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Abstract

General relativity passed all experimental tests in the weak-field regime, what made it the
standard theory of gravity. However, the characterization of strong field regime of general
relativity is still a challenge, due to the lack of definitive observational data from high curvature
regions. It is in the strong regime that general relativity shows its subtleties and where it is
possible to test whether or not general relativity should be replaced by an improved theory
of gravity. High curvature regions – and therefore regions of strong field – are possible in
the vicinity of compact gravitating objects, such as neutron stars, exotic stars, and black holes.
Therefore, these compact objects are excellent laboratories to put constraints and to test theories
of gravity in the strong regime. The outcome of the investigation of phenomena around these
objects may confront crucial characteristics of general relativity as well as rule out possible
alternative theories of gravity. With the advent of potential gravitational wave detectors and
new or improved telescopes, it is of utmost importance to study the phenomenology around
compact astrophysical objects – to understand the nature of the gravitational objects, to improve
the description of the current theoretical models, and to understand the theory of gravity itself.
In this thesis, we present a collection of studies on compact objects in general relativity and
alternative theories of gravity. The thesis is divided in three main parts.

In the first part, we discuss some solutions associated with compact objects. In Chapter 1 we
obtain, in closed analytic form, slowly rotating black hole solutions of a general class of theories
of gravity, for which the Einstein-Hilbert action is supplemented by all possible quadratic, alge-
braic curvature invariants coupled to a scalar field. We also discuss possible implications of this
solution to the description of accretion disk (thermal) emissions. In Chapter 2 we investigate
slowly rotating anisotropic neutron stars in general relativity and in scalar-tensor theories of
gravity. We discuss the effect of the fluid anisotropy in the so-called spontaneous scalarization
of stars. We also discuss possible ways to constraint the anisotropy of neutron stars.

In the second part, we discuss wave-emission processes around compact objects and quasi-
normal modes. In Chapter 3 we calculate the emission of scalar waves by a particle orbiting a
Kerr black hole, within the context of quantum field theory in curved spacetimes at tree level.
In Chapter 5 we discuss astrophysical signatures of a plausible supplant to black holes: boson
stars. We obtain quasinormal modes – polar and axial – of boson stars within a fully relativistic
approach. We also compute the emission of gravito-scalar waves by a particle in circular or-
bits around boson stars, showing that the star modes “resonate” for some orbits. In Chapter 4
we discuss two different methods to compute the quasinormal modes of spherically symmetric
astrophysical environments, namely: the direct integration method and the continued fraction
method. In Chapter 6 we discuss the effect of accretion and dynamical friction in the motion
and gravitational wave emission of a particle orbiting around – and through – a dark matter star.
We model the dark matter star using uniform density stars and using boson stars. We discuss
the cases for which the motion of the particle is subsonic and supersonic.

In the last part, we discuss planar massless scalar waves impinging upon compact objects,
considering their absorption and scattering cross sections. In Chapter 8 we compute the absorp-
tion cross section of planar massless scalar waves on Kerr black holes. We consider different
angles of incidence, such that we explore the role of the rotation of the black hole into the ab-
sorption cross section. We also use the “sinc” approximation to compute the absorption cross
of Kerr black holes and compare it with our numerical results. In Chapter 9 we analyze a wave
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incident on a Schwarzschild black hole surrounded by a thin spherical shell. We show that in
the low-frequency limit the absorption cross section approaches the area of the black hole, re-
gardless of the shell characteristics (position and mass). However, in the mid-to-high-frequency
limit we show, numerically and analytically, that the absorption cross section can considerably
differ from the case of an isolated Schwarzschild black hole with the same ADM mass. In
Chapters 10 and 11 we study the absorption and scattering of waves, respectively, incident upon
a Bardeen regular black hole. We show that Bardeen black holes can mimic some properties of
Reissner-Nordström black holes, considering absorption and scattering of fields.

Keywords: compact objects; general relativity; alternative theories of gravity; black holes;
neutron stars.

Fields of Knowledge (CNPq): 1.05.01.03-7, 1.05.03.01-3, 1.04.02.00-4.
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Resumo

A relavidade geral passou por todos os testes experimentais no regime de campo fraco, o
que a fez se tornar a teoria padrão para a descrição da gravidade. Entretanto, a caracterização da
relatividade no regime de campo forte é ainda um desafio devido à falta de dados observacionais
concretos de regiões de curvatura intensa. É no regime de campo forte que a relatividade geral
mostra todas as suas sutilezas e onde é possı́vel obter evidências da necessidade de a relatividade
geral ser substituı́da por uma teoria modificada da gravitação. Regiões de curvatura intensa – e
portanto de campo forte – são possı́veis na vizinhança de objetos compactos, tais como estrelas
de nêutrons, estrelas exóticas e buracos negros. Portanto, objetos compactos são laboratórios
excelentes para colocar restrições e testar teorias da gravitação em campos fortes. O resultado
da investigação de fenômenos em torno de objetos compactos pode por a prova caracterı́sticas
cruciais da relatividade geral e também descartar possı́veis teorias alternativas à gravitação.
Com o advento de potenciais detectores de ondas gravitacionais e telescópios melhores e mel-
horados, é de suma importância estudar a fenomenologia dos objetos compactos, para entender
sua natureza, melhorar a descrição dos modelos teóricos atuais e entender a própria teoria da
gravitação. Nesta tese, apresentamos um conjunto de estudos envolvendo objetos compactos
na teoria da relatividade geral e em teorias alternativas à gravitação. A tese é dividida em três
partes principais.

Na primeira parte, discutimos soluções para descrever objetos compactos. No Capı́tulo 1
obtemos, em uma forma analı́tica, soluções que descrevem buracos negros com baixa rotação
para uma ampla classe de teorias alternativas à gravitação, onde a ação de Einstein-Hilbert é
suplementada por todos os termos quadráticos, possı́veis invariantes de curvatura algébricos,
acoplados com um campo escalar. Discutimos possı́veis implicações desta solução para a
descrição da emissão térmica por discos de acreção. No Capı́tulo 2 investigamos soluções
de estrelas de nêutrons anisotrópicas com baixa rotação na relatividade geral e em teorias
escalares-tensoriais da gravitação. Discutimos os efeitos da anisotropia do fluido na chamada
escalarização espontânea de estrelas.

Na segunda parte, discutimos processos de emissão de ondas em torno de objetos com-
pactos e modos quase-normais. No Capı́tulo 3 calculamos a emissão de ondas escalares por
uma partı́cula orbitando um buraco negro de Kerr, no contexto da teoria quântica de campos
em espaços-tempos curvos em nı́vel de árvore. No Capı́tulo 5 discutimos as assinaturas as-
trofı́sicas de um substituto plausı́vel dos buracos negros: as estrelas de bósons. Obtemos os mo-
dos quase-normais – polares e axiais – das estrelas de bósons, por um método completamente
relativı́stico. Calculamos a emissão de ondas escalares e gravitacionais por uma partı́cula em
órbita circular em torno das estrelas de bósons, mostrando que os modos da estrela ressoam para
algumas órbitas. No Capı́tulo 4 discutimos dois métodos para calcular os modos quase-normais
de cenários astrofı́sicos com simétria esférica: O método de integração direta e o método da
fração continuada. No Capı́tulo 6 discutimos o efeito da acreção e fricção dinâmica no movi-
mento e na emissão de ondas gravitacionais de uma partı́cula orbitando através de uma estrela
de matéria escura. Modelamos a estrela de matéria escura usando estrelas de densidade uni-
forme e usando estrelas de bósons. Discutimos os casos em que o movimento da partı́cula é
subsônico e supersônico.

Na última parte, discutimos ondas escalares planas não-massivas incidindo em objetos com-
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pactos, investigando seções de choque de absorção e de espalhamento. No Capı́tulo 8 calcu-
lamos a seção de choque de absorção para ondas escalares planas não-massivas incidentes em
buracos negros de Kerr. Consideramos vários ângulos de incidência, explorando o papel da
rotação na absorção. Também usamos a aproximação sinc para o cálculo da seção de choque
de absorção de buracos negros de Kerr, comparando com o método numérico. No Capı́tulo 9
analisamos uma onda incidente no espaço-tempo de Schwarzschild envolvido por uma casca
esférica fina. Mostramos que no limite de baixas frequências a seção de choque de absorção
é aproximadamente a área do buraco negro, independente das caracterı́sticas da casca esférica
(posição e massa). Entretanto, no regime de media para altas frequencias mostramos, numerica-
mente que a seção de choque de absorção pode diferir consideravelmente do caso de um buracos
negro de Schwarzschild isolado com a mesma massa ADM. Nos capı́tulos 10 e 11 estudamos a
absorção e espalhamento de ondas incidentes num buraco negro regular de Bardeen, respectiva-
mente. Mostramos que os buracos negros de Bardeen podem ser similares aos buracos negros
de Reissner-Nordström, no que diz respeito a absorção e espalhamento de campos.

Palavras-chaves: Objetos compactos; relatividade geral; teorias alternativas à gravitação;
buracos negros; estrelas de nêutrons.

Áreas de Conhecimento (CNPq): 1.05.01.03-7, 1.05.03.01-3, 1.04.02.00-4.
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A man who can’t bear to share his habits is a man who needs to quit them.
Stephen King, The Dark Tower
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Preface

This thesis is basically the result of the research developed during the graduate studies of
the author. It is a collection of all scientific papers (published, accepted, submitted, and in final
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General introduction

Gravity is the weakest of all fundamental forces in nature. The fact that gravity is weak
is experienced in our everyday life – we don’t need effort to pull two apples apart against
their mutual gravity, in contrast with the case of two magnets, in which we feel notably the
electromagnetic force. In fact, this discrepancy between the electromagnetic and gravitational
forces is the reason why we don’t fall through the ground! The earliest object for which all of
us perceive gravity – painfully, some of the times – is the Earth: The most immediate (very)
massive body close to us. As we mentioned, we do not feel the gravitational attraction between
two apples, but if we lose the apples from a height we immediately see them fall to the ground.
This is because the mass of the Earth is big enough, such that in the free fall of apples gravity
is important. It is not only how massive, however, the body is that tells us that gravity plays an
important role. For gravity purposes, the size of the gravitational object also matters.

At first sight, the size of an object does not seem to be relevant. For instance, take the
Newtonian theory, for which the gravitational field is given by1

g = −Gm(r)

r2
r̂, (1)

where G is the Newton’s gravitational constant, m(r) a mass function, r is the radial distance to
the center of the object, and r̂ is the unit vector pointing outwards from the center of the object.
The size does not appear explicitly in the standard form of Newton’s law (1). In fact, the size
is masqueraded in the mass function m(r). If we consider a star with a uniform density ρ (with
radius R and total mass M ), for which m takes the simple form

m(r) =
4

3
πr3ρ =

Mr3

R3
, (2)

we have that the gravitational field (1) inside the star can be written as

g = −GM
R3
r r̂, (3)

1For simplicity, we are considering spherically symmetric distributions. In this case, the Gauss theorem allows
us to write the Newton’s law in terms of an effective mass m(r).
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General introduction 2

Table 1: Approximate values of the compactness parameter, as defined by Eq. (4), for some objects. The higher
the compactness is the more relevant is gravity.

Object Compactness parameter (ε)
Apple 10−27

Earth 10−11

Sun 10−6

Neutron star 0.3
Schwarzschild black hole 0.5

Highly spining Kerr black hole 1

such that inside the gravitational object (and at its surface) the gravitational field is proportional
to the radial distance to the center of the star. Note from Eq. (3) that the gravitational field is
proportional to the total mass, but inversely proportional do R3. For the case of uniform density
stars, Eq. (3) describes the gravitational field experienced inside the star and Eq. (1) describes
the field outside the star [where ρ(r) = 0], with m(r > R) ≡ M being the star’s total mass.
Moreover, our analysis shows that the gravitational field is maximum at the star’s surface.

The above analysis, although being very simplified, gives us a way to infer how strong
gravity is for celestial objects. In fact, if we combine the constants of the theory – the speed of
light c, and Newton’s constant G – with the mass and radius of the objects, we can define the
dimensionless compactness parameter given by2 [1]

ε ≡ GM

c2R
, (4)

to measure how compact the object is and how important gravity is in the description of the
physics around it. Note that in the definition (4) of the compactness parameter we used the two
characteristics previously stated to have an influence in the perception of the gravitational field:
The mass of the objectM and its radiusR. In Table 1 we provide some examples of the value of
this parameter. The compactness parameter allows us to see more directly why for some objects,
although commonly said to be compact in the everyday terminology, we do not feel gravity. We
take the opportunity to state what we shall define as compact in our terminology: Gravitational
objects are said to be compact if the compactness parameter is high enough, usually ε & 0.1.
Therefore, the higher the value of ε, the more we can feel gravity3. If you think gravity is
important on Earth – for which ε ∼ 10−11 – imagine in a highly spinning Kerr black hole – for
which ε ∼ 1!

The Newtonian theory of gravity describes very well the gravitational field around objects
with low compactness. It gives very precise results on many phenomena on Solar System scales
(see Ref. [2] for a very interesting counter-example), and many stages of the star formation can
be described by it. However, as the compactness of the configurations increases, we need to

2Throughout the thesis, this parameter may appear defined with a multiplicative factor of 2. This does not have
a major role in the discussion presented in here.

3Note, however, that at the center of the star, as may be evident from Eq. (3), the gravitational field is zero,
regardless of the compactness parameter. Hence, with ‘feel gravity’ we assume that we are at the surface of the
object.
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General introduction 3

replace Newtonian gravity by an improved theory of gravity. This is when Einstein’s theory of
gravity enters the scenario.

In 1915 Albert Einstein proposed a theory for the gravitational field that revolutionized
physics4. In Einstein’s general relativity, gravity is described by deformations of space-time,
and particles subjected to these deformations (and therefore to gravity) follow natural paths
called geodesics. General relativity passed all the Solar System tests extremely well [1, 2], and
in the regions that gravity is weak it reduces to the Newtonian theory, as expected. Compact
objects are inserted in a context for which gravity is intense. Therefore, general relativity is
very important to describe them.

Although being a very successful theory – considered to be the standard theory to describe
gravitational phenomena – general relativity presents some problems which seem to arise from
its own structure. For instance, the formation of singularities – points in which the physical
description breaks down – is very common in some general relativity physical (reasonable)
scenarios [4, 5]. Singularities appeared even in the very first solution of general relativity – the
Schwarzschild solution, in 1916 [6] – and it is very difficult to know whether or not this issue
will be completely clarified in the current understanding of gravity. Moreover, general relativity
is non-renormalizable within the standard quantum field theory procedures [7], such that many
people believe that it should be modified to include quantum descriptions [8].

The above problems appear mostly at the strong field regime of general relativity. The strong
field regime is still an unresolved domain regarding observational data [9]. Although general
relativity predicts the existence of very compact objects (such as neutron stars and black holes),
it is difficult to tell if the compact objects presented by general relativity are exactly the ones
observed in the Universe [10, 11]. For instance, observational data that comes from orbiting
particles may carry only kinematical characteristics of the spacetime, such that general relativity
results get degenerated with many other theories of gravity [1, 12, 13]. Therefore, the more we
know about the variety of compact objects, the better we can understand and compare them,
helping to analyze the observational data coming from future measurements.

Outline
In this thesis we study compact objects within general relativity and other theories of gravity. It
is a collection of scientific works elaborated with the participation of the author of the thesis (see
the Preface). Each chapter corresponds to a published, accepted, submitted, or in final stages
of preparation scientific work/paper – hence, each chapter is self-consistent. The scientific
works/papers are not presented in a chronological order, but rather in a way that seems to be
logical from the author’s – bias dependent – point of view. All the works/papers are about
compact objects in general relativity and alternative theories of gravity. We found relevant to
separate the thesis presentation in three different parts, grouping them into categories.

• Part I – Spacetime solutions
In part I we present the metric solutions within general relativity and beyond.

4The seminal works by Einstein can be freely downloaded in [3].
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General introduction 4

In Chapter 1 we present, in a closed analytic form, a general stationary, slowly rotating
black hole, which is solution to a large class of alternative theories of gravity in four
dimensions. In these theories, the Einstein-Hilbert action is supplemented by all possible
quadratic, algebraic curvature invariants coupled to a scalar field. The solution is found
as a deformation of the Schwarzschild metric in general relativity. We explicitly derive
the changes to the orbital frequency at the innermost stable circular orbit and at the light
ring in closed form.

In Chapter 2 we study the effects of anisotropy on slowly rotating stars in general
relativity. We also consider one of the most popular extensions of Einstein’s theory, called
scalar-tensor theories, allowing for spontaneous scalarization (a phase transition similar to
spontaneous magnetization in ferromagnetic materials). Anisotropy affects the moment
of inertia of neutron stars – a quantity that could potentially be measured in binary pulsar
systems. We find that the effects of scalarization increase (decrease) when the tangential
pressure is bigger (smaller) than the radial pressure, and we present a simple criterion to
determine the onset of scalarization by linearizing the scalar-field equation.

• Part II – Wave-emission processes and quasinormal modes
In part II we present the investigations related to wave-emission by inspirals and quasi-
normal modes of compact objects.

In Chapter 3 we analyze the scalar synchrotron radiation emitted by a source in circular
orbits, stable and unstable, direct and retrograde, around a Kerr black hole within the
framework of quantum field theory in curved spacetimes at tree level. We also analyze
the radiation which escapes to infinity, showing that, in accordance with superradiance, it
can be amplified for the case of direct orbits.

In Chapter 5 we perform a detailed study of boson stars and their gravitational-wave
signatures in a fully relativistic setting. We construct several fully relativistic boson star
configurations, and we analyze their geodesic structure and free oscillation spectra, or
quasinormal modes. We explore the gravitational and scalar response of boson star space-
times to an inspiraling stellar-mass object and compare it to its black hole counterpart. We
find that a generic signature of compact boson stars is the resonant-mode excitation by a
small compact object on stable quasicircular geodesic motion.

In Chapter 4 we discuss two different methods to compute the quasinormal modes of
spherical astrophysical environments, namely: the direct integration method and the con-
tinued fraction method. The methods assume that there is a set of equations for which the
proper boundary conditions can be imposed, and the interaction between the perturbation
components is localized within a finite region. As an application we compute the polar
quasinormal modes of boson stars using the continued fraction method. The methods can
be applied to astrophysical situations in which the perturbations components (matter and
fields) couple only in a finite region of space.

In Chapter 6 we discuss the most promising dissection tool of compact dark matter
configurations: the inspiral of a compact stellar-size object and consequent gravitational-
wave emission. The inward motion of this “test probe” encodes unique information about
the nature of the central, supermassive dark matter configuration. When the probe travels
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General introduction 5

through some compact dark matter profile we show that, within a Newtonian approxima-
tion, the quasi-adiabatic evolution of the inspiral is mainly driven by dark matter accretion
into the small compact object and by dynamical friction, rather than by gravitational-wave
radiation-reaction. In the exterior region we study a relativistic model in which the inspi-
ral is driven by the emission of gravitational and scalar waves. Resonances in the energy
flux appear whenever the orbital frequency matches the mass of the dark matter particle
and they correspond to the excitation of the central object’s quasinormal frequencies. We
discuss some observational consequences of these effects for gravitational-wave detec-
tion.

