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Resumo

Configurações de partı́culas sem spin confinadas pela gravidade, ou estrelas de bosões escalares,

têm sido estudadas desde há décadas e têm hoje várias aplicações que incluem desde considerá-

las possı́veis candidatos a matéria escura a indicações de que estas terão representado um papel

importante no desenvolvimento do Universo primordial. Estes objectos também foram investigados

em espaços-tempo assimptoticamente Anti-de Sitter (AdS), devido nomeadamente à correspondência

AdS/CFT, uma aparente coerência entre fenómenos fı́sicos em AdS e teorias de campo conformes.

Neste trabalho são estudadas soluções de estrelas de bosões escalares bem como configurações

de partı́culas de spin-1, as chamadas estrelas Proca. Estas são construı́das em espaços-tempo as-

simptoticamente planos e em AdS de modo a evidenciar as diferenças entre os dois. Tais soluções são

encontradas numericamente e comparadas com resultados analı́ticos encontrados no limite em que os

campos massivos podem ser considerados como perturbações da métrica em vácuo. Configurações

de spin-1 são estudadas em cinco dimensões e é argumentado que estas são sempre instáveis em

espaço plano.

Condições de estabilidade face a perturbações lineares esfericamente simétricas são encontradas

para estrelas Proca em ambos os espaços-tempo. Por fim, um teorema do cabelo é provado para

estrelas Proca em AdS estabelecendo que o único buraco negro possı́vel em simetria esférica é o

espaço-tempo de Schwazschild-AdS.

Alguns dos resultados obtidos na realização desta tese encontram-se em [1].

Palavras-chave: assimptoticamente AdS, campos bosónicos, estrela de bosões, estrela

Proca, buraco negro.
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Abstract

The study of scalar boson stars, self-gravitating configurations of spinless particles, has been ongoing

for decades and these have found numerous applications that range from considering them as plausible

dark matter candidates, to indications that these might have played an important part in the development

of the early Universe. These objects have also been investigated extensively in asymptotically Anti-de

Sitter (AdS) spacetimes, mainly due to the AdS/CFT correspondence, an apparent coherence between

physical phenomena in AdS and conformal field theories.

In this work we study solutions of scalar boson stars as well as configurations made of spin-1 parti-

cles, the so called Proca stars. These are constructed in asymptotically flat spacetimes and in AdS in

order to assert the differences between the two. Such solutions are found numerically and then com-

pared with analytical results recovered by considering the matter fields as perturbations of the vacuum

metric. Spin-1 configurations are constructed in five dimensions and an instability of these solutions in

flat spacetimes is argued.

Furthermore, stability conditions are asserted for Proca stars in both spacetimes against linear spher-

ically symmetric perturbations of the metric and the fields. Finally, a no-hair theorem is proved for Proca

stars in AdS, stating that the only possible black hole in spherical symmetry is the Schwarzschild-AdS

spacetime.

Some of the results obtained throughout this thesis can be found in [1].

Keywords: asymptotically AdS, bosonic fields, boson star, Proca star, black hole.
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Chapter 1

Introduction

1.1 Overview and Motivation

In 1955, John Wheeler proposed the existence of configurations of photons or gravitons confined by

Einstein’s gravity, which he called geons [2]. These were soon found to be unstable. Just over a decade

later, Kaup was inspired by this idea and was able to find stable solutions replacing the electromag-

netic field with a complex scalar field [3]. These gravitationally bound spherically symmetric equilibrium

configurations of complex scalar fields are nowadays known as boson stars.

Over the following years, there was substantial activity in cosmology and particle physics on the

possibility of a critical role played by fundamental scalar fields in the development of the early Universe.

Most attempts to model inflation make use of scalar fields as the inflaton field, the vacuum energy

ultimately responsible for the exponential inflation of the Universe (see for example Ref. [4] or Ref. [5] for

a review of cosmic inflation).

Studies of stellar rotation in various galaxies describe the dependence between the rotation speed

at a given radius and the mass contained within that radius. The observation that the rotation curve

becomes flat for large radius suggests the existence of a large dark matter halo as the only possible

mechanism to hold the galaxy together. Boson stars have been largely called upon to solve this problem

as they can be matched to observational constraints for galactic dark matter halos [6, 7].

Yet another application of these objects consists in conceiving them as black hole mimickers [8].

Several indications have pointed towards the possibility that some of the detected astrophysical objects

assumed to be black holes might indeed be massive boson stars. This is a question gravitational wave

observation might be able to settle [9, 10]. As boson stars allow for orbits inside what would be an event

horizon in the case of a black hole, geodesics would show extreme pericenter precession that would

result in considerably different gravitational wave emission [11].

In recent years there have also been proposals advocating for massive spin-1 particles as dark matter

candidates [12, 13, 14]. Self-gravitating configurations of such particles are called Proca stars [15], as

they employ the relativistic field equations named after Alexandru Proca that describe the behaviour

or these particles [16]. These stars can be thought of as a massive version of Wheeler’s geon idea.
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As scalar boson stars have seen more than five decades of extensive study, Proca stars represent an

entirely new field of study in many ways analogous to that of their spinless counterpart.

In this work, besides asymptotically flat spacetimes, self-gravitating configurations are studied in a

background spacetime characterized by a negative cosmological constant, Anti-de Sitter (AdS) space-

time. In recent years we have witnessed the interest in physical phenomena in AdS spacetimes rise

tremendously, mainly due to the apparent correspondence between the propagation of gravitating mat-

ter fields in AdS and the physical effects of a conformal field theory (CFT) in the boundary of that

spacetime. This correspondence, usually referred to as the AdS/CFT correspondence, was proposed

by Maldacena in 1998 [17].

An additional motivation to investigate the physics of such a spacetime is the fact that AdS is maxi-

mally symmetric, which makes it an excelent model for investigating questions of principle such as the

quantization of fields in a curved spacetime. Given the confining nature of the AdS boundary, asymp-

totically AdS (aAdS) spacetimes are an excellent testbed to study strong-gravity effects in confined

geometries. Moreover, several dynamical studies in this spacetime point towards a nonlinear instabil-

ity against black hole formation for general sets of smooth initial data regardless of their initial ampli-

tude [18, 19, 20]. Although, it is now clear that there exist large classes of initial configurations that do

not collapse gravitationally, some of which are boson stars [21, 22, 23, 24, 25].

It is useful to study higher-dimensional gravitational effects and, in particular, five-dimensional ones,

not only to improve our understanding on how the behaviour of physical systems depends on dimen-

sionality, but also in the context of the AdS/CFT correspondence, as the conformal field theory is valid

only for the boundary of the AdS spacetime. Hence, considering self-gravitating matter fields in a five-

dimensional spacetime results in a four-dimensional conformal field theory.

To the extent of my knowledge, despite the extensive work that has already been done on scalar fields

in aAdS spacetimes, there is still no information available in the literature concerning the properties of

complex vector fields in that spacetime.

1.2 Thesis Outline

This thesis is organized as follows. Chapter 2 is an overview of all the work that has already been done

concerning bosonic stars in AdS and in flat spacetimes. Chapter 3 shows the numerical construction of

scalar boson star and Proca star solutions in asymptotically flat spacetimes. On chapter 4, the same

procedure is applied for aAdS spacetimes with different values of Λ. The main differences in the be-

haviour os such structures with the two different asymptotics are established. Also, a no-hair theorem

for Proca stars in AdS is proved in detail on Appendix B. Section 4.3 shows the construction of numerical

solutions of Proca stars in a five-dimensional AdS spacetime and compares them with solutions found

for asymptotically flat spacetime. An instability of all five-dimensional Proca stars for Λ = 0 is argued.

