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Abstract
Quasinormal modes are eigenmodes of dissipative systems. Perturbations of
classical gravitational backgrounds involving black holes or branes naturally
lead to quasinormal modes. The analysis and classification of the quasinormal
spectra require solving non-Hermitian eigenvalue problems for the associated
linear differential equations. Within the recently developed gauge-gravity
duality, these modes serve as an important tool for determining the near-
equilibrium properties of strongly coupled quantum field theories, in particular
their transport coefficients, such as viscosity, conductivity and diffusion
constants. In astrophysics, the detection of quasinormal modes in gravitational
wave experiments would allow precise measurements of the mass and spin of
black holes as well as new tests of general relativity. This review is meant as
an introduction to the subject, with a focus on the recent developments in the
field.
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1. Introduction

“The mathematical perfectness of the black holes of Nature is [ . . . ] revealed at every level
by some strangeness in the proportion in conformity of the parts to one another and to the
whole” [22].

Characteristic modes of vibration are persistent in everything around us. They make up
the familiar sound of various musical instruments but they are also an important research topic
in such diverse areas as seismology, asteroseismology, molecular structure and spectroscopy,
atmospheric science and civil engineering. All of these disciplines are concerned with the
structure and composition of the vibrating object, and with how this information is encoded in
its characteristic vibration modes: to use a famous phrase, the goal of studying characteristic
modes is to ‘hear the shape of a drum’ [1]. This is a review on the characteristic oscillations of
black holes (BHs) and black branes (BHs with plane-symmetric horizon), called quasinormal
modes (QNMs). We will survey the theory behind them, the information they carry about the
properties of these fascinating objects and their connections with other branches of physics.

Unlike most idealized macroscopic physical systems, perturbed BH spacetimes are
intrinsically dissipative due to the presence of an event horizon. This precludes a standard
normal-mode analysis because the system is not time symmetric and the associated boundary
value problem is non-Hermitian. In general, QNMs have complex frequencies, the imaginary
part being associated with the decay timescale of the perturbation. The corresponding
eigenfunctions are usually not normalizable and, in general, they do not form a complete
set (see [2, 3] for more extensive discussions). Almost any real-world physical system is
dissipative, so one might reasonably expect QNMs to be ubiquitous in physics. QNMs are
indeed useful in the treatment of many dissipative systems, e.g. in the context of atmospheric
science and leaky resonant cavities.

Two excellent reviews on BH QNMs [4, 5] were written in 1999. However, much has
happened in the last decade that is not covered by these reviews. The recent developments have
brought BH oscillations under the spotlight again. We refer, in particular, to the role of QNMs
in gravitational wave astronomy and their applications in the gauge-gravity duality. This work
will focus on a critical review of the new developments, providing our own perspective on the
most important and active lines of research in the field.

After a general introduction to QNMs in the framework of BH perturbation theory, we will
describe methods to obtain QNMs numerically as well as some important analytic solutions
for special spacetimes. Then we will review the QNM spectrum of BHs in asymptotically
flat spacetimes, asymptotically (anti-)de Sitter (henceforth AdS or dS) spacetimes and other
spacetimes of interest. After this general overview, we will discuss what we regard as the most
active areas in QNM research. Schematically, we will group recent developments in QNM
research into three main branches:

(i) AdS/conformal field theory and holography. In 1997–1998, a powerful new technique
known as the AdS/conformal field theory (CFT) correspondence or, more generally,
the gauge-string duality was discovered and rapidly developed [6]. The new method
(often referred to as holographic correspondence) provides an effective description of a
non-perturbative, strongly coupled regime of certain gauge theories in terms of higher
dimensional classical gravity. In particular, equilibrium and non-equilibrium properties of
strongly coupled thermal gauge theories are related to the physics of higher dimensional
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BHs and black branes and their fluctuations. Quasinormal spectra of the dual gravitational
backgrounds give the location (in momentum space) of the poles of the retarded correlators
in the gauge theory, supplying important information about the theory’s quasiparticle
spectra and transport (kinetic) coefficients. Studies of QNMs in the holographic context
became a standard tool in considering the near-equilibrium behavior of gauge theory
plasmas with a dual gravity description. Among other things, they revealed the existence
of a universality of the particular gravitational frequency of generic black branes (related
on the gauge theory side to the universality of viscosity–entropy ratio in the regime of
infinitely strong coupling), as well as intriguing connections between the dynamics of BH
horizons and hydrodynamics [7]. The duality also offers a new perspective on notoriously
difficult problems, such as the BH information loss paradox, the nature of BH singularities
and quantum gravity. Holographic approaches to these problems often involve QNMs.
This active area of research is reviewed in section 8.

(ii) QNMs of astrophysical black holes and gravitational wave astronomy. The beginning of
LIGO’s first science run (S1) in 2002 and the achievement of design sensitivity in 2005
marked the beginning of an era in science where BHs and other compact objects should
play a prominent observational role. While electromagnetic observations are already
providing us with strong evidence of the astrophysical reality of BHs [8], gravitational
wave observations will incontrovertibly show if these compact objects are indeed rotating
(Kerr) BHs, as predicted by Einstein’s theory of gravity. BH QNMs can be used to infer
their mass and angular momentum [9] and to test the no-hair theorem of general relativity
[10, 11]. Dedicated ringdown searches in interferometric gravitational wave detector
data are ongoing [12, 13]. The progress on the experimental side was accompanied by
a breakthrough in the numerical simulation of gravitational wave sources. Long-term
stable numerical evolutions of BH binaries have been achieved after four decades of
efforts [14–16], confirming that ringdown plays an important role in the dynamics of the
merged system. These developments are reviewed in section 9.

(iii) Other developments. In 1998, Hod suggested that highly damped QNMs could bridge
the gap between classical and quantum gravity [17]. The following years witnessed a
rush to compute and understand this family of highly damped modes. The interest in
this subject has by now faded substantially but, at the very least, Hod’s proposal has
contributed to a deeper analytical and numerical understanding of QNM frequencies in
many different spacetimes, and it has highlighted certain general properties characterizing
some classes of BH solutions. These ideas and other recent developments (including a
proposed connection between QNMs and BH phase transitions, the QNMs of analogue
BHs, the stability of naked singularities and its relation with the so-called algebraically
special modes) are reviewed in section 10.

The present work is mostly intended to make the reader familiar with the new developments
by summarizing the vast (and sometimes confusing) bibliography on the subject. We tried to
keep the review as self-contained as possible, while avoiding to duplicate (as far as possible
to preserve logical consistency) material that is treated more extensively in other reviews
on the topic, such as [2, 4, 5, 18]. A detailed understanding of BH QNMs and their
applications requires some specialized technical background. QNM research has recently
expanded to encompass a very wide range of topics: a partial list includes analogue gravity,
alternative theories of gravity, higher dimensional spacetimes, applications to numerical
relativity simulations, explorations of the gauge-gravity duality, the stability analysis of naked
singularities and ringdown searches in LIGO. Because of space limitations we cannot discuss
all of this material in detail, and we refer the reader to other reviews. Topics that are treated
in more detail elsewhere include (1) a general overview of gravitational radiation [19, 20]
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and its multipolar decomposition [21], (2) BH perturbation theory [22–27], (3) the issue of
quantifying QNM excitation in different physical scenarios (see e.g. [28] for an introduction
pre-dating the numerical relativity breakthroughs of 2005 and [29] for a more updated overview
of the field), (4) tests of general relativity and of the no-hair theorem that either do not make
use of ringdown [30] or do not resort to gravitational wave observations at all [31–33], (5)
BH solutions in higher dimensions [34] and (6) many aspects of the gauge-gravity duality
[7, 35–38]. The reviews listed above provide more in-depth looks at different aspects of QNM
research, but we tried to provide concise introductions to all of these topics while (hopefully)
keeping the presentation clear and accessible.

Chandrasekhar’s fascination with the mathematics of BHs was due to their simplicity. BHs
in four-dimensional, asymptotically flat spacetime must belong to the Kerr–Newman family,
which is fully specified by only three parameters: mass, charge and angular momentum (see
e.g. [39] or Carter’s contribution to [40]). One expresses this by saying that BHs have no
hair (or more precisely, that they have three hairs). A consequence of the no-hair theorem is
that all perturbations in the vicinities of a BH must decay to one and the same final state, i.e.
that all hairs (except three) must be lost. Perturbative and numerical calculations show that
the hair loss proceeds, dynamically, via quasinormal ringing. The gravitational wave signal
from a perturbed BH can in general be divided into three parts: (i) a prompt response at early
times, which depends strongly on the initial conditions and is the counterpart to light-cone
propagation; (ii) an exponentially decaying ‘ringdown’ phase at intermediate times, where
QNMs dominate the signal, which depends entirely on the final BH’s parameters and (iii)
a late-time tail, usually a power-law falloff of the field [41]. Mathematically, each of these
stages arises from different contributions to the relevant Green’s function (see section 3.2).
QNM frequencies depend only on the BH’s parameters, while their amplitudes depend on the
source exciting the oscillations.

Numerical and analytical analyses of processes involving BHs confirm these expectations.
QNMs were observed for the first time in numerical simulations of the scattering of Gaussian
wavepackets by Schwarzschild BHs in 1970, soon after the BH concept itself was introduced
and popularized by John Wheeler. Vishveshwara [42] noted that the waveform at late times
consists of a damped sinusoid, with ringing frequency almost independent of the Gaussian’s
parameters. Ringdown was again observed in the linearized approximation to the problem
of a test mass falling from infinity into a Schwarzschild BH [43]. By now, decades of
experience have shown that any event involving BH dynamics is likely to end in this same
characteristic way: the gravitational wave amplitude will die off as a superposition of damped
sinusoids.

Figure 1 shows four different processes involving BH dynamics. In all of them,
quasinormal ringing is clearly visible. The upper-left panel (adapted from [44]) is the signal
from two equal-mass BHs initially on quasi-circular orbits, inspiraling toward each other due
to the energy loss induced by gravitational wave emission, merging and forming a single final
BH [14]. The upper-right panel of figure 1 shows gravitational waveforms from numerical
simulations of two equal-mass BHs, colliding head-on with v/c = 0.94 in the center-of-mass
frame: as the center-of-mass energy grows (i.e. as the speed of the colliding BHs tends to
the speed of light), the waveform is more and more strongly ringdown-dominated [45]. The
bottom-left panel shows the gravitational waveform (or more precisely, the dominant, l = 2
multipole of the Zerilli function) produced by a test particle of mass μ falling from rest into
a Schwarzschild BH [43]: the shape of the initial precursor depends on the details of the
infall, but the subsequent burst of radiation and the final ringdown are universal features. The
bottom-right panel (reproduced from [46]) shows the waves emitted by two massive neutron
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Figure 1. Four different physical processes leading to substantial quasinormal ringing (see text
for details). With the exception of the infalling-particle case (where M is the BH mass, μ is the
particle’s mass and ψ2 is the Zerilli wavefunction), �22 is the l = m = 2 multipolar component
of the Weyl scalar ψ4,M denotes the total mass of the system and r the extraction radius (see e.g.
[44]).

stars (NSs) with a polytropic equation of state, inspiraling and eventually collapsing to form a
single BH.

QNM frequencies for gravitational perturbations of Schwarzschild and Kerr BHs have
been computed by many authors. Rather than listing numerical tables of well-known results,
we have set up a web page providing tabulated values of the frequencies and fitting coefficients
for the QNMs that are most relevant in gravitational wave astronomy [47]. On this web page,
we also provide Mathematica notebooks to compute QNMs of Kerr and asymptotically AdS
BHs [47].

1.1. Milestones

QNM research has a 50 year long history. We find it helpful to provide the reader with
a ‘roadmap’ in the form of a chronological list of papers that, in our opinion, have been
instrumental in shaping the evolution of the field. Our summary is necessarily biased and
incomplete, and we apologize in advance for the inevitable omissions. A more complete set
of references can be found in the rest of this review.

• 1957—Regge and Wheeler [48] analyze a special class of gravitational perturbations of
the Schwarzschild geometry. This effectively marks the birth of BH perturbation theory,
a decade before the birth of the BH concept itself. The ‘one-way membrane’ nature of
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the horizon is not yet fully understood and the boundary conditions of the problem are
not under control.

• 1961—Newman and Penrose [49] develop a formalism to study gravitational radiation
using spin coefficients.

• 1963—Kerr [50] discovers the mathematical solution of Einstein’s field equations
describing rotating BHs. In the same year, Schmidt identifies the first quasar (‘quasi-
stellar radio source’). Quasars (compact objects with luminosity ∼1012 that of our sun,
located at cosmological distance [51]) are now believed to be supermassive BHs (SMBHs),
described by the Kerr solution.

• 1964—the UHURU orbiting x-ray observatory makes the first surveys of the x-ray sky
discovering over 300 x-ray ‘stars’, most of which turn out to be due to matter accreting
onto compact objects. One of these x-ray sources, Cygnus X-1, is soon accepted as the
first plausible stellar-mass BH candidate (see e.g. [52]).

• 1967—Wheeler [53, 54] coins the term ‘black hole’ (see the April 2009 issue of Physics
Today and [55] for a fascinating, first-person historical account).

• 1970—Zerilli [56, 57] extends the Regge–Wheeler analysis to general perturbations of a
Schwarzschild BH. He shows that the perturbation equations can be reduced to a pair of
Schrödinger-like equations, and applies the formalism to study the gravitational radiation
emitted by infalling test particles.

• 1970—Vishveshwara [42] studies numerically the scattering of gravitational waves by a
Schwarzschild BH: at late times, the waveform consists of damped sinusoids (now called
‘ringdown waves’).

• 1971—Press [58] identifies ringdown waves as the free oscillation modes of the BH.
• 1971—Davis et al [43] carry out the first quantitative calculation of gravitational radiation

emission within BH perturbation theory, considering a particle falling radially into a
Schwarzschild BH. Quasinormal ringing is excited when the particle crosses the maximum
of the potential barrier of the Zerilli equation, which is located at r � 3M (i.e. close to
the unstable circular orbit corresponding to the ‘light ring’).

• 1972—Goebel [59] points out that the characteristic modes of BHs are essentially
gravitational waves in spiral orbits close to the light ring.

• 1973—Teukolsky [60] decouples and separates the equations for perturbations in the Kerr
geometry using the Newman–Penrose formalism [49].

• 1974—Moncrief [61] introduces a gauge-invariant perturbation formalism.
• 1975—Chandrasekhar and Detweiler [62] compute numerically some weakly damped

characteristic frequencies. They prove that the Regge–Wheeler and Zerilli potentials
have the same spectra.

• 1978—Cunningham et al [63–65] study radiation from relativistic stars collapsing to BHs
using perturbative methods. QNM ringing is excited.

• 1979—Gerlach and Sengupta [66, 67] give a comprehensive and elegant mathematical
foundation for gauge-invariant perturbation theory.

• 1983—Chandrasekhar’s monograph [22] summarizes the state of the art in BH
perturbation theory, elucidating connections between different formalisms.

• 1983—York [68] attempts to relate the QNM spectrum to Hawking radiation. To our
knowledge, this is the first attempt to connect the (purely classical) QNMs with quantum
gravity.

• 1983—Mashhoon [69] suggests to use WKB techniques to compute QNMs. Ferrari and
Mashhoon [70] analytically compute QNMs using their connection with bound states of
the inverted BH effective potentials.
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• 1985—Stark and Piran [71] extract gravitational waves from a simulation of rotating
collapse to a BH in numerical relativity. QNM excitation is observed, as confirmed by
more recent work [72].

• 1985—confirming the validity of Goebel’s arguments [59], Mashhoon [73] regards QNMs
as waves orbiting around the unstable photon orbit and slowly leaking out, and estimates
analytically some QNM frequencies in Kerr–Newman backgrounds.

• 1985—Schutz and Will [74] develop a WKB approach to compute BH QNMs.
• 1985—Leaver [75–77] provides the most accurate method to date to compute BH QNMs

using continued fraction representations of the relevant wavefunctions, and discusses their
excitation using Green’s function techniques.

• 1986—McClintock and Remillard [78] show that the x-ray nova A0620-00 contains
a compact object of mass almost certainly larger than 3M�, paving the way for the
identification of many more stellar-mass BH candidates.

• 1989—Echeverria [9] estimates the accuracy with which one can estimate the mass and
angular momentum of a BH from QNM observations. The formalism is later improved
by Finn [79] and substantially refined in [10], where ringdown-based tests of the no-hair
theorem of general relativity are shown to be possible. An appendix of [10] provides
QNM tables to be used in data analysis and in the interpretation of numerical simulations;
these data are now available online [47].

• 1992—Nollert and Schmidt [80] use Laplace transforms to compute QNMs. Fröman
et al [81] first introduce phase-integral techniques in the context of BH physics.

• 1993—Anninos et al [82] first succeed in simulating the head-on collision of two BHs
and observe QNM ringing of the final BH.

• 1993—Bachelot and Motet-Bachelot [83] show that a potential with compact support
does not cause power-law tails in the evolution of Cauchy data. Subsequently, Ching
et al [41, 84] generalize this result to potentials falling off faster than exponentially.

• 1996—Gleiser et al [85] extend the perturbative formalism to second order and use it to
estimate radiation from colliding BHs employing the so-called close limit approximation,
quantifying the limits of validity of linear perturbation theory [86].

• 1997—Maldacena [6] formulates the AdS/CFT duality conjecture. Shortly afterward,
the papers by Gubser et al [87] and Witten [88] establish a concrete quantitative recipe
for the duality. The AdS/CFT era begins.

• 1998—the AdS/CFT correspondence is generalized to non-conformal theories in a variety
of approaches (see [35] for a review). The terms ‘gauge-string duality’, ‘gauge-gravity
duality’ and ‘holography’ appear, referring to these generalized settings.

• 1998—Flanagan and Hughes [89] show that, under reasonable assumptions and depending
on the mass range, the signal-to-noise ratio for ringdown waves is potentially larger than
the signal-to-noise ratio for inspiral waves in both Earth-based detectors (such as LIGO)
and planned space-based detectors (such as LISA).

• 1998—Hod [17] uses earlier numerical results by Nollert [90] to conjecture that the real
part of highly damped QNMs is equal to T ln 3 (T being the Hawking temperature), a
conjecture later proven by Motl [91] using the continued fraction method. Hod also
proposes a connection between QNMs and Bekenstein’s ideas on BH area quantization.

• 1999—Creighton [12] describes a search technique for ringdown waveforms in LIGO.
• 1999—two reviews on QNMs appear: Quasinormal modes of stars and black holes by

Kokkotas and Schmidt [4] and Nollert’s Quasinormal modes: the characteristic ‘sound’
of black holes and neutron stars [5].

• 1999—Horowitz and Hubeny [92] compute QNMs of BHs in AdS backgrounds of various
dimensions and relate them to relaxation times in the dual CFTs.
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• 2000—Shibata and Uryu [93] perform the first general-relativistic simulation of the merger
of two neutron stars. More recent simulations confirm that ringdown is excited when the
merger leads to BH formation [46].

• 2001—Birmingham et al [94] point out that QNM frequencies of the (2 + 1)-dimensional
Bañados–Teitelboim–Zanelli (BTZ) BH [95] coincide with the poles of the retarded
correlation function in the dual (1 + 1)-dimensional CFT.

• 2002—Baker et al [96] complete the ‘Lazarus’ program to ‘resurrect’ early, unstable
numerical simulations of BH binaries and extend them beyond merger using BH
perturbation theory.

• 2002—Dreyer [97] proposes to resolve an ambiguity in loop quantum gravity using the
highly damped QNMs studied by Hod [17].

• 2002—Son and Starinets [98] formulate a recipe for computing real-time correlation
functions in the gauge-gravity duality. They use the recipe to prove that, in the gauge-
gravity duality, QNM spectra correspond to poles of the retarded correlation functions.

• 2002—QNMs of black branes are computed [99]. The lowest QNM frequencies of
black branes in the appropriate conserved charge channels are naturally interpreted as
hydrodynamic modes of the dual theory [100].

• 2003—Motl and Neitzke [101] use a monodromy technique (similar to the phase integral
approaches of [81]) to compute analytically highly damped BH QNMs.

• 2003—in a series of papers [102–104], Kodama and Ishibashi extend the Regge–Wheeler–
Zerilli formalism to higher dimensions.

• 2003—in one of the rare works on probing quantum aspects of gravity with gauge theory in
the context of the gauge-gravity duality (usually, the correspondence is used the other way
around), Fidkowski et al [105] study singularities of BHs by investigating the spacelike
geodesics that join the boundaries of the Penrose diagram. The complexified geodesics’
properties yield the large-mass QNM frequencies previously found for these BHs. This
work is further advanced in [106] and subsequent publications.

• 2004—following Motl and Neitzke [101], Natário and Schiappa analytically compute and
classify asymptotic QNM frequencies for d-dimensional BHs [107].

• 2005—the LIGO detector reaches design sensitivity [108].
• 2005—Pretorius [14] achieves the first long-term stable numerical evolution of a BH

binary. Soon afterward, other groups independently succeed in evolving merging BH
binaries using different techniques [15, 16]. The waveforms indicate that ringdown
contributes a substantial amount to the radiated energy.

• 2005—Kovtun and Starinets [109] extend the QNM technique in the gauge-gravity duality
to vector and gravitational perturbations using gauge-invariant variables for black brane
fluctuations. A classification of the fluctuations corresponding to poles of the stress–
energy tensor and current correlators in a dual theory in arbitrary dimension is given.
These methods and their subsequent development and application in [110–113] become
a standard approach in computing transport properties of strongly coupled theories from
dual gravity.

• 2006–2008—an analytic computation of the lowest QNM frequency in the shear mode
gravitational channel of a generic black brane [114] reveals universality, related to the
universality of the shear viscosity to entropy density ratio in dual gauge theories. This and
further developments [115, 116] also point to a significance of the QNM spectrum in the
context of the BH membrane paradigm (for a recent review of the membrane paradigm
approach, see [117]).

• 2008–2009—QNM spectra are computed in applications of the gauge-gravity duality to
condensed matter theory [37, 38].
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1.2. Notation and conventions

Unless otherwise and explicitly stated, we use geometrized units where G = c = 1, so that
energy and time have units of length. We also adopt the (− + + +) convention for the metric.
For reference, the following is a list of symbols that are used often throughout the text.

d Total number of spacetime dimensions (we always consider one timelike
and d − 1 spatial dimensions).

L Curvature radius of (A)dS spacetime, related to the negative
cosmological constant � in the Einstein equations (Gμν + �gμν = 0)
through L2 = ∓(d − 2)(d − 1)/(2�). The − sign is for AdS and + for dS.

M Mass of the BH spacetime.
a Kerr rotation parameter: a = J/M ∈ [0,M].
r+ Radius of the BH’s event horizon in the chosen coordinates.
ω Fourier transform variable. The time dependence of any field is ∼e−iωt .

For stable spacetimes, Im(ω) < 0. Also useful is w ≡ ω/2πT .
ωR, ωI Real and imaginary parts of the QNM frequencies.
s Spin of the field.
l Integer angular number, related to the eigenvalue Alm = l(l + d − 3)

of scalar spherical harmonics in d dimensions.
n Overtone number, an integer labeling the QNMs by increasing |Im(ω)|.

We conventionally start counting from a ‘fundamental mode’ with n = 0.

2. A black hole perturbation theory primer

Within general relativity (and various extensions thereof involving higher derivative gravity),
QNMs naturally appear in the analysis of linear perturbations of fixed gravitational
backgrounds. The perturbations obey linear second-order differential equations, whose
symmetry properties are dictated by the symmetries of the background. In most cases, these
symmetries allow one to separate variables with an appropriate choice of coordinates reducing
the system to a set of linear ordinary differential equations (ODEs) or a single ODE. The
ODEs are supplemented by boundary conditions, usually imposed at the BH’s horizon and at
spatial infinity. QNMs are the eigenmodes of this system of equations. The precise choice of
the boundary conditions is physically motivated, but it is clear that the presence of the horizon,
acting for classical fields as a one-sided membrane, is of crucial importance: it makes the
boundary value problem non-Hermitian and the associated eigenvalues complex. The methods
used to reduce the problem to a single ODE depend on the metric under consideration; some
of them are discussed and compared in Chandrasekhar’s book [22]. Given the progress
in the field in recent years and the vast literature on the subject, we will not attempt to
describe these techniques in detail. As a simple example illustrating the main extensions
of the formalism described in [22], we discuss field perturbations in d-dimensional, non-
rotating geometries. For the interested reader, sections 5, 6 and 7 provides references on other
background geometries.

2.1. Perturbations of the Schwarzschild–anti-de Sitter geometry

Consider the Einstein–Hilbert gravitational action for a d-dimensional spacetime with
cosmological constant �:

10
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S = 1

16πG

∫
ddx

√−g(R − 2�) +
∫

ddx
√−gLm, (1)

where Lm is the Lagrangian representing a generic contribution of the ‘matter fields’ (scalar,
Maxwell, p-form, Dirac and so on) coupled to gravity. The specific form of Lm depends on
the particular theory. The Einstein equations read as

Gμν + �gμν = 8πGTμν, (2)

whereTμν is the stress–energy tensor associated withLm. Equation (2) should be supplemented
by the equations of motion for the matter fields. Together with equation (2), they form a
complicated system of nonlinear partial differential equations describing the evolution of all
fields including the metric. A particular solution of this system forms a set of background
fields gBG

μν ,�
BG, where � is a cumulative notation for all matter fields present. By writing

gμν = gBG
μν + hμν,� = �BG + φ and linearizing the full system of equations with respect to

the perturbations hμν and φ, we obtain a set of linear differential equations satisfied by the
perturbations.

Maximally symmetric vacuum
(
T BG
μν = 0

)
solutions to the field equations are Minkowski,

de Sitter (dS) and anti-de Sitter (AdS) spacetimes, depending on the value of the cosmological
constant (zero, positive or negative, respectively). Generic solutions of equation (2) are
asymptotically flat, dS or AdS. We will be mostly interested in asymptotically flat or
AdS spacetimes. AdS spacetimes of various dimensions arise as a natural ground state of
supergravity theories and as the near-horizon geometry of extremal BHs and p-branes in
string theory, and therefore they play an important role in the AdS/CFT correspondence
[35, 118–121].

BHs in asymptotically AdS spacetimes form a class of solutions interesting from a
theoretical point of view and central for the gauge-gravity duality at finite temperature.
Their relation to dual field theories is discussed in section 8. In addition to the simplest
Schwarzschild–AdS (SAdS) BH, one finds BHs with toroidal, cylindrical or planar topology
[122–127] as well as the Kerr–Newman–AdS family [128]. The standard BH perturbation
theory [22] is easily extended to asymptotically AdS spacetimes [102, 129–131]. For
illustration, we consider the non-rotating, uncharged d-dimensional SAdS (or SAdSd ) BH
with line element

ds2 = −f dt2 + f −1 dr2 + r2 d
2
d−2, (3)

where f (r) = 1 + r2/L2 − rd−3
0

/
rd−3, d
2

d−2 is the metric of the (d − 2)-sphere and
the AdS curvature radius squared L2 is related to the cosmological constant by L2 =
−(d − 2)(d − 1)/2�. The parameter r0 is proportional to the mass M of the spacetime:
M = (d − 2)Ad−2r

d−3
0

/
16π , where Ad−2 = 2π(d−1)/2/�[(d − 1)/2]. The well-known

Schwarzschild geometry corresponds to L → ∞.

Scalar field perturbations. Let us focus, for a start, on scalar perturbations in vacuum. The
action for a complex scalar field with a conformal coupling is given by Sm ≡ ∫

ddx
√−gLm,

where

Lm = −(∂μ�)†∂μ� − d − 2

4(d − 1)
γR�†� − m2�†�. (4)

For γ = 1,m = 0 the action is invariant under the conformal transformations gμν →

2gμν,� → 
1−d/2�, and for γ = 0,m = 0 one recovers the usual minimally coupled
massless scalar. The equations of motion satisfied by the fields gμν and (massless) � are

∇μ∇μ� = d − 2

4(d − 1)
γR�, Gμν + �gμν = 8πGTμν, (5)

11
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where Tμν is quadratic in �. Considering perturbations of the fields, gμν = gBG
μν + hμν and

� = �BG +φ with �BG = 0, we observe that the linearized equations of motion for hμν and φ

decouple, and thus the metric fluctuations hμν can be consistently set to zero. The background
metric satisfies GBG

μν + �gBG
μν = 0. We choose gBG

μν to be the SAdSd metric (3). The scalar
fluctuation satisfies the equation

1√−gBG

∂μ
(√−gBGg

μν
BG ∂νφ

) = d(d − 2)γ

4L2
φ. (6)

The time independence and the spherical symmetry of the metric imply the decomposition

φ(t, r, θ) =
∑
lm

e−iωt �s=0(r)

r(d−2)/2
Ylm(θ), (7)

where Ylm(θ) denotes the d-dimensional scalar spherical harmonics, satisfying �
d−2Ylm =
−l(l + d − 3)Ylm, with �
d−2 the being Laplace–Beltrami operator, and the ‘s = 0’ label
indicates the spin of the field. Here and in the rest of this paper, for notational simplicity,
we usually omit the integral over frequency in the Fourier transform. Substituting the
decomposition into equation (6), we get a radial wave equation for �s=0(r):

f 2 d2�s=0

dr2
+ ff ′ d�s=0

dr
+ (ω2 − Vs=0)�s=0 = 0. (8)

We will shortly see that perturbations with other spins satisfy similar equations. In the
particular case of s = 0, the radial potential Vs is given by

Vs=0 = f

[
l(l + d − 3)

r2
+

d − 2

4

(
(d − 4)f

r2
+

2f ′

r
+

dγ

L2

)]
. (9)

Finally, if we define a ‘tortoise’ coordinate r∗ by the relation dr∗/dr = 1/f , equation (8) can
be written in the form of a Schrödinger equation with the potential Vs :

d2�s

dr2∗
+ (ω2 − Vs)�s = 0. (10)

Note that the tortoise coordinate r∗ → −∞ at the horizon (i.e. as r → r+), but its behavior at
infinity is strongly dependent on the cosmological constant: r∗ → +∞ for asymptotically flat
spacetimes and r∗ → constant for the SAdSd geometry.

Electromagnetic, gravitational and half-integer spin perturbations. Equations for linearized
Maxwell field perturbations in curved spacetimes can be obtained along the lines of the scalar
field example above. To separate the angular dependence, we now need vector spherical
harmonics [5, 132, 133]. In d = 4, electromagnetic perturbations can be completely
characterized by the wave equation (10) with the potential

V d=4
s=1 = f

[
l(l + 1)

r2

]
. (11)

A comprehensive treatment of the four-dimensional case can be found in [132] for the
Schwarzschild spacetime and in [130] for the SAdS geometry. Higher dimensional
perturbations are discussed in [134].

The classification of gravitational perturbations hμν(x) on a fixed background gBG
μν (x) is

more complicated. We focus on the SAdS4 geometry. After a decomposition in tensorial
spherical harmonics, the perturbations fall into two distinct classes: odd (Regge–Wheeler
or vector-type) and even (Zerilli or scalar-type), with parities equal to (−1)l+1 and (−1)l ,

12
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respectively [21, 27, 57, 135]. In the Regge–Wheeler gauge [4, 5, 27, 48, 136], the
perturbations are written as hμν = e−iωt h̃μν , where for odd parity

h̃μν =

⎡
⎢⎢⎣

0 0 0 h0(r)

0 0 0 h1(r)

0 0 0 0
h0(r) h1(r) 0 0

⎤
⎥⎥⎦

(
sin θ

∂

∂θ

)
Yl0(θ), (12)

whereas for even parity

h̃μν =

⎡
⎢⎢⎣
H0(r)f H1(r) 0 0
H1(r) H2(r)/f 0 0

0 0 r2K(r) 0
0 0 0 r2K(r) sin2 θ

⎤
⎥⎥⎦Yl0(θ). (13)

The angular dependence of the perturbations is dictated by the structure of tensorial spherical
harmonics [21, 27, 57, 135]. Inserting this decomposition into Einstein’s equations, one gets
ten coupled second-order differential equations that fully describe the perturbations: three
equations for the odd radial variables and seven for the even variables. The odd perturbations
can be combined in a single Regge–Wheeler or vector-type gravitational variable �−

s=2 and
the even perturbations can likewise be combined in a single Zerilli or scalar-type gravitational
wavefunction �+

s=2. The Regge–Wheeler and Zerilli functions (�−
s=2 and �+

s=2, respectively)
satisfy the Schrödinger-like equation (10) with the potentials

V −
s=2 = f (r)

[
l(l + 1)

r2
− 6M

r3

]
(14)

and

V +
s=2 = 2f (r)

r3

9M3 + 3λ2Mr2 + λ2(1 + λ)r3 + 9M2
(
λr + r3

L2

)
(3M + λr)2

. (15)

The parameters h0 and h1 of the vector-type perturbation are related to �−
s=2 by

�−
s=2 = f (r)

r
h1(r), h0 = i

ω

d

dr∗
(r�−

s=2). (16)

For the scalar-type gravitational perturbation, the functions H1 and K can be expressed through
�+

s=2 via

K = 6M2 + λ(1 + λ)r2 + 3M
(
λr − r3

L2

)
r2(3M + λr)

�+
s=2 +

d�+
s=2

dr∗
, (17)

H1 = iω
(
3M2 + 3λMr − λr2 + 3M r3

L2

)
r(3M + λr)f (r)

�+
s=2 − iωr

f (r)

d�+
s=2

dr∗
, (18)

where λ ≡ (l − 1)(l + 2)/2, and H0 is then obtained from the algebraic relation[
(l − 1)(l + 2) +

6M

r

]
H0 +

[
i
l(l + 1)

ωr2
(M + r3/L2) − 2iωr

]
H1

−
[
(l − 1)(l + 2) + rf ′ − 4ω2r2 + r2f ′2

2f

]
K = 0. (19)

A complete discussion of Regge–Wheeler or vector-type gravitational perturbations of the four-
dimensional Schwarzschild geometry can be found in the original papers by Regge and Wheeler
[48] as well as in [137], where some typos in the original work are corrected. For Zerilli or
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scalar-type gravitational perturbations, the fundamental reference is Zerilli’s work [56, 57];
typos are corrected in appendix A of [138]. An elegant, gauge-invariant decomposition of
gravitational perturbations of the Schwarzschild geometry is described by Moncrief [61] (see
also [66, 67, 139, 140]). These papers are reviewed by Nollert [5] and Nagar and Rezzolla [27].
For an alternative treatment, see Chandrasekhar’s book [22]. Chandrasekhar’s book and papers
[141, 142] use a different notation, exploring mathematical aspects of the relations between
different gravitational perturbations (see appendix A). Extensions to the SAdS4 geometry can
be found in [130], while the general d-dimensional case has been explored in a series of papers
by Kodama and Ishibashi [102–104].

The case of Dirac fields seems to have been discussed first by Brill and Wheeler [143],
with important extensions of the formalism by Page [144], Unruh [145] and Chandrasekhar
[22]. For the treatment of Rarita–Schwinger fields, see [146].