In Chapter 7 we explore in some depth the mode structure of ultracompact stars, in
particular constant-density stars and gravastars. We show that the existence of very long-
lived modes – localized near a second, stable null geodesic – is a generic feature of grav-
itational perturbations of such configurations. Already at the linear level, such modes be-
come unstable if the object rotates sufficiently fast to develop an ergoregion. Finally, we
conjecture that the long-lived modes become unstable under fragmentation via a Dyson-
Chandrasekhar-Fermi mechanism at the nonlinear level. Depending on the structure of
the star, it is also possible that nonlinearities lead to the formation of small black holes
close to the stable light ring.

• Part III – Absorption and scattering of plane waves
In part III we present the results related to scattering wave processes.

In Chapter 8 we consider planar massless scalar waves impinging upon a Kerr black
hole, for general angles of incidence. We compute the absorption cross section via the
partial wave approach, and present a gallery of results. In the low-frequency regime, we
show that the cross section approaches the horizon area; in the high-frequency regime,
we show that the cross section approaches the geodesic capture cross section. In the
aligned case, we extend the complex angular momentum method to obtain a “sinc” ap-
proximation, which relates the regular high-frequency oscillations in the cross section to
the properties of the polar null orbit. In the nonaligned case, we show, via a semianalytic
approximation, that the reduction in symmetry generates a richer, less regular absorption
cross section. We separate the absorption cross section into corotating and counterro-
tating contributions, showing that the absorption is larger for counterrotating waves, as
expected.

In Chapter 9 we study the absorption of planar massless scalar wave by Schwarz-
schild black holes surrounded by a thin spherical shell. We compute the absorption cross
section in the high-frequency limit through a geodesic approximation and through the
sinc approximation. We also analyze the low-frequency limit, showing numerically that
the absorption cross section goes to the area of the black hole event horizon, regardless
of the shell position and mass. We analyze the effect of the shell in the absorption cross
section for arbitrary values of the frequency of the field.

In Chapter 10 we study the absorption of planar massless scalar waves by Bardeen
regular black holes. We compare the absorption cross section of Bardeen and Reissner-
Nordström black holes, showing that the former always have a bigger absorption cross
section for fixed values of the field frequency and of the normalized black hole charge.
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We also show that it is possible for a Bardeen black hole to have the same high-frequency
absorption cross section of a Reissner-Nordström black hole.

In Chapter 11 we consider the scattering of planar massless scalar wave by a Bardeen
black hole. We compare the scattering cross section computed using a partial-wave de-
scription with the classical geodesic scattering of a stream of null geodesics, as well as
with the semi-classical glory approximation. We obtain that, for some values of the cor-
responding black hole charge, the scattering cross section of a Bardeen black hole has a
similar interference pattern as that of a Reissner-Nordström black hole.

As stated before, each chapter is self-consistent. Therefore, in the end of each chapter we
present our conclusion remarks, discussions and perspectives.
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Spacetime solutions

Programa de Pós-Graduação em Fı́sica - UFPA



Chapter 1

Slowly rotating black holes in alternative

theories of gravity

General relativity (GR) is an elegant theory which agrees with all observations at Solar Sys-
tem scale and beyond [1, 2]; however its nonlinear, strong-field structure still remains elusive
and difficult to test [14]. This, together with some long-standing problems in Einstein theory
(like the presence of singularities, difficulties in explaining the accelerated universe and galaxy
rotation curves, etc), has motivated the study of viable alternative theories of gravity. These
theories, also known as modified theories of gravity, aim to reproduce GR in the weak-field
regime, but they can differ substantially from it in the strong curvature regime, where nonlinear
effects become dominant. In order to pass current experiments, alternative theories should have
the same post-Newtonian expansion as GR, at least to lowest order. However, large deviations
are possible in relativistic systems: black holes (BHs), neutron stars, and cosmological models.

BHs are natural candidates to investigate strong curvature corrections to GR. In the next
decade, gravitational-wave detectors [15] and high-frequency very long baseline interferometry
(VLBI) [16] may provide direct observations of these objects and of their nonlinear structure,
completing the wealth of information from current electromagnetic observations [14]. The ge-
ometric structure of BHs encodes information about the underlying theory of gravity. Within
GR, no-hair theorems (see Ref. [17] and references therein) guarantee that stationary BHs are
described by the Kerr solution and this assumption enters most of the calculations, including
gravitational-wave emission, gravitational lensing and properties of the accretion disks. How-
ever, when corrections to GR are considered, BHs can support non-trivial hairs [18] and new
classes of solutions may exist. Hence, it is important to derive deformations to the Kerr met-
ric [19–21] arising from alternative theories of gravity and to predict astrophysical observables
within a more general, bias-independent framework.

Previous studies on BH solutions in alternative theories of gravity suffer from two majors
limitations. First, given the plethora of alternative theories that have been recently proposed,
most of the approaches have focused on a case-by-case analysis (with the notable exceptions of
Refs. [20, 21]). Secondly, motivated and well-behaved corrections to GR are usually involved,
so that BHs must be constructed numerically. In particular, rotating solutions are extremely
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1.1 Gravity with quadratic curvature corrections 9

challenging to find in closed form and the Kerr metric is usually regarded as unique in this con-
text. Thus, analytical solutions describing rotating BHs in a broad class of alternative theories,
as the one we present here, are of utmost importance.

In this chapter, we derive the metric of slowly rotating BHs arising as solutions of a large
class of alternative theories of gravity, in which the Einstein-Hilbert action is supplemented
by all quadratic, algebraic curvature terms coupled to a scalar field. Rotating BH solutions
are relevant for several reasons. Astrophysical BHs are likely to be (rapidly) spinning, due
to accretion effects. Thus, any realistic computation (for example the properties of accretion
disks) must take rotation into account. Furthermore, the imprints of possible strong curvature
corrections are expected to be stronger for those processes taking place close to near-extremal
rotating BHs, for which the curvature is larger. For example, the Kretschmann invariant, K =
RabcdR

abcd, on the equatorial event horizon of a Kerr BH of mass M and angular momentum
J = aM in Boyer-Lindquist coordinates reads K = 48M2

[
M +

√
M2 − a2

]−6
, where here

and in the rest of the chapter we use G = c = 1 units. For a Schwarzschild BH (a = 0),
KM4 = 3/4. However, for extremal Kerr BHs (a = M ) this scalar invariant is ∼ 60 times
larger, KM4 = 48.

1.1 Gravity with quadratic curvature corrections
We consider a class of alternative theories of gravity in four dimensions obtained by including
all quadratic, algebraic curvature invariants, generically coupled to a single scalar field [13].
The action of this theory reads

S =
1

16π

∫ √
−gd4x

[
R− 2∇aφ∇aφ− V (φ) + f1(φ)R2

+f2(φ)RabR
ab + f3(φ)RabcdR

abcd + f4(φ)Rabcd
∗Rabcd

]
+Smat [γ(φ)gµν ,Ψmat] , (1.1)

where, in the matter action Smat, we have generically included a non-minimal coupling, which
naturally arises in some string theories defined in the Einstein frame. In the following, we
neglect the scalar self-potential V (φ). Its inclusion, along with theories in asymptotically non-
flat spacetimes, is a natural extension of the present chapter.

When f1 = αe−2φ, f2 = −4f1, f3 = f1 and f4 = 0, the theory reduces to the bosonic sector
of heterotic string theory and the quadratic corrections reduce to the Gauss-Bonnet invariant. In
that case matter is non-minimally coupled to gravity, γ(φ) = eφ. Static BH solutions in Gauss-
Bonnet gravity were found analytically in the small coupling limit [22, 23] and numerically for
general coupling [18] (see also Ref. [24]). Stationary BHs with Gauss-Bonnet corrections were
considered numerically in Ref. [25] for slow rotations, whereas their highly spinning counter-
part was recently constructed in Ref. [26]. Furthermore, when f1 = f2 = f3 = 0 and f4 = α4φ,
the above theory reduces to Chern-Simons gravity [27] and slowly rotating BHs in this theory
where obtained in Ref. [28]. The field equations arising from Eq. (1.1) are explicitly given
in Ref. [13], where analytical, static BH solutions were also obtained in the small coupling
limit. Here we generalize previous studies by constructing slowly rotating BHs in the general
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1.2 Slowly rotating black holes 10

theory (1.1).
The theory (1.1) has to be considered as an effective action, obtained as a truncation from

a more general theory. For example in the low-energy expansion of some string theories, the
Gauss-Bonnet and Chern-Simons terms arise as second order corrections in curvature. The
Einstein-Hilbert term is considered as the first order term in a (possibly infinite) series expan-
sion containing all possible curvature corrections. In this sense, GR may be only accurate up
to O (αR2) and second order corrections may be important when dealing with nonlinear, rel-
ativistic solutions. For the same reason, we work in a perturbative regime in which possible
higher order terms in (1.1) can be safely neglected. We consider the weak-field expansion of
the coupling functions

fi(φ) = ηi + αiφ+O(φ2) , i = 1, 2, 3, 4

where ηi and αi are dimensionful coupling constants. When the coupling functions are constant,
i.e. αi = 0, the theories above are usually labeled “non-dynamical” and they admit all vacuum
GR solutions [13]. As a result, for small scalar fields the background solutions do not depend
on ηi. Although non-dynamical theories would have a different linear response, for example a
different gravitational-wave emission [29, 30], here we are interested in modified background
solutions and we then focus on dynamical couplings. Remarkably, in the small coupling limit,
the dynamical theory only depends on four couplings, αi, regardless of the coupling functions
fi(φ).

1.2 Slowly rotating black holes
We consider the following metric ansatz for the stationary, slowly rotating limit,

ds2 = −f(r, θ)dt2 + g(r, θ)−1dr2 − 2ω(r) sin2 θdtdϕ+

+r2Θ(r, θ)dθ2 + r2 sin2 θΦ(r, θ)dϕ2 (1.2)

together with the scalar field φ = φ(r, θ). In Appendix A we solve the field equations [13] order
by order in a perturbative scheme for slow rotations and small couplings. Here, we simply report
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the final result. We obtain that the slowly rotating BH metric functions read

f(r, θ) = 1− 2M

r
+
α2

3

4

[
− 49

40M3r
+

1

3Mr3
+

26

3r4
+

22M

5r5
+

32M2

5r6
− 80M3

3r7

]
+a2 2M cos2 θ

r3
, (1.3)

g(r, θ) = 1− 2M

r
+
α2

3

4

[
− 49

40M3r
+

1

M2r2
+

1

Mr3
+

52

3r4
+

2M

r5
+

16M2

5r6

−368M3

3r7

]
+ a2 r − (r − 2M) cos2 θ

r3
, (1.4)

ω(r) =
2aM

r
− aα2

3

4

[
3

5Mr3
+

28

3r4
+

6M

r5
+

48M2

5r6
− 80M3

3r7

]
−aα2

4

5

2

[
1

r4
+

12M

7r5
+

27M2

10r6

]
, (1.5)

Θ(r, θ) = 1 +
cos2 θ

r2
a2 , Φ(r, θ) = 1 +

r + 2M sin2 θ

r3
a2 , (1.6)

whereas the scalar field reads

φ(r, θ) = α3

[
1

2Mr
+

1

2r2
+

2M

3r3

]
+ aα4

5 cos θ

8M

[
1

r2
+

2M

r3
+

18M2

5r4

]
−α3a

2

2

[
1

10r4
+

1

5Mr3
+

1

4M2r2
+

1

4M3r
+

cos2 θ

(
48M

5r5
+

21

5r4
+

7

5Mr3

)]
, (1.7)

where the novel terms are those proportional to aα2
3 and to a2α3 in Eq. (1.5) and Eq. (1.7),

respectively. Interestingly, these terms are the dominant corrections at large distances, because
they scale with a lower power of r than those proportional to α4. As explained in the ap-
pendix, the metric is found by requiring asymptotic flatness and regularity for r > 0. The
curvature invariants are regular in the exterior spacetime. The angular momentum of the BH
reads J = aM , whereas the physical (ADM) mass of the BH isM = M(1 + 49α2

3/(320M4))
and the metric coefficient can be also written in terms of M as explained in Ref. [13]. The
above solution is accurate up to order O(a2/M2, α2

i /M
4, aα2

i /M
5) in the metric and up to or-

der O(a2/M2, α2
i /M

4, aα2
i /M

5, a2αi/M
3) in the scalar field. At this order, the angular metric

functions Θ and Φ are simply given by the slowly rotating Kerr solution. For a = 0, the
slowly rotating BH correctly reduces to the static one setting, in the notation of Ref. [13],
αi = αi/(16π), β = 1/(4π), κ = 1/(16π). Furthermore, for α3 = 0, it reduces to the slowly
rotating Chern-Simons BH [28]. Interestingly, this solution only depends on the couplings α3

and α4, since the terms proportional to α1 and α2 do not contribute to this order. Moreover,
the corrections to the scalar field arising from α3 and α4 enter at different order in a: the
Kretschmann correction only introduces even powers of a, while the Chern-Simons term only
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1.3 Geodesic structure 12

introduces odd powers [13]. Nevertheless, both corrections affect the gravitomagnetic part of
the metric, for example giving a modified frame-dragging effect. Finally, the corrections pro-
portional to α3 scale with a lower power of r than those proportional to α4. Hence, they are
expected to be dominant at large distances.

1.3 Geodesic structure
Many interesting and potentially observable effects around astrophysical BHs ultimately depend
on how particles move in the region few Schwarzschild radii away from the event horizon.
For example, the inner properties of the accretion disk are strongly affected by the location
of the innermost stable circular orbit (ISCO) and, in turn, by the geodesic structure of the
underlying spacetime. Most of the computations assume that the spacetime is described by a
Kerr BH. However, deformed solutions arising in alternative theories would also affect particle
motion, with potentially observable consequences. In the modified theories considered here,
test-particles follow spacetime geodesics. This follows from the conservation of the stress-
energy tensor, ∇µTµν = 0, which is guaranteed by the diffeomorphism invariant action (1.1).
In many situations the geodesic motion of massive and massless particles is enough to fully
describe many effects of astrophysical interest.

We consider the following matter action for a point-like particle

Smat = −m
∫
dt
√
−γ(φ)gµν ẋµẋν , (1.8)

where m is the mass of the particle and γ(φ) is a possible coupling function between the matter
and the scalar field. For low-energy modifications from heterotic string theory, γ = eφ. In the
small field limit, we may write

γ(φ) = 1 + 4bφ+O(φ2) , (1.9)

where b = 0 for minimal coupling and b = 1/4 in heterotic string theory. We focus on equatorial
motion (θ = π/2, θ̇ ≡ 0). The radial geodesic motion on the equatorial plane can be derived
from the equation

ṙ2 = V (r) =
g

γ2

(
hE2 − fL2 + 2jEL

j2 + fh
− δγ

)
, (1.10)

where j = −ω(r), h = Φ(r)r2, and δ = 0, 1 for massless and massive particles, respectively.
Here E and L are the energy per unit of mass and the angular momentum per unit of mass of
the orbiting particle, respectively. For circular orbits at r = rc, the corresponding values of E
and L can be found by imposing V (rc, Ec, Lc) = 0 = V ′(rc, Ec, Lc) and, for δ = 1, the ISCO
location is defined through V ′′(rISCO, Ec, Lc) = 0. Finally, the angular frequency at the ISCO
reads

ΩISCO =
ϕ̇

ṫ

∣∣∣∣
rISCO

=
f − jEc/Lc
hEc/Lc + j

. (1.11)
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1.3 Geodesic structure 13

In line with our approximation scheme, we expand the geodesic quantities around their
Schwarzschild value, i.e.

X = X(0) +X(1)a+X(2)a2 +X(3)α3 +X(4)α2
3

+X(5)aα3 +X(6)aα2
3 +X(7)a2α3 +X(8)aα2

4 , (1.12)

where X schematically denotes rc, Ec and Lc. In general, the coupling b introduces lower
order contributions, like those proportional to α3. This is due to the lower order dependence
of the scalar field in Eq. (1.7). For the same reason, such corrections do not arise for terms
proportional to α4, since the odd-parity correction to the scalar field vanishes on the equatorial
plane. Substituting the expansion (1.12) and solving order by order, we obtain the following
ISCO location and the frequency at the ISCO, normalized by the physical massM,

rISCO

M
= 6− 4

√
2

3

a

M
− 7a2

18M2
+

16

9

bα3

M2
− 17

27

√
2

3

baα3

M3

−
(

16297

38880
− 22267a

17496
√

6M

)
α2

3

M4
+

77a

216
√

6M5
α2

4,

MΩISCO =
1

6
√

6
+

11a

216M
+

59a2

648
√

6M2
− 12113a

5225472M5
α2

4

− 29

216
√

6

bα3

M2
− 169

3888

baα3

M3

+

(
32159

2099520
√

6
− 49981a

75582720M

)
α2

3

M4
, (1.13)

where we have kept only dominant terms in b and we are considering corotating orbits only.
Counter-rotating orbits can be simply obtained by inverting the sign of a. The behavior of the
ISCO frequency depends on several couplings. For b = 0, the dominant correction is O(α2

3)
and contribute to increase the frequency. The first corrections proportional to the BH spin are
O(aα2

3) andO(aα2
4) and they contribute to lower the frequency. However, when a non-minimal

coupling is turned on, its effect is dominant [25]. The ISCO frequency gets negative O(bα3)
corrections. Since this is the dominant effect, a decrease in the ISCO frequency could be seen
as a general signature of non-minimal couplings, regardless of the relative strength of a, α3 and
α4.

The same procedure can be applied to null geodesics, which are the trajectories of massless
particles. In this case, it is easy to show that the result does not depend on the coupling γ. We
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1.4 Discussion and Conclusion 14

get

rnull

M
= 3− 2a√

3M
− 2a2

9M2
+

31

81
√

3

aα2
4

M5

−
(

961

3240
− 33667a

174960
√

3M

)
α2

3

M4
, (1.14)

MΩnull =
1

3
√

3
+

2a

27M
+

11a2

162
√

3M2
− 131

20412

aα2
4

M5

+

(
4397

262440
√

3
+

24779a

4723920M

)
α2

3

M4
, (1.15)

where Ωnull = Lnull/Enull. The dominant correction is O(α2
3) and it is positive, whereas the

O(aα2
3) and O(aα2

4) corrections have an opposite relative sign.

