̂ , (3.9)

where r̂ is the unit radial vector and v0 = r0Ω0. The third force comes from the Abraham–Lorentz–Dirac

term in Eq. (2.78). For the particle orbits we are studying, it is

F RR =
2q2

3
ωc

v20
r0

φ̂ , (3.10)

1This condition may also be stated as “all the typical velocities of the problem are much smaller than the speed of light”.
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where φ̂ is the unit tangent vector. This is the first dissipative term we encounter. It is parallel to the

velocity in PC orbits, hence doing positive work, and anti-parallel to the velocity in MC orbits, where it

does negative work. Finally, we have the tail term, which was estimated for the weak field, slow motion

regime in Refs. [62, 63]:

F tail = q2
M

r30
r̂ − 2q2

3

d

dt
(∇Φ) = q2

M

r30
r̂ − 2q2

3

M

r30
v0φ̂ , (3.11)

where ∇ is the gradient with respect to the spatial coordinates. We can distinguish two components

of the tail: a conservative part, F r
tail, and a dissipative part, Fφ

tail. We will now determine whether or not

these tail terms must be included to adequately describe the motion of the charged particle.

The conservative part, F r
tail, was originally derived in Ref. [62] (see also Ref. [57]), and can be com-

pared to the gravitational force as it points in the radial direction. If this comparison is done at the BH

horizon (r = 2M) we obtain
F r

tail

FN
≈ 10−19

󰀓q
e

󰀔2 󰀓me

m

󰀔󰀕
10M⊙
M

󰀖
, (3.12)

where e and me are, respectively, the electron charge and mass, and M⊙ is the mass of the sun. This

ratio is very small for astrophysically relevant scenarios, which means the conservative part of the tail

term can be neglected. Note that it may seem odd that the comparison is performed at the BH horizon

since a weak field approximation is assumed; however, the tail term decays faster with r than FN, and

so this is, in fact, an upper bound. This was the comparison used in Refs. [52, 53] to ignore the tail term;

however, in the process they also neglected the dissipative part of the tail term, which we will see cannot

generally be neglected.

Regarding the dissipative part, Fφ
tail, we start by noting it always does negative work, since it points in

the opposite direction to the particle’s velocity. To see if it must be included, we should compare it with

the other dissipative term, FRR, which is also tangent to the particle’s velocity. We find

Fφ
tail

FRR
=

ω2
K

|ωc|Ω0
=

FN

FL
, (3.13)

(where ωc is the cyclotron frequency, and ωK is the Keplerian frequency). Thus, neglecting the dissipative

part of the tail term and keeping the radiation reaction due to the Lorentz force is equivalent to neglecting

the gravitational force while keeping the Lorentz force.

In Sec. 2.2.2 we found the orbital frequency of PC orbits asymptotically approaches ΩPC = ω2
K/ωc for

large orbital radius. Thus, in the Newtonian limit, this is the orbital frequency in PC orbits, which would

mean the ratio of Eq. (3.13) goes to 1. We conclude that neglecting the tail term while keeping F RR in

PC orbits is not consistent.

For vacuum spacetimes, therefore, the conservative part of the tail term can be neglected in the

Newtonian limit. However, the dissipative part can only be neglected consistently if either of the following

is true:

(i) Radiation reaction due to the Lorentz force is neglected as well, and the equation of motion is just

Eq. (2.75) with all terms ∝ q2 set to zero;
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(ii) the gravitational force is neglected as well, and a flat-space description using the Abraham-Lorentz-

Dirac equation is valid.

In other words, in situations where the gravitational force dominates, such as the PC orbits, the tail

term must be included, since Fφ
tail also dominates FRR. In particular, the particle will always lose energy.

This is the main result of this chapter.

As an additional check on the calculation presented above, we can see if it allows us to recover the

results for the Lorentz self-force and Larmor power formula, which we derived in Appendix B). Indeed,

those results are only recovered if the dissipative part of the tail term is included. The results of Ref. [87]

for a charged particle orbiting a Kerr BH in the Newtonian limit are also only recovered if both F RR

and F φ
tail are included in the equations of motion. We have shown that to adequately recover the non-

relativistic Larmor formula (Eq. (2.22)) from the DeWitt–Brehme equation (Eq. (2.75)), in all setups where

EM radiation reaction and gravity are relevant, the tail term must always be included2.

3.2 Numerical simulation of plus configuration orbits

To visualize the effects of the tail term in the dynamics, we have also studied numerically the evolution of

particles in the plus configuration, with and without the inclusion of the tail. For the numerical evolution,

we did not restrict ourselves to the adiabatic approximation (i.e. did not assume the orbit is circular with

slowly varying parameters). This is still, of course, within the framework of the Newtonian limit.

Using Cartesian coordinates (x, y) in the equatorial plane, the equation of motion is still Eq. (3.8),

but now the expressions for the forces on the RHS are given by [42, 62, 63]

FN = −Mm

r3
xx̂− Mm

r3
yŷ , (3.14)

FL = qvyB0x̂− qvxB0ŷ , (3.15)

F RR = − 2q3

3m2

󰀣󰀕
qvxB

2
0 +

Mm

r3
yB0

󰀖
x̂+

󰀕
qvyB

2
0 − Mm

r3
yB0

󰀖
ŷ

󰀤
, (3.16)

F tail =
q2M

r3

󰀣󰀕
x

r
− 2

3
vx

󰀖
x̂+

󰀕
y

r
− 2

3
vy

󰀖
ŷ

󰀤
. (3.17)

We recall that B0 is the magnetic field intensity.

These equations were used to numerically simulate the motion of particles in plus configuration

orbits, using the parameters given in Table 3.1. To illustrate the importance of the tail term, we present

two simulations, with and without including the term F tail in the equations of motion (Fig. 3.1). Since

F RR is doing positive work, when the tail is excluded the particle starts drifting away from the BH, as a

result of gaining energy. By opposition, as expected from our analytical results, the particle starts falling

into the BH when the tail term is included.

2Interestingly, even when this limit is recovered, the conservative part of the tail term, F r
tail, is still present; it is a completely new

term which was not predicted before GR. This term was calculated in the general case, without requiring the Newtonian limit, but
instead having the particle be held static, in [57]. Since it is an intrinsically general relativistic effect, it must be tied to the notion
of spacetime curvature. Heuristically, the presence of the BH deforms the electrostatic field lines generated by a point charge in
such a way as to mimic the presence of a second charged particle between the original point charge and the BH.
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Figure 3.1: Trajectories of a charged particle in a plus configuration orbit, with the
parameters given in Table 3.1. The red circle represents the initial orbit, with the
subsequent particle motion plotted in black. Left panel – motion without the inclu-
sion of F tail. Right panel – motion with the inclusion of F tail. We can see that if
the tail is neglected then the particle gains energy and the orbit drifts away from
the BH, as a consequence of the positive work done by F RR (left). By contrast, if
the tail term F tail is included then it does enough negative work so that the particle
loses energy and starts falling into the BH (right).

Qty Value Simulation
M 10M⊙ 1
B0 108 G 1.20× 10−11

q 7× 1015 C 1.44× 10−5

m 1020 kg 5× 10−12

r0 2× 107 m 1.35× 103

Table 3.1: Parameters used in our simulations. The second column gives values in
SI units and solar masses (M⊙), while the third column gives the values used in the
actual simulation (after normalizing to the BH mass).

This clearly illustrates that the orbit widening effects reported in [52, 53] result from incorrectly ex-

cluding the tail term from the equation motion, at least in the Newtonian limit.

3.3 Discussion of the Newtonian limit

Our results disagree with those in Ref. [53]. In the latter, the dissipative part of the tail term is neglected

altogether, and the equation of motion used to study charged particle dynamics is (2.78) without the tail

term. This implies, in particular, that a particle in a plus configuration orbit will gradually gain energy,

given that F RR will do positive work, as evidenced in (3.10) and the subsequent discussion. This energy

extraction is accompanied by a “orbital widening” effect. Such a result cannot be correct, as there is

no possible source of energy for these particles (in fact, it was this counter-intuitive claim that led us to

investigate the tail term). We find that not only does such an energy-generating process disappear when

the tail is included, but also that it must always be included, at least in the Newtonian limit.
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But why is the tail term and its complicated expression (2.76) so important? Imagine we could indeed

neglect it, so the equation of motion after order reduction would be

Duµ

dτ
=

q

m
Fµ

νu
ν +

2q2

3m

󰀓 q

m
∇αF

µ
νu

αuν
󰀔 2q2

3m

󰀕
q2

m2
(FµνFνρ + F ναFαρuνu

µ)uρ

󰀖
. (3.18)

This equation states that if no EM field is present then the particle will simply follow a geodesic of space-

time, meaning it does not radiate. This would also mean that the gravitational force is fundamentally

different from any other, as Eq. (2.22) would have to be corrected so that it only includes acceleration

arising from all forces other than the gravitational force. In GR, gravity is indeed a fundamentally different

force; however, it still must make orbiting particles radiate, as their position varies periodically. This can

also be seen from a calculation using the conformal invariance of Maxwell’s equations (see Appendix D).
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Chapter 4

Electromagnetic fields as

perturbations of Schwarzschild

spacetime

We now turn our attention to the general strong field case, so we drop the assumptions of Eq. (3.3)

and study the full GR case. We want to include radiation reaction in our description of the motion of

a charged particle around a magnetized Schwarschild BH and will do so by studying the radiation field

itself, which is taken to be small enough for BH perturbation theory to be valid. We must note that we

considered no perturbations on the background magnetic field, which is kept constant throughout the

analysis (see Sec. 2.2.2).

The study of perturbations of the Schwarzschild geometry is a very rich one, dating back to the

historic works by Regge and Wheeler [65], Vishveshwara [103], Zerilli [66, 104] and others [9, 77, 105],

but also with more recent developments [106–108]. We choose to employ the Teukolsky equation [68],

which describes perturbations of the Kerr family of solutions, but taking the spin of the BH to zero

(a = 0), so that we get the Bardeen-Press equation [69] – an equivalent formulation of perturbations

of the Schwarzschild geometry to that given by the Regge-Wheeler and Zerilli equations, as shown by

Chandrasekhar in [70].

The idea now is the following: we will first look at the formalism of the Teukolsky equation and some

key components needed for our analysis. Next, we will take a charged particle in a circular orbit around

a Schwarzschild BH surrounded by an asymptotically uniform magnetic field (see Sec. 2.2.2) and use

Teukolsky’s equation to study the radiation field it creates; from that, we will obtain the amount of energy

E and angular momentum L lost to infinity, as well as that which is absorbed by the BH. Since the

motion in the equatorial plane is entirely determined by the value of these two quantities, knowing how

they evolve allows us to study how the orbit changes with time. The assumption that the particle is always

in a circular orbit is called the adiabatic approximation and it states that if the parameters vary slowly

enough we can assume that the particle is always in a circular orbit, and its radius r0 is varying slowly.
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There is an important caveat, however: for a given value of energy and radius of the orbit, the angular

momentum is uniquely determined (see Sec. 2.2.2). Thus, for the adiabatic approximation to be valid,

the rate of change of energy and angular momentum must be compatible with the particle remaining

in a circular orbit. There is a general result relating the energy and angular momentum carried by EM

waves [109] across any sphere centered at the BH:

dL =
m

ω
dE =

1

Ω0
dE , (4.1)

which is precisely what we had found in flat space (see Eq. (2.23)). It turns out that if we replace

the expressions for E and L for a particle in a circular orbit around a magnetized Schwarzschild BH

(Eqs. (2.29) and (2.30)), the result is indeed compatible with the particle remaining in a circular orbit.

Furthermore, this result is also valid for scalar and gravitational waves, so the adiabatic approximation

can also be used in those cases. With this in mind, we will only calculate energy fluxes, because the

angular momentum fluxes can be easily calculated using Eq. (4.1).

4.1 The Teukolsky equation

4.1.1 Newman-Penrose formalism

The Teukolsky equation is derived within the framework of the Newman-Penrose formalism [110]. Take

a null tetrad composed of two real vectors lµ and nµ as well as a complex conjugate pair mµ and mµ,

satisfying

lµn
µ = −mµm

µ = −1, (4.2)

with all other inner products vanishing. It is well known that locally we can always give a spinorial

structure to a Lorentzian manifold as there exists an isomorphism between real spinorial 2-tensors in a

spinor space and vectors in the tangent space at each point of the manifold (Ch. 13 of Wald [99]). The

idea of the Newman-Penrose formalism is to express the connection of the spacetime manifold in terms

of 12 complex scalars – the spin coefficients – which come up naturally within the spinorial formalism.

Because of the properties of the spinor space, null vectors are the simplest to represent using spinors,

and so the easiest way to write these spin coefficients in vector notation is through contractions of the

connection with a complex null tetrad satisfying the orthogonality relations of Eq. (4.2).

The null tetrad we use should evidence the algebraic properties of the solution. It is well known

from the Petrov classification [111, 112] that Schwarzschild is a type D algebraically special space-

time with repeated null directions given by the ingoing and outgoing null vectors. Thus, using standard

Schwarzschild {t, r, θ,φ} coordinates, we choose for our basis the null tetrad initially proposed by Kin-
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nersley [113] :

lµ =
󰀃
f(r)−1, 1, 0, 0

󰀄
,

nµ =
1

2
(1,−f(r), 0, 0) ,

mµ =
1√
2r

(0, 0, 1, i/ sin θ) ,

(4.3)

with f(r) = (1 − 2M/r), where M is the mass of the BH. This basis is also particularly interesting

because it transforms in a specific way under rotations, as we show in the following subsection.

4.1.2 Spin weighted spherical harmonics

Following Ref. [114], the idea of spin-weighted functions arises as follows: consider an orthonormal

tetrad in a point of Schwarzschild spacetime, with vectors pointing in the direction induced by radial

coordinates, that is

eµt =
1󰁳
f(r)

δµt , eµr =
󰁳
f(r) δµr , eµθ =

1

r
δµθ , eµφ =

1

r sin θ
δµφ . (4.4)

If we rotate around eµr by an angle α then we find the new vectors tangent to the sphere are linear

combinations of eµθ and eµφ. Now imagine that, instead, we use mµ and its complex conjugate (see

Eq.(4.3)) as a basis for vectors tangent to the sphere. Now, mµ transforms in a very specific way under

rotations: if we rotate by the same angle α around the radial direction then

mµ → eiαmµ. (4.5)

This allows us to introduce the notion of spin weight: a quantity η is said to have spin weight s if it follows

the following transformation law under rotations by an angle α about the radial direction:

η → eisαη. (4.6)

As an example, we have that for any real vector vµ, the scalar product with the basis vectors of (4.3)

have the following spin weights:

vµl
µ → s = 0 , vµn

µ → s = 0 , vµm
µ → s = +1 , vµm

µ → s = −1. (4.7)

Finally, we want to tie everything back with the Newman-Penrose formalism and the introduction of a

spinor structure to our spacetime. We said that the choice of a null tetrad naturally induces a basis of

spinor space; furthermore, the choice of the null tetrad of (4.3) introduces a particularly special basis

of that space, one which transforms in a specific way under rotations, i.e a basis of spinors with a

defined spin weight. Following the discussion above about the spinor space and the isomorphism with

the tangent space of our manifold, it is not surprising that the spinors have spin weight ±1/2.

Having described what spin weight is with a reasonable level of detail, we can now introduce the
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“edth” operators, which are a pair of differential operators on the sphere that can be written in standard

spherical coordinates as

ðη = −
󰀕
∂θ +

i

sin θ
∂φ − s cot θ

󰀖
η, (4.8)

ðη = −
󰀕
∂θ −

i

sin θ
∂φ + s cot θ

󰀖
η. (4.9)

It turns out that these operators are raising and lowering operators for the spin weight of a given quantity,

that is, if η has spin weight s, then ðη will have spin weight s+ 1 and ðη will have spin weight s− 1. We

may ask which set of functions sPℓm solve the eigenvalue problems

󰀃
ðð− λ1

󰀄
sPℓm(θ,φ) = 0, (4.10)

󰀃
ðð− λ2

󰀄
sQℓm(θ,φ) = 0. (4.11)

The labels s, ℓ, and m are integers corresponding to the spin weight, angular number, and azimuthal

number. When we consider s = 0, we get ðð = ðð = −L2, the square angular momentum operator. So,

in that case, the basis of spherical harmonics, Yℓm (θ,φ) provides a solution to the eigenvalue problem,

with λ1 = λ2 = ℓ(ℓ+ 1).

For the case of general s, the adequate basis functions are called spin-weighted spherical harmonics.

The corresponding eigenvalue equations are

ðð sYℓm(θ,φ) = − (ℓ(ℓ+ 1)− s(s+ 1)) sYℓm, (4.12)

ðð sYℓm(θ,φ) = − (ℓ(ℓ+ 1)− s(s− 1)) sYℓm. (4.13)

Note that, like the ordinary spherical harmonics, spin-weighted spherical harmonics have a dependence

on φ which goes like eimφ, where −ℓ ≤ m ≤ ℓ. Furthermore, they are only defined for ℓ ≥ |s|, and for

each value of s they are a complete orthonormal set of functions on the sphere, in the sense that any

function defined on the sphere with spin weight s may be expanded as a series in sYℓm and

󰁝
dΩ sYℓm sY ℓ′m′ = δℓℓ′δmm′ . (4.14)

The last important relations regarding spin-weighted spherical harmonics are

ð sYℓm = ((ℓ− s)(ℓ+ s+ 1))
1
2

s+1Yℓm, (4.15)

ð sYℓm = − ((ℓ+ s)(ℓ− s+ 1))
1
2

s−1Yℓm. (4.16)

One may ask what is the connection between this notion of spin weight and the notion of spin in

physics as intrinsic angular momentum. Consider, for example, a photon: in quantum field theory, the

photon field is a massless vector field, which in turn implies it must have two independent polarizations

(left- and right- circularly polarized), carrying angular-momentum L = ±1 (in natural units). By looking

at (4.7), we see that a vector may be decomposed into components of spin weight −1 ≤ s ≤ 1. In
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fact, in quantum field theory, vector fields are always associated with particles that carry intrinsic angular

momentum L = ±1, precisely because of the way vectors behave under rotations, as encapsulated in

(4.7). Similarly, an electron has spin L = ±1/2, because it is represented by a spinor field which has

spin weight s = ±1/2, and a graviton has intrinsic angular momentum L = ±2, because it is represented

by a 2-tensor field, which may be decomposed into components with spin weight −2 ≤ s ≤ 2.