Analytical solutions are found on chapter 5 in the small field amplitude regime in AdS so as to enable

comparison with the solutions obtained numerically, thus validating the numerical method. Extrapolating

this validity to outside the considered approximation grants confidence in the results.
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Finally, chapter 6 shows a full study of the stability of Proca stars in both considered spacetimes

against small linear spherically symmetric perturbations. Stability conditions are established for these

solutions.
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Chapter 2

State of the art

2.1 Scalar boson stars in asymptotically flat spacetime

A widely known theorem proved by Derrick in 1964 [26] uses a clever scaling argument to show that no

regular static non-topological localized scalar field solutions are stable in flat space (a detailed proof is

shown in Appendix A). One way of avoiding this constraint is dropping staticity and coupling the scalar

field to gravity. One can then consider a scalar field given by

φ(t, r) = φ0(r)e−iωt . (2.1)

It can be shown that, although the field is not static anymore, the spacetime is, so that the star itself is a

stationary soliton-like solution. This is only possible for a complex field which makes the stress-energy

tensor static1. If the field is otherwise taken to be real, the stress-energy tensor is not static anymore

and only oscillatory solutions are feasible.

Boson stars were first constructed in the ground-breaking work done by Kaup [3] and soon after

by Ruffini and Bonazzola [27]. These objects, in their simplest version, are macroscopic spherically

symmetric quantum states of non-interacting particles with only the Heisenberg uncertainty principle

preventing them from collapsing into a black hole. Subsequently, interesting work was done introducing

self-interaction potentials in the Lagrangian of the system, in particular, in Ref. [28], a potential propor-

tional to the fourth power of the scalar field was added as an interaction term (see also [29]). In the

case of a repulsive interaction, for example, the solutions kept the same qualitative behaviour as in the

non-interacting case, simply increasing the critical mass and particle number. Further departures from

the original idea include the work done by Jetzer and Van der Bij extending the model to include a U(1)

gauge charge [30] and a study of boson-fermion stars [31], self-gravitating configurations of a mixture of

bosonic and fermionic matter.

Stability against charge-conserving small radial perturbations has been discussed by Gleiser in

Ref. [32] and by Lee and Pang in [33]. A study of asymptotically flat, rotating boson stars is presented

1Note that, if all the terms in the stress-energy tensor are proportional to the field or its derivatives and their complex conjugate,
the time dependence cancels out.
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in [34] and a recent detailed review on the dynamics of boson stars is given in [35].

It is worth mentioning an argument devised by Landau [36] in order to obtain an estimate for the

maximum mass of a star. This argument was first used for a fermion star, but the same outline can be

used for a boson star. For comparison, both are shown below.

Suppose there is a configuration of N fermions within a radius R so that the number density is

n ∼ N/R3. If we consider the volume per fermion to be ∼ 1/n, the Heisenberg uncertainty principle

yields a momentum of ∼ ~n1/3, which in turn gives a Fermi energy of

EF ∼
~cN1/3

R
. (2.2)

The gravitational energy is given by

EG ∼
GMmB

R
, (2.3)

where M = NmB and mB is the baryon mass. So, the total energy is

E ∼ ~cN1/3

R
− GNm2

B

R
. (2.4)

Note that, when E is positive (small N ), EF is decreased by increasing R and the particles eventually

become non-relativistic (EF ∼ 1/R2). Therefore, for a finite R, E becomes negative but goes to zero as

R increases, so there must be a stable equilibrium at some R. On the other hand, when E is negative

(large N ), it can be decreased without bound. Hence, the equilibrium with maximum N is reached at

E = 0.

The maximum number of baryons and the maximum mass are then

Nmax ∼
(

~c
Gm2

B

)3/2
= M3

Pl/m
3
B , (2.5)

Mmax ∼ NmaxmB = M3
Pl/m

2
B , (2.6)

respectively, where MPl is the Planck mass. As an example, if we take neutrons to be the baryons this

star is composed of, we get Mmax ∼ 1.85 M�.

To find an estimate for the maximum mass of a boson star, one can take ∆p∆x ≥ ~ and consider

∆x = R. Taking the maximum momentum to be ∆p = mBc, we get

mBcR ≥ ~ . (2.7)

The maximum possible mass will saturate the uncertainty bound and drive the radius of the star towards

its Schwarzschild radius RS = 2GM/c2. Substituting yields

Mmax ∼
1
2

~c
GmB

= 0.5 M2
Pl/mB . (2.8)

Numerical studies in Ref. [27] show a maximum mass of about 0.633 M2
Pl/mB , which is fairly close to
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the estimate in (2.8). To enable comparison between bosons and fermions, we consider hypothetical

bosons with the mass of a neutron and we get Mmax ∼ 7.1× 10−20 M�. Hence, the maximum mass is,

in general, much larger for the case of a fermion star than for that of a boson star.

2.1.1 Oscillatons

As shown by Derrick’s theorem, static real scalar field solutions cannot exist in an asymptotically flat

spacetime. However, there are non-singular time-dependent near-equilibrium configurations of self-

gravitating real scalar fields called Oscillatons. These objects are quite similar to boson stars both in

nature and behaviour, with the important exception that the fields they contain are real and there is a

time-dependence in order to avoid singularities. This time-dependence is present in both the metric and

the scalar field, as they both oscillate. Oscillatons were first considered in the numerical work done by

Seidel and Suen [37].

An interesting peculiarity of these solutions is that they are not truly stable configurations, in fact they

emit radiation and decay. However, the decay timescales are so large (typically much larger than the

age of the Universe) that, for all purposes, they can be considered stable [38, 39].

2.2 Proca stars in asymptotically flat spacetime

In reference [15] it was found that Proca star solutions show the same qualitative behaviour as their

spinless counterpart with a larger critical mass and particle number, namely, the maximum mass is of

1.058 M2
Pl/mB for a non-interacting spherically symmetric Proca star. Stability against linear radial per-

turbations is studied with the result that these configurations are stable for a certain range of vibrational

frequencies, bounded by the point of maximum mass. Finally, solutions with rotation are constructed.

More recently, rotating Proca stars were shown to be continuously connected to asymptotically flat

rotating black holes with Proca hair [40].

2.3 Scalar boson stars in AdS

There is significantly less work available in the literature concerning the behaviour of boson stars in

aAdS spacetimes than in asymptotically flat spacetimes. Nonetheless, in 1998, Sakamoto and Shi-

raishi obtained scalar field solutions in a (2+1)-dimensional spacetime with a negative cosmological

constant [41].

Relevant work has also been done in this field by Astefanesei and Radu [42], where they provide

a complete study of the basic properties of boson stars in an aAdS spacetime for an arbitrary number

of spatial dimensions, much in the same way as was done for asymptotically flat spacetimes over the

years. Ref. [42] establishes that these solutions are linearly stable for a certain interval of frequencies

(analogous to the one found for Proca stars) and that the properties of boson stars subjected to a

negative Λ do not change significantly, except for the fact that fields experience a complicated power
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decay, instead of the normal exponential at spacial infinity. Also, in AdS, the critical mass decreases as

the modulus of Λ increases. Finally, a general proof of a no-hair theorem is shown, stating that a D-

dimensional static spherically symmetric aAdS black hole spacetime with an energy-momentum tensor

satisfying the weak energy condition and T θθ ≤ T rr , is necessarily trivial (i.e. T νµ = 0), meaning that the

only possible black hole is the Schwarzschild-AdS spacetime.

Further work is presented in [18] concerning the time evolution of a free massless scalar field cou-

pled to gravity in a four-dimensional aAdS spacetime, with the result that, from a large class of smooth

initial data, black holes are formed, indicating that AdS is unstable (see also [19, 20]). This instability

towards black hole formation takes place because more and more energy gets concentrated in the same

region through weak turbulence. The existence of an instability of this sort is related to the particular

causal structure of this spacetime, which is not globally hyperbolic, i.e., it does not have a Cauchy hyper-

surface. The main consequence of this peculiarity is that the perscription of initial data on a spacelike

hypersurface in the usual way is not sufficient to fully determine its time evolution, so it is necessary to

impose suitable boundary conditions on the timelike boundary of the AdS spacetime. In more intuitive

terms, light takes a finite proper time to reach the AdS boundary, which is not the case in asymptotically

flat spacetimes. This means that this boundary is in causal contact with the interior of the spacetime,

thus affecting the behaviour of the physical systems.

Note, however, that boson stars seem to be immune to this instability for sufficiently small perturba-

tions [21, 22, 23, 24, 25], which makes the study of these structures all the more interesting not only in

the context of the AdS/CFT correspondence, but also to further extend our knowledge on the nature of

the AdS instability.
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Chapter 3

Numerical solutions in asymptotically

flat spacetime

Scalar boson stars, as well as Proca stars, are constructed in an asymptotically flat spacetime. These

solutions of the Einstein-Klein-Gordon and Einstein-Proca equations, respectively, are obtained numeri-

cally in order to obtain values for observables such as the ADM mass and the total number of particles

of the star.