1.4 Discussion and Conclusion
We have found slowly rotating BHs, solutions of a class of alternative theories as general as the
action (1.1). This theory supplements GR by all quadratic, algebraic curvature terms coupled
to a scalar field. Our solution is presented in closed form up to some order in the angular
momentum and in the coupling parameters. To the same order, we discussed the most relevant
properties of the equatorial geodesic motion, giving the ISCO and light-ring frequencies.

With the analytical solution at hand, several extensions of the present chapter are possible.
The properties of the (modified) accretion disk can be used to constrain the parameters of the
theory [14]. Furthermore, the study of the geodesic structure can be generalized to include
non-equatorial orbits and an analysis similar to Ref. [31] can be performed. Another interesting
issue is the linear response of the slowly rotating BH. Strong curvature corrections to GR affect
the linear stability analysis [25] and the gravitational-wave emission [32].

In addition, several extensions of the present solution are conceivable. First of all, going
further in the approximation scheme, up to order a2α2

i , corrections to the event horizon location
and to the ergoregion would appear. This can have a profound impact on the stability of these
solutions. Furthermore, highly spinning BHs are phenomenologically more relevant and larger
deviations from the Kerr metric may be expected. However, they have to be constructed numer-
ically [26] on the basis of a case-by-case analysis. In this case, our analytical solution can be
useful; for example it can be used as an initial profile to start numerical relaxation methods, or
to check numerical solutions.

We report here that the slowly rotating metric we found can be mapped onto the bumpy BH
formalism along the same lines as discussed in Ref. [20], although the mapping is non-trivial.
On the other hand, this solution does not belong to the class of deformed Kerr BHs proposed in
Ref. [21].
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Chapter 2

Slowly rotating anisotropic stars in general

relativity and scalar-tensor theory

Most investigations of the structure of neutron stars (NSs) assume isotropic matter with a
perfect-fluid equation of state (EoS) relating the pressure and density in the stellar interior. How-
ever, various physical effects can lead to local anisotropies (see [33] for a review). Anisotropy
can occur for stars with a solid core [34] or strong magnetic fields [35–37]. Spaghetti- and
lasagna-like structures would induce anisotropic elastic properties that could be important for
NS quakes [38]. Nuclear matter may be anisotropic at very high densities [39, 40], where the
nuclear interactions must be treated relativistically and phase transitions (e.g. to pion con-
densates [41] or to a superfluid state [42]) may occur. For example, Nelmes and Piette [43]
recently considered NS structure within the Skyrme model, a low energy, effective field the-
ory for Quantum Chromodynamics (QCD), finding significant anisotropic strains for stars with
mass M & 1.5M� (see also [44, 45]). From a mathematical point of view, two-fluid systems
can be shown to be equivalent to a single anisotropic fluid [46]. Anisotropy affects the bulk ob-
servable properties of NSs, such as the mass-radius relation and the surface redshift [47]: it can
increase the maximum NS mass for a given EoS [47,48] and stabilize otherwise unstable stellar
configurations [49]. Incidentally, exotic objects such as gravastars [50] and boson stars [51]
(see also Chapters 5 and 6) are also equivalent to anisotropic fluids (i.e., they have anisotropic
pressure).

It is known that rotation can induce anisotropy in the pressure due to anisotropic velocity
distributions in low-density systems [33], but to the best of our knowledge – with the exception
of some work by Bayin [52] – slowly rotating anisotropic stars have never been investigated
in general relativity (GR). The goal of this chapter is to fill this gap using two different phe-
nomenological models for anisotropy [47, 48], and to extend the analysis of slowly rotating
anisotropic stars to scalar-tensor theories of gravity.

Scalar-tensor theories are among the simplest and best studied extensions of GR [53]. In
addition to the metric, in these theories gravity is also mediated by a scalar field. Scalar-
tensor theories arise naturally from the dimensional reduction of higher-dimensional proposals
to unify gravity with the Standard Model, and they encompass f(R) theories of gravity as spe-
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cial cases [54, 55]. The simplest variant of scalar-tensor theory, Brans-Dicke theory, is tightly
constrained experimentally [56], but certain versions of the theory could in principle differ from
GR by experimentally measurable amounts in the strong-field regime, as shown by Damour and
Esposito-Farèse [57, 58].

From an astrophysical standpoint, compact objects such as black holes and NSs are the
most plausible candidates to test strong-field gravity [59]. Compared to black holes, NSs are a
more promising strong-field laboratory to distinguish scalar-tensor gravity from GR, because a
large class of scalar-tensor theories admits the same black-hole solutions as GR (see [60] and
references therein), and the dynamics of black holes can differ from GR only if the black holes
are surrounded by exotic forms of matter [61–64] or if the asymptotic behavior of the scalar
field is nontrivial [65, 66].

The study of NS structure in GR is textbook material [67–70], and there is an extensive
literature on stellar configurations in scalar-tensor theories as well (see e.g. [11, 71] and refer-
ences therein). One of the most intriguing phenomena in this context is “spontaneous scalar-
ization” [58], a phase transition analogous to the familiar spontaneous magnetization in solid
state physics [72]: in a certain range of central densities, asymptotically flat solutions with a
nonzero scalar field are possible and energetically favored with respect to the corresponding GR
solutions.

In the absence of anisotropy, the degree of scalarization depends on a certain (real) theory
parameter β, defined in Eq. (2.2) below. Theory predicts that scalarization cannot occur (in
the absence of anisotropy) when β & −4.35 [73]. Present binary pulsar observations yield a
rather tight experimental constraint: β & −4.5 [74, 75]. One of our main findings is that the
effects of scalarization, as well as the critical |β| for spontaneous scalarization to occur, increase
(decrease) for configurations in which the tangential pressure is bigger (smaller) than the radial
pressure. Therefore binary pulsars can be used to constrain the degree of anisotropy at fixed
β, or to constrain β for a given degree of anisotropy. This may open the door to experimental
constraints on the Skyrme model via binary pulsar observations. Other notable findings of this
study are (i) an investigation of the dependence of the stellar moment of inertia on the degree
of anisotropy λ (more precisely, λH and λBL, because we consider two different anisotropy
models [47, 48]); and (ii) an investigation of the threshold for scalarization for different values
of β and λ in terms of a simple linear stability criterion, along the lines of recent work for black
holes surrounded by matter [63, 64].

The plan of this chapter is as follows. In Section 2.1 we introduce the equations of motion in
scalar-tensor theory and the stress-energy tensor describing anisotropic fluids that will be used
in the rest of the chapter. In Section 2.2 we present the equations of structure for relativistic
stars at first order in the slow-rotation expansion. The macroscopic properties of NSs obtained
by integrating these equations for two different models of anisotropic stars are presented in
Section 2.3. Section 2.3.3 shows that a linear approximation is sufficient to identify the thresh-
old for spontaneous scalarization for different values of β and λ. Section 2.4 summarizes our
main conclusions and points out possible avenues for future work. Finally, in Appendix B we
give a detailed derivation of an integral formula to compute the moment of inertia. Through-
out this chapter, quantities associated with the Einstein (Jordan) frame will be labeled with an
asterisk (tilde). We use geometrical units (c = G∗ = 1) unless stated otherwise and signature
(−,+,+,+).
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2.1 Anisotropic fluids in scalar-tensor theory of gravity 17

2.1 Anisotropic fluids in scalar-tensor theory of gravity

2.1.1 Overview of the theory
We consider a massless scalar-tensor theory described by an Einstein-frame action [58, 72]

S = c4

16πG∗

∫
d4x

√
−g∗
c

(R∗ − 2gµν∗ ∂µϕ∂νϕ)

+SM [ψM;A2(ϕ)g∗µν ] , (2.1)

where G∗ is the bare gravitational constant, g∗ ≡ det [ g∗µν ] is the determinant of the Einstein-
frame metric g∗µν , R∗ is the Ricci curvature scalar of the metric g∗µν , and ϕ is a massless scalar
field. SM is the action of the matter fields, collectively represented by ψM. Free particles follow
geodesics of the Jordan-frame metric g̃µν ≡ A2(ϕ)g∗µν , whereA(ϕ) is a conformal factor. Here
we assume that A(ϕ) has the form

A(ϕ) ≡ e
1
2
βϕ2

, (2.2)

where β is the theory’s free parameter and, as we recalled in the introduction, current binary
pulsar observations constrain it to the range β & −4.5 [74, 75].

The field equations of this theory, obtained by varying the action S with respect to gµν∗ and
ϕ, are given by

R∗µν = 2∂µϕ∂νϕ+ 8π
(
T∗µν − 1

2
T∗g∗µν

)
, (2.3)

�∗ϕ = −4πα(ϕ)T∗, (2.4)

where R∗µν is the Ricci tensor, α(ϕ) ≡ dlogA(ϕ)/dϕ (in the language of [58, 72]) is the
“scalar-matter coupling function” and�∗ is the d’Alembertian operator associated to the metric
g∗µν . GR is obtained in the limit where the scalar field decouples from matter, i.e. α(ϕ) → 0.
Under the particular choice of the conformal factor (2.2), this is equivalent to letting β = 0. In
this chapter, all equations will be derived within the context of scalar-tensor gravity.

Finally, T µν∗ is the energy-momentum tensor of the matter fields, defined as

T µν∗ ≡
2√
−g∗

δSM [ψM , A
2(ϕ)g∗µν ]

δg∗µν
, (2.5)

and T∗ ≡ T µν∗ g∗µν is its trace. The energy-momentum tensor in the Jordan frame T̃ µν , with
trace T̃ ≡ T̃ µν g̃µν , is defined in an analogous fashion:

T̃ µν ≡ 2√
−g̃

δSM [ψM , g̃µν ]

δg̃µν
. (2.6)
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2.1 Anisotropic fluids in scalar-tensor theory of gravity 18

The two energy-momentum tensors (and their traces) are related as follows:

T µν∗ = A6(ϕ)T̃ µν , T∗µν = A2(ϕ)T̃µν , T∗ = A4(ϕ)T̃ . (2.7)

The covariant divergence of the energy-momentum tensor satisfies

∇∗µT µν∗ = α(ϕ)T∗∇ν
∗ϕ, (2.8)

∇̃µT̃
µν = 0, (2.9)

in the Einstein and Jordan frames, respectively.

2.1.2 Anisotropic fluids
An anisotropic fluid with radial pressure p̃, tangential pressure q̃ and total energy density ε̃ can
be modeled by the Jordan-frame energy-momentum tensor [47, 76]

T̃µν = ε̃ ũµũν + p̃ k̃µk̃ν + q̃ Π̃µν , (2.10)

where ũµ is the fluid four-velocity, k̃µ is a unit radial vector (k̃µk̃µ = 1) satisfying ũµk̃µ = 0,
and Π̃µν ≡ g̃µν + ũµũν − k̃µk̃ν . Π̃µν is a projection operator onto a two-surface orthogonal to
both ũµ and k̃µ: indeed, defining a projected vector Ãµ ≡ Π̃µνṼν , one can easily verify that
ũµÃ

µ = k̃µÃ
µ = 0. At the center of symmetry of the fluid distribution the tangential pressure

q̃ must vanish, since k̃µ is not defined there [76]. The trace of the Einstein-frame stress-energy
tensor for an anisotropic fluid is

T∗ = A4(ϕ) [−(ε̃− 3p̃)− 2 (p̃− q̃)] . (2.11)

As emphasized by Bowers and Liang [47], p̃ and q̃ contain contributions from fluid pressures
and other possible stresses inside the star, therefore they should not be confused with purely
hydrostatic pressure. Additional stresses could be caused, for instance, by the presence of a
solid core [34], strong magnetic fields [35] or a multi-fluid mixture [46]. The derivation of a
microphysical model for anisotropy is a delicate issue, so we will adopt a phenomenological
approach. We will assume that p̃ is described by a barotropic EoS, i.e. p̃ = p̃(ε̃). For brevity
in this chapter we focus on the APR EoS [77], but we have verified that our qualitative results
do not depend on this choice. The APR EoS supports NS models with a maximum mass M
larger than 2.0M�, and therefore it is compatible with the recent observations of the M =
1.97 ± 0.04M� pulsar PSR J1614-2230 [78] and of the M = 2.01 ± 0.04M� pulsar PSR
J0348+0432 [79].

The functional form of the anisotropy σ̃ ≡ p̃ − q̃ [47, 76, 80] depends on microscopic re-
lationships between p̃, q̃ and ε̃, that unfortunately are not known. However we can introduce
physically motivated functional relations for σ̃ that allow for a smooth transition between the
isotropic and anisotropic regimes. Many such functional forms have been studied in the litera-
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ture. As an application of our general formalism we will consider two of these phenomenolog-
ical relations, described below.

Quasi-local equation of state

Horvat et al. [48] proposed the following quasi-local equation for σ̃:

σ̃ ≡ λHp̃γ̃, (2.12)

where γ̃ ≡ 2µ(r)/r. The “mass function” µ(r), defined in Eq. (2.15) below, is essentially the
mass contained within the radius r, so the quantity γ̃ is a local measure of compactness, whereas
λH is a free (constant) parameter that controls the degree of anisotropy.

The calculations of [41] show that, if anisotropy occurs due to pion condensation, 0 ≤
σ̃/p̃ ≤ 1, therefore λH could be of order unity [76]. More recently, Nelmes and Piette [43]
considered NS structure within a model consisting of a Skyrme crystal, which allows for the
presence of anisotropic strains. They found that λH, as defined in Eq. (2.12), has a nearly
constant value λH ≈ −2 throughout the NS interior. The nonradial oscillations of anisotropic
stars were studied in [76] using the model of Eq. (2.12). Following Doneva and Yazadjiev [76],
we will consider values of λH in the range −2 ≤ λH ≤ 2.

Bowers-Liang model

As a second possibility we will consider the functional form for σ̃ proposed by Bowers and
Liang [47], who suggested the relation1

σ̃ ≡ 1

3
λBL (ε̃+ 3p̃) (ε̃+ p̃)

(
1− 2µ

r

)−1

r2. (2.13)

The model is based on the following assumptions: (i) the anisotropy should vanish quadratically
at the origin (the necessity for this requirement will become clear in Sec. 2.2), (ii) the anisotropy
should depend nonlinearly on p̃, and (iii) the anisotropy is (in part) gravitationally induced. The
parameter λBL controls the amount of anisotropy in the fluid.

This ansatz was used in [47] to obtain an exact solution for incompressible stars with ε̃ =
ε̃0 = constant. In their simple model, the requirement that equilibrium configurations should
have finite central pressure p̃c implies that λBL ≥ −2. The Newtonian limit of the Bowers-Liang
ansatz was also considered in a recent study of the correspondence between superradiance and
tidal friction [80]. In our calculations we will assume that −2 ≤ λBL ≤ 2.

1The factor of 1/3 in Eq. (2.13) is chosen for convenience. Also, there is a sign difference between our definition
of σ̃ and the one in [47]. Our parameter λBL is related with the Bowers-Liang (physically equivalent) parameter C
by λBL = −3C.

Programa de Pós-Graduação em Fı́sica - UFPA



2.2 Stellar structure in the slow-rotation approximation 20

2.2 Stellar structure in the slow-rotation approximation
In this Section we approximate the metric of a slowly, rigidly rotating, anisotropic star following
the seminal work by Hartle and Thorne [81,82]. The idea is to consider the effects of rotation as
perturbations of the spherically symmetric background spacetime of a static star. We generalize
the results of [81,82] (in GR) and [72] (in scalar-tensor theory) to account for anisotropic fluids
up to first order in rotation, so we can study how anisotropy and scalarization affect the moment
of inertia of the star and the dragging of inertial frames.

We remark that the moment of inertia I , the star’s uniform angular velocity Ω and the angu-
lar momentum J ≡ IΩ are the same in the Jordan and Einstein frames (cf. [72,83]). Therefore,
to simplify the notation, we will drop asterisks and tildes on these quantities. Working up to
order O(Ω), the line element of a stationary axisymmetric spacetime in the Jordan frame reads

ds̃2 = A2(ϕ)
[
−e2Φ(r)dt2 + e2Λ(r)dr2 + r2dθ2

+ r2 sin2 θ dφ2 − 2ω(r, θ)r2 sin2 θ dt dφ
]
, (2.14)

where

e−2Λ(r) ≡ 1− 2µ(r)

r
, (2.15)

µ(r) is the mass function and ω(r, θ) ∼ O(Ω) is the angular velocity acquired by a particle
falling from infinity as measured by a static asymptotic observer [81].

The four-velocity of the rotating fluid is such that ũµũµ = −1, and it has components [81]

ũ0 =
[
−(g̃00 + 2Ωg̃03 + Ω2g̃33)

]−1/2
, (2.16)

ũ1 = ũ2 = 0, (2.17)
ũ3 = Ωũ0. (2.18)

Using (2.14), at first order in the slow-rotation parameter we obtain:

ũµ = A−1(ϕ)
(
e−Φ, 0, 0,Ω e−Φ

)
. (2.19)

Following the standard procedure [68, 81, 84], the field equations (2.3), (2.4) and (2.8) with
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the metric given by (2.14) yield the following set of ordinary differential equations:

dµ

dr
= 4πA4(ϕ)r2ε̃+

1

2
r(r − 2µ)ψ2, (2.20)

dΦ

dr
= 4πA4(ϕ)

r2p̃

r − 2µ
+

1

2
rψ2 +

µ

r(r − 2µ)
, (2.21)

dψ

dr
= 4πA4(ϕ)

r

r − 2µ
[α(ϕ)(ε̃− 3p̃) + r(ε̃− p̃)ψ]

− 2(r − µ)

r(r − 2µ)
ψ + 8πA4(ϕ)α(ϕ)

rσ̃

r − 2µ
, (2.22)

dp̃

dr
= −(ε̃+ p̃)

[
dΦ

dr
+ α(ϕ)ψ

]
− 2σ̃

[
1

r
+ α(ϕ)ψ

]
, (2.23)

d$

dr
= 4πA4(ϕ)

r2

r − 2µ
(ε̃+ p̃)

(
$ +

4ω̄

r

)
+

(
rψ2 − 4

r

)
$

+16πA4(ϕ)
rσ̃

r − 2µ
ω̄, (2.24)

where we defined ψ ≡ dϕ/dr, $ ≡ dω̄/dr, and ω̄ ≡ Ω−ω. The equations above reduce to the
Tolman-Oppenheimer-Volkoff (TOV) equations for anisotropic stars in GR [47] when α → 0,
to the results of [58] in the isotropic limit σ̃ → 0, and to the usual TOV equations when both
quantities are equal to zero [68]. In the GR limit, our frame-dragging equation (2.24) agrees
with Bayin’s [52] result2.