This will be important because the Teukolsky equation uses the Newman-Penrose formalism with

the null tetrad of (4.3). This means that all the perturbation fields (Weyl tensor, EM field, or scalar field)

are written in their spin-weighted components so that the angular dependence is naturally expressed in

terms of spin-weighted spherical harmonics.

4.1.3 The master equation

The Teukolsky equation [68] governs perturbations of the Kerr metric, and hence can also be used to

study perturbations of the Schwarzschild metric by simply taking a = 0. We will not deduce Teukolsky’s

equation here, but simply give an overview of the idea. In his 1973 paper, Teukolsky starts by proving

that, for all algebraically special Petrov type D spacetimes, the Newman-Penrose formalism leads to

a separated form of the field equations for the gauge invariant components of the Weyl and Faraday

tensors. Then, taking the spacetime to be Kerr as well and using Boyer-Lindquist coordinates and the

Kerr version of the null tetrad in (4.3), Teukolsky manages to write a general equation that describes

both scalar (s = 0), EM (s = 1) and gravitational (s = 2) perturbations. Taking that equation and setting

a = 0 gives us the Bardeen-Press equation [69], written in Schwarzschild coordinates as

󰀕
r2

f

󰀖
∂2
t ψ − 1

sin2 θ
∂2
φψ −

󰀕
1

r2f

󰀖s

∂r

󰀓󰀃
r2f

󰀄s+1
∂rψ

󰀔
− 1

sin θ
∂θ (sin θ ∂θψ)

−2is

󰀕
cos θ

sin2 θ

󰀖
∂φψ − 2s

󰀕
M

f
− r

󰀖
∂tψ +

󰀃
s2 cot2 θ − s

󰀄
ψ = 4πr2T ,

(4.17)

where ψ is the perturbation field and T is a source term, which in general is not the trace of the energy-

momentum tensor or any other familiar quantity. Using the differential operators defined in the previous

subsection (4.8) and (4.9), this equation can be re-written as

󰀕
r2

f

󰀖
∂2
t ψ −

󰀕
1

r2f

󰀖s

∂r

󰀓󰀃
r2f

󰀄s+1
∂rψ

󰀔
− 2s

󰀕
M

f
− r

󰀖
∂tψ − ððψ = 4πr2T , (4.18)

where now all the angular dependence is encapsulated by the ð and ð operators. When T and ψ

are expanded in spin-weighted spherical harmonic components, the angular and radial parts will nicely

decouple, because sYℓm are eigenfunctions of the operator ðð.

For now, we will focus on the homogeneous equation (T = 0), as the solution to that equation will be

needed to construct the solutions of the equation with a source (see Appendix E). We start by expanding

the field in terms of its Fourier-harmonic components: if ψ has spin weight s then it may be expanded as

ψ =

󰁝 ∞

−∞
dω

∞󰁛

ℓ,m

Rωℓm(r)sYℓm(θ,φ)e−iωt. (4.19)
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Replacing this in (4.18) and decoupling the radial and angular parts yields the equation for the mode

amplitudes Rωℓm: 󰀕
r2f

d2

dr2
+ 2(s+ 1)(r −M)

d

dr
− Vs(r)

󰀖
Rωℓm = 0 , (4.20)

Vs(r) = − (rω)2

f
+ 2iωs

󰀕
M

f
− r

󰀖
+ (ℓ− s)(ℓ+ s+ 1) . (4.21)

As it stands, this equation is difficult to solve, so we define the function S(r) as the new unknown and

introduce the usual tortoise coordinate r󰂏:

S(r) = r
󰀃
r2f

󰀄 s
2 Rωℓm , (4.22)

r󰂏 = r + 2M log
󰀏󰀏󰀏

r

2M
− 1

󰀏󰀏󰀏 ,
dr󰂏
dr

= f−1 . (4.23)

The equation for S(r) is then:
d2S

dr2󰂏
+K(r)S = 0 , (4.24)

where

K(r) =
1

r4

󰁫
r4ω2 + 2ir2ωs(r − 3M)−M2s2 + (2Mr − r2)ℓ(ℓ+ 1) + 2M(2M − r)

󰁬
. (4.25)

We now want to find asymptotic solutions to the equation written in this form. We start by looking at the

limit r → ∞ (r󰂏 → ∞), in which case the equation reduces to

d2S

dr2󰂏
+

󰀕
ω2 +

2iωs

r

󰀖
S = 0 , (4.26)

with linearly independent solutions

S(r) ∼ r±se∓iωr󰂏 ⇐⇒ Rωℓm ∼ e−iωr󰂏

r
or Rωℓm ∼ eiωr󰂏

r2s+1
. (4.27)

As for the horizon limit, r → 2M (r󰂏 → −∞), the equation becomes

d2S

dr2󰂏
+

󰀕
ω − is

4M

󰀖2

S = 0 , (4.28)

with linearly independent solutions

S(r) ∼
󰀃
r2f

󰀄±s/2
e±iωr󰂏 ⇐⇒ Rωℓm ∼ eiωr󰂏 or Rωℓm ∼ e−iωr󰂏

(r2f)
s . (4.29)

4.2 Electromagnetic perturbations of Schwarzschild spacetime

We are interested in studying EM perturbations on top of a Schwarzschild background. In general,

the topic of using BH perturbation theory to study the motion of point particles around Schawrzschild

BHs is immensely vast; here we mention some of the more noteworthy examples like the benchmark
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works dating back to the 1970s by Marc Davis, Remo Ruffini, and collaborators [9, 77, 86], as well as a

complete series by Poisson and collaborators [80–82]. In recent years, similar methods have been used,

for example, to study exotic compact objects [83]. For our analysis, we will follow mainly Refs. [81–83].

To use the Teukolsky equation (Eq. (4.18)) we must first decompose the EM field into its projections

in the null tetrad of (4.3), namely three complex scalars with well-defined spin weight s:

(s = 1) φ0 = Fµν l
µmν ,

(s = 0) φ1 =
1

2
Fµν (l

µnν +mµmν) , (4.30)

(s = −1) φ2 = Fµνm
µnν .

We can use the Teukolsky equation to find both φ0 and φ2, but it turns out we only have to solve for φ2,

since, as we will see, this quantity gives us all the information we need regarding the energy carried away

in the radiation field. With that in mind, the equation we have to solve is Eq.(4.18), with the substitutions

ψ = r2φ2 , s = −1 , and T = r2J2 , (4.31)

where J2 is given in Eq. (3.8) of Ref. [68]:

J2 =

󰀕
nα∂α − 3f

2r

󰀖
Jm −mα∂αJn , (4.32)

with Jm = mαJα, Jn = nαJα. Based on the results of Appendix E, we start by defining solutions to

the homogeneous equation (4.20) for s = −1. We define the solutions RH and R∞ using the results

in Eqs. (4.27) and (4.29), with their asymptotic behavior corresponding to purely ingoing waves at the

horizon and purely outgoing waves at infinity, respectively 1.

RH
ωℓm → Ain

r
e−iωr󰂏 +Aout r eiωr󰂏 , R∞

ωℓm → r eiωr󰂏 (r → ∞) , (4.33)

RH
ωℓm → (r2f) e−iωr󰂏 , R∞

ωℓm → Bin(r
2f)e−iωr󰂏 +Boute

iωr󰂏 (r → 2M) . (4.34)

Looking at the source again, we may expand the scalars we constructed from Jµ (Eq. (4.32)) in their

Fourier-harmonic components, as we did for ψ in Eq. (4.19), that is:

Jn =

󰁝 ∞

−∞
dω

∞󰁛

ℓ,m

nJωℓmYℓm(θ,φ)e−iωt , (4.35)

Jm =

󰁝 ∞

−∞
dω

∞󰁛

ℓ,m

mJωℓm −1Yℓm(θ,φ)e−iωt , (4.36)

1We should include factors of M in these solutions to ensure that R has units of L2 and that the coefficients are all dimension-
less. This was not done because the final result is always a dimensionless energy flux, so the factors of M all cancel out.
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after which we may re-write Eq. (4.32) as

J2 =
1

2

󰀕
∂t − f∂r −

3f

r

󰀖
Jm +

1√
2r

ðJn (4.37)

=

󰁝 ∞

−∞
dω

∞󰁛

ℓ,m

󰀥
− 1

2

󰀕
iω + f

d

dr
+

3f

r

󰀖
mJωℓm −

󰁳
ℓ(ℓ+ 1)√

2r
nJωℓm

󰀦

−1Yℓm(θ,φ)e−iωt .

Thus, replacing this result in (4.31) and then plugging that into (4.18), along with (4.19), and performing

the inverse Fourier transform together with the projection into a particular harmonic (using the orthog-

onality of spin weighted spherical harmonics [114]), we get the Teukolsky equation for the Fourier-

harmonic components of ψ = r2φ2:

󰀥
r2f

d2

dr2
− V−1(r)

󰀦
Rωℓm = 4πr4

󰀥
1

2

󰀕
iω + f

d

dr
+

3f

r

󰀖
mJωℓm +

󰁳
ℓ(ℓ+ 1)√

2r
nJωℓm

󰀦
. (4.38)

4.3 Energy radiated by a charged particle in a circular orbit

We now must make a statement about the 4-current, Jµ, which for a single particle of charge q takes the

form

Jµ(x) = q

󰁝
dτ uµ(τ)δ

(4)(x− z(τ)) , (4.39)

where z(τ) is the particle’s trajectory, τ is the proper time and uµ = dzµ/dτ is the 4-velocity. In the

particular case of a circular orbit of radius r0 with orbital angular velocity Ω0 = dφ/dt in the equatorial

plane, we get, using Schwarzschild {t, r, θ,φ} coordinates,

z(τ) = (utτ , r0 , π/2 , u
tΩ0τ) and uµ = ut (1, 0, 0,Ω0) , (4.40)

ut =
E0

mf(r0)
=

󰀕
1− 2M

r0
− (v0)

2

󰀖− 1
2

, (4.41)

with E0, m, and v0 being, respectively, the energy, mass, and 3-velocity of the particle (see Eqs. (2.56)

and (2.11)). In the particular case of the charged particle moving in an asymptotically uniform magnetic

field, Ω0 is given in Eq. (2.65).

Putting everything together and using the delta function in time to get rid of the integral in (4.39)

yields

Jµ(x) = q
uµ

ut

δ(r − r0)

r2
δ(cos θ)

sin θ
δ(φ− Ω0t) . (4.42)

To find the Fourier-harmonic components of Jn and Jm (see Eqs. (4.35) and (4.36)), we must replace the

4-velocity in the expression above, contract that with the corresponding tetrad vector, nµ or mµ, perform

the inverse Fourier transform and finally project onto the spin weighted spherical harmonic basis, yielding

nJωℓm = −q

2
f(r0) Y ℓm(π/2, 0)

δ(r − r0)

r2
δ(ω −mΩ0) , (4.43)

mJωℓm = −i
q√
2
v0 −1Y ℓm(π/2, 0)

δ(r − r0)

r2
δ(ω −mΩ0) . (4.44)
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Now that the sources are completely determined we can obtain a solution to Eq. (4.38) using the

result of Appendix E. Using the previously defined solutions to the homogeneous equation (Eqs. (4.33)

and (4.34)) to impose physical boundary conditions at infinity and at the horizon, the final result for the

Fourier-harmonic components of ψ = r2φ2 (see Eq. (4.19)) is

Rωℓm(r) =
1

W

󰀣
R∞

ωℓm(r)

󰁝 r

r+

T (r′)RH
ωℓm(r′)

r′2f(r′)
dr′ +RH

ωℓm(r)

󰁝 ∞

r

T (r′)R∞
ωℓm(r′)

r′2f(r′)
dr′

󰀤
, (4.45)

where

W = R∞
ωℓm

dRH
ωℓm

dr
−RH

ωℓm

dR∞
ωℓm

dr
= −2iωAin (4.46)

and

T = −4πr4

󰀥
1

2

󰀕
iω + f

d

dr
+

3f

r

󰀖
mJωℓm +

󰁳
ℓ(ℓ+ 1)√

2r
nJωℓm

󰀦
. (4.47)

Since the sources (Eqs. (4.43) and (4.44)) are proportional to δ(r − r0), the integrals in Eq. (4.45) are

easy to solve.

4.3.1 Radiated energy flux at infinity

Having found a solution to Teukolsky’s equation in Eq. (4.45), we now have to finally come around to

understand how that translates to energy flux. We start by looking at the power lost to radiation which

goes away to infinity. To do that, we have to look at the energy-momentum tensor of the EM field, which

is written in a particularly useful form in Ref. [68]:

4πTµν =
󰁫
|φ0|2 nµnν + |φ2|2 lµlν + 2 |φ1|2

󰀃
l(µnν) +m(µmν)

󰀄

− 4φ0φ1n(µmν) − 4φ1φ2l(µmν) + 2φ2φ0mµmν

󰁬
+ c.c. ,

(4.48)

where c.c. stands for complex conjugate. To look at the energy current at infinity we must contract

this tensor with the timelike Killing vector field of the spacetime, which defines a conserved current,

corresponding to energy as seen by observers at infinity. In Schwarzschild coordinates, the timelike

Killing vector field is Xµ = δµt , so the conserved current is just Tµ
t. Thus, the energy flux at infinity can

be defined as the flux of Tµ
t across a sphere of radius r in the limit where r → ∞. Doing so and taking

into account the asymptotic form of the solutions of Teukolsky’s equation (Eq. (4.27)) yields the result

below [68, 71]:
d2E

dt dΩ

󰀏󰀏󰀏󰀏󰀏
∞

= lim
r→∞

−r2T r
t = lim

r→∞

r2

2π
|φ2|2 , (4.49)

which shows that φ2 carries all the information concerning outgoing radiation at infinity. Furthermore, we

only need to find the Fourier-harmonic components of the field at infinity which, following Eqs. (4.45),
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(4.46) and (4.47), yield

Rωℓm(r → ∞) = i
πq√
2ωAin

󰀥
RH

ωℓm(r0)

f0

󰀣󰀕
iω +

3f0
r0

󰀖
iv0 −1Y ℓm(π/2, 0) +

󰁳
ℓ(ℓ+ 1)

r0
f0 0Y ℓm(π/2, 0)

󰀤

− iv0
d

dr

󰀃
RH

ωℓm

󰀄
r=r0

−1Y ℓm(π/2, 0)

󰀦
reiωr󰂏δ(ω −mΩ0) , (4.50)

where f0 ≡ f(r0). If we replace this result in the expansion of φ2 (Eq. (4.19) with ψ = r2φ2) we find

φ2(r → ∞) =
1

r

󰁛

ℓ,m

−1Yℓm(θ,φ)Z∞
ℓme−imΩ0(t−r󰂏) , (4.51)

where Z∞
ℓm is just the part of (4.50) that does not depend on r and with ω replaced by mΩ0:

Z∞
ℓm = i

πq√
2mΩ0Ain

󰀥
RH

mΩ0ℓm
(r0)

f0

󰀣󰀕
imΩ0 +

3f0
r0

󰀖
iv0 −1Y ℓm(π/2, 0) +

󰁳
ℓ(ℓ+ 1)

r0
f0 0Y ℓm(π/2, 0)

󰀤

− iv0
d

dr

󰀃
RH

mΩ0ℓm

󰀄
r=r0

−1Y ℓm(π/2, 0)

󰀦
. (4.52)

Finally, replacing this in (4.49), integrating over the sphere and using the orthogonality of sYℓm yields the

energy radiated away to infinity in EM waves:

Ė∞ ≡ dE

dt

󰀏󰀏󰀏󰀏󰀏
∞

=
1

2π

󰁛

ℓ,m

|Z∞
ℓm|2 . (4.53)

4.3.2 Radiated energy flux on the horizon

If we were studying radiation reaction in flat space we would now be done, as the energy that is radiated

away would all have to eventually end up at infinity. However, since we are studying this phenomenon in

a BH spacetime, we must also consider the energy absorbed by the BH.

The analog of (4.49) for the flux that crosses the horizon is a lot more complicated to find, as the

timelike Killing vector of the spacetime becomes null there. The general problem was solved by Hawking

and Hartle [115], but here we will give a simpler argument: consider the flux of Tµ
t across a sphere of

radius r and naively take the limit where r → 2M :

d2E

dt dΩ

󰀏󰀏󰀏󰀏󰀏
H

= lim
r→2M

1

2π
r2

󰀗
|φ2|2 −

f2

4
|φ0|2

󰀘
= − lim

r→2M

1

2π

1

16M2

󰀏󰀏(r2f)φ0

󰀏󰀏2 , (4.54)

where we use the asymptotic behavior of the solutions of the Teukolsky equation as presented in

Eq. (4.29) and the minus sign simply indicates that the energy is flowing inwards. Note how the (r2f)

factor exactly cancels out the divergence in the φ0 mode at the horizon (Eq. (4.29)). This recovers the

result obtained by Teukolsky and Press in Ref. [71].

Still on the topic of Eq. (4.54), it is clear that the relevant Newman-Penrose component of the EM field

for ingoing radiation at the horizon is φ0, which would naively be expected given it is also the quantity that

governs ingoing radiation at infinity. This is unfortunate, as we have only solved Teukolsky’s equation for
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φ2. Luckily, we can look back at the coupled Maxwell equations (2.38) to find φ0 once φ2 is found using

Teukolsky’s equation. This is precisely what Teukolsky and Press did in Ref. [71], and in the same article

they go on to use this to rewrite Eq. (4.54) in terms of φ2, obtaining

d2E

dt dΩ

󰀏󰀏󰀏󰀏󰀏
horizon

= lim
r→2M

32ω2M6(16ω2 + 1/M2)

π [ℓ(ℓ+ 1)]
2

󰀏󰀏󰀏󰀏
φ2

f

󰀏󰀏󰀏󰀏
2

, (4.55)

where again, the r2f factor compensates for the fact that φ2 goes to zero at the horizon (Eq. (4.29)).

