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Resumo

Apesar de mais de um século de verificação experimental, a teoria da Relatividade Geral não é a teoria

final da gravitação uma vez que é incompat́ıvel com a teoria quântica. As recentes e próximas deteções

de ondas gravitacionais oriundas da fusão e coalescência de sistemas binários de objectos compactos e

massivos permitem o acesso à f́ısica de altas energias junto do horizonte de eventos de buracos negros,

onde os efeitos gravitacionais quânticos presumivelmente surgem.

Em particular, estas perturbações quânticas fariam com que a natureza negra e capacidade total-

mente absorvente dos buracos negros ficasse comprometida, tendo como consequência a presença de

uma sequência de ecos no estágio do ringdown do sinal da onda gravitacional. Sendo assim, é de enorme

importância que haja uma forma rigorosa de isolar os ecos do sinal e de extrair a informação quântica de

cada um deles.

Neste trabalho apresentamos uma primeira e geral equivalência matemática entre a estrutura refletiva

no horizonte e a existência de ecos. Para além disto, propomos uma forma de analiticamente isolar o sinal

de cada eco mostrando que se pode escrever na forma de uma série de Dyson, para qualquer potencial

efetivo, condições fronteira e fontes.

Como exemplo prático, aplicamos o formalismo para calcular explicitamente os ecos de um modelo

brinquedo de uma cavidade imperfeita: um espelho perfeito à esquerda e um potencial delta de Dirac

à direita. Os nossos resultados permitem a leitura de uma variedade de caractéristicas já conhecidas de

ecos, podendo ser usados na análise de dados e na construção de templates.

Os Caṕıtulos 3 e 4 deste trabalho estão contidos no recém-publicado artigo Characterization of echoes:

A Dyson-series representation of individual pulses na Physical Review D [1].

Palavras-chave: Ecos, ondas gravitacionais, buracos negros, horizonte de eventos, Relativi-

dade Geral, série de Dyson.
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Abstract

Despite its century-long experimental validity, General Relativity is not the final theory of gravity due

to its incompability with quantum field theory. The recent and future detections of gravitational waves

coming from the merger and colascence of massive compact binaries allow unprecedented experimental

access to the high-energy physics around black hole’s event horizons, where quantum gravitational effects

are expected to emerge.

In particular, these quantum perturbations would cause the all-absorbing dark nature of black holes

to become compromised and a series of echoes in the ringdown stage of the gravitational wave signal

would necessarily be present. It is thus of enormous relevance to have a rigorous way of isolating echoes

from the signal and further extract the quantum information from them.

Here we establish a first, general, mathematical connection between the reflecting structure at the

horizon and the existence of echoes. Furthermore, we analytically isolate each echo waveform and show

that it can be written in the form of a Dyson series, for arbitrary effective potential, boundary conditions

and sources.

As a practical example, we apply the formalism to explicitly determine the echoes of a toy model lossy

cavity: a perfect mirror on the left and a Dirac delta potential on the right. Our results allow to read off

a number of known features of echoes and may find application in the modelling for data analysis.

Chapters 3 and 4 are contained in the recently published by Physical Review D paper Characterization

of echoes: A Dyson-series representation of individual pulses [1].

Keywords: Echoes, gravitational wave, black hole, event horizon, General Relativity, Dyson

series.
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Nomenclature

Abbreviations

BC Boundary condition.

BH Black hole.

ClePhO Clean photosphere object.

ECO Exotic compact object.

GR General Relativity.

GW Gravitational wave.

LIGO Laser Interferometer Gravitational-Wave Observatory.

QNM Quasinormal mode.

Symbols

ω Frequency.

Ψ Time-dependent solution of the wave equation.

Ψ̃ Laplace transform of Ψ.

g Green’s function of the free wave equation.

I Source term of the wave equation.

R Reflection coefficient.

r0 Schwarzschild radius.

V Potential of the wave equation.
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Chapter 1

Introduction

Echo: the repetition of a sound caused by reflection of sound waves.

A familiar concept to every individual is the notion of an echo. The experience of hearing one’s voice

over and over in a basement or on a mountaintop is easily a relatable one. It is nevertheless remarkable

our brain’s capability in segmenting the continuous and smoothly travelling sound wave and further

recognizing, in these individualized pulses, the pattern of the original source sound.

The main purpose of this work is to tackle the complexity of this problem by providing a first and

mathematically rigorous definition of echo in terms of all the relevant physical actors. Luckily, we don’t

need many ingredients to start aproaching this problem.

1.1 Setup

1.1.1 Wave Equation

The first step should be to define concepts such as wave and reflection in scientific terms. Take a wave on a

string travelling with unitary velocity to the right. If we take a snapshot of the string we can represent its

height as a function Ψ(x), where x is the point on the string. After ∆t seconds we take another snapshot,

the wave moves to the right and we find out that the new amplitude respects Ψ′(x) = Ψ(x − ∆t). In

other words, free wave motion after ∆t units corresponds to a translation of Ψ by −∆t. If the wave was

travelling to the left, then the translation should be by +∆t. Thus, we can define a free wave, in one

spatial dimension, by satisfying

Ψ(t, x) := Ψ(x± t) , (1.1)

so that it respects ∂xΨ = ± ∂tΨ and, applying an extra derivative to get rid of (±),

∂2Ψ

∂x2
=
∂2Ψ

∂t2
, (1.2)

the wave equation. Any free wave, must be a solution of this equation.
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1.1.2 Boundary Condition

Now, what do we understand by reflection? Let us consider a left-travelling wave (Ψ0(x+ t)) about to hit

a wall. The reflected wave Ψr will surely be travelling to the right and, by experience, it should have the

same shape and resemble Ψ0. Hence, we can write generically

Ψr(t, x) = aΨ0

(
b(x− t) + c

)
, (1.3)

where a, b and c should be determined by the characteristics and reflective properties of the wall.

Let us go a step further and consider the wall to be at x = −L and be perfectly reflecting. This means

that the energy contained in the initial sound wave Ψ0 will be integrally conveyed into the reflected

wave Ψr so that, by energy conservation, no sound waves can actually penetrate into the wall, that is

Ψ(t, x ≤ −L) := 0. This establishes the first boundary condition of Eq. (1.2). For x ≥ −L we also know

that the complete wave and solution Ψ of Eq. (1.2) must be the sum of Ψ0 and Ψr, so that, at x = −L

we must have

0 = Ψ0(t,−L) + Ψr(t,−L) = Ψ0(−L+ t) + aΨ0

(
(c− bL)− bt

)
, (1.4)

which, for arbitrary Ψ0 and t, is satisfied for a = b = −1 and c = −2L, so that the complete solution is

given by

Ψ(t, x) = Ψ0(x+ t)−Ψ0

(
−x+ (t− 2L)

)
. (1.5)

Note that the reflected wave has a time difference of 2L with respect to the initial wave, the same kind

of delay found in consecutive echoes.

This seems to explain why we keep hearing ourselves inside a large basement (large in the sense

L � cτ , where τ is the time resolution of the human ear and c the speed of sound), but it does not

seem to explain the echoes heard on a mountaintop where sound scatters back and forth across the

mountains. In the latter case there is a non-trivial spatial structure that can’t be reduced to a set of

boundary conditions.

1.1.3 Potential

So, how do we include structure into our formalism? We have already done so when considering the

wall at x = −L, but as a boundary condition, an addendum to the wave equation. We can, however,

incorporate the wall directly into the wave equation, by generalizing Eq. (1.2) to

∂2Ψ

∂x2
− ∂2Ψ

∂t2
= V (x)Ψ , (1.6)

with V (x) = 0 if x > −L, in which case we recover Eq. (1.2), and V (x) = ∞ if x ≤ −L, such that, if

we divide the above by V (x), we get the boundary condition, Ψ(t,−L) = 0. The plot of V (x) resembles

a tall wall located at x = −L, i.e. it encodes the structure of the system. It is also clear that a two-wall

system, a container, would correspond to a V (x) with two ”infinite walls”. Thus, to each different system

corresponds a profile V (x) that fully characterizes its structure.
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A simple model that we will extensively consider in this work is a membrane system, that can be

represented by the Dirac delta potential,

V (x) = δ(x) =

∞ if x = 0

0 if x 6= 0

. (1.7)

Another, more interesting example, which will be deduced from General Relativity in the next chapter, is

the Regge-Wheeler potential (in natural units),

V (r) =
(

1− 2M

r

)( l(l + 1)

r2
+

2M(1− s2)

r3

)
, (1.8)

where r is the radial coordinate.

1.1.4 Echoes

With the potential V (x) in hand, together with the boundary conditions, we just need to specify the initial

wave Ψ0 to obtain the scattered wave Ψ, from solving the generalized wave equation (1.6). Standard

techniques [2] involve a decomposition of Ψ into the natural modes of the system, called quasinormal

modes, much like a musical note can be decomposed into the specific instrument’s harmonics.

If an explicit solution is not attainable, as in the case of most interesting systems, a variety of numerical

methods are possible with the aid of techinal computing software like Mathematica or MATLAB. Either

way, the solution is treated as a single mathematical object.

As an example, without going into much detail, below is the plot of a solution Ψ of Eq. (1.6) in a

system composed of a membrane alongside a perfectly reflecting wall.

20 40 60 80 100

-0.4

-0.3

-0.2

-0.1

0.0

0.1

Figure 1.1: Scattering of a narrow gaussian pulse of height 1 observed at x = 10, against potential (1.7),
a Dirichlet BC at x = −10 and an open BC at x =∞.

The bump at t = 20 is the reflected pulse off the membrane. It’s negativity can be traced back to

the (−) sign before the reflected wave in Eq. (1.5). The membrane is not a perfect mirror, however: a

portion of the pulse penetrates into the lossy cavity composed of the membrane and the wall. This piece
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of energy will scatter back and forth inside the cavity, but for every round trip it will leak through the

membrane and produce the echoes that we see in Figure 1.1.

Obviously, this is our physical intuition working on understanding the physical phenomenon, that the

mathematical structure promptly ignores. Our methods give the full solution Ψ of the wave equation,

which, due to the strucutre imposed into the system, has to include equally separated regions of relatively

large magnitude that we interpret as echoes.

Thus, we ask if it is possible to write our solution in the form

Ψ =
∑
n

Ψn (1.9)

with Ψn the waveform of the n-th echo.

In other words, is there a way to mathematically separate the solution of the wave equation (1.6) into

a set of functions that we interpret as echoes?

The answer is a resounding yes and will be the main topic of this work. It is not surprising that this

problem has only been aproached in the last couple of years. This is due to the fact that its solution,

with the recent unprecedented detection of gravitational waves [3], will most certainly play a key role

on understanding what structure (if any) lies just outside a black hole’s event horizon. This might reveal,

for the first time in more than a hundred years of experimental validity, what is beyond Einstein’s theory

of General Relativity.

1.2 Motivation

1.2.1 Black holes, quantum gravity and echoes

A year after Einstein presented the final form of his field equations for gravity in 1915, Karl Schwarzschild

found the first non-trivial exact solution of General Relativity (GR), the Schwarzschild metric, which

describes the gravitational field outside an uncharged and non-rotating spherical mass. If a spherical

mass has a radius smaller than the Schwarzschild radius r0 = 2GM/c2, the radius from which not even

light can escape the gravitational pull, this object is named a black hole (BH).

The spherical region at r = r0, which acts as a one-way membrane and thus causally disconnects the

BH interior region from its exterior, is the event horizon. The event horizon protects outside observers

from the strongly warped geometry in its interior. This highly energetic region is where quantum gravity

effects, not described by Einstein’s classical theory of gravity [4], should emerge. Since we only have

access to r > r0 we have to consent to look for quantum signs at r ∼ r0. In case these are present

the all-absorbing property of event horizons becomes altered and a different type of boundary condition,

other than a purely ingoing wave, is expected at the event horizon.

Opportunely, we have recently been granted experimental access to the physics around horizons with

the historical detections by aLIGO [3, 5] of gravitational waves (GWs) produced by inspiralling binaries

of compact objects, the most energetic events registered to date. The GW signal from these systems can be

separated in three stages: the inspiral, when the two bodies are still largely separated and possess almost
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Newtonian orbits; the merger, when the coalescence occurs; and finally, the ringdown, when the single

compact object that results from the collision vibrates and eventually relaxes to a stationary equilibrium

solution of GR.

The GWs that come from the last stage, the ringdown phase, originate from the excited space-time

near the photosphere r ∼ 3
2r0 of the final object. However, only the piece that does not fall into the

event horizon is capable of being detected in case the merger end-product is a stationary solution of GR

- a pure black hole. If non-trivial structure is present near the horizon, behind the photosphere, then a

portion of the gravitational waves is reflected back from the horizon to the photosphere, which is also

able to transmit a fraction of the incident GWs to the far-away observer. Therefore, we can picture a lossy

cavity composed of the ’quantum’ event horizon and the photosphere, which partially traps gravitational

waves and periodically lets loose a fraction of the GWs inside. The end result to the outside observer is

the appearance of a series of decaying echoes after the main ringdown signal. Hence, it is intuitively clear

that detection of echoes in the ringdown signal of future GW observations is synonym with the existence

of quantum gravitational effects at the event horizon.

To establish a rigorous and mathematically clear connection between echoes and the hypothetical

reflecting structure at horizon is the main motivation behind this work. Previous attempts include some

simple models which were employed to claim an important - albeit not enough - statistical evidence for

the presence of echoes in the first detections [6–9], a couple of more sophisticated models including BH

rotation [10, 11], and the more fundamental work of Mark and collaborators [12] in which the authors

were able to isolate the echoes by writing the compact object’s Green’s function as the BH Green’s function

plus an additional term responsible by producing the echoes in the complete waveform. Notwithstanding,

the latter work assumes the quantum structure to be very close to the horizon - the so-called ClePhOs

(Clean Photosphere Objects) - where waves are essentially plane (in the appopriate coordinates). This

is not necessarily a drawback given these are the objects whose echoes are expected to appear more

separated from each other due to the extreme time dilation at the horizon, and thus benefit greatly from

the proposed analytical isolation.