To obtain the interior solution we integrate the generalized TOV equations (2.20)-(2.24)
from a point rc close to the stellar center r = 0 outwards up to a point r = rs where the pressure
vanishes, i.e. p̃(rs) = 0. This point specifies the Einstein-frame radius R∗ ≡ rs of the star. If
ϕs = ϕ(rs), the Jordan-frame radius R̃ is

R̃ = A(ϕs)R∗. (2.25)

In practice, to improve numerical stability, given ε̃c, Φc, ϕc and µc (where the subscript c

2In principle, as mentioned in the introduction, rotation may induce anisotropy. Therefore the Horvat et al. and
Bowers-Liang models for σ̃ should contain terms proportional to Ω. However, Eq. (2.24) implies that such terms
in σ̃ would lead to corrections of second order in the angular velocity Ω. These corrections are beyond the scope
of the O(Ω) approximation considered in our work.
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means that all quantities are evaluated at r = 0) we use the following series expansions:

µ =
4

3
πA4

c ε̃cr
3 +O(r4),

Φ = Φc +
2

3
πA4

c (ε̃c + 3p̃c) r
2 +O(r4),

p̃ = p̃c +
2

3
πr2A4

c (ε̃c + p̃c)
[
3p̃c

(
α2

c − 1
)
− ε̃c

(
α2

c + 1
)]

+

−1

3
r2(2rσ3 + 3σ2) +O(r4),

ϕ = ϕc +
2π

3
A4

cαc(ε̃c − 3p̃c)r
2 +O(r4),

ω̄ = ω̄c +
8π

5
A4

cω̄c(ε̃c + p̃c)r
2 +O(r4),

σ̃ = σ2r
2 + σ3r

3 +O(r4), (2.26)

where σ2 and σ3 depend on the particular anisotropic model.
In the vacuum exterior we have p̃ = ε̃ = σ̃ = 0. Eqs. (2.20)–(2.22) must be integrated

outwards starting from the stellar radius to obtain the stellar mass, angular momentum and
scalar charge. For large r we can expand the relevant functions as follows:

µ(r) = M − Q2

2r
− MQ2

2r2
+O(r−3) (2.27)

e2Φ = 1− 2M

r
+O(r−3), (2.28)

ϕ(r) = ϕ∞ +
Q

r
+
MQ

r2
+O(r−3), (2.29)

ω̄(r) = Ω− 2J

r3
+O(r−4), (2.30)

where M is the Arnowitt-Deser-Misner (ADM) mass of the NS, Q is the scalar charge, J is the
star’s angular momentum and ϕ∞ is the (constant) cosmological value of the scalar field, here
assumed to be zero. Under this assumption the mass M is the same in the Jordan and Einstein
frames [83]. By matching the numerical solution integrated from the surface of the star with the
asymptotic expansions (2.27)–(2.30) we can compute M , Q and J .

We compute the moment of inertia of the star I in two equivalent ways. The first method
consists of extracting the angular momentum as described above and using

I =
J

Ω
. (2.31)

Alternatively, we can compute I through an integral within the star. Combining Eqs. (2.15),
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(2.20)-(2.21) and (2.24) we obtain the following integral expression:

I =
8π

3

∫ R∗

0

A4(ϕ)eΛ−Φr4(ε̃+ p̃)

(
1− σ̃

ε̃+ p̃

)( ω̄
Ω

)
dr (2.32)

(see Appendix B for details). As A(ϕ) → 1 and σ̃ → 0 we recover Hartle’s result [81], and in
the isotropic limit σ̃ → 0 we match the result of [84]. The numerical values of I obtained with
(2.31) and (2.32) are in excellent agreement.

For each stellar model we also calculate the baryonic mass Mb, defined as [58]

Mb ≡ 4πm̃b

∫ R∗

0

ñ A3(ϕ)
r2√

1− 2µ/r
dr, (2.33)

where m̃b = 1.66× 10−24 g is the atomic mass unit and ñ is the baryonic number density.

2.3 Numerical results
The tools developed so far allow us to investigate the effect of anisotropy on the bulk properties
of rotating stars. In Section 2.3.1 we will focus on slowly rotating stars in GR. To the best
of our knowledge – and to our surprise – rotating anisotropic stars have not been studied in
the GR literature, with the only exception of a rather mathematical paper by Bayin [52]3. In
Section 2.3.2 we extend our study to scalar-tensor theories. Our main motivation here is to un-
derstand whether anisotropy may increase the critical value β = βcrit above which spontaneous
scalarization cannot happen, and therefore allow for observationally interesting modifications
to the structure of NSs that would still be compatible with the stringent bounds from binary
pulsars [74, 75].

2.3.1 The effect of anisotropy in general relativity
In the top panels of Figure 2.1 we show the mass-radius relation for anisotropic NS models in
GR. All curves are truncated at the central density corresponding to the maximum NS mass,
because models with larger central densities are unstable to radial perturbations [67, 68]. Solid
lines correspond to σ̃ = 0, i.e. the isotropic fluid limit. The horizontal shaded band in the upper
panels represents the largest measured NS mass M = 2.01 ± 0.04M� (PSR J0348+0432:
cf. [79]).

Recall that σ̃ = p̃− q̃ is proportional to λH and λBL (with a positive proportionality constant)
in both models, and that p̃ and q̃ represent the “radial” and “tangential” pressures, respectively.
Therefore positive values of λH and λBL mean that the radial pressure is larger than the tangen-
tial pressure (dashed lines); the opposite is true when the anisotropy parameters are negative
(dotted lines).

3Note, however, here we are referring to the anisotropy in the fluid, not the one induced by the star rotation.
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Figure 2.1: Mass-radius relation (top panels) and dimensionless compactness G∗M/Rc2 as a function of the
central density (bottom panels) for anisotropic stars in GR using EoS APR. In the left panels we use the quasi-
local model of [48]; in the right panels, the Bowers-Liang model [47]. Different curves correspond to increasing
λH (or λBL) in increments of 0.5 between −2 (top) and 2 (bottom). The shaded blue bar corresponds to the mass
M = 2.01± 0.04M� of PSR J0348+0432 [79].
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Figure 2.2: The moment of inertia I as function of the mass M for anisotropic stars in GR using EoS APR,
increasing λH (or λBL) in increments of 0.5 between −2 (top curves) and 2 (bottom curves). As in Figure 2.1, the
vertical shaded region marks the largest measured NS mass [79].

The trend in the top panels of Figure 2.1 is clear: for both anisotropy models, positive (nega-
tive) anisotropy parameters yield smaller (larger) radii at fixed mass, and smaller masses at fixed
radius. The lower panels of Figure 2.1 show that the stellar compactness G∗M/(Rc2) decreases
(for a given EoS and fixed central density) as the anisotropy degree increases. Nuclear matter
EoSs are usually ordered in terms of a “stiffness” parameter, with stiffer EoSs corresponding to
larger sound speeds (more incompressible matter) in the stellar interior, and larger values of the
compactness M/R. The qualitative effect of increasing anisotropy (with our sign conventions)
is opposite (for a given EoS) to the qualitative effect of increasing stiffness.

Figure 2.2 is, to our knowledge, the first calculation of the effect of anisotropy on the mo-
ment of inertia I . As in Figure 2.1, solid lines corresponds to the isotropic limit. In the right
panel we use the quasi-local model of [48]; in the left panel, the Bowers-Liang model [47]. Hy-
pothetical future observations of the moment of inertia of star A, from the double pulsar PSR
J0737-3039 [85–87], or preferably from large-mass NSs, may be used to constrain the degree
of anisotropy under the assumptions that GR is valid and that the nuclear EoS is known.

2.3.2 The effect of anisotropy on spontaneous scalarization
In Figures 2.3 and 2.4 we display the properties of nonrotating, spontaneously scalarized stars
within the anisotropy models of Horvat et al. [48] and Bowers-Liang [47], respectively. The
main panel in each Figure shows the mass-radius relation as the anisotropy parameter increases
(in increments of 1, and from top to bottom) in the range −2 ≤ λH ≤ 2 (Figure 2.3) or
−2 ≤ λBL ≤ 2 (Figure 2.4). Solid lines correspond to the GR limit; dotted, dashed and dash-
dotted lines correspond to β = −4.3, −4.4 and −4.5, as indicated in the legend. The lower
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Figure 2.3: Spontaneous scalarization in the quasi-local model of Horvat et al. [48]. See the main text for details.
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Figure 2.4: Same as Figure 2.3, but for the Bowers-Liang anisotropy model [47].
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Figure 2.5: Same as Figure 2.2, but in scalar-tensor theories with different values of β.

panels show the scalar charge Q/M as a function of the baryonic mass. In each of these panels
we plot the scalar charge for a fixed value of β and different anisotropy parameters.

For isotropic EoSs in GR, Harada [73] used catastrophe theory to show that scalarization
is only possible when β . −4.35. We find that scalarization can occur for larger values of
β in the presence of anisotropy. For example, for a value of λH ∼ −2 (compatible with the
Skyrme model predictions of [43]) scalarization is possible when β ' −4.15, and for β '
−4.3 scalarization produces rather large (≈ 10%) deviations in the mass-radius relation. This
qualitative conclusion applies to both anisotropy models considered by us. The lower panels
show that: (i) for fixed β (i.e., for a fixed theory) and for a fixed central density, the “strength” of
scalarization – as measured by the scalar charge of the star – increases for large negative λ’s, i.e.
when the tangential pressure is significantly larger than the radial pressure, for both anisotropy
models; (ii) scalarization occurs in a much wider range of baryonic masses, all of which are
compatible with the range where anisotropy would be expected according to the Skyrme model
predictions of [43]. These calculations are of course preliminary and should be refined using
microphysical EoS models. However, let us remark once again that the scalarization threshold
in the absence of anisotropy is to a very good approximation EoS-independent, and stars only
acquire significant scalar charge when β < −4.35 (as shown in [73] and in Figure 2.6 below).
In the admittedly unlikely event that binary pulsar observations were to hint at scalarization
with β > −4.35, this would be strong evidence for the presence of anisotropy4 and even lead to
experimental constraints on the Skyrme model and QCD.

As in Figure 2.2, in the left panel of Figure 2.5 we show the moment of inertia as a function

4An important caveat here is that fast rotation can also strengthen the effects of scalarization: according to [88],
scalarization can occur for β < −3.9 for NSs spinning at the mass-shedding limit. However the NSs found in
binary pulsar systems are relatively old, as they are expected to be spinning well below the mass-shedding limit,
where the slow-rotation approximation works very well [89].
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of the stellar mass for the quasi-local model of [48], while the right panel refers to the Bowers-
Liang model [47]. Solid lines corresponds to the GR limit for different anisotropy parameters.
Unsurprisingly, the largest modifications to the moment of inertia occur for large negative λ’s,
and they follow the same trends highlighted in our discussion of the mass-radius relation.

2.3.3 Critical scalarization point in the linearized approximation
The condition for spontaneous scalarization to occur can be found in a linearized approximation
to the scalar-field equation of motion. The idea is that at the onset of scalarization the scalar
field must be small, so we can neglect its backreaction on the geometry and look for bound
states of the scalar field by dropping terms quadratic in the field [58,72]. Here we study general
conditions for the existence of bound states in the linearized regime, and we show that (as
expected based on the previous argument) the linearized theory does indeed give results in
excellent agreement with the full, nonlinear calculation.

Redefining the scalar field as ϕ(t, r) = r−1Ψ(r)e−iνt and neglecting termsO(ϕ2), Eq. (2.4)
can be written as a Schrödinger-like equation:

d2Ψ

dx2
+
[
ν2 − Veff(x)

]
Ψ = 0, (2.34)

where the tortoise radial coordinate x is defined by dx ≡ dr e−Φ/
√

1− 2µ/r. The effective
potential is

Veff(r) ≡ e2Φ

[
µ2

eff(r) +
2µ

r3
+ 4π(p̃− ε̃)

]
, (2.35)

where we have introduced an effective (position-dependent) mass

µ2
eff(r) ≡ −4πβT∗. (2.36)

Eq. (2.34) with the potential (2.35) is a wave equation for a scalar field with effective mass µeff .
From Eq. (2.11) we see that anisotropy affects the effective mass (and therefore the scalarization
threshold) because T∗ contains a term proportional to σ̃, that in turn is proportional to either λH

or λBL: cf. Eqs. (2.12) and (2.13). The case of spontaneous scalarization around black holes
(studied in [63, 64]) can be recovered by setting ε̃ = p̃ = 0.

The scalarization threshold can be analyzed by looking for the zero-energy (ν ∼ 0) bound
state solutions of Eq. (2.34). In this case, the scalar field satisfies the following boundary con-
ditions:

Ψ ∼
{
ϕcr as r → 0,
ϕ∞ as r →∞, (2.37)

and we impose Ψ′(r → ∞) = 0, where the prime denotes derivative with respect to r. To
obtain the scalarization threshold we integrate Eq. (2.34) outwards, starting from r = 0, with
the above boundary conditons. Since the equation is linear, ϕc is arbitrary. At infinity we impose
that the first derivative of Ψ with respect to r must be zero. This is a two-point boundary value
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Figure 2.6: Critical β for scalarization as a function of the central density (left panel) and of the stellar compactness
(right panel) for nonrotating NS models constructed using different nuclear-physics based EoSs, in the absence of
anisotropy.

problem that can be solved with a standard shooting method to find the critical value of the
central density ε̃c for which the above conditions are satisfied, given fixed values of β and λH

(or λBL). The solution is some
ε̃i = ε̃i(β), (2.38)

where ε̃i is the smallest critical density at which scalarization can occur for the given β. The
largest critical density producing scalarization can be similarly obtained by looking for zero-
energy bound state solutions to find some

ε̃f = ε̃f(β). (2.39)

It can be shown that in these two regimes (i.e., at the starting and ending points of the scalariza-
tion regime) the derivative of Ψ′(r →∞) with respect to ε̃c has opposite signs:

∂

∂ε̃c
Ψ′(r →∞)

{
< 0 for ε̃c = ε̃i,
> 0 for ε̃c = ε̃f .

(2.40)

As a warm-up, in Figure 2.6 we compute the scalarization threshold for nonrotating isotropic
stars with several nuclear-physics based EoSs. The original references for the subset of EoSs
used here can be found in [90] (the one exception is SLy4: cf. [91]). The EoSs are sorted by
stiffness, with APR EoS being the stiffest and G EoS the softest in our catalog. As a trend, for
stiffer EoSs scalarization occurs at lower values of the central densities and at higher values of
the compactness. The most remarkable fact is that the value β = βmax above which scalarization
cannot occur is very narrow: it ranges from βmax = −4.3462 for APR EoS to βmax = −4.3405
for F EoS [92]. This is consistent with Harada’s study based on catastrophe theory, that predicts
a threshold value βmax ' −4.35 (horizontal line in the figure) in the absence of anisotropy [73]
(see also [93]).
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Table 2.1: Critical density values obtained through the linearized theory and the full nonlinear equations for APR
EoS, different values of the Horvat et al. anisotropy parameter λH and β = −4.5: for these choices of param-
eters, the solution is scalarized if ε̃i < ε̃c < ε̃f . The last column lists the critical value β = βmax above which
scalarization is not possible.

Linearized Full nonlinear
λH ε̃i(g cm−3) ε̃f(g cm−3) ε̃i(g cm−3) ε̃f(g cm−3) βmax

-2 6.983× 1014 9.141× 1014 6.980× 1014 9.140× 1014 -4.150
-1 7.819× 1014 1.053× 1015 7.817× 1014 1.053× 1015 -4.239
0 9.021× 1014 1.216× 1015 9.021× 1014 1.216× 1015 -4.346
1 1.127× 1015 1.340× 1015 1.126× 1015 1.341× 1015 -4.471

In Table 2.1 we compare the values for ε̃i and ε̃f computed using (i) the linearized method
described in this Section, and (ii) the full nonlinear set of equations for anisotropic models
constructed using the APR EoS. The results agree remarkably well, showing that the onset of
scalarization can be analyzed to an excellent degree of accuracy by neglecting the backreaction
effects of the scalar field on the geometry. The last column of Table 2.1 lists βmax, the value of
β above which scalarization cannot happen. We do not present results for λH = 2 because the
resulting βmax is already ruled out by binary pulsar observations [74].

In the left panels of Figure 2.7 we analyze the dependence of the critical β on the central
density, focusing on EoS APR and selecting different values of the anisotropy parameters λBL

(top) and λH (bottom). The shaded region at the top (β & −4.5) is allowed by current binary
pulsar observations [74, 75]. The horizontal line is the roughly EoS-independent threshold
βmax ' −4.35 for isotropic stars. For a given theory, the starting and ending points of the
scalarization regime are those for which a β = constant (horizontal) line crosses the curves.
Anisotropic models have two distinctive features: (1) when the tangential pressure is larger than
the radial pressure (dashed lines in Figure 2.7) scalarization can occur even for β ≥ −4.35 (for
example, for the Horvat et al. model with λH = −2 we have βcrit = −4.1513, and for the
Bowers-Liang model with λBL = −2 we have βcrit = −4.1354; cf. Table 2.1, Figure 2.4 and
Figure 2.3); (2) when the tangential pressure is smaller than the radial pressure (dash-dotted
lines in Figure 2.7) scalarized solutions may exist for a much wider range of ε̃c.

In the right panels of Figure 2.7 we plot the critical β as a function of the stellar compactness
G∗M/R̃c2. For low compactness (M/R̃ . 0.15) all curves have the same behaviour regardless
of λH or λBL. This universality has two reasons: (1) all modern nuclear-physics based EoS
have the same Newtonian limit (cf. [94] for an analytic treatment of this regime for constant
density stars); (2) for any given EoS, the effects of anisotropy are suppressed in the Newtonian
regime, where pressures and densities are low and the local compactness parameter is small: cf.
Eqs. (2.12) and (2.13).

2.4 Conclusions
Binary pulsar observations require β & −4.5 [74, 75], and even more stringent constraints are
expected in the near future. As shown in Figure 2.6, most “ordinary” nuclear-physics based
EoSs for nuclear matter predict that scalarization can only occur for β < βmax = −4.35.
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Figure 2.7: Left panels: β versus critical central densities for different values of λH,BL. Right panels: β versus
compactness G∗M/R̃c2 of the critical solutions for different values of λH,BL.
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As binary pulsar observations get closer and closer to the limit β & −4.35, the spontaneous
scalarization mechanism originally proposed by Damour and Esposito-Farèse [58, 72] looks
more and more unlikely to be realized in Nature if neutron stars are isotropic.

The admittedly unlikely event of a binary-pulsar observation of scalarization with β >
−4.35 would be strong evidence for the presence of anisotropy, and it may even lead to ex-
perimental constraints on the Skyrme model and QCD. An important caveat here is that fast
rotation can also strengthen the effects of scalarization: according to [88], scalarization can oc-
cur for β < −3.9 when NSs spin at the mass-shedding limit. However the NSs found in binary
pulsar systems are relatively old, and they are expected to spin well below the mass-shedding
limit, where the slow-rotation approximation works very well [89].