To summarize this section: in four-dimensional Schwarzschild or SAdS backgrounds,
scalar (m = 0, γ = 0, s = 0), electromagnetic (s = ±1) and Regge–Wheeler or vector-type
gravitational (s = 2) perturbations can be described by the master equation (10) with the
potential

Vs = f

[
l(l + 1)

r2
+ (1 − s2)

(
2M

r3
+

4 − s2

2L2

)]
. (20)

The potentials for the scalar-type gravitational perturbations and half-integer spin perturbations
have forms different from (20); see for instance [102, 147]. However, the vector-type (Regge–
Wheeler) and scalar-type (Zerilli) potentials have the remarkable property of being isospectral,
i.e. they possess the same QNM spectrum. The origin of this isospectrality, first discovered
by Chandrasekhar [22], is reviewed in appendix A.

2.2. Higher dimensional gravitational perturbations

The literature on gravitational perturbations can be quite confusing. Naming conventions
were already unclear in 1970, so much so that Zerilli decided to list equivalent terminologies
referring to odd and even tensor spherical harmonics (cf table II of [57]). The situation
got even worse since then. Chandrasekhar’s book, which is the most complete reference
in the field, established a different terminology: ‘odd’ (Regge–Wheeler) perturbations were
called ‘axial’ and described by a master variable �−, while ‘even’ (Zerilli) perturbations were
renamed ‘polar’ and described by a master variable �+. In recent years, Kodama and Ishibashi
[102–104] extended the gauge-invariant perturbation framework to higher dimensional, non-
rotating BHs. In higher dimensions, three master variables are necessary to completely
describe the perturbations [102]. Two of them (the vector-type gravitational perturbations
and the scalar-type gravitational perturbations) reduce to the Regge–Wheeler and Zerilli
master variables in d = 4. Kodama and Ishibashi refer to the third type of perturbations,
which have no four-dimensional analogue, as tensor-type gravitational perturbations. In this
review, we will usually adopt the Kodama–Ishibashi terminology.

2.3. Weak fields in the Kerr background: the Teukolsky equation

In four-dimensional asymptotically flat spacetimes, the most general vacuum BH solution of
Einstein’s equations is the Kerr metric. In the standard Boyer–Linquist coordinates, the metric
depends on two parameters: the mass M and spin J = aM . The spacetime has a Cauchy
horizon at r = r− = M − √

M2 − a2 and an event horizon at r = r+ = M +
√
M2 − a2. The

separation of variables for a minimally coupled scalar field in the Kerr background was first
reported by Brill et al [148].
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Table 1. Teukolsky wavefunction ψ , as in (24), for each value s of the spin. The spin-coefficient
ρ ≡ −1/(r − ia cos θ). The quantities χ0 and χ1 refer to the components of the neutrino
wavefunction along dyad legs.

s 0 (+1/2,−1/2) (+1,−1) (+2,−2)
ψ � (χ0, ρ

−1χ1) (Φ0, ρ
−2Φ2) (Ψ0, ρ

−4Ψ4)

Teukolsky [60, 149] showed that if one works directly in terms of curvature invariants,
the perturbation equations decouple and separate for all Petrov type-D spacetimes. He derived
a master perturbation equation governing fields of general spin, including the most interesting
gravitational perturbations (see [22, 150] for reviews). Teukolsky’s approach is based on the
Newman–Penrose [49] formalism. In this formalism one introduces a tetrad of null vectors
l, n,m,m∗ at each point in spacetime, onto which all tensors are projected. The Newman–
Penrose equations are relations linking the tetrad vectors, the spin coefficients, the Weyl tensor,
the Ricci tensor and the scalar curvature [49]. The most relevant perturbation variables, which
both vanish in the background spacetime, are the Weyl scalars Ψ0 and Ψ4, obtained by
contracting the Weyl tensor Cμνλσ [151] on the tetrad legs (roughly speaking, these quantities
describe ingoing and outgoing gravitational radiation):

Ψ0 = −C1313 = −Cμνλσ l
μmνlλmσ , (21)

Ψ4 = −C2424 = −Cμνλσn
μm∗νnλm∗σ . (22)

Two analogous quantities Φ0 and Φ2 describe electromagnetic perturbations:

Φ0 = Fμνl
μmν, Φ2 = Fμνm

∗μnν. (23)

By Fourier transforming a spin-s field ψ(t, r, θ, φ) and expanding it in spin-weighted
spheroidal harmonics as follows:

ψ(t, r, θ, φ) = 1

2π

∫
e−iωt

∞∑
l=|s|

l∑
m=−l

eimφ
sSlm(θ)Rlm(r) dω, (24)

Teukolsky finds separated ODEs for sSlm and Rlm [60, 149]:[
∂

∂u
(1 − u2)

∂

∂u

]
sSlm +

[
a2ω2u2 − 2aωsu + s +s Alm − (m + su)2

1 − u2

]
sSlm = 0,

�∂2
r Rlm + (s + 1)(2r − 2M)∂rRlm + VRlm = 0.

(25)

Here u ≡ cos θ,� = (r − r−)(r − r+) and

V = 2isωr − a2ω2 −s Alm +
1

�
[(r2 + a2)2ω2 − 4Mamωr + a2m2

+ is(am(2r − 2M) − 2Mω(r2 − a2))]. (26)

The solutions to the angular equation (25) are known in the literature as spin-weighted
spheroidal harmonics: sSlm = sSlm(aω, θ, φ). For aω = 0, the spin-weighted spheroidal
harmonics reduce to spin-weighted spherical harmonics sYlm(θ, φ) [152]. In this case, the
angular separation constants sAlm are known analytically: sAlm(a = 0) = l(l + 1) − s(s + 1).
The determination of the angular separation constant in more general cases is a non-trivial
problem (see [153] and references therein).

The field’s spin weight s is equal to 0,±1/2,±1,±2 for scalar, Dirac, electromagnetic
and gravitational perturbations, respectively. The Teukolsky master variable ψ is related
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to the perturbation fields by the relations listed in table 1 (see also appendix B of [149]).
Relations between the Regge–Wheeler–Zerilli and the Teukolsky variables are explored in
[22]. Reconstructing the metric from the Teukolsky functions is a highly non-trivial problem
which is still not completely solved (see e.g. [154–159]).

3. Defining quasinormal modes

3.1. Quasinormal modes as an eigenvalue problem

In a spherically symmetric background, the study of BH perturbations due to linearized fields
of spin s can be reduced to the study of the differential equation (10). Henceforth, to simplify
the notation, we will usually drop the s-subscript in all quantities. To determine the free modes
of oscillation of a BH, which correspond to ‘natural’ solutions of this unforced ODE, we must
impose physically appropriate boundary conditions at the horizon (r∗ → −∞) and at spatial
infinity (r∗ → ∞). These boundary conditions are discussed below.

Boundary conditions at the horizon. For most spacetimes of interest the potential V → 0 as
r∗ → −∞, and in this limit solutions to the wave equation (10) behave as � ∼ e−iω(t±r∗).
Classically nothing should leave the horizon: only ingoing modes (corresponding to a plus
sign) should be present, and therefore

� ∼ e−iω(t+r∗), r∗ → −∞(r → r+). (27)

This boundary condition at the horizon can also be seen to follow from regularity requirements.
For non-extremal spacetimes, the tortoise coordinate tends to

r∗ =
∫

f −1 dr ∼ [f ′(r+)]
−1 log (r − r+), r ∼ r+, (28)

with f ′(r+) > 0. Near the horizon, outgoing modes behave as

e−iω(t−r∗) = e−iωv e2iωr∗ ∼ e−iωv(r − r+)
2iω/f ′(r+), (29)

where v = t + r∗. Now equation (29) shows that unless 2iω/f ′(r+) is a positive integer the
outgoing modes cannot be smooth, i.e. of class C∞, and they must be discarded. An elegant
discussion of the correct boundary conditions at the horizon of rotating BHs can be found in
appendix B of [160].

Boundary conditions at spatial infinity: asymptotically flat spacetimes. For asymptotically flat
spacetimes, the metric at spatial infinity tends to the Minkowski metric. From equation (20)
with L → ∞, we see that the potential is zero at infinity. By requiring

� ∼ e−iω(t−r∗), r → ∞, (30)

we discard unphysical waves ‘entering the spacetime from infinity’.
The main difference between QNM problems and other prototypical physical problems

involving small oscillations, such as the vibrating string, is that the system is now dissipative:
waves can escape either to infinity or into the BH. For this reason, an expansion in normal modes
is not possible [4, 5, 77, 80]. There is a discrete infinity of QNMs, defined as eigenfunctions
satisfying the above boundary conditions. The corresponding eigenfrequencies ωQNM have
both a real and an imaginary part, the latter giving the (inverse) damping time of the mode.
One usually sorts the QNM frequencies by the magnitude of their imaginary part, and labels
them by an integer n called the overtone number. The fundamental mode n = 0 is the least
damped mode, and being very long-lived it usually dominates the ringdown waveform.
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A seemingly pathological behavior occurs when one imposes the boundary conditions
(27) and (30). When the mode amplitude decays in time, the characteristic frequency
ωQNM must have a negative imaginary component. Then, the amplitude near infinity
(r∗ → +∞) most blow up. So it is in general impossible to represent regular initial data
on the spacetime as a sum of QNMs. QNMs should be thought of as quasistationary
states which cannot have existed for all times: they decay exponentially with time and
are excited only at a particular instant in time (see [161] for an alternative viewpoint on
‘dynamic’ QNM excitation). In more formal terms, QNMs do not form a complete set of
wavefunctions [5].

Boundary conditions at spatial infinity: asymptotically anti-de Sitter spacetimes. When the
cosmological constant does not vanish, by inspection of equation (10) we see that

�s=0 ∼ Ar−2 + Br, �s=1,2 ∼ A/r + B, r → ∞. (31)

Regular scalar field perturbations should have B = 0, corresponding to Dirichlet boundary
conditions at infinity. The case for electromagnetic and gravitational perturbations is less
clear: there is no a priori compelling reason for a specific boundary condition. A popular
choice implements Dirichlet boundary conditions for the Regge–Wheeler and Zerilli variables
[130], but other boundary conditions were investigated, e.g., in [162]. A discussion of preferred
boundary conditions in the context of the AdS/CFT correspondence can be found in [163–165]
(see also section 8.2).

3.2. Quasinormal modes as poles in Green’s function

The QNM contribution to the BH response to a generic perturbation can be identified
formally by considering the Green’s function solution to an inhomogeneous wave equation
[77, 80, 161, 166, 167]. Consider the Laplace transform of the field, L�(t, r) ≡ �(ω, r) =∫ ∞
t0

�(t, r) eiωt dt , which is well defined if ωI � c (the usual Laplace variable is s = −iω; we
use ω for notational consistency with previous works).

The problem of computing the gravitational waveform produced when a BH is perturbed
by some material source (such as a particle of mass m � M falling into the BH) can be
reduced to a wave equation of form (10) with a source term:

d2�

dr2∗
+ (ω2 − V )� = I (ω, r). (32)

We can solve this equation by the standard Green’s function technique [168] (see [77, 80,
161, 166, 167] for applications in this context), focusing for definiteness on asymptotically
flat spacetimes. Take two independent solutions of the homogeneous equation: one has the
correct behavior at the horizon,

lim
r→r+

�r+ ∼ e−iωr∗ , (33)

lim
r→∞ �r+ ∼ Ain(ω) e−iωr∗ + Aout(ω) eiωr∗ , (34)

and the second independent solution �∞+ ∼ eiωr∗ for large r. The Wronskian of these two
wavefunctions is W = 2iωAin, and we can express the general solution as [77]

�(ω, r) = �∞+

∫ r∗

−∞

I (ω, r)�r+

2iωAin
dr ′

∗ + �r+

∫ ∞

r∗

I (ω, r)�∞+

2iωAin
dr ′

∗. (35)
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Figure 2. Integration contour for equation (36). The hatched area is the branch cut and crosses
mark zeros of the Wronskian W (the QN frequencies).

The time-domain response is obtained by inversion of the Laplace transform:

�(t, r) = 1

2π

∫ ∞+ic

−∞+ic
�(ω, r) e−iωt dω. (36)

The frequency integral can be performed by the integration contour shown in figure 2. There
are in general three different contributions to the integral. The integral along the large quarter
circles is the flat-space analogue of the prompt response, i.e. waves propagating directly from
the source to the observer at the speed of light. Depending on the asymptotic structure
of the potential, there is usually a branch point at ω = 0 [41]. To prevent it from lying inside
the integration contour, we place a branch cut along the negative imaginary-ω axis and split
the half circle at |ω| → ∞ into two quarter circles [84, 169, 170]. The branch-cut contribution
gives rise to late-time tails [77, 84, 171]: physically, these tails are due to backscattering off the
background curvature [171], and therefore they depend on the asymptotics of the spacetime.
Tails are absent for certain backgrounds, such as the SAdS [92] or the Nariai spacetime [172].
The third contribution comes from a sum-over-residues at the poles in the complex frequency
plane, which are the zeros of Ain. These poles correspond to perturbations satisfying both
in-going wave conditions at the horizon and out-going wave conditions at infinity, so (by the
very definition of QNMs) they represent the QNM contribution to the response. Although
we used the asymptotic behavior of the solutions of the wave equation, this discussion can be
trivially generalized to any spacetime.

Far from the source, the QNM contribution in asymptotically flat spacetimes can be
written as [166, 167]

�(t, r) = −Re

[∑
n

Cn e−iωn(t−r∗)

]
, (37)

where the sum is over all poles in the complex plane. The Cn’s are called quasinormal
excitation coefficients and they quantify the QNM content of the waveform. They are related
to initial-data independent quantities, called the quasinormal excitation factors (QNEFs) and
denoted by Bn, as follows:

Cn = Bn

∫ ∞

−∞

I (ω, r)�r+

Aout
dr ′

∗, Bn = Aout

2ω

(
dAin

dω

)−1
∣∣∣∣∣
ω=ωn

. (38)
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In general the QNM frequencies ωn, the Bn’s and the Cn’s depend on l, m and on the spin
of the perturbing field s, but to simplify the notation we will omit this dependence whenever
there is no risk of confusion.

The QNEFs play an important role in BH perturbation theory: they depend only on
the background geometry, and (when supplemented by specific initial data) they allow the
determination of the QNM content of a signal, i.e. of the Cn’s. This has been known for
over two decades, but relatively little effort has gone into understanding how these modes are
excited by physically relevant perturbations. The QNEFs have long been known for scalar,
electromagnetic and gravitational perturbations of Schwarzschild BHs [77, 161, 166, 173],
and they have recently been computed for general perturbations of Kerr BHs [167]. In [167],
it was also shown that for large overtone numbers (n → ∞) Bn ∝ n−1 for all perturbing
fields in a large class of non-rotating spacetimes. The excitation factors Cn have mainly been
computed for the simple case where the initial data are Gaussian pulses of radiation [166, 167].
The only work we are aware of studying the excitation factors Cn for a point particle falling
into a Schwarzschild BH is Leaver’s classic paper [77].

Besides the theoretical interest of quantifying QNM excitation by generic initial data in
the framework of perturbation theory, excitation factors and excitation coefficients have useful
applications in gravitational wave data analysis. First of all, a formal QNM expansion of the
BH response can simplify the calculation of the self-force acting on small bodies orbiting
around BHs. It was shown recently, using as a model problem the Nariai spacetime, that
a QNM expansion of Green’s function can be used for a matched expansion of the ‘quasi-
local’ and ‘distant-past’ contributions to the self-force [172]. The problem of quantifying
QNM excitation is of paramount importance to search for inspiraling compact binaries in
gravitational wave detector data. All attempts to match an effective-one-body description
of inspiraling binaries to numerical relativity simulations found that the inclusion of several
overtones in the ringdown waveform is a crucial ingredient to improve agreement with the
numerics [174, 175]. So far, the matching of the inspiral and ringdown waveforms has been
performed by ad hoc procedures. For example, the amplitudes and phases of the Cn’s have
been fixed by requiring continuity of the waveform on a grid of points, or ‘comb’ [176].
These matching procedures have their own phenomenological interest, but a self-consistent
estimation of the excitation coefficients within perturbation theory is needed to improve our
physical understanding of the inspiral-ringdown transition.

Finally, we point out that recent investigations have addressed the issue of mode excitation
in the gauge/gravity duality [177, 178]. There it was found, for example, that the residue of
the diffusion and shear mode decays at small wavelength, so these modes effectively cease to
exist.

4. Computing quasinormal modes

To determine the QNMs and compute their frequencies we must solve the eigenvalue problem
represented by the wave equation (10), with boundary conditions specified by equation (27)
at the horizon and equation (30) at infinity. There is no universal prescription to compute
QNMs. In this section we discuss various methods to obtain such a solution, pointing out that
different methods are better suited to different spacetimes.

For a start we consider the exceptional cases where an exact, analytical solution to
the wave equation can be found. In some spacetimes the potential appearing in the wave
equation can be shown to reduce to the Pöschl–Teller potential [179], for which an exact
QNM calculation is possible [70]. These spacetimes and their QNM spectra are reviewed in
section 4.1. In the general case, QNM calculations require approximations or numerical
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methods5. Some of these (including WKB approximations, monodromy methods, series
solutions in asymptotically AdS backgrounds and Leaver’s continued fraction method) are
reviewed in sections 4.2–4.6.

4.1. Exact solutions

In general exact solutions to the wave equation are hard to find, and they must be computed
numerically. There are a few noteworthy exceptions, some of which we summarize here.

We begin our review of exact solutions by sketching the analytical derivation of the QNMs
of the Pöschl–Teller potential. Many of the difficulties in computing QNMs in BH spacetimes
arise from the slow decay of the potential as r → ∞, which is due (mathematically) to
the presence of a branch cut and gives rise (physically) to backscattering of gravitational
waves off the gravitational potential and to late-time tails. Ferrari and Mashhoon realized that
these difficulties can be removed and exact solutions can be found if one considers instead a
potential that decays exponentially as r → ∞, while recovering the other essential features
of the Schwarzschild potential. Such a potential is the Pöschl–Teller potential [70]. After
reviewing QNM solutions for the Pöschl–Teller potential, we briefly review the modes of pure
AdS and dS spacetimes. Then we show that perturbations of the near-extreme Schwarzschild
de-Sitter (SdS) and of the Nariai spacetime reduce to a wave equation with a Pöschl–Teller
potential, so they can be solved analytically. We also discuss two asymptotically AdS BH
spacetimes which have improved our understanding of the role of QNMs in the AdS/CFT
correspondence: the (2 + 1)-dimensional BTZ BH [182] and the d-dimensional topological
(massless) BH [122–127]. The BTZ BH is the first BH spacetime for which an exact, analytic
expression for the QNMs has been derived [95], and it offers interesting insights into the
validity of the AdS/CFT correspondence [94, 183, 184].

The Pöschl–Teller potential. In this section we analytically compute the QNMs of the Pöschl–
Teller potential [70, 179], which will serve as a prototype for several BH spacetimes to be
discussed below. Consider the equation

∂2�

∂r2∗
+

[
ω2 − V0

cosh2 α(r∗ − r̄∗)

]
� = 0. (39)

The quantity r̄∗ is the point r∗ at which the potential attains a maximum, i.e. dV/dr∗(r̄∗) = 0,
and V0 is the value of the Pöschl–Teller potential at that point: V0 = V (r̄∗). The quantity α is
related to the second derivative of the potential at r∗ = r̄∗, α2 ≡ −(2V0)

−1d2V/dr2
∗ (r̄∗). The

solutions of equation (39) that satisfy both boundary conditions (27) and (30) are the QNMs
[70]. To find these solutions, we define a new independent variable ξ = [1 + e−2α(r∗−r̄∗)]−1

and rewrite equation (39) as

ξ 2(1 − ξ)2 ∂
2�

∂ξ 2
− ξ(1 − ξ)(2ξ − 1)

∂�

∂ξ
+

[
ω2

4α2
− V0

α2
ξ(1 − ξ)

]
� = 0. (40)

Near spatial infinity 1 − ξ ∼ e−2α(r∗−r̄∗), and near the horizon ξ ∼ e2α(r∗−r̄∗). If we define
a = [

α +
√
α2 − 4V0 − 2iω

]/
(2α), b = [

α −
√
α2 − 4V0 − 2iω

]/
(2α), c = 1 − iω/α and

set � = (ξ(1 − ξ))−iω/(2α) y, we get a standard hypergeometric equation for y [185]:

ξ(1 − ξ)∂2
ξ y + [c − (a + b + 1)ξ ]∂ξy − aby = 0, (41)

5 Fiziev [180, 181] actually showed that the Regge–Wheeler and Teukolsky equations can be solved analytically
in terms of confluent Heun’s functions. These solutions allow a high-accuracy determination of the Schwarzschild
quasinormal frequencies. The calculation of Heun’s functions is quite contrived, but it has already proved useful to
address interesting open problems in perturbation theory [188, 189].
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and therefore

� = Aξ iω/(2α)(1 − ξ)−iω/(2α)F (a − c + 1, b − c + 1, 2 − c, ξ)

+B(ξ(1 − ξ))−iω/(2α)F (a, b, c, ξ). (42)

Recalling that F(a1, a2, a3, 0) = 1 and ξ iω/(2α) ∼ eiωr∗ near the horizon, we see that the
first term represents, according to our conventions, an outgoing wave at the horizon, while
the second term represents an ingoing wave. QNM boundary conditions require A = 0.
To investigate the behavior at infinity, one uses the z → 1 − z transformation law for the
hypergeometric function [185]:

F(a, b, c, z) = (1 − z)c−a−b �(c)�(a + b − c)

�(a)�(b)
F (c − a, c − b, c − a − b + 1, 1 − z)

+
�(c)�(c − a − b)

�(c − a)�(c − b)
F (a, b,−c + a + b + 1, 1 − z). (43)

The boundary condition at infinity implies either 1/�(a) = 0 or 1/�(b) = 0, which are
satisfied whenever

ω = ±
√
V0 − α2/4 − iα(2n + 1)/2, n = 0, 1, 2, . . . , (44)

where n is the overtone index.
A popular approximation scheme to compute BH QNMs consists in replacing the

true potential in a given spacetime by the Pöschl–Teller potential. This approximation
works well for the low-lying modes of the Schwarzschild geometry. It predicts Mω =
0.1148 − 0.1148i, 0.3785 − 0.0905i for the fundamental l = s = 0, 2 perturbations,
respectively [70]. This can be compared to the numerical result [10, 47, 75] Mω = 0.1105 −
0.1049i, 0.3737 − 0.0890i. In the eikonal limit (l → ∞), the Pöschl–Teller approximation
yields the correct solution: it predicts the behavior 3

√
3Mω = ±(l + 1/2) − i(n + 1/2), in

agreement with WKB-based calculations [58, 188, 189] (see also [190]).
The Pöschl–Teller approximation provides a solution which is more and more accurate

for near-extremal SdSs, since the event horizon and the cosmological horizon coalesce in the
extremal limit [162, 191, 192].

Normal modes of the anti-de Sitter spacetime. A physically interesting analytical solution
concerns the QNMs of pure AdS spacetime, which can be obtained by setting r0 = 0 in the
metric (3). In this case, QNMs are really normal modes of the spacetime, and have been
computed for scalar field perturbations by Burgess and Lütken [193]. They satisfy

Lω = 2n + d + l − 1, n = 0, 1, 2, . . . , s = 0, (45)

where l is related to the eigenvalue of spherical harmonics in d dimensions by Alm = l(l+d−3)
[153]. Normal modes of electromagnetic perturbations in d = 4 were shown to be the same as
normal modes for gravitational perturbations (see the appendix in [194]); for general d, they
can be computed from the potentials for wave propagation derived by Kodama and Ishibashi
[104]. Natario and Schiappa [107] studied the normal modes of gravitational perturbations.
Tensor gravitational perturbations obey the same equation as s = 0 fields, and therefore their
normal modes are

Lω = 2n + d + l − 1, n = 0, 1, 2, . . . , s = 2 tensor-type. (46)

Vector-type gravitational perturbations have normal modes with the following characteristic
frequencies:

Lω = 2n + d + l − 2, n = 0, 1, 2, . . . , s = 2 vector-type. (47)
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Finally, scalar-type gravitational perturbations have a somewhat surprising behavior. For
d = 4 they are given by equation (47). For d = 5 they have a continuous spectrum, and for
d > 5 one finds [107]

Lω = 2n + d + l − 3, n = 0, 1, 2, . . . , s = 2 scalar-type. (48)

Quasinormal modes of the de Sitter spacetime. The dS spacetime is an extensively studied
solution of the Einstein field equations, most of the early investigations being motivated by
cosmological considerations. It satisfies equation (3) with r0 = 0 and f (r) = 1 − r2/L2.
Natario and Schiappa found that no QNM solutions are allowed in even-dimensional dS space
[107]. For scalar fields and tensor-type gravitational perturbations in odd-dimensional dS
backgrounds, the QNM frequencies are purely imaginary and given by

Lω = −i (2n + d + l) , n = 0, 1, 2, . . . tensor-type. (49)

For the other types of gravitational perturbations, Natario and Schiappa [107] find

Lω = −i(2n + d + l + 1), n = 0, 1, 2, . . . vector-type, (50)

Lω = −i(2n + d + l + 2), n = 0, 1, 2, . . . scalar-type. (51)

Note the striking similarity with the pure AdS results when one replaces L → iL. Fields of
other spins were considered in [195, 192].

Nearly extreme SdS and the Nariai spacetime. The metric for d-dimensional Schwarzschild
de-Sitter (SdSd ) BHs can be obtained from equation (3) by the replacement L → iL, i.e.
f (r) = 1 − r2/L2 − rd−3

0

/
rd−3. The corresponding spacetime has two horizons: an event

horizon at r = r+ and a cosmological horizon at r = rc. It was observed in [196] that
for rc/r+ − 1 � 1, perturbations of this spacetime satisfy a wave equation with a Pöschl–
Teller potential. In particular, setting kb ≡ (rc − r+)

/
2r2

c , for near-extreme SdSd one finds
M

/
rd−3

+ ∼ 1/(d − 1), r2
+

/
L2 ∼ (d − 3)/(d − 1) [196, 197]. QNM frequencies for scalar

field and tensor-like gravitational perturbations are then given by [196, 197]

ω

k
=

√
l(l + d − 3) − 1

4
− i

(
n +

1

2

)
, tensor-type, (52)

where k = (d − 3)(rc − r+)
/(

2r2
+

)
is the surface gravity of the BH. For gravitational

perturbations, the result is

ω

k
=

√
(l − 1)(l + d − 2) − 1

4
− i

(
n +

1

2

)
, vector-type,

ω

k
=

√
(l − 1)(l + d − 2) − d +

15

4
− i

(
n +

1

2

)
, scalar-type.

(53)

Through an appropriate limiting procedure [196, 198], the nearly extreme SdSd geometry
can yield a spacetime with a different topology, the Nariai spacetime [196, 199–201], of the
form

ds2 = −(−r2/L2 + 1) dt2 + (−r2/L2 + 1)−1 dr2 + r2 d
2
d−2. (54)

This manifold has topology dS2 ×Sd−2 and two horizons (with the same surface gravity). The
QNM frequencies are the same as for nearly extreme SdSd , if k is replaced by the surface
gravity of each horizon [198].

The BTZ black hole. Ichinose and Satoh [202] were the first to realize that the wave equation
in the (2 + 1)-dimensional, asymptotically AdS BTZ BH [182] can be solved in terms of
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hypergeometric functions. An analytical solution for the QNMs of this BH was first found in
[95]. The non-rotating BTZ BH metric is given by [182]

ds2 = (r2/L2 − M) dt2 − (r2/L2 − M)−1 dr2 − r2 dφ2, (55)

where M is the BH mass and r+ = M1/2L is the horizon radius. In 2 + 1 dimensions,
gravity is ‘trivial’: the full curvature tensor is completely determined by the local matter
distribution and the cosmological constant. In particular, in vacuum the curvature tensor
Rμνλρ = �(gμλgνρ − gμρgνλ) and R = 6�. Curvature effects produced by matter do
not propagate through the spacetime. There are no dynamical degrees of freedom and no
gravitational waves [203, 204]. Therefore, we will focus on scalar fields and assume an
angular dependence of the form eimφ . Scalar QNM frequencies are given by

ωL = ±m − 2i(n + 1)r+/L, (56)

with m being the azimuthal number and n the overtone number [95]. This result has been
generalized by Birmingham et al [94] to the rotating BTZ BH. For general massive scalar
perturbations with mass parameter μ, they find

ωL = ±m − i[2n + (1 +
√
μ2 + 1)](r+ − r−)/L. (57)

The BTZ background has provided a first quantitative test of the AdS/CFT correspondence: the
QNM frequencies (57) match the poles of the retarded correlation function of the corresponding
perturbations in the dual CFT [94]. Recently, the QNMs of BTZ BHs were shown to be Breit–
Wigner-type resonances generated by surface waves supported by the boundary at infinity,
which acts as a photon sphere [205]. This interpretation is highly reminiscent of work in
asymptotically flat spacetimes, interpreting QNMs as null particles slowly leaking out of
circular null geodesics (see [59, 70, 73, 206–209] and section 4.2).

An alternative to Einstein’s gravity in three dimensions is the so-called topologically
massive gravity, obtained by adding a Chern-Simons term to the action [210, 211].
Topologically massive gravity allows for dynamics, i.e. gravitational waves. The QNMs
of BTZ BHs in this theory have recently been computed, providing yet another confirmation
of the AdS/CFT correspondence [183, 184].

Massless topological black holes. It is also possible to obtain exact solutions in a restricted
set of higher dimensional BH spacetimes. These asymptotically AdS solutions are known
as topological BHs. The horizon is an Einstein space of positive, zero or negative curvature
[122–127]. In the negative-curvature case, there is a massless BH playing a role quite similar
to the BTZ BH in three dimensions. Consider the exterior region of the massless topological
BH [212]

ds2 = −(r2/L2 − 1) dt2 + (r2/L2 − 1)−1 dr2 + r2 dσ 2.

This is a manifold of negative constant curvature with an event horizon at r = L. Here,
dσ 2 stands for the line element of a (d − 2)-dimensional surface �d−2 of negative constant
curvature.

The wave equation for a massive scalar field with non-minimal coupling can be solved by
the ansatz � = �(r) e−iωtY , where Y is a harmonic function of finite norm with eigenvalue
−Q = − (d − 3)2 /4 − ξ 2. The parameter ξ is generically restricted, assuming only discrete
values if �d−2 is a closed surface. If the effective mass m2

eff = μ2 − γ d(d − 2)/4L2

(with μ being the mass of the field and γ the conformal coupling factor) satisfies the bound
m2

effL
2 � −[(d − 1)/2]2, one set of QNM frequencies is given by [212]

ωL = ±ξ − i
(
2n + 1 +

√
(d − 1)2

/
4 + m2

effL
2
)
, n = 0, 1, 2 . . . . (58)
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If the mass and the coupling constant γ satisfy the relations
√
(d − 1)2/4 + m2

effL
2 =

d−1
2 − γ

2
d−2

d−1−γ (d−2) and − (
d−1

2

)2
< m2

effL
2 < 1 − (

d−1
2

)2
, there is another set of modes for

which the QNM frequencies are given by [212]

ωL = ±ξ − i
(
2n + 1 −

√
(d − 1)2

/
4 + m2

effL
2
)
. (59)

This computation represents the first exact analytic determination of QNMs in four and higher
dimensions. The generalization to other fields (and in particular to gravitational perturbations)
can be found in [213].

4.2. The WKB approximation

Normal modes of vibration of an object usually have a simple interpretation in terms of waves
traveling across or around the object. For example, the Earth’s free modes of oscillation were
highly excited and measured for the first time in the 1960 earthquake in Chile [214]. These
(roughly) 1 h long periodic oscillations correspond to waves traveling around the globe and
carry information about the Earth’s interior. Just like the Earth’s free modes of oscillation, BH
QNMs can be thought of as waves traveling around the BH [58, 59, 70, 73, 206–209]. More
precisely, QNMs can be interpreted as waves trapped at the unstable circular null geodesic
(also known as the light ring) and slowly leaking out. The instability timescale of the geodesic
is the decay timescale of the QNM, and the oscillation frequency ω ∼ c/rLR, with c being the
speed of light and rLR the light-ring radius [208].

This intuitive picture, first proposed by Goebel [59] is related to a more rigorous WKB
approximation developed by Mashhoon [69] and by Schutz and Will [74] (see also [58, 70, 73,
206–209]). Their derivation and results closely parallel the Bohr–Sommerfeld quantization
rule from quantum mechanics. The procedure involves relating two WKB solutions across
a ‘matching region’ whose limits are the classical turning points, where ω2 = V (r). The
technique works best when the classical turning points are close, i.e. when ω2 ∼ Vmax, where
Vmax is the peak of the potential. Under these assumptions, we can expand in a Taylor series
around the extremum of the potential r̄∗:

Q ≡ ω2 − V ∼ Q0 + Q′′
0(r∗ − r̄∗)2/2, Q′′

0 ≡ d2Q/dr2
∗ . (60)

In this region, the wave equation d2�
dr2∗

+ Q� = 0 can be approximated by

d2�

dr2∗
+

[
Q0 +

1

2
Q′′

0(r∗ − r̄∗)2

]
� = 0. (61)

This equation has an exact solution in terms of parabolic cylinder functions [185, 215]:

� = ADν(z) + BD−ν−1(iz), z ≡ (2Q′′
0)

1
4 ei π

4 (r∗ − r̄∗), (62)

with ν = −iQ0/
√

2Q′′
0 −1/2. Using the asymptotic behavior of cylinder functions [185, 215]

and demanding only outgoing waves at spatial infinity we get, near the horizon,

� ∼ A e−iπνzν e− z2

2 − i
√

2πA [�(−ν)]−1 e5iπ/4z−ν−1 e
z2

2 . (63)

QNM boundary conditions imply that the outgoing term, proportional to ez2/2, should be
absent, so 1/�(−ν) = 0 or ν = n(=0, 1, 2, . . .). As we anticipated, the leading-order WKB
approximation yields a ‘Bohr–Sommerfeld quantization rule’ defining the QNM frequencies:

Q0/

√
2Q′′

0 = i(n + 1/2), n = 0, 1, 2, . . . . (64)

Higher order corrections to equation (60) have been computed [58]. Iyer and Will
[188, 189] carried out a third-order WKB expansion, and more recently Konoplya [216]
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Figure 3. Percentage errors for the real (left) and imaginary part (right) of the QNM frequencies
as predicted from WKB calculations. Thick lines: third-order WKB approximation; thin lines:
sixth-order WKB approximation.

pushed the expansion up to sixth order. There is no rigorous proof of convergence, but the
results do improve for higher WKB orders. This is shown in figure 3, where we compare
numerical results for the QNMs of Schwarzschild BHs from Leaver’s continued fraction
method (to be discussed in section 5.1) against third- and sixth-order WKB predictions. The
WKB approximation works best for low overtones, i.e. modes with a small imaginary part,
and in the eikonal limit of large l (which corresponds to large quality factors or large ωR/ωI).
The method assumes that the potential has a single extremum, which is the case for most (but
not all) BH potentials; see [103] for interesting counterexamples.