Besides the lack of a completely general framework, there still are a number of open issues regarding

the physical behavior of echoes including:

• The completely distinct spectrum of ClePhOs and pure BHs given the exact agreement of both GW

signal (only excluding the echoes). Intuitively, the BHs modes should be included in the ClePhOs’

spectrum, yet this is not true.

• As in the case of any open system, the very late-time response of ECOs (exotic compact objects)

should be governed by the fundamental quasinormal mode. Yet, due to its close relation to BHs,

there is some confusion as to whether the fundamental BH QNM might have influence in this decay.

• It is generally accepted that the overall amplitude of sucessive echoes decreases, at least if one is

looking for consecutive echoes generated shortly after merger. But what type of decay is this, is it

polynomial, exponential? Can we characterize the evolution of echoes in a more precise manner?
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• The delay between different echoes is a key quantity in any detection strategy. Is the delay really

constant or does it evolve in time, and how [13]?

• In a related vein, a generic widening of the pulses, in the time-domain, was observed as time goes

by. This is physically intuitive: the pulses are semi-trapped within a cavity that lets high frequency

waves pass. At late times only low-frequency, resonant modes remain. Hence the pulse is becoming

more monochromatic. This is an expected but not yet quantified result.

• Consecutive echoes may be in phase or out of phase, depending on the particular boundary condi-

tions imposed on us by the physical model. In particular, what is the relation between the boundary

condition imposed at the horizon and the reflecting properties of the quantum structure there?

In this master thesis we will engage in the discussion of these issues. In fact, quickly considering

the first point we may wonder whether the usual decomposition in normal modes is the most suitable

mathematical approach to isolate the echoes of ClePhOs. Given the large discrepancy with the BH QNM

decomposition, we conversely want to find evidence of small decaying repetitions in the wave signal that

we see as echoes. ’Small’ is the key word here. Perhaps in a perturbative approach, where QNMs are

not explicitly taken into account, echoes can be more appropriately mathematically identified. It is thus

useful to review the perturbative framework in quantum mechanics, where it was originally developed.

1.2.2 Quantum mechanical scattering and the key idea herein

In quantum mechanics, very few are the systems which are explicitly solvable. In many cases, the po-

tential is seen to have only a slight contribution to the system dynamics, in the sense that observables

computed through the free system’s eigenfunctions do not differ very much from their real value. Here,

first-order perturbation theory comes to the rescue. If the Hamiltonian can be decomposed into a free

kinetic term H0 and a perturbation potential V ,

H = H0 + V, (1.10)

we might attempt a solution given by the free system explicit solution plus an additional correction:

Ψ = Ψ0 + Ψ1, (1.11)

where Ψ0 is the explicit solution of the Schrodinger equation, i~∂Ψ0

∂t = H0Ψ0, and typically corresponds

to a simple plane wave (in one spatial dimension).

Now, the full system’s Schrodinger equation can be written as

[
i~
∂

∂t
−H0

]
Ψ1 = VΨ0 + VΨ1. (1.12)

If V is small when compared to H0 (and consequently Ψ1 is small when compared to Ψ0), then the

second term in the rhs is of second order and can be neglected under first-order perturbation theory,

the so-called Born approximation in scattering theory [14]. In this approximation, the above becomes a
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solvable differential equation for Ψ1, given that the lhs is simply the free Schrodinger equation and the

rhs is a source term (by construction, the explicit form of Ψ0 is specified). Thus, taking VΨ1 = 0 in the

above equation gives

Ψ1(x) =

∫
g0(x, x′)V (x′)Ψ0(x′)dx′ (1.13)

with g0 the easily obtainable Green’s function of the free Schrodinger equation, with the appropriate BCs.

Nonetheless, many systems are not this simple and a first-order correction is often not enough to

obtain experimentally and/or numerically acceptable results. If we decide to keep the second-order term

VΨ1 in Eq. (1.12) we can no longer solve for an explicit solution, but will instead obtain an integral

equation for Ψ1, called the Lippmann-Schwinger equation [4], as we’ll see in Chapter 3.

The Lippmann-Schwinger equation can be appropriately iterated to obtain further, higher than first,

order terms having the form of Eq. (1.13). If the iteration procedure is indefinitely pursued, the resulting

infinite summation has the name of Born series, and is commonly used in scattering physics - covering

optical, molecular, atomic, particle, nuclear and, in this work, also gravitational physics. In quantum

field theory, where a closely related perturbation procedure is taken, it has the name of Dyson series.

Each term of the Dyson series can be associated with a corresponding scattering diagram, or Feynman

diagram. These diagrams are widely used to compute increasingly precise quantum corrections to colli-

sion processes described by the Standard Model. In particular, the most accurate prediction in the history

of physics, the electron’s anomalous magnetic moment prediction from QED with an agreement of more

than 10 signficant figures with the experimentally measured value [4].

Fortunately, the wave equation (1.6) can also be written in the Lippmann-Schwinger form (Chapter 3)

and all the methods from quantum perturbation and scattering theory can be employed. In particular, the

solution can be written in the form of a Born/Dyson series. However, each term will not give us an isolated

echo right away since even the waveform of a completely open system (with no echoes) will always be an

infinite sum of terms. Instead, it is easily seen that each term of a Dyson series corresponds to a specific

number of interactions with the potential and thus even the echoes should have their respective Dyson

series. Then, how do we proceed to identify the echoes contribution in the complete waveform?

We know for sure that the early, pure black hole, response and the echoes are contained in the

complete Dyson series. Hence, the first thing to be done is to separate the open BH waveform from the

complete waveform, as we then know for sure that the remaining terms will be the joint contribution of

all the echoes. This task is relatively easy to perform since the pure BH waveform can also be written in

the form of a Dyson series and thus we only need to compare both and see where the latter is contained

in the former.

With the echoes all scrambled in the remaining terms we will further need to find a way to identify

and isolate each echo contribution. The simple but crucial idea that possibilitated this work consists in

noting that the first echo was reflected once at the horizon, the second echo got reflected twice, the third

echo thrice, and so on and so forth. This implies that if the quantum wall has a reflection coefficient R,

echo number n will carry a factor of Rn. Hence, to isolate the n-th echo contribution we just have to

collect the powers of Rn in the remaing terms and effectively re-sum the Dyson series into the form (1.9).
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In Chapter 3 (or in section II of our paper [1]) this is done in careful detail.

1.3 State of the Art

In this section we review the current stage of research and other developments relevant to the topic of

this work. We find it more efficient to provide the reader with a timeline of the most pertinent works

that, in our point of view, had direct influence to the topic at hand. We will follow closely section 1.1

of reference [15], which provides a very complete ”roadmap” of the events that shaped GW and QNM

research, and add more recent echo related works.

• 1957 - Regge and Wheeler [16] show ”that a Schwarzschild singularity, spherically symmetrical

and endowed with mass, will undergo small vibrations about the spherical form and will there-

fore remain stable if subjected to a small nonspherical perturbation”. This marks the birth of BH

perturbation theory.

• 1970 - Zerilli [17] extends the Regge-Wheeler analysis to general perturbations of a Schwarzschild

BH. He shows that the perturbation equations can be reduced to a pair of Schrödinger-like equa-

tions, and applies the formalism to study the gravitational radiation emitted by infalling test parti-

cles.

• 1970 - Vishveshwara [18] studies numerically the scattering of gravitational waves by a Schwarzschild

BH: at late times the waveform consists of damped sinusoids

• 1971 - Press [19] identifies ringdown waves as the free oscillation modes of the BH.

• 1971 - Davis [20] carry out the first quantitative calculation of gravitational radiation emission

within BH perturbation. Quasinormal ringing is excited when a radially infalling particle crosses

r ∼ 3
2r0 (i.e., close to the unstable circular orbit corresponding to the “light ring”).

• 1975 - Chandrasekhar and Detweiler [21] compute numerically some weakly damped characteristic

frequencies. They prove that the Regge-Wheeler and Zerilli potentials have the same spectra.

• 1985 - Leaver [22–24] provides the most accurate method to date to compute BH QNMs using

continued fraction representations of the relevant wavefunctions, and discusses their excitation

using Green’s function techniques.

• 1992 - Nollert and Schmidt [25] use Laplace transforms to compute QNMs.

• 1997 - Maldacena [26] formulates the Ads/CFT duality conjecture. This opens up the range of

applicability of QNM research.

• 2005 - Pretorius [27] (and other groups later) achieve a long-term stable numerical evolution of a

BH binary. The waveforms indicate that ringdown contributes a substantial amount to the radiated

energy.
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• 2009 - A review on QNMs [15], with a focus on the most recent developments, by Berti, Cardoso

and Starinets.

• 2016 - Gravitational waves are detected for the first time by LIGO [3, 5]. The signal matches the

waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the

ringdown of the resulting single black hole.

• 2016 - The suggestion that quantum effects might destroy the event horizon. It was thought that

if the horizon did not exist then the final stage of coalescence would be completely different. This

would imply that LIGO discovery was evidence of the existence of BH [6, 28, 29].

• 2017 - A tentative (and somewhat controversial [8, 9]) evidence at≈ 3σ confidence level was found

for the presence of echoes in the three first black hole merger events detected by LIGO: GW150914,

GW151226, and LVT151012 [6, 7].

• 2017 - A first mathematical description of echo identification from exotic compact object’s response

was proposed by Z. Mark and collaborators at TAPIR in Caltech [12].

1.4 Thesis Outline

The preparation material studied in the Project MEFT course and the early stages of this dissertation is

condensed into Chapter 2. In this chapter the wave equation in a Schwarzschild background for both

massless scalar waves (Section 2.1) and photons (Section 2.2) is deduced. In Section 2.3 we apply a

boundary expansion to numerically solve this equation and obtain the waveform of a scattered elec-

tromagnetic Gaussian wavepacket off a Schwarzschild BH. A closer look at the ringdown stage allows

inspection of the fundamental, least damped, QNM.

It is in Chapter 3 that the perturbative approach to gravitational wave scattering is taken. We start

with a proper consideration of the BC at the horizon and its relation with the reflection coefficent (Section

3.1). Then, the Lippmann-Schwinger equation and corresponding Born/Dyson series is adapted to our

generalized BC choice (Section 3.2) in order to be resummed and separated into isolated echoes, besides

the early open system response (Section 3.3). In Section 3.4, the inverse Laplace transform allows the

obtention of the wave equation final solution, the time-dependent waveform. However, since the latter

procedure is only possible in case the reflection coefficient at the horizon is explicitly known, we further

propose a perturbative method to derive it in Section 3.5. This chapter corresponds to section II in our

paper [1].

In Chapter 4, we apply the previous chapter apparatus to determine the echoes of a membrane-

mirror cavity (a perfectly reflecting mirror at the left and a partially transmissible Dirac delta potential

at the right). Given the explicit attainability of the final solution there is no need to truncate the Dyson

series of neither the open system waveform (Section 4.1) nor the echoes (Section 4.2). We also find

interesting to apply the results in Section 3.5 to determine the reflectivity of the whole system (Section

4.3), which confirms the different spectrum between composite and pure systems (also seen in Section

B.2 but through a different method). This chapter corresponds to section III in our paper [1].
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We conclude with a review of the main topics covered in this work. Additionally, we elaborate on

future prospects, possible developments of the ideas presented, and the impact our work can have in GW

research and other areas.

Both of the appendices consist of early original work not directly related to echoes, even if relevant

in the context of this thesis. Appendix A is useful to understand why a numerical approach is necessary

to solve the Regge-Wheeler equation. We employed the Frobenius method [2] with a free boundary

behavior. By appropriately fixing the BC, we are able to see that the most simplified solution is Leaver’s

3-term recursion relation [22] which is currently the prime method for QNM computation.

Appendix B consists of a proper mathematical definition of quasinormal modes supplied by a proof of

the equivalence between open systems and the dissipation of waves within, in section B.1, and further

numerical and explicitly approximate determination of the QNMs of the Dirac delta potential (Section

B.2) and the Rectangular potential barrier (Section B.3) with a variety of boundary conditions.
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Chapter 2

Waves in Schwarzschild geometry

In section 1.1 we defined the concept of wave as formally being a solution of the generalized wave

equation (1.6). We have used the example of waves on a string, but waves have many types and origins.

String and sound waves propagate due to mechanical interaction of the molecules that constitute the

medium, and are thus able to propagate both transversally and longitudinally. Hence, in Eq. (1.6), Ψ

more suitably corresponds to one of the 3 components of these vectorial waves.

Here we’ll consider more fundamental waves which, through the wave-particle duality, correspond to

elementary particles and thus do not require a physical medium of propagation. More specifically, we will

take a generic massive scalar boson and the electromagnetic force carrier, the photon, a two-polarization

vector field.

It is also important to note that Eq. (1.6) is a linear differential equation, which for most realistic

cases only holds at a first approximation level. This is because interactions between fields necessarily

include at least a quadratic term in the equations of motion that quickly turn them into unsolvable partial

differential equations, hence the usefulness of linearizing the wave equation.

In this approximation, the Einstein field equations simplify greatly since the energy-momentum tensor,

which is the source of space-time curvature, vanishes due to its quadratic dependence on the matter fields.

Therefore, the linearized perturbations do not create any gravitational field nor affect the background

geometry, which we will take to be the Schwarzschild geometry.

The Schwarzschild solution of General Relativity describes the space-time curved by a static point

particle of mass M (at the origin) through the metric, in the usual spherical coordinates, given by

gµν = diag
(
−f, f−1, r2, r2 sin2 θ

)
, (2.1)

with

f = 1− 2M

r
, (2.2)

which diverges at r = 2M , the black hole event horizon.