Our work can be extended in several directions. An obvious extension is to consider the
effects of anisotropy at second or higher order in the Hartle-Thorne expansion. This would
allow us to assess whether the recently discovered “I-Love-Q” and “three-hair” universal rela-
tions between the multipole moments of the spacetime hold in the presence of anisotropy and
scalarization [83, 95–98]. A second obvious extension could consider fast rotating, anisotropic
stars (cf. [88, 99]) and the orbital and epicyclic frequencies around these objects [100].

Anisotropy can lower the threshold for scalarization to occur, and this could be of interest to
test scalar-tensor theories through gravitational-wave asteroseismology [101–103]. We also re-
mark that our study used simplified, phenomenological models for anisotropy, when of course it
would be desirable to study realistic microphysical models. Last but not least, our study should
be extended to evaluate the stellar sensitivities [104, 105] and to identify exclusion regions in
the (β, λ) parameter space using binary pulsar observations (cf. e.g. [106]).
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Chapter 3

Semi-Classical Analysis of the Scalar

Geodesic Synchrotron Radiation in Kerr

Spacetime

3.1 Introduction
The Kerr spacetime [107], which describes chargeless rotating black holes, is one of the most
important solutions of Einstein’s equation. In the context of standard general relativity, the no-
hair theorems guarantee that the Kerr spacetime is the unique stationary, vacuum black hole
solution of Einstein’s equation [108]. It is estimated, inferred using distinct methods, that most
black hole candidates have a considerable value of the rotation parameter (see, e.g., Ref. [109],
and references therein). In fact, although the Schwarzschild solution is suitable for a great
variety of physical phenomena related to stars and black holes, the Kerr solution becomes very
important in the investigation of the electrodynamical aspects of accretion disks for binary X-
ray sources [110, 111]. Moreover, the investigation of how radiation-emission processes are
modified by the nontrivial curvature of rotating black holes is particularly important. As an
approximation to the phenomena, one can consider a particle in a circular geodesic motion in
the equatorial plane of the black hole. The radiation emitted in this configuration is called
geodesic synchrotron radiation.

The geodesic synchrotron radiation was investigated in the context of classical field theory
in the 70s (see, e.g., Ref. [112]). The results were obtained using the Wentzel-Kramers-Brillouin
(WKB) approximation. In the context of quantum field theory in curved spacetimes, using both
numerical and analytical procedures, the geodesic synchrotron radiation has been analyzed in
the case of the massless scalar field [113, 114], massive scalar field [115] and electromagnetic
field [116] in Schwarzschild spacetime as well as for the massless scalar field in Reissner-
Nordstron spacetime [117].

In the present chapter, we consider a source minimally coupled to a massless scalar field,
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orbiting a Kerr black hole, both in stable and unstable circular orbits, considering direct and
retrograde orbits. The remainder of this chapter is organized as follows: In Sec. 3.2 we analyze
the massless scalar field in Kerr spacetime. In Sec. 3.3 we obtain the expression of the emitted
power. In Sec. 3.4 we present the numerical procedure, the results for the power emitted by
the source in circular orbits, and compute the amount of radiation which escapes to infinity
(asymptotic radiation). Our analysis is made for arbitrary values of the black hole angular
momentum. In Sec. 3.5 we present our final remarks. We use the natural units c = ~ = G = 1
and the signature (+ − − −) throughout this chapter.

3.2 Scalar field in Kerr spacetime
The Kerr line element in the standard Boyer-Lindquist coordinates (t, r, θ, φ), describing a ro-
tating black hole with mass M and angular momentum per unit mass a is given by

ds2 =

(
1− 2Mr

ρ2

)
dt2 +

4Mar sin2 θ

ρ2
dtdφ− ρ2

∆
dr2 − ρ2dθ2

−
(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θdφ2, (3.1)

with ρ2 = r2 +a2 cos2 θ, and ∆ = r2−2Mr+a2. The Klein-Gordon equation for the massless
scalar field is

∇µ∇µΦ =
1√
−g

∂µ
(√
−ggµν∂νΦ

)
= 0, (3.2)

where g = −ρ4 sin2 θ is the determinant of Kerr metric gµν . Taking advantage of the existence
of a Killing-Yano tensor in Kerr spacetime [111, 118], we can write the solutions of Eq. (3.2)
as [119, 120]

uωlm ∝ Rωlm(r)Sωlm(θ)eimφ−iωt, ω > 0, (3.3)

with the differential equation for the radial function Rωlm(r) given by

∆
d

dr

(
∆
dRωlm

dr

)
+ [ω2(r2 + a2)2 − 4Maωmr +

m2a2 − (ω2a2 + λlm)∆]Rωlm = 0, (3.4)

where λlm is a separation constant. The function Sωlm(θ) obeys the following differential equa-
tion

1

sin θ

d

dθ

(
sin θ

dSωlm
dθ

)
+

(
λlm + α cos2 θ − m2

sin2 θ

)
Sωlm = 0, (3.5)
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where α = a2ω2. The solutions of Eq. (3.5) are given by the oblate spheroidal wave functions
of the first kind [121].

The radial differential equation (3.4) can be rewritten as a Schrödinger-like equation, by
performing the transformations

Rωlm =
Uωlm

(r2 + a2)1/2
,
dx

dr
=
r2 + a2

∆
, (3.6)

where x is the Regge-Wheeler coordinate in Kerr spacetime. The resulting equation is(
− d2

dx2
+ Vωlm(x)

)
Uωlm(x) = ω2Uωlm(x), (3.7)

with the effective potential given by

Vωlm(x) = − 1

(r2 + a2)2 [m2a2 − 4Mmaωr −∆(λlm + ω2a2)]

+∆
∆ + 2r(r −M)

(r2 + a2)3 − 3r2∆2

(r2 + a2)4 . (3.8)

Let us turn our attention to the asymptotic solutions of the radial equation (3.7). By analyz-
ing the effective potential (3.8) near the exterior horizon (x→ −∞) and far from it (x→ +∞),
we find the asymptotic solutions

U in
ωlm(x) =

{
e−iωx +Rin

ωlme
iωx (x→ +∞)

T inωlme−iω̃x (x→ −∞)
, (3.9)

and

Uup
ωlm(x) =

{
T upωlmeiωx (x→ +∞)

Rup
ωlme

−iω̃x + eiω̃x (x→ −∞)
, (3.10)

where ω̃ = ω − mΩ+, and Ω+ = a/(2Mr+) is the angular velocity of the outer horizon r+.
The in solution describes a flux coming from past null infinity J − and zero flux coming from
past event horizonH−, whereas the up solution describes a flux coming fromH− and zero flux
coming from J − (see Refs. [122, 123] for more details about these solutions).

Using the Klein-Gordon inner product

(uωlm, uω′l′m′) = i

∫
S

dSµu∗ωlm
←→
∂µuω′l′m′ , (3.11)
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with S being a Cauchy surface [124], we obtain

uinωlm =
U in
ωlm(r)Sωlm(θ)√

8π2ω(r2 + a2)NS
ωlm

eimφ−iωt, ω > 0, (3.12)

uupωlm =
Uup
ωlm(r)Sωlm(θ)√

8π2ω̃(r2 + a2)NS
ωlm

eimφ−iωt, ω̃ > 0, (3.13)

where NS
ωlm is the normalization factor of the spheroidal wave function (cf. Sec. 3.4). To

consider the canonical quantization in Kerr spacetime (see Refs. [7, 122, 125, 126] for more
details), we expand the field operator as

Φ̂ =
∞∑
l=0

l∑
m=−l

[∫
dω(âinωlmu

in
ωlm + âin†ωlmu

in∗
ωlm) +

∫
dω̃(âupωlmu

up
ωlm + âup†ωlmu

up∗
ωlm)

]
, (3.14)

where the annihilation (âin/upωlm ) and creation (âin/up†ωlm ) operators obey the following non-vanishing
commutation relations [

âinωlm, â
in†
ω′l′m′

]
= δll′δmm′δ(ω − ω′), (3.15)

and [
âupωlm, â

up†
ω′l′m′

]
= δll′δmm′δ(ω − ω′). (3.16)

3.3 Scalar radiation
Let us now compute the radiation emitted by the rotating source using quantum field theory in
curved spacetimes at tree level, following Ref. [113]. We assume that the scalar field operator
is minimally coupled to the source j(x), according to the interaction action

ŜI =

∫
d4x
√
−gj(x)Φ̂. (3.17)

The emission amplitude at tree level of a scalar particle with quantum numbers (n, ω, l,m)
into the past Boulware vacuum |B−〉1 is given by

Anωlm ≡ i 〈1;nωlm|SI
∣∣B−〉 = i

∫
d4x
√
−gj(x)un∗ωlm, (3.18)

1The past Boulware vacuum represents a state with zero particles incident fromH− and J−. We could, instead
of (3.19), use another vacuum defined by annihilation operators connected with the modes down and out. This
would not modify the results obtained here.
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where the index n stands either for in or up modes, and |B−〉 is defined by

ânωlm
∣∣B−〉 = 0. (3.19)

For a scalar particle in circular motion with radiusR in the equatorial plane θ = π/2 of Kerr
spacetime, we have

j(x) =
q√
−gut

δ(r −R)δ(θ − π/2)δ(φ− Ωt), (3.20)

where q determines the magnitude of the source-field coupling, Ω = dφ/dt, and

ut =
1√

gtt + 2gtφΩ + gφφΩ2
(3.21)

is the t-component of the source 4-velocity.
We obtain that

Anωlm =
2πiqUn∗

ωlm(R)S∗ωlm(π/2)

ut
√

8π2f(ω)(r2 + a2)NS∗
ωlm

δ(ω − ω0), (3.22)

where

f(ω) =

{
ω, for n = in
ω̃, for n = up

, (3.23)

and ω0 = mΩ. The power emitted by the rotating source with fixed values of the set (n, l,m) is

W n
lm =

∫ ∞
0

df(ω) ω
|Anωlm|2

T
, (3.24)

where T = 2πδ(0) =
∫ +∞
−∞ dt is the source total time according to asymptotic observers [112].

We obtain the following formulas for the emitted power, for the in and up modes

W in
lm =

q2

4π(R2 + a2)(ut)2|NS
ω0lm
|2
|U in

ω0lm
(R)|2|Sω0lm(π/2)|2, (3.25)

W up
lm =

q2ω0

4πω̃0(R2 + a2)(ut)2|NS
ω0lm
|2
|Uup

ω0lm
(R)|2|Sω0lm(π/2)|2, (3.26)

respectively. The total power irradiated by the rotating source is then given by

W total =
∞∑
l=1

l∑
m=1

(
W up
lm +W in

lm

)
. (3.27)
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Figure 3.1: λlm as a function of aω, for l = m = 0, 1, 2, 3, 4, 5.

3.4 Numerical procedure and results
In this section we shall obtain numerically the radiation emitted by the source rotating around
the Kerr black hole.

3.4.1 Normalization factor of the spheroidal wave functions
To find the normalization factor NS

ωlm, we shall use the boundary conditions

Sωlm(θ = π/2) = Plm(θ = π/2), (3.28)
d

dθ
Sωlm(θ = π/2) =

d

dθ
Plm(θ = π/2), (3.29)

where Plm(θ) are the associated Legendre polynomials of the first kind. With these boundary
conditions, the spheroidal wave functions of the first kind have the same value as the Legendre
polynomials of the first kind when a→ 0 [121]. We also assume

Sωlm(θ) =
∞∑

λ=0,1

′

dlmλ (aω)Plm(θ), (3.30)

where the prime in the summation indicates that it only runs over even values of λ when l −m
is even, and over odd values of λ when l − m is odd. The normalization factor NS

ωlm can be
found using the standard normalization of Legendre polynomials through∫ π

0

dθ sin θ |Sωlm(θ)|2 = |NS
ωlm|

2
, (3.31)

leading to

|NS
ωlm|

2
= 2

∞∑
λ=0,1

′
(λ+ 2m)!(dlmλ )2

(2λ+ 2m+ 1)λ!
, (3.32)
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Figure 3.2: Angular velocity Ωd of the source at the DISCO and Ω+ as a function of a. We can see that for the
DISCO, ω̃ > 0 holds for a . 0.35.

where the coefficients dlmλ (aω) are determined by the recurrence relation obtained substituting
the expansion (3.30) in Eq. (3.5), assuming that the solution is regular (see, e.g., the appendix
of Ref. [121]).

As for the numerical precision, we perform the summation of the right hand side of Eq.
(3.32) until the next term contributes with less than 10−6 of the total value. The number of
terms needed to calculate the normalization factor is bigger for bigger values of a2ω2.

3.4.2 Radial functions
To solve the radial equation (3.7) numerically, we must know the eigenvalues λlm. We obtain
these eigenvalues from a transcendental equation, involving a2ω2, l and m, which follows from
the spheroidal wave equation. This equation has the form of an infinite continued fraction,
which shall be truncated. We have chosen to truncate the continued fraction when the next
term contributes with less than 10−6 of the value of λlm. While solving the resulting equation,
one obtains more than one value for λlm. The value which we are interested in is the one that
smoothly connects λlm with the eigenvalues of the associated Legendre equation in the limit
a → 0, i.e., λlm ≈ l (l + 1), when a ≈ 0. We have compared our values of λlm with the ones
exhibited in Ref. [121], obtaining excellent agreement. In Fig. 3.1 we plot λlm as a function of
aω, for l = m = 0, 1, 2, 3, 4, 5. We can see that l = m = 0 presents comparatively the major
change as aω increases.

3.4.3 Emitted power
In this subsection we compute the power emitted by the source in circular orbit around a Kerr
black hole. We obtain numerically the emitted power for arbitrary orbits, analyzing its behavior
for different values of the black hole rotation parameter a. We start analyzing the power emitted
by the source at the innermost stable circular orbit (ISCO) [112, 127]. For a → M the radius
of the direct innermost stable circular orbit (DISCO) approaches the direct light-like circular
orbit and both approach the exterior horizon, so that we pass from orbits with non-relativistic
velocities to those with relativistic velocities.
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m = 5 to the power emitted by the rotating source in
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m = 1 to the power emitted by the rotating source in
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Prior to the analysis of the power emitted by the source at the ISCO, some points should
be emphasized. For a large range of the parameter a, the modes up do not contribute to the
radiation when the particle is in DISCOs. This is so, because the up modes are defined only in
the ω̃ > 0 regime, or, equivalently, Ω > Ω+. For the retrograde innermost stable circular orbits
(RISCOs) one can show that the up modes give a non-vanishing contribution to the emitted
power for any value of Ω, because ω̃0 > 0. From Fig. 3.2 we see that the up modes contribute
to the emitted power only for a/M . 0.35, for the DISCOs. Another characteristic, as pointed
out in Ref. [113,114] for the Schwarzschild case, is that the power associated with the upmodes
for stable orbits is negligible when compared to the one associated with the inmodes. The same
holds in Kerr case. For instance, the power irradiated by the particle in the DISCO is basically
the power associated with the in modes.

In Fig. 3.3 we plot the power emitted by the rotating source at the DISCO as a function of
the radius risco of the orbit. We can see that as we increase the value of l = m, the maximum
value of the emitted power grows from l = m = 1 to l = m = 2, and then decreases for higher
values of l = m. The rotation of the black hole considerably affects the emitted power. For
example, for l = m = 2, we see that at risco ≈ 1.65M (a ≈ 0.977M ) the emitted power is more
than 20 times bigger than the power emitted by a source at the last stable orbit in Schwarzschild
spacetime (risco = 6M ).

By using the WKB method to find the solution of the radial equation (3.7) in the high-
frequency regime (see, e.g., Refs. [117, 128]), one can confirm that the emitted power is negli-
gible for high values of l and m. Therefore, indeed, there is no considerable amount of emitted
power for direct orbits by the source in DISCO as a → M in the high-frequency regime. This
was shown in the classical context in Ref. [129]. Here (see Fig. 3.3) we have obtained the
same behavior using numerical computations to find non-approximated solutions of the radial
equation (3.4).

In Fig. 3.4 we plot the power emitted by the rotating source at the RISCO as a function of
the radius risco of the orbit. We can see that the power emitted decreases as risco increases, i.
e., it decreases as a increases. This is compatible with the fact that for retrograde motions the
modulus of angular velocity decreases as risco increases. We also see, from Fig. 3.4, that the
power emitted decreases as l = m increases.

We shall now analyze the power emitted by the source in general circular orbits, including
stable and unstable ones. In Figs. 3.5-3.8 we plot the power associated with in and up modes
emitted by the rotating source in direct circular orbits as a function of Ω and a, for two different
choices of l = m. We can see that the in modes give the main contribution to the total emitted
power, as we have already stated. From Fig. 3.5 we can see that for l = m = 1 the maximum
of the irradiated power by the in modes is larger for larger values of a. This does not occur for
l = m = 5, in which the maximum of the irradiated power by the in modes, as a increases,
initially increases, reaches a maximum and then decreases, as can be seen in Fig. 3.6. The up
modes contribute only when Ω > Ω+, as previously stated.

In Figs. 3.7 and 3.8 we plot the emitted power associated with the up modes for l = m = 1
and l = m = 5, respectively. For a fixed value of a, the maximum of the power associated with
the up modes, as a increases, initially increases, reaches a maximum and then decreases, for
both l = m = 1 and l = m = 5, as can be seen in Figs. 3.7 and 3.8, respectively. From these
plots we can clearly see that the power emitted by a source in a relativistic orbit is considerably
different for different values of the black hole rotation parameter.
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Figure 3.17: Total observed power for direct orbits, as a function of a and Ω, considering angular momentum
contributions in Eq. (3.27) up to lmax = 5. The vertical axis gives the intensity of the total observed power
(W obs

totalM
2q−2 × 105).

In Figs 3.9-3.12 we plot the power associated with in and up modes emitted by the rotating
source in retrograde circular orbits as a function of Ω and a. We see from these plots that
the behavior of the emitted power in the case of a rotating black hole is very similar to the
Schwarzschild case [114]. Moreover, we also see from Figs. 3.9-3.12 that, for a fixed value of
l = m, the maximum of the emitted power always decreases as |a| increases.

In Figs. 3.13 and 3.14 we plot the total power emitted by the source in direct and retrograde
orbits, respectively, considering different values of a and lmax, with lmax being the upper limit
in the l-summation in Eq. (3.27). As a general behavior, the total emitted power initially grows
with Ω, reaches a maximum and then decreases as the radius of the orbit approach to the radius
of the light-like circular orbit. In the bottom plot of Fig. 3.13 we can see the effect of high-
frequency radiation-emission suppression for direct orbits in highly-rotating black holes.

