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Resumo

Campos bosónicos fundamentais com spin arbitrário são genericamente previstos em
extensões do Modelo Standard e da Relatividade Geral, e são fortes candidatos para
explicar as componentes de energia e matéria escura do Universo. Um dos canais
mais promissores para detectar a sua presença é através da sua interação gravitacional
com objectos compactos. Neste contexto, esta tese dedica-se ao estudo de diferentes
mecanismos nos quais campos bosónicos afectam a dinâmica e a estrura de buracos
negros e estrelas de neutrões.

A primeira parte da tese é dedicada ao estudo de campos massivos de spin-2 em
torno de buracos negros esfericamente simétricos. Campos massivos de spin-2 po-
dem ser consistentemente descritos em teorias de gravidade massiva, tornando posśıvel
um estudo sistemático da propagação destes campos em espaços-tempo curvos. Em
particular, mostramos que devido à presença de graus de liberdade adicionais nestas
teorias, a estrutura das soluções descrevendo buracos negros é mais complexa do que
na Relatividade Geral.

Na segunda parte desta tese, discutimos em detalhe instabilidades de superradiância
no contexto da f́ısica de buracos negros. Mostramos que diferentes mecanismos, tais
como campos bosónicos massivos e campos magnéticos, podem tornar buracos negros
em rotação instáveis contra modos superradiantes, o que tem importantes implicações
para a astrof́ısica e para a f́ısica para além do Modelo Standard.

Na última parte da tese apresentamos um estudo sobre a interação gravitational
entre condensados de matéria escura bosónica e estrelas compactas. Em particular,
mostramos que configurações estelares estáveis compostas por um fluido perfeito e por
um condensado bosónico existem e podem descrever as últimas fases da acreção de
matéria escura por estrelas, em ambientes ricos em matéria escura.

Palavras-chave: Objectos compactos, campos bosónicos fundamentais, campos mas-
sivos de spin-2, instabilidades de superradiância, estrelas bosónicas.
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Abstract

Fundamental bosonic fields of arbitrary spin are predicted by generic extensions of
the Standard Model and of General Relativity, and are well-motivated candidates to
explain the dark components of the Universe. One of most promising channels to
look for their presence is through their gravitational interaction with compact objects.
Within this context, in this thesis I study several mechanisms by which bosonic fields
may affect the dynamics and structure of black holes and neutron stars.

The first part of the thesis is devoted to the study of massive spin-2 fields around
spherically symmetric black-hole spacetimes. Massive spin-2 fields can be consistently
described within theories of massive gravity, making it possible to perform a systematic
study of the propagation of these fields in curved spacetimes. In particular, I show that
due to the presence of additional degrees of freedom in these theories, the structure of
black-hole solutions is richer than in General Relativity.

In the second part of the thesis, I discuss in detail superradiant instabilities in the
context of black-hole physics. I show that several mechanisms, such as massive bosonic
fields and magnetic fields, can turn spinning black holes unstable against superradiant
modes, which has important implications for astrophysics and for physics beyond the
Standard Model.

In the last part of this thesis, I present a study of how bosonic dark matter con-
densates interact gravitationally with compact stars. In particular, I show that stable
stellar configurations formed by a perfect fluid and a bosonic condensate exist and
can describe the late stages of dark matter accretion onto stars, in dark matter rich
environments.

Keywords: Compact objects, fundamental bosonic fields, massive spin-2 fields, su-
perradiant instabilities, bosonic stars.
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1. General introduction

Einstein’s theory of General Relativity (GR) is a singular achievement in mankind’s
history. The theory describes how matter interacts gravitationally and has far-reaching
implications. Among its many successes, one can name a few that drastically changed
the way we understand our Universe. In particular, it gave us a new picture of the
origin and evolution of the Universe; predicted the existence of new exotic astrophysical
objects, such as black holes (BHs); predicted the existence of gravitational waves; and
at the more fundamental level, changed the way we think about space and time.

No less impressive has been the quite accurate picture of the world at very small scales
that the Standard Model of particle physics has given us. Although a description of
gravity at small scales is still missing, there is no doubt that we now have an incredibly
precise understanding of the fundamental building blocks of matter.

However, from rotation curves of galaxies [1] to Supernovae observations [2], it has
gradually become clear that our Universe is not compatible with either GR on large
scales, the Standard Model of particle physics, or both. The confirmation of these ob-
servations by a number of other experiments [1, 3], gives now compelling evidence that
only 5% of our Universe is composed of baryonic matter [3], the kind of matter which
forms the basis of everything we know. The remaining 95% are poorly understood
and constitute one the biggest unresolved mysteries of contemporary physics. Dark
matter (DM), constituting roughly 27% of the Universe, is necessary to explain the
apparent existence of more matter than what is actually seen [1], while dark energy
makes up 68% of the Universe, and is a key ingredient to explain the cosmological ac-
celeration [2]. Both these constituents are a mystery, in the sense that a) DM has never
been detected in any Earth-bound experiment and b) the magnitude of the cosmologi-
cal constant necessary to explain dark energy is 120 orders of magnitude smaller than
that predicted by quantum field theory, if one believes in it up to the Planck scale [4].
Different proposals have been put forward to solve these problems. The difficulty lies
not only in the fact that one must necessarily modify or even abandon some pillars
of XXth century physics, but also in the intricate task of devising theoretically viable
models that pass all experimental tests at hand.

Either motivated to solve the DM problem or to explain the accelerated expansion
of the Universe, a generic aspect of most of the proposals to solve these problems is the
prediction of new fundamental degrees of freedom. In particular, fundamental bosonic
fields stand out as a quite generic well-motivated feature of extensions of the Standard
Model [5–7] and modified theories of gravity [8, 9].

1



The feebleness with which these fundamental fields couple to ordinary matter lies
at the heart of the difficulty to detect them. Extra fundamental fields may couple
to Standard Model particles in various ways, which makes it challenging to exclude,
or possibly detect, new effects. Fortunately, the equivalence principle guarantees that
gravity is universal for all forms of matter and energy. Although gravity is way too
weak for us to hope to detect the presence of these fields here on Earth through their
gravitational interaction, one can expect that strongly gravitating objects, such as
BHs and neutron stars, might be ideal candidates to look for smoking gun effects
of the existence of new fundamental degrees of freedom. We are then offered with
the intriguing possibility of using the growing wealth of observations in high-energy
astrophysics [10–12] and gravitational-wave astronomy [13] to put physics beyond GR
and the Standard Model to the test.

Within this context, this thesis is devoted to the study of fundamental bosonic fields
around compact objects. All the works that I here present involve classical bosonic
fields propagating on curved spacetimes and are part of a broader program aiming to
fully understand the physics of fundamental fields when coupled to gravity.

Fundamental bosonic fields

All observed elementary bosons are all either massless or very massive, such as the W
and Z bosons and the recently-discovered Higgs boson, whose masses are of the order
m ∼ 100 GeV [14]. For a compact object with mass M , the Compton wavelength of
the bosonic field λc is comparable to its size when M/λc ∼ 1 (in units G = c = 1).
This sets the range of masses ~λ−1

c which are phenomenologically relevant for a given
M . A hypothetical boson with mass in the electronvolt range would have a Compton
wavelength comparable to objects with masses M ∼ 1020kg. Although this kind of
compact object could exist, in particular “primordial” BHs [15–17] formed in the early
Universe, I will mostly focus on massive compact objects, i.e. those with masses ranging
from a few solar masses to billions of solar masses. To expect any significant impact
on the dynamics and structure of these objects, we must then rely on the existence of
ultralight particles with masses from ∼ 10−25 eV up to ∼ 10−10 eV.

One of the most promising candidates to fall within this mass range, is the Peccei-
Quinn axion [18–20], a pseudo-scalar field with a mass theoretically predicted to be
below the electronvolt scale [21], and introduced as a possible resolution for the strong
CP problem in QCD, i.e. the observed suppression of CP violations in the Standard
Model despite the fact that, in principle, the nontrivial vacuum structure of QCD
allows for large CP violations. In addition to solve the strong CP problem, light
axions are also interesting candidates for cold DM [22, 23]. Furthermore, a plenitude
of ultralight bosons might arise from moduli compactification in string theory. In the
“axiverse” scenario, multiples of light axion-like fields can populate the mass spectrum
down to the Planck mass, MP ∼ 10−33 eV, and can provide interesting phenomenology
at astrophysical and cosmological scales [5].

2



In addition to these beyond-the-Standard-Model particles, effective scalar degrees
of freedom also arise in several modified theories of gravity [9]. For example, in so-
called scalar-tensor theories, the gravitational interaction is mediated by a scalar field
in addition to the standard massless graviton [24]. Due to a correspondence between
scalar-tensor theories and theories which replace the Einstein-Hilbert term by a generic
function of the Ricci curvature (so-called f(R) gravity [25]), effective massive scalar
degrees of freedom are also present in these theories.

Bosonic fields with spin are also a generic feature of extensions of the Standard Model
and of GR, but have received much less attention, mainly due to the complexity of their
field equations. For example, massive vector fields (“dark photons” [26]) arise in the
so-called hidden U(1) sector [6, 7, 27–29]. In fact, several proposals have advocated
massive spin vector fields as a DM ingredient [6, 30–32], making the study of these
fields of special importance.

On the other hand, massive tensor fields are a much more involved problem from
a theoretical standpoint, but progress in describing consistently the gravitational in-
teraction of massive tensor fields with gravity has been recently done in the context
of nonlinear massive gravity and bimetric theories [33, 34] (see also Refs. [35–37] for
reviews). As pointed out in Refs. [37–40], massive bimetric theories can, in certain
limits, consistently describe the coupling of massive spin-2 fields to gravity. These
theories were originally motivated by the hope of solving the cosmological constant
problem [36], but the possibility that they could also mimic the presence of DM was
also recently considered in Refs. [39–43].

Massive gravity theories can also describe a putative massive graviton. A non-zero
mass for the graviton would have potential impacts in gravitational-wave searches. In
fact, as I will discuss in this thesis, the recent first direct detection of gravitational
waves emitted by a compact-binary coalescence [44] already constrains the mass of the
graviton to a range where interesting effects might occur around supermassive BHs
with mass of the order of M ∼ 108M�.

Bosonic fields and black holes

Most of the interesting phenomena resulting from the interaction between bosonic
fields with BHs are associated to BH superradiance [45]. Under certain conditions,
bosonic waves scattering off spinning BHs can be amplified at the expense of the BH
rotational energy. In confined systems, this superradiant scattering can lead to strong
instabilities, with applications to high-energy physics, astrophysics and to physics be-
yond the Standard Model. The mass term of a massive bosonic field provides the nec-
essary confinement for low-frequency waves to trigger superradiant instabilities around
Kerr BHs [45]. This is of particular interest to probe new fundamental degrees of free-
dom. In fact, efforts have already been made in order to use BHs as particle-physics
laboratories, through which one can constrain the mass of the QCD axion [46], of
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stringy pseudoscalars populating the so-called axiverse [5, 47], and the hidden U(1)
sector [6, 7, 48, 49]. In addition to their phenomenological relevance, such studies have
revealed unexpected aspects related to the dynamics of these fields in curved spacetime.

One of the main purposes of this thesis is to explore the physics behind these su-
perradiant instabilities. In particular, I will show that massive spin-2 fields, including
a putative massive graviton, can also render Kerr BHs superradiantly unstable, which
has strong implications for the existence of ultra-light spin-2 fields.

As already mentioned, these particles can be described within a class of alterna-
tive theories of gravity known as massive gravity and massive bimetric gravity. If one
wishes to study the phenomenology of these theories or any other modified theory of
gravity, it is also crucial that they pass theoretical tests. These include internal theoret-
ical consistency, absence of pathologies, and existence of stable gravitational solutions
describing physical systems. In this context, BH solutions are the ideal test bed to
probe the strong-curvature regime of any relativistic (classical) theory of gravity [9].
Viable candidates of modified-gravity theories should possess BH solutions and the
latter should (presumably) be dynamically stable, at least over the typical observation
time scale of astrophysical compact objects. Therefore, I will also provide a detailed
study on BH solutions in massive gravity, with particular emphasis on their stability
properties under small perturbations.

As a by-product of understanding how massive spin-2 fluctuations behave in BH
spacetimes, we will also start to understand how gravitational waveforms might differ
from GR if the graviton has a small but non-vanishing mass. In fact, the extra grav-
itational polarizations and the nontrivial dispersion introduced by a putative small
graviton mass may leave important imprints on gravitational waveforms. Given that
advanced gravitational-wave detectors [50, 51] are now starting to detect their first
sources [44], an accurate description of these effects is of the utmost importance.

Bosonic fields and compact stars

Over the past three decades, several studies on the interaction of DM and compact
stars have concluded that, for old enough stars, the accumulation of DM inside the
star can lead, quite generically, to the formation of a BH, which eventually destroys
the whole star (see e.g., Refs. [52–56]). These strong claims, which have been used to
constrain DM particles, lack of a rigorous proof, making it crucial to better understand
these processes. In particular, situations leading to BH formation can only be accessed
within full GR. Here I present the first steps taken in this direction, by considering
DM as being composed of coherent massive bosonic fields minimally coupled to GR.
This simple but rigorous model allow us to start to understand how DM might affect
the global structure of compact stars. One of the main results here presented, is that
stable stellar configurations with DM cores can, in principle, form and avoid collapse
to a BH if DM is composed of bosonic fields, independently of the mass of the field.
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An important side-product of these studies will be the construction of novel self-
gravitating compact solutions for massive vector fields. In fact, massive bosonic fields
coupled to gravity have the tendency to form stellar-like structures. These objects,
known as boson stars [57–59] or oscillatons [60, 61] depending on the nature of the
field, have been proposed to solve long-standing problems in DM physics, in particular
if DM is composed of ultra-light bosonic fields with masses � eV [62, 63].

In fact, a popular viewpoint is that DM consists of weakly interacting massive par-
ticles (WIMPs), with masses & GeV [1]. Despite its success in modeling structure
formation, WIMPs DM models have been shown to form too much structure at small
scales, leading to a mismatch with observations. Examples such as the “missing satel-
lite” [64, 65] and the “cuspy core” [66] problem are an evidence that our current best
models cannot be complete. Although these issues may eventually be solved within the
WIMP paradigm, for example by taking properly into account the effect of baryonic
processes [67, 68]1, an interesting possibility is that the tendency for ultra-light bosonic
fields to form gravitationally-bound macroscopic condensates may hamper the forma-
tion of structure at small scales, thus effectively solving these problems. Studying the
physics of self-gravitating bosonic structures is thus timely and relevant in the context
of DM searches.

Structure of the thesis

For the reader’s convenience, I summarize here the structure of the thesis. Part of it
will be dedicated to the study of the impact of massive spin-2 fields on the dynamics
of BH spacetimes. I will show in Part I, that due to the complex structure of theories
describing massive spin-2 fields, BHs have a much richer structure than in GR. I will
study generic massive spin-2 fields around spherically symmetric BHs and show how
this can be consistently described within theories of massive gravity. I will also show
that massive spin-2 perturbations can render the Schwarzchild BH unstable and that,
due to this instability, these theories allow for non-Schwarzschild BH solutions. For
completeness, I will also study perturbations around Schwarzschild-de Sitter spacetimes
in a specific limit of linear massive gravity known as partially massless gravity, and
will also discuss generic perturbations of another class of solutions of massive gravity
theories (known as non-bidiagonal solutions).

In Part II, I will show how rotating Kerr BHs can be rendered superradiantly unstable
in the presence of bosonic fields. I will set the stage by studying different scenarios
where such instability occurs, namely for a Kerr BH enclosed by a reflecting mirror and
for a magnetized Kerr BH. I will then show that, under certain conditions, Kerr BHs are
unstable against massive spin-2 fields, similarly to massive scalar and vector fields [45].
Finally, I study the evolution of this instability within an adiabatic approximation and

1Another possibility to solve the small-scale problems is the introduction of particles with strong
self-interactions [69].
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show how these results can be used to put strong constraints on ultralight bosonic
particles. In particular, these constraints can be used to place a bound on the graviton
mass mg . 5×10−23 eV, which is one order of magnitude stronger than the constraints
imposed by the gravitational-wave observation GW150914 by Advanced LIGO [44].

Finally, Part III will be dedicated to the study of bosonic fields around compact
stars. I will show that massive bosonic fields minimally coupled to gravity generically
form compact structures, and argue that if DM is composed of massive bosonic fields,
then stable stellar configurations formed by a perfect fluid and a bosonic condensate
can form and avoid collapse to a BH.

Unless otherwise stated, I use geometrized units where G = c = 1, so that energy
and time have units of length. I also adopt the (−+ ++) convention for the metric.
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Part I.

Massive spin-2 fields and black-hole
spacetimes
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2. Massive spin-2 fields and strong
gravity

This part is based on Refs. [70–74].

2.1. Massive spin-2 fields?

Higher-spin fields are predicted to arise in several contexts [75–77]. The motivation
to investigate their gravitational dynamics is twofold. The first reason is conceptual
and is tied to a renewed interest in theories of massive gravity. Massive gravity is a
modification of GR based on the idea of equipping the graviton with mass. A model
of non self-interacting massive gravitons was first suggested by Fierz and Pauli in the
early beginnings of field theory [78]. They showed that at the linear level there is
only one ghost- and tachyon-free, Lorentz-invariant mass term that describes the five
polarizations of a massive spin-2 field on a flat background. However, in the zero-mass
limit, the Fierz-Pauli theory does not recover linear GR due to the existence of extra
degrees of freedom introduced by the graviton mass. In the massless limit, the helicity-
0 state maintains a finite coupling to the trace of the source stress-energy tensor,
modifying the Newtonian potential and hence yielding predictions which differ from
the massless graviton theory, rendering the theory inconsistent with observations [79–
83].

To overcome this difficulty, Vainshtein [84] argued that the discontinuity present in
the Fierz-Pauli theory is an artifact of the linear theory, and that the full nonlinear
theory has a smooth limit for mg → 0, where mg is the graviton mass. He found that
around any massive object of mass M , for generic nonlinear massive gravity theories
there is a new length scale known as the Vainshtein radius, rV , where the actual form of
the Vainsthein radius depends on the nonlinear theory. For example, in ghost-free theo-

ries, it is given by rV ∼
(
rSλ

2
g

)1/3
[85], where rS = 2M is the gravitational radius of the

object and λg is the Compton wavelength of the massive graviton. Nonlinearities begin
to dominate at r . rV invalidating the predictions made by the linear theory. This is
due to the fact that at high energies the helicity-0 mode of the graviton, responsible
for the discontinuity, becomes strongly coupled to itself, screening its presence near
the source. Much later, rigorous studies of several non-linear completions of massive
gravity showed that, in general, one could indeed recover GR solutions at small length
scales through the Vainshtein mechanism (for a review on the Vainshtein mechanism
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see Ref. [85]). However, it was believed until recently that Lorentz-invariant nonlinear
massive gravity theories were doomed to fail due to the (re)appearance of a ghost-like
sixth degree of freedom [86]. This was studied by Boulware and Deser who showed
that in nontrivial backgrounds there are 6 degrees of freedom, where the extra degree
of freedom was shown to be a ghost scalar, known as the Boulware-Deser ghost.

This problem has only recently been solved in a series of works [33, 34, 87–91], where
it was shown that for a subclass of nonlinear massive gravity theories, the Boulware-
Deser ghost does not appear, both in massive gravity — a theory with one dynamical
and one fixed metric, the so-called de Rham, Gabadadze and Tolley (dRGT) model —
and its bimetric extension (see Refs. [35–37] for recent reviews on massive gravity and
bimetric theories)1. Bimetric theories contain two dynamical metrics, which interact
with each other via non-derivative terms. If ordinary matter only couples to one of the
metrics, then one can interpret the theory as an extension of Einstein’s gravity with
an extra spin-2 field coupled to gravity in a particular non-minimal way.

2.2. Gravitational-wave searches and astrophysics

The second motivation to investigate massive spin-2 fields is of a more practical and
phenomenological nature. We now have strong evidences that gravitational waves exist.
The LIGO experiment recently reported the first direct observation of gravitational
waves emitted by two merging BHs [44]. Before this detection, the best dynamical
bound on the mass of the graviton came from binary-pulsar observations [92], which
provided the first compelling evidence for gravitational waves through the Hulse-Taylor
pulsar [93], given by mg . 7.6 × 10−20eV. This bound comes from the fact that a
hypothetical massive graviton would affect the decay rate of an orbiting pulsar [28, 94]2.
On the other hand, a Yukawa-like potential of a hypothetical graviton mass would
also be responsible for a modified dispersion relation and consequent deformation of
the gravitational-wave signal during its journey from the source to the observer. In
other words, a small graviton mass may not affect the inspiral of a binary system to a
significant extent (including the changes in period of the binary pulsar), but introduces
nontrivial dispersion which acts over several Compton wavelengths, ∼ ~m−1

g . This
peculiar effect can leave a signature in the gravitational waveform, and in fact the

1A settled term often used in the literature to refer to dRGT theory and its extensions is the “ghost-
free massive gravity”. This name should be used with care, since dRGT theory is free from the
Boulware-Deser ghost, but the other degrees of freedom are not necessary healthy for particular
solutions. Therefore the right term should rather be “Boulware-Deser ghost free massive gravity”.
We will sometimes refer to dRGT theory as “ghost free massive gravity”, keeping in mind the
above reservation.

2Note however that the theory considered in Ref [92] does not satisfy the Fierz-Pauli tuning and
hence it contains a ghost. It would be interesting to repeat such calculation for viable theories. In
this case however, the Vainshtein mechanism discussed in the main text may prevent a consistent
linear analysis.
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gravitational-wave observation GW150914 by Advanced LIGO already allows to put
strong constraints on the mass of the graviton mg . 1.2 × 10−22eV [44, 95], precisely
due to this effect3.

However, even with these tight constraints in place and because any gravitational
wave detection will occur with very low signal-to-noise-ratio, an accurate knowledge of
these effects may be important, in the sense that accurate templates are required to
detect extra polarizations without introducing bias [96, 97] [see Ref. [98] for a recent
review].

In summary, gravitational waveforms for inspiralling objects emitting massive gravi-
tons are necessary. There are several ways to deal with this problem, e.g., full non-
linear simulations, slow-motion expansions or perturbative expansions around some
background. We will initiate here the latter, by understanding how small vacuum fluc-
tuations behave in bimetric theories and massive gravity. As a by-product, we are able
to understand stability properties of BHs in these theories and begin to understand
how gravitational waveforms differ from GR [see also Ref. [99] for a recent attempt].

2.3. Massive Gravity

2.3.1. The Fierz-Pauli tuning in flat spacetime

Let us start by reviewing the classical Fierz-Pauli theory describing a linear massive
spin-2 field propagating in a four-dimensional flat spacetime [78]. The linear theory can
also be viewed as an expansion of the full non-linear massive gravity model around a
Minkowski background. Expanding the Einstein-Hilbert action in metric perturbations
hµν as gµν = ηµν + hµν , where ηµν is the Minkowski metric ηµν = diag(−1,+1,+1,+1)
and the indices of hµν are moved up and down with the metric ηµν , and keeping only
quadratic terms in the action we obtain the linear approximation of GR,

SGR = M2
P

∫
d4x
√
−gR = M2

P

∫
d4x

(
−1

2
hµνEαβµν hαβ

)
+O(h3), (2.1)

where MP is the Planck mass and

Eµν ≡ Eαβµν hαβ = −1

2
∂µ∂νh−

1

2
�hµν+

1

2
∂ρ∂µh

ρ
ν+

1

2
∂ρ∂νh

ρ
µ−

1

2
ηµν(∂

ρ∂σhρσ−�h), (2.2)

is the linearized Einstein tensor Gµν = Eµν + O(h2). When matter is present, the
metric perturbation hµν is also coupled to the energy-momentum tensor Tµν , via the
interaction term hµνT

µν , but since here we will mostly consider vacuum solutions, we
omit this term.

3I will show in Chapter 10 that a putative massive graviton would also turn Kerr BHs unstable
against superradiant instabilities, and this can be used to place even stronger constraints on the
graviton mass mg . 5× 10−23 eV.
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The action (2.1) contains only derivative terms and is the unique Lorentz-invariant
and ghost-free action that one can write for a massless spin-2 field in Minkowski space-
time [78]. In fact, starting from (2.1) one can show that Einstein-Hilbert’s action is the
only consistent nonlinear generalization of (2.1), when one requires that the massless
spin-2 field gravitates, i.e., couples to its own stress-energy tensor [100, 101]4.

On the other hand, to describe a massive spin-2 field one can start by adding non-
derivative quadratic terms h2 (where h = hµνη

µν) and hµνh
µν to the action (2.1). The

most generic action that one can write is [78]

SFP = M2
P

∫
d4x

[
−1

2
hµνEαβµν hαβ −

1

4
µ2
(
hµνh

µν − κh2
)]
, (2.3)

where κ is an arbitrary constant, and mg = µ~ is the graviton mass. When µ = 0, the
action reduces to the linearized Einstein-Hilbert action. When µ 6= 0, the mass term
violates the diffeomorphism invariance of GR, i.e., this action is not invariant under
infinitesimal transformations of the form

δhµν = ∂µξν(x) + ∂νξµ(x) . (2.4)

The equations of motion are given by

�hµν−∂λ∂µhλν −∂λ∂νhλµ + ηµν∂λ∂σh
λσ +∂µ∂νh− ηµν�h−µ2 (hµν − κηµνh) = 0 . (2.5)

Acting with ∂µ on (2.5) we find the constraint

∂νhνµ − κ∂µh = 0 . (2.6)

Note that for κ = 1/2 this corresponds to the harmonic gauge in linearized GR. Plug-
ging this back into the field equations and taking the trace, we find

2(1− κ)�h+ (1− 4κ)µ2h = 0 . (2.7)

Substituting the trace condition, Eq. (2.5) reads

(�− µ2)hµν = (2κ− 1)

[
∂µ∂νh+

1

2
ηµνµ

2h

]
. (2.8)

For massive spin-2 particles we must have 2s + 1 = 5 degrees of freedom. The only
choice for the constant κ that describes a single massive graviton is the Fierz-Pauli
tuning, κ = 1 [78]. In this case, the full set of linearized equations reads:

(�− µ2)hµν = 0 , ∂µhµν = 0 , h = 0 . (2.9)

On the other hand, for κ 6= 1 the theory propagates 6 degrees of freedom. The extra
polarization comes from a scalar ghost (a scalar with negative kinetic energy) of mass
m2

ghost = − 1−4κ
2(1−κ)

µ2, which arises from the trace equation (2.7). The ghost mass ap-
proaches infinity as the Fierz-Pauli tuning is approached, so that the ghost decouples
in this limit.
4The uniqueness of Einstein’s equations was proven by Lovelock [102, 103], assuming four-dimensional

spacetimes, no extra degrees of freedom besides the massless spin-2 field, diffeomorphism invari-
ance, and linear coupling to the stress-energy tensor of the matter sector. See also Ref. [9].
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2.3.2. Non-linear massive gravity

Starting from the quadratic action (2.3), one can try to guess a non-linear generalization
of the theory. Obviously, the first term in (2.3) constructed solely out of the metric g
should be the Einstein-Hilbert term 5. However, it is not possible to get a non-linear
massive term using only the metric gµν , since the only nontrivial term corresponds
to a Lagrangian density proportional to

√
−g, which acts as a cosmological constant.

Thus, the only way to have a non-trivial mass term is to add a second metric, say fµν ,
which can be chosen to be fixed (in this case the theory has a preferred background,
i.e. “aether”) or dynamical, in which case the theory is called massive bimetric gravity.
We will sometimes simply call it massive bigravity for short. The metric gµν can be
non-derivatively coupled to the second metric fµν , in order to form a non-trivial mass
term. Non-linear mass terms should be chosen such that: (i) the action is invariant
under a coordinate change common to both metrics; (ii) there is a flat solution for gµν ;
(iii) in the limit where gµν = ηµν + hµν and fµν = ηµν the potential at quadratic order
for hµν takes the Fierz-Pauli form (2.3). In spite of these restrictions, there is a huge
freedom in choosing the mass term. In fact, one can choose the interaction term in a
class of functions satisfying these conditions (see e.g. Ref. [105]). The term

√
−g (gµν − fµν)(gστ − fστ ) (gµσgντ − gµνgστ ) ,

considered in [106], is an example of such an interaction. As it has been proposed by
Vainshtein [84], the inclusion of non-linear terms in the equations of motion of massive
gravity is essential for this theory to have a smooth GR limit, when the graviton
mass is continuously taken to zero (for a recent review see [85]). However, as shown by
Boulware and Deser [86], generic non-linear interaction terms lead to ghost instabilities
(appearing at the non-linear level).

2.3.3. dRGT massive gravity and bimetric theories

Although, in general, the Boulware-Deser ghost persists in non-linear massive and
bimetric theories, it has been found by de Rham, Gabadadze and Tolley (dRGT) that
in the so-called “decoupling limit” — a limit where the degrees of freedom of the
theory (almost) decouple — there is a restricted subclass of potential terms, for which
the Boulware-Deser ghost is absent even at the non-linear level [33, 87, 88, 90]. A
full Hamiltonian analysis confirmed the absence of the Boulware-Deser ghost in this
model [34, 89, 91], while fully covariant proofs were given in Ref. [107] for a subset of
possible massive terms and for generic mass terms in [108] (see also the review [36]).

The Lagrangian of this most general bimetric theory without the Boulware-Deser
ghost reads [87, 109] (dRGT massive gravity is recovered when one of the metrics is

5In principle, since Lovelock’s theorem is not valid in massive gravity, other kinetic terms could be
possible. However it was shown in Ref. [104] that any new kinetic term would generically lead to
ghost instabilities.
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taken to be non-dynamical),

L =
√
|g|
[
M2

gRg +M2
f

√
f/g Rf − 2M4

v V (g, f)
]
. (2.10)

Here Rg and Rf are the Ricci scalars corresponding to the two metrics gµν and fµν ,
respectively; M−2

g = 16πG, M−2
f = 16πG are the corresponding gravitational couplings;

and Mv is a constant related to the graviton mass. The quantities f, g denote the
determinants of the corresponding metric. The potential can be written as

V :=
4∑

n=0

βnVn (γ) , γµ ν :=
(√

g−1f
)µ

ν , (2.11)

where βn are real parameters,

V0 = 1 , V1 = [γ] , V2 =
1

2

(
[γ]2 − [γ2]

)
,

V3 =
1

6

(
[γ]3 − 3[γ][γ2] + 2[γ3]

)
, V4 = det(γ) , (2.12)

and the square brackets denote the matrix trace.

The Lagrangian (2.10) gives rise to two sets of modified Einstein’s equations for gµν
and fµν ,

Gµν +
M4

v

M2
g

Tµν(γ) = 0 , (2.13)

Gµν +
M4

v

M2
f

Tµν(γ) = 0 , (2.14)

where Gµν and Gµν are the corresponding Einstein tensors for the two metrics gµν and
fµν , and

Tµν =
3∑

n=0

(−1)nβngµλY
λ
ν (γ) , Tµν =

3∑
n=0

(−1)nβ4−nfµλY
λ
ν (γ−1) , (2.15)

with Y (γ) =
∑n

r=0(−1)rγn−rVr(γ) [109]. The Bianchi identity implies the conservation
conditions

∇µ
gTµν(γ) = 0 , ∇µ

fTµν(γ) = 0 , (2.16)

where ∇g and ∇f are the covariant derivatives with respect to gµν and fµν , respec-
tively. In fact, these two conditions are not independent from each other due to the
diffeomorphism invariance of the interaction term in (2.10), which is a general property
of the “Fierz-Pauli like” interaction terms [105].
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2.4. Outline of Part I

In Chapter 3 we obtain the Fierz-Pauli theory [78] for a linearized massive spin-2 field
propagating on curved backgrounds and show how it can be consistently obtained in
bimetric and massive gravity (or massive (bi)gravity for short). Within this context
we perform a complete analysis of the linear dynamics of massive spin-2 fields on a
Schwarzschild BH. We first focus on the monopole mode that corresponds to the scalar
polarization of a massive graviton. We find a strongly unstable, spherically symmet-
ric mode, which was also discussed in Ref. [110]. We also show that the inclusion
of a cosmological constant makes the Schwarzschild-de Sitter BHs even more unsta-
ble. We then study non-spherically symmetric massive spin-2 perturbations around
the Schwarzschild geometry, and show that the spectrum supports a rich structure of
quasinormal modes (QNMs) and quasibound, long-lived states.

In Chapter 4 we show that for a particular tuning of the cosmological constant
with the mass of the spin-2 field, known as partially massless gravity, the spherically
symmetric instability disappears. Remarkably, for this particular case the spectrum
of massive gravitational perturbations is isospectral, i.e., perturbations with opposite
parity have the same quasi-normal spectrum.

We complete these results in Chapter 5 where we study generic linear perturba-
tions of another class of spherically symmetric solutions of massive (bi)gravity, namely
the nonbidiagonal solutions (this terminology will be explained in the next chapter).
We show that the quasinormal spectrum of these solutions coincides with that of a
Schwarzschild BH in GR, thus proving that these solutions are mode stable. This is in
contrast to the case of bidiagonal BH solutions studied in Chapter 3 which are affected
by a radial instability. On the other hand, we show that the full set of perturbation
equations is generically richer than that of a Schwarzschild BH in GR, and this affects
the linear response of the BH to external perturbations.

The instability of the Schwarzshild solutions against massive spin-2 perturbations
suggests the existence of new static solutions in massive bi(gravity). We end the first
part of this thesis in Chapter 6, by confirming that novel BH solutions indeed exist in
these theories.
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3. Massive spin-2 fields around
Schwarzschild black holes

3.1. Introduction

We wish to describe two different cases: i) the interaction of a generic massive spin-2
field with standard gravity, that is, we consider the massive tensor as a probe field
propagating on a geometry which solves Einstein equations; ii) the linearized dynamics
of a massive graviton as it emerges in nonlinear massive gravity. It turns out that both
cases can be described consistently within a common framework.

More specifically, we consider the action for two tensor fields, gµν and fµν , with a
ghost-free nonlinear interaction between them (cf. Eq. (2.10)). The fluctuations of the
two dynamical metrics can be separated and describe two interacting gravitons, one
massive and one massless.

A crucial point is to identify the background solution over which the massive ten-
sor perturbations propagate. Linearization of massive gravity is typically considered
around a flat, Minkowski background. Here instead we wish to describe the linearized
dynamics around a nonlinear vacuum solution, i.e. a BH geometry. Regular, nonlinear,
solutions in bimetric and massive gravity are challenging to find and they might ex-
hibit a rich structure [74, 111–116]. It was shown that the only way to avoid a singular
horizon is to either require both metrics to have coincident horizons, or that at least
one of the metrics is non-diagonal (or non-stationary and axisymmetric) when written
in the same coordinate patch [111, 113].

In this Chapter we consider the special case in which the background solutions are
proportional, fµν = C2gµν . This choice also avoids the singular horizon problem, as the
two metrics have the same horizon. The linearized equations describing the fluctuations
of the two metrics can be easily decoupled and they describe one massless graviton
(which is described by usual linearized Einstein dynamics), and a massive graviton
which is described by the Fierz-Pauli theory on a curved background [38, 117].

On the other hand, in the limit of massive gravity this is equivalent of taking the
nondynamical metric as being the BH spacetime instead of the usual flat spacetime.
Although perfectly consistent with the field equations, this choice seems somewhat
unnatural and other nonlinear background metrics can be considered. The fluctuations
of the physical metric gµν propagate on a nonlinear BH background fµν and they are
also described by Fierz-Pauli theory.
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In Ref. [110], Babichev and Fabbri showed that around these solutions, the mass term
for the graviton can be interpreted as a Kaluza-Klein momentum of a four-dimensional
Schwarzschild BH extended into a flat higher dimensional spacetime. Such “black
string” spacetimes are known to be unstable against long-wavelength perturbations, or
in other words, against low-mass perturbations, which are spherically symmetric on the
four-dimensional subspace. This is known as the Gregory-Laflamme instability [118,
119], which in turn is the analog of a Rayleigh-Plateau instability of fluids [120, 121].
Based on these results, Ref. [110] pointed out that massive tensor perturbations on a
Schwarzschild BH in massive gravity and bimetric theories would generically give rise
to a (spherically symmetric) instability. In this Chapter we will confirm these results
within a more generic framework and extend them to generic modes and to the case
of Schwarzschild-de Sitter BHs.

One of the important open questions, that we will partially address in Chapter 6,
is the end-state of the instability. For black strings, there is reasonable evidence that
break-up occurs [122]. But the spacetimes we deal with are spherically symmetric, and
so is the unstable mode. A possible end-state is a spherically symmetric BH endowed
with a graviton cloud. An analysis of the nonlinear equations will be presented in
Chapter 6, where we will show that such solutions exist. However, whether they can
be the end-state of the instability is still unclear.

3.2. Black holes in massive (bi)gravity theories

The structure of the solutions in massive (bi)gravity is more complex that in GR,
mainly due to the fact that this theory has two metrics (see e.g. Ref. [123] to see how
the global structure of these solutions is affected by the co-existence of two metrics).
In particular, the well-known Birkhoff’s theorem for spherically symmetric solutions
does not apply. This suggests that in massive (bi)gravity the classes of BH solutions
are richer than in GR.

Indeed, the spherically symmetric BH solutions in bimetric theories can be divided
into two classes. The first class corresponds to the case for which the metrics cannot
be brought simultaneously to a bidiagonal form. Said differently, in this class, if one
metric in some coordinates is diagonal, the other metric is not. BHs of the second class
have two metrics which can be both written in the diagonal form, but not necessarily
equal.

The first BH solutions for a nonlinear massive gravity theory (suffering from the
Boulware-Deser ghost) were constructed in Ref. [124]. Much later, spherically sym-
metric solutions for other classes of pathological massive bigravity theories were found
and classified in detail in Refs. [123, 125]. In the framework of the original dRGT model
a class of non-bidiagonal Schwarzschild-de-Sitter solutions was found in Ref. [126]. In
Refs. [115, 127], spherically symmetric BH solutions were found for the bi-metric exten-
sion of dRGT theory, while spherically symmetric (charged and uncharged) solutions
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in the dRGT model for a special choice of the parameters of the action were presented
in Refs. [112, 128]. More recently, Ref. [129] found a more general class of charged
BH solutions (in both the dRGT model and its bimetric extension). Finally, Ref. [130]
generalized these findings by including rotation in the geometry. This last class of
solutions, jointly with the charged solutions of Ref. [129], includes as particular cases
most of the previously found spherically symmetric solutions1.

Interestingly, spherically symmetric BH solutions with hair — solutions differing
from the Schwarzschild family — also exist in bimetric gravity, both with Anti-de
Sitter [115] and flat asymptotics [73] (we will discuss these solutions in Chapter 6).
For reviews on solutions of BHs in massive gravity we refer the reader to Refs. [74, 116,
117, 132].

3.2.1. Bidiagonal black-hole solutions

Let us first discuss the simplest BH solutions of the theory. We leave the discussion on
the non-bidiagonal class of solutions to Chapter 5.

The simplest bidiagonal BH solutions can be obtained by taking two proportional
metrics f̄µν = C2ḡµν (we use the bar notation to denote background quantities later on).
Remarkably, in this case the solutions coincide with those of GR. Indeed, Eqs. (2.13)
and (2.14) reduce to [38]

R̄µν −
1

2
ḡµνR̄ + Λgḡµν = 0 , R̄µν −

1

2
ḡµνR̄ + Λf ḡµν = 0 , (3.1)

which are just two copies of Einstein’s equations with two different cosmological con-
stants given by [38]:

Λg =
M4

v (β0 + 3Cβ1 + 3C2β2 + C3β3)

M2
g

, Λf =
M4

v (C3β4 + β1 + 3Cβ2 + 3C2β3)

CM2
f

,

(3.2)
Furthermore, consistency of the background equations requires Λ̄g = Λ̄f , which trans-
lates into a quartic algebraic equation for the constant C. Classical no-hair theo-
rems of GR guarantee that the most general stationary BH solution in vacuum and
with a cosmological constant is the Kerr-(Anti) de Sitter metric. Therefore, when
Λg = Λf = Λ > 0 the fields gµν and fµν describe two identical Kerr-de Sitter BHs.

1With the exception of Schwarzschild non-bidiagonal solutions, presented in [126], where an extra
constant of integration appears in the solution. However, in [123] it has been argued (for similar
BH solutions in a ghostly massive gravity) that the extra parameter should be set to a specific
value for the solutions to be physical. In this case the solutions of [126] are a particular subclass
of the solutions found in [129, 130]. In [116], a method was presented to construct more general
spherically symmetric non-bidiagonal solutions. These solutions are implicitly written in terms
of one function (of two coordinates), which must satisfy a particular partial differential equation
(PDE), and thus describe an infinite-dimensional family of solutions (a similar technique has been
used in [131] to find de Sitter solutions in dRGT massive gravity).
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For non-rotating BHs, these solutions reduce to two diagonal Schwarzschild-de Sitter
geometries.

3.3. Linear spin-2 field in a curved background

Starting from the action (2.10) let us write down the field equations describing a
linear massive spin-2 field propagating in a curved spacetime. We consider fluctuations
around the background metrics:

gµν = ḡµν +
1

Mg

δgµν , fµν = C2ḡµν +
C

Mf

δfµν . (3.3)

Note that the perturbations are generically independent, δgµν 6= δfµν . From Eqs. (2.13)
and (2.14), the linearized field equations read

Ēρσµν δgρσ + Λδgµν −
M4

vB

Mg

ḡµρ (δSρ ν − δρνδSσ σ) = 0 , (3.4)

Ēρσµν δfρσ + Λδfµν +
M4

vB

CMf

ḡµρ (δSρ ν − δρνδSσ σ) = 0 , (3.5)

where B is a constant [38],

δSρ ν =
ḡρµ

2Mf

(
δfµν − C

Mf

Mg

δgµν

)
, (3.6)

and Ēρσµν is the operator representing the linearized Einstein equations in curved space-
times:

Ēρσµν = −1

2

[
δρµδ

σ
ν �̄+ ḡρσ∇̄µ∇̄ν − δρµ∇̄σ∇̄ν − δρν∇̄σ∇̄µ − ḡµν ḡσρ�̄+ ḡµν∇̄ρ∇̄σ

−ḡµνR̄ρσ + δρµδ
σ
ν R̄
]
. (3.7)

Taking appropriate linear combinations of the metric fluctuations,

h(0)
µν =

Mgδgµν + CMfδfµν√
C2M2

f +M2
g

, h(m)
µν =

Mgδfµν − CMfδgµν√
C2M2

f +M2
g

, (3.8)

the linear equations decouple:

Ēρσµνh(0)
ρσ + Λh(0)

µν = 0 , (3.9)

Ēρσµνh(m)
ρσ + Λh(m)

µν +
µ2

2

(
h(m)
µν − ḡµνh(m)

)
= 0 . (3.10)
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From the equations above, it is clear that the theory describes two spin-2 fields, h
(0)
µν

and h
(m)
µν . The former is massless and it is described by the linearized Einstein-Hilbert

action, whereas the latter has a Fierz-Pauli mass term defined as

µ2 = M4
v (Cβ1 + 2C2β2 + C3β3)

(
1

C2M2
f

+
1

M2
g

)
. (3.11)

What we have discussed so far is valid for bimetric theories (2.10). It is worth
stressing that linearized massive gravity can be recovered taking the limit δfµν → 0
and Mf →∞ in Eq. (3.3) such that δfµν/Mf → 0. In this limit only Eq. (3.4) survives
as a dynamical equation. In the massive gravity limit, this equation can be written in
the same form as in Eq. (3.10) for the perturbation δgµν , but with a mass term

µ =
√
BCM2

v /Mg . (3.12)

Therefore, also in this case the theory describes a massive graviton propagating in the
curved background ḡµν ≡ f̄µν/C

2.

We have just proved that in both cases (bimetric theories and massive gravity)
the linearized equations describing a massive spin-2 field on a curved spacetime are
described by an equation of the form (3.10). In the case of bimetric theory one also
has Eq. (3.9), which we ignore since it describes a standard massless graviton and it is
decoupled.

In flat spacetime, the equations of motion (3.10) reduce to Eq. (2.5) whereas, on
curved background they reduce to the system (after taking the divergence and trace of
Eq. (3.10)):

�̄hµν + 2R̄αµβνh
αβ − µ2hµν = 0 , (3.13)

µ2∇̄µhµν = 0 , (3.14)(
µ2 − 2Λ/3

)
h = 0 . (3.15)

where, here and in the following, we have suppressed the superscript “(m)” for sim-
plicity, and we used the tensorial relation

(∇̄c∇̄d − ∇̄d∇̄c)hab = R̄aecdh
e
b + R̄becdha

e . (3.16)

This set of equations can be shown to be the only one that consistently describes a
massive spin-2 with five degrees of freedom and coupled to gravity in generic back-
grounds [133]. In fact, in the limit Mf � Mg, interactions of the massive mode with
the massless mode and matter fields are suppressed (if the matter fields only couple
minimally to gµν), and thus in this limit, and at the linear level, one can interpret these
theories as a model of a massive spin-2 fields coupled to gravity [38]. In the rest of this
Chapter we will investigate the system (3.13)–(3.15) on a Schwarzschild background.
We leave the study of this system on top of a Kerr BH to Chapter 10.
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3.4. Setup

3.4.1. The Schwarzschild(-de Sitter) geometry

The most general static solution of eqs. (3.1) is the Schwarzschild-de Sitter spacetime,
described by

ds̄2 = −f(r) dt2 + f(r)−1 dr2 + r2dΩ2, (3.17)

where

f = 1− 2M

r
− Λ

3
r2 ≡ Λ

3r
(r − rb)(rc − r)(r − r0) , (3.18)

with r0 = −(rb+rc), rb and rc > rb being the BH horizon and the cosmological horizon,
respectively. The cosmological constant can be expressed as 3/Λ = rb

2 + rbrc + rc
2 and

the spacetime has mass M = Λrbrc(rb+rc)/6. The Schwarzschild geometry is recovered
when Λ = 0. In this case, there is only one horizon given by rb = 2M , while rc →∞.
Finally, another quantity that will be useful later on, is the surface gravity κb associated
with the BH horizon, given by

κb ≡
f ′(rb)

2
=

Λ(rc − rb)(rb − r0)

6rb
. (3.19)

3.4.2. Tensor spherical harmonic decomposition of spin-2 fields

To lay down the necessary framework, consider a generic tensor field hµν in a spheri-
cally symmetric background. Due to spherical symmetry, the tensor field hµν can be
conveniently decomposed in a complete basis of tensor spherical harmonics [134, 135].
Furthermore, the perturbation variables are classified as “polar” or “axial” depending
on how they transform under parity inversion (θ → π − θ, φ → φ + π). Polar pertur-
bations are multiplied by (−1)l whereas axial perturbations pick up the opposite sign
(−1)l+1. We refer the reader to Refs. [136, 137] for further terminology used in the
literature.