Once this is done, the situation is now very similar to the one we had for the flux at infinity. Again we

only need to solve for the radial functions at the horizon Rωℓm(r → 2M). Thus from Eqs. (4.45), (4.46)

and (4.47) we get

Rωℓm(r → 2M) = i
πq√
2ωAin

󰀥
R∞

ωℓm(r0)

f0

󰀣󰀕
iω +

3f0
r0

󰀖
iv0 −1Y ℓm(π/2, 0) +

󰁳
ℓ(ℓ+ 1)

r0
f0 0Y ℓm(π/2, 0)

󰀤

− iv0
d

dr

󰀃
R∞

ωℓm

󰀄
r=r0

−1Y ℓm(π/2, 0)

󰀦
r2fe−iωr󰂏δ(ω −mΩ0) , (4.56)

which is the same as (4.50), except that the solution to the homogeneous Teukolsky equation that must

be found is now R∞
ωℓm. If we replace this result in the Fourier expansion of ψ = r2φ2 (Eq. (4.19)) and

perform the integral over ω we find

φ2(r → 2M) = f
󰁛

ℓ,m

−1Yℓm(θ,φ)ZH
ℓme−imΩ0(t+r󰂏) , (4.57)

where ZH
ℓm is just the part of (4.56) that does not depend on r with ω replaced by mΩ0:

ZH
ℓm = i

πq√
2mΩ0Ain

󰀥
R∞

mΩ0ℓm
(r0)

f0

󰀣󰀕
imΩ0 +

3f0
r0

󰀖
iv0 −1Y ℓm(π/2, 0) +

󰁳
ℓ(ℓ+ 1)

r0
f0 0Y ℓm(π/2, 0)

󰀤

− iv0
d

dr

󰀃
R∞

mΩ0ℓm

󰀄
r=r0 −1Y ℓm(π/2, 0)

󰀦
. (4.58)

Finally, replacing this in (4.55), integrating over the sphere and using the orthogonality of sYℓm yields the

energy absorbed by the BH in EM waves:

ĖH ≡ dE

dt

󰀏󰀏󰀏󰀏󰀏
H

=
󰁛

ℓ,m

32 (mΩ0)
2M6(16(mΩ0)

2 + 1/M2)

π [ℓ(ℓ+ 1)]
2

󰀏󰀏ZH
ℓm

󰀏󰀏2 . (4.59)
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Chapter 5

Analytical results - low frequency limit

We have established that if a particle is in a circular orbit with radius r0 and orbital frequency Ω0 around

a Schwarzschild BH, the energy it loses through radiation either to infinity or into the BH can be found

from Eqs. (4.52), (4.53), (4.58) and (4.59). Although these seem very complicated at first glance, the

problem boils down to solving for three quantities :

• RH
mΩ0ℓm

(r0): the solution of the homogeneous Teukolsky equation (Eq. (4.20)), with boundary

conditions corresponding to purely ingoing waves at the horizon (see Eqs. (4.33) and (4.34)),

evaluated at the orbital radius r0;

• R∞
mΩ0ℓm

(r0): the solution of the homogeneous Teukolsky equation (Eq. (4.20)), with boundary con-

ditions corresponding to purely outgoing waves at infinity (see Eqs. (4.33) and (4.34)), evaluated

at the orbital radius r0;

• Ain: the coefficient for the ingoing mode at infinity for the solution RH
mΩ0ℓm

(r) (see Eq. (4.33)).

Finding all these quantities reduces to solving the homogeneous Teukolsky equation with physical

boundary conditions. This is, in general, a very difficult endeavor, but if we take the small frequency limit,

Mω ≪ 1, and focus on slow orbits, v0 = r0Ω0 ≪ 1, this can indeed be done; a detailed discussion of that

calculation is presented in Appendix F. All of this means we can get analytical expressions for the energy

flux at infinity and on the horizon for slow orbits in terms of (ℓ,m) modes, where Mω = MmΩ0 ≪ 1.

From here on we set M = 1 in all the results we show, for simplicity. The analytical formulas presented

here will be compared with numerical results in Ch. 6.

5.1 Energy flux at infinity

We start by commenting on the energy flux at infinity of the dipole mode ℓ = 1, m = ±1, obtained from

Eqs. (4.52) and (4.53), which yields a generalized Larmor formula (GLF):

Ė∞
11 = 2

1

2π
|Z∞

11 |
2 ≈ 2

3
q2(r0 − 2)2Ω4

0 , (5.1)
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where in the first equality we use the fact that the m = −1 mode contributes the same as the m = 1

mode (the general transformation formula for m → −m is given after Eq. (B12) of Ref. [83]). We will use

this from here on, always treating modes with symmetric values of m together, and denoting by Ė∞
ℓm the

sum of the energy flux at infinity for the pair of modes (ℓ,±m); the only potential problem with that would

be in the m = 0 mode, which is not excited by the system.

We call Eq. (5.1) a generalized Larmor formula because if we look at slow orbits with r0 ≫ 2, i.e.

the Newtonian limit, we recover the Larmor power formula (2.22). The only difference between the

expression for general slow orbits and Newtonian limit orbits is in taking r0 → r0 − 2. This means that

when the orbits approach the horizon, which can happen for stable orbits in the PC (see Fig. 2.2), the

dipole mode radiation that goes away to infinity goes to zero.

It is well known that for Newtonian limit orbits the radiation is dominated by the dipole mode, but it

could be that in the strong gravity regime, the curvature of spacetime causes higher multipole terms to

be excited, even if the orbits are slow. In those cases, the GLF (Eq. (5.1)) would not be useful by itself as

the energy radiated in other modes would have to be included. To check whether such a regime exists

we must start by finding a general expression for the energy radiated to infinity in any given mode (ℓ, m).

The energy radiated for modes with even and odd values of ℓ+m must be calculated separately. This

is because in Eq. (4.52) the dominant term would usually be the one proportional to 0Ȳℓm(π/2, 0), as the

term in −1Ȳℓm(π/2, 0) is of higher order in v0. However, 0Ȳℓm(π/2, 0) is identically zero for odd values of

ℓ +m, so the energy radiated in those modes is suppressed by a factor (v0)2. With that in mind, using

analytic expressions for the spherical harmonics read off from a similar analysis done by Poisson and

Sasaki in Ref. [82], we have

Ė∞
ℓm =24l−3q2(r0 − 2)2(mΩ0)

2(ℓ+1) (ℓ+ 1) (2ℓ+ 1)Γ(l)2 Γ(ℓ+ 1)2 Γ(ℓ+ 2)2 (ℓ−m)! (ℓ+m)!

ℓΓ(2ℓ)2 Γ(2ℓ+ 2)2 ((ℓ−m)!!)2 ((ℓ+m)!!)2
(5.2)

× 2F1

󰀓
1− ℓ, ℓ+ 2; 2; 1− r0

2

󰀔
2

for even values of ℓ+m, and

Ė∞
ℓm =24ℓ−7q2(v0)

2(mΩ0)
2(ℓ+1) (2ℓ+ 1)Γ(ℓ)2 Γ(ℓ+ 1)2 Γ(ℓ+ 2)2 ((ℓ−m)!!)2 ((ℓ+m)!!)2

ℓ3 (ℓ+ 1)Γ(2ℓ)2 Γ(2ℓ+ 2)2 (ℓ−m)! (ℓ+m)!
(5.3)

×
󰀓󰀃

ℓ2 + ℓ− 2
󰀄
r0(r0 − 2) 2F1

󰀓
2− ℓ, ℓ+ 3; 3; 1− r0

2

󰀔
− 4(r0 − 4) 2F1

󰀓
1− ℓ, ℓ+ 2; 2; 1− r0

2

󰀔󰀔
2

for odd values of ℓ+m.

Going back to the question of whether or not higher multipoles are important, we must compare

the energies radiated for two different modes (ℓ,m) and (ℓ′,m′). To simplify the analysis, we start by

answering the following question: given a value of ℓ, what is the dominant m mode? Naively, one

would think odd modes can be discarded right away, but the non-trivial dependence in r0 calls for further

inspection. Thus, we choose to compare (ℓ,m) and (ℓ,m − 2), separating the even and odd values of

41



ℓ+m; after some careful manipulation we obtain the following bounds for the ratios:

Ė∞
ℓm−2

Ė∞
ℓm

=

󰀕
m− 2

m

󰀖2ℓ+2 󰀕
1− 2m− 2

(ℓ−m+ 2)(ℓ+m− 1)

󰀖
<

󰀕
ℓ− 2

ℓ

󰀖2ℓ+2

<
1

e4
≈ 1.8× 10−2 , (5.4)

Ė∞
ℓm−2

Ė∞
ℓm

=

󰀕
m− 2

m

󰀖2ℓ+2 󰀕
1 +

2m− 2

(ℓ−m+ 1)(ℓ+m)

󰀖
<

󰀕
ℓ− 3

ℓ− 1

󰀖2ℓ+2 󰀕
3

2

󰀖
<

3

2e4
≈ 2.7× 10−2 , (5.5)

where e is Euler’s number. This establishes that the modes with m = ℓ and m = ℓ− 1 are the strongest

ones for the even and odd cases, respectively, with smaller m modes becoming exponentially less

important. To reinforce this point, we look at the first few ℓ modes in Table 5.1; the results therein agree

with the bounds above, and show that the suppression can be even stronger.

m ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6 ℓ = 7
ℓ 10−4 10−3 10−3 10−3 10−3

ℓ− 1 0 10−5 10−3 10−3 10−3

ℓ− 2 - 0 10−6 10−3 10−4

ℓ− 3 - - 0 10−7 10−5

ℓ− 4 - - - 0 10−8

ℓ− 5 - - - - 0

Table 5.1: Order of magnitude of the ratio of EM energy flux at infinity for different
modes, Ė∞

ℓm−2/Ė
∞
ℓm, corresponding to different values of ℓ and m, as emitted by a

charged particle in a circular orbit around a Schwarzschild BH. These values are
obtained analytically for slow orbits, v0 ≪ 1, in the low-frequency limit, Mω ≪ 1,
and they do not depend on the orbital radius nor the orbital frequency. We use
different expressions for modes with even and odd values of ℓ+m.

Given the above, we just have to compare the modes m = ℓ and m = ℓ − 1. We do it by defining a

quantity αℓ below (explicit expression in Eq. (G.1)), corresponding to the ratio of the modes normalized

to (v0)
2:

αℓ(r0) ≡
1

(v0)2
Ė∞

ℓ ℓ−1

Ė∞
ℓ ℓ

. (5.6)

We plot αℓ for the few ℓ modes in Fig. 5.1 and conclude that for r0 > 2.1 we have αℓ < 1, so, if the orbits

are slow, we can say with confidence that the mode m = ℓ dominates and carries almost all the energy

radiated to infinity for that value of ℓ; closer to the BH, the mode with m = ℓ − 1 eventually becomes

dominant and has to be included. The divergence at r0 → 2 in Fig. 5.1 is just a result of Ė∞
ℓ ℓ → 0 in that

limit, while Ė∞
ℓ ℓ−1 approaches a finite value.

All of this implies that, if we restrict ourselves to r0 > 2.1, we can use the mode with m = ℓ as a

benchmark to see if the higher ℓ modes are important or not. Thus, we will now look at the comparison

between a mode (ℓ, ℓ) and a mode (ℓ + 1, ℓ + 1). By renormalizing the ratio to the square of the orbital

velocity v0, we obtain the quantity ζℓ(r0), given by (explicit expression in Eq. (G.2)):

ζℓ(r0) ≡
1

(v0)2
Ė∞

ℓ+1 ℓ+1

Ė∞
ℓℓ

. (5.7)

We find that ζℓ is of the order of unity for ℓ = 1, 2, 3, 4, 5 (Fig. 5.2), which means that, since the orbits are
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Figure 5.1: αℓ v
2
0 = Ė∞

ℓ ℓ−1/Ė
∞
ℓ ℓ – ratio of EM energy fluxes at infinity, as seen by

stationary observers at infinity, for different modes, normalized to the square of the
orbital velocity; the radiation is emitted by a charged particle in a circular orbit of
radius r0 around a Schwarzschild BH. These results are obtained analytically in the
slow motion and low-frequency regime. The black, blue, red, green, and orange
curves represent the cases ℓ = 2, 3, 4, 5, 6 respectively.

Figure 5.2: ζℓ v
2
0 = Ė∞

ℓ+1 ℓ+1/Ė
∞
ℓℓ – ratio of EM energy fluxes at infinity for different

modes as a function of the orbital radius r0. The black, blue, red, green, and orange
curves represent the cases ℓ = 2, 3, 4, 5, 6 respectively.

slow, v0 ≪ 1, the dipole term is dominant and enough to capture the energy flux at infinity. Looking at

Fig 5.2, we also see that ζℓ appears to be approaching a constant for r0 → ∞; indeed, we have

lim
r0→∞

ζℓ(r0) =

󰀕
ℓ

ℓ+ 1

󰀖−2ℓ−1
(ℓ+ 2)

2(2ℓ+ 3)
. (5.8)

This is an interesting result, as it shows us that, for r0 → ∞, the higher multipoles are all suppressed by

a factor (v0)2. This suppression is much more general as if we compare an arbitrary (ℓ,m) mode with

the dipole we find

Ė∞
ℓm ∼

󰀗
3 4lm2ℓ+2 l (ℓ+ 1) (2ℓ+ 1)Γ(l)2 Γ(ℓ−m+ 1)Γ(ℓ+m+ 1)

((ℓ−m)!!)2 ((ℓ+m)!!)2 Γ(2ℓ+ 2)2
(v0)

2ℓ−2

󰀘
Ė∞

11 (r0 → ∞) (5.9)
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for even values of ℓ+m, and

Ė∞
ℓm ∼

󰀗
3 4ℓ+1m2ℓ+2 (l − 2)2(ℓ+ 1)(2ℓ+ 1)Γ(l)2((ℓ−m)!!)2((ℓ+m)!!)2

ℓΓ(2ℓ+ 3)2 Γ(ℓ−m+ 1)Γ(ℓ+m+ 1)
(v0)

2ℓ

󰀘
Ė∞

11 (r0 → ∞)

(5.10)

for odd values of ℓ+m. This result establishes the dominance of the dipole term for large orbital radius

while also recovering the scaling with v0 obtained by Poisson and Sasaki [82] for gravitational radiation.

From the results in this section, we conclude that, within the domain of validity of the slow motion and

low frequency approximation, the dipole term dominates the energy flux at infinity, even in the strong

field regime, up to about r0 ≈ 2.1. Beyond that value, modes with odd ℓ+m must be included to get an

accurate estimate of the energy flux at infinity.

5.2 Energy flux on the horizon

We now turn to the energy flux on the BH horizon. Again, we start by looking at the dipole mode by

substituting ℓ = 1, m = ±1 in Eqs. (4.58) and (4.59), yielding

ĖH
11 = 3q2Ω2

0

󰀓
−2r0 + (r0 − 2)r0 log

󰀓
r0

r0−2

󰀔
+ 2

󰀔2

2r20
. (5.11)

Note that now, in opposition to what we saw for the flux at infinity in Eq. (5.1), the flux on the horizon

goes to a finite value when r0 → 2.

For a generic (ℓ, m), the energy radiated into the BH is given by

ĖH
ℓm =22ℓ+3q2(r0 − 2)−2(ℓ+1)(mΩ0)

4 (2ℓ+ 1)Γ(ℓ+ 1)2 Γ(ℓ+ 2)2 (ℓ−m)! (ℓ+m)!

ℓ (ℓ+ 1)Γ(2ℓ+ 2)2 ((ℓ−m)!!)2 ((ℓ+m)!!)2
(5.12)

×2 F1

󰀕
ℓ+ 1, ℓ+ 2; 2(ℓ+ 1);− 2

r0 − 2

󰀖
2

for even values of ℓ+m, and

ĖH
ℓm =22ℓ+3q2(r0 − 2)−2(ℓ+3)(mΩ0)

4(v0)
2 (2ℓ+ 1)Γ(ℓ+ 1)2Γ(ℓ+ 2)2((ℓ−m)!!)2((ℓ+m)!!)2

ℓ3(ℓ+ 1)3Γ(2ℓ+ 2)2(ℓ−m)!(ℓ+m)!
(5.13)

×
󰀕
(r0 − 2)((ℓ+ 3)r0 − 4) 2F1

󰀕
ℓ+ 1, ℓ+ 2; 2(ℓ+ 1);− 2

r0 − 2

󰀖

− (ℓ+ 2)r0 2F1

󰀕
ℓ+ 2, ℓ+ 3; 2ℓ+ 3;− 2

r0 − 2

󰀖󰀖
2

for odd values of ℓ + m. We will now use these expressions to try and ultimately understand if we can

accurately describe radiation reaction using only a finite number of modes. We start by looking at the

following question: given a value of ℓ, what is the dominant m mode? To answer that, we again choose

to compare (ℓ,m) and (ℓ,m− 2), separating the modes with even and odd values of ℓ+m, yielding

ĖH
ℓm−2

ĖH
ℓm

=

󰀕
m− 2

m

󰀖2 󰀕
1− 2m− 2

(ℓ−m+ 2)(ℓ+m− 1)

󰀖󰀕
ℓ− 2

ℓ

󰀖2

< 1 (5.14)
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for even values of ℓ+m, and

ĖH
ℓm−2

ĖH
ℓm

=

󰀕
m− 2

m

󰀖2 󰀕
1 +

2m− 2

(ℓ−m+ 1)(ℓ+m)

󰀖󰀕
ℓ− 3

ℓ− 1

󰀖2 󰀕
3

2

󰀖
<

3

2
(5.15)

for odd values of ℓ +m. These bounds establish that the mode with m = ℓ is the strongest one for the

even case; on the contrary, the mode with m = ℓ − 1 is not necessarily the strongest of all modes with

odd m+ l. We investigated this further by looking at the first few ℓ modes in Table 5.2; the results therein

agree with the bounds obtained above, and show that indeed, for odd ℓ + m, it is difficult to establish

which mode is dominant.

m ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6 ℓ = 7
ℓ 10−1 10−1 10−1 10−1 10−1

ℓ− 1 0 10−1 1 1 1
ℓ− 2 - 0 10−1 10−1 10−1

ℓ− 3 - - 0 10−1 10−1

ℓ− 4 - - - 0 10−1

ℓ− 5 - - - - 0

Table 5.2: Order of magnitude of the ratio of EM energy flux on the horizon in
different modes, ĖH

ℓm−2/Ė
H
ℓm, for different values of ℓ and m. These values are

obtained analytically for slow orbits in the low-frequency limit.