Now, we just have to solve the free wave equation with the prescription ∂µ → ∇µ, where ∇µ is the

covariant derivative associated with the metric (2.1). We will see that potential (1.8) will arise naturally,
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and interestingly will depend on the specific choice of perturbation.

2.1 Scalar perturbation

The evolution of a scalar field Φ of massm is determined by its wave equation, the Klein-Gordon equation,

in Schwarzschild spacetime,

∇µ∇µΦ = ∂µ(
√
−g gµν∂νΦ) = m2Φ (2.3)

which by imput of metric (2.1) yields

− sin θ
r2

f

∂2Φ

∂t2
+ sin θ

∂

∂r

(
r2f

∂Φ

∂r

)
+

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

sin2 θ

∂2Φ

∂ϕ2
= m2Φ . (2.4)

Employing a separation of variables in the form Φ(r, t, θ, ϕ) = T (t)φ(r, θ, ϕ), we obtain

T ′′

T
=

f

r2φ

(
∂

∂r

(
r2f

∂φ

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

sin2 θ

∂2φ

∂ϕ2

)
−m2 = −ω2 (2.5)

where ω ∈ C must be a constant, so that the time dependence has the plane wave form T ∼ e±iωt.

Further writing φ(r, θ, ϕ) = R(r)Y (θ, ϕ) makes the above simplify to

(r2fR′)′

R
+

(ω2 −m2)r2

f
= − 1

Y

(
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂ϕ2

)
= λ (2.6)

where λ = l(l + 1), with l ∈ N.

The angular part of the above equation is nothing but the spherical harmonics equation. In other

words, Y ∼ Yln, the spherical harmonic function of degree l and order n.

In fact, we could have started by decomposing Φ into spherical harmonics since we setup our coordi-

nate system to be centered at the static point-mass M which naturally deforms space-time isotropically.

It is easy to see that the Schwarzschild metric (2.1) exhibits spherical symmetry.

We proceed by writing R = ψ/r to get the final form of the wave equation:

f2ψ′′ + ff ′ψ′ + (ω2 − V )ψ = 0 (2.7)

with effective potential

V (r) = m2 − 2Mm2

r
+ f

( l(l + 1)

r2
+
f ′

r

)
, (2.8)

where m2 is the rest mass contribution to the energy, − 2Mm2

r can be associated to Newtonian-like gravi-

tational attraction, and finally the factor of f , which individually accounts for relativistic effects near the

horizon, that includes the centrifugal barrier, l(l+1)
r2 , coming from spherical harmonic decomposition and

the term f ′

r which we cannot yet interpret.
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2.2 Electromagnetic perturbation

The source-free Maxwell’s equations in a curved background hold as

∇νFµν =
1√
−g

∂ν(
√
−gFµν) = 0, (2.9)

with

Fµν = ∇µAν −∇νAµ, (2.10)

where Aµ is the photon field.

We could begin by attempting a variable separation, like we did for the scalar case. However, we

would have to handle 4 coupled equations (the index µ is not contracted) in all 4 coordinates. Moreover,

since a non-rotating black hole is spherically symmetric, a spherical harmonic decomposition should be

possible right from the start. But should we assume Aµ(θ, φ) ∼ Yln, i.e. that the 4 components of the

angular dependence of the photon field behave as 4 independent scalar fields under rotations?

If we picture a longitudinal wave in a spring and perform a rotation on its axis we will see that indeed

the system will remain the same. But if we do the same rotation for a transversal wave on a string it is

clear that the oscillations will acquire a different angle on that axis, if the rotation is not by a multiple of

2π. Thus, we intuively understand that longitudinal and transversal modes transform differently under

rotations, and that the previous assumption was too naive.

At a mathematical level, this means that a variable separation will not lead to the scalar spherical

harmonic equation (2.6), but to a matrix version of (2.6) which includes the vector rotations. We can,

nevertheless, circumvent this trouble by looking for the associated expansion in vector spherical harmon-

ics.

2.2.1 Vector spherical harmonics

We start by noting that spherical harmonics are eigenfunctions of the azimuthal rotation generator ∂
∂ϕ

(naturally a Killing vector field of the Schwarzchild metric). Now, we must ask ourselves how a vector

field changes under azimuthal rotations. Let us take an infinitesimal rotation by ϕ = δα so that, in

Cartesian coordinates,

(t, x, y, z)→ (t, x− yδα , y + xδα, z) (2.11)

and
∂

∂x
→ ∂

∂x
+ δα

∂

∂y
,

∂

∂y
→ ∂

∂y
− δα ∂

∂x
, (2.12)

implying

A = Aµ∂µ → (1 + iδαLz)A
µ (1 + iδαSz)∂µ = (1 + iδα(Lz + Sz))A (2.13)

with

Lz = −i
(
x
∂

∂y
− y ∂

∂x

)
, Sz = −i ∂

∂z
× , (2.14)

the z-components of the operators angular momentum (rotations on the manifold), and spin (rotations
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on the vector space), respectively. The imaginary unit is required to keep operators hermitian and ×

represents the 3-dimensional cross product.

Scalar spherical harmonics are eigenfunctions of angular momentum by respecting Eq. (2.6) that, in

operator form, read as L2Ylm = l(l+ 1)Ylm, LzYlm = mYlm. To construct the vector spherical harmonics,

we must find the eigenfunctions, more appropriately eigenvectors, of the spin operator S.

It is straightforward to show that the cross product in R3 can be put in a 3 × 3 matrix form, implying

that Sz has 3 eigenvalues. The eigenvector equation SzeM = MeM yields M = −1, 0, 1 with

e−1 =
1√
2

( ∂
∂x

+ i
∂

∂y

)
, e0 =

∂

∂z
, e1 =

1√
2

( ∂
∂x
− i ∂

∂y

)
, (2.15)

respecting S2eM = 2eM = 1(1 + 1)eM thereby confirming that photons are indeed spin 1 bosons.

Taking into account the vectorial nature of the photon, Regge and Wheeler, in 1957, proposed an

efficient basis [16] for vector spherical harmonics by applying the spatial operators directly involved in

(2.9), L and∇∇∇, to the scalar spherical harmonic Ylm, as follows:

[Ylm∂t] = (Ylm, 0, 0, 0) (2.16)

[Ylm∂r] = (0, Ylm, 0, 0) (2.17)

[∇∇∇Ylm] = (0, 0, ∂θYlm, ∂ϕYlm) (2.18)

[LYlm] = (0, 0, ir
1

sin θ
∂ϕYlm,−ir sin θ∂θYlm) (2.19)

With this basis we can proceed to simplify Eq. (2.1) to get the wave equation.

2.2.2 Obtaining the wave equation

Luckily, we will not need to handle connection or curvature terms since

Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ (2.20)

because of symmetry of the Levi-Civita connection.

We can now decompose Aµ into vector spherical harmonics through the basis (2.16-19) into

Aµ =
∑
l,m



alm(t, r)Y lm

blm(t, r)Y lm

clm(t, r)∂θY
lm + dlm(t, r)

∂φY
lm

sin θ

clm(t, r)∂φY
lm − dlm(t, r) sin θ∂θY

lm


. (2.21)

Decoupling all angular dependence of the 4 equations (2.1) using this decomposition yields

l(l + 1)(alm − ∂tclm)− rf(2∂ra
lm + r∂2

ra
lm − 2∂tb

lm − r∂t∂rblm) = 0 (2.22)
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l(l + 1)(blm − ∂rclm) +
r2

f
(−∂r∂talm + ∂2

t b
lm) = 0 (2.23)

ff ′(blm − ∂rclm) + f2(∂rb
lm − ∂2

r c
lm)− ∂talm + ∂2

t c
lm = 0 (2.24)

l(l + 1)f

r2
dlm − ff ′∂rdlm − f2∂2

rd
lm + ∂2

t d
lm = 0 (2.25)

where the angular momentum l naturally appears a result of the use of the spherical harmonic Eq. (2.6).

We must now look for the physical, gauge invariant, wave equations. For this we perform Aµ →

Aµ + ∂µα which is equivalent to alm → alm + ∂tβ, blm → blm + ∂rβ, clm → clm, dlm → dlm for some

β(t, r) related to α(t, r, θ, φ). The latter remain invariant since ∂θα and ∂φα get absorbed into the spherical

harmonics equation.

Equation (2.25) only depends on dlm, thus being automatically gauge invariant. Under the gauge

transformation, equation (2.22) gets an extra l(l+ 1)∂tβ in the l.h.s whereas equation (2.23) gets simiri-

laly added by l(l + 1)∂rβ. We construct a gauge invariant equation by applying ∂r to (2.22), ∂t to (2.23)

and subtracting both. The resulting equation has no dependence on clm and has the same form of (2.25)

where dlm gets replaced by the gauge invariant quantity

εlm =
r2

l(l + 1)
(∂tb

lm − ∂ralm) . (2.26)

It is not difficult to see that clm can be expressed by some combination of εlm and dlm, the two physical

degrees of freedom of the photon field. Equation (2.25) and the equivalent one for εlm can be rewritten

in the form

f2ψ′′ + ff ′ψ′ + (ω2 − Vs=1)ψ = 0 (2.27)

with

Vs=1(r) = f
l(l + 1)

r2
(2.28)

where ψ = dlmeiωt for odd-parity perturbations and ψ = εlmeiωt for even-parity perturbations.

Notice that the above potential is very similar to the scalar field case, Eq. (2.8), if m = 0. The

additional term f f
′

r thus depends on the choice of perturbation, it is spin-dependent.

Before we proceed, we note that we should expect the same equation for both odd-parity and even-

parity perturbations since spherically symmetric interactions have no preference over the orientation of

the internal degrees of freedom of the probe field. The same reasoning explains why there is no azimuthal

number m dependence in neither of Eqs. (2.27) or (2.28).

2.3 The Regge-Wheeler equation

A way to incorporate both choices of massless perturbations (scalar and vector) into one equation is to

write it as

f2ψ′′ + ff ′ψ′ +
(
ω2 − f

( l(l + 1)

r2
+ f ′

1− s2

r

))
ψ = 0, (2.29)

the Regge-Wheeler equation, where s is the spin.
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For s = 0 we recover (2.8) (with m = 0) and for s = 1 we get back potential (2.28). This specific

generalization also importantly describes massless spin-2 fields, which are associated with gravitational

perturbations [16].

Now we can use the tortoise coordinate x, with dr
dx = f , to write the above into the more familiar form

d2ψ

dx2
+
(
ω2 − V (x)

)
ψ = 0 (2.30)

with potential (1.8), which we repeat here for convenience,

V (x) =
(

1− 2M

r(x)

)( l(l + 1)

r2(x)
+

2M(1− s2)

r3(x)

)
, (2.31)

with

x = r + 2M log
( r

2M
− 1
)
. (2.32)

The tortoise coordinate respects x → ∞ ⇔ r → ∞ and x → −∞ ⇔ r → 2M . Hence, by using x we are

automatically disregarding the causally disconnected region r < 2M when writing the wave equation.

Below is a plot of Eq. (2.31) with respect to the tortoise coordinate. Note the decay ∼ 1
x2 for large x,

reminescent of the centrifugal barrier, and the sharp decay at x ∼ 0 caused by relativistic effects at the

near-horizon region. The maximum of the potential is located at x ∼ 2M or r ∼ 3
2r0, the photosphere,

where scattering is more violent.

-40 -20 0 20 40
0.00

0.05

0.10

0.15

0.20

0.25

Figure 2.1: Regge-Wheeler potential, Eq. (2.31), for M = 1, l = 2 and s = 0 (black), s = 1 (red), s = 2
(blue).

2.3.1 Boundary Conditions

To solve Eq. (2.29) we need to specify two boundary conditions. The only structure that we are consid-

ering in our system is the point-mass at r = 0. Hence, we have a physically open system and thus we

should look to behaviour at x→ ±∞, where the potential (2.31) vanishes and Eq. (2.30) reduces to the

free wave equation. By noting that the time dependence was chosen to be of the form e−iωt we have to

16



decide which behaviour, ψ ∼ e±iωx, is the appropriate at x→ ±∞.

Now, if we do not want any external influence on the system we can only have outgoing waves at

infinity, eiω(x−t), and thus the first boundary condition should be

ψ(x→∞) ∝ eiωx. (2.33)

Furthermore, no waves can escape the event horizon implying that the only physical possibility is to

have ingoing waves at x→ −∞, which establishes the second boundary condition,

ψ(x→ −∞) ∝ e−iωx. (2.34)

Note that these boundary conditions necessarily imply that the system is dissipative. All waves either

flow out to infinity or into the horizon. Hence, contrarily to conservative systems, like a string fixed at

both ends, the perturbation Ψ has to decay in time. For the assumed behaviour Ψ(t, x) = e−iωtψ(x), this

implies that ω cannot be a pure real number, it has to have a non-zero and negative imaginary part, so

that Ψ ∼ e−|=ω|t (for a rigorous proof we refer to Appendix B.1). These complex frequencies have the

name of quasinormal modes and are ubiquitous in every field of physics.

2.3.2 QNMs and solution

To extract the black hole quasinormal spectrum we have to solve Eq. (2.29) with boundary conditions

(2.33) and (2.34). Unfortunately, this is not possible to do analytically (see Appendix A). A numerical

approach is necessary, which we employ here. We try to avoid the mathematical details, which are

appropriately considered in Appendix A.

To get a numerically efficient way to solve Eq. (2.29) one should bring the boundary conditions

”closer” to one another by series expansions at the boundaries. At r →∞ we write

ψ(r) = eiωr
∞∑
n=0

Bn r
−n, (2.35)

where eiωr captures the correct boundary condition, i.e. it is recovered in the above expansion when

r → ∞ since only the n = 0 term survives. It is clear that the remaining terms become more relevant

as soon as we bring r to smaller values, effectively bringing the boundary condition at ∞ closer to

numerically acceptable boundary values of r. This effect is greater the higher the truncation order of the

expansion is.