3.1 Scalar boson stars

Self-gravitating structures of non-interacting scalar particles can be seen as macroscopic quantum

states with only the Heisenberg uncertainty principle preventing them from collapsing gravitationally.

These are the simplest form of boson stars, just as Kaup first idealized them.

In the following calculations, we use approximately the same notation and ansatz as Ref. [32], in

order to facilitate comparison of the resulting field equations.

3.1.1 Framework

Writing the action as

S = −
∫
d4√−g

(
R

16πG − g
µνΦ∗;µΦ;ν − µ2|Φ|2

)
, (3.1)

and varying it with respect to the metric gµν and the field Φ (with Φ∗ its complex conjugate), we obtain

Einstein’s equations

Rµν −
1
2gµνR = 8πGTµν , (3.2)

with the energy-momentum tensor given by

Tµν = Φ∗,µΦ,ν + Φ∗,νΦ,µ − gµν(gαβΦ∗,αΦ,β − µ2|Φ|2) , (3.3)
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and the Klein-Gordon equation

gµνΦ;µν + µ2Φ = 0 . (3.4)

The Lagrangian density in question is invariant under a global phase rotation Φ→ Φe−iα, which implies

the existence of a conserved current

jµ = igµν(Φ∗,νΦ− Φ,νΦ∗) , (3.5)

and a conserved Noether charge, namely the number of particles

Q =
∫

Σ
d3x
√
−gjt , (3.6)

where jt is the time component of the 4-current and Σ is a spacelike hypersurface.

3.1.2 Equations of motion and boundary conditions

The concept of star implies a configuration of matter that remains localized over time. Hence, one has

to look for a localized structure such that the gravitational field is stationary and everywhere regular.

For equilibrium configurations, the metric functions are time-independent and Φ(t, r) = φ(r)e−iωt, where

ω is a real frequency parameter. Recall that describing the scalar field in this way prevents contraints

imposed by Derrick’s theorem.

Let us now take a spherically symmetric metric with the metric functions depending only on r and t,

ds2 = −eν(t,r)dt2 + eλ(t,r)dr2 + r2(dθ2 + sin2 θdϕ2) . (3.7)

Denoting the time derivative by a dot and the radial derivative by a prime, the conservation of the energy-

momentum tensor, T νµ;ν = 0, leads to

Ṫ 0
1 + T 1′

1 + 1
2T

0
1 (λ̇+ ν̇) + 1

2(T 1
1 − T 0

0 )ν′ + 2
r

(T 1
1 − T 2

2 ) = 0 . (3.8)

Introducing the dimensionless variables x = rµ and γ(r) = (8πG) 1
2φ(r) and taking Einstein’s equa-

tions for R0
0 and R1

1, along with (3.8), we finally get the equations

µ2eν
[
γ′(xλ′ − xν′ − 4) + 2xeλγ − 2xγ′′

]
− 2xω2eλγ = 0 , (3.9)

µ2e−λ(xλ′ − x2γ′2 + eλ − 1) + x2γ2(−µ2 − ω2eν) = 0 , (3.10)

and

µ2e−λ(−xν′ + x2γ′2 + eλ − 1) + x2γ2(−µ2 + ω2eν) = 0 . (3.11)
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The boundary conditions at the origin read

λ(x) = γ2
0r

2

3

(
ω2

µ2 e
−ν0 + 1

)
+O(r4) ,

ν(x) = ν0 + γ2
0r

2

3

(
2ω

2

µ2 e
−ν0 − 1

)
+O(r4) ,

γ(x) = γ0 −
γ0r

2

6

(
ω2

µ2 e
−ν0 − 1

)
+O(r4) ,

(3.12)

where γ0 and ν0 are constants, while at infinity, the scalar field behaves as

γ(x) = c0
e
−x
√

1−ω2
µ2

x
+ ... , (3.13)

where c0 is a constant. The metric functions eν and eλ behave asymptotically as the Schwarzschild

metric with the Schwarzschild mass m(x) approaching a positive constant value which is the ADM mass

of the star. Note that ω < µ, which is a bound state condition.

3.1.3 Numerical results

As a global analytical solution to the equations (3.9)-(3.11) appears to be intractable, a shooting method

was implemented for the parameter ω, at each step incrementing the value of γ0 and making use of the

previous solution to find the next.

Figure 3.1 shows a plot of the scalar field γ and the metric functions λ and ν in terms of the rescaled

radial coordinate x. It is visible that the field is exponentially supressed at a finite r, so we can consider

the star to be confined in a finite region of space1. Note that here we are only interested in nodeless

solutions, as studies suggest that excited states of scalar boson stars are always unstable [43].

With this choice of variables and ansatz, the total number of particles, (3.6), reads

Q = ω

∫
dxx2σ2e

1
2 (λ−ν) . (3.14)

The mass was calculated at infinity taking the spacetime at large distances to be given by the Schwarzschild

metric. On Figure 3.2, we plot the ADM mass and the total number of particles of the boson star as a

function of the central density γ0. The inset shows the mass as a function of the fundamental frequency

ω. As the central density increases, the mass and particle number rise abruptly until they reach a max-

imum value of 0.633 M2
Pl/µ and 0.653 M2

Pl/µ
2, respectively, then M and Q drop to a minimum and

oscillate around a positive asymptotic value. It is also visible that ω → 1 as γ0 → 0. It then decreases to

a minimum and follows a spiral around a positive value.

The black dot marks the point of maximum mass. Ref. [32] establishes that point as the upper value

of linear stability, meaning that solutions with a central density lower than that are linearly stable and

those with a higher one are linearly unstable.

1As boson stars do not have a hard surface like the one present in neutron stars, their bulk is normally taken to be a large
percentage of their mass, e.g. 99%.
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Figure 3.1: Plot of the field γ and the mass m as functions of the radial coordinate for a solution char-
acterized by γ0 = 0.436, ω = 0.839 and M = 0.597 M2

Pl/µ. Here, the Schwarzschild mass is given by
m(x) = x/2(1− e−λ).
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Figure 3.2: ADM mass and total number of particles in terms of the central density for a scalar boson
star in an asymptotically flat spacetime. M is given in units of M2

Pl/µ and Q in units of M2
Pl/µ

2. The
inset shows the ADM mass as a function of the fundamental frequency.

If one defines the binding energy as M −Qµ, it is clear that it is negative for small values of γ0 and

then becomes positive, pointing towards an excess energy of the solutions with a large central density

and suggesting that these are unstable against perturbations.
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3.2 Proca stars

The notation used in this section is the one used in Ref. [15], where these structures of non-interacting

spin-1 particles were first constructed. Such stars are shown to share various properties with their

spinless counterpart.

3.2.1 Framework

The Einstein-(complex)-Proca model is described by the action

S =
∫
d4√−g

(
R

16πG −
1
4FµνF̄

µν − 1
2µ

2AµĀµ
)
. (3.15)

The Einstein and Proca field equations are

Rµν −
1
2gµνR = 8πGTµν , (3.16)

and

∇µFµν = µ2Aν , (3.17)

respectively, with an energy-momentum tensor given by

Tµν = −Fσ(µF̄σν) −
1
4gµνFαβF̄

αβ + µ2
[
A(µĀν) −

1
2gµνAαĀ

α

]
, (3.18)

and F defined as F ≡ dA. The action (3.15) is invariant under a global U(1) symmetry of the form

Aµ → eiαAµ, which implies the existence of a conserved 4-current

jµ = i

2
(
F̄µνAν −FµνĀν

)
. (3.19)

This, in turn, implies the existence of a conserved Noether charge Q, once again the particle number,

given by (3.6).