With this in mind, we still choose to compare the modes m = ℓ and m = ℓ − 1, as Eq. (5.15) shows

that, even if the latter is not dominant, it is of the same order of magnitude as the dominant mode with

odd ℓ+m. The comparison is done through the ratio βℓ (explicit expression in Eq. (G.3)):

βℓ(r0) ≡
1

(v0)2
ĖH

ℓ ℓ−1

ĖH
ℓℓ

. (5.16)

We plot βℓ for the first few ℓ modes in Fig. 5.3 and conclude that for r0 > 2.1 we have βℓ < 5, which

is a lot less convincing than what we got for the ratio to infinity in Fig 5.1; still, it allows us to say with

confidence that for slow orbits the mode m = ℓ dominates and carries almost all the energy radiated to

the BH for that value of ℓ; closer to the BH, the mode with m = ℓ− 1 eventually becomes dominant and

has to be included, most likely together with other modes with odd values of ℓ + m, as was hinted by

Eq. (5.15). The divergence at r0 → 2 in Fig. 5.3 is a result of an actual divergence in ĖH
ℓ ℓ−1 as r0 → 2,

while ĖH
ℓℓ approaches a finite value. For r0 > 2.5, we checked βℓ decreases monotonically to a constant

value smaller than 1 but different for each value of ℓ.

The takeaway of the previous analysis is that we can (and will) still use m = ℓ as the dominant term

for each value of ℓ, keeping in mind that we restrict ourselves to r0 > 2.1. Thus, keeping to the goal

of understanding if a finite number of modes can be enough to describe the energy carried by radiation

going into the BH, we will compare a mode (ℓ, ℓ) with the neighboring (ℓ + 1, ℓ + 1); we call this ratio

ξℓ(r0), defining it below (explicit expression in (G.4)):

ξℓ(r0) ≡
ĖH

ℓ+1 ℓ+1

ĖH
ℓℓ

. (5.17)
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Figure 5.3: βℓ v
2
0 = ĖH

ℓ ℓ−1/Ė
H
ℓℓ – ratio of EM energy fluxes on the horizon for different

modes as a function of the orbital radius r0. The black, blue, red, green, and orange
curves represent the cases ℓ = 2, 3, 4, 5, 6 respectively.

Figure 5.4: ξℓ = ĖH
ℓ+1 ℓ+1/Ė

H
ℓℓ – ratio of EM energy fluxes on the horizon for different

modes as a function of the orbital radius r0. The black, blue, red, green, and orange
curves represent the cases ℓ = 2, 3, 4, 5, 6 respectively. Left panel – comparison
for smaller values of r0. Right panel – comparison for larger values of r0.

While in the case of the flux at infinity, there was a dependency of the ratio in Ω0, which made the

analysis way simpler, in this case, there is only a dependency on r0, which makes it so that when

r0 → ∞ infinity, the energy radiated in the dipole mode is indeed the dominant one. To understand what

happens in the strong gravity regime though, we plotted ξℓ for the first few modes and the results are

given in Fig. 5.4.

We found that for large enough r0, going well into the strong gravity regime, the higher multipoles

are suppressed exponentially and so the dipole is dominant. But for r0 < 2.1 we start to see the higher

multipoles becoming more important, to a point where they cannot be neglected; eventually, arbitrarily

close to the horizon, the modes with higher ℓ are even more important than those with lower ℓ.

This establishes that for r0 > 2.1 the first few modes with m = ℓ should be enough to capture the

radiation absorbed by the BH, provided, of course, the orbits are slow. On the contrary, very close to the

BH (r0 < 2.1), even if the orbits are slow, to obtain the total energy flux on the horizon we must include

more and more modes, eventually leading to ω = mΩ0 ∼ 1, thus breaking our approximation.
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Figure 5.5: Σℓ = ĖH
ℓℓ/Ė

∞
ℓℓ – ratio of EM energy fluxes on the horizon and at infinity

for different modes as a function of the orbital radius r0. The black, blue, red, green,
and orange curves represent the cases ℓ = 2, 3, 4, 5, 6 respectively.

5.3 Comparing energy flux on the horizon and at infinity

Next, it is important to compare the energy flux on the horizon and at infinity. Using Eqs. (5.1) and (5.12)

we choose to study the ratio Σℓ (explicit expression in Eq. (G.5)):

Σℓ(r0) ≡ (v0)
2 Ė

H
ℓℓ

Ė∞
11

. (5.18)

This choice is motivated by the previous result that the dipole mode dominates the energy flux at infinity

in the region r0 > 2.1. We plotted Σℓ for the first few modes in Fig. 5.5. Because of the normalization

of Σℓ, it is difficult to make any definite remarks as for very small v0, we can always get Σℓ ≳ 1; we can

only state with confidence that the energy flux on the horizon should always be investigated, especially

in the r0 < 10 region. Very close to the horizon, BH absorption is the dominant effect, as one would

naively expect.

To complete this analysis, we investigate the ratio between the energy flux on the horizon for a mode

(ℓ,m) and the energy radiated to infinity in the same mode for orbits with r0 ≫ 1:

ĖH
ℓm ∼ 4 r−4l−2

0 (mΩ0)
−2ℓ (lΓ(l))

2
Ė∞

ℓm (r0 → ∞) (5.19)

for even values of l +m, and

ĖH
ℓm ∼ 4 r−4l−2

0 (mΩ0)
−2ℓ

󰀕
ℓ (ℓ+ 3)Γ(l)

(l − 2)

󰀖2

Ė∞
ℓm (r0 → ∞) (5.20)

for odd values of l+m. Together with Eqs. (5.9) and (5.10), these establish that, in the limit r0 → ∞, the

energy lost to radiation in the dipole mode is the dominant one, be it to infinity or the BH. Furthermore, if

we take Keplerian orbits, Ω0 = r
−3/2
0 , these results recover the scaling with v0 obtained by Poisson and

Sasaki in Ref. [82] for gravitational radiation.

Having established that for orbits with r0 ≫ 1 the dipole mode dominates both the energy flux on the

horizon and at infinity, we can now look at the ratio of the two using Eq. (5.19). In particular, we can

47



look at what happens when the particle is in free fall (ωc = 0) so that the angular frequency is that of

Keplerian orbits (see Sec. 2.2.1):

ĖH
11

Ė∞
11

∼ 4

r60Ω
2
0

Ω0=ωK−−−−−−→ 4

r30
(r0 → ∞) . (5.21)

It is clear that for this type of orbit, the flux at infinity greatly dominates the flux on the horizon. For

gravitational radiation, the dominant mode has ℓ = 2, so the scaling law for the ratio of energy absorbed

by the BH and going to infinity in the quadrupole mode is faster, ∝ r−4
0 , as shown below.

More interestingly, Eq. (5.21) tells us that if the angular frequency decays faster than 1/r30 then the

flux on the horizon can be the dominant effect; this was pointed out by Gal’tsov in 1982 [87]. The

bordering case Ω0 ∝ r−3
0 is precisely what we got for charged particles in PC orbits in the presence of

an asymptotically uniform magnetic field in the region r0 ≫ rc (see Eqs. (2.67), (2.68) and (2.70)). This

means that for PC orbits in a region where r0 ≫ max(rc , 1), the ratio of the energy fluxes on the horizon

and at infinity in the dipole mode does not decay with the radius, and instead goes to a constant:

ĖH
11

Ė∞
11

∼ 4

r60Ω
2
0

Ω0=ω2
K/ωc−−−−−−−−→ 4ω2

c (r0 → ∞) . (5.22)

The validity of this relies on the orbits being slow-moving and the radiation having a small frequency, both

of which hold here (see studies of PC orbits in Sec. 2.2.2). For modes with higher (ℓ,m), Eqs. (5.19)

and (5.20) show that the flux on the horizon always becomes dominant for very wide orbits, although still

subdominant when compared to Ė∞
11 .

This concludes the analytical results concerning EM radiation, where we found that, provided the

orbits are slow: in the region r0 > 2.1 it is possible to estimate the total rate of energy loss; this is done

through the calculation of the energy lost both to infinity and through BH absorption, for a finite number

of (ℓ,m) modes; for very wide orbits the dipole mode is dominant, but closer to the BH other modes with

ℓ = m may become relevant as well. Outside this region, infinitely many terms may have to be included,

and our approximation breaks for some of them, so we can make no statements.

5.4 Scalar and gravitational radiation

As we said in the beginning of this chapter, the main task in finding the energy flux formulas for the

EM case was solving the homogeneous Teukolsky equation with physical boundary conditions. In Ap-

pendix F we did that not only for s = −1 (corresponding to the EM perturbations we studied) but for

arbitrary s. As it turns out, solving the homogeneous Teukoslky equation is always the most difficult

task in obtaining the energy flux formulas, independently of the value of s; this means that the methods

developed in Appendix F also took care of the hardest step in obtaining the energy fluxes in the scalar

(s = 0) and gravitational (s = −2) cases, in the low frequency and slow motion limit. Because of this, we

go over these cases briefly.
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5.4.1 The scalar case

First, consider a scalar field Φ minimally coupled to gravity and to matter which is being excited by the

motion of a point-particle of mass m0 around a BH; the corresponding action can be writtne as [83]

S =

󰁝
d4x

√
−g

󰀕
R

16π
− gµν∂µΦ∂νΦ− 2γΦT

󰀖
, (5.23)

where γ is a coupling constant and T is the trace of the energy-momentum tensor of the particle. The

particle will be radiating scalar waves and we can proceed identically to what we did for EM radiation

in Secs. 4.2 and 4.3 to find the energy flux at infinity and on the horizon in scalar waves, that is the

equivalents of (4.52), (4.53), (4.58), and (4.59). The main differences are the value of s, the source

(which is now the trace of the energy-momentum tensor) and the flux formulas of Eqs. (4.49) and (4.55),

whose analog can be read off from Ref. [71].

In the end, we find expressions where the only unknowns are, once again, the quantities listed at the

beginning of this chapter: R∞(r0), RH(r0) and Ain. Thus we just have to replace s = 0 in the analytical

results of Appendix F and we are done. The result for the energy flux in scalar waves at infinity and at

the horizon in the dipole term ℓ = 1, m = ±1, emitted by a particle in a circular orbit is
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∞
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12π
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0 , (5.24)
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If we take the limit r0 → ∞, we find
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where the results after the arrow correspond to Keplerian orbits, Ω0 = r
−3/2
0 . What we got for the energy

flux to infinity in that limit is a standard result [83]. Regarding the flux into the BH, we find that the

ratio is the same as for EM waves (see Eq. (5.21)). Furthermore, we find that once again, if the orbital

velocity decays fast enough with r0, the energy flux on the horizon can become the dominant effect; in

the particular case of PC orbits, for sufficiently large orbital radius we have Ω0 ∼ r−3
0 (see Sec. 2.2.2),

meaning that the ratio goes to a constant.

5.4.2 The gravitational case

We can also use the results of Appendix F to study gravitational radiation. Again, we just need to find

the equivalents of Eqs. (4.52), (4.53), (4.58), and (4.59). To do so, in this case, we did not perform the

calculations ourselves but instead read off the relevant quantities from Refs. [71, 83]. Once we have

those, we just need to employ the analytical results of this section with s = −2 and any (ℓ , m) values we

49



wish. Looking at the dominant quadrupole term ℓ = 2, m = ±2 yields, for the energy flux in gravitational

waves at infinity and on the horizon, generated by a particle of mass m0 in a circular orbit of radius r0:
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∞
22 =

32m2
0(r0 − 2)2r0(r0(9r0 − 20) + 36)Ω6

0

45(r0 − 3)
(5.28)

−2Ė
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If we take the limit r0 → ∞, we find
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where the results after the arrow correspond to Keplerian orbits, Ω0 = r
−3/2
0 . What we got for the energy

flux to infinity in that limit is the standard quadrupole formula [81, 116]. Regarding the flux into the BH, we

find that the ratio for Keplerian orbits scales differently from what it does for EM waves (see Eq. (5.21)).

In this case, it decays more quickly as r0 increases; the r−4
0 scaling is also a standard result [82]. We

also see that the gravitational radiation absorbed by the BH can become dominant when compared to

the energy escaping to infinity in the quadruple mode if the orbital velocity decays quickly enough with

the orbital radius. In this case, the ratio of the two effects goes to a constant if Ω0 ∼ r
−5/2
0 ; if we consider

wide enough PC orbits with Ω0 ∼ r−3
0 (see Sec. 2.2.2), we find the energy absorbed by the BH actually

becomes more and more dominant the further the particle is from the BH.
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Chapter 6

Numerical results

We now aim to study the EM energy flux at infinity and on the horizon emitted by a charged particle in

a circular orbit around a Schwarschild BH surrounded by an asymptotically uniform magnetic field. We

do so by solving Eqs. (4.52), (4.53), (4.58) and (4.59) numerically rather then analytically. The great

advantage of the numerical solutions is that we don’t need to restrict to small wave frequency or slow

orbits anymore, and can study the energy radiated in any mode for any particular orbit, provided the

method converges. We never took into account the numerical error of the simulations, which of course

exists and could be very important; still, throughout the analysis, we assume the numerical results are

accurate.

The method used is described in Appendix H, where we also explain why all our results depend on

one parameter only: the cyclotron frequency ωc. Thus we will vary its value to test previous analytical

results and generally obtain a better understanding of the system under study. Based on the analytical

results obtained in the previous section, we always studied the same three modes: the dipole (ℓ = m =

1), quadrupole (ℓ = m = 2), and octupole (ℓ = m = 3). Note that we always include both positive and

negative m modes, which contribute equally, as discussed after Eq. (5.1).

6.1 No magnetic field: ωc = 0

We start with the simplest case: a normal Schwarzschild BH (ωc = 0). In Fig. 6.1, we show the compar-

ison of the numerical results for the energy flux at infinity, normalized to the GLF (see Eq. (5.1)), as well

as analytical predictions obtained using Eq. (5.2). We found that numerical and analytical results are in

agreement for orbital radii satisfying r0 > 30, which roughly corresponds to orbital velocities v0 < 0.2

(see Fig. 2.4). This leads us to conclude that the slow motion approximation taken in Sec. 5 is valid for

v0 < 0.2, which from now on we call the “slow orbits”. With that in mind, in the region of “slow orbits”,

the dipole term is dominant and approaches the prediction given by the GLF. This is even more evident

on the right panel, where we only show the results for the dipole, which reaches .999 of the analytical

result; this had to be the case, as the Newtonian limit applies in the right panel, so we had to recover the

Larmor formula following our results of Sec. 3. Contrarily, for r0 < 30 the dipole is no longer as dominant,
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Figure 6.1: Energy flux of EM radiation at infinity, as seen by stationary observers at
infinity, normalized to the generalized Larmor formula (GLF – Eq. (5.1)), in different
(ℓ , m) modes, emitted by a charged particle in a circular orbit of radius r0 around
a Schwarzschild BH. The solid, dashed, and dotted black curves correspond to
numerical results for the dipole (ℓ = m = 1), quadrupole (ℓ = m = 2), and octupole
(ℓ = m = 3) modes. The solid red line is the prediction of the RLF, while the dashed
red lines represent the predictions obtained with Eq. (5.2) for the quadrupole and
octupole. The vertical black dashed line indicates the ISCO, rISCO/M = 6. Left
panel – all modes for r0/M < 100. Right panel – dipole mode for r0/M > 100.
We found good agreement between numerical and analytical results in the region
of slow orbits (v0 < 0.2), which is roughly r0/M > 30, where we also see the dipole
is dominant.

Figure 6.2: Ratio between the energy flux of EM radiation on the horizon
and at infinity, for a charged particle in a circular orbit of radius r0 around a
Schwarzschild BH. The solid, dashed, and dotted black curves correspond to the
dipole, quadrupole, and octupole modes. The dashed red lines are the predictions
for the three modes obtained analytically using Eqs. (5.2) and (5.12). The verti-
cal black dashed line indicates the ISCO, rISCO/M = 6. Left panel – all modes for
r0/M < 100. Right panel – dipole mode for r0/M > 100. We found good agreement
between numerical and analytical results. The dipole term dominates the energy
flux on the horizon but is still subdominant when compared to the energy flux at
infinity.
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and our analytical results don’t give good predictions.

As for the energy flux on the horizon, in Fig. 6.2 we show the ratio of energy radiated to the BH

and to infinity in the same (ℓ , m) mode; we compare numerical and analytical results, where the latter

were obtained using Eqs. (5.2) and (5.12). There is good agreement between numerical and analytical

results, especially in the “slow orbit” region. In terms of energy flux on the horizon, the dipole mode is

generally dominant by at least a full order of magnitude when compared to other modes. The energy

flux on the horizon in the dipole mode reaches a maximum of about 10% of flux at infinity in the same

mode (for r0 = rISCO), but can generally be neglected for r0 > 10.

We conclude that for r0 > 30, we can use only the energy radiated to infinity in the dipole mode to

capture the radiation reaction completely. Furthermore, our analytical and numerical results, as well as

standard literature results, are all in agreement in this region, which inspires confidence in both. Closer

to the BH, the energy radiated to infinity and into the BH in higher multipoles has to be considered.

Still, even at the ISCO, we can obtain a good approximation using only finitely many modes (for a more

rigorous argument see Table 6.1 of the next section).

6.2 Minus configuration orbits: ωc < 0

Having established a good level of confidence in our analytical results, we ask ourselves what happens

when we include a magnetic field. Allowing ωc ∕= 0 influences PC and MC orbits distinctly; we start by

studying MC orbits (see Fig. 2.1), which have velocity profiles of the types shown in the left panels of

Fig. 2.4.