Insertion of (2.35) into (2.29) turns the ODE into the recursion relation

Bn
(
2inω

)
+Bn−1

(
− l(l + 1) + (n− 1)(n− 2ir0ω)

)
+Bn−2 r0

(
l(l + 1)− 3(n− 2)− 2(n− 2)2 − 1 + s2

)
+Bn−3 r

2
0

(
2(n− 3) + (n− 3)2 + 1

)
= 0,

(2.36)
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where Bn<0 = 0. All the coefficients can thus be recursively computed, except for B0, which is an

arbitrary constant that can be fixed by a second boundary condition at r →∞.

The recursion relation for r → 2M is similar and is done in Appendix A. Now, one possible way to

proceed is by direct integration [30], which essentially consists of a couple of numerical integrations:

From the horizon to some matching point rm imposing the ingoing boundary condition (2.34), and

from infinity to rm imposing the outgoing boundary condition (2.35). Then, conditions ψ(r−m) = ψ(r+
m)

and ψ′(r−m) = ψ′(r+
m) are only satisfied for a discrete set of QNM frequencies ω, which then become

automatically determined. The disavantage is that a high truncation order (∼10) of the expansion (2.35)

is required.

The method we apply here presents satisfactory results for a truncation order ∼ 3. The problem of

computing the gravitational waveform produced when a black hole is perturbed by some material source

can be reduced to the inhomogeneous version of Eq. (2.29), where a source term I(ω, r) is included at

the rhs [2].

The Green’s function approach [2] allows us to write the frequency amplitude in terms of the source

term as

Ψ(ω, r) =

∫ ∞
2M

G(r, r′) I(ω, r′) dr′, (2.37)

where the Green’s function can be computed through the expression

G(r, r′) =
ψL
(

min(r, r′)
)
ψR
(

max(r, r′)
)

W
, (2.38)

with the Wronskian given by W = ψ′RψL − ψ′LψR, and ψL an homogeneous solution of (2.29) respecting

the boundary condition at the left (2.34) and equivalently ψR obeying the boundary condition at the

right (2.33). Note that ψL and ψR only obey both boundary conditions for very specific values of ω,

the quasinormal frequencies, where also the Wronskian vanishes and G(r, r′) diverges. In other words,

the poles of the Green’s function constitute the quasinormal spectrum. This result is general, even for

conservative systems where the spectrum sits on the real line.

With the homogeneous solutions ψL, ψR obtained numerically using Mathematica supplied by the

”near” boundary expansions (2.35) and (A.9) we are now interested in knowing the solution at infinity,

where gravitational waves are observed, for all practical purposes. Performing the limit r →∞ allows to

write

Ψ(ω, r →∞) =
eiωr

W

∫ ∞
2M

ψL(r′) I(ω, r′) dr′, (2.39)

using the explicit expression for the Green’s function, Eq. (2.38).

Now, to ensure convergence we take a gaussian source term of the form

I(ω, r) = e−(x(r)−x0)2/σ2

, (2.40)

centered at x0 where we use x, the tortoise coordinate (to make sure all sources are located outside the

black hole).
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Finally, the time-domain response is obtained by inversion of the Laplace transform:

Ψ(t, r) =

∫ ∞
0

Ψ(ω, r)e−iωtdω . (2.41)

Note that at r → ∞, expression (2.39) inserted above implies that Ψ(t, r) ∝ eiω(r−t), a freely travelling

outgoing wave, as it should to be.

This formula, together with Eq. (2.39), allows to compute the wave signal at infinity, Ψ(t, r →∞) in

function of the source I(ω, r), which we naturally we expect to be composed of many quasinormal modes

with different amplitudes. However, if the modes’ imaginary part is non-degenerate (I can’t think of any

example where this is not the case for dissipative systems), we know that there is one mode that will

have the lowest imaginary component, in magnitude, which is usually the fundamental mode. Thus, the

remaining modes’ contribution to Ψ(t, r) will fade out faster and, after a sufficiently long time, we expect

the waveform to exclusively vibrate with the less-damped mode. This enables numerical extraction of

this mode by fitting this time-region of Ψ(t, r) to a damped sinusoid.

For instance, when M = 1, l = 5, s = 1, x0 = σ = 10, the waveform <Ψ(t, r → ∞) at the observer

has the following plot.
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Figure 2.2: Time-domain response, <Ψ(t), for photon with l = 5 and M = 1

We see the low amplitude ringing modes for t >∼ 20. A closer look on this region (figure 2) reveals

the quasinormal behaviour e−ωit sinωrt for which the best fit parameters are ωr = 1.0097, ωi = 0.1152,

in acceptable agreement with the ringdown database from CENTRA [15].
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Figure 2.3: Quasinormal behaviour for photon with l = 5 and M = 1. ω = 1.0097− i 0.1152.

This chapter ends the preparation material for next chapter, which kicks off by asking the question:

What happens if the boundary condition at the horizon is not simply Eq. (2.34)? If there is some

structure, of quantum nature perhaps, at the horizon then we should expect some portion of the waves

to be reflected back to the light ring, as depicted below. These waves will scatter back and forth, slowly

leaking through the photosphere and, as a result, produce echoes in the gravitational wave signal.
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Figure 2.4: Lossy cavity composed by an infinite wall at x = −50, extermely close to the horizon, and
the Regge-Wheeler potential (2.31) for M = 1, l = s = 2. The initial wave (black) will enter into the
cavity and scatter back and forth between the wall and the potential (blue), but for every collision with
the photosphere an echo is transmitted (red).

These echoes will individually carry valuable information about the structure at the horizon. Thus, it

is of extreme importance to have a mathematical formalism where we can obtain the waveform as a sum

of separated echoes. In other words, a general formula for each echo would allow us to directly correlate

their signal with the reflective properties of the structure at the horizon, and consequently shed a new

light on the quantum nature of gravity.
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Chapter 3

A Dyson series representation of

Echoes

The starting point has to be the wave equation,

− ∂2Ψ

∂t2
+
∂2Ψ

∂x2
− V (x)Ψ = 0, (3.1)

which, in this chapter, will be appropriately solved through an echo decomposition.

3.1 Boundary Conditions

As we have seen in the last chapter, the boundary conditions have a very relevant influence on the

waveform. Here we are particularly interested in partially open systems, where waves can escape to

infinity in at least one of the sides, which we will pick to be the right side, +∞, without loss of generality,

Ψ(t, x→∞) ∝ eiω(x−t) , (3.2)

The boundary condition at the left, however, may include a partial reflection at some point x = −L,

Ψ(t, x ∼ −L) ∝ e−iω(x+t) +R(ω) eiω(x−t) , (3.3)

where the first term corresponds to a free wave travelling to the left, out of the system, and the second

term is nothing but the reflected wave, travelling to the right; thus, we can identiftyR(ω) as the reflectivity

associated with the BC at x = −L. Note that the waveform (3.3) is only a valid solution to Eq. (3.1)

if V (x ∼ −L) = 0. In the perturbative formalism that we will employ this will not be a problem - our

results will be completely general (which is not the case in previous approaches [12]).

Furthermore, if we do not wish for external influence on the system, the reflectivity should also obey

|R(ω)| ≤ 1 , (3.4)
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otherwise, the reflected wave has a larger amplitude than the outgoing wave, i.e. there is an external

input at the left. The condition above is however violated for some well-known systems, such as Kerr

black holes, which are known to display superradiance [31].

We note that this condition is not a necessary assumption for our approach, even though it is needed

if we want decaying echoes.

The reflection coefficient R(ω) is completely specified by the BC at x = −L. We can point out three

familiar cases. For a purely outgoing wave to the left, we simply have R(ω) = 0. For a Dirichlet BC,

imposing Ψ(t,−L) = 0 on Eq. (3.3), we have R(ω) = −eiω2L, whereas for a Neumann BC (∂xΨ(t,−L) =

0) we get R(ω) = eiω2L. Both of the latter two are conservative boundary conditions since they satisfy

|R(ω)| = 1.

Alternatively, R(ω) can be specified and the BC at x = −L becomes automatically imposed. For

instance, dissipation can be introduced by generalizing the latter reflectivities to

R(ω) = −reiω2L , (3.5)

with r ∈ [−1, 1] and |R(ω)| = |r| ≤ 1. The BC at x = −L turns out to be Ψ(t,−L) ∝ (1 − r)eiω(L−t) and

∂xΨ(t,−L) ∝ −iω(1 + r)eiω(L−t).

3.2 The Dyson series solution of the Lippman-Schwinger equation

To solve Eq. (3.1) we employ the Laplace transform [15]

Ψ̃(ω, x) =

∫ ∞
0

Ψ(t, x)eiωt dt, (3.6)

where the usual Laplace coordinate is related to the frequency through s = −iω. In this case, if Ψ(t →

∞) ∼ eαt then Ψ̃ only converges for =ω > α.

The time-dependent solution is then the inverse of this transform,

Ψ(t, x) =
1

2π

∫ +∞+iβ

−∞+iβ

Ψ̃(ω, x)e−iωt dω , (3.7)

where β assumes any value β > α to ensure the integrand is always convergent along the path of

integration.

With these definitions, Eq. (3.1) is reduced to the non-homogeneous ODE

d2Ψ̃

dx2
+
(
ω2 − V (x)

)
Ψ̃ = I(ω, x) , (3.8)

with source term

I(ω, x) = iωψ0(x)− ψ̇0(x) , (3.9)

and ψ0(x) = Ψ(0, x) and ψ̇0(x) = ∂tΨ(0, x) encorporating the initial data at t = 0.

Now, instead of pursuing the usual Green’s function approach, we shall take a perturbative framework.
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The ODE (3.8), and BCs, can be jointly expressed in the integral form, called the Lippman-Schwinger

equation,

Ψ̃(ω, x) = Ψ̃0(ω, x) +

∫ ∞
−L

g(x, x′)V (x′)Ψ̃(ω, x′) dx′ , (3.10)

where

g(x, x′) =
eiω|x−x

′| +R(ω) eiω(x+x′)

2iω
, (3.11)

is the Green’s function of the free wave operator d2/dx2 + ω2 with BCs (3.2) and (3.3), and

Ψ̃0(ω, x) =

∫ ∞
−L
g(x, x′) I(ω, x′) dx′ , (3.12)

is the free-wave amplitude.

The formal solution of Eq. (3.10) is the Dyson series

Ψ̃(ω, x) =

∞∑
k=1

∫ ∞
−L
g(x, x1) · · · g(xk−1, xk)V (x1) · · ·V (xk−1)I(ω, xk)dx1 · · · dxk , (3.13)

which effectively works as an expansion in powers of V/ω2 (and thus is expected to converge for high

frequencies ω) since g ∝ 1/ω and dx ∼ 1/ω.

Note that if we were to expand each term of the series with explicit use of (3.11) we would get a

panoply of powers of R(ω). Now, we may ask, is it possible to reorganize (3.13) and express it as a series

in powers of R(ω)? This is the main task of this work.

3.3 Resummation of the Dyson series and echoing structure

We start by dividing the Green’s function (3.11) into g = go +Rgr, with

go(x, x
′) =

eiω|x−x
′|

2iω
, (3.14)

the open system Green’s function, and

gr(x, x
′) =

eiω(x+x′)

2iω
, (3.15)

the “reflection” Green’s function.

Then, we can write (3.10) as

Ψ̃(ω, x) =

∫ ∞
−L

go(x, x
′) I(ω, x′) dx′

+R(ω)

∫ ∞
−L

gr(x, x
′) I(ω, x′) dx′

+

∫ ∞
−L

g(x, x′)V (x′)Ψ̃(ω, x′) dx′ . (3.16)

Now, exactly as the Dyson series was first obtained, we replace the Ψ̃(ω, x′) in the third integral with the
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entirety of the rhs of Eq. (3.16), now evaluated at x′. Collecting powers of R(ω) yields

Ψ̃ =

∫
goI +

∫ ∫
goV goI

+R

[ ∫
grI +

∫ ∫
(grV go + goV gr)I

]
+R2

∫ ∫
grV grI

+

∫ ∫
g V g V Ψ̃ , (3.17)

where, for better clarity, we chose not to write the functions’ arguments.

If we repeat the process one more time - by replacing Eq. (3.16) with Ψ̃ in the last integration in

(3.17) - we get

Ψ̃ =

∫
goI +

∫∫
goV goI +

∫∫∫
goV goV goI

+R

[∫
grI +

∫∫
(grV go + goV gr)I +

∫∫∫
(goV goV gr + goV grV go + grV goV go)I

]
+R2

[∫∫
grV grI +

∫∫∫
(goV grV gr + grV grV go + grV goV gr)I

]
+R3

∫∫∫
grV grV grI

+

∫∫∫
g V g V g V Ψ̃ , (3.18)

and a pattern starts to emerge. The first line does not contain any gr, the second line contains one gr

arranged in all possible distinct ways with the go’s, the third line contains two gr ’s also arranged in all

possible ways, and so on and so forth. If we continue this process we end up with a geometric-like series

in powers of the reflectivity R,

Ψ̃(ω, x) = Ψ̃o(ω, x) +

∞∑
n=1

Ψ̃n(ω, x) , (3.19)

with each term a Dyson series itself:

Ψ̃o(ω, x) =

∞∑
k=1

∫ ∞
−L
go(x, x1) · · · go(xk−1, xk)V (x1) · · ·V (xk−1)I(ω, xk)dx1 · · · dxk , (3.20)

the series stemming from the first line of (3.18), and the reflectivity terms, which can be re-arranged as,

Ψ̃n(ω, x) = Rn(ω)

∞∑
k=n

∫ +∞

−L

∑
{k,n}

gr(x, x1) · · · gr(xn−1,xn) go(xn, xn+1) · · · go(xk−1, xk)

V (x1) · · ·V (xk−1)I(ω, xk)dx1 · · · dxk , (3.21)

where
∑
{k,n} is a sum on all possible distinct ways of ordering n gr ’s in k spots, resulting in a total of

(
k
n

)
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terms. For example,

∑
{3,2}

gr(x, x1)gr(x1, x2)go(x2, x3)V (x1)V (x2)I(ω, x3) =

gr(x, x1)gr(x1, x2)go(x2, x3)V (x1)V (x2)I(ω, x3)

+ gr(x, x1)go(x1, x2)gr(x2, x3)V (x1)V (x2)I(ω, x3)

+ go(x, x1)gr(x1, x2)gr(x2, x3)V (x1)V (x2)I(ω, x3) , (3.22)

we see that the functions’ arguments remain in the same relative position and only the gr’s and go’s

interchange.