We decompose the spin-2 perturbation in Fourier space as follows:

hµν(t, r, θ, φ) =
∑
l,m

∫ +∞

−∞
e−iωt

[
haxial,lm
µν (ω, r, θ, φ) + hpolar,lm

µν (ω, r, θ, φ)
]
dω . (3.20)

The tensorial quantities haxial,lm
µν and hpolar,lm

µν are explicitly given by:

haxial,lm
µν (ω, r, θ, φ) =


0 0 hlm0 (ω, r) csc θ∂φYlm(θ, φ) −hlm0 (ω, r) sin θ∂θYlm(θ, φ)
∗ 0 hlm1 (ω, r) csc θ∂φYlm(θ, φ) −hlm1 (ω, r) sin θ∂θYlm(θ, φ)

∗ ∗ −hlm2 (ω, r)Xlm(θ,φ)
sin θ

hlm2 (ω, r) sin θWlm(θ, φ)
∗ ∗ ∗ hlm2 (ω, r) sin θXlm(θ, φ)

 ,

(3.21)
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hpolar,lmµν (ω, r, θ, φ) =
f(r)H lm

0 (ω, r)Ylm H lm
1 (ω, r)Ylm ηlm0 (ω, r)∂θYlm ηlm0 (ω, r)∂φYlm

∗ f(r)−1H lm
2 (ω, r)Ylm ηlm1 (ω, r)∂θYlm ηlm1 (ω, r)∂φYlm

∗ ∗ r2
[
Klm(ω, r)Ylm

+Glm(ω, r)Wlm

] r2Glm(ω, r)Xlm

∗ ∗ ∗ r2 sin2 θ
[
Klm(ω, r)Ylm

−Glm(ω, r)Wlm

]

 ,

(3.22)

where asterisks represent symmetric components, Ylm ≡ Ylm(θ, φ) are the scalar spher-
ical harmonics and

Xlm(θ, φ) = 2∂φ [∂θYlm − cot θYlm] , (3.23)

Wlm(θ, φ) = ∂2
θYlm − cot θ∂θYlm − csc2 θ∂2

φYlm . (3.24)

In a spherically symmetric background, the field equations do not depend on the az-
imuthal number m and they are also decoupled for each harmonic index l. In addition,
perturbations with opposite parity decouple from each other.

3.5. Field equations for massive spin-2 fields on a
Schwarzschild background

In this Section we write down the main field equations for a massive spin-2 field in a
Schwarzschild background. Since we are interested in local physics near massive BHs,
we focus on the case where Λg ≈ 0 ≈ Λf . This condition can be satisfied exactly
by requiring a fine tuning of the interaction couplings, as can be seen from Eq. (3.2).
Alternatively, even without fine tuning, realistic values of the cosmological constant
should not play any role in describing local physics at the scale of astrophysical compact
objects. For completeness, and because it is the most interesting case, in Section 3.6.1,
we will also consider spherical perturbations for Λg 6= 0 6= Λf .
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3.5.1. Axial equations

The field equations for the axial sector are obtained by using the decomposition (3.21)
in Eq. (3.13). Substituting into the linearized field equations, we obtain:

f 2h′′0 +

[
ω2 − f

(
µ2 +

λ

r2
− 4M

r3

)]
h0 −

2Miωf

r2
h1 = 0 , (3.25)

f 2h′′1 +
4Mf

r2
h′1 +

[
ω2 − f

(
µ2 +

λ+ 4

r2
− 8M

r3

)]
h1 −

2Miω

r(r − 2M)
h0

+
2(2− λ)f

r3
h2 = 0 , (3.26)

f 2h′′2 −
2f(r − 3M)

r2
h′2 −

2f 2

r
h1 +

[
ω2 − f

(
µ2 +

λ− 4

r2
+

8M

r3

)]
h2 = 0 , (3.27)

where λ = l(l + 1) and f ≡ f(r). Equations (3.25) and (3.26) correspond to the (tθ)
and the (rθ) component of the field equations respectively, and (3.27) corresponds to
the (θθ) component. The transverse constraint (3.14) leads to the radial equation

fh′1 −
2(M − r)

r2
h1 +

iω

f
h0 +

λ− 2

r2
h2 = 0 , (3.28)

which can be obtained either from the θ or the φ component. For the axial terms the
trace (3.15) vanishes identically,

haxial = 0 . (3.29)

Axial sector: master equations for l ≥ 2

Using the constraint (3.28) we can reduce the system to a pair of coupled differential
equations. Eliminating h0, and defining the functions Q(r) ≡ f(r)h1 and Z(r) ≡ h2/r,
we finally obtain the following system:

d2

dr2
∗
Q+

[
ω2 − f

(
µ2 +

λ+ 4

r2
− 16M

r3

)]
Q = SQ , (3.30)

d2

dr2
∗
Z +

[
ω2 − f

(
µ2 +

λ− 2

r2
+

2M

r3

)]
Z = SZ , (3.31)

where λ = l(l + 1) and we have defined the tortoise coordinate r∗ via dr/dr∗ = f ≡
1− 2M/r. The source terms are given by

SQ = (λ− 2)
2f(r − 3M)

r3
Z , SZ =

2

r2
f Q . (3.32)
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Axial dipole mode

The l = 0 monopole mode does not exist in the axial sector since the angular part
of the axial perturbations (3.21) vanishes for l = 0. For the dipole mode (l = 1 or
equivalently λ = 2), the angular functions Wlm and Xlm vanish and one is left with a
single decoupled equation:

d2

dr2
∗
Q+

[
ω2 − f

(
µ2 +

6

r2
− 16M

r3

)]
Q = 0 . (3.33)

Axial massless limit

It is interesting to note that in the massless limit we can use the transformations

h0 =
1

iω

[
ϕ1 +

λ− 2

3
ϕ2

]
,

h1 =
1

(iω)2

[
2

r
ϕ1 +

2− λ
3r

ϕ2 −
dϕ1

dr
+

2− λ
3

dϕ2

dr

]
,

h2 =
1

(iω)2

[
ϕ1 +

(λ+ 1)r − 6M

3r
ϕ2 + (r − 2M)

dϕ2

dr

]
,

to reduce the system to a pair of decoupled equations, given by a “vectorial” and a
“tensorial” Regge-Wheeler equation

d2

dr2
∗
ϕs +

[
ω2 − f

(
λ

r2
+ (1− s2)

2M

r3

)]
ϕs = 0 , (3.34)

where s = 0, 1, 2 for scalar, vectorial, or tensorial perturbations. These transformations
were first found by Berndtson [138] when studying the massless graviton perturbations
of the Schwarzschild metric in the harmonic gauge. In the massless limit the vectorial
degree of freedom can be removed by a gauge transformation, but for µ 6= 0 it becomes
a physical mode. Note that the wave equation (3.34) for s = 1 is identical to that
describing electromagnetic perturbations of Schwarzschild BHs [136]; thus the axial
spectrum of massive spin-2 perturbations should include a mode which approaches
that of an electromagnetic mode in the low-mass limit.
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3.5.2. Polar equations

Using the decomposition (3.22) in Eq. (3.13) and substituting into the linearized field
equations, we obtain:

f 2H ′′0 +
2f(r −M)

r2
H ′0 +

[
ω2 − 2M2

r4
− f

(
µ2 +

λ

r2

)]
H0

− 4iMω

r2
H1 −

2M(2r − 3M)

r4
H2 +

4Mf

r3
K = 0 , (3.35)

f 2H ′′1 +
2f(r −M)

r2
H ′1 +

[
ω2 − 4M2

r4
− f

(
µ2 +

λ+ 2

r2

)]
H1

− 2iMω

r2
(H0 +H2) +

2λf

r3
η0 = 0 , (3.36)

f 2H ′′2 +
2f(r −M)

r2
H ′2 +

[
ω2 − 2M2

r4
− f

(
µ2 +

λ+ 4

r2
− 8M

r3

)]
H2

− 2M(2r − 3M)

r4
H0 −

4iMω

r2
H1 +

4(r − 3M)f

r3
K +

4λf 2

r3
η1 = 0 , (3.37)

f 2η′′0 +

[
ω2 − f

(
µ2 +

λ

r2
− 4M

r3

)]
η0 −

2Miωf

r2
η1 +

2f 2

r
H1 = 0 , (3.38)

f 2η′′1 +
4Mf

r2
η′1 +

[
ω2 − f

(
µ2 +

λ+ 4

r2
− 8M

r3

)]
η1 −

2Miω

r(r − 2M)
η0

+
2f

r
[H2 −K + (λ− 2)G] = 0 , (3.39)

f 2G′′ +
2(r −M)f

r2
G′ +

[
ω2 − f

(
µ2 +

λ− 2

r2

)]
G+

2f 2

r3
η1 = 0 , (3.40)

f 2K ′′ +
2(r −M)f

r2
K ′ +

[
ω2 − f

(
µ2 +

λ+ 2

r2
− 8M

r3

)]
K +

2Mf

r3
H0

+
2(r − 3M)f

r3
H2 −

2λf 2

r3
η1 = 0 , (3.41)

Equations (3.35)-(3.39) correspond to the (tt), (tr), (rr), (tθ) and (rθ) components of
the field equations, respectively. From the (θφ) component we get Eq. (3.40), which
combined with the (θθ) component yields Eq. (3.41).

The transverse constraint (3.14) leads to the following radial equations

fH ′1 −
2(M − r)

r2
H1 + iωH0 −

λ

r2
η0 = 0 , (3.42)

fH ′2 +
2r − 3M

r2
H2 + iωH1 +

M

r2
H0 −

2f

r
K − fλ

r2
η1 = 0 , (3.43)

fη′1 −
2(M − r)

r2
η1 +

iω

f
η0 +K − (λ− 2)G = 0 , (3.44)
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for the t, r and θ component of the constraint, respectively. Finally, in the polar case
the traceless constraint (3.15) yields

H0 = H2 + 2K . (3.45)

Polar sector: master equations for l ≥ 2

Unlike the axial sector, the polar equations are not so straightforward to further reduce.
For l ≥ 2 one could use the constraint equations to eliminate η0, η1, H0 and G and
obtain three second-order equations for K, H1 and H2. However, this choice is not
particularly useful, because the system does not directly contain the monopole and
dipole cases (l = 0, 1). For this reason we chose to work with K, η1 and G as dynamical
variables instead.

After some tedious algebra, we obtain that the polar sector is fully described by a
system of three coupled ordinary differential equations:

f 2d
2K

dr2
+ α̂1

dK

dr
+ β̂1K = SK , (3.46)

f 2d
2η1

dr2
+ α̂2

dη1

dr
+ β̂2η1 = Sη1 , (3.47)

f 2d
2G

dr2
+ α̂3

dG

dr
+ β̂3G = SG , (3.48)

where the source terms are given by

SK = λγ̂1
dη1

dr
+ δ̂1λη1 + λ(λ− 2)σ̂1

dG

dr
+ λ(λ− 2)ρ̂1G , (3.49)

Sη1 = γ̂2
dK

dr
+ δ̂2K + λ(λ− 2)σ̂2

dG

dr
+ λ(λ− 2)ρ̂2G , (3.50)

SG = γ̂3
dK

dr
+ δ̂3K + σ̂3

dη1

dr
+ ρ̂3η1 . (3.51)

The coefficients α̂i, β̂i, γ̂i, δ̂i, σ̂i, ρ̂i are radial functions which also depend on ω and
l. These equations are rather lengthy and since their explicit form is not fundamental
here, we made them available online in Mathematica notebooks [139].

Polar dipole mode

In the dipole case, l = 1, λ = 2, the radial function G identically vanishes and we are
left with a pair of coupled equations satisfying the following system:

f 2d
2K

dr2
+ α̂1

dK

dr
+ β̂1K = 2(γ̂1

dη1

dr
+ δ̂1η1) , (3.52)

f 2d
2η1

dr2
+ α̂2

dη1

dr
+ β̂2η1 = γ̂2

dK

dr
+ δ̂2K . (3.53)
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Polar monopole mode

For the l = 0 polar sector, the perturbations G, η0 and η1 as given in Eq. (3.22) are not
defined because their angular dependence vanishes. The remaining dynamical variables
can be recast into a simple monopole equation. First, we use the constraints (3.45) and
(3.42) to eliminate H0 and H2. Then, we use a generalization of the Berndtson-Zerilli
transformations [138]:

H1

2
=

[
iω(M − r)

fr3
+ µ2 3irω

2M + r3µ2

]
ϕ0 +

iω

r

dϕ0

dr
,

K

2
=

[
f

r3
− µ2 6r + r3µ2 − 10M

2 (2Mr + r4µ2)

]
ϕ0 −

f

r2

dϕ0

dr
.

After substituting these transformations into the system of equations we arrive at a
single wave equation of the form:

d2

dr2
∗
ϕ0 +

[
ω2 − V0(r)

]
ϕ0 = 0 , (3.54)

with

V0 = f

[
2M

r3
+ µ2 +

24M(M − r)µ2 + 6r3(r − 4M)µ4

(2M + r3µ2)2

]
.

In this form it is clear that in the massless limit the monopole reduces to the scalar-field
wave equation with l = 0 [136].

Polar massless limit

In the massless limit we can use the argument presented by Berndtson in Ref. [138] to
reduce the system to three decoupled equations, one “scalar”, one “vectorial” (3.34) and
one “tensorial” equation described by Zerilli’s equation [140] 2. In the massless limit the
scalar and the vectorial degrees of freedom can be removed by a gauge transformation
but, for µ 6= 0, they become physical. Thus, we expect that the small-mass limit of
the massive gravity spectrum includes a family of modes which are identical to that
of a scalar and an electromagnetic mode (these modes are discussed in Ref. [136] and
available online at [139]).

2Note that in these transformations there are four functions. One tensorial, one vectorial, and two
scalars. However one of the scalar functions is simply the trace of hµν , which vanishes in our case
(in their notation is the scalar function ϕ0, not to be confused with the scalar function used here).
We stress again the importance of having a vanishing trace in order to have a correct number of
degrees of freedom.
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3.6. Results

We have solved the previous systems of equations subjected to appropriate boundary
conditions, which defines an eigenvalue problem for the complex frequency ω ≡ ωR +
iωI ; this problem can be solved using several different techniques [136, 141] which we
detail in Appendix A.

At the BH horizon, r = 2M , regular boundary conditions imply that all perturbation
functions behave as an ingoing wave, Φj(r) ∼ e−iωr∗ , where Φj describes generically the
perturbation functions. At infinity, the asymptotic behavior of the solution is given by

Φj(r) ∼ Bje
−k∞rr−

M(µ2−2ω2)
k∞ + Cje

k∞rr
M(µ2−2ω2)

k∞ , (3.55)

where k∞ =
√
µ2 − ω2 and, without loss of generality, we assume Re(k∞) > 0. The

spectrum of massive perturbations admits two different families of physically motivated
modes, which are distinguished according to how they behave at spatial infinity. The
first family includes the standard QNMs, which corresponds to purely outgoing waves
at infinity, i.e., they are defined by Bj = 0 [136]. The second family includes quasibound
states, defined by Cj = 0. The latter correspond to modes spatially localized within
the vicinity of the BH and that decay exponentially at spatial infinity [48, 141–143].
On the other hand, for modes with purely imaginary frequencies, regularity requires
that they must satisfy the bound-state condition Cj = 0.

3.6.1. Instability of black holes against spherically symmetric
fluctuations

We start by showing that Schwarzschild BHs are generically unstable against spheri-
cally symmetric perturbations [110]. This is a generic and strong instability, as we will
show.

We have solved Eq. (3.54) subjected to the appropriate boundary conditions stated
above, by direct integration, looking for eigenvalues ω = ωR + iωI (see Appendix A
for more details on the numerical methods). Given the time dependence (3.20), sta-
ble modes are characterized by ωI < 0 and unstable modes by ωI > 0. We found
one unstable mode, detailed in Fig. 3.1 and characterized by a purely imaginary, pos-
itive component. This is a low-mass instability which disappears for Mµ ≥ 0.43
and has a minimum growth timescale of around MωI ∼ 0.046. In fact, as recog-
nized very recently [110], the linearized equations (3.13)–(3.15) are equivalent to those
describing four-dimensional perturbations of a five-dimensional black string after a
Kaluza-Klein reduction of the extra dimension. Therefore, the system is affected by
Gregory-Laflamme instability [118, 119] that manifests itself in the spherically sym-
metric, monopole mode. One interesting aspect of our own formulation is that we are
able to reduce this instability to the study of a very simple wave equation, described
by (3.54).
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Figure 3.1.: Details of the instability of Schwarzschild (de Sitter) BHs against spher-
ically symmetric polar modes of a massive spin-2 field. The left panel
shows the inverse of the instability timescale ωI = 1/τ as a function of the
graviton mass µ for different values of the cosmological constant Λg = Λf ,
including the asymptotically flat case Λg = 0. Curves are truncated when
the Higuchi bound is reached µ2 = 2Λg/3 [144]. For any value of Λg, un-
stable modes exist in the range 0 < Mµ . 0.47, the upper bound being
only mildly sensitive to Λg. The right panel shows some eigenfunctions
in the asymptotically flat case. The eigenfunctions decay exponentially at
spatial infinity and are progressively peaked closer and closer to the BH
horizon for masses close to the threshold mass Mµ ∼ 0.43.

To summarize, in this setup Schwarzschild BHs are unstable. The instability timescale
depends strongly on the mass scale µ. For low masses, we find numerically that ωI ∼
0.7µ, in good agreement with analytic calculation by Camps and Emparan [121]. The
Gregory-Laflamme instability only affects spherically-symmetric (l = 0) modes [119],
so we expect the rest of the sector to be stable. We confirm this result in the next
subsections, where we derive the complete linear dynamics on a Schwarzschild metric.

A more relevant question is related to the role of a cosmological constant. When
the background metrics are two copies of Schwarzschild-de Sitter solutions, the field
equations (3.13) do not arise from a Kaluza-Klein decomposition of a five-dimensional
black string. Thus, it is not obvious a priori if the monopole instability discussed above
survives when Λg = Λf 6= 0.

From the system (3.13)–(3.15), it is straightforward to obtain a master equation for
spherical perturbations of Schwarzschild-de Sitter BHs. The monopole is described by
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an equation of the same form as Eq. (3.54), but where the potential now reads:

V
Λg

0 =
1− 2M/r − Λg/3 r

2

r3 [2M + r3 (µ2 − 2Λg/3)]2
×
{

8M3 + 12M2r3
(
3µ2 − 8Λg/3

)
+r7

(
µ2 − 2Λg/3

)2 [
6 + r2

(
µ2 − 2Λg/3

)]
−6Mr4

(
µ2 − 2Λg/3

) [
4 + r2

(
3µ2 − 10Λg/3

)]}
. (3.56)

Using the same technique as before, we have integrated Eq. (3.54) with the poten-
tial (3.56). The results are shown in Fig. 3.1 for various values of Λg = Λf . Note that
massive spin-2 perturbations propagating in an asymptotically de Sitter spacetime are
subjected to the bound µ2 > 2Λg/3 [144]. Below such bound, the helicity-0 component
of the massive graviton becomes a ghost. When the bound is saturated, µ2 = 2Λg/3,
the helicity-0 mode becomes pure gauge and the instability disappears. Theories with
such fine-tuning are called “partially massless gravities” [145, 146] [see also Refs. [147–
151]] and they are not affected by the monopole instability discussed above. Finally,
as shown in Fig. 3.1, the instability is even more effective for Schwarzschild-de Sitter
BHs and it exists roughly in the same range of graviton mass.

For both Schwarzschild and Schwarzschild-de Sitter BHs, the instability timescale
is of the order of the Hubble time when mg = ~µ ∼ 2 × 10−33eV [110]. This of
course, does not mean that the observation of compact objects imposes constraints
on the graviton mass 3. Rather, it suggests that the background solution used to
describe these geometries is likely not the physical one. It would seem that a suitable
background geometry is given by the end-state of this monopole instability.

Our linear analysis cannot handle the nonlinear development of the instability, nor
the nonlinear final state. However, from the mode profile in Fig. 3.1, it is tempting to
conjecture that a Schwarzschild BH surrounded by a graviton cloud could be a possible
solution of the field equations. We will confirm in Chapter 6 that such solutions indeed
exist. We note that this possible endstate is completely different, as it must be, from the
standard Gregory-Laflamme instability which acts to fragment black strings [120, 122].

3.6.2. Quasinormal modes

Let us now turn to non-spherically symmetric perturbations. We have computed the ax-
ial QNM frequencies using a continued-fraction method that we outline in Appendix A.
In Figure 3.2 we show the axial QNM frequencies for different values of the spin-2 mass.
As expected, for l ≥ 2 one can sensibly group the modes in two families for any given l
and n. They can be distinguished by their behavior in the massless limit, the spectrum
of the “vector” modes reduces to the spectrum of the photon, while the “tensor” modes,
which are the only physical modes in the massless limit, approaches the spectrum of

3The monopole instability does not impose limits on the graviton mass, but the observation of
rotating compact BHs, discussed in Chapter 10, does impose strict limits on the graviton mass.
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Figure 3.2.: QNM frequencies for axial l = 1, 2 modes, for a range of field masses
Mµ = 0, 0.04, . . . , 0.52. Points with largest |ωI | correspond to µ → 0.
The fundamental mode (n = 0, circles) and the first overtones (n = 1,
triangles) are shown. In the massless limit the “vector” modes have the
same QNM frequency as the electromagnetic field, and the “tensor” modes
have the same QNM frequency as the massless gravity perturbations.

the massless gravity perturbations. For the lowest overtones, as the mass increases
the decay rate decreases to zero, reaching a limit where the QNM disappears. This is
linked with the decreasing height of the effective potential barrier as was previously
discussed in Ref. [152]. The limiting behavior, when the damping rate reaches zero
are the so-called quasiresonant modes, which were already shown to occur for massive
scalar [152, 153] and massive vector [154] fields.

Polar QNMs are more challenging to compute, because the perturbation equations
are lengthy and translate into higher-term recurrence relations in a matrix-valued
continued-fraction method [141]. On the other hand, due to the well-known diver-
gent nature of the QNM eigenfunctions [136], a direct integration is not well suited to
compute these modes precisely. Instead of computing these modes, in the following we
shall rather focus on quasibound states – both in the axial and polar sector – which
are easier to compute.

3.6.3. Quasibound states

Besides the QNM spectrum, massive fields can also be localized in the vicinity of the
BH, showing a rich spectrum of quasibound states with complex frequencies. Here the
terminology ‘quasi’ stands for the fact that these states decay due to the absorption
by the BH, hence the complex frequencies. Bound states were already considered for
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massive scalar [142], Dirac [155, 156] and Proca [143, 157] fields. In the small-mass
limit Mµ � l, it was shown that for these fields the spectrum resembles that of the
hydrogen atom:

ωR/µ ∼ 1− (Mµ)2

2(j + 1 + n)2
, (3.57)

where j = l + S is the total angular momentum of the state with spin projections
S = −s,−s + 1, . . . , s − 1, s. Here s is the spin of the field. For a given l and n,
the total angular momentum j satisfies the quantum mechanical rules for addition of
angular momenta, |l − s| ≤ j ≤ l + s.
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Figure 3.3.: Axial (Top) and polar (bottom) quasibound state levels of the massive
spin-2 field. The left and right panels show the real part, ωR/µ, and the
imaginary part, ωI/µ, of the mode as a function of the mass coupling Mµ,
respectively. We label the modes by their angular momentum l, overtone
number n and spin projection S. Except for the polar dipole l = 1, the
spectrum is hydrogenic in the massless limit.

Our results show that the spectrum (3.57) also describes massive spin-2 perturba-
tions which is also confirmed analytically for the axial mode l = 1 (see Eq. (E.10) of
Appendix E). In Fig. 3.3 we show the quasibound-state frequency spectrum for the
lowest modes. Apart from the polar dipole (we discuss this in detail below), all other
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modes follow a hydrogenic spectrum as predicted by Eq. (3.57). The monopole l = 0
[which belongs to a different family than the unstable monopole mode discussed in
Sec. 3.6.1] is fully consistent with S = +2 which is in agreement with the rules for the
sum of angular momenta, |l − s| ≤ j ≤ l + s =⇒ j = 2. For each pair l ≥ 2 and
n there are five kinds of modes, characterized by their spin projections. Here we do
not show the mode l = 2, n = 0, S = 1, which is very difficult to find numerically
due the complicated form of the polar equations and his tiny imaginary part. Besides
that, the existence of the mode l = 2, n = 1, S = 0 with approximately the same real
frequency makes it even more challenging to evaluate the l = 2, n = 0, S = 1 mode
with sufficient precision.

Evaluating the dependence of ωI(µ) in the small-Mµ limit turns out to be extremely
challenging, due to the fact that ωI is extremely small in this regime. Our results indi-
cate a power-law dependence of the kind found previously for other massive fields [143],
ωI/µ ∝ −(Mµ)η, with

η = 4l + 2S + 5 . (3.58)

The fact that the modes l = L, S = S1 and l = L + S1, S = −S1 have the same
exponent is a further confirmation of this scaling. Note that only the constant of
proportionality depends on the overtone number n and it also generically depends on l
and S. This is confirmed analytically for the axial mode l = 1, S = 1 , n = 0, as shown
in Fig. 3.4, where we see that in the low-mass limit the numerical results approaches
the analytical formula derived in Appendix E, given by

ωI/µ ≈ −
320

19683
(Mµ)11 . (3.59)

The quasibound state found for the polar dipole is clearly the more interesting. This
mode appears to be isolated from the rest of the modes and it does not follow the
small-mass behavior predicted by Eqs. (3.57) and (3.58). Furthermore, we have found
only a single fundamental mode for this state, and no overtones. For this mode, the
real part is much smaller than the mass of the spin-2 field.

The real part of this special mode in region Mµ . 0.4 is very well fitted by

ωR/µ ≈ 0.72(1−Mµ) . (3.60)

For the imaginary part we find in the limit Mµ� 1,

ωI/µ ≈ −(Mµ)3 . (3.61)

That this mode is different is not completely unexpected since in the massless limit
it becomes unphysical. This peculiar behavior seems to be the result of a nontrivial
coupling between the states with spin projection S = −1 and S = 0. Besides that,
this mode has the largest binding energy (ωR/µ−1) for all couplings Mµ, much higher
than the ground states of the scalar, Dirac and vector fields (see Fig.7 of Ref. [143]).
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Figure 3.4.: Comparison between the numerical and analytical results for the the axial
mode l = 1, S = 1, n = 0 as a function of the mass coupling Mµ. The
solid line shows the numerical data and the dashed shows the analytical
formula (3.59).

However the decay rate is very large even for small couplings Mµ, corresponding to a
very short lifetime for this state.

To summarize, the l > 0 modes of Schwarzschild BHs in massive gravity theories
are stable, with a rich and potentially interesting fluctuation spectrum, which could
give rise to very long-lived clouds of tensor hair in the right circumstances. We will
show in Chapter 10 that once rotation is included, this hair grows exponentially and
extracts angular momentum away from the BH. Thus, while the monopole l = 0 mode
is unstable even in the static case, the l > 0 modes suffer from a superradiant instability
(see Part II) only above a certain threshold of the BH angular momentum.

3.7. Conclusions

The advent of new and powerful methods in BH perturbation theory and Numeri-
cal Relativity in the past few years allows one to finally tackle traditionally complex
problems. Particularly important to beyond-the-Standard-Model physics are scenar-
ios where ultralight bosonic degrees of freedom are present; simultaneously, massive
degrees of freedom turn out to be important outside particle physics, in particular
several extensions of GR encompassing massive mediators have been proposed. Thus,
the study of massive fluctuations around BHs is a timely topic.

Interesting nonlinear completions of the Fierz-Pauli theory have recently been put
forward [33, 34, 87]. While it is at this stage too early to claim a consistent theory of
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massive gravitons (these theories or at least certain sectors are either pathological [158,
159] or phenomenologically disfavored [160]), any nonlinear theory describing a massive
spin-2 field – including a massive graviton – will eventually reduce to Eqs. (3.13)–(3.15)
in the linearized regime.

Here we have explored the propagation of massive tensors in a Schwarzschild BH
background as described by Eqs. (3.13)–(3.15), and shown that they lead to a generic
spherically symmetric instability. These are strong, small-mass instabilities whose end-
state is unknown.

Schwarzschild BHs also admit a very rich spectrum of long-lived stable states. Once
the BH rotation is turned on, we will show in Chapter 10 that these long-lived states
can grow exponentially and extract angular momentum away from the BH.

Our work requires extensions and further analysis (in particular, the understanding
of the time-development of the monopole instability requires nonlinear simulations),
and should in fact be looked at as the first step in a broader program of understanding
gravitational-wave emission in massive theories of gravity.

A final word of caution should be made here. As pointed out in Chapter 2, due to
the Vainshtein mechanism [84] present in non-linear theories of massive gravity, near
some sources there is a radius below which perturbation theory cannot be trusted.
However, for the BH solutions here presented the Vainshtein mechanism does not seem
to be present, since those solutions are exactly the ones found in GR. Thus, we expect
that the results we show are robust. In fact, as we will show in Chapter 6, the linear
study of the spherically symmetric instability correctly predicts the existence of new
solutions at the full nonlinear level.
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4. Partially massless gravitons do not
destroy general relativity black
holes

4.1. Introduction

The last couple of years have witnessed a flurry of activity on theories with a propagat-
ing massive graviton. With a very special status, “partially massless (PM) theories”
have been considered for which the graviton mass is constrained to take a specific value
dictated by the cosmological constant such that a new gauge symmetry emerges [145–
149, 161, 162].

As we showed in the previous Chapter, the simplest BH solution of massive bi(gravity),
namely the bidiagonal Schwarzschild de Sitter BHs, are dynamically unstable. The in-
stability is due to a propagating spherically symmetric degree of freedom and affects
BHs with or without a cosmological constant. As already pointed out in the previous
Chapter, and discussed in more detail below, such degree of freedom is absent in PM
gravity [144–146], so one might wonder whether Schwarzschild-de Sitter BHs are stable
in such theories. The purpose of this Chapter is to show that this is indeed the case.

4.2. Setup

Let us consider a massive spin-2 field on a curved spacetime. If the background is a
vacuum solution of Einstein’s equations with a cosmological constant Λ, then the field
equations are given by the system of eqs. (3.13)–(3.15). This system propagates five
degrees of freedom, corresponding to the healthy helicities of a massive spin-2 field.
The value

µ2 = 2Λ/3 (4.1)

plays a special role in asymptotically de Sitter spacetimes and it is known as Higuchi
limit [144–146]. When µ2 < 2Λ/3, the helicity-0 mode becomes itself a ghost, whereas
when µ2 > 2Λ/3 all propagating degrees of freedom are physical. In the Higuchi limit
the tracelessness of hµν is not enforced by the field equations (3.13)–(3.15) and an extra
gauge symmetry can be used to eliminate the helicity-0 mode. In this particular case,
known as PM gravity [148, 149], the graviton propagates only four helicities. Although
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advances in finding a consistent full nonlinear theory of PM gravity have been recently
made in the context of bimetric theories [147, 150, 151, 163], the attempt to find a
nonlinear completion of PM gravity has been shown to suffer from some obstructions
in the framework of massive gravity [149, 162, 164–167]. We note however that our
linear analysis applies to any nonlinear generalization of the Fierz-Pauli theory.

In the following we will study the field equations (3.13)–(3.15) in a Schwarzschild-de
Sitter background when the condition (4.1) is satisfied.

4.2.1. Field equations in PM gravity

As we showed in the previous Chapter, Schwarzschild-de Sitter geometries are generi-
cally unstable against a monopole fluctuation [70]. In the asymptotically flat case, the
instability is equivalent to the Gregory-Laflamme instability [118] of a black string [110].
Thus, GR BHs cannot describe static solutions whose linearized equations reduce to
Eqs. (3.13)–(3.15).

However, a notable exception to this outcome is given by PM theories, which are
defined by the tuning (4.1). In this case, the helicity-0 mode which is responsible for the
instability can be gauged away and the theory propagates four degrees of freedom [144–
146].

The approach we developed in the previous Chapter can be easily extended to obtain
a set of coupled master equations that fully characterize the linear stability properties
of the background. Using the decomposition (3.20), and using the background given
by the metric (3.17), we find that the axial sector is described by the following system:

d2

dr2
∗
Q+

[
ω2 − f

(
λ+ 4

r2
− 16M

r3

)]
Q = SQ , (4.2)

d2

dr2
∗
Z +

[
ω2 − f

(
λ− 2

r2
+

2M

r3

)]
Z = SZ , (4.3)

where λ = l(l+ 1) and we have defined the tortoise coordinate r∗ via dr/dr∗ = f . The
functions Q(r) ≡ f(r)h1 and Z(r) ≡ h2/r are combinations of the axial perturbations,
whereas the source terms are given by

SQ = (λ− 2)
2f(r − 3M)

r3
Z , SZ =

2

r2
f Q . (4.4)

The polar sector can be simplified by using an extra gauge symmetry arising in
the Higuchi limit (4.1). In this case the field equations (3.13)–(3.15) are invariant
under [144]

hµν → hµν +

(
∇̄µ∇̄ν +

Λ

3
ḡµν

)
ξ (4.5)

where ξ is a generic scalar gauge function of the spacetime coordinates. The symmetry
above can be used to enforce η0 ≡ 0 in the decomposition (3.22). In this gauge, the
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polar sector is fully described by a system of two coupled ordinary differential equations:

f 2d
2η1

dr2
+ α̂1

dη1

dr
+ β̂1η1 = Sη1 , (4.6)

f 2d
2G

dr2
+ α̂2

dG

dr
+ β̂2G = SG , (4.7)

where the source terms are given by

Sη1 = (λ− 2)σ̂1
dG

dr
+ (λ− 2)ρ̂1G , SG = σ̂2

dη1

dr
+ ρ̂2η1 . (4.8)

The coefficients α̂i, β̂i, σ̂i, ρ̂i are radial functions which also depend on ω, l, rb and rc.

The regular asymptotic solutions of the axial and polar systems are ingoing and
outgoing waves, Φ → e∓iωr∗ , at the BH horizon and at the cosmological horizon,
respectively [Φ collectively denotes the master functions Q, Z, η1 and G]. The complex
eigenfrequencies ω = ωR + iωI , that simultaneously satisfy these boundary conditions
are called QNMs [136].

4.3. Results

4.3.1. The near-extremal Schwarzschild-de Sitter geometry

The above equations are in general not analytically solvable. Fortunately, the geometry
is sufficiently rich that it admits a special limit where one can indeed considerably
simplify the equations and solve them analytically. This regime is the near extremal
Schwarzschild-de Sitter BH, defined as the spacetime for which the cosmological horizon
rc is very close (in the r coordinate) to the BH horizon rb, i.e. rc−rb

rb
� 1 (see (3.17)).

As shown in Ref. [168], it is possible to solve analytically a large class of Schrödinger-
type equations in this background by adopting a perturbative approach in powers of
rc−rb. In the near-extremal limit, and recalling the definitions for the mass and surface
gravity of the metric (3.17), one can make the following approximations: [168]

r0 ∼ −2r2
b ; Λ ∼ r−2

b ; M ∼ rb
3

; κb ∼
rc − rb

2r2
b

. (4.9)

The key point of the approximation is to realize that in the near-extremal regime
r ∼ rb ∼ rc, as we are interested only in the region between the two horizons. Then,
r − r0 ∼ rb − r0 ∼ 3r0 and thus

r ∼ rce
2κbr∗ + rb

1 + e2κbr∗
, f ∼ (rc − rb)2

4r2
b cosh (κbr∗)

2 . (4.10)
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Finally, the equations for massive gravitational perturbations of near-extremal Schwarzschild
de Sitter geometries reduce to

d2Φ

dr2
∗

+

[
ω2 − κ2

bU0

cosh (κbr∗)
2

]
Φ = 0 , (4.11)

where Φ can be any of the metric variables. The potential U0 is the same for the axial
metric functions Q,Z but it is different for the polar functions η1, G. We find

U0 =


−4/3 + λ , axial
27λ3+36λ(9r2bω

2−1)−16

3(9λ2+12λ+36r2bω
2+4)

, polar I

27λ3−36λ+72r2bω
2−16

3(9λ2+12λ+36r2bω
2+4)

, polar II

(4.12)

The potential in (4.11) is the well known Pöshl-Teller potential [169]. The solutions
of the corresponding Schrodinger-like equations were studied and they are of the hy-
pergeometric type (for details see Section 4.1 in Ref. [136]). The eigenfrequencies are
given by [136, 168]

ω

κb
= −

(
n+

1

2

)
i+

√
U0 −

1

4
, n = 0, 1, . . . (4.13)

Using Eq. (4.12), we obtain

ω

κb
= −

(
n+

1

2

)
i+

√
l(l + 1)− 19

12
, n = 0, 1, . . . (4.14)

for both axial and polar perturbations. Thus, we get the surprising result that in this
regime all perturbations are isospectral [136, 170]. Because the polar potential U0 is
frequency-dependent, we also find a second, spurious, root at ω = ±i2+3λ

6rb
. It is easy

to check analytically that at these frequencies the wavefunction is not regular at one
of the horizons, thus it does not belong to the spectrum.

4.3.2. Numerical results

Using two independent techniques (a matrix-valued direct integration and a matrix-
valued continued-fraction method [141], see Appendix A), we have numerically obtained
the quasinormal spectrum for generic Schwarzschild-de Sitter geometries, looking ex-
plicitly for unstable modes, i.e., modes for which Im(ω) > 0 and which therefore grow
exponentially in time while being spatially bounded. Our results are summarized in
Fig. (4.1), where we overplot the near-extremal analytical result (denoted by a black
dashed line) and the Λ → 0 limit (denoted by horizontal lines). Since Λ ∝ µ2, this
limit corresponds to the massless limit of PM gravity, i.e. to GR.
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Figure 4.1.: Left panel: Real (top panel) and imaginary (bottom panel) part of the
fundamental dipole mode of a Schwarzschild-de Sitter BH in PM grav-
ity. The fundamental mode is the same for both the axial and polar
sectors to within numerical accuracy. Similar results hold for the over-
tones. Numerical results are compared to the analytical expression (4.14).
The leftmost and rightmost parts of the x−axis are the extremal and the
general-relativity, asymptotically flat limit (Λ ∝ µ2 → 0), respectively. In
the Λ ∝ µ2 → 0 limit the l = 1 modes approach the electromagnetic QNMs
of a Schwarzschild BH [136]. Right panel: same for l = 2 modes. For l > 1
there are two families of modes which, in the Λ ∝ µ2 → 0 limit approach
the gravitational and the electromagnetic QNMs of a Schwarzschild BH,
respectively.

Except for l = 1 modes, axial and polar perturbations are grouped in two different
families which, in the Λ ∝ µ2 → 0 limit, reduce to gravitational and electromagnetic
modes of a Schwarzschild BH, respectively. As predicted by our near-extremal analysis,
the two families merge in the rc → rb limit. For l = 1 there is only one single
family which reduces to the dipole electromagnetic modes of a Schwarzschild BH in
the Λ ∝ µ2 → 0 limit.

An intriguing result, which would merit further study is the fact that axial and
polar modes have exactly the same quasinormal-mode spectrum for any value of the
cosmological constant, up to numerical accuracy. We were not able to produce an
analytical proof of this. Isospectrality guarantees that the entire quasinormal spectrum
can be obtained from the axial equations (4.2) and (4.3) only.

To summarize, our numerical results are in excellent agreement with independent
analytical/numerical analysis on two opposite regimes, the general-relativity limit when
the cosmological constant vanishes and the near-extremal limit when the two horizons
coalesce. We found no hints of instabilities in the full parameter space.
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4.4. Discussion

In addition to the spectrum of stable modes presented above, we have searched for
unstable, exponentially-growing modes and found none. Thus, our analysis provides
solid evidence for the linear stability of Schwarzschild-de Sitter BHs in PM gravity. This
is in contrast with generic theories of massive spin-2 fields (including massive gravitons)
in which Schwarzschild-de Sitter BHs are unstable [70, 110] (see Section 3.6.1).

From our results and from those of Refs. [70, 110] the following interesting picture
emerges. If a theory of massive gravity allows for the same bidiagonal BH solutions
of GR, the latter are unstable against spherical perturbations. This is the case for
Schwarzschild BHs in any consistent theory of a massive spin-2 field, including the
recent nonlinear massive gravity [33, 87] and bimetric theories [109], with or without a
cosmological constant. The end-state of the instability is an interesting open problem.

We have shown here that a notable exception to this picture is represented by PM
gravity, which is obtained by enforcing the constraint (4.1). The unstable monopole
is absent in this theory and a complete analysis of nonspherical modes has revealed
no instability. Remarkably, the spectrum of massive gravitational perturbations is
isospectral in this theory, which is another piece of evidence for its special role within
the family of massive gravities.

Our analysis is only valid at the linear level. It is still a matter of debate whether a
nonlinear completion of PM gravity exist [147, 149–151, 162–167]. Strong arguments
indicate that any nonlinear completion would re-introduce the helicity-0 degree of free-
dom [149, 162, 164–167]. Whether this could lead to an instability at the nonlinear
level is an interesting open question that we leave for future work.
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5. Linear perturbations of
nonbidiagonal black holes in
massive (bi)gravity

5.1. Introduction

In Chapter 3 we showed that the bidiagonal Schwarzschild solution is generically un-
stable against radial perturbations. This instability is equivalent [110] to the Gregory-
Laflamme instability [118] of a five-dimensional black string. Radial perturbations of
nonbidiagonal solutions were considered in Ref. [171] showing that, unlike the bidi-
agonal case, these solutions are classically stable against radial perturbations. One
open problem concerns the modal stability of nonbidiagonal solutions to nonradial
perturbations. In this Chapter we close this gap by considering generic gravitational
perturbations of these solutions. Our main result is the proof that the QNM spectrum
of these solutions is the same as that of a Schwarzschild BH in GR and, therefore, these
solutions are classically mode stable1 precisely as the Schwarzschild metric. Along the
way we discuss various peculiar properties of the gravitational perturbations of these
solutions.

5.2. Nonbidiagonal spherically symmetric solutions in
massive (bi)gravity

We consider the massive (bi)gravity theory defined by the Lagrangian (2.10). The two
classes of static black-hole solutions in this theory, can be conveniently written in the
bi-advanced Eddington-Finkelstein form [171]

ds2
g = −

(
1− rg

r

)
dv2 + 2dvdr + r2dΩ2, (5.1)

ds2
f = C2

[
−
(

1− rf
r

)
dv2 + 2dvdr + r2dΩ2

]
, (5.2)

1By “modes” we mean the quasinormal spectrum of perturbations, unlike the more generic pertur-
bations which are also considered in this Chapter. Similarly, by modal stability we mean that the
quasinormal spectrum of perturbations does not contain unstable modes. Strictly speaking, the
modal stability does not necessarily imply the full stability of a solution.
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where C is a constant conformal factor and rg and rf are the two (generically different)
horizon radii of the two metrics. Using the field equations (2.13) and (2.14), one finds
that the only nondiagonal terms of T µν and T µν read

T rv = −C4T rv =
C (β1 + 2Cβ2 + C2β3) (rg − rf )

2r
. (5.3)

Clearly, these off-diagonal terms must vanish for the metrics (5.1) and (5.2) to be
solutions of the vacuum field equations. This implies either rg = rf , which is equivalent
to the (bidiagonal) bi-Schwarzschild solution analyzed in [70, 110] and Chapter 3, or

β1 + 2Cβ2 + C2β3 = 0. (5.4)

The above condition fixes the value of the conformal factor C for a given choice of
the coupling constants βi. In the rest of the Chapter we will focus on this case, which
describes two metrics that cannot be simultaneously diagonalized. The case of a flat
(Minkowski) non-dynamical metric fµν coupled to a Schwarzschild metric gµν falls
within this class of solutions. The solution (5.1) is not the most general analytic non-
bidiagonal solution. As it has been shown in Ref. [115] there is a family of nonbidiagonal
solutions which contains a function satisfying a nonlinear partial differential equation
(see also Ref. [116]). Each regular solution of the partial differential equation gives
a different solution for the metrics. We consider asymptotically-flat solutions, which
implies a fine tuning of the coupling constants such that the two effective cosmological
constants vanish. From (3.2) this imposes

β0 = −
(
3Cβ1 + 3C2β2 + C3β3

)
, β4 = −β1 + 3Cβ2 + 3C2β3

C3
, (5.5)

to balance the corresponding contributions coming from Tµν and Tµν .

5.3. Gravitational perturbations of the nonbidiagonal
solution

Let us now consider linear perturbations around the solutions (5.1) and (5.2) with the
condition (5.4), i.e. we focus on nonbidiagonal solutions. We consider perturbations of
the form:

gµν = ḡµν + h(g)
µν , fµν = f̄µν + h(f)

µν , (5.6)

where the bar notation denotes, once again, background quantities and hµν are small
perturbations of the background solutions. From the field equations (2.13) and (2.14),

the tensors h
(g)
µν and h

(f)
µν satisfy the linearized equations

δGµν +
M4

v

M2
g

δTµν = 0 , δGµν +
M4

v

M2
f

δTµν = 0 , (5.7)

42



where Gµν(g) = Ḡµν + δGµν , Gµν(f) = Ḡµν + δGµν and similarly for δTµν and δTµν .
As discussed in Chapter 3, in a spherically symmetric background, the spin-2 per-

turbations h
(g)
µν and h

(f)
µν can be decomposed in terms of axial and polar perturbations,

as in Eq. (3.20) 2. Without loss of generality, we will also multiply the definition of h
(f)
µν

by an overall C2 factor. Spherical symmetry assures that the field equations do not
depend on the azimuthal number m. In addition, perturbations with different parity
and different harmonic index l decouple from each other3.

In the nonbidiagonal case (5.4), by using this decomposition, it turns out that the
mass terms in the perturbation equations (5.7) take the remarkably simple form

δTµν =
A
(
rg − rf

)
4r

e−iωv
0 0 0 0

2Klm
(−)

Ylm 0 −
(
hlm
1(−)

∂φYlm
sin θ

+ ηlm
1(−)

∂θYlm

)
hlm
1(−)

sin θ∂θYlm − ηlm1(−)
∂φYlm

−
(
hlm
1(−)

∂φYlm
sin θ

+ ηlm
1(−)

∂θYlm

)
0 Hlm

2(−)
Ylm 0

1
r2 sin θ

(
hlm
1(−)

∂θYlm − ηlm1(−)

∂φYlm
sin θ

)
0 0 Hlm

2(−)
Ylm

 ,

(5.8)

and C4δT µν = −δT µν , where h
(−)
µν := h

(f)
µν − h(g)

µν and A = 2C2 (β2 + Cβ3).

By taking the divergence of Eq. (5.7) and using the Bianchi identities for the Einstein
tensors, we obtain the constraint ∇ν

(f)δTµν ∝ ∇ν
(g)δTµν = 0, which, from Eq. (5.8) in

the nonbidiagonal case (rg 6= rf ), yields the following relations:

H lm
2(−) = 0 ,

(
rηlm1(−)

)′
= 0 ,(

rhlm1(−)

)′
= 0 ,

(
rK lm

(−)

)′
+
l(l + 1)ηlm1(−)

2r
= 0 . (5.9)

The above equations can be immediately solved for

H lm
2(−) = 0 , ηlm1(−) =

c0

r
, (5.10)

hlm1(−) =
c1

r
, K lm

(−) =
c2

r
+
l(l + 1)c0

2r2
, (5.11)

where c0, c1, and c2 are (generically complex) integration constants4. The peculiar
structure of δT µν is responsible for some highly nontrivial properties which are discussed
in the section below.

2Note that since we are working in (v, r)-coordinates, we change t→ v in this decomposition.
3To simplify the notation, we shall often omit the superscript lm in the perturbation functions.
4We should note that, since we are working in the frequency-domain, ci are arbitrary functions of ω

while in the time-domain they are arbitrary (real) functions of the advanced time v.
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5.4. Equivalence of the QNMs to those of a
Schwarzschild black hole in GR

In this section we show that the QNMs of the nonbidiagonal black-hole solution of
massive gravity are the same as those of a Schwarzschild BH in GR.

The QNMs are the proper frequencies of vibration of a relativistic self-gravitating
object, in analogy with the normal modes of oscillating stars in Newtonian gravity (cf.
Refs. [136, 172, 173] for some reviews). Due to the emission of gravitational waves
or to absorption by an event horizon, the QNMs are complex numbers whose real
part defines the frequency of the perturbation, whereas the imaginary part defines the
inverse of the damping time (or of the instability time scale in the case of unstable
modes). It should be stressed that the QNMs do not form a complete set [172] so they
do not describe the full response of the BH to external perturbations. In fact, we show
below that QNMs of nonbidiagonal BHs in bimetric theories are exactly the same as in
GR, while generic perturbations of bimetric BHs are different from those of GR BHs.