3.2.2 Equations of motion and boundary conditions

Considering only spherically symmetric solutions, we can write the metric as

ds2 = −σ2(r)N(r)dt2 + 1
N(r)dr

2 + r2(dθ2 + sin2 θdϕ2) , (3.20)

with N(r) = 1− 2m(r)/r and the Proca potential as

A = e−iωt [f(r)dt+ ig(r)dr] , (3.21)
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where f(r), g(r) are real functions of the radial coordinate2. The Proca equations are

[
r2(f ′ − ωg)

σ

]′
= µ2r2f

σN
, (3.22)

and

ωg − f ′ = µ2σ2Ng

ω
, (3.23)

while Einstein’s equations, namely those for G00 and 2
NG00 + 2Nσ2G11, yield

m′ = 4πGr2
[

(f ′ − ωg)2

2σ2 + 1
2µ

2
(
g2N + f2

Nσ2

)]
, (3.24)

and

σ′ = 4πGrµ2σ

(
g2 + f2

N2σ2

)
. (3.25)

The behaviour of equations (3.22)-(3.25) near the origin is the following:

f(r) = f0 + f0

6 r
2
(
µ2 − ω2

σ2
0

)
+O(r4) ,

g(r) = −f0ω

3σ2
0
r +O(r3) ,

m(r) = 4πGf2
0µ

2

6σ2
0

r3 +O(r5) ,

σ(r) = σ0 + 4πGf2
0µ

2

2σ0
r2 +O(r4) ,

(3.26)

where f0 and σ0 are constants. At spatial infinity, the different quantities behave thusly:

f(r) = c0
e−r
√
µ2−ω2

r
+ ... ,

g(r) = c0
ω√

µ2 − ω2

e−r
√
µ2−ω2

r
+ ... ,

m(r) = M + ... ,

log σ(r) = −4πG c0µ
2

2(µ2 − ω2)3/2
e−2r
√
µ2−ω2

r
+ ... ,

(3.27)

where M is the ADM mass and c0 is a constant.

3.2.3 Numerical results

In the following, the constants are set to µ = 1 and 4πG = 1 by changing r → rµ, m → mµ, ω → ωµ,

f → f
√

4πG and g → g
√

4πG. Eq.(3.6), in this case, gives

Q = 1
ω

∫
dr
r2g2σ

N
. (3.28)

A method similar to the one used for scalar boson stars was used to solve the system (3.22)-(3.25)
2Note that a complex Proca field can be thought of as two independent real fields of mass µ.
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numerically. Figure 3.3 shows a plot of the field components, f and g, and the metric functions, σ and

m, in terms of r. Note that both components of the field are exponentially supressed at some r and that

both σ and m approach constant positive values. Also, in the family of solutions presented here, f has

one node (hardly noticeable on Figure 3.3) and g is nodeless.

2 4 6 8

-0.2

0.0

0.2

0.4

0.6

0.8

Figure 3.3: Plot of the field components, f and g, and the metric functions, σ and m, in terms of the
radial coordinate for a solution described by f0 = 0.176, ω = 0.858 and M = 1.052 M2

Pl/µ.

On Figure 3.4 the ADM mass and the total particle number are plotted against f0 and against the

fundamental frequency ω. It is visible that the solutions do not change qualitatively when one considers

spin-1 particles instead of scalar ones. Nevertheless, the maximum mass and particle number reached

by the star are larger than those for a regular boson star, namely 1.058 M2
Pl/µ and 1.087 M2

Pl/µ
2,

respectively. Once again, the black dot marks the point of maximum mass as well as the upper value of

stability, as asserted in [15]. This calculation is performed in detail on chapter 6.

Similarly to the scalar case, looking at Figure 3.4, one can argue that solutions above a certain value

of f0 have excess energy and are unstable against perturbations.
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Figure 3.4: ADM mass and total particle number in terms of f0 for a Proca star in an asymptotically flat
spacetime, in units of M2

Pl/µ and M2
Pl/µ

2, respectively. The inset shows the ADM mass as a function of
the fundamental frequency.
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Chapter 4

Numerical solutions in AdS

A procedure analogous to the one used in the previous chapter is employed here in order to obtain

the ADM mass and total particle number of scalar boson stars and Proca stars in asymptotically AdS

spacetimes.

4.1 Scalar boson stars

The following calculations make use of the notation and ansatz present in Ref. [42]. This paper shows

a detailed numerical study of scalar boson star solutions in AdS for different values of the cosmological

constant.

4.1.1 Framework

The action for a scalar boson star in AdS is the following:

S = −
∫
d4√−g

(
R− 2Λ
16πG − gµνΦ∗,µΦ,ν − µ2|Φ|2

)
. (4.1)

In this case, Einstein’s equations take the form

Rµν −
1
2gµνR+ Λgµν = 8πGTµν . (4.2)

with an energy-momentum tensor given by

Tµν = Φ∗,µΦ,ν + Φ∗,νΦ,µ − gµν(gαβΦ∗,αΦ,β + µ2|Φ|2) . (4.3)

Once again, we take the field to be given by Φ(t, r) = φ(r)e−iωt and the metric to be

ds2 = −e−2δ(r)F (r)dt2 + 1
F (r)dr

2 + r2(dθ2 + sin2 θdϕ2) , (4.4)

with F (r) = 1− 2m(r)− Λr2/3.
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4.1.2 Equations of motion and boundary conditions

Einstein’s equations yield

m′ = 4πGr2
[
Fφ

′2 + µ2φ2 + e2δ

F
ω2φ2

]
, (4.5)

and

(e−δ)′ = 8πGr
[
ω2eδφ2

F 2 + φ
′2e−δ

]
, (4.6)

while the Klein-Gordon equation for curved spacetime gives

(r2e−δFφ′)′ = r2φe−δ
(
µ2 + ω2 e

2δ

F

)
. (4.7)

Near the origin, the relevant quantities of the system were found to behave in the following way:

φ(r) = φ0 + r2φ0(1− e2δ0)
6 +O(r4) ,

m(r) = r3φ
2
0(1 + e2δ0)

6 +O(r5) ,

δ(r) = δ0 −
1
2e

2δ0φ2
0r

2 +O(r4) ,

(4.8)

while at spatial infinity, they behave like

φ(r) = c0r
a + ... ,

m(r) = M + ... ,

e−δ(r) = 1 + ac20
2 r2a + ... ,

(4.9)

where c0 is a constant and a = −3/2 −
√

9/4− 1/Λ. We see here the complicated power decay that

does not take place when Λ = 0 (see (3.13)).

4.1.3 Numerical results

This choice of variables and ansatz in (3.6) leads to

Q = 2ω
∫
dr
r2φ2eδ

F
. (4.10)

The system (4.5)-(4.7) was integrated numerically in order to obtain Figure 4.1, a profile of the ADM

mass and particle number in terms of the central density for Λ = 0, Λ = −0.05µ2 and Λ = −µ2. The

same results were used to plot the mass in terms of the fundamental frequency for the three values of

the cosmological constant, shown on Figure 4.2.

The maximum mass for Λ = 0 is, once again, 0.633 M2
Pl/µ, for Λ = −0.05µ2 it is 0.480 M2

Pl/µ

and for Λ = −µ2 it is 0.239 M2
Pl/µ. The maximum particle numbers are, respectively, 0.653 M2

Pl/µ
2,

0.436 M2
Pl/µ

2 and 0.121 M2
Pl/µ

2. So we see that, although the qualitative behaviour of the solutions is

not affected by the introduction of a negative consmological constant, the maximum mass and particle
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Figure 4.1: ADM mass and number of particles in terms of the central density for a scalar boson star in
AdS. The mass is given in units of M2

Pl/µ, the number of particles in units of M2
Pl/µ

2 and Λ in units of
µ2.
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Figure 4.2: ADM mass in terms of the fundamental frequency for a scalar boson star in AdS. The mass
is in units of M2

Pl/µ and Λ in units of µ2.

number decreases. Also, the central density at which that maximum occurs shifts towards higher values

with a decreasing Λ.

Ref. [42] establishes that the point of maximum mass corresponds to the upper value of linear stability

(black dot on Figure 4.1), just as in asymptotically flat spacetime. In AdS, the binding energy does not

hold the same meaning as in asymptotically flat spacetimes given the confining nature of this spacetime.
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A configuration with excess energy would presumably radiate and decay away, but the radiation would

just reach the boundary of the spacetime and come back in a finite time interval. Therefore, using the

positivity of the binding energy to suggest an instability of self-gravitating structures in AdS seems to be

invalid. In fact, both linearly and non-linearly stable solutions have been found in this spacetime [42, 21,

22, 23, 24, 25].

