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Resumo

Nesta tese são estudados métodos aproximados para o cálculo da radiação gravitacional emitida em vários processos.
A não linearidade das equações the Einstein dificulta a tarefa de encontrar soluções radiativas exactas, o que exige que
se aborde o problema ou numericamente, ou com métodos aproximados. Nesta tese estudam-se métodos aproximados.
Começa-se por rever a relatividade geral linearizada, sendo depois utilizados dois métodos diferentes para calcular a
energia radiada, através de ondas gravitacionais, em diferentes processos. Na primeira parte da tese considera-se uma
expansão para velocidades baixas, a aproximação quadrupolo-octopolo. Esta aproximação é utilizada para calcular a
energia e momento radiados, em dimensões pares, em dois processos: uma partı́cula pontual a cair radialmente num
buraco negro de Schwarzschild-Tangherlini, e duas partı́culas pontuais em órbita circular. Na última parte da tese
considera-se uma aproximação diferente, o limite de frequência zero (ZFL). Este método dá uma aproximação para o
espectro da radiação emitida a baixas frequências, e para velocidades arbitráriamente altas. Utiliza-se este método para
estimar a energia radiada na colisão de duas partı́culas pontuais, sendo calculado também o momento radiado no caso
de uma colisão frontal. Finalmente considera-se a aplicação deste método para descrever a colisão de dois buracos
negros, discutindo-se a aplicabilidade da mesma.
Parte dos resultados obtidos durante esta tese figuram nas referências [1] e [2].

Palavras-chave: Relatividade geral; Radiação gravitacional; Dimensões extra; Limite de frequência zero; Co-
lisão de buracos negros.
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Abstract

This thesis deals with approximation methods in the study of gravitational radiation emission. The non-linearity of
Einstein equations makes it difficult to find exact radiative solutions, so one must employ either numerical, or ap-
proximation methods. In this thesis we study the latter. The linearized theory of general relativity is reviewed, and
two approximation methods are employed to compute the energy emitted, through gravitational waves, in different
processes. Both techniques rely on a linearized scheme. In the first part of the thesis we consider a small velocity
expansion, the quadrupole-octopole approximation. This method is used to compute the radiated energy and mo-
mentum, in higher (even) dimensional spacetimes, for two different systems: a point particle falling radially into a
Schwarzschild-Tangherlini black hole, and for two particles in circular orbit. In the last part of the thesis a different ap-
proach is pursued, the Zero Frequency Limit (ZFL), which provides an approximation of the low-frequency spectrum,
valid for arbitrarily high velocities. This method is then employed to estimate the radiated energy (and momentum
for the case of a head-on collision) in a point particle collision, generalizing the known results for the case of a non
head-on collision. Finally the applicability of the ZFL approach to describe the high energy collision of two black
holes is discussed.
Part of the results obtained during this thesis appear in Refs. [1] and [2].

Keywords: General Relativity; Gravitational radiation; Extra dimensions; Zero frequency limit; High energy
black hole collisions.
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Chapter 1

Introduction

This thesis is devoted to the study of approximation methods for understanding gravitational radiation. Gravitational
waves are a prediction of the theory of General Relativity (GR), and one expects to finally detect them in the forth-
coming years. GR will pass a crucial test if gravitational waves are detected, and if the observed waveforms match the
predicted templates. The fact that gravitational waves interact very weakly with matter makes them both hard to detect,
and a good tool for gravitational wave astronomy, as they remain practically unaltered in their journey from source to
detector. Since there are now detectors operating at, or near design sensitivity, there is a pressing need for accurate
templates for the waveforms emitted in the various physical processes. The lack of exact radiative solutions makes it
necessary to pursue either numerical solutions, or approximations, to find waveforms for different processes.

When two bodies collide or scatter gravitational radiation is emitted, due to the changes in momentum involved in
the process. The computation of the radiated energy is most of the times only possible numerically, however there are
several approximations which allow one to estimate the emitted energy. Here we describe two such approximations,
the quadrupole-octopole approximation, and the Zero Frequency Limit (ZFL). The first is a small velocity expansion of
the metric perturbation induced by the particles, while the latter is a long wave-length approximation, valid for arbitrary
velocities, which provides a good approximation of the emitted energy spectrum at low frequencies. The first method
is derived in Chapter 2, using the extension to higher dimensions of a formula for the metric perturbation first derived
by Press [3]. This approximation is applied to compute the energy and momentum radiated (at quadrupole-octopole
order) by a point particle falling radially into a higher dimensional Schwarzschild-Tangherlini black hole, and by two
particles in circular orbit. The second method is applied in Chapter 3 to study the collision of two point particles. We
start by reviewing the head-on collision, and gravitational scatter of point particles, studied by Smarr in Ref. [4] where
the radiated energy and momentum are computed. Then the ZFL calculation is generalized for collisions with a finite
impact parameter. Finally this collision is used as a toy model to describe the high energy collision of two black holes,
and the ZFL results are compared against numerical and perturbative calculations.

The thesis is divided in three Chapters, Chapter 1 reviews the linearized theory of gravity, Chapter 2 studies the
quadrupole-octopole approximation in higher dimensions, and Chapter 3 studies the Zero Frequency Limit approxima-
tion. Part of Chapter 3 has been submitted for publication [1].

1.1 Conventions

Unless otherwise stated we use geometrical units, that is G = c = 1. Einstein’s summation convention is assumed, that
i, aµbµ ≡

∑
µ aµbµ. O(A) stands for terms of order A.
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Metric, Riemann tensor and Einstein equations

The signature of the metric g = gµνdxµ⊗dxν is (−+ ...+) and, unless otherwise stated, we take the number of spacetime
dimensions, D, to be 4. Latin indices vary from 1 to D − 1, and the Greek ones vary from 0 to D − 1, where 0 denotes
the time component, and 1, ...D − 1 the spatial components. The Minkwoski metric in D–dimensions is denoted by
ηµν = diag(−1,+1, ...,+1).
The inner product of two vectors V,W is denoted by V · W ≡ g(V,W) = gµνVµWν. 3−vectors are distinguished by
bold-face, and the inner product between two 3−vectors V,W is denoted by V ·W ≡ gi jV iW j.

Our conventions for the Riemann tensor Rµ
νρσ are such that, in local coordinates {xµ},

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γ

µ
αρΓ

α
νσ − Γ

µ
ασΓανρ , (1.1)

where ∂µ ≡ ∂
∂xµ , and Γ

µ
νρ are the Christoffel symbols for the Levi-Civita connection, which are determined uniquely

from the metric by

Γ
µ
νρ =

1
2

gµλ
(
∂νgρλ + ∂ρgλν − ∂λgνρ

)
. (1.2)

Thus the Einstein equations are

Rµν −
1
2

gµνR =
8π
c4 Tµν , (1.3)

where Rµν ≡ Rα
µαν is the Ricci tensor and R ≡ gµνRµν is the scalar curvature (or the Ricci scalar).

Fourier transform

We denote the Fourier transform by a F̃, and use the following conventions:

F̃(ω) =
1

2π

∫ +∞

−∞

dt eiωtF(t) , (1.4)

F(t) =

∫ +∞

−∞

dω e−iωtF̃(ω) , (1.5)

F̃(k) =

∫ +∞

−∞

dD−1x e−ik·xF(x) , (1.6)

F(x) =
1

(2π)D−1

∫ +∞

−∞

dD−1k eik·xF̃(k) (1.7)

1.2 Linearized Gravity

In this Chapter we review known results[5, 6, 7, 8, 9] of linearized theory of gravity and gravitational wave generation.
We focus on 4 dimensional spacetimes only, although in Chapter 2 we use the linearized theory of gravity in (even)
D−dimensional spacetimes. The study of gravitational radiation in higher dimensional spacetimes can be found in [10]
and is also discussed in Sec. 2.1.

In order to introduce the linearized approximation, let us go briefly through some aspects of General Relativity.
The gravitational action is S = S EH[gµν]+S M[gµν,Ψ], where gµν denotes the metric, S EH is the Einstein-Hilbert action,
S M is the matter action and Ψ denotes the matter fields. The Einstein-Hilbert action is given by

S EH =
1

16π

∫
d4x

√
−det[g]R , (1.8)
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where R is the scalar curvature (see Sec. 1.1), d4x = dx dy dz dt, and det[g] stands for the metric determinant, which is
negative. The Einstein field equations are obtained by taking the variation of the action with respect to the dynamical
variable gµν, δS

δgµν = 0. This yields the following field equations

Rµν −
1
2

gµνR = 8πTµν , (1.9)

where Rµν is the Ricci tensor (see Sec. 1.1), and the energy-momentum tensor Tµν is defined by

δS M =
1
2

∫
d4x

√
−det[g]T µνδgµν (1.10)

The Einstein tensor is defined as Gµν ≡ Rµν −
1
2 gµνR.

Since for any symmetric connection1, as the Levi-Civita connection, the Riemann tensor satisfies the Bianchi identities,
i.e. Rρ

αβγ + Rρ
βγα + Rρ

γαβ = 0, the Einstein equations impose the conservation of the energy-momentum tensor. This
means that ∇µT µν = 0, where ∇µ stands for the covariant derivative.

General Relativity is invariant under diffeomorphisms2. This means that Einstein equations do not determine com-
pletely the metric, that is, if a certain gµν is a solution of Einstein equations then a metric g′µν related to the first by a
diffeomorphism is also a solution. This is called the local gauge invariance of General Relativity, and is analogous to
the gauge invariance of Maxwell equations. The ambiguity is removed by fixing a gauge, i.e., by choosing a particular
coordinate system, which removes the spurious degrees of freedom. Note that invariance under diffeomorphisms also
implies the conservation of the energy-momentum tensor. This symmetry is of particular importance to gravitational
waves, as one must check that these waves cannot be gauged away by an appropriate coordinate transformation. In
fact we can count the number of unphysical degrees of freedom in the following way. The metric being a symmetric
2-tensor has 10 independent components, and the 10 Einstein equations should suffice to determine completely the met-
ric. However, not all of Einstein equations are independent, in fact, since there are four Bianchi identities, ∇µGµν = 0,
there are only 6 independent equations, which leaves us with 4 unphysical degrees of freedom in gµν. This freedom is
represented by the local representation of the diffeomorphism, x′µ(xµ).

The full Einstein equations consist on a set of 10 second-order, nonlinear, coupled partial differential equations
for the metric, therefore finding exact radiative solutions is extremely complicated (although some radiative solutions
are known, such as the C metric [11]). In this Section we review the linearized theory of gravity, which studies the
weak-field radiative solutions of Einstein equations. This approach describes waves with energy and momentum small
enough not to affect their own propagation, overcoming the difficulty created by the fact that the energy-momentum
tensor of gravitational waves contributes to their own propagation. Since it is expected that the gravitational waves
detected are of low intensity this approach is justified in practice, for the propagation of gravitational waves.
When the gravitational fields are weak, we can express the metric as the flat Minkowski metric, ηµν = diag(−1,+1,+1,+1),
plus a small perturbation hµν, such that |hµν| � 1, and that gµν approaches ηµν asymptotically,

gµν = ηµν + hµν . (1.11)

Keeping only the leading term in hµν, the inverse metric is

gµν ≡
[
gµν

]−1
= ηµν − hµν . (1.12)

1A connection is said to be symmetric whenever the torsion, which in local coordinates is given by Γ
µ
νρ − Γ

µ
ρν, vanishes.

2I.e. invariant under differentiable bijective transformations with a differentiable inverse. This invariance means that if the Universe is rep-
resented by a pseudo-Riemannian manifold (M, g,Ψ) with matter fields Ψ, then (M, g,Ψ) and (M, φ∗g, φ∗Ψ) represent the same physical situation,
where the map φ is a diffeomorphism φ : M → M and φ∗ denotes the pullback by φ. This means that there are no preferred coordinate systems in
GR, which is often stated as the generally covariance of GR.
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In a coordinate frame where Eq. (1.11) holds, one can expand the Einstein field equations in powers of hµν, keeping
only the lowest term in hµν, to find the equations of motion obeyed by the perturbation. Note that we can raise and lower
indexes using ηµν and ηµν instead of gµν and gµν, since the corrections would be of higher order in the perturbation.
Expanding the Christoffel symbols (1.2) to first order in hµν we get

Γ
µ
νρ =

1
2
ηµλ

(
∂νhρλ + ∂ρhλν − ∂λhνρ

)
. (1.13)

Similarly the Ricci tensor is

Rµν =
1
2

(
∂σ∂νhσµ + ∂σ∂µhσν − ∂µ∂νh − �hµν

)
, (1.14)

where the d’Alembertian is simply given by � ≡ ηρν∂µ∂ν, and h ≡ ηµνhµν is the trace of the perturbation. The Ricci
scalar is then R = ∂µ∂νhµν − �h, and the Einstein equations in first order are

Gµν =
1
2

(
∂σ∂νhσµ + ∂σ∂µhσν − ∂µ∂νh − �hµν − ∂µ∂νhµν + �h

)
= 4πTµν , (1.15)

where Tµν is the energy-momentum tensor, calculated to zeroth order in the perturbation. As the energy-momentum
must be small, in order to the weak field approximation to apply, higher order contributions to the energy-momentum
tensor will not be considered. This means that the lowest order in the energy-momentum tensor is of the same order of
magnitude as the perturbation. As a consequence the covariant conservation of the energy-momentum tensor∇µT µν = 0
becomes

∂µT µν = 0 , (1.16)

where we have taken the covariant derivative in the zeroth order.

Note that the linearized theory of gravity can also be applied to perturbations about some other background –
not necessarily Minkowski space – by expanding the metric in the same way gµν = g(0)

µν + hµν. This means that if one
wanted to expand about flat background but with a noneuclidean coordinate basis, one had to expand about

(
g(0)

flat

)
µν

. All
derivatives would then have to be replaced by covariant derivatives corresponding to the affine connection compatible
with the metric

(
g(0)

flat

)
µν

.

Gauge transformations

As pointed out in the previous Section General Relativity has diffeomorphism invariance, which is broken due to choice
of a coordinate system in which (1.11) holds. However a residual gauge symmetry remains, which is analysed in this
Section.
The choice of a frame where gµν = ηµν + hµν does not completely specify the coordinate system of the background,
as there may be other coordinate systems in which the metric can be expressed as a flat background plus a small
perturbation, with a different perturbation. We now study such coordinates systems, to find which is the remaining
gauge invariance. Let (Mp, g) be the physical pseudo-Riemannian manifold, where the metric g obeys the Einstein
equations. Consider a diffeomorphism φ : Mb → Mp such that φ∗g = η + h, with |h| � 1, and where Mb is also a
pseudo-Riemannian manifold. If the gravitational fields on Mp are weak then there will exist some diffeomorphism
for which this is true. Let us now consider a one-parameter group of diffeomorphism ψε : Mb → Mb, defined by the
local flow of a vector field ξ given in local coordinates by ξ = ξµ d

dxµ . If ε is sufficient small then φ ◦ ψε will also obey
(φ ◦ ψε)∗ g = η + hε , with a different perturbation hε such that |hε | � 1. Expanding hε for ε infinitesimal one gets the
known result [5, 6, 7, 8, 9]

hεµν = hµν + 2ε∂(µξν) , (1.17)

4



where the (µν) stands for symmetrization on µ and ν. One can then check that such a transformation does not change
the linearized Riemann tensor, thus leaving the physical spacetime unchanged.

From the ten initial degrees of freedom of the metric only six of them are physical, which means that the spurious
degrees of freedom may be removed by fixing a gauge. There are several possible gauges, and we choose the harmonic
gauge (also known as the Lorenz gauge, since its analogous to the Lorenz gauge in electromagnetism). Defining the
trace-reversed perturbation h̄µν = hµν − 1

2ηµνh, this gauge corresponds to setting

∂µh̄µν = 0 , (1.18)

by choosing the vector field ξµ adequately. This perturbation is called trace-reversed because h̄ = ηµνhµν = −h. Note
that the original perturbation is not transverse in this gauge since ∂µhµν − 1

2η
µν∂µh = 0. This gauge has the advantage

of casting the Einstein equations in the simple form

�h̄µν = −16πTµν . (1.19)

Transverse traceless gauge

To study gravitational wave propagation and interaction one is interested in the wave equation outside the source, where
T µν = 0. In fact, in several situations one is only interested in the metric perturbation at large distances from the source,
where some additional simplifications apply, as we shall see later on. Outside the sources the wave equation becomes

�hµν = 0 , (1.20)

which means that the gauge fixing condition imposed in Eq. (1.18) fails to fix the gauge completely, as there is a
residual freedom. This freedom corresponds to a further transformation, with ξµ satisfying �ξµ = 0. We can fix this
freedom by setting h = 0 and hi0 = 0 by choosing ξ0 and ξi appropriately. Under these conditions the harmonic gauge
condition (1.18) for µ = 0 simplifies to ∂0h00 = 0, which means h00 is constant in time, corresponding to the static
part of the gravitational interactions. Since the gravitational wave is time dependent, we can take h00 = 0, as far as
gravitational waves are concerned. The only nonzero components are now the spatial ones hi j. The harmonic gauge
condition (1.18) for µ = i requires that ∂ihi j = 0. Thus we have reduced the previous six degrees of freedom to only
two. Since hµν is traceless, there is no distinction between hµν and h̄µν. This gauge is known as the transverse traceless
(TT) gauge, and it is denoted as hTT

µν . We now summarize the transverse traceless gauge conditions:
hTT
µ0 = 0

hTT = 0

∂ihTT
i j = 0

(1.21)

Note that this gauge choice can not be applied inside the source, where T µν , 0. Although we can still make the
coordinate transformation described above, it can not be used to set to zero any component of hµν since it no longer
satisfies �hµν = 0. This is similar to what happens in electrodynamics with the Lorenz gauge outside the source.