Dolan and Ottewill [217] introduced a new, WKB-inspired asymptotic expansion of QNM
frequencies and eigenfunctions in powers of the angular momentum parameter l + 1/2. Their
asymptotic expansion technique is easily iterated to high orders, and it seems to provide very
accurate results in spherically symmetric spacetimes. The asymptotic expansion also provides
physical insight into the nature of QNMs, nicely connecting the geometrical understanding of
QNMs as perturbations of unstable null geodesics with the singularity structure of the Green’s
function.

4.3. Monodromy technique for highly damped modes

A powerful variant of the WKB approximation, which is particularly useful in the highly
damped limit ωI → ∞, is the so-called monodromy technique [101]. The basic idea is
related to the Stokes phenomenon in the theory of asymptotic expansions (see e.g. [218] for an
excellent introduction to the topic). As shown by Andersson and Howls [219], the monodromy
technique is a simple variant of the phase-integral approach, whose application to BH physics
dates back to the work by Fröman et al [81].

Let us consider the wave equation (10) for the Schwarzschild geometry, but allowing r
and r∗ to be complex variables. In the complex-r plane, solutions to equation (10) may be
multivalued around the singular points (r = 0 and r = 2M). To deal with the singular points,
we introduce branch cuts emanating from r = 0 and r = 2M . The relation r∗(r) is also
multi-valued: in the Schwarzschild geometry r∗(r) = r + 2M log (r/2M − 1), and we choose
the branch such that log(−1) = iπ . We can now define a variable z ≡ r∗/2M − iπ which
tends to zero as r → 0. The Stokes lines are defined as the lines for which Re(r∗) = 0 [218],
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Figure 4. Left panel: contour for calculation of the QNM frequencies in the complex-r plane.
The different regions are separated by the associated Stokes lines. Branch cuts from r = −∞ to
the origin and from r = 1 to point A are not shown in the plot. Right panel: integration contour
in the complex-z plane, with z ≡ r∗/2M − iπ . For more details, see [101].

and they are shown in figure 4 (near the singular point r = 0, the Stokes lines form an angle
π/4). The idea now is to equate the monodromy as computed in two different ways. The first
computation takes the contour in figure 4, starting and ending at point A and following the
Stokes lines, joined at infinity by the large semi-circles shown in figure 4. If we start from A
with a plane wave eiωz, we can extrapolate the behavior to near the singularity z = 0. This is
because for large imaginary ω, the term ω2 is much larger than the other terms in the potential.
Near the origin (r = 0), the solutions to the wave equation can be written as

�(z) = A+

√
4πMωzJ s

2
(2Mωz) + A−

√
4πMωzJ− s

2
(2Mωz), (65)

where A± are constants and Js/2 is a Bessel function. From the asymptotics of Bessel functions
for large ωz, one has

�(z) ∼ ei2Mωz[A+ e−iα+ + A−e−iα− ] + e−i2Mωz[A+ eiα+ + A−eiα− ], (66)

with α± = π(1 ± s)/4. The second term must vanish because of the boundary conditions.
Continuing along the contour, we make a 3π/2 turn around r = 0. In terms of the z coordinate,
this means a 3π rotation. Using the representation for the Bessel functions

J±s/2(η) = η±s/2
+∞∑
n=0

(−1)nη2n

22n±s/2�(±s/2 + n + 1)n!
, (67)

one can see that J±s/2(e3iπ2Mωz) = e±i3πs/2J±s/2(2Mωz). Therefore,

� ∼ ei2Mωz[A+ e7iα+ + A−e7iα− ] + e−i2Mωz[A+ e5iα+ + A−e5iα− ]. (68)

The e−i2Mωz term is exponentially small, since we are in the region where Re(z) � 0 and
ωI � 0. Using equation (66), we get for the coefficient of eiωz the monodromy

A+ e7iα+ + A−e7iα−

A+ e−iα+ + A−e−iα−
. (69)

Requiring that the second term in equation (66) vanishes, equation (69) yields
− (1 + 2 cos(πs)) for the monodromy. On the other hand, the only singularity inside the
contour is at r = 1, giving a factor e−4i(2Mω) and leading to the condition

8πMω = ± log 3 − iπ(2n + 1) (70)
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for the highly damped QNM frequencies of Schwarzschild BHs with s = 0, 2 (s = 1 is
predicted to have a vanishing real part). This formula is in agreement with numerical studies
by Nollert [220] for the Schwarzschild spacetime. The procedure has been generalized to
several other backgrounds, including Reissner–Nordström (RN) [101], Kerr [221, 222], SAdS
[223] and other BH spacetimes [107], always finding excellent agreement with numerical
calculations [194, 224, 225].

The application of the monodromy method requires extreme care in identifying the
appropriate Stokes lines and integration contours. Natario and Schiappa [107] pointed out
some instances of inappropriate applications of the technique. A more rigorous mathematical
treatment of these methods is highly desirable.

4.4. Asymptotically anti-de Sitter black holes: a series solution

With the exception of the monodromy technique, the methods discussed so far work for
asymptotically flat or (with some minor modifications) dS spacetimes. For asymptotically
AdS spacetimes, the perturbation equations exhibit regular singularities both at the horizon
and at spatial infinity. Local solutions in the vicinity of the regular singular points are
represented by convergent Frobenius series [226]. In many cases, the radius of convergence
of the series is equal to or larger than the interval of interest. In this case, a simple numerical
procedure (implemented e.g. by Horowitz and Hubeny in [92]) is possible. Consider, for
example, a scalar field � in the SAdS4 spacetime, satisfying the wave equation (10). Defining
� for a generic wavefunction as � = eiωr∗�, we find

f (r)
d2�

dr2
+ [f ′ − 2iω]

d�

dr
− V

f
� = 0, (71)

where f ′ ≡ df/dr . To find the frequencies ω that satisfy the boundary conditions, we first
note that equation (71) has only regular singularities in the range of interest. To deal with the
point at infinity, we first change the independent variable r to x = 1/r and get

(x − x+)s(x)
d2�

dx2
+ t (x)

d�

dx
+

u(x)

x − x+
� = 0, (72)

where x+ = 1/r+ ≡ h, s = −f x4/(x −x+), t = −[2f x3 −f ′x2 −2iωx2], u = V (x −x+)/f .
Equation (72) admits a local (near x = h) Frobenius solution of the form

�(x) = (x − h)α
∞∑
n=0

an(x − h)n, (73)

where an(ω) is a function of the frequency. The radius of convergence of the series is limited
by the distance to the next nearest singular point of the equation. The index α is determined
by imposing the boundary condition at the horizon. Writing

s(x) =
∞∑
i=0

si(x − h)i, t (x) =
∞∑
i=0

ti(x − h)i, u(x) =
∞∑
i=0

ui(x − h)i (74)

and substituting equations (73) and (74) in equation (71), we get an indicial equation for α:
α(α − 1)s0 + αt0 + u0 = 0. We also have s0 = 2h2κ, t0 = 2h2(κ − iω) and u0 = 0, where the
surface gravity is κ = f ′(r+)/2. Therefore, either α = 0 or α = iω/κ . One can check that the
second option corresponds to outgoing waves at the horizon, so we choose α = 0. Inserting
the decomposition (73) with α = 0 in equation (71) and comparing powers of (x − h), we get
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a recurrence relation for the an’s:

an = − 1

n(n − 1)s0 + nt0

n−1∑
i=0

[i(i − 1)sn−i + itn−i + un−i] ai. (75)

Since the differential equation is linear, a0 is just an arbitrary normalization constant. Using the
boundary condition � = 0 at infinity (x = 0), we finally obtain a simple relation determining
the QNM frequencies:

∞∑
n=0

an(−h)n = 0. (76)

In practice one computes the Nth partial sum of the series (76) and finds the roots ω of the
resulting polynomial expression, checking for convergence by comparison with (say) the roots
obtained from the (N + 1) th partial sum. The method can be easily implemented; see e.g. the
publicly available Mathematica notebook [47] that was used in [130] to compute low-lying
modes of the SAdS4 geometry. This notebook can be easily modified to deal with other
geometries.

Some mathematical aspects of the series solution method as applied to QNMs in
asymptotically AdS backgrounds are discussed in [99].

4.5. Asymptotically anti-de Sitter black holes: the resonance method

The series solution described in the previous subsection converges very slowly for small SAdS
BHs. Fortunately, in this regime there is a simple alternative: the resonance method [227].
This method requires a numerical integration of the wave equation, but unlike the original
numerical procedure by Chandrasekhar and Detweiler [62], one only needs to search for roots
on the real-ω line.

It is well known that quasi-bound states manifest themselves as poles in the scattering
matrix and as Breit–Wigner resonances in the scattering amplitude. Chandrasekhar and
Ferrari made use of the form of the scattering cross section near these resonances in their
study of gravitational wave scattering by ultra-compact stars [228, 229]. For quasi-bound,
trapped modes of ultra-compact stars, the asymptotic wave amplitude at spatial infinity
� ∼ α cosωr + β sinωr has a Breit–Wigner-type behavior close to the resonance:

α2 + β2 ≈ constant
[
(ω − ωR)

2 + ω2
I

]
, (77)

where ω−1
I is the lifetime of the quasi-bound state and ω2

R is its characteristic ‘energy’. The
example of ultra-compact stars shows that the search for weakly damped QNMs corresponding
to quasi-bound states (ω = ωR − iωI with ωI � ωR) is extremely simplified. One locates
the resonances by looking for minima of α2 + β2 on the ω = ωR line, and the corresponding
damping time ωI can then be obtained by a fit to a parabola around the minimum [228, 229].

It was shown in [227] that these ideas can be used very successfully in BH spacetimes,
if one integrates in from spatial infinity to the BH horizon (i.e. the appropriately redefined
quantities α2 + β2 are taken close to the horizon). The resonance method is extremely simple
and accurate, especially for small SAdS BHs [227] (see also section 6.1). It is presently
unclear whether it can be applied successfully to study QNMs in other BH spacetimes.

4.6. The continued fraction method

Applications of the continued fractions to eigenvalue problems have an interesting history
dating back to Jaffé’s 1933 paper on the spectrum of the hydrogen molecule ion, or perhaps
to even earlier times (some details and relevant references can be found in [99]).
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The method was applied to gravitational problems by Leaver, leading to what is possibly
the most successful algorithm to date to compute QNM frequencies [75–77]. Leaver’s
approach is based on the observation that the Teukolsky equation is a special case of a general
class of spheroidal wave equations that appear in the calculation of the electronic spectra
of the hydrogen molecule ion [76]. These equations can be solved through a three-term
recurrence relation, and the boundary conditions lead to a continued fraction characterizing
the QNMs. Originally devised for the Schwarzschild and Kerr geometries [220, 225,
230, 231], the method has also been applied to RN BHs [232], Kerr–Newman BHs [233],
higher dimensional BHs [234–237], SdS BHs [238, 239] and acoustic BHs [240] (see section
10.4), among others. We illustrate the main ideas by considering the Kerr case. Start with the
following series solution for the angular eigenfunctions defined in equation (25):

sSlm(u) = eaωu (1 + u)k− (1 − u)k+

∞∑
p=0

ap(1 + u)p, (78)

where k± ≡ |m ± s|/2. The expansion coefficients ap are obtained from the three-term
recurrence relation

α0a1 + β0a0 = 0, αpap+1 + βpap + γpap−1 = 0, p = 1, 2 . . . , (79)

where the constants αp, βp, γp are given in the original work [75]. Given a complex argument
ω, the separation constant sAlm can be obtained solving numerically the continued fraction
β0 − α0γ1

β1−
α1γ2

β2−
α2γ3

β3− · · · = 0 or any of its inversions [75].
A solution Rr+ of the radial equation (25) should satisfy the appropriate boundary

conditions:

lim
r→r+

Rr+ ∼ (r+ − r−)−1−s+iω+iσ+ eiωr+(r − r+)
−s−iσ+ , (80)

lim
r→∞ Rr+ ∼ AT

out(ω)r−1−2s+iω eiωr . (81)

In these relations, σ+ = (ωr+ − am) /b and b = √
1 − 4a2. A convenient series solution close

to the horizon can be found by methods due to Jaffé (see [75]):

Rr+ = eiωr(r − r−)−1−s+iω+iσ+(r − r+)
−s−iσ+

∞∑
n=0

ar
n

(
r − r+

r − r−

)n

. (82)

The coefficients ar
n can be obtained from a recurrence relation similar to equation (79). The

continued fraction method is very powerful at computing overtones because the nth overtone
turns out to be the most stable numerical root of the nth inversion of the radial continued
fraction (which in principle should be completely equivalent to any other inversion) [75].
This observation makes it (relatively) easy to numerically compute Kerr overtones up to
n ∼ 50 and Schwarzschild overtones up to n ∼ 100; refinements of the technique to compute
even higher overtones will be discussed in section 5.3. Given the QNM frequencies and
the corresponding angular eigenvalues sAlm, it is a simple matter to compute Rr+ for moderate
values of r (the convergence of the expansion gets worse for large values of r). We provide
an implementation of the method to compute the QNM frequencies, as well as the radial
and angular wavefunctions, in a publicly available Mathematica notebook [47]. On the same
webpage we also provide numerical data for the QNM frequencies of the first eight Kerr
gravitational modes (n = 0, . . . , 7) with 2 � l � 7, as computed by an independent Fortran
code which will be made available upon request [241].
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5. The spectrum of asymptotically flat black holes

In this section, we briefly review the structure of the QNM spectrum of BHs belonging to
the Kerr–Newman family. More details can be found in [241]. We focus our discussion on
gravitational perturbations and refer to relevant works on other kinds of perturbations in the
appropriate sub-sections.

5.1. Schwarzschild

For Schwarzschild BHs, scalar-type and vector-type gravitational perturbations can be shown
to give rise to the same QNM spectrum. This remarkable result, due to Chandrasekhar and
collaborators [22, 62, 141], is reviewed in appendix A.

The vector-type potential is simpler than the scalar-type potential, so it is customary to
compute QNMs for vector-type perturbations. We computed QNM frequencies using the
continued fraction technique (see section 4.6) as improved by Nollert [220]. Schwarzschild
QNM frequencies with l = 2 and l = 3 are shown in figure 5. The data are also available
online [47].

It is apparent from figure 5 that the gravitational QNMs of Schwarzschild BHs are naturally
divided into two categories. A mode whose frequency is (almost) purely imaginary separates
the lower QNM branch from the upper branch. This mode is very close to (and may actually
coincide with) the so-called algebraically special mode [142], discussed in appendix A. It is
located at

Mωl ≈ ±i(l − 1)l(l + 1)(l + 2)/12, (83)

and it can be taken as roughly marking the onset of the asymptotic high-damping regime. The
algebraically special mode corresponds to an overtone index n = 9 when l = 2, to n = 41
when l = 3 and to even larger values of n as l increases. This means that the asymptotic high-
damping regime is very hard to probe numerically as we approach the eikonal limit (l � 1).
The existence of an almost purely imaginary QNM frequency is unique to gravitational
perturbations: for other known fields, the approach to the asymptotic regime is monotonic
(see the bottom panel of figure 5 and [234]). For gravitational perturbations we will, somewhat
arbitrarily, define the weakly damped (highly damped) regime as corresponding to imaginary
parts smaller (larger) than the algebraically special frequency. For spins of other fields there
is no such clear marker (see figure 5), but we will usually call ‘weakly damped’ modes those
with n � 10 and ‘highly damped’ modes those with n � 10.

The weakly damped modes. The weakly damped gravitational modes were computed
numerically by Chandrasekhar and Detweiler [62], Leaver [75] and many others, and they
are available online [47]. Iyer [189] computed the first few modes for scalar, electromagnetic
and gravitational perturbations using the WKB technique, and compared results against the
more accurate continued fraction method. In geometrical units, the fundamental l = |s|
mode is Mω = 0.1105 − 0.1049i for s = 0 and Mω = 0.2483 − 0.0925i for s = 1. For
ringdown detection from astrophysical BHs the most relevant QNM is, in most situations, the
fundamental gravitational mode with l = 2, with Mω = 0.3737 − 0.0890i. This mode has
oscillation frequency and damping time given by

f = ωR/2π = 1.207

(
10M�
M

)
kHz, (84)

τ = 1/|ωI| = 0.5537

(
M

10M�

)
ms, (85)

where M ∼ 10M� is a typical value for a stellar-mass BH (see section 9.3).
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Figure 5. Top: QNM frequencies for gravitational perturbations with l = 2 (black circles) and
l = 3 (red diamonds). In both cases we mark by an arrow the algebraically special mode, given
analytically by equation (83); a more extensive discussion of this mode is given in appendix A.
Note that as the imaginary part of the frequency tends to infinity, the real part tends to a finite, l-
independent limit. Bottom: comparison of the l = |s| QNM frequencies for scalar, electromagnetic
and gravitational perturbations.
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Weakly damped QNMs for Schwarzschild perturbations with half-integer spins have been
computed in the WKB approximation by Cho and collaborators [147, 242].

The highly damped modes. Using a variant of Leaver’s method, Nollert carried out the
first reliable numerical calculation of highly damped QNM frequencies for gravitational
perturbations [220]. The real part of the QNM frequencies is well fitted, for large n, by a relation
of the form ωR = ω∞ + λs,l/

√
n. The leading-order fitting coefficient 2Mω∞ � 0.08742 is

independent of l, and it has the same value for s = 2 and s = 0 [224]. Nollert’s numerical
results have been confirmed by various analytical calculations. Motl [91] used Leaver’s
continued fraction conditions to show that in the limit n → ∞, the following asymptotic
expansion holds:

ω ∼ T ln 3 − (2n + 1)π iT + O(n−1/2), (86)

where T = (8πM)−1 is the Hawking temperature. This conclusion was confirmed by
complex-integration [101] and phase-integral techniques [219].

Corrections of order ∼n−1/2 to equation (86) were first obtained by Neitzke [243] and
Maassen van den Brink [244]. Musiri and Siopsis [245] developed a systematic perturbative
approach to determine subdominant corrections as n → ∞, using a solution of the Regge–
Wheeler equation in terms of Bessel functions. Ignoring contributions of order O(1/n), the
result for s = 0 and s = 2 can be written as

ω

T
= −(2n + 1)π i + ln 3 +

1 + i√
n + 1/2

3l(l + 1) − (s2 − 1)

18|s2 − 1|√2π3/2
�4

(
1

4

)
. (87)

The subdominant coefficients are in agreement with fits of numerical results [220, 224, 234].
For electromagnetic perturbations, analytic and numerical results suggest that the real part
ωR → 0 in the asymptotic limit [101, 234], which is also apparent from figure 5. The
above calculation has been generalized to massless fermionic perturbations. By solving
the Teukolsky equation in terms of confluent hypergeometric functions, Musiri and Siopsis
[246, 247] confirmed the known results for integer spins and found in addition that the result
for s = 1/2 and s = 5/2 can be written as

ω

T
= −(2n + 1)π i +

2(1 + i)

(s2 + 23/4)
√
n
(3l(l + 1) + 1 − s2)�2

(
1

4

)
. (88)

For s = 3/2, there is no correction at order O(n−1/2). Numerical studies on s = 1/2 fields
confirm that ωR → 0 and the spacing δωI → 2πT = 1/4M as n → ∞ [248].

In summary, numerical and analytical results for Schwarzschild BHs are in perfect
agreement. As |ωI| → ∞, ωR → T ln 3 for scalar and gravitational oscillation frequencies
and ωR → 0 for perturbations of other spins. The spacing of the imaginary parts for large n
is always given by 2πT . By considering the scattering amplitude in the Born approximation,
Padmanabhan showed that this universality in the spacing arises from the exponential redshift
of the wave modes close to the horizon [249].

The eikonal limit. By their own nature, WKB methods become increasingly accurate for large
l, and they can be used to compute the QNM frequencies analytically when l � 1. Up to
order O(l−2), the result is [58, 188–190]

Mω = 1

3
√

3

[(
l +

1

2

)
− 1

3

(
5
(
n + 1

2

)2

12
+

115

144
− 1 + s2

)(
1

l
− 1

2l2

)]

− i

(
n + 1

2

)
3
√

3

[
1 +

1

9

(
235

(
n + 1

2

)2

432
− 1415

1728
+ 1 − s2

)
1

l2

]
. (89)

32



Class. Quantum Grav. 26 (2009) 163001 Topical Review

The convergence of the series gets worse with increasing n (cf also figure 3). In the eikonal
limit the asymptotic behavior of the potential is not important, so it should not be surprising
that a Pöschl–Teller approximation of the Schwarzschild potential, discussed in section 4.1,
yields the correct result (to leading order) for large l. The eikonal regime of Schwarzschild
BHs is related to the properties of unstable circular null geodesics [58, 59, 70, 73, 206–209];
the leading order of equation (89) can be written as ω = 
cl − i (n + 1/2) λ, where 
c is the
orbital frequency and 1/λ is the instability timescale of the unstable circular null geodesic.
Such a connection can be generalized to any asymptotically flat, static spacetime in four and
higher dimensions [208].

5.2. Reissner–Nordström

With a few exceptions, BH charge is usually considered astrophysically negligible. Despite
this, the RN metric is of more than academic interest: for example, charged naked singularities
have been proposed as classical models for elementary particles (see [233] and references
therein). Handling scalar fields in the background of a charged BH requires only a
straightforward generalization of the uncharged case, resulting in a wave equation of form
(10). Electromagnetic and gravitational perturbations are more technically challenging, since
they are coupled through the Einstein–Maxwell equations. It is still possible to reduce the
problem to the study of two wave equations of the general form (10) for two wavefunctions
Z−

1 , Z−
2 [22]: (

d2

dr2∗
+ ω2

)
Z

(−)
i = V

(−)
i Z

(−)
i ,

V
(−)
i = (r2 − 2Mr + Q2)

r5

[
l(l + 1)r − qj

(
1 +

qi

(l − 1)(l + 2)r

)]
.

(90)

Here q1 + q2 = 6M,−q1q2 = 4Q2(l − 1)(l + 2) and i, j = 1, 2 (i �= j). In the limit when
the charge Q/M goes to zero, Z−

1 , Z−
2 describe pure electromagnetic and pure vector-type

gravitational perturbations of a Schwarzschild BH, respectively. In the limit of maximally
charged BHs (Q/M = 1), the wave equations have a different singularity structure and deserve
a special treatment [250].

The weakly damped modes. The behavior of the weakly damped modes of gravitational/
electromagnetic perturbations is exemplified in figure 6. The solid line is the trajectory
described in the complex-frequency plane by the fundamental QNM with l = 2 corresponding
to Z−

2 (perturbations that reduce to the vector-type gravitational Schwarzschild case as
Q/M → 0). The dashed line is the trajectory of the fundamental QNM with l = 1
corresponding to Z−

1 (which reduces to purely electromagnetic perturbations as Q/M → 0).
The Schwarzschild limit corresponds to the bottom left of each curve, and the trajectories
are described clockwise as Q increases. The real part of the frequency grows monotonically
with Q and the imaginary part shows an extremum. A striking feature is that modes of Z−

2
with angular index l coalesce with modes of Z−

1 with index (l − 1) in the extremal limit. We
will elaborate on the significance of this result later in this section. In general, there are two
algebraically special frequencies for RN BHs [142], located at

ω1,2 = ± i

2

(l − 1)l(l + 1)(l + 2)

3M ∓
√

9M2 + 16Q2(l − 1)(l + 2)
. (91)

Using the numerical procedure described by Chandrasekhar and Detweiler [62], Gunter
computed the lowest lying QNMs of electromagnetic/gravitational perturbations [251].
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Figure 6. Trajectory the complex-frequency plane described by the fundamental QNM as the
charge Q/M is increased. The solid line corresponds to l = 2 and Z−

2 (which reduces to
vector-type perturbations as Q/M → 0); the dashed line corresponds to l = 1 and Z−

1 (purely
electromagnetic perturbations in the limit Q/M → 0). The two modes coalesce in the extremal
limit (Q/M → 1).
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Figure 7. Numerical and analytical predictions for the real and imaginary parts of the RN QNM
frequencies as a function of charge for n = 5 × 103.

Extensive comparisons of Gunter’s results against WKB predictions were done by Kokkotas
and Schutz [252]. The continued-fraction method can be generalized to charged BHs with
relatively minor modifications [232], and it was used to compute numerically the weakly and
highly damped QNMs of gravitational/electromagnetic perturbations [224, 232, 241, 250,
253, 254]. Weakly damped modes of massive charged fields were computed by WKB
techniques in [255]. Dirac QNMs in the Kerr–Newman metric (which includes RN as a
special case) have been computed by continued fractions in [256]. For generalizations to
higher dimensional charged BHs, see [257] and references therein.

The highly damped modes. Let us focus our attention on the high-damping regime for Z−
2 ;

results for Z−
1 are similar. For a more detailed discussion of highly damped modes, see

[224, 241]. The modes’ behavior is better understood by looking separately at the real and
imaginary parts of their frequencies as functions of charge. Numerical results are shown in
figure 7. Frequencies and damping times oscillate as a function of charge whenever Q is larger
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than some Qcrit, and Qcrit/M decreases with the overtone number. For moderate-to-large
values of Q/M , numerical data are in excellent agreement with the analytical prediction
by Motl and Neitzke [101, 107, 219], valid for scalar and electromagnetic-gravitational
perturbations of a RN BH in the large-damping limit:

e
ω
T + 2 + 3 e

Q4

r4
+

ω
T = 0, T =

√
M2 − Q2

/ [
2πr2

+

]
, (92)

where r+ = M+
√
M2 − Q2 is the radius and T is the Hawking temperature of the outer horizon.

The complex solutions of equation (92) exactly overlap with the oscillations observed in
figure 7 for large enough values of Q/M . This agreement gives support to the asymptotic
formula (92), while confirming that the numerics are still accurate for large values of n and
Q/M [243]. However, equation (92) presents us with some striking puzzles. The predicted
asymptotic RN QNM frequencies do not reduce to the expected Schwarzschild limit of
equation (86); one instead finds ωR → T ln 5 as Q/M → 0 [101, 243]. Equation (92)
should also be taken with care in the extremal limit (Q/M → 1): in this case the inner
and outer horizons coalesce, the topology of the singularities in the differential equation
changes and the problem requires a separate analysis [107]. Such an analysis shows that the
asymptotic oscillation frequency for extremal RN BHs is not given by the limit of equation (92)
as Q/M → 1. Instead, the modes are purely damped (ωR → 0). An interesting classification
of the solutions of equation (92) can be found in figure 3 and section 4.4 of [219]. Besides
‘spiraling’ solutions, the equation also admits periodic solutions when

√
1 − Q2/M2 is a

rational number and even pure imaginary solutions that may not be QNMs at all. A survey
of highly damped QNM spectra of charged BHs can be found in [107]. For a complete
account of the asymptotic QNM spectrum of several perturbing fields in the RN metric,
see [258].

The eikonal limit. The eikonal regime (l � 1) is well described by a WKB analysis. The
lowest order WKB approximation yields

ωR ∼ (l + 1/2)
c, ωI ∼ −1/2
c

√
3M/r0 − 4Q2

/
r2

0 , (93)

where rc and
c are the radius and frequency of the unstable circular null geodesic, respectively,

rc = (
3M +

√
9M2 − 8Q2

)/
2 and 
c =

√
M

/
r3

0 − Q2
/
r4

0 [252, 254]. QNMs in this regime
can also be interpreted, from a geometrical-optics point of view, as waves trapped at the
unstable circular null geodesics [73, 208].

Extremal Reissner–Nordström. A direct application of Leaver’s method fails in the extremal
limit. In this limit the two horizons coalesce, and the radial wave equation has irregular
singular points at the horizon and at infinity. Onozawa et al [250] managed to reduce the
problem to a five-term recurrence relation. As anticipated from figure 6, the QNM spectrum
for extremal RN BHs is characterized by an isospectrality between electromagnetic and
gravitational perturbations: modes of Z−

2 with angular index l coalesce with modes of Z−
1

with index (l − 1) in the extremal limit. This has been shown to be a manifestation of
supersymmetry [259–261].

The resulting QNM spectrum [224, 241, 250] looks qualitatively similar to the
Schwarzschild spectrum of figure 5. The real part first decreases, approaching the pure-
imaginary axis as the overtone index grows. A QNM seems to be located at ω = (0,−3.0479),
while Chandrasekhar’s formula (91) predicts a mode at ω = (0,−3). The numerical method
used so far becomes unreliable for |ωI| � 10, and better techniques will be needed to verify
analytical predictions [101, 107].
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Figure 8. Left: ‘Zeeman–like’ splitting of the fundamental gravitational mode with l = 2. We
mark by dots the points corresponding to a/M = 0.0, 0.1, 0.2, . . . , 1.0. Right: trajectory of the
first eight Kerr QNM frequencies with m = 2 (solid lines) and m = −2 (dashed lines). Filled
circles mark the corresponding mode in the Schwarzschild limit. An arrow indicates the small loop
described by the ‘exceptional’ QNM with n = 6, which does not tend to the critical frequency for
super-radiance (see also figures 3 and 4 in [230]). The data used to produce this figure (and more)
are available online [47].

5.3. Kerr

The Kerr QNM spectrum has a rich and complex structure [75, 230, 231, 241, 262]. The
most relevant feature of the spectrum is that rotation acts very much like an external magnetic
field on the energy levels of an atom, causing a Zeeman splitting of QNM frequencies. The
determination of the QNM frequencies is tangled to the solution of an angular equation,
the spin-weighted spheroidal harmonic equation (see sections 2.3 and 4.6). In the general case
aω �= 0, there are no known closed-form solutions for the separation constant Alm or for the
spheroidal harmonics. However the spheroidal harmonics satisfy various symmetry properties
[75, 153], namely

(i) Eigenvalues for negative and positive m are related: sAlm = sA
∗
l−m.

(ii) Eigenvalues for negative and positive s are related: −sAlm = sAlm + 2s.
(iii) If ω and −sAlm correspond to a solution for given (s, l, m), another solution can be

obtained by the following replacements: m → −m,ω → −ω∗,−s Alm →−s A∗
l−m.

These symmetries are usually a source of some confusion, so we give an explicit numerical
example. For a = 0.6M , the methods described in section 4.6 yield the following eigenvalues
for s = −2:

Mω22 = 0.49404 − 0.08376i, Mω2−2 = −0.49404 − 0.08376i, (94)

Mω22 = −0.31678 − 0.08889i, Mω2−2 = 0.31678 − 0.08889i. (95)

We illustrate the splitting of the fundamental gravitational QNM with l = 2 in the
left panel of figure 8. Even though QNMs have both positive and negative frequencies, it
is customary to plot only the positive-frequency part of the spectrum [75]; in view of the
symmetry properties listed above, this yields all the necessary information. As the rotation
parameter a/M increases, the branches with m = 2 and m = −2 move in opposite directions,
being tangent to the branches with m = 1 and m = −1 in the limit a/M → 0. For low

36



Class. Quantum Grav. 26 (2009) 163001 Topical Review

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

2.0

4.0

6.0

8.0

Figure 9. Frequencies and quality factors for the fundamental modes with l = 2, 3, 4 and different
values of m. Solid lines refer to m = l, . . . , l (from top to bottom), the dotted line to m = 0
and dashed lines refer to m = −1, . . . ,−l (from top to bottom). Quality factors for the higher
overtones are lower than the ones we display here.

overtone numbers and small values of a/M , the rotation-induced splitting of the modes is
roughly proportional to m, as physical intuition would suggest.

The weakly damped modes of Kerr black holes. In the right panel of figure 8, we show the first
eight gravitational QNM frequencies with m = 2 (solid lines) and m = −2 (dashed lines).
A general feature is that almost all modes with m > 0 cluster at the critical frequency for
super-radiance, 2Mω = m, as a/M → 1. This fact was first observed by Detweiler [262],
and a thorough examination of the extremal limit can be found in [263–265]. The mode with
n = 6 (marked by an arrow) shows a peculiar deviation from the general trend, illustrating
the fact that some positive-m modes do not tend to this critical frequency in the extremal
limit.

For gravitational wave detection we are mostly interested in the frequency and quality
factor of the dominant modes, which determine whether the mode lies in the sensitive frequency
band of a given detector and the number of observable cycles. Figure 9 shows these quantities
for QNMs with l < 5. Improving on previous results [9, 266], Berti et al [10] presented
accurate fits for the first three overtones with l = 2, 3, 4 and all values of m, matching the
numerical results to within 5% or better over a range of a/M ∈ [0, 0.99] (see tables VIII–X
in [10] and the numerical data available online [47]). For instance, defining b̂ ≡ 1 − a/M ,
the frequency ωlm = ωR and quality factor Qlm ≡ ωR/(2ωI) of the fundamental l = m = 2
and l = 2,m = 0 modes are

Mω22 � 1.5251 − 1.1568b̂0.1292, Q22 � 0.700 + 1.4187b̂0.4990, (96)
Mω20 � 0.4437 − 0.0739b̂0.3350, Q20 � 4.000 − 1.9550b̂0.1420. (97)

The highly damped modes. The intermediate- and large-damping regimes of the QNM
spectrum of Kerr BHs are even more puzzling than the RN spectrum. The main technical
difficulty in pushing the calculation to higher damping is that Leaver’s approach requires the
simultaneous solution of the radial and angular continued fraction conditions. For mode order
n � 50, the method becomes increasingly unreliable. A way around this ‘coupling problem’
is to study the asymptotic behavior of the angular equation as |aω| � |aωI| → ∞ [153, 225].
The leading-order behavior of the separation constant sAlm(aω) when ω � iωI and |aω| → ∞
is

sAlm = i(2L + 1)aω + O(1), |aω| → ∞, (98)
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Figure 10. Left: asymptotic real part 2MωR = 2�(a/M) of the l = m = 2 gravitational and
scalar QNM frequencies extrapolated from numerical data. Points refer to numerical results and
the line is the analytical prediction. Results are independent of l, s and the sign of m. Right: same
for the imaginary part.

with L = l − |m| for |m| � |s| and L = l − |s| otherwise [153, 225]. By replacing this
analytic expansion in the radial continued fraction one effectively decouples the angular and
radial continued fractions, and the calculation of QNM frequencies with n � 50 can be
performed by solving only the radial continued fraction. It turns out that in the highly damped
limit, ωR is independent of (s, l) and proportional to m:

2MωR = m�(a/M). (99)

Numerical results for �(a/M) are shown in figure 10. These numerical results have been
confirmed by recent analytical calculations in an impressive tour de force [221, 222, 267, 268].
The final result can be implicitly expressed as a contour integral, which in turn can be expressed
as a sum of elliptic integrals [222, 268]. The relevant equations are summarized in appendix B
and compared against our own numerics in figure 10. The agreement is remarkable, given how
involved the numerical and analytical calculations are. In the Schwarzschild limit (a/M → 0),
it can be shown that �(a) � 0.30634 (a/M)1/3 and 2MδωI � 1/2. A good fit to the analytical
predictions for the real part (accurate to within 0.8% in the entire range) is

� = 0.307 (a/M)1/3 − 0.308a/M + 0.156 (a/M)2 − 0.052 (a/M)3 . (100)

In the extremal limit (a/M → 1), the analytical results imply � � 0.10341, and
2MδωI � 0.51260. For any a/M , the imaginary part ωI grows without bound. The spacing
between consecutive modes δωI is not simply given by 2πT , but it is a monotonically increasing
function of a/M . A power fit in a/M of the numerical results yields [225]

2MδωI = 1/2 + 0.0219a/M − 0.0089(a/M)2. (101)

The agreement between the analytical predictions for the mode spacing and the fit of
equation (101) is better than 0.1% in the entire range of a/M . A generalization of these
asymptotic results to higher dimensional rotating BHs can be found in [222].