It is worth mentioning that it is possible to find similar solutions with µ = 0 in AdS (see Ref. [24]),

although these do not exist in asymptotically flat spacetimes. This discrepancy is due to the fact that the

boundary of the AdS spacetime is in causal contact with its interior. It thus acts as a natural box and

scalar boson stars behave as stationary waves inside that box.

4.2 Proca stars

There is still no work in the literature concerning self-gravitating structures of spin-1 particles in asymp-

totically AdS spacetimes. These solutions are constructed here and it is seen that increasing the modu-

lus of the negative cosmological constant changes their behaviour in a similar way as it does for scalar

boson stars.

We established a no-hair theorem for Proca stars in AdS stating that spherically symmetric gravita-

tional collapse always ends in the Schwarzschild-AdS metric. The proof of this theorem can be easily

generalized from the one in asymptotically flat spacetime in Ref. [40] and it is presented in Appendix B.

4.2.1 Framework

Taking the action

S =
∫
d4√−g

(
R− 2Λ
16πG − 1

4FµνF̄
µν − 1

2µ
2AµĀµ

)
, (4.11)

we retrieve equations (3.17) and (4.2) with an energy-momentum tensor given by (3.18).

Let us now take the metric to be

ds2 = −σ2(r)F (r)dt2 + 1
F (r)dr

2 + r2(dθ2 + sin2 θdϕ2) , (4.12)

with F (r) defined as before, and the Proca potential written as (3.21).

4.2.2 Equations of motion and boundary conditions

Einstein’s equations and Proca equations yield

[
r2(f ′ − ωg)

σ

]′
= µ2r2f

σF
, (4.13)

ωg − f ′ = µ2σ2Fg

ω
, (4.14)

m′ = 4πGr2
[

(f ′ − ωg)2

2σ2 + 1
2µ

2
(
g2F + f2

Fσ2

)]
, (4.15)
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and

σ′ = 4πGrµ2σ

(
g2 + f2

F 2σ2

)
. (4.16)

The boundary conditions at the origin are (3.26), while at spatial infinity, the following behaviour is found:

f(r) = c0r
α... ,

g(r) = − c0l
4ω

α+ 1r
α−3 + ... ,

m(r) = M + 4πGc20
α2 + µ2l2

2(1 + 2α)r
2α+1 + ... ,

log σ(r) = 4πGc20
µ2l4

2(α− 1)r
2α−2 + ... ,

(4.17)

where c0 is a constant, M is the ADM mass, l2 = −3/Λ is the AdS curvature radius squared and

α = −(
√

1 + 4µ2l2 + 1)/2.

4.2.3 Numerical results

The expression for the total number of particles is, in this case,

Q = 1
ω

∫
dr
r2g2σ

F
. (4.18)

The field equations were solved numerically using the same method as before. On Figure 4.3 the ADM

mass and total particle number are plotted against f0 and on Figure 4.4 the ADM mass is plotted against

the fundamental frequency for Λ = 0, Λ = −0.05µ2 and Λ = −µ2.
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Figure 4.3: ADM mass and number of particles in terms of f0 for a Proca star in AdS. The mass is given
in units of M2

Pl/µ, the number of particles in units of M2
Pl/µ

2 and Λ in units of µ2.
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Figure 4.4: ADM mass in terms of the fundamental frequency for a Proca star in AdS. The mass is in
units of M2

Pl/µ and Λ in units of µ2.

The maximum mass for Λ = 0 is, once again, 1.058 M2
Pl/µ, for Λ = −0.05µ2 it is 0.595 M2

Pl/µ and for

Λ = −µ2 it is 0.237 M2
Pl/µ (black dots on Figure 4.3). The maximum particle numbers are, respectively,

1.087M2
Pl/µ

2, 0.489M2
Pl/µ

2 and 0.105M2
Pl/µ

2. As expected, the introduction of a negative cosmological

constant preserves the qualitative behaviour of the solutions, once again decreasing the maximum mass

and shifting the value of f0 at which it occurs towards higher values.

An interesting contrast between Proca stars and scalar ones is that spin-1 solutions do not exist for

µ = 0. This can be understood if we, once again, take AdS spacetime to work as a box. It is known that

Maxwell fields do not allow for spherically symmetric stationary everywhere regular waves and hence,

Proca stars of massless bosons cannot exist for any value of Λ.

4.3 Proca stars in five dimensions

Ref. [42] shows stark differences in the behaviour of scalar boson stars in four and five-dimensional AdS

spacetimes. This makes it interesting to find solutions of Proca stars in five dimensions and see whether

these behave in a similar manner. Here we construct such solutions numerically and argue an instability

against perturbations in the asymptotically flat case.

4.3.1 Framework

In five dimensions, the spherically symmetric metric becomes

ds2 = σ2(r)F5D(r)dt2 + 1
F5D(r)dr

2 + r2dΩ2
3 , (4.19)
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where dΩ2
3 denotes the three-dimensional unit sphere line element and the function F5D(r) is given by

F5D(r) = 1− 2m(r)
r2 − Λr2

6 . (4.20)

4.3.2 Equations of motion and boundary conditions

Einstein’s equations, together with the Proca field equations, yield the following system of ordinary dif-

ferential equations: [
r2(f ′ − ωg)

σ

]′
+ r

σ
(f ′ − ωg) = µ2r2f

σF5D
, (4.21)

ωg − f ′ = µ2σ2F5Dg

ω
, (4.22)

m′ = 4πGr3
[

(f ′ − ωg)2

3σ2 + 1
3µ

2
(
g2F5D + f2

F5Dσ2

)]
, (4.23)

and

σ′ = 8
3πGrµ

2σ

(
g2 + f2

F 2
5Dσ

2

)
. (4.24)

The boundary conditions at the origin imposed by (4.21)-(4.24) are

f(r) = f0 + f0

8 r
2
(
µ2 − ω2

σ2
0

)
+O(r4) ,

g(r) = −f0ω

4σ2
0
r +O(r3) ,

m(r) = 4πGf2
0µ

2

12σ2
0

r4 +O(r6) ,

σ(r) = σ0 + 4πGf2
0µ

2

3σ0
r2 +O(r4) ,

(4.25)

where f0 and σ0 are constants. The boundary conditions at spatial infinity in AdS and flat asymptotics

are ommited here as they are similar to (4.17) and (3.27), respectively.

4.3.3 Numerical Results

Equation (3.6) in five dimensions gives

Q = π

2ω

∫ ∞
0

r3g2σF5Ddr . (4.26)

The main difference between the four and five-dimensional cases occurs when Λ = 0. Unlike the

four-dimensional case, in the limit f0 → 0, the mass and charge of the solutions are finite. This is shown

on Fig. 4.5, which shows a plot of the ADM mass and charge of the five-dimensional solutions for Λ = 0

and Λ = −0.05µ2. This behavior was also noticed for scalar boson stars in Refs. [44, 45] and it is present

uniquely in asymptotically flat solutions. For Λ 6= 0 the behavior is analogous to the one found in four

dimensions, as shown in Fig. 4.5.

Taking the asymptotically flat case, it is visible that the particle number is smaller than the ADM mass
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Figure 4.5: ADM mass and particle number in terms of f0 for a Proca star in five dimensions. The mass
is given in units of M3

Pl/µ
2, the number of particles in units of M3

Pl/µ
3 and Λ in units of µ2.

for all solutions. If we take the binding energy to be given by M −Qµ, then it is always positive, pointing

towards an excess energy in the solutions and thus suggesting that every solution is unstable against

perturbations.

Similarly to the scalar case, for Proca star solutions in five-dimensional AdS, both M and Q vanish

when f0 → 0, while there is a maximum mass and charge at a finite value of f0. This suggests a stable

set of solutions in AdS. Unfortunately, due to the greater complexity of the five-dimensional solutions,

we could not confirm this supposition through a linear stability analysis and we leave a more complete

study for future work.