The QNMs can be computed as the eigenvalues of a boundary-value problem defined
by Eq. (5.7) with suitable boundary conditions. For the case of static, asymptotically-
flat BHs, one imposes that the perturbations behave as ingoing waves near the horizon,
∼ e−i(ωt+k−r∗) and as outgoing waves near infinity, ∼ ei(k+r∗−ωt). Here, r∗ is the tortoise
coordinate defined through v = t+r∗, where t is a Schwarzschild-like time coordinate5.
The constant k± (which we assume to be positive without loss of generality) is the
momentum of the perturbations and it is related to the effective dispersion relation. For
example, for an outgoing perturbation with effective mass µ propagating in Minkowski
spacetime6, k+ =

√
ω2 − µ2.

Therefore, the QNMs of the bimetric system are defined by the following boundary
conditions for the metrics h

(g)
µν and h

(f)
µν ,

h̃(g)
µν → A±µνe

±ik±rg∗ , h̃(f)
µν → B±µνe

±ik±rf∗ , (5.12)

where A±µν and B±µν are typically polynomials in 1/r, the plus (minus) sign refers to
the near-infinity (near-horizon) behavior, whereas the tortoise coordinates are defined
via dr/drg∗ = (1− rg/r) and dr/drf∗ = (1− rf/r).

Inspection of Eqs. (5.10) and (5.11) together with the decomposition (3.20) imme-
diately shows that the boundary conditions (5.12) cannot be satisfied unless ci = 0 in
Eqs. (5.10) and (5.11). For example, from Eqs. (5.10), (5.11), (3.20), (3.21) and (3.22),
we obtain

h̃
(f)
rφ − h̃

(g)
rφ = e−iωr∗

[c0

r
∂φYlm −

c1

r
sin θ∂θYlm

]
, (5.13)

5For clarity, in this Section the metric perturbations hµν are written as functions of t. One can
always do this by defining v = t+ r∗.

6For gravitational perturbations of GR Schwarzschild BHs k± = ±ω, whereas for the static bidiagonal
black-hole solutions of massive gravity k− = ω and k+ =

√
ω2 − µ2, as shown in Chapter 3.
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for the difference of the inverse-Fourier transformed quantities h̃
(f)
rφ and h̃

(g)
rφ (and simi-

larly for other components). Therefore, it is clear that the difference h̃
(f)
rφ − h̃

(g)
rφ repre-

sents an ingoing wave of frequency ω in the whole space and the same property must
hold independently for h̃

(f)
rφ and h̃

(g)
rφ . Because rg∗ ∼ rf∗ → −∞ near the correspond-

ing horizon, the near-horizon boundary condition in Eq. (5.12) is always satisfied with

k− = ω. On the other hand, the near-infinity boundary condition, h
(g)
µν ∼ h

(f)
µν → eik+r,

cannot be enforced7.

This simple observation implies that the boundary conditions for QNMs impose
c0 = c1 = c2 = 0 and, in turn, δT µν = δT µν = 08. Therefore, the eigenvalue problem
reduces to the standard linearized Einstein’s equations

δGµν = 0 , δGµν = 0 , (5.14)

with the extra constraints coming from Eqs. (5.10) and (5.11) with c0 = c1 = c2 = 0 ,
namely

H lm
2(g) = H lm

2(f) , ηlm1(g) = ηlm1(f) , (5.15)

hlm1(g) = hlm1(f) , K lm
(g) = K lm

(f) . (5.16)

To complete our proof, we can use the freedom to choose a particular gauge. In this
case it is convenient to choose a gauge such that H lm

2(g) = K lm
(g) = ηlm1(g) = hlm1(g) = 0. This

can always be imposed by transforming [137]

h(g)
µν → h(g)

µν −∇µξν −∇νξµ , (5.17)

where ξµ is the transformation four-vector. The latter can be decomposed into an
axial vector component and into three polar vector components, which can be chosen
to enforce the aforementioned relations hlm1(g) = 0 and H lm

2(g) = K lm
(g) = ηlm1(g) = 0,

respectively. Since there is only one diffeomorphism invariance and two metrics, the
components of the metric f are not fixed a priori by the above gauge choice. However,
Eqs. (5.15) and (5.16) imply H lm

2(f) = K lm
(f) = ηlm1(f) = hlm1(f) = 0. Therefore, Eq. (5.14)

reduces to two copies of the linearized Einstein equations in the gauge H lm
2 = K lm =

ηlm1 = hlm1 = 0. Note that this gauge is different from the standard Regge-Wheeler-
Zerilli gauge, in which Glm

2 = ηlm0 = ηlm1 = hlm2 = 0 [134, 137]. Nonetheless, the
perturbation equations are precisely the same as in the case of GR.

7If we were using retarded Eddington-Finkelstein coordinates, the opposite situation would occur:
the solution would describe an outgoing wave in the whole space, and the boundary conditions
would be automatically satisfied at infinity but not at the event horizon. In both cases, the full
set of boundary conditions (5.12) cannot be enforced unless ci = 0.

8In the special case A = 0, i.e., β2 = −Cβ3, one always gets δTµν = δT µν = 0 and the perturbation
equations reduce to the standard linearized Einstein’s equations as noted in Ref. [174] (see also [175]
for the case with only one dynamical metric). This can be also related to an extra symmetry for
spherically symmetric solutions in the case β2 = −Cβ3 [115, 129].
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Thus, we have just proved that the eigenvalue problem reduces to that of two
Schwarzschild metrics with horizon radii rg and rf in GR. In particular, there will
be no monopole and dipole modes, the QNMs exist only for l ≥ 2, and they corre-
spond to 2 propagating degrees of freedom. As a by-product of this equivalence, the
QNM spectrum does not contain any unstable mode and the nonbidiagonal black-hole
solution of massive gravity is therefore mode stable for any gravitational perturbations
(which can be decomposed into QNMs). Both properties (the absence of l = 0 and
l = 1 modes and the modal stability) are in striking contrast to the case of bidiagonal
solutions discussed in Chapter 3, as we also show in the next section.

5.5. Generic Gravitational Perturbations

As shown in the previous section, the QNM spectrum of the nonbidiagonal BH in
massive gravity coincides with that of a Schwarzschild BH in GR. This property is true
for both the axial and polar sectors, which respectively reduce to a Regge-Wheeler
and a Zerilli equation. Nonetheless, the full set of perturbations (and therefore the
object’s response to external sources) is generically different, both in the axial and
in the polar sector. In this section we relax the boundary conditions at infinity to
include ingoing (at infinity) perturbations, unlike the previous section where those
perturbations were forbidden by boundary conditions corresponding to QNMs. Thus,
our study will include more general perturbations which are useful to study the linear
response of the BH to external perturbers. In the following we will consider the axial
and polar sectors, and the cases l = 0, l = 1 and l ≥ 2, separately.

5.5.1. Polar sector

Here we discuss the perturbation equations for the polar sector separately for l = 0,
l = 1 and l ≥ 2.

Polar monopole

Radial (i.e., l = 0) perturbations were studied in Ref. [171]. In this case the perturba-
tion functions Glm, ηlm0 and ηlm1 are not defined because their corresponding angular

part in Eq. (3.22) vanishes. For ω = 0, one gets c0 = 0 and h
(f)
µν = h

(g)
µν and there is one

solution which corresponds to a trivial mass shift in both metrics fµν and gµν . When
ω 6= 0, we find the same solution as in Ref. [171] when using the same gauge. For the
sake of completeness, we here show the explicit form of this solution.

Unlike Ref. [171], however, let us choose a gauge such that H1(g) = K(g) = H2(g) = 0.
From Eqs. (5.10) and (5.11) we then have H2(f) = 0 and K(f) = c2/r. Finally, the field
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equations yield

H1(f) = ic5ω , (5.18)

H0(f) = −ic2ω −
c2rf
2r2
− 2iωc5

(
1− rf

r

)
+
Ac2M

4
v (rf − rg)

4M2
fC

2iωr
, (5.19)

H0(g) =
Ac2M

4
v (rg − rf )

4M2
g iωr

, (5.20)

where c5 is an integration constant9. There are two free integration constants, c2 and c5,
which are not fixed by the assumption of asymptotic flatness. This can be checked by
calculating the curvature invariants. For example, the Kretschmann scalar RabcdR

abcd

of the l = 0 polar solution vanishes at large distances for any value of the integration
constants. Moreover, in this gauge c5 does not affect the gµν metric, and does not
contribute either to the curvature of both metrics or to the energy-momentum tensors
δTµν and δTµν .

In other words, if one takes the gµν metric to be the physical one and couples it
to matter, the constant c5 would be completely decoupled and would not affect any
observable physical quantity, at least to linear order (we discuss possible nonlinear
effects in Sec. 5.7).

On the contrary, the constant c2 is physical. This constant cannot be gauged away
from either of the metrics, contributes to δTµν and δTµν , and is therefore associated
with observable quantities.

For any c2 6= 0, due to the term e−iωv appearing in Eq. (3.20) (recall that here we
are using t→ v), the solution above describes an ingoing wave which does not feel any
effective potential and therefore does not change its propagation in the entire space.
This property is reminiscent of Minkowski spacetime, in which an ingoing wave is not
backscattered due to the absence of a gravitational potential10. This behavior is in
contrast to the Schwarzschild case in GR, in which the radial mode is nondynamical.
On the other hand, the radial perturbations of the bidiagonal metric are described by
a Zerilli-like equation, given by Eq. (3.54). As already discussed, not only in this case
is the perturbation dynamical, but it also leads to an instability.

9Note that the result in [171] is written in terms of hµν , while here we work with hµν , hence the
apparent difference of the expressions.

10The analogy with the Minkowski spacetime extends also to the computation of QNMs previously
discussed. Minkowski spacetime does not possess proper modes of vibration due to the absence
of an effective potential. However, one could imagine to add a test, perfectly-absorbing surface
at some fixed location r = r0, which would play the role of an event horizon. Similarly to what
previously discussed, in this case one can impose purely absorbing boundary conditions at r = r0
but it would be impossible to impose simultaneously the correct boundary conditions at infinity.
Due to the absence of backscattering, Minkowski spacetime does not possess QNMs even in the
presence of a perfectly absorbing surface.
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Polar dipole

When l = 1, the function Glm is not defined. Up to gauge freedom we can set
H2(g) = η1(g) = K(g) = 0. By using the constraints (5.10) and (5.11), a straightforward
calculation then leads to the following solution

H0(f) = 2rc9 − iωc2 −
(2c9 + ω (ωc2 + (2i− 4rω)c6 + 6irc9)) rf

2r2ω2

− iAM4
v (ωc0 + (3rω − i)c2)

12C2r2ω2M2
f

(rf − rg) , (5.21)

H0(g) =
ω(2rω − i)c7rg + c8 (2r3ω2 − (1 + 3irω)rg)

r2ω2

+
AM4

v (c2 + iω (c0 + 3rc2))

12r2ω2M2
g

(rf − rg) , (5.22)

H1(f) = c6 , (5.23)

H1(g) = c7 , (5.24)

η0(f) =
iωc0

2
+
c2

2
+ r (c6 + rc9) +

(iωc6 + c9) rf
rω2

+
AM4

v (iωc0 + c2)

12C2rω2M2
f

(rf − rg) ,

(5.25)

η0(g) = r (c7 + rc8) +
(iωc7 + c8) rg

rω2
− AM

4
v (iωc0 + c2)

12rω2M2
g

(rf − rg) , (5.26)

where ci are integration constants. The perturbations must be small in order to stay
within the validity of the perturbation theory, i.e. h

(g)
µν � gµν , and similar for perturba-

tions of the second metric. This requirement leads to c6 = c7 = c8 = c9 = 0. The only
free constants are then c0 and c2. Both these constants induce physical (observable)
changes in the metric perturbations, unlike the monopole case, where only one con-
stant is physical and the other one is a gauge constant. Nevertheless, similarly to the
monopole case, this solution describes a purely ingoing wave which is not backscattered
by the BH.

Also in this case the GR solution describes a gauge mode and is nondynamical,
whereas the l = 1 polar sector of the bidiagonal solution describes two propagat-
ing degrees of freedom governed by a pair of coupled equations, given by Eqs. (3.52)
and (3.53). Contrary to the nonbidiagonal case under consideration, the bidiagonal
solution possesses l = 1 polar QNMs which depend on the graviton mass.

Polar perturbations with l ≥ 2

The l ≥ 2 polar case is qualitatively similar to the l ≥ 2 axial case (considered below)
although technically more involved. Also in this case we can adopt a gauge such that
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H lm
2(g) = K lm

(g) = ηlm1(g) = 0 which, from Eqs. (5.10) and (5.11), implies H lm
2(f) = 0,

K lm
(f) = c2/r+ l(l+ 1)c0/(2r

2) and ηlm1(f) = c0/r. After some algebra, the field equations

can be solved for H lm
1(g), H

lm
1(f), G

lm
(g), G

lm
(f), dη

lm
0(g)/dr and dηlm0(f)/dr, whereas the functions

H lm
0(g) and H lm

0(f) satisfy a set of two decoupled, second-order differential equations,
namely

Dg[Φ̃g]−WgΦ̃g = sg , (5.27)

Df [Φ̃f ]−Wf Φ̃f = sf , (5.28)

where Φ̃g := r2H lm
0(g)/(r−rg) and Φ̃f := r2H lm

0(f)/(r−rf ) and we defined the differential
operators

Dg =
d2

dr2
g∗
− 2iω

d

drg∗
, Df =

d2

dr2
f∗
− 2iω

d

drf∗
. (5.29)

In the above equations, the potentials read

Wg =
l(l + 1) (r − rg)− 2irω (2r − 3rg) + rg

r3
, (5.30)

Wf =
l(l + 1) (r − rf )− 2irω (2r − 3rf ) + rf

r3
, (5.31)

whereas the source terms are

sg =
AM4

v r [c0λ+ 2c2r] (rg − rf )− 4B1M
2
g (rg + 2ir2ω)

4r3M2
g

+
4c4rM

2
g [rg (λ+ 4irω) + 2i (λ− 2) r2ω]

4r3M2
g

, (5.32)

sf =
AM4

v (c0λ+ 2c2r) (rf − rg)
4C2r2M2

f

+
2r2ω (−2iB2 + 2ic3 (λ− 2) r + c0λω + 2c2rω)

2r3

− rf (2B2 − 2c3r [λ+ 4irω) + ic0λω + c2(2 + 6irω)]

2r3
, (5.33)

where λ := l(l + 1) and B1 and B2 are two further integration constants. Similar to
the previous cases, the validity of the perturbation theory requires c2 = c3 = c4 =
0, otherwise the functions Glm

(g), G
lm
(f), η

lm
0(g) and ηlm0(f) would grow linearly with r at

large distances. Note that Eqs. (5.27) and (5.28) are decoupled from each other and,
in the GR limit11, they reduce to two copies of the same homogeneous differential
equation. The latter is not in the standard Zerilli form [140] but, quite interestingly, is
precisely the Bardeen-Press-Teukolsky equation for gravitational perturbations of the
Schwarzschild metric in GR [176–178] (cf. Eq. (5.2) in Ref. [178] when the black-hole
spin is zero. Compare also Eq. (C.3) in the Appendix with Eq. (5.44) below). It is easy

11The source terms vanish when A = 0 and when the integration constants ci and Bi are set to zero.
In the GR case, this choice can be done without loss of generality.
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to check that this equation is isospectral to the Regge-Wheeler equation by performing a
Chandrasekhar transformation [179] (see discussion in Sec. 5.5.3). We have also checked
this property numerically by transforming the homogeneous equations into a 4-term
recurrence relation and by computing the modes through continued fractions [136, 141].

As for the l ≥ 2 axial case that we discuss below, the source terms sg and sf in
Eqs. (5.27) and (5.28) do not alter the QNM spectrum, in agreement with the generic
argument presented in Sec. 5.4. The situation is therefore rather different from that of
the bidiagonal solution. In the latter case, the l ≥ 2 polar perturbations reduce to a set
of three coupled ordinary-differential equations, Eqs. (3.46) – (3.48), which propagate
three degrees of freedom and correspond to a quasinormal spectrum that depends on
the graviton mass.

5.5.2. Axial sector

The axial sector does not contain a monopole (l = 0) and one is left with the axial
dipole mode (l = 1) and with the higher multipoles l ≥ 2, which we treat separately.

Axial dipole mode

When l = 1, the angular functions Wlm and Xlm in Eq. (3.21) vanish (and therefore
hlm2 is not defined), while h1(f) = c1/r+h1(g) from Eq. (5.11). The (v, θ) component of
the field equations (5.7) yields

r2h′′0(g) = 2h0(g) − irω
(
rh′1(g) + 2h1(g)

)
, (5.34)

r2h′′0(f) = 2h0(f) − irω
(
rh′1(g) + 2h1(g) + c1/r

)
. (5.35)

The residual gauge freedom can be used to set one of the axial functions to zero. If we
impose h1(g) = 0, from the constraints (5.10) and (5.11) we obtain h1(f) = c1/r and in
such case Eqs. (5.34) and (5.35) can be solved for

h0(g) = r2c3 +
i(rg − rf )c1AM4

v

12M2
gωr

, (5.36)

h0(f) = r2c4 +
i(rf − rg)c1AM4

v

12M2
fC

2ωr
+
ic1ω

2
, (5.37)

where c3 and c4 are two further integration constants. The constants of integration c3

and c4 must be set to zero, otherwise the perturbative approach breaks down at large r.
On the other hand, c1 6= 0 does not violate our (relaxed) assumptions on the metrics:
indeed both metrics are asymptotically flat, as can be checked by computing curvature
invariants. In particular, the Pontryagin density ∗RR := 1

2
εabefRabcdR

cd
ef ∼ c1/r

7.
Note that fµν is asymptotically flat but not Minkowski in this case, due to the last
term in Eq. (5.37).
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This solution is qualitatively similar to the l = 0 polar case. As in the l = 0 polar
case, the above solution represents a purely ingoing wave which does not feel any
effective potential and, therefore, it is not backscattered by the geometry.

Thus, the axial dipolar perturbation of the nonbidiagonal black-hole solution de-
scribes a dynamical (purely ingoing) wave. As such, this solution cannot be an eigen-
function of the boundary-value problem, in agreement with our previous analysis which
showed that no dipolar QNMs exist for this solution. Nonetheless, this behavior is dra-
matically different from the case of GR – in which the l = 1 mode is pure gauge
and therefore nondynamical – and also from the case of the bidiagonal solution. In
the latter case, the dipolar axial sector is described by a single second-order Regge-
Wheeler-like equation (3.33). As we showed in Chapter 3, in this case, the eigenvalue
problem admits a novel set of QNMs.

Axial perturbations with l ≥ 2

In this case, to simplify the equations, we define two new radial functions given by

Q̃g = r3

(
hlm0(g)

r2

)′
+ iωrhlm1(g) , (5.38)

Q̃f = r3

(
hlm0(f)

r2

)′
+ iωrhlm1(f) . (5.39)

From the (v, θ) component of the field equations (5.7), we can then obtain two algebraic
equations for hlm2(g) and hlm2(f), which allow us to eliminate these functions from the other

equations. From the (r, θ) components, we get two second-order differential equations
for Q̃g and Q̃f , namely

Dg[Q̃g]− VgQ̃g =
c1M

4
vA

2M2
g r

2
(rg − rf )

(
1− rg

r

)
, (5.40)

Df [Q̃f ]− VfQ̃f =
c1M

4
vA

2M2
f r

2C2
(rf − rg)

(
1− rf

r

)
, (5.41)

where the effective potentials read

Vg =
(

1− rg
r

)[ l(l + 1)

r2
− 3rg

r3

]
, (5.42)

Vf =
(

1− rf
r

)[ l(l + 1)

r2
− 3rf

r3

]
. (5.43)

Note that the field equations allow us to compute only the master functions Q̃g and
Q̃f and not the metric perturbations h0(g), h1(g) and h0(f), h1(f) separately. This is
consistent with the existence of a residual gauge freedom. For example, the function
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h1(g) in Eq. (5.38) can be set to zero through a gauge choice. In such a case, h1(f) = c1/r
from Eq. (5.11).

Note that, when c1 = 0, Eqs. (5.40) and (5.41) reduce to a pair of Regge-Wheeler
equations [134], and are thus identical to the case of GR, consistent with our general
argument in Sec. 5.4. On the other hand, the terms proportional to c1 act as a source of
the Regge-Wheeler equation and cannot modify the proper frequencies of the system.
This is discussed in more detail in Sec. 5.6 below.

Also in this case it is interesting to compare the perturbations of the nonbidiagonal
solutions with those of a Schwarzschild BH in GR and with those of the bidiagonal
solution of massive gravity. In the former case, the perturbation describes a single
propagating degree of freedom governed by Eq. (5.40) with c1 = 0. In the latter case,
the l ≥ 2 axial sector is described by two propagating degrees of freedom, but they
are governed by a coupled system of equations, Eqs. (3.30) and (3.31), which are also
associated with a different set of quasinormal frequencies. Finally, the perturbation
equations in the bidiagonal case depend on the graviton mass, similar to the l = 1 case
previously discussed, whereas the graviton mass in the nonbidiagonal case appears
only in the source terms, but not in the effective potentials (5.42) and (5.43) (the same
property holds true in the l ≥ 2 polar case discussed above).

5.5.3. Isospectrality of QNMs

One can easily prove that the l ≥ 2 polar QNMs are isopectral to the l ≥ 2 axial
QNMs by showing that they are governed by the same equations. Consider Eqs. (5.27)
and (5.28). By defining the radial functions Ỹg := e−iωr∗gH lm

0(g)/(r − rg)
2 and Ỹf :=

e−iωr∗fH lm
0(f)/(r − rf )2 we find, after some algebra, the following equations:

Lg[Ỹg] = e−iωr∗gTg , (5.44)

Lf [Ỹf ] = e−iωr∗fTf , (5.45)

where we defined the differential operators

Lg =
(
r2 − rgr

) d2

dr2
+ 6

(
r − rg

2

) d

dr
+
r4ω2 − 4ir2ω

(
r − rg

2

)
(r2 − rgr)

+ 8irω − l(l + 1) + 6 ,

Lf =
(
r2 − rfr

) d2

dr2
+ 6

(
r − rf

2

) d

dr
+
r4ω2 − 4ir2ω

(
r − rf

2

)
(r2 − rfr)

+ 8irω − l(l + 1) + 6 ,

(5.46)
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whereas the source terms are

Tg =
c0AλM4

v (rg − rf )
4M2

g r(r − rg)2
+
c2AM4

v (rg − rf )
2M2

g (r − rg)2
+ c4

λrg + 2irω ((λ− 2) r + 2rg)

r(r − rg)2

−B1
rg + 2ir2ω

r2(r − rg)2
, (5.47)

Tf =
c0λ
(
AM4

v r(rf − rg) + 2C2M2
fω (2r2ω − irf )

)
4C2M2

f r
2(r − rf )2

+ c3
λrf + 2irω ((λ− 2) r + 2rf )

r(r − rf )2

+c2

AM4
v r

2(rf − rg) + 2C2M2
f (2r3ω2 − rf (1 + 3irω))

2C2M2
f r

2(r − rf )2
−B2

rf + 2ir2ω

r2(r − rf )2
. (5.48)

In the GR limit (Tg,f → 0), these two equations reduce to two copies of the Bardeen-
Press-Teukolsky equation (in the form originally written by them) for gravitational
perturbations of the Schwarzschild metric in GR [176–178]. By performing a Chan-
drasekhar transformation [179] of the form (as given in Ref. [180]):

r2Ỹg = D2
−g

(
rX̃g

)
, (5.49)

r2Ỹf = D2
−f

(
rX̃f

)
, (5.50)

where D−g,f ≡ d/dr − irω/(r − rg,f ), one finds that the functions X̃g,f satisfy the
following Regge-Wheeler equations:

d2X̃g

dr2
g∗

+
(
ω2 − Vg

)
X̃g = SPg , (5.51)

d2X̃f

dr2
f∗

+
(
ω2 − Vf

)
X̃f = SPf , (5.52)

with the effective potentials given in Eqs. (5.42) and (5.43), whereas the source terms
can be obtained by inserting the transformations (5.49) and (5.50) in Eqs. (5.44)
and (5.45), using (5.51) and (5.52) to eliminate Xg,f and their derivatives, and then
solving for SPg,f , which can be found analytically. Since their analytical expression is
rather lengthy and their explicit form is not fundamental we do not show it here. Sim-
ilar to the axial case, to the leading order the source terms decay as SPg,f ∼ 1/r2 when
r → ∞ [cf. Eq. (5.54)]. Comparing this with the axial case, Eq. (5.53), one imme-
diately sees that the only difference is in the source term, and thus under the same
boundary conditions, the QNM spectrum of the polar and axial sector is the same (and
coincides with that of a GR Schwarzschild BH).

5.6. Time evolution

In this section we consider the time evolution governed by the perturbation equa-
tion (5.40) [or, equivalently, Eq. (5.41)] in the time domain, in order to investigate the
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role of the source term appearing on the right-hand side of this equation. A similar
analysis for the l ≥ 2 polar sector is more technically involved but it is qualitatively
similar. (As shown in the previous Section, for the polar case the only difference is in
the source term. One can show that although the sources are more complicated, their
asymptotic behavior at the horizon and at infinity is similar to the axial case, and thus
the waveforms are qualitatively similar.)

By introducing a new radial function Z̃g = e−iωr∗gQ̃g, Eq. (5.40) becomes

d2Z̃g
dr2

g∗
+
(
ω2 − Vg

)
Z̃g =

(
1− rg

r

)
Sg , (5.53)

where

Sg = e−iωrg∗c1 (rg − rf )
M4

vA
2M2

g r
2
. (5.54)

As previously discussed, the above source term appears in the perturbed nonbidiag-
onal solution and it would vanish in the case of GR. To investigate the impact of such
a term on the waveform, we assume that the latter is produced by a driving force at
t = 0, which for simplicity we take to be a static Gaussian. In the frequency-domain
this amounts to adding a source to the right-hand side of Eq. (5.53), namely

SGaussian = A0e
−(r∗g−r0)2/2σ2

. (5.55)

Thus, the full time-evolution equation reads

d2Z̃g
dr2

g∗
+
(
ω2 − Vg

)
Z̃g =

(
1− rg

r

)
S , (5.56)

where S := Sg + (1 − rg/r)
−1SGaussian. To obtain the waveform Zg(t, r)

12 we use an
inverse-Fourier transform,

Zg(t, r) =
1√
2π

∫ +∞

−∞
e−iωtZ̃g(ω, r)dω , (5.57)

where Z̃g(ω, r) is computed using the Green’s function technique outlined in Ap-
pendix B. In principle, c1 is an arbitrary function of ω which depends on the initial
conditions of the perturbations h1. For simplicity, here we consider the case where c1

is a constant, which is sufficient for our argument. For this choice, in the time domain,
the source (5.54) is proportional to the Dirac delta function δ(v).

Let us first consider the case in which no external source is present, i.e. we solve
Eq. (5.56) with A0 = 0 [or, equivalently, Eq. (5.53)]. In this case the waveform is

12Note that due to Eq. (3.20) (with t → v) and the definition Z̃g = e−iωr∗gQ̃g, Zg(t, r) is a function
of t := v − r∗g.
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proportional to the combination C1 := c1M4
vA

2M2
g

(rg − rf ). The waveform obtained with

the Green’s function method is shown in Fig. 5.113. A straightforward Fourier analysis
of the waveform shows that the ringdown signal [136] is governed precisely by the
QNMs of a Schwarzschild BH in GR. This is natural since Eq. (5.53) is equivalent to
the standard Regge-Wheeler equation in GR but with an external source term given by
Sg. As in the case of a forced harmonic oscillator, the source can modify the waveform
but not the proper modes of the system (for a similar analysis in a different modified
theory of gravity, see Ref. [181]), which are still described by the QNMs of the solution,
i.e. by the same QNMs of a Schwarzschild BH in GR.
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Figure 5.1.: The waveform Zg(t, r) (in units of C1 := c1 (rg − rf ) M4
vA

2M2
g

) with l = 2 as a

function of u := t− r∗g (in units of rg). This is the solution of Eq. (5.53),
i.e. in the case where the external perturbation SGaussian is absent. It
is easy to check that the ringdown signal is governed by the QNMs of a
Schwarzschild BH in GR.

As is clear from the above discussion, adding an external source term like Eq. (5.55)
is simply equivalent to solving the standard Regge-Wheeler equation in GR but with
an effective source term given by S in Eq. (5.56). The waveform obtained by solving
Eq. (5.56) for different values of C1 and for a representative external source term
is shown in Fig. 5.2. Also in this case a straightforward frequency decomposition
shows that, for any value of C1, the ringdown waveform is governed by the QNMs
of the Schwarzschild solution in GR, although the black-hole response to the external
perturbation depends on C1. This is in agreement with our proof given in Sec. 5.4.

13In units where G = c = 1, the constant C1 := c1 (rg − rf )M4
vA/(2M2

g ) is dimensionless.
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Figure 5.2.: Waveform Zg(t, r) for l = 2 as a function of u := t− r∗g and for different
values of C1. This is a solution of the full time-evolution equation (5.56)
with an external Gaussian source (5.55), with A0r

2
g = 0.4, r0 = 5rg and

σ = 2.5rg. From this waveform it is easy to check that, for any value of
C1, the ringdown signal is governed by the QNMs of a Schwarzschild BH
in GR.

5.7. Conclusion and discussion

We derived the full set of linearized equations governing gravitational perturbations of
the nonbidiagonal Schwarzschild solution in massive (bi)gravity. We showed that the
quasinormal spectrum of these solutions coincides with that of a Schwarzschild BH in
GR. This result is quite surprising and has some interesting consequences. In general,
massive (bi)gravity propagates more degrees of freedom than GR (including massive
modes), so one might naively expect that black-hole solutions possess more modes of
vibration and that the latter would depend on the value of the graviton mass. This is
indeed the case for bidiagonal solutions [70, 110] (see Chapter 3), but it is not the case
for the nonbidiagonal solutions discussed here.

Furthermore, as shown in Chapter 3, the bidiagonal solution possesses an unstable
radial mode, which is absent in the nonbidiagonal case [171]14. Finally, as we showed in
Chapter 3, massive bosonic perturbations generically allow for quasi-bound, long-lived
modes in the spectrum of spherically-symmetric BHs. We will show in Chapter 10,

14As we will discuss in next Chapter, due to the instability of the bidiagonal solutions along with
the existence of several other spherically symmetric solutions [73, 74, 115], the outcome of gravi-
tational collapse in massive gravity is still unclear (see also Ref. [182] for arguments showing that
gravitational collapse of stars might not lead to black-hole formation in these theories).
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that such modes can turn (superradiantly) unstable when the BH rotates above a
certain threshold [45]. Remarkably, such long-lived modes are absent in the static
nonbidiagonal solution. This suggests that, when spinning, this solution does not
suffer from the superradiant instability (see Chapter 10 for details).

It is also natural to conjecture that the QNMs of the rotating BH found in Ref. [130]
are identical to those of a Kerr BH in GR, similar to the static case discussed in this
Chapter.

The absence of extra QNMs, compared to GR, naturally raises the question about
the number of propagating degrees of freedom for perturbations of nonbidiagonal BHs.
In particular, one may worry about the disappearance of some degrees of freedom
and, consequently, possible strong coupling. Indeed, some modes are indeed absent,
as compared to, e.g. bidiagonal BHs. At the same time, there are modes which do
not feel any potential and therefore do not backscatter. The absence of backscattering
implies that these modes do not satisfy the boundary conditions imposed for QNMs.
Nevertheless these “free propagating” modes depend on the initial conditions and their
impact on the resulting metric cannot be removed by a gauge transformation. We
would like to stress here that these perturbations contain free functions, as “normal”
propagating modes do, and initial conditions are required to impose them. Indeed,
each integration constant, e.g. c0 and c2 in Sec. 5.5.1 are functions of ω and when
converted to the time domain they yield free functions. Note that, on the contrary, in
the special case β2 = −Cβ3 studied in Refs. [174, 175] the “free propagating” modes
are absent, so the solution is certainly strongly coupled in this specific case. In the
general case, however, a separate study is required to find explicitly whether all the
modes are truly dynamical, and hence to address the issue of possible strong coupling.

It would also be interesting to go beyond the linear level, employed in this Chapter,
and to consider nonlinear effects. This question is connected to the possible strong
coupling issue. If some of the degrees of freedom happen not to propagate on the
background of nonbidiagonal black-hole solutions (due to their peculiarity) one would
naturally expect that at least some of them reappear at the nonlinear level. If this is
indeed the case, then the nonbidiagonal solutions may be nonlinearly unstable. Non-
linear effects may change our discussion in Section 5.5.1, where we argued that one
of the two integration constants is a pure gauge, since it can be reabsorbed in the
perturbations fµν and it does not give a contribution to the mass energy-momentum
tensor. This constant might source physical perturbations of gµν at the nonlinear level,
thus activating a physical degree of freedom. Nonlinear effects may also generate a
potential for those modes which propagate from infinity down to the horizon without
scattering.

We should also mention that our study did not address the question of ghosts in the
spectrum of perturbations. This issue may be addressed together with the question
about the number of propagating degrees of freedom mentioned above, for example,
by a Hamiltonian analysis.
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6. Black holes with massive graviton
hair

6.1. Introduction

Schwarzschild BHs stand out among all possible solutions of GR as the only static,
asymptotically flat, regular solutions of vacuum Einstein equations. They are, in addi-
tion, stable solutions of the theory. The Schwarzschild solution also solves many other
field equations, such as some scalar-tensor theories, f(R) theories and Chern-Simons
gravity (see e.g. Refs. [183, 184]). In fact, it is possible to show that the Schwarzschild
solution is the only static, asymptotically flat, regular solution also in the vacuum of
these theories1.

These uniqueness properties are in agreement with various “no-hair” proofs that
Schwarzschild BHs cannot support minimally coupled static regular scalar hair, nor
fields mediating the weak or the strong interaction [188, 189].

The case of spin-2 hair is much less clear. It was shown by Bekenstein that BHs
cannot support massive spin-2 fields in theories with generic nonminimal couplings to
curvature, at least as long as the graviton mass is sufficiently large [189]. However,
as proved by Aragone and Deser [190, 191], it is impossible to couple consistently a
spin-2 field with a nonlinear gravitational theory. This result does not leave much room
for BHs with spin-2 hair, unless the massive tensor field is itself the mediator of the
gravitational interaction, i.e. in the case of massive theories of gravity [33, 34, 87].

Even in the case of massive gravity, recent searches for nonlinear spherically symmet-
ric solutions [115] seem to put a rest to the possibility of finding static, asymptotically
flat BH solutions endowed with spin-2 hair.

On the other hand, the nonexistence of hairy BHs in massive gravities seems at odds
with the findings, presented in Chapter 3, that bi-Schwarzschild BHs are unstable in
generic theories with light massive spin-2 fields. The instability is due to a propagating
spherically symmetric degree of freedom and it is a long-wavelength instability. As
shown in Fig. 3.1, it only occurs for a nonvanishing mass coupling µMS . 0.438, with
µ being the inverse of the Compton wavelength of the graviton and MS the mass of
the background BH.

1Note that generic scalar-tensor theories allow for the existence of regular static BH solutions [185,
186]. See also Ref. [187] for a recent review on the status of black-hole solutions with non-trivial
scalar fields.
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Interestingly, for values of MS and µ that are phenomenologically relevant, the mass
coupling µMS is always well within the instability region. Indeed, it is natural to
consider the graviton mass of the order of the Hubble constant, mg = ~µ ∼ H ∼
10−33eV, in order to account for an effective cosmological constant (see e.g. Ref. [35]).
This tiny value implies that a graviton with mass mg ∼ H would trigger an instability
for any Schwarzschild BH with mass smaller than 1022M�! Even if the instability
timescale τ can be extremely long (τ ∼ 1.43/µ in the small-mass limit [70]), as a matter
of principle if Schwarzschild BHs are unstable in massive gravity, they must decay to
something (or not even be formed in the first place) and, unless cosmic censorship is
violated, the final state should be a spherically symmetric BH.

This apparent conundrum prompts the following question: do spherically symmetric,
asymptotically flat BH solutions surrounded by a graviton cloud exist in theories with
a massive graviton? Here, we show that such solutions do indeed exist and were not
found in the thorough analysis of Ref. [115] simply because they were not searched for
explicitly.

6.2. Setup

Le us focus on the theory described by the action (2.10). The parameters βn are not
all independent if flat space is to be a solution of the theory. They can be written in
terms of two free parameters α3 and α4 defined as

βn = (−1)n+1

(
1

2
(3− n)(4− n)− (4− n)α3 − α4

)
. (6.1)

With this definition, and admitting asymptotic flatness, one obtains from (3.2) and (3.11)
that the graviton mass µ can be written in terms of the other parameters of the theory
as

µ =
M2

v

Mf

√
1 +M2

f /M
2
g . (6.2)

The Lagrangian (2.10) gives rise to two sets of modified Einstein equations for gµν
and fµν , given by (2.13) and (2.14). In addition it will be useful to also consider the
conservation conditions given by Eqs. (2.16).

We consider static spherically symmetric solutions of Eqs. (2.13) and (2.14). The
most general ansatz for the metrics is given by2

gµνdx
µdxν = −F 2 dt2 +B−2 dr2 +R2dΩ2 , (6.3)

fµνdx
µdxν = −p2 dt2 + b2 dr2 + U2dΩ2 , (6.4)

2Note that, as discussed in Chapter 5, massive graviton theories also allow for spherically symmetric
solutions whose metrics are not both diagonal in the same coordinates [115]. Since we are interested
in the end state of the monopole instability found in Chapter 3 and discussed in Refs. [70, 110],
we focus here on the ansatz (6.3)-(6.4).
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where F ,B ,R , p , b and U are radial functions. The gauge freedom allow us to
reparametrize the radial coordinate r such that R(r) = r. To simplify the equations
we also introduce the radial function Y (r) defined as b = U ′/Y , where ′ ≡ d/dr.

Inserting (6.3) and (6.4) into the equations of motion (2.13) and (2.14), and using the
conservation condition (2.16), we can reduce the problem to a system of three coupled
first-order ordinary differential equations, which can be schematically written as (for a
detailed derivation see [115])

B′ = F1(r, B, Y, U, µ,Mf ,Mg, α3, α4)
Y ′ = F2(r, B, Y, U, µ,Mf ,Mg, α3, α4)
U ′ = F3(r, B, Y, U, µ,Mf ,Mg, α3, α4)

. (6.5)

The remaining two functions F and p can then be evaluated using

F−1F ′ = F4(r, B, Y, U, µ,Mf ,Mg, α3, α4) , (6.6)

F−1p = F5(r, B, Y, U, µ,Mf ,Mg, α3, α4) . (6.7)

The explicit form of the functions Fi is somewhat lengthy and not very instructive.
The derivation of Eqs. (6.5)–(6.7) and their final form is publicly available online in a
Mathematica notebook [139].

6.2.1. Boundary conditions at the horizon

Since we are interested in BH solutions, we assume the existence of an event horizon
at rH , where F (rH) = B(rH) = 0. From the discussion in [111, 113] where it is shown
that for the spacetime to be nonsingular the two metrics must share the same horizon,
it follows that Y and p must also have a simple root at r = rH . On the other hand, the
function U can have any finite value different from zero at the horizon. For numerical
purposes we then assume a power-series expansion at the horizon,

B2 =
∑
n≥1

an(r − rH)n, Y 2 =
∑
n≥1

bn(r − rH)n, (6.8)

U = uH rH +
∑
n≥1

cn(r − rH)n . (6.9)

After inserting this into the system (6.5), an , bn , cn all can be expressed in terms of
uH and a1 only, where the constant uH is arbitrary while a1 is given by the solution of
a quadratic equation

Aa2
1 + Ba1 + C = 0 , (6.10)

where A ,B , C are functions of uH , rH , µ, Mf , Mg and α3, α4. Since there are two
solutions for this equation for each choice of the parameters, there exist two different
branches of solutions for the metric functions. Moreover, reality of a1 requires B2 >
4AC, and this condition restricts the parameter space.
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Inserting (6.8)–(6.9) into Eqs. (6.6) and (6.7), we find

F 2 = q2(r − rH) + q2
∑
n≥2

dn(r − rH)n , (6.11)

p2 = q2
∑
n≥1

en(r − rH)n , (6.12)

where dn and en can be expressed in terms of uH and of the other parameters and q is
an integration constant, which can be set arbitrarily and is related to the time- scaling
symmetry.

Equations (6.5) are invariant under the following transformations:

B(r) → B(Ωr) , Y (r)→ Y (Ωr) ,

U(r) → 1

Ω
U(Ωr) , µ→ µ

Ω
, (6.13)

where Ω is a constant. The parameter uH = U(rH)/rH remains invariant under the
transformations above and the rescaling rH → rH/Ω. We use this rescaling to express
all dimensionful quantities in terms of the mass of a Schwarzschild BH with horizon
rH , i.e. MS = rH/2. We also consider without loss of generality Mf = Mg.

6.2.2. Asymptotically flat solutions

We require the solutions to be asymptotically flat such that as r → ∞, we have
B = 1 + δB, Y = 1 + δY , U = r + δU , where the variations are taken to be small.
Inserting this in the field equations (6.5), we obtain to first order

δB = −C1

2r
+
C2(1 + rµ)

2r
e−rµ , (6.14)

δY = −C1

2r
− C2(1 + rµ)

2r
e−rµ , (6.15)

δU =
C2(1 + rµ+ r2µ2)

µ2r2
e−rµ , (6.16)

where C1 and C2 are integration constants. Finally, we can find asymptotically flat
solutions numerically using a shooting method.

6.3. Results

For fixed values of µ, α3 and α4, we integrate the system (6.5) starting from the hori-
zon with the boundary conditions (6.8)–(6.9), towards large r and find the values
of the shooting parameter uH for which the solution matches the asymptotic behav-
ior (6.14)–(6.16). For each choice of µ, α3 and α4, there are two branches of solutions,
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Figure 6.1.: Metric function B(r) for different values of uH close to an asymptotically
flat solution, represented by the curve with the label Fit. Any small devi-
ation from the asymptotically flat solution, leads to a divergent behavior.

corresponding to the two roots of the quadratic equation (6.10). In most cases only
one of the branches will give an asymptotically flat solution.

As expected, a trivial solution for any value of µ, α3 and α4 is obtained when
uH = 1, and it corresponds to the two metrics being equal and described by the
Schwarzschild solution. However, we also find different solutions for which uH 6= 1
and that correspond to regular, asymptotically flat BHs endowed with a nontrivial
massive-graviton hair. We note that such solutions were not found in Ref. [115], most
likely because the free parameter uH was not adjusted in order to enforce asymptotic
flatness. In fact, as shown in Fig. 6.1, in addition to the solution with asymptotic
behavior (6.14)–(6.16), there is always another branch which diverges exponentially at
spatial infinity. Thus, any small deviation from a regular solution leads to a singular
behavior, making it numerically challenging to shoot for the correct solution.

The main results are summarized in Figs. 6.2–6.5. The first important result is
that hairy solutions exist near the threshold µMS . 0.438 for any value of α3, α4.
This number precisely corresponds to the critical threshold for the Gregory-Laflamme
instability [118] (cf. Fig. 3.1). Solutions were expected to exist close to this threshold
and, in fact, this expectation has prompted our search at the nonlinear level.

We also find that for any value of α3 and α4, M/MS and uH are monotonically
increasing functions of (µMS)−1 as shown in Fig. 6.2. Here M is the spacetime mass
evaluated from the asymptotic behavior at infinity as M = C1/2 (cf. Eqs. (6.14)–
(6.16)).

Above the threshold µMS & 0.438, the Schwarzschild solution is linearly stable.
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Figure 6.2.: Spacetime mass M (left panel) and parameter uH (right panel) as functions
of the graviton mass µMS. Quantities are normalized by the mass of
the corresponding Schwarzschild BH, MS. For graviton masses close to
the critical threshold µMS ∼ 0.438 the solutions merge smoothly with a
Schwarzschild BH, as they should since the latter are marginally stable at
this point (cf. Fig. 3.1).

Consistent with the linear analysis, the only asymptotically flat solution that we were
able to find in this region is the Schwarzschild solution, labeled by uH = 1 andM = MS.

6.3.1. Parameter space

The behavior at smaller µMS is more convoluted as it depends strongly on higher
curvature terms: the nonlinear terms of the potential (2.11) become important and the
solution differs substantially from the eigeinfunctions shown in Fig. 3.1. Nevertheless,
after an extensive analysis of the full two-dimensional parameter space (α3 , α4), we
obtain the following classification:

(i) α3 6= −α4 ∨ α3 = −α4 . 1 – The solutions stop to exist below a cutoff µcMS,
where the two branches of solutions near the horizon merge.

(ii) 1 . α3 = −α4 . 2 – The solutions disappear only near µMS ∼ 0.01 and are
singular at small µMS, according to Refs. [111, 113], because some component of the
metric fµν is vanishing where the metric gµν is regular (see Fig. 6.5).

(iii) α3 = −α4 & 2 – The solutions exist for arbitrarily small µMS and are nonsin-
gular. This schematic classification of the parameter space is shown in Fig. 6.3.

It is important to emphasize that an analysis of the full parameter space is an
extraordinary task. As such, it is extremely difficult to guarantee that the parame-
ter space is divided as depicted in Fig. 6.3, as we cannot rule out certain choices of
(α3, α4) not belonging to the above classes. Also, the numerical integration becomes
increasingly more challenging in the small-µ limit. We were able to obtain solutions
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Figure 6.3.: Conjectured diagram of the parameter space for BHs with massive graviton
hair in bimetric massive gravity. See main text for details.

for mass coupling as small as µMs ∼ 0.001 and found no indication that, in the region
α3 = −α4 & 2, such solutions cease to exist. However, our numerical procedure cannot
guarantee that hairy BHs exist for arbitrarily small µ.

The change of behavior between different regions seems to be smooth, since near
the boundaries the solutions do not change drastically. For example, in the vicinity of
α3 = −α4 = 1 the solutions behave all in the same way. We compare the solutions for
different choices of α3 and α4 in Figs. 6.4 and 6.5.

Nevertheless, the above classification seems very natural from the mathematical
structure of the field equations. For instance, the choice α3 = −α4 corresponds to
β3 = 0, i.e. the higher-order term V3 is absent in the potential (2.11). Furthermore, in
this case,

β0 = −6 + 3α3 , β1 = 3− 2α3 , (6.17)

β2 = −1 + α3 , β4 = α4 . (6.18)

Thus, the boundaries where the behavior of the solutions change qualitatively corre-
spond to a change of sign of the parameters βn. It is also not surprising to find that
α3 = −α4 = 1, 2 are special points of the parameter space, because they correspond to
the cases where V2 and V0 are, respectively, absent in the potential (2.11).

Finally, the above picture does not hold in the limit where one of the metrics is taken
to be a nondynamical Schwarzschild metric. In this case our numerical search suggests
that, for any choice of α3 and α4, hairy BH solutions exist near the threshold but they
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similar for any value α3 and α4 near the threshold µMS ∼ 0.438. Here we
used α3 = 1 and α4 = 0.

do not exist for arbitrarily small µMS.

To summarize, although it is very challenging to infer the behavior of the solutions for
all choices of the parameters αn, we have found convincing evidence that the term V3 in
the potential (2.11) plays an important role as it does not allow for hairy deformations
of a Schwarzschild BH in the small graviton mass limit. This term is precisely the one
that gives rise to a mixing between the helicity-0 and the helicity-2 components of the
massive graviton in the decoupling limit [87].

6.4. Discussion

As far as we are aware, the nonlinear solutions we have found are the first example of
graviton-hairy BH solutions in asymptotically flat spacetime.

It is a matter of debate if the theory we considered can in fact be a viable alternative
to GR (see e.g. [159, 160, 164, 192] and also Sec.VI of Ref. [193] for a recent discussion
on the status of massive gravity). Nevertheless, whatever the fate of the ghost-free
massive and bimetric gravities, these solutions are interesting on their own as they
provide the first example of an asymptotically flat graviton-hairy BH. Furthermore, we
believe that several of the properties we have presented here are likely to be found in
other hairy BH solutions of any putative nonlinear theory with a propagating massive
spin-2 field.