The eikonal limit. The eikonal limit of Kerr QNMs is not yet fully understood. Partial results
concern l = ±m modes, for which [10, 73, 208]

ω = ±m
c − (n + 1/2) |
c|
√

3M/rcδ
−1 (l = |m| → ∞), (102)

where rc and 
c are counter-rotating or co-rotating radius and orbital frequencies at the
unstable circular null geodesics, and 2δ = rc(rc − M)

/(
r2

c − 2Mrc + a2
)
. Again, this result

can be expressed as ω ∼ l
c − i(n + 1/2)/τ , with τ being the typical instability timescale
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of the unstable circular null geodesic [73, 10, 208]. To our knowledge, a simple geometrical
optics interpretation still lacks for modes with l �= |m|.

5.4. Kerr–Newman

General BH solutions of the Einstein–Maxwell system are described by the Kerr–Newman
metric. For this metric, the Klein–Gordon equation and the Dirac equation are still separable
[269], so QNMs can be computed using the same general methods that apply to Kerr BHs [256].
The scalar spectrum was analyzed by Berti and Kokkotas [233], who showed in particular that
the eikonal limit can still be understood in terms of unstable circular null geodesics.

Unfortunately, studies of the interplay of electromagnetic and gravitational fields in the
Kerr–Newman metric are plagued by a major technical difficulty: to date, all attempts to
decouple the electromagnetic and gravitational perturbations have failed (see e.g. section 111
of [22]). Approximations to gravitational/electromagnetic perturbations of the Kerr–Newman
geometry either keep the geometry fixed and perturb the electric field or (more interestingly)
keep the electric field fixed and perturb the geometry. This approach should be appropriate for
values of the charge Q at most as large as the perturbations of the spacetime metric. QNMs for
gravitational and electromagnetic perturbations in this approximation scheme were computed
in [233, 270], but a solution of the general problem is highly desirable, and it could shed light
on many open problems in BH physics.

5.5. Higher dimensional Schwarzschild–Tangherlini black holes

Here we briefly discuss the QNM spectrum of the higher dimensional analogues of
the Schwarzschild solution, known as Schwarzschild–Tangherlini BHs. Electromagnetic
perturbations of these BHs were considered by Crispino et al [134]. The elegant work by
Kodama and Ishibashi [102–104] laid the foundations for the analysis of higher dimensional
RN BHs.

Weakly damped modes. The lowest lying QNMs of a d-dimensional Schwarzschild–
Tangherlini BH were computed in a WKB approximation in [204, 216, 271, 272]. Leaver’s
method can be generalized to these higher dimensional BHs [234, 235], although the number
of terms in the recurrence relation rapidly grows with d. For instance, in d = 5 the recurrence
relation for vector-gravitational and tensor-gravitational perturbations has four terms, while
for scalar-type gravitational QNM frequencies it has eight terms [235]. A naive application
of Leaver’s method breaks down for d > 9. For large d more and more singularities, spaced
uniformly on the circle |r| = rh (where rh is the horizon radius), approach the horizon at r = rh.
A solution satisfying the outgoing wave boundary condition at the horizon must be continued
to some mid-point, and only then can the continued fraction condition be applied [273].
Alternative calculations of weakly damped modes for scalar and gravitational perturbations in
d dimensions make use of time evolutions [274].

Highly damped modes. In the large-damping limit, the leading-order result of the monodromy
calculation, equation (86), generalizes to the d-dimensional Schwarzschild–Tangherlini metric.
This was first suggested in [101], and then it was explicitly shown by Birmingham [275] (see
also [276]). The perturbative technique of [245] has been extended to bosonic fields in higher
dimensional Schwarzschild–Tangherlini BHs, with the result [234]

ω = T ln(1 + 2 cosπj) + (2n + 1)π iT + kdω
−(d−3)/(d−2)
I . (103)
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Here j = 0 for scalar fields and tensor-type gravitational perturbations, j = 2 for vector-type
gravitational perturbations and j = 2/(d − 2), 2 − 2/(d − 2) for vector- and scalar-type
electromagnetic perturbations, respectively. The coefficient kd can be determined analytically
for given values of d and j [234]. For electromagnetic perturbations in d = 5, equation (103)
is singular: this either means that there are no asymptotic QNM frequencies at all (a possibility
first suggested in [101]) or that the asymptotic frequency is zero. Numerical results support
the latter possibility [234].

The above result illustrates a general feature of the high-damping regime, which concerns
the damping itself. It was shown by several authors [249, 277, 278] that for spacetimes with
a single horizon, for all values of l one has

ωI = −2π in/T , n → ∞, (104)

where T is the Hawking temperature. General results for the oscillation frequencies were
obtained in [279] for single-horizon spacetimes (see also [280] for BHs in two-dimensional
dilaton gravity). An elegant unification of these results dealing with a rather general class of
wave equations is given in [281] (but see [282] for words of caution on the generality of the
results). A review on the highly damped regime of QNMs for several spacetimes can be found
in [107].

Eikonal limit. For l � 1, a WKB analysis of the Schwarzschild–Tangherlini perturbation
equations yields [208, 216],

ωr+ = 
c(l + d/2 − 3/2 − i(n + 1/2)
√
d − 3). (105)

where 
c = √
d − 3/

√
d − 1 [2/(d − 1)]

1
d−3 is the orbital angular velocity at the circular null

geodesic [208].

Infinite-dimensional limit (d → ∞). To our knowledge, the interesting limit where the
dimensionality d tends to infinity has not been studied in much detail in the literature. Using
a WKB analysis for scalar fields or gravitational tensor modes, we find

ωr+ = d/2 − iκ
√
d/2, d → ∞, (106)

with κ being a factor of order unity depending on the perturbing field (κ = 1, 1/
√

2 for scalar
fields and vector gravitational perturbations, respectively). BHs in higher dimensions are
much better resonators, with a quality factor Q ≡ ωR/[2ωI] increasing as

√
d . As far as we

know, no numerical studies are available to confirm this analytical prediction.
It is important to recall that black objects in higher dimensions may have other topologies

beside the spherical one. One family consists of the so-called black strings, whose gravitational
perturbations were studied by Gregory and Laflamme [283, 284] and Kudoh [285]. Higher
dimensional ‘squashed’ Kaluza–Klein BHs were considered in [286] and perturbations of
brane-localized BHs were studied, for instance, in [287–289]. Apart from specific noteworthy
exceptions [290–293], gravitational perturbations of higher dimensional rotating solutions are
yet to be understood. For a review on higher dimensional BHs, see [34].

6. The spectrum of asymptotically anti-de Sitter black holes

6.1. Schwarzschild anti-de Sitter black holes

The metric (3) of an uncharged static BH in an (asymptotically) AdS spacetime has two
parameters, r0 and L, related, respectively, to the mass of the BH and the cosmological
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Figure 11. The (dimensionless) Hawking temperature T L as a function of the (dimensionless)
horizon radius r+/L for asymptotically AdS BHs (shown here for d = 5). The horizontal line is
the critical temperature of the Hawking–Page phase transition.

constant. The horizon radius r+ is the largest root of the equation f (r) = 0. The Hawking
temperature associated with the metric (3) is

T = [d − 3 + (d − 1)ξ 2]/(4πξL), (107)

where ξ = r+/L. For d � 4, this function has a characteristic minimum at ξmin =√
(d − 3)/(d − 1) with Tmin = √

(d − 1)(d − 3)/2πL (see figure 11).
The specific heat of BHs with ξ < ξmin (ξ > ξmin) is negative (positive). For T < Tmin,

no BH solution exists, and the state with minimal free energy is ‘thermal AdS’ (Euclidean
AdS/Z). For T > Tmin, there are two solutions with the same temperature, ‘small’ and ‘large’
BHs. Small BHs have negative specific heat and are thermodynamically unstable. Large BHs
exist in equilibrium with the heat bath. Moreover, for ξ < 1, the minimum of the free energy
still corresponds to thermal AdS, even for T > Tmin. Thus, the stable ground state is given
by large BHs with ξ > 1 (and T > Tc = (d − 2)/2πL). The (first-order) transition between
thermal AdS and a large AdS BH is known as the Hawking–Page phase transition [294]. As
shown by Witten [295], in the gauge-gravity duality this transition corresponds to a first-order
deconfinement transition in a dual thermal strongly coupled gauge theory on a sphere of
radius L. These considerations can be extended to charged and rotating AdS BHs (see e.g.
[296, 297] and references therein). The role of small AdS BHs in the gauge-gravity duality
is not well understood (see, however, [298]). The limit of extra large BHs with r+/L → ∞
in the appropriate scaling leads to black branes dual to strongly coupled gauge theories in flat
space (see section 8).

BHs in AdS in the context of the gauge-string duality attract considerable interest because
they serve as a good laboratory for studying the most acute problems of a theory of gravity: the
information loss paradox, BH singularities and some aspects of quantum gravity. Although
we will not venture into this fascinating field in this review, in section 8 we mention some of
these topics which involve the use of QNMs.

Another peculiar feature of asymptotically AdS space is the ‘active role’ played by its
boundary. In AdS, null geodesics reach the boundary in finite coordinate time. One thus often
refers to an asymptotically AdS space as a box, having in mind that AdS boundary conditions
directly affect the bulk physics [299–301]. This should be contrasted with the asymptotically
flat case, where the only physically relevant choice for the boundary conditions of the bulk
fluctuations corresponds to outgoing waves at spatial infinity. In the gauge-gravity duality, the
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choice of the AdS boundary conditions is dictated by a holographic prescription [98, 302–304];
see section 8.

QNMs in asymptotically AdS backgrounds were first considered by Chan and Mann
for a conformally coupled scalar field [305] (see also [306]). Subsequent interest was
strongly motivated by the development of the AdS/CFT correspondence. An interesting
albeit somewhat qualitative discussion of thermalization in AdS/CFT first mentioning QNMs
appeared in [307] (see also the important work of Danielsson et al [308, 309]). Horowitz and
Hubeny [92] explicitly pointed out the fundamental link between QNMs of a large AdS BH,
which describe the background’s relaxation into a final state, and the dual field theory, where
they describe the approach to thermal equilibrium. They computed the QNMs of a minimally
coupled massless scalar in intermediate or large AdS BHs for dimensions d = 4, 5, 7 [92].
After this seminal work, a series of studies in four and higher dimensions led to a deeper
understanding of QNMs in asymptotically AdS backgrounds.

The following is a brief overview of the QNMs of the four-dimensional and higher
dimensional SAdS geometries. For more details, we refer to the original works (see [92, 107,
130, 131, 194, 223, 271, 310–324] and references therein). The results below focus mostly on
the large BH regime r+/L � 1 and on Dirichlet boundary conditions, which are more relevant
for holography. Other boundary conditions were investigated in [162–165].

The weakly damped modes of large black holes. The fundamental QNM frequencies for scalar
field perturbations were first computed by Horowitz and Hubeny [92] for intermediate and
large BHs. In [130, 194], the analysis was extended to electromagnetic and gravitational
perturbations. These works considered only d = 4; the d = 5 case was analyzed in [316] and
half-integer spins were considered in [325, 326]. Approximate analytical solutions have been
discussed in [312–314] with particular emphasis on the d = 5 geometry.

The weakly damped QNM spectrum of a large (r+/L = 100) SAdS BH in d = 4 is
shown in figure 12. Usually the QNM frequencies scale with the horizon radius, ω ∝ r+/L

2

[92, 194], so the modes of any large BH can be obtained by rescaling appropriately the
numbers in the figure. The exception to this rule is marked by a red diamond and will be
discussed in more detail below. The frequencies of different perturbations are very similar:
scalar perturbations and scalar-type gravitational perturbations have basically the same spectra,
while vector-type gravitational perturbations are displaced by one overtone relative to these
two [194]. The QNM frequencies are practically independent of l for l � r+/L; the large-l
limit is discussed below. The QNM spectrum for electromagnetic perturbations has a peculiar
structure [130, 194, 311, 327, 328]: the real part of some modes asymptotes to zero when
r+/L → ∞, and for the dominant mode ωIL

2/r+ → −1.5.
The fundamental QNM for vector-type gravitational perturbations is extremely long-lived

when compared to all other modes of other kinds of perturbations. This mode has an interesting
interpretation in the gauge/gravity duality, discussed in section 8. The timescale of this long-
lived mode is proportional to r+, and the mode itself is easily computed numerically by a
straightforward application of the series solution [130, 194]. In a general d-dimensional SAdS
geometry, it is well described by

r+ω
vector-type
n=0 = −i(l − 1)(l + d − 2)/(d − 1), r+/L � 1. (108)

This was first observed numerically in [130, 194] for d = 4 and in [316] for d = 5. The four-
dimensional result was later confirmed analytically by Miranda and Zanchin [315]. Equation
(108) for general d was derived by Siopsis [324], and we checked that it agrees with numerical
results for d = 4 up to d = 8. In d = 4 and for r+/L � l, corrections to equation (108) can
be found:

r+ω
vector-type
n=0 = −i(l − 1)(l + 2)/3 − 0.0288 il4L2

/
r2

+ . (109)

42



Class. Quantum Grav. 26 (2009) 163001 Topical Review

-10  -5  0  5  10

0

5

10

15

20

Scalar/Vector-type/Scalar-type

Electromagnetic

"Special" vector-type

Figure 12. QNM frequencies for scalar (s = 0), electromagnetic (s = 1) and gravitational (s = 2)
perturbations of a large SAdS BH, computed for r+/L = 100 and l = s. In the large BH regime,
the frequencies scale with r+/L and are basically independent of l for l � r+/L. Furthermore,
scalar-field, tensor-type and vector-type gravitational perturbations are nearly isospectral, except
for a special mode belonging to the vector-type family and marked by a red diamond. For further
details, see [194, 311].

We estimate the uncertainty in the l4 term to be about 5%. Analytical calculations of these
corrections have been done in the r+ → ∞ limit [109, 329, 330] and are consistent with the
above numerical results after proper identifications. In this limit, the geometry becomes that
of a black brane and the angular wavefunctions Ylm are replaced by ei�p�x . For large l, p, one
has the correspondence Lp = l [331]. In particular, it is found that in the large l/L limit,

ωr+ = − il2

3
− iL2l4 9 − 9 log 3 +

√
3π

162r2
+

∼ − il2

3
− 0.0281L2l4

r2
+

, (110)

in quite good agreement with the numerical fits. For similar high-order analytical corrections
in higher dimensional AdS backgrounds, see [109, 329, 330].

If Dirichlet boundary conditions are imposed at infinity, the scalar-type gravitational sector
does not have such a long-lived mode. It was suggested that the preferred boundary conditions
in the AdS/CFT framework are of Robin type and, in particular, that the perturbations should
not deform the metric on the AdS boundary [163, 316]. Using Robin conditions, a long-lived
mode for gravitational perturbations was discovered in [163, 316, 324].

The weakly damped modes of small black holes. The series solution method, which works so
well for large BHs, converges very slowly for small BHs [194, 310, 318]. Recent results make
use of Breit–Wigner-type resonances in the scattering cross-section to study the very small
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Figure 13. Left: potential for scalar field propagation of l = 0 modes in a Schwarzschild AdS
background, for different values of the BH size r+/L. A local maximum (and a potential well) only
exists for small BHs. Right: track described by the fundamental scalar field QNMs with l = 0 and
l = 1 as we vary the BH size r+/L. Counterclockwise starting from the top right of the figure, we
marked the points corresponding to different decades in r+/L (r+/L = 102, 101, 100, 10−1, . . .).
Modes with different l coalesce in the large BH regime, as long as l � r+/L.

BH regime [227], described briefly in section 4.5. Small and large BHs have a very different
behavior from a QNM perspective. This is related to the qualitatively different behavior of
the potential in the two regimes, which is shown in the left panel of figure 13 for s = 0; for
small BHs (r+/L < 1) the potential develops a well capable of sustaining trapped, long-lived
modes, corresponding to quasi-stationary states in quantum mechanics [227, 331, 332]. In the
right panel of figure 13, we plot the QNMs of scalar fields for different BH sizes and l = 0, 1.
In this limit (and under the assumption that MωR � 1), it is possible to prove that [333]

ωRL � l + 3 + 2n − klnr+/L, (111)

ωIL � −γ0(l, n) (l + 3 + 2n) (r+/L)2l+2 /π. (112)

The constant γ0(l, n) (n = 0, 1, 2, . . .) and selected values of the constants kl0 can be found in
[227]. The analytic prediction is consistent with numerical results. Likewise, for gravitational
perturbations with r+/L � 1, one finds

ωRL � l + 2 + 2n − clnr+/L, (113)

ωIL � −γ2(l, n) (l + 2 + 2n) (r+/L)2l+2 , (114)

where the constants cln and γ2(l, n) can be found in [227, 334]. In conclusion: for scalar field
and gravitational perturbations of small SAdS BHs the damping timescale ωIL ∼ (r+/L)2l+2

and the oscillation frequencies approach the pure AdS value in the limit r+/L → 0 (see
[227, 310] for more details). To our knowledge, generalizations of these results to charged,
higher dimensional and rotating AdS BHs are still lacking.

The highly damped modes. The large-damping regime (n � 1) can be studied using the
monodromy method for both small and large AdS BHs [107, 223]. For n � 1 and r+/L � 1
(large BHs), the QNMs are given by

ωL2

r+
= (d − 1) sin

(
π

d − 1

)
e

iπ
d−1

[
n +

d + 1

4
− i

log 2

2π

]
. (115)
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Results for arbitrarily sized BHs can be found in [107, 223]. Equation (115) describes scalar
fields, gravitational tensor and gravitational vector-type perturbations. It yields ωL2/r+ ≈
(1.299+2.250i)n+(0.573+0.419i) for d = 4 and ωL2/r+ ≈ (2+2i)n+3.22064+2.77936 for
d = 5, in good agreement with numerical results for d = 4 [194] and d = 5 [316]. For large
SAdS BHs the asymptotic high-damping regime is approached very quickly, so equation (115)
describes fairly well even weakly damped modes. There is some disagreement concerning the
offset for scalar-type gravitational perturbations [107].

An asymptotic analysis based on the monodromy method was recently used to predict
the existence of a new family of modes [335]. So far, this new part of the spectrum has not
been confirmed by numerical studies. In [336], the authors discuss the interesting possibility
of describing the highly damped QNM regime in terms of geodesics of the SAdS spacetime.

The eikonal limit of large black holes. In asymptotically AdS spacetimes the eikonal limit is
especially interesting, since large-l modes can be very long-lived [92, 331]. A WKB analysis
[331] and numerical investigations [337] show that for scalar field perturbations, r+/L � 1
and l � 1

ωL = l + �n (r+/L)
2d−2
d+1 l−

d−3
d+1 ,

�n ≡ 1

2

(√
π(d − 1)

[
d + 1

2
+ 2n

]
� (3/2 + 1/(d − 1))

� (1/(d − 1))

) 2d−2
d+1

e− i2π
d+1 .

(116)

So large-l modes are very long-lived, and they could play a prominent role in the BH’s
response to generic perturbations. This is at variance with the asymptotically flat case, where
the damping timescale is roughly constant as l varies. Also note that the scaling with the
BH size differs from that of the weakly damped and highly damped modes. Other types of
perturbations also display a similar qualitative behavior [337].

The eikonal limit of small black holes. For scalar and electromagnetic perturbations of small
BHs the potential for wave propagation for l � 1 develops a minimum, potentially supporting
quasi-stationary states, i.e. long-lived modes (see figure 13). Define rb > rc to be the two real
zeros (turning points) of ω2

R − p2f/r2 = 0. Then the real part of a class of long-lived modes
in four spacetime dimensions is given by the WKB condition

2
∫ ∞

rb

√
r2ω2

R − p2f

rf
dr = π

(
2n + 1 +

3

2

)
, (117)

where p = l + d/2 − 3/2. Their imaginary part is given by

ωI = γ�

8ωR
, log� = 2i

∫ rc

rb

√
r2ω2

R − p2f

rf
dr. (118)

The prefactor γ , not shown in [331], can be obtained by standard methods as shown in [227],
where these results are also supported by numerical calculations.

6.2. Reissner–Nordström and Kerr anti-de Sitter black holes

The analysis of QNMs of large RNAdS BHs was performed in [338, 339] for weakly damped
modes of a massless scalar field and later extended to charged scalar fields [340]. Scalar field,
electromagnetic and gravitational perturbations of RNAdS BHs were analyzed and compared

45



Class. Quantum Grav. 26 (2009) 163001 Topical Review

in [311]. Half-integer spins were studied in [341, 342]. Gravitational perturbations of higher
dimensional charged solutions were considered in [343], and the highly damped regime was
explored analytically by Natario and Schiappa [107].

Berti and Kokkotas [311] pointed out some interesting facts: (i) a near-isospectrality of
different classes of perturbations holds for large BHs, but it breaks down as r+/L decreases,
i.e. in the small BH limit; (ii) the imaginary part of the purely damped modes found for
electromagnetic and vector-type gravitational perturbations tends to zero as the charge Q tends
to the extremal value Qext, possibly pointing to a marginal instability of extremal RNAdS BHs;
(iii) for all kinds of perturbations, the real part of the fundamental QNM frequency, LωR, has
a minimum for Q/Qext � 0.366, followed by a maximum at LωR � 0.474. A reanalysis
of massless scalar field perturbations found that the imaginary part of scalar QNMs also
tends to zero in the extremal limit [344]. However, comparing time evolutions of the field
with results from the Horowitz–Hubeny series solution, Wang et al [344] found that the
BH response turns from a standard, oscillatory QNM-type decay below some critical value
of the charge (Q < Qcrit � 0.3895Qext) to a non-oscillatory behavior characterized by a
purely imaginary QNM frequency for Q > Qcrit. Furthermore, these authors suggested
that the potential marginal instability proposed in [311] does not pose a threat for extremal
RNAdS BHs, because (at least for scalar perturbations) the asymptotic field in the near-
extremal limit is dominated by a power-law tail of the type first analyzed by Price [171]. The
implications of these findings in the context of the AdS/CFT correspondence deserve further
investigation.

There are few studies of QNMs of rotating BHs in AdS backgrounds. The formalism
to handle perturbations of these spacetimes was laid down by Chambers and Moss [345].
Giammatteo and Moss [346] considered axially symmetric QNMs of large Kerr–AdS BHs.
These spacetimes behave as a BH in a box. Super-radiant amplification of incident waves at the
expense of the BH’s rotational energy can then produce instabilities in the non-axisymmetric
modes of small Kerr AdS BHs [292, 333, 334, 347–350]: this is an interesting example of the
‘black hole bomb’ first investigated by Press and Teukolsky [351].

6.3. Toroidal, cylindrical and plane-symmetric anti-de Sitter black holes

The uniqueness theorems that apply for asymptotically flat BHs (see e.g. [39]) can be evaded
when the cosmological constant is non-zero: solutions have been found with the topology of
a cylinder, of a plane or of a doughnut [122–127]. Defining f (r) = r2/L2 − 4M/r , these
spacetimes are described by

ds2 = f dt2 − f −1 dr2 − r2 dz2 − r2 dφ2. (119)

The range of the coordinates z and φ dictates the topology of the BH spacetime. For a BH
with toroidal topology, the coordinate z is compactified such that z/L ranges from 0 to 2π
and φ ranges from 0 to 2π as well. For the cylindrical BH, or black string, the coordinate
z has range −∞ < z < ∞ and 0 � φ < 2π . For the planar BH, or black membrane, the
coordinate φ is further decompactified (−∞ < Lφ < ∞). For the torus, M is related to the
system’s ADM mass; for the cylinder, to the mass per unit length of a constant-z line; and for
the plane, to the mass per unit area of the (φ, z) plane [122–127].

A formalism to handle electromagnetic and gravitational perturbations of these spacetimes
was developed and used to investigate numerically the QNMs of scalar, electromagnetic and
gravitational perturbations in [131]. A thorough analysis by Miranda and Zanchin [315, 327]
confirmed and extended the results of [131].
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7. The spectrum of asymptotically de Sitter and other black holes

7.1. Asymptotically de Sitter black holes

BHs in a dS background have a rich structure. Consider an uncharged spherically symmetric
BH, the SdSd solution,

ds2 = f dt2 − f −1 dr2 − r2 d
2
d−2, (120)

where f (r) = 1 − r2/L2 − rd−3
0

/
rd−3, d
2

d−2 is the metric of the (d − 2)-sphere and r0 is
related to the mass M of the spacetime by M = (d − 2)Ad−2r

d−3
0

/
(16π). Depending on

the value of r0/L
2, in general this solution has two horizons, the event and the cosmological

horizon. When the cosmological and event horizons coalesce one has a so-called extremal
SdSd solution, which is related to a topologically different solution, known as the Nariai
spacetime [196, 199–201].

Weakly damped modes. The first calculations of the fundamental gravitational modes were
done by Mellor and Moss [129] for Reissner–Nordström–de Sitter (RNdS) BHs, using
numerical techniques. Brady et al [352] complemented this study through a numerical time
evolution of scalar fields in the SdS spacetime. Time evolutions were also performed in [353],
where the results were compared against WKB predictions (see also [274]). Approximations
to the correct, lowest order QNMs were considered in [162] (s = 2, SdS), [354] (s = 0, SdS),
[355] (s = 1/2, RNdS) and [356] (s = 2, RNdS), where the true potential was approximated
by a Pöschl–Teller potential. Cardoso and Lemos [191] showed that the true potential
reduces to the Pöschl–Teller potential for near-extremal SdS geometries, which explains why
previous results based on the Pöschl–Teller approximation gave accurate predictions for the
QNMs. The results in [191] were later generalized to d-dimensional RNdS BHs [197]. Other
analytical results used the WKB approximation for spins s = 0, 1, 2, 1/2 in the vicinity of SdS
BHs [357].

Highly damped modes. The highly damped limit, where the imaginary part is much larger
than the real part, was studied numerically by Yoshida and Futamase [238] for near-extremal
uncharged BHs (s = 1, 2) and in the general case in [239, 358]. The results were confirmed
analytically in [223] (s = 0, 1, 2 SdS) and [107] (s = 0, 1, 2 RNdS).

Eikonal limit. In the large-l limit, WKB techniques [190, 357] yield

3
√

3Mω =
√

1 − 27M2/L2 [l + 1/2 − i(n + 1/2)] . (121)

QNMs in the eikonal limit can be interpreted as perturbations of unstable circular null geodesics
[208]. For studies on charged and rotating BHs in dS backgrounds, see [359] and references
therein.

7.2. Black holes in higher derivative gravity

Among all possible theories of gravity with higher derivative terms, theories modified by
the addition of a Gauss–Bonnet term RGB = RμνρσR

μνρσ − 4RμνR
μν + R2 are particularly

attractive and have been considered by many authors [360]. There are simple BH solutions in
these theories [361–370], whose perturbations were studied in a series of works by Dotti
and Gleiser [371–373], Moura and Schiappa [360] and Takahashi and Soda [374]. In
four dimensions, the Gauss–Bonnet term is a total divergence and yields upon integration
a topological invariant, being therefore equivalent to Einstein’s theory. Therefore, these
theories are interesting in higher dimensions only. Non-trivial four-dimensional scenarios can
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be accomplished by coupling the Gauss–Bonnet term to a dilaton [367]: the resulting theory
also arises from the low-energy limit of certain string theories [360]. Perturbations of BH
spacetimes in these scenarios were considered in [365, 367, 375].

QNMs of BHs in these theories were first investigated by Iyer et al [376], who used a
WKB approach to study scalar perturbations. QNMs of these spacetimes were also studied
through a WKB approach [377–379] and numerically [377, 380] for the low-lying modes. The
highly damped regime was analytically explored in [282]. The eikonal limit was considered
by Konoplya [380] and interpreted in terms of circular null geodesics [208].

7.3. Braneworlds

Braneworld scenarios, where the standard model lives in a four-dimensional brane embedded
in a higher dimensional spacetime, have been a popular research topic in the last decade. The
extra dimensions can be compact [381, 382] or even infinite, flat [383] or curved [384, 385].
BH solutions in these theories are extremely difficult to find (see for instance [386, 387] for
a discussion); some solutions are known perturbatively in some regimes. For instance, in the
case of flat compact extra dimensions, Tangherlini BHs should be a good approximation to
a static BH solution as long as the horizon radius is much smaller than the size of the extra
dimension [386]. In these scenarios the standard model is localized on the brane and therefore
BH oscillations are non-trivial, especially for QNMs of standard-model fields [388–393].

7.4. Black holes interacting with matter

Astrophysical BHs are not expected to be in complete isolation, so it is important to understand
how QNMs change when BHs interact with the surrounding environment. Leung et al
[394, 395] investigated how the low-order QNMs of a BH are affected by a small amount of
matter. For such a BH, in the static, spherically symmetric case, Medved et al [277, 278]
proved that highly damped QNMs depend only on the surface gravity. Specific models for BHs
interacting with matter were constructed by several authors. A popular cosmological scenario
invokes the existence of dynamical vacuum energy (‘quintessence’, see e.g. [396, 397])
or phantom fields [398, 399] to explain the acceleration of the universe. The QNMs of
BHs with quintessence or phantom fields have been investigated in [400–405] and [406],
respectively.

8. Quasinormal modes and the gauge-gravity duality

In this section, we review a particular entry in the gauge-gravity duality dictionary directly
related to QNMs. It turns out that quasinormal spectra of asymptotically AdSd+1 and more
general backgrounds correspond to poles of the (retarded) thermal correlators of dual d-
dimensional strongly interacting quantum gauge theories. The lowest quasinormal frequencies
of black branes have a direct interpretation as dispersion relations of hydrodynamic excitations
in the dual theory. More information on near-equilibrium properties of BHs and black branes
and their holographic interpretation can be found in the reviews [7, 36–38, 117].

8.1. The duality

The discovery [407] and subsequent studies of D-branes in string theory led to the concept
of gauge-string duality. In the original example of the duality, known as the AdS/CFT
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correspondence [6], the full type IIB string theory on the background AdS5 × S5 (five-
dimensional AdS space times a 5-sphere) was conjectured6 to be equivalent to the specific
supersymmetric gauge theory, N = 4 SU(Nc) supersymmetric Yang–Mills theory (SYM) in
flat four-dimensional spacetime. The equivalence is understood as an equivalence of quantum
partition functions. In quantum field theory, there is very strong evidence supporting the claim
that N = 4 SYM is a CFT, with the beta-function identically equal to zero and coupling
constant gYM being independent of the energy scale. The two parameters characterizing
N = 4 SYM are the ’t Hooft coupling λ ≡ g2

YMNc and the number of colors Nc. In the
AdS/CFT correspondence, these parameters are mapped into the string theory parameters L
and gs:

g2
YMNc ∼ gsNc ∼ L4

/
l4
s , Nc ∼ L4/l4

P, (122)

where L is the parameter of AdS5 and the radius of the 5-sphere, gs is the string coupling,
and ls and lP are the string and Planck lengths, respectively. The full quantum string theory
on AdS5 × S5 is poorly understood. However, its low-energy limit, type IIB supergravity, has
been extensively studied since the 1980s. Restricting duality to the supergravity limit of the
full string theory restricts the values of the gauge theory parameters to g2

YMNc � 1, Nc � 1.
Thus, the gauge theory at large values of coupling and large Nc is effectively described by
classical gravity in the AdS background.

Following the original example of AdS/CFT correspondence, many more dual pairs have
been discovered, including those involving non-supersymmetric and non-conformal theories.
Gauge-string duality thus includes the original AdS/CFT correspondence and all its ‘non-
conformal’ and ‘non-AdS’ generalizations, often commonly referred to as ‘AdS/CFT’. The
gauge-string duality in the supergravity approximation is known as the gauge-gravity duality.
The duality provides a quantitative correspondence between classical gravity in ten (or five)
dimensions and a gauge theory (in the limit g2

YMNc � 1, Nc � 1) in flat four-dimensional
spacetime. Such a correspondence between higher dimensional gravity and lower dimensional
non-gravitational theory is often referred to as ‘holography’. The gauge-gravity duality serves
as a quantitative example of the ‘holographic principle’ proposed by ’t Hooft and Susskind
[408, 409].

Since classical higher dimensional gravity is holographically encoded into the dual gauge
theory’s properties, one may wonder about the gauge theory interpretation of the QNM
spectrum. The short answer, conjectured in [94], established in [98] and further generalized
in [109] and many subsequent publications, is that the QNM spectrum of the fluctuation δφ

of a higher dimensional gravitational background coincides with the location of the poles of
the retarded correlation function of the gauge theory operator O dual to the fluctuation δφ. In
the rest of this section, we elaborate on this statement and provide some explicit examples.

The main ingredient of the gauge-gravity duality is the ten-dimensional (super)gravity
background characterized by the values of the metric and other supergravity fields such as the
dilaton, the axion and various tensor fields. The background fields must satisfy supergravity
equations of motion. (In most cases, only bosonic supergravity fields are considered, thus
eliminating the need for the prefix ‘super’.) For example, the near-horizon limit of the
black three-brane background, which is the basic ingredient of the AdS/CFT duality at finite
temperature, consists of the metric

ds2
10 = r2

L2
[−f dt2 + dx2 + dy2 + dz2] +

L2

r2
f −1 dr2 + L2 d
2

5, (123)

6 During the last decade, the AdS/CFT correspondence and, more generally, the gauge-string duality survived
numerous, often very non-trivial, tests of validity. At the moment, there is very little doubt, if any, that the conjecture
is valid.

49



Class. Quantum Grav. 26 (2009) 163001 Topical Review

where f (r) = 1 − r4
0

/
r4, and the Ramond–Ramond 5-form field,

F5 = −4r3

L4
(1 + ∗) dt ∧ dx ∧ dy ∧ dz ∧ dr, (124)

with all other fields vanishing. According to the gauge/gravity correspondence, the
background (123) and (124) with non-extremality parameter r0 and Hawking temperature
T = r0/πL2 is dual to N = 4 SU(Nc) SYM at finite temperature T in the limit of
Nc → ∞, g2

YMNc → ∞. The N = 4 SYM is defined in Minkowski space with coordinates
t, x, y, z. The fifth (radial) coordinate r of the dual metric (123) plays the role of the energy
scale in the gauge theory (with the boundary at r → ∞ corresponding to the UV in the
gauge theory), and the 5-sphere describes internal degrees of freedom associated with the
R-symmetry group SU(4) specific to theories with N = 4 supersymmetries.