The maximum mass for Λ = −0.05µ2 is 3.728 M3
Pl/µ

3, while the maximum particle number is

3.012 M3
Pl/µ

2.
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Chapter 5

Analytical solutions in AdS

It is possible to obtain solutions of boson stars analytically if we consider a perturbative expansion in

the amplitude of the fields. Such solutions are the normal modes of the fields. For this purpose, let us

introduce the vacuum AdS metric in global coordinates:

ds2 = −
(
r2

l2
+ 1
)
dt2 + dr2(

r2

l2 + 1
) + r2dΩ2

2 , (5.1)

where l2 = −3/Λ. As the field is taken to be a perturbation, the Schwarzschild mass m(r) vanishes.

Using this approximation, one can obtain values for the fundamental frequency, the total mass of the star

and its number of particles, in order to compare them with the ones obtained numerically. This allows

for the validation of the numerical method and a corroboration of the values obtained thusly.

5.1 Scalar boson stars

We start by considering the following expansion:

φ(r) = ε
ψ(r)
r

+O(ε3) ,

m(r) = ε2m2(r) +O(ε4) ,

e−δ(r) = 1 + ε2δ2(r) +O(ε4) ,

(5.2)

where F0(r) = 1 + r2

l2 and ε is a small parameter, which can be chosen to be the free-parameter

φ0 ≡ φ(r = 0) = ε, by normalizing the function ψ as

ψ

r

∣∣∣∣
r→0

= 1 . (5.3)

At linear order in ε, the problem reduces to solving the field equations in an AdS background. The

spherically symmetric Klein-Gordon equation is

F 2
0
d2ψ

dr2 + F ′0F0
dψ

dr
+
[
ω2 − F0

(
2
l2

+ µ2
)]

ψ = 0 . (5.4)
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We define the tortoise coordinate r∗ as
∂r

∂r∗
= F0(r) , (5.5)

and use it to write (5.4) as
d2ψ

dr2
∗

+
[
ω2 − F0

(
2
l2

+ µ2
)]

ψ = 0 . (5.6)

Now, making use of the variable x ≡ sin2(r∗/l), we get the equation

∂2ψ

∂x2 + τ

η

∂ψ

∂x
+ ζ

σ2ψ = 0 , (5.7)

where τ , η and ζ are given by

τ = 4ω2l2x(1− x)− 4x(2 + µ2l2) ,

η = 4x(1− x) ,

ζ = 2(1− 2x) .

(5.8)

Finally, making

ψ(x) = Z(x)(1− x) 1
2 (ks−1)√x , (5.9)

with ks = 3/2+
√

9/4 + µ2l2, we get a hypergeometric differential equation for Z(x) in the standard form:

x(1− x)d
2Z

dx2 + [c− (a+ b+ 1)x] dZ
dx
− (ab)Z = 0 , (5.10)

where a = (ks − lω)/2, b = (ks + lω)/2 and c = 3/2. The most general solution to this equation is given

by

Z(x) = A 2F1 (a, b; c;x) +Bx1−c
2F1 (1 + a− c, 1 + b− c; 2− c;x) . (5.11)

Requiring a regular solution at the origin r = 0, implies that B = 0, while imposing regularity of the

solution at infinity gives the spectrum:

ωl = ks + 2n . (5.12)

where n parametrizes the excitation level of the boson star.

Let us now compare this result with the numerical frequencies. For n = 0, we get a fundamental

frequency of ω ≈ 2.19 with a cosmological constant of −µ2 and ω ≈ 1.21 with a cosmological constant of

−0.05µ2. Looking at Figure 4.2 we see that, in the approximation of a small central density (lower part

of the curve) the values of the frequency correspond with good accuracy to those given by (5.12).

In order to compare this result with the mass-central density curve, one can consider higher order

corrections in m(r). In particular, the ADM mass of the solutions can be obtained by taking into account

second order terms in ε and integrating equation (4.5) to obtain

M = 4π
∫
ρr2dr . (5.13)
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Considering ρ = −T tt , for the fundamental solution n = 0, we get

M/l = ε2
√
π(k2 − l2)Γ

[
k − 3

2
]

4Γ[k] , (5.14)

while the charge can be obtained from (4.10):

Q/l2 = ε2
√
π(k2 − l2)Γ

[
k − 3

2
]

4kΓ[k] . (5.15)

It is worth noting that, for any n,

M = ωQ , (5.16)

with ω given by eq. (5.12).

On Figure 5.1 we plot (5.14) and (5.15) along with the numerical points in the small field approxima-

tion for Λ = −µ2 (Figure 4.1). It is visible that the analytical curve is in agreement with the fully non-linear

◆

◆

◆

◆

■

■

■

■
◆

■

10-4 0.001 0.010 0.100

10-8

10-6

10-4

10-2

Figure 5.1: Comparison between the perturbative approximations for the mass (5.14) and charge (5.15)
and the fully non-linear results of a scalar boson star, as a function of the central density for Λ = −µ2.

results, thus corroborating the numerical method.
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5.2 Proca stars

Once again, expanding the relevant functions in powers of ε gives

f(r) = ε
u1(r)
r

+O(ε3) ,

g(r) = ε
u2(r)
rF0(r) +O(ε3) ,

m(r) = ε2m2(r) +O(ε4) ,

σ(r) = 1 + ε2σ2(r) +O(ε4) ,

and we make f0 ≡ f(r = 0) = ε by normalizing the function u1 as

u1

r

∣∣∣∣
r→0

= 1 . (5.17)

The Lorenz condition ∇αAα = 0 yields

u1 = −F0∂r(r u2)
ωr

, (5.18)

which gives, together with the (r) component of the Proca equations,

d2u2

dr2
∗

+
[
ω2 − F0

(
2
r2 + µ2

)]
u2 = 0 , (5.19)

where the tortoise coordinate r∗ is defined in (5.5). Once again, making use of x ≡ sin2(r∗/l), one can

define the function Z(x) as

u2(x) = Z(x)(1− x) 1
2 (3−kv)x , (5.20)

this time with kv = 5/2 +
√

1/4 + µ2l2, in order to get a hypergeometric equation in Z(x), (5.10), where

a = (5 − k − lω)/2, b = (5 − k + lω)/2 and c = 5/2. Requiring well-behaved fields everywhere, we get

the frequency spectrum

ωl = kv + 2n . (5.21)

For n = 0, the fundamental frequency is ω ≈ 2.48 with Λ = −µ2 and ω ≈ 1.32 with Λ = −0.05µ2.

Figure 4.4, in the small amplitude approximation, shows that the values of the frequency correspond

with good accuracy to those obtained from (5.21).

For n = 0, the expressions for the ADM mass and total number of particles in the small amplitude

approximation are, respectively,

M/l = ε2
√
πk(k − 3)(k − 2)Γ

[
k − 3

2
]

24Γ[k] , (5.22)

Q/l2 = ε2
√
π(k − 3)(k − 2)Γ

[
k − 3

2
]

24Γ[k] . (5.23)

Note that (5.16) still holds.
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On Figure 5.2 we plot (5.22) and (5.23) with the numerical data in the considered limit for Λ = −µ2

(Figure 4.3), where we see that numerical and analytical results agree, once more, in the small f0

approximation.
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Figure 5.2: Comparison between the perturbative approximations for the mass (5.22) and charge (5.23)
and the fully non-linear results of a Proca star, as a function of f0 for Λ = −µ2.
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Chapter 6

Linear stability of Proca stars

Having seen that it is possible to construct Proca star solutions in asymptotically AdS spacetimes we

now study the stability of these solutions against small perturbations. We consider linear perturbations

around the ground state of spherically symmetric Proca stars, assuming that all perturbations have a

harmonic time dependence of the form e−iΩt, with Ω the characteristic vibrational frequencies. Ref. [15]

shows that Proca stars with flat asymptotics are linearly stable from f0 → 0 until the point of maximum

mass, while the same result had formerly been shown for scalar boson stars in both spacetimes [32, 42].

An analogous study for Proca stars in AdS has not yet been shown.