One could now find solutions to the wave equation (1.20) in the TT gauge. The plane wave is such a solution.
Considering a wave with 4-wave-vector kµ = (ω,k), in the TT gauge, the only non vanishing components of hTT

i j are in
a plane transverse to k̂ ≡ k/|k|. Since gravitational radiation propagates at the speed of light, as can one can see from
the wave equation where � = −∂2

t + ∂i∂
i, we must have k · k = 0, that is ω = |k|. This wave has then two polarizations,

5



the “plus” h+ and the “cross” h× polarizations. These are the two polarizations expected for the graviton, since it is a
massless spin–2 particle. We can define the two polarization tensors εI of a wave travelling in the k̂ direction by

ε× =

√
2

2
(u ⊗ v + v ⊗ u) , ε+ =

√
2

2
(u ⊗ u − v ⊗ v) , (1.22)

where I = ×,+, and u, v are unit vectors orthogonal to k̂. Note that (εI)i j(εI′ )i j = δII′ .

Consider now a wave travelling outside the sources from which it was emitted, in the harmonic gauge, but not yet
in the TT gauge. It is possible to define a projector which allows us to find the metric perturbation in the TT gauge. To
do so we begin by defining the tensor Pi j(n) as

Pi j(n) = δi j − nin j , (1.23)

which is symmetric and transverse, meaning that niPi j(n) = 0. This tensor is also a projector since Pi j(n)P jk(n) =

Pik(n), and its trace is P = 2. It projects vectors onto the surface with unit normal vector n, that is if V is a vector we
have that PV · n = 0. We choose ni to point along the direction of propagation of the wave, so that Pi j projects onto a
2−sphere. This tensor can be used to build a projector onto the TT gauge. We accomplish this by defining Λi j,kl

3 as

Λi j,kl(n) = PikP jl −
1
2

Pi jPkl , (1.24)

which is a transverse on all indices, traceless with respect to the first two and the last two indices, and is still a projector
since Λi j,klΛkl,mn = Λi j,mn. This tensor can be written explicitly in terms of n as

Λi j,kl(n) = δikδ jl −
1
2
δi jδkl − n jnlδik − ninkδ jl +

1
2

nknlδi j +
1
2

nin jδkl +
1
2

nin jnknl , (1.25)

which is symmetric for the change i j↔ kl. If we have a gravitational wave in the harmonic gauge hµν, which means it
is a solution of �hµν = 0 outside the source, then we can project this solution in the TT gauge with Λi j,kl by

hTT
i j = Λi j,klhkl . (1.26)

The hTT
i j computed this way is a solution to �hTT

i j = 0 and it is transverse and traceless due to the properties of the
projector. This method of computing the metric perturbation in the TT gauge is be very useful since we are interested
in the field far from the source from which the waves far emitted, that is in vacuum. Since hTT

i j is traceless we have
hTT

i j = h̄TT
i j = Λi j,klh̄kl.

1.3 Generation of Gravitational Waves

In this Section we study the production of gravitational waves by sources. Since T µν no longer vanishes the TT gauge
cannot be chosen, as explained above, and we must solve the wave equation (1.19). The solution of this equation is
found by the convolution of the Green function and the source term −16πT µν, plus an homogeneous solution which
will be discarded. The metric perturbation is then

h̄µν(t, x) = −16π
∫

dt′
∫

dD−1x′Tµν(t′, x′)Gret(t − t′, x − x′) , (1.27)

3Note that the comma in the definition of this tensor is simply present to distinguish the first to indices from the last two, and it does not stand
for partial differentiation, which is also commonly denoted by a comma. This notation was chosen in agreement with the standard notation in the
literature [5, 8].
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where Gret denotes the retarded Green function for the d’Alembertian,

ηµν∂µ∂νG(t − t′, x − x′) = δ(t − t′)δ3(x − x′) . (1.28)

We are only interested in the retarded Green function since it is the one which propagates signals forward in time. The
retarded Green function is given by[12]

Gret(t − t′, x − x′) = −
1

4π
δ(t − |x − x′|)
|x − x′|

Θ(t − t′) . (1.29)

Plugging this back in Eq. (1.27) we find

h̄µν(t, x) = 4
∫

d3x′
1

|x − x′|
Tµν(tret, x′) , (1.30)

where the retarded time tret = t − |x − x′|. This means that the sources at all the points in the past light cone of a given
point contribute to the perturbation in the gravitational field at that point.
This is the exact solution to the wave equation in linearized gravity. However in radiation problems one is only
interested in the field at large distances from the sources, that is r ≡ |x| � Rs and also r � λ and r � R2

s/λ, where Rs

is the source’s dimension and λ the wavelength of the wave. This is defined as the wave zone, and in such conditions
we can make the following approximation

|x − x′| ' r − x′ · n , n = x/r . (1.31)

The leading term in Eq. (1.30) is then

h̄µν(t, x) =
4
r

∫
d3x′Tµν(tret, x′) , (1.32)

and tret can be approximated by t − (r − x′ · n).

Now we can proceed to Fourier-analyse the metric perturbation. The conventions for the Fourier transforms are
defined in Sec. 1.1. If we express the energy-momentum tensor in terms of its Fourier transform

Tµν(t, x) =
1

(2π)3

∫ +∞

−∞

d3k
∫ +∞

−∞

dωT̃µν(ω,k)e−iωt+ik·x , (1.33)

and replace in Eq. (1.32), approximating tret, and performing the integration in x′ and k, the trace-reversed metric
perturbation becomes

h̄µν(t, x) =
4
r

∫
dωT̃µν(ω,ωn)eiω(t−r) . (1.34)

Quadrupole approximation

So far we have made a weak field approximation, which is valid whenever the fields are sufficiently weak to assume
the background to be flat. Note that we can always choose r large enough so that the assumption that the fields are
measured in the wave zone is valid, and since that is the quantity one is interested in, for radiation problems, we shall
continue to make that assumption. The weak field approximation does not, however, necessarily imply small velocities.
For a system held together by gravitational forces, weak fields imply that the typical velocities inside the source are
small, whereas for systems with dynamics determined by nongravitational forces the weak field approximation may be
taken independently of the velocities. This means that for systems whose dynamics are determined by nongravitational
forces we can consider weak fields and arbitrary velocities. We now consider a further approximation, by assuming
that the typical velocities in a given system are small, that is v � 1.
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This is the quadrupole approximation of the metric perturbation, which, as we shall see, provides a much simpler way
to compute it, valid as long as the velocities are small, and it was first derived by Einstein [13]. For several systems
it would become quite complicated to compute the full metric perturbation, and the fact that for this approximation
one only has to consider the 00 component of the energy-momentum tensor simplifies matters significantly. This will
become clear with the example which is considered in Sec. 1.4.

Let us assume that the typical velocities inside the source of gravitational radiation are small v � 1. If Rs denotes
the source’s size, and ωs the typical frequency of the motion inside the source, one has v ∼ Rsωs. This approximation
implies the following assumption, regarding the emitted radiation’s reduced wavelength o, o � Rs, where we have
used o = 1/ω ∼ ωs, and where ω denotes the radiation frequency, which we assume to be of the same order of magni-
tude as the typical frequencies inside the source.

Once again, we Fourier-analyse the energy-momentum tensor, Eq. (1.33), and replace this expression in the metric
perturbation (1.32). Since the field is being computed in the wave zone tret is approximated by t − (r − x′ · n), and we
can expand the exponential for ωx′ · n . Rsωs � 14. We get

h̄µν(t, x) =
4
r

∫
d3x′

∫ +∞

−∞

d3k
(2π)3

∫ +∞

−∞

dωT̃µν(ω,k)e−iω(t−r)−iωk·x′ (1 − iωx′ · n + . . .
)
, (1.35)

thus by integrating in ω and k we have,

h̄µν(t, x) =
4
r

∫
d3x′

(
Tµν(t − r, x′) + x′ · n ∂tTµν(t − r,k′) + . . .

)
. (1.36)

The quadrupole approximation is obtained considering only the leading term in the expansion, while higher multipoles
come from higher order terms. In this Section we focus only on the leading term, and we leave the next-to-leading
order contribution for Sec. 2.2.

Keeping in mind that we have fixed the gauge to be the harmonic gauge, the only metric components we need are
the purely space-like ones. Indeed, if we have h̄i j we can compute h̄0 j using the harmonic gauge condition (1.18), and
also h̄00 from h̄0 j using the same condition. The conservation of the energy-momentum tensor in turn allows us to
compute the metric knowing only its 00 component. Integrating by parts in reverse

∫
d3x′Ti j(t − r, x′), and imposing

that ∂µT µν = 0 we have that ∫
d3x′Ti j(t − r, x′) =

1
2
∂2

t

∫
d3x′x′ix′ jT00(t − r, x′) , (1.37)

where we have used the fact that the source is isolated, thus the integration of perfect divergencies vanishes, and that
the left-hand side of Eq. (1.36) must be symmetric in µν since the metric is.
It is conventional to define the quadrupole moment tensor of the energy density T 00 by

Di j(t) =

∫
dD−1x xi x j T 00(t, x) . (1.38)

Finally one obtains the quadrupole formula

h̄i j(t, x) =
2
r
∂2

t Di j(t − r) . (1.39)

Note that outside the source we can always use the projectors Λi j,kl to project the metric in the TT gauge.

4The integration is over x′ and the only contributions will arise from inside the source, where Tµν is nonvanishing, therefore |x′ | will be smaller
or equal to the source’s dimension Rs.
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As pointed out above the same procedure can be used to obtain a systematic expansion of the metric perturbation
in order to get higher multipolar terms (this expansion is treated with great detail in [8]). In the next Chapter we con-
sider the next-to-leading order term in this expansion, the octopole term. Instead of expanding Eq. (1.32) we expand
a totally equivalent expression, which was first derived by Press in [3]. We deduce this formula in higher dimensional
spacetimes, and take the small velocity expansion to obtain the quadrupole-octopole formula, which will be used to
study two different systems.

1.4 Energy and Momentum of Gravitational Waves

A natural question regarding gravitational wave emission is the energy and momentum they carry. Since gravitational
waves carry energy they should also contribute to the spacetime’s curvature, which is what we consider in this Section.
In the linearized approach we treated the gravitational waves as the perturbation to a flat background metric, but to
compute the gravitational waves’ contribution to the curvature we have to go beyond this linearized approximation.
The linearized approximation is equivalent to a field theory with a massless spin−2 particle (the graviton) propagating
on a fixed background metric. This particle corresponds to the metric perturbation, so similarly to what is done for
other field theories we will try to derive an energy-momentum tensor for the perturbation hµν.
In order to study the energy carried by gravitational waves we will go back to the expansion about flat space, and
consider the propagation of waves in vacuum. Let us take the following expansion of the spacetime metric about flat
space, where we have considered not only the first order term εh(1)

µν , which was formerly denoted just by hµν, but also
next order term ε2h(2)

µν ,

gµν = ηµν + εh(1)
µν + ε2h(2)

µν , (1.40)

where we have that ε � 1 is a small adimensional parameter, and ε2h(2)
µν is of the same order as

(
εh(1)

µν

)2
. We will

now consider the Einstein equations order by order in ε. Let R(i)
µν, i = 0, 1, 2 denote the terms in the Ricci tensor Rµν

independent, linear and quadratic on the metric respectively. The zeroth order Einstein equations give R(0)
µν −

1
2ηµνR

(0) =

0, which is always true since our background ηµν is already solution to Einstein equations. The first order terms
give R(1)

µν [εh(1)] − 1
2ηµνR

(1)[εh(1)] = 0, which was the equation found previously, and the one from which the metric
perturbation is obtained. Notice that the term in εh(1)

µνR(0) vanishes because R(0) = 0 from the previous order equation.
Let us turn now to the second order terms, which we have neglected in the previous Sections, they yield the following
equations

R(1)
µν [ε2h(2)] + R(2)

µν [εh(1)] −
1
2
ηµνR(1)[ε2h(2)] −

1
2
ηµνR(2)[εh(1)] = 0 , (1.41)

where we have to consider two contributions, the terms from the Ricci tensor quadratic in the metric perturbation,
which are denoted by R(2)

µν [εh(1)] and are computed for the metric term of order ε; and the Ricci tensor terms linear
in the metric perturbation, which will have a second order contribution from the metric perturbation in second order
ε2h(2)

µν , and are denoted by R(1)
µν [ε2h(2)]. Notice that, once again, terms like ε2h(2)

µνR(0) and εh(1)
µνR(1)[h(1)] vanish by the

previous equations. We can now re-write this equation in the following way

R(1)
µν [ε2h(2)] −

1
2
ηµνR(1)[ε2h(2)] = 8πtµν , tµν = −

1
8π

(
R(2)
µν [εh(1)] −

1
2
ηµνR(2)[εh(1)]

)
, (1.42)

in which the right-hand side will be interpreted as the first order perturbation energy-momentum tensor. This gravita-
tional energy-momentum tensor will be the one used to obtain the energy carried by gravitational waves. The Bianchi
identities also imply, since we are far from the sources, that this tensor is conserved ∂µtµν = 0
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There is one major problem with this identification, this gravitational energy-momentum tensor is not invariant
under diffeomorphisms. We can solve this problem by always considering tµν to be an average over several wavelengths.

Since we are considering Einstein equations in vacuum we can go to the TT gauge to compute the gravitational
energy-momentum tensor. Let 〈· · · 〉av denote the average over several wavelengths. In this gauge we have

tµν =
1

32π
〈∂µhTT

ρσ∂νh
TTρσ〉av , (1.43)

where we have once again denoted the first order perturbation by hµν instead of εh(1)
µν . This quantity is known as the

Isaacson energy-momentum tensor [14]. Now that we have an expression for the gravitational energy-momentum ten-
sor we can proceed to compute the radiated energy and linear momentum, which is carried out in the following Sections.

So far we have taken the source of the wave equation to be simply T µν, that is, the matter energy-momentum
tensor. However in some cases one may need to consider the contribution from the gravitational energy-momentum
tensor as well. The conditions under which this term has to be also considered were studied in Ref. [15]. Under these
circumstances we have to take the source term to be an effective energy-momentum tensor T µν = T µν + tµν, which is
conserved as a consequence of the Bianchi identities, i.e. ∂νT µν = 0.

Radiated energy

The total gravitational energy inside a given surface Σ is

EV =

∫
V

d3x t00 , (1.44)

where V is the volume bounded by the surface Σ. Using the conservation of the gravitational energy-momentum tensor,
we have

∫
V d3x∂µtµν = 0, so

dEV

dt
= −

∫
V

d3x ∂iti0 = −

∫
Σ

dΣ nit0i , (1.45)

where n is an out-pointing normal unit vector to Σ, and dΣ is the surface element. If we consider a 2−sphere at spatial
infinity, we have that the energy radiated per unit of time through the sphere is

dEV

dt
= −

∫
S 2
∞

dΩ t0rr2 , (1.46)

since dΣ = r2dΩ and n = er. From the previous Section we have that

t0r =
1

32π
〈∂0hTT

i j ∂rhTT
i j 〉 . (1.47)

At large distances from the source we have that t0r = t00, since at large distances the metric is given by Eq. (1.32),
where the second part depends only on tret = t− r, which means ∂rhTT

i j = −∂0hTT
i j +O(1/r2). This means that Eq. (1.46)

can be re-written as dEV
dt = −

∫
S 2
∞

dΩ t00r2. Note that the energy that leaves the sphere is negative, so the gravitational
waves carry a energy flux given by

d2E
dtdΩ

=
r2

32π

〈
ḣTT

jk ḣTT
jk

〉
av
, (1.48)

where the dot over h denotes a time derivative. When computing the total energy, that is, when one integrates in time,
we can perform the integration before taking the average over several wavelengths 〈· · · 〉av, and then we would have the
temporal average of a constant, and the average may be omitted.
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We can now compute the energy carried by gravitational waves for a given metric perturbation, for that we just
have to project the perturbation onto the TT gauge as seen in the previous Sections. However there is another useful
expression one can derive which allows us to compute the radiated energy, per unit of frequency, directly from the
Fourier transforms of the source’s energy-momentum tensor. In the last part of this Section we derive this expression.
Going back to Eq. (1.34) we see that at large distances from the source it can be approximated by a plane wave,

h̄µν =

∫
dω εµν(ω,k)eik·x , (1.49)

where the wave vector is (k)µ = (ω,ωn) and the polarization tensors are

εµν(ω,k) =
4
r

T̃µν(ω,k) . (1.50)

Computing the gravitational energy-momentum tensor for such a plane wave, imposing only the harmonic gauge
conditions, one finds,

tµν =
kµkν

r2π

(
T̃ λρT̃λρ −

1
2
|T̃ λ

λ|
2
)
. (1.51)

Plugging this back in Eq. (1.45), and keeping in mind that the energy carried by the gravitational waves is d2E
dtdΩ

= −
d2EV
dtdΩ

,
one gets5

d2E
dωdΩ

= 2ω2
(
T̃ µν(ω,k)T̃ ∗µν(ω,k) −

1
2

∣∣∣T̃ λ
λ(ω,k)

∣∣∣2) , (1.52)

where the star stands for complex conjugation and the direction in which the energy is radiated is k̂ = k/ω . The energy
can also be expressed in terms of the purely space-like components of T̃ µν. The conservation equation for T µν implies
that its Fourier transforms obey the following relations kµT̃ µν(ω,k) = 0, so it is possible to write T̃ 00 and T̃ 0i in terms
of T̃ i j

T̃00(ω,k) = k̂ik̂ jT̃i j(ω,k) ,

T̃0i(ω,k) = −k̂ jT̃i j(ω,k) . (1.53)

With these identities at hand, Eq. (1.52) can be written as6

d2E
dωdΩ

= 2ω2Λi j,lm(k̂)T̃ ∗i j(ω,k)T̃ lm(ω,k) , (1.54)

where Λi j,lm(k̂) is the projector onto the TT gauge Eq. (1.25). If one considers a system of freely moving point particles,
with 4-momenta (p j)µ = (E j, γ jm jv j), which suffer a sudden collision at t = 0, changing their velocities abruptly to v′,
the energy-momentum tensor is

T µν(t, x) =
∑

j

pµj pνj
E j

δ3(x − vt)Θ(−t) +
∑

j

p′µj p′νj
E′j

δ3(x − v′t)Θ(t) , (1.55)

where the primes denote final states, and the sums run over the particles labelled by j. Taking the Fourier transform of
this equation and plugging back in Eq. (1.52) we find the following radiated energy

d2E
dωdΩ

=
ω2

2π2

∑
N,M

ηNηM
(pN · pM)2 − 1

2 m2
Nm2

M

k · pNk · pM , (1.56)

where ηN is equal to ±1 for particles final and initial states respectively, and the sums run over all the particles both in
the initial and in the final states.