There is no doubt we have increased the mathematical complexity of the problem. Nonetheless, Eq.

(3.21) has special significance: it is the frequency amplitude of the n-th echo of the initial perturbation.

There is no proper way to show this since there is no rigorous mathematical definition of an echo. How-

ever, with the following discussion and further application of this formalism to the Dirac delta potential

in Chapter 4, we hope to provide enough justification.

If R = 0 then Ψ̃ = Ψ̃o, the open system waveform, where only go participates. Conversely, when we

do not have a perfectly permeable boundary (R 6= 0), we get an additional infinite number of Dyson

series, as stated in Eq. (3.19). These Ψ̃n terms are expected to give a smaller contribution to Ψ̃ as n

increases, in other words, a decay of successive echoes should be observed. This is mainly due to two

features in (3.21).

• First, when |R(ω)| < 1, Rn(ω) is obviously an attenuation factor with a larger impact at large n. It

indicates n partial reflections at the boundary, as effectively done by the n-th echo. It should also

be noted that echoes have the distinctive feature of being spaced by the same distance for any pair

of successive echoes. The fact that Ψ̃(n+1) has an additional factor of R(ω) than Ψ̃(n), hence an,

independent of n, phase difference of arg[R(ω)], indicates this.

• More subtle is the fact that the Dyson series starts at k = n. Since go and gr are of the same order

of magnitude, it is natural to expect that the series starting ahead (with less terms) has a smaller

magnitude and contributes less to Ψ̃ than the ones preceding them. The additional term that Ψ̃n

possesses when compared to Ψ̃n+1, and hence can be used to evaluate their amplitude difference,

is given by

∆n(ω, x) = Rn(ω)

∫ ∞
−L
gr(x, x1) · · · gr(xn−1, xn)V (x1) · · ·V (xn−1)I(ω, xn)dx1 · · · dxn . (3.23)

Furthermore, latter echoes are seen to vibrate less than the first echoes. As we mentioned before, since

the Dyson series is basically an expansion on powers of V/ω2, Ψ̃n skips the high frequency contribution

to the series until k = n since the series commences in this term. The intuitive interpreation comes from

high frequency signals tunneling through the potential barrier more easily than lower frequency signals,

which is the reason why high frequency behaviour predominates in the earlier echoes and is verified in

expression (3.21).
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3.4 Inversion into the time domain

Finally, let us make use of the inverse Laplace transform (3.7) to obtain the time-dependent solution of

wave equation (3.1). We start with the open system perturbation Ψ̃o, given by Eq. (3.20). Here, the ω

dependent terms are the Green’s functions go, which have a pole at ω = 0 (Eq. (3.14)), and the source

term I which does not have any pole (Eq. (3.9)). Thus, to keep the integrand convergent we should

integrate above ω = 0. The frequency integral of the k-th term of (3.20) is

1

2πi

∫ +∞+i

−∞+i

eiω(|x−x1|+···+|xk−1−xk|−t)

ωk
I(ω, xk) dω , (3.24)

where we have chosen β = 1 (> 0), in Eq. (3.7). The integrand is non-analytic except when k = 1, due

to the term iωψ0(x) in I(ω, x), that cancels the ω in the denominator. For this term, we have

1

2π

∫ +∞+i

−∞+i

eiω(|x−x1|−t) dω = δ(|x− x1| − t) , (3.25)

whereas for the contribution −ψ̇0(x) in I(ω, x), we only have to integrate a simple pole at ω = 0 to get

− 1

2πi

∫ +∞+i

−∞+i

eiω(|x−x1|−t)

ω
dω = Θ(t− |x− x1|) , (3.26)

which vanishes for t < |x− x1|: The initial signal ψ̇0(x1) did not have enough time to travel to the point

of observation x, i.e. these points are causally disconnected.

Integration of ψ0(x1) and ψ̇0(x1) with (3.25) and (3.26), respectively, yields the first term of Ψo(t, x),

associated with free propagation of the initial waveform,

Ψi(t, x) =
1

2

[
ψ0(x− t) + ψ0(x+ t) +

∫ x+t

x−t
ψ̇0(x′) dx′

]
. (3.27)

If both R(ω) and V (x) vanish, this corresponds to the exact complete solution, Ψi(t, x) = Ψ(t, x). The

equation above reveals that the initial waveform separates in two halves, propagating in opposite direc-

tions, as we would expect in a plucked infinite string.

For k 6= 1, we start by defining

sk := |x− x1|+ · · ·+ |xk − xk+1| − t , (3.28)

interpeted as the causal distance, involving k interaction points besides the point of observation x and

the source point xk+1, for an elapsed time t.

With this definition the argument of the exponential in (3.24) is simply iωsk−1. This integration, for

k 6= 1 yields
Θ(−sk−1)

(k − 1)!

∂k−1

∂ωk−1

[
eiωsk−1I(ω, xk)

]
ω=0

. (3.29)

If I(ω, xk) was independent of ω, the term in brackets would only correspond to the the derivatives of

the phase factor, (isk−1)k−1I(xk). But since I has the linear form (3.9), we can write the term inside
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brackets as (isk−1)k−1I(−i k−1
sk−1

, xk) .

Putting everything together yields a Taylor-like expansion,

Ψo(t, x) = Ψi(t, x)− 1

2

∞∑
k=1

1

k!

∫ ∞
−L

(sk
2

)k
I
(
− ik
sk
, xk+1

)
V (x1) · · ·V (xk) Θ(−sk) dx1 · · · dxk+1 . (3.30)

Laplace inversion of Eq. (3.21) follows the same lines. Instead of sk, it is useful to define

σn,k := (x− x1) + · · ·+ (xn−1 + xn) + |xn − xn+1|+ · · ·+ |xk−1 − xk| − t , (3.31)

so that the frequency integral, corresponding to inversion of the k-th term of (3.21) through (3.7), can

be written as
1

2πi

∫ +∞+i

−∞+i

eiωσn,k

ωk
Rn(ω) I(ω, xk) dω , (3.32)

where we replaced the Green’s functions go and gr by their explicit forms (3.14) and (3.15), respectively.

Unfortunately now we cannot go further unless we know R(ω) in detail: its poles and divergent

behaviour at ±i∞, which allows us to specify the choice of contour.

Thus, for completeness, we present below the calculation for R given by Eq. (3.5):

Ψn(t, x) = δn,1Ψr(t, x)− (−r)n

2

∞∑
k=n

∫ ∞
−L

∑
{k,n}

(σn,k+2Ln)k−1

2k−1(k − 1)!
I
(
− i(k − 1)

σn,k+2Ln
, xk

)
V (x1) · · ·V (xk−1)

Θ(−σn,k−2Ln) dx1 · · · dxk , (3.33)

with

Ψr(t, x) = −r
2
ψ0(t− x− 2L) (3.34)

corresponding to the reflected initial waveform (if ψ̇0 = 0), present only in the first echo (due to the

Kronecker delta δn,1).

The more attentive reader may realize that the inversion into the time domain is only practically

performed if the explicit form of R(ω) is known. For instance, this is not the case for a wormhole

system, where R stands for the reflectivity of the Schwarzshcild potential, which can only be extracted

numerically. Thus, one may ask if it is also possible to express the reflectivity of a generic potential as a

perturbative series in V (x). The answer is a definite yes.

3.5 Reflectivity series

If a wave is sent from +∞ (e−iωx), the reflectivity will be the factor of the reflected wave, R(ω)eiωx. The

source I(ω, x) that corresponds to Ψ̃0 = e−iωx can be inspected from (3.12), with g = go (we are trying

to extract the reflectivity, so it is only natural to consider purely outgoing BCs at both sides), and formally

reads as

I(ω, x) = 2iω lim
l→∞

δ(x− l) e−iωl (3.35)
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which non surprisingly corresponds to a source pulse located at x→∞ (the factor of e−iωl takes care of

the phase difference coming from∞).

Now, with this source term, the solution given by the Dyson series (3.20) at x → ∞ is straightfor-

wardly seen to have the form Ψ̃(ω, x→∞) = e−iωx +R(ω) eiωx, with

R(ω) =

∞∑
k=1

1

(2iω)k

∫ ∞
−∞

eiω(−x1+|x1−x2|+···+|xk−1−xk|−xk)V (x1) · · ·V (xk) dx1 · · · dxk , (3.36)

the reflection coefficient expressed in terms of the potential, as promised.

The above expression can also be used to compute the system’s QNMs, which are the poles of R(ω).

In fact, there is an ongoing discussion within the community regarding whether the QNMs of the system

with purely outgoing BCs at both sides (as in the above case) coincide with the ones where a mirror is

introduced, replacing the outgoing BC at one side with some other different BC like the one we specified

in (3.3).

Now, the mirror + potential system’s QNMs should also be the poles of its ”reflectivity”. This concept,

however, is not defined in the case both BCs are not purely outgoing, that is, if the system is only partially

open. We cannot simply take the initial wave as Ψ̃0 = e−iωx but instead we should consider

Ψ̃0 = e−iωx +R(ω)eiωx , (3.37)

where R(ω) is NOT the reflectivity of the system but the reflectivity associated with the non trivial BC

at some x = −L. This is the correct form for Ψ̃0 since, by Eq. (3.10), it should also be the complete

solution of the system when there is no potential barrier and additionally reduce to e−iωx when the

mirror vanishes, that is, a free travelling to the left plane wave.

The reader may find comfort in this definition by noting that Ψ̃0 computed through Eq. (3.12) with I

given by Eq. (3.35) does indeed recover expression (3.37).

Naturally, the system’s reflectivity can only correspond to the factor multiplying the outgoing wave

at +∞, R(ω) eiωx. With the source term (3.35) and g given by Eq. (3.11), we just need to evaluate

expression (3.13) at x→∞ to identify

R(ω) = R(ω) +
1

2iω

∞∑
k=1

∫ ∞
−L

(e−iωx1 +Reiωx1)g(x1,x2) · · · g(xk−1, xk)(e−iωxk +Reiωxk)

V (x1) · · ·V (xk) dx1 · · · dxk , (3.38)

which reduces to R = R if the potential vanishes, and to Eq. (3.36) if R→ 0, as expected. We emphasize

that R(ω) in the above expression corresponds to the reflectivity associated with the non-trivial BC at

x = −L whereas, in (3.36), it is the reflectivity of the potential barrier. We use the same letter for both

since the mirror at x = −L can be either due to a non-outgoing boundary condition at this point, or a

potential barrier, in this case computable through Eq. (3.36).

We can see that Eq. (3.38) does not diverge where Eq. (3.36) diverges, for arbitrary potential. In

other words, the mirror+potential system and the completely open potential system do not share the
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same spectrum of quasinormal modes.

In the next chapter, we apply all this apparatus to a specific V (x), the Dirac delta potential.
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Chapter 4

Echoes of a Membrane-Mirror cavity

A Dirac delta potential located at x = 0,

V (x) = 2V0 δ(x) , (4.1)

with V0 > 0, and a mirror with reflectivity R(ω) placed at x = −L, constitute a lossy cavity in the region

x ∈]− L, 0[, which we call a Membrane-Mirror cavity.

What follows is application of the formalism of Chapter 3 with potential (4.1).

4.1 Open system solution: Ψo

Instead of employing straight ahead the formula for the time-dependent open system solution, Eq. (3.30),

it is interesting to first compute the frequency amplitude from Eq. (3.20) and then Laplace invert it. The

k = 1 term corresponds to the free propagating initial waveform, Ψ̃i(ω, x) given by the Laplace inversion

of Eq. (3.27). For k > 1, the k− 1 delta functions collapse all the integrals except the integration in xk to

give

Ψ̃o(ω,x) = Ψ̃i(ω, x) +

∞∑
k=2

∫ ∞
−L

eiω(|x|+|xk|)

(2iω)k
(2V0)k−1I(ω, xk) dxk , (4.2)

which, in fact, is a k-independent integral: Relabeling xk → x′ and treating the sum as a geometric series,

simplifies the above to

Ψ̃o(ω, x) = Ψ̃i(ω, x) +

∫ ∞
−L

eiω(|x|+|x′|)

2iω
Rδ(ω) I(ω, x′) dx′, (4.3)

where

Rδ(ω) =

∞∑
k=1

(V0

iω

)k
= − V0

V0 − iω
(4.4)
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is the reflection coefficient of the Dirac delta potential (4.1), which could be directly computed from Eq.

(3.36) and diverges at the (single) QNM

ω = −iV0 . (4.5)

With Ψ̃o in hand we just have to apply Eq. (3.7) to get the time-dependent solution:

Ψo(t, x) = Ψi(t, x)− C0(t−|x|) + CV0(t−|x|) e−V0(t−|x|) , (4.6)

with QNM excitation coefficient given by

CV0
(t) = −1

2
Θ(t)

∫ t

−t
eV0|x| I(−iV0, x) dx , (4.7)

and Ψi(t, x) given by (3.27).