6.1 Equations of motion and boundary conditions

Following [15], the perturbed metric can be written as

ds2 = −σ2(r)F (r)[1−H0(r)e−iΩt]dt2 + [1 +H2(r)e−iΩt]
F (r) dr2 + r2dΩ2 , (6.1)

where H0 and H2 are small radial perturbations around the background metric and F (r) = 1− 2m(r)−

Λr2/3. The perturbed vector field is written as

A = e−iωt
[(
f(r) + e−iΩt

f1(r) + if2(r)
r

)
dt+

(
ig(r) + e−iΩt

g1(r) + ig2(r)
r

)
dr

]
,

Ā = eiωt
[(
f(r) + e−iΩt

f1(r)− if2(r)
r

)
dt+

(
−ig(r) + e−iΩt

g1(r)− ig2(r)
r

)
dr

]
,

(6.2)

where Ā is the complex conjugate of A, f(r) and g(r) are two real functions and f1, f2, g1 and g2 are

radial perturbations around the background solutions. The deduction of the field equations is presented

on Appendix C.
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Imposing regularity at r = 0 we get the following boundary conditions at the origin

H0(r) = h0 +O(r2) ,

H2(r) = O(r2) ,

f1(r) = h1r +O(r3) ,

f2(r) = h2r +O(r3) ,

g2(r) = O(r2) ,

(6.3)

where the coeficients h0, h1 and h2 are constants. Using the linearity of the system (C.2)-(C.6), we can

set h1 = 1. We see from (C.5) that, when Ω = 0, the function f2 decouples from the others and h2

is an arbitrary constant, so we can set it to zero and check a posteriori that this is consistent with the

boundary conditions.

At infinity, the imposed boundary conditions are that all perturbed quantities approach zero for suf-

ficiently large r, except for H0 which approaches a constant positive value. In general, imposing two of

these conditions was proved sufficient to ensure all the others.

Starting from one solution, found through the hypothesis that the point of maximum mass corre-

sponds to Ω = 0, we developed a code shooting for the parameters Ω and h0, such that the solutions

satisfy the boundary conditions. First it increments the value of f0 and solves the system (3.22)-(3.25)

((4.13)-(4.16) for AdS), then it takes the solution and inserts it into (C.2)-(C.6) of which only the two

refered parameters remain unknown.

Despite the similarities between the numerical method described here and the one used to find

unperturbed solutions on chapters 3 and 4, the fact that the shooting method is now implemented for two

parameters instead of one makes the code significantly more complicated and solutions are much harder

to find. Furthermore, as the numerical code requires an initial guess for the values of the parameters

to find the closest solution, we found that guesses need to be a lot more precise in this case for the

computer to be able to find a solution at all.

6.2 Numerical results in asymptotically flat spacetime

Setting Λ = 0, the profile of Ω2 as a function of the mass of the Proca star obtained numerically is

shown on Figure 6.1. The black dot on Figure 6.1 denotes the point of maximum mass 1.087 M2
Pl/µ

2

shown also on Figure 3.4. It is visible that Ω is a real number for f0 smaller than that which corresponds

to the maximum ADM mass. These are the stable normal modes of the star. For f0 larger than that,

Ω becomes a pure positive imaginary number and thus, from (6.1) and (6.2), we conclude that these

solutions are unstable.

Solutions that fit in the unstable branch are likely to migrate back to the stable one through a mecha-

nism of ”gravitational cooling” [46, 47, 48, 49, 39], which consists in radiating energy until f0 decreases

just enough to find a stable solution. Another plausible outcome is that the unstable configuration radi-

ates completely until there is no self-gravitating structure anymore.
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Figure 6.1: The squared characteristic vibrational frequency of the perturbation as a function of the
total mass of the Proca star. The critical mass at which the star becomes unstable is also its point of
maximum mass (black dot).

6.3 Numerical results is AdS

We performed the same study of stability for a Proca star in an asymptotically AdS spacetime with

a cosmological constant of Λ = −0.05µ2. Although we expected roughly the same results as in the

asymptotically flat case, the linear stability conditions of Proca stars in AdS are not yet described in the

literature.

Proceeding much in the same way as was done before, we obtained a profile of the squared char-

acteristic vibrational frequency of the star as a function of its mass (Figure 6.2). As expected, the same

linear stability conditions apply to Proca stars in flat spacetime and in AdS, namely the star is stable

for f0 smaller than that which corresponds to the maximum mass and then becomes linearly unstable

as the characteristic vibrational frequency becomes a pure positive imaginary number. One apprecia-

ble difference between the two cases is that, in AdS, the characteristic vibrational frequency changes

significantly faster than in flat spacetime.

Unlike in the asymptotically flat case, where unstable solutions can become stable through mass

ejection, the confining nature of the AdS spacetime makes this scenario impossible to occur for asymp-

totically AdS solutions. Hence, the most likely outcome would be the collapse to a black hole.
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Figure 6.2: The squared characteristic vibrational frequency of the perturbation as a function of the total
mass of the Proca star for Λ = −0.05µ2. The critical mass at which the star becomes unstable is also its
point of maximum mass (black dot).

33



34



Chapter 7

Conclusions

7.1 Achievements

Throughout this thesis we found numerical solutions of self-gravitating spherically symmetric config-

urations of scalar and Proca bosons in both asymptotically flat and aAdS spacetimes. This way we

showed that all these structures exhibit qualitatively similar results, as well as some noticeable differ-

ences. Namely, for both kinds of particles, the introduction of a negative cosmological constant de-

creases the maximum mass and particle number of the star. Moreover, the maximum mass reacheable

by a star is larger for spin-1 particles than for scalar ones. Five-dimensional Proca star solutions were

found and an instability of these objects in asymptotically flat spacetimes was argued based on the fact

that the binding energy is positive for every solution.

With the goal of validating the numerical method, solutions of the Einstein-Klein-Gordon and the

Einstein-Proca systems of equations were found analytically by considering the matter fields as pertur-

bations of the background vacuum metric. Taking only terms of first order in the field, it was possible

to obtain values of the frequency for the small amplitude regime which were in exceptional accordance

with the numerical ones. To further ascertain this result, the ADM mass curve, as well as the one for

the total particle number, calculated analytically were compared to the numerical points, which yielded,

once again, satisfactory resemblance. Extrapolating the validity of the numerical method to regions far

from the considered limit, this result grants confidence in the values thus obtained.

An extensive study of the stability of Proca stars in flat and AdS backgrounds was performed for

linear spherically symmetric perturbations in the metric and the field components, with the result that,

for values of f0 lower than that which corresponds to the maximum mass, the star shows stability, while

for larger ones it becomes linearly unstable.

Finally, a no-hair theorem was proved for spherically symmetric Proca stars in AdS stating that any

collapse to a black hole in these conditions culminates necessarily in the Schwarzschild-AdS metric, that

is, all the components of the energy-momentum tensor vanish.

The work presented here extends our knowledge on boson stars to the behaviour of Proca stars

in aAdS spacetimes by showing that it is possible to have stable solitonic structures of spin-1 particles
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in this spacetime, as well as asserting some of their fundamental properties. In the near future, this

conclusion may not only prove useful in the context of the AdS/CFT correspondence, but also in further

complementing our understanding of the stability of AdS spacetimes.

7.2 Future work

There are many possible extensions to the work done in this thesis. It should be possible to construct

self-gravitating structures of real spin-1 fields in AdS, analogous to the scalar oscillons found in Refs. [23,

25]. In addition, it would be interesting to find out whether non-spherically symmetric rotating Proca stars

can exist in AdS, much in the same way as was done for asymptotically flat spacetime in Ref. [15].

As stated on Section 4.2, massless spherically symmetric configurations of spin-1 fields in AdS

do not exist. Although, it has recently been shown that one can construct static or stationary regular

solutions of the Einstein-Maxwell system by dropping spherical symmetry [50, 51, 52]. It would then be

an interesting development of this work to assert whether a massive version of these objects can exist

in this spacetime.

Although most dynamical studies were mainly concerned with scalar fields [21, 22, 23, 24, 25], it is

very likely that vector fields will show similar properties, several of which were indeed shown to be the

same throughout this work. In particular, similarly to scalar boson stars, we expect Proca stars to be

immune to the weakly turbulent instability.

The no-hair theorem shown on Appendix B states that spherically symmetric gravitational collapse

results necessarily in the Schwarzschild-AdS metric. Nevertheless, we expect that it is possible to

find solutions of Kerr-AdS black holes with Proca hair, in the same way as was done in Ref. [40] for

asymptotically flat spacetime. This is only possible due to the fact that spherical symmetry is a prime

assumption of the no-hair theorem. Also, one might expect to find massive generalizations of Einstein-

Maxwell hairy black hole solutions in AdS [51, 53].