5Note that if the conventions for the Fourier transforms had been different this expression would be changed (see Sec. 1.1), if we had defined
the Fourier transform with respect to the frequency with dω/(2π) our energy would differ from Eq. (1.52) by factor 1/(4π2).

6This is what we would have obtained if we had projected Eq. (1.34) in the TT gauge and plugged it in Eq. (1.48).
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Radiated energy in the quadrupole approximation

For slow moving sources we can use the quadrupole approximation derived in Sec. 1.3 to estimate the total radiated
energy. Projecting the metric perturbation Eq. (1.39) onto the TT gauge and plugging in Eq. (1.48) we can integrate
over the solid angle dΩ using the integrals from Appendix A.1. Finally, the radiated energy per unit of time in the
quadrupole approximation is given by

dE
dt

=
1
5
〈∂3

t Di j(t)∂3
t Di j(t) −

1
3

∣∣∣∂3
t Di j(t)

∣∣∣2〉av . (1.57)

We can also consider the Fourier transform to get the frequency spectrum, and we get7

dE
dω

=
4πω6

5

(
D̃i j(ω)D∗i j(ω) −

1
3

∣∣∣D̃i j(ω)
∣∣∣2) . (1.58)

Example: rotating body in the quadrupole approximation
As an example of the quadrupole approximation we compute the energy radiated by a (slowly) rotating body.

Let us consider a body rigidly rotating about one of its principle axis. Without loss of generality we consider the body
is rotating about the z–axis. If the body has a density ρ(x′), where the prime denotes a coordinate system rotating with
the body, we have that the 00 component of the energy-momentum tensor is, for a slow rotating body, T 00(t, x) = ρ(x′).
If the body, and the coordinate system {x′} is rotating with frequency Ω we have that the only nonvanishing components
of the quadrupole moment tensor are (Eq. (1.38))

D11(t) =
I1 − I2

2
(1 + cos 2Ωt)

D22(t) =
I1 − I2

2
(1 − cos 2Ωt)

D33(t) = I3

D12(t) = D21(t) =
I1 − I2

2
sin 2Ωt , (1.59)

where Ii are the body’s principal moments of inertia. The trace-reversed metric perturbation is given by Eq. (1.39)

h̄11 = −h̄22 = −
4Ω2

r
(I1 − I2) cos 2Ωtret (1.60a)

h̄12 = −
4Ω2

r
(I1 − I2) sin 2Ωtret . (1.60b)

We can now project the metric onto the TT gauge, considering the observation direction to be n = (sin θ cos φ, sin θ sin φ, cos θ),
using Eq. (1.26). As discussed above, the “plus” and “cross” metric perturbations correspond to the metric components
h′TT

11 and h′TT
12 respectively, in an orthonormal frame {X1, X2, X3}, where X3 = n. We take this frame to be one such that

when n = ez we have X1 = ex and X2 = ey. By performing a rotation to the {X1, X2, X3} frame, we find

h+ =
2(I1 − I2)Ω2

r
(1 + cos2 θ) cos(2φ − 2Ωtret) , h× = −

4(I1 − I2)Ω2

r
cos θ sin(2φ − 2Ωtret) . (1.61)

Performing the Fourier transforms we see that the energy is radiated only at ω = 2Ω, so we have

dE
dt

=
32
5

Ω6(I1 − I2)2 . (1.62)

This emission at twice the rotating frequency for a rotating body is recovered in Secs. 2.2 and 3.2 for two particles in
circular orbit. We also see that if the body has circular symmetry around the rotation axis z we have I1 = I2, and it does
not radiate, a property that holds even when the quadrupole approximation is not valid [5].

7Once again different conventions in the definition of the Fourier transform must be taken into account in order to compare this expression with
other references with different conventions, such as [8].
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Radiated momentum

Gravitational waves carry not only energy, but also linear and angular momentum. Momentum transport by gravi-
tational waves was first considered in [16], and has been widely studied. An interesting consequence of momentum
emission through gravitational waves is the recoil effect in the source due to the global conservation of momentum
[16, 17, 18]. As we shall see, the quadrupole approximation is insufficient to compute the radiated momentum, since it
appears in the quadrupole-octopole cross terms at the lowest order as found.

To compute the radiated momentum we proceed in a similar way. The momentum emitted through gravitational
waves in the direction j inside a volume V at large distances from the source is

P j
V =

∫
V

d3x t0 j , (1.63)

then from the conservation of the gravitational energy-momentum tensor, we have that

dP j
V

dt
= −

∫
V

d3x ∂iti j = −

∫
Σ

dΣ nit ji = −

∫
Σ

dΣ t j0 . (1.64)

Considering once again a 2−sphere, the momentum flux carried by gravitational waves is,

d2P j

dtdΩ
= −

r2

32π
〈ḣTT

il ∂
jhTTil

〉av . (1.65)

On the other hand, from Eq. (1.64) we have

d2P j

dtdΩ
= r2nit ji = n j d2E

dtdΩ
. (1.66)

Therefore radiated momentum is given by the integration of the energy d2E
dtdΩ

over a two-sphere at infinity, S∞, centred
on the coordinate origin,

dPi

dt
=

∫
S∞

dΩ
d2E
dtdΩ

ni , (1.67)

where ni is a unit radial vector on S∞. If we were to consider the energy radiated at quadrupole order, in which the
only angular dependence is on Λi j,kl the integral in (1.67) would vanish, due to parity.
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Chapter 2

Multipolar Expansion of the Metric Perturbation

The exact solution of Eq. (1.30) proves to be hard to compute in several situations, while the quadrupole approxima-
tion discussed in the previous chapter (Sec. 1.3) has the advantage of greatly simplifying the calculations involved, for
nonrelativistic systems. As mention previously, this expansion can be taken up to higher orders in a systematic fashion.
In this chapter we derive a multipolar expansion for the metric perturbation in higher dimensional spacetimes, with an
even number of dimensions. This expression is obtained expanding a formula for the metric perturbation (equivalent
to (1.32))first found by Press [3], which we now generalize to higher dimensional spacetimes. This expansion assumes
that the source is small and that the velocities are low, so naturally the first term in this expansion is the quadrupolar
approximation (see Sec. 1.3). This first term allows one to compute the radiated energy in a given system, and although
it is a small velocity approximation it provides a quite good approximation to some processes, even when the velocities
involved are not always low. The second term in the multipolar expansion is the octopole term. Clearly this term
provides a correction to the radiated energy computed only using the quadrupolar approximation, but it also allows us
to estimate the total radiated momentum in this process. Higher order terms are obtained in a similar way, but we are
only concerned with the first two.
In the last Sections of this Chapter we use the quadrupole-octopole formula to compute the radiated energy and mo-
mentum for a particle falling along a radial geodesic into a D−dimensional Schwarzschild-Tangherlini black hole, and
for a particle in circular orbit.

2.1 Press Formula in Higher Dimensional Spacetimes

In 1977 Press [3] derived a formula which is an exact replacement for Eq. (1.32), which means that it is valid whenever
one is computing the field at large distances from the source. It is similar to the quadrupole approximation discussed
in Chapter 1, but it does not assume slow motion or small sources. In fact, it includes not only the quadrupole term but
also the octopole and all higher multipoles, which can be obtained expanding the equation for small sources and low
velocities. In the following Section we proceed in a way similar to Press in Ref. [3] to derive this formula in higher
(even) dimensional spacetimes.

As seen in Chapter 1, when gravitational field are weak, one can expand the metric around a background metric,
which we considered to be Minkowski flat. This then leads to a wave equation to the metric perturbation hµν, with
a source term which is the energy-momentum tensor, Eq. (1.19). Here we shall consider the generalization of the
linearized approach to higher dimensional spacetimes, in order to derive Press’s formula. The study the linearized
Einstein equations in D−dimensions was done by Cardoso et al. in Ref. [10]. This proceeding is briefly described
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here. The metric is expanded as gµν = ηµν + hµν, with |hµν| � 1. As discussed in Sec. 1.2 there remains a gauge
freedom, which is fixed choosing the harmonic gauge, ∂µhµν− 1

2η
µν∂µh = 0. If one expands the Einstein field equations

Gµν = 8πTµν, keeping only the lowest order terms, one finds, in this particular gauge

�hµν = −16πS µν , (2.1)

where the wave equation was cast in this simple form by the definition of S µν, in D−dimensions as,

S µν = Tµν −
1

D − 2
ηµν Tα

α , (2.2)

instead of writing the wave equation in terms of the trace-reversed perturbation (h̄µν) as in Eq. (1.19).
Note that the energy-momentum tensor is taken to be just that of matter, therefore the Bianchi identities imply that

∂νT µν = 0. The general solution to this equation is determined by the convolution of the Green function G(x− x′, t− t′)
and the source term −16πS µν. The Green function satisfies

ηµν∂µ∂νG(t − t′, x − x′) = δ(t − t′)δ(x − x′) , (2.3)

and hµν is

hµν(t, x) = −16π
∫

dt′
∫

dD−1x′S µν(t′, x′)G(t − t′, x − x′) + homogeneous solutions , (2.4)

The retarded Green function (which is the one that propagates signals into the future) is, for even D

Gret(t, x) = −
Θ(t)
4π

[
−

∂

2πr∂r

](D−4)/2 [
δ(t − r)

r

]
. (2.5)

The authors of [10] also compute the Green function for odd dimensions, however its analytical structure makes it
hard to study gravitational waves in these spacetimes. The difference between even and odd dimensions is that for odd
dimensions the Green function no longer depends solely on delta functions and its derivatives. As in [10] we restrict
our study to even dimensional spacetimes only.
The general solution to Eq. (2.1), discarding the homogeneous solution and re-introducing the trace-reversed perturba-
tion, is given by

h̄µν(t, x) = −16π
∫

dt′
∫

dD−1x′ T µν(t′, x′)Gret(t − t′, x − x′) , (2.6)

where h̄µν = hµν− 1
2 ηµν hα α. In radiation problems one is only interested on the metric perturbation far from the source,

that is in the wave zone, as discussed in Sec. 1.3. This means we can make the following approximation, assuming that
the field is being computed at sufficiently large distances from the source and also at a distance much larger than the
source’s dimensions,

h̄µν(t, x) = 8π
1

(2πr)(D−2)/2 ∂
( D−4

2 )
t

[∫
dD−1x′T µν(t − |x − x′|, x′)

]
. (2.7)

As shown in Chapter 1, all information about the outgoing gravitational radiation, outside the source, is contained
in the spatial components h̄i j, in fact in only the traceless projection of h̄i j (TT gauge).
Fourier-analysing the energy-momentum tensor, we have

T µν(t, x) =

∫ ∞

−∞

dωT̃ µν(ω, x)e−iωt , (2.8)

and replacing this in Eq. (2.7) we find

h̄i j(t, x) = 8π
1

(2πr)(D−2)/2 ∂
( D−4

2 )
t

[∫
dD−1x′

∫ ∞

−∞

dωT̃ i j(ω, x′)e−iω(t−|x−x′ |)
]
. (2.9)
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Since we are interested in the metric perturbation far from the source, meaning large r = |x|, we can expand |x − x′| for
large r,

h̄i j(t, x) = 8π
1

(2πr)(D−2)/2 ∂
( D−4

2 )
t

[∫ ∞

−∞

dωeiωr−iωt
∫

dD−1x′T i j(ω, x′)e−iωn·x′
]
, (2.10)

where n = x/r as in Sec. 1.3. Using Eq. (1.16) one can show that

∂l∂m

(
T lmxix je−iωn·x

)
= xix je−iωn·x

(
−ω2T 00 + 2ω2nmT 0m − ω2nlnmT lm

)
+ 2∂l

(
∂m

(
xix j

)
T lme−iωn·x

)
− 2T i je−iωn·x . (2.11)

Substituting this in Eq. (2.10) yields

h̄i j(t, x) =
4π

(2πr)(D−2)/2 ∂
( D−4

2 )
t

[∫ ∞

−∞

dω(−ω2)eiωr−iωt
∫

dD−1x′x′ix′ je−iωn·x′
(
T̃ 00 − 2nmT̃ 0m + nlnmT̃ lm

)]
, (2.12)

where the surface terms arising from the integration of perfect divergences vanish. Now the integration in ω yields the
Press formula for general (even) D-dimensional spacetimes

h̄i j(t, x) = 4π
1

(2πr)(D−2)/2 ∂
( D−4

2 )
t

[
d2

dt2

∫
dD−1x′x′ix′ j

(
T 00 − 2nmT 0m + nlnmT lm

)]
, (2.13)

where T µν under an integral means T µν(tret, x′), which means that the energy-momentum tensor and its time derivatives
must be evaluated at a retarded time tret = t − |x − x′| for each x′ before integrating over dD−1x′. In four dimensions we
get Eq. (8) of Ref. [3]

h̄i j(t, x) =
2
r

[
d2

dt2

∫
d3x′x′ix′ j

(
T 00 − 2nmT 0m + nlnmT lm

)]
. (2.14)

This equation reduces to the quadrupole formula, if one considers small sources and low velocities,

h̄i j(t, x) = 4π
1

(2πr)(D−2)/2 ∂
( D−4

2 )
t

[
d2

dt2

∫
dD−1x′x′ix′ jT 00

]
, (2.15)

where tret ' t − r, and T 0m and T lm were neglected. In four dimensions it is just Eq. (1.39). One can also obtain
higher multipole contributions expanding the exponential inside the spacial integral in Eq. (2.12), keeping the terms of
consistent order in v. In the next Section we derive the quadrupole-octopole formula keeping the first two terms in this
expansion.

The radiated energy in higher dimensional spacetimes can be obtained by the same procedure of Sec. 1.3. Since
the gravitational energy-momentum tensor does not depend on the dimensionality of the spacetime [10], the radiated
energy in D−dimensions is given by

d2E
dtdΩ

=
rD−2

32π

〈
ḣTT

jk ḣTT
jk

〉
av
, (2.16)

and the projector onto the TT gauge in D−dimension is [10]

Λi j, lm(n) = δilδ jm − n jnmδil − ninlδ jm +
1

D − 2

(
−δi jδlm + nlnmδi j + nin jδlm

)
+

D − 3
D − 2

nin jnlnm . (2.17)

2.2 Quadrupole-Octopole Formula

The quadrupole approximation is particularly useful since it provides a simple way to compute the radiated energy in
the wave zone, for small velocities. The fact that the energy computed in this approximation agrees with other more
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accurate methods, and its simplicity makes it a valuable tool to estimate gravitational radiation emission. As we shall
see in the next Section 2.2 it even provides a fairly good estimate for the radiated energy in processes where it is not
always valid. However if one is interested in computing the radiated momentum this formula is not enough, as seen in
Sec. 1.4, since the radiated momentum appears in quadrupole-octopole cross terms at lowest order.