Quite often, the internal degrees of freedom are of less interest, and the background can
be dimensionally reduced from ten to five dimensions. For the metric (123), the result of such
a reduction is the five-dimensional Schwarzschild–AdS metric with translationally invariant
horizon

ds2
5 = r2

L2
[−f dt2 + dx2 + dy2 + dz2] +

L2

r2
f −1 dr2, (125)

obeying Einstein’s equations Rμν = 2�/3gμν in a five-dimensional space with cosmological
constant7 � = −6/L2. Thus, the gauge-gravity duality often appears as a correspondence
involving the five-dimensional (super)gravity bulk and the four-dimensional boundary gauge
theory. One should always remember, however, that all five-dimensional fields and their
fluctuations have ten-dimensional origin.

As a remark, we note that the metric (123) with the translationally invariant horizon can
be obtained from the Schwarzschild–AdS BH metric

ds2
5 = −f dt2 +

dr2

f
+ r2 d
2

3, f = 1 +
r2

L2
− r4

0

r2L2
(126)

by rescaling r → λ1/4r, r0 → λ1/4r0, t → λ−1/4t and taking the limit λ → ∞ while
simultaneously blowing up the sphere

L2 d
2
3 → λ−1/2(dx2 + dy2 + dz2). (127)

Similar rescalings for more general metrics can be found in [296, 410]. This difference
between black hole and black brane metrics leads to the fact that black brane QNM spectra are
functions ω = ω(q) of the continuous parameter q (rather than a discrete parameter l), where
q is the momentum along the translationally invariant directions.

8.2. Dual quasinormal frequencies as poles of the retarded correlators

Quantitatively, the gauge-string (gauge-gravity) duality is the equivalence of the partition
functions

ZYM[J ] = 〈e− ∫
JOd4x〉YM ≡ Zstring[J ] � e−Sgrav[J ], (128)

where the semi-classical approximation on the right-hand side corresponds to passing from
the gauge-string to the gauge-gravity duality in the appropriate limit (e.g. in the limit
Nc → ∞, g2

YMNc → ∞ for N = 4 SYM). The equivalence (128) means that the classical
gravity action effectively serves as a generating functional for correlation functions of gauge-
invariant operators O in the dual gauge theory. On the gravity side, the role of J for a given

7 The cosmological constant in five dimensions arises as a result of the dimensional reduction of the 5-form (124)
on S5.
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Table 2. The correspondence between the boundary gauge theory operators and the dual five-
dimensional gravity bulk fields.

Gauge theory operator O Dual gravity fluctuation

Energy–momentum tensor Tμν Metric fluctuation hμν

Conserved current Jμ Maxwell field Aμ

Tr F 2
μν Minimally coupled massless scalar ϕ

operator O is played by the boundary value δφ0 of the background fluctuation δφ (for a
moment, we ignore all indices the field δφ might have). For example, the boundary value of
the background metric fluctuation hμν plays the role of J in computing the correlators of the
energy–momentum tensor Tμν in a four-dimensional gauge theory (see table 2).

The recipe for applying the equivalence (128) is the following. To compute the correlators
of a gauge-invariant operator O, one has to

• identify the dual fluctuation field δφ associated with O;
• solve the linearized bulk equations of motion satisfied by δφ with the boundary condition8

δφ → δφ0 ≡ J ;
• using this solution, compute the on-shell supergravity action Sgrav[J ] as a functional of

δφ0 ≡ J ;
• compute the correlators in the usual field theory sense by taking functional derivatives of

exp (−Sgrav[J ]) with respect to J .

The recipe given above is sufficient for computing Euclidean correlation functions from dual
gravity. For Minkowski space correlators, there are subtleties resolved in [98, 302] (recent
work on the Lorentzian AdS/CFT includes [304, 411]). Reference [98] contains an exact
prescription on how to compute the Minkowski space two-point functions from fluctuations
of a dual gravity background. As a byproduct, the prescription establishes a one-to-one
correspondence between poles of the retarded quantum field theory correlators and QNM
spectra of the dual background. Indeed, the dual gravity fluctuation field δφ(r, t, x, y, z)

associated with the operator O, whose retarded two-point function GR we are interested
in, satisfies an ordinary linear second-order differential equation with respect to the radial
coordinate r. The fluctuation’s dependence on the ‘usual’ four-dimensional spacetime
coordinates t, x, y, z in the bulk is typically trivial, allowing one to Fourier transform with
respect to them:

δφ(r, t, x, y, z) =
∫

dω dq
(2π)4

e−iωt+iqxδφ(r, ω,q). (129)

Note that at finite temperature the Lorentz invariance is broken; thus, the components ω,q of
the 4-momentum are independent variables. For theories with unbroken rotation invariance,
the fluctuation will depend on the magnitude of the 3-momentum q = |q|, and one can
conveniently choose q along the direction z of the brane, with the 4-momentum being given
by (ω, 0, 0, q). The ODE satisfied by the fluctuation δφ(r, ω, q) typically has singular points
at the horizon r = r0 and at the boundary r → ∞. The solution δφ(r, ω, q) satisfying the
incoming wave boundary condition at the horizon can be written near the boundary as

δφ(r, ω, q) = A(ω, q)r−�− (1 + · · ·) + B(ω, q)r−�+ (1 + · · ·) , (130)

8 The second boundary condition on the fluctuation δφ is either a regularity condition (e.g. for zero-temperature
global AdS space) or the incoming (outgoing) wave boundary condition. For metrics with horizons, the incoming
(outgoing) wave condition corresponds to computing the retarded (advanced) correlators in the boundary theory.
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where �+,�− are the exponents of the ODE at r = ∞ (these exponents are related to the
conformal dimension of the operator O) and ellipses denote higher powers of r. In most cases,
fields can be redefined so that �+ > 0,�− = 0. Applying the gauge-gravity duality recipe
for Minkowski correlators, for the retarded two-point function of the operator O, one finds

GR(ω, q) ∼ B
A

+ contact terms. (131)

Zeros of the coefficient A correspond to the poles of GR(ω, q). On the other hand, from
the general relativity point of view, the condition A = 0 (for �− = 0, this is just the
Dirichlet boundary condition) defines the QNM spectrum of the fluctuation δφ. Thus, all
the information about the poles of the retarded correlators of a quantum field theory with a
gravity dual description is encoded in the QNM spectra of the dual gravity fluctuations. This
statement is a useful entry in the gauge-gravity duality dictionary, since the poles of thermal
correlators carry important information about transport properties and excitation spectra of the
theory. Consider, for illustration, the relatively simple case of a two-dimensional CFT at finite
temperature dual to the (2 + 1)-dimensional BTZ BH background. The retarded two-point
function of the operator of conformal dimension � = 2 at finite temperature is given by [98]

GR ∼ ω2 − q2

4π2

[
ψ

(
1 − i

ω − q

4πT

)
+ ψ

(
1 − i

ω + q

4πT

)]
, (132)

where ψ(z) = �′(z)/�(z); we put TL = TR and ignored the constant prefactor for simplicity.
The correlator (132) has infinitely many poles in the complex frequency plane, located at

ωn = ±q − i4πT (n + 1), n = 0, 1, 2, . . . . (133)

These poles are precisely the BTZ quasinormal frequencies [95, 305, 412].
The role of QNM spectra as frequencies defining relaxation times in the dual thermal field

theory was realized and discussed in early publications [92, 307, 309]. Birmingham et al [94]
were the first to note explicitly that the QNM spectrum of the BTZ BH coincides with the poles
of the retarded correlators of the dual (1 + 1)-dimensional CFT. With the appearance of the
Minkowski AdS/CFT recipe for the retarded correlators [98], the relationship between QNMs
and the poles of the correlators has been established quantitatively first for the scalar [98, 99]
and later for general fluctuations [100, 109]. In the case of non-scalar fluctuations, considering
gauge-invariant combinations of fluctuating fields is especially useful [109], although this is
not the only possible approach [413, 414].

A word of caution is necessary. As we have seen, asymptotically AdS spacetimes offer a
variety of choices for the boundary conditions at spatial infinity. Not all such choices produce
QNM spectra which have a meaningful interpretation in the dual quantum field theory. In
order to say that a computed QNM corresponds to a pole of a dual theory correlator, one has to
analyze the bulk fluctuation along the lines leading to equation (131) to establish the precise
form of the boundary condition.

8.3. The hydrodynamic limit

The most interesting results for QNM spectra with a dual field theory interpretation are
obtained for five-dimensional gravitational backgrounds (note, however, the growing body of
work on the AdS–condensed matter theory correspondence [37, 38], where, for the purposes of
studying (2+1)-dimensional condensed matter systems, one is interested in (3+1)-dimensional
gravitational backgrounds). For example, the poles of the retarded thermal two-point function

GR
μν,λσ (ω, q) = −i

∫
d4x e−iq·xθ(t)〈[Tμν(x), Tλσ (0)]〉T (134)
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Figure 14. Quasinormal spectrum of black three-brane gravitational fluctuations in the ‘shear’
(left) and ‘sound’ (right) channels, shown in the plane of complex frequency w = ω/2πT , for
fixed spatial momentum q = q/2πT = 1. Hydrodynamic frequencies are marked with hollow red
dots (adapted from [109]).

of the stress–energy tensor in four-dimensional N = 4 SU(Nc) SYM in the limit Nc →
∞, g2

YMNc → ∞ are given by the QNM frequencies of the gravitational perturbation hμν of
metric (125). By symmetry, the perturbations are divided into three groups [109, 415]. Indeed,
since the dual gauge theory is spatially isotropic, we are free to choose the momentum of the
perturbation along, say, the z-direction, leaving the O(2) rotational symmetry of the (x, y)

plane intact. The perturbations hμν(r, t, z) are thus classified according to their transformation
properties under O(2). Following [109, 415], we call them the scalar (hxy), shear (htx, hzx or
hty, hzy) and sound (htt , htz, hzz, hxx + hyy) channels. (Here we partially fixed the gauge by
requiringhμr=0.) TheO(2) symmetry ensures that the equations of motion for perturbations of
different symmetry channels decouple. Linear combinations of perturbations invariant under
the (residual) gauge transformations hμν → hμν − ∇μξν − ∇νξμ form the gauge-invariant
variables

Z1 = qHtx + ωHzx, (135)

Z2 = q2fHtt + 2ωqHtz + ω2Hzz + [q2(2 − f ) − ω2]H, (136)

Z3 = Hxy (137)

in the shear, sound and scalar channels, respectively (here Htt = L2htt/r
2f,Hij = L2hij /r

2

(i, j �= t), H = L2(hxx +hyy)/2r2). From the equations of motion satisfied by the fluctuations,
one obtains three independent second-order ODEs for the gauge-invariant variablesZ1, Z2, Z3.

The QNM spectra in all three channels share a characteristic feature: an infinite sequence
of (asymptotically) equidistant frequencies approximated (for q = 0) by a simple formula
[99, 100, 107]

ωn = 2πT n (±1 − i) + ω0, n → ∞. (138)

Each frequency has a non-trivial dependence on q [99, 100]. Spectra in the shear and sound
channels are shown in figure 14. In addition to the sequence mentioned above, they contain the
so-called hydrodynamic frequencies shown in figure 14 by hollow red dots. The hydrodynamic
frequencies are remarkable, in that their existence and dependence on q are predicted by
the hydrodynamics of the dual field theory. For example, low-frequency, small momenta
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fluctuations of the stress–energy tensor Tμν of any d-dimensional theory are characterized by
the dispersion relations (see e.g. [110, 415, 416])

ω = −i
η

ε + P
q2 + O(q4), (139)

ω = ±csq − i

ε + P

[
ζ

2
+

(
1 − 1

d

)
η

]
q2 + O(q3), (140)

where ε, P, η, ζ are, respectively, the energy density, pressure, shear and bulk viscosities, and
cs is the speed of sound. For conformal theories, some of the higher order terms are also
known (see e.g. [416]). In quantum field theory, the dispersion relations (139), (140) appear
as poles of the retarded correlation functions of the stress–energy tensor. Therefore, according
to the holographic dictionary discussed in section 8.2, equations (139), (140) are precisely the
lowest quasinormal frequencies in the spectrum of gravitational perturbations. For N = 4
SYM in d = 4 with zero chemical potential we have ζ = 0, cs = 1/

√
3, ε + P = sT , where s

is the (volume) entropy density, and the dispersion relations (139), (140) become

ω = −i
η

sT
q2 + O(q4), (141)

ω = ± q√
3

− iη

sT
q2 + O(q3). (142)

On the other hand, the lowest QNMs of the fluctuations Z1, Z2 of the dual black brane
background (125) can be computed analytically [413, 415]:

ω = −i
1

4πT
q2 + O(q4), (143)

ω = ± q√
3

− i

4πT
q2 + O(q3). (144)

Comparing equations (141) and (143), (142) and (144), one finds that (i) the real part of the
mode (144) is correctly predicted by hydrodynamics (yet another piece of evidence in favor
of the AdS/CFT conjecture) and (ii) assuming the validity of AdS/CFT, the ratio η/s is equal
to 1/4π in the N = 4 SYM theory (in the limit of infinite coupling and infinite Nc, where the
dual gravity description is valid).

This simple example illustrates a general method of extracting physical quantities of
strongly coupled quantum field theories from the QNM spectra of their gravity duals. Bulk
fluctuations corresponding to operators of conserved currents in the dual field theory in
Minkowski spacetime are guaranteed to have hydrodynamic frequencies in their QNM spectra.
All such frequencies have the generic property that ω → 0 for q → 0, characteristic of long
wavelength, small frequency fluctuations in flat space. For N = 4 SYM, such operators are
(in addition to Tμν) the R-current and the supercurrent. Their corresponding bulk fluctuations
are, respectively, the U(1) and the Rarita–Schwinger fluctuations in the background (125).
The hydrodynamic QNMs of these fluctuations were first computed in [100, 415, 417]. The
full QNM spectrum of electromagnetic/gravitational fluctuations in the background (125) was
computed in [100, 109]. The full QNM spectrum of the Rarita–Schwinger field has not yet
been determined. Note that for theories in a finite volume (dual to black holes rather than
branes) hydrodynamic QNMs, strictly speaking, do not exist as the momentum q is discrete.
However, for the large-radius asymptotically AdS BHs, the emergence of the hydrodynamic
behavior in the limit r+/L → ∞ is easily detected (see e.g. equation (109)).
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The interpretation of non-hydrodynamic QNMs is obscured by the fact that very little is
known about thermal correlation functions at strong coupling. Typical singularities of such
correlators at weak coupling appear to be cuts rather than poles (this problem is discussed in
[418]). Poles associated with the QNM sequence (138), for example, cannot be interpreted as
quasiparticles of N = 4 SYM, since their imaginary part is large.

For backgrounds more complicated than that of the black brane (125), the gauge-invariant
variables Zi may involve fields other than metric fluctuations. Generically, these variables
form a system of coupled ODEs (simple examples can be found in [110, 111, 410]).

A separate problem is the computation of the corrections to QNM spectra coming from
higher derivative terms in the relevant supergravity actions. In the dual field theory such
corrections correspond, in particular, to coupling constant corrections to transport coefficients.
For instance, higher derivative corrections to the type IIB supergravity action result in ’t Hooft
coupling corrections to the shear viscosity–entropy density ratio in N = 4 SYM [419–421]

η

s
= 1

4π

(
1 +

15ζ(3)

λ3/2
+ · · ·

)
, λ � 1, (145)

where ζ(3) ≈ 1.202 is Apéry’s constant. Corrections to other transport coefficients have also
been considered [422–425].

8.4. Universality of the shear mode and other developments

The existence of ‘hydrodynamic’ QNMs is a generic feature of black branes: these QNMs
must appear in the spectra of fluctuations dual to conserved currents in translationally invariant
backgrounds. In some cases, the lowest QNMs can be computed analytically even for rather
general metrics. For example, for a black p-brane metric of the form

ds2 = gtt (r) dt2 + grr (r) dr2 + gxx(r)

p∑
i=1

(dxi)2, (146)

with all other background fields vanishing, one finds that the component of an electric field
fluctuation parallel to the brane possesses a ‘hydrodynamic’ frequency

ω = −iDq2 + O(q4), (147)

where the coefficient D is given in terms of the metric components:

D =
√−g(rH)

gxx(rH)
√−gtt (rH)grr (rH)

∞∫
rH

dr
−gtt (r)grr (r)√−g(r)

(148)

and rH is the position of the horizon. If there exists a quantum field theory (QFT) dual to this
background, the electromagnetic fluctuation naturally couples to a conserved U(1) current in
the theory and D is interpreted as a diffusion constant of a corresponding U(1) charge.

Similarly, the lowest gravitational QNM in the shear channel (135) for metric (146) can be
computed analytically [114]. The result is an expression similar to equations (147) and (148),
but it can be further simplified using either Buchel–Liu’s theorem [426] or the alternative
proof given in [7]. Surprisingly, it turns out that this mode is universal: its frequency is given
by equation (143) for any background with a metric of the form (146). (It is important to note
that the shear mode fluctuation decouples from the fluctuations of other fields [427].)

The universality of the gravitational quasinormal shear mode has an important
consequence for a dual QFT: the ratio of shear viscosity to entropy density has a universal value
η/s = 1/4π for all theories with gravity duals, in the limit where the gravity dual description
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is valid (e.g., in the limit of infinite Nc and infinite ’t Hooft coupling for N = 4 SU(Nc) SYM
in four dimensions). Earlier proofs of the shear viscosity universality not involving QNMs
were given in [427, 428]. Charged black brane backgrounds were considered in [410, 424,
429–435].

The viscosity bound conjecture [436] prompted further investigation of the black brane
QNM spectrum in higher derivative gravity [437–445]. The conjecture states that the ratio η/s

is bounded from below by 1/4π in all physical systems. In the language of QNMs, this would
mean that a correction to the q2-coefficient in equation (143) coming from higher derivative
terms in the action describing gravity duals of such systems is always positive, as in equation
(145). In some gravity models with higher derivative terms, this appears not to be the case
[425, 437–440]. It would be highly desirable to have a comprehensive understanding of the
influence of higher derivative terms on the shear mode and other QNMs.

QNMs of Dp-branes and more complicated backgrounds in the holographic context
were computed in [111, 112, 446–448]. Time-dependent backgrounds especially relevant for
modeling the behavior of the quark–gluon plasma in heavy ion collisions were investigated
in [163, 316, 449]. QNMs in models with holographic mesons, Sakai–Sugimoto model and
other QCD-like models were studied in [450–458].

The gauge-gravity duality is primarily used to investigate strongly coupled gauge theories
with the help of a dual classical gravity theory. However, at least in principle, the holographic
dictionary can be used to explore aspects of quantum gravity with the help of a weakly coupled
gauge theory. QNMs in this and similar contexts of duality have been studied in [105, 106,
331, 336].

Recently, holographic methods were extended to include gravity backgrounds dual to
non-relativistic theories as well as systems with spontaneous symmetry breaking. Exploration
of QNM spectra in these models is an active area of research [37, 38].

9. Quasinormal modes of astrophysical black holes

In the context of the Einstein–Maxwell equations, the most general solution describing
stationary axisymmetric BHs is the Kerr–Newman metric [39]. For astrophysical BHs the
electric charge Q is likely to be negligible, being shorted out by the surrounding plasma
[459, 460]. Astrophysical BHs are effectively the simplest of all macroscopical objects,
characterized only by their mass M and angular momentum parameter a. As a consequence,
their structure and their oscillation spectra are remarkably simple.

The complex frequency of a QNM yields two observables: the actual oscillation frequency
and the damping time of the oscillation. For each given mode, these observables depend only
on M and a. Therefore, a measurement of the frequency and damping time of a QNM can
be used to infer the mass and angular momentum of the BH with potentially high accuracy
[9–11, 79]. Since the whole QNM spectrum depends solely on M and a, the measurement of
two or more QNM frequencies provides a stringent observational test of the no-hair theorem
of general relativity [10, 11, 461–463]. The prospects for detecting the signature of BH
oscillations in gravitational waves are the main topic of this section.

There is strong and growing observational evidence for the existence of at least two
different classes of astrophysical BHs. Solar-mass BHs with M ∼ 5–20M� are usually found
in x-ray binaries [464] and SMBHs with M ∼ 106–109.5M� are believed to harbor most active
galactic nuclei (AGNs) [465]. At the moment, there is only tentative evidence for intermediate-
mass BHs (IMBHs) of mass M ∼ 102–105M� [466–468]. Ringdown detectability from these
different classes of astrophysical BHs depends on several factors, the first of which is the
sensitivity of any given gravitational wave detector. Earth-based detectors, such as LIGO
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and Virgo, have an optimal sensitivity band corresponding to stellar-mass BHs and IMBHs,
while the planned space-based detector LISA is most sensitive to ringdowns from high-mass
IMBHs and SMBHs (see section 9.1). Another important factor is the extent to which
QNMs are excited in astrophysical settings. The most promising scenarios to excite ringdown
to a detectable level are reviewed in section 9.2. Whatever the source of the excitation,
the frequency and amplitude of ringdown waves depend on the mass and spin of the BH.
The evidence for astrophysical BHs and the present understanding of their mass and spin
distributions are reviewed in section 9.3. Measuring ringdown waves will allow us to extract
interesting information, ranging from accurate measurements of the mass and spin of BHs
to tests of the no-hair theorem of general relativity. These applications of gravitational wave
detection are reviewed in sections 9.6–9.8.

9.1. Physical parameters affecting ringdown detectability

Present and planned gravitational wave detectors are located at large distance from
astrophysical BHs. Therefore, for all practical purposes, a QNM as seen by a detector is
well approximated by the asymptotic behavior of the wave equation at infinity (equation (30)).
We can express the waveform measured at the detector as a linear superposition of the gauge-
invariant polarization amplitudes h+, h×, where, for a given mode (l,m, n),

h+ = M

r
Re

[
A+

lmn ei(ωlmnt+φ+
lmn)e−t/τlmnSlmn(ι, β)

]
, (149)

h× = M

r
Im

[
A×

lmn ei(ωlmnt+φ
×
lmn) e−t/τlmnSlmn(ι, β)

]
. (150)

Here A+,×
lmn and φ

+,×
lmn are the (real) amplitude and phase of the wave and Slmn(ι, β) denotes

spin-weighted spheroidal harmonics of spin weight −2 [10]. The angles (ι, β) are adapted to
the source, so that the z-axis is aligned with the spin of the BH. Interferometric detectors are
sensitive to the effective strain

h = h+F+(θS, φS, ψS) + h×F×(θS, φS, ψS), (151)

where F+,× are pattern functions that depend on the orientation of the detector and the direction
of the source (specified by the polar angles θS, φS) and on a polarization angle ψS [153, 469].
A crucial quantity for gravitational wave detection is the signal-to-noise ratio (SNR) ρ, defined
as

ρ2 = 4
∫ ∞

0

h̃∗(f )h̃(f )

Sh(f )
df, (152)

where h̃(f ) is the Fourier transform of the waveform and Sh(f ) is the noise spectral density of
the detector [79]. In discussing the SNR we will usually average over source direction, detector
and BH orientations, making use of the sky averages:

〈
F 2

+

〉 = 〈
F 2

×
〉 = 1/5, 〈F+F×〉 = 0 and

〈|Slmn|2〉 = 1/4π . An analysis taking into account different sky locations and orientations of
the source probably requires Monte Carlo methods. At the moment, such an analysis is still
lacking.

Our chances of detecting and measuring ringdown waves are mainly determined by the
BH’s mass M, by the spin parameter a and by the ringdown efficiency εrd. The latter quantity
is defined as the fraction of the total mass–energy of the system radiated in ringdown waves,
and it is well approximated by [10, 89]

εrd ≈ QlmnMωlmn

32π

[ (
A+

lmn

)2
+

(
A×

lmn

)2 ]
. (153)
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These three parameters (mass, spin and efficiency) affect the detectability and measurability
of the signal in different ways.

The BH mass sets the frequency scale and damping time of the emitted radiation. For a
Schwarzschild BH, the fundamental QNM with l = 2 (that dominates the radiation in most
cases [89]) has frequency f and damping time τ given by

f = 1.207 × 10−2(106M�/M) Hz, (154)

τ = 55.37(M/106M�) s. (155)

Earth-based detectors are limited at low frequency by a seismic cutoff fs (a plausible
estimate for second-generation detectors being fs ∼ 10 Hz for the Einstein Gravitational
Wave Telescope (ET) and fs ∼ 20 Hz for Advanced LIGO). Therefore, they can detect the
fundamental l = m = 2 QNM as long as the BH mass M � 1.2 × 104(Hz/fs)M� if the BH is
non-rotating and M � 2.7 × 104(Hz/fs)M� if the BH is rotating near the Kerr limit (see table
I in [11]). LISA is limited at high masses (low frequencies) by acceleration noise, and at low
masses by the condition that the damping time τ should be longer than the light-travel time
Tlight � 16.7 s corresponding to the planned armlength (L � 5 × 109 m). Thus, LISA can
detect ringdown waves from BHs in the range 105M� � M � 109M� [10]. To summarize:
Earth-based detectors are sensitive to the ringdown of stellar-mass BHs and of relatively low-
mass IMBHs, and LISA can observe mergers of IMBHs and SMBHs throughout the whole
universe. There is a chance that the ongoing ringdown searches in data from Earth-based
gravitational wave detectors [12, 13, 470–474] may provide the first incontrovertible evidence
of the existence of IMBHs.

As discussed in section 5.3, the BH spin (for a given BH mass) determines all frequencies
of the Kerr QNM spectrum. For QNMs with m > 0, the quality factor increases with spin
(see figure 9). Since the detectability of a gravitational wave signal by matched filtering scales
with the square root of the number of cycles, highly spinning BHs could be the best candidates
for detection [89]. However, exciting QNMs of fast-rotating BHs seems to be harder, as the
excitation factors tend to zero as a/M → 1 (see [70, 167] and section 3.2). In hindsight, this
is not surprising: the buildup of energy in a long-lived resonant mode usually takes place on a
timescale similar to the eventual mode damping, so it should be difficult to excite a QNM with
characteristic damping several times longer than the dynamical timescale of the excitation
process [263]. Numerical simulations of the merger of comparable-mass BH binaries suggest
that QNM excitation is mildly dependent on the initial spin of the components (see [475] and
section 9.2), but further investigation is required to clarify this issue.

There are different ways of quantifying the excitation of QNMs by generic initial data
[3, 77, 166, 167, 173]. One can operationally define a ringdown efficiency εrd, which is
directly related to the gravitational wave amplitude as illustrated by equation (153) and hence
to the SNR of the signal for a given detector [10, 89]. Different empirical notions for the
‘ringdown starting time’ (which is intrinsically ill-defined [169]) yield very different ringdown
efficiencies [44, 476, 477]. From the point of view of detection, a suitable definition of the
ringdown starting time is the one proposed by Nollert, using an ‘energy-maximized orthogonal
projection’ of a given numerical waveform onto QNMs [11, 44]. The relative excitation of
different modes is even harder to determine than the overall ringdown efficiency, but it is
particularly relevant for tests of the no-hair theorem using ringdown waves [10, 11, 461].
Berti et al discuss this issue in a general context [28] and give preliminary estimates of the
excitation of different multipoles in binary BH mergers Berti et al [44, 475].

In section 9.2, we review promising astrophysical scenarios that could produce detectable
ringdown signals (i.e. large efficiencies): accretion, stellar collapse leading to BH formation
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Figure 15. Left: ISCO frequency, light-ring frequency and radiation efficiency for Kerr BHs
(positive values of a/M refer to co-rotating orbits and negative to counter-rotating orbits). Right:
bounds on the final spin expected to result from a binary BH merger as a function of the binary’s
mass ratio q (from [482]).

and compact object mergers. In section 9.3, we summarize the current theoretical and
experimental understanding of BH masses and spins.

9.2. Excitation of black hole ringdown in astrophysical settings

In principle, most dynamical processes involving BHs excite QNMs to some degree. For the
purpose of gravitational wave detection from astrophysical BHs, the question is not whether
QNMs are excited, but whether they are excited to a detectable level. BH QNMs can be
excited in a variety of astrophysical settings, such as accretion, collapse and compact binary
mergers. As we will see, analytical estimates and numerical calculations show that the most
promising source of detectable ringdown waves is the merger of two compact objects leading
to BH formation.

Ringdown excitation by accretion. An early study highlighting the importance of QNM ringing
is the classic analysis of the gravitational radiation emitted by particles falling radially into
a Schwarzschild BH [43]. Unlike stellar oscillation modes (which play an important role in
the orbital dynamics of compact binaries [478–481]), BH QNMs are hard to excite by matter
orbiting around the BH. The reason is that weakly damped QNMs are associated with unstable
geodesics at the light ring (see [208] and references therein), and for Kerr BHs the light-ring
frequency is always larger than the frequency of the innermost stable circular orbit (ISCO),
as illustrated in the left panel of figure 15. Higher overtones may have lower frequencies, but
they are harder to excite because their quality factor is too small. According to this intuitive
description, QNM excitation requires the accreting matter to cross the light ring. Indeed,
QNMs are always excited by particles falling along generic geodesics into Kerr BHs (see [23]
and appendix C of [44] for comprehensive lists of references). Lumps of matter accreting
onto a BH at appropriate rates could potentially excite QNMs to a detectable amplitude.
Unfortunately, even the most optimistic estimates suggest that the wave amplitude is too small
[266]. For generic accretion flows, simple analytical arguments [28] show that destructive
interference reduces the ringdown amplitude [23, 483, 484]. This conclusion is confirmed
by numerical simulations of NS–BH mergers: if the NS is tidally disrupted well before
merger, accretion of the NS material onto the BH proceeds incoherently, and the ringdown
signal is replaced by an abrupt cutoff in Fourier space at the tidal disruption frequency (see
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section 9.2 and [485]). If it occurs in nature, a highly intermittent hyperaccretion scenario
[486] may excite QNM ringing in a nearly resonant fashion for large spin parameters and
potentially lead to ringdown radiation strong enough to be detectable by Advanced LIGO.

Collapse to a black hole. There are several excellent reviews on gravitational wave signatures
from supernova core collapse and on the underlying physics [23, 487–490]. When the core of a
massive star collapses, it produces a nonspherical protoneutron star. Depending on the details
of the supernova explosion, the protoneutron star may collapse to a BH, emitting a burst of
gravitational waves due to the rapidly shrinking mass-quadrupole moment of the protoneutron
star and to the QNM ringing of the nascent BH.

Perturbative calculations of gravitational wave emission from rotating gravitational
collapse to a BH were first carried out in the 1970s by Cunningham et al [63–65], improved
upon by Seidel and collaborators [491–494] and more recently by Harada et al [495]. These
studies suggest that gravitational waves are mainly generated in the region where the Zerilli
potential is large and that the signal is usually dominated by QNM ringing of the finally formed
BH (see [495] for exceptions). Simplified simulations based on a free-fall (Oppenheimer–
Snyder) collapse model yield a small energy output, with a typical core collapse radiating up
to �10−7M in gravitational waves. Most of the radiation is quadrupolar (l = 2), radiation in
l = 3 being typically two to three orders of magnitude smaller (see figure 9 in [63]). Recent
perturbative studies suggest that magnetic fields could increase the energy output by several
orders of magnitude [496, 497].

The first numerical simulation of collapse in two dimensions was carried out by Nakamura
[498], but numerical problems prevented gravitational radiation extraction. For a long time,
the seminal 1985 work of Stark and Piran [71] has been the only nonperturbative, axisymmetric
calculation of gravitational wave emission from stellar collapse. The waveform resembles that
emitted by a point particle falling into a BH, but with a reduced amplitude. The total energy
emitted increases with the rotation rate, ranging from ∼10−8M for a/M = 0 to ∼7 × 10−4M

as a/M → 1. Rotational effects halt the collapse for some critical value of (a/M)crit which
is very close to unity, and depends on the artificial pressure reduction used to trigger the
collapse. Stark and Piran found that the energy emitted E/M � 1.4 × 10−3(a/M)4 for
0 < a/M < (a/M)crit, and for larger spins it saturates to a maximum value ∼ 10−4. Note
however that the maximum energy radiated is very sensitive to the amount of artificial pressure
reduction used to trigger the collapse: the 99% pressure reduction used in the simulations
of Stark and Piran essentially produced a free-fall collapse, presumably overestimating the
radiation efficiency.

This calculation has recently been improved using a three-dimensional code [72, 499–
501]. Baiotti et al [500] chose as the initial configuration the most rapidly rotating, dynamically
unstable model described by a polytropic equation of state (EOS) with � = 2 and K = 100,
having a dimensionless rotation rate �0.54, and triggered collapse by reducing the pressure
by �2%. The ‘+’ polarization is essentially a superposition of modes with l = 2 and l = 4
and the ‘×’ polarization is a superposition of modes with l = 3 and l = 5. The energy
lost to gravitational waves according to these simulations is at most �1.45 × 10−6(M/M�),
two orders of magnitude smaller than the estimate by Stark and Piran for the same value
of the angular momentum, but larger than the energy losses found in recent calculations of
rotating stellar core collapse to protoneutron stars [502]. Baiotti et al [501] confirmed the
basic scaling E/M ≈ (a/M)4 for a/M � 0.54 (the largest rotation rates yielding equilibrium
models in uniform rotation), but at variance with Stark and Piran’s simulations they found
that the efficiency has a local maximum for large rotation rates. If the collapse is triggered
only by pressure depletion, the overall efficiency for uniformly rotating models is quite
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low (E/M ≈ 10−7–10−6), the mass quadrupole does not change very rapidly and higher
multipoles are not significantly excited. However, the total energy radiated can increase by
up to two orders of magnitude if velocity perturbations are present in the collapsing star. A
rapidly rotating polytropic star at 10 kpc can produce maximum characteristic amplitudes
hc ≈ 5 × 10−22(M/M�) at characteristic frequencies ranging between fc ≈ 500 Hz and
fc ≈ 900 Hz, and could be detectable with SNRs as large as about 30 by Earth-based
interferometers.

In conclusion, the ringdown efficiency is very sensitive to poorly known details of the
mechanism triggering the collapse. Simulations with more realistic microphysics are required
to study the complex signal preceding the ringdown phase as well as details of QNM excitation
by matter accreting onto the newly formed BH.

Mergers of compact objects leading to black hole formation. Numerical relativity simulations
of compact binary mergers made enormous progress since 1999, when the two classic reviews
on QNMs [4, 5] were written. This section is an attempt to summarize aspects of this progress
of interest for the detection of ringdown waves from astrophysical BHs.