These solutions are also natural candidates for the final state of the monopole insta-
bility discussed in Chapter 3. The instability would presumably cause the Schwarzschild
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different depending on the specific values of the parameters. Top panels:
α3 = 2 , α4 = −2. Bottom panels: α3 = 1 , α4 = −1.

spacetime to evolve towards a hairy solution. Depending on the parameters of the
theory, however, different types of solutions exist in the highly nonlinear regime. This
suggests that hairy, static, asymptotically flat BH solutions exist only in certain regions
of the parameter space. This in turn makes nonlinear time evolutions of Schwarzschild
BHs highly desirable. It is of course possible that, in some regions of parameter space,
Schwarzschild BHs are not the preferred outcome of gravitational collapse or even that
these theories do not allow for stable static BH solutions. These issues can only be
addressed by performing nonlinear collapse simulations.
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Part II.

Superradiant instabilities
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7. Superradiance: an introduction

This part is based on Refs. [45, 70, 194, 195].

7.1. Introduction

The origin of BH superradiance can be traced back to 1971, when Zel’dovich showed
that scattering of radiation off rotating absorbing surfaces results, under certain con-
ditions, in waves with a larger amplitude [196, 197]. This phenomenon is now widely
known also as (rotational) superradiance and requires that the incident radiation, as-
sumed monochromatic of frequency ω, satisfies [196, 197]

ω

m
< Ω , (7.1)

with m the azimuthal number with respect to the rotation axis and Ω the angular
velocity of the body. Rotational superradiance belongs to a wider class of classical
problems displaying stimulated or spontaneous energy emission, such as the Vavilov-
Cherenkov effect, the anomalous Doppler effect and other examples of “superluminal
motion” [45, 198]. When quantum effects were incorporated, it was argued that ro-
tational superradiance would become a spontaneous process and that rotating bod-
ies – including BHs – would slow down by spontaneous emission of photons satis-
fying (7.1) [196]. In parallel, similar conclusions were reached when analyzing BH
superradiance from a thermodynamic viewpoint [198, 199]. From a historic perspec-
tive, the first studies of BH superradiance played a decisive role in the discovery of BH
evaporation [200, 201].

The possibility to extract energy from a spinning BH was first quantified by Roger
Penrose [202] some years before the discovery of BH superradiance, and it is related to
the fact that the energy of a particle within the ergoregion (see Section 7.2.1 for the
definition of the ergoregion), as perceived by an observer at infinity, can be negative. In
the process devised by Penrose, a particle decays into two pieces, one of which escapes
to infinity, while the other particle, tuned to have negative energy, is absorbed at the
horizon. This results in a net energy gain at the expense of the rotational energy of
the hole. Soon after, Teukolsky and Press, performed the first quantitative study of
BH superradiance [203], showing that amplification occurs for generic monochromatic
bosonic waves satisfying the condition (7.1). These first studies of BH superradiance
also showed that this phenomenon is an exclusivity of bosonic waves, unlike fermions
which cannot be superradiantly amplified [204–206].
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Teukolsky and Press also predicted that confining superradiant modes would give
rise to strong instabilities [207]. Several mechanisms are able to do so, such as en-
closing a Kerr BH with a reflecting mirror, impose Anti-de Sitter (AdS) asymptotics,
magnetic fields and even massive bosonic fields (see Ref. [45] and references therein).
This superradiant instability is associated to the existence of new asymptotically flat,
hairy BH solutions [208–210] and to phase transitions between spinning or charged
black objects in asymptotically AdS spacetime [211–213] or in higher dimensions [214].
Finally, superradiant instabilities are also fundamental in deciding the stability of BHs
and the fate of the gravitational collapse in confining geometries [45].

In this second Part of the thesis we will discuss several systems which are prone
to superradiant instabilities. In particular we will show that these instabilities have
important applications to dark-matter searches and to physics beyond the Standard
Model [47, 49, 70].

7.2. Superradiance in black hole physics

The phenomenon of superradiance requires dissipation [45]. The latter can emerge in
various forms, e.g. viscosity, friction, turbulence, radiative cooling, etc. All these forms
of dissipation are associated with some medium or some matter field that provides the
arena for superradiance. It is thus truly remarkable that – when spacetime is curved –
superradiance can also occur in vacuum, even at the classical level.

Despite their simplicity, BHs are probably the most fascinating predictions of GR
and enjoy some extremely nontrivial properties. The most important property (which
also defines the very concept of BH) is the existence of an event horizon, a boundary
in spacetime which separates two causally disconnected regions. Among the various
properties of BH event horizons, the one that is most relevant for the present discussion
is that BHs behave in many respects as a viscous one-way membrane in flat spacetime.
This is the so-called BH membrane paradigm [215]. Thus, the existence of an event
horizon provides vacuum with an intrinsic dissipative mechanism, which is naturally
prone to superradiance. As we shall see, the very existence of event horizons allows to
extract energy from the vacuum, basically in any relativistic theory of gravity.

7.2.1. Spinning, neutral BHs

To set the stage for later use, and to introduce some useful quantities, consider Ein-
stein’s equations in vacuum without a cosmological constant. The uniqueness theorems
guarantee that the only regular, asymptotically flat solution to the background equa-
tions is given by the Kerr family of spinning BHs. In the following Chapters we will
often consider test fields on top of this solution. In standard Boyer-Lindquist coordi-
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nates this geometry reads (for details on the Kerr spacetime see, e.g., [216])

ds2
Kerr = −

(
1− 2Mr

Σ

)
dt2 +

Σ

∆
dr2 − 4Mr

Σ
a sin2 θdφdt

+ Σdθ2 +

[
(r2 + a2) sin2 θ +

2Mr

Σ
a2 sin4 θ

]
dφ2 , (7.2)

where Σ = r2 + a2 cos2 θ, ∆ = (r − r+)(r − r−), r± = M ±
√
M2 − a2. This metric

describes the gravitational field of a spinning BH with mass M and angular momentum
J = aM . The roots of ∆ determine the event horizon, located at r+ = M+

√
M2 − a2,

and a Cauchy horizon at r− = M −
√
M2 − a2. The static surface gtt = 0 defines the

ergosphere given by rergo = M +
√
M2 − a2 cos2 θ. Requiring the presence of an event

horizon in this spacetime, Kerr BHs have a maximum possible spin given by a = M .

A fundamental parameter of a spinning BH is the angular velocity of its event hori-
zon, which for the Kerr solution is given by

ΩH =
a

r2
+ + a2

. (7.3)

The physical interpretation of this quantity can be understood in the following way:
consider an observer with timelike four-velocity which falls into the BH with zero
angular momentum. This observer is known as the ZAMO (Zero Angular Momentum
Observer). These observers have an angular velocity, as measured at infinity, given by

Ω ≡ φ̇

ṫ
= − gtφ

gφφ
=

2Mar

r4 + r2a2 + 2a2Mr
. (7.4)

At infinity Ω = 0 consistent with the fact that these are zero angular momentum
observers. However, Ω 6= 0 at any finite distance and at the horizon one finds

ΩZAMO
H =

a

r2
+ + a2

. (7.5)

Thus, observers are frame-dragged and forced to co-rotate with the geometry.

The Kerr geometry is also endowed with a surface outside the horizon where gtt = 0
called the ergosurface, located at

rergo = M +
√
M2 − a2 cos2 θ . (7.6)

In particular, it is defined by r = 2M at the equator and r = r+ at the poles. The
region between the event horizon and the ergosurface is the ergoregion. The ergosurface
is the static limit, as no static observer is allowed inside the ergoregion. Indeed, the
Killing vector ξµ = (1, 0, 0, 0) becomes spacelike in the ergoregion ξµξµgµν = gtt > 0.
We define a static observer as an observer (i.e., a timelike curve) with tangent vector
proportional to ξµ. The coordinates (r, θ, φ) are constant along this wordline. Such
an observer cannot exist inside the ergoregion, because ξµ is spacelike there. In other
words, inside the ergoregion an observer cannot stay still, but is forced to rotate with
the BH.
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7.2.2. Black-hole superradiance in a nutshell

Let us consider a model that captures the basic ingredients of superradiant scattering
in curved spacetime. We assume that the spacetime is stationary and axisymmetric.
Consider a test bosonic field in this background. At linear order in the field’s amplitude,
one can generically write down a single master variable Ψ which obeys a Schroedinger-
type equation of the form

d2Ψ

dr2
∗

+ VeffΨ = 0 , (7.7)

where the potential Veff(r) is model dependent and encodes the curvature of the
background and the properties of the test field. The coordinate r∗ maps the region
r ∈ [r+,∞[ to the entire real axis. Given the symmetries of the background, we con-
sider a scattering experiment of a monochromatic wave with frequency ω and azimuthal
and time dependence e−iωt+imφ. Assuming Veff is constant at the boundaries, Eq.(7.7)
has the following asymptotic behavior

Ψ ∼
{
T e−ikHr∗ +OeikHr∗ as r → r+ ,
Reik∞r∗ + Ie−ik∞r∗ as r →∞ .

(7.8)

where r+ is the horizon radius in some chosen coordinates, k2
H = Veff(r → r+) and

k2
∞ = Veff(r → ∞). These boundary conditions correspond to an incident wave of

amplitude I from spatial infinity giving rise to a reflected wave of amplitude R and
a transmitted wave of amplitude T at the horizon. The O term describes a putative
outgoing flux across the surface at r = r+. Although the presence of a BH horizon
would imply O ≡ 0, let us keep this term for the sake of the argument, and in order
to allow for a nonvanishing outgoing flux in absence of an event horizon.

Let us assume that the potential is real1. Thus, there exists another solution Ψ̄ to
Eq. (7.7) which satisfies the complex conjugate boundary conditions. The solutions
Ψ and Ψ̄ are linearly independent and standard theory of ODEs tells us that their
Wronskian is independent of r∗. Thus, the Wronskian evaluated near the horizon, W =
−2ikH (|T |2 − |O|2), must equal the one evaluated at infinity, W = 2ik∞(|R|2 − |I|2),
so that

|R|2 = |I|2 − kH
k∞

(
|T |2 − |O|2

)
, (7.9)

independently from the details of the potential in the wave equation.

In the case of a one-way membrane boundary conditions at the horizon, i.e. O =
0, one gets |R|2 < |I|2 when kH/k∞ > 0, as is to be expected for scattering off
perfect absorbers. However, for kH/k∞ < 0, the wave is superradiantly amplified,
|R|2 > |I|2 [203]. In the case of a massless scalar field around a Kerr BH, one finds

1This condition does not hold for electromagnetic and gravitational perturbations of a Kerr BH,
whereas it holds for scalar perturbations of spinning and charged BHs. See Appendix C. When
such condition does not hold, a more sophisticated analysis is needed, but similar arguments can
be made.
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that kH = ω −mΩH and k∞ = ω (see Appendix C), showing that kH < 0 when the
condition (7.1) is met.

Again, we stress how dissipation is a crucial ingredient for superradiance: with-
out ingoing boundary conditions at the horizon, no superradiant scattering can oc-
cur [196, 197, 199, 217, 218]. In absence of a horizon (for example in the case of
rotating perfect-fluid stars if no dissipation is included [219, 220]), regularity boundary
conditions must be imposed at the center of the object. By applying the same argu-
ment as above, the Wronskian at the center vanishes, which implies |R|2 = |I|2, i.e.
no superradiance. If the rotating object does not possess a horizon, superradiance can
only come from some other dissipation mechanism, like friction due the atmosphere or
viscosity, which anyway require a precise knowledge of the microphysics governing the
interior of the object. Equivalently, we can argue that |O|2 and |T |2 are respectively
proportional to the outgoing and transmitted energy flux across the surface at r+. In
absence of dissipation, energy conservation implies that the outgoing flux will equal
the transmitted one, i.e. |O|2 = |T |2 and Eq. (7.9) would again prevent superradiance,
|R|2 = |I|2.

Superradiant scattering seems to imply that energy is being extracted from the
background which – at linearized order where superradiance is observed – is kept
fixed. When backreaction effects are included, energy is indeed extracted from the
BH. For rotating BHs, both the mass and angular momentum of the background BH
decrease [45, 221].

The amount of energy extracted through superradiance strongly depends on the
spin of the field. The maximum amplification factors are about 0.4%, 4.4% and 138%
for scattering of massless scalar, electromagnetic and gravitational waves, respectively.
The maximum amplification occurs close to the maximum spin of a Kerr BH and very
close to the superradiant threshold, ω ∼ mΩH.

7.3. Black holes & superradiant instabilities

As already mentioned, superradiant amplification lends itself to extraction of energy
from BHs, and can also be looked at as the chief cause of a number of important
instabilities in BH spacetimes. Some of these instabilities lead to hairy BH solu-
tions [208–210, 222, 223], whereas others extract rotational energy from the BH, spin-
ning it down [195] (this will be discussed in more detail in Chapter 11).

7.3.1. Spinning black holes in confining geometries are unstable

It was recognized early on that confinement will generically turn superradiant am-
plification into an instability mechanism. The idea is very simple and is depicted in
Fig. 7.1: superradiance amplifies any incoming pulse, and the amplification process
occurs near the ergoregion. If the pulse is now confined (say, by a perfectly reflecting
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Figure 7.1.: Scheme of a confined rotating BH, and how an initially small fluctuation–
the single red arrow – grows by successive reflections at the confining wall
and amplifications by superradiance in the ergoregion.

mirror at some distance) it is “forced” to interact – and be amplified – numerous times,
giving rise to an exponentially increasing amplitude, i.e. to an instability.

The details of the confinement are irrelevant and a simple picture in terms of a small
perfect absorber immersed in a confining box can predict a number of features. A
confining box supports stationary, normal modes. Once a small BH is placed inside,
one expects that the normal modes will become quasinormal and acquire a small imag-
inary part, describing absorption – or amplification – at the horizon of the small BH.
Thus, it seems that one can separate the two scales – BH and box size – and describe
quantitatively the system in this way [194].

Normal modes supported by a box have a wavelength comparable to the box size
r0, in other words a frequency ωR ∼ 1/r0. For small BHs, M/r0 � 1, we then have
Mω � 1, i.e., we are in the low-frequency limit. In this limit, the equation for wave
propagation can be solved via matched asymptotics [224]. Let A denote the absorption
probability at the horizon of a rotating BH (which can be computed analytically in
the small frequency regime [224–228]). By definition, a wave with initial amplitude A0

is scattered with amplitude A = A0 (1− |A|2) after one interaction with the BH. In
the superradiant regime |A|2 < 0. Consider now a wave trapped inside the box and
undergoing a large number of reflections. After a time t the wave interacted N = t/r0

times with the BH, and its amplitude changed to A = A0 (1− |A|2)
N ∼ A0 (1−N |A|2).

We then get

A(t) = A0

(
1− t|A|2/r0

)
. (7.10)

The net effect of this small absorption at the event horizon is to add a small imaginary
part to the frequency, ω = ωR + iωI (with |ωI | � ωR). In this limit, A(t) ∼ A0e

−|ωI |t ∼
A0(1− |ωI |t). Thus we immediately get that

ωI = |A|2/r0 . (7.11)
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For example, for a non-rotating BH [224]

|A|2 = 4π

(
MωR

2

)2+2l
Γ2[1 + l + s]Γ2[1 + l − s]

Γ2[1 + 2l]Γ2[l + 3/2]
(7.12)

∼ (M/r0)2l+2 � 1 (7.13)

where s = 0, 1, 2 for scalar, electromagnetic and gravitational fields, respectively. Com-
paring with Eq. (7.11), we obtain

MωI ∼ −(M/r0)2l+3 . (7.14)

When the BH is rotating, rotation can be taken into account by multiplying the
previous result by the superradiant factor 1−mΩ/ω. In fact, low-frequency waves co-
rotating with the BH are amplified by superradiance. Starobinsky has shown that, at
least for moderate spin, the result in Eq. (7.12) still holds with the substitution [225–
228]

ω2l+2 → (ω −mΩH)ω2l+1 , (7.15)

where we recall that ΩH is the horizon angular velocity.

In other words, this intuitive picture immediately predicts that confined rotating
BHs are generically unstable and estimates the growth rate. The dependence of the
growth rate on the confining radius r0 is estimated to be independent on the spin of the
field, and this behavior is observed in a variety of systems. The details need, of course,
a careful consideration of the corresponding perturbation equations; nevertheless, as
we will show, such conclusions hold for several different scenarios [194, 211, 229–231].

7.3.2. General formalism

At linearized level, BH superradiant instabilities are associated with perturbations of
a fixed BH background which grow exponentially in time. Because the background
is typically stationary, a Fourier-domain analysis proves to be very convenient. In
a stationary and axisymmetric background, a given perturbation Ψ(t, r, θ, φ) can be
Fourier transformed as

Ψ(t, r, θ, φ) =
1

2π

∑
m

∫
dωΨ̃m(ω, r, θ)e−iωteimφ , (7.16)

and the perturbation function Ψ̃m will satisfy a set of PDEs in the variables r and
θ. For the special case of a Kerr BH and for most types of fields, such PDEs can
be miraculously separated using spheroidal harmonics [177, 178] (see Appendix C),
whereas in more generic settings, other methods, that we will discuss in Chapters 9
and 10, have to be used [141].

The system of equations for Ψ̃m together with suitable boundary conditions at the
BH horizon and at spatial infinity define an eigenvalue problem for the frequency
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ω. Due to the boundary conditions at the BH horizon and at spatial infinity, the
eigenfrequencies (or quasinormal modes) are generically complex, ω = ωR + iωI [136].

In the rest of this Part we will discuss various superradiant instabilities obtained by
solving the corresponding perturbation equations in the frequency domain and finding
the complex eigenspectrum. Through Eq. (7.16), an instability corresponds to an
eigenfrequency with ωI > 0 and the instability time scale is τ ≡ 1/ωI . In the case of
superradiant modes this always occurs when the real part of the frequency satisfies the
superradiant condition, e.g. ωR < mΩH for a spinning BH.

7.4. Outline of Part II

In the second Part of this thesis we will study several superradiantly unstable systems.
We start by exploring the original black-hole bomb scenario in Chapter 8, where we
study electromagnetic perturbations of a Kerr BH enclosed by a spherical mirror. We
will show that this system is unstable, and the results are in full agreement with the
model of Section 7.3.1.

In Chapter 9 we study another system where confinement is manifest. We consider
massless scalar perturbations of a solution of Einstein-Maxwell’s equations, describing
spinning Kerr–Newman magnetized BHs. We show that these solutions are unstable
due to the superradiant instability, in analogy with the black-hole bomb case. At
infinity this solution resembles a solution of the Einstein–Maxwell equations describing
a uniform magnetic field held together by its own gravitational pull. This solution,
which was found by Melvin [232, 233] and further studied by Thorne [234], is known
in the literature as the Melvin spacetime. Like the AdS spacetime, the Melvin solution
admits normal modes, because the asymptotic boundary of the Melvin solution acts as
a confining box for perturbations. Once a BH is added to the spacetime, absorption or
amplification at the horizon is possible, in analogy with what happens for a small BH
immersed in AdS [235, 236]. In particular, we show that rotating magnetized BHs are
unstable against the superradiant instability, in full agreement with the arguments of
Section 7.3.1.

Chapter 10 is devoted to the study of massive spin-2 perturbations of the Kerr
metric. In general, the radial and angular part of the perturbation equations on a
spinning geometry are difficult – if possible at all – to separate within the standard
Teukolsky approach [136, 141]. The same obstacle is encountered for massive spin-1
(Proca) perturbations of a Kerr BH. To tackle this problem we have extended the
slow-rotating technique of Refs. [48, 49] to the case of massive spin-2 perturbations
(see also [237] for the case of gravito-electromagnetic perturbations of Kerr-Newman
BHs). By expanding the perturbation equations to first order in the BH spin, we find
strong evidence for the existence of unstable modes in the spectrum. This instability
is different from the one affecting Schwarzschild BHs (discussed in Chapter 3) and it
is associated to nonspherical modes which becomes unstable above a certain BH spin.
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The instability can be four orders of magnitude stronger than in the Proca case and up
to seven orders stronger than in the massive scalar case. These results provide strong
indications that massive spin-2 fields trigger the strongest superradiant instability in
vacuum BH solutions. Furthermore, the unstable, spherically-symmetric mode active
for Schwarzschild BHs presented in Chapter 3 is unaffected by rotation, at first order.
Thus, we present two mechanisms by which Kerr BHs are rendered unstable in massive
theories of gravity.

Finally, in Chapter 11 we study the development of the superradiant instability using
an adiabatic approximation. We study the impact of both gravitational-wave emission
and gas accretion on the evolution of the instability. This analysis shows that: (i)
gravitational-wave emission does not have a significant effect on the evolution of the
BH, (ii) accretion plays an important role and (iii) although the mass of the bosonic
cloud developed through superradiance can be a sizeable fraction of the black-hole
mass, its energy-density is very low and backreaction is negligible. Thus, massive BHs
are well described by the Kerr geometry even if they develop bosonic clouds through
superradiance. Using Monte Carlo methods and very conservative assumptions, we
provide strong support to the validity of the linearized analysis.
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8. Black holes enclosed in a mirror:
Electromagnetic black-hole bomb

8.1. Introduction

One of the first conceptual experiments related to BH superradiance concerns a spin-
ning BH surrounded by a perfectly reflecting mirror [197, 207, 229]. As discussed in
the previous Chapter, confinement turns this system unstable against superradiant
modes1. A perfectly reflecting wall is an artificial way of confining fluctuations, but is
a useful guide to the other more realistic and complex systems that we will consider in
the next Chapters.

For scalar fields, the relevant equation (7.7) can be solved imposing suitable in-going
or regularity boundary conditions at the horizon (namely O = 0 in the boundary
conditions (7.8)) and a no-flux condition at the mirror boundary r = rm in Boyer-
Lindquist coordinates. The latter can be realized in two different ways: either with
Dirichlet Ψ(rm) = 0 (see Ref. [229] for a full analysis of this case) or Neumann Ψ′(rm) =
0 conditions for the corresponding master wavefunction. The more realistic situation
of electromagnetic waves trapped by a conducting spherical surface is slightly more
involved and will be explained in this Chapter.

8.2. Electromagnetic fluctuations around a rotating
black hole enclosed in a mirror

8.2.1. Static black hole enclosed in a mirror

Consider first the evolution of a Maxwell field in a Schwarzschild background with
metric given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2) , (8.1)

1 Any initial fluctuation grows exponentially, as we argued previously, leading to an ever increasing
field density and pressure inside the mirror. The exponentially increasing pressure eventually
disrupts the confining mirror, leading to an “explosion,” and to this system being termed a black-
hole bomb [207].
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where, f(r) = 1 − 2M/r and M is the BH mass. The perturbations are governed by
Maxwell’s equations:

F µν
;ν = 0 , Fµν = Aν,µ − Aµ,ν , (8.2)

where a comma stands for ordinary derivative and a semi-colon for covariant derivative.
Since the background is spherically symmetric, we can expand Aµ in 4-dimensional
vector spherical harmonics (see [238]):

Aµ(t, r, θ, φ) =
∑
l,m

 0
0

alm(t, r)S̄lm

+

 f lm(t, r)Ylm
hlm(t, r)Ylm
klm(t, r)Ȳlm

 , (8.3)

with the vector spherical spherical harmonics given by,

Ȳ ᵀlm = (∂θYlm, ∂φYlm) , S̄ᵀlm =

(
1

sin θ
∂φYlm,− sin θ∂θYlm

)
, (8.4)

and where Ylm are the usual scalar spherical harmonics, m is the azimuthal number
and l the angular quantum number. The first term in the right-hand side has parity
(−1)l+1, and the second term has parity (−1)l. We shall call the former the axial modes
and the latter the polar modes.

Upon defining

Υlm =
r2

l(l + 1)

(
∂th

lm − ∂rf lm
)
, (8.5)

and inserting (8.3) into Maxwell’s equations (8.2), and after some algebra, we get the
following system of equations

∂2alm(t, r)

∂r2
∗

+

[
− ∂2

∂t2
− V (r)

]
alm(t, r) = 0 , (8.6)

∂2Υlm(t, r)

∂r2
∗

+

[
− ∂2

∂t2
− V (r)

]
Υlm(t, r) = 0 , (8.7)

V = f
l(l + 1)

r2
. (8.8)

If we assume a time dependence alm ,Υlm ∝ e−iωt, the equation for electromagnetic
perturbations of the Schwarzschild geometry takes the form

∂2Ψ

∂r2
∗

+
[
ω2 − V

]
Ψ = 0 , (8.9)

where the tortoise coordinate is defined through dr/dr∗ = f(r), Ψ = alm for axial
modes and Ψ = Υ for polar modes. The potential V appearing in equation (8.9) is
given by Eq (8.8).

Let us now assume we have a spherical conductor at r = rm. The conditions to be
satisfied are then that the electric/magnetic field as seen by an observer at rest with
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respect to the conductor has no tangential/parallel components, Eθ ∝ Fθ t = 0, Eφ ∝
Fφ t = 0, Br ∝ Fφ θ = 0. This translates into

∂ta
lm(t, rm) = 0 , f lm(t, rm)− ∂tklm(t, rm) = 0 . (8.10)

Using Maxwell’s equations (8.2), we get the relation

f lm(t, rm)− ∂tklm(t, rm) =
f

l(l + 1)
∂r
(
r2∂rf

lm − r2∂th
lm
)
. (8.11)

Finally, using Eq. (8.5) we get

∂rΥ = 0 . (8.12)

In other words, the boundary conditions at the surface r = rm are Ψ = 0 and ∂rΨ = 0
for axial and polar perturbations respectively. This can be used to easily compute
the electromagnetic modes inside a resonant cavity in flat space. Taking M = 0 in
Eq. (8.9) we find the exact solution

Ψ =
√
r
[
C1Jl+1/2(rω) + C2Yl+1/2(rω)

]
, (8.13)

where Ci are constants and Jn(rω) and Yn(rω) are Bessel functions of the first and
second kind, respectively. Imposing regularity at the origin r = 0 implies C2 = 0.
The Dirichlet boundary condition Ψ = 0 at r = rm, which can easily be shown to
correspond to the transverse electric modes (modes with Er = 0) [239], then gives

ωTE =
jl+1/2,n

rm
, (8.14)

where jl+1/2,n are the zeros of the Bessel function Jl+1/2 and n is a non-negative integer.
On the other hand the eigenfrequencies for the Neumann boundary condition ∂rΨ = 0,
which corresponds to the transverse magnetic modes (modes with Br = 0) [239], can
be computed solving

{
∂r
[√
rJl+1/2(rω)

]}
r=rm

=
(l + 1)Jl+1/2(rmω)− rmωJl+3/2(rmω)

√
rm

= 0 . (8.15)

Defining j̃l+1/2,n as being the zeroes of ∂r
[√
rmJl+1/2(rmω)

]
we find

ωTM =
j̃l+1/2,n

rm
. (8.16)

The eigenfrequencies for l = 1 and n = 0 are shown in Fig. 8.1 where we see that when
rm � M , the real part of the quasinormal frequencies of a BH enclosed in a mirror
asymptotically reduces to the flat space result.
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One can write down a relation between the Regge-Wheeler function Ψ [180, 240, 241]
and the Teukolsky radial function R (cf. Eq. (C.2)) given by

Ψ

r(r2 − 2Mr)s/2
=

(
r
√

∆
)|s|
D|s|−

(
r−|s|R

)
, s < 0,

Ψ

r(r2 − 2Mr)s/2
=

(
r√
∆

)s
Ds+
[(

r2 − 2Mr

r

)s
R

]
, s > 0,

(8.17)

where D± = d/dr± iω/f . Using these relations and Teukolsky’s radial equation (C.3),
one finds that the Dirichlet and the Neumann boundary conditions for Ψ, correspond
to the Robin boundary conditions for the radial function R given respectively by

∂rR−1 =
r − 2M + ir2ω

r(r − 2M)
R−1 , (8.18)

∂rR−1 =
rω[2M + r(−1− irω)]− il(l + 1)(2M − r)

(2M − r)r2ω
R−1 . (8.19)

After having understood the nonrotating case, below we turn to the rotating case.
The main difficulty lies in describing the electromagnetic physical quantities in terms of
the Newman-Penrose quantities. We will show that doing so, will allow us to generalize
the conditions (8.18) and (8.19).

8.2.2. Electromagnetic black-hole bomb

In the Newman-Penrose formalism, the electromagnetic field is characterized by three
complex scalars from which one can obtain the electric and magnetic field (see Ap-
pendix C). The details of this procedure are not important for us here so we refer
the reader to Ref. [242]. In the frame of a ZAMO observer (cf. subsection 7.2.1), the
relevant electric and magnetic field components read [242]

E(θ) =

[
∆1/2(r2 + a2)√

2ρ∗A1/2(r2 + a2 cos2 θ)

(
φ0

2
− φ2

ρ2∆

)
+ c.c.

]
− 2a∆1/2

A1/2
sin θ Im(φ1) ,

E(φ) =

[
−i∆1/2ρ

(
φ0

2
√

2
+

φ2√
2ρ2∆

)
+ c.c.

]
,

B(r) =

[
a sin θ√
2ρA1/2

(
φ2 −∆ρ2φ0

2

)
+ c.c.

]
+ 2

r2 + a2

A1/2
Im(φ1) , (8.20)

where ρ = −(r − ia cos θ)−1, A = (r2 + a2)2 − a2∆ sin2 θ and ∆ = r2 − 2Mr + a2.

If we assume a conducting spherical surface surrounding the BH at r = rm, then
Maxwell’s equations require that E(θ) = E(φ) = B(r) = 0 at r = rm and we are left with
the boundary conditions at the conductor:

ρΦ0 =
ρ∗Φ∗2

∆
, ρ∗Φ∗0 =

ρΦ2

∆
, Im(φ1) = 0 , (8.21)
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where we defined Φ0 = φ0 and Φ2 = 2ρ−2φ2 . This also implies that:

|Φ0|2 =
|Φ2|2

∆2
. (8.22)

To solve this equation we use the decomposition

Φ0 =
∑
lm

∫
dω e−iωt+imφRs lmωSs lmω(θ) ,

Φ2 =
∑
lm

∫
dω e−iωt+imφR−s lmωS−s lmω(θ) , (8.23)

where the radial and the angular function, R and S, satisfy Teukolsky’s Eqs.(C.3)
and (C.4) of Appendix C, respectively. The function Rs=1 can be written as a lin-
ear combination of Rs=−1 and its derivative through the Starobinski-Teukolsky identi-
ties [203, 227, 228]

D0D0−1R = BR1 , (8.24)

where B =
√
Q2 + 4maω − 4a2ω2, Q = A−1lm + a2ω2 − 2amω, with A−1lm defined in

Eq. (C.4), and the linear operator is given by

D0 = ∂r − i
K

∆
. (8.25)

Finally, using (8.23), (8.24) and integrating eq. (8.22) over the sphere2 we find the
following conditions for the two polarizations:

∂rR−1 =
−i∆ [±B + A−1lm + ω (a2ω − 2am+ 2ir)]

2∆ (a2ω − am+ r2ω)
R−1

+
(a2ω − am+ r2ω) (2ia2ω − 2iam+ 2M + 2ir2ω + ∂r∆− 2r)

2∆ (a2ω − am+ r2ω)
R−1 . (8.26)

Note that the perturbations can be written in terms of two Newman-Penrose scalars,
φ2 and φ0, which are two linearly dependent complex functions. This explains the exis-
tence of two different boundary conditions, as would have been expected given the two
degrees of freedom of electromagnetic fields. For a = 0 we recover the condition (8.18)
when using the minus sign, while for the plus sign we recover the condition (8.19);
accordingly, we label these modes as axial and polar modes, respectively.

The boundary conditions described above are only satisfied for a discrete number
of QNM eigenfrequencies ω. Our results for the characteristic frequencies are shown

2By integrating Eq. (8.22) over the sphere, we are actually only requiring it to be satisfied on average
over all angles. This turns out to have a clear physical meaning. In fact, the same boundary
conditions could have been obtained by requiring a vanishing radial energy flux at r = rm, as one
can easily check by comparing (8.22) with Eq. (9) in Ref. [243].
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in Fig. 8.1 for l = m = 1 and a = 0.8M . As the generic argument presented in
Section 7.3.1 anticipated, confined BHs develop an instability, i.e. some of the charac-
teristic frequencies satisfy ωI > 03. Figure 8.1 (left panel) shows that the time scale
dependence on rm is the same for electromagnetic and scalar fluctuations, as predicted
in Section 7.3.1. Note that the electromagnetic growth rates 1/ωI are about one order
of magnitude smaller than those of scalar fields. This is consistent with the fact that
the maximum superradiant amplification factor for vector fields is approximately one
order of magnitude larger than for scalars.

As also anticipated with the heuristic argument of Section 7.3.1, the instability time
scale grows with r2l+2

m and the oscillation frequency ωR is inversely proportional to the
mirror position and reduces to the flat space result when rm �M . Thus, for very small
rm the superradiant condition ω < mΩH is violated and the superradiant instability is
quenched. In the limit of very large cavity radius rm/M our results reduce to the TE
and TM modes of a spherical cavity in flat space [239].
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Figure 8.1.: Fundamental (n = 0) QNM frequency for scalar and electromagnetic per-
turbations of a confined Kerr BH as a function of the mirror’s location rm,
for l = m = 1 and a = 0.8M . For rm larger than a critical value the modes
are unstable. We show the two different polarizations for the electromag-
netic BH bomb compared to the modes of a scalar field for Dirichlet and
Neumann boundary conditions at the boundary. For comparison we also
show the flat space transverse electric (TE) and transverse magnetic (TM)
modes inside a resonant cavity, as computed in Eqs. (8.14) and (8.16).

3We recall that the time-dependence of the field is ∼ e−iωt, and a positive imaginary component of
the frequency signals an instability.
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8.3. Conclusions

The BH bomb scenario discussed in this chapter can serve as a model to describe
astrophysical BHs surrounded by plasmas or accretion disks. Ionized matter is a good
low-frequency electromagnetic waves reflector and can thus play the role of the mirror
(this was first realized by Teukolsky [244]. See also Ref. [245]). A very important
question which still needs clarification concerns the effectiveness of the instability in
these realistic situations. The matter surrounding the BH comes under the form of
thin or thick accretion disks and not as spherically shaped mirrors. Confining the field
along some angular direction means forbidding low angular eigenvalue modes, implying
that only higher-angular eigenvalue modes (with longer time scales, cf. Eq. (7.15)) are
unstable [246, 247].

Although the geometrical constraint imposed by accretion disks does not completely
quench the instability, it can be argued that absorption effects at the mirror could [247].
Consider an optimistic setup for which the electromagnetic wave is amplified by ∼ 1%
each time that it interacts with the BH [203]. A positive net gain only ensues if the
wall has a reflection coefficient of 99% or higher. On the other hand, this argument
assumes that the mirror itself does not amplify the waves. But if it is rotating, it may
also contribute to further amplification (an interesting example of amplification induced
by a rotating cylinder is discussed in Ref. [198]). Clearly, further and more realistic
studies need to be made before any conclusion is reached about the effectiveness of
“BH bomb” mechanisms in astrophysical settings.

Finally, we note that the Robin boundary conditions (8.26) that we found, are anal-
ogous to the ones found in Refs.[243, 248] for electromagnetic perturbations in AdS,
where a no-flux boundary condition was imposed, and to the ones in Ref. [230, 249] for
gravitational perturbations in AdS. In both cases there are two families of boundary
conditions, reminiscent of the two polarizations of electromagnetic and gravitational
waves. These results also confirm the close similarity between small BHs in asymptot-
ically AdS spacetimes and the BH-bomb scenario.
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9. Superradiant instability of black
holes immersed in a magnetic field

9.1. Introduction

The existence of strong magnetic fields around astrophysical BHs is believed to be at
the origin of some of the most energetic events of our Universe, such as the emission
of relativistic jets. The Blandford-Znajek process is widely believed to be one leading
mechanism at the origin of these phenomena [250]. This process allows the extraction
of energy from a spinning BH due to the presence of a magnetic field supported by the
material accreted by the BH.

A full understanding of the interactions between the accretion disk, the surrounding
magnetic field and the BH is a complex problem and requires the use of sophisti-
cated general-relativistic magnetohydrodynamic simulations (cf. e.g. Refs. [251, 252]),
nonetheless a qualitative picture can be drawn by studying stationary magnetized
BH solutions in general relativity. For example, the approximate solution found by
Wald [253], which describes a Kerr BH immersed in a test uniform magnetic field
aligned with the BH spin axis, has served as a model to understand the interaction
of BHs with magnetic fields. Several remarkable phenomena – such as charge induc-
tion [253] and a Meissner-like effect [254] – can be understood by studying this simple
solution [255].

In addition to the perturbative solution found by Wald, a class of exact solutions of
the Einstein–Maxwell equations, describing BHs immersed in a uniform magnetic field,
was discovered by Ernst, who developed a powerful method to construct them starting
from vacuum solutions of Einstein’s equations [256]. Although the Ernst spacetimes are
not asymptotically flat, they can also be used to model the properties of BHs immersed
in strong magnetic fields in a simple way.

Even though the Wald and Ernst solutions were discovered 40 years ago, the dynam-
ics of linear perturbations in these backgrounds is still largely unexplored. One of the
main motivations to study perturbations of magnetized rotating BHs is the possibil-
ity, first proposed by Galt’sov and Petukhov [257], that the magnetic field can trigger
superradiant instabilities [207, 258]. As already mentioned, superradiant instabilities
need essentially two ingredients to occur: (i) a monochromatic bosonic wave with low-
frequency ω satisfying the superradiance condition (7.1); and (ii) a mechanism to trap
superradiant modes near the BH. The first condition allows the extraction of rotational
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energy from the BH, spinning it down, while the second condition is necessary to “keep
the extraction going,” thereby triggering the instability.

Several confining mechanisms to trap the modes have been investigated, starting
from an artificial mirror around the BH (the so-called “BH bomb” [207, 229, 258]
discussed in Chapter 8), to more natural ones like massive bosonic fields [208, 259–
262], where the mass term plays the role of the mirror (discussed in Chapter 10), or
the asymptotically AdS spacetime, where the AdS boundary confines the perturbations
inside the bulk [211, 230, 249, 263].

Magnetic fields can confine the radiation in a similar way. Working in a Br � 1
expansion (with B being the magnetic field strength and r the radial coordinate, both
in geometric units), Refs. [257, 264, 265] showed that a scalar field propagating on
the Ernst background is equivalent to a massive scalar perturbation propagating on a
Schwarzschild or Kerr metric with an effective mass µeff = Bm, with m the azimuthal
number. As such, the magnetic field triggers the same superradiant instability associ-
ated to massive fields. However, such approximation becomes inaccurate at distances
comparable to or larger than ∼ 1/B. As we show, this profoundly affects the dy-
namics of the perturbations, because the spectrum is defined by physically-motivated
boundary conditions imposed at large distances r � 1/B.

In this Chapter we take a step further to understand how strong magnetic fields
affect BH spacetimes. We study scalar perturbations of the Ernst solutions with no
approximation for the first time. We show that magnetized BHs can indeed support su-
perradiant unstable modes and that this instability can be orders of magnitude stronger
than the one estimated using the approximation of Refs. [257, 264, 265] in terms of an
effective mass µeff = Bm. In the exact case, the perturbation equations do not seem
to be separable and this prevents the use of most methods to compute quasinormal
modes (QNMs) (see [136, 172, 266] for reviews). We circumvent this problem using
powerful techniques developed in the past few years (see e.g. [141]), which allow us to
solve the full linearized dynamics for any value of B.

9.2. The Melvin spacetime and its normal oscillation
modes

We start by studying the geodesic motion and the normal modes of the Melvin space-
time, which are instructive to understand the QNMs of a BH immersed in a magnetic
field. In cylindrical coordinates the Melvin metric is given by [232]

ds2 = Λ2
M

(
−dt2 + dρ2 + dz2

)
+

ρ2

Λ2
M

dφ2 , (9.1)

where ΛM = 1+B2ρ2/4. This solution describes a uniform magnetic field aligned along
the z-axis.
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Let us start with a brief geodesic analysis of the metric (9.1). Staticity and axial
symmetry of the metric imply the existence of a conserved energy E and angular
momentum parameter L, defined as

Λ2
M ṫ = E ,

ρ2

Λ2
M

φ̇ = L , (9.2)

where a dot stands for derivative with respect to an affine parameter. Null particles
then obey the equation

ρ̇2 = Vρ ≡
E2

Λ4
M

− L2

ρ2
, (9.3)

or simply (
dρ

dt

)2

= 1− Λ4
M (L/E)2

ρ2
. (9.4)

Circular (Vρ = dVρ/dρ = 0) geodesics for massless particles are only possible for ρ2 =
4/(3B2) and correspond to an angular frequency

Ω ≡ dφ

dt
=

16
√

3B

9
√

4
∼ 1.5396B . (9.5)

In the geometric-optics regime, normal modes with m� 1 in the Melvin spacetime
are expected [267] to reduce to the geodesic result described by Eq. (9.5), i.e,

ωnormal = mΩ =
16
√

3mB

9
√

4
∼ 1.5396mB . (9.6)

Let us now find the normal modes of a probe scalar field propagating in the Melvin
metric (9.1). The Klein-Gordon equation for a massless field has the form

�Φ ≡ 1√
−g
(
gµν
√
−gΦ;µ

)
;ν

= 0 . (9.7)

By making the following ansatz for the scalar field

Φ(t, ρ, z, φ) =
Q(ρ)
√
ρ
eikzeimφe−iωt , (9.8)

the Klein-Gordon equation (9.7) reads

Q′′(y) +

[
ω̃2 − m2 (y2 + 4)

4 − 64

256y2

]
Q(y) = 0 , (9.9)

where ω̃2 = (ω2−k2)/B2 and y = Bρ. Note that with these redefinitions the magnetic
field B scales out of the problem. Furthermore, the eigenvalue problem is invariant
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Table 9.1.: Scalar normal modes of the Melvin spacetime for m = 1 and different
overtone number n.

ω̃
n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

2.04862 2.91334 3.68457 4.39629 5.06541 5.70187 6.31212

Table 9.2.: Fundamental (n = 0) scalar normal modes of the Melvin spacetime for
different azimuthal number m.

ω̃
m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

2.04862 3.59874 5.14195 6.68336 8.22404 9.76436

under m→ −m, ω → −ω, k → −k and Q(y)→ Q∗(y) so we consider only modes with
m > 0.

After imposing appropriate boundary conditions, Eq. (9.9) defines a boundary value
problem that admits normal modes. Near the origin the solution behaves as

Q(y) ∼ A1y
m+1/2 + A2y

−m+1/2 , (9.10)

and regularity at the origin imposes A2 = 0. The asymptotic behavior at infinity is
given by

Q(y) ∼ y−3/2
[
Cey

4m/64 +De−y
4m/64

]
, (9.11)

and the only acceptable physical solution corresponds to C = 0.

To find the normal frequencies of this spacetime we integrate numerically Eq. (9.9)
starting from the boundary condition (9.10) and imposing C = 0 in the asymptotic
solution (9.11). This selects a discrete spectrum of frequencies which are summarized
in Tables 9.1 and 9.2.

The most important points to retain from these results are that (i) Melvin spacetimes
are (marginally) stable and are described by a set of normal modes; (ii) for large m
our results are well consistent with the expansion ω̃ = 1.5396m+ 0.5301− 0.02113/m,
in excellent agreement with the geodesic analysis in Eq. (9.6).

At this point it is important to stress that these modes only exist due to the behavior
of the metric at ρ → ∞, which is not asymptotically flat. Indeed, considering y ≡
Bρ � 1 and neglecting terms at O(y2), we find that Eq. (9.9) describes a scalar field
propagating in Minkowski spacetime with effective mass µeff = mB. A free massive
field in flat space does not form stationary bound states and, therefore, no modes are
predicted for the Melvin spacetime within this approximation. These modes solely
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exist due to the boundary condition (9.11) imposed by the magnetic field at large
distances, Bρ � 1. The situation is analogous to what happens in AdS spacetime.
Normal modes exist in pure AdS space due to the timelike boundary at spatial infinity,
which allows null rays to reach the boundary in a finite time and be reflected back. In
this case the AdS radius selects the frequencies of these modes. In the same way, in the
Melvin spacetime perturbations are confined by the magnetic field which behaves like
an infinite “wall” at a radius r0 ∼ 1/B. This allows for the existence of a discrete set
of normal modes. As we discuss in the next sections, such modes would be missed by
a perturbative analysis similar to what was done in Refs. [257, 264, 265], where QNMs
of a BH immersed in the Melvin universe have been computed perturbatively to order
B2.

9.3. The linear stability of the Ernst spacetime

9.3.1. The Ernst background spacetime

In 1976 Ernst found a class of exact BH solutions of the Einstein–Maxwell equations
immersed in the Melvin spacetime [256]. The simplest of these solutions corresponds
to a magnetized Schwarzschild BH, also known as the Ernst metric, which is given by

ds2 = Λ2
M

(
−f(r)dt2 +

dr2

f(r)
+ r2dθ2

)
+
r2 sin θ2

Λ2
M

dφ2 , (9.12)

where f(r) = 1 − 2M
r

. In the limit M → 0 this metric reduces to the Melvin solu-
tion (9.1), with ρ = r sin θ and z = r cos θ, while in the limit B → 0 it reduces to the
standard Schwarzschild solution. Due to the presence of the magnetic field this space-
time is not asymptotically flat, but instead approaches the Melvin metric as r/M →∞.
The vector potential giving rise to the homogeneous magnetic field reads

Aµdx
µ = −Br

2 sin2 θ

2ΛM

dφ . (9.13)

The event horizon is located at rH = 2M and its area is given by AH = 4πr2
H , as in

the Schwarzschild BH, but due to the θ–dependence of the gφφ component, the horizon
takes the form of a cigar-shaped object [268]. However the magnetic field only starts
to distort significantly the spacetime at distances of the order of B−1.

9.3.2. Linearized analysis

In a Melvin background the scalar field equation can be separated using cylindrical
coordinates. However, due to the presence of the BH, cylindrical symmetry is lost
in the Ernst metric, making the separation of the radial and angular part apparently
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impossible. Nevertheless we can use the method discussed in [269] to separate the
equation at the expense of introducing couplings between different modes (see also
Ref. [141] for a review).

We begin by splitting the angular and radial dependence of the field as

Φ(t, r, θ, φ) =
∑
jm

Qj(r, t)

r
Yjm(θ, φ) , (9.14)

where Yjm(θ, φ) denotes the usual spherical harmonics. Because the background is
axisymmetric, the eigenfunctions are degenerate in the azimuthal number m. Inserting
the ansatz above in the Klein-Gordon equation (9.7) and considering the background
(9.12), we find

∑
jm

Yjm(θ, φ)

[
d2Qj

dr2
∗
− d2Qj

dt2
− Veff(r, θ)Qj

]
= 0 , (9.15)

where r∗ is the tortoise coordinate, defined via dr/dr∗ = f , and

Veff(r, θ) = f(r)

{
j(j + 1)

r2
+

2M

r3
+
B2m2

256

[(
B2r2 + 8

) (
B4r4 + 8B2r2 + 32

)
−B2r2

(
3B4r4 + 32B2r2 + 96

)
cos2 θ +B4r4

(
3B2r2 + 16

)
cos4 θ −B6r6 cos6 θ

]}
.