Expanding Eq. (2.12) and keeping the first two terms, one gets the quadrupole-octopole formula

h̄i j(t, x) = 4π
1

(2πr)(D−2)/2 ∂
( D−4

2 )
t

[∫
dD−1x′

(
x′ix′ j

d2

dt2 T 00 + nlx′lx′ix′ j
d3

dt3 T 00 − 2nmx′ix′ j
d2

dt2 T 0m
)]
, (2.18)

where T µν under an integral means T µν(t− r, x). In D = 4 this is Eq. (13) of [3]. Integration by parts casts this equation
in a more familiar form (in D = 4 one gets Bekenstein’s Eq. (10) [18]). The last term becomes only dependent on the
angular momentum tensor M0i j = T oix j − T o jxi, and the two contributions from the octopole order are often called the
mass octopole and current quadrupole contributions.
Note that the radiated momentum is obtained integrating the radiated energy, Eq. (1.48), times a factor ni over the solid
angle. Since the integration of an odd number of ni vanishes, and the projector Λi j,kl has an even number of ni, the only
term which will contribute to the radiated momentum will be the cross term between the quadrupole (no term in ni)
and the octopole (one ni) contributions to h̄i j. For D = 4 the radiated momentum is equivalent to Eq. (2.19) Ref. [19].
We can now define the momenta of T 00 and of T 0i, which are useful in the following Sections

Di j(t) =

∫
dD−1x xi x j T 00(t, x) , (2.19a)

Di jk(t) =

∫
dD−1x xi x jxk T 00(t, x) , (2.19b)

Pi j,k(t) =

∫
dD−1x xi x j T 0k(t, x) . (2.19c)

Radial infall into a Schwarzschild-Tangherlini black hole

Emission of energy as gravitational waves when a particle falls into a Schwarzschild black hole was one of the first
problems to be studied [20, 21], in D = 4 dimensions. It later served as a model calculation when evolving Einstein
equations fully numerically [22, 23]. In Sec. 3.3 this problem is again considered when computing the radiated energy
in a black hole collision.
Ruffini and Wheeler [24] first studied the radial infall of a test particle in a Schwarzschild black hole, using a flat-space
linearized theory of gravity to compute the radiated energy. The particle’s motion was derived from the Schwarzschild
metric (in D = 4). The authors found the total radiated energy to be 0.00246µ2/M, where µ is the point particle’s
mass, and M is the black hole mass. They also found the energy spectrum to be peaked at a frequency of 0.15/M.
Later Zerilli [20], using the Regge-Wheeler[25] formalism, gave the mathematical foundations for a fully relativis-
tic treatment. Zerilli’s equations were then solved numerically for a particle initially at rest at infinity falling into a
Schwarzschild black hole by Davis et al. [21]. The authors found the radiated energy to be 0.01µ2/M. The spectrum
reaches a maximum at ωrH ' 0.64, and then it is exponentially damped, where rH = 2M is the Schwarzschild radius
in D = 4.

The quadrupole approximation has been used to study this same process in 4 [27] and higher [10] dimensions. For
D = 4 the radiated energy in the quadrupole approximation is 2

105µ
2/M ' 0.019µ2/M, which is of the same order of

magnitude as the fully relativistic numerical results. It should be noted that the quadrupole approximation does not
hold near the black hole, since the background is no longer flat, and the motion is not slow. Nevertheless, it seems
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to provide an order of magnitude estimate for the total energy emitted in the process, which means that the radiated
energy is dominated by the quadrupole and, in general, by the lowest multipoles. The approximation can also be used
to estimate the frequency spectrum of the radiated energy [8]. Since this approximation breaks down somewhere near
the horizon, it will only be valid up to a certain tmax, which means one does not have the radiated energy for all t to
compute the Fourier transform. However when the particle is far from the horizon, r � rH , where r is the particle’s
position, the approximation is valid, and one can estimate the part of the spectrum with ωrH � 1. One also expects the
spectrum to be peaked at ωrH ∼ 1, and that the spectrum will be exponentially damped for ωrH � 1, since there is no
length-scale smaller than rH in the problem, which is in reasonable agreement with the numerical results of [21].

Using Eq. (2.18) we can compute the energy radiated away as gravitational waves when a point particle with mass
µ falls into a D-dimensional Schwarzschild black hole. The D-dimensional Schwarzschild-Tangherlini metric [28], in
spherical coordinates (t, r, θ1, ..., θD−2), is

ds2 = −

(
1 −

16πM
(D − 2)ΩD−2

1
rD−3

)
dt2 +

(
1 −

16πM
(D − 2)ΩD−2

1
rD−3

)−1

dr2 + rD−2dΩ2
D−2 . (2.20)

Considering a particle falling along a radial geodesic, in the equatorial plane, and at rest at infinity, the geodesic
equations give: (

dr
dτ

)2

=
16πM

(D − 2)ΩD−2

1
rD−3 , (2.21)

If we take the particle to be falling along x1, one has that D11 = µr2
(

dt
dτ

)2
, D111 = µr3 and P11,1 = µ dr

dt r2 are the
only nonvanishing components of Eqs. (2.19a) - (2.19c). Here we have made the flat-space approximation, t = τ,
in the octopole terms, since the corrections would be higher order terms, this also means that dr

dt can be taken to be
given just by Eq. (2.21). However when computing the quadrupole term, one must take these corrections into account
since they will give contributions of the same order as the octopole. In addition higher order corrections to the flat
space approximation should be taken into account, as it is done in the Post-Newtonian formalism. Nevertheless, we
neglect these contribution, since it simplifies matters significantly to consider t = τ, keeping in mind this caveat. Using
Eq. (2.18) the only nonvanishing metric component will be

h̄11(t, x) = 4π
1

(2πr)(D−2)/2

(
∂

( D
2 )

t

(
D11

)
+ n1∂

( D+2
2 )

t

(
D111

)
− 2n1∂

( D
2 )

t

(
P11,1

))
= 4π

1
(2πr)(D−2)/2

(
∂

( D
2 )

t

(
D11

)
+

1
3

n1∂
( D+2

2 )
t

(
D111

))
. (2.22)

Computing the radiated energy, in octopole order, per second and per steradian, we find

d2E
dtdΩ

= 2−D+1π−(D−3)Λ11,11

(
|∂

( D+2
2 )

t D11|
2 +

1
9

n1n1|∂
( D+4

2 )
t D111|

2 +
2
3

n1

(
∂

( D+4
2 )

t (D111)
) (
∂

( D+2
2 )

t (D11)
))
. (2.23)

Integration over the solid angle (see Appendix A.1) gives,

dE
dt

=
22−Dπ

−(D−5)
2 (D − 3)

Γ[(D − 1)/2](D2 − 1)
D

(
|∂

( D+2
2 )

t D11|
2 +

1
9(D + 3)

|∂
( D+4

2 )
t D111|

2
)
. (2.24)

Note that only the first two terms contribute to the radiated energy, since the integration of an odd number of ni vanishes.

We now compute the radiated linear momentum in this process, using Eq. (1.67), where S∞ now denotes a (N −
2)–sphere at infinity. We have to integrate the radiated energy (2.23) times an extra ni in order to get the radiated
momentum, this means that the only term which will contribute to the radiated momentum is the last term in Eq. (2.23),
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since it is the only one with an odd number of ni. Hence we see that the radiated momentum arises from the quadrupole-
octopole cross terms. The radiated momentum is then found to be

dPi

dt
=

2−D+2π−(D−5)/2D(D − 3)
Γ [(D − 1)/2] (D2 − 1)

2δi1

3(D + 3)

(
∂

D+2
2

t (D11) ∂
D+4

2
t (D111)

)
. (2.25)

In D = 4 dimensions this expression for the radiated momentum vanishes, as a consequence of the approximations
employed, since we have to take four time derivatives of an octopole moment proportional to t2, as noted in Ref. [29].
The authors of [29] studied the momentum radiated from a particle falling from rest at infinity along a symmetry axis
into a Kerr black hole using a perturbative approach, and found, for a Schwarzschild black hole ∆Pz = 8.73×10−4µ2/M.

Now we can perform the time derivatives and integrate Eqs. (2.24) and (2.25) in time to get the total radiated energy
and momentum. The only problem that remains is where to stop the integration. The energy diverges for r = 0 but
since as the particle approaches the horizon the radiation becomes infinitely red-shifted this should not pose a problem.
Furthermore, since the standard [26] picture is that the particle will be frozen near the horizon in the last stages, we can
stop the integration at some point near the horizon. We integrate from r = ∞ to a point near the horizon, say r = brH ,
where rH is the horizon radius and b is a number larger than 1. In Table 2.1 it is shown the energy and momentum
computed for several dimensions taking b = 1 and b = 1.2.

Table 2.1: The energy and momentum, in the quadrupole-octopole approximation, radiated by a particle falling from
rest into a higher dimensional Schwarzschild black hole, as a function of dimension. The integration was stopped at a
point brH .

∆Equad ×
M
µ2 ∆Eoct ×

M
µ2 |∆P1| × M

µ2

D b = 1 b = 1.2 b = 1 b = 1.2 b = 1 b = 1.2
4 0.019 0.01 0 0 0 0
6 0.576 0.049 0.191 0.009 0.220 0.014
8 180 1.19 33.89 0.090 46.95 0.198

10 24567 6.13 41354 2.88 1.8 × 104 2.33
12 3.3 × 106 14.8 1.7 × 107 14.5 3.8 × 107 7.53

We see that in D = 4 the radiated energy is only weakly dependent on the cutoff b introduced to stop the integra-
tion. This parameter reflects our ignorance of what happens near the horizon, therefore as long as its influence on the
radiated energy is small, it probably means the prediction is solid and accurate. However for higher dimensions this is
not the case. As the dimensionality of the spacetime grows, so does the difference between the energy and momentum
for different values of b, becoming of several orders of magnitude for larger values of D.

Particle in circular orbit

The quadrupole formula has been widely used to estimate the radiation generated by a system of particles orbiting
each other, yielding excellent results for orbits with low frequency [30]. Peters and Mathews [31] computed the energy
radiated by circular and elliptical orbits in the quadrupole approximation. Its predictions have proved to be consistent
with observational data of the binary pulsar PSR B1913+16 [32], since this formalism can account with precision for
the increase in period of the pulsar, due to gravitational wave emission [33]. The momentum radiated away in this
processes has also been considered by Fitchett in Ref. [27, 35], using the Bekenstein’s quadrupole-octopole formalism,
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and assuming the motion of the components to be Keplerian. The author also studied the recoil effect on the system
due to gravitational wave emission. Later this results we compared against perturbative results for a test particle in a
circular geodesic around a Schwarzschild black hole [27, 36]. These results were found to be in very good agreement
with the quadrupole-octopole approximation for separations larger than 6M, where M denotes the black hole mass.
In this Section we consider the motion of two point particles at a fixed distance from each other, and compute the
radiated energy and momentum in D-dimensions using the quadrupole-octopole approximation. This procedure can
also be applied for elliptic Keplerian orbits (see Refs. [31, 35, 37, 8, 44]). However, since the emission of gravitational
radiation tends to circularize the orbits [31, 37, 8], this kind of orbits are relevant in many astrophysical contexts. In
fact, as shown in Ref. [8] for a binary of two neutron stars, such as the Hulse-Taylor binary pulsar [32], considering an
elliptic Keplerian orbit, the eccentricity goes to zero, to very high accuracy, long before the two neutron stars approach
the coalescence phase.
The energy momentum tensor of a system of point particles with masses m j and velocity v j is

T µν(t, x) =
∑

j

γ jm j

dxµj
dt

dxνj
dt
δ(D−1)(x − x j(t)) , (2.26)

where the sum runs over all the particles, γ j = (1 − v j)−1/2 is the boost factor and x j(t) is the particle’s trajectory. For a
closed system this is the total energy momentum tensor of the system, and it is conserved. However if external forces
act on the system we must take this forces into account when computing the total energy momentum tensor (this is seen
in greater detail in Sec. 3.2 also for two particles in a circular orbit). This means that when we plug in the particle’s
trajectory in Eq. (2.26) that is not a flat-space geodesic, i.e. a straight line, we must take into account the external force
that acts on the particle.1 As we will see in Sec. 3.2, the stresses for this particular system can be though of as the
tensions created by infinitely thin massless rod uniting the two particles. Therefore, this stresses only contribute to the
purely spacelike components of the energy-momentum tensor, which are not considered in the quadrupole-octopole
formalism. This means that we can only consider the particle’s contribution to the energy-momentum tensor, since its
conservation is imposed when deriving the quadrupole-octopole equations.
Before proceeding we must repeat a caveat similar to the one in the previous Section. For a system bound by gravi-
tational forces, corrections to the flat space approximation should be made if one wanted to expand consistently up to
octopole order, since this corrections would be of the same order as the octopole contribution.

Our system consists on two particles of mass m1 and m2 at a distance d1 and d2 from the origin respectively, rotating
around the origin with a rotation frequency Ω. We denote the distance between the two particles by d = d1 + d2, and
place the axes such that the center of mass coincides with the frame’s origin. The particle’s motion is described by

x1(t) = (d1 cos(Ωt), d1 sin(Ωt), 0, . . . , 0) , (2.27a)

x2(t) = (−d2 cos(Ωt),−d2 sin(Ωt), 0, . . . , 0) . (2.27b)

Impose the center of mass to be at the origin gives rise to the following constraint

d1 =
m2d

m1 + m2
, d2 =

m1d
m1 + m2

, (2.28)

and allows us to write the energy-momentum tensor of the system as that of a particle of mass ν with its motion
described by the relative coordinate x1(t) − x2(t). The reduced mass ν is determined by ν = m1m2

m1+m2
, and we define

δ = m2−m1
m1+m2

.

1In fact the conservation of the energy-momentum tensor implies that a test particle will move on a geodesic of the background spacetime [38].
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We consider the energy momentum tensor to be T 00 =
∑

N mNδ(x − xN) and T 0i =
∑

N mN ẋi
Nδ(x − xN), regardless of

the fact that in order to consistently expand the energy the quadrupole term should have a correction due to higher
order terms in the energy-momentum tensor. For the octopole contribution to the energy, and the radiated momentum,
however, it suffices to consider this energy-momentum tensor, since any correction would be of higher order. In the
above expression the dot denotes a time derivative and the sum runs over the particles, N = 1, 2. The nonvanishing
momenta Di j are, now written in terms of the reduced mass of the system, ν, given by

D11 = νd2 1 + cos(2Ωt)
2

, D22 = νd2 1 − cos(2Ωt)
2

, D12 = D21 = νd2 sin(2Ωt)
2

.

The momenta Di jk are not simply those of a point particle with mass ν, whose motion is described by the relative
coordinate, as there appears an extra factor of δ which vanishes for an equal mass collision.

D111 = νδd3 3 cos(Ωt) + cos(3Ωt)
4

, D222 = νδd3 3 sin(Ωt) − sin(3Ωt)
4

,

D112 = D121 = D211 = νδd3 sin(Ωt) + sin(3Ωt)
4

, D221 = D122 = D212 = νδd3 cos(Ωt) − cos(3Ωt)
4

.

Similarly the momenta Pi jk are given in terms of the reduced mass ν and the δ factor

P11,1 = −νδd3Ω
sin(Ωt) + sin(3Ωt)

4
, P22,2 = νδd3Ω

cos(Ωt) − cos(3Ωt)
4

,

P11,2 = νδd3Ω
3 cos(Ωt) + cos(3Ωt)

4
, P22,1 = −νδd3Ω

3 sin(Ωt) − sin(3Ωt)
4

,

P12,1 = P21,1 = −νδd3Ω
cos(Ωt) − cos(3Ωt)

4
, P12,2 = P21,2 = νδd3Ω

sin(Ωt) + sin(3Ωt)
4

.

In deriving the above equations we have used the following relations m1d2
1 + m2d2

2 = νd2 and m1d3
1 + m2d3

2 = νδd3.
From the previous equations we see that at quadrupole order the energy is radiated at frequency ω = 2Ω, similarly to
what was seen in Sec. 1.4 for a rigidly rotating body. At octopole order we see the energy is radiated at ω = Ω, 3Ω,
except for an equal mass collision, for which δ = 0 and the metric perturbation at octopole order vanishes. The same
radiation resonances are recovered in Sec. 3.2 for a system with two particles in a circular orbit. Since in that Section
the energy is not computed in a small velocity approximation we get, not only this first resonances, but also all higher
ones, at all multiples of the rotating frequency for an unequal mass system, and at all even multiples of the rotating
frequency for an equal mass one. The radiated energy in the quadrupole-octopole approximation is

dE
dt

=
8D(D − 3)

π(D−5)/2Γ[(D − 1)/2](D + 1)(D − 2)
ν2d4ΩD+2 +

(D − 3)D
((

3D+2 + 11
)

D + 3D+2 + 31
)

d6δ2ν2ΩD+4

π(D−5)/22DΓ[(D − 1)/2](D − 2)(D2 − 1)(D + 3)
, (2.32)

where the first term is the quadrupole contribution to the radiated energy, which was originally derived in Ref. [10];
and the second is the octopole contribution. The radiated momentum is

dPi

dt
=

D(D − 3)
(
−3D + 3

D+2
2 (D + 1) − 7

)
d5δν2ΩD+3

(D − 2)2
D+2

2 π
D−5

2 Γ [(D + 5)/2]

(
− sin(Ωtret)δi1 + cos(Ωtret)δi2

)
. (2.33)

For an equal mass system, that is m1 = m2, we see that δ vanishes and so does the octopole contribution to energy,
as well as the momentum. As pointed out in the introduction, to compute the gravitational energy momentum tensor
one must average over several wavelengths. This means that the radiated momentum for a circular orbit over several
wavelengths vanishes, as expected by symmetry. However the two black holes will plunge together on an asymmetric
trajectory, and there will be a net emission of linear momentum, which makes the newly formed black hole recoil.
The radiated momentum for this system was studied in D = 4 dimensions in Ref. [35]. Taking D = 4 in Eq. (2.33) we
recover their results (Eq. (2.20) of [35]),

dPi

dt
=

464
105

Ω7d5δν2
(
− sin(Ωtret)δi1 + cos(Ωtret)δi2

)
. (2.34)

22



The dependence of the radiated momentum on the ratio between the particle’s masses is independent of the number of
dimensions, being given by ν2δ. Defining q = m2/m1 we can write the momentum’s dependence on the mass ratio q as

ν2δ = (m1 + m2)2 (1 − q)q2

(q + 1)5 , (2.35)

which has a maximum (minimum) for q = 0.38 (q = 2.6), as found in Ref. [35]. This corresponds to the mass ratio
which maximizes the radiated momentum.