In Figs. 3.15 and 3.16 we plot the ratio between the total power emitted by a source in
Kerr spacetime (considering different values of a and lmax) and the power emitted by a source
in Minkowski spacetime considering Newtonian gravity [114] for direct and retrograde orbits,
respectively. We see that this ratio presents a local maximum for high values of Ω (and this
maximum is bigger for bigger values of lmax), except for direct orbits around highly-rotating
black holes (bottom plot of Fig. 3.15), due to the high-frequency radiation-emission suppression
in this case. For retrograde orbits (Fig. 3.16) we see basically the same behavior for all values of
a, corroborating the fact that there is no radiation-emission suppression in the case of relativistic
unstable retrograde orbits.
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3.4.4 Power observed asymptotically
The power which is observed asymptotically, for a fixed value of l and m, is given by

W obs
lm = |Rin

ω0lm
|2W in

lm + |T upω0lm
|2W up

lm , (3.33)

and the total observed power at infinity is

W obs
total =

∞∑
l=1

l∑
m=1

W obs
lm . (3.34)

In Fig. 3.17 we plot the total observed power for the source in direct orbits, with the summation
in Eq. (3.34) performed up to l = m = 5. We can see that the observed power is larger for
larger values of the black hole rotating parameter a.

One feature of bosonic fields in Kerr spacetime is superradiance [130, 131]. Due to this
effect, the reflection coefficient |Rin

ω0lm
|2 can be greater than 1 for some values of Ω. In Fig. 3.18

we plot the reflection coefficient, for different values of a, as a function of Ω. The superradiance
effect is more evident for lower values of m (we recall that the lowest value for occurrence of
this effect is m = 1).

Let us now estimate how the superradiance effect affects the asymptotic power. As stated
in the previous section, for some values of Ω the dominant term of the emitted power is the one
related with the in modes. By ignoring the contribution related with the up modes, which is
negligible in these cases, we obtain

W obs
lm

W in
lm +W up

lm

≈ |Rin
ω0lm
|2, (3.35)

resulting in the possibility for the power observed asymptotically to be greater than the power
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emitted by the rotating source in direct orbits with Ω < Ω+, as indeed occurs.
In Fig. 3.19 we show the ratioW obs

total/W
total, as a function of a and Ω, for the source rotating

in direct orbits. It can be seen that for high enough values of the black hole rotation parameter,
the observed power is bigger than the emitted power. It can also be seen that for highly-rotating
black holes (a ≈ M ), the absorbed power is only significant for orbits close to the light-like
circular orbit.

In Fig. 3.20 we plot the total observed power for the source in retrograde orbits, with
the summation in Eq. (3.34) performed up to l = m = 5. In Fig. 3.21 we show the ratio
W obs
total/W

total, as a function of a and Ω, for retrograde orbits. When |a| grows, the portion of
the emitted power which is observed asymptotically, related with relativistic orbits, also grows.

As it occurs for the total emitted power, for highly-rotating black holes the asymptotically
observed power is negligible for the source in direct circular orbits close to the direct light-
like circular orbit. However, for retrograde orbits this does not occurs. The power observed
at infinity for retrograde orbits grows as the source’s orbit approaches the retrograde light-like
circular orbit.

3.5 Final remarks
We have calculated the radiated power from a scalar source rotating around a Kerr black hole,
using the framework of quantum field theory in curved spacetimes at tree level.

We have shown, with numerical calculations, that the black hole rotation considerably af-
fects the power emitted by the orbiting source. The main contribution to the total emitted power
comes from the emitted power associated with the inmodes. For the DISCO, the emitted power
present local maxima for intermediate values of a, while the power emitted in the RISCO always
decreases as a increases. We have also shown that the maxima of the emitted power associated
with the in modes for l = m = 1 increases as a increases. The emitted power associated with
the inmodes for higher values of l = m, as a increases, initially increases, reaches a maximum,
and then decreases.

We have computed the total power emitted by the rotating source for different values of the
black hole rotating parameter a. We have verified the classical result presented in Ref. [129],
obtaining that there is no considerable power emitted by rotating sources in direct orbits in the
high-frequency regime for a→M (rapidly rotating black holes). We computed the total power
emitted by a source in retrograde orbits, showing that there is no radiation-emission suppression
in this case. We also plotted the ratio between the emitted power in the Kerr spacetime and the
emitted power in Minkowski spacetime, assuming Newtonian gravity.

We have also computed the amount of power emitted by the rotating source that is observed
at infinity. We have shown that most of the emitted radiation goes to infinity. For direct orbits,
we obtained that the amount of radiation that escapes to infinity can be bigger than the total
emitted power. This amplification of the emitted power is related to superradiance. For the
electromagnetic and gravitational fields this effect would be more significant due to the fact that
superradiance is more evident in those cases.
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Chapter 4

On the quasinormal modes of relativistic

stars and interacting fields

The study of the natural oscillations of physical systems is of much interest in astrophysics [109,
132]. For relativistic compact objects such as stars and black holes, these natural oscillations are
referred to as quasinormal modes (QNMs). QNMs depend only on the system parameters. The
waves emitted from the collapse of a star and in the coalescence of binaries have a close relation
with the quasinormal modes of the final compact object. The composition of matter forming
astrophysical objects is very important for the study of the spacetime oscillations. Indeed, many
matter oscillations in Newtonian theory are also present in the general relativistic case [132].
Fluid modes can also be excited, for instance, by a particle moving around the star [133, 134],
generating a large dephasing in the gravitational-wave signal (see Chapter 6).

It is also of great interest to study how matter and fields around black holes behave. The
presence of matter around black holes can lead to resonances, which were analyzed in detail
recently [135]. Scalar fields around rotating Kerr black holes can generate hairy configura-
tions [136] (see also Ref. [137] for a recent review on black holes with scalar hair). More-
over, massive scalar fields can form quasibound states and develop scalar ‘clouds’ around black
holes [138, 139]. Notwithstanding, relativistic stars can also present nontrivial gravitating field
profiles. For instance, very strong magnetic fields in neutron stars — configurations known
as magnetars [140] — have an influence on the shape of the star [141]. Neutron stars can
also accrete dark matter, acquiring a core formed by an additional gravitating component [142].
Moreover, stars formed by fundamental fields, like boson stars [51,143,144], are also interesting
examples of the outcomes of interacting fields within gravity scenarios.

All the above examples share a common feature: They are formed by components (matter
and fields) coupled with each other, and such characteristic is crucial for its structure. At infinity,
we may have that only gravity survives (through a power decay), or that all fields decouple.
Moreover, the coupling between the components also has an effect in the analysis of linear
perturbation in such spacetimes. Additional components describing perturbations of relativistic
objects can enrich their oscillation spectra, generating distinctive signatures. For instance, the
scalar field modes in boson stars can be excited by an orbiting particle (see Chapters 5 and
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6). Notwithstanding, the scattering of massive scalar wave packets can carry information about
the clouds around black holes [145]. However, it is difficult to analyze the mode behavior of
such structures, basically due to the fact that the coupling between the components is highly
nontrivial in most cases.

Here we shall discuss two distinct methods to compute the QNMs of field perturbations that
interact only in a finite region: the direct integration method and the continued fraction method.
The direct integration method discussed here is slightly different from the one presented in
Ref. [146]. On the other hand, the continued fraction method is similar to the one discussed in
Refs. [147,148], but we extend it to deal with more general situations. We shall assume that the
angular part of the perturbations can be separated so that we end up with a system of N coupled
second order differential equations. Additionally, we assume that the perturbations depend in
time as e−iσt. These assumptions are valid in a wide variety of astrophysical scenarios [109,
135].

The remainder of this chapter is organized as follows: In Sec. 4.1 we describe the direct
integration and continued fraction methods to compute the QNMs modes of interacting fields.
As an application, in Sec. 4.2 we compare the direct integration and continued fraction methods
to compute the QNMs of boson stars. Moreover, we extend the results presented in Ref. [149]
(see also Chapter 5) computing the QNMs of mini boson stars as function of the central field
and compactness. We show that the l = 0 modes becomes unstable beyond the critical point. In
Sec. 4.3 we discuss our results and write our final remarks.

4.1 Methods
We generically assume that the perturbation functions can be described by the following set of
equations

d2

dr2
∗
Ψ(r) + (σ2 −V(r))Ψ(r) = 0, (4.1)

where r∗ is a tortoise radial coordinate, σ is the frequency of the field, Ψ(r) is a N -dimensional
vector representing the perturbations, and V(r) is a N ×N matrix which can possibly depend
on σ. If the components of the perturbation Ψ(r) are not coupled, V(r) is a diagonal matrix. In
some scenarios, it may be possible to obtain a set of uncoupled equations for the perturbations
performing canonical perturbations within a Hamiltonian framework [150]. But here the only
restriction to V(r) is that it has a diagonal form for r > li, where li denotes the characteristic
range of the interaction between the components of Ψ(r).

4.1.1 Direct integration method
This method consists of integrating the differential equations from two different regions: near
the origin and far from the star, with the proper QNM boundary conditions. The problem of
finding the QNM frequencies reduces to find the proper values of σ for which the solutions
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obtained integrating from the origin and from infinity are linearly dependent. This method was
first used by Chandrasekhar and Detweiler [151], and then applied to uniform density stars to
compute the least damped (lowest imaginary part) QNMs [152].

The boundary conditions at the origin, can be written as1

Ψ(r ∼ 0) ∼ rl
N0∑
j=0

xj0 r
j , (4.2)

where xi0 are constant N -dimensional vectors and the upper summation limit N0 is chosen so
that the boundary conditions converge. Substituting Eq. (4.2) into Eq. (4.1) and expanding
around r ∼ 0 lead to a recursion relation for the coefficients xi0, such that all of them can be
written as functions of the coefficients x0

0, which is a collection of N independent numbers.
In this way, since the system is linear, we can form a set of N independent solutions by inte-
grating from the origin by choosing the vector x0

0 to be, e.g., (1, 0, ..., 0), (0, 1, ..., 0), ..., and
(0, 0, ..., 1). The general solution can be achieved by a linear combination of the N independent
solutions, namely,

Ψ−(r) =
N∑
n=1

α−n Ψ−n (r), (4.3)

where Ψ−n denotes the n-th independent solution of Eq. (4.1), obtained by integrating it from
the origin. We note that, in the case of BHs, one generally deals with boundary conditions at
the event horizon to describe the QNMs, imposing ingoing waves into the BH.

The boundary conditions at infinity, can be written as:

Ψ(r ∼ ∞) ∼ exp(±k(σ) r∗)

N0∑
j=0

xj±,∞
rj

, (4.4)

where
kj(σ) =

√
Vjj(r →∞)− σ2. (4.5)

Depending on Vjj(r → ∞) and on the value of the frequency σ, we select the value of the ±
sign in Eq. (4.4) to suit the particular problem — e.g., for field components that are wavelike
at infinity, we require purely outgoing waves Ψj ∼ ekj(σ) r∗ , and for field components that are
bounded we require an exponential damping Ψj ∼ e−kj(σ) r∗ (see, e.g., Table II of Ref. [149]).
Once again, xj±,∞ are constant N–dimensional vectors and the upper summation limit N0 in
Eq. (4.4) has to be chosen according to the precision required. In the same way as for the
integration from the origin, we can form a set of N independent solutions integrated from
infinity by choosing different values for x0

±,∞. We have that the solution integrated from infinity

1The potential V(r) usually diverges at the origin due to a centrifugal term, and that is the reason of rl term in
Eq. (4.2), where l is the angular number of the waves. See, for instance, Chapter 7.
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is

Ψ+(r) =
N∑
n=0

α+
n Ψ+

n (r), (4.6)

where Ψ+
n denotes the n-th independent solution of Eq. (4.1). The QNM solutions are such

that Ψ−(r) and Ψ+(r) are linearly dependent. We have that the QNM frequencies can be found
through

Ψ−(r)|r=Rext
= Ψ+(r)|r=Rext

,
Ψ−

′
(r)
∣∣
r=Rext

= Ψ+′(r)
∣∣
r=Rext

,
(4.7)

where Rext > li. The conditions (4.7) generate a system of 2N equations for the coefficients
α±n . Since the system is linear, we can set one of the α±n to unity, say, for instance, α+

0 = 1. We
then use the remaining 2N − 1 equations to find the rest of the coefficients as functions of σ.
The remaining equation is then used to find the QNM frequencies.

4.1.2 Continued fraction method
The continued fraction method is a very powerful technique, with many applications in physics.
In the case of QNMs computation, it was first used by Leaver [153], and extensively studied
by many authors since then [109]. One of the main difficulties in computing QNMs in the
frequency domain is the divergence of the wave functions at large distances. The continued
fraction method works extremely well in some cases because it maps the divergent boundary
behavior in a specific recurrence relation.

For stellar structures, the continued fraction method is actually a mixed method. Outside the
star (vacuum region) we do have a continued fraction solution for the perturbations. However,
in order to guarantee that all the proper boundary conditions are satisfied, we have to match
continuously this outer solution with the one obtained by integrating the differential equations
from the origin, so that the method is a sort of direct integration method from inside the star and
a continued fraction method outside the star.

The method presented here is general, and it is very similar to the one shown in Ref. [146]
(see also Ref. [154]), with the difference that we extend it to deal with any system of perturba-
tions formed by fields that couple with each other only in a finite region in space. Once again,
we shall assume that the system of equations can be described by Eq. (4.1).

Outside the star, the spacetime is described by the Schwarzschild metric. We shall assume
that there exists an expansion of the components of the wave vector as follows:

Ψ+
i (r) = Ξi(r)

∞∑
n=0

ai,n v
n, (4.8)

where the index i denotes the i-th component of the vector functions and v ≡ (1 − b/r), in
which b is chosen such that the series solution (4.8) is convergent [147]. The vector function
Ξ is chosen such that the vector Ψ+ satisfies the proper boundary conditions at infinity [155]
— in general, its components are proportional to e±kj(σ)r∗ . Substituting the expansion (4.8)
into the differential equation (4.1) generically leads to recurrence relations for the coefficients
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ai,n [146, 153]. These could in principle be n-term recurrence relations, which can be reduced
to a three-term recurrence relation by recursive Gaussian elimination steps.

Let us illustrate this procedure by assuming that we end up with a four-term recurrence
relation. We have

αnan+1 + βnan + γnan−1 + δnan−2 = 0, n > 1, (4.9)

where αn, βn, γn and δn are N × N invertible matrices. an is the vector whose components
are the coefficients ai,n in the expansion (4.8). We can reduce the four-term recurrence relation
to a three-term by using a matrix-valued Gaussian elimination step [146]. Using

α̃n = αn, (4.10)
β̃0 = β0, (4.11)
γ̃0 = γ0, (4.12)

β̃n = βn − δn
[
γ̃n−1α̃n−1

]−1
, n > 0, (4.13)

γ̃n = γn − δn
[
γ̃n−1α̃n−1

]−1
, n > 0. (4.14)

One can show through Eq. (4.9) that the tilde matrices satisfy the following three-term recur-
rence relation

α̃nan+1 + β̃nan + γ̃nan−1 = 0, n > 0. (4.15)

Defining a ladder matrix R+
n with the following property

an+1 = R+
nan, (4.16)

and using Eq. (4.15), we obtain the following equation:

R+
n = −

[
β̃n+1 + α̃n+1R

+
n+1

]−1

γn+1. (4.17)

Eq. (4.17) may be solved recursively. We can start at some large value of n, say N0, impose
R+
N0

= 0, and then, moving backward in n, determine all R+
n . The result has a form of a

continued fraction, justifying the name of the method 2.
Using Eqs. (4.16) and (4.17), we obtain all an as functions of N parameters, given by a0.

The expansion (4.8), with the determined coefficients, gives the solution to be used outside the

2For instance, if we have just one second order equation, the solution of recurrence (4.17) takes the form

R+
n = − γ̃n+1

β̃n+1−
α̃n+1γ̃n+2

β̃n+2−
α̃n+2γ̃n+3

β̃n+3−
· · · , (4.18)

where we used the notation
a

b−
c

d
≡ a

b− c
d

. (4.19)
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Table 4.1: Comparison of l = 2 QNMs of boson stars computed through the direct integration and continued
fraction methods. In this particular case, the direct integration method is the same as the one used in Ref. [156].

Configurations of Ref. [149] DI CF
Mini-BS I, N=1 0.1195 −5× 10−5i 0.1186 −5.3× 10−5i
Mini-BS I, N=2 0.1316 −2× 10−5i 0.1316 −2.4× 10−6i
Mini-BS I, N=3 0.1404 −8× 10−6i 0.1404 −7.7× 10−6i
Massive-BS I, N=1 4.03× 10−2 −2× 10−5i 4.029× 10−2 −2.5× 10−5i
Massive-BS I, N=2 7.16× 10−2 −2× 10−6i 7.158× 10−2 −2.1× 10−6i
Massive-BS I, N=3 9.47× 10−2 −5× 10−7i 9.465× 10−2 −4.7× 10−7i

star. Therefore, there are N independent solutions of Eq. (4.1), and the general solution is a
linear combination of them, similarly to Eq. (4.6).

We still have to impose that the wave function Ψ satisfies the proper boundary condition at
the origin. For this, we can use the same procedure of Sec. 4.1.2, obtaining Ψ−(r), given by
Eq. (4.3).

The QNM frequencies are found requiring that the wave functions obtained from inside
and outside to be linearly dependent. Similarly to the direct integration method, we impose
Eq. (4.7). Note that the difference between the two methods is that we construct the outer so-
lutions Ψ+ through the continued fraction approximations. For relativistic fluid stars, in which
we have the matter and gravitational components of the perturbations, by a suitable choice of b,
the continued fraction method is basically the same as the one presented in Refs. [147, 148].

4.2 Application: Quasinormal modes of boson stars
Here we extend the calculations of Ref. [149], computing the quasinormal modes of boson stars
through the continued fraction method. In the case of boson stars, outside an effective radius,
the perturbations of the spacetime are well described by a decoupled system — two equations
describing the polar and axial part of gravitational perturbations and two equations describing
the perturbations of the complex scalar field3. The spacetime is described by the Schwarzschild
geometry and, therefore, the continued fraction expressions for the wave functions outside the
star are the same as in the Schwarzschild case. For the gravitational part of the perturbations,
one can construct the continued fraction relation using the Regge-Wheeler equation, and use it
to obtain the polar and axial gravitational perturbations [127, 153]. For the scalar field pertur-
bations, we can use the results of Ref. [158].

For the axial sector of the perturbations, the application of the above method is direct, since
the equation for the axial perturbations is already in the form (4.1). Moreover, the scalar field
perturbations only couples with the polar sector of the perturbations [159, 160].