Direct application of Eq. (3.30) would even be more straightforward: Instead of a geometric series,

the infinite series that factors out is the Taylor expansion of eV0(|x|+|x′|−t).

Before we advance, we should point out the following. When there are no interactions, V0 = 0, the

two latter terms of (4.6) cancel each other and, as expected, Ψo(t, x) = Ψi(t, x). More interestingly, unlike

conservative systems, the QNM excitation coefficient CV0
is not a constant. Thus, in which conditions does

Ψo(t, x) decay with the QNM behaviour? We expect this to happen when I(ω, x) is sufficiently localized

in space, which should occur in more ”physical” sources. Even a decay I(ω, x) ∼ e−a|x|, for some a > 0

gives Ψo(t → ∞, x) ∼ e−at. For a gaussian source I(ω, x) ∼ e−ax
2

it is possible to rewrite the integrand

in (4.7) as ∼ e−a(x−b)2 with b = V0

2a . Even if the gaussian is disperse (small a), which makes b assume

large values, for t � b the integrand will contribute little and CV0
(t) is essentially independent of t. In

the limit t → ∞, CV0 will just be the real line integral of a gaussian, with convergent and known value

and hence Ψo(t→∞, x) = CV0
e−V0t.

4.2 Echoes: Ψn

To obtain Ψ(t, x) we still need to get the echoes Ψn(t, x), as specified by Eq. (3.19). Since we have not

yet particularized the form of R(ω), we must start at the frequency amplitude and apply Eq. (3.21) with

potential (4.1).

As previously, the delta functions will collapse all integrals in the k-th term of expansion (3.21), except

the one in xk, which results in the sum on all distinct arrangements of the n gr’s in the k spots to assume

the form ∑
{k,n}

gr(x, 0)gr(0, 0) · · · gr(0, 0)go(0, 0) · · · go(0, 0)go(0, xk). (4.8)

Since gr(0, 0) = g0(0, 0), according to Eqs. (3.14) and (3.15), a large number of arrangements will

turn out to be numerically identical, more specifically, the ones involving interchaning the functions in

the ’middle’, with argument (0, 0). In fact, there are only 4 possible algebraically different outcomes for
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the pair of functions at both ends of the product, which make the above simplify to

gr(x, 0)gr(0, xk)

(
k−2

n−2

)
+ go(x, 0)go(0, xk)

(
k−2

n

)
+
[
go(x, 0)gr(0, xk) + gr(x, 0)go(0, xk)

](k−2

n−1

)
.

(4.9)

To get the first term, for instance, we have a couple of gr’s at the ends, leaving k−2 spots for the remaining

n−2 gr’s. The others follow the same reasoning. Even if not directly apparent, we are dealing with a total

number of
(
k
n

)
terms, as pointed out after Eq. (3.21), since

(
k−2

n−2

)
+ 2

(
k−2

n−1

)
+

(
k−2

n

)
=

(
k

n

)
. (4.10)

Now, similarly to what happened in Eq. (4.2), renaming xk → x′ will make the integral (3.21)

independent of k and a geometric-like series factors out for every term in Eq. (4.9). For gr(x, 0)gr(0, x
′),

for example, what factors out is the power of the delta reflectivity

∞∑
k=n

(
k−2

n−2

)(V0

iω

)k−1

=
[
Rδ(ω)

]n−1
, (4.11)

withRδ given by Eq.(4.4), where the following identity for the power of a geometric series was employed,

∞∑
k=n

(
k−1

n−1

)
rk =

[ ∞∑
k=1

rk
]n
. (4.12)

Using the above for the remaining terms yields

Ψ̃n(ω, x) =

∫ ∞
−L

[
Rn−1
δ (ω)eiω(x+x′) +Rn+1

δ (ω)eiω(|x|+|x′|) +Rnδ(ω)
(
eiω(x+|x′|) + eiω(|x|+x′))]Rn(ω)

I(ω, x′)

2iω
dx′.

(4.13)

This panoply of terms bears an enlightening interpretation. The first one, with the product Rn−1
δ Rn,

corresponds to a wave sent left, towards the mirror, and also received from the mirror, travelling to the

right. Take the second echo, n = 2, for example. It first reflects at the mirror, then at the delta, and again

at the mirror, picking up a factor RδR2.

The second one, with Rn+1
δ Rn, is the opposite situation. The wave is sent to the right, towards the

delta, and then also received from the delta, but travelling to the left. This situation can only happen for

x ∈ [−L, 0], when the observer is inside the cavity.

The same is verified for the last two terms, with RnδR
n. Here, one of two situations happen. The wave

is first sent into the mirror and then received from the delta, or sent into the delta and then received from

the mirror, reflecting either way an equal number of times at the delta and at the mirror.

The echoes’ amplitude Ψ̃n is similar, in form, to Ψ̃0. Besides the presence of Rn, the difference lies in

the order of the pole of the QNM (4.5), due to the powers of Rδ. Inversion will result in derivatives of the

integrand, evaluated at the QNM. The echoes, besides vibrating and decaying with the delta QNM, have

a slightly different behaviour. For trivial I, for instance, the derivative will only act on the phase factor
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∼ eiω(x−t) assigning, additionally, a polynomial behaviour to the echoes’ waveform.

To proceed with inversion, with the use of Eq. (3.7), we consider R(ω) given by Eq. (3.5), to get

Ψn(t, x) = δn,1
r

2

[
−ψ0(t−x−2L) +

∫ t−x−2L

−L
I(0, x′)dx′

]
− (−r)n

2

(
En(V0; t− |x| − 2Ln) + En−1(V0; t− x− 2Ln)− En(0; t− |x| − 2Ln)− En−1(0; t− x− 2Ln)

)
(4.14)

with

En(V0; t) = Θ(t)
V n+1

0

n!

∂n

∂V n0

∫ t

−min(t,L)

eV0(|x|−t) I(−iV0, x)

V0
dx

+ Θ(t+L)(1−δn,0)
V n0

(n− 1)!

∂n−1

∂V n−1
0

∫ t

−L
eV0(x−t) I(−iV0, x)

V0
dx. (4.15)

A few comments must be made. Interaction of the source with the delta is being accounted in the first

integral of Eq. (4.15) whereas reflection at the mirror is taken into account in the second integral, hence

the Θ functions ensuring that there is enough time for the source to reach the membrane and the mirror,

respectively.

The factor (1 − δn,0) vanishes for n = 0 and is 1 otherwise. It is easy to see that it only vanishes for

Ψ1, the first echo, which instead possesses the term on the first line of Eq. (4.14), corresponding to the

reflection at x = −L of the left-travelling intial waveform. This is the only surviving term in case V0 → 0,

when there is no cavity.

It is relevant to note that the integrals themselves do not depend on n, apart from the integration

limits. The difference between echoes mostly lies in the order of the derivative on V0.

Figure 1 below shows a ”time-lapse” of the complete waveform given by the sum of the open-system

solution, Eq. (4.6), with the first 3 echoes, described by Eq. (4.14), with a gaussian static initial condition

ψ0(x) = e−(x−10)2 , ψ̇0(x) = 0 . (4.16)

and parameters

V0 = 1 , L = 10 , r = 1 (Dirichlet BC). (4.17)

A complete sequence of events up until the 8-th echo can be seen in video format at: https://youtu.

be/XfJNwuwbvnA .

4.3 QNMs

To illustrate the discussion at the end of Chapter 3, let us compute the membrane-mirror system’s reflec-

tivity. Equation (3.38) with potential (4.1) yields

Rδ = R+ (1 +R)

∞∑
k=1

[
(1 +R)

V0

iω

]k
, (4.18)
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Figure 4.1: Snapshots of the scalar profile at t = 0, 6, 10.5, 16, 20, 28, 36, 58, 74 (top to bottom, left to
right) in the presence of a delta-like potential at x = 0 and a mirror at x = −10. The initial profile (4.16)
quickly gives way to two pulses traveling in opposite directions at t = 6, as described by Eq. (3.27);
the left propagating pulse interacts with the (delta) potential at t = 10.5 and gives rise to a transmitted
pulse and a reflected one (t = 16). The reflected pulse eventually reaches the boundary, at t = 20, and
will cross the potential at around t = 36 giving rise to the first echo. The wave confined to the cavity
(mirror+potential) will produce all subsequent echoes. At t = 58, after 2L = 20 time units the second
echo emerges out of the cavity and at t = 74 a third echo is about to be produced. These snapshots were
obtained by adding three “echoes,” and coincides up to numerical error, with the waveform obtained via
numerical evolution of the initial data. In the central panel, the red line shows −eV0(x−10), confirming
that the initial decay is described by the QNMs (4.5) of the pure delta function (no mirror).

which simplifies to

Rδ =
Rδ +R+ 2RδR

1−RδR
, (4.19)

when the geometric series identity and definition of Rδ, Eq. (4.4), are employed.

It is easy to check that Rδ → Rδ if R→ 0 and vice-versa, if Rδ → 0 then Rδ → R. In fact, we can see

that Rδ is a symmetric function of (R,Rδ). Moreover, if R = −1, corresponding to a perfectly reflecting

mirror, then we should expect everything to be reflected back, independently of the potential. In this

limit we also see that Rδ = −1.

More interestingly, at the QNM (4.5) we have that Rδ → ∞ and the dependence on Rδ cancels to

give Rδ = − 1+2R
R , which is finite for a non-trivially vanishing R. Thus, ω = −iV0 is NOT a QNM of the

mirror+delta system. The QNMs are instead implicitly given by the poles of Rδ which must satisfy

R(ωn)Rδ(ωn) = 1 . (4.20)

Fig.4.2 plots the frequencies that respect the above, for R given by Eq. (3.5), with r = 1 (Dirichlet BC
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Figure 4.2: QNM frequencies of the membrane-mirror system for different values of V0L = 1, 2, 4, 8 from
bottom (blue) to top (red), respectively.

at x = −L), which are well-approximated by the expression

ωn =
nπ

L
− 1

2L
arctan

nπ

LV0
− i

4L
log
(

1 +
n2π2

L2V 2
0

)
. (4.21)

Not surprisingly, the imaginary part grows in magnitude with |n|. This implies that, at sufficiently

long times, the perturbation will decay with the fundamental mode ω±1 (Fig. 3), even if the initial

perturbation decays according to the pure-delta QNM (4.5) (and as we show in Figure 1). We believe

0 200 400 600 800 1000 1200 1400
-15

-10

-5

0

Figure 4.3: Time evolution of the waveform using initial conditions (4.16) and parameters (4.17). The
plot shows the decay with the fundamental mode of the system (with mirror on the left), =ω±1 ≈
−0.00205 (in red), for large t. The early echoes decay in a way that is governed by the QNMs of the
pure delta. The high-frequency component is filtered out and progressively the signal is described by the
modes of the composite system at late times, as it should.

that this is the most convincing demonstration to date that the late-time decay is indeed governed by the

QNMs of the composite system.
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Chapter 5

Conclusions

5.1 Results and achievements

We have shown in Chapter 3 that a proper re-summation of the Dyson series solution of the Lippman-

Schwinger equation accounts for the presence of echoes in the waveforms of extremely compact objects

(termed “ClePhOs” in the nomenclature of Refs. [32, 33]). We recover previous results, obtained with a

completely different approach [12], but our approach, besides being completely general, also provides a

few more insights.

The key result Eq.(3.21) besides confirming the lower frequency content, decaying amplitude and

constant distance of successive echoes, also explicitly relates the echoes waveform Ψn(t, x) with the initial

conditions and sources incorporated into I(ω, x), the potential of the system V (x), and the reflectivity of

the wall R(ω) (the latter two function as the right and left sides of the lossy cavity, respectively).

With the hypothetical future discovery of echoes in gravitational wave signals, the echo amplitude

Ψ̃n(ω, x) can be extracted up to experimental and numerical error. Together with the knowledge of V (x)

and I(ω, x), this turns Eq. (3.21) into an equation for R(ω), which encodes the information we currently

lack on the quantum structure at the event horizon.

In Chapter 4, we applied this formalism to a Dirac delta potential alongisde a mirror, serving as a

simple toy model of a lossy cavity. It is interesting that the delta potential reflectivity arises naturally

when the geometric series identity is applied to the already integrated Dyson series, hence revealing how

crucial is the delta QNM (being a pole of the reflectivity) in determining the behavior of both the early

response and the echoes. Nonetheless, despite having the same damped exponential form, the echoes

have a polynomial decay (at early times) that was not explicitly found before. In fact, this is one of

the few known explicit solutions of to the wave equation with open BCs, which specifically confirms

the hypothesized QNM coefficient dependence on time (contrarily to conservative systems where it is

constant).

Albeit not directly related with echoes, both appendices contain a considerable amount of original

work done in the past year. The generalized Frobenius method presented in Appendix A allowed us to

reduce an originally 5-term recursion relation to the usual 4-term recursion relation obtained at r ≈ r0
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and further reveal the ingoing BC at the horizon which was kept arbitrary at the start. We also argued

that even with a more general expansion there were three terms of the recursion relation that could not

be eliminated due to their dependence on n2. This expansion, first proposed by Leaver in 1985 [22],

leads to the said 3-term recursion relation.

Following a lack of a rigorous definition of QNMs and a general equivalence between their intrinsic

imaginary negativity and open BCs, we were prompted to establish a first proof of the latter. In section

1 of Appendix B, we showed that purely outgoing BCs in Sturm-Liouville theory turns the wave equation

into a non-Hermitian eigenvalue problem for the frequencies ω. In particular, Eq. (B.6) shows that the

imaginary part of ω must be negative. In the succeeding two sections we show this explicitly by computing

the spectrum of a number of toy models involving the Dirac delta and rectangular barrier potentials.