Motion of the center of mass

Now we compute the motion of the center of mass, due to the radiation of momentum by the binary system. If we
assume that the center of mass is initially at rest, and that its motion is described by

(m1 + m2)r̈ = −
dP
dt

, (2.36)

then we have

(m1 + m2)r̈ = −
D(D − 3)

(
−3D + 3

D+2
2 (D + 1) − 7

)
d5δν2ΩD+3

(D − 2)2
D+2

2 π
D−5

2 Γ [(D + 5)/2]

(
− sin(Ωtret)δi1 + cos(Ωtret)δi2

)
. (2.37)

Integrating in time, gives

(m1 + m2)ṙ = −
D(D − 3)

(
−3D + 3

D+2
2 (D + 1) − 7

)
d5δν2ΩD+2

(D − 2)2
D+2

2 π
D−5

2 Γ [(D + 5)/2]
(cos(Ωtret), sin(Ωtret), 0) , (2.38a)

(m1 + m2)r = −
D(D − 3)

(
−3D + 3

D+2
2 (D + 1) − 7

)
d5δν2ΩD+1

(D − 2)2
D+2

2 π
D−5

2 Γ [(D + 5)/2]
(sin(Ωtret),− cos(Ωtret), 0) . (2.38b)

Therefore the center of mass moves with speed

D(D − 3)
(
−3D + 3

D+2
2 (D + 1) − 7

)
d5δν2ΩD+2

(D − 2)2
D+2

2 π
D−5

2 Γ [(D + 5)/2] (m1 + m2)
, (2.39a)

in a circle of radius
D(D − 3)

(
−3D + 3

D+2
2 (D + 1) − 7

)
d5δν2ΩD+1

(D − 2)2
D+2

2 π
D−5

2 Γ [(D + 5)/2] (m1 + m2)
. (2.39b)

The rotation frequency for a Keplerian orbit is

Ω =

√
(m1 + m2)

dD−1

8π(D − 3)
ΩD−2(D − 2)

, (2.40)

which means the center of mass velocity is

π(D − 3)
d+4

2 D
(
−3D + 3

D+2
2 (D + 1) − 7

)
δν2

2D+5(m1 + m2)2Γ
[

D−1
2

]
Γ
[

D+5
2

] ( rH

d

) D2+D−12
2

. (2.41)

We see that the recoil effect increases when the separation of the binary is small, that is of the order of the Schwarzschild
radius of the system, rH =

(
16π(m1+m2)
(D−2)ΩD−2

)1/(D−3)
. However, this regime is outside the Newtonian limit assumed in the cal-

culation and it can not be relied in this situation. Since d > rH , the suppression due to the last term in Eq. (2.41) is
larger for higher dimensions.
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In four dimensions this reduces to 29δν2

105(m1+m2)2

(
rH
d

)4
, which is in agreement with Ref. [35]. For small separations,

when the recoil effect is larger, this expression can only provide an order of magnitude estimate to the recoil velocity
of the final system; and as found by Fitchett in Ref. [27, 35] the recoil speed of the center of mass can be of the
order of tens of km/s. There have been other approaches to this problem, using perturbative, Post-Newtonian and
numerical techniques (see [39] for a recent review). Numerical results [40] reveal that, when the spin of the body is
unimportant, the maximum recoil velocities are of the order of hundreds of km/s. The recoil velocities increase when
spin is important [41, 42]. The mass ratio which maximizes the emission of linear momentum is q = 0.36±0.03, which
is in good agreement with Ref. [35].
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Chapter 3

The Zero Frequency Limit

In the previous chapter we considered an approximation to compute the metric perturbation based on low velocity
sources, the multipole expansion. In this chapter we consider a different approach to estimate the radiated energy,
which instead of assuming that the velocities involved in the process are low, considers that the process is instanta-
neous. The advantage of this method is that it depends only on the initial and final states, since for an instantaneous
collision the details of the process itself are irrelevant. In addition this method is valid for arbitrarily high velocities, in
fact, it provides better estimates to the radiated energy for higher boost factors. This approximation is referred to as the
Zero Frequency Limit (ZFL) since it provides a good approximation of the radiated energy at small frequencies. The
ZFL method has been widely used, not only for gravitational processes but also for electromagnetical ones [43, 44].
For instance, this method can be used to compute the electromagnetical radiation in the β–decay considering only the
initial and final states (see Ref. [43, 44]), and it provides an adequate semi-quantitative description of the radiation.
Wheeler in Ref. [45] also discusses a classical ZFL approach to estimate the emission of gravitational and electromag-
netical radiation from impulsive events.
This technique was originally derived from quantum arguments [5, 46, 47, 48], and later from purely classical argu-
ments by Smarr [4]. In this chapter we discuss this technique, starting by briefly reviewing its quantum derivation, and
then by presenting Smarr’s classical derivation (Sec. 3.1). As an application of this method, we consider the head-on
collision (Sec. 3.1) and scattering (Sec. 3.1) of two point particles, as studied by Smarr in Ref. [4]. In Section 3.2
we generalize the ZFL calculation to the case of a non head-on collision between two point particles, and study the
radiation spectrum. Finally in Section 3.3 we consider the high-energy collision of two black holes, and study the
applicability of the ZFL technique to such process.

3.1 Zero Frequency Limit

The ZFL method lies in the assumption that the collision is instantaneous, so that only the asymptotic states are consid-
ered. This technique was derived by Weinberg in 1964 [47, 5] from quantum arguments, but it is equivalent to a purely
classical calculation. The idea is to consider a field theory with a spin−2 massless particle (the graviton) propagating
in a flat background, and to find the amplitude for the graviton emission in a given process. The gravitational radiation
emitted at low frequencies is found by summing the amplitudes for all Feynman diagrams representing the emission
of soft gravitons by the collision. One finds that only the gravitons emitted from external lines contribute to the sum,
since the contribution from internal lines is negligible when the photon’s momentum goes to zero. This is the reason
why only the asymptotic states are considered. It should be noted, as pointed out by Weinberg, this method neglects
the contributions from soft gravitons emitted from external gravitons lines. This contribution was neglected due to the
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fact that the effective coupling constant for the emission of a soft graviton from an external graviton line with energy
E is proportional to E.

We now review the classical derivation of the Zero Frequency Limit [4]. This approximation assumes that the colli-
sion lasts zero seconds and is ‘hard’, meaning that the incoming and outgoing trajectories asymptotically have constant
velocities, at least one of which is nonzero. It is valid for arbitrary velocities, but since we work in a linearized approach
the energies have to be low. Furthermore, since this is a long-wavelength approximation, the details of the internal
structure of the objects, as well as the details of the collision itself are irrelevant (ω−1 � size of the interaction region).
Consider the metric perturbation induced at a point x by a point particle. Since we are only interested in the long-
wavelength limit, we assume that the point x is very far from the particle, and that the spacetime is nearly flat there.
We can now use the linearized approach described in Chapter 1.

Figure 3.1:

We consider spherical coordinates in R3, where θ is the polar angle and φ is the azimuthal
angle (see Fig. 3.1). In these coordinates the polarization tensors, for radiation emitted in the
direction n = (sin θ cos φ, sin θ sin φ, cos θ), are

ε+ =

√
2

2

(
eθ ⊗ eθ − eφ ⊗ eφ

)
ε× =

√
2

2

(
eθ ⊗ eφ + eφ ⊗ eθ

)
, (3.1)

where {er, eθ, eφ} is an orthonormal reference frame. The energy flux through a 2-sphere in the
TT gauge is given by (1.48) or, in terms of these polarization tensors, by:

d2E
dtdΩ

=
r2

32π

〈(
ḣ jkε

jk
+

)2
+

(
ḣ jkε

jk
×

)2
〉

av
. (3.2)

We can now define the amplitudes BI ≡ ḣi jε
jk
I , with I = +,×. The Fourier transform of these amplitudes is denoted by

B̃I
1. Writing the radiated energy in terms of these amplitudes, and using Parseval’s theorem to rewrite it in terms of

the Fourier transformed amplitudes one gets

dE
dΩ

=
r2

32π

∑
I

∫ +∞

−∞

dt|BI |
2 =

r2

8

∑
I

∫ +∞

0
dω|B̃I |

2 (3.3)

where we have used that BI is real which means that B̃∗I (ω) = B̃I(−ω). Considering now the ZFL one has

d2E
dωdΩ

=
r2

8

∑
I

∣∣∣B̃I(0)
∣∣∣2 , (3.4)

where B̃I(0) is given by

B̃I(0) =
1

2π

∫ +∞

−∞

dtBI(t) =
1

2π

(
hi j(t = +∞)ε jk

I − hi j(t = −∞)ε jk
I

)
(3.5)

Now we can compute the radiated energy per unit frequency per steradian just by considering the metric perturbation at
±∞, and we see that the ZFL only depends on the asymptotic states. Therefore, there is no need to compute the trajecto-
ries of the particles involved in the interaction in this approximation, and the collision is considered to be instantaneous.

1Note that Smarr’s definition of is different from the one considered here, as he defines ḂI ≡ ḣi jε
jk
I
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If we have a particle travelling with 4-velocity vµ, the metric perturbation can be computed boosting the pertur-
bation caused by the particle in its rest frame. In the particle’s rest frame, the trace-reversed perturbation due to the
gravitational static field of the particle is

h̄µν =
4M

r
δµ0δν0 , (3.6)

By a Lorentz boost to the frame where the particle is moving with vµ we have

h̄µν =
4Mvµvν

rret
, (3.7)

where rret = |x − x′|, and x denotes the point where the field is being computed and x′ the particle’s position.
Considering a system of freely moving point particles in the initial and final states, each travelling with 4-momenta
(pN)µ, where N is the particle index. We consider that each particle causes a perturbation like (3.7), and that the metric
is a superposition of such contributions, although this is not always possible, as pointed out in Ref. [50]. If one now
plugs this perturbation back in Eq. (3.4) one finds

d2E
dωdΩ

=
r2

32π2

∑
I

∑
N

ηN
4pN

µ pN
ν

q · pN ε
µν
I

2

, (3.8)

where ηN is ±1 for particles from the initial and final state respectively, and q = rret(1,n) and n is a unit vector pointing
from the particle position to the point where the field is being computed. rret is approximately r = |x| at large distances
from the source, where the field is being evaluated.
Summing over the polarizations this equation is equivalent to Eq. (1.56), if momentum conservation is imposed
(
∑

N pN = 0). The advantage of using Eq. (3.8) is that one gets information on the polarization automatically. We
can re-write Eq. (3.8) in terms of k = ω(1,n) instead of q, and if one defines the amplitude for emission of gravitational
radiation from this process as

aI = ω
∑

N

ηN
pN
µ ε

µν
I pN

ν

pN · k
, (3.9)

the radiated energy is
d2E

dωdΩ
=

1
2π2

∑
I

|aI |
2 . (3.10)

Note that aI is the Feynman-Weinberg-De Witt (FWD) amplitude for the emission of such gravitational radiation from
a scattering process.
It should be noted that this technique neglects the loss of energy and momentum by the emission of gravitational
waves, so it should not hold if the energy losses through gravitational radiation are large. Even though the method
should predict the exact zero frequency limit of the radiation, it is a linearized approach valid only when the radiation
is weak. Actually Payne [50] showed that this approximation is not reliable when studying the equal mass head-on
collision of two black holes. In fact Payne also compared Smarr’s classical derivation with the quantum derivation.
As stated above, the emission of soft gravitons by external graviton lines was neglected, however for collisions with a
large quantity of radiation present, such as a head-on black hole collision, this emission will make a significant con-
tribution to the ZFL. This is equivalent to Smarr’s linearized approach, since that, if gravitational self-interactions are
ignored in the spin–2 quantum field theory, the particles in this theory interact exactly as in linearized general relativity.

Using this technique Smarr computed the radiated energy in two different processes, a head-on collision, and a
distant encounter. As we shall see, this method provides an estimate to the radiated energy at low frequencies in
a head-on black hole collision, being in reasonable agreement with the latest numerical results. However it should
be noted that, as pointed out by Payne [50], for the case of a equal mass black hole collision a contradiction arises

27



when using the ZFL method. The contradiction arises from the fact that the ZFL method predicts a mass for the final
hole equal to the total energy of the two colliding particles, which in turn would mean that no gravitational radiation
would be emitted. Since these waves carry energy, this implies that d2E/(dωdΩ) should vanish, thus leading to a
contradiction. This means that the ZFL approximation can only be used when the radiation is weak, and one can
neglect the radiated energy.
The time-reversed process for a head-on black hole collision had already been computed in 1975 by Adler and Zeks
[49]. The authors modelled a supernova explosion as a point particle exploding into two equal mass point particles,
moving back to back, and found the same expression for the radiated energy as Smarr (in an equal mass collision).
This method is not expected to give accurate results for small velocities, since in that case the collision would not be
instantaneous.

Head-on collision

This collision is modelled by two point particles (the details of the internal structure are irrelevant in this small fre-
quencies approximation) colliding to form a single particle at rest. This means that the radiated energy is computed in
the center-of-momentum (CM) frame2. The particles are initially travelling along the x–axis, and the final particle is at
rest in the origin. The four-momenta of these particles are then given by

(p1)µ = γ1m1(1, v1, 0, 0)

(p2)µ = γ1m2(1,−v2, 0, 0) , (3.11)

with the restriction that γ1m1v1 = γ2m2v2 (conservation of momentum)3. We now proceed to compute the radiated
energy in this process. Writing the polarization tensors in terms of (ex, ey, ez) and computing the amplitudes from
Eq. (3.9) we find

a+ = −

√
2

2
γ1m1v1(cos2 θ cos2 φ − sin2 φ)

v1 + v2

(1 − v1 sin θ cos φ)(1 + v2 sin θ cos φ)
, (3.12a)

a× =
√

2γ1m1v1 cos θ cos φ sin φ
v1 + v2

(1 − v1 sin θ cos φ)(1 + v2 sin θ cos φ)
(3.12b)

And the total radiated energy is found by summing the contribution from each polarization4, Eq. (3.10) then yields

d2E
dωdΩ

=
γ2

1m2
1v2

1(1 − sin2 θ cos2 φ)2(v1 + v2)2

4π2(1 − v1 sin θ cos φ)2(1 + v2 sin θ cos φ)2 . (3.13)

After a trivial re-definition of angles, this expression is equal to Eq. (2.16) of Ref. [4] (in Ref. [4] the angular variable
θ is the angle between the radiation direction and the momenta of the particles. The substitution of their cos θ by
sin θ cos φ yields Eq. (3.13)).

We can now consider two limiting cases, the equal mass collision and an extreme mass ratio collision. For the equal
mass collision, m1 = m2 ≡ m and v1 = v2, the energy is

d2E
dωdΩ

=
m2γ2

1v4
1

(
1 − sin2 θ cos2 φ

)2

π2
(
v2

1 sin2 θ cos2 φ − 1
)2 . (3.14)

2The center-of-momentum frame is the frame where
∑

j p j = 0, where j runs over all the particles of the system.
3In the original paper [4] the particles are moving along the z–axis, which will result a difference between the angles and amplitudes here and

in Ref. [4].
4If we had considered the collision to take place along the z axis as in Ref. [4], the only nonvanishing amplitude would be the one corresponding

to the + polarization, and there would be no dependence on the azimuthal angle φ, as a consequence of the axisymmetry of the system. However
for a collision along another axis, this symmetry no longer coincides with the “special” direction introduced by this particular choice of spherical
coordinates in R3, and this simplification is lost.
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Integration over the solid angle gives

dE
dω

=
2γ2

1m2

π

(
2 + (1 − v2

1)
(
1 −

1
2v1

(3 + v2
1) log

(
1 + v1

1 − v1

)))
(3.15)

For an extreme mass ratio collision, m1 ≡ µ � m2 ≡ M, v1 � v2 and γ1µ � γ2M, then

d2E
dωdΩ

=
γ2

1µ
2v4

1

(
sin2 θ cos2 φ − 1

)2

4π2(v1 sin θ cos φ − 1)2 . (3.16)

Integrating over the angular variables we have

dE
dω

=
γ2

1µ
2

2πv1

(
8v1 −

16
3

v3
1 − 4(1 − v2

1) log
(

1 + v1

1 − v1

))
(3.17)

Note that this collision, in the limit when the massive particle M remains unaffected by the collision, is the time-
reversed gravitational analogous of the β−decay process in electromagnetism. In fact, the time-reversed of this extreme
mass ratio collision has been considered in Ref. [8]. As pointed out by several authors [4, 8] the angular dependence
of the gravitational energy radiated is quite different from that of the electromagnetic energy radiated in the analogous
process. In the electromagnetic case the radiated energy is [43]

d2E
dωdΩ

∣∣∣∣∣
EM

=
e2v2

4π2

1 − sin2 θ cos2 φ

(1 − v sin θ cos φ)2 . (3.18)

The gravitational energy radiated does not show, in the v→ 1 limit, the sharp forward peaking (in the x–direction) that
the electromagnetic one shows, so it is not beamed into a small angle in the forward direction. This is a consequence of
the graviton having spin–2. If one considers the quantum approach to the ZFL, and sums over the Feynman diagrams
for the process, this reason is clearer. The difference arises when summing over the two polarizations of the graviton
and the photon. While the polarization tensor for the graviton is a rank–2 tensor, since the graviton has spin–2, the
polarization tensor for the photon is a rank–1 tensor , since the photon has spin–1. This means that the amplitude for
a given Feynman diagram where a photon with 4-momentum k and polarization εµ(k) is emitted, and the particle has
a final 4-momentum p will have a sum over the polarizations given by

∑
pol εµ(k)pµ. Whereas the amplitude for the

emission of a graviton it will be
∑

pol εµν(k)pµpν.
Using the same quantum field theoretical approach the common factor in the denominator for both processes is also
understood. Considering the same process where a graviton, or photon, with 4-momentum k is emitted, the amplitude
will have a propagator proportional to ((k + p)2 − m2)−1, where m is the mass of the particle. Since both the graviton
and the photon are massless k2 = 0, and p2 = m2 the there will be a factor (1 − v sin θ cos φ)−1 on the amplitude, and a
factor (1 − v sin θ cos φ)−2 on the emission probability.