(9.16)

Since the spacetime is not spherically symmetric, the angular and radial parts of
the Klein-Gordon equation cannot be separated using a basis of spherical harmonics.
Nonetheless, the problem can be reduced to a 1 + 1–problem using the fact that terms
with cosn θ lead to couplings between different multipoles [269]. To show this, we first
multiply Eq. (9.15) by Y ∗lm(θ, φ) and integrate over the sphere. Then, making use of
the fact that the Clebsch-Gordan coefficients,

c
(n)
jlm ≡ 〈lm |cosn| jm〉 , (9.17)

are zero unless j = l or j = l − n, ...., l + n, we finally arrive at the following equation

d2Ql(r, t)

dr2
∗

− d2Ql(r, t)

dt2
−

3∑
i=−3

Vl+2iQl+2i(r, t) = 0 , (9.18)
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where the radial potentials read

Vl = f

{
l(l + 1)

r2
+

2M

r3
+
B2m2

256

[(
B2r2 + 8

) (
B4r4 + 8B2r2 + 32

)
−B2r2

(
B4r4c

(6)
ll −B

2r2
(
3B2r2 + 16

)
c

(4)
ll

+
(
3B4r4 + 32B2r2 + 96

)
c

(2)
ll

)]}
, (9.19)

Vl±2 = f

[
−B

4m2

256
r2
(
B4r4c

(6)
l±2l −B

2r2
(
3B2r2 + 16

)
c

(4)
l±2l

+
(
3B4r4 + 32B2r2 + 96

)
c

(2)
l±2l

)]
, (9.20)

Vl±4 = f

[
B6m2

256
r4
((

3B2r2 + 16
)
c

(4)
l±4l −B

2r2c
(6)
l±4l

)]
, (9.21)

Vl±6 = −f
[
B8m2

256
r6c

(6)
l±6l

]
, (9.22)

where for ease of notation we have suppressed the index m of the Clebsch-Gordan
coefficients, but it is understood that the latter depend also on m.

This system of equations admits long-lived modes. To find them we can either evolve
the system in time (as discussed in Sec. 9.3.5 below) or compute them in the frequency
domain. In the frequency domain we consider the following time dependence for the
field:

Qj(r, t) = Qj(r)e
−iωt . (9.23)

Imposing regularity boundary conditions at the horizon and at infinity, Eq. (9.18) de-
fines an eigenvalue problem for the complex frequency ω = ωR+iωI . The eigenfrequen-
cies are also termed the QNM frequencies and form a discrete spectrum [136, 172, 266],
which generically depends on m, B and on the overtone number n. Since the presence of
the magnetic field breaks the spherical symmetry of the Schwarzschild background, the
harmonic index l is not a conserved “quantum number” and, for a given m, Eq. (9.18)
effectively describes an infinite system of equations where all the eigenfunctions Qj

(j = 0, 1, 2, ...m) are coupled together.

It is straightforward to show that at the horizon the system decouples and regularity
requires purely ingoing waves,

Ql(r) ∼ e−iωr∗ , r → rH . (9.24)

The behavior at infinity is more intricate since different multipoles are coupled.
However this is a difficulty introduced by the spherical coordinates. Expanding the
potential (9.16) at infinity and defining ρ = r sin θ, we easily see that the asymptotic
solution reduces to (9.11). We can then use standard methods for systems of coupled
equations (see e.g Refs. [48, 70, 143] and the review [141]) to find the QNM frequencies.
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Table 9.3.: Fundamental (n = 0) QNMs of the Ernst BH solution computed in the
frequency domain for l = m = 1 and different values of B.

BM MωR −MωI
0.025 0.0510 1.2 · 10−8

0.050 0.1002 6.7 · 10−7

0.075 0.1473 9.1 · 10−6

0.100 0.1919 7.0 · 10−5

0.125 0.2337 3.7 · 10−4

0.150 0.2721 1.4 · 10−3

Since the full system (9.12) contains an infinite number of equations, in practice we
must truncate the series at some given L, i.e. we assume Qj ≡ 0 when j > L.
Convergence is then checked by increasing the truncation order. The results shown
have converged to the number of digits displayed and have been obtained with two
different methods, a “direct integration” and a “Breit-Wigner” approach [141].

9.3.3. Results

We have performed a detailed numerical analysis of the scalar eigenfrequencies of the
Ernst BH as functions of B, m and overtone number n. Some results are shown in
Tables 9.3 and 9.4. Even though the background metric is not spherically symmetric,
a notion of harmonic index l is still meaningful. In the following we define a mode with
given (l,m) as the one corresponding to a set Qj (with j = 0, 1, 2, ...m) for which the
eigenfunction Ql is the one with largest relative amplitude. Although this practical
definition becomes ambiguous for large values of B, we find that such hierarchy in l
holds in a large region of the parameter space. For the same reason, the multipolar
series in Eq. (9.12) converges rather fast in L, even for moderately large values of B.

For BM � 1, the real part behaves approximately as

ωR ∼ [0.75n+ 1.2m+ 0.25l + 0.7]B , (9.25)

whereas we infer for the imaginary part a dependence of the form

MωI ∼ −γ(BM)2l+3 , (9.26)

where γ is a numerical coefficient that depends on n, l and m. For l = m = 1, we find
γ ≈ 2.2 for n = 0 and γ ≈ 9.3 for n = 1, respectively.

9.3.4. Relation with previous results in the literature

The behavior (9.25) and (9.26) is different from the results of Refs.[257, 264, 265]. The
approximation employed in these works changes the asymptotic behavior at infinity in
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Table 9.4.: Quasinormal modes of the Ernst spacetime computed in the frequency do-
main for l = m = 1, BM = 0.1 and different overtone number n.

n MωR −MωI
0 0.1919 7.0 · 10−5

1 0.2674 7.5 · 10−4

2 0.3213 2.9 · 10−3

3 0.3656 4.5 · 10−3

such a way that the only role of the external magnetic field is to introduce an effective
mass, µeff = Bm, for the scalar field. Consequently, the QNM spectrum was found to
be equivalent to that of massive scalar perturbations of a Schwarzschild BH. Massive
fields admit quasibound state modes with a hydrogenic spectrum [142, 261]

ωmass
R ∼ µeff , Mωmass

I ∼ −(Mµeff)4l+6 . (9.27)

While the real part is consistent with the exact behavior (9.25), the scaling of the
imaginary part with B is different from Eq. (9.26).

Indeed, solving the full system (9.18), we find that the QNM spectrum has the same
qualitative behavior as the modes of a small BH in AdS [211] or of a BH inside a
mirror [229]. This is not surprising since the asymptotic behavior plays a crucial role
in defining the eigenfrequencies. In fact these frequencies are supported by an effective
“wall” created by the magnetic field at r0 ∼ 1/B. In the AdS and in the mirror
cases the mirror is given by the AdS radius and by the mirror radius, respectively.
We can therefore understand the modes of the Ernst BH as being a small correction
to the modes of the Melvin spacetime. The BH event horizon behaves like a perfect
absorber [270] and its role is mostly to change one of the boundaries, leading to the
slow decay of the field 1. This is consistent with qualitative picture given in the
subsection 7.3.1 [cf. Eq. (7.14)].

The behavior predicted by the model in subsection 7.3.1 is different from the case of
massive perturbations, because the latter can only confine low-frequency modes with
ωR . µ (where µ is the mass of the field), whereas an “effective box” confines radiation
of any frequency. From a mathematical viewpoint, this property requires different
boundary conditions for the perturbations at infinity.

Therefore, our analysis gives an explicit example of a very natural fact: the eigen-
value spectrum of a given metric is highly sensitive to the asymptotic behavior of the
spacetime. Any approximation that changes the boundary conditions might drasti-
cally affect the spectrum. Indeed, for the same multipole number l the decay rate of a

1Strictly speaking, since the regular behavior of Eq. (9.11) is a damped exponential, such modes could
be dubbed as quasibound states, in analogy to the case of massive fields [49, 70, 142]. However,
in the case of the Ernst solution these are the only eigenfrequencies that solve the exact problem
and the distinction with the QNMs is irrelevant.
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massive field [cf. Eq. (9.27)] can be orders of magnitude smaller than the exact results
given in Eq. (9.26). Due to this difference, in Sec. 9.4 we shall see that, when rotation
is turned on, not only the exact modes of the Ernst BH become unstable due to super-
radiance, but also that the instability time scale can be orders of magnitude shorter
than that associated to a massive field [142, 231] – and, consequently, the instability is
stronger than that discussed in Ref. [265].

9.3.5. Time-domain analysis

For completeness, in this section we discuss the results of a time-domain analysis of the
system (9.18). Some examples of waveforms obtained in the time domain are shown in
Fig. 9.1. We consider an initial Gaussian wave packetQj(0, r) = δj1 exp [(r∗ − rc)2/(2σ2)]
with σ = 6M and rc = 6M , whose time evolution is governed by the system (9.18).
The discretization of spatial derivatives is performed using a 2nd order finite difference
scheme and integration in time is done with a 4th order accurate Runge-Kutta method.

At early times and for small values of B, the waveform is dominated by some ring-
down modes [136] (top left panel of Fig. 9.1). These ringdown frequencies are not given
by the modes previously computed, being in fact very similar to the Schwarzschild QNM
frequencies [136]. These numbers are in very good agreement with what was found in
Ref. [264] and are indeed consistent with the fact that for BM � 1 the ringdown
frequencies are almost unaffected by the long-range modification of the potential due
to the magnetic field.

However, we stress that such frequencies do not show up in the frequency domain
analysis because they do not satisfy the asymptotic boundary conditions (9.11). Indeed,
after a time of order t ∼ 1/B, the wave is reflected back by the effective wall at r0 ∼ 1/B
with a smaller amplitude due to the absorption by the event horizon (top right panel of
Fig. 9.1). These reflections give rise to the QNM spectrum previously computed in the
frequency domain and are related to the Melvin normal modes. Due to the couplings
between different multipoles, various frequencies dominate the waveform, making it
difficult to extract accurate information about these modes in the time domain.

The fact that the ringdown frequencies at intermediate times are different from the
QNMs of the spacetime is another example of an interesting phenomena discussed in
detail in Ref. [271] in the context of “dirty” BHs.

9.4. Superradiant instability of the magnetized
Kerr-Newman solution

After having understood the QNMs of a nonrotating magnetized BH, we now turn
our attention to the spinning case. A magnetized rotating BH is a complex object.
For example, it was shown by Wald [253] that when a spinning neutral BH is im-
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Figure 9.1.: Waveforms for a small Gaussian packet Qj(0, r) = δj1 exp [(r∗ − rc)2/(2σ2)]
(with σ = 6M and rc = 6M propagating on a Ernst spacetime for different
values of BM . Top left: BH ringdown at early times for BM = 0.05 and
l = m = 1. Top right: After a time t ∼ 1/B, the “Melvin-like” modes
are excited. Bottom panels: Waveform for BM = 0.1 and l = m = 1,
truncating the series at L = 7 (left panel) and L = 1 (right panel). In
the bottom right panel we also show the fit to the decay rate of the scalar
field, showing good agreement with the frequency domain analysis.

mersed in a magnetic field it is energetically favorable for it to acquire a charge given
by q = −2ãM2B, where q and ã correspond to the charge and rotation parameters
of the unmagnetized Kerr-Newman solution. This result was established neglecting
backreaction effects of the magnetic field onto the BH spacetime. Nonetheless, the
result was quickly generalized, when Ernst and Wild found the first exact solution of
a magnetized Kerr BH [272]. This solution was latter shown to suffer from conical
singularities at the poles by Hiscock [273], but he realized that this singularity could
be removed by redefining the azimuthal angle φ (see Appendix D).

Studying perturbations of the full magnetized Kerr-Newman solution (see e.g. Ref. [274])
is a formidable task. However the problem becomes tractable if we consider an expan-
sion in the rotation parameter ã. In the following we will consider a slowly-rotating
magnetized BH with Wald’s charge, to second order in the spin. Note that the slow-
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rotation approximation of the linear perturbations is fully consistent to second or higher
order in ã, as discussed in Ref. [49].

The Klein-Gordon equation (9.7) on the slowly-rotating Kerr–Newman background
is discussed in Appendix D. The final result reads:

∑
l

Ylm(θ, φ)

{
d2Ql(r)

dr2
∗

+
[
ω2 − Veff − ãmωW

]
Ql(r)

+ã2

[
4∑
i=0

V2i(r) cos2i θ

]
Ql(r)

}
= 0 , (9.28)

where Veff = Veff(r, θ) is given by Eq. (9.16), the first-order function

W (r, θ) =
4M2

r3
+

8M2B2

r
− M2B4

4
(5r + 22M)− M2B4

4
cos2 θ(2 + cos2 θ)(r − 2M) ,

(9.29)
and the second-order radial coefficients Vi(r) are given in Appendix D. To separate this
equation we use the same technique discussed in Sec. 9.3, leading to an infinite set of
radial equations with couplings between different multipoles up to l ± 8.

Defining a tortoise coordinate dr/dr∗ = F (where F is a metric variable defined in
Appendix D), the purely ingoing wave condition at the horizon reads

Ql ∼ e−ikHr∗ , r → r+ , (9.30)

where kH = ω−mΩH, r+ is the event horizon radius to second order in ã [cf. Eq. (D.8)],

and ΩH = − limr→r+ g
(0)
tφ /g

(0)
φφ , is the angular velocity at the horizon of locally nonro-

tating observers, with g
(0)
µν being the background metric.

We have integrated the eigenvalue problem defined by Eq. (9.28) numerically. A
representative result is shown in Fig. 9.2 where we plot the imaginary part of the
fundamental eigenvalue as a function of the BH spin ã ≡ J/M2 and for different
values of B. As discussed in Appendix D, the charge q affects the superradiance
threshold. Accordingly, the imaginary part crosses the axis when the superradiant
conditions (D.15) or (D.16) are met, for a BH with q = −2ãM2B or q = 0, respectively.
Although not shown, the real part of the modes depends only mildly on the spin and
it is well approximated by Eq. (9.25).

The results shown in Fig. 9.2 are obtained truncating the multipolar series at L =
9, which guarantees convergence in the entire region of the parameter space under
consideration.

In the limit BM � 1, one can estimate the instability time scale by considering
modes (9.25) and (9.26) in the nonrotating case and extrapolating the results to higher
values of the spin. The same kind of extrapolation has been done in Refs. [48, 70],
where it was found to be sufficiently accurate, for example it captures the onset of the
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Figure 9.2.: Imaginary part of the fundamental modes of a Kerr–Newman–Ernst BH
with Wald’s charge q = −2JB, computed at second order in the rotation
and truncating the series at L = 9, as a function of the BH rotation rate
ã = J/M2, for l = m = 1, and different values of the magnetic field. The
dotted thinner lines correspond to a magnetized BH without charge. The
only effect of the charge is to change the superradiance threshold.

instability and the order of magnitude of the time scale. This argument is further sup-
ported by the simple model we discussed in Sec. 7.3.1, and predicts that the imaginary
part of the modes scales as

ωIM ∼ γ

(
ãm− 2ωRr+

1 + 8B2M2 − 16B4M4

)
(BM)2(l+1) . (9.31)

Because the time dependence of the perturbation is ∼ eiωRt+ωI t, when the condi-
tion (D.15) is satisfied ωI > 0 and the perturbation grows exponentially in time. In
other words, as predicted in Sec. 7.3.1, rotating BHs in Melvin spacetimes are unstable,
with an instability time scale given by 1/ωI .

The estimate (9.31) is in agreement with our numerical results to O(ã2). Although
our analysis is perturbative in the spin, the results at order ã2 are found to be in re-
markably good agreement with the exact ones for other systems [49, 275], suggesting
that Eq. (9.31) might be valid beyond its nominal regime of validity. In the next sec-
tion we take Eq. (9.31) as an order-of-magnitude estimate to discuss the astrophysical
relevance of the superradiant instability triggered by an external magnetic field.

Finally we note that, unlike the case of a massive field, the fundamental mode
(n = 0) does not necessarily have the smallest instability time scale. In fact, the
nonrotating results suggest that higher n have larger imaginary parts (see Table 9.4),
which translates to a stronger instability in the spinning case. Nonetheless, due to the
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superradiant condition (D.15) and the scaling of ωR with n given by Eq. (9.25), only
the modes with small n will be superradiant.

9.5. Astrophysical implications of the superradiant
instability triggered by magnetic fields

To measure the strength of a magnetic field in an astrophysical context, we can define
the characteristic magnetic field BM = 1/M associated to a spacetime curvature of the
same order of the horizon curvature. Restoring physical units, we obtain

BM ∼ 2.4× 1019

(
M�
M

)
Gauss . (9.32)

The strongest magnetic fields around compact objects observed in the Universe are of
the order of 1013–1015Gauss [276]. In natural units this corresponds to B/BM ∼ 10−6–
10−4. However, BM is generically much larger than the typical magnetic field believed
to be produced by accretion disks surrounding massive BHs. For supermassive BHs
with M ∼ 109M� a magnetic field B ∼ 104Gauss ∼ 10−6BM seems to be required
to explain the observed luminosity of some active galactic nuclei, assuming a specific
model for the interaction between the BH and the accretion disk [277]. Likewise,
the typical values of the magnetic field strength near stellar-mass BHs is estimated
to be B ∼ 108Gauss ∼ 10−10BM . In other words, the magnetic field near massive
BHs typically satisfy B � BM . This justifies the small-B estimates given in the
previous sections but, on the other hand, it also implies that the superradiant instability
time scale would typically be very long. The purpose of this section is to quantify
these statements and to investigate the (superradiant) instability triggered by uniform
magnetic fields for astrophysical BHs.

In an astrophysical context our results should be taken with care. The Ernst metric
is not asymptotically flat, since it describes a BH immersed in a magnetic field which
is supported by some form of “matter” at infinity. In a realistic situation, the magnetic
field is supported by an accretion disk. The Ernst metric therefore may be a relatively
good approximation to the geometry of an astrophysical BH only up to a cutoff distance
associated with the matter distribution. In other words, the characteristic length
scale r0 ∼ 1/B should be smaller than the characteristic distance rM of the matter
distribution around the BH. Considering that the accretion disk is concentrated near
the innermost stable circular orbit, this would imply that our results can be trusted only
when r0 . rM ∼ 6M , i.e. for BM & 0.1. As we discussed above, this is a very large
value for typical massive BHs. On the other hand, the Ernst metric is more accurate
to describe configurations in which the disk extends much beyond the gravitational
radius, as is the case in various models. In this case, however, the magnetic field will
not be uniform and the matter profile has to be taken into account.
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Figure 9.3.: Contour plots in the BH Regge plane [47] corresponding to an instability
time scale shorter than τSalpeter ∼ 4.5 × 107yr for different values of the
magnetic field strength B for modes with l = m = n = 1. BHs lying above
each of these curves would be unstable on an observable time scale. The
threshold lines are obtained using Eq. (9.31) in the range 10−4 . BM .
0.2.

Nevertheless, and since we wish to make a point of principle, we will use the results
obtained in the previous sections for a Kerr BH immersed in a uniform magnetic field
to predict interesting astrophysical implications.

As a result of the superradiant instability, the energy density of the radiation in
the region r . 1/B would grow in time at the expense of the BH angular momen-
tum. Therefore, the most likely end state of the instability is a spinning BH with
dimensionless spin parameter slightly below the superradiant threshold2. This implies
an upper limit on the spin of magnetized BHs which depends on the magnetic field,
but it is certainly lower than the Kerr bound ã < 1. However, this argument remains
valid only if the instability extracts the BH angular momentum at higher rate than
any possible spin-up effect. For supermassive BHs, the most efficient mechanism to
increase the BH spin is prolonged accretion. Therefore, to produce observable effects,
the superradiance instability time scale should be shorter than the typical accretion
time scale. For accretion at the Eddington rate, the typical time scale is the Salpeter
time, τSalpeter ∼ 4.5× 107yr.

This type of argument, together with supermassive BH spin measurements (cf. e.g.
Refs. [11, 12]), was used to impose stringent constraints on the allowed mass range of

2Note that in the case of the full Ernst metric, since radiation cannot escape, the end state is most
likely similar to the one in AdS, a rotating BH in equilibrium with the outside radiation [263].
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axionic [47], massive vector [48, 49] and massive tensor [70] fields, as we will discuss
in more detail in the next two Chapters. Likewise, one could use spin measurements
of supermassive BHs to impose constraints on the allowed range of the magnetic field
strength. In Fig. 9.3 we show the spin–mass diagram (so-called BH Regge plane [47])
with contour curves corresponding to an instability time scale 1/ωI of the order of
the Salpeter time. For a given magnetic field B, BHs lying above the corresponding
threshold curve would be unstable on an observable time scale.

Spin measurements of supermassive BHs would allow us to locate data points on
the Regge plane, thus excluding a whole range of possible magnetic fields. Since the
contours extend almost up to J/M2 ∼ 0, one interesting consequence of our results is
that essentially any observation of a spinning supermassive BH (even with spin as low
as J/M2 ∼ 0.1) would provide some constraint on B. However, these observations can
possibly exclude only very large values of B. For example a putative observation of a
supermassive BH with M ∼ 109M� and J/M2 & 0.5 can potentially exclude the range
107Gauss . B . 109Gauss.

We conclude this section with a note of caution. The threshold lines shown in Fig. 9.3
were obtained using Eq. (9.26) in the range 10−4 . BM . 0.2, but the validity range
of Eq. (9.26) might be smaller. Indeed, a different behavior is expected for large
magnetic fields, BM � 1. In the opposite regime, using the magnetized Ernst solution
with BM ∼ 10−4 to approximate a realistic configuration requires the source of the
magnetic field to extend at least up to rM ∼ 104M ∼ 0.5[M/(109M�)]pc. While we
expect that our simplistic analysis can provide the correct order of magnitude for the
instability, a more refined study would be needed to assess its validity in the full range
of B.

9.6. Conclusions

The main purpose of this Chapter was to show how strong magnetic fields near spinning
BHs can trigger superradiant instabilities and to start exploring the possible implica-
tions of such effect.

To understand this issue, we have computed the normal modes of scalar perturba-
tions of the Melvin spacetime and the QNMs of BHs immersed in a uniform magnetic
field. We showed that the magnetic field can confine perturbations leading to long-
lived modes, which can trigger superradiant instabilities when the BH spins above a
certain threshold. The instability time scale can be orders of magnitude shorter than
that associated to the same kind of instabilities triggered by massive fields. In fact,
a BH immersed in a uniform magnetic field is very similar to the original BH bomb
proposal [207] and to the case of small BHs in AdS.

In this work we considered only scalar perturbations. Due to the presence of the
magnetic field, gravitational and electromagnetic perturbations of magnetized BHs
are coupled, and even a linear stability analysis is rather involved. Nevertheless, in
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analogy with the AdS case [211, 230, 249, 263], we expect the instability of gravito-
electromagnetic perturbations of a magnetized Kerr–Newman BH to follow the same
scaling as scalar perturbations (9.31). This expectation is also supported by the model
presented in Sec. 7.3.1. Since gravitational and electromagnetic perturbations extract
energy from the BH more efficiently than a scalar field [203] we expect them to trigger
a slightly stronger instability. Such problem could be tackled extending the results of
Refs. [237, 278], where the gravito-magnetic modes of a Kerr–Newman BH in vacuum
were computed to first order in the spin.

In an astrophysical context, our results should be used with care. The Ernst space-
time is not asymptotically flat and, in a realistic situation, it must be matched with
a Minkowski spacetime at large distance. This will add some amount of dissipation
which is forbidden in the exact Ernst solution. The validity region of the Ernst metric
depends on the extension of the source of the magnetic field. Besides that, in realistic
situations the presence of an accretion disk can strongly affect the dynamics of elec-
tromagnetic perturbations, for example by quenching growing modes or introducing a
cutoff plasma frequency for superradiant photons [245].

Nevertheless, we hope our work motivates further studies on the subject. To fully
understand the magnitude and end state of the instability, general relativistic magne-
tohydrodynamic simulations (cf. e.g. Refs. [251, 252]) are necessary. Another related
subject that deserves further study are the possible effects of this instability on the
Blandford-Znajek process. It would also be interesting to understand if the Meissner
effect that affects magnetic fields around highly spinning BHs [254, 279, 280], and that
is still a matter of debate [255], can change the picture in the near-extremal limit.

Finally, it is possible that a similar superradiant mechanism is at work in rotating
stars immersed in strong magnetic fields: strong fields provide the confinement nec-
essary to grow the superradiant modes, and a putative dissipation at the star would
provide superradiance [218, 220]. The time scale for energy dissipation in neutron stars
is governed by shear viscosity and estimated to be of the order of [281]

τη ∼ 109

(
1014 g cm−3

ρ

)5/4(
T

109 K

)2(
R

106 cm

)
sec . (9.33)

where ρ, T and R are the central density of the neutron star, the temperature and the
radius, respectively. By comparison, the time scale for energy dissipation in BHs scales
like the light crossing time and is over 14 orders of magnitude smaller for a stellar-mass
BH. Thus, the instability is expected to be of extremely long time scale. Nevertheless,
imprints of the (confined) perturbations should appear as new modes of vibration.
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10. Massive spin-2 perturbations of
slowly rotating Kerr black holes

10.1. Introduction

As we discussed in the previous Chapters, the interaction of bosonic fields with spin-
ning BHs gives rise to interesting phenomena, related to BH superradiance [207, 218,
282, 283]. Due to the dissipative nature of the BH horizon and to the existence of
negative-energy states in the ergoregion of a spinning BH, low-frequency ω monochro-
matic bosonic waves scattered off rotating BHs are amplified whenever the superadiant
condition (7.1) is met.

In this Chapter we will be particularly interested in superradiance-triggered BH
instabilities which are sustained by massive fields. Ultralight bosons have received
widespread attention recently as they are found in several extensions of the Standard
Model, for instance in the string axiverse scenario [5, 47] where a plethora of massive
pseudo-scalar fields called axions covers each decade of mass range down to the Hubble
scale and fields with 10−22eV < mS < 10−10eV are of particular interest for BH
physics [284]. In parallel, massive hidden U(1) vector fields also arise in extensions of
the standard model [6, 7, 27, 28], highlighting the importance of understanding the
physics of such fields around BHs.

Superradiant instabilities were studied extensively for scalar fields both in the frequency-
and in the time-domain [142, 229, 231, 261, 269, 275, 285]. The non-separability of
the field equations for a massive vector field in a Kerr background has hampered its
study for decades (see for instance Ref. [143] for some references on the nonrotat-
ing case). Very recently however, progress has been made. In the frequency domain
slow-rotating expansions were used to prove that massive vectors are superradiantly
unstable [48, 49], and these results were confirmed using evolutions of wavepackets
around Kerr BHs [275]. It was shown that the massive vector field instability can be
orders of magnitude stronger than the massive scalar field.

The instability is regulated by two parameters, the BH spin a/M and the dimen-
sionless parameter Mµ (in units G = c = 1), where M is the BH mass and mg = µ~ is
the bosonic field mass. For ultralight scalar fields around massive BHs, the instability
timescale can be of the order of seconds for solar-mass BHs and of the order of hundreds
years for a supermassive BH with M ∼ 109M� [5, 47, 261], typically much shorter than
the evolution timescale of astrophysical objects. The instability timescale for spin-1
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massive fields can be up to three orders of magnitude shorter [48, 49, 275]. To summa-
rize, this mechanism can be very efficient for extraction of angular momentum away
from the BH. As a consequence, observations of massive spinning BHs can effectively
be used to impose bounds on ultralight boson masses [48] (see Section 11.4 in the next
Chapter). In this Chapter we show that the same kind of arguments can be used to
impose a conservative bound on the graviton mass of mg = ~µ . 5 × 10−23eV. This
is one order of magnitude better that the bound imposed by the gravitational-wave
observation GW150914 by Advanced LIGO [44], but several orders of magnitude lower
than the current best (highly model-dependent) bound, mg . 10−32eV [14].

In Ref. [48] a method to study generic perturbations of slowly rotating BHs was
developed. Here we will extend this method to massive spin-2 perturbations of slowly
rotating Kerr BHs. As shown in Chapter 3, massive spin-2 fields can be consistently
described within the framework of theories of massive gravity and bigravity theories.
These theories admit the Kerr geometry as a solution (or more strictly speaking, two
copies of the Kerr solution that solve Eqs. (3.1) when Λg = Λf = 0). Around this
background, massive spin-2 perturbations are described by the system of eqs. (3.13)–
(3.15).

In this Chapter we will study this system of equations in a Kerr background to first
order in ã ≡ a/M ≡ J/M2, with M and J being the mass and angular momentum
of the Kerr geometry, as defined in (7.2). Our analysis can be generalized to higher
order in the BH angular momentum, but a first-order approximation can be shown to
be already quite accurate even for moderately large spins [48].

The technique that we will use consists in a decomposition of the perturbation equa-
tions in tensor spherical harmonics and in an expansion in the parameter ã. The
method was originally developed to study the gravitational perturbations of slowly-
rotating stars [286–288] and it has been recently applied to BH spacetimes [48, 49, 237].
As a result of using a basis of spherical harmonics in a nonspherical background, the
perturbation equations display parity-mixing and coupling among perturbations with
different harmonic indices. However, as we will show, and as discussed in Ref. [49], to
first order in ã the eigenvalue spectrum is described by two decoupled sets, one for the
axial and one for the polar perturbations, and all harmonic indices decouple.

10.2. Linearized field equations for a spin-2 field on a
slowly rotating Kerr BH

We will follow Kojima [286] to write down the field equations for a spin-2 field in a
slowly rotating BH. Since this background is still “almost” spherically symmetric we
can use the decomposition (3.20) and insert it in the linearized field equations (3.13)–
(3.15), in the background given by the metric (7.2) expanded at first order in ã ≡ a/M .
We can then separate the equations in three different groups.
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From the (tt), (tr), (rr), the sum of (θθ) and (φφ) components of Eq. (3.13), the t
and r components of the transverse condition (3.14), and the traceless condition (3.15),
we have(

A
(I)
lm + Ã

(I)
lm cos θ

)
Y lm +B

(I)
lm sin θ∂θY

lm + C
(I)
lm ∂φY

lm = 0 (I = 0, . . . , 6) , (10.1)

where a sum over (l,m) is implicit, the functions A
(I)
lm and C

(I)
lm are some linear com-

binations of the polar functions H0, H1,H2, η0, η1, K and G. On the other hand Ã
(I)
lm

and B
(I)
lm are some linear combinations of the axial functions h0, h1, h2.

From the (tθ), (tφ), (rθ), (rφ) components of Eq. (3.13), and the θ, φ components
of Eq. (3.14), we have(

α
(J)
lm + α̃

(J)
lm cos θ

)
∂θY

lm

−
(
β

(J)
lm + β̃

(J)
lm cos θ

) (
∂φY

lm/ sin θ
)

+ η
(J)
lm (sin θY lm)

+ ξ
(J)
lm X

lm + χ
(J)
lm (sin θW lm) = 0 (J = 0, 1, 2) , (10.2)

and (
β

(J)
lm + β̃

(J)
lm cos θ

)
∂θY

lm

+
(
α

(J)
lm + α̃

(J)
lm cos θ

) (
∂φY

lm/ sin θ
)

+ ζ
(J)
lm (sin θY lm)

+ χ
(J)
lmX

lm − ξ(J)
lm (sin θW lm) = 0 (J = 0, 1, 2) , (10.3)

where the functions α
(J)
lm , β̃

(J)
lm , ζ

(J)
lm and ξ

(J)
lm are some linear combination of the polar

functions, while β
(J)
lm , α̃

(J)
lm , η

(J)
lm and χ

(J)
lm belong to the axial sector.

From the (θφ) and the subtraction of (θθ) and (φφ) components of (3.13), we have

flm∂θY
lm + glm

(
∂φY

lm/ sin θ
)

+ (slm + ŝlm∂φ)
(
X lm/ sin2 θ

)
+
(
tlm + t̂lm∂φ

) (
W lm/ sin θ

)
= 0 , (10.4)

and

glm∂θY
lm − flm

(
∂φY

lm/ sin θ
)

−
(
tlm + t̂lm∂φ

) (
X lm/ sin2 θ

)
+ (slm + ŝlm∂φ)

(
W lm/ sin θ

)
= 0 , (10.5)

where flm, slm and ŝlm are some linear combinations of polar functions and glm, tlm
and t̂lm from the axial functions.

It is easy to see that at zeroth-order in the rotation the perturbation equations reduce
to

A
(I)
lm = α

(J)
lm = slm = 0 , (I = 0, . . . , 6, J = 0, 1, 2) , (10.6)
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for the polar sector and to

β
(J)
lm = tlm = 0 , ( J = 0, 1, 2) , (10.7)

for the axial sector, respectively. These equations correspond to the ones obtained for
the Schwarzschild case.

To separate the angular variables we use the identities

cos θY lm = Ql+1mY
l+1m +QlmY

l−1m , (10.8)

sin θ∂θY
lm = Ql+1m l Y

l+1m −Qlm(l + 1)Y l−1m , (10.9)

with

Qlm =

√
l2 −m2

4l2 − 1
, (10.10)

and the orthogonality properties of scalar, vector and tensor harmonics. The separa-
tion of the angular dependence of Einstein’s equations for a slowly-rotating star was
performed in Ref. [286]. Since the above equations are formally the same as those
considered in Ref. [286], they can be separated in exactly the same way (see Ref. [141]
for a review). Below we omit the index m, because in an axisymmetric background it
is possible to decouple the perturbation equations so that all quantities have the same
value of m.

From Eq. (10.1) we have [141, 286]

A
(I)
l + imC

(I)
l +Ql

(
Ã

(I)
l−1 + (l − 1)B

(I)
l−1

)
+Ql+1

(
Ã

(I)
l+1 − (l + 2)B

(I)
l+1

)
= 0 . (10.11)

Defining λ = l(l + 1), equations (10.2) and (10.3) give

λα
(J)
l + im

[
(l − 1)(l + 2)ξ

(J)
l − β̃

(J)
l − ζ

(J)
l

]
+Ql(l + 1)

[
(l − 2)(l − 1)χ

(J)
l−1 + (l − 1)α̃

(J)
l−1 − η

(J)
l−1

]
−Ql+1 l

[
(l + 2)(l + 3)χ

(J)
l+1 − (l + 2)α̃

(J)
l+1 − η

(J)
l+1

]
= 0 , (10.12)

and

λβ
(J)
l + im

[
(l − 1)(l + 2)χ

(J)
l + α̃

(J)
l + η

(J)
l

]
−Ql(l + 1)

[
(l − 2)(l − 1)ξ

(J)
l−1 − (l − 1)β̃

(J)
l−1 + ζ

(J)
l−1

]
+Ql+1 l

[
(l + 2)(l + 3)ξ

(J)
l+1 + (l + 2)β̃

(J)
l+1 + ζ

(J)
l+1

]
= 0 . (10.13)

Finally, Eqs. (10.4) and (10.5) yield

λ (sl + imŝl)− imfl −Ql(l + 1)gl−1 +Ql+1l gl+1 = 0 , (10.14)
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λ
(
tl + imt̂l

)
+ imgl −Ql(l + 1)fl−1 +Ql+1l fl+1 = 0 . (10.15)

Because the background is nonspherically symmetric, the radial equations above dis-
play mixing between perturbations with opposite parity and different harmonic index.
To first order, perturbations with given parity and harmonic index l are coupled to
perturbations with opposite parity and indices l±1. However, as discussed in Ref. [49],
these couplings do not contribute to the eigenvalue spectrum to first order in ã.

10.2.1. Axial equations at first order

Neglecting the coupling to the opposite parity with harmonic indices l ± 1, using
Eqs. (10.13) and (10.15), and by defining:

h1(r) =
Q(r)

f(r)

(
1− ãmM2 (λ+ 2)

λr3ω

)
, (10.16)

h2(r) = Z(r)r

(
1− ãmM2 (λ− 2)

λr3ω

)
, (10.17)

we obtain that a fully consistent solution at first order is such that Z and Q satisfy
the following equations:

d2Q

dr2
∗

+ VQQ(r) = SQZ(r) , (10.18)

d2Z

dr2
∗

+ VZZ(r) = SZQ(r) (10.19)

with

VQ = ω2 − 4ãmM2ω

r3
− f

[
λ+ 4

r2
− 16M

r3
+ µ2 + ãmM2 6(4r − 9M)(λ+ 2)

λr6ω

]
,

(10.20)

VZ = ω2 − 4ãmM2ω

r3
− f

[
λ− 2

r2
+

2M

r3
+ µ2 + ãmM2 6(λ− 2)(r − 3M)

λr6ω

]
, (10.21)

SQ = 2(λ− 2)f

[
r − 3M

r3
− ãmM2 (6M(4 + λ)− r (10 + 3λ+ 3r2ω2))

λr6ω

]
, (10.22)

SZ = 2f

[
1

r2
+ ãmM2 (−10 + 3λ+ 3r2µ2)

λr5ω

]
. (10.23)

These equations reduce to Eqs. (3.30) and (3.31) in the nonrotating limit. In the dipole
case l = 1, λ = 2, the function Z vanishes and we are left with a single decoupled
equation:

d2Q

dr2
∗

+ VQQ(r) = 0 . (10.24)
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10.2.2. Polar equations at first order

The polar equations can be obtained from Eqs. (10.11), (10.12) and (10.14). In line
with the non-rotating case, for the polar sector we obtain at first order in ã three
coupled equations for K, η1 and G, which generalize Eqs. (3.46), (3.47), and (3.48),
but in this case the coefficients α̂i, β̂i, γ̂i, δ̂i, σ̂i, ρ̂i are also functions of mã. Due to
the length of the equations we do not show them explicitly here but we made them
available online in Mathematica notebooks [139].

10.3. Superradiance and quasibound states

Interesting phenomena, such as BH superradiance, are already manifest at first order
in the BH angular momentum.

As for the Schwarzschild case, at the horizon we must impose purely ingoing waves,

Φj(r) ∼ e−ikHr∗ , (10.25)

as r∗ → −∞, where

kH = ω −mΩH = ω − mã

4M
+O(ã3) . (10.26)

Here Φj describes generically the perturbation functions, and the horizon angular ve-
locity ΩH = a/(2Mr+) was expanded to first-order in rotation. When kH < 0 an
observer at infinity will see waves emerging from the BH [178]. This corresponds to
the superradiant condition ω < mΩH [203], which at first-order in the rotation amounts
to

ã >
4MωR
m

, (10.27)

where ωR is the real part of the mode frequency, ω = ωR + iωI . All the polar and
axial equations can be brought to a form such that the near-horizon solution is given
by Eq. (10.25). We thus expect that superradiance will also occur for massive spin-2
fields even at first-order in the rotation. At infinity, r → ∞, the asymptotic behavior
is the same than for a Schwarzschild BH (see Eq. (3.55) and corresponding discussion).

As already discussed, superradiant scattering leads to instabilities of bosonic massive
fields [48, 142, 261, 269, 275]. This instability was explicitly shown for scalars and
vectors, and here we will show that it is also present for tensor fields. We recall
that with our convention, unstable modes correspond to ωI > 0. These superradiant
instabilities occur only for waves trapped in the vicinity of the BH, i.e., quasibound
states, so we focus on these states in the next section (corresponding to Cj = 0 in
Eq. (3.55)).

The continued fraction method (see Appendix A) can be used to determine the
quasibound state frequencies of the axial equations by imposing an appropriate ansatz
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which in this case is given by

Φj(ω, r) = f(r)−2ikHrνe−qr
∑
n

a(j)
n f(r)n , (10.28)

where ν = −q + ω2/q. To compute the quasinormal mode frequencies we use q =
−
√
µ2 − ω2 and for the quasibound state frequencies q =

√
µ2 − ω2. Inserting Eq. (10.28)

into Eq.(10.24) leads to a six-term recurrence relation which can be reduced to a three-
term recurrence relation by successive Gaussian elimination steps [289, 290]. For l ≥ 2
we find a six-term matrix-valued recurrence relation which can also be brought to a
three-term recurrence relation using a matrix-valued Gaussian elimination. The explicit
form of the coefficients is not shown here for brevity but it is available online [139].

Although the continued-fraction method works very well for quasibound states, the
multiple matrix inversion of almost singular matrices (since some matrices are propor-
tional to ã) makes it very difficult to compute the very small imaginary part of the
axial quasibound states. We therefore use the direct integration method for both the
polar and axial quasibound states which gives more accurate results in this case, and
use the continued-fraction method to check the robustness of our results.

10.4. Results

In the top panels of Fig. 10.1 we show the absolute value of the imaginary part as
a function of the rotation parameter for the axial modes l = 1, S = 1 and l = 2,
S = −1 (cf. subsection 3.6.3). Although a second-order approximation would be
needed to describe the superradiant regime in a self-consistent way [49], the first-order
approximation predicts very well the onset of the instability and should give the correct
order of magnitude of the instability timescale. For axial modes the instability is very
weak: even in the most favorable cases the instability is almost five orders of magnitude
weaker than that associated to axial Proca modes [48, 49]. This also makes it difficult
to track numerically the axial spin-2 modes with sufficient precision. For small masses
the real part of the frequency is roughly independent on the spin. This is supported
by analytical results for the axial dipole mode, which can be evaluated analytically in
the small-mass limit at first order in ã (cf. Appendix E). The analytical formula for
the imaginary part of the fundamental mode reads

MωI ≈
40

19683
(ã− 2r+µ)(Mµ)11 . (10.29)

In Fig. 10.2 we compare the analytical formula with the numerical results for the
fundamental overtone and mass coupling Mµ = 0.05. Although the imaginary part
is tiny, the agreement is good in the µ → 0 limit. Near the superradiant regime the
agreement is only qualitative, as expected since the analytical formula is only valid for
ãm/(Mµ) . l.
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The bottom panels of Figure 10.1 show the imaginary part as a function of the BH
angular momentum for the polar dipole l = 1 and the polar mode l = 2, S = −2
(cf. subsection 3.6.3). In this case the imaginary part of the mode is larger, and
these modes are easier to evaluate numerically. The instability for the mode l = 2,
S = −2 is roughly two orders of magnitude weaker than the strongest instability of a
Proca field [48] (cf. Eq. (10.33) below). Once more the polar dipole mode is the most
interesting case as it has the largest imaginary part, corresponding to an extremely
short instability timescale. This agrees with the analysis in the nonrotating case of
subsection 3.6.3, where we found that the behavior of this mode is different from the
rest of the spectrum.

As shown in the bottom panels of Fig. 10.1, the polar dipole mode displays a peculiar
behavior in the superradiant regime, where the power-law dependence is inverted,
i.e., the instability is stronger for the lowest mass coupling Mµ. This suggests that
extrapolating the first-order results to the superradiant case is probably less accurate
for this mode. This is confirmed by the behavior of the real-part of the frequency as a
function of the spin, as shown in Fig. 10.3. At first-order the eigenfrequencies can be
expanded as

ωR = ω0 + ãmω1 +O(ã2) , (10.30)

where ω0 is the eigenfrequency in the nonrotating space-time and ω1 is the first-order
correction which is an even function of m [49]. Hence at first-order we would expect
that the curves for l = m and l = −m are symmetric when reflected around the m = 0
curve. For the polar dipole this only happens for very small masses. Note also that,
contrarily to the rest of the spectrum, the real part of the polar dipole mode acquires
a nonnegligible dependence on ã, even in the small µ limit. In fact the analytical
results for the axial dipole suggest that the first-order approximation is only valid for
ãm/(MωR) . l. Since in this case MωR is much smaller that Mµ, the extrapolation to
the superradiant regime is less accurate in the polar dipole case. Nonetheless, using the
exact results in the nonrotating case (cf. subsection 3.6.3) and a linear extrapolation
of the first-order corrections, we estimate the following scaling for the imaginary part
of the polar dipole mode:

MωI ∼ γpolar(ãm− 2r+ωR)(Mµ)3 , (10.31)

where γpolar ∼ O(1) and ωR is the zeroth order real frequency given by Eq. (3.60).
This behavior becomes less accurate deep inside the superradiant regime. Although
such extrapolation is extremely rough, a similar estimate has been done in the scalar
and in the Proca case and it turned out to be very accurate [48]. In the scalar case a
fit similar to Eq. (10.31) agrees with exact results (obtained solving the Klein-Gordon
equation on an exact Kerr metric [142]) within a few percents; and, in the Proca case,
it reproduces the results of exact numerical simulations (again in the quasiextremal,
ã ∼ 0.99 case) within a factor two [275].

In the case at hand, even if Eq. (10.31) eventually turns out to be accurate only at
the order-of-magnitude level, this would anyway mean that spin-2 fields can trigger the
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strongest superradiant instability among other bosonic perturbations. The instability
timescale is four orders of magnitude shorter than the shortest timescale for Proca un-
stable modes [48] (cf. Eq. (10.33) below). A second-order analysis would be important
to confirm this result, but it will also be very challenging. A most promising extension
is to perform a full numerical analysis (along the lines of Ref. [275]) in the case of
massive spin-2 fields around highly spinning Kerr BHs.

10.4.1. Small note on perturbations of nonbidiagonal Kerr in
massive (bi)gravity

The results of Chapter 5 show that, unlike in the bidiagonal case, gravitational pertur-
bations of nonbidiagonal static black holes in massive gravity do not allow for (quasi)-
bound states. This is due to the fact that: (i) the perturbations with l = 0, 1 do not
feel any effective potential and (ii) perturbations with l ≥ 2 propagate exactly in the
effective potential of a Schwarzschild black hole in GR; in particular, such effective
potential does not depend on the graviton mass.

As shown here, one of the consequences of bosonic quasi-bound states in the spec-
trum is the existence of a superradiant instability. A generalization of the nonbidiagonal
solution (5.1) describing a rotating black hole was found in Ref. [130] (a further gener-
alization describing the Kerr-(anti-)de Sitter black holes was presented in Ref. [291]).
Due to the absence of quasi-bound states in the static case, for this family of solu-
tions our results strongly suggest that no superradiant instability exists, at least in the
slowly-rotating regime.

10.5. A unified picture of superradiant instabilities of
massive bosonic fields

The results presented in this Chapter, jointly with previous works on spin-0 [142,
231, 275] and spin-1 fields [48, 49] suggest the following unified picture describing
the superradiant instability of massive bosonic fields around a spinning BH. For any
bosonic field propagating on a spinning BH, there exists a set of quasibound states
whose frequency satisfies the superradiance condition ωR < mΩH. These modes are
localized at a distance from the BH which is governed by the Compton wavelength
1/µ and decay exponentially at large distances. In the small gravitational coupling
limit, Mµ � 1 (where µ denotes the mass of the field), the spectrum of these modes
resembles that of the hydrogen atom:

ωR/µ ∼ 1− (Mµ)2

2(j + 1 + n)2
, (10.32)

where j = l + S is the total angular momentum of the state with spin projections
S = −s,−s+ 1, . . . , s− 1, s, s being the spin of the field. For a given l and n, the total
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angular momentum j satisfies the quantum mechanical rules for addition of angular
momenta, |l − s| ≤ j ≤ l + s, and the spectrum is highly degenerate.

In the nonspinning case, the decay rate of these modes is well described by

ωI/µ ∝ −(Mµ)η η = 4l + 2S + 5 . (10.33)

In the spinning case, the imaginary part of the modes in the small Mµ limit is described
by the equation above with an extra factor (2r+µ−ma/M), which changes the sign of
the imaginary part in the superradiant regime. Indeed, when ωR < mΩH the imaginary
part becomes positive and ωI corresponds to the growth rate of the field (τ ≡ ω−1

I being
the instability time scale).

According to Eq. (10.33), the shortest instability time scale occurs for l = 1 and
S = −1. The only exception to the scaling (10.32) and (10.33) is given by the dipole
polar mode of a spin-2 field, whose frequency is given by Eq. (3.60) and the scaling of
the imaginary part is similar to Eq. (10.33) but with η = 3, as given by Eq. (3.61).

Despite the recent progress in understanding these instabilities, so far only the mas-
sive spin-0 case has been studied in the full parameter space [142, 231, 275] and further
work is needed to reach the same level of understanding for higher-spin fields. Mas-
sive spin-1 instabilities are known in detail to second order in the BH spin [48, 49].
Beyond the slow-rotation approximation, the only work dealing with Proca instability
of highly-spinning Kerr BHs is of numerical nature [275]. The case of massive spin-2
fields is even less explored [70]. The results here presented, obtained at first-order in
the spin, are the first and only results available at the moment. We believe the progress
made in recent years and the wide theoretical and phenomenological interest in light
bosons should serve as an extra motivation to explore these instabilities further.

10.6. Discussion

As shown in Chapter 3, massive spin-2 fields propagating in a Schwarzschild BH back-
ground admit a very rich spectrum of long-lived stable states. Once rotation is turned
on, these long-lived states can grow exponentially and extract angular momentum away
from the BH. Thus, Kerr BHs are also unstable against a second mechanism: super-
radiance. We showed that the instability is triggered when the superradiant condition
is met, thus providing one further and strong piece of solid evidence that superradiant
instabilities occur for any bosonic massive field.