We take ωc = −10−3, which corresponds to a non-monotonic velocity profile (Fig. 6.3), with a min-

imum value for r0 ∼ rc = 100. This motivates the definition of three different regions with distinct

properties: the “Kepler” (r0 < 30), “slow orbits” (30 < r0 < 180), and “MC” (r0 > 180) regions. We give

more complete definitions of the three regions at the end of this section, along with a discussion of the

results in light of these definitions.

Due to the relativistic nature of the asymptotic orbits in the MC, the energy flux at infinity was normal-

ized to the RLF (see Eq. (2.21))1. The result of comparing the energy flux at infinity in different modes

is presented in Fig. 6.4. Just as in the case of ωc = 0, we found good agreement between numerical

and analytical results, as well as the dominance of the dipole, for “slow orbits”. However, the relativistic

nature of the orbits with r0 > 180 causes the dipole to drift away from the RLF result, as higher multipoles

become more important due to beaming.

In view of this, we compare in Fig. 6.5 the energy flux to infinity just in the dipole mode to that given

by the sum of the first three modes with ℓ = m. Furthermore, since we now included a magnetic field,

we can also compare the result obtained with Eq. (2.84) (see Sec. 2.3.2 for a derivation). We obtained

that equation from the generalization of the Abraham-Lorentz-Dirac force, which is also present in flat

1It is important to note two things about the RLF: it is a flat space expression, contrary to the GLF, so it is only valid for r0 ≫ 1;
within its domain of validity, it includes the energy flux in all multipolar modes. This would always have to be true for the RLF
to be valid for highly relativistic speeds, as in that case the particle experiences beaming, which causes all the multipoles to be
nontrivially excited [42].

53



Figure 6.3: Velocity profile of MC circular orbits with radius r0 and Mωc = 10−3.
The blue curve corresponds to the actual velocity profile, the black dotted curve
is the “Keplerian” result, the black dashed curve is the “Magnetic” result and the
black vertical line indicates the position of the critical radius rc = 100M (cf. caption
of Fig. 2.4). The “Keplerian” result is roughly recovered for r0/M < 30, and the
“Magnetic” for r0/M > 180. We have “slow orbits” (v0 < 0.2) around 30 < r0/M <
180.

Figure 6.4: Energy flux of EM radiation at infinity normalized to the relativistic Lar-
mor formula (RLF – Eq. (2.21)), for a charged particle in an MC circular orbit of
radius r0 around a Schwarzschild BH with Mωc = −10−3. The solid, dashed, and
dotted black curves correspond to numerical results for the dipole, quadrupole, and
octupole modes. The solid red line is the prediction of the RLF, while the dashed red
lines represent the predictions obtained analytically for all three modes. The verti-
cal black dashed line indicates the ISCO, rISCO/M ≲ 6. Left panel – all modes for
r0/M < 100. Right panel – all modes for r0/M > 100. We found good agreement
between numerical and analytical results in the region 30 < r0/M < 180, where
the dipole term is dominant. Outside this region, higher multipoles become more
relevant and the analytical predictions become less accurate. The dipole never
recovers the RLF beyond about 90%.
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Figure 6.5: Energy flux of EM radiation at infinity normalized to the RLF, for a
charged particle in an MC circular orbit of radius r0 around a Schwarzschild BH with
Mωc = −10−3. The solid black curve corresponds to the dipole mode, while the
dashed black curve includes also the sum of the quadrupole and octupole modes.
The solid red line is the prediction of the RLF. The blue curve is the prediction ob-
tained if we neglect the tail term, that is Eq. (2.84). The vertical black dashed line
indicates the ISCO, rISCO/M ≲ 6. Left panel – all modes for r0/M < 100. Right
panel – all modes for r0/M > 100. When compared to Fig. 6.4, the sum of modes
allows us to recover the RLF with very good accuracy, in a wide range of orbits. The
“no tail” curve gives very bad results for small r0/M while it completely recovers the
RLF for very large enough values of r0/M .

Figure 6.6: Ratio between the energy flux of EM radiation on the horizon and
at infinity, for a charged particle in an MC circular orbit of radius r0 around a
Schwarzschild BH with Mωc = −10−3. The solid, dashed, and dotted black
curves correspond to the dipole, quadrupole, and octupole modes. The dashed
red lines are the predictions for the three modes obtained analytically. The vertical
black dashed line indicates the ISCO, rISCO/M ≲ 6. Left panel – all modes for
r0/M < 100. Right panel – dipole mode for r0/M > 100. We find good agreement
between numerical and analytical results up to r0/M ∼ 180. The dipole term domi-
nates the energy flux on the horizon but is still subdominant when compared to the
energy flux at infinity.
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space, and so naively is not expected to describe the energy absorbed by the BH. Therefore, it can

only result from an energy flux to infinity, so we choose to include it in Fig. 6.5 and call it the “no tail”

curve. By considering the sum of multipoles, we successfully recover the RLF in a wide range of orbits

(80 < r0 < 350), beyond which beaming intensifies and other modes would have to be added up. As

we discussed in Sec. 2.3.2, the “no tail” expression only sees the acceleration of the particle due to the

Lorentz force; indeed, in the magnetic region, that is practically the sole source of acceleration, which

is why that expression agrees with the RLF. But for smaller values of r0 that is never the case, and as

gravitational effects become more important, that expression gives an ever worse underestimation of the

energy flux.

Next, in Fig. 6.6 we look at the ratio of the energy flux on the horizon and at infinity. In broad terms,

the energy absorbed by the BH in the dipole mode is relevant at the ISCO, coming to about 10% of the

energy radiated to infinity, but it then decays with r0, quickly becoming negligible; the other modes never

reach 1% so they can generally be neglected. We find that the analytical predictions were in agreement

with numerical results in the up to about r0 ∼ 180.

Summing up, we looked at MC orbits for Mωc = −10−3 and found that the analysis can be divided

into three distinct regions, which are defined relative to the critical radius rc = 100 (see Eq. (2.67)):

• “Kepler” region (r0 < 30) – these orbits are dominated by gravitational effects and are faster closer

to the ISCO (Fig. 6.3). Here the results are very similar to what we found for ωc = 0. Our analytical

formulas fail to give very accurate predictions, the “no tail” expression is catastrophically bad, and

not even the RLF is valid in this region. Still, it seems that by adding up numerical results for

different modes, taking into account both flux at infinity and on the horizon, we can obtain an

accurate value for the total energy flux. We confirmed this for the first (ℓ , m) modes at r0 = rISCO

in Table 6.1 and found that higher order modes were exponentially suppressed, so using a finite

number allows for arbitrarily small errors.

• “Slow orbit” region (30 < r0 < 180) – these are the slowest orbits, with v0 < 0.2, located around

the critical radius rc = 100 (Fig. 6.3). Here the dipole mode is dominant, but adding up numerical

results for the first three ℓ = m modes was needed to get good agreement with the RLF. The

energy flux on the horizon is always negligible in this region. Our analytical formulas give accurate

predictions in this region, while the “no tail” expression underestimates the energy flux.

• “Magnetic” region (r0 > 180) – as orbits become dominated by magnetic effects and the velocity

becomes higher (Fig. 6.3), the dipole mode becomes less dominant, and even more modes have

to be included to adequately describe the energy flux to infinity. Adding up the numerical results

for the first three ℓ = m modes still gives good agreement with the RLF, but only up to r0 ≈ 350,

after which it also falls short; if more modes are included, we extend the validity further away, but,

eventually, it will always fall short. The energy flux on the horizon is always negligible in this region,

and our analytical formulas fail to make accurate predictions, but the “no tail” expression is very

successful.

Changing ωc leads to a change in rc, which in turn leads to a shift in these regions, but the results for
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ℓ m Ė∞
ℓm/Ė∞

11 (%) ĖH
ℓm/Ė∞

11 (%)
1 1 100 8.2
2 2 36.3 0.28
2 1 < 10−2 < 10−1

3 3 12.4 < 10−2

3 2 < 10−1 < 10−3

4 4 4.12 < 10−3

5 5 1.3 < 10−5

6 6 0.43 < 10−6

7 7 0.14 < 10−8

8 8 < 10−1 < 10−9

Table 6.1: Numerical results for the comparison of the energy flux on the horizon
(ĖH

ℓm) and to infinity (Ė∞
ℓm), normalized to the energy flux at infinity in the dipole

mode (Ė∞
ℓm) generated by a charged particle at the ISCO in the MC, around a

Schwarzschild BH with Mωc = −10−3. It seems clear that with finitely many modes,
one can obtain arbitrarily small errors in the total energy flux.

each should be qualitatively the same; keep in mind that the “Kepler” and even the “slow orbits” region

could be pulled in beyond the ISCO (see bottom right panel of Fig. 2.4).

6.3 Plus configuration orbits: ωc > 0

We now proceed to study orbits in the PC (see Fig. 2.1). In this configuration, having ωc ∕= 0 does not

alter the monotonicity of the velocity profile, but instead just decreases the orbital velocity for all values

of r0 (see Fig. 2.4). This means that now the analytical results obtained before may be used to study a

larger set of orbits, as they are only valid if the orbital velocity is small.

We will start by looking at ωc = 10−2, and only after that will we look at greater values of ωc, which

will allow us to find slow orbits closer to the event horizon2.

6.3.1 Mωc = 10−2

Consider first the case ωc = 10−2, which corresponds to the velocity profile shown in Fig. 6.7, with

rc ≈ 21.5. Again, we start by looking at the energy flux to infinity, normalized to the GLF, in different

modes, and we show the results in Fig. 6.8. We find, as would be expected, that in the region of “slow

orbits” the dipole mode dominates and our numerical and analytical results are in agreement. Outside

this region, both of these properties fail.

Regarding the “no tail” expression of Eq. (2.84), in Sec. 2.3.2 we showed that it leads to particles

gaining energy in all orbits beyond the light ring, r0 > 3. Since this is not what we obtain with our

analytical or numerical results, we completely exclude the “no tail” expression from the PC analysis

hereinafter.

Looking at the ratio of energy flux on the horizon and at infinity (Fig. 6.9), we find very good agree-

ment between numerical and analytical results for “slow orbits”; we also find that the dipole mode is

2The reason for this separation, as well as for the values chosen for ωc, is that it becomes harder to get numerical results for
very small orbital frequencies, meaning that as we increase ωc in PC orbits we are decreasing the domain that can be studied.
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Figure 6.7: Velocity profile of PC circular orbits with radius r0 and Mωc = 10−2.
The red curve corresponds to the actual velocity profile, the black dotted curve is
the “Keplerian” result, the black dashed curve is the “Magnetic” result, and the black
vertical line indicates the position of the critical radius rc/M ≈ 21.5. The “Magnetic”
result is recovered for r0/M > 40. We have “slow orbits” for r0/M > 15M .

Figure 6.8: Energy flux of EM radiation at infinity, normalized to the GLF, for a
charged particle in a PC circular orbit of radius r0 around a Schwarzschild BH with
Mωc = 10−2. The solid, dashed, and dotted black curves correspond to numerical
results for the dipole, quadrupole, and octupole modes. The solid red line is the
prediction of the GLF, while the dashed red lines represent the predictions obtained
analytically for the quadrupole and octupole. The vertical black dashed line indi-
cates the ISCO, rISCO/M ≲ 6. Left panel – all modes for r0/M < 100. Right panel
– dipole mode for r0/M > 100. We find good agreement between numerical and
analytical results in the region r0/M > 15, where the dipole is dominant.
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Figure 6.9: Ratio between the energy flux of EM radiation on the horizon and at in-
finity, for a charged particle in a PC circular orbit of radius r0 around a Schwarzschild
BH with Mωc = 10−2. The solid, dashed, and dotted black curves correspond to the
dipole, quadrupole, and octupole modes. The dashed red lines are the predictions
for the three modes obtained analytically. The vertical black dashed line indicates
the ISCO, rISCO/M ≲ 6. Left panel – all modes for r0/M < 50. Right panel – all
modes for r0/M > 50. We find good agreement between numerical and analytical
results. The dipole term still dominates, as does the energy flux on the horizon;
however, for r0/M > 40 we see the ratio go to a constant for the dipole, and start
growing for the higher multipoles.

dominant, as is the energy flux to infinity, although the flux on the horizon in the dipole mode is non-

negligible for r0 < 10. However, contrary to what we saw for orbits in the MC, now the ratio in the dipole

mode goes to a constant for r0 ≳ 40; according to the analytical result of Eq. (5.22), the constant is

4ω2
c = 4 × 10−4, which is compatible with what we see in the plot. We also see that in the higher multi-

poles, the ratio is actually growing, showing increasing importance of the flux on the horizon; this is also

something we were expecting according to the discussion following Eq. (5.22).

6.3.2 Mωc = 2× 10−1

For this value of ωc the velocity profile is given in Fig. 6.10 and it corresponds to a critical radius of

rc ≈ 2.9, which lies beyond the ISCO. Regarding the energy flux to infinity, we see in Fig. 6.11 that

we have good agreement between numerical and analytical results but only for orbits with v0 ≲ 0.1,

which corresponds to r0 ≳ 8. The dominance of the dipole is also clear in this region, so it adequately

describes all the energy flux at infinity.

Regarding the energy flux on the horizon, in Fig. 6.12, we see that our numerical simulations recover

the analytical results with good accuracy. Once again, we also find that when r0 ≫ rc the ratio of energy

flux on the horizon and at infinity goes to a constant for the dipole, while it keeps growing for the higher

multipoles; in this case, the analytical prediction for the constant is 4ω2
c = 0.16, which is consistent with

the numerical result. We also compare the energy flux on the horizon in the three modes to the energy

flux to infinity in the dipole mode, and find the former are still negligible for r0 > 10. For r0 < 10, the

flux on the horizon can no longer be completely neglected, and at the ISCO the energy flux on the

horizon in the dipole mode is actually the dominant effect, but all three modes should be included (a

more systematic study of this is done presented in Table 6.2).
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Figure 6.10: Velocity profile of PC circular orbits with radius r0 and Mωc = 2×10−1.
The red curve corresponds to the actual velocity profile and the black dashed curve
is the “Magnetic” result. The critical radius rc/M ≈ 2.9 lies beyond the ISCO so it is
not shown. The “Magnetic” result is always recovered and we have “slow orbits” for
r0/M > 5M .

Figure 6.11: Energy flux of EM radiation at infinity, normalized to the GLF, for a
charged particle in a PC circular orbit of radius r0 around a Schwarzschild BH
with Mωc = 2 × 10−1. The solid, dashed, and dotted black curves correspond
to numerical results for the dipole, quadrupole, and octupole modes. The solid red
line is the prediction of the GLF, while the dashed red lines represent the predictions
obtained analytically for the quadrupole and octupole. The vertical black dashed
line indicates the ISCO, rISCO/M ≈ 4. Left panel – all modes. Right panel – dipole
mode. We find good agreement between numerical and analytical results, and the
dipole term is clearly dominant.
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Figure 6.12: Ratio between the energy flux of EM radiation on the horizon and at in-
finity, for a charged particle in a PC circular orbit of radius r0 around a Schwarzschild
BH with Mωc = 2 × 10−1. The solid, dashed, and dotted black curves correspond
to the dipole, quadrupole, and octupole modes. The dashed red lines are the pre-
dictions for the three modes obtained analytically. The vertical black dashed line
indicates the ISCO, rISCO/M ≈ 4. We find good agreement between numerical and
analytical results. The dipole term is still dominant, but now the energy flux on the
horizon is already larger than the flux at infinity very close to the BH, although the
latter is dominant for r0/M > 5. The ratio goes to a constant for the dipole and
grows for the higher multipoles, to the point where the energy flux on the horizon is
greater than the flux at infinity in the quadrupole and octupole modes.

6.3.3 Mωc = 2

For this value of ωc, the velocity profile is given in Fig. 6.13, and corresponds to a critical radius of

rc ≈ 0.6, which lies beyond the event horizon. The energy flux to infinity is depicted in Fig. 6.14, and

even though now v0 < 0.2 for all orbits, the numerical simulations are unable to recover the analytical

results for r0 < 5. Other than that, the analysis is qualitatively similar to that of Fig. 6.11.

Finally, in Fig. 6.15 we show that for this value of ωc the energy flux on the horizon is orders of

magnitude greater than that to infinity, so it cannot be neglected. Furthermore, we once again see the

ratio go to a constant for the dipole mode while it keeps growing for the higher multipoles; in this case,

the constant would be 4ω2
c = 16, which is consistent with the numerical result. Again, we also compare

the energy flux on the horizon in all three modes to the energy flux to infinity in the dipole mode to see

if a finite number of modes is sufficient to describe the total energy flux; we find that with increasing r0

the energy flux to infinity for the dipole mode becomes more relevant, but the dominant effect is always

BH absorption of the dipole mode. The orbit for which the most modes have to be included is thus the

ISCO, so we look at the energy flux in multiple (ℓ , m) modes for that orbit in Table 6.2. We find that,

although many terms have to be included, the importance of higher multipoles appears to decay fast

enough so that one can use a finite number of modes and still obtain an arbitrarily small error in the total

energy radiated. For higher values of r0, the problem only becomes easier, and fewer and fewer terms

are needed.

6.3.4 Summary of plus configuration

Summing up, we looked at PC orbits for 3 different values of the cyclotron frequency and concluded that:
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Figure 6.13: Velocity profile of PC circular orbits with radius r0 and Mωc = 2. The
red curve corresponds to the actual velocity profile and the black dashed curve is
the “Magnetic” result. The critical radius rc/M ≈ 0.63 lies beyond the ISCO so it
is not shown. The “Magnetic” result is always roughly recovered and all orbits are
“slow orbits”.

Figure 6.14: Energy flux of EM radiation at infinity, normalized to the generalized
Larmor formula GLF, for a charged particle in a PC circular orbit of radius r0 around
a Schwarzschild BH with Mωc = 2. The solid, dashed, and dotted black curves cor-
respond to numerical results for the dipole, quadrupole, and octupole modes. The
solid red line is the prediction of the GLF, while the dashed red lines represent the
predictions obtained from Eq. (5.2) for the quadrupole and octupole. The vertical
black dashed line indicates the ISCO, rISCO/M ≈ 2.4. Left panel – all modes. Right
panel – dipole mode. We find good agreement between numerical and analytical
results, and the dipole term is clearly dominant.
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Figure 6.15: Ratio between the energy flux of EM radiation on the horizon and at in-
finity, for a charged particle in a PC circular orbit of radius r0 around a Schwarzschild
BH with Mωc = 2. The solid, dashed, and dotted black curves correspond to the
dipole, quadrupole, and octupole modes. The dashed red lines are the predictions
for the three modes obtained analytically using Eqs. (5.2) and (5.12). The vertical
black dashed line indicates the ISCO, rISCO/M ≈ 2.4. We find good agreement
between numerical and analytical results for r0/M > 5M .The dipole term still dom-
inates, but now the energy flux on the horizon is the dominant effect; the ratio goes
to a constant for the dipole and grows for the higher multipoles.