For the polar sector of the perturbations, the method can be applied using the first order
differential equations for the gravitational perturbations presented in Ref. [149] in the following
way:

3As apparent from [149], although the two equations describing the perturbations for the scalar field are coupled
with each other even outside the star, one can always decouple them by a suitable change in the functions. See,
e.g., Ref. [157].
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Figure 4.1: Real (top panels) and imaginary (lower panels) parts of the l = 0 (monopole) mode of mini-BSs as a
function of the central value of the scalar field (left panels) and of the star radius (right panels). The vertical dashed
line indicates the maximum mass configuration.
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Figure 4.2: Same of Fig. 4.2, but for l = 2 (quadrupole).
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Figure 4.3: Zoom in the range of the unstable l = 0 modes of mini-BSs.
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• We solve the differential equations from the origin, choosing the three free parameters
such that we obtain the three independent solutions for the metric and scalar field pertur-
bations;

• Using the perturbations obtained by the procedure above, we construct the correspondent
Zerilli function ΨZ (which describes the polar gravitational perturbations) of each inde-
pendent solution. With the independent solutions (ΨZ , φ+, φ−), we obtain Ψ−(r) [Eq.
(4.3)] (see [149] for more details);

• The vector Ψ+(r) can be constructed using the continued fraction or the direct integration
method. Since the gravitational and scalar part of the perturbations are independent, they
can be computed separately;

• Finally, with the vector Ψ+(r), we find the QNMs by matching it with Ψ−(r) through
Eq. (4.7);

Note that for the polar case, since we are using the Zerilli function, the point R should be such
that the background scalar field at that point is small.

We applied the above procedure and computed the QNMs of boson stars. A comparison
between the direct integration procedure, as computed in [149], and the continued fraction
method for some boson star configurations is exhibited in TABLE 4.1. Due to the low imaginary
part of the modes, the divergence problem of the QNMs is weak and the agreement between the
two methods is remarkable. In fact, most of the times, the direct integration method is suitable
only to compute the least damped modes of the astrophysical object. Therefore, the very good
agreement between the two methods is expected.

In the case of boson stars, the advantage of the continued fraction method over the direct
integration one is in the construction of the background solutions. For the direct integration
method to work properly, we need to integrate from a point in which V(r) has approximately
a constant value (or zero). This integration from numerical infinity can get very contaminated
with errors, such that one generally has to compute the sum in Eq. (4.4) up to typically N0 15,
and the background solutions need to be constructed up to a point far away from the star. On
the other hand, the only requirement for the continued fraction method to work properly is that
the background scalar field is small enough, and therefore the continued fraction solutions can
be constructed in a point relatively close to the star.

Using the continued fraction method, we computed the modes of mini boson stars as a
function of the central density and radius of the star, defined as the radial point r which contains
99% of the star total mass [149]. The results are shown in Figs. 4.1 and 4.2. The monopole mode
(l = 0, Fig. 4.1) exists due to the coupling between the scalar and gravitational perturbations
[149,160]. Interestingly, we can see that, from the behavior of the quadrupole mode (l = 2, Fig.
4.2), that this quadrupole mode is stable for the range of central densities we investigated. On
the other hand, the monopole mode do become unstable for central densities φ & φcrit

c , where
φcrit
c is the central density for the maximum mass configuration [51]. This is in accordance with

previous works which considered stability of boson stars [161, 162].
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4.3 Discussion and final remarks
We have analyzed two different methods to compute the QNMs of interacting fields. One of
the methods is based on a direct integration of the differential equations and the other is based
on an analytical continued fraction scheme to describe the perturbations. The methods can be
applied in many astrophysical situations, as in computing relativistic stars modes or in studying
stars with nontrivial fields profiles around it.

We applied the direct integration and continued fraction methods to compute the polar
QNMs of boson stars. For the modes analyzed, the continued fraction method is in excel-
lent agreement with the direct integration one. Moreover, we computed the modes as a function
of the central value of the scalar field, showing that the monopole mode becomes unstable for
configurations beyond the critical one.

The results methods presented in this chapter can be of great aid in the computation of
QNMs of complicated astrophysical configurations. One limitation of the continued fraction
method, however, is in dealing with less compact interacting field profiles, i.e. configurations
with higher li. In that case, the integrations from the origin usually grow rapidly as r increases,
and many numerical errors can appear in the matching of the solutions [cf. Eq. (4.7)]. One
possible way to circumvent this problem is to mix the direction integration method with the
continued fraction one — for instance, one can use the continued fraction expansion as an outer
boundary condition for the integration from the infinity, decreasing the errors introduced when
using the expansion (4.4).
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Chapter 5

Astrophysical signatures of boson stars:

Quasinormal modes and inspiral

resonances

Boson stars (BSs) are compact configurations satisfying the Einstein-Klein-Gordon equations,
prevented from total collapse through Heinsenberg uncertainty principle (for reviews on the
subject see [51, 144, 163]). They have been claimed in the literature as promising horizonless
black hole (BH) mimickers, being a possible star candidate for supermassive objects. BSs can
be classified [51] according to the scalar potential, namely V (Φ) (see Sec. 5.1), in the Klein-
Gordon Lagrangian. In this chapter, we shall discuss some of the most popular BS models,
namely:

• Mini boson stars, for which the scalar potential is given by V (Φ) = µ2|Φ|2, where µ is the
scalar field mass. The maximum mass for this BS model is given by the so-called Kaup
limit Mmax ≈ 0.633m2

P/µ, with mP being the Planck mass [143,164]. For typical values
of µ, this mass limit is much smaller than the Chandrasekhar limit for a fermion star,
approximately m3

P/µ
2. Nevertheless, despite their name, mini BSs may have a total mass

compatible with that observed in active galactic nuclei [51]. This happens for ultralight
boson masses µ, as those motivated by string axiverse scenarios [165].

• Massive boson stars. In this model, the scalar potential has an additional quartic scalar
field term, V (Φ) = µ2|Φ|2 + λ|Φ|4/2 [166]. Depending on the value of λ, the maximum
mass can be comparable to the Chandrasekhar limit. For λ � µ2/m2

P one can estimate
Mmax ≈ 0.062λ1/2m3

P/µ
2.

• Solitonic boson stars, for which V (Φ) = µ2|Φ|2(1 − 2|Φ|2/σ2
0)2, where σ0 is a con-

stant [167]. This potential supports confined nondispersive solutions with finite mass,
even in absence of gravity. The total mass of the star depends on σ0 and Mmax ≈
0.0198m4

P/(µσ
2
0). This model (also known in literature as nontopological solitonic stars)
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allows for supermassive objects withM ∼ 106M� even in presence of heavy bosons with
µ ∼ σ0 ∼ 500 GeV.

Other types of BSs can be obtained using different scalar self-potentials, see Ref. [51] for a
more detailed list.

The emission spectra from a simple accretion disk model around BSs was studied in Refs.
[168, 169]. It was shown that, depending on the BS model and on the compactness, spherically
symmetric massive BSs can be indistinguishable from Schwarzschild BHs. In this sense, BS can
supplant BHs as supermassive objects. Ways to discriminate BSs from BHs have been studied
in the literature, such as, for instance, the Kα iron line profile from accretion disks [170] (see
also [12] for other compact objects) and gravitational lensing [171] (see also Ref. [51]).

Despite the vast existing literature on its dynamical features (cf. the recent review [144]), a
detailed study on the astrophysical signatures of BSs in fully relativistic setting is missing. The
scope of the present chapter is to fill this gap. We study dynamical BSs in order to identify pos-
sible smoking guns of horizonless compact objects and of compact dark matter configurations,
extending previous studies in several directions.

After laying down the necessary formalism in Sec. 5.1, we explore the three different types
of BSs discussed above in section 5.2. The spacetimes are obtained using the full Einstein’s
equation, without any approximation scheme. Our results agree very well with the ones pre-
sented in the literature [164, 166, 167].

In Sec. 5.3, we characterize circular geodesics in BS spacetimes. In particular, even though
a BS does not possess a well defined surface and stable circular geodesics may exist even inside
the star, we find some upper bound on the angular frequency as measured by (static) asymptotic
observers. In Sec. 5.4 we compute the fundamental quasinormal modes (QNMs) of various
BS models and show that there exists a class of low-frequency modes. In Sec. 5.5 we show
that these modes can be excited by a point-particle in quasicircular geodesic motion. This is a
striking difference with the BH case, where QNMs can only be excited by particles plunging
into the BH and not during the inspiral.

The results of Sec. 5.4 are complementary to those of Refs. [159, 160], where the QNMs of
mini BS configurations were computed using a WKB approximation (see also Ref. [172] where
the scalar QNMs of BS models in the probe limit were computed). We extend those results
by considering several BS models and by computing the proper modes with more sophisticated
methods that do not rely on any approximation scheme. More specifically, we focus on the
quasi-bound state modes of the scalar field and we argue that these are generic features of any
BS configuration supported by a massive scalar field.

The results of Sec. 5.5 are complementary to – and in fact extend – the work by Kesden
et al. [173], who calculated the approximated waveforms for gravitational waves emitted by
particle inspirals from the Schwarzschild exterior to the interior of a nontopological soliton
star. As in Ref. [173] here we have the broad goal of studying gravitational-wave emission by
EMRIs around generic horizonless objects. EMRIs are unique probes of the strong-curvature
regime of GR and are also perfect testbeds to put constraints on modified theories of gravity
(see, e.g., Refs. [174, 175]). In addition to computing the gravitational and scalar energy fluxes
in a consistent and fully relativistic approach for several BS models, we find that the absence
of the “one-way membrane” (event horizon) opens up the possibility that the free oscillation
modes of a BS are measurably different from those of a BH and they can be even resonantly

Programa de Pós-Graduação em Fı́sica - UFPA



5.1 Einstein’s equation for a particle orbiting a boson star 63

excited by orbiting point particles. Indeed, we find that orbiting stellar-mass objects around BSs
generically excite a multitude of resonant frequencies, and give rise to a signal which in its last
stages bears no resemblance to chirp or ringdown signals typical of inspirals into BHs. We have
discussed the detectability of these resonances in Ref. [156].

Our results might be interesting at various levels but, from a phenomenological standpoint,
the main message is that gravitational waves do allow a discrimination between compact ob-
jects, in particular between BHs and BSs. In this chapter, we use the signature (−,+,+,+) for
the metric and natural units ~ = c = G = 1.

5.1 Einstein’s equation for a particle orbiting a boson star
BSs are equilibrium self-gravitating solutions of the Einstein-Klein-Gordon theory:

S =

∫
d4x
√
−g
[
R

2κ
− gab∂aΦ∗∂bΦ− V (|Φ|2)

]
+ Smatter,

where κ = 8π and Smatter denotes the action of any other matter field. From the action above,
Einstein’s equations read

Rab −
1

2
gabR = κ

(
TΦ
ab + Tmatter

ab

)
, (5.1)

where
TΦ
ab = ∂aΦ

∗∂bΦ + ∂bΦ
∗∂aΦ− gab

(
∂cΦ∗∂cΦ + V (|Φ|2)

)
, (5.2)

is the energy-momentum of the scalar field. The Klein-Gordon equation reads

1√
−g

∂a
(√
−ggab∂bΦ

)
=

dV

d|Φ|2
Φ , (5.3)

together with its complex conjugate.

5.1.1 Background solutions
We will focus exclusively on spherically symmetric BSs and consider the background line ele-
ment

ds2
0 = −ev(r)dt2 + eu(r)dr2 + r2(dθ2 + sin2 θdϕ2) . (5.4)

The ansatz for the background scalar field reads [144]

Φ0(t, r) ≡ φ0(r)e−iωt , (5.5)
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where φ0(r) is a real function. Although the scalar field is time-dependent, the Einstein-Klein-
Gordon system admits static and spherically symmetric metrics [51, 143, 157, 164, 166, 176].
With the ansatz above, the background field equations, obtained from (5.1)–(5.3), read

1

r2

(
r e−u

)′ − 1

r2
= −κρ , (5.6)

e−u
(
v′

r
+

1

r2

)
− 1

r2
= κprad , (5.7)

φ′′0 +

(
2

r
+
v′ − u′

2

)
φ′0 = eu

(
U0 − ω2e−v

)
φ0 , (5.8)

where a prime denotes derivative with respect to r, U0 = U(φ0) and U(Φ) = dV /d|Φ|2. In the
equations above, the density ρ, the radial pressure prad, and the tangential pressure ptan are given
in terms of the stress-energy tensor of the scalar field, TΦ

ab. More specifically,

ρ ≡ −TΦ
t
t

= ω2e−vφ2
0 + e−u(φ′0)2 + V0 , (5.9)

prad ≡ TΦ
r
r

= ω2e−vφ2
0 + e−u(φ′0)2 − V0 , (5.10)

ptan ≡ TΦ
θ
θ

= ω2e−vφ2
0 − e−u(φ′0)2 − V0 . (5.11)

where V0 = V (φ0). Unlike the case of perfect fluid stars, the complex scalar field behaves
like an anisotropic fluid, prad 6= ptan. Equations (5.6)–(5.8) can be solved numerically with
suitable boundary conditions (see Sec. 5.2) to obtain the background metric and scalar field
configuration.

5.1.2 Perturbations
We are interested in the free oscillation spectrum of a BS as well as in the scalar field and
metric perturbations induced by test-particles on geodesic motion in the spherically symmetric
spacetime described above. At first order in the perturbations, the metric reads

gab = g
(0)
ab + hab , (5.12)

where g(0)
ab is given in Eq. (5.4). In the Regge-Wheeler gauge [177], using a Fourier expansion,

the first order perturbation hab separates into the axial sector

haxialab =
∑
l≥|m|

∫
dσ


0 0 − 1

sin θ
h0(r)∂ϕ sin θ h0(r)∂θ

? 0 − 1
sin θ

h1(r)∂ϕ sin θ h1(r)∂θ
? ? 0 0
? ? ? 0


× Y lme−iσt (5.13)
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and polar sector

hpolarab =

∑
l≥|m|

∫
dσ


evH0(r) iσH1(r) 0 0

? euH2(r) 0 0
? ? r2K(r) 0
? ? ? r2 sin2 θK(r)


× Y lme−iσt , (5.14)

where Y lm ≡ Y lm(θ, ϕ) are the usual scalar spherical harmonics. Each metric and scalar field
perturbation, e.g. h0(r), explicitly depends on the frequency σ and on the wave numbers l and
m. The ?-symbol indicates the symmetric components, such that hab = hba.

At first order, the scalar field reads Φ = Φ0 + δΦ where Φ0 is the background scalar field
defined above and

δΦ =
∑
l≥|m|

∫
dσ
φ+(r)

r
Y lme−i(σ+ω)t , (5.15)

δΦ∗ =
∑
l≥|m|

∫
dσ
φ−(r)

r
Y lme−i(σ−ω)t . (5.16)

Note that the ansatz above differs from that used in Refs. [159, 160]. The scalar field potential
can be written as

V = V0 +
∑
l≥|m|

∫
dσ δV (r) Y lme−iσt . (5.17)

Likewise, for the first derivative

dV

d|Φ|2
= U0(r) +

∑
l≥|m|

∫
dσ δU(r) Y lme−iσt. (5.18)

In the presence of matter fields other than the complex scalar, also Tmatter
ab has to be expanded in

tensorial harmonics [178,179]. In the time domain, the matter stress-energy tensor of a particle
in the θ = π/2 plane reads

Tmatter
ab = µp

ẋa(t)ẋb(t)

rp(t)
2ẋt(t)

e−
1
2

(v+u)

×δ(r − rp(t))δ(cos θ)δ(ϕ− ϕp(t)),

where ẋa ≡ (ṫp, ṙp, 0, φ̇p) and µp are the particle’s four-velocity and mass, respectively.
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Axial Sector

As discussed in Ref. [159], perturbations of the scalar field have even parity, so they couple only
with polar gravitational perturbations. Thus, gravitational axial perturbations decouple and they
are described by the linearized Einstein’s equations (5.1), namely:

e−uh′1 + iσe−vh0 +
1

2
κ(prad − ρ)h1 +

2

r2
m(r)h1 = Pσlm ,

(5.19)

−iσh′0 +
2iσ

r
h0 −

[
σ2 − ev

r2
(l(l + 1)− 2)

]
h1 = P r

σlm ,

(5.20)

iσh′1 + h′′0 −
1

2
κreu(ρ+ prad)(h

′
0 + iσh1) +

2iσ

r
h1

+h0e
u

[
κ(prad + ρ)− l(l + 1)

r2
+

4m(r)

r3

]
= P t

σlm ,

(5.21)

where we have defined
e−u(r) ≡ 1− 2m(r)/r, (5.22)

and m(r) is the mass function which denotes the total mass within a sphere of radius r. From
Eq. (5.6), we get

m(r) =
κ

2

∫ r

0

ρ(x) x2 dx, (5.23)

and the total mass of the star is given by M ≡ m(r → ∞). In the equations above, the Pσlm’s
are source terms which depend on the particle’s stress-energy tensor and they are explicitly
given, e.g., in Ref. [175]. We can also define h1(r) in terms of the Regge-Wheeler function,

h1(r) = −e
1
2

(u−v)rΨRW (r) . (5.24)

Substituting the relation above into Eq. (5.19), the function h0(r) can be written in terms of
ΨRW as

h0(r) = − i
σ
e

1
2

(v−u) d

dr
[rΨRW (r)]− i

σ
evPσlm(r) . (5.25)

Equations (5.19)-(5.21) are not all independent, due to the Bianchi identities. Indeed, they are
equivalent to a single Regge-Wheeler equation for ΨRW , namely:[

d2

dr2
∗

+ σ2 − VRW (r)

]
ΨRW (r) = SRW (r) , (5.26)
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where r∗ is the Regge-Wheeler coordinate, defined through dr∗ = e(u−v)/2dr, VRW (r) is the
Regge-Wheeler potential

VRW (r) = ev
[
l(l + 1)

r2
− 6m(r)

r3
− κ

2
(prad − ρ)

]
, (5.27)

and SRW (r) is the source term

SRW =
e

1
2

(v−u)

r

[
2ev

r

(
1− rv′

2

)
Pσlm − evP ′σlm + P r

σlm

]
.

Note that the homogeneous Regge-Wheeler equation (5.26) with the potential (5.27) is equiva-
lent to that of a isotropic, perfect-fluid star with pressure equals to prad [132, 180, 181].

Polar Sector

The equations for the polar sector are more involved. Following Zerilli [178], the linearized
Einstein’s equations read

K ′ +
K

2r

(
3− eu

(
1 + r2κprad

))
+
H1

2r2

(
l(l + 1)− 2r2κ(ptan + ρ)

)
− H0

r

+
κ

r2σ

[
r((σ + ω)φ+ + (σ − ω)φ−)φ′0 + ωφ0

(
φ+ − φ− − rφ′+ + rφ′−

)]
=

1

σ
A(1)(σ, r)− 2rF (σ, r) , (5.28)

H ′0 +
K

2r

(
3− eu

(
1 + r2κprad

))
− H0

r

(
2− eu(1 + r2κprad)

)
+

1

2
H1

(
l(l + 1)

r2
− 2e−vσ2 − 2κ(ptan + ρ)

)
+

κ

r2σ

[
r((ω − σ)φ+ − (ω + σ)φ−)φ′0 + ωφ0

(
φ+ − φ− − rφ′+ + rφ′−

)]
=

1

σ
A(1)(σ, r) +B(σ, r)− rF (σ, r)

(
1− eu

(
1 + r2κprad

))
, (5.29)

H ′1 + (H0 +K)eu +
H1

r(r − 2m)

(
2m− r3κV0

)
− 2κ

rσ
euωφ0(φ+ − φ−)

=
eu

σ
B(0)(σ, r) + 2r2euF (σ, r) , (5.30)
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where the source terms A(1), F, B and B(0) read

A(1)(σ, r) =
κ

2
√

2π

∫
dt A

(1)
lm(r, t)eiσt, (5.31)

F (σ, r) =
κ

2π

√
2

(l − 2)!