The polar gravitational sector is particularly interesting, as it displays the shortest
instability timescale among other bosonic fields. Our results are formally only valid
in the small BH rotation limit, but previous second-order calculations for massive
vector fields suggest that a first-order analysis provides reasonably accurate results even
beyond its regime of validity. The most crucial point in this regard is the functional
dependence of the instability timescale for the supposedly more unstable polar dipole
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mode, which we estimate to be:

τtensor = ω−1
I ∼

M(Mµ)−3

γpolar(ã− 2r+ωR)
. (10.34)

This timescale is four orders of magnitude shorter than the corresponding Proca field
instability [48, 49].

In the next Chapter we will show that BH superradiant instabilities together with
supermassive BH spin measurements can be used to impose stringent constraints on the
allowed mass range of massive fields [48, 49]. The observation of spinning BHs implies
that the instability timescale is larger than typical competing spin-up effects. For
supermassive BHs a conservative estimate of these timescales is given by the Salpeter
timescale for accretion at the Eddington rate, τSalpeter ∼ 4.5 × 107 years. We find
that the current best bound comes from Fairall 9 [292], for which the polar instability
implies a conservative bound mg = ~µ . 5× 10−23eV. Unlike bounds for hypothetical
massive photons, which may interact strongly with matter, the previous bound should
not be strongly affected by the presence of accretion disks around BHs, as the coupling
of gravitons and other spin-2 fields to matter is very feeble.

This work requires extensions and further analysis, in particular the understanding
of the time-development of the superradiant instability requires nonlinear simulations.
In a simpler context, we will partially address this issue in the next Chapter.
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Figure 10.1.: Absolute value of the imaginary part of the axial and polar quasibound
modes as a function of the BH rotation rate ã for different values of l
and m and different values of the mass coupling µM , computed at first
order. Left top panel: axial dipole for l = m = 1. Right top panel:
axial mode S = −1 for a mass coupling Mµ = 0.15 and different values
of m. Left bottom panel: polar dipole mode for l = m = 1. Right
bottom panel: polar mode l = m = 2, S = −2. For any mode with
m ≥ 0, the imaginary part crosses the axis and become unstable when
the superradiance condition is met.
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Figure 10.2.: Comparison between the numerical and analytical results for the axial
mode l = m = 1, n = 0 as a function of the BH rotation rate ã for a mass
coupling of Mµ = 0.05. The solid line shows the numerical data and the
dashed shows the analytical formula.
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Figure 10.3.: Real part of the polar dipole quasibound mode as a function of the BH
rotation rate ã for different values of the azimuthal number m and mass
coupling µM = 0.1, computed at first order.
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11. Astrophysical Black Holes as
Particle Detectors

11.1. Introduction

One of the most solid hypothesis of Einstein’s GR is that BHs have no hair [293] and
that all isolated, vacuum BHs in the Universe are described by the two-parameter Kerr
family. Observing any deviation from this Kerr hypothesis – a goal within the reach of
upcoming and current gravitational-wave [50, 51, 294–297] and electromagnetic [298,
299] facilities – would inevitably imply novel physics beyond either GR or the Standard
Model of particle physics.

It has been recently pointed out that stationary spinning BHs can develop “hair”
in the presence of massive bosonic fields [208–210, 262]. These new BH configurations
exist at the threshold of the superradiant instability of the Kerr BH against massive
bosonic fields [48, 229, 258–261] and they can be interpreted as the nonlinear extension
of linear bound states of frequency ω = mΩH, where m is the azimuthal wave number
and ΩH is the angular velocity of the BH horizon. Such configurations require a complex
field, with time and azimuthal dependence ∼ eim(φ−ΩHt) otherwise a net scalar flux at
the horizon and gravitational-wave flux at infinity would prevent the geometry from
being stationary. Formation scenarios for such configurations based on collapse or
Jeans-like instability arguments are, notwithstanding, hard to devise.

However, quantum or classical fluctuations of any massive bosonic field trigger a
superradiant instability of the Kerr metric, whose time scale τ can be extremely short.

For a BH with mass M , the shortest instability time scale is τ ∼
(

M
106M�

)
yr for a

ultralight scalar field [49, 70, 142, 231, 275], and shorter for vector [48, 49, 275] and
tensor fields [70] for which superradiance is more efficient. Little is known about the
nonlinear development of the instability but it is expected that, within such short time,
a nonspherical bosonic cloud would grow near the BH extracting energy and angular
momentum, until superradiance stops and the cloud is slowly re-absorbed by the BH
and dissipated through gravitational-wave emission [47, 258, 275, 300]. Although (at
least for a real, stationary scalar field) the no-hair theorems [184, 301–303] guarantee
that the final state of the instability has to be a Kerr BH with lower spin and no hair,
it is important to understand the time scales involved in this process, because a scalar
cloud surviving for cosmological times would be practically indistinguishable from a
full-fledged BH hair and would have various important consequences.
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Figure 11.1.: Pictorial description of a bosonic cloud around a spinning BH in a realis-
tic astrophysical environment. The BH loses energy ES and angular mo-
mentum LS through superradiant extraction of scalar waves and emission
of gravitational waves, while accreting gas from the disk, which transports
energy EACC and angular momentum LACC. Notice that accreting mate-
rial is basically in free fall after it reaches the innermost stable circular
orbit. The cloud is localized at a distance ∼ 1/Mµ2 > 2M .

A further motivation to explore realistic evolutions of the instability derives from
the surprising connections between strong-field gravity and particle physics. In recent
years superradiant instabilities of astrophysical BHs have been used – together with
precision measurements of BH mass and spin (see e.g. [11]) – to constrain stringy axions
and ultralight scalars [47, 284] (these constraints being complementary to those coming
from cosmological observations [304, 305]), to derive bounds on light vector fields [49]
and on the mass of the graviton [70] (cf. Chapter 10), as well as to put intrinsic bounds
on magnetic fields near BHs [194] (cf. Chapter 9) and on the fraction of primordial
BHs in dark matter [245]. However, all these predictions are based on a linearized
analysis, neglecting backreaction and other competitive effects – such as gravitational-
wave emission and gas accretion – which can have an impact on the development of
the process (see Fig. 11.1 for a pictorial view of the system under consideration). In
this Chapter we take the first step to understand the evolution of the superradiant
instability of a Kerr BH and to identify the relevant time scales for this problem.

Our main conclusion is that the linearized analysis used so far to impose constraints
on particle masses is accurate for both real and complex fields. In fact, a linearized
analysis of the instability might remain accurate in the entire regime of initial con-
ditions, even when the mass of the scalar “cloud” that forms is of the order of the
BH mass. The reason is that the scalar field is typically distributed over a very large
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volume, implying very small densities and consequent small backreaction effects. For
this reason, the BH geometry is very well described by the Kerr metric, even in the
presence of massive bosonic clouds.

11.2. Bosonic clouds around BHs: a quasi-adiabatic
approximation

For concreteness – and also because it is where most of the work on BH superradiance
is framed – we focus on the action for a minimally coupled massive scalar field, which
can be either real or complex (we use Planck units):

S =

∫
d4x
√
−g
(
R

16π
− 1

2
gµνΦ∗,µΦ,ν −

µ2

2
Φ∗Φ

)
, (11.1)

although the qualitative aspects of our analysis are valid also for other massive bosonic
fields1. The resulting field equations are ∇µ∇µΦ = µ2Φ and Gµν = 8πT µν with

T µν = Φ∗,(µΦ,ν) − 1

2
gµν
(
Φ∗,αΦ,α + µ2Φ∗Φ

)
. (11.2)

A full nonlinear evolution of this system in the case of a spinning BH was recently
performed [300]; following the development of the instability is extremely challenging
because of the time scales involved: τBH ∼ M is the light-crossing time, τS ∼ 1/µ is
the typical oscillation period of the scalar cloud and τ ∼ M/(Mµ)9 is the instability
time scale in the small-Mµ limit. In the most favorable case for the instability, τ ∼
106τS is the minimum evolution time scale required for the superradiant effects to
become noticeable2. Thus, current nonlinear evolutions (which typically last at most
∼ 103τS [300]) have not yet probed the development of the instability, nor the impact
of gravitational-wave emission.

However, in such configuration the system is suitable for a quasi-adiabatic approx-
imation: over the dynamical time scale of the BH the scalar field can be considered
almost stationary and its backreaction on the geometry can be neglected as long as the
scalar energy is small compared to the BH mass. Therefore, we consider a perturbative
expansion in powers of the scalar field and check consistency a posteriori.

1Here we neglect possible scalar self-interactions beyond the mass term. Nonlinearities can give rise
to interesting effects, for example a condensate of axion-like particles governed by a sine-Gordon
potential V (Φ) = f2aµ

2[1 − cos(Φ/fa)] would collapse and produce a “bosenova” explosion when
MS ≈ 1600(fa/MP )2M [284, 306], where fa is a model-dependent decay constant and MP is the
Planck mass.

2The minimum instability time scale corresponds to Mµ ∼ 0.42 (see e.g. [142]). Although this value
is beyond the analytical, small-Mµ approximation, the numerical result is in good agreement with
an extrapolation of the analytical formula [48].

116



11.2.1. Linearized analysis

At leading order, the geometry is described by the Kerr spacetime and the scalar
evolves in this fixed background. In the Teukolsky formalism [177, 178] (see Ap-
pendix C), the Klein-Gordon equation can be separated by use of spin-0 spheroidal
wavefunctions [307],

Φ =

∫
dωe−iωt+imφ0Slm(θ)R(r) ,

and is equivalent to the following differential equations,

Dθ[0S] +

[
a2(ω2 − µ2) cos2 θ − m2

sin2 θ
+ λ

]
0S = 0 ,

Dr[R] +
[
ω2(r2 + a2)2 − 4aMrmω + a2m2 −∆(µ2r2 + a2ω2 + λ)

]
R = 0 .

where Dθ = (sin θ)−1∂θ (sin θ∂θ), Dr = ∆∂r (∆∂r), ∆ = (r − r+)(r − r−), r± = M ±√
M2 − a2 and a is related to the BH angular momentum J = aM . A numerical

solution to the above coupled system is straightforward [136, 231]. For small mass
couplings Mµ, it can be shown that the corresponding eigenvalue problem admits a
hydrogenic-like solution [48, 49, 261] with λ ∼ l(l+1) and [cf. eqs. (10.32) and (10.33)]

ω ∼ µ− µ

2

(
Mµ

l + n+ 1

)2

+
i

γl

(am
M
− 2µr+

)
(Mµ)4l+5 , (11.3)

where n = 0, 1, 2... and γ1 = 48 for the dominant unstable l = 1 mode. Note that
the eigenfrequencies are complex, ω = ωR + iωI , unless the superradiant condition is
saturated, at

a = acrit ≈
2µMr+

m
. (11.4)

In the small-µ limit the eigenfunctions read [261, 308]

R(µ, a,M, r) = Alng(r̃) , (11.5)

where g(r̃) is an universal function of the dimensionless quantity r̃ = 2rMµ2/(l+n+1)
and can be written in terms of Laguerre polynomials

g(r̃) = r̃le−r̃/2L2l+1
n (r̃) . (11.6)

We have verified that this is a good description of the numerical eigenfunctions for
moderately large µM . 0.2 even at large BH spin. Notice that the eigenfunction

peaks at rcloud ∼ (l+n+1)2

(Mµ)2
M [47] (see also [309]) and thus extends way beyond the

horizon, where rotation effects can be neglected. For definiteness, and because it is the
single most unstable mode, we focus for now on l = m = 1 and n = 0. In this case
g(r̃) = r̃e−r̃/2.
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As we noted, there are clearly two scales in the problem. One is dictated by the
oscillation time τS = 1/ωR ∼ 1/µ, the other by the instability growth time scale,
τ = 1/ωI � τS. As such, we will consider these scales to be well separated, and will
assume that the cloud is stationary and described by

Φ = A0g(r̃) cos (φ− ωRt) sin θ , (11.7)

where A0 ≡ A10. In Eq. 11.7 we assumed a real scalar field, because this is the configura-
tion that maximizes gravitational-wave emission: complex scalars in a nearly stationary
regime will exhibit no time-dependent stress-energy tensor, and therefore do not emit
gravitational waves in this approximation (this case is briefly discussed in Sec. 11.3.3
below). As we will show, even real scalars give rise to very small gravitational-wave
energy fluxes.

For convenience, by using Eq. 11.2, the amplitude A0 can be expressed in terms of
the mass MS of the scalar cloud,

MS =

∫
r2 sin θρ =

2πA2
0

3

(
2I0 +

2I2

M2µ2
+ I ′2

)
, (11.8)

where we defined the dimensionless integrals

In =

∫ ∞
0

dr̃r̃ng(r̃)2 , I ′n =

∫ ∞
0

dr̃r̃ng′(r̃)2 , (11.9)

and the energy density ρ ≡ −T 0
0 reads

ρ =
A2

0

2r2

{
µ4M2r2 sin2(θ)g′(r̃)2 cos2(φ− ωRt)

+g(r̃)2
[(

cos2(θ) + µ2r2 sin2(θ)
)

cos2(φ− ωRt)
+
[
1 + r2ω2

R sin2(θ)
]

sin2(φ− ωRt)
]}

, (11.10)

where a prime denotes derivative with respect to the argument. In the small µM limit
one obtains

A2
0 =

3

4πI2

(
MS

M

)
(µM)4 . (11.11)

In deriving the formulas above we have assumed that spacetime is flat. This approx-
imation is accurate as long as the cloud is localized far away from the BH, i.e. when
µM � 1 (cf. Ref. [308] where a similar approximation is discussed). When µM � 1,
the relation 11.11 is valid also in the full Kerr case.

11.2.2. Gravitational-wave emission

A nonspherical monochromatic cloud as in Eq. 11.7 will emit gravitational waves with
frequency 2π/λc ∼ 2ωR ∼ 2µ, the wavelength λc being in general smaller than the size
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of the source, rcloud. Thus, even though the cloud is nonrelativistic, the quadrupole
formula does not apply because the emission is incoherent [47, 308]. However, due to
the separation of scales between the size of the cloud and the BH size for µM � 1, the
gravitational-wave emission can be analyzed taking the source to lie in a nonrotating
(or even flat [308]) background.

In the fully relativistic regime, the gravitational radiation generated is best described
by the Teukolsky formalism for the gravitational perturbations. In the Teukolsky
formalism the perturbation equations can be reduced to a second-order differential
equation for the Newman-Penrose scalar Ψ4 (see Appendix C). We can decompose Ψ4

as

Ψ4(t, r,Ω) =
∑
lm

r−4

∫ ∞
−∞

dω
∑
lm

−2Rlm(r) −2Ylm(Ω)e−iωt , (11.12)

where sYlm(θ, φ) are the spin-s weighted spherical harmonics [307]. The radial function

−2R(r) satisfies the inhomogeneous equation

r2f −2R
′′ − 2(r −M) −2R

′ +
[
f−1

(
ω2r2 − 4iω(r − 3M)

)
−(l − 1)(l + 2)] −2R = −Tlmω , (11.13)

where f = 1 − 2M/r. The source term Tlmω is related to the scalar field stress-
energy tensor Tµν through the tetrad projections, Tµνn

µnν ≡ Tnn, Tµνn
µm̄ν ≡ Tnm̄ and

Tµνm̄
µm̄ν ≡ Tm̄m̄, where

nµ =
1

2
(1,−f, 0, 0) , (11.14)

m̄µ =
1√
2 r

(
0, 0, 1,− i

sin θ

)
. (11.15)

We define

ST ≡ 1

2π

∫
dΩ dt TS SȲlme

iωt , (11.16)

where TS = Tnn, Tnm̄ and Tm̄m̄ for S = 0,−1,−2, respectively. The source is then
given by [310]

Tlmω
2π

= 2 [(l − 1)l(l + 1)(l + 2)]1/2 r4
0T

+ 2 [2(l − 1)(l + 2)]1/2 r2fL
(
r3f−1

−1T
)

+ rfL
[
r4f−1L (r −2T )

]
, (11.17)

where L ≡ f∂r + iω. Using Eqs. 11.2 and 11.7 we find that, as expected, for the scalar
configuration 11.7 the only modes that contribute are l = |m| = 2 with frequencies
ω = ±2ωR.
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Once the source term is known, Ψ4 can be computed using a Green’s function ap-
proach. To construct the Green function we need two linearly independent solutions
of the homogeneous equation. A physically motivated choice is to consider the so-
lution −2R

∞ which describes outgoing waves at infinity and −2R
H which describes

ingoing waves at the event horizon. By making use of the fact that the Wronskian
W = ∂rR∞RH−∂rRHR∞

r2f
= 2iωBin is constant by virtue of the field equations, the correct

solution of the inhomogeneous problem at infinity reads (see Appendix (B))

−2R(r →∞) ∼ −2R
∞

2iωBin

∫ ∞
2M

dr
−2R

HTlmω
r4f 2

, (11.18)

where −2R
∞(r → ∞) ∼ r3eiωr and −2R

H(r → ∞) ∼ Boutr
3eiωr + Bine

−iωr/r. From
the asymptotic solution of Eq. 11.13, we find

Bin = − C1

8ω2
(l − 1)l(l + 1)(l + 2)ei(l+1)π/2 , (11.19)

where C1 is a constant. The solution −2R
H can be found more easily by solving the

Regge-Wheeler equation (see e.g. [310]) for small frequencies and using the fact that

−2R
H = r2fL

(
f−1LrRRW

)
, where RRW is the Regge-Wheeler function that, at small

frequencies, reads [310]
RRW ∼ C1ωrjl(ωr) , (11.20)

where jl denote the spherical Bessel functions of the first kind. Finally, the luminosity
can be computed from

ĖGW =

∫
dΩ

r2

4πω2
|Ψ4|2 =

∫
dω

|Z|2

2πω2|W |2
, (11.21)

where Z ≡
∫
dr −2RHT22ω

r4f2
and we used the fact that the modes with m = ±2 give the

same contribution to the luminosity. The final result reads

ĖGW =
2

45
π2
(
484 + 9π2

)
M6A4

0µ
6 , (11.22)

which, by using Eq. 11.11 and I2 ∼ 24 and in the small-µ limit reduces to

ĖGW =
484 + 9π2

23040

(
M2

S

M2

)
(Mµ)14 . (11.23)

The different prefactor relative to that derived in Ref. [308] is due to the fact that we
considered a Schwarzschild background instead of a flat metric. Indeed, our result 11.23
is in better agreement with the numerical results. Note that such flux is an upper bound
relative to the exact numerical results which are valid for any µ and any BH spin [308].
In the following we will use Eq. 11.23 as a very conservative assumption, since the
gravitational-wave flux is generically smaller.
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A similar computation for the angular momentum dissipated in gravitational waves
gives

J̇GW =
1

ωR
ĖGW , (11.24)

in agreement with the general result for a monochromatic wave of the form 11.7.

11.2.3. Accretion

Astrophysical BHs are not in isolation but surrounded by matter fields in the form
of gas and plasma. On the one hand, addition of mass and angular momentum to
the BH via accretion competes with superradiant extraction. On the other hand, a
slowly-rotating BH which does not satisfy the superradiance condition might be spun
up by accretion and might become superradiantly unstable precisely because of angular
momentum accretion. Likewise, for a light BH whose coupling parameter µM is small,
superradiance might be initially negligible but it can become important as the mass of
the BH grows through gas accretion. It is therefore crucial to include accretion in the
treatment of BH superradiance, as we do here for the first time3.

We make the most conservative assumption by using a model in which mass accretion
occurs at a fraction of the Eddington rate (see e.g. [271]):

ṀACC ≡ fEddṀEdd ∼ 0.02fEdd
M(t)

106M�
M�yr−1 , (11.25)

where we have assumed an average value of the radiative efficiency η ≈ 0.1, as required
by Soltan-type arguments, i.e. a comparison between the luminosity of active galactic
nuclei and the mass function of BHs [313, 314]. The Eddington ratio for mass accretion,
fEdd, depends on the details of the accretion disk surrounding the BH and it is at most
of the order unity for quasars and active galactic nuclei, whereas it is typically much
smaller for quiescent galactic nuclei (e.g. fEdd ∼ 10−9 for SgrA∗). If we assume that
mass growth occurs via accretion through Eq. 11.25, the BH mass grows exponentially
with e-folding time given by a fraction 1/fEdd of the Salpeter time scale, τSalpeter =
σT

4πmp
∼ 4.5 × 107 yr, where σT is the Thompson cross section and mp is the proton

mass. Therefore, the minimum time scale for the BH spin to grow via gas accretion is
roughly τACC ∼ τSalpeter/fEdd � τBH and also in this case the adiabatic approximation
is well justified.

Regarding the evolution of the BH angular momentum through accretion, we make
the conservative assumption that the disk lies on the equatorial plane and extends down

3We consider only gas accretion, which is a more efficient spin-up mechanism than, for example,
accretion by tidal disruption of binary stars [311]. This is a conservative assumption to study the
evolution of superradiant instabilities, because spin-up by accretion competes with superradiant
extraction of the angular momentum. We also neglect other processes that can affect the evolution
of the mass and spin, like BH mergers [312].
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to the innermost stable circular orbit (ISCO). If not, angular momentum increase via
accretion is suppressed and superradiance becomes (even) more dominant. Ignoring
radiation effects, the evolution equation for the spin reads [315]

J̇ACC ≡
L(M,J)

E(M,J)
ṀACC , (11.26)

where L(M,J) = 2M/(3
√

3)
(

1 + 2
√

3rISCO/M − 2
)

and E(M,J) =
√

1− 2M/3rISCO

are the angular momentum and energy per unit mass, respectively, of the ISCO of the
Kerr metric, located at rISCO = rISCO(M,J) in Boyer-Lindquist coordinates.

In the absence of superradiance the BH would reach extremality in finite time,
whereas radiation effects set an upper bound of a/M ∼ 0.998 [316]. To mimic this
upper bound in a simplistic way, we introduced a smooth cutoff in the accretion rate
for the angular momentum. This cutoff merely prevents the BH to reach extremality
and does not play any role in the evolution discussed in the next section.

11.3. Evolution of the cloud

We are now in a position to discuss the evolution of the scalar cloud within the quasia-
diabatic approximation. The scalar energy flux that is extracted from the horizon
through superradiance is

ĖS = 2MSωI , (11.27)

where MωI = 1
48

(a/M − 2µr+)(Mµ)9 for the l = m = 1 fundamental mode and clearly

ĖS > 0 only in the superradiant regime.

Two further contributions come from the emission of gravitational waves through
fluxes 11.23 and 11.24 and from gas accretion through the accretion rates 11.25 and
11.26. Energy and angular momentum conservation require that

Ṁ + ṀS = −ĖGW + ṀACC , (11.28)

J̇ + J̇S = − 1

µ
ĖGW + J̇ACC , (11.29)

where we have used J̇GW = ĖGW/ωR ∼ ĖGW/µ, we have neglected the subdominant
contributions of the mass of the disk and of those gravitational waves that are absorbed
at the horizon, and we have approximated the local mass and angular momentum by
their ADM counterparts. The latter approximation is valid as long as backreaction
effects are small, as we discuss below. The evolution of the system is governed by the
two equations above supplemented by

Ṁ = −ĖS + ṀACC , (11.30)

J̇ = − 1

µ
ĖS + J̇ACC , (11.31)
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Figure 11.2.: Evolution of the BH mass and spin and of the scalar cloud due to super-
radiance, accretion of gas and emission of gravitational waves. The two
sets of plots show two different cases. In Case I (left set) the initial BH
mass M0 = 104M� and the initial BH spin J0/M

2
0 = 0.5. The BH enters

the instability region at about t ∼ 6Gyr, when its mass M ∼ 107M� and
its spin is quasi-extremal. The set of plots on the right shows Case II, in
which M0 = 107M� and J0/M

2
0 = 0.8, and the evolution starts already in

the instability region for this scalar mass µ = 10−18eV. For both cases,
the left top panels show the dimensionless angular momentum J/M2 and
the critical superradiant threshold acrit/M (cf. Eq. 11.4); the left bottom
panels show the mass of the scalar cloud MS/M (note the logarithmic
scale in the x-axis for Case II); and the right panels show the trajectory
of the BH in the Regge plane [47] during the evolution. The dashed blue
line denotes the depleted region as estimated by the linearized analysis,
i.e. it marks the threshold at which τ ∼ τACC.

which describe the superradiant extraction of energy and angular momentum and the
competitive effects of gas accretion at the BH horizon. These equations assume that
the scalar cloud is not directly (or only very weakly) coupled to the disk.

Representative results for the evolution of the system are presented in Fig. 11.2 where
we consider the scalar-field mass µ = 10−18eV and mass accretion near the Eddington
rate, fEdd = 0.1. We consider two cases: (I) the left set of plots corresponds to a BH
with initial mass M0 = 104M� and initial spin J0/M

2
0 = 0.5, whereas (II) the right set

of plots corresponds to M0 = 107M� and J0/M
2
0 = 0.8.

In Case I, superradiance is initially negligible because µM0 ∼ 10−4 and superradi-
ant extraction is suppressed. Thus, the system evolves mostly through gas accretion,
reaching extremality (J/M2 ∼ 0.998) within the time scale τACC ∼ 10τSalpeter. At
about t ∼ 6Gyr, the BH mass is sufficiently large that the superradiant coupling µM
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becomes important. This corresponds to the BH entering the region delimited by a
dashed blue curve in the Regge plane [47] shown in Fig. 11.2 for Case I. At this stage
superradiance becomes effective very quickly: a scalar cloud grows exponentially near
the BH (left bottom panel), while mass and angular momentum are extracted from
the BH (left top panel). This abrupt phase lasts until the BH spin reaches the critical
value acrit/M and superradiance halts. Because the initial growth is exponential, the
evolution does not depend on the initial mass and initial spin of the scalar cloud as
long as the latter are small enough, so that in principle also a quantum fluctuation
would grow to a sizeable fraction of the BH mass in finite time.

Before the formation of the scalar condensate, the evolution is the same regardless
of gravitational-wave emission and the only role of accretion is to bring the BH into
the instability window. After the scalar growth, the presence of gravitational-wave
dissipation and accretion produces two effects: (i) the scalar condensate loses energy
through the emission of gravitational waves, as shown in the left bottom panel of
Fig. 11.2; (ii) gas accretion returns to increase the BH mass and spin.

However, because accretion restarts in a region in which the superradiance coupling
µM is nonnegligible, the “Regge trajectory” J(t)/M(t)2 ∼ acrit/M (cf. Eq. 11.4) is
an attractor for the evolution and the BH “stays on track” as its mass and angular
momentum grow. For Case I, this happens between t ∼ 6.8Gyr and t ∼ 9.5Gyr, i.e.
until the spin reaches the critical value J/M2 ∼ 0.998 and angular momentum accretion
saturates.

A similar discussion holds true also for Case II, presented in the right set of plots in
Fig. 11.2. In this case, the BH starts already in the instability regime, its spin grows
only very little before superradiance becomes dominant, and the BH angular momen-
tum is extracted in about 10Myr. After superradiant extraction, the BH evolution
tracks the critical value acrit/M while the BH accretes over a time scale of 1Gyr.

11.3.1. The role of accretion

While gravitational-wave emission is always too weak to affect the evolution of the
BH mass and spin (nonetheless being responsible for the decay of the scalar conden-
sate as shown in Fig. 11.2), accretion plays a more important role. From Fig. 11.2,
it is clear that accretion produces two effects. First, for BHs which initially are not
massive enough to be in the superradiant instability region, accretion brings them
to the instability window by feeding them mass as in Case I. Furthermore, when
J/M2 → acrit/M the superradiant instability is exhausted, so that accretion is the
only relevant process and the BH inevitably spins up again. This accretion phase oc-
curs in a very peculiar way, with the dimensionless angular momentum following the
trajectory J/M2 ∼ acrit/M over very long time scales.

Therefore, a very solid prediction of BH superradiance is that supermassive BHs
would move on the Regge plane following the bottom-right part of the superradiance
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threshold curve. The details of this process depend on the initial BH mass and spin,
on the scalar mass µ and on the accretion rate.

Thus, in order to verify the theoretical bounds on the existence of light bosons [47,
49, 70, 284], a relevant problem concerns the final BH state at the time of observation.
In other words, given the observation of an old BH and the measurement of its mass
and spin, would these measurements be compatible with the evolution depicted in
Fig. 11.2?

To assess this question, we have used Monte Carlo methods. In Fig. 11.3 we show
the final BH mass and spin in the Regge plane for N = 103 evolutions for a scalar field
mass µ = 10−18eV. These were obtained with random distributions of the initial BH
mass between log10M0 ∈ [4, 7.5] and J0/M

2
0 ∈ [0.001, 0.99] extracted at t = tF , where

tF is distributed on a Gaussian centered at t̄F ∼ 2× 109yr with width σ = 0.1t̄F . We
consider three different accretion rates and, in each panel, we superimpose the bounds
derived from the linearized analysis, i.e. the threshold line when the instability time
scale equals the accretion time scale, τ ∼ τACC. As a comparison, in the same plot we
include the experimental points for the measured mass and spin of some supermassive
BHs listed in Ref. [11].

Various comments are in order. First, it is clear that the higher the accretion rate
the better the agreement with the linearized analysis. This seemingly counter-intuitive
result can be understood by the fact that higher rates of accretion make it more likely
to find BHs that have undergone a superradiant instability phase over our observational
time scales. In fact, for high accretion rates it is very likely to find supermassive BHs
precisely on the “Regge trajectory” [47] given by J/M2 ∼ acrit/M (cf. Eq. 11.4).

Furthermore, for any value of the accretion rate, we always observe a depleted region
(a “hole”) in the Regge plane [47], which is not populated by old BHs. While the
details of the simulations might depend on the distribution of initial mass and spin,
the qualitative result is very solid and is a generic feature of the evolution. For the
representative value µ = 10−18eV adopted here, the depleted region is incompatible
with observations [11]. Similar results would apply for different values4 of µ in a BH
mass range such that µM . 1. Therefore, as discussed in Refs. [47, 49, 70], observations
of massive BHs with various masses can be used to rule out various ranges of the boson-
field mass µ.

Finally, Fig. 11.3 suggests that when accretion and gravitational-wave emission are
properly taken into account, the holes in the Regge plane are smaller than what naively
predicted by the relation τ ≈ τACC, i.e. by the dashed blue curve in Fig. 11.3. Indeed,

4Note that, through Eq. 11.25, the mass accretion rate only depends on the combination fEddM ,
so that a BH with mass M = 106M� and fEdd ∼ 10−3 would have the same accretion rate of a
smaller BH with M = 104M� accreting at rate fEdd ∼ 10−1. Because this is the only relevant scale
for a fixed value of µM , in our model the evolution of a BH with different mass can be obtained
from Fig. 11.2 by rescaling fEdd and µ.
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we find that a better approximation for the depleted region is

{
J

M2
&
acrit

M
∼ 4µM

}
∪

{
M &

(
96

µ10τACC

)1/9
}
, (11.32)

whose boundaries are shown in Fig. 11.3 by a solid green line. These boundaries
correspond to the threshold value acrit (cf. Eq. 11.4) for superradiance and to a BH
mass which minimizes the spin for which τ ≈ τACC, for a given µ [48]. As shown in
Fig. 11.3, the probability that a BH populates this region is strongly suppressed as the
accretion rate increases.
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Figure 11.3.: The final BH mass and spin in the Regge plane for initial data consisting
of N = 103 BHs with initial mass and spin randomly distributed between
log10M0 ∈ [4, 7.5] and J0/M

2
0 ∈ [0.001, 0.99]. The BH parameters are

then extracted at t = tF , where tF is distributed on a Gaussian centered
at t̄F ∼ 2×109yr with width σ = 0.1t̄F . We considered µ = 10−18eV. The
dashed blue line is the prediction of the linearized analysis obtained by
comparing the superradiant instability time scale with the accretion time
scale, τ ≈ τSalpeter/fEdd, whereas the solid green line denotes the region
defined through Eq. 11.32. Old BHs do not populate the region above
the green threshold curve. The experimental points with error bars refer
to the supermassive BHs listed in [11].
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11.3.2. Estimating backreaction effects

Our analysis neglects the gravitational effects of the scalar cloud and of a putative
accretion disk on the BH geometry. The latter assumption is well justified because the
disk density profile is roughly (see e.g. [271]):

ρdisk

kg/m3
≈

 3.4× 10−6
(

106M�
M

)
fEdd

r̃3/2

169
f
11/20
Edd

r̃15/8

(
1−

√
r̃in
r̃

)11/20 (
106M�
M

)7/10 ,

for geometrically-thick disks and for thin disks, respectively, where r̃ = r/M and r̃in ∼ 6
is the radius of the inner edge of the disk in gravitational radii. These densities are neg-
ligible relative to the typical energy-density of the BH, 1/M2 ∼ 108(106M�/M)2kg/m3,
so that the deformation of the geometry due to the presence of the disk is unimportant.

On the other hand, from the evolution of Fig. 11.2 it is clear that the scalar cloud
attains a sizeable fraction of the total BH mass, so that backreaction effects might be
relevant in this case. However, the scalar energy MS is spread over a large volume
because the cloud peaks at rcloud ∼ 1

(Mµ)2
M . Thus, the scalar density – which is the

quantity directly coupled to the geometry through Einstein’s equations – is always
negligible. Figure 11.4 shows the energy-density profile of the scalar cloud during
the evolution corresponding to the right panel of Fig. 11.2. As in the case of the
disk, also the density of the scalar cloud is orders of magnitude smaller than the
energy-density associated to the BH horizon, ∼ 1/M2, so that the gravitational pull of
the cloud produces a negligible effect on the background geometry. Furthermore, the
corrections vanish near the BH horizon, so that also the superradiant energy extraction
is unaffected5.

This discussion is in agreement with the results obtained for the superradiant in-
stability in modified Kerr geometries, for example the Kerr-de Sitter metric studied in
Ref. [318]. In such case, a value of the cosmological constant comparable to that of the
cloud density, Λ ∼ 10−8/M2, has no impact on the instability.

11.3.3. Hairy BHs: do they ever form?

The most plausible formation scenarios for BHs involve gravitational collapse of matter,
and are likely to form – on free-fall time scales – a geometry which is well-described by
the Kerr metric. Our results then have two important consequences: the BH evolves
through accretion, gravitational-wave emission and superradiance, but at late times

5In principle, superradiant extraction from the BH horizon could be also affected by external per-
turbers, e.g. other compact objects in the vicinity of the BH. While our analysis already indicates
that this correction is negligible, the fact that the near-horizon geometry of a BH cannot be easily
deformed by, e.g., tidal forces [317] gives further support that considering isolated BHs in the
context of superradiant instabilities is a reliable approximation (see also Ref. [271] for an analysis
of environmental effects in gravitational-wave physics).
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Figure 11.4.: The energy-density profile of the scalar cloud on the equatorial plane and
at azimuthal angle φ = 0 in units of the BH density, 1/M2 ∼ 106kg/m3,
at different time snapshots for the evolution shown in the right panel of
Fig. 11.2.

it will not populate the region defined by Eq. 11.32. In addition, the backreaction
of the scalar condensate on the geometry is always small, i.e., even in the presence
of a scalar cloud the geometry it is that of a Kerr BH to very good approxima-
tion. This is relevant for electromagnetic tests of the Kerr hypothesis, which are
ultimately based on geodesic motion and would likely not be able to detect the ef-
fects of the cloud directly. On the other hand, during the evolution the system emits
a nearly monochromatic gravitational-wave signal, which is an interesting source for
next-generation gravitational-wave detectors [47, 306, 308].

Our results apply equally to real and complex scalars, and despite recent works
finding hairy BH solutions which depart significantly from the Kerr metric [208]. The
reason is that our formation scenario starts from a Kerr BH. Thus superradiance can
only extract a finite amount of mass from the BH (in fact, at most 29% of the initial
BH mass, cf. e.g. [319]), and therefore can only grow to a limited value. We find
that this value is never sufficient to impart significant changes to the geometry. By
contrast, Refs. [208, 320, 321] find that generically, stationary hairy BHs are smoothly
connected to boson stars (see Part III for more details on boson stars), and that
therefore arbitrarily small BHs (or arbitrarily large ratios MS/M) are possible. What
our results show is that these configurations do not arise from the evolution of initially
isolated Kerr BHs; however, we have not ruled out that such solutions – representing
observationally large deviations from the Kerr geometry – may arise as the end-state
of some other initial conditions, most likely involving a large scalar field environment.
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Figure 11.5.: Evolution with the same initial conditions as in the right set of Fig. 11.2
but turning off the emission of gravitational waves as in the case of a
complex scalar field. The left panels show the case of mass accretion at
the rate fEdd = 0.1, whereas the right panels show the case in which
also accretion is turned off. For comparison, the scalar mass in the right
bottom panel is also shown in the left bottom panel by a dashed black
curve. When accretion is effective, the scalar cloud can become heavier.

For completeness, in Fig. 11.5 we show an evolution starting with the same initial
conditions as in the right panel of Fig. 11.2 but turning off gravitational-wave emission,
which corresponds to taking a stationary, complex-scalar cloud in place of Eq. 11.7. In
the left panels we consider the case of mass accretion at the rate fEdd = 0.1, whereas in
the right panels also accretion has been turned off. In the latter case, the scalar mass
and the BH angular momentum saturate after the superradiant extraction and the
system would never leave the plateau configuration with a scalar mass MS ∼ 0.04M
and a reduced spin J/M2 ∼ 0.3. However, when accretion is turned on (left panels),
the scalar mass can attain more than 30% of the BH mass during the evolution. This is
due to the fact that the BH mass and angular momentum grow through accretion when
superradiance is still effective and can therefore continue feeding the scalar cloud. This
process lasts until angular-momentum accretion becomes inefficient at J/M2 ∼ 0.998.
Nonetheless, even in this most favorable case for the growth of the scalar cloud, the
energy-density of the scalar field is negligible and the geometry is very well described
by the Kerr metric.
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11.3.4. Higher-l modes

So far we have neglected the superradiant growth of higher multipoles with l > 1. This
is justified by the fact that the instability time scale increases with l (cf. Eq. 11.3) and
the emission of gravitational waves for increasing l becomes even more negligible [308].
The spin-down process is always dominated by the lowest possible superradiant mode
l = m = 1. For example, for the evolution shown in Fig. 11.2 the spin down due to
the growth of the multipole l = 2 would only affect the evolution of the BH after time
scales of the order t ∼ 1013yr.

However, because the superradiance condition depends on the azimuthal number m,
for certain parameters it might occur that the modes with l = m = 1 are stable, whereas
the modes with l = m = 2 are unstable, possibly with a superradiant extraction
stronger than accretion. When this is the case, our previous analysis confirms that
the depleted region of the Regge plane is the union of various holes, as predicted in
Ref. [47] by using a linearized analysis.

In the case where axion nonlinearities are taken into account further spin-down
due to higher multipoles is expected to be damped due to the axion self-interactions
either through the mixing of superradiant with nonsuperradiant levels or through the
occurrence of explosive nonlinear effects, such as the bosenova collapse of the axion
cloud [47, 306].

11.4. Bounds on the mass of bosonic fields from gaps
in the Regge plane

As shown in the previous Section, a very generic and solid prediction of BH superra-
diant instabilities is the existence of holes in the Regge plane. Thus, the estimates for
the instability time scale, together with reliable spin measurements for massive BHs,
can be used to impose stringent constraints on the allowed mass range of ultralight
bosons [46, 47, 49, 70]. These bounds follow from the requirement that astrophysical
spinning BHs should be stable, in the sense that the superradiant instability time scale
τ should be larger than some observational threshold. For isolated BHs we can take
the observational threshold to be the age of the Universe, τHubble = 1.38 × 1010 yr.
However, as we discussed in this Chapter, for supermassive BHs we may worry about
possible spin growth due to mergers with other BHs and/or accretion. As discussed
in the previous sections, the most likely mechanism to produce fastly-spinning BHs
is prolonged accretion [322]. Our results confirm that a conservative assumption to
estimate the astrophysical consequences of the instability is to compare the superra-
diance time scale, obtained within the linearized analysis, to the minimum time scale
over which accretion could spin up the BH. For simplicity we assume that mass growth
occurs via accretion at the Eddington limit, so that the BH mass grows exponentially
with e-folding time given by the Salpeter time scale, τSalpeter ∼ 4.5× 107 years.
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Figure 11.6.: Contour plots in the BH Regge plane [47] corresponding to an instability
time scale shorter than τSalpeter for different values of the boson field mass
µ~ and for the most unstable modes. Top, middle and bottom panels show
the case of scalar (spin-0), vector (spin-1) and tensor (spin-2) massive
fields. The experimental points (with error bars) refer to the supermassive
BHs listed [11]. Supermassive BHs lying above each of these curves would
be unstable on an observable time scale, and therefore each point rules
out a range of the boson field masses. Note that the rightmost part of
each curve is universal, a ∼ acrit (cf. Eq. (11.4)), i.e. it does not depend
on the spin of the field.
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In order to quantify the dependence of the boson mass bounds on the mass and spin
of supermassive BHs, in Fig. 11.6 we show exclusion regions in the BH Regge plane.
More precisely, using the results shown in Section 10.5, we plot contours corresponding
to an instability time scale of the order of the Salpeter time for four different masses of
the bosonic field and considering the unstable mode with the largest growth rate. From
top to bottom, the three panels refer to a spin-0, spin-1 and spin-2 field, respectively.
The plot shows that observations of supermassive BHs with 105M� . M . 1010M�
spinning above a certain threshold would exclude a wide range of boson-field masses.
Because superradiance is stronger for bosonic fields with spin, the exclusion windows
are wider as the spin of the field increases, and they also extend almost down to J ∼ 0
in the case of spin-1 and spin-2 bosons. This latter feature is important because current
spin measurements might be affected by large systematics.

Nonetheless, it is clear from Fig. 11.6 that almost any supermassive BH spin mea-
surement would exclude a considerable range of masses. Similar exclusion plots exist in
the region M� . M . 105M� for larger values of µ. Indeed, the only parameter that
regulates the instability is the combination µM . Thus, the best bound comes from the
most massive BHs for which spin measurements are reliable, e.g. the BH candidate
Fairall 9 [292].

Using these arguments, from the analysis of Refs. [47, 49, 70] we can obtain the
following bounds6:

mS . 5× 10−20eV ∨ mS & 10−11eV , (11.33)

mV . 5× 10−21eV ∨ mV & 10−11eV , (11.34)

mT . 5× 10−23eV ∨ mT & 10−11eV , (11.35)

for the mass of ultralight scalar, vector and tensor fields, respectively. Note that, for
a single BH observation, superradiant instabilities can only exclude a window in the
mass range of the fields, as shown in Fig. 11.6. Nonetheless, by combining different BH
observations in a wide range of BH masses and assuming7 that spinning BHs exist in the
entire mass range M� .M . 109M�, one is able to constrain the range above, where
the lower bound comes from the lightest massive BHs (with M ≈ 5M�), whereas the
upper bound comes from the heaviest supermassive BHs for which spin measurements
are reliable. If the largest known supermassive BHs with M ' 2 × 1010M� [324, 325]
were confirmed to have nonzero spin, we could get even more stringent bounds.

For each BH observation, the upper limit comes from the fact that when Mµ � 1

6These bounds were obtained using the linearized analysis, summarized in Section 10.5. By including
the effects of gravitational-wave emission and gas accretion, the results of Section 11.3 show that the
linearized prediction should be corrected by Eq. (11.32), cf. Fig. 11.3 and discussion in Sec. 11.3.
Nonetheless, such corrections would not affect the order of magnitude of these constraints. In
Ref. [46], the authors estimate the statistical and systematic errors affecting these bounds, finding
exclusions regions at approximately 2σ and 1σ for stellar-mass and supermassive BHs, respectively.

7Recently, the first detection of intermediate-mass BHs was reported [323], suggesting the BH mass
spectrum might be populated continuously from few solar masses to billions of solar masses.
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the time scale grows with some power of 1/(µM) and eventually the instability is
ineffective on astrophysical time scales. The lower limit comes from the fact that the
instability exists only when the superradiant condition is satisfied, and this imposes
a constraint on µ for a given azimuthal number m8. Indeed, the rightmost part of
the curves shown in Fig. 11.6 for fixed µ is universal and arises from saturation of the
superradiant condition, a ∼ acrit, where acrit is given in Eq. (11.32). Such condition
does not depend on the spin of the field, and this explains why the upper bounds in
Eqs. (11.33)–(11.35) are the same for scalar, vector and tensor fields.

11.5. Discussion

If ultralight bosonic degrees of freedom exist in nature, massive BHs should have a
maximum spin lower than the Kerr bound and should be endowed with large dipolar
bosonic clouds. Thus, observations of highly-spinning BHs can be used to constrain
such fields, for example to put bounds on axions or on massive gravitons. Such predic-
tions are based on a linearized analysis which neglects the effects of backreaction and
other competitive effects such as accretion. In this Chapter, we have extended such
analysis by including the emission of gravitational waves from the cloud and the most
conservative case of gas accretion. By adopting an adiabatic approximation, we have
simulated the evolution of the scalar condensate around a spinning BH.

Our results show that the effects of gravitational-wave emission are always too small
to affect the evolution of the BH mass and spin, but they contribute to dissipate the
scalar condensate. Indeed, we have shown that the scalar condensates are eventually
re-absorbed by the BH and dissipated through quadrupolar gravitational waves, in
accord to the BH no-hair theorems [184, 301–303]. Nonetheless, the mass of the cloud
remains a sizeable fraction of the BH total mass over cosmological times, so that
such systems can be considered as (quasi)-stationary hairy BHs for any astrophysical
purpose. The energy-density in the scalar field is negligible and the geometry is very
well described by the Kerr metric during the entire evolution. Thus, the prospects of
imagining deviations from Kerr due to superradiantly-produced bosonic clouds in the
electromagnetic band [298, 299] are low (however, see Ref. [326] for nice results on the
shadow of these BHs), but such systems are a primary source for observations aiming
at testing the Kerr hypothesis through gravitational-wave detection [50, 51, 295–297].

The role of gas accretion is twofold. On the one hand, accretion competes against
superradiant extraction of mass and angular momentum. On the other hand accretion
might produce the optimal conditions for superradiance, for example by increasing
the BH spin before the instability becomes effective or by “pushing” the BH into the

8As m increases, larger values of µ are allowed in the instability region and virtually any value of
µ gives some unstable mode in the eikonal (l,m � 1) limit. However, the instability is highly
suppressed as l increases so that, in practice, only the first few allowed values of l = m correspond
to an effective instability.
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instability region in the Regge plane.

Our Monte Carlo simulations confirm that a very generic prediction of BH superra-
diant instabilities is the existence of holes in the Regge plane. For mass accretion near
the Eddington rate, such depleted regions are very well described by Eq. 11.32, which
corrects the estimate obtained just by comparing the instability time scale against a
typical accretion time scale. A more sophisticated analysis – including radiative ef-
fects [316], the geometry of the disk, the effect of mergers on the evolution [312] and
also accretion by tidal disruption [311] – would be important to refine the bounds
previously derived [47, 49, 70, 284] (summarized in Section 11.4).

The main limitation of our analysis is the assumption of adiabatic evolution, which is
nonetheless well motivated given the large difference in the time scales of the problem.
For the same reason, exact numerical simulations – although important to test our
results – would be extremely difficult to perform. Some of our formulas were derived
in the small µM limit. Although they provide reliable results also when µM ∼ O(1),
our analysis could be extended using the exact numerical results derived in Ref. [308].

It would also be interesting to include scalar self-interactions, which are relevant
for axions. Assuming an axion sine-Gordon potential, V (Φ) = f 2

aµ
2[1 − cos(Φ/fa)],

the results of our analysis would remain valid provided fa is sufficiently large. In
this regime it is reasonable to expect that the self-interactions would not change the
evolution shown in Fig. 11.2 considerably. On the other hand, if the axion decay
constant fa corresponds to the GUT scale, fa ≈ 1016GeV, the bosenova occurs when
MS & 0.16M [306]. In this case, assuming the initial evolution would not be affected
considerably, our results suggest that the scalar cloud might reach the threshold for
the bosenova condensation.