ℓ m Ė∞
ℓm/Ė11 (%) ĖH

ℓm/Ė∞
11 (%)

1 1 0.4 100
2 2 < 10−1 54.5
2 1 < 10−4 2.2
3 3 < 10−2 26.3
3 2 < 10−6 1.1
4 4 < 10−4 12.5
5 5 < 10−5 5.8
6 6 < 10−6 2.7
7 7 < 10−8 1.2
8 8 < 10−9 0.6

Table 6.2: Numerical results for the comparison of the energy flux on the horizon
(ĖH

ℓm) and to infinity (Ė∞
ℓm), normalized to the energy flux at infinity in the dipole

mode (Ė∞
ℓm) generated by a charged particle at the ISCO in the PC, around a

Schwarzschild BH with Mωc = 2 . It appears clear that with finitely many modes,
one can obtain arbitrarily small errors in the total energy flux.

• For these orbits, the domain of validity of our analytical expressions is far greater than in the

absence of a magnetic field, as including it results in slower orbits for all orbital radii. Still, very

close to the BH we require far lower velocities for the analytical expressions to be valid, as even

for v0 < 0.1, which would usually be enough, the analytical formulas still give bad predictions for

r0 < 5 when ωc = 2.

• Generally, out of the values tested, we found that it is possible to describe the total energy flux in

all the orbits using only a finite number of modes. For high ωc, the ISCO is very close to the event

horizon and so the energy flux on the horizon must be calculated for many modes, but a finite

number of modes is still enough to get arbitrarily high accuracy.

• For large enough values of orbital radius, the ratio of the energy flux on the horizon and to infinity
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goes to a constant (4ω2
c ) for the dipole mode and grows to arbitrarily large values for the higher-

order multipoles. For a fixed, but large enough, value of r0, this ratio grows with ℓ. This happens

for even smaller values of r0 than we had anticipated when we derived Eq. (5.22). Even though

this trend is transversal in our results, we find that asymptotically the energy flux on the horizon in

the higher-order multipoles goes to zero when compared to the energy flux at infinity in the dipole

mode.

Further increasing ωc would pull the ISCO even closer to the event horizon, and we would have to include

even more modes to describe the energy flux adequately, but a finite number should still be enough, at

least until r0 ≈ 2.1, as discussed in Sec. 5.

The result reported in the third point above has several interesting implications: First, it takes place

asymptotically far away from the BH, for orbits so wide that BH absorption should naively be very small,

given that the wave frequency is so large it shouldn’t even see the BH; this argument must however be

taken with a grain of salt, as it is not the particle that is radiating, but the binary particle + BH. Second, it

gives a non-ambiguous way of distinguishing a BH from other astrophysical objects even if we are very

far away from it. Finally, an observer at infinity looking at a particle orbiting the BH with r0 ≫ 1 would

at best be able to realize that the ratio of energy flux on the horizon and at infinity in the dipole mode is

going to a constant, since the energy flux in higher multipoles is completely negligible in such scenario.
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Chapter 7

Conclusions

In this thesis, we aimed to give a detailed and consistent analysis of the radiation reaction force acting on

a charged particle in a circular orbit around a Schwarzschild BH immersed in an asymptotically uniform

magnetic field. This work was motivated by the prospect of energy extraction mechanisms relying on

radiation reaction [29].

Regarding the dynamics of charged particles in this system without radiation reaction, it is important

to note that circular motion exists only in the equatorial plane and that its analysis can be split into

MC (angular momentum and cyclotron frequency have opposite signs) and PC (angular momentum

and cyclotron frequency have the same sign) orbits. MC orbits approach flat space cyclotron motion

at infinity. As the absolute value of the cyclotron frequency increases, all MC orbits become more

relativistic, while the ISCO grows closer to the horizon (but never going below r ≈ 4.3M ). The PC orbits,

on the other hand, do not approach flat space cyclotron motion at infinity. As the absolute value of the

cyclotron frequency increases, PC orbits become less and less relativistic, while the ISCO approaches

the event horizon at r = 2M .

If we include radiation, the equation of motion is the DeWitt–Brehme equation (Eq. (2.75)), which is

very complicated to solve, especially because of the existence of a non-local term — the tail (Eq. (2.76)).

Some authors have delved into the task of brute-force calculating the radiative Green’s functions needed

to evaluate the tail integral [64]; others have also tried neglecting it from the analysis altogether [53].

However, neglecting the tail leads to a seemingly unphysical “orbit widening” in PC orbits [52], resulting

in the particle gaining energy without any clear source; this caught our attention and was the starting

point for this work.

We started by looking at the Newtonian limit of the DeWitt–Brehme equation; the results of that

analysis were published in Ref. [54]. In this case, the tail term has an analytical expression [55], so

including it poses no problem whatsoever. We found that, for the calculation to be consistent with

neglecting the tail term, one of two scenarios had to take place: either the radiation reaction is neglected

altogether, or the gravitational force can be neglected, and so a flat space description of the phenomenon

using the Abraham–Lorentz–Dirac equation is valid. This happens because the Abraham–Lorentz–Dirac

force only accounts for the radiation reaction due to the covariant acceleration, that is, to the external
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forces; the radiation reaction to gravity is entirely captured by the tail. We also found that we could only

recover standard literature results by including the tail and that the “orbit widening” ceases to exist if it

is included. This established that neglecting the tail is often not a valid approximation, at least in the

Newtonian limit, but a strong-field calculation was still missing.

As stated above, calculating the tail term in the strong field case is a very difficult task, so instead we

consider the simpler formalism of BH perturbation theory, namely the Bardeen–Press equation [68, 69].

We considered a charged particle in a circular orbit around a magnetized Schwarzschild BH and using

BH perturbation theory we obtained the multipolar expansion of its radiation field; this allows us to obtain

the energy flux at infinity and on the horizon [71], and thus infer the energy lost by the particle through

radiation reaction. Even assuming that the particle is always in a circular orbit, it is possible to study

the orbit’s evolution by using the adiabatic approximation. Generally, the motion of the particle in the

equatorial plane is entirely determined by the value of its energy and angular momentum; by knowing

how those evolve in time, we can evolve the orbit of the particle. In the case of circular orbits, a single

parameter — the energy — suffices to determine the orbit, and so evolving the energy is equivalent to

evolving the orbit (provided, of course, that radiative effects are small enough so that saying that the

particle is in a circular orbit remains a good approximation — adiabatic approximation).

Once the expressions for the energy flux at infinity and on the horizon were obtained, it became clear

that there was only one hard task to overcome: solving the homogeneous Teukolsky radial equation

with physical boundary conditions, corresponding to purely ingoing waves at the horizon and to purely

outgoing waves at infinity. We did so in two different and independent ways, first through analytical

methods, valid in the low frequency and slow motion regime, and then through numerical methods.

The results of this analysis are being prepared for publication. It is important to note that now the low

frequency and slow motion approximations are not equivalent to the Newtonian limit, since PC orbits

can be slow very close to the event horizon.

On the analytical front, we established that for orbital radius r0 ≳ 2.1M the total energy flux can be

calculated using a finite number of multipolar modes. In that region, the dipole is the dominant mode for

both energy flux on the horizon and at infinity, with the latter being described by the GLF, which reduces

to the standard Larmor power formula for large enough orbital radius. However, determining which effect

is dominant, flux on the horizon or at infinity is more complicated than one would naively expect. Indeed,

we found that for Keplerian orbits, where the angular velocity behaves as Ω0 ∼ 1/r
3/2
0 , the further the

particle is from the BH, the lesser energy it absorbs, meaning the total energy flux is determined by the

flux at infinity and approaches the prediction of the Larmor formula. However, for PC orbits, the ratio

of energy flux on the horizon and at infinity in the dipole mode goes to a constant 4ω2
c , where ωc is

the cyclotron frequency; for the higher order multipoles, the same ratio goes to infinity with increasing

orbital radius. This is a direct result of the decay of the angular velocity in PC orbits, Ω0 ∼ 1/r30; in

fact, if the angular velocity were to decay even faster with orbital radius, then the ratio for the dipole

would also grow indefinitely with the orbital radius. Regarding the MC orbits, we did not perform any

specific analytical study because those orbits are relativistic for large enough orbital radius, thus falling

outside the domain of our approximation. We also took the chance to see what happens for scalar and
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gravitational radiation; in those cases, we only looked at the dominant dipole and quadrupole modes,

respectively. For the scalar case, the qualitative analysis is identical to the EM case; for the gravitational

case, since the dominant mode is now the quadrupole, we found that the ratio of energy flux on the

horizon and at infinity in that mode goes to infinity with increasing orbital radius, provided the particle is

in a PC orbit. We found that all our analytical results were compatible with the available literature [82,

83, 87].

Our numerical analysis was restricted to the EM case, and, when the orbits were slow and the mode

frequency was small, it completely corroborated the previously obtained analytical results. Generically,

we found dominance of the dipole for slow orbits. In PC orbits, we recovered that, for increasing orbital

radius, the ratio of energy flux on the horizon and at infinity goes to 4ω2
c in the dipole mode, and goes to

infinity for higher order multipoles; moreover, for a fixed and sufficiently large value of orbital radius, this

ratio grows with the angular number ℓ. Still in regards to PC orbits, out of all the values tested, a finite

number of modes was always enough to capture the total energy lost by the particle.

We also obtained numerical results for MC orbits. We found that, for a given value of ωc, the analysis

can be split into three regions: the “Kepler” region, where the orbits are Keplerian, our analytical results

are not valid, and neither is the RLF; the “slow orbit” region, where the RLF is valid, as are our analytical

results (namely the dipole is dominant); and the “Magnetic” region, where the motion approaches flat

space cyclotron motion, the RLF is valid, but our analytical formulas fail because of the relativistic nature

of these orbits. It is a general result that when the orbit of a particle is extremely relativistic, the higher

order multipoles are excited and must be included to obtain a rigorous account of the energy flux; we

recovered this result and found that, in the “slow orbits” and “Magnetic” regions, adding up the contri-

butions from the dipole, quadrupole and octupole modes allows for a much more trustworthy estimate

of the energy flux when compared to the prediction of the RLF; still, for sufficiently large orbital radius,

the sum of modes always falls short, as beaming intensifies and more and more modes would have to

be included. Nevertheless, it seems that for finite orbital radius, a finite number of modes is enough to

account for the energy lost by the particle.

In regards to the importance of the tail term in the strong field regime: we had seen that for PC

orbits, neglecting the tail predicts that the particle will always gain energy in PC orbits outside the light

ring (r0 > 3M ). Our analytical and numerical results clearly state that this is not true, so we conclude

that neglecting the tail is never a valid method to study radiation reaction in PC orbits. As for the MC

orbits, what we found is compatible with the results we had obtained in the Newtonian limit: neglecting

the tail is only valid in the “Magnetic region”, which is dominated by magnetic effects and so the curvature

can be neglected there; indeed, neglecting the tail is a very good approximation in this region, because

it describes the radiation reaction due to the external force, which in this case is the dominant force.

Thus, when it comes to using the DeWitt–Brehme equation of motion, we can say with confidence that:

To adequately describe the dynamics of a radiating pointlike charge in a vacuum spacetime, the tail

term must be included, unless radiation reaction is neglected altogether, or the spacetime curvature can

be ignored, in which case a flat space description of radiation, based on the Abraham-Lorentz-Dirac

equation, is sufficient.

67



With all of this, we believe to have successfully completed the task at hand, not only clearing up a

confusion in the literature but also giving a detailed account of the phenomenon of radiation reaction in

magnetized BHs. Before ending, we want to point out important possibilities for future work: first, it is well

known that radiation reaction in curved space is not purely dissipative, but also contains a conservative

counterpart, which we left out of our analysis; including it would be interesting, as it could provide

interesting changes to the velocity profiles. Second, it would also be interesting to see if these orbits are

stable to small eccentric perturbations, performing an analysis akin to that in Ref. [117]. Finally, it would

also be of great importance to generalize the results to the rotating Kerr BH case, as superradiance

and other energy extraction mechanisms could produce very interesting dynamics in the presence of

magnetic fields. The last point is the subject of ongoing work.
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Appendix A

Killing vector fields, conserved

quantities and electromagnetic fields

Consider a charged particle with charge q, mass m, and 4-velocity uµ, moving in a generic spacetime

with metric tensor gµν . We can define a Killing vector field as a generator of a continuous symmetry

(isometry) of the manifold, that is: ξµ is a Killing vector field if and only if

Lξgµν = 0 ⇐⇒ ∇µξν +∇νξµ = 0 , (A.1)

where Lξ is the Lie derivative along ξ, and ∇µ is the Levi-Civita connection; Eq. (A.1) is called the Killing

equation.

The Minkowski solution is a very symmetric solution and it possesses 10 linearly independent Killing

vectors, corresponding to the generators of the Poincaré algebra. The Schwarzschild solution is still

stationary and spherically symmetric, so it contains only 4 linearly independent Killing vectors. Killing

vectors are particularly important as a result of Noether’s theorem, which ties the existence of continuous

symmetry in a system with the existence of a conserved quantity.

Take a particle of mass m free falling under the action of the gravitational field of a Schwarzschild

BH. The particle’s equation of motion is just the geodesic equation

Duµ

dτ
= 0 , (A.2)

where τ is the proper time and D/dτ ≡ uµ∇µ is the covariant derivative along the velocity of the particle.

It is easy to show, using Eqs. (A.1) and (A.2), that

D

dτ
(uαξ

α) = 0 , (A.3)

meaning that each Killing vector is associated with a conserved quantity, uαξ
α, along the motion of the

particle. For example, in Minkowski spacetime, time translations are associated with energy, spatial

translations with linear momentum, rotations with angular momentum, and boosts with the position at
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t = 0.

Now we want to consider the case where the charged particle is under the action of an EM field Fµν ,

associated with a 4-vector potential Aµ such that

Fµν = ∇µAν −∇νAµ . (A.4)

In this case, the particle no longer follows a geodesic; instead, the equation of motion becomes

Duµ

dτ
=

q

m
Fµ

νu
ν . (A.5)

Consequently, the quantities defined in Eq. (A.3) are no longer conserved along the particle trajectory:

D

dτ
(uαξ

α) = ξαu
β∇βu

α + uβuα∇βξα

=
q

m
Fαβξαuβ . (A.6)

This is because the conserved quantities associated with a Killing vector are altered as a result of

the minimal coupling between the charge and the EM field, according to which we should replace the

previously defined uαξ
α with

uαξ
α →

󰀓
uα +

q

m
Aα

󰀔
ξα . (A.7)

If we look at how these quantities vary along the particle’s trajectory, we find

D

dτ

󰀓󰀓
uα +

q

m
Aα

󰀔
ξα

󰀔
=

q

m

󰀃
Fαβξαuβ + ξαuβ∇βAα +Aαuβ∇βξα

󰀄

=
q

m
uβ [A , ξ]β (A.8)

where [·, ·] is the commutator of two vector fields. Thus, in the presence of EM fields, conserved quanti-

ties may still be defined by Killing vector fields as long as these commute with the EM 4-vector potential.

This means, for example, that the energy measured by a stationary observer in flat space, as given by

(A.7) with ξα = δαt , is conserved if the vector potential is stationary in that observer’s reference frame,

that is, if [A , ξ] = 0.
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Appendix B

Radiation reaction in flat space

The radiation reaction force in flat space can be obtained directly from the expression for the Liénard-

Wiechert potentials. We start with the wave equation with a source for the EM 4-potential Aµ,

□Aµ =
1

c
Jµ, (B.1)

where □ = ∂µ∂
µ and Jµ is the 4-current. The solution to this equation is the Liénard-Wiechert potential

Aµ(x) =
4π

c

󰁝
d4x′Dret (x− x′) Jµ (x

′) , (B.2)

Dret (x− x′) =
1

2π
θ(x0 − x′

0)δ
󰀃
(x− x′)2

󰀄
, (B.3)

where Dret (x− x′) is the retarded Green’s function solution to (B.1). For a single charged particle of

charge q, trajectory z(τ) and 4-velocity uµ(τ) = dzµ/dτ , where τ is the proper time, the 4-current may

be written as

Jµ(x) = qc

󰁝
dτ uµ(τ) δ4 (x− z(τ)) . (B.4)

Now once all this is replaced in (B.2), together with the expression for the retarded Green’s function [42],

we finally obtain the expression for the 4-potential generated by a moving charged particle:

Aµ(x) =
q uµ(τ0)

|uα(τ0)(x− z(τ0))α|
, (B.5)

where τ0 is the proper time for which the radiating charged particle lies in the past light cone of x. As for

the EM fields, we get

Fµν(x) = ∂µAν − ∂νAµ =
q

uα(x− z(τ0))α
d

dτ

󰀗
(x− z(τ))µuν − (x− z(τ))νuµ

uβ(x− z(τ))β

󰀘

τ=τ0

, (B.6)
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which yields electric and magnetic fields given by

E(t,x) = q

󰀗
n− β

γ2(1− β · n)3r2

󰀘

ret
+

q

c

󰀵

󰀷
n×

󰀓
(n− β)× β̇

󰀔

(1− β · n)3r

󰀶

󰀸

ret

,

B(t,x) =
1

r
(r ×E),

(B.7)

where r = x − x′, for x′ the position of the source charge, and the subscript serves to indicate that all

quantities are to be calculated at a retarded time, which is, in the frame of reference of a static observer,

t′ = t− r/c. Moreover, β is the 3-velocity and γ = (1− β2)−1/2.