Concerning higher-dimensional gravity, further work could consist in rigorously establishing linear

stability conditions for Proca stars in 4+1 dimensions. This could be done both for asymptotically flat

spacetimes, in order to confirm the instability of all solutions argued on Section 4.3, and for asymptot-

ically AdS spacetimes, with the likely result that the introduction of a negative cosmological constant

creates a region of stable normal modes.

Finally, Ref. [54] argues that spherically symmetric scalar fields are not a good toy model for the

general gravitational collapse of AdS spacetime, as opposed to gravitational perturbations. In that case,

analogue spin-1 structures might provide a better model which is still simple enough to study.
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Appendix A

Derrick’s theorem

Derrick’s theorem [26] uses a clever scaling argument to show that no regular static non-topological

localized scalar field solutions are stable in flat spacetimes. In the following paragraphs, the theorem is

rigorously stated and proved.

Definition 1. A solution of the static Euler-Lagrange equations whose energy is finite and either the

energy density is or the fields are asymtotically constant outside some finite region P is called a localised

solution.

Definition 1. Any solution Φ(x) of the static Euler-Lagrange equations of a field theory for which

d

dλ
Eλ

∣∣∣∣
λ=1

= 0 ,

d2

dλ2Eλ

∣∣∣∣
λ=1

> 0 ,
(A.1)

will be called a stable solution.

Theorem 1. Let φa be the scalar fields and L the Lagrangian density of the model in question. Let the

energy density of the model E = E2 + E4 + E0 where

E0 = g(Φ) ,

E2 = ||∂jΦ||2 ,

E4 = f(Φ)∂jφa∂kφb∂lφc∂mφdM jklm
abcd (Φ) .

(A.2)

Here g and M are such smooth maps P → C that the corresponding integrals E2, E4 and E0 are finite

and positive. Then the full Lagrangian density does not have stable, static, localised solutions if

(2−D)E2 + (4−D)E4 −DE0 6= 0 , (A.3)

or

(2−D)(1−D)E2 + (4−D)(3−D)E4 +D(D + 1)E0 ≤ 0 . (A.4)

37



Proof. Let λ > 0 and let us assume that Φ is a static, localised solution of the Euler-Langrange

equations of L. E = E(Φ) =
∫
dDx(E2 + E4 + E0) <∞ due to locality of Φ.

Let us perform a uniform scaling of the solution Φ so that Φ→ Φλ and

E → Eλ =
∫
dDc

(
||∂jΦλ||2 + ∂jφ

a
λ∂kφ

b
λ∂lφ

c
λ∂mφ

d
λM

jklm
abcd (Φλ) + g(Φλ)

)
. (A.5)

After a change of integration variables from x to y = λx we obtain

Eλ = λ2−DE2 + λ4−DE4 + λ0−DE0 , (A.6)

This is a (possibly local) minimum under variation of λ if and only if

(
d

dλ
Eλ

)
= (2−D)E2 + (4−D)E4 −DE0 = 0 , (A.7)

and (
d2

dλ2Eλ

)
= (2−D)(1−D)E2 + (4−D)(3−D)E4 −D(D + 1)E0 > 0 . (A.8)

Since Φ is a solution, this completes the proof.
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Appendix B

A no-hair theorem for Proca stars in

AdS

Peña and Sudarsky [55] proved that a black hole resulting from spherically symmetric regular scalar

boson star configurations in an asymptotically flat spacetime is necessarily trivial. Hence, any configura-

tion that collapses gravitationally, culminates in the Schwarzschild spacetime (T νµ=0). Following similar

arguments, Ref. [42] presents a generalization of the theorem for a negative cosmological constant. Al-

though, the proof of such a theorem is a little more cumbersome when the scalar field is replaced by a

spin-1 field. Here we prove a no-hair theorem for Proca stars in aAdS spacetimes, following the same

arguments as those in Ref. [40].

Let us assume a regular black hole solution of Einstein’s equations. Such geometry would have

a regular horizon, say at r = rH , such that F (rH) = 0, since r = rH describes a null hypersurface.

Assuming there are no more exterior horizons, F ′(rH) > 0. Also, we can assume σ(r) to be strictly

positive since the equations of motion (4.13)-(4.16) are invariant under a sign change of that function.

Therefore, F (r) and σ(r) are two always positive functions. Taking the expression for the energy density

of the fields,

− T tt = (f ′ − ωg)2

2σ2 + 1
2µ

2
(
g2F + f2

Fσ2

)
, (B.1)

we see that f(rH) = 0, by imposing regularity at the horizon. Hence we can assume that f is a strictly

increasing and positive function in some interval rH < r < r1 (or decreasing and negative, which leads

to the same results).

Let us now write (4.14) as

f ′ = ωg

(
1− µ2σ2F

ω2

)
. (B.2)

Note that for r = rH , the part multiplied by ωg is 1, so it is clear that in some interval rH < r < r2, that

part is strictly positive. Writing the Lorentz condition explicitly we obtain

r2σFg = −ω
∫ r

rH

dx
x2f

σF
, (B.3)
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which is negative in rH < r < rc, where rc is the minimum between r1 and r2. Hence, g < 0, which is

impossible given (B.2). We thus conclude that f(r) = g(r) = 0 and the only black hole solution allowed

by these equations of motion is the Schwarzschild-AdS spacetime.
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Appendix C

Linear stability analysis: field

equations

Expanding the field equations at first order in the perturbed quantities, we find that the (tr) component

of the Einstein equations gives

g1 = −2gµ2f2 + iΩH2

2µ2f
. (C.1)

Replacing this in the (tt) component we get:

H ′2 =H2

(
rµ2f2

F 2σ2 −
1
rF
− Ω2g

ωf
+ Λr

F

)
+H0

(
rµ2f

F 2σ2 + rµ4g2Fσ2

ω2

)
+ 4gµ2g2 + f2

2iµ2Ωg2

ωf
+

2µ2f1

(
g

rω
+ f

σ2F 2

)
− f ′1

2µ2g

ω
,

(C.2)

Multiplying the (rr) component by F 2σ2 and adding the (tt) component one finds

H ′0 = H ′2 − 4gµ2g2 − (H0 +H2)2rµ2f2

F 2σ2 − f1
4µ2f

F 2σ2 . (C.3)

The (r) component of the Proca field equations and its complex conjugate are independent and give

f ′1 =f1

r
+ g2ω

(
1− µ2Fσ2

ω2 − Ω2

)
+H0

µ2rgFσ2(2ω2 − Ω2)
2ω(ω2 − Ω2) + f2

iΩg(µ2Fσ2 + ω2 − Ω2)
f(ω2 − Ω2) +

H2Ω2

2f

[
Fσ2(µ2rfg − ω)

ω3 − ωΩ2 − 1
µ2

]
,

(C.4)

f ′2 =− iΩg2ω

(
1 + µ2Nσ2

ω2 − Ω2

)
+H0

iΩµ2rgFσ2

2(ω2 − Ω2) + f2

[
1
r

+ ωg(ω2 − Ω2 − µ2Fσ2)
f(ω2 − Ω2)

]
+

iH2Ω
2f

[
Fσ2(µ2rfg − ω)

ω2 − Ω2 + ω

µ2

]
.

(C.5)
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Substituting in order to erase all derivatives from the right hand side of the expression we finally get,

from the (t) component of the Proca equations

g′2 =− f1
ω

F 2σ2 + g2

[
µ4rg2Fσ2(3ω2 − Ω2)

ω2(ω2 − Ω2) − 1
rF

+ rΛ
F

]
+H0

(
− rωf

F 2σ2 −
µ4r2g3Fσ2

ω2 − Ω2

)
+

H2

[
µ2rΩ2g2Fσ2(ω − µ2rfg)

ω2f(ω2 − Ω2) − rωf

F 2σ2 −
g

F
+ r2Λg

F

]
+ iΩf2

F 2σ2

(
2µ4rg3F 3σ4

ω3f − ωΩ2f
+ 1
)
.

(C.6)

We see that, although there are six perturbed functions, (C.1) already gives us g1 as a function of the

others so we can consider (C.2)-(C.6) as the full set of equations.
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