Finally, we have focused on the scalar case but it is likely that similar results can be
derived also for massive vector and tensor fields because in such cases the superradiant
instability is stronger.
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Part III.

Interaction between bosonic dark
matter and stars
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12. Bosonic dark matter and stars

This part is based on Refs. [61, 327].

12.1. Introduction

The evidence for DM in observations is overwhelming, starting with galaxy rotation
curves, gravitational lensing and the cosmic microwave background [1]. While carefully
concocted modified theories of gravity can perhaps explain almost all observations, the
most attractive and accepted explanation lies in DM being composed mostly of cold,
collisionless particles [1, 328, 329].

Several candidates for dark matter have been proposed [1, 328, 329], of which ul-
tralight bosonic fields, such as axions, axion-like candidates [21, 330, 331] or “hidden
photons” [26] are an attractive possibility. Axions were originally devised to solve the
strong-CP problem, but recently a plethora of other, even lighter fields with masses
10−10 − 10−33 eV/c2, have also become an interesting possibility, in what is commonly
known as the axiverse scenario [5]. On the other hand massive vector fields arise in the
so-called hidden U(1) sector [6, 30–32]. This family of candidates are part of what is
now referred to as weakly interacting slim particles (WISPs) [332] in some of the DM
literature.

It is appropriate to emphasize that DM has not been seen nor detected through any
of the known standard model interactions. The only evidence for DM is through its
gravitational effect. Not surprisingly, the quest for DM is one of the most active fields
of research of this century. Because DM can only interact feebly with Standard Model
particles, and thanks to the equivalence principle, the most promising channel to look
for DM imprints consists of gravitational interactions.

In particular, regions where gravity is strong, such as compact stars, might be a
good place to look for signals of DM. Since massive bosonic fields are viable DM
candidates [1, 328], a natural question is whether they can be accreted inside stars and
lead to stable configurations with observable effects. Although not originally framed in
the context of DM capture, such solutions, made of both a perfect fluid and a massive
complex scalar field, exist [333–340] and can model the effect of bosonic DM accretion
by compact stars. Complementary to these studies, accretion of fermionic DM has
also been considered, by modeling the DM core with a perfect fluid and constructing
a physically motivated equation of state [341–343].
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12.2. Stars may survive dark matter capture

The work presented in this Part may be useful on several fronts. Firstly, it shows
that stable DM cores inside compact stars are possible. The question of whether these
cores are actually formed through dynamical processes in DM environments is harder
to answer. The standard lore – which the results we will present do not support – is
that the dynamics happen in two stages (see e.g., Refs. [52–56]):

1. Accumulation stage, where DM is captured by the star due to gravitational deflection
and a non-vanishing cross-section for collision with the star material [52, 344–346]. The
DM material eventually thermalizes with the star, and accumulates inside a sphere
of r.m.s. radius rth ∼ (kBT/ρcmDM)1/2, with kB Boltzmann’s constant, T, ρc the
temperature and density of the star, and mDM the mass of the DM particles. The
high-density of compact stars provide the ideal environment for the star to accumulate
a considerable amount of DM.

2. BH formation, after the DM core becomes self-gravitating. The newly formed BH
eventually eats the host star [52–56, 345].

As we will detail in Chapter 14, stable, self-gravitating and self-interacting bosonic
DM cores exist and can be explicitly constructed [327] . In fact, a similar construction
was recently performed for fermionic DM models [342]. Thus, the scenario above cannot
be generic. In fact, all of these works assume that gravitational collapse ensues once
DM becomes self-gravitating. The stability and evolution of stars is a far more complex
affair, and in particular DM dispersion or an increase in the star temperature can easily
rule out the collapse scenario. We show that the gravitational cooling mechanism [347]
not only disperses bosonic condensates, but it prevents – generically – gravitational
collapse to occur.

We do not take into account non-gravitational interactions between the star and DM;
however, there are strong reasons to suspect that some of the main features are indepen-
dent, at the qualitative level, of the nature of the interaction. For example, although
our results are formally only valid for zero-temperature bosonic condensates, finite
temperature effects are expected to be negligible for bosonic masses much larger than
the central temperature of the host star [348, 349], such as bosonic fields with masses
& keV inside old neutron stars or white dwarfs. In fact, Refs. [348, 349] showed that
stable bosonic stars exist for temperatures below a critical temperature which scales
linearly with the boson field mass. Finite temperatures tend to increase the radius of
the boson star (comparing a star with the same total mass), but do not significantly
affect the star’s maximum stable mass. In addition, for axionic-type couplings, for
instance, all or most of the core energy will be dissipated away under electromagnetic
radiation, on relatively small timescales [350–352].

Finally, our study predicts that bosonic DM cores drive the star to vibrate at a
frequency dictated by the scalar field mass, f = 2.5 × 1014 (mBc

2/eV ) Hz [327], pro-
viding a clear means to identify the presence of dark matter in stars, provided these
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modes are excited to measurable amplitudes. Helioseismology, developed to the level
of a precision science, can now measure individual modes each with an amplitude of
∼ 10 cm s−1 [353]. Thus, provided efficient mechanisms exist to gather sufficient DM
at the cores of stars, these oscillations will be a smoking gun for DM.

12.3. General Framework

In this last part of the thesis we will be interested in a massive scalar φ or vector Aµ
minimally coupled to gravity, and described by the action

S =

∫
d4x
√
−g
(
R

κ
− 1

4
F µνF̄µν −

µ2
V

2
AνĀ

ν − 1

2
gµνφ̄,µφ,ν −

µ2
Sφ̄φ

2
+ Lmatter

)
.

(12.1)
We take κ = 16π, Fµν ≡ ∇µAν − ∇νAµ is the Maxwell tensor and Lmatter describes
additional matter fields, that we consider to be described by a perfect fluid. We focus
on massive, non self-interacting fields, but our results are easily generalized. In fact,
we discuss in Section 14.6 how our results generalize to a quartic self-interaction term.
The mass mB of the boson under consideration is related to the mass parameter above
through µS,V = mB/~, and the theory is controlled by the dimensionless coupling

G

c~
MTµS, V = 7.5 · 109

(
MT

M�

)(
mBc

2

eV

)
, (12.2)

where MT is the total mass of the bosonic configuration.

Varying the action (12.1), the resulting equations of motion are

∇µ∇µφ = µ2
Sφ , (12.3a)

∇µF
µν = µ2

VA
ν , (12.3b)

1

κ

(
Rµν − 1

2
gµνR

)
=

1

4π

(
1

2
F (µ
α F̄

ν)α − 1

8
F̄αβFαβg

µν

−1

4
µ2
VAαĀ

αgµν +
µ2
V

2
A(µAν)

)
− 1

4
gµν
(
φ̄,αφ

,α + µ2
Sφ̄φ

)
+

1

4
φ̄,µφ,ν +

1

4
φ,µφ̄,ν +

1

2
T µνfluid . (12.3c)

Here, the stress-energy tensor for the perfect fluid is given by [354]

T µνfluid = (ρF + P )uµuν + Pgµν , (12.4)

with uµ the fluid’s four-velocity, ρF its total energy density in the fluid frame and P its
pressure. The massive vector field equations (12.3b) imply that the vector field must
satisfy the constraint,

µ2
V∇µA

µ = 0 , (12.5)
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while from the Bianchi identities, it follows that the fluid must satisfy the conservation
equations

∇µT
µν
fluid = 0 . (12.6)

In addition we impose conservation of the baryonic number [354]:

∇µ (nFu
µ) = 0 , (12.7)

where nF is the baryonic number density in the fluid frame and mNnF is the fluid’s
rest-mass density for baryons of mass mN . To close this system of equations we also
need to complement the system with an equation of state relating nF , ρF and P .
Specific equations of state will be discussed in Chapter 14.

In the next Chapters we consider only everywhere regular solutions of the sys-
tem (12.3a)–(12.3c).

12.4. Self-gravitating bosonic stars

Compact solutions of the system (12.3a)–(12.3c), without including the perfect fluid,
exist for both real and complex fields. Scalar fields have been extensively studied in the
literature, while similar solutions for vector fields will be constructed in Chapter 13.

The existence of these solutions is not something that one would trivially guess. In
fact, in four-dimensional flat spacetime, Derrick’s theorem shows that no stable static
non-topological compact scalar field solutions exist for any scalar field potential [355]1.
For complex fields, a way out of this theorem is to consider a harmonic behavior for
the field:

φ(t, r) = φ(r)eiωt . (12.8)

In general this is not enough to guarantee the existence of solutions. For some non-
linear potentials, localized flat space solutions of the form (12.8) exist [356, 357] (the
so-called Q-balls). However, for the most general renormalizable potential, namely
V (φ) = µ2

S|φ|2 + λ|φ|4/2, solutions do not exist in flat space. For solutions with this
potential to exist, one must couple the scalar field to gravity. These are the so-called
boson stars [57, 58]. Although the field oscillates with a frequency ω, the stress-energy
tensor of this field will not depend on time, as can easily be checked by plugging in the
ansatz (12.8) into the field equations (12.3). Thus the metric of these configurations is
static.

These arguments only apply for complex fields, for which there is an associated
Noether charge. One could expect that for real fields, due to the absence of a conserved
current, stable compact solutions do not exist. However Ref. [60] showed that stable
compact configurations, similar to boson stars, also exist in this case. Unlike boson
stars, for real scalar fields, the stress-energy tensor must itself be time-dependent. For

1Non-topological solitons have an associated Noether charge, unlike topological solitons.
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these objects, called oscillatons, both the metric and the scalar field oscillate periodi-
cally in time. Oscillatons are in fact not truly periodic solutions of the field equations,
as they decay through quantum and classical processes. However, their lifetime Tdecay

is extremely large for all masses of interest [358, 359],

Tdecay ∼ 10324

(
1 meV

mBc2

)11

yr . (12.9)

Both boson stars and oscillatons, can be thought of as being a macroscopic collection
of bosonic particles held together by gravity. Assuming that the kinetic energy of these
particles is sufficiently low for them to be gravitationally bound, two ingredients must
be in place [360]: (i) an attractive interaction to hold the particles together; (ii) a
counterbalancing pressure to avoid the field to collapse to a BH. The first ingredient
is obviously provided by gravity. The non-zero stress-energy momentum of the field
curves the geometry and consequently the field must interact gravitationally with itself.
The second ingredient is less obvious from the physical point of view, but one can argue
that the dispersive nature of the Klein-Gordon equation, the same dispersion that is
encoded in Heisenberg’s uncertainty principle, provides the necessary counterbalancing
pressure.

Indeed, assuming that the bosonic star is a macroscopic object satisfying the un-
certainty principle, one can give a good estimate of its maximum possible mass [360].
Consider a boson star or oscillaton in its ground state, satisfying the uncertainty prin-
ciple, ∆p∆x ≥ ~. Assuming that the star is confined within a finite radius ∆x = R,
and taking the uncertainty in the momentum to be ∆p = mBc, with mB the mass of
the bosonic particle, we get

mB cR ≥ ~. (12.10)

In fact, one could have guessed this result, by assuming that the star is spread out
within the Compton wavelength of the bosonic field λc = ~/(cmB). The maximum mass
of the star saturates this bound, while its radius can be compared with its Schwarzschild
radius RS = 2GMmax/c

2, where Mmax is the maximum mass of the star. Substituting
yields

Mmax ∼
1

2

~c
GmB

= 0.5M2
P/mB , (12.11)

where the Planck’s mass is given by MP ≡
√

~c/G. As shown in Fig. 12.1 this is a
very good estimate of Mmax and correctly predicts that the mass of a boson star or
oscillaton is inversely proportional to the mass of the bosonic field 2

As a final note, we should emphasize that bosonic stars share common features with
neutron stars, such as their mass versus radius curves (see Fig. 12.1). This similarity
can be used to understand the physics of compact stars in different scenarios, using a
simple but very robust model [360].

2This is only true when the field’s potential is a simple mass term. Adding self-interaction terms
adds another contribution to the effective pressure, changing this picture [361].
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Figure 12.1.: Comparison between the total mass of a boson star (complex scalar or
vector fields) and an oscillaton (real scalar or vector fields), as a function
of their radius R. R is defined as the radius containing 98% of the total
mass. The procedure to find the diagram is outlined in Chapter 13.

12.4.1. Brief overview of solutions

Let us give a brief summary of the most popular solutions which have been studied so
far. For more detailed reviews on the subject see Refs. [360, 362–364].

Boson stars. Boson stars are regular compact solutions of the Einstein-Klein-Gordon
equations for a complex massive scalar field. Some of these solutions have been claimed
in the literature as possible candidates for supermassive horizonless BH mimickers [365].
They can be classified according to the scalar potential in the Klein-Gordon La-
grangian (12.1) [363]:

• Mini boson stars: the scalar field potential is given by V (φ) = µ2
S|φ|2, where µS is

the scalar field mass. For non-rotating boson stars the maximum mass is Mmax ≈
0.633M2

P/µS, with MP being the Planck mass [57, 58]. Considering values of µS
typically found within the Standard Model, this mass limit is much smaller than
the Chandrasekhar limit for a fermion star, approximately M3

P/µ
2. For ultralight

boson masses µS, as those motivated by string axiverse scenarios [5], and relevant
in the DM context, mini boson stars may have a total mass compatible with that
observed in active galactic nuclei [363].

• Massive boson stars: the scalar potential has an additional quartic scalar field
term, V (φ) = µ2

S|φ|2 + λ|φ|4/2 [361] (see also Ref. [366] for a detailed study of
these solutions in the context of DM physics). In this case the maximum mass
can be comparable to the Chandrasekhar limit and for λ � µ2

S/M
2
P one can
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estimate Mmax ≈ 0.062λ1/2M3
P/µ

2
S.

One can also find other types of boson stars by changing the scalar potential or by con-
sidering non-minimal couplings as done in Ref. [367]. For some non-linear potentials,
similar solutions, generically called Q-balls, exist even in flat space [356, 357] (when
coupled to gravity some of these solutions can give rise to very heavy boson stars [368].
See also Ref. [369] for potentials with more generic self-interaction terms). Finally,
boson stars can also be found in alternative theories of gravity, such as scalar-tensor
theories [370–372]. A more detailed list of solutions can be found in Ref. [363].

Oscillatons. For a real massive scalar field minimally coupled to gravity, with V (φ) =
µ2
Sφ

2, compact configurations were first shown to exist in Ref. [60], while the generaliza-
tion for a scalar field with a quartic interaction was considered in [373]. Interestingly,
for some non-linear potentials, such as the Higgs double well potential or the axionic
sine-gordon potential, a real scalar field counterpart of the Q-balls exist and are dubbed
oscillons [374–378] (note that oscillons are built in a Minkowski background). For real
massive vector fields, Ref [379] found convincing indications that the same kind of
oscillatory solutions form in the gravitational collapse of a wide set of initial data.

Boson stars and oscillatons share very similar structures, as summarized in Fig. 12.1,
where we plot the mass-radius relation for spherically symmetric boson stars and os-
cillatons (including massive vectors that will be discussed in Chapter 13). Boson stars
and oscillatons have a maximum mass Mmax, given approximately by

Mmax

M�
= 8× 10−11

(
eV

mBc2

)
, (12.12)

for scalars and slightly larger for vectors.

Boson-Fermion stars The extension to mixed stars, composed both by a complex
scalar field and a perfect fluid, was first considered in Ref. [333] and further studied
in [334–336] (exact solutions in 2+1-dimensions were also found in [337]). The stability
of these objects was studied in [380–383]. Slowly rotating boson-fermion stars were
constructed in [338], while extensions to allow for an interaction between the scalar
field and the fermionic fluid were considered in [339, 340].

Boson-fermion stars were shown to exist in a wide variety of configurations. For small
boson masses they can be either dominated by the bosonic component or the fermionic,
or have bosonic and fermionic components of the same order of magnitude [333–336].
For large boson masses only two types of configurations exist, either bosonic dominated
or fermionic dominated, with a sharp transition between the two configurations, when
one of the configurations reaches ∼ 10% of the total mass [334, 335].

In Chapter (14) we will show that similar solutions also exist for real massive fields.
However in this case the fluid must itself oscillate with a dominant frequency given by
twice the boson mass.
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12.5. Outline of Part III

We start by constructing scalar and vector oscillatons in Chapter 13. There, we first
review how scalar oscillatons are constructed and then present for the first time massive
vector field oscillatons.

Chapter 14 is devoted to the study of stars with bosonic cores and their growth.
We first study stellar configurations formed by both a perfect fluid and a real massive
scalar field. These solutions are a generalization of the fluid-boson stars found and
studied in detail in Refs. [333–336]. We show that the presence of the scalar field
induces very specific oscillations in the star’s material, and argue that for most of the
parameter space of interest, these stars are stable against small perturbations. We
finish by discussing how these cores might grow, arguing that collapse to a BH can be
avoided whenever gravitational cooling mechanisms are efficient [347, 384–386]. This
suggests that previous claims, assuming the collapse of the host star to a BH above
a certain threshold might not always be valid if DM is composed of massive bosonic
fields.
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13. Oscillatons

13.1. Introduction

Massive bosonic fields minimally coupled to gravity can form structures [57–60, 387–
389]. Self-gravitating complex scalars may give rise to static, spherically-symmetric
geometries called boson stars, while the field itself oscillates [57, 58] (for reviews, see
Refs. [360, 362–364]). Very recently, analogous solutions for complex massive vector
fields where also shown to exist [59]. On the other hand, real scalars may give rise to
long-term stable oscillating geometries, but with a non-trivial time-dependent stress-
energy tensor, called oscillatons [60]. Both solutions arise naturally as the end-state of
gravitational collapse [60, 379, 390], and both structures share similar features.

In this Chapter we construct compact solutions of the Einstein field equations, either
for a minimally coupled real massive scalar or vector field. The methods here presented
to construct oscillatons are a straightforward generalization to those used to construct
solutions for complex fields. Since the latter are easier to construct, and less generic
than the oscillatons, we focus here solely on real fields. We first review the formalism
introduced in Ref. [60] to construct massive scalar oscillatons and then show how this
formalism can be extended to massive vector fields.

13.2. Massive scalar field

We start by considering a real massive scalar minimally coupled to gravity. In Ref. [60]
it was shown that solutions to the field equations describing spherically symmetric com-
pact configurations exist. We consider a general time-dependent spherically symmetric
metric

ds2 = −F (t, r)dt2 +B(t, r)dr2 + r2dΩ2 . (13.1)
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Rescaling the scalar field as φ→ φ/
√

8π and defining the function C(t, r) = B(t, r)/F (t, r),
the field equations (12.3a) and (12.3c) lead to a system of PDEs given by

Ḃ

B
= rφ̇φ′ , (13.2)

B′

B
=

r

2

(
Cφ̇2 + (φ′)2 +Bµ2

Sφ
2
)

+
1

r
(1−B) , (13.3)

C ′

C
=

2

r

[
1 +B

(
1

2
r2µ2

Sφ
2 − 1

)]
, (13.4)

φ̈C = −1

2
Ċφ̇+ φ′′ + φ′

(
2

r
− C ′

2C

)
−Bµ2

Sφ , (13.5)

where an overdot denotes ∂/∂t and a prime denotes ∂/∂r. These equations suggest
the following periodic expansion

B(t, r) =
∞∑
j=0

B2j(r) cos (2jωt) ,

C(t, r) =
∞∑
j=0

C2j(r) cos (2jωt) ,

φ(t, r) =
∞∑
j=0

φ2j+1(r) cos [(2j + 1)ωt] . (13.6)

Inserting this expansion into the system (13.3)–(13.5) and truncating the series at a
given j, yields a set of ordinary differential equations for the radial Fourier components
of the metric functions and the scalar field. We note that out of the four Eqs. (13.2)–
(13.5) we only need to use three. The remaining one can be checked to be satisfied a
posteriori. In practice we only compute the Fourier expansion (13.6) up to j = jmax.
This introduces a certain error in the accuracy at which the full system of equations is
satisfied. In general the larger jmax is, the smaller the error [359, 391], and we explicitly
checked that this was the case.

We impose regular boundary conditions at r = 0, i.e., φ′2j+1(0) = 0, B0(0) = 1,
B2j(r) = 0 for j ≥ 1, while φ2j+1(0) and C2j(0) are free parameters. At infinity
r → ∞, asymptotic flatness requires φ2j+1 → 0, C0 = B0 → 1 and C2j = B2j → 0 for
j ≥ 11. The system (13.3)–(13.5) supplemented with this set of boundary conditions
is an eigenvalue problem for the frequency ω. Fixing one of the free parameters,
e.g, φ1(0), one can shoot for the other remaining free parameters, requiring that the
boundary conditions are satisfied. For each choice of φ1(0) there will be a unique family
of solutions satisfying the above boundary conditions, characterized by the number of
nodes in the scalar field profile.

1For asymptotically flat spactimes the metric function C(t, r)→ B2(r)/α(t) when r →∞, for some
arbitrary function α(t). Thus we can always rescale t such that C(t, r)→ B2(r) at r →∞.
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Figure 13.1.: Left: Scalar field configuration φ at ωt = 0 for φ1(0) = 0.2828 and its
first Fourier components with jmax = 1. Right: Corresponding radial
metric coefficient B at ωt = 0 and its first Fourier components. This
configuration has a total mass MT ≈ 0.57/µS and fundamental frequency
ω ≈ 0.912µS.

Due to the presence of a mass term in the scalar potential, the scalar field decays

in a Yukawa-like fashion e−r
√
µ2S−ω2

/r at large distances. Thus, at infinity the metric
asymptotically approaches the Schwarzschild solution and the total mass of a given
configuration can be computed using

MT = lim
r→∞

m(r) = lim
r→∞

(B − 1)r

2B
. (13.7)

We should note that oscillatons are not truly stable configurations, but decay on very
long time-scales due to a radiative tail. However, since the amplitude of this tail
is exponentially suppressed, for our purposes it is enough to compute the mass at
some finite radius and consider it to be the mass of the oscillaton. Although these
stars do not possess a well-defined surface where the field vanishes, the configuration
is exponentially suppressed at a radius r ∼ 1/µS. Thus, one can define an effective
radius inside which much of the mass is localized. We will define the radius R of the
oscillaton as being the radius such that m(R) is 98% of the total mass MT .

In Fig. 13.1 we show an example of a configuration. The profile is smooth every-
where and we find that the series (13.6) typically converges already for j = 2. The
fundamental frequency satisfies ω . µS as shown in Fig. 13.2, where we plot the mass
MT as a function of ω. In the Newtonian limit MT → 0, the solutions become spatially
diluted with ω → µS (cf. Fig. 12.1). For smaller ω the star becomes more compact,
with a maximum mass given by MT ∼ 0.6/µS for ω ∼ 0.864µS, in agreement with
previous studies [60, 384].

Due to the time-dependence of these solutions, a perturbative analysis of their linear
stability is very challenging. However the close similarity between oscillatons and
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Figure 13.2.: Total mass MT of the scalar oscillaton as a function of the fundamental
frequency ω. The maximum mass is MT ∼ 0.6/µS for ω ∼ 0.864µS. This
point marks the threshold between stable and unstable configurations.
Stars to the right of the maximum are stable while those to the left are
unstable.

boson stars, suggest that the solutions are stable from ω = µS down to the maximal
mass [392, 393]. The results of Refs. [60, 384], where Numerical Relativity techniques
were used to study how oscillatons behave when slightly perturbed, suggest that this
is indeed the case. Since scalar oscillatons have been widely discussed in the literature,
we will not discuss them further and instead show that similar configurations exist for
massive vector fields.

13.3. Massive vector field

Very recently, the Einstein-Proca field equations (12.3b) and (12.3c) have been shown
to admit compact configurations, similar to scalar boson stars, for a complex massive
vector field [59]. On the other hand, for real vector fields, Ref. [379] found strong
numerical evidences that vector oscillatons can form in the gravitational collapse of a
real massive vector field. Using the formalism introduced above, we can show that real
massive vector fields can indeed form oscillating compact structures when minimally
coupled to gravity. This is, as far as we are aware, the first time that these solutions
are explicitly constructed.

We consider the metric (13.1) and a spherically symmetric vector field

Aµdx
µ = At(t, r)dt+ Ar(t, r)dr . (13.8)
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Figure 13.3.: Left: Vector field profiles at their peak values for Xt 1(0) = 0.1 and its
first Fourier components with jmax = 1. Right: Corresponding radial
metric coefficient B at ωt = 0 and its first Fourier components. This con-
figuration has a total mass MT ≈ 1.044/µV and fundamental frequency
ω ≈ 0.902µV .

To simplify the equations we define the following functions

Xt ≡
√
CAt , Xr ≡

1√
C
Ar , W ≡

√
C

B

(
Ȧr − A′t

)
, (13.9)

where again C ≡ B/F . From eqs. (12.3b) and (12.5) we find

X ′t =
XrĊ

2
+ CẊr −

Xt

r
(B − 1)−BW (1− rWXt) , (13.10)

Ẋt =
1

r2
∂r
(
r2Xr

)
, (13.11)

Xt = − 1

µ2
V r

2
∂r
(
r2W

)
, (13.12)

Ẇ = −µ2
VXr , (13.13)

while from Einstein’s field equations (12.3c) we have

Ḃ

B
= 2rµ2

VXrXt , (13.14)

B′

B
= r

(
µ2
VCX

2
r + µ2

VX
2
t +BW 2

)
+

1

r
(1−B) , (13.15)

C ′

C
=

2

r

[
1 +B

(
r2W 2 − 1

)]
. (13.16)
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These equations suggest the following Fourier expansions

Xt(t, r) =
∞∑
j=0

Xt 2j+1(r) cos [(2j + 1)ωt] ,

Xr(t, r) =
∞∑
j=0

Xr 2j+1(r) sin [(2j + 1)ωt] ,

W (t, r) =
∞∑
j=0

W2j+1(r) cos [(2j + 1)ωt] , (13.17)

while the metric functions are expanded as in (13.6). Once more, eq. (13.14) will not
be used to find the solutions. On the other hand, from Eq. (13.13), one can find W2j+1

algebraically, which greatly simplifies the equations (note that W is just an auxiliary
function that we introduced to simplify the equations, and so one can easily check
that, after finding W2j+1 from eq. (13.13) and X ′r 2j+1 from eq. (13.11), eq. (13.12) is
automatically satisfied). Similarly to the scalar case, we can find a set of ordinary
differential equations by truncating the series at some j and then solve the eigenvalue
problem, imposing regular boundary conditions at r = 0 and asymptotic flatness. This
imposes Xr 2j+1(0) = 0, B0(0) = 1, B2j(r) = 0 for j ≥ 1, while Xt 2j+1(0) and C2j(0)
are free parameters. At infinity, besides the usual conditions for the metric functions,
we require Xt 2j+1 = Xr 2j+1 → 0. We can then find solutions by fixing Xt 1(0) and use
the same method as for the scalar case.

Our results are summarized in Figs. 13.3–13.4. The overall behavior is analogous to
the scalar case. The series (13.17) converges rapidly and already for j = 2 one gets an
accuracy for the ADM mass better than ∼ 0.2%. The total mass MT as a function of
frequency ω is shown in Fig. 13.4. The behavior is analogous to the one found in the
scalar case, although the maximum is slightly larger, MT ∼ 1.07/µV (cf. Fig 12.1),
and occurs at ω ∼ 0.875µV . Not surprisingly, the overall behavior is almost identical
to the one found for Proca stars (i.e. complex vector field boson stars) [59], as can be
seen in Fig. 12.1.

By considering radial perturbations of Proca stars, it was shown in Ref. [59] that the
maximum mass also corresponds to a branching point separating unstable from stable
solutions. Although full numerical simulations are needed, vector oscillatons should
also follow the same pattern. In particular, similar conclusions should hold: configu-
rations which reach the unstable branch will either quickly collapse to BHs, migrate
back to the stable branch via mass ejection, a phenomenon known as the gravitational
cooling mechanism [347, 384, 385] (see also Section 14.6 in the next Chapter), or simply
completely disperse.

As a final word, we should note that although we only discussed fundamental states,
characterized by Xt having one node and Xr being nodeless, excited states – solutions
with more nodes – also exist. Since those are expected to be unstable [394, 395] we
will not discuss them here.

149



0.85 0.90 0.95 1.0
ω/µV

0

0.2

0.4

0.6

0.8

1.0

1.2

µ V
M

T

Figure 13.4.: Total mass MT of the vector oscillaton as a function of the fundamental
frequency ω. The maximum mass isMT ≈ 1.07/µV for ω ≈ 0.875µV . This
point marks the threshold between stable and unstable configurations.

13.4. Conclusions

The picture we discussed in this Chapter is quite generic and shows that any self-
gravitating, massive bosonic field can form compact structures, either in the form of
boson stars or oscillatons. In particular, we showed for the first time that real self-
gravitating massive vector fields can form oscillatons. It is reasonable to admit that
DM could be composed of different kinds of fundamental entities, but which, when
gravitationally clustered into macroscopic lumps, display some universality. Within
this context, in the next Chapter we will show how these structures could leave potential
imprints in stars.
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14. Stars with dark matter cores

14.1. Introduction

In the previous Chapter we showed that self-gravitating massive bosonic fields can
form compact configurations. An interesting possibility is that these structures might
be accreted by stars, forming a bosonic core in their interior. For complex bosonic fields,
such solutions were already considered in the literature [333–340]. We will show that
real bosonic fields can also cluster inside stars and give rise to oscillating configurations,
where both the star’s material and the field oscillate.

14.2. Setting and Fourier-expansion

We consider the system (12.3a), (12.3c), and for simplicity we focus only on the scalar
case. Similar configurations should also exist for vector fields. Due to the presence of
the scalar field the fluid will, in general, oscillate with a radial velocity:

dr/dt = ur/u0 = V (t, r) , (14.1)

where u0 = Γ/
√
−gtt and Γ = (1− U2)

1/2
is the Lorentz factor connecting the fluid’s

comoving frame with the frame of the observer at rest with respect to a spacelike
hypersurface of constant t [396]. Using the normalization condition uµuµ = −1 one

has U = V
√
−grr/gtt.1

Once more, we will work with a rescaled scalar field, φ → φ/
√

8π and consider
a general time-dependent, spherically symmetric metric, as in Eq. (13.1). The field
equations, together with the conservation equations (12.6) and (12.7) lead to a system

1Not assuming conservation of the baryonic number, given by Eq. (12.7), is equivalent to neglecting
the radial velocity V ∼ 0. As we show below, this is indeed a good approximation for small bosonic
cores. Physically, non conservation of the baryonic number leads to a conversion of bosonic matter
to baryonic matter and vice-versa. This mimics a fundamental interaction between the scalar field
and star’s material for which the baryon number is not conserved. On the other hand, whether
a conversion between fundamental fields can indeed occur indirectly through their gravitational
coupling is an interesting discussion that we leave for future work. We should also note that for
complex fields, which give rise to the boson-fermion stars first studied in Refs. [333, 334], the fluid
and the metric are static, and so for this case we set V = 0.
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of PDEs given by

Ḃ/B = r

[
φ̇φ′ − 8πBV (P + ρF )

1− U2

]
, (14.2)

ρ̇F = (P + ρF )
ṅB + V n′F

nF
− V ρ′F , (14.3)

B′/B =
r

2

[
Cφ̇2 + (φ′)2 +B

(
µ2
Sφ

2 + 16π
ρF + PU2

1− U2

)]
+ (1−B)/r , (14.4)

C ′/C = 2/r +Br
(
µ2
Sφ

2 + 8πρF − 8πP
)
− 2B/r , (14.5)

φ̈C = −Ċφ̇/2 + φ′′ + 2φ′/r − C ′φ′/(2C)−Bµ2
Sφ , (14.6)

2P ′ = −
(
1− U2

)
(P + ρF ) (CB′ −BC ′) /(BC)

+V
[
(P + ρF )

(
4CV − rĊ

)
− 2rCṖ

]
/r

−2 (P + ρF )CV̇ + 2CV (P + ρF )
ṅB + V n′F

nF
, (14.7)

V ′ = −
(
1− U2

) [(
Ḃ + V B′

)
/(2B) + (ṅB + V n′F ) /nF

]
−V

[
4 + C

(
2rV̇ − 4V 2

)
+ rV

(
Ċ + V C ′

)]
/(2r) . (14.8)

where we recall that C ≡ B/F and U ≡
√
CV . We will not make use of the conserva-

tion equations (14.2) and (14.3). One can check a posteriori that these equations are
satisfied up to a certain error introduced by the ansatz we use.

Employing the periodic expansion (13.6), one can easily see that the fluid’s energy
density, rest-mass density, pressure and radial velocity can be consistently expanded
as

ρF (t, r) =
∞∑
j=0

ρF 2j(r) cos (2jωt) ,

nF (t, r) =
∞∑
j=0

nF 2j(r) cos (2jωt) ,

P (t, r) =
∞∑
j=0

P2j(r) cos (2jωt) ,

V (t, r) =
∞∑
j=1

V2j(r) sin (2jωt) . (14.9)

The equations of motion need to be supplemented by an equation of state. We will
focus on an ideal fluid and polytropic equation of state [354]:

P = K (mNnF )γ , ρF (P ) = (P/K)1/γ + P/ (γ − 1) , (14.10)
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where we take K = 100/µ2
S and γ = 2, which can mimic neutron stars [383, 397].

For this choice, the star is also isentropic, i.e. the fluid’s specific entropy is constant
along the star [354]. We will also consider the equation of state P = KργF , which is
equivalent to the previous one when the fluid’s internal energy density is much smaller
than the fluid’s rest-mass density. This is a good model for cold and old neutron
stars [354]. In the following, we will compare the results obtained in both models.
Although our results can be generalized to other equations of state, we should note that
generic equations of state do not allow for a straightforward expansion such as (14.9).
A possibility is to consider the oscillating components to be a small perturbation of a
static star, along the lines of what is usually done to construct slowly-rotating stars [398,
399] 2. The construction here presented can then be straightforwardly applied. We have
explicitly checked that using this approach one can generalize our results to a generic
equation of state.

14.2.1. Small note on units

For generic polytropic equations of state and in geometrical units G = c = 1, the
constant K has dimensions [L]2(γ−1), where [L] denotes dimensions of length, while
in non-geometric units it has dimensions [L]3γ−1[M ]1−γ[T ]−2, where [M ] denotes di-
mensions of mass and [T ] dimensions of time. In geometric units all quantities have
dimensions of length, so two quantities L̂ and L with dimensions of length, obtained
using {K̂, γ̂} and {K, γ}, respectively, correspond to the same solution (in the absence
of the scalar field) if they are related by [400]

L̂/L = K̂1/2(γ̂−1)/K1/2(γ−1) . (14.11)

To transform a dimensionless variable X to a dimensionfull quantity X̄ with dimen-
sions [L]l[M ]m[T ]t, one can use the following equation [401]:

X̄ = K̄xcyGzX , (14.12)

where x = (l + m + t)/[2(γ − 1)], y = [(γ − 2)l + (3γ − 4)m − t]/(γ − 1) and z =
−(l + 3m + t)/2, and K̄ is the value of the constant K in non-geometric units. For
example, for the mass of a star we get:

M̄ = K̄1/2(γ−1)c3c−1/(γ−1)G−3/2M(K = 1) . (14.13)

where M(K = 1) denotes the dimensionless mass for units with K = 1.

For our choice γ = 2,
√
K has units of length and can be used to set the length-scale

of the problem in the absence of the scalar field. Without loss of generality we will

2In this case, at lowest order, the expansion (14.9) would be given by ρF (t, r) = ρF 0(r) +
ε2P2(r) ∂ρF 0/∂P0 cos (2ωt), nF (t, r) = nF 0(r) + ε2P2(r) ∂nF 0/∂P0 cos (2ωt), P (t, r) = P0(r) +
ε2P2(r) cos (2ωt), with ε a small bookkeeping parameter and we assume an equation of state in the
absence of the scalar field of the form ρF 0 ≡ ρF 0(P0) and nF 0 = nF 0(P0).
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also set mN = 1. The choice K = 100 was considered in e.g. Ref. [383], which we used
to check the accuracy of our code. Other values of K can be obtained by fixing µS
and rescale all the quantities using Eq. (14.11). For example, fixing µS = 1, mass and
radius are measured in units of

√
K.

14.3. Numerical procedure

To construct the stars we employ the same method used in the previous Chapter,
the difference being that, due to the presence of the fluid, the solutions are now
parametrized by two parameters, e.g., nF 0(0) and φ1(0), while for the radial veloc-
ity we impose V2j(0) = 0. Additionally, we also need to impose boundary conditions
at the star’s radius. We define the radius R of the star to be the location where the
pressure drops to zero, P (R) = 0. For high scalar field central densities, first-order
terms j = 1 in the density might become of the order of the zeroth-order term, making
it difficult to find these configurations with good accuracy and impose the boundary
condition at the star’s radius. However, as explained below, for a given nF 0(0), we
expect these configurations to become unstable at some threshold φ1(0) > φc1(0). To
avoid these numerical difficulties, we will mostly focus on small φ1(0).

Due to the different length scales present in the problem, the solutions can also be
characterized by the mass coupling µSM0, where M0 is the mass of the static star
for vanishing scalar field, corresponding to the same value of central rest-mass density
nF 0(0). Depending on the numerical value of µSM0, we employ different numerical
strategies. For small µSM0, the scalar field density profile extends beyond the star’s
radius. For this case we compute the profile inside the star and at the star’s radius
impose the matching with the outer solution. The full solution is then found by im-
posing asymptotically flat boundary conditions. For large µSM0, the scalar field is
exponentially suppressed inside the star. To prevent numerical errors from spoiling
the full solution, we perform tree integrations: we first find the radius at which the
scalar field drops to zero and then compute the remaining solution by imposing the
scalar field to be zero after this radius. The solution outside the star is then found by
matching it with the inner solution.

A useful quantity to describe scalar-fluid stars is the scalar field’s energy density,
given by

2ρφ = −2T 0
0 = −φ̇2/gtt + φ

′2/grr + µ2
Sφ

2 , (14.14)

and the energy density measured by an observer at rest with respect to a spacelike
hypersurface of constant t, given by

ρF = −T 0
0 = Γ2 (ρF + P )− P . (14.15)

Note that, for our solutions, the contribution from the fluid’s kinetic energy to ρF is
negligible, and so we have in general Γ ∼ 1 and ρF ∼ ρF . With this, we define the
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time-average total mass in the fluid and bosons as

MF,B =

∫ ∞
0

4π
〈√

B ρF , φ

〉
r2dr , (14.16)

where <> denotes a temporal average. The total mass MT can be found in the
usual way through the metric component grr which asymptotically approaches the
Schwarzschild solution at infinity (cf. Eq. (13.7)).

14.4. Results

We will discuss our results assuming baryon conservation during DM accretion and
dynamics, but we will also discuss stars for which the DM-baryon cross section is so
large that conversion between one and the other is extreme, to the point where solutions
with zero fluid velocity are allowed. These solutions conserve baryon number on the
average, but not instantaneously. Additionally, this also serves as a model for stars
composed of fields for which there is no conserved current, such as Majorana fermions
or real bosonic fields.

14.4.1. Conserved baryon number

Our results for composite stars with conserved total baryon numbers are summarized
in Figs. 14.1-14.3. The overall behavior and global structure of these DM-cored stars
is dependent on the new mass scale introduced by the scalar field mass. For very small
µM0, the Compton wavelength of the scalar is very large and the scalar field spreads
throughout the spacetime. This is shown in the left panel of Fig. 14.1 for µSM0 = 0.1.
For very large scalar field masses, on the other hand, the scalar is confined to a small
region inside the star, as seen in the right panel of Fig. 14.1 for µSM0 = 20. In fact,
when µSM0 is extremely large, as happens for many DM models (c.f. eq. (12.2)), the
scalar core hardly knows about the existence of the star outside, and behaves, to a very
good precision, exactly like the pure oscillatons we described in the previous Chapter.
Notice also that for large mass couplings, one can have a large density, small oscillaton
inside a fluid star. As we discuss below, our argument then indicates that the oscillaton
can be in the stable branch, indicating that the whole configuration is stable. In other
words, stable, self-gravitating bosonic DM cores inside stars are possible. These results
complement similar recent findings for fermionic DM cores [342].

Accordingly, the detailed structure of these stars will also depend on the dimension-
less coupling µSM0. For large couplings, one can think of these composite stars as a
regular fluid star, where at the center sits a small pulsating oscillaton. It is then nat-
ural to expect that the oscillations in the oscillaton density will induce oscillations in
the fluid material. Indeed, this is a generic feature borne out of our results. A typical
star structure is shown in Fig. 14.2 for a 0.54% scalar composition and µM0 = 10,
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Figure 14.1.: Comparison between the (time average) energy density of the scalar
field ρφ and the fluid ρF for mixed scalar oscillatons and baryon fluids,
for scenarios where the total baryon number is conserved (fluid velocity
V 6= 0). We fix ρF 0(0) = 0.0006332, and have from left to right, µSM0 =
0.1, MB/MT ≈ 21%, corresponding to φ1(0) = 0.026 and ωM0 ≈ 0.0993,
µSM0 = 1, MB/MT ≈ 0.66%, corresponding to φ1(0) = 0.025 and ωM0 ≈
0.863, and µSM0 = 20, MB/MT ≈ 0.54%, corresponding to φ1(0) = 0.015
and ωM0 ≈ 16.221. Squares denote the corresponding quantities for
complex fields (i.e. mixed boson-fluid stars for the same MF and MB).
The overlap is nearly complete. Here M0 and ρφ=0 are the total mass of
the star (for the same ρF 0(0)) and the energy density of the fluid (for the
same MF ), respectively, when the scalar field vanishes everywhere. In the
left panel, the ρφ=0 and the ρF lines are indistinguishable, because light
fields have a negligible influence on the fluid distribution. For ρF 0(0) =
0.0006332, we have, in our units, M0 = 1 which corresponds to a star
with M0 ∼ M�. Solutions with larger ρF 0(0) can also be obtained and
the qualitative picture remains the same.

corresponding to a scalar core well inside the baryon fluid. A general feature of these
stars is that they oscillate, driven by the scalar field, with a frequency

f = 2.5× 1014 mBc
2

eV
Hz . (14.17)

In particular, the local density is a periodic function of time with a period dictated
by the scalar field. These oscillations are signalled by a nonzero j = 1 component of
the baryon density expansion (14.9), and are driven by the time-varying component of
the oscillaton’s density; therefore, the amplitude of the fluid’s oscillations is expected
to scale with the mass of the oscillaton. As shown in Fig. 14.3, for small mass ratios
MB/MT and large µM0 we find that the amplitude of these oscillations is described by
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Figure 14.2.: Scalar field (top left) configuration, density profile of the fluid (top right),
and corresponding metric component grr (bottom left) for µSM0 = 10 and
MB/MT ≈ 0.54%, corresponding to φ1(0) = 0.015, nF 0(0) = 0.0006332
and ωM0 ≈ 8.118. We plot the first Fourier components for jmax = 1. In
the bottom-right panel, we also plot the velocity profile of the fluid (here
V2 is the dominant time-dependent component of the velocity profile, cf.
equation (14.9)).

the approximate relation

δρF 2 ≡ ρF 2(0)/ρF 0(0) ∼ 10(µM0)1/2MB/MT . (14.18)

Even for MB/MT = 0.01, and for µSM0 = 10 the oscillations are of the order of 30% of
the static component. For this particular setup, where the baryon number is conserved,
the fluid velocity is nonzero, as it is shown in the bottom-right panel of Fig. 14.2.

14.4.2. Non-conservation of baryon number

The previous results can be compared and contrasted with the extreme case where
DM and baryonic matter can convert into one another. Under this assumption, we
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Figure 14.3.: Amplitude of the oscillations δρF 2 ≡ ρF 2(0)/ρF 0(0) as a function of
MB/MT . The symbols denote actual solutions that we computed. We
find that for small mass ratios MB/MT and large µM0 the amplitude is
well fitted by δρF 2 ∼ 10(µM0)1/2MB/MT .

find that there are solutions, summarized in Figs. 14.4-14.6, that allow a star to have
zero fluid velocity. We find that despite this, the overall qualitative behavior is the
same as those of baryon-conserving stars.

The density distribution of baryon non-conserving stars is shown in Fig. 14.4 for
different dimensionless mass couplings. Again, the mass coupling changes drastically
the global behavior of these stars; large mass couplings result in a small bosonic DM
core which is oblivious of the baryons surrounding it.

The structure of a star is shown in Fig. 14.5. Because the equations are technically
less challenging to handle in this case, we can accurately compute their j = 2 Fourier
components and consider larger values of MB/MT . As we said, the qualitative behavior
is similar, and in particular these composite stars also oscillate in density, driven by the
density-varying oscillaton sitting at their center. Since the effect of the radial velocity is
negligible for small MB/MT , taking V ∼ 0 describes with very good accuracy the main
properties of these stars. For large µM0, the only noticeable effect of V on the solution
is to slightly increase the amplitude of the oscillations in comparison to the V = 0
case. A comparison for the solution of Fig. 14.2, where this difference is noticeable, is
shown in Fig. 14.6. In general, the smaller µM0 and MB/MT the better the agreement
between the two cases.

We stress that the overall behavior might have been anticipated from an analysis
of Fig. 12.1: for light fields, µSM0 < 1 the scalar profile is extended and the pure
oscillaton solution is broad and light. As such, the scalar has a negligible influence on
the fluid distribution (as can be seen from the fact that the zero-scalar line ρφ=0 overlaps
with the fluid line in Figs. 14.1 and 14.4), and these stars simply have an extended
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Figure 14.4.: Same as Fig. 14.1 but for V = 0 and P = KργF . We fix ρF 0(0) =
0.00057092, and have from left to right, µSM0 = 0.1, MB/MT ≈ 21%,
corresponding to φ1(0) = 0.026 and ωM0 ≈ 0.0993, µSM0 = 1, MB/MT ≈
5%, corresponding to φ1(0) = 0.064 and ωM0 ≈ 0.873, and µSM0 =
10, MB/MT ≈ 5%, corresponding to φ1(0) = 0.06982 and ωM0 ≈ 8.629.
Once more, squares denote the corresponding quantities for complex fields
(i.e. mixed boson-fluid stars for the same MF and MB).

scalar condensate protruding away from them. In fact, our results are compatible with a
decoupling between the boson and fluid for large µSMB. For this case, Fig. 12.1 alone is
enough to interpret the bosonic distribution. For example, for µSM0 = 10,MB/MT =
5%, we get µSMB ∼ 0.3, which would imply from Fig. 12.1 that µSR ∼ 20 for the
scalar field distribution. This is indeed apparent from Fig. 14.4. Similar conclusions
were reached when studying mixed fermion fluid/boson stars with complex fields [335].
In fact, the structure of mixed oscillatons and fluid stars is almost identical to that of
boson stars and fluids, as can be seen from Figs. 14.1 and 14.4, where we overplot with
dotted lines the complex field case.

Overall, our results are consistent with what was previously found for boson-fermion
fluid stars [333, 334]. We expect that field configurations with high MB/MT for large
µSM0 should follow the same kind of behavior as that found in boson-fermion stars.
In particular we expect that bosonic dominated stars should also be possible when
increasing MB/MT [333, 334].

Finally, as we discuss below, a careful stability analysis shows that, for sufficiently
small φ1(0) and for stars which are stable in the absence of scalars, composite stars are
dynamically stable. On the other hand, our results show that these configurations can
be understood well from the mass-radius relation of oscillatons. The maximum mass
supported is (12.12), Mmax/M� = 8× 10−11 eV/(mBc

2), which for a neutron star and
an axion field of mass 10−5 eV falls well within the stability regime [402].
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F . We plot
the first Fourier components for jmax = 2.