The radiated energy, Eq. (3.13), has no dependence on the frequency, therefore in order to obtain the total radiated
energy one must introduce a cutoff which is characteristic of the process. This was not entirely unexpected, since the
same happened in electromagnetism. If the collision lasts for a time δt, frequencies up to ωmax ∼ 2π/δt are generated.
When we consider δt → 0 contributions to the radiated energy at arbitrarily high frequencies are introduced, even
though they have no physical meaning. Therefore a cutoff frequency must be introduced at ωc ∼ 2π/δt. Hence the ZFL
method provides an approximation of the radiated energy for frequencies smaller than ωc. This cutoff for a black hole
collision is discussed in Sec. 3.3.
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For small velocities the radiated energy shows the typical sin4 θ quadrupole dependence, characteristic of low-
velocity infall. We also see that d2E

dωdΩ
goes to zero when v1 → 0, although ∆E should not vanish, this shows that

the ZFL fails if both the initial and final velocities of the particles are zero, as the gravitational radiation emission is
dominated by the details of the collision.

Eq. (3.14) is exactly the same energy found by Adler and Zeks, Eq. (2.12) of [49] (if we take into account the
different convention on angles, by an appropriate re-definition of angular variables, as explained after Eq. (3.13)). The
authors considered a particle of mass 2M at rest blowing up into two point particles, each with energy M, travelling in
opposite directions. In the first part of their paper they also considered an infinite acceleration, with the process lasting
zero seconds, and computed the metric perturbation and the radiated energy using Eq. (1.52). In the second part of their
paper they used a more elaborate model to describe the motion of the two ejecta, using the quadrupole approximation,
and found a frequency dependence which justifies the infinite acceleration approach. The spectrum was only flat for
small frequencies, and then decayed to zero at large frequencies. Comparison with this small velocities approximations
allowed them to estimate the cutoff frequency in this particular process.

The head-on collision of two point particles, in the ZFL approximation, was extended to higher (even) dimensions
by Cardoso et al. [10]. The authors considered a system of freely moving point particles, whose (D − 1)-velocities
change abruptly at t = 0, due to the collision, to form a single body at rest. Using the generalization of Eq. (1.52) to
higher dimensions, which they found to be

d2E
dωdΩ

= 2
ωD−2

(2π)D−4

(
T̃ µν(ω,k)T̃ ∗µν(ω,k) −

1
D − 2

|T̃ λ
λ(ω,k)|2

)
, (3.19)

and plugging the energy-momentum tensor for the system described, the radiated energy is

d2E
dωdΩ

=
2

(2π)D−2

D − 3
D − 2

γ2
1m2

1v2
1(v1 + v2)2(1 − sin2 θ1 sin2 θ2)2

(1 − v1 sin θ1 sin θ2)2(1 + v2 sin θ1 sin θ2)2 × ω
D−4 , (3.20)

where spherical coordinates in D − 1 dimensions where considered (see Appendix A)5. For D , 4 the spectrum is no
longer flat, but the radiated energy always diverges if it is integrated over all frequencies, therefore a cutoff frequency
is required.

Radiated momentum

In this Section we compute the radiated momentum in this process. Although Smarr did not compute the momentum
radiated, it can be obtained directly from the radiated energy in the ZFL using Eq. (3.20). We find that it vanishes along
the xi–axis for i , 1, and for i = 1 (the direction of motion) it is

dP1

dω
=
γ2

1 m2
1D/2(D − 3)v2

1ω
D−4

2D−3π
D−3

2 Γ
[

D+3
2

]
(v1 + v2)

γ2
1v1 2F1

[
1, D+2

2 ,D + 2, 2v1
v1+1

] (
−

(
v2

(
D + v2

1

))
+ v1

(
−(D + 1) + v2

1

)
+ v2

)
(v1 + 1)

−

−
γ2

2v2 2F1

[
1, D+2

2 ,D + 2, 2v2
v2−1

] (
−D(v1 + v2) − v1v2

2 + v1 + v3
2 − v2

)
(1 − v2)

+ (D + 1)γ2
1γ

2
2(v2

1 − v2
2)(1 + v1v2)

 , (3.21)

where 2F1 is the hypergeometric function (recall that D is even). For an equal mass collision the radiated momentum
vanishes, as one would expect from symmetry, while for an extreme mass ratio collision the radiated momentum

5Note that the authors of [10] have also considered the collision to take place in a different direction. Also the θ2 in this coordinates is, for D = 4
dimensions equal to π/2 − φ.
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becomes

dP1

dω
=

8 γ4
1 m2

1 v4
1 D(D − 3)(D/2)!ωD−4

πD/2−1(1 + v1)(D + 1)!

(
D 2F1

[
1,

D + 2
2

,D + 2,
2v1

v1 + 1

]
+

+ (−(D + 1) + v1) 2F1

[
1,

D + 4
2

,D + 3,
2v1

v1 + 1

]
+ 1 + v1

)
. (3.22)

If we consider the 4-dimensional case, we find that the radiated momentum in the x1 = x direction is

dPx

dω
=

m2
2

πv2
2(v1 + v2)

(
v2

2 (v1 − v2) + 3v1 + 5v2

)
arctanhv2 +

m2
1

πv2
1(v1 + v2)

(v2
1(v1 − v2) − 5v1 − 3v2)arctanhv1 +

+
γ2

1m2
1

πv1v3
2

(v1 − v2)
(
v2

1

(
v2

2 − 3
)
− 5v1v2 − 3v2

2

)
, (3.23)

whose absolute value has a maximum for (v1, v2) equal to (0.366, 0.133) or the other way around, which corresponds
to a ratio m1/m2 equal to 0.34 or 2.9 respectively. The maximum momentum radiated is then ∼ 0.0031γ1m2

1v2
1. For an

extreme mass ratio collision the radiated momentum simplifies to

dPx

dω
=

m2
1γ

2
1

[
v1

(
15 − 13v2

1

)
− 3

(
v4

1 − 6v2
1 + 5

)
arctanhv1

]
3πv2

1

. (3.24)

Gravitational scattering

Smarr also used the ZFL to compute the energy radiated for the gravitational scatter of a point particle of mass m and
velocity v, by a much heavier particle of mass M at rest [4]. This should give an approximation of the energy radiated
in the scattering of a small particle (or black hole) by a larger black hole. Consider a small particle initially moving up
on the z axis with velocity v, being scattered by a much larger particle, which is fixed on the x axis at x = b. For large
values of the impact parameter b the scattering angle is

∆θ = rH
1 + v2

bv2 , (3.25)

where rH is the Schwarzschild radius of the large particle. This is valid only in the test particle limit, since the scattering
angle is computed from the geodesic equations of the Schwarzschild metric [51]. The initial and final momenta of the
small particle are

pi = γm(1, 0, 0, v)

p f = γm(1, v∆θ, 0, v) (3.26)

Only small angle, large impact parameter scattering is considered. It is required, for a given b and δ = v∆θ, that
√

rH/b < v < 1 − δ2

2 and θ > δv−1. Then one can compute the FWD amplitudes, and the radiated energy using
Eqs. (3.9) and (3.10),

d2E
dωdΩ

=
m2v2γ2δ2

π2

 sin2 θ cos2 φ
(
2 cos θ − v

(
cos2 θ + 1

))2

4(1 − v cos θ)4 +
sin2 θ sin2 φ

(1 − v cos θ)2

 . (3.27)

The first contribution to the radiated energy is from the + polarization, and the second from the × polarization. As for
the head-on collision there is no dependence on the frequency, which means that the integration over all frequencies be
divergent, and a cutoff ωc is required if one intends to estimate the total energy. Integration over the angular variables
yields

dE
dω

=
γ2m2δ2

π

(
1
v5

[
2v −

4
3

v3 − (1 − v2) log
(

1 + v
1 − v

)]
+

1
v3

[
−4v + 2 log

(
1 + v
1 − v

)])
. (3.28)
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The total radiated energy is then given by ∆E = dE
dωωc. Smarr compared the ZFL calculation against different ap-

proaches [4], from which the cutoff frequency for this process can be estimated. Note that the integration on the solid
angle assumes the cutoff frequency to be independent of the angular variables, which is not necessarily the case. In fact,
comparison with the perturbative approach of Peters [52] revealed a disagreement on the velocity dependence of the
total radiated energy, which could possibly be explained, as pointed out in Ref. [4], by introducing a cutoff frequency
dependent on the direction[53, 54, 55]. This means that one could introduce instead an effective cutoff, “weighted” on
the angular coordinates. A similar situation is found when considering a head-on collision, as shown in Sec. 3.3.

We now consider an equal mass scattering in the Newtonian limit, i.e., small velocities and weak gravitational
fields. Let us consider the scattering, in the xz plane, of two equal mass particles of mass m and velocity v, in the
center-of-momentum frame. We take particle 1 (2) to be at x = b/2 (−x = b/2) moving in the positive (negative) z

direction. Once again we focus only a large impact parameter, small deflection scattering, such that δ � v, where
δ = m

vb is the velocity each particle acquires along x (and in opposite directions) after being scattered. The radiated
energy is

d2E
dωdΩ

=
m2v2δ2 sin2(2θ) cos2 φ

π2 (
v2 cos2 θ − 1

)4 +
4m2v2δ2

1 sin2 θ sin2 φ

π2 (
v2 cos2 θ − 1

)2 , (3.29)

where the terms are respectively the “cross” and “plus” polarizations contributions. Integration over the solid angle
yields

dE
dω

=
5m4

2b2 = 2.5
m4

b2 , (3.30)

if we assume the cutoff frequency to be independent of the angular variables.

The radiated energy in these two processes can be compared against the one from the quadrupole approxima-
tion [55, 56]. The authors found the radiated energy to be exponentially damped for frequencies much larger than
v/b, and given by dE

dω = 32
5π

m2
1m2

2
b2 ∼ 2.04 m2

1m2
2

b2 for ω � v/b, where m1 and m2 are the masses of the two particles being

scattered. They also computed the total radiated energy, ∆E = 37π
15

m2
1m2

2
b2 . Let us first consider the scatter of a test particle

by setting m1 = m and m2 = M. Taking the v→ 0 limit of Eq. (3.28) we find dE
dω = 32

5π
m2 M2

b2 , which is in agreement with
the quadrupolar approximation. Comparison with the total radiated energy of Ref. [55, 56] yields an effective cutoff of
3.8v/b. Going back to the equal mass Newtonian collision, we take m1 = m2 = m, and we see that the quadrupole only
differs from the ZFL, Eq. (3.30), on the numerical factor. Once again the cutoff will be some undetermined constant
times a characteristic frequency of the problem, v/b.

Radiated momentum

Going back to the extreme mass ratio scattering (3.27), we compute the radiated momentum using Eq. (1.67). We find
that it vanishes in the x and y directions, while for i = z (the original direction of motion of the small particle) it is

dPz

dω
=

m2γ2δ2
(
−49v3 − 3

(
5v4 − 18v2 + 5

)
arctanhv + 15v

)
6πv4 . (3.31)

3.2 ZFL: Non Head-on Collision

In this section we generalize the classic ZFL calculations for head-on collisions [4, 49] to the case of collisions with
finite impact parameter. The initial configuration consists of two point particles with mass M j freely moving toward
each other with constant, positive velocity v j, corresponding to boost factors γ j = (1 − v2

j )
−1/2 ( j = 1 , 2). For conve-

nience the axes are oriented such that the initial motion is in the x–direction (see Fig. 3.2). We assume that at x = 0
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Figure 3.2: The system before and after the collision.

the particles “collide” with generic impact parameter b and form a single final body (strictly speaking this assumption
is only valid for small impact parameters, because we expect the bodies to scatter when b is large enough). Angular
momentum conservation requires the final body to be rotating. Since the collision is not head-on (and since the energy
loss is not included in the motion of point particles), some confining force is necessary to bind the particles. In fact,
we show below that additional “stresses” are required to guarantee energy conservation (cf. Ref. [57, 58]). Before the
collision and in the laboratory frame the particles have four-positions and four-momenta given by:

(x1)µ = (t, v1t, ξ1, 0) , xµ2 = (t,−v2t,−ξ2, 0) ,

(p1)µ = γ1M1(1, v1, 0, 0) , (p2)µ = γ2M2(1,−v2, 0, 0) , (3.32)

where ξ1 (−ξ2) is the projection of the position of particle 1 (2) along the y–axis before the collision. If the system’s
center of mass is at y = 0, and b denotes the impact parameter, we have

ξ1 =
bγ2M2(1 + vCMv2)

γ1M1(1 − vCMv1) + γ2M2(1 + vCMv2)
, ξ2 = (b − ξ1) , (3.33)

where vCM is the center-of-momentum frame velocity,

vCM =
γ1M1v1 − γ2M2v2

γ1M1 + γ2M2
, (3.34)

which corresponds to a boost factor γCM .
At t = 0 the particles become constrained to move as if they were attached to an infinitesimally thin, massless rod

of length b. This fictional rod is an idealization but it is necessary to guarantee energy-momentum conservation. For
t > 0 the particles remain attached to the rod, so that (in the center-of-momentum frame) they rotate around the origin
at fixed separation b. Using primes to denote final states, the four-positions and four-momenta after the collision, in
the laboratory frame, are

(xµ1)′ = (γCMτ + γCMvCMξ1S , γCMvCMτ + γξ1S , ξ1C, 0) ,

(xµ2)′ = (γCMτ − γCMvCMξ2S , γCMvCMτ − γCMξ2S ,−ξ2C, 0) ,

(pµ1)′ = γ′1M1(γCM + γCMvCMξ1ΩC, γCMvCM + γCMξ1ΩC,−ξ1ΩS , 0) ,

(pµ2)′ = γ′2M2(γCM − γCMvCMξ2ΩC, γCMvCM − γCMξ2ΩC, ξ2ΩS , 0) , (3.35)

where S ≡ sin (Ωτ), C ≡ cos (Ωτ), and τ is the time measured in the center-of-momentum frame and primes denote
final states. The energy of the particles after the collision (in the center-of-momentum frame) is given by:

γ′1M1 = γ1M1γCM(1 − vCMv1) , γ′2M2 = γ2M2γCM(1 + vCMv2) . (3.36)
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For an instantaneous collision the energy-momentum tensor of the system is given by

T µν(t, x) =

2∑
i=1

pµi pνi
Ei

δ3(x − xi(t))θ(−t) +

2∑
i=1

(pµi )′(t)(pνi )′(t)
E′i (t)

δ3(x − x′i(t))θ(t) , (3.37)

and the angular momentum is,

S 3 =

∫
(x1T 20 − x2T 10)d3x = −Θ(−t)(γ1M1v1ξ1 + γ2M2v2ξ2) − Θ(t)(γ′1M1γCMΩξ2

1 + γ′2M2γCMΩξ2
2) . (3.38)

Angular momentum conservation implies that the rotation frequency is

Ω =
γ1M1v1ξ1 + γ2M2v2ξ2

γCM(γ′1M1ξ
2
1 + γ′2M2ξ

2
2)
. (3.39)

The constraining forces

Henceforth we assume to be in the center-of-momentum frame, so that vCM = 0 and γCM = 1, in order to simplify our
expressions. The process in any other frame which is moving with a constant velocity with respect to the CM frame
can be obtained by a Lorentz transformation.
If we naively take the stress-energy tensor of Eq. (3.37) to be the full energy-momentum of the system, we would find
that it is not covariantly conserved, i.e. ∇µT µν = 0 for ν = t, z but ∇µT µν , 0 for ν = x, y. In fact, one finds

∇µT µx = −γ1M1ξ1Ω2S δ(x − ξ1S )δ(y − ξ1C)δ(z)Θ(t) + γ2M2ξ2Ω2S δ(x + ξ2S )δ(y + ξ2C)δ(z)Θ(t) ,

∇µT µy = −γ1M1ξ1Ω2Cδ(x − ξ1S )δ(y − ξ1C)δ(z)Θ(t) + γ2M2ξ2Ω2Cδ(x + ξ2S )δ(y + ξ2C)δ(z)Θ(t) . (3.40)

Physically, this nonconservation of stress-energy is due to neglecting the energy-momentum associated with the ficti-
tious rod that keeps the particles in circular orbit.