Since NSs cannot have masses larger than about 3M�, equation (84) implies that NS–
NS mergers are potentially relevant only for the detection of BH ringdowns by Earth-based
interferometers, such as LIGO and Virgo. On the other hand, NS–BH and BH–BH mergers are
plausible targets for ringdown detection by both Earth-based and future space-based detectors,
so we will discuss them in more detail.
(1) NS–NS mergers. In 1999, Shibata and collaborators carried out the first successful equal-
mass NS–NS merger simulation for a polytropic index � = 2 [93, 503]. The first reasonably
accurate calculation of gravitational waveforms was possible a few years later, in 2002 [504].
Unequal-mass binaries with a � = 2 polytropic EOS were studied in [505], where it was
found that a BH forms when the total rest mass of the system is larger than ∼1.7 times the
maximum allowed rest mass of spherical NSs, irrespective of the mass ratio (which however
affects significantly the waveforms and the mass of the disk forming around the newly born
BH). More realistic EOSs and larger parameter spaces were considered in [506, 507]. Shibata
and Taniguchi [507] used stiff EOSs and modeled binary NSs of ADM mass M � 2.6M�.
For all mass ratios 0.65 � q � 1, a BH forms whenever the mass M > Mth. The threshold
value Mth � 1.3–1.35Mmax (where Mmax is the maximum mass allowed by the given EOS for
cold, spherical NSs) depends on the EOS. If M < Mth the merger results in a hypermassive
NS of large ellipticity, emitting quasi-periodic gravitational waves at frequencies ∼3–4 kHz
for � 100 ms. After this phase, the NS may or may not collapse to a BH. For total binary
masses in the range M ≈ 2.7–2.9M�, the l = m = 2 ringdown frequency emitted in the
collapse to a BH is ≈6.5–7 kHz, with amplitude ∼10−22 at a distance of 50 Mpc. Therefore,
BH ringdown from NS–NS mergers is unlikely to be detected: the amplitude is too low and
(most importantly) the frequency is too high for present and planned Earth-based gravitational
wave detectors. It is interesting to note that NS–NS merger simulations typically lead to final
BH spins a/M ≈ 0.8 [507, 508], not very different from the value a/M � 0.69 predicted by
equal-mass BH merger simulations. Various groups have recently carried out NS–NS merger
simulations with magnetic fields, finding that aligned poloidal fields can delay the merger and
strongly affect the gravitational wave signal [509–511].
(2) NS–BH mergers. NS–BH binaries are potentially among the most interesting BH ringdown
sources. From equation (154), the QNM frequency for non-spinning BHs with M � 10M�
is within the sensitivity window of LIGO and Virgo. Theory and observations [464, 512,
513] suggest that binaries containing BHs with masses in this range should be common.
Furthermore, high-mass-ratio systems do not tidally strip the NS, producing a merger with
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a clean ringdown signal. The simulations described in the rest of this section suggest that
NS–BH mergers are promising sources of ringdown waves and (when the BH is spinning)
excellent candidates as central engines for gamma-ray bursts (GRBs).

NS–BH merger simulations became possible once the moving puncture approach
[15, 16] proved successful in evolving BH–BH binaries. Shibata and Uryu [514, 515]
first evolved two binaries consisting of (1) a non-rotating BH of mass ≈3.2M� or ≈4M�,
respectively, and (2) a NS of rest mass ≈1.4M�, modeled by a �-law EOS with � = 2. A
larger set of simulations with non-spinning BHs of masses M ∼ 3.3–4.6M� and NSs of mass
M ∼ 1.4M� were performed in [516]. The NS is tidally disrupted, and the system results in a
BH with spin a/M ≈ 0.5–0.6. Non-spinning NS–BH mergers can only produce massive tori
and fuel short-hard GRBs if the NS has compactness M/R � 0.145. Furthermore, when tidal
disruption occurs the QNM amplitude quickly decreases, because the incoherent accretion of
material is ineffective at resonantly exciting the mode (see figure 6 of [516]).

The first code capable of handling NS–NS, NS–BH and BH–BH binary evolutions
comprising more than four orbits was recently described in [508]. Gravitational waveforms
from NS–BH mergers were presented in [485] and classified into three classes as follows.
(1) For small mass ratio q and small NS compactness (e.g., if q � 3 for M/R = 0.145 and
� = 2) tidal disruption occurs outside the ISCO, and there is no QNM excitation. (2) For
some systems, mass shedding occurs before the binary reaches the ISCO. Most of the NS is
swallowed by the BH before tidal disruption is completed and QNMs are excited, but only
to a low amplitude. (3) If tidal effects do not play an important role the waveforms show
significant QNM excitation, as they always do for BH–BH mergers. The latter class of NS–BH
mergers is clearly the most promising for BH ringdown detection. Whenever ringdown is not
significantly excited, kicks are also suppressed: this confirms the crucial role played by the
merger/ringdown phase in determining the magnitude of the kick resulting from compact
binary mergers (see section 9.8). The results of [485] are in good agreement with NS–BH
codes developed by other groups [517–519]. Etienne et al [517] dealt with systems where the
NS is irrotational, the BH is non-rotating and the mass ratio q = 1/3. These simulations lead
to the formation of BHs with a/M ≈ 0.5–0.8. Most of the NS material is promptly accreted
and no more than 3% of the NS mass is ejected into a gravitationally bound disk. This disk
mass, while larger than the typical values found in [485], is probably not enough to trigger
short-hard GRBs.

Results from non-spinning NS–BH mergers show that the disk mass is typically too low to
fuel GRBs. For example, figure 7 of [485] shows that if the BH is non-spinning, the formation
of a disk requires a ‘fat’ NS with radius R � 14 km. The few simulations presently allowing
for (aligned or antialigned) BH spins have a drastically different outcome, indicating that spin
plays a crucial role in fueling GRBs [518]. In these simulations, the number of orbits before
merger increases as the spin is varied among a/M = −0.5 (antialigned), 0.0 and 0.75 (for
fixed mass ratio q � 1/3). In the latter case the final BH spin is a/M � 0.88, and the tidal
disruption of the NS leads to the formation of a massive disk of about 0.2M�, potentially
capable of driving GRBs. The production of GRBs by NS–BH mergers and the possibility
of detecting the final spin orientation using observations of the merger/ringdown phase are
promising areas of research for multi-messenger astronomy using a network of ground-based
detectors in conjunction with traditional electromagnetic observations (see e.g. [520–524]).
(3) BH–BH mergers. After 40 years of developments in numerical relativity, recent
breakthroughs [14–16] finally allowed simulations of the merger and ringdown of BH binaries.
Extensive collaborations to use numerical merger waveforms in gravitational wave searches
have just started [525]. A discussion of the accuracy of numerical simulations and of their
rapid progress in the last few years would take us too far (see [14, 526] for reviews). From

62



Class. Quantum Grav. 26 (2009) 163001 Topical Review

the point of view of this review, the main result of these merger simulations is that QNM
ringing is observed in all binary BH merger simulations. This is quite unlike NS–BH and
NS–NS mergers, where tidal effects can sometimes suppress ringdown excitation because of
the incoherent accretion of material onto the newly formed BH. Another important difference
is that the gravitational waveform from a BH–BH merger depends on the total mass of the
system via a trivial rescaling, so BH–BH systems are interesting for ringdown detection by
both Earth-based and space-based detectors.

The mass-ratio dependence of the ringdown efficiency can be estimated by simple
arguments [44, 89]. The quadrupole moment of a body of mass M with a ‘bump’ of mass
μ � M is Q ∼ μM2. The oscillation frequency of the system f ∼ 1/M; hence, the radiated
power dE/dt ∼ (

d3Q/dt3
)2 ∼ (f 3Q)2 ∼ μ2/M2. For a binary with mass ratio μ/M the

inspiral lasts ∼(M/μ) cycles times the orbital timescale T ∼ M , so the total energy loss during
the inspiral is Einsp ∼ (M/μ)(μ2/M2)M ∼ μ. By contrast, a typical ringdown waveform lasts
only a few cycles, so the ringdown energy loss Eringdown ∼ M(μ2/M2) ∼ μ2/M (compare
with the classic result for infalling particles in [43]) and Eringdown/Einsp ∼ μ/M: ringdown is
negligible with respect to inspiral for extreme-mass ratio binaries. If we naively extrapolate
these estimates to bodies of comparable masses (interpreting M as the total mass of the binary
and μ → m1m2/M as the reduced mass) we find that Eringdown/M ∼ η2, where η ≡ μ/M is
the so-called symmetric mass ratio (η → 1/4 in the comparable-mass limit).

Physical arguments to estimate the prefactors suggest that the merger/ringdown waveform
should actually dominate over inspiral for binaries with mass ratio q � 1/10 [10, 89], and
numerical simulations of quasi-circular inspirals of comparable-mass mergers have borne
out this expectation. For non-spinning binary BH mergers, the fraction of energy radiated
(M − Mfin)/M (where M denotes the total mass of two BHs in isolation and Mfin is the mass
of the final BH), as well as the final spin a/M , has been extensively studied [44, 477, 527,
528, 528]. Buonanno et al [527] fitted data from the simulations by the Goddard group by a
relation of the form

Mfin/M = 1 + (
√

8/9 − 1)η − 0.498(±0.027)η2, (156)

a/Mfin =
√

12η − 2.900(±0.065)η2. (157)

This result is consistent with the fitting formula given in [44] using a different normalization.
Frequencies and damping times of different multipolar components can be estimated using
either a standard least-squares algorithm [477] or Prony methods, which are in many ways
optimal to estimate the parameters of damped exponentials in noise [529]. By monitoring
the frequencies and damping times after merger, we can monitor inaccuracies in the higher
multipolar components of numerical simulations and possibly explore nonlinear effects (see
e.g. section IV in [44]).

Quantifying the fraction of energy radiated in ringdown is inherently ambiguous. The
reason for this difficulty can essentially be traced back to the non-completeness of QNMs
[2, 3, 44, 169]. An operational viewpoint to isolate the ringdown contribution is given by
Nollert’s energy-maximized orthogonal projection (EMOP) criterion [44, 169]. The idea is
to determine the starting time of a ringdown waveform by assuming that the frequency of
the ringdown waveform is known, and performing matched-filtering (in white noise) of the
numerical waveform, using a damped sinusoid as the ‘detection template’. Since ringdown
is essentially monochromatic, this should give a reasonably good, frequency-independent and
detector-independent estimate of the fraction of energy that we can expect to detect by a
ringdown search. For more details on ringdown search techniques, see section 9.4.
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An application of the EMOP criterion to numerical simulations shows that ringdown
typically contributes ∼42% of the energy radiated by the last two cycles of BH–BH mergers
with mass ratio q � 1/4 (see tables VI and VII of [44]). By combining Prony methods for
estimating frequencies and the EMOP approach to estimate the ringdown starting time, we
find the following estimates for the energy emitted in ringdown as a result of the merger of
non-spinning, quasi-circular BH binaries [44]:

El=2
ringdown

M
� 0.271

q2

(1 + q)4
,

El=3
ringdown

M
� 0.104

q2(q − 1)2

(1 + q)6
. (158)

For non-spinning, equal-mass binaries, the merger/ringdown signal as the system’s orbital
angular momentum is reduced (so a quasi-circular merger slowly turns into an head-on
collision) has been studied in [530, 531]. In the head-on limit, one gets a radiated energy of
∼0.1%M . In the intermediate regime, where two equal-mass BHs merge along orbits with
large residual eccentricity, the radiated energy decays (roughly) exponentially (see table I and
figure 7 in [530]) and the final BH spin has a local maximum jfin � 0.724 ± 0.13 [530, 531].
For preliminary studies of the ringdown efficiency in the merger of quasi-circular, spinning
binaries, see [475, 532, 533].

Predictions of the spin of a BH resulting from a merger are very interesting from the point
of view of ringdown detection. For example, if we measure the masses and spins during the
inspiral we may be able to predict the final spin and reduce the errors in parameter estimation
[534, 535]. For a summary of semi-analytic models and fitting formulae to predict the final
spin from generic mergers, we refer the reader to [536–539]. Some insight into the general
outcome of a spinning merger can be obtained by looking at the right panel of figure 15. For
simplicity, consider three different merger scenarios: (i) in the isotropic scenario, both BH
spins are distributed isotropically; (ii) in the aligned spin scenario, the individual BH spins in
the binary are assumed to be aligned (for example, in ‘wet mergers’ the alignment could be
caused by torques from accreting gas, as suggested in [540]); (iii) in the equatorial merger
scenario, the smaller BH is supposed to orbit in the equatorial plane of the larger hole (e.g.
because of Newtonian dynamical friction in a flattened system), but the spin orientation of the
smaller BH is distributed isotropically. The right panel of figure 15 shows the maximum and
minimum spins resulting from a merger in these three scenarios. These curves are obtained
by (1) fixing some value of the mass ratio q, (2) averaging over angles according to the three
different assumptions listed above and (3) maximizing or minimizing the final average spin
resulting from a merger (where the average is computed using the fitting formulae of [537])
in the (|j1|, |j2|) plane, where |ji | is the spin magnitude of BH i = 1, 2. Not surprisingly, the
minimum average final spin always corresponds to the case where both BHs are non-spinning
(dashed black line). The maximum average spin in the three cases is shown by the continuous
black (isotropic), red (equatorial) and blue (aligned) lines. The dashed blue line shows the
(modulus of) minimum spin that could be achieved if we allow for antialignment of both
spins with respect to the orbital angular momentum (a spin flip becomes possible when the
mass ratio q ≈ 1/3). The most interesting prediction of this plot is the existence of a narrow
funnel between the solid black and dashed black lines: on average, isotropic major mergers
(with q � 0.2 or so) always produce a final spin which is very close to the spin resulting
from equal-mass non-spinning BH binaries, i.e. a/M ∼ 0.69. Furthermore, in all three
scenarios the most likely spin resulting from ‘major’ mergers with q � 0.1 is quite close to
|jfin| � 0.69.

A critical assessment of the available predictions on the final spin and on the final kick is
outside the scope of this review; the interested reader is referred to [541].
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9.3. Astrophysical black holes: mass and spin estimates

From the discussion in the previous section, it should be clear that ringdown detectability
depends crucially on the physical parameters of astrophysical BHs. What are the most
promising scenarios leading to the formation of massive stellar-mass BHs that would
predominantly be seen in merger/ringdown by Earth-based interferometers? What are the
event rates for mergers to be observed by LISA? Given that ringdown detectability scales
strongly with mass ratio, what is the most likely mass ratio for binaries whose merger is
detectable by LIGO and LISA? What is the most likely spin magnitude of BHs in binaries,
and what are the odds that we can unveil connections between merger/ringdown waveforms
and the central engine of GRBs? In this section, we briefly survey theoretical expectations
and state-of-the-art measurements of the mass and spin distribution of BHs. We summarize
some of the most relevant information that astronomers have collected by working as busy
bees over the past 30 years, paying particular attention to the implications for the detection of
gravitational waves from the merger/ringdown of BH binaries.

Our focus here is on testing the BH nature of astrophysical objects by gravitational wave
observations, but there are excellent reviews on measuring BH masses, spins and (possibly)
providing evidence of an event horizon by ‘traditional’ electromagnetic astronomy. Narayan
reviews the status of BH astrophysics, focusing on observational progress in measuring mass
and spin and on (circumstantial) observational evidence for the defining property of a BH: the
event horizon [8]. Psaltis discusses how electromagnetic observations of BHs and neutron
stars can be used to probe strong-field gravity; in the process he describes various ways
of identifying BHs and measuring their properties, including continuum spectroscopy, line
spectroscopy and attempts at imaging the vicinity of BHs to constrain their angular size [32].

Stellar-mass black hole candidates. The most accurate mass measurements for stellar-mass BH
candidates are made via dynamical methods, that is, by looking at how the unseen BH affects
the orbit of a companion star. Consider a test particle in a circular orbit around the BH. If the
orbit is wide enough for Newtonian physics to apply, then the mass M = ω2r3 = v2r = v3/ω,
where r is the orbital separation, v is the orbital velocity and ω = 2π/T with T being the
orbital period (simple modifications can account for orbital eccentricity). By measuring any
two of v, r and ω, we may estimate the BH mass M. In the case of BH x-ray binaries, it is
relatively easy to measure ω and the maximum line-of-sight Doppler velocity Kc = v sin ι of
the companion star. From these quantities, one can compute the ‘mass function’

f (M) ≡ Kc

ω
= M sin3 ι

(1 + Mc/M)2
, (159)

where M and Mc are the masses of the BH candidate and of the companion, respectively.
The inclination angle ι of the orbit can be estimated from the light curve of the binary, and
sometimes it is even possible to estimate Mc. By combining measurements of ω and Kc with
estimates of ι and Mc, one can in principle determine the masses of both binary members.
However, to identify BH candidates the essential point is to note that the mass function f (M),
which depends only on ω and Kc, provides a strict lower bound on M. Since NSs cannot be
more massive than about 3M� [542], all x-ray binaries for which f (M) � 3M� should contain
a BH. Remillard and McClintock [464] review the phenomenology of 20 x-ray binaries with
dynamically confirmed BHs, presenting a census of BH candidates and a critique of different
methods for measuring spins. Their table I provides a list of (lower bounds on) the mass
of about 20 BH candidates. The most massive stellar-mass BH candidate to date is IC 10
X-1, with a minimum mass M = 23.1 ± 2.1M� if the companion’s mass Mc = 17M�
(M = 32.7 ± 2.6M� if one trusts an estimate of Mc = 35M� for the companion) [513]. This
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system is particularly interesting for gravitational wave detection, because it should become a
close double BH binary with a coalescence time of ∼2–3 Gyr [543].

The relative importance of ringdown with respect to inspiral waves decreases for
extreme mass ratios. For the stellar-mass binaries of interest for Earth-based interferometers,
population-synthesis codes suggest that q should always be very close to unity [512]. A
rather speculative kind of source (in the absence of solid evidence for IMBHs) consists of the
intermediate-mass ratio inspirals (IMRIs) of a compact object, such as a NS or BH, into an
IMBH. The relatively low energy content in ringdown waves is compensated, in this case, by
the fact that the ringdown frequency is close to the minimum of the Advanced LIGO noise
power spectral density (see appendix B of [544]). Another promising ringdown source for
advanced Earth-based interferometers (albeit with highly uncertain event rates) are IMBH–
IMBH inspirals. These binaries, if they are numerous enough to be detectable, present an
interesting data analysis challenge: the initial inspiral phase could be detected by LISA, while
the ringdown phase is in the optimal bandwidth for Advanced LIGO, which could therefore
be used for ‘follow-up’ ringdown searches [545].

Supermassive black hole candidates. A good review of SMBH observations from a historical
perspective can be found in [465]. The first quasar was identified in 1963 [51], when the
Kerr solution had just been discovered [50] and its astrophysical relevance was unclear. In
the intervening years astronomers gathered strong observational evidence for the presence
of SMBHs in the bulges of nearly all local, massive galaxies [546–548]. Reliable mass
estimates are available for many of these systems. The most precise measurement comes from
observations of stellar proper motion at the center of our own galaxy, indicating the presence
of a ‘dark object’ of mass M � (4.1 ± 0.6) × 106M� [549, 550] and size smaller than about
1 AU [551]. A Schwarzschild BH of the given mass has radius R � 0.081 AU, compatible
with the observations. Any distribution of individual objects within such a small region
(with the possible exceptions of dark-matter particles or asteroids, which however should be
kicked out by three-body interactions with stars) would be gravitationally unstable [552, 553].
Theoretical alternatives to SMBHs (e.g., boson stars and gravastars) have been proposed by
various authors, but the formation process of these hypothetical objects is unclear, and many
of these exotic alternatives can be shown to be unstable [554, 555]. Another accurate mass
measurement comes from the motion of the gas disk at the center of the nearby galaxy NGC
4258 [556], as monitored by radio interferometry of the waves emitted from water molecules
via maser emission. The observations imply the presence of an object of mass 3.5 × 107M�
within ∼4×1015 m. Other techniques include applications of the virial theorem to the velocity
dispersion of stars near the galactic center [546] and reverberation mapping to obtain more
crude estimates for distant, variable AGNs [557]. The reader interested in a SMBH mass census
can consult Graham’s survey [558], listing 76 galaxies with direct SMBH mass measurements
and (when available) their host bulge’s central velocity dispersions. Graham also lists eight
stellar systems that could potentially host intermediate-mass BHs. For our purposes, it suffices
to note that SMBHs have masses in the range M ∼ 105–109M�, approximately proportional
to the mass of the host galaxies, M ∼ 10−3Mgalaxy [559]. There is an almost-linear relation
between the mass of a SMBH and the mass of the galactic bulge hosting it [546–548]. The
BH mass is also tightly correlated with other properties of the galactic bulge, such as the
central stellar velocity dispersion σ , the bulge light concentration and the near-infrared bulge
luminosity [558, 560, 561]. These correlations clearly indicate that SMBHs are causally
linked to the surrounding galactic environment. The growth of galaxies and SMBHs must be
intertwined, and observations of the merger and ringdown of SMBHs with LISA hold great
promise to clarify their formation history.
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Supermassive black hole binary candidates. The SMBHs harboring nearby galactic cores
are expected to grow via a combination of mergers and accretion, and hierarchical merger
models of galaxy formation predict that binary SMBHs should be common in the universe
[562–564]. The merger of SMBH binaries is one of the most luminous gravitational wave
events in the universe, and it is the strongest conceivable astrophysical source of ringdown
waves. Observational evidence for close SMBH binaries started emerging very recently, and
it is one of the most exciting frontiers of relativistic astrophysics.

The formation of SMBHs during galaxy mergers is a challenging problem in theoretical
astrophysics. The general scenario was outlined in a pioneering analysis by Begelman et al
[565] (see [562] for a more recent review). The evolution of a SMBH binary can be
roughly divided into three phases: (i) as the galaxies merge, SMBHs sink to the center
via dynamical friction; (ii) the binary’s binding energy increases because of gravitational
slingshot interactions, i.e. the ejection of stars on orbits intersecting the binary (these stars’
angular momentum must be in a region of phase space called the ‘loss cone’) and (iii) if the
binary separation becomes small enough, gravitational radiation carries away the remaining
angular momentum. Note that the gravitational wave coalescence time is shorter for more
eccentric binaries [566], so high-eccentricity binaries are slightly more likely to coalesce
within a Hubble time (see e.g. [567]). The transition from phase (ii) to phase (iii) is a field
of active research, which has been referred to as the ‘final parsec problem’ [562]. Since the
binary will quickly eject all stars through gravitational slingshot interaction, the problem is
to find some mechanism (such as gas accretion, star–star encounters and triaxial distortions
of galactic nuclei) to refill the loss cone. It is generally believed, based on both theoretical
and observational arguments, that efficient coalescence should be the norm [567]. The main
point here is that only SMBH binaries with separations �1 pc can merge within a Hubble time
under the sole influence of gravitational radiation.

The mass ratio distribution is an important variable from the point of view of ringdown
detection. The impact of different SMBH assembly models on the mass and mass ratio
distribution of detectable binaries has been discussed by various authors. The general
consensus is that mass ratios q � 1/10 (and down to q ≈ 10−3–10−4) should be common
[568–573]. This may not be true for mergers between BHs in separate dark-matter halos,
because the smaller halo could get tidally stripped and it would not be able to sink efficiently
toward the center of the main halo [574]. In any case, SMBH mergers will be strong LISA
ringdown sources even for modest mass ratios.

Possible observational smoking guns of SMBH binaries (such as X-shaped radio galaxies,
double–double radio galaxies, helical radio jet patterns, semi-periodic signals in lightcurves,
double-peaked emission-line profiles and galaxies which lack central cusps) are reviewed
by Komossa [575]. At the time of her review, the most spectacular example of a SMBH
binary was the ultraluminous infrared galaxy NGC 6240 [576], containing two active SMBHs
separated by a relatively short projected distance ∼1 kpc. Since then, more quasars have been
identified as promising hosts of SMBH binaries9. Even more interestingly, in the last year
three systems have been proposed to host binary SMBHs at separations smaller than 1 parsec

9 A binary AGN with separation ∼4.6 kpc has been claimed in Arp 299 [577] and a system with projected distance
∼10.5 kpc has been found in the galactic pair ESO 509-IG066 [578]. Evans et al [579] revealed the AGN nature of
the companion of the FRII radio source 3C 321. Bianchi et al identified a binary AGN in Mrk 463 with projected
separation ∼3.8 kpc [580]. Finally, using multifrequency observations with the Very Long Baseline Array (VLBA),
Rodriguez et al [581, 582] reported the discovery of a SMBH binary in the radio galaxy 0402+379 with a total
estimated mass of 1.5×108M� and a projected orbital separation of just 7.3 pc. This is the smallest orbital separation
by more than two orders of magnitude, but even for this relatively close binary the emitted gravitational waves have
frequency ∼ 2 × 10−13 Hz, way too low to be observed by LISA, and a merger time ∼1018 yr (much longer than the
age of the universe) if gravitational radiation is the only dissipative mechanism.
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[583, 584]. These observations could be extremely important for our understanding of SMBH
binary mergers and their rates [585]. Since they are still controversial and they would take us
too far from the main topic of this review, we briefly summarize them for the interested reader
in appendix C.

Spins: theoretical expectations. Estimating BH spins is an exciting observational frontier
for the next decade of observational astronomy [586–588]. Present spin estimates based
on electromagnetic observations are all, to some extent, model dependent. Few dependable
and accurate measurements are available, and there are different opinions on the expected
spin magnitude of both stellar-mass BHs and SMBHs. The punchline of the theoretical work
summarized in this section is as follows: (1) stellar-mass BHs should typically retain their natal
spin, and so they can be used to infer information about the mechanism triggering the collapse;
(2) SMBH spins encode the history of the hole, and particularly the relative importance of
mergers and accretion in the hierarchical formation process responsible for growing the holes.
The rest of this section gives arguments in support of these conclusions.

(1) Stellar-mass black holes. Theoretical arguments suggest that stellar-mass BHs in binaries
retain the spin they had at birth: neither accretion nor angular momentum extraction are likely
to change significantly their mass or spin. A BH must accrete an appreciable fraction of its
original mass in order to significantly change its spin. For BHs with low-mass companions,
even the accretion of the entire companion star will only change the spin by a small fraction;
for BHs with high-mass companions, even Eddington-limited accretion will only grow the BH
spin by a small amount before the high-mass companion explodes [589]. Therefore, the spin
of stellar-mass BHs should depend mainly on their formation process.

Detailed studies of spin evolution in compact binaries have been carried out by the
Northwestern group, focusing mostly on NS–BH binary systems and using progressive
improvements of the STARTRACK stellar evolution code (see [512] and references
therein). The evolution prior to the supernova explosion involves mass-transfer phases,
which are expected to align the spins of both the BH and the NS progenitors, but a
significant natal kick of the NS at birth is required to form a coalescing NS–BH binary
[590]. In general, the plane of the post-supernova orbit is tilted with respect to the
pre-supernova plane, and hence tilted with respect to the BH spin axis by some angle
ι, inducing precession of the binary’s orbital plane. Preliminary results suggest that
precession only marginally impacts the detection of gravitational waves from the inspiral
waves, but it should be significant for parameter estimation [512, 591, 592]. Belczynski
et al [512] considered both BH–BH and NS–BH binaries. For NS–BH binaries they confirm
the qualitative predictions of [589]: BHs cannot be significantly spun up by accretion in the
common envelope phase. For example, only 20% of initially non-spinning BHs spin up to
a/M > 0.1 and no BHs spin up to a/M � 0.5. The spin-up is even smaller for BH–BH
binaries, with the highest attainable spins being very close to the initial spins of the individual
BHs (see figures 5 and 9 in [512]). Furthermore, the kick-induced tilt angle ι < 45◦ for ∼50%
of NS–BH systems. The fraction of events that can potentially produce short-hard GRBs,
and which therefore is relevant for merger/ringdown searches in association with gamma-ray
bursts, is significant (of order ∼40%) only if the initial BH spin a/M � 0.6 [512].

These studies suggest that Advanced LIGO measurements of BH spins in the inspiral of
binaries containing stellar-mass BHs should be an excellent probe of the collapse mechanism
that produced the BH in the first place, because the BH essentially retains the spin it had
at birth. Furthermore, in view of the NS–BH simulations discussed in section 9.2, NS–BH
binaries where the BH is rapidly spinning are good candidates as central engines of GRBs, and
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the resulting gravitational wave signal may have a significant ringdown component. This could
potentially allow a ringdown-based measurement of the final BH spin magnitude and direction,
with interesting implications for coincident electromagnetic/gravitational observations of
GRB events.
(2) Supermassive black holes. Since SMBHs are expected to grow by a combination of
mergers and accretion, their spin will depend on three main ingredients [593]: (i) the spin of
‘seed’ BHs at birth, which in some sense defines the initial conditions for the problem; (ii) the
spin resulting from a binary BH merger and (iii) the maximum spin attainable by accretion.
We discuss these points, in turn, below.

(i) Natal spins. Little is known observationally about the formation of the first BHs in
the universe. A popular formation scenario involves the collapse of primordial, massive
(M ∼ 30–300M�), metal-free Population III stars at cosmological redshift z ∼ 20 to form
primordial BHs with M ∼ 102M�, clustering in the cores of massive dark-matter halos [594],
but details of the collapse are uncertain [595, 596]. Shibata and Shapiro simulated the collapse
of uniformly rotating stars supported by radiation pressure and spinning at the mass-shedding
limit, finding numerically [597] that the final BH spin (independently of the progenitor mass)
is a/M ≈ 0.75 and supporting this result by analytical arguments [598]. Alternative scenarios
suggest that BH seeds would form at z � 12 from low-angular momentum material in
protogalactic discs [599, 600]; these seeds would have larger mass M ∼ 105M�, but their
angular momenta depend on the dynamics of the collapsing material. Whether this ‘initial
value problem’ is relevant for the overall spin distribution of SMBHs is a matter of debate.
Merger tree simulations where the accretion disk orientation is chosen randomly show that
the spin distribution does indeed retain memory of the initial conditions [482, 569]. However,
a recent model where the BH spin directions are ‘linked with the galaxies’ suggests that the
spin distribution could be largely independent of the initial conditions [601].
(ii) Spin from mergers. A pioneering attempt to study massive BH spin evolution by repeated
mergers, predating the 2005 numerical relativity breakthrough, is due to Hughes and Blandford
[602]. Extrapolating results from BH perturbation theory, they found that ‘minor mergers’
(q � 1/10) of a large BH with an isotropic distribution of small objects tend to spin down the
hole. An implementation of the results shown in the right panel of figure 15 within merger
tree scenarios confirms these results. Furthermore, it shows that SMBH spins cluster around
a/M ∼ 0.7 if alignment and accretion are inefficient, so that the BH spin growth is dominated
by mergers [482]. However, Volonteri et al [482, 569] argued that on average accretion should
dominate over mergers in determining the spin evolution in hierarchical SMBH formation
scenarios.
(iii) Spin from accretion. The details of SMBH growth by accretion are very uncertain. It is
usually believed that prolonged accretion should lead to large spins [569]. However, King et
al [603–606] suggested that gas accretion may occur through a series of chaotically oriented
episodes, leading to moderate spins a/M ∼ 0.1–0.3. Since numerical relativity suggests that
comparable-mass mergers should not be efficient at spinning up BHs, and such comparable-
mass mergers are expected to be common [540], a few measurements of spins a/M � 0.9
(such as the value of a/M = 0.989+0.009

−0.002 claimed by Brenneman and Reynolds [607] for the
Seyfert 1.2 galaxy MCG-06-30-15) would imply that chaotic accretion is not the norm.

Given the present uncertainty on the physical agents responsible for SMBH growth,
it would be extremely valuable to find observational signatures of different formation
scenarios. Figure 16 (adapted from [482]) shows that electromagnetic spin measurements and
gravitational wave measurements from the inspiral and ringdown may provide an excellent
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Figure 16. Left panel: spin distributions for merging BHs. Red dashed histograms show the spin
distribution of inspiraling SMBHs in binaries, while black histograms show the spin distribution
of SMBHs post-merger. Right panel: spin distribution of the whole MBH population in the mass
range 105M� � M � 3×107M�. For simplicity, we consider only the isotropic merger scenario.
From left to right in each panel, accretion is assumed to be inefficient, prolonged or chaotic,
respectively (see [482] and the text for details).

way of discriminating between different mechanisms of BH growth. The spins are assumed
to be isotropically distributed (but efficient alignment, as suggested in [540], would only
marginally alter the picture; see [482]) and the seed BHs are assumed to be non-spinning. In
the left panel, the red dashed histograms show theoretical estimates of the spin distribution that
could be measured by observing gravitational radiation from inspiraling SMBH binaries; the
black histograms show the distribution of SMBH spins post-merger, as would be measured by
observations of ringdown waves. Finally, the histograms in the right panel show the distribution
of spins of the whole BH population, which can be probed by electromagnetic observations of
the kind described in appendix D. In each panel time runs upward (the histograms correspond
to different redshift cuts, as indicated in the inset) and the three ‘columns’, from left to right,
correspond to (1) spin growth being determined only by mergers (inefficient accretion), (2)
spin growth being driven by mergers and prolonged accretion [569] and (3) spin growth being
driven by mergers and chaotic accretion [603–605]. The spin distributions are obviously very
different. According to the chaotic accretion scenario, ringdown measurements would never
observe BH spins larger than ∼0.7 or so, and most spins would be very low. If prolonged
accretion dominates, then most BHs should be rapidly spinning, and if accretion is inefficient
the spin distribution should have an attractor around j ≈ 0.7. The spin distribution clearly
encodes information on the SMBH merger history.

It is important to keep in mind that the expected spins of SMBHs may well depend
strongly on their masses. It has been suggested that SMBHs with M � 2 × 106M� may grow
primarily by disruption of stars (see e.g. figure 9 of [608]), which would then lead to low
spins. These BHs would be in the optimal sensitivity window for LISA, but they are more
difficult to observe electromagnetically. In contrast, the Soltan [609] argument that SMBHs
grow mainly be accretion (see appendix D) really applies only to M � 107M�, because only a
small fraction of SMBH mass is in BHs with M � 107M� . As a result, higher mass SMBHs
could grow mainly by accretion, but lower mass BHs would grow mainly by stellar disruption,
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Table 3. A list of spin estimates available in the literature, along with the method used for the
estimate (see appendix D) and the relevant references. Tables 1 and 2 of [610] list spin estimates
for 19 powerful FRII radio sources (FRIIb) and for 29 CDGs. For MS0735.6+7421, Daly [610]
estimates a spin of 0.83 ± 0.39, consistent with [611].