(l + 2)!

∫
dt Flm(r, t)eiσt, (5.32)

B(σ, r) =
κr√

2 l(l + 1)π

∫
dt Blm(r, t)eiσt, (5.33)

B(0)(σ, r) =
κr√

2 l(l + 1)π

∫
dt B

(0)
lm (r, t)eiσt , (5.34)

and the functionsA(1)
lm(r, t), Flm(r, t),Blm(r, t) andB(0)

lm (r, t) for the Schwarzschild background
are explicitly given in Ref. [179]. In the background (5.4), these functions can be computed in
a similar fashion and they reduce to those in Ref. [179] in the vacuum case. We have also used
that

H2 = H0 − 2r2F (σ, r), (5.35)

which is obtained from the Einstein’s equations. The scalar field perturbations are governed by
the following inhomogeneous equations:[

d2

dr2
∗

+ (σ ± ω)2 − Ṽ
]
φ±(r) = −S̃± (5.36)

where

Ṽ = ev
(
l(l + 1)

r2
+

2m

r3
+ U0 − κV0

)
,

S̃± =
e−uσ

2

[
2r(σ ± 2ω)φ′0 ± ω

(
4− eur2κ(prad + ρ)

)
φ0

]
H1

± rωφ0

[
(σ ± 2ω)H0 + σK + e−uσH ′1

]
+ evr

[
e−u (K ′ −H ′0)φ′0 − (U0H0 + δU)φ0

]
+ r3F

[
φ0 (2evU0 − ω(2ω ∓ σ)) + ev−uφ′0

(
2

r
+
F ′

F

)]
.

Therefore, the polar sector is described by three first-order Einstein equations coupled to two
second-order scalar equations. There exists an algebraic relation betweenK,H0 andH1 that can
be used to eliminate one of the gravitational perturbations. Finally, the system can be reduced
to three coupled second order differential equations. This is in contrast with the case of perfect-
fluid stars, where the polar sector is described by a system of two second-order equations [132,
182,183]. Here, rather than working with three second order equations, we shall use the system
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of equations given by Eqs. (5.28)–(5.30) and (5.36).

5.2 Solving the background equations
In this section we construct spherically symmetric BS models by solving numerically the back-
ground equations (5.6)–(5.8). After imposing suitable boundary conditions, the background
equations form an eigenvalue problem for the frequency ω, which we solve using a standard
shooting method [184]. We integrate Eqs. (5.6)–(5.8) from the origin, where we require regu-
larity

u(r ∼ 0) = 0, (5.37)
v(r ∼ 0) = vc, (5.38)
φ0(r ∼ 0) = φc, (5.39)
φ′0(r ∼ 0) = 0 . (5.40)

The value vc is arbitrary because it can be adjusted by a time-reparametrization in order to
impose asymptotic flatness, i.e. v(r → ∞) = 0. In practice, to increase accuracy of the
numerical integration, we have considered a higher order expansion near the origin which, at
first order, reduces to the equations above. At infinity, we impose the metric to be Minkowski
and the scalar field to be vanishing:

φ0(r →∞) = 0 . (5.41)

For each value of φc, the boundary condition above is satisfied by a discrete set of eigenfrequen-
cies ω. We focus here on BS background solutions in the ground state, which correspond to the
scalar profile having no nodes and to the lowest eigenfrequency ω. The overtones correspond
to excited states that would decay to the ground state through emission of scalar and gravita-
tional radiation [185]. Note that, depending on the specific BS model, the shooting procedure
can be challenging, due to singularities that appear in the integration if the trial frequency ω is
not sufficiently close to the eigenfrequency. In many cases, a precise and tedious fine tuning is
necessary. Furthermore, due to the presence of a mass term in the scalar potential, the scalar
field has a Yukawa-like behavior, (e−

√
µ2−ω2r∗)/r at large distances r∗µ� 1 [51]. This makes

the integration particularly challenging at large distances.
By adopting the procedure above, we can obtain a one-parameter family of solutions, the

parameter being the central value of the scalar field φc. For each configuration, the total mass
of the BS is M = m(r →∞). Contrarily to the case of perfect-fluid stars, BSs do not possess a
well defined surface as the scalar field spreads all over the radial direction. However, due to the
exponential suppression, the configuration is highly localized in a radius∼ 1/µ. It is thus useful
to define an effective radius for the compact configuration. We shall define the effective radius
R such that m(R) corresponds to 99% of the total mass M . Other inequivalent definitions have
been considered in the literature, see e.g. Ref. [51] for a discussion.

In the following, we describe each of the BS models we have considered, namely: mini
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Table 5.1: (Adapted from Ref. [156]) BS models used in this chapter. For massive BS configurations we used
λ̃ = 100, whereas both solitonic BS models have σ0 = 0.05. The significant digits of ω̃ do not represent the
numerical precision, but they show the fine tuning needed to achieve the solutions.

φ̃c ω̃ M̃ R̃ Mω R/M

mini BS I 0.1916 0.853087 0.63300 7.86149 0.54000 12.4194
mini BS II 0.4101 0.773453 0.53421 4.52825 0.41319 9.03368

massive BS I 0.094 0.82629992558783 2.25721 15.6565 1.86513 6.9362
massive BS II 0.155 0.79545061700675 1.92839 11.3739 1.53394 5.8981
solitonic BS I 1.05 0.4868397896964082036868178070 1.847287 5.72982 0.89933 3.1017
solitonic BS II 1.10 0.4931624243761699601334882568 1.698627 5.08654 0.83770 2.9945

BSs, massive BSs and solitonic BSs. A summary of the configurations used in this chapter is
presented in Table 5.1 (adapted from Ref. [156]). For each BS model, we have selected two
stellar configurations. The first configuration corresponds to the maximum total mass of the
model, which corresponds to the critical point diving stable and unstable configurations. The
second configuration corresponds to the maximum compactness, defined as M/R. Note that
the maximum compactness configuration generally occurs for values of φc which are larger
than those corresponding to the maximum mass. Therefore, the second configuration is usually
in the unstable branch of solutions (cf. e.g. Ref. [69]).

5.2.1 Mini boson stars
In this model the scalar potential reads

V (|Φ|2) = µ2|Φ|2 . (5.42)

This is one of the simplest potentials that can support self-gravitating configurations. The name
comes from the fact that the maximum mass achieved in this model is smaller than the Chan-
drasekhar limit for the same particle mass although, for ultralight bosonic fields [165], it can
still reproduce supermassive astrophysical objects. In order to compare with Refs. [159, 160],
we rescale the equations as:

r → r̃

µ
, m(r)→ m̃(r̃)

µ
, ω → ω̃µ, φ0(r)→ φ̃0(r̃)√

4π
.

The rescaled background profiles (metric functions and the scalar field) for the two configura-
tions listed in Table 5.1 are shown in the left panels of Fig. 5.1. The metric functions for these
configurations are also compared with the Schwarzschild black hole ones.
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Figure 5.1: Rescaled background profiles for different BS models and configurations (cf. Table 5.1). In the top,
middle and lower raw we show the metric elements ev , eu and the scalar profile φ̃0, respectively. Each column
refers to a different BS model. From left to right: mini BS, massive BS and solitonic BS. For each model, we
compare the metric profiles to those of a Schwarzschild BH and for the solitonic BS model we also compare to the
metric elements of a uniform density star with R = 3M .

5.2.2 Massive boson stars
For this model the potential has a quartic interaction:

V (|Φ|2) = µ2|Φ|2 +
λ

2
|Φ|4 , (5.43)

where λ is a constant. This potential was studied in Ref. [166], where it was shown that the
model may differ considerably from the mini BS case, even when λ � 1. Also, the maximum
mass increases with λ, being comparable with the Chandrasekhar limit. For the case of massive
BSs, in order to facilitate the comparison with the results in Ref. [166], we have performed the
following rescaling:

r → r̃

µ
, m(r)→ m̃(r̃)

µ
, ω → ω̃µ,

λ→ 8πµ2λ̃, φ0(r)→ 1

2
√

2π
φ̃0(r̃) . (5.44)

The maximum compactness for solutions of this model increases with λ, and we found results
in agreement with previous calculations [169,186]. Here, we fixed λ̃ = 100 and considered two
configurations as summarized in Table 5.1. The metric and scalar field profiles for this model
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are shown in the middle panels of Fig. 5.1.

5.2.3 Solitonic boson stars
The scalar potential for this configuration is given by

V (|Φ|2) = µ2|Φ|2(1− 2|Φ|2/σ2
0)2 , (5.45)

where σ0 is a constant, generically taken to be of the same order as µ [167,187]. This is the sim-
plest potential that can generate, in the absence of gravity, nontopological solitonic solutions,
i.e., nondispersive scalar field solutions. In this case, it is convenient to rescale the equations in
units of Λµ, with Λ = κ1/2σ0. We use [167, 173]

r → r̃

Λµ
, m(r)→ m̃(r̃)

Λµ
,

ω → ω̃Λµ, φ0(r)→ σ0φ̃0(r̃)√
2

.

The field equations for the solitonic potential are stiff and the scalar field has a very steep
profile across a surface layer of thickness∼ µ−1. This stiffness makes the numerical integration
particularly challenging and, in Refs. [167, 173], spherically symmetric solutions to this model
were constructed only perturbatively, in the limit σ0 � mP and considering a step-function
profile for the scalar field. One advantage of that approach is that the approximate solution has
a well-defined radius and that, because the scalar profile is given, only the metric equations
have to be solved numerically in the interior of the star. The solution is then matched with a
Schwarzschild exterior.

However, besides the challenging technicalities in the integration, there is no real need to
obtain approximate solutions, which neglect the backreaction between metric functions and
the scalar field. Here, we have constructed solitonic BS solutions to the full nonlinear sys-
tem (5.6)–(5.8), i.e. without any approximation (cf. also Refs. [188] where similar solutions
where constructed using relaxation methods). This requires high-precision numerical schemes
and an extremely fine-tuned shooting method, as shown by the fine tuning needed to find a
solution (cf. Table 5.1). In the small σ0 limit, our results agree remarkably well with the ap-
proximate solutions presented in Refs. [167,173] and they extend those results to generic values
of the parameters in the scalar potential (5.45).

Unlike the other cases explored in this chapter, solitonic BSs can be very compact, with
the radius of the star comparable to or smaller than the Schwarzschild light-ring [167, 173].
In the right panels of Fig. 5.1 we compare the metric components to those of a Schwarzschild
spacetime and of the uniform density stars with R = 3M and we show the steep profile of the
scalar field. The scalar field approximates a step function, in agreement with the approximate
solution of Refs. [167, 173]. In that case, eu(r) is discontinuous at the star surface. In our
case there is no actual radius, and eu(r) is continuous, although it has a sharp peak close to the
effective radius of the star.
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Figure 5.2: (Adapted from Ref. [156]) Angular velocity for timelike circular geodesic motion for the different
BS models and configurations specified in Table 5.1. Each plot refers to a different BS model. From left to right:
mini BS, massive BS and solitonic BS. For mini and massive BSs, we compare the angular velocity to those of a
Schwarzschild BH and for the solitonic BS model we compare to the case of a uniform density star with R = 3M .
In the solitonic case, the marker indicates the innermost stable circular orbit for the Schwarzschild BH, which is
given by r = 6M and MΩisco ≈ 0.068.

5.3 Geodesics around boson stars
Stellar-size objects gravitating around supermassive BSs have a small back-reaction on the ge-
ometry and to leading order in the object’s mass move along geodesics of the BS background.
Accordingly, gravitational-wave emission by such binaries requires a knowledge of the geodesic
motion, in which we now focus. We will also concentrate exclusively on circular, geodesic mo-
tion. The reasoning behind this is that it makes the calculations much simpler, while retaining
the main features of the physics. Furthermore, it can be shown that generic eccentric orbits get
circularized by gravitational-wave emission in vacuum [189] and in the presence of accretion
and gravitational drag [156], on a time scale that depends on the mass ratio.

We follow the analysis by Chandrasekhar [127] (see also Ref. [190], where the formalism
for a generic background is presented, and Ref. [191] for a recent work on geodesics in BS
spacetimes). Following previous studies [168, 169, 173], we assume that the point-particle is
not directly coupled to the background scalar field. We start by defining the Lagrangian of the
particle motion on the θ = π/2 plane:

2Lp = ṡ2 = −ev ṫ2 + euṙ2 + r2ϕ̇2 . (5.46)

The conserved energy E and angular momentum parameter per unit rest mass L and can be
obtained via

E = −∂Lp
∂ṫ

= ev ṫ , L =
∂Lp
∂ϕ̇

= r2ϕ̇ . (5.47)

From these equations, we get the following equation of motion

eu+vṙ2 = E2 − Veff (r) = E2 − ev
(

1 +
L2

r2

)
. (5.48)
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The energy and angular momentum of the particle in circular orbits follow from Eq. (5.48) by
imposing ṙ|r=rp = 0 and r̈|r=rp = 0 resulting:

Ec =

[
ev

2(r − 2m)

2r − κ r3 prad − 6m

]1/2

r=rp

(5.49)

Lc =

[
r2 (κ r3 prad + 2m)

2r − κ r3 prad − 6m

]1/2

r=rp

, (5.50)

where the background Einstein’s equations were used to eliminate metric derivatives. Circular
null geodesics correspond to 2r − κr3prad − 6m = 0. Finally, the orbital frequency of circular
geodesics reads

Ω =

[
ev (κ r3 prad + 2m)

2r2(r − 2m)

]1/2

r=rp

. (5.51)

The angular velocity of circular geodesics in BS spacetimes are shown in Fig. 5.2. Up to the
innermost stable circular orbit of a Schwarzschild spacetime, r = 6M , the angular velocities
are very close to their Schwarzschild counterpart with the same total mass, as might be expected
since these are very compact configurations. For geodesics at r < 6M the structure can be very
different. A striking difference is that stable circular timelike geodesics exist for BSs even well
deep into the star [156, 168, 169].

Solitonic BSs can become truly relativistic gravitating objects. For these objects, an outer
last stable circular orbit exists at r ≈ 6M and MΩisco ≈ 0.068. This is expected, as the
spacetime is very close to Schwarzschild outside the solitonic BS effective radius. We also find
a first (unstable) light-ring at roughly rl+ ≈ 3M . The unexpected feature is the presence of a
second stable light-ring at rl− < rl+ , together with a family of stable timelike circular geodesics
all the way to the center of the star. These light-rings are genuine relativistic features, which
was not reported in previous studies, as far as we are aware. Uniform density stars, depending
on their compactness, also present two light-ring and stable circular timelike orbits in their
interior. In the right panel of Fig. 5.2 it is also shown the case of a uniform density star with
radius R = 3M . In that case, the two light-rings degenerate in the star surface. What makes
solitonic BSs stand out is the possibility that inspiralling matter couples weakly to the solitonic
BS scalar field and therefore has access to these geodesics, although as we showed in Ref. [156]
(also in Chapter 6), inspiralling BHs in principle do not follow these geodesics. Furthermore,
we found no circular orbits between the outer and the inner light-ring, whereas all circular orbits
are stable inside the inner light-ring.

Finally, deep inside the BSs, the circular geodesics are non-relativistic. In fact, the velocity
as measured by static observers at infinity and by static observers at fixed r, decreases to zero
as the radius approaches zero. In this regime, other dissipative effects such as gravitational drag
and accretion onto the small compact object have to be considered [156].
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Figure 5.3: Regge-Wheeler potential for the mini BS, massive BS and solitonic BS models compared to that of the
Schwarzschild BH for l = 2.

5.4 Quasinormal modes of boson stars
In this section we discuss the quasinormal modes (QNMs) of the BS models presented in the
previous sections. QNMs are complex eigenfrequencies σ = σR + iσI of the linearized homo-
geneous perturbation equations supplied with physically motivated boundary conditions (see
e.g. [109, 132]). Since the perturbations of a spherically symmetric spacetime naturally divide
into an axial and a polar sector, there exist two different classes of modes, which we shall refer
to as axial and polar modes, respectively.

Unlike the case of a Schwarzschild BH [127], the axial and the polar BS modes are not
isospectral. As we shall discuss, the BS QNMs can be understood in analogy to the modes of
ordinary stars, with the background scalar field playing the role of an anisotropic fluid. The
main difference with the case of ordinary stars is that a BS does not have a proper surface
and that scalar perturbations, unlike their fluid counterpart, can propagate to infinity. In the
following, we shall treat axial and polar modes separately.

5.4.1 Axial quasinormal modes
As discussed in Sec. 5.1.2, the source-free (SRW = 0) axial perturbations can be reduced to the
homogeneous Regge-Wheeler equation[

d2

dr2
∗

+ σ2 − VRW (r)

]
ΨRW (r) = 0 , (5.52)

where VRW is defined in Eq. (5.27) and it is shown in Fig. 5.3 for some BS model and for the
case of a Schwarzschild BH. Note that Eq. (5.52) does not involve scalar field perturbations,
in analogy to the fluid perturbations of an ordinary star, which are only coupled to the polar
sector. This decoupling led Yoshida et al. [160] to assume that the axial sector of BSs is “not
coupled to gravitational waves” and therefore not interesting. However, we show here that
BS models generically admit axial QNMs, in analogy to the w-modes of ordinary stars which
are in fact curvature modes similar to those of a BH (see Ref. [132] for a review). Moreover,
for ultracompact stars (R < 3M ), a potential well appears in the Regge-Wheeler potential,
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generating the possibility of having trapped QNMs, which are long-lived modes [152, 192]. In
Sec. 5.5, we shall also show that axial perturbations with odd values of l + m are sourced by
point-particles orbiting the BS and therefore they contribute to the gravitational-wave signal
emitted during the inspiral.

At the center of the star, we require regularity of the Regge-Wheeler function,

ΨRW (r ≈ 0) ∼ rl+1

N∑
i=0

a
(i)
0 r

i , (5.53)

where the coefficients a(i)
0 can be obtained by solving the Regge-Wheeler equation order by

order near the origin. At infinity, the solution of Eq. (5.52) is a superposition of ingoing and
outgoing waves. QNMs are defined by requiring purely outgoing waves at infinity, i.e.

ΨRW (r →∞) ∼ eiσr∗
N∑
i=0

a
(i)
∞

ri