5.2 Future developments and work to be done

Further developments of the resummation formalism introduced in Chapters 3 and 4 should include: an

application to other systems (such as a Schwarzschild BH) besides the simple solvable Dirac delta poten-

tial; a careful analysis of the convergence properties of Eq. (3.21) (in [34], for instance, the convergence

of the usual Born series is shown for localized and rapidly decaying potentials); extension of our methods

to more than one spatial dimension given the recent string theoretical arguments of non-spherical sym-

metry of the quantum corrections to the event horizon; check if superradiant amplification is observed in

Eq. (3.21) if |R(ω)| > 1 or if an electric potential is introduced; implementation of the reflectivity series

(3.36) and (3.38) to QNM computation; confirm the polynomial behaviour of echoes in other systems

besides the Dirac delta potential and use this information to echo modelling.

The Frobenius method is the prime approach for obtaining the normal modes of quantum systems, like

the energy levels of the Hydrogen atom. Nevertheless, it faces some difficulties when more complicated

potentials are introduced or relativistic effects are taken into account. It would be interesting to see if the

generalization presented in Appendix A would provide a better answer for more complex systems.

In Appendix B we have seen that in all of the examples the QNM relation can be put into the form

e2iΩaRL(ω)RR(ω) = 1. Is this general? Can this applied in a smooth procedure as to obtain a general

formula for QNM computation? Finally, we see that the modes of the mirror & barrier cavity in subsection

B.3.2 have a bounded regime for n <
√
V0L
π , in Eq. (B.45), and a damped regime for n >

√
V0L
π , in Eq.

(B.44). Can this effect be studied with the formalism of phase transitions? If yes, how does this generalize

into other systems?
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Appendix A

Generalized Frobenius approach to the

Regge-Wheeler equation

Here we will generalize the Frobenius method [2], which is used to obtain solutions of linear, second-

order and homogeneous ODEs. The Frobenius method consists of attempting a solution in the form of

a series expansion about some point (usually at the origin). Insertion of this expansion into the ODE

will turn it into an iteratively solvable recursion relation. The problem arises when there is divergent

behaviour at the boundaries, in which case the solution is formally an asymptotic expansion. In this sce-

nario we factor out the divergent behaviour, which usually contributes to simplify the recursion relation

greatly.

A famous example of this method is the obtention of the Hydrogen atom energy spectrum from the

Schrodinger equation: the centrifugal barrier factor ∼ r−l is extracted and the result is a 2-term recursion

relation [14]. Since the divergent behaviour at the origin is removed, the series resulting from the

simplified recursion relation should converge. However, this only occurs for a specific combination of the

constants involved, the energy quantization relation. The same method applies in the determination of

the harmonic oscillator allowed energies.

Therefore, it is natural to expect that a similar Frobenius approach would yield the Schwarzschild

black hole quasinormal modes, by requiring a truncation of the series. Unfortunately, there are a number

of complications: First of all there is a causally disconnected region at r < r0 = 2M , so an expansion at

the origin is not possible. Secondly, by looking at the plot of the Regge-Wheeler potential 2.1 we see that

there is no possiblity of bound states (hence the quasinormal behaviour). Third and most importantly,

because of the previous point, the boundary behaviour is non-trivial and thus difficult to extract from the

series expansion.

The idea here is to start with a generic expansion of the form

ψ(r) = g(r)

∞∑
n=0

An(r − r0)n, (A.1)

where g(r) is the function responsible for capturing the boundary behaviour at r0. What is novel in our
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approach is that we will keep g(r) arbitrary until the recursion relation is obtained. Then, by requiring

that the number of terms in the recursion relation for An is minimal, the explicit form of g(r) becomes

automatically determined.

For simplicity we choose r0 = 2M , so we will expand around the horizon. In fact, r → r0 is a singular

point [2] of the ODE (2.29) but since

lim
r→r0

(r − r0)
f ′

f
= 1 (A.2)

and

lim
r→r0

(r − r0)2

f2

(
ω2 − f

( l(l + 1)

r2
+ f ′

1− s2

r

))
= r2

0ω
2 (A.3)

are both finite, Fuchs’ theorem ensures that the Frobenius method will result in a valid solution.

If we want to decouple g(r) from the recursion relation it must satisfy

g′(r) = g(r)

∞∑
j=0

aj(r − r0)j+z (A.4)

where z ∈ Z allows for negative powers of (r − r0), and the coefficients aj will be such that the relation

for An is the most simple.

Before expansion (A.1) is inserted into the Regge-Wheeler equation (2.29) it is best to compute its

derivatives first:

ψ′(r) = g(r)

∞∑
n

(r − r0)n
(
An+1(n+ 1) +

∞∑
j=0

ajAn−j−z

)
(A.5)

ψ′′(r) = g(r)

∞∑
n

(r−r0)n
(
An+2(n+2)(n+1)+

∞∑
j=0

ajAn−j−z+1(2(n+1)−j−z)+

∞∑
j,j′=0

An−j−j′−2zajaj′
)

(A.6)

Now we just have to insert the above into the Regge-Wheeler equation (2.29) and hope for suitable

values of aj to simplify the recursion relation. For z < −1 and j > 2 we get an higher number of recursion

terms than before, thus the expansion (A.4) is only useful if we set z = −1 and aj≥3 = 0.

With these restrictions the following 5-term recursion relation is obtained.

An
(
r4
0ω

2 + r2
0(n+ a0)2

)
+An−1

(
r0(n− 1− l(l + 1)− α+ a0) + 4r3

0ω
2 − r2

0(2n− 1)a1 + 2r2
0a1a0

)
+An−2

(
r2
0(6ω2 + a2

1 + 2a2(n− 1 + a0))− l(l + 1) + (n− 2)(n+ 2r0 − 3) + a1r0 + (2(n+ r0)− 5)a0 + a2
0

)
+An−3

(
4r0ω

2 + 2r2
0a1a2 + 2a0a1 + r0a2 + (2(n+ r0)− 6)a1

)
+An−4

(
r2
0a

2
2 + a2

1 + ω2 + (2(n+ r0)− 7)a2 + 2a0a2

)
= 0

(A.7)

with n ≥ 0 and An<0 = 0.

The indicial equation (n = 0) reads

A0

(
r4
0ω

2 + r2
0(n+ a0)2

)
= 0, (A.8)
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which for non-vanishing A0 implies that a0 = ±iωr0.

Now we want to determine a1 and a2 such that the An−4 factor, (r2
0a

2
2 + a2

1 +ω2 + (2(n+ r0)− 7)a2 +

2a0a2, vanishes. Notice that a2 must be zero since it is the only coefficient multiplying n. Finally, with a2

zero we have that a2
1 + ω2 must vanish, which fixes a1 = ±iω.

Therefore, the recursion relation reduces to

An
(
r2
0n(n− 2ir0ω)

)
+An−1

(
r0(−l(l + 1) + 2(n− 1)2 + (n− 1)(−1− 6ir0ω)− α)

)
+An−2

(
(l(l + 1) + (n− 2)(1− (n− 2) + 6ir0ω))

)
+An−3

(
2iω(n− 3)

)
= 0,

(A.9)

the already known recursion relation for the expansion around r0 when the behaviour at r → r0 is

extracted.

Indeed, if we choose the minus signs in both a0 and a1 we get

g′(r) = g(r)
( a0

r − r0
+ a1 + a2(r − r0)

)
= −ig(r)ω

( r0

r − r0
+ 1
)

(A.10)

which integrated gives

g(r) ∝ e−iω
(
r+r0 log(r−r0)

)
(A.11)

the ingoing boundary condition at the horizon (2.34).

For curiosity sake, to eliminate the factor of An−3 in (A.7) one needs a1 = 0 and a2 = −4ω2, in which

case g(r) = e−2ω2(r−r0)2(r − r0)−iω, a Gaussian behaviour centered at r0 with deviation ∝ 1
ω (higher

frequency corresponding to better localized wavepacket at r0).

Importantly, we cannot eliminate the factors of An and An−2 in (A.7) since there is an n2 dependence

and the aj coefficients only have factors of n at most (because (2.29) is a linear 2nd order differential

equation). The same happens with An−1, since fixing a1 will cancel out a0 in the same factor of An−1 in

Eq. (A.7), and vice-versa.

In reality, albeit not a rigorous statement, it seems that for every point one chooses to expand around

there are always three terms in the 5-term recursion relation which are impossible (by the method pre-

sented) to make disappear. In fact, the most simplified recursion relation obtained so far is the 3-term

recursion relation first obtained by Leaver [22], for which all factors have unsurprinsingly an n2 depen-

dence.

Despite all the previous reasoning, there is no real practical need for a closed expression for the

quasinormal frequencies since nowadays these values can be determined to (virtually) arbitrary precision

through the use of numerical methods [15].
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Appendix B

Quasinormal modes

B.1 Sturm-Liouville theory in open systems

Taking a time dependence Ψ(x, t) = e−iωtψ(x), the wave equation (1.6) can be put into the form

Lψ = ω2ψ , L = − d2

dx2
+ V (x) . (B.1)

This is an eigenvalue equation, where the set {ω2} is determined by the solution ψ(x) of this ODE, subject

to the desired boundary conditions.

Open systems (i.e. with outgoing waves at the boundaries) are distinctively non-hermitian, so that,

ω2 ∈ C. One can see this explicitly by the following reasoning: take ψn and ψm to be solutions of Eq.

(B.1) with some BC at x = a and x = b. Integrating by parts yields

∫ b

a

ψ∗n Lψm dx =

∫ b

a

(Lψn)∗ψm dx−
[
ψ∗nψ

′
m − (ψn∗)′ψm

]b
a
. (B.2)

If ωn and ωm are the eigenvalues corresponding to ψn and ψm, respectively, the above simplfies to

(
(ω2
n)∗ − ω2

m

) ∫ b

a

ψ∗n ψm dx =
[
ψ∗nψ

′
m − (ψ∗n)′ψm

]b
a
. (B.3)

Considering Dirichlet or Neumann boundary conditions at x = a and x = b makes the rhs of this equation

vanish. Assuming that ψn and ψm are nondegenerate this would further imply that different eigenfunc-

tions are orthogonal (and can be made to be orthonormal) and thus ωn ∈ R for any n. In these conditions

the operator L is said to be Hermitian.

In an open system (with no external influence), one of the boundary conditions can be taken to be

purely outgoing and the other to be some combination involving a reflection. For simplicity, let us take

ψ(x→ b) = eiωx and ψ(a) = 0 (equivalent to the presence of a perfect mirror at x = a). Hence, we have

in Eq. (B.3) that

(
(ω2
n)∗ − ω2

m

) ∫ b

a

ψ∗n ψm dx = i(ω∗n + ωm)ei<[ωm−ωn]be−=[ωn+ωm]b (B.4)
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which for b → ∞ only converges to zero if =[ωn + ωm] > 0 for any n,m. If we take n = m the above

reduces to

−=[ω2
n]

∫ b

a

|ψn|2 dx = <[ωn]e−2=[ωn]b. (B.5)

Noting that =[ω2] = 2<[ω]=[ω] we can simplify this relation (in case <[ωn] 6= 0 ) to

=[ωn] = −1

2

(∫ b

a

e2=[ωn]b |ψn|2 dx

)−1

. (B.6)

This shows that =[ωn] < 0 for any n, due to the absolute positivity of the integral inside brackets. Thus,

we can generally state that QNM frequencies have the form ω = ωR − i|ωI | which, for the assumed time

dependence ∼ e−iωt, produces an exponential decay ∼ e−|ωI |t. This is a general fact of open systems

with outgoing boundary conditions: |ωI | contains the information about the dissipation of energy of the

perturbation to the exterior. If we took ∼ eiωt instead, we would naturally obtain =[ωn] > 0, and the

perturbation would still exponentially decay in time.

The fact that =[ωn] < 0 also means that eigenfunctions are not orthogonal, through Eq. (B.4) (=[ωn+

ωm] < 0), nor normalizable, through Eq. (B.5) due to the divergent quantity limb→∞ e−2=[ωn]b =∞.

It is also interesting to take the following intepretation of Eq. (B.6). The factor e=[ωn]b counters the

diverging behaviour of ψn near x ∼ b so that e2=[ωn]b |ψn|2 is finite and can be interpreted as a probability

amplitude (with no dimensions). If V (x) is peaked at some x = L + a then we expect our waves to

be trapped between the mirror and the peak of the potential and the integral in (B.6) can be roughly

approximated to
∫ L+a

a
1 dx so that we get =[ω] ∼ −1/2L, the inverse time that a wave takes to go back

and forth in the space where it is (partially) confined and also importantly, the time difference between

consecutive echoes.

For completeness we note that in case both boundaries are open (ψ(x → a) = e−iωx) instead of Eq.

(B.6) we get

=[ωn] = −1

2

(∫ b

a

(
e2=[ωn]b + e−2=[ωn]a

)
|ψn|2 dx

)−1

(B.7)

and the previous argument tells us that if our potential has two peaks distanced by L then =[ω] ∼ −1/L,

which is double the value of the previous case and can be explained due to trapped waves now leaking

through both sides.

There is an additional detail worth discussing. The above result is not valid for open but bounded

systems. These are conservative systems that have a BC of the form ∼ e−|E|x at infinity, which are

included in our description if ω = i|E| where {En} corresponds to the energy eigenvalues. Physical

examples include the Schrödinger or Klein-Gordon equations with a Coulomb potential (the Hyrdogen

atom model). Since now =[ωn] > 0, Equations (B.6) and (B.7) cannot be true. However, since En ∈ R

then in this case <[ωn] = 0 and the step from (B.5) to (B.6) is not true, i.e. both sides of Equation (B.5)

are identically zero. Thus, it should be added that equations (B.6) and (B.7) only describe open and

unbounded systems, where dissipation is present.
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B.2 Dirac delta spectrum

Here we compute the QNMs for a system composed of: a single Dirac delta potential, a single delta and

a mirror, and two Dirac deltas separated by some distance.