Energy-momentum conservation can be enforced by adding an additional term for each particle that represents this
constraining force. The contribution of such forces to the gravitational radiation emitted by a particle in circular orbit
was studied by Price and Sandberg [58]. By adding a radial tension τi(r) for each particle and imposing that ∇µT µν = 0
we get the following contributions to the energy-momentum tensor:

T xx
tens(t, x) = −S 2δ(cos θ)Θ(t)

2∑
j=1

τ j(r)δ(φ + Ωt − φ j) ,

T yy
tens(t, x) = −C2δ(cos θ)Θ(t)

2∑
j=1

τ j(r)δ(φ + Ωt − φ j) ,

T xy
tens(t, x) = −S Cδ(cos θ)Θ(t)

2∑
j=1

τ j(r)δ(φ + Ωt − φ j) ,

where φ1 = π/2, φ2 = 3π/2 and

τ j(r) =
M jξ jΩ

2Θ(ξ j − r)

r2
√

1 − (ξ jΩ)2
, ( j = 1, 2) . (3.41)

Here r =
√

x2 + y2 + z2, θ is the polar angle measured from the positive z-axis, and φ is the azimuthal angle in the
x–y plane measured from the x-axis (see Fig. 3.2). The factor

(
1 − (ξ jΩ)2

)−1/2
is just the boost factor for particle j in

circular motion with angular frequency Ω. The stresses vanish for b = 0, as one would expect.
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Equal-mass collisions

In this Section we study the equal-mass case M/2 ≡ M1 = M2. Since we are in the center-of-momentum frame we
have that v1 = v2 ≡ v and γ1 = γ2 = γ. In addition, after the “collision,” the particles stay on a bound circular orbit
with radius b/2, and the rotation frequency (3.39) reduces to

Ω =
2v
b
. (3.42)

It should be noted that the 4-momentum and 4-position are, in this particular case, given by

(p1)′µ = γ1m(1,
b
2

Ω cos(Ωt),−
b
2

Ω sin(Ωt), 0) , (x1)′µ = (t,
b
2

sin(Ωt),
b
2

cos(Ωt), 0) ,

(p2)′µ = γ1m(1,−
b
2

Ω cos(Ωt),
b
2

Ω sin(Ωt), 0) , (x2)′µ = (t,−
b
2

sin(Ωt),−
b
2

cos(Ωt), 0) . (3.43)

The Fourier transform of the energy-momentum tensor (3.37) yields

T̃ µν(ω,k) =
pµ1 pν1

2πiE1(ω − v1kx)
e−ikyb/2 +

pµ2 pν2
2πiE2(ω + v2kx)

eikyb/2 +

2∑
j=1

∫ ∞

−∞

p′µj (t)p′νj (t)

2πE′j(t)
exp(iωt − ik · x′j(t))Θ(t)dt +

+
1

2π

∫
d4x T µν

tens(t, x)eiωt−ik·x , (3.44)

where k is the wave vector:

kx = ω sin φ cos θ , ky = ω sin φ sin θ , kz = ω cos φ . (3.45)

We also have
eiωt−ik·x′j(t) = eiωt exp

(
iλ j

ωb
2

sin θ sin(Ωt + φ)
)
, (3.46)

where j = 1, 2 is the particle index, λ1 = −1 and λ2 = 1. If we set α = Ωt + φ and η j = λ j
ωb
2 sin θ the last exponential

can be written in terms of Bessel functions of the first kind, using the Jacobi-Anger expansion [59]:

eiη sinα =

n=+∞∑
n=−∞

Jn(η)einα . (3.47)

For large n the Bessel functions satisfy [59]

Jn(η) ∼
1
√

2πn

( eη
2n

)n
. (3.48)

A time-integration introduces an additional factor of 1/n, so the series converges rapidly for large |n| and we can
truncate it at some moderately large value of n = N to get an accurate approximation of the integral 6. Typically,
N & 10 is sufficient for an accuracy of 1% or better.

The integration of the stresses proceeds in a similar way. After integrating in θ and φ, the same Bessel function
expansion can be used for the time-integration. The integral of Bessel functions with respect to r can be evaluated
using the following identity [59]: ∫ η

0
Jν(r)dr = 2

∞∑
k=0

Jν+2k+1(η), Re(ν) > −1 . (3.49)

6Actually, the series should be approximated by summing from n = n0 − N to n = n0 + N, where n0 is the value of n which maximizes the
absolute value of the terms being summed. After the integration terms of the form 1/(ω− nΩ) appear. This means that the largest contribution to the
sum corresponds to some n0 , 0. However it can be checked that N � n0 for the range of parameters considered here, so the sum can be taken in a
symmetric interval around 0.
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Figure 3.3: Normalized energy per solid angle and per unit frequency emitted in the direction k̂ = ex , ey, ez, (ex + ey +
√

2ez)/2 by equal-mass binaries, as a function of ω/Ω.

Radiation spectrum

We now compute the radiated energy for this system using Eq. (1.52). Figure 3.3 shows the energy spectrum along
four different directions: k̂ = ex , ey , ez , (ex + ey +

√
2ez)/2, where we have set γ = 3. As long as the energy is plotted

as a function of ω/Ω there is no need to specify a value for b, since the energy depends only on the combination bω.
All spectra diverge for ω = 2Ω, as expected of a rigid symmetric body rotating with angular frequency Ω. For k̂ = ez

the spectrum only diverges at ω = 2Ω (see Ref. [60] for a discussion of particles in circular orbit in the Schwarzschild
geometry), but in all other directions the spectrum diverges at even multiples of the rotational frequency Ω, as seen in
Secs. 1.4 and 2.2. The same qualitative features hold for higher boost parameters.

Head-on collisions

Let us consider the b = 0 limit, which corresponds to a head-on collision and for which we can compare against known
results [4, 49]. In this limit, the only nonvanishing components of the energy-momentum tensor are:

2πωT̃ tt(ω,k) = iγM −
iγM

1 − v2 sin2 θ cos2 φ
,

2πωT̃ tx(ω,k) = −
iγMv2 sin θ cos φ

1 − v2 sin2 θ cos2 φ
, 2πωT̃ xx(ω,k) = −

iγMv2

1 − v2 sin2 θ cos2 φ
.

The energy spectrum per unit solid angle is then given by:

d2E
dωdΩ

=
γ2M2v4

(
sin2 θ cos2 φ − 1

)2

4π2
(
v2 sin2 θ cos2 φ − 1

)2 . (3.50)

This agrees with previous results in the literature, noting that here M denotes the total mass, therefore M = 2m. Indeed
it is the same as Eq. (3.14) for a head-on equal mass collision. For ease of comparison with numerical results and with
the perturbative calculations (see Sec. 3.3), it is convenient to expand the above expression in spin-weight −2 spherical
harmonics. This is explained in Appendix B.
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Figure 3.4: Normalized energy spectrum per unit solid angle emitted in the directions k̂ = ey (thick lines) and k̂ = ez
(thin lines) as a function of Mω for several values of b/M (as indicated in the legend) and γ = 3. As indicated by
Eq. (3.51b) the ZFL for these two different directions is the same and approximately equal to 0.18013M2.

Recalling that ex corresponds to (θ = π/2 , φ = 0), ey corresponds to (θ = π/2 , φ = π/2) and ez corresponds to
θ = 0, we get, as particular cases

d2E
dωdΩ

∣∣∣∣
ω=0

= 0 along ex , (3.51a)

d2E
dωdΩ

∣∣∣∣
ω=0

=
γ2M2v4

4π2 along ey, ez . (3.51b)

Zero-frequency limit

For arbitrary impact parameters our results show that, in the limit bω → 0, the energy spectrum is independent of b

and given by Eq. (3.50). This is of course consistent with the head-on results of Smarr [4] and Adler and Zeks [49].
Numerical calculations support this conclusion and reveal additional details for small but nonzero frequencies. The
stress terms give the following contributions to the energy-momentum tensor

ωT̃ xx
tens(ω,k)

∣∣∣∣
ω=0

= ωT̃ yy
tens(ω,k)

∣∣∣∣
ω=0

= −
ib2γMΩ2

16π
, ωT̃ xy

tens(ω,k)
∣∣∣∣
ω=0

= 0 . (3.52)

For ω = 0 the constraining forces provide a nonvanishing contribution to the energy-momentum tensor. It is this
particular contribution that allows one to recover the ZFL of the energy spectrum, Eq. (3.50), for any impact parameter.
This is one of the most intriguing results of this incursion into the properties of the ZFL for collisions with nonzero
impact parameter.

The spectra for small frequencies, along the directions k̂ = ey and k̂ = ez are plotted in Fig. 3.4 for different values
of b/M. All spectra have the same ZFL, as discussed above in Eq. (3.51b). Fig. 3.4 refers to γ = 3, for which we get,
from Eq. (3.51b), d2E

dωdΩ

∣∣∣∣
ω=0

= 0.18013M2 for ey, ez.
For small but finite frequencies, we find that the slope of the energy spectrum depends on the direction and is

positive (negative) for k̂ = ey (ez, respectively), and it increases with b/M.
In fact, expanding the energy spectrum for small bω, up to O[(bω)2], we get:
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d2E
dωdΩ

=
γ2M2v2

16π2
(
1 − v2 sin2 θ cos2 φ

)2

{
4v2(sin2 θ cos2 φ − 1)2 −

−
1
6

[
v2

(
8v2 + 3

)
sin6 θ cos4 φ + sin2 θ

((
8v2 + 3

)
cos 2φ + 12

(
v2 + 1

))
−

− sin4 θ cos2 φ
(
6v4 +

(
2v2 + 3

)
v2 cos 2φ + 20v2 + 3

)
− 12

]
[bω]2

}
+ O

[
(bω)3

]
. (3.53)

Thus, within our model the spectrum typically has quadratic corrections, except along k̂ = ex, for which the first
nonvanishing contribution to the energy spectrum is of order (bω)4. In fact, we find

d2E
dωdΩ

∣∣∣∣∣
k̂=ex

= −
γ2M2

(
3 − 2v2

)2

9216π2 (bω)4 + O
[
(bω)5

]
. (3.54)

This small frequencies behaviour can be seen in Fig. (3.4).

Extreme mass ratio collisions

We now study collisions for µ ≡ M1 � M2 ≡ M. The energy spectrum can be computed in the center-of-momentum
frame. Since particle 2 is much heavier than particle 1, the former is practically at rest in this frame, although we shall
not neglect the motion of this particle when we compute the energy-momentum tensor. Therefore, we let v ≡ v1 � v2

and γ ≡ γ1.
From Eqs. (3.33) and (3.39), the angular frequency and position of particle 1 are given by

Ω =
γ1µv1ξ1 + γ2Mv2ξ2

γ1µξ1 + γ2Mξ2
, ξ1 =

bγ2M
γ1µ + γ2M

. (3.55)

Once again we must add the stresses needed to constrain the particles in their orbits, in order to have a conserved
energy-momentum tensor.

Radiation spectrum

The radiated energy is computed using Eq. (1.52) or Eq. (1.54). Once again the Jacobi-Anger expansion (3.47) and
Eq. (3.49) are used to compute the Fourier transforms. We expand the energy-momentum tensor in powers of µ/M, and
compute the energy keeping only leading-order contributions in µ/M. A calculation of the energy for γ = 3 in several
different directions yields the spectra shown in Fig. 3.5.

The extreme-mass ratio configuration loses the angular symmetry of the equal mass case. Therefore, the spectra
now diverge for all multiples of Ω for k̂ = ex, k̂ = ey. The behaviour is similar for other directions. This was also found
in Sec. 2.2. For k̂ = ez, the spectrum only diverges for ω = 2Ω, in agreement with Poisson’s findings for particles in
circular orbit around black holes [60].

Head-on collisions

For extreme-mass ratio head-on collisions (b = 0) we find

d2E
dωdΩ

=
γ2µ2v4

(
sin2 θ cos2 φ − 1

)2

4π2(v sin θ cos φ − 1)2 . (3.56)

This expression coincides, as it should, with Eq. (3.16).
For ease of comparison with numerical and perturbative results of point particles in black hole spacetimes (see Sec. 3.3),
in Appendix B we perform a multipole decomposition of this ZFL result in spin-weighted spherical harmonics.
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Figure 3.5: Normalized energy spectrum per solid angle emitted in the directions k̂ = ex, ey, ez, (ex + ey +
√

2ez)/2 as
a function of ω/Ω in the extreme mass ratio case.

Zero-frequency limit

Let us now consider the ZFL for generic values of the impact parameter. As bω → 0 we find once again that the
energy spectrum is independent of the impact parameter (as it was for the equal-mass collisions of section 3.2). The
leading-order expression of the energy in powers of µ/M is given by Eq. (3.56), reproducing Smarr’s result for head-on
collisions. Including higher powers of bω we get

d2E
dωdΩ

=
γ2µ2v2

4π2(v sin θ cos φ − 1)2

{
v2(sin2 θ cos2 φ − 1)2 −

−
1

192

[
(−4v

(
2v2 + 3

)
sin3 θ(cos 2θ + 3) cos 3φ + 8 sin2 θ cos 2φ

((
3 − 10v2

)
cos 2θ − 6v2 + 9

)
+

+ v sin θ cos φ
((

372 − 8v2
)

cos 2θ +
(
6v2 + 9

)
cos 4θ + 2v2 + 387

)
+ 8

(
2v2 − 21

)
cos 2θ +

+
(
20v2 − 6

)
cos 4θ − 6

(
6v2 + 35

) ]
[bω]2

}
+ O

[
(bω)3

]
. (3.57)

As in the equal-mass case, here too the radiation is suppressed along the x–axis, where the leading contribution is
of order (bω)4

d2E
dωdΩ

∣∣∣∣∣
k̂=ex

=
γ2µ2(3 − 2v(v + 3))2

576π2 [bω]4 + O
[
(bω)5

]
. (3.58)

Generic mass ratio

The same procedure can be used to study a collision between two particles of arbitrary masses. We compute the
radiated energy, once again in the center-of-momentum frame, for two particles colliding, for γ1 = 3 and M1 = M2/3.
The Fourier transforms are once again computed using the Jacobi-Anger expansion and summing only from −10 to
10. In Fig. 3.6 we show the radiated energy per unit frequency per solid angle emitted in several directions. As we can
see, similarly to the extreme mass ratio case, all spectra diverge for all multiples of the rotating frequency. The only
exception remains k̂ = ez, where the spectrum only diverges at twice the rotating frequency, as discussed above.
Taking the ω → 0 limit we recover, once again, the energy obtained by Smarr for the head-on collision, given by
Eq. (3.13) (Smarr’s Eq. (2.16)).
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Figure 3.6: Normalized energy per solid angle and per unit frequency emitted in the directions k̂ = ex, ey, ez, (ex + ey +
√

2ez)/2 as a function of ω/Ω for mass ratio q = M1/M2 = 1/3 and γ1 = 3. The zero frequency limit agrees with
Smarr’s energy [Eq. (2.16)] for a head-on collision with unequal mass.

Generality of the model

The most important result of our ZFL calculation for collisions with generic impact parameter is perhaps that the ZFL
itself is independent of the impact parameter. One of the limitations of the present calculation is that the modelling
of the collision is rather ad-hoc, especially in the specification of the nature of the constraining forces. It is natural to
ask how the results would change if the constraining forces were modelled differently. For example, in our toy model
the final system consists of two particles bound in a circular orbit, so the radiation spectrum shows peaks typical of the
radiation produced by rotating bodies. There is a chance that the divergence at harmonics of the rotational frequency
of the final system could contaminate the low-frequency behaviour of the spectrum.

To investigate this possibility, instead of considering the collision of two point particles, we studied a point particle
colliding with a special extended matter distribution: specifically, we considered an infinitely thin, slowly rotating,
uniform disk. For brevity we do not report details of this calculation here. Our main finding is that, if the disk is
initially slowly rotating (so that after the collision the system is at rest), the ZFL is the same as in the case of two
colliding particles. This is by no means a proof that the ZFL is completely independent of the way one models the
system. It is however a hint that (as physical intuition would suggest) the ZFL should only depend on the asymptotic
momenta of the colliding particles.

3.3 High Energy Collision of Black Holes

The high energy collision of two black holes is one of the most violent process one can have in general relativity.
The absence of analytical solutions leaves many unanswered questions about what happens in such collisions. These
collisions provide a test to the cosmic censorship conjecture, is it possible to form a naked singularity, or will an event
horizon always be formed?
Moreover, the interest in ultrarelativistic collisions increased with the proposal that the Planck scale could be as low
as a TeV (thus solving the hierarchy problem) in higher dimensional scenarios, either with large extra dimensions [61]
or with compact dimensions with large warp factor [62]. Lowering the Planck scale opens the possibility of black
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hole production in particle colliders and ultra high energy cosmic ray interactions with the atmosphere (for a review
see [63]). Therefore computing the radiated energy in such processes, as well as the production cross section has a
growing interest.
Finally, the AdS/CFT correspondence conjecture [64] further motivates the study of these high-speed black hole colli-
sions. This duality could be used to understand properties of the quark-gluon plasma formed in gold ion collisions at
Brookhaven’s Relativist Heavy Ion Collider, by studying black hole collisions in AdS [65].

There have been several attempts to understand these ultrarelativistic black hole collisions, by various approaches.
A comparison of the techniques described bellow can be found in Ref. [66]. In the seventies Penrose [67] studied the
problem of a classical collision with zero impact parameter. Penrose modelled the spacetime as the superposition of
two Aichelburg-Sexl waves7. When the two shock waves collide, they interact nonlinearly, and a closed trapped surface
is formed. By finding this closed trapped surface Penrose was able to set a lower bound on the mass of the final hole of
√

s/2, where
√

s is the center-of-momentum energy. Later D’Eath and Payne [69, 70, 71] refined this calculation and
found an estimate of 0.84

√
s for the mass of the final hole. However this energy was obtained by computing the first

two terms of a series expansions of the news functions, and it does not include the radiation emitted during the decay
of the final black hole to equilibrium (Schwarzschild). This construction was expanded to non head-on collisions in
arbitrary dimensions by Eardley and Giddings [72], and a numerical investigation of their equations was performed
in [73, 74].