System Estimated spin Method Reference

Stellar-mass BHs
Cygnus X-1 0.05 ± 0.01 Line spectroscopy [612]
LMC X-3 ≈0.2–0.4 Continuum [613]
4U 1543-475 0.3 ± 0.1 Line spectroscopy [612]

0.75–0.85 Continuum [614]
SAX J1711.6-3808 0.6+0.2

−0.4 Line spectroscopy [612]
XTE J1550-564 ≈0.1–0.8 Continuum [613]

0.76 ± 0.01 Line spectroscopy [612]
SWIFT J1753.5-0127 0.76+0.11

−0.15 Line spectroscopy [615]
M33 X-7 0.77 ± 0.05 Continuum [616]
XTE J1908+094 0.75 ± 0.09 Line spectroscopy [612]
XTE J1650-500 0.79 ± 0.01 Line spectroscopy [612]
GRS 1915+105 0.7–0.8 Continuum [617]

0.98–1 Continuum [618, 619]
LMC X-1 0.90+0.04

−0.09 Continuum [620]
GX 339-4 0.94 ± 0.02 Line spectroscopy [612, 621]
GRO J1655-40 � 0.25 QPOs [622]

0.65–0.75 Continuum [614, 618]
≈0.1–0.8 Continuum [613]
0.98 ± 0.01 Line spectroscopy [612]

XTE J1655-40 ≈1 Line spectroscopy [623]
XTE J1550-564 ≈1 Line spectroscopy [623]

SMBHs
29 CDGs 0.1–0.8 Energetics [610]
19 FRIIb 0.7–1 Energetics [610]
SWIFT J2127.4+5654 0.6 ± 0.2 Line spectroscopy [624]
MCG-06-30-15 0.989+0.009

−0.002 Line spectroscopy [607]
1H0419-577 ≈1 Line spectroscopy [625]
MS0735.6+7421 ≈1 Energetics [611]

Large Average efficiency [626–630]
Small Average efficiency [606, 631–633]

mergers with stellar-mass compact objects and comparable-mass mergers. Therefore, the
observation of spin as a function of mass could be a powerful diagnostic of SMBH evolution.

Spins: observational estimates. Spin estimates based on electromagnetic observations made
enormous progress in the last 3 years. A summary of estimates available in the literature
is provided in table 3. Note that in some cases (most notably for 4U 1543-475 and GRO
J1655-40), different methods yield sensibly different spin estimates (see e.g. [612]). The
main methods used so far to estimate spins are continuum spectroscopy of accretion disks,
spectroscopy of relativistically broadened Fe Kα fluorescence lines and energetic arguments
based on the radiative efficiency of quasars. A discussion of these topics would take us
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too far, but it is essential to appreciate the statistical and systematic errors involved in the
numbers listed in table 3. To improve readability, we review recent literature in this field in
appendix D.

A glance at the table shows that the estimated spin magnitudes of stellar-mass BHs cover
the whole range from zero to one. This seems to confirm the doctrine that stellar-mass BHs
in x-ray binaries essentially retain the spin they had at birth [589]. The situation is even
more unclear for SMBHs, where (as shown in the last two lines of table 3) uncertainties in
observational data on the mean efficiency of quasars lead to very different conclusions on
the average values of SMBH spins. Gravitational wave detection could be instrumental in
resolving this controversy.

9.4. Detection range for Earth-based and space-based detectors

We usually say that a gravitational wave signal is detectable when the SNR, as defined in
equation (152), is larger than some threshold, typically ρ > 10. Since the gravitational
wave amplitude decreases linearly with the (luminosity) distance DL from the source, the
distance corresponding to ρ = 10 is sometimes called the detector range. In the left panel of
figure 17 we show LISA’s SNR for equal-mass inspirals (solid lines) and the ensuing ringdown
(dashed lines) as a function of the total mass of the system M0, where the superscript ‘0’ means
that the mass is measured in the source frame (see [10] for details of the assumptions going
into this calculation). Each line corresponds to a different luminosity distance or, which is the
same, to a different cosmological redshift z: for example, a redshift z � 0.5 corresponds to
a luminosity distance of about 3 Gpc in a standard �CDM cosmology. The plot illustrates a
number of important points: (1) LISA can detect the last year of the inspiral of equal-mass
binaries with total mass 103M� < M0 < 106M� out to cosmological distances (z � 10)
and (2) the ringdown phase has (under reasonable assumptions, which are confirmed by
numerical simulations; see e.g. figure 14 in [634]) a larger maximum SNR than the inspiral
phase, and this maximum is achieved at larger values of the SMBH’s mass. This is important,
because it implies that ringdown searches are better suited for the detection of binaries with
105M� < M0 < 107M�, which is closer to the typical mass range estimated for SMBHs at
galactic centers (see section 9.3).

In the right panel of figure 17, we show the ringdown detection range corresponding to
ρ = 10 for Earth-based detectors. The plot shows that Advanced LIGO and the Einstein
Gravitational Wave Telescope have the potential to detect ringdown from IMBH–IMBH
systems of mass up to ∼103M� out to a luminosity distance of a few Gpc [545]. In fact, third-
generation Earth-based interferometers could probe the first generation of ‘light’ seed BHs of
M ∼ 102–103M�, providing information complementary to LISA on the earliest BHs in the
universe [635]. A more speculative source is the intermediate-mass ratio inspiral of stellar-
mass BHs into IMBHs. For these systems, ringdown would be suppressed relative to inspiral
because of the small mass ratio. However, what is lost in terms of number of cycles is gained
in terms of detector sensitivity: IMRI ringdowns would happen in the optimal frequency band
of second- and third-generation detectors, and therefore they could be detectable by a network
of Advanced LIGOs [544].

9.5. Event rates

Gravitational wave interferometers (unlike traditional electromagnetic observatories) respond
to the waves’ amplitude, and not to their energy. Since the wave amplitude decays linearly
with distance, a modest increase of (say) a factor of 2 in sensitivity means that the detectable
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0

Figure 17. Left: typical SNR for equal-mass inspirals and ringdown signals detected by LISA,
assuming a final spin j = 0.8 and a conservative ringdown efficiency εrd = 1% (from [10]).
Top to bottom: the lines correspond to sources at redshift z = 0.54, 1, 2, 5, 10. Right: reach of
Earth-based interferometers for a ringdown producing a BH with final spin j = 0.6 and εrd = 3%,
as a function of the mass of the final hole (from [11]).

volume increases by a factor of 8. Given that merging compact binaries are the most promising
ringdown source, the relevant question for ringdown detection is then: how many merging
compact binary events can we expect in a given volume? The issue of estimating event rates
is one of the most pressing in gravitational wave detection. The uncertainties involved are so
large, and progress in the field is so rapid, that any estimates we quote are likely to become
rapidly obsolete. For this reason we dedicate little space to event rate estimates, providing a
few references as a guide for the interested reader.

Stellar-mass and intermediate-mass black hole ringdowns. In the simplest models, compact
binary coalescence rates should be proportional to the stellar birth rate in nearby spiral galaxies,
which can be estimated from their blue luminosity. Therefore the coalescence rates are usually
given in units of Myr−1L−1

10 , where L10 is 1010 times the blue solar luminosity. To convert
these numbers into detection rates, one must take into account the fact that detection ranges
for ringdowns are different from those for inspirals. If the distance to an event is above
∼50 Mpc the local over-density of galaxies can be ignored, and the number of
galaxies containing possible sources is N = [(4π)/3](D/Mpc)3(2.26)−30.0117 Milky-Way
equivalent galaxies, where 2.26 is a correction factor to include averaging over all sky
locations/orientations, and 0.0117 Mpc−3 is the density of Milky-Way equivalent galaxies.
For shorter distances one should use a sky catalog, such as [636].

For NS–NS binaries, early and conservative estimates were made by Phinney [637]. At
present, the most reliable NS–NS merging rate estimates are obtained by extrapolating from
observed binary pulsars [638, 639]. Expected rates are ≈50Myr−1L−1

10 , but they could be an
order of magnitude lower or larger. For NS–BH and BH–BH rates, we have to rely mostly
on population-synthesis models [640, 641]. Plausible rate estimates are ≈2Myr−1L−1

10 for
NS–BH binaries and ≈0.4Myr−1L−1

10 for BH–BH binaries, but they could be roughly two
orders of magnitude larger or lower. These rates translate into tens to thousands of inspiral
events per year in Advanced LIGO. The typical end-product of these mergers are BHs of mass
∼10M�, and the range for Advanced LIGO detection of these BH ringdowns is more than an
order of magnitude less than the inspiral range, so ringdown rates should be ∼102–103 times
smaller than inspiral rates. Rates for ringdowns involving IMBHs are even more uncertain.
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Table 4. SMBH binary rates (events/year) predicted by different models (adapted and updated
from [567]).

Reference Rate Redshift range

[649] 0.1–1 0 < z < 5 (gas collapse only)
10–100 z > 5 (hierarchical buildup)

[650] 1 z > 2
[651] 10 z < 5
[652, 653] 15 z ∼ 3–4
[568, 570, 654] ∼30 z ∼ 4–16
[570, 600, 654] ∼20 z ∼ 3–10
[571] �103 Mostly z ∼ 10, down to z ∼ 1
[655] 104–105 z ∼ 4–6

In optimistic scenarios, Advanced LIGO could see ∼10 IMBH binary mergers per year [545]
and perhaps ∼20 ringdowns from the merger of stellar-mass BHs into IMBHs [544] (see also
[642, 643]).

These predictions rapidly change as our understanding of the underlying physics and
compact binary observations improve. For example, Belczynski et al [644] argued that
potential BH–BH binary progenitors may undergo a common envelope phase while the donor
evolves through the Hertzsprung gap. This would probably lead to a merger, thus shutting
off a channel for BH–BH production and sensibly reducing BH–BH merger rates. On the
other hand, based on observations of a very massive BH binary, Bulik et al [543] estimated an
initial LIGO rate of order 0.5 yr−1 for relatively massive BH binaries (that therefore would be
observed mostly in the merger/ringdown phase).

Particularly interesting for ringdown detection are compact binary mergers from dense
star clusters. Miller and Lauburg [645] pointed out that a ‘high-mass’ selection occurs because,
in nuclear star clusters at the centers of low-mass galaxies, three-body interactions usually
‘pair up’ the two heaviest members of a triple system. This typically produces binary mergers
with M � 20M�, which means that Earth-based interferometers would usually observe the
merger/ringdown phase. These findings are consistent with work by other authors [646–648].

Supermassive black hole ringdowns. The LISA noise curve determines the optimal mass and
redshift range where binary inspiral and ringdown events have a large SNR, allowing a precise
measurement of the source parameters. Reliable estimates of the number of events detectable
during the mission’s lifetime, and of their mass spectrum as a function of redshift, will play
a key role in the planning of LISA data analysis. For this reason, over the last few years the
calculation of SMBH merger event rates and of their mass spectrum has become an active
field of research.

A discussion of rate estimates is out of the scope of this review (see e.g. [567, 654, 656]),
but the large uncertainties in SMBH binary formation models and in the predicted event rates
are quite evident from table 4. The numbers we list should be interpreted with caution. Each
prediction depends on a large number of poorly known physical processes, and the notion of
‘detectability’ of a merger event is defined in different ways: some authors define detectability
setting a threshold on the SNR and others set a threshold on the gravitational wave effective
amplitude. Furthermore, different authors use different LISA noise curves. A tentative bottom
line is that we could face one of the following two scenarios. According to a class of models,
we should observe ≈10 events/year at redshifts (say) 2 � z � 6. However, we cannot exclude
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Figure 18. Left: errors (multiplied by the SNR ρ) in measurements of different parameters for
the fundamental l = m = 2 mode as a function of the rotation parameter a/M . Solid (black)
lines give ρσa/M , dashed (red) lines ρσM/M , dot-dashed (green) lines ρσA/A and dot-dot-dashed
(blue) lines ρσφ , where σk denotes the estimated rms error for variable k,M denotes the mass of
the BH, and A and φ denote the amplitude and phase of the wave respectively (adapted from [10].)
Right: actual errors in a LISA measurement for a source located at DL = 3 Gpc, with ringdown
efficiency εrd = 3%.

the possibility that hundreds or thousands of SMBH binaries will produce a large (and perhaps
even stochastic) background in the LISA data. Clearly, the detection strategy to use strongly
depends on which of the two scenarios actually occurs in nature.

Besides being able to observe SMBH mergers throughout the universe, LISA should also
be able to detect IMBH–IMBH binary mergers (that is, binaries containing a 10–100M� BH
orbiting a 100–1000M� BH). Rates for IMBH binary detections were first estimated by Miller
[657] and then revised by Will [658]. The revised estimates are very pessimistic, predicting
∼10−6 events/year for typical values of the parameters. A more promising scenario involves
an IMBH spiraling into a SMBH [659]. For these systems, Miller [660] estimated a detection
rate of a few events/year, suggesting that mergers of a 103M� IMBH into a 106M� SMBH
could be observed out to z ∼ 20 with an SNR of 10 in a 1 year integration. Portegies Zwart
et al [661] predicted an even more optimistic rate of ∼102 events/year throughout the universe.
These estimates are very preliminary and even more uncertain than the corresponding estimates
for SMBH binaries, but they should be taken into account in design choices concerning (for
example) the optimal armlength of LISA.

9.6. Inferring black hole mass and spin from ringdown measurements

We have seen in section 9.4 that the prospects for detection of ringdown radiation by LISA and
advanced Earth-based detectors are quite encouraging. Interesting physics can be extracted
from the observation of BH ringdowns [10, 79, 461]. Since astrophysical BHs in general
relativity are fully characterized by their mass and angular momentum, the detection of a
single mode is in principle sufficient to estimate the mass and spin parameter of the hole, by
inverting the experimentally determined ωlmn(M, a/M),Qlmn(a/M). Indeed, one finds that
accurate measurements of SMBH mass and angular momentum can be made.

For example, the left panel of figure 18 shows the estimated error (multiplied by the SNR
ρ) in measuring the SMBH mass M, angular momentum parameter a/M , QNM amplitude A

and phase φ for circularly polarized radiation from the fundamental l = m = 2 bar mode (cf
equation (150) for definitions). If an energy of ∼10−4M is radiated into the fundamental mode
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Figure 19. Left: contour plots of the fitting factor as a function of the phase angles of the
signal. For this illustrative calculation, we assume that the Kerr parameter of the final BH is
j = 0.6 and that the relative amplitude of the second mode is A = 0.3. Right: quality factor
estimated by a single-mode filter. The ‘true’ frequencies and quality factors for a/M = 0.6 are
MωR1 = 0.4940,Q1 = 2.9490,MωR2 = 0.7862 and Q2 = 4.5507. See [11] for more details.

of a 106M� SMBH with a/M = 0.8 at 3 Gpc (ρ ∼ 200), M and a/M could be measured
to 1%; if the energy deposition is only 10−6, they could still be measured to 10%. These
numbers were computed for LISA in [10], but they carry over to other detectors through a
simple rescaling by ρ. Generalizing to multi-mode detection (and specifically to the detection
of two modes with a range of relative amplitudes), one finds similar results [10]. Gravitational
wave detectors will be able to determine the mass and spin of BHs with excellent precision
from observations of the ringdown phase.

Event loss and bias in parameter estimation using single-mode templates. Current ringdown
searches are performed using matched filtering and single-mode templates, consisting of a
single exponentially damped sinusoid. These are the simplest possible templates, and they are
expected to capture the relevant physics of the problem when one ringdown mode dominates
over the others. Unfortunately, this notion of dominance must be precisely formulated.
Consider for illustration the case of non-spinning binary BH mergers, and suppose for
simplicity that there are only two modes in the signal, say l = m = 2 and l = m = 3.
In particular, assume that the strain h as seen by a detector, equation (151), is of the
form

h = A1 e−π f1t/Q1 sin(2πf1 t − φ1) + A2 e−π f2t/Q2 sin(2πf2t − φ2). (160)

Estimates of the multipolar energy distribution give a relative amplitude A2/A1 = h33/h22 ∼
0.3 − 0.4(1 − 1/q), where q is the mass ratio and h22 (h33) are the amplitudes of the
l = m = 2(3) modes of the radiation [44]. For q > 3, which includes most likely
merger scenarios, we get h33/h22 � 0.2–0.3. It is now natural to ask: given a relative
amplitude of this order, how many events would we miss in a search with single-mode ringdown
templates?

The answer is quantified in the left panel of figure 19, where we show Apostolatos’s fitting
factor (FF) [662, 663] resulting from searching a two-mode signal with single-mode templates
from a 200M�, a/M = 0.6 BH, with relative amplitude A2/A1 = 0.3, in Advanced LIGO
data. Contour plots of the FF are shown as a function of the (unknown) phases in equation
(160). The FF is essentially the ratio ρ/ρmax, where ρ is the actual SNR achieved by matched
filtering and ρmax is the maximum possible SNR, attained when the template and waveform
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coincide. FFs larger than 0.97, leading to a loss of less than about 10% in events, are typically
considered acceptable. The FF achievable by a detection is usually assumed to correspond
to the minimum of the FF in the space of the unknown parameters (φ1, φ2) (this is known
as the ‘minimax’ criterion). Therefore, according to this simplified calculation, single-mode
templates may well lead to unacceptable SNR degradation in a search. The situation can be
even worse for larger masses and other detectors [11]; similar conclusions apply also to LISA,
albeit in a completely different mass range.

Besides leading to a loss in the number of events, single-mode templates lead to a large
bias in the estimation of the BH’s mass and spin. The estimated frequency has a relatively
small bias, and it always corresponds to the dominant (least-damped) mode in the pair. Results
are more interesting for the estimated quality factor, shown in the right panel of figure 19 as a
function of the phase angles. For our chosen value of the Kerr parameter, the quality factors
of the l = m = 2 and l = m = 3 modes are Q1 = 2.9490 and Q2 = 4.5507, respectively.
Comparing with the left panel, we see that relative minima in the FF (white ‘islands’ in the left
panel) occur, roughly speaking, when the quality factor ‘best fits’ the subdominant l = m = 3
mode. This is a rather remarkable result: the minimax filter ‘best fits’ the subdominant mode
in the pair, leading to a significant bias in the estimation of the quality factor (and hence of
the spin). Unfortunately, maxima in the FF do not correspond to the filter being optimally
adapted to the l = m = 2 mode. As the filter tries to maximize the SNR, the estimated value
of the quality factor becomes significantly biased, and it deviates quite sensibly from the value
expected for the dominant (l = m = 2) mode. The bottom line is, again, that single-mode
filters may be useful for detection, but a multi-mode post-processing will be necessary for
accurate spin measurements.

There is, of course, a price to pay when using multi-mode templates. About N ∼
6Qmax log fmax/fmin ∼ 500 single-mode templates are enough to cover the parameter space
for Earth-based detector searches, if we assume an event loss of no more than 10% (i.e. a
minimal match larger than 0.97 [663]). For two-mode templates, rough estimates suggest that
this number may increase up to N ∼ b× 106, with b ∼ 1 being a detector-dependent constant
[11]. A more detailed data analysis study (e.g. using better template placing techniques, along
the lines of [13, 472–474]) will be needed to reduce computational requirements.

9.7. Tests of the no-hair theorem

The fact that all information is radiated away in the process leading to BH formation, so that
astrophysical BHs in Einstein’s theory are characterized completely by their mass and angular
momentum, is known as the ‘no-hair theorem’. To test this theorem, it is necessary (but not
sufficient) to resolve two QNMs [10, 461]. Roughly speaking, one mode is used to measure
M and a and the other to test consistency with the Kerr solution.

Can we tell if there really are two or more modes in the signal, and can we resolve
their parameters? Physical intuition suggests that if the noise is large and the amplitude of
the weaker signal is very low (or if the two signals have almost identical frequencies), then
the two modes could be difficult to resolve. A crude lower limit on the SNR required to
resolve frequencies and damping times was presented in [10, 11]. The analysis uses the
statistical uncertainty in the determination of each frequency and damping time, which a
standard Fisher-matrix calculation estimates to be [10]
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These errors refer to mode ‘1’ in a pair; errors on f2 and τ2 are simply obtained by exchanging
indices (1 ↔ 2) [10, 11]. The above expressions further assume white noise for the detector
and that modes ‘1’ and ‘2’ correspond to different values of l or m.

A natural criterion (á la Rayleigh) to resolve frequencies and damping times is that
|f1 − f2| > max(σf1 , σf2), |τ1 − τ2| > max(στ1 , στ2). In interferometry, this would
mean that two objects are (barely) resolvable if the maximum of the diffraction pattern
of object 1 is located at the minimum of the diffraction pattern of object 2. We can
introduce two ‘critical’ SNRs required to resolve frequencies and damping times, ρ

f
crit =

max(ρσf1 , ρσf2)/|f1 − f2|, ρτ
crit = max(ρστ1 , ρστ2)/|τ1 − τ2|, and recast our resolvability

conditions as

ρ > ρcrit = min
(
ρ

f
crit, ρ

τ
crit

)
, (163)

ρ > ρboth = max
(
ρ

f
crit, ρ

τ
crit

)
. (164)

The first condition implies resolvability of either the frequency or the damping time and the
second implies resolvability of both.

Now let us consider how to resolve amplitudes, i.e. the minimum SNR needed to determine
whether two or more modes are present in a given ringdown signal. Suppose again, for
simplicity, that the true signal is a two-mode superposition. Then we expect the weaker signal
to be hard to resolve if its amplitude is low and/or if the detector’s noise is large. Appendix B
of [11] quantifies this statement by deriving a critical SNR for amplitude resolvability ρGLRT

based on the generalized likelihood ratio test. The derivation of this critical SNR is based on
the following simplifying assumptions: (i) using other criteria one has already decided for
the presence of at least one damped exponential in the signal and (ii) the parameters of the
ringdown signal (frequencies and damping times), as well as the amplitude of the dominant
mode, are known. In practice the latter assumption is not valid, so these estimates of the
minimum SNR should be considered optimistic. Figure 20 compares the critical SNR ρGLRT

(equation (B12) of [11]) and the two different criteria for frequency resolvability, equations
(163) and (164). The plot shows that ρcrit < ρGLRT < ρboth for all values of q. Therefore,
given a detection, the most important criterion to determine whether we can carry out no-hair
tests is the GLRT criterion. If ρ > ρGLRT, we can decide for the presence of a second mode
in the signal. Whenever the second mode is present, we also have ρ > ρcrit, that is, we can
resolve at least the frequencies (if not also the damping times) of the two modes. A SNR
ρ ∼ 30–40 is typically enough to perform the GLRT test on the l = m = 3 mode, as long as
q � 1.5. From figures 17–20 we conclude that not only LISA, but also advanced Earth-based
detectors (Advanced LIGO and ET) have the potential for identifying Kerr BHs as the vacuum
solutions of Einstein’s general relativity.

In conclusion, ringdown radiation can be used to distinguish BHs from exotic alternatives,
such as boson stars [463] or gravastars [664]. Ringdown tests of the Kerr nature of astrophysical
BHs are independent from (and complementary to) proposed tests using a multipolar mapping
of the Kerr spacetime, as encoded in EMRI signals according to ‘Ryan’s theorem’ and its
generalizations [665–667].

9.8. Matching inspiral and ringdown: problems and applications

Models of gravitational waveforms from inspiraling compact binaries usually rely on the post-
Newtonian approximation to general relativity [668]. Ideally, for matched-filtering detection
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Figure 20. Minimum SNR required to resolve two QNMs from a BH resulting from the inspiraling
of a BH binary with mass ratio q. The dominant mode (mode ‘1’) is assumed to be the fundamental
QNM with l = m = 2; mode ‘2’ is either the fundamental l = m = 3 QNM (solid lines) or the
fundamental 1 = m = 4 QNM (dashed lines). The relative mode amplitude A(q) is estimated
from numerical simulations [44]. If ρ > ρGLRT, we can tell the presence of a second mode in the
waveform; if ρ > ρcrit, we can resolve either the frequency or the damping time, and if ρ > ρboth,
we can resolve both.

we would like to have detection template banks with ‘complete’ waveforms encompassing
the inspiral, merger and ringdown. Phenomenological template families based on physically
motivated fits of numerical merger waveforms or on effective-one-body models are now
available [634, 669–671]. However, it would be desirable to have a full understanding of
the merger process, connecting the post-Newtonian approximation during the inspiral to a
description of the ringdown as a superposition of QNMs.

QNM fits of numerical relativity waveforms are routinely used to check that the total
angular momentum of the system is conserved during BH merger simulations. This is usually
achieved by computing three independent quantities: the angular momentum radiated at
infinity, the angular momentum obtained from isolated horizon calculations and the angular
momentum obtained by inverting the frequencies and damping times resulting from a QNM
fit of the ringdown of the final Kerr BH (see e.g. [44, 477, 672]). Buonanno et al noted that,
as more and more overtones are included, a QNM expansion gets in better agreement with
numerical waveforms for equal-mass binaries [477].

So far, efforts to ‘stitch’ the post-Newtonian approximation (or one of its effective-one-
body variants) to the ringdown have used rather crude models for ringdown excitation. The
original effective-one-body approach simply attached the plunge waveform to the fundamental
l = m = 2 QNM of a Kerr BH [673]. In their study of recoils, Damour and Gopakumar
attached the plunge waveform to the fundamental Schwarzschild QNMs with l = 2 and
l = 3 [674]. A comprehensive analysis of Pretorius’s numerical waveforms for equal-mass
BH binaries [477] clearly illustrated the importance of higher order overtones. Damour and
Nagar obtained a good match to numerical relativity waveforms by requiring continuity of the
plunge waveform with a (Schwarzschild) ringdown waveform including five overtones on a
grid of points, or ‘comb’ [176]. A ‘hybrid comb’ procedure, imposing the continuity of the
waveform and its derivatives, was later introduced in [174]. These stitching methods have
great phenomenological interest, and they can do remarkably well at reproducing numerical
waveforms. For example, the authors of [174] extended an effective-one-body waveform
through merger by stitching the inspiral waveform to QNMs, finding striking agreement (at
the 0.1% level) between the numerical QNM frequency and the perturbative prediction for
the same frequency computed from the final mass and spin of the numerical simulation. A
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slightly different approach was adopted in [670], where the frequency-domain waveform was
truncated abruptly at some cutoff frequency close to the QNM frequency. The truncated
waveforms display a Gibbs phenomenon in the time domain, and they are (surprisingly) quite
effective at detecting the full signal. The reason is that a cutoff in the frequency domain around
the fundamental QNM frequency corresponds, in the time domain, to a damped sinusoid with
frequency close to the cutoff frequency.

These phenomenological ‘stitching recipes’ may well be enough for the purpose of
gravitational wave detection, but it is desirable to have a complete understanding of QNM
excitation in a compact object merger within perturbation theory, based on the concept of
excitation coefficients. Berti and Cardoso [167] carried out a first step in this direction by
computing the excitation factors for Kerr BHs (see section 3.2), but more work is required
to compute the excitation coefficients for generic initial data and to understand the validity
of the linear approximation in a BH merger. A correct matching of effective-one-body
waveforms with the ringdown signal may have astrophysical implications because QNMs play
an important role in the recoil of merging BH binaries, through a process sometimes called
‘ringdown braking’ (see [674–676] and references therein). A complete analytical description
of the merger of spinning, precessing binaries would also prove useful for statistical studies
of astrophysical relevance [677].

Even if phenomenological waveforms may be good enough at detecting gravitational
wave signals, a complete description of the waveform (including both inspiral and ringdown)
has been shown to improve parameter estimation by effectively decorrelating the source
parameters (see [534] for a study predating the numerical relativity breakthrough and
[535, 634, 669, 678, 679] for recent efforts in this direction). Large-scale efforts (dubbed the
NINJA and Samurai projects, respectively) now attempt to use complete numerical waveforms
in LIGO data analysis and to cross-validate numerical waveforms produced by different codes
[525, 680].

An important point to keep in mind is that inspiral and merger/ringdown really probe
different BH populations, so they provide complementary information. This should be quite
clear by inspecting the red and black histograms in figure 16, which show that the spin
distribution of SMBHs in binaries is usually different from the spin distribution of the remnant
BHs formed as a result of the merger. This complementarity can be used for interesting
physical applications. For example, if we can determine accurately enough the masses and
spins of BHs before and after merger for the same system, we could use this information to
test Hawking’s area theorem in astrophysical settings [681].

10. Other recent developments

10.1. Black hole area quantization: in search of a log

One of the main driving forces behind the development of new tools to study QNMs is the
possibility that classical BH oscillations could yield insights into their quantum behavior.
First suggested by York [68] and Hod [17], this idea was further explored by Dreyer [97] in
the context of loop quantum gravity, and subsequently revisited by many authors (see e.g.
[276, 682–691]).

The idea can be traced back to arguments by Bekenstein and collaborators [692, 693]. A
semi-classical reasoning suggests that the BH area spectrum is quantized according to

AN = γ l2
P, N = 1, 2, . . . , (165)
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where lP is the Planck length (but see [694] for criticism). Statistical physics arguments impose
a constraint on γ [693, 695]:

γ = 4 log k, (166)

where k is an integer, which in general is left undetermined (but see [696]). Inspired by
Bekenstein’s ideas, Hod [17] proposed to determine k via a version of Bohr’s correspondence
principle in which the highly damped QNM frequencies play a fundamental role. At the time,
the only available exploration of highly damped QNMs was the numerical study by Nollert
[90], which indicated that gravitational highly damped QNMs in the Schwarzschild geometry
asymptote to

Mω = 0.0437123 − i(2n + 1)/8. (167)

While looking for classical oscillation frequencies proportional to the logarithm of an integer,
Hod realized that 0.0437123 ∼ ln 3/(8π) and went on to suggest that the emission of a
quantum with frequency ωR = ln 3/(8π) corresponds to the smallest energy a BH can emit.
The corresponding change in surface area would then be

�A = 32πMdM = 32πMh̄ω = 4h̄ ln 3, (168)

and by comparing with equation (165) we get k = 3, thus fixing the area spectrum to

An = 4l2
P ln 3n, n = 1, 2, . . . . (169)

A few years later, Dreyer [97] used similar arguments to fix the Barbero–Immirzi parameter
of loop quantum gravity. Shortly afterward, Motl [91] and Motl and Neitzke [101] showed
analytically that the highly damped QNM frequencies of a Schwarzschild BH are indeed given
by equation (86), containing the desired logarithm of an integer.

Motl and Neitzke’s work lent some support to Hod’s ideas. It was followed by a flurry
of activity to explore the highly damped QNMs of several BH spacetimes, whose outcome
has been described and summarized in previous sections. Unfortunately the conjectured
relation between QNMs and area quantization stumbled before the charged and rotating four-
dimensional geometries, for which the highly damped regime is not as simple as suggested by
Hod’s original argument (see sections 5.2 and 5.3). Recently Maggiore [688] observed that
Hod’s prescription was based on experience with ‘normal’ quantum systems, for which the
relevant frequency is ωR. For highly damped systems, Maggiore noted that one should rather
consider the imaginary part of the QNMs ωI, solving a number of puzzles and obtaining a
different expression for the quantum of area. A similar prescription has been extended also to
Kerr BHs [689, 690] and other geometries [691]. It is not clear whether Maggiore’s suggestion
can be extended consistently to all geometries. Whether a relation between QNMs and the
quantum behavior of BHs exists or not, Hod’s suggestion was at the very least an important
thrust to complete our understanding of classical BH oscillation spectra.

10.2. Thermodynamics and phase transitions in black hole systems

In the last few years, remarkable relations between classical and thermodynamical properties
of black objects have been uncovered. For instance, a correspondence between classical and
thermodynamical instabilities of a large class of black branes conjectured by Gubser and
Mitra [697, 698] was proved by Reall [699] (see [700] for a review). Manifestations of this
duality are expected to appear in the QNM spectra. Indeed, some indications that phase
transitions correspond to changes in the QNM spectrum were provided in specific cases by
various authors [701–706]. However, at present there seems to be no obvious correspondence
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between thermodynamical phase transitions of the kind suggested by Davies [707, 708] and
QNM spectra (see [709] and references therein).

Another connection between QNMs and BH thermodynamics may follow from Hod’s
proposed ‘universal relaxation bound’ [710–712]. Hod’s proposal asserts that the relaxation
time τ of any thermodynamic system is bounded by τ � h̄/(πT ), where T is the temperature of
the system. For BHs this implies the existence of (at least one) QNM frequency with imaginary
part ωI � πT , where T is now the Hawking temperature of the BH. The bound seems to be
valid for various kinds of BHs, and it may be saturated by extremal BHs. The significance
of Hod’s bound is not completely clear to us. The bound is trivially satisfied by any physical
system exhibiting hydrodynamic behavior, since such a system always possesses sufficiently
long-lived modes (and, correspondingly, QNMs with imaginary part sufficiently close or even
infinitely close to zero: these hydrodynamic frequencies are discussed in section 8.3). Finite-
volume systems might be more interesting, but then the concept of the ‘relaxation time’ used
in the bound needs a proper definition. In any case, this is an interesting idea which might
require better understanding. The relation between Hod’s bound and the viscosity–entropy
bound (see section 8.4) was discussed in [713].

10.3. Nonlinear quasinormal modes

QNMs are usually defined and studied by considering only first-order perturbations. Being
an intrinsically nonlinear theory, general relativity is expected to display nonlinear effects,
which might conceivably be captured by going to higher orders in perturbation theory. The
second-order formalism laid down several years ago by various authors [85, 714, 715] has
recently been used to compute corrections to the QNM frequencies, their detectability and
their influence on the late-time behavior of the system [716–718]. The encouraging outcome
of these studies is that nonlinear effects may well be observable by future gravitational
wave interferometers. Favata [719] explores the interesting possibility of detecting another
important nonlinear effect of general relativity (the so-called gravitational wave memory)
through gravitational wave observations of merging binaries.

Higher order perturbations of BH spacetimes have been explored systematically by
Brizuela et al [720, 721], using the Gerlach–Sengupta formalism and the computer algebra
methods described in [722] (see also [723]). A complete gauge-invariant formalism for
second-order perturbations of Schwarzschild BHs was recently reported [724].

10.4. Quasinormal modes and analogue black holes

Strong-field effects of general relativity are very small in Earth-bound experiments. For this
reason BH physics is most easily studied via observations of astrophysical phenomena such as
accretion, x-ray spectra and hopefully gravitational wave emission. The possibility of devising
gravitational experiments probing strong-field general relativity in the lab, as appealing as it
sounds, may seem out of reach. However, Visser and others [31] and Unruh [725] ingeniously
showed that some defining properties of BHs can be reproduced and studied by ‘analogue
BHs’. These systems display at least a subset of the properties traditionally associated with
BHs and event horizons. Unruh’s analogue BHs do not carry information about the dynamics
of Einstein’s equations, but share many kinematical features with true general-relativistic BHs.

The basic idea behind these analogue BHs is quite simple. Let us focus on a particular
analogue BH, the acoustic or ‘dumb’ hole [725, 726]. Consider a fluid moving with a space-
dependent velocity vi

0(x
i), for example water flowing through a variable-section tube. Suppose

that the fluid velocity increases downstream and that there is a point where the fluid velocity
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exceeds the local sound velocity c(xi) ≡ √
∂p/∂ρ, in a certain frame. At this point, in that

frame, we get the equivalent of an apparent horizon for sound waves. In fact, no (sonic)
information generated downstream of this point can ever be communicated upstream (for the
velocity of any perturbation is always directed downstream, by simple velocity addition).
This is the acoustic analogue of a BH, sometimes referred to as a dumb hole. These are
not true BHs, because the acoustic metric satisfies the equations of fluid dynamics and not
Einstein’s equations. However, sound waves propagate according to the usual curved space
Klein–Gordon equation with the effective metric [31, 725, 726],

guν ≡ 1

ρ0c

⎡
⎢⎢⎣

−1
... −v

j

0

· · · . · · ·
−vi

0

...
(
c2δij − vi

0v
j

0

)
⎤
⎥⎥⎦ . (170)

Analogue BHs should Hawking-radiate, though an experimental verification of Hawking
radiation in the lab is not an easy feat [31, 727]. Furthermore, sound wave propagation in
these metrics should reproduce many features of wave propagation in curved spacetimes. Most
importantly for this review, acoustic BHs have a (this time literally!) ‘characteristic sound’
[5] encoded in their QNM spectrum. QNMs of acoustic BHs, which may be important in
experimental realizations of the idea, were computed in [240, 728–730] for a simple (2 + 1)-
dimensional acoustic hole, the ‘draining bathtub’ [726], for which �v0 = (−A�r + B �φ)/r . The
modes of (3 + 1)-dimensional acoustic holes with a ‘sink’ at the origin were computed in [728,
731, 732]. Scattering from these holes is discussed in [733].