B.2.1 Single Dirac delta

The Dirac delta potential is given by

V (x) = V0 δ(x) (B.8)

with V0 > 0.

If we take the regions I =] −∞, 0[ and II =]0,+∞[ then ψI(x) = e−iωx and ψII(x) = eiωx to agree

with the outgoing boundary conditions and the continuity requirement ψI(0) = ψII(0). The condition for

QNMs comes from integrating wave equation (B.1) with potential (B.8) in a vanishing neighbourhood of

x = 0,

ψ′II(0)− ψ′I(0)− V0ψ(0) = 0 (B.9)

which yields the single mode

ω = −iV0

2
, (B.10)

a purely imaginary QNM.

B.2.2 Delta & mirror

Here we use the same potential but supplied with a Dirichlet boundary condition at x = −L (corre-

sponding to a perfect mirror). The regions of interest are I =] − L, 0[ and II =]0,+∞[ with ψI(x) =

e−iωx +Aeiωx and ψII(x) = Beiωx, the latter already takes into account the outgoing BC at infinity.

Continuity at x = 0 yields B = 1 +A. The mirror condition ψI(−L) = 0 implies A = −eiω2L so that

ψI(x) = e−iωx − eiω(x+2L) , (B.11)

the first term in the rhs is travelling in the direction of the mirror where the second is the reflected wave,

notice the − sign (the reflectivity of a mirror) and how the incident wave is delayed by 2L from the

reflected one, this is the rough distance observed between echoes in a scattering experiment.

Condition (B.9) now yields

eiω2L(−1)Rδ(ω) = 1 (B.12)

with

Rδ(ω) =
V0

2iω − V0
(B.13)

the reflectivity of a single Dirac delta potential, which diverges at the QNM (B.10).

If a plane wave is inserted between the mirror and the delta after a round trip it’ll pick up a phase

of eiω2L, a factor of −1 = eiπ due to reflection at the mirror and an additional factor of Rδ(ω) due to
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partial reflection at the delta. The total factor is exactly the lhs of Eq. (B.12), which implicitly yields the

QNMs by equating it to unity. It should also be noted that in the limit V0 →∞ the delta acts like a perfect

mirror, since Rδ(ω)→ −1, thus turning Eq. (B.12) into eiω2L = 1, the well-known relation for the normal

modes of a string of length L.

Unfortunately, Eq. (B.12) is a trascendental equation and thus cannot be solved explicitly. Neverthe-

less, it can be solved iteratively through the following procedure. If ω = ωR + iωI then Eq. (B.12) can be

written in system form,

ωR2L+ π + argRδ(ω) = 2nπ (B.14)

− ωI2L+ log |Rδ(ω)| = 0, (B.15)

which can be solved in a convergent procedure by first computing Rδ for ω(i) and using the above system

to get ω(i+1):

ω(i+1) =
nπ

L
+

1

2L
arg
(

1− i
2ω(i)

V0

)
− i

2L
log
∣∣∣1− i2ω(i)

V0

∣∣∣ . (B.16)

Taking the ansatz ω(0) = 0 we get at first order ω(1) = nπ
L , the string normal modes. Quasinormal

behaviour is only obtained at second order, where

ω(2) =
nπ

L
− 1

2L
arctan

2nπ

LV0
− i

4L
log
(

1 +
4n2π2

L2V 2
0

)
, (B.17)

which, in the limit n� 1, simplfies to

ω(2) ≈
nπ

L
− i

2L
log

2nπ

LV0
, (B.18)

whereas in the opposite limit (LV0 � 1) it reduces to

ω(2) ≈
nπ

L

(
1− 1

LV0

)
− i n

2π2

L3V 2
0

. (B.19)

Notice how the potential strength V0 has little influence on the real part but a considerable one on

the imaginary part. It is expected that for larger L or V0, the waves trapped inside region I last longer,

corresponding to a smaller |ωI |, in agreement with all the above expressions for ω(2).

B.2.3 Two deltas

Another way to construct a lossy cavity is with two deltas separated by a distance L,

V (x) = V0

(
δ(x) + δ(x+ L)

)
. (B.20)

It is straightforward to show that the condition for QNMs is given by

eiω2LR2
δ(ω) = 1. (B.21)
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Notice the similarities with Eq. (B.12) where the reflectivity of the mirror (−1) gets replaced by the

reflectivityRδ of the additional delta. Following the previous subsection we can solve the above iteratively

through the prescription

ω(i+1) =
nπ

L
+

1

L
arg
(

1− i
2ω(i)

V0

)
− i

L
log
∣∣∣1− i2ω(i)

V0

∣∣∣ (B.22)

which, using the ansatz ω(0) = 0, yields again ω(1) = nπ
L and

ω(2) =
nπ

L
− 1

L
arctan

2nπ

LV0
− i

2L
log
(

1 +
4n2π2

L2V 2
0

)
. (B.23)

Note the similarities with Eq. (B.17). More specifically the relation

=[ω(2)] (two deltas) = 2=[ω(2)] (delta & mirror), (B.24)

which confirms the interpretation given in the last paragraphs of Section B.1.

For completeness, we present the limiting cases n� 1 and LV0 � 1 which are respectively given by

ω(2) ≈
nπ

L
− i

L
log

2nπ

LV0
, (B.25)

and

ω(2) ≈
nπ

L

(
1− 2

LV0

)
− i2n

2π2

L3V 2
0

. (B.26)

B.3 Rectangular barrier spectrum

Here we will ompute the QNMs of a single rectangular barrier potential, and of a lossy cavity composed

by a barrier and a perfect mirror.

B.3.1 Single barrier

The barrier potential is taken as

V (x) =

0 if x ∈]−∞, 0[∪ ]a,∞[

V0 if x ∈ [0, a]

. (B.27)

If we call the regions I =]−∞, 0[, II = [0, a] and III =]a,∞[, Eq. (B.1) is trivially solved for all regions

by imposing smoothness of ψ at x = 0 and x = a. From the outgoing BC we have that ψIII(x) = eiωx. In

region II we obtain ψII(x) = AeiΩx + Be−iΩx (with Ω =
√
w2 − V0), which by requiring smoothness at

x = a leads to

A =
1

2
eia(ω−Ω)

(
1 +

ω

Ω

)
, B =

1

2
eia(ω+Ω)

(
1− ω

Ω

)
(B.28)

In region I, from the outgoing BC, we simply have ψI(x) = e−iωx. Now finally, requiring smoothness
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at x = 0 yields the condition for the QNMs:

e2iΩa =
(Ω + ω)2

(Ω− ω)2
, (B.29)

which can be written as

e2iΩaR2
s(ω) = 1 (B.30)

with

Rs(ω) =
(Ω− ω)

(Ω + ω)
(B.31)

the reflectivity of the Heaviside step function potential Vs(x; 0) = V0 Θ(x).

The square barrier potential is the intersection of two step functions, V (x) = Vs(x; 0)Vs(−x; a). If we

take ω to be purely real, a wave that makes a round trip in the barrier picks up the factor in the lhs of Eq.

(B.30): it is partially reflected (being attenuated by Rs) at each end of the barrier and obtains a phase

corresponding to the distance travelled (twice the barrier length a), eiΩ2a.

Now, as we did before for the delta potential, we can solve Eq. (B.30) iteratively through

Ω(i+1) =
√
ω2

(i+1) − V0 =
nπ

a
− 1

a
argRs(ω(i)) + i

1

a
log |Rs(ω(i))|. (B.32)

If we now take the ansatz Ω(0) = 0 meaning ω(0) = ±
√
V0 then Rs(ω(0)) = −1 (i.e. purely reflective

wall) and the above gives ω(1) = ±
√(

nπ
a

)2
+ V0, the normal modes of a length a string at a ”height” V0.

So at second order we get

Ω(2) =
nπ

a
− i

a
log

√(
nπ
a

)2
+ V0 +

∣∣nπ
a

∣∣√(
nπ
a

)2
+ V0 −

∣∣nπ
a

∣∣ , (B.33)

or, equivalently

ω(2) =
√
A− iB = ±

√√
A2 +B2 +A

2
− i

√√
A2 +B2 −A

2
(B.34)

with

A =
(nπ
a

)2

+ V0 −
1

a2
log2

√(
nπ
a

)2
+ V0 +

∣∣nπ
a

∣∣√(
nπ
a

)2
+ V0 −

∣∣nπ
a

∣∣ (B.35)

B =
2

a

∣∣∣nπ
a

∣∣∣ log

√(
nπ
a

)2
+ V0 +

∣∣nπ
a

∣∣√(
nπ
a

)2
+ V0 −

∣∣nπ
a

∣∣ . (B.36)

Furthermore, under the assumption of A � B (not valid for the first few modes) Eq. (B.34) reduces

to

ω(2) ≈ ±
√(nπ

a

)2

+ V0 −
i

a

∣∣∣nπa ∣∣∣√(
nπ
a

)2
+ V0

log

√(
nπ
a

)2
+ V0 +

∣∣nπ
a

∣∣√(
nπ
a

)2
+ V0 −

∣∣nπ
a

∣∣ , (B.37)
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which, for n� 1, further simplifies to

ω(2) ≈
nπ

a
− i

a
log

4n2π2

V0a2
. (B.38)

Fig. B.1 is a plot of the quasinormal frequencies ω, by numerically solving Eq. (B.30), for different

values of V0a
2. The logarithmic dependence of ωI both on Ṽ0 and n in Eq. (B.38) is evident below.
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Figure B.1: QNM frequencies for the free case for different values of V0a
2 = 1, 2, 4, 8, 16 from top (black)

to bottom (orange), respectively.

B.3.2 Barrier & mirror

When additional structure is included in region I the solution has to have the form ψI(x) = e−iωx+Ceiωx.

Requiring ψI(−L) = 0 (perfect mirror) yields C = −e2iωL. Then, imposing smoothness at x = 0, yields

the QNM relation

e2iΩa =
(Ω + ω)2 + V0 e

iω2L

(Ω− ω)2 + V0 eiω2L
, (B.39)

which allows direct comparison with Eq. (B.29). However, this is not the most suitable form to

iteratively compute the mirror QNMs since it gives special attention to a whereas we have a new, more

relevant length scale in the problem: L. With this in mind we can rearrange Eq. (B.39) into

e2iωL(−1)Rb(ω) = 1 (B.40)

where

Rb(ω) =
(ω2 − Ω2) sin Ωa

(ω2 + Ω2) sin Ωa+ 2iΩω cos Ωa
(B.41)

is the reflectivity of the square barrier potential V (x) and (−1) is nothing but the reflectivity of the mirror
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(which must be unitary since it is perfectly reflecting). The factor eiω2L accounts for the phase attained

in a round trip between the mirror and the barrier.

Eq. (B.40) is in the same form of Eq. (B.30) and the physical interpretation is the same: a lossy

optical resonator. Despite this, they are algebraically completely distinct due to the different expressions

of Rs(ω) and Rb(ω) and hence we should expect both sets of QNMs also to differ considerably, even

though physically both systems are just distinguished by some mirror placed at a distance L from the

barrier.

The modes can be obtained through the iterative prescription:

ω(i+1) =
nπ

L
− 1

2L
arg
(
−Rb(ω(i))

)
+ i

1

2L
log |Rb(ω(i))|, (B.42)

which, with the ansatz ω(0) = 0, leads to

ω(2) =
nπ

L
− 1

2L

(
π + α(n)− arctan

(
2Ω(1)ω(1)

Ω2
(1) + ω2

(1)

cot Ω(1)a

))
− i

4L
log

(
1 +

4ω2
(1)Ω

2
(1)

V 2
0 sin2 Ω(1)a

)
, (B.43)

that for n� 1 can be drastically simplified to

ω(2) ≈
nπ

L
− i

2L
log

(
2n2π2

V0L2| sin(nπa/L)|

)
(B.44)

Note the similarities with Eq. (B.38). Both have the same structure apart for an exchange a↔ L and the

sin(nπa/L) factor encorporating the spatial extent of the barrier into the mirror case QNMs.

The difference is that, for large V0, we intuitively expect the first few modes to be very long lived due

to having a ”frequency” lower than the barrier height. However, this is not apparent in Eq. (B.44). In this

limit Ω(1) ≈ i
√
V0. If we also use sin ix = i sinhx and log(1 + x) ≈ x for small x then Eq. (B.43) reduces

to

ω(2) ≈
nπ

L

(
1− 1√

V0L

)
− i4n

2π2

V0L3
e−2
√
V0a (B.45)

corresponding to the modes sitting on the real axis in figures B.3 and B.4. The transition from this

”normal” behaviour to the usual QNM behaviour occurs when Ω(1) goes from imaginary to real, which

happens at

n ∼ n̄ =

√
V0L

π
(B.46)

and becomes naturally more evident for large V0, when the cavity supports more long-lived modes.

Since we have 2 parameters (V0a
2, L/a) we have to make a variety of plots to see the behavior of the

modes. Numerical solution of (B.40) for different heights of the barrier yields Fig. B.2. We see that the

general effect of having a reflecting wall at one side of the barrier is to lower |=ω| (compare with Fig.

B.1).
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Figure B.2: QNM frequencies for the mirror case with L = a for different values of V0a
2 = 1, 2, 4, 8, 16

from top (black) to bottom (orange), respectively.

To see the QNMs for different cavity sizes we point out to Fig. B.3, which is in terms of L/a. Note the

’phase transition’ between the contained ’normal’ modes sitting on the real lines and the usual dissipative

QNMs which can be seen more clearly in Fig. B.4.
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Figure B.3: QNM frequencies for the mirror case with V0a
2 = 64 for different values of L/a = 1, 2, 3, 4, 5

from top (black) to bottom (orange), respectively.
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Figure B.4: Quasinormal transition for V0a
2 = 64 and L = 2a. The transition occurs for the mode

n̄ ≈ 12.7324 with <ωn̄a ≈
√
V0a2 = 8.
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