14.4.3. Stability of fluid-boson stars

As was mentioned before, the stability properties of fluid-boson stars are not expected
to depend on the details of the scalar field description. Therefore, we assume that
the results for the well-studied case of a fermionic star with a complex scalar field,
holds in more generic cases (in particular, when the scalar field is real). Since fermion-
boson star solutions depend on two parameters (i.e., for instance {nF (0), φ1(0)}), the
stability theorems for single parameter solutions can not be directly applied. This
implies that the change in stability of these solutions cannot easily be inferred from
the extremes of a mass versus radius diagram, and requires a more careful analysis.
Nevertheless, one can argue that a necessary condition for stability is that the binding
energy MT − mNNF − mBNB be negative [334], where NB is the number of bosons
(associated to the conservation of the Noether charge) andNF is the number of fermions
(associated to the conservation of the baryonic number) defined, respectively, by

NF =

∫ ∞
0

4π
√
B nF r

2dr , (14.19)

NB =

∫ ∞
0

4π
√
C ω|φ|2r2dr . (14.20)

For the solutions shown in Fig. 14.3, the binding energy defined in terms of the masses
MT −MF −MB is always negative. Although negative values do not necessarily imply
stability, they do give strong support to the claim that these configurations are stable.
A more careful stability analysis shows that for sufficiently small φ1(0) and for stars
which are stable in the absence of scalars, the negativity of the binding energy is a
good criterion for stability [381].

More strict stability criteria to find the critical point –which separates the stable
from the unstable configurations– can be obtained either through a rather involved
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dynamical analysis or using alternative approaches proposed in Refs. [381, 383] (in
particular, see e.g. Fig. 1 of Ref. [381] and Fig. 2 of Ref. [383]). All these methods
showed that there is a wide region in the parameter space for which these solutions are
stable. These results were validated by numerical evolutions, showing that unstable
stars, depending on the initial perturbation, either migrate to a stable star or collapse
to a BH.

These studies were extended to fermion-boson stars with self-gravitating scalar fields
by allowing for solutions with comparable number of bosonic and fermionic parti-
cles [61], and also for this case the picture remains the same: under small pertur-
bations, the stable configurations just oscillate with the quasi-normal modes, while
unstable configurations either migrate to a stable star or collapse to a BH. This con-
firms that there is nothing special regarding fermion-boson stars with self-gravitating
scalar fields, in contrast to some claims in the literature [52–56]; these configurations
can be either stable or unstable, depending on the parameters of the system.

14.5. Stars with scalar cores in scalar-tensor theories

Scalar fields are a fundamental component of scalar-tensor theories of gravity, one of the
most natural and extensively studied extensions of GR [24]. These theories are normally
characterized by a non-minimal coupling between a scalar field and gravity. Very
compact stars with vanishing scalar in scalar-tensor theories can be unstable towards
the growth of a scalar field, a phenomena called spontaneous scalarization [9, 403–405].

161



The final state is a static star with a non-vanishing but static scalar profile.

A natural consequence of our work is that in these theories stars can also have scalar
cores if the scalar field is massive and time-dependent. Given that massive scalar-tensor
theories are poorly constrained, this opens the way to improve current bounds on these
theories from binary pulsar experiments. We will leave this for future work and focus
instead on massless scalar-tensor theories. We argue that even for a massless scalar
field, some theories might admit stars with long-lived scalar cores.

Let us focus on the simplest possible case, that of a complex scalar-tensor theory.
This is conceptually easier to handle because it allows for the existence of spherically
symmetric solutions with a static metric. This theory is formally equivalent to a tensor-
multi-scalar theory with two real scalar fields [406, 407]. Our results also apply to single
scalar-tensor theories with nonminimally coupled real scalar fields, the difference being
that in these theories the geometry must also oscillate.

In the physical (Jordan) frame the scalar is non-minimally coupled to the Ricci
scalar [24]. By performing a conformal transformation, one can write the theory in the
Einstein frame as [406, 407]

S =

∫
d4x
√
−g
[
R

16π
− gµν∂µφ̄∂νφ

]
+ Sm

[
A2
(
φ, φ̄

)
gµν ; Φ

]
, (14.21)

where φ̄ denotes the complex conjugate of φ, A2
(
φ, φ̄

)
is a generic function of the scalar

field, and Sm denotes the matter action. The matter fields, denoted collectively by Φ,
are minimally coupled to the Jordan frame metric g̃µν = A2

(
φ, φ̄

)
gµν , where the tilde

denote quantities computed in the Jordan frame. This guarantees that the weak equiv-
alence principle holds. By varying the action (14.21), one obtains the following scalar
field equation (apart from the Einstein-Klein-Gordon equations minimally coupled to
the matter fields):

�φ = −2
∂ logA

∂φ̄
T , (14.22)

where T denotes the trace of the matter fields’ stress-energy tensor. The physical
stress-energy tensor (written in the Jordan frame) is related to the Einstein-frame
stress energy tensor by

T µν = A4T̃ µν , Tµν = A2T̃µν , T = A4T̃ , (14.23)

where T̃ µν is the physical stress-tensor in the Jordan frame, given by Eq. (12.4) (for
details see e.g. Ref. [408]).

We will assume that at spatial infinity the scalar field vanishes and that the function
A can be expanded as

A ≈ 1 + αφ+ ᾱφ̄+
1

2
βφφ̄+

1

4
β1φ

2 +
1

4
β̄1φ̄

2 + . . . , (14.24)

where β is a real constant, while α and β1 are complex numbers. Without loss of
generality we set α = β1 = 0. Applying this expansion to Eq. (14.22) one immediately
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sees that the field acquires an effective position-dependent mass term given by µ2
eff =

−βT [285, 409]. By taking the ansatz

φ =
1√
16π

φ(r)e−iωt , (14.25)

and expanding the equations of motion around φ0 = 0, we find

B′/B = (r/4)
[
Cω2φ2 + (φ′)2 +B

(
4βρFφ

2 + 32πρF
)]

+ (1−B)/r , (14.26)

C ′/C = 2/r + (Br)/2
[
2βφ2(ρF − P ) + 16πρF − 16πP

]
− 2B/r , (14.27)

φ′′ = βB(ρF − 3P )φ− Cω2φ− 2φ′/r + C ′φ′/(2C) , (14.28)

2P ′ = − (P + ρF ) (CB′ −BC ′) /(BC)− βφφ′ (P + ρF ) /(16π) . (14.29)

Here, we consider the matter fields to be described by a perfect fluid. Note that in
all the equations we are only considering terms up to order φ2. The method to find
compact stars is the same as described in the previous Sections, so we will not dwell
on it further. For the perfect fluid we will consider the polytropic equation of state
P = KργF , with the parameters used in the previous Sections.
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Figure 14.7.: Scalar field (top) and fluid’s density (bottom) profiles for β = 7000 and
φ(0) = 0.07, by expanding the system (14.26)– (14.29) up to order φ2.
For this solution we get ω = 1.22. The inset of the left panel shows a
zoom of the scalar field at large distances.

A solution is shown in Fig. 14.7. We have not been able to find solutions for which
the scalar decays exponentially at infinity 3. However, we find that for some specific
frequencies ω the scalar field is exponentially suppressed inside the star. Outside the
star these solutions display an oscillating tail, indicating that they are not truly stable
solutions but are instead long-lived solutions, slowly decaying through the emission of

3and thus truly stationary solutions. In other words, a time-varying scalar that decays as 1/r at
large distances leads to a non-zero flux of energy at infinity

163



0 10 20 30 40
r

0

0.02

0.04

0.06

0.08

φ

0 5 10 15
r

0

ρ F
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2/2,

β = 7000 and φ(0) = 0.07. For some specific frequencies the scalar field
acquires a non-trivial profile inside the star. However the amplitude of
the radiating tail is non-negligible.

scalar radiation. This is very similar to what happens for oscillatons [359, 391]. We
have only been able to find such solutions in the range β � 1. Negative values of β
are highly constrained by binary pulsar experiments [410], however positive values of
β remain unconstrained 4.

Although a careful analysis is out of the scope of this work, our results make it
possible that some massless scalar-tensor theories allow for the existence of stars with
long-lived scalar cores. We would like to emphasize that our results are formally only
valid up to order φ2. In the regime where such solutions exist, higher-order terms
are in general important and should be taken into consideration. For the specific
cases we tried, in particular A = eβ|φ|

2/2, higher-order terms change drastically the
solution as shown in Fig. 14.8. Although, for some specific frequencies, some solutions
display a non-trivial profile inside the star, the amplitude of the radiative tail is non-
negligible (and thus these solutions will dissipate over smaller time-scales). However
full dynamical studies are needed to accurately compute the time-scale over which
these configurations disperse.

14.6. Accretion and growth of dark matter cores

We have shown that pulsating stars with DM cores exist as solutions of the field
equations, even when the scalar DM core is self-gravitating. Although more studies
are required, we also argued that these equilibrium solutions are stable. Do they form
dynamically? Pulsating purely bosonic states certainly do, through collapse of generic

4However see Refs. [411, 412] for a recent proposal to constrain positive values of β.
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initial data [60, 379, 390]. There are two different channels for formation of composite
fluid/boson stars. One is through gravitational collapse in a bosonic environment,
through which the star is born already with a DM core. The second process consists
of capture and accretion of DM into the core of compact stars. A careful analysis
for WIMPS has been done some time ago, showing that a significant amount of DM
can be captured during the star’s lifetime [344, 345]. The capture rate calculation for
bosonic condensates follows through, if the condensate is small enough that it can be
considered pointlike (we recall that bosonic condensates have a size determined by its
total mass; very light condensates are spatially broad). If the condensate is ultralight
and macroscopically-sized, interactions with the star are likely to be enhanced.

14.6.1. Growth of DM cores

Once the scalar is captured it will interact with the boson core. Interactions between
complex fields have shown that equal mass collisions at low energies form a bound
configuration [413, 414]. In other words, two bosonic cores composed of complex fields
interact and form a more massive core at the center. This new bound configuration
is in general asymmetric and will decay on large timescales [364], the final state being
spherical [415].

The analysis of Section 14.4 makes it clear that for large and small boson masses,
the boson and fluid behave as decoupled entities. As such, accretion by the DM core
is well approximated by considering the collision between oscillatons. Using Numerical
Relativity simulations 5, we considered collisions between two scalar oscillatons for
three different cases:

(i) Two equal-mass oscillatons colliding at sufficiently small energies. Note that the
total mass is larger than the peak value and one would naively predict gravitational
collapse to a BH. Instead, the final result is an oscillating object below the critical
mass as shown by the red-solid curve in Fig. 14.9.

(ii) Unequal-mass oscillatons for a total mass above the peak value. Also in this case
the final configuration relaxes to a perturbed configuration which oscillates around a
stable configuration on the curve of Fig. 12.1. The time evolution of the total mass is
depicted by the green-dashed curve in Fig 14.9, where one can see that the total mass
gradually decreases after the collision.

(iii) Two equal-mass oscillatons but for a total mass below the peak value. Even for
this case, the final outcome is also an oscillating object below the critical mass whose
mass as a function of time is shown by the blue-dotted curve in Fig. 14.9. It is also
important to highlight that the final total mass is higher than those of the individual
stars, showing that cores can grow.

All these collisions share common features. In particular, one of the main conclusions
that one can draw, is that collapse to a BH is generically avoided for the cases where the

5These simulations and Fig. 14.9 are courtesy of Dr. Hirotada Okawa. See Ref. [61] for details.
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Figure 14.9.: Total mass of final object for the collision of scalar condensates, with total
mass below and above the critical threshold Mmax. No BH formation is
observed.

total mass is larger than the critical stable mass 6. This is a general feature of what has
been termed the “gravitational cooling mechanism”: a very efficient (dissipationless)
mechanism that stops them from growing past the unstable point, through the ejection
of mass [347, 384, 385]. Such features have been observed in the past in other setups,
such as spherically symmetric gravitational collapse [347] (see Fig. 2 in Ref. [390]),
slightly perturbed oscillatons [384] or fields with a quartic self-interacting term [385].
Gravitational cooling provides a counter-example to an often-used assumption in the
literature, that stars accreting DM will grow past the Chandrasekhar limit for the DM
core and will collapse to a BH [53–55, 345, 346, 418–420]. These results show that this
need not be the case, if the DM core is prevented from growing by a self-regulatory
mechanism, such as gravitational cooling. In fact, avoidance of the BH final state has
been seen in collisions of super-critical neutron stars as well [401, 421], which means
that the phenomena is not exclusive of scalar fields.

The previous results concerned exclusively non-interacting fields. Extending these
calculations to quartic self-interactions show that the same qualitative features arise
also for self-interacting fields, in particular strong gravitational-cooling effects [61].

Thus, even though other more detailed simulations are still needed, the likely scenario
for evolution would comprise a core growth through minor mergers, slowing down

6Collapse to BHs can occur for certain special initial conditions, such as high-energy collisions of
boson stars or even spherically symmetric collapse [390, 416, 417]. These results are however not
in contradiction with our statement and findings that, for accretion-related problems collapse to
BHs seems to be avoided.
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close to the mass-radius peak (see Fig. 12.1), at which point it stops absorbing any
extra bosons [384, 390]. In other words, the unstable branch is never reached. This
phenomenology is specially interesting, as it would also provide a capture mechanism
for these fields which is independent of any putative nucleon-axion interaction cross-
section: as we discussed, the bosonic core grows (in mass) through accretion until its
peak value. At its maximum, it has a size RB/M� ∼MB/M�. This is the bosonic core
minimum size, as described by Fig. 12.1. In other words, even for MB = 0.01MT the
boson core has a non-negligible size and is able to capture and trap other low-energy
oscillatons.

14.7. Conclusions

The main purpose of this Chapter was to understand how DM might affect the structure
of compact stars, using a fully relativistic setup. Self-gravitating, massive bosonic
fields can form compact structures, which can cluster inside stars, leading to oscillating
configurations with distinctive imprints. In particular, since the fundamental frequency
is ω ∼ µS, V for non-compact stars (cf. Chapter 14), these oscillations imply that both
the bosonic field and the fluid density (which is coupled to it gravitationally), vary
periodically with a frequency

f = 2.5× 1014

(
mBc

2

eV

)
Hz , (14.30)

or multiples thereof. For axion-like particles with masses ∼ 10−5 eV/c2, these stars
would emit in the microwave band. These oscillations are driven by the boson core
and might have observable consequences; it is in principle even possible that resonances
occur when the frequency of the scalar is equal to the oscillation frequency of the
unperturbed star. The joint oscillation of the fluid and the boson might be called
a global thermalization of the star, and is expected to occur also for boson-star-like
cores (which give rise to static boson cores), once the scalar is allowed to have non-
zero couplings with the star material. Such couplings where recently considered in
Ref.[422], who showed that the oscillations could leave imprints in the Earth’s breathing
modes and possibly be observable with Earth-based detectors. Although further work is
needed, our analysis shows that stars could also work as good DM detectors. Additional
signatures could also occur in the presence of a DM core. For example, bosonic cores
are intrinsically anisotropic. A certain degree of anisotropy in a neutron star might
leave important imprints that could potentially be measured [423] (some effective field
theories going beyond the mean-field approximation also predict that inside neutron
stars, nuclear matter may become anisotropic, see e.g [424–427]. The interplay between
these two effects is also an interesting subject for future research).

We argued that composite structures can be stable, even when the DM core is self-
gravitating. We should stress that previous works on the subject of DM accretion
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by stars have implicitly assumed that the DM core is able to grow without bound
and eventually collapse to BHs [345, 346, 418–420]. Our arguments, coming from full
nonlinear simulations of the field equations [61], show that the core may stop growing
when it reaches a peak value, at the threshold of stability, if DM is composed of light
massive fields. Gravitational cooling quenches the core growth for massive cores and
the core growth halts, close to the peak value (c.f. Fig. 12.1). Similar mechanisms have
also been shown to be effective in collisions of super-critical neutron stars [421] (see
also [401] and references therein), and thus this phenomena is a very generic feature of
self-gravitating solutions, and not only of bosonic fields. These studies show that BH
formation depends very sensitively on the initial conditions of the system and cannot
be solely inferred from the linear stability of the stars.

Our argument focused on core growth through lump accretion, and does not address
other forms of growth, in particular more continuous processes like spherical accretion
or wind accretion. Partial results in the literature indicate that gravitational cooling
mechanisms are also active in these setups [428]. To study BH formation in these
different scenarios, a complete scan of the parameter space would be necessary. This
could be done along the lines of Refs. [401, 428].

Future works should consider more realistic equations of state and possibly include
viscosity in the star’s fluid and local thermalization. Viscous timescales for neutron
star oscillations can be shown to be large compared to the star dynamical timescale
R, but small when compared to the (inverse of) the accretion rate likely to be found
in any realistic configuration [429]. As such, we expect that viscosity will damp global
oscillations of the star, eventually leading to a depletion of the scalar field core. A
similar effect will occur with local thermalization of the scalar with the star material
if the central temperature of the star is much larger than the mass of the bosonic
field [348, 349]. On the other hand, although more detailed studies of these effects
are still necessary, the results of Refs. [348, 349] suggest that, for bosonic fields with
masses & keV inside old neutron stars or white dwarfs, local thermalization should not
significantly affect our results.

We also argued that in theories where a scalar field acquires an effective mass due to
the presence of matter, long-lived oscillating configurations might form inside stars, in
a region of the parameter space which remains unconstrained. Whether these config-
urations actually form and whether they have peculiar observable imprints, can only
be accessed through a fully dynamical analysis. On the other hand, our results apply
directly to massive scalar-tensor theories (see e.g. Ref. [430]). Further work is still
needed, but our results raise the interesting possibility that DM cores could be used
to further constrain these theories.

There are a number of other setups where similar results may hold. For example,
minimally coupled, multiple (real) scalars, interacting only gravitationally, were also
shown to give rise to similar configurations [431]. In higher dimensions, one may ask if
purely gravitational oscillatons exist. Such solutions could arise due to the compact-
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ification of extra dimensions, which effectively give rise to massive bosonic fields. A
natural extension of our work would be to look for such solutions in theories with mas-
sive spin-2 fields [36]. Another outstanding open problem concerns the construction
of rotating oscillatons. Rotating boson stars were obtained for both complex scalar
fields [432] and more recently for complex vector fields [59]. For real fields, the time-
dependence of the metric makes the explicit construction of rotating oscillatons an
highly intricate task. A possibility would be to use Numerical Relativity methods to
construct such solutions. We hope to possibly solve some of these problems and further
develop this subject in the near-future.
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A. Quasinormal modes and
quasibound states: Numerical
methods

This appendix details the numerical computation of BH eigenfrequencies for massive
perturbations. To have a well-defined problem we need to define boundary conditions,
and these determine an eigenvalue problem for the frequency ω, which can be solved
using several different tools [136, 141]. At the horizon we must impose regular boundary
conditions, which correspond to purely ingoing waves

Φj(r) ∼ e−iωr∗ , j = 1, 2, . . . , (A.1)

as r∗ → −∞, where Φj(r) is any of the radial perturbative functions of the massive
field. On the other hand, the asymptotic behavior of the solution at infinity is given
by

Φj(r) ∼ Bje
−k∞rr−

M(µ2−2ω2)
k∞ + Cje

k∞rr
M(µ2−2ω2)

k∞ , (A.2)

where k∞ =
√
µ2 − ω2, such that Re(k∞) > 0. For massive fields we have to consider

two kinds of modes: (i) the QNM, which corresponds to purely outgoing waves at
infinity, i.e., they are defined by Bj = 0; (ii) quasibound states, defined by Cj = 0 and
correspond to modes spatially localized within the vicinity of the BH and that decay
exponentially at spatial infinity.

A.1. Continued-fraction method

The use of the continued fraction method requires a suitable ansatz. For a linear
perturbation on a Schwarzschild background, we take it to be

Φj(ω, r) = f(r)−2iMωrνe−qr
∑
n

a(j)
n f(r)n , (A.3)

where ν and q are defined as below Eq. (10.28).
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A.1.1. Massive spin-2 field on a Schwarzschild background: Axial
dipole

Inserting (A.3) into (3.33) leads to a three-term recurrence relation of the form

α0a1 + β0a0 = 0 ,

αnan+1 + βnan + γnan−1 = 0 , n > 0 , (A.4)

where,

αn = (n+ 1)(n+ 1− 4iω) , (A.5)

βn = −2
(
n2 + n− 1

)
+
ω2(2n− 4iω + 1)

q

− 3q(2n− 4iω + 1) + 4i(2n+ 1)ω − 4q2 + 12ω2 , (A.6)

γn = q−2
(
nq + q2 − 3q − 2iqω − ω2

)
×
(
nq + q2 + 3q − 2iqω − ω2

)
. (A.7)

The QNM or quasibound-state frequencies can be obtained solving numerically the
continued fraction equation

β0 −
α0γ1

β1 − α1γ2
β2− α2γ3

β3−...

= 0 . (A.8)

This method has been extensively used and described in detail elsewhere [48, 136, 433],
some routines are freely available [139] so we will not discuss it any further.

A.1.2. Massive spin-2 field on a Schwarzschild background: Axial
modes with l ≥ 2

For l ≥ 2 the axial modes satisfy a pair of coupled differential equations, Eqs. (3.30)
and (3.31). Inserting (A.3) into these equations leads to a three-term matrix-valued
recurrence relation,

α0U1 + β0U0 = 0 ,

αnUn+1 + βnUn + γnUn−1 = 0 , n > 0 , (A.9)

The quantity Un =
(
a

(1)
n , a

(2)
n

)
is a two-dimensional vectorial coefficient and αn, βn,

γn are 2× 2 matrices whose form reads,

αn =

(
αn 0
0 αn

)
, βn =

(
βn λ− 2
−2 βn − 3

)
,

γn =

(
γn 6− 3λ
0 γn + 9

)
,
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with

αn = (n+ 1)(n+ 1− 4iω) , (A.10)

βn = 2− λ− 2
(
n2 + n− 1

)
+
ω2(2n− 4iω + 1)

q

− 3q(2n− 4iω + 1) + 4i(2n+ 1)ω − 4q2 + 12ω2 , (A.11)

γn = q−2
[
q2
(
n2 − 4inω − 6ω2 − 9

)
+ 2q3(n− 2iω)

−2qω2(n− 2iω) + q4 + ω4
]
. (A.12)

The matrix-valued three-term recurrence relation can be solved using matrix-valued
continued fractions [48, 143]. The QNM or quasibound frequencies are roots of the
equation MU0 = 0, where

M ≡ β0 +α0R
†
0 , (A.13)

with Un+1 = R†nUn and

R†n = −
(
βn+1 +αn+1R

†
n+1

)−1

γn+1 . (A.14)

For nontrivial solutions we then solve numerically

det |M| = 0 . (A.15)

A.2. Direct integration for quasibound states

To compute the spectrum of quasibound states a direct integration approach is often
possible, since the solutions asymptotically vanish at spatial infinity, and desirable
because it converges faster. We start with a series expansion close to the horizon of
the form

Φj(ω, r) = e−iωr∗
∑
n

b(j)
n (r − rH)n , (A.16)

where the coefficients b
(j)
n for n ≥ 1 can be found in terms of b

(j)
0 by solving the near-

horizon equations order by order. We then integrate outward up to infinity where
the condition Cj = 0 in Eq. (A.2) is imposed. This allow us to obtain the frequency
spectrum using a shooting method. This method can be extended to solve systems of
coupled equations [48, 143]. Consider a system of N coupled equations. Imposing the
ingoing wave boundary condition at the horizon (A.16) we may obtain a family of so-
lutions at infinity characterized by N parameters, corresponding to the N -dimensional
vector of the coefficients b0 = {b(j)

0 }, with j = 1, . . . , N . Note that all the solutions
of the system of coupled equations must have the form (A.16) near the horizon. We
may then compute the bound-state spectrum by choosing a suitable orthogonal basis
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for the space of initial coefficients b
(j)
0 . To do so we perform N integrations from the

horizon to infinity and construct the N ×N matrix

Sm(ω) = lim
r→∞


Φ

(1)
(1) Φ

(2)
(1) . . . Φ

(N)
(1)

Φ
(1)
(2) Φ

(2)
(2) . . . . . .

. . . . . . . . . . . .

Φ
(1)
(N) . . . . . . Φ

(N)
(N)

 , (A.17)

where the superscripts denote a particular vector of the chosen basis, for example, Φ
(1)
j

corresponds to b0 = {1, 0, . . . , 0}, Φ
(2)
j corresponds to b0 = {0, 1, . . . , 0}, and Φ

(N)
j

corresponds to b0 = {0, 0, . . . , 1}. The bound-state frequency ω0 = ωR + iωI will then
correspond to the solutions of

det |Sm(ω0)| = 0 , (A.18)

which in practice corresponds to minimizing detSm in the complex plane at arbitrarily
large distances.
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B. Green’s function approach to
compute waveforms

Consider a wave equation with a source given by:

d2Z̃g
dr2

g∗
+
(
ω2 − Vg

)
Z̃g =

(
1− rg

r

)
S , (B.1)

The Green’s function Glω of this equation is defined by

d2Glω

dr2
g∗

+
(
ω2 − Vg

)
Glω = δ(rg∗ − r′g∗) . (B.2)

To construct the Green’s function we choose two independent solutions of the homo-
geneous equation associated with Eq. (B.1), Z̃H

g and Z̃∞g , which satisfy the following
boundary conditions:{

Z̃∞g ∼ eiωrg∗ ,

Z̃H
g ∼ Aoute

iωrg∗ + Aine
−iωrg∗ ,

rg∗ → +∞ (B.3){
Z̃∞g ∼ Boute

iωrg∗ +Bine
−iωrg∗ ,

Z̃H
g ∼ e−iωrg∗ ,

rg∗ → −∞ , (B.4)

where {A,B}in,out are constants. By imposing wave-like ingoing boundary conditions
at the horizon and outgoing boundary at infinity (see e.g. the discussion in Sec. 5.4 of
Chapter 5), the Green’s function reads

Glω(r′g∗, rg∗) =
1

W

{
Z̃H
g (rg∗)Z̃

∞
g (r′g∗) , rg∗ < r′g∗ ,

Z̃∞g (rg∗)Z̃
H
g (r′g∗) , rg∗ > r′g∗ ,

(B.5)

whereW is the Wronskian of these two linearly independent solutions, and it is constant
by virtue of the field equation (B.1). Evaluating W at infinity one gets,

W = Z̃H
g

dZ̃∞g
drg∗

− Z̃∞g
dZ̃H

g

drg∗
= 2iωAin . (B.6)

The solution to Eq. (B.1) with appropriate boundary conditions is then given by

Z̃g(rg∗) =

∫ +∞

−∞
dr′g∗ Glω(r′g∗, rg∗)S(r′g∗) =

=
Z̃∞g (rg∗)

W

∫ r

−∞
dr′g∗ Z̃

H
g (r′g∗)S(r′g∗) +

Z̃H
g (rg∗)

W

∫ +∞

r

dr′g∗ Z̃
∞
g (r′g∗)S(r′g∗) .(B.7)
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Evaluating this expression at rg∗ → +∞ we find

Z̃g(rg∗ →∞) =
Z̃∞g (rg∗)

W

∫ +∞

−∞
dr′g∗ Z̃

H
g (r′g∗)S(r′g∗) =

=
eiωrg∗

2iωAin

∫ +∞

rg

dr′ Z̃H
g (r′)S(r′g∗)

(
1− rg

r′

)−1

. (B.8)

This integral can be computed numerically by first integrating the homogeneous part
of Eq. (B.1) with the boundary condition (B.4) to get Z̃H

g and then compute Ain by
equating the solution obtained numerically to (B.3). The waveform in the time-domain
is then obtained performing the integral:

Zg(t, r) =
1√
2π

∫ +∞

−∞
e−iωtZ̃g(ω, r)dω . (B.9)

For more details on the numerical procedure see, e.g., Ref. [434].
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C. Massless fields around Kerr black
holes

Table C.1.: Wavefunction ψ for each value of the spin weight-s. The spin coefficient
is given by ρ ≡ −1/(r − ia cos θ). The quantities φ0, φ2, Ψ0 and Ψ4 are
Newman-Penrose scalars [435] describing electromagnetic and gravitational
perturbations, respectively. The quantities χ0 and χ1 denote components
of the Dirac spinor along dyad legs.

s 0 (1/2, −1/2) (1, −1) (2, −2)
ψ Φ (χ0,ρ−1χ1) (φ0,ρ−2φ2) (Ψ0,ρ−4Ψ4)

The wave equation for linearized fluctuations around the Kerr geometry (7.2) was
studied by Teukolsky, Press and collaborators in great detail [177, 178, 203, 436]. Fol-
lowing Carter’s unexpected result on the separability of the Hamilton-Jacobi equation
for the geodesics in a Kerr geometry [437], he also noted that the analogue scalar field
equation was separable [438], as was explicitly shown in Ref. [439]. In a breakthrough
work (see Ref. [440] for a first-person historical account), it was shown that linearized
perturbations of the Kerr geometry could be described with a single master equa-
tion, describing “probe” scalar (s = 0), massless Dirac (s = ±1/2), electromagnetic
(s = ±1) and gravitational (s = ±2) fields in a Kerr background [177]. The master
equation reads[

(r2 + a2)
2

∆
− a2 sin2 θ

]
∂ψ2

∂t2
+

4Mar

∆

∂ψ2

∂t∂φ
+

[
a2

∆
− 1

sin2 θ

]
∂ψ2

∂φ2

−∆−s
∂

∂r

(
∆s+1∂ψ

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
− 2s

[
a(r −M)

∆
+
i cos θ

sin2 θ

]
∂ψ

∂φ

−2s

[
M(r2 − a2)

∆
− r − ia cos θ

]
∂ψ

∂t
+
(
s2 cot2 θ − s

)
ψ = 0 , (C.1)

where s is the field’s spin weight, and the field quantity ψ is directly related to Newman-
Penrose quantities as shown in Table C.1. By Fourier transforming ψ(t, r, θ, φ) and
using the ansatz

ψ =
1

2π

∫
dωe−iωteimφS(θ)R(r) , (C.2)
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Teukolsky found separated ODE’s for the radial and angular part, which read, respec-
tively

∆−s
d

dr

(
∆s+1dR

dr

)
+

(
K2 − 2is(r −M)K

∆
+ 4isωr − λ

)
R = 0 , (C.3)

and

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

(
a2ω2 cos2 θ − m2

sin2 θ
− 2aωs cos θ − 2ms cos θ

sin2 θ
− s2 cot2 θ + s+Aslm

)
S = 0 ,

(C.4)

where K ≡ (r2 + a2)ω − am and λ ≡ Aslm + a2ω2 − 2amω. Together with the
orthonormality condition ∫ π

0

|S|2 sin θdθ = 1 , (C.5)

the solutions to the angular equation (C.4) are known as spin-weighted spheroidal
harmonics eimφS ≡ Sslm(aω, θ, φ). When aω = 0 they reduce to the spin-weighted
spherical harmonics Yslm(θ, φ) [441]. For small aω the angular eigenvalues are (cf.
Ref. [307] for higher-order terms)

Aslm = l(l + 1)− s(s+ 1) +O(a2ω2) . (C.6)

The computation of the eigenvalues for generic spin can only be done numerically [307].

Besides these equations, to have complete information about the gravitational and
electromagnetic fluctuations, we need to find the relative normalization between φ0 and
φ2 for electromagnetic fields and between Ψ0 and Ψ4 for gravitational perturbations.
This was done in Refs. [203, 227, 228] assuming the normalization condition (C.5) and
using what is now known as the Teukolsky-Starobinsky identities (see also [170] for
details).

Defining the tortoise coordinate r∗ as dr/dr∗ = ∆/(r2 + a2), Eq. (C.3) has the
following asymptotic solutions

Rslm ∼ T ∆−se−ikHr∗ +OeikHr∗ , as r → r+ , Rslm ∼ I
e−iωr

r
+R eiωr

r2s+1
, as r →∞ ,

(C.7)
where kH = ω −mΩH and ΩH = a/(2Mr+) is the angular velocity of the BH horizon.
Regularity at the horizon requires purely ingoing boundary conditions, i.e., O = 0 (see
Section 3 in Ref. [136] for a careful discussion of boundary conditions).
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D. Further details on the magnetized
Kerr-Newman black hole
background

The full magnetized Kerr–Newman solution can be found in Refs. [272, 274, 442, 443].
For q = −2ãM2B and at second order in the spin, the solution reads

ds2 = H

[
−Fdt2 + Σ

(
dr2

∆
+ dθ2

)]
+
A sin2 θ

ΣH
(H0dφ−$dt)2 , (D.1)

where F = Σ∆/A, H0 is introduced to remove the conical singularity [273] and

∆ = r2 − 2Mr +M2ã2 + q2 , (D.2)

Σ = r2 + ã2M2 cos2 θ , (D.3)

A = r4 +M2rã2
[
sin2 θ(2M − r) + 2r

]
, (D.4)

H = 1 +
1

2
B2r2 sin2 θ +

1

16
B4r4 sin4 θ

+ ã2

[
1

8
B6M4r2 sin2 2θ +

1

8
B4M2

(
2Mr sin6 θ

+2M cos2 θ
(
M cos4 θ + 2 cos2 θ(M − 2r) + 9M + 8r

)
−8Mr + r2 sin4 θ

)
+
B2M2

2r
sin2 θ(r −M(7 + cos 2θ))

]
, (D.5)

H0 ≡ H(r, θ = 0) = 1 + 3B4M4ã2 , (D.6)

$ =
M2ã

64r3

[
−B4r3(12 cos 2θ + cos 4θ)(r − 2M)

+B2r2
(
256−B2r(154M + 51r)

)
+ 128

]
. (D.7)

This solution reduces to the Ernst metric (cf. Eq. (9.12) in Chapter 9) when ã = 0.
To second order in ã, the event horizon is located at

r+ = 2M − ã2

(
M

2
+ 2B2M3

)
, (D.8)

and the vector potential of the magnetic field is given by

A = Φ0dt+ Φ3 (H0dφ−$dt) . (D.9)
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The explicit form of the functions Φ0 and Φ3 is not important here, so we refer the
reader to Ref. [274].

Interestingly, these solutions incorporate Wald’s result for the charge induction [253]
in the small-B limit. This allows us to understand the Wald’s charge as being the one
needed to have a vanishing total electric charge at infinity. Indeed the total physical
charge of the solution is given by [274, 444]

Q = q

(
1− 1

4
q2B2

)
+ 2ãM2B . (D.10)

Due to the vacuum polarization and accretion of particles of opposite charge, BHs have
a tendency to quickly lose their charge [445]. In order to be neutral, a BH must then
satisfy q

(
1− 1

4
q2B2

)
= −2ãM2B. Solving for q and expanding in the small-B limit

we find

qneutral/M = −2ãBM +O
[
ã3(BM)5

]
. (D.11)

The result above reduces to Wald’s results to first order in BM and also in the small-
rotating limit.

Note that q and ã do not have a direct physical meaning for the exact geometry
of the magnetized BH. The conserved electric charge of the magnetized BH is given
by Q (D.10), while the true conserved angular momentum of the exact magnetized
BH solutions can be evaluated from thermodynamic considerations, as it was done in
Ref. [446]. Although this quantity can be quite complicated, expanding in the small-ã
limit and considering a BH with Wald’s charge, one recovers the standard relation for
the angular momentum of a Kerr BH,

J = ãM2 +O
(
ã3
)
. (D.12)

For a BH with charge q = −2ãM2B + O (ã3), the horizon’s angular velocity ΩH is
given by

ΩH =
ã

4M
+ 2ãMB2

(
1− 2B2M2

)
+O

(
ã3
)
. (D.13)

Note that ΩH is slightly different from the case of a magnetized BH with q = 0. Indeed,
when q 6= 0 a charged BH has a gyromagnetic ratio q/M [437], so it can acquire
an angular momentum when immersed in a uniform magnetic field. The extra term
proportional to B in (D.13) is related to this effect. This can be seen by computing
ΩH for a BH with ã = 0,

Ω
(ã=0)
H = −

8qB
[
B2
(
q2 − 4M

√
M2 − q2 − 4M2

)
+ 4
]

(B4q4 + 24B2q2 + 16)
(√

M2 − q2 +M
)

∼ −qB
M

+ 2B3Mq +O
(
q3M3

)
, (D.14)
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where in the last step we linearized in q. Taking q = qneutral we get the extra term
proportional to B in (D.13).

For a bosonic wave with frequency ω and azimuthal number m, superradiant scat-
tering is possible whenever ωR < mΩH [203] or (to second order in rotation):

ã >
4Mω

m (1 + 8B2M2 − 16B4M4)
, (D.15)

The effect of the charge induced by the magnetic field is to change the superradiant
threshold which, for a BH with q = 0, is given by

ã >
4Mω

m
. (D.16)
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D.1. Scalar field on a magnetized Kerr-Newman
background

We show here the coefficients appearing in Eq. (9.28) of the main text:

V0 =
3B12M4m2

128
(r − 2M)r5 +

1

64
B10M4m2r3(23r − 48M)

− B8M2m2

128

(
r4 − 968M4 + 136M3r − 280M2r2 − 14Mr3

)
− B6M2m2 (544M3 + 48M2r − 20Mr2 + r3)

16r
+
B4M3m2(9r2 − 46M2 + 10Mr)

2r3

+
B2M2 (r (−4l(l + 1)M2 +m2r(r + 4M) + 8M2)− 24M3)

r5

+
M2

r5

[
l(l + 1)(r − 4M) + r

(
m2 − (r − 2M)rω2 − 1

)
+ 12M

]
− 24M4 , (D.17)

V2 = − 9

128
B12M4m2(r − 2M)r5 +

1

64
B10M4m2(104M − 49r)r3

+
B8M2m2

256

(
−704M4 + 1744M3r − 424M2r2 − 76Mr3 + 5r4

)
+
B6M2m2(r + 2M)((r − 36M)r + 84M2)

16r

− B4M2m2 [8M3 + r(−76M2 + 3r(8M + r))]

8r3

− B2M2m2(r − 2M)

r3
+

(r − 2M)M2ω2

r3
, (D.18)

V4 =
9

128
B12M4m2(r − 2M)r5 +

1

64
B10M4m2r3(29r − 64M)

− 1

256
B8M2m2

[
288M4 + r

(
336M3 + r

(
3r(r − 20M)− 56M2

))]
+
B6M2m2 [48M3 + r(r − 4M)(12M + r)]

16r
+

3B4M2m2(r − 2M)2

8r2
, (D.19)

V6 = − 3

128
B12M4m2(r − 2M)r5 +

1

64
B10M4m2(8M − 3r)r3

− 1

256
B8M2m2

[
−64M4 + 80M3r − 40M2r2 + 4Mr3 + r4

]
− B6M2m2(r − 2M)3

16r
,

(D.20)

V8 =
1

256
M2B8m2(r − 2M)4 . (D.21)
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E. Quasibound states of a massive
spin-2 field around a Kerr BH:
Analytical results

In this appendix we generalize Detweiler’s analytical calculations [261] for the unstable
scalar modes of a Kerr BH in the small-mass limit to the case of the massive spin-2
axial dipole, to first-order in the rotation.

Defining R(r) = Q/r the axial dipole equation (10.24) can be rewritten as

r2f
d

dr

(
r2f

dR

dr

)
+
[
r4ω2 − 4ãmM2rω − r2f

(
j(j + 1)

+µ2r2 − 2Ms′2

r
− ãmM2 12(4r − 9M)

r4ω

)]
R = 0 , (E.1)

where we have defined j = l+ S = 2 and s′ = 3. From now on we consider j and s′ to
be generic integers and we replace their specific values only in the final result (E.14)
below. The latter is valid for any j and s′ provided j < s′. To use the method of
matching asymptotics we start by writing this equation in terms of the dimensionless
variable z = (r − r+)/r+,

Z
d

dz

(
Z
dR

dz

)
+
[
4M2ω2(1 + z)4 − 2ãmMω(1 + z)− j(j + 1)Z

−4M2µ2z(1 + z)3 + s′2z − ãm 3z(1− 8z)

4Mω(1 + z)3

]
R = 0 , (E.2)

where Z = z(z + 1).

We first expand the equation above for z � 1. For this we define the variable
x = 4Mk∞z and get the equation

d2

dx2
(xR) +

[
−1

4
+
ν

x
− j(j + 1)

x2

]
xR = 0 , (E.3)

where we have defined , k2
∞ = µ2 − ω2, ν = Mµ2/k∞ and have considered ω ∼ µ. For

quasibound states the solution of this equation with the correct boundary condition at
infinity is given by

R∞(x) ≈ C1e
−x/2xjU(1 + j − ν, 2j + 2, x) , (E.4)
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where C1 is a constant and U(p, q, x) is one of the confluent hypergeometric func-
tions [447]. For z � 1, at leading order, the behavior of the solution reads

R∞(r) ≈ C1

[
(2k∞r)

jΓ[−1− 2j]

Γ[−j − ν]
+ (2k∞r)

−j−1 Γ[1 + 2j]

Γ[1 + j − ν]

]
. (E.5)

Equation (E.2) can also be solved in the region where r � max(j/ω, j/µ). In this
limit,

Z
d

dz

(
Z
dR

dz

)
+
[
P 2 − j(j + 1)Z + s̄2z

]
R = 0 , (E.6)

where we have defined ε = 2Mµ, s̄2 = s′2 − 3ãm
2ε

, P = −2MkH = −2M(ω −mΩH) and
neglect O(ã2) terms in P 2. Note that in order to solve the equation analytically, we
neglect terms O( ãz

2

ε
), so the approximation is valid only if ã� j Mµ.

The solution of the equation above is given in terms of hypergeometric functions.
Imposing ingoing waves at the horizon we get that the general solution is given by

RH(r) = C2e
−2Pπ(−1)2iP ziP (1+z)σ2F1(−j+ iP +σ, 1+ j+ iP +σ, 1+2iP,−z) , (E.7)

where 2F1(a, b, c, z) is the hypergeometric function [447] and σ =
√
s̄2 − P 2. Using the

asymptotic properties of the hypergeometric function [447] we can derive the large-
distance limit z � 1 of this solution

RH(r) ≈ C2Γ[1 + 2iP ]

×
[

(2M)1+jΓ[−1− 2j]

Γ[−j + iP − σ]Γ[−j + iP + σ]
r−j−1

+
(2M)−jΓ[1 + 2j]

Γ[1 + j + iP − σ]Γ[1 + j + iP + σ]
rj
]
. (E.8)

The near- and far-region solutions have an overlapping region when Mω � j and
Mµ � j and one can find a matching condition equating the coefficients of rj and
r−j−1:

Γ[2j + 1]Γ[−j − ν]

Γ[−2j − 1]Γ[j − ν + 1]
= (4k∞M)2j+1

×Γ[−2j − 1]Γ [j + iP − σ + 1] Γ [j + iP + σ + 1]

Γ[2j + 1]Γ [−j + iP − σ] Γ [−j + iP + σ]
. (E.9)

At leading order for Mk∞ the right hand side vanishes. In the left hand side this
corresponds to the poles of Γ[j + 1− ν], which are given by ν(0) = j + 1 + n for a non-
negative integer n, yielding the expected hydrogen-like quasibound states. We obtain,
to lowest order in Mµ,

k2
∞ = µ2 − ω2

R ≈ µ2

(
Mµ

j + n+ 1

)2

. (E.10)
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In order to get the imaginary part of the spectrum, we expand around this value to
get the next-to-leading order correction. Writing ν ≡ ν(0) + δν and assuming δν � 1
we get (for details see e.g. [448])

δν ≈ −(4k∞M)2j+1Γ[−2j − 1]Γ[2j + n+ 2]

Γ[1 + 2j]2Γ[2j + 2]Γ[n+ 1]

Γ[j + iP − σ + 1]Γ[j + iP + σ + 1]

Γ[−j + iP − σ]Γ[−j + iP + σ]
.

(E.11)
Since there is a pole in one of the Γ-functions we take to lowest order in P and ã/ε,
Γ[−j + iP − σ] ≈ Γ[−j − s′]. We then get in this limit

δν ≈ (−1)j−s
′ (4k∞M)2j+1Γ[2j + n+ 2]Γ[j + s′ + 1]2

2Γ[1 + 2j]2Γ[2j + 2]2Γ[n+ 1]Γ[−j + s′]
Γ[j + iP − σ + 1] , (E.12)

where the factor 2 in the denominator comes from a specific limit of the Γ functions
and it is related to the fact that l(l+1) is not the exact angular eigenvalue in a rotating
background. In the nonrotating limit, the result above must be multiplied by a factor
2. [see the discussion of Appendix C2 in Ref. [49] for details]. The imaginary part of
the bound-mode frequency reads

iωI =
δν

M

(
Mµ

j + n+ 1

)3

. (E.13)

To understand how this scales with Mµ in the small-mass limit, we note that for
ã � Mµ and at first-order in P we have Γ[j + iP − σ + 1] ∼ −iP/P 2 ∼ − iP

4M2µ2
.

Finally we get

MωI ≈ (−1)j+1−s′(ãm− 2r+µ)(Mµ)4j+3×
42j−1Γ[2j + n+ 2]Γ[j + s′ + 1]2

(j + 1 + n)2j+4Γ[1 + 2j]2Γ[2 + 2j]2Γ[n+ 1]Γ[−j + s′]
. (E.14)

The fundamental mode, n = 0, for the axial dipole (j = 2 , s′ = 3) reads

MωI ≈ (ã− 2r+µ)
40(Mµ)11

19683
. (E.15)

The formula above is valid when 0 6= ã � Mµ whereas, in the nonrotating case, it
must be multiplied by a factor 2 as explained above. A comparison with the numerical
results for the non-rotating case and for the rotating case is shown in Fig. 3.4 and in
Fig. 10.2, respectively.

We note the importance of the factor Γ[j+iP−σ+1], which takes the form Γ[j−s′+1]
at lowest order in P and ã/ε and diverges because s′ > j (s′ = 3, j = 2). This is not the
case in the axial perturbations of the Proca field (s′ = 1, j ≥ 1) and the perturbations
of the scalar field (s′ = 0, j ≥ 0) [48, 143, 261, 448]. It is this factor that contributes
with a term (Mµ)−2S for the imaginary part of the quasibound frequency, resulting in
a power-law of the form ωI/µ ∝ −(Mµ)4j−2S+5 = −(Mµ)4l+2S+5.
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E.1. Note on the monopole of Proca and massive
spin-2 field

The monopole equation for the Proca field [143] is given by

d2u(2)

dr2
∗

+

[
ω2 − f(r)

(
µ2 +

2

r2
− 6M

r3

)]
u(2) = 0 . (E.16)

This can be written in the form (E.2) taking ã = 0, j = l + S = 1, and s′ = 2. We
can then solve analytically this equation in the same way as we did for the axial dipole
and all the formulas apply. We then find that for this mode

ωI
µ
≈ −8(Mµ)7(n+ 1)(n+ 3)

(n+ 2)5
, (E.17)

in agreement with the numerical results of Rosa and Dolan [143]. In Fig. E.1 we
compare the numerical results and the analytical formula in the small-mass limit.

Proca Hl=0,S=1,n=0L
Num
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-4
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g 1

0
HÈ
Ω

I�
Μ
ÈL

Figure E.1.: Comparison between the numerical and analytical results for the Proca
field mode l = 0, n = 0 as a function of the mass coupling Mµ. The
solid line shows the numerical data and the dashed shows the analytical
formula ωI/µ ≈ −3

4
(Mµ)7.

Another interesting behavior that we can infer comparing with the axial dipole is
that it seems that s′ is simply given by the sum of the spin projection S and the spin
of the field, i.e., s′ = s + S = 1 + 1 = 2 for the monopole of the Proca field and
s′ = s+ S = 2 + 1 = 3 for the massive spin-2 field.
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Unfortunately the monopole equation for the massive spin-2 field (3.54) does not
have a simple and understandable form in the limit z � 1 due to the complex form of
the potential. However in the limit z � 1 we can deduce the equation

d2

dx2
(xR0) +

[
−1

4
+
ν

x
− 6

x2

]
xR0 = 0 , (E.18)

where R0 = ϕ0/r. This looks exactly like the axial dipole equation in the same
limit (E.3). By comparison we can see that the monopole acquires a centrifugal term
with j = l + S = 2 in agreement with the numerical results presented in Sec. 3.6.3.
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