The experimental confirmation of these predictions is an interesting topic for future
research. In practice, one may need a device to accelerate the fluid up to supersonic velocities,
such as a Laval nozzle [734, 735] (see also Unruh’s discussion in [727]). Laval nozzles were
first used in steam turbines, but they find applications in other contexts, including rocket
engines and nozzles in supersonic wind tunnels. They consist of a converging pipe where
the fluid is accelerated, followed by a throat (the narrowest part of the tube) where the flow
undergoes a sonic transition and finally a diverging pipe where the fluid continues to accelerate.
QNMs of flows in Laval nozzles were discussed and computed in [736, 737].

Following on Unruh’s ‘dumb hole’ proposal, many different kinds of analogue BHs have
been devised, based on condensed matter physics, slow light, etc. We refer the reader to
[31, 727] for thorough reviews on the subject. QNMs of condensed-matter analogue BHs
were recently computed in [738, 739]. Finally, we should mention that accretion of material
onto astrophysical BHs can give rise to supersonic walls, i.e. acoustic horizons outside the
event horizon. This process is particularly interesting: astrophysical BHs may provide a
nature-given setting for producing analogue BHs [740, 741].

11. Outlook

The investigations of the last decade show that quasinormal spectra encode a wealth
of information on the classical and quantum properties of BHs and black branes.
From a holographic, high-energy perspective, BH QNMs yield important information
on the quasiparticle spectra and transport coefficients of the dual theory, and have an
intriguing hydrodynamic description. From an astrophysical viewpoint, gravitational wave
measurements of QNMs may allow us to accurately measure BH masses and spins with
unprecedented accuracy and to test the no-hair theorem of general relativity. The suggestion
that BH oscillation frequencies may be related to their quantum properties is controversial, but
at the very least it has stimulated tremendous technical progress in the calculation of previously
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unexplored regimes of the QNM spectrum. In this review, we tried to summarize these recent
developments. There is no doubt that further interesting connections among QNM research,
fundamental physics and astrophysics will be unveiled in the future. In closing, we think that
it might be useful to list some of the outstanding, unresolved issues.

General mathematical problems, asymptotic expansions and related issues. It would probably
be fair to say that the level of mathematical rigor in QNM studies deserves an improvement.
Whether or not boundary value problems for dissipative systems can be treated in the
framework of a sufficiently general mathematical theory appears to be an open question. Less
ambitiously, a unified treatment of resonances (QNMs included) at the level of mathematical
physics would be desirable. Reliable regular and asymptotic expansions based on systematic
procedures rather than ad hoc recipes have not yet been developed in many cases. Improving
numerical algorithms, in particular for QNMs with large imaginary parts, also remains an
avenue of research.

Black hole perturbation theory in asymptotically flat spacetimes. Despite a 50 year long history
of investigation, BH perturbation theory in asymptotically flat spacetimes has a number of
unresolved issues. The problem of metric reconstruction from the Teukolsky formalism is still
open. QNM excitation for generic perturbations of Kerr BHs have not been fully explored
yet. The eikonal limit of Kerr QNMs is still poorly understood, as is the relation of QNMs
with generic (l,m) to unstable circular geodesics in the Kerr metric. Finally, an outstanding
problem concerns the decoupling of linear perturbations of the Kerr–Newman metric.

Gauge-gravity duality. At the moment, computing QNMs in the context of the gauge-gravity
duality is a thriving industry, naturally expanding to include models with higher derivative
gravity, holographic models with spontaneous symmetry breaking or backgrounds dual to non-
relativistic theories. As discussed in section 8, one distinguishes hydrodynamic-type modes
from the rest of the QNM spectrum. On a technical level, these modes are characterized
by small parameters and thus can often be determined analytically. A full analysis of
hydrodynamic QNMs for generic backgrounds is currently lacking. In particular, it would be
helpful to obtain an expression for the parameters of the sound mode similar to equation (148)
for the diffusion constant. The spectra of fermionic fluctuations (e.g. of the Rarita–Schwinger
field, see [417]) in black brane backgrounds have not yet been fully computed. It would
be very interesting to explore further the connection between holography and the black hole
membrane paradigm [114, 115, 117, 742].

Gravitational wave astronomy. An important problem in gravitational wave physics concerns
the matching of inspiral waveforms (as computed by post-Newtonian theory) to the ringdown
phase. This is necessary to produce complete phenomenological templates to be used in
gravitational wave detection. Most attempts at solving this problem have adopted a purely
phenomenological approach, but a study of the excitation coefficients induced by generic
initial data (possibly considering nonlinear corrections) could provide a more consistent and
systematic solution to the matching problem. A study of the QNM contribution to the Green’s
function has recently been shown to hold promise as a computational approach to solve
the self-force problem [172], which is of fundamental importance to model extreme and
intermediate-mass ratio inspirals for LISA data analysis. Other open issues concern ringdown
data analysis. Simple calculations show that single-mode templates only produce moderate
losses in the SNR when detecting multi-mode signals. However, the loss in terms of parameter
estimation accuracy is much more significant. The problem of optimal template placing for
detection by multi-mode templates needs to be addressed. The potential of higher multipoles
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in estimating the source parameters without angle averaging should also be explored: the
different angular dependence of subdominant multipoles may provide information on the spin
direction of the final BH. If BH spins are linked to jets, this information could be used for
coincident searches of gamma-ray bursts or other electromagnetic counterparts to compact
binary mergers [522, 523].

In the last few years, unexpected connections between QNMs and seemingly unrelated
phenomena (such as analogue BHs or thermodynamical BH phase transitions) have been
uncovered or proposed. More intriguing connections will surely emerge in the coming decades.
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Appendix A. Isospectrality, algebraically special modes and naked singularities

A number of striking relations among gravitational perturbations of the Kerr geometry were
revealed by Chandrasekhar and colleagues [22, 62, 141, 142, 743]. Here we review these
relations specializing most of the discussion to the Schwarzschild geometry. The reader
is referred to the original works for more details and for extensions to the Kerr spacetime
[22, 62, 141, 142].

By direct substitution, it can be checked that the gravitational potentials V ±
s=2 in equations

(14) and (15) can be rewritten in the form

V ±
s=2 = W 2 ∓ dW

dr∗
+ β, β = −λ2(λ + 1)2

9M2
, (A.1)

where

W = 3M(6Mr2 + 2λL2(2M − r))

λr2 (6M + 2λr)L2
− λ(λ + 1)

3M
− 3M

λL2
(A.2)

(these equations correct some typos in [130]). Equation (A.1) emerged from Chandrasekhar’s
investigations [62, 141, 142] of the nature of the gravitational potentials. Potentials of this
form are called superpartner potentials [744], and they imply the following relation between
the corresponding wavefunctions �− and �+ [22, 130]:

�± = 1

β − ω2

(
∓W�∓ +

d�∓

dr∗

)
. (A.3)

Equation (A.1) seems to be unique to four-dimensional spacetimes and does not generalize to
higher dimensions [102, 103]. The potential for electromagnetic-type and gravitational-type
perturbations of extremal RN BHs can also be expressed in form (A.1) [259, 260]. This justifies
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the fact that electromagnetic perturbations with angular index l are isospectral to gravitational
with index l − 1, as discussed in section 5.2. The isospectrality is a manifestation of
supersymmetry between electromagnetic and gravitational perturbations for extremal charged
BHs [259–261].

Isospectrality and asymptotic flatness. Suppose that ω is a QNM frequency for �+, i.e.
�+ → A+ e−iωr∗ when r → r+ and �+ → a+

oute
iωr∗ when r → ∞. Here a+

out = 1 for the
Schwarzschild metric and, if we impose Dirichlet boundary conditions, a+

out = 0 for the SAdS
metric. Substituting into equation (A.3), we see that

�− → A+

β − ω2
(W(r+) − iω) e−iωr∗ , r → r+, (A.4)

→ 1

β − ω2

(
−a+

outW(∞) eiωr∗ +
d�−

dr∗

)
, r → ∞. (A.5)

The key point is that d�−/dr∗ ∼ eiωr∗ at infinity for the Schwarzschild geometry. Therefore,
if ω is a QNM frequency for �+ it is also a QNM frequency for �−, and the two types of
gravitational perturbations are isospectral [62, 141]. In general d�−/dr∗ �= 0 for SAdS, so
the isospectrality is broken. The above relations are valid also for dS backgrounds; since
the outer boundary conditions are imposed at the cosmological horizon, it is easy to see that
gravitational perturbations of both parities are again isospectral. A specialized analysis is
needed at the points where β − ω2 = 0: this condition defines the so-called algebraically
special modes, discussed below.

Algebraically special modes. A class of special modes can be found analytically using
equation (A.1). In the Petrov classification, this condition corresponds to a change in the
algebraic character of the spacetime. For this reason, Chandrasekhar called these modes
‘algebraically special’ (AS) [22, 142]. Defining ±W = d

dr∗
logχ±, the wave equation can be

written as

1

�±

d2�±
dr2∗

+ (ω2 − β) = 1

χ±

d2χ±
dr2∗

, (A.6)

where we have used the identity 1
χ±

d2χ±
dr2∗

= W 2 ± dW
dr∗

. AS modes have frequencies ω = 
̃l

such that β − 
̃2
l = 0. In this case, equation (A.6) can be easily integrated:

�± = χ±
∫

dr∗
/
χ2

± = χ±

(
C±1 + C±2

∫ r

0
dr∗

/
χ2

±

)
, (A.7)

where χ± = exp
[± ∫

W dr∗
]
. The special relation between the two gravitational potentials

extends to the Kerr geometry, where AS modes correspond to a vanishing Teukolsky–
Starobinsky constant [22]. The nature of the boundary conditions at the Schwarzschild
AS frequency is extremely subtle, and has been studied in detail by Maassen van den Brink
[745]. Let us introduce some terminology [745]:

(1) ‘standard’ QNMs have outgoing-wave boundary conditions at both sides (that is, they are
outgoing at infinity and ‘outgoing into the horizon’);

(2) total transmission modes from the left (TTML’s) are incoming from the left (the BH
horizon) and outgoing to the right (spatial infinity);

(3) total transmission modes from the right (TTMR’s) are incoming from the right and
outgoing to the left.
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The Regge–Wheeler equation and the Zerilli equation must be treated on different
footing at the AS frequency, since the supersymmetry transformation leading to the proof
of isospectrality is singular there. It turns out that the Regge–Wheeler equation has no modes
at all, while the Zerilli equation has both a QNM and a TTML at the AS frequency [745].

Numerical calculations of AS modes have yielded some puzzling results. Studying
the Regge–Wheeler equation, Leaver [75] found a QNM very close to (but not exactly at)
the AS frequencies of equation (83). Namely, he found QNMs at frequencies 2M
̃′

2 =
0.000 000 − 3.998 000i and 2M
̃′

3 = −0.000 259 − 20.015 653i. Similarly, in the extremal
RN case one finds a QNM frequency very close to, but not exactly equal to, the AS frequency
[241]. Maassen van den Brink [745] speculated that the numerical calculations may be
inaccurate and that no conclusion can be drawn on the coincidence of 
̃l and 
̃′

l , ‘if the latter
does exist at all’.

An independent calculation was carried out by Andersson [746], who found that the
Regge–Wheeler equation has pure imaginary TTMR’s very close to 
̃l for 2 � l � 6. He
therefore suggested that the modes he found coincide with 
̃l , which would then be a TTM.
Maassen van den Brink [745] again observed that if all figures in the computed modes are
significant, the coincidence of TTMs and QNMs is not confirmed by this calculation, since 
̃′

l

and 
̃l are numerically (slightly) different.
Onozawa [230] calculated the (TTM) AS mode for Kerr BHs, improving upon the accuracy

of the Kerr AS frequencies computed in [142]. He showed that the Kerr QNM with overtone
n = 9 tends to the AS frequency 
̃l (as defined by the Teukolsky–Starobinsky identity) when
a → 0 and suggested that QNMs approaching 
̃l from the left and from the right may cancel
at a = 0, leaving only a special (TTM) mode. The situation concerning Kerr QNMs branching
from the AS Schwarzchild mode is still far from clear. Using slow-rotation expansions of the
perturbation equations, Maassen van den Brink [745] drew two basic conclusions on these
modes. The first is that, for a > 0, the so-called Kerr special modes are all TTMs (left or
right, depending on the sign of s). TTMR’s should not survive as a → 0, since they do not
exist in the Schwarzschild limit. In particular, in this limit, the special Kerr mode becomes
a TTML for s = −2; furthermore, the special mode and TTMR cancel each other for s = 2.
Studying the limit a → 0 in detail, Maassen van den Brink reached a second conclusion: the
Schwarzschild special frequency 
̃l should be a limit point for a multiplet of ‘standard’ Kerr
QNMs, which for small a are well approximated by

2Mω = −4i − 33078176

700 009

ma

2M
+

3492608

41177
i

a2

4M2
+ O(ma2) + O(a4) (A.8)

when l = 2, and by his equation (7.33) when l > 2. Numerical studies found QNMs
close to the AS frequency, but not in agreement with this analytical prediction [231]. It was
suggested (note [46] in [745]) that QNMs corresponding to the AS frequency with m > 0
may have one of the following three behaviors in the Schwarzschild limit: they may merge
with those having m < 0 at a frequency 
̃′

l such that |
̃′
l| < |
̃l| (but |
̃′

l| > |
̃l| for
l � 4) and disappear, as suggested by Onozawa [230]; they may terminate at some (finite)
small a; or, finally, they may disappear toward ω = −i∞. Recently, another alternative
was suggested [747] that in the Schwarzschild geometry a pair of ‘unconventional damped
modes’ should exist. For l = 2, these modes were identified by a fitting procedure to be
located on the unphysical sheet lying behind the branch cut (hence the name ‘unconventional’)
at 2Mω± = ∓0.027 + (0.0033 − 4)i. An approximate analytical calculation confirmed the
presence of these modes, yielding 2Mω+ � −0.032 48 + (0.003 436 − 4)i, in reasonable
agreement with the above prediction. If the prediction is true, an additional QNM multiplet
should emerge near 
̃l as a increases. This multiplet ‘may well be due to ω± splitting (since
spherical symmetry is broken) and moving through the negative imaginary axis as a is tuned’
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[747]. The emergence of such multiplets was shown in [231], but these do not seem to behave
exactly as predicted [747].

Instability of naked singularities. As modes play an important role in the stability analysis
of certain spacetimes containing naked singularities. An example of such a spacetime is the
negative-mass Schwarzschild geometry (equation (3)) with L → ∞ and M < 0. From the
general solution (A.7) with C−2 = 0, it follows that

�− = C−1χ− = C−1r (6M + (l − 1)(l + 2)r)−1 e− λ(λ+1)
3M r∗ , (A.9)

where r∗ = (r + 2M log[−2M + r]) is a regular Zerilli or scalar-type gravitational mode in the
entire spacetime with frequency ω = iλ(λ+1)/(3M). Since ωI > 0, the spacetime is unstable.
This instability was first found numerically by Gleiser and Dotti [748] and recognized to be
an ‘algebraically special instability’ in [749]. In fact, the above calculation can be extended
to (negative-mass) charged BHs in de Sitter spacetimes [749]. The AS mode is not unstable
for negative-mass Kerr geometries, but numerical results show that both negative-mass and
overspinning ‘Kerr’ geometries are unstable [554, 555, 750, 751].

Appendix B. Highly damped modes of Kerr black holes

Here we reproduce the formulae from Kao and Tomino [222], which allow one to compute
analytically the highly damped modes of the Kerr spacetime and which have been used to
compare against numerical results in figure 10. Define u1 = a(λ1/3 − λ−1/3)/2

√
3, v1 =

a(λ1/3 + λ−1/3)/2 and λ = 3
√

3M/a +
√

1 + 27M2/a2. Also, define

f0(r0) = ir0

√
3u2

1 + v2
1 + 2iu1v1E [ϒ0] − i(r0 − u1)

(
9u2

1 + v2
1

)
√

3u2
1 + v2

1 + 2iu1v1

K [ϒ0]

− i2r0(3u1 + iv1)(r0 − u1 + iv1)√
3u2

1 + v2
1 + 2iu1v1

� [ϒ−1, ϒ0]

− i(3u1 + iv1)
(
3u2

1 − v2
1 − 2r2

0

)
√

3u2
1 + v2

1 + 2iu1v1

�

[ −2iv1

3u1 − iv1
, ϒ0

]
, (B.1)

with ϒ−1 = −2iv1(r0+2u1)

(r0−u1−iv1)(3u1−iv1)
, ϒ0 = 4iu1v1

3u2
1+v2

1 +2iu1v1
and

fm(r0) = 2

r0

√
3u2

1 + v2
1 − 2iu1v1

× {F [sin−1 ϒ1, ϒ2] − K[ϒ2]}

− 4u1

r0(r0 + 2u1)

√
3u2

1 + v2
1 − 2iu1v1

×{�[ϒ3, sin−1 ϒ1, ϒ2] − �[ϒ3, ϒ2]}. (B.2)

Here ϒ1 ≡
√

3u2
1+v2

1−2iu1v1

3u2
1+v2

1 +2iu1v1
, ϒ2 = 3u2

1+v2
1 +2iu1v1

3u2
1+v2

1−2iu1v1
and ϒ3 = r0(3u1−iv1)

(r0+2u1)(u1−iv1)
. The functions E(m),

E(ϕ,m),K(m), F (ϕ,m),�(n,m) and �(n, ϕ,m) are the elliptical integrals:

E(m) =
∫ π

2

0

√
1 − m sin2 θ dθ, E(ϕ,m) =

∫ ϕ

0

√
1 − m sin2 θ dθ,

K(m) =
∫ π

2

0

1√
1 − m sin2 θ

dθ, F (ϕ,m) =
∫ ϕ

0

1√
1 − m sin2 θ

dθ,

88



Class. Quantum Grav. 26 (2009) 163001 Topical Review

�(n,m) =
∫ π

2

0
[1 − n sin2 θ ]−1[1 − m sin2 θ ]−1/2 dθ,

�(n, ϕ,m) =
∫ ϕ

0
[1 − n sin2 θ ]−1[1 − m sin2 θ ]−1/2dθ.

Because of the pole at r = r0 and branch cuts, there is an ambiguity in equations (B.1) and
(B.2). The correct analytic expression is

δ0 = −2i

[
f0(r+) − f0(r−)

r+ − r−
+

i4πMr+

r+ − r−
#

(
3u1r+ − 3u2

1 − v2
1

)]
, (B.3)

where #(x) is the step function. The term with a step function is introduced to compensate
the discontinuity caused by the term �

[ −2iv1(r++2u1)

(r+−u1−iv1)(3u1−iv1)
, 4iu1v1

3u2
1+v2

1 +2iu1v1

]
. Similarly,

δm = 4iMa [r+fm(r+, u1, v1) − r−fm(r−, u1, v1)] /(r+ − r−). (B.4)

Note that here, there is no discontinuity and we do not need to introduce any term with step
function. The quantities of interest, �, δωI, defined in equations (99) and (101) are related to
δ0, δm via � = δm/δ0, δωI = 2π/δ0 respectively.

Appendix C. Supermassive black hole binary candidates

At the moment of writing, there are three plausible SMBH binary candidates at close separation.
Due to the relevance of these observations for SMBH mergers and their rates (see e.g. [585]),
here we briefly summarize the observations and their current interpretations.

SDSSJ092712.65+294344.0. This quasar shows two sets of narrow emission lines, only one of
which has associated broad lines, separated in velocity by 2650 km s−1, as well as additional
emission and absorption lines at intermediate redshift. Komossa and collaborators [752]
interpreted the velocity separation between the two sets of lines as evidence for a recoiling BH
with mass M ≈ 108.8M�. This large recoil speed can only be achieved if the final BH formed
from the merger of two large-spin BHs in the so-called superkick configuration [753–755].
The recoiling BH interpretation has been criticized by various authors. Bogdanovic et al [756]
proposed a model where the blueshifted narrow lines originate from an accretion stream within
the inner rim of the circumbinary disk of a massive BH binary with mass ratio q ≈ 0.1 and
mass M2 ≈ 108M� for the secondary. Dotti et al [757] also proposed a model with a massive
BH binary embedded in a circumbinary disk, where the blueshifted lines originate from gas
swirling around the secondary BH. The BH binary has mass ratio q ≈ 0.3,M1 ≈ 2 × 109M�,
a semi-major axis a ≈ 0.34 pc and an orbital period P ≈ 370 yr. More detailed observations
seem to favor the idea that the system represents the superposition of two AGNs, rather than
a recoiling SMBH [758]. Other interpretations suggest that the system is a more distant
analogue of NGC1275 [759], a large and a small galaxy interacting near the center of a rich
cluster [760].

SDSSJ153636.22+044127.0. This quasar shows two broad-line emission systems, separated in
velocity by 3500 km s−1, and unresolved absorption lines with intermediate velocity. Boroson
and Lauer [584] interpreted this quasar as a binary system of two SMBHs with masses
M1 ≈ 108.9M� and M2 ≈ 107.3M� (hence q ≈ 40) separated by ∼0.1 pc, with an orbital
period of ∼100 yr. Depending on unknown geometrical factors of the orbit, this system could
coalesce either in 3 × 1011 yr or in 7 × 109 yr. Several alternative interpretations of the
observations have been proposed. Gaskell [761] pointed out that the blueshift/redshift of the
broad emission lines in this system can be interpreted in terms of normal line emission from a
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disk in an AGN. Radio observations by Wrobel and Laor [762] identified two faint, spatially
distinct radio sources within the quasar’s optical localization region and suggested that the
system could consist of a quasar pair separated by ∼5 kpc. Chornock et al [763, 764] found
a third broad emission component in the system, noted a lack in velocity shift between the
blueshifted and redshifted components and argued that the system may be an unusual member
of a class of AGNs known as ‘double-peaked emitters,’ rather than a SMBH binary or a quasar
pair. Lauer and Boroson [765] remarked that the lack of amplitude variations is unusual for a
double-peaked emitter and that longer temporal baselines are required to rule out the binary
hypothesis.

OJ287. This BL Lac object shows quasi-periodical optical outbursts at 12 year intervals, with
two outburst peaks (separated by 1–2 years) per interval. Optical observations of this source
date back to 1890. Valtonen and collaborators interpreted the two outbursts as happening
when a smaller BH pierces the accretion disk of the primary BH, producing two impact flashes
per period (see [766] for details of the model). A model with non-spinning BHs of mass
M1 = 1.8 × 1010M�,M2 = 1 × 108M�, semi-major axis a � 0.045 pc and eccentricity
e � 0.66 was able to predict the date of the latest outburst. Remarkably, this model only
reproduces the observations if gravitational radiation reaction is included [583]. Indeed, if
the interpretation is correct, the system would inspiral very quickly and merge in ∼104 yr.
Alternative models attribute the observed behavior to (1) oscillations in the accretion disk or
jet of single BH or (2) variations of the accretion rate in a disk or a wobble of a jet in a binary
BH (see [576, 583] for more details).

If the binary BH interpretation is correct, the orbital parameters of the two candidate BH
binaries from [583, 584] may not be too dissimilar: in gravitational wave lingo, both systems
would be IMRIs.

Appendix D. Black hole spin estimates

Estimating BH masses is relatively easy because mass has a measurable effect even at large
radii, where Newtonian gravity applies. Spin, in contrast, is only measurable by looking
at orbits close to the BH, where relativistic effects are important. The reason is that the
gravitational potential around a rotating object can be expanded as

�(r, θ) = −(M/r) − q(M/r)3P2(cos θ) + O(r−4). (D.1)

The parameter q = Q/M3 is a measure of the mass quadrupole moment, and to lowest order it
scales quadratically with the spins [767, 768]; for BHs, Q = −Ma2. Since the leading-order
spin contribution scales like (M/r)3, spin measurements must rely on observations of test
particles on orbits with very small radii.

Luckily, we do have a chance to observe such orbits by looking at accreting gas close to
the ISCO allowed by general relativity. All methods to measure spin using electromagnetic
observations are based on variants of this idea, which is illustrated in the left panel of figure 15.
There, we show the variation of the ISCO frequency M
ISCO and of the light-ring frequency
M
LR with the dimensionless spin parameter a/M [160]. Positive values of a/M correspond
to co-rotating orbits and negative values correspond to counter-rotating orbits. The orbital
frequency at the ISCO has a maximum when a/M = 1 (RISCO = M) and a minimum when
a/M = −1 (RISCO = 9M); for a Schwarzschild BH, RISCO = 6M and M
ISCO = 6−3/2. The
gas in an accretion disk spirals in through a sequence of quasi-circular orbits as it viscously
loses angular momentum; when it reaches the ISCO, it accelerates radially and falls into the
BH, so the ISCO can be thought of as the inner edge of the accretion disk. The radiation
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efficiency η, also plotted in figure 15, yields the energy radiated by the accretion disk per unit
accreted mass. In principle η is determined by the binding energy of gas at the ISCO, which
depends only on a/M .

Most spin estimates are based on the observation of electromagnetic emission from
accreting gas close to the ISCO. Unfortunately, all of these estimates are to some degree model
dependent. Some corrections to the highly idealized scenario described above are discussed
in a number of papers [618, 769, 770]. For example, Beckwith and Hawley [770] claimed
that an accurate modeling of magnetic fields would significantly displace the ‘inner edge’ of
the accretion disk from the standard general-relativistic ISCO, and that this would lower the
spin estimates inferred from Fe Kα observations. More in general, systematic errors originate
from our limited understanding of (i) the physical processes producing the x-ray spectra10 and
(ii) accretion physics in strong-field gravity regions. Because of these uncertainties, different
models are sometimes capable of fitting the observations while predicting different values of
the spin (see e.g. [32] for examples). A discussion of accretion disk physics as applied to a
study of the strong-field gravity region around BHs is outside the scope of this review, and we
refer the reader to the many excellent review articles on this topic11.

Schematically, we can classify the main techniques used so far to estimate BH spins as
belonging to four groups [8, 464, 32].

(a) Continuum spectroscopy of accretion disks has been applied to various stellar-mass BH
candidates. This method was pioneered by Zhang et al [618] to suggest that two galactic
superluminal jet sources, GRO J1655-40 and GRS 1915+105, should harbor rapidly
spinning BHs. Narayan, McClintock and collaborators have embarked in a program to
estimate spins for about a dozen BH candidates [614, 616, 619, 620, 778–780] (but other
groups are also very active [613, 617, 781, 782]). They also proposed that accretion can
be used to provide hints of the presence of an event horizon for galactic stellar-mass BH
binaries [8, 32] (but see [783] for criticism).

The basic idea is that when BHs have a large mass accretion rate the accreting gas tends
to be optically thick, radiating approximately as a blackbody. In this spectral state (known
as the ‘high soft state’), the flux of radiation F(R) emitted by the accretion disk can be
computed [784] and used to obtain an effective temperature profile T (r) = [F(R)/σ ]1/4,
where σ is the Stefan–Boltzmann constant. By comparing the blackbody radiation with
the spectral flux received at Earth one can estimate the quantity Rin cos ι/D, where Rin is
the inner edge of the accretion disk, D is the distance to the source and ι is the inclination
angle. Unfortunately, the method relies on independent estimates of ι and D. Perhaps
the major weakness of the method consists in the fact that, in practice, the observed
spectrum deviates significantly from a blackbody. These deviations are usually modeled
by artificially increasing the temperature of the emitted radiation by a poorly known
‘spectral hardening factor’, which is usually (and roughly) approximated by a constant
fcol � 1.7. Perhaps the most precise spin measurements to date using this technique
regard the eclipsing x-ray binary M33 X-7, with a claimed value a/M = 0.77 ± 0.05

10 The most pessimistic viewpoint on electromagnetic spin measurements is perhaps that of Miller and Turner:
according to them, “with the uncertainty and debate on the physical processes that dominate the x-ray spectrum in
this energy range [ . . . ] it is not currently possible to constrain the BH spin in a model-independent way” [771] (see
also [772]).
11 Liedahl and Torres [773] focus on the basic general-relativistic equations, scattering processes and atomic
transitions. Reynolds and Nowak [774] discuss theoretical problems in the modeling of relativistic disk lines.
Fabian and Miniutti [775] and Miller [776] review relativistic x-ray emission lines from the inner accretion disks
around rotating BHs and observational prospects for constraining the spin history of SMBHs (see also [777] for a
similar review focusing on stellar-mass BHs).

91



Class. Quantum Grav. 26 (2009) 163001 Topical Review

[616], and the first extragalactic x-ray binary LMC X-1, for which a/M = 0.90+0.04
−0.09

[620].
(b) Spectroscopy of relativistically broadened Fe Kα fluorescence lines has been proposed as

a promising alternative to continuum fitting. This method originated from the discovery of
a strong, broad spectral line in the x-ray spectrum of the Seyfert 1.2 galaxy MCG-6-30-15
[785]. Brenneman and Reynolds [607] applied the method to XMM-Newton observations
of this system, estimating the spin to be very near the maximal limit: a/M = 0.989+0.009

−0.002.
In this case, the largest source of error comes from the unknown dependence of the line
emissivity on the disk radius R, which is usually modeled as a power law [8]. An analysis
of systematic errors involved in the Fe Kα measurements was carried out by Reynolds and
Fabian [769]. Their main finding is that systematic errors can be significant for modest
values of the spin, but they decrease for large spins, so large-spin measurements (such as
the one of [607]) should be more reliable. The method has been applied to other AGNs
[786–789] and even to stellar-mass BH candidates [777]. A very accurate measurement of
a/M = 0.935 ± 0.01 (statistical) ±0.01 (systematic) has recently been claimed by Miller
et al [621] and Reis et al [790] for the stellar-mass BH GX 339-4 in outburst. Miller
et al [612] discussed BH spin estimates for several different systems and their correlations
with other physical properties of x-ray binaries.

(c) Quasi-periodic oscillations (QPOs) are likely to offer the most reliable spin measurements
for accreting systems that harbor stellar-mass BH candidates, once the correct model is
known. Unfortunately, at present there are several competing models to explain QPOs
(see [32, 464, 791] for a discussion and further references), and models based on different
physical assumptions typically yield very different spin estimates. For example, figure 12
in Psaltis’s review [32] shows that the diskoseismology model of [792] and the parametric
resonance model of [793] give very different BH spin estimates in the case of GRO J1655-
40. At the very least, an indication that QPOs are related to dynamical frequencies near
the ISCO comes from the fact that the QPO frequencies roughly scale with the inverse
of the BH masses, as they should in general relativity. A relatively model-independent
lower limit on the spin can then be obtained for GRO J1655-40: for this system one
gets a lower limit of a/M � 0.25 by requiring only the fact that the observed 450 Hz
oscillation frequency must be limited by the azimuthal frequency at the ISCO, a rather
solid assumption [622].

(d) Statistical methods based on the radiative efficiency of AGNs. A rather general argument
constrains, in principle, the average properties of the spin distribution in AGNs. The
general idea is suggested by a glance at the efficiency η = Lacc/Ṁc2 (i.e. the energy
radiated Lacc per unit accreted mass) in the right panel of figure 15. For a non-rotating
BH η = 1 − (8/9)1/2 � 0.057, while for a maximally rotating Kerr BH η � 0.42 is
much larger. In a typical accretion system one can measure Lacc (provided the distance
is known), but not Ṁ , so there is no way of knowing η accurately enough to estimate
a/M . However, by observing high-redshift AGNs one can estimate the mean energy
radiated by SMBHs per unit volume. By considering SMBHs in nearby galaxies, we can
estimate the mean mass in SMBHs per unit volume of the current universe. If we assume
that SMBHs grow mostly by accretion, by dividing these two quantities we can get the
average radiative efficiency of AGNs, hence their average spin (this is a variant of the
famous ‘Soltan argument’ [609]).

Elvis et al [626] and Yu and Tremaine [627] used observational data to infer that the
mean efficiency η ∼ 0.10–0.15 on average and η ∼ 0.2 (or larger) for the most massive
systems. This is possible only if SMBHs have significant rotation. Their arguments
have been supported by several later studies, some of which claim an average efficiency
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η ∼ 0.3–0.35 for quasars at moderate redshift [628–630]. However, there is no general
consensus on the interpretation of the data. Shankar et al [631], Merloni and Heinz [632]
and Daly [633] presented arguments in favor of low average radiative efficiencies, hence
low spins. Wang et al [606] argued that the radiative efficiency has a strong cosmological
evolution, decreasing from η ≈ 0.3 at z ≈ 2 to η ≈ 0.03 at z ≈ 0. The uncertainties
in disentangling radiative efficiencies from quasar lifetimes were pointed out in [794].
Daly [610] provided spin estimates for 19 powerful FRII radio sources and for 29 central
dominant galaxies (CDGs). For the first class of sources the spins seem to decrease from
near-extremal values at z = 2 to ≈0.7 at z = 0, while for the (lower power) CDGs the
estimated spins are in the range 0.1–0.8. In conclusion, the jury is still out on the mean
radiative efficiency (and mean spin) of quasars. The outcome of this debate is fundamental
to constrain SMBH evolution models [482, 601, 795].

(e) Other methods. Besides the methods listed above, there are other avenues for measuring
BH spin that hold promise for the future. One of these is polarimetry. The idea is to
exploit the fact that, in general relativity, the plane of polarization of BH disk radiation
changes with energy. This is a purely relativistic effect, absent in Newtonian gravity, and
the magnitude of the change of the plane of polarization can give a direct measure of a/M
[464, 796]. A second idea is based on very long baseline interferometry (VLBI) imaging
of the silhouette of the SMBH in M87. This system is at a distance of 16 Mpc, much
farther away than the SMBH at the galactic center; however, because of its larger mass
of ∼3.4 × 109M�, the apparent diameter of M87’s horizon is 22μ as, about half as large
as Sgr A∗. Unlike Sgr A∗, M87 exhibits a powerful radio jet; hence, it holds promise for
exploring the relation between the BH spin and the jet generation mechanism [797]. A
third, indirect way to constrain BH spins is based on energetic considerations. The AGN
outburst in the MS0735.6+7421 cluster’s central galaxy implies that its putative SMBH
grew by about 1/3 of its mass in the past 100 Myr, accreting matter at ∼3–5M�/yr,
inconsistent with the Bondi mechanism. The energetics of the system could be explained
instead by angular momentum released from a rapidly spinning SMBH with M > 1010M�
[611].
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