The first term on the RHS of Eq. (B.7) depends only on the particle’s velocity and it is a static field,

which reduces to Coulomb’s law for stationary charges. Contrary to this, the second is an acceleration

field which gives the radiation of EM waves.

B.1 Larmor formula

We can find the power radiated away in EM waves from the radiation term. In a non-relativistic scenario,

β ≪ 1, we simply get the Larmor formula

dE

dt
=

2

3
q2β̇2. (B.8)

We now seek to find a relativistic generalization of this formula. Since the energy transforms like the first

component of a 4-vector, the radiated power must be a Lorentz invariant quantity. Furthermore, since E

and B depend only on β and β̇, the most obvious way to obtain a relativistic power formula is

dE

dt
=

2

3
q2

duα

dτ

duα

dτ

=
2

3
q2γ6

󰀕
β̇2 −

󰀓
β × β̇

󰀔2
󰀖
,

(B.9)

which naturally reduces to the Larmor formula if we take the nonrelativistic limit β ≪ 1.

B.2 Radiation reaction force

To obtain the radiation reaction force, we must perform the calculation of how much energy is lost through

radiation by a moving charged particle. This energy will then be associated with the work W done by a
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new force, the radiation reaction force Frad. In the non-relativistic limit, we get

dW

dt
= −P (t) ⇐⇒

󰁝 t2

t1

Frad · β dt = −
󰁝 t2

t1

P (t) dt ⇐⇒
󰁝 t2

t1

Frad · β dt = −
󰁝 t2

t1

2q2

3
β̇ · β̇ dt ⇐⇒

󰁝 t2

t1

Frad · β dt =

󰁝 t2

t1

2q2

3
β̈ · β dt−

󰀗
2q2

3
β̇ · β

󰀘t2

t1

⇐⇒
󰁝 t2

t1

󰀕
Frad −

2q2

3
β̈

󰀖
· β dt = 0,

(B.10)

where we have used integration by parts and assumed the motion is such that, on average, β̇ · β ≈ 0.

Since t1 and t2 are arbitrary, we conclude

Frad =
2q2

3
β̈. (B.11)

Once again we face the problem of obtaining a relativistic generalization of the previous formula, one

that would give fµ
R in the general equation of motion of a relativistic charged particle under the influence

of an EM field:
Duµ

dτ
= fµ

L + fµ
R, fµ

L = Fµνuν . (B.12)

The obvious choice for this generalization is simply

fµ
R =

2q2

3m

D2uµ

dτ2
; (B.13)

however, in relativistic scenarios, we must ensure that fαuα = 0, so that d
dτ (uαu

α) = 0. This forces us

to include a nonlinear term in the formula, which now becomes

fµ
R =

2q2

3m

󰀗
D2uµ

dτ2
+ uµuα

D2uα

dτ

󰀘
. (B.14)

If we replace this in Eq. (B.12) we get a third order differential equation, which is famously plagued with

runaway solutions. We go over this issue in more detail in the body of the text, but the idea for solving

this problem is to perform an order reduction by taking D2uµ

dτ2 =
Dfµ

L

dτ in the RHS of Eq. (B.14), yielding

fµ
R =

2q3

3m2
(∇αF

µνuαuν) +
2q3

3m2

󰀓 q

m
(FµνFνρ + F ναFαρuνu

µ)uρ
󰀔
. (B.15)

81



Appendix C

Replacing the black hole by a static

electric charge

Here we give a brief demonstration of how the particle ceases to gain energy spontaneously when we

replace the BH with a static electric charge at the origin (in the Newtonian limit). Note that, besides the

static electric charge and the electric field it produces, we also consider a uniform magnetic field in the

ẑ direction, as we did in the BH case.

The equation of motion of a nonrelativistic radiating charged particle of mass m and charge q, in the

presence of an arbitrary electric field E and an arbitrary magnetic field B is, in Gaussian units [42],

a =
q

m
(E + v ×B) +

2q2

3m
ȧ, (C.1)

where the last term corresponds to the radiation reaction force. By performing the same order reduction

procedure as we did to obtain Eq. (2.15), we get

a =
q

m
(E + v ×B) +

2q3

3m2

󰀓
Ė + v × Ḃ

󰀔
+

2q4

3m3
(E + v ×B)×B . (C.2)

Now consider the case where we take the electric field to be generated by an electric charge −Q at

the origin, with Q > 0 and q > 0, and where the magnetic field is B = B0ẑ. We want to look for circular

orbits of radius r0 and frequency Ω0 in this system. In this context, the two timescales in the problem are

given by the Keplerian orbital frequency ωK and the cyclotron frequency ωc, which in this case are given

by

ωK =

󰁶
qQ

mr30
, ωc =

qB0

m
. (C.3)
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To find the circular orbits for this system, we start by writing

r = r0(cos(Ω0t), sin(Ω0t) , 0), (C.4)

v = r0Ω0(− sin(Ω0t), cos(Ω0t), 0) , (C.5)

a = −Ω2
0r, (C.6)

q

m
E = −ω2

Kr , (C.7)

q

m
v ×B = Ω0ωcr . (C.8)

Replacing this in (C.2) without the radiative terms we obtain the dispersion relation

ω2
0 + ω0ωc − ω2

K = 0. (C.9)

We are now in the position to evaluate the rate of energy loss for a radiating particle in a circular orbit:

1

m

dE

dt
=

d

dt

󰀕
1

2
v2 + q̃

Q

r

󰀖

=
2q2

3m

󰀓
q̃Ė + q̃2 (E + v ×B)×B

󰀔
· v

=
2q2

3m

󰀕
−ω2

Kv +
ω2

Kωc

Ω0
v − ω2

cv

󰀖
· v

= −2q2

3m
r20Ω

2
0

󰀕󰀃
Ω2

0 + Ω0ωc
󰀄󰀕

1− ωc

Ω0

󰀖
+ ω2

c

󰀖

= −2q2

3m
r20Ω

4
0 < 0 .

(C.10)

Thus we conclude that: a radiating charged particle in a circular orbit around a static electric charge of

opposite sign and under the influence of a magnetic field, perpendicular to the plane of motion, always

loses energy.
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Appendix D

Radiation reaction in the Newtonian

limit

Here we will use a simple calculation to establish that a charged particle in a circular orbit on a curved

spacetime must radiate according to Larmor’s power formula in the Newtonian limit. Let us consider the

metric

g = e2Φη = e2Φ
󰀃
−dt2 + dx2 + dy2 + dz2

󰀄
, (D.1)

Φ = −M

r
, (D.2)

which has the correct Newtonian limit, since the action for timelike geodesics is

S =

󰁝
eΦ

󰁶

1−
󰀕
dx

dt

󰀖2

−
󰀕
dy

dt

󰀖2

−
󰀕
dz

dt

󰀖2

dt ≃
󰁝 󰀕

1− 1

2
v2 − M

r

󰀖
dt . (D.3)

We now consider a free-falling test particle of mass m and charge q in this metric and allow the particle

to radiate, so the equation of motion is Eq. (2.75). Since the metric is conformal to the Minkowski metric,

and the Maxwell equations are conformally invariant in (3 + 1) dimensions, there will be no tail; since

there is no external force, there will also be no Abraham-Lorentz Dirac term. However, as it is not a

solution of the vacuum EFE, the Ricci tensor will not vanish. In fact, it is given by (see [99], appendix D)

Rµν = −2∂µ∂νΦ−□Φ ηµν + 2∂µΦ∂νΦ− 2(∂αΦ ∂αΦ)ηµν . (D.4)

The radiation reaction force term corresponding to the Ricci tensor is

Fα =
q2

3
(gαµ + uαuµ)Rµνu

ν . (D.5)

Because of the projector in the plane orthogonal to uα, we can drop all terms in Rµν proportional to

ηµν = e−2Φgµν . If we consider circular orbits, we will have uν∂νΦ = 0, and so the third term in Rµν can
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also be dropped. Therefore we obtain

Fα = −2e2

3
(gαµ + uαuµ)(∂µ∂νΦ)u

ν , (D.6)

and so, since Φ is time-independent,

F 0 = −2e2

3
u0uµuν(∂µ∂νΦ) . (D.7)

Assuming that the circular orbit is on the plane z = 0, and also that the particle is momentarily at

(x, y) = (r0, 0) in this plane, we have, for large r0,

u ≃ ∂

∂t
+ v

∂

∂y
, v =

󰁵
M

r0
. (D.8)

We then obtain

F 0 ≃ −2q2

3
v2

∂2Φ

∂y2
= −2q2

3
v2

∂

∂y

󰀕
My

r30

󰀖
= −2q2

3
v2

󰀕
M

r30

󰀖
(D.9)

(as y = 0). In other words,

F 0 =
dE

dt
≃ −2q2

3

M2

r40
= −2

3
q2a2 , (D.10)

where a is the Newtonian acceleration of the orbit, in accordance with Larmor’s formula (in Gaussian

units).

Thus even in curved spacetime, we find that a particle under the action of a gravitational field will

radiate according to Larmor’s formula when the Newtonian limit applies.
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Appendix E

General solution to radial equation

with a source

In this appendix, we present a general solution to the ODE obtained for the radial component of the

Teukolsky equation, for Kerr spacetimes and fields with arbitrary spin. The solution reduces to the

solution presented in [73] for the gravitational case. The equation in question is of the form

∆−s d

dr

󰀕
∆s+1 dR(r)

dr

󰀖
− V (r)R(r) = −T (r) , (E.1)

and we want to find solutions in the outer domain of communications r ∈ (r+,∞). We assume that

boundary conditions are to be applied at the EH and at infinity, which is generally the case. Thus, we

take R∞ and RH to be independent solutions to the homogeneous equation (T = 0), corresponding to

the boundary conditions we want to impose at infinity and at the horizon, respectively. We may define a

rescaled Wronskian

W = ∆s+1

󰀕
R∞ dRH

dr
−RH dR∞

dr

󰀖
, (E.2)

which is a constant as a result of the main equation (E.1). By using it, we can construct a general

solution to the equation with a source, which is simply

R(r) =
1

W

󰀣
R∞

󰁝 r

r+

TRH∆sdr′ +RH

󰁝 ∞

r

TR∞∆sdr′

󰀤
. (E.3)

This is the main result of this appendix.
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Appendix F

Matched asymptotic expansions

To obtain the analytical results presented in Sec. 5, the main challenge is to solve the homogeneous

Teukolsky equation (Eq. (4.20)) with physical boundary conditions. Even if we are looking at other values

of s, be it scalar (s = 0), gravitational (s = −2), or other types of radiation, the flux formulas do change,

but the main challenge remains the same: solving the homogeneous Teukolsky equation (Eq. (4.20))

with physical boundary conditions. These boundary conditions are different for the two solutions RH
ωℓm(r)

(purely ingoing waves at the horizon) and R∞
ωℓm(r) (purely outgoing waves at infinity), which have the

following asymptotic behavior (see Eqs. (4.27) and (4.29)):

RH
ωℓm(r → ∞) = Ain

e−iωr󰂏

r
+Aout

eiωr󰂏

r2s+1
; (F.1)

R∞
ωℓm(r → ∞) =

eiωr󰂏

r2s+1
; (F.2)

RH
ωℓm(r → 2M) =

e−iωr󰂏

(r2f)
s ; (F.3)

R∞
ωℓm(r → 2M) = Bin

e−iωr󰂏

(r2f)
s +Boute

iωr󰂏 . (F.4)

If we take s = −1 in the equations above, we recover Eqs. (4.33) and (4.34). The problem of finding

analytical solutions to Teukolsky’s equation is as old as the equation itself, starting with the work of

Starobinsky and Churilov in 1974 [119], but with developments in the forthcoming years [118, 120, 121].

Here we will focus mainly on the procedure outlined in [118, 119], where the homogeneous Teukolsky

equation is solved in the small frequency limit, M |ω| ≪ 1, where ω is the mode frequency and M is the

BH mass. We will calculate everything for generic ℓ and s, and then use these results in the main text

to study the EM case (s = −1), as well and to briefly comment on the scalar (s = 0) and gravitational

(s = −2) cases.

87



F.1 The low-frequency limit of the homogeneous Teukolsky equa-

tion

Proceeding to the actual calculation, the first thing to do is solve the homogeneous Teukolsky equation,

given in Eqs. (4.20) and (4.21), in the relevant limit. To do so, we start by defining

x ≡ r

2M
− 1 and ϖ ≡ 2Mω . (F.5)

In the |ϖ| ≪ 1 regime the radial homogeneous equation can be approximated by

x2(x+ 1)2
d2Rωℓm

dx2
+ (s+ 1)x(x+ 1)(2x+ 1)

dRωℓm

dx
(F.6)

+
󰀅
ϖ2x4 + 2isϖx3 − (ℓ− s)(ℓ+ s+ 1)x(x+ 1)− isϖ

󰀆
Rωℓm = 0 .

The idea now is that we solve this equation for small and large x and then match the two solutions.

Starobinsky [119] discovered that there is a similar equation, which differs from ours only by subdominant

terms, and which is much easier to solve near the BH horizon 1. Therefore, the equation we will be using

from now on is (dropping the subscripts in Rωℓm but keeping them in mind):

x2(x+ 1)2
d2R

dx2
+ (s+ 1)x(x+ 1)(2x+ 1)

dR

dx
(F.7)

+
󰀅
ϖ2x4 + 2isϖx3 − (ℓ− s)(ℓ+ s+ 1)x(x+ 1)− isϖ(2x+ 1) +ϖ2

󰀆
R = 0 .

F.1.1 Near region

To look at the region closer to the BH we consider the limit |ϖ|x ≪ ℓ(ℓ+ 1). That means we can neglect

the first two terms inside the square brackets in (F.7), yielding

x2(x+ 1)2
d2R

dx2
+ (s+ 1)x(x+ 1)(2x+ 1)

dR

dx
(F.8)

+
󰀅
− (ℓ− s)(ℓ+ s+ 1)x(x+ 1)− isϖ(2x+ 1) +ϖ2

󰀆
R = 0 .

To find solutions to this we consider the ansatz

R(x) = x−s−iϖ(1 + x)−s+iϖF (x) , (F.9)

and get the solution

R(x) =C1
x−iϖ(1 + x)iϖ

[x(1 + x)]s
2F1(−ℓ− s, 1 + ℓ− s; 1− 2iϖ − s;−x)

+C2
xiϖ(1 + x)iϖ

(1 + x)s
2F1(−ℓ+ 2iϖ, 1 + ℓ+ 2iϖ; 1 + 2iϖ + s;−x) , (F.10)

1We looked at both solutions and found that their behavior is indeed very similar.
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where 2F1(a, b; c; z) is the standard hypergeometric function. Now we want to associate these functions with the

asymptotic behavior of R(r) at the horizon given in (4.29). It turns out that the ingoing mode is obtained with

C1 = 4−s and C2 = 0, while the outgoing mode comes from taking C1 = 0 and C2 = 1. This motivates us to

perform a rescaling, yielding

Rnear(x) = Cin
x−iϖ(1 + x)iϖ

4s [x(1 + x)]s
2F1(−ℓ− s, 1 + ℓ− s; 1− 2iϖ − s;−x) (F.11)

+ Cout
xiϖ(x+ 1)iϖ

(x+ 1)s
2F1(−ℓ+ 2iϖ, 1 + ℓ+ 2iϖ; 1 + 2iϖ + s;−x) .

In this form, taking Cin = 1 and Cout = 0 yields the asymptotic behavior of RH at the horizon, and for R∞ we can

identify Cin and Cout with Bin and Bout, respectively.

F.1.2 Far region

To look now at the region far away from the BH we must take x ≫ ℓ(ℓ + 1). That means we can take (x + 1) → x

and neglect the last two terms inside the square brackets in (F.7) altogether, yielding

x4 d
2R

dx2
+ 2(s+ 1)x3 dR

dx
+

󰀅
ϖ2x4 + 2isϖx3 − (ℓ− s)(ℓ+ s+ 1)x2󰀆R = 0 . (F.12)

The solution to this equation can be obtained directly, and when written in terms of special functions it takes the

following form:

Rfar(x) =C3 xℓ−se−iϖx U(ℓ− s+ 1, 2ℓ+ 2, 2iϖx) + C4 xℓ−se−iϖx L2ℓ+1
s−ℓ−1(2iϖx) , (F.13)

where U(a, b, z) is the confluent hypergeometric function of the second kind and Lα
n(z) is a generalized Laguerre

polynomial. As it turns out, however, this is not the most useful way of writing this solution; instead, we should

employ the formula 22.5.54 from “Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical

Tables” by M. Abramowitz and I. A. Stegun (which from here on out is referred to as AS), which states that

Lα
n(z) =

󰀣
n+ α

n

󰀤

1F1(−n,α+ 1, z) , (F.14)

where 1F1(a, b; z) is the confluent hypergeometric function of the first kind. We can then use this to rewrite (F.13),

which, after rescaling C4, becomes

Rfar(x) =C3 xℓ−se−iϖx U(ℓ− s+ 1, 2ℓ+ 2, 2iϖx) + C4 xℓ−se−iϖx
1F1(ℓ− s+ 1; 2ℓ+ 2; 2iϖx) . (F.15)

Next we focus on matching the solutions of (F.11) and (F.15) in the region where ℓ(ℓ + 1) ≪ x ≪ ℓ(ℓ + 1)/|ϖ|.

We will do this separately for the two relevant boundary conditions, purely ingoing waves at the horizon and purely

outgoing waves at infinity.

Before doing so, however, we want to clarify what it is we want to solve for, for which we must look back at

Eqs. (4.52) and (4.58). What we don’t know in those expressions is Ain and RH,∞(x0), where x0 = r0/2M − 1 .

Finding Ain is straightforward and is done in the following subsection, but the problem with finding RH,∞(x0) is that

we must say which branch of the analytical solution is valid at x0. Since we are interested in studying circular orbits

and we are working in the |ϖ| ≪ 1 limit, we choose to use the near region branch, which is valid for studying slow
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orbits, as ω = mΩ0, and thus

|v0| ≪ 1 <
ℓ(ℓ+ 1)

|m| =⇒ |ϖ|x0 ≪ ℓ(ℓ+ 1) , (F.16)

where Ω0 and v0 = r0Ω0 are the angular and linear velocities seen by a stationary observer at infinity, respectively.