Another method to compute the radiated energy is to use a perturbation theory approach, considering a small point
particle falling into a large black hole. The background metric is taken to be that of the black hole, and the metric per-
turbation hµν is induced by the point particle. The Einstein equations can then be expanded to the first order in hµν, and
the problem is expressed as a second order differential equation for the metric perturbation. This method was first used
to study the head-on collision of two bodies in 1971 in [21], using the Zerilli equation for black hole perturbations [20].
The authors considered a small test particle falling radially, from rest at infinity, into a Schwarzschild black hole. These
calculations were also extended to the case of infall from finite radius [75]. Later Ruffini generalized these results for a
particle falling with an initial velocity [26]. These results were then extended to a massless particle falling from infinity
through a radial geodesic [76], thus extending the previous results for large boost factors. The extension of these results
for a spherically-symmetric black hole in D dimensions was also carried out in Ref. [77]. The gravitational radiation
for generic orbits of particles falling, from rest at infinity, into a Kerr black hole was studied by Sasaki, Nakamura and
collaborators in [78]. These calculations were then extended for a highly relativistic point particle falling into a Kerr
black hole, using the Sasaki-Nakamura formalism in [79, 80]. This method should only hold as long as the particle’s
energy E is much smaller than the black hole’s mass MBH . However these results can be extrapolated for energies
E ∼ MBH and still give sensible results [76, 79, 80]. The Post-Newtonian approximation also provides a way to study
these collisions. The radiated energy in the head-on collision of two bodies of arbitrary masses, starting from rest, is
computed in [81]. The authors of [81] then compare the Post-Newtonian results with those obtained using perturbation
theory.

Another approach was explored by Smarr in 1977 [4], where he used the Zero Frequency Limit approximation to
compute the gravitational radiation emitted during the head-on collisions and scattering of black holes, modelled as
point particles. Although the total energy depends on a parameter not fixed by the theory, this method provides an es-
timate of the energy radiated per unit frequency, its polarization and angular distribution. This approach is in excellent

7The Aichelburg-Sexl metric [68] corresponds to the Schwarzschild metric boosted, and taking the limit of large boost and small mass, keeping
the total energy fixed.
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agreement with the perturbative calculations described above [76, 77, 79, 80]. Since this method requires a linearized
approximation, it would not be expected to hold for the high-energy collision of two black holes, as pointed out in
the previous Sections, which should in principle require the inclusion of nonlinear effects. Surprisingly this method
still describes quite well even the nonlinear ultrarelativistic head-on collision of black holes [83]. We now compare
the ZFL approximation with perturbative calculations and numerical results, which justifies our interest in such an
approximation, providing an additional motivation to the ZFL extension for non head-on collisions, carried out in the
previous Section.

Let us consider the extreme mass ratio black hole collision described in Sec. 3.1. For such collisions Smarr proposed
that the cutoff frequency ωc could be the inverse of the large black hole radius ωc ∼ r−1

H , where rH = 2M. As we will
see, this cutoff actually corresponds to a “weighted average” of the lowest damped quasi-normal modes.
Taking the limit v→ 1 in Eq, (3.16), so that these results can be compared against the perturbative results found in [76]
for a ultrarelativistic test particle falling into a Schwarzschild black hole we get

dEZFL

dω
=

4
3π
γ2 µ

2

M
∼ 0.4244γ2 µ

2

M
. (3.59)

Cardoso and Lemos [76] found the radiated energy at zero frequency to be

dE
dω

∣∣∣∣∣
ω=0

= 0.4244γ2 µ
2

M
, (3.60)

which is in excellent agreement with the ZFL method. If we now integrate Smarr’s result up to ωc ∼ r−1
H to have an

estimate for the total radiated energy, we get Smarr’s Eq. (3.5)

∆EZFL ∼ 0.2γ2 µ
2

M
. (3.61)

However this seems to underestimate the total radiated energy, as shown in [76], where the authors found

∆E ∼ 0.262γ2 µ
2

M
, (3.62)

which equivalent to set the cutoff frequency at ωc ∼ (1.63M)−1. For comparison with the perturbative calculations it
is convenient to expand this results in spin-weight −2 spherical harmonics, as described in Appendix B. The multipole
content of the radiated energy is then given by

dEl0

dω
=

4γ2µ2

π

(2l + 1)(l − 2)!
(l + 2)!

, (3.63)

where only the m = 0 modes contribute. The perturbative results are in agreement with this calculation, as the spec-
tra is flat up to a certain cutoff, decaying rapidly to zero afterwards. The cutoff is well approximated by the lowest
quasinormal mode, for each l. Therefore the cutoff frequency should be given by some “weighted average” of the fun-
damental gravitational quasinormal modes frequencies, similarly to what was found when considering the gravitational
scattering in Sec. 3.1.
The authors also found in Refs. [79, 80] that the radiated energy at zero frequency has the same value independently of
the spin of the large black hole, and for particles falling along the equator [79] or along the symmetry axis [80].
For a head-on collision in higher dimensional spacetimes, Eq.(3.20) is, once again, in agreement with the perturbative
approach, as shown in [77], where the authors considered a perturbed Schwarzschild-Tangherlini black hole, by an
ultrarelativistic point particle falling radially into the black hole.
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Figure 3.7: Numerical results for the normalized energy spectrum for the l = 2, m = 0 mode, for several β = v. Taken
from Ref. [83].

For non head-on collisions the perturbative approximation carried out in Ref. [1], for a point particle falling into
a Schwarzschild black hole, shows that the zero frequency limit of the radiation spectrum is weakly dependant on
the impact parameter, and in quite good agreement with the ZFL prediction (particularly for larger boost factors). In
addition Eq. B.13 predicts that, in the ZFL, the ratio between the l = 2 ,m = 2 mode and the l = 2 ,m = 0 mode is 3/2,
which is in very good agreement with the perturbative results.
The radiated momentum for an extreme mass ratio collision computed in Sec. 3.1 is also in agreement with the pertur-
bative calculations of Ref. [1] for the zero frequency limit of head-on collisions.

So far we have only described analytical methods, which provide estimates and bounds for the radiated energy.
We now address the numerical study of these collisions, which is the only way to study black hole collisions with
the full nonlinear Einstein equations. The numerical simulation of a black hole collision has been studied for long
[22, 82, 83, 84, 85]. What is remarkable is that the simulations of highly boosted head-on black hole collisions is still
in reasonable agreement with the ZFL results [83]. Sperhake et al. [83] found that, even though the spectrum is no
longer flat for small frequencies, it is nearly flat up to a some cutoff frequency, which is well approximated by the
least-damped quasinormal mode of the final hole. After the cutoff frequency the spectrum decays exponentially. This
can be seen in Fig. 3.7, which is Fig. 2 of Ref. [83]. The l = 2, m = 0 component of the radiated energy is plotted
as a function of Mω, where M denotes the mass of the final black hole, for several values of β = v. Note that the
authors considered the collision along the z-axis, so only the m = 0 modes contribute. The straight lines correspond to
the ZFL projected into spherical spin-weight harmonics (see Appendix B), and the vertical lines to the least-damped
quasinormal mode l = 2.
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Appendix A

Spherical Coordinates in (D − 1)−dimensions

In Chapters 2 and 3 spherical coordinates in (D−1)−dimensions were considered, when studying gravitational radiation
in higher dimensional spacetimes. Here we briefly review some important results. We introduce spherical coordinates
(r, θ1, . . . , θD−2), which are related to the Cartesian coordinates (x1, . . . , xD−1) by 1

x1 = r sin θ1 sin θ2 . . . sin θD−2

x2 = r sin θ1 sin θ2 . . . sin θD−3 cos θD−2
...

xi = r sin θ1 sin θ2 . . . sin θD−i−1 cos θD−i
...

xD−1 = r cos θ1

.

This means that the volume element becomes dD−1x = rD−2drdΩD−2, where dΩD−2 = sinD−3 θ1 sinD−4 θ2 . . . sin θD−3dθ1

. . . dθD−2 is the element of the solid angle. Integration over the angle variables yields ΩD−2 = 2π(D−1)/2

Γ[(D−1)/2] . Here, and
throughout Chapters 2 and 3, we have used that∫ π

0
sinn θ =

√
π

Γ[(n + 1)/2]
Γ[(n + 2)/2]

. (A.1)

A.1 Useful Integrals

In Chapters 1, 2 and 3 we used some integrals of the projector Λi j,kl (Eq. (2.17)) times a certain number of ni, over the
solid angle, which we list here. ∫

dΩD−2 = ΩD−2 (A.2)∫
dΩD−2 ni . . . nk︸  ︷︷  ︸

odd number

= 0 (A.3)∫
dΩD−2nin j =

ΩD−2

D − 1
δi j (A.4)∫

dΩD−2nin jnknl =
ΩD−2

D2 − 1

(
δi jδkl + δikδ jl + δilδ jk

)
(A.5)∫

dΩD−2nin jnknlnmno =
ΩD−2

(D2 − 1)(D + 3)

(
δi jδklδmo + . . .

)
, (A.6)

where the . . . in the final expression denotes all possible pairings.

1When using spherical coordinates in D = 4 we have that φ = π/2 − θ/2.

45





Appendix B

Multipolar Decomposition of the Radiated Energy

When considering the radiated gravitational energy in Chapter 3 we performed a multipolar decomposition of the
radiated energy, in order to compare the ZFL calculations against known numerical and perturbative results. Multipolar
expansions are widely used to study gravitational radiation (see [86] for a review). In numerical relativity it is common
to expand in the Newman-Penrose spin-weighted spherical harmonics (SWSH) [87]. In this appendix we review the
SWSH, and consider the decomposition of the radiated energy.

B.1 Spin-weighted Spherical Harmonics

Let us consider an orthonormal reference frame {X1, X2, X3} such that X1 and X2 are tangent to a sphere with radius
r, and X3 is normal to that sphere. Such a frame is defined up to rotations about X3. If we define X = 1

√
2
(X1 + iX2)

these rotations can be written as X′ = eiχX. We say that a quantity has spin s if it transforms as η′ = eisχη under these
rotations. We now choose the frame to be X1 = 1

r
∂
∂θ

, X2 = 1
r sin θ

∂
∂φ

, X3 = ∂
∂r . Let us define the operator ð, acting on a

quantity η of spin s, as

ðη = − (sin θ)s
(
∂

∂θ
+

i
sin θ

∂

∂φ

)
(sin θ)−s η , (B.1)

which has spin 1 under rotations.

The spin-weight s spherical harmonics sYlm are then defined by acting with ð on the usual spherical harmonics Ylm

sYlm =


√

(l−s)!
(l+s)!ð

sYlm , 0 6 s 6 l√
(l+s)!
(l−s)!ð

s∗Ylm , −l 6 s 6 0
,

where the star denotes complex conjugation. Note that the SWSH are not defined for |s| < l. One also the following
properties

sYlm = (−1)m+s
−sYl−m , sYlm(π − θ, φ + φ) = (−1)l

−sYl−m(θ, φ) . (B.2)

The spin-weight spherical harmonics form a complete orthonormal set for each value of s, which means one can expand
any quantity of spin s in this basis. The spin-weight |s| = 2 is of interest to gravitational radiation [87], and can be
obtained from the spin 0 spherical harmonics by

2Ylm =

√
(l − 2)!
(l + 2)!

(
∂2
θ − cot θ∂θ +

m2

sin2 θ
−

2m
sin θ

(∂θ − cot θ)
)

Ylm . (B.3)
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The usual spherical harmonics Ylm can be determined from the Legendre polynomials Plm(x)

Ylm(θ, φ) =

√
2l + 1

4π
(l − m)!
(l + m)!

Plm(cos θ)eimφ . (B.4)

B.2 Decomposition of the Radiated Energy

In numerical relativity it is common to expand the Weyl scalar Ψ4 in spin-weight −2 spherical harmonics. The Weyl
tensor is defined as the Riemann tensor with all of its contractions removed Cρσµν = Rρσµν + 1

3 gρ[µgν]σR − gρ[µRν]σ +

gσ[µRν]ρ, where the square brackets denote antisymmetrization. The contractions of the Weyl tensor with members of
the null tetrad are denoted by Ψ0 , . . . ,Ψ4. As discussed in Sec. 1.2, if we consider a gravitational wave travelling along
a direction denoted by n, we can define the “plus” and “cross” polarizations. Let us consider an orthonormal frame
{X1, X2, X3}, with X3 = n. Then the metric perturbation in this frame defines the “plus” and “cross” components of the
metric h+ = hTT

11 = −hTT
22 , h× = hTT

12 , where the indexes 1, 2 refer to the frame considered. The Weyl scalar Ψ4 is then
given by Ψ4 = 1

2

(
ḧ+ − iḧ×

)
, which is expanded in spin-weight −2 spherical harmonics. The energy radiated through a

sphere at infinity, given by Eq. (1.48), can be written in terms of h+ and h× as

d2E
dtdΩ

=
r2

16π

〈
|ḣ+|

2 + |ḣ×|2
〉

av
. (B.5)

Let us consider the Fourier transform of the radiated energy, which can be written in terms of the Weyl scalar Ψ4 by

d2E
dtdΩ

=
r2

4πω2

〈
|Ψ4|

2
〉

av
. (B.6)

This means that the radiated energy can also be expanded in spin-weight spherical harmonics in the following way

d2E
dtdΩ

=

∑
lm

√
dElm

dt −2Ylm

2

, (B.7)

where
√

dElm
dt are yet undetermined functions of t. These functions can be computed using the orthonormality of −2Ylm

by √
dElm

dt
=

∫
dΩ

√
d2E
dtdΩ

−2Ylm . (B.8)

We can now determine the multipolar decomposition of the radiated energy in a head-on collision (Sec. 3.1).
Before proceeding, we must go back to the angles chosen in Sec. 3.1, where we considered the collision to be along
the x axis. If we had considered a collision along the z axis instead, (as in Refs. [4, 49]) there would be no dependence
on the azimuthal angle φ, and the calculations when decomposing the energy would be greatly simplified. In what
follows we consider the collision to be along the z axis to find the multipolar decomposition of the radiated energy
for ultrarelativistic collisions. After obtaining the multipolar decomposition of the energy, a rotation can be performed
to change the collision back to the x axis. The multipolar components in a rotated frame can be found following the
procedure discussed in Ref. [88].

Equal mass collisions

The radiated energy, for an ultrarelativistic (v → 1) equal mass collision along the x axis is (see Eq. (3.14) and the
change of angles discussed above the equation)

d2E
dωdΩ

=
m2γ2

1

π2 . (B.9)
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Since there is no φ dependence only the m = 0 modes contribute, and we find

dEl0

dω
=


16γ2m2

π
(2l+1)(l−2)!

(l+2)! , l even

0 , l odd
,

where we have used Eqs. (B.3) and(B.4). We see that the l = 2 mode is the one which contributes most, since for large
l the energy is suppressed by a factor of 1/l3. Summing over even l we find dE

dω = 4γ2m2/π, which is in agreement with
Eq. (3.15) in the v→ 1 limit.

Extreme mass ratio collisions

For an ultrarelativistic, extreme mass ratio collision, along the z axis we find from Eq. (3.16) (changing the angles as
discussed above)

d2E
dωdΩ

=
γ2

1µ
2 (1 + cos θ)2

4π2 . (B.10)

Once again the independence on φ means that only the m = 0 modes contribute, and we find

dEl0

dω
=

4γ2µ2

π

(2l + 1)(l − 2)!
(l + 2)!

. (B.11)

Summing over l we get dE
dω = 4γ2m2/(3π), which is in agreement with Eq. (3.17), in the v→ 1 limit.

Rotation

The two frames considered, one where the collision takes place along the z axis, and the other where it takes place
along the x axis, are related by a rotation of π/2 about the y axis. As shown above, for a collision along the z axis the
independence of the φ angle means that only the m = 0 contribute. However when we rotate back into the previous
frame this is not the case. The transformation of the multipolar decomposition of the radiated energy under rotations is
explained in Ref. [88]. The multipolar components, for this rotation, transform as follows√

dElm

dω
=

√
dEl0

dω
A(l)

m0 , (B.12)

where we have used the fact that only the m = 0 modes contribute, and the matrix A(l)
mm′ can be found in Ref. [88]. Let

us consider the l = 2 modes, which are the dominant ones, for the extreme mass ratio collision, in the v→ 1 limit. The
multipolar components of the radiated energy in the rotated frame (where the collision takes place along x) is

dEl±2

dω
=

5
16

γ2µ2

π
,

dEl0

dω
=

5
24

γ2µ2

π
, (B.13)

with the m = ±1 modes vanishing. For an equal mass collision, in the same limit, we have that the m = ±1 vanish, and
that

dEl±2

dω
=


5
4
γ2m2

π
, l even

0 , l odd
,

dEl0

dω
=


5
6
γ2m2

π
, l even

0 , l odd
.

For arbitrary velocities one finds for the dominant mode, l = 2, and for m = 0

dE20

dω
=

5m2γ2
(
−10v3 + 3

γ4 log
(

2
v+1 − 1

)
+ 6v

)2

96πv6 , (B.14)

where the rotation has already been performed, such that the collision takes place along the x axis. Similarly for an
extreme mass ratio collision we have that

dE20

dω
=

5m2γ2
(
v
(
5v2 − 3

)
+ 3

γ4 tanh−1(v)
)2

96πv6 . (B.15)
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