F.2 Matching: purely ingoing waves at the horizon

The solution with purely ingoing boundary conditions at the horizon is RH , and we want it to exhibit the asymptotic

behavior given in Eqs. (F.3) and (F.1). Solving for RH will allow us to get two of the quantities we are looking for: Ain

and RH(x0) = RH
near(x0). The first step to do so is imposing the behavior at the horizon, which is done by setting

Cin = 1 and Cout = 0 in (F.11), so that

RH
near =

x−iϖ(1 + x)iϖ

4s [x(1 + x)]s
2F1(−ℓ− s, 1 + ℓ− s; 1− 2iϖ − s;−x) . (F.17)

Proceeding to larger values of r, the matching of the two solutions is done in the region where ℓ(ℓ + 1) ≪ x ≪

ℓ(ℓ+ 1)/|ϖ|. With that in mind, we start by looking at the x ≫ ℓ(ℓ+ 1) limit of (F.17). Using the formula AS 15.3.7,

2F1(a, b, c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a

2F1(a, 1− c+ a, 1− b+ a; 1/z) (F.18)

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−b

2F1(b, 1− c+ b, 1− a+ b; 1/z) ,

to rewritte (F.17), and then taking the limit x ≫ ℓ(ℓ+ 1), yields

RH
near ≈

4−sΓ(1 + 2l)Γ(1− 2iϖ − s)

Γ(1 + ℓ− 2iϖ)Γ(1 + ℓ− s)
xℓ−s +

4−sΓ(−1− 2l)Γ(1− 2iϖ − s)

Γ(−ℓ− 2iϖ)Γ(−ℓ− s)
x−ℓ−s−1 (x ≫ ℓ(ℓ+ 1)) . (F.19)

It is a well-known fact that the gamma function Γ(z) has poles when z is a non-positive integer. Since ℓ > |s| ≥ 0,

this is the case in some of the gamma function values above. However, the poles of the gamma function are all

simple, and can thus cancel out with each other. Indeed, using

Γ(−n+ ε) ≈ Res(Γ,−n)

ε
=

(−1)n

n!

1

ε
, (F.20)

where n ∈ Z+ and ε ≪ 1, we will treat all potentially ill-behaved gamma function values from here on. Starting with

Eq. (F.19), after we resolve the divergences in the gamma functions, we find

RH
near ≈ iϖ(−1)s21−2sΓ(−2iϖ − s+ 1)

ℓ! (ℓ+ s)!

(2ℓ+ 1)!
x−1−ℓ−s (F.21)

+
4−sΓ(2ℓ+ 1)Γ(−2iϖ − s+ 1)

Γ(ℓ− 2iϖ + 1)Γ(ℓ− s+ 1)
xℓ−s (x ≫ ℓ(ℓ+ 1)) .

Now, turning to the behavior of (F.15) in the matching region where x ≪ ℓ(ℓ + 1)/|ϖ|, we must simply take the

ϖx → 0 limit of said equation:

RH
far ≈

󰀕
Γ(−1− 2l)

Γ(−ℓ− s)
C3 + C4

󰀖
xℓ−s −

󰀕
i ℓ e−iπl

4ℓϖ2ℓ+1

Γ(2l)

Γ(ℓ− s+ 1)
C3

󰀖
x−ℓ−s−1 (|ϖ|x ≪ ℓ(ℓ+ 1)) . (F.22)

To get the behavior corresponding to (F.21), we must have

C3 =
eiπl(−1)s+1ϖ2ℓ+222l−2s+1Γ(ℓ− s+ 1)Γ(−2iϖ − s+ 1) ℓ! (ℓ+ s)!

ℓΓ(2l) (2ℓ+ 1)!
(F.23)
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and

C4 =
(−1)−ℓ2−2sΓ(−2iϖ − s+ 1)

ℓ((2ℓ+ 1)!)2Γ(2l)Γ(ℓ− 2iϖ + 1)Γ(ℓ− s+ 1)
(F.24)

×
󰀓
(−1)lΓ(2l)Γ(2ℓ+ 1) ℓ ((2ℓ+ 1)!)2 + 22ℓ+1eiπl(−1)2s+1ϖ2ℓ+2Γ(ℓ− 2iϖ + 1)Γ(ℓ− s+ 1)2 ℓ! ((ℓ+ s)!)2

󰀔
.

Now, the only thing missing is finding the value of Ain (see Eq. (F.1)), as it will be needed to get the solution of the

Teukolsky equation with a source. Thus, we must simply use the asymptotic form for (F.15) for x → ∞. Using A.S

13.5.1,

1F1(a, b; z)
z→∞−−−→ Γ(b)

󰀕
ezza−b

Γ(a)
+

eiπaz−a

Γ(b− a)

󰀖
, (F.25)

and AS 13.5.2,

U(a, b, z)
z→∞−−−→ z−a , (F.26)

we obtain for Ain and Aout

Ain = −2−l−seiπ(l−s)Γ(2l + 1)Γ(2l + 2)(iϖ)−l+s−1Γ(−2iϖ − s+ 1)

Γ(l − 2iϖ + 1)Γ(l − s+ 1)Γ(l + s+ 1)
(F.27)

and

Aout =− 2−l−s(iϖ)−l−s−1Γ(−2iϖ − s+ 1)

Γ(2l + 1)Γ(2l + 2)Γ(l − 2iϖ + 1)Γ(l − s+ 1)2
(F.28)

×
󰀓
−Γ(2l + 1)2Γ(2l + 2)2 + 4l+1e2iπsl!ϖ2l+2((l + s)!)2Γ(l − 2iϖ + 1)Γ(l − s+ 1)2

󰀔

Thus, to study energy flux to infinity, we already have everything we need in Ain and RH
near(x); however, to get the

energy flux into the horizon, we still need to find R∞
near(x).

F.3 Matching: purely outgoing waves at infinity

The procedure to perform the matching and find R∞(x) is the opposite to that of the previous subsection, as now

the boundary conditions are first applied at infinity (Eqs. (F.4) and (F.2)). That sets C3 and C4, and once we have

the far region solution we can match it to the near region one to obtain R∞
near(x), which is precisely what we need for

Eq. (4.58), as R∞(r0) = R∞
near(x0).

With that in mind, we need to start by looking at the asymptotic behavior of the solution in the far region (F.15) for

x → ∞, as that is where we will enforce the boundary conditions. We do this by employing Eqs. (F.25) and (F.26),

which yields the following values for the coefficients:

C3 =
2l−seiπ(l−s)(iϖ)l+s+1Γ(l − s+ 1)

Γ(l + s+ 1)
and C4 =

2l−s(iϖ)l+s+1Γ(l − s+ 1)

Γ(2l + 2)
. (F.29)

Once that has been done, we need to look at the solution Rfar in the matching region, which we do by taking the

limit |ϖ|x ≪ ℓ(ℓ+ 1). The resulting expression is to be compared with the solution Rnear in the same region, which

in that case reduces to taking the limit x ≫ ℓ(ℓ+1) of (F.11) and using the relation in Eq. (F.18). Altogether, the final
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result for the coefficients is

Cin =− 2−l+s−2ϖ−2(l+1)(iϖ)l+s+1Γ(l − 2iϖ + 1)Γ(l − s+ 1)

Γ(2l + 1)Γ(2l + 2)|l|!|2l + 1|!Γ(l + s+ 1)Γ(−2iϖ − s+ 1)
(F.30)

× 1

(−1)2sΓ(l − 2iϖ + 1)Γ(l − s+ 1)|l + s|! + Γ(l + 2iϖ + 1)Γ(l + s+ 1)|l − s|!

×
󰀓
Γ(2l + 1)2Γ(2l + 2)(|2l + 1|!)2 + 4l+1ϖ2l+2|l|!Γ(l + 2iϖ + 1)Γ(l − s+ 1)Γ(l + s+ 1)|l

− s|!(Γ(2l + 2)|l + s|!− |2l + 1|!Γ(l + s+ 1))
󰀔
,

Cout =
ϖ−2(l+1)2−l−s−2(iϖ)l+s+1Γ(l + 2iϖ + 1)

Γ(2l + 1)Γ(2l + 2)|l|!|2l + 1|!Γ(2iϖ + s+ 1)
(F.31)

× 1

e2iπsΓ(l − 2iϖ + 1)Γ(l − s+ 1)|l + s|! + Γ(l + 2iϖ + 1)Γ(l + s+ 1)|l − s|!

×
󰀓
Γ(2l + 1)2Γ(2l + 2)(|2l + 1|!)2 − |2l + 1|!Γ(l + s+ 1))

− 4l+1e2iπsϖ2l+2|l|!Γ(l − 2iϖ + 1)Γ(l − s+ 1)2|l + s|!(Γ(2l + 2)|l + s|!
󰀔
.

We now know R∞
near(x), and so we have completed the task we set ourselves. To obtain an analytic expression for

the solution to the homogeneous Teukolsky equation with the boundary conditions discussed in the beginning of

this Appendix, we just have to replace the desired values of s, ℓ and m, provided, of course, that the orbit in question

has M |ω| ≪ 1 as well as |v0| ≪ 1.
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Appendix G

Explicit expressions for some

analytical results

In this Appendix, we give the full explicit expressions for the quantities αℓ, ζℓ, βℓ, ξℓ and σℓ defined in Ch. 5:

αℓ =
2

ℓ

󰀥󰀕
ℓ− 1

ℓ

󰀖ℓ−1
1

(ℓ+ 1)(r0 − 2) 2F1

󰀃
1− ℓ, ℓ+ 2; 2; 1− r0

2

󰀄 (G.1)

󰀓
((l − 2)r0 + 4) 2F1

󰀓
1− ℓ, ℓ+ 2; 2; 1− r0

2

󰀔
− (l − 1)r0 2F1

󰀓
2− ℓ, ℓ+ 2; 2; 1− r0

2

󰀔󰀔󰀦2

;

ζℓ = r−2
0

󰀕
ℓ+ 1

ℓ

󰀖2ℓ+1 (ℓ+ 2)3 2F1

󰀃
−ℓ, ℓ+ 3; 2; 1− r0

2

󰀄
2

2(2ℓ+ 1)2(2ℓ+ 3) 2F1

󰀃
1− ℓ, ℓ+ 2; 2; 1− r0

2

󰀄
2
; (G.2)

βℓ =
2

ℓ

󰀥
(ℓ− 1)

ℓ(ℓ+ 1)(r0 − 2)2 2F1

󰀓
ℓ+ 1, ℓ+ 2; 2(ℓ+ 1);− 2

r0−2

󰀔

×
󰀕
(r0 − 2)((ℓ+ 3)r0 − 4) 2F1

󰀓
ℓ+ 1, ℓ+ 2; 2ℓ+ 2;− 2

r0 − 2

󰀔
(G.3)

−(ℓ+ 2)r0 2F1

󰀓
ℓ+ 2, ℓ+ 3; 2ℓ+ 3;− 2

r0 − 2

󰀔󰀖󰀦2

;

ξℓ(r0) = (r0 − 2)−2 (ℓ+ 1)2(ℓ+ 2)(2ℓ+ 2)!((2ℓ)!!)2

ℓ(2ℓ+ 1)(2ℓ+ 3)(2ℓ)!((2ℓ+ 2)!!)2
2F1

󰀓
ℓ+ 2, ℓ+ 3; 2(ℓ+ 2);− 2

r0−2

󰀔
2

2F1

󰀓
ℓ+ 1, ℓ+ 2; 2(ℓ+ 1);− 2

r0−2

󰀔
2
; (G.4)

Σℓ(r0) = 3 4ℓ+1r20(r0 − 2)−2(ℓ+2)
l(2ℓ+ 1)(2ℓ)!Γ(ℓ+ 1)2Γ(ℓ+ 2)2 2F1

󰀓
ℓ+ 1, ℓ+ 2; 2(ℓ+ 1);− 2

r0−2

󰀔
2

(ℓ+ 1)((2ℓ)!!)2Γ(2ℓ+ 2)2
. (G.5)
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Appendix H

Numerical methods

In this Appendix, we discuss the methods employed to get the numerical results for the energy flux to infinity and

into the BH horizon, which are thoroughly discussed in Sec. 6. As mentioned before, the problem of finding these

energy fluxes boils down to solving for three quantities :

• RH
ωlm(r0): the solution of the homogeneous Teukolsky equation (Eq. (4.20)) with boundary conditions corre-

sponding to purely ingoing waves at the horizon (see Eqs. (4.33) and (4.34)), evaluated at the orbital radius

r0;

• R∞
ωlm(r0): the solution of the homogeneous Teukolsky equation (Eq. (4.20)), with boundary conditions cor-

responding to purely outgoing waves at infinity (see Eqs. (4.33) and (4.34)), evaluated at the orbital radius

r0;

• Ain: the coefficient for the ingoing mode at infinity for the solution RH
ωlm(r) (see first item and Eq. (4.33)).

These are then replaced in Eqs. (4.52), (4.53), (4.58) and (4.59) to yield the desired result. Thus, once again, the

only difficult task is solving the homogeneous Teukolsky equation, Eq. (4.20), with physical boundary conditions.

From here on, in this Appendix, we drop the subscripts in the mode amplitudes Rωlm to unclutter the notation.

The astrophysical reference values for the parameters in the simulations are those given in Table H.1. It is

important to note that of the three parameters B0 (magnetic field strength), q (particle charge), and m (particle

mass), only two independent quantities end up being relevant for the simulations, namely q and ωc = qB0/m. This

is because we work in the adiabatic approximation, meaning that the particle is always assumed to be in a circular

orbit; hence, as a result of the equivalence principle, m and B0 can be eliminated in favor of ωc. We cannot eliminate

q from the simulation because the flux formulas are ∝ q2; however, we eliminated it from our analysis by always

expressing the results in terms of ratios of fluxes. Thus, in the end, the only parameter controlling the results is the

cyclotron frequency ωc. Still, for each simulation, we must give a value for q, for which we use the one in the table

below; but we consider only variations of the magnetic parameter, which could happen through a variation in either

B0 or m. For reference, the values in the table correspond to Mωc ≈ 3.5× 10−5.

We perform all our calculations using a Mathematica notebook and solve the homogeneous equation using the

function NDSolve. This method requires as inputs the equation, the boundary conditions, and the domain of interest.

In our particular case, setting M = 1, the domain of interest is the outer domain of communications, r ∈ (2,∞). The

boundary conditions are what changes between the two solutions: for R∞, we give the function and its derivative at

infinity, which we get from Eq. (4.33); for RH , we give the function and its derivative at the EH, which we get from

(4.34).
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Qty Value Simulation
M 10M⊙ 1
B0 108 G 1.20× 10−11

q 7× 1015 C 1.44× 10−5

m 1020 kg 5× 10−12

Table H.1: Reference parameters used in our simulations: M is the BH mass, B0

is the value of the magnetic field strength, q is the charge of the particle and m is
its mass. The second column gives values in SI units and solar masses (M⊙) while
the third gives the values used in the actual simulation (after normalizing to the BH
mass).

This may seem simple, but, in fact, we have issues at both ends of our domain, as the computer is neither able

to deal with r = 2 (because the equation has a singularity) nor with r = ∞ (simply because infinity is not a number).

The problem at the horizon is solved by bringing the lower bound of the domain to a radius

r1 ≡ 2 + ε , 0 < ε ≪ 1 , (H.1)

where we can vary ε. Similarly, we approximate ∞ by the finite radius

r2 ≡ N

ω
, N ∋ N ≫ 1, (H.2)

where ω is the wave frequency and N is a large integer we can vary. The idea is that, for large enough N , at r2 the

wave is propagating in a flat background with well-defined wave parameters, since we allowed for a large number

of wavelengths to pass; that being the case, we expect its properties to remain roughly the same all the way out to

infinity.

If by varying ε and N we find values for which decreasing the former or increasing the latter does not change

the results, that means that we can use r1 and r2 as the boundaries of the domain with confidence. For the horizon,

it was quite easy to establish a stable value of ε and we settled for

ε = 10−6 M. (H.3)

Doing the same for N proved a lot more complicated, as increasing N seemed to always lead to changes in the

results. This is because r2 is generally not far enough away from the BH for the asymptotic behavior of the solutions

to be accurate. To solve the problem, we must consider extra terms in the behavior of the solutions at r2, namely

terms that will eventually die off but that may still be relevant at r2 < ∞. We choose to keep all terms up to O(r−4),

so the actual asymptotic behaviour of the solutions becomes

RH
ωlm(r → r2) →

Ain

r
e−iωr󰂏

󰀕
1 +

ain

r
+

bin

r2
+

cin

r3

󰀖
(H.4)

+Aout r eiωr󰂏

󰀕
1 +

aout

r
+

bout

r2
+

cout

r3
+

dout

r4
+

eout

r5

󰀖
+O(r−5)

and

R∞
ωlm(r → r2) → r eiωr󰂏

󰀕
1 +

aout

r
+

bout

r2
+

cout

r3
+

dout

r4
+

eout

r5

󰀖
+O(r−5) . (H.5)

The eight coefficients in these expressions are determined by replacing the ansatz for RH
ωlm from Eq. (H.4) in

the homogeneous Teukolsky equation and solving order by order in r. This yields
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ain =
i

2ω
(2− λ+ 4iω) , (H.6)

bin =
i

4ω
(2(λ− 4) + ain(6− λ)) , (H.7)

cin =
i

6ω
(8 + 2ain(λ− 12) + bin(12− λ− 4iω)) , (H.8)

aout =
i

2ω
λ , (H.9)

bout = − i

4ω
λ aout , (H.10)

cout =
i

6ω
bout (λ− 2) , (H.11)

dout =
i

8ω
(4 bout + cout(λ− 6)) , (H.12)

eout =
i

10ω
(12 cout + dout(λ− 12)) , (H.13)

where λ = (l − s)(l + s+ 1). After this expansion is included, it is indeed possible to find a stable value for N , and

we settled for

N = 15, 000. (H.14)

Having sorted the problems with the horizon and infinity, everything is set and now we just let the computer do the

work for us.

It is important to mention that the main reason we inferred for the code not converging was having an orbital

velocity v0 ≪ 1 too small. Luckily, in that limit, we can resort to our analytical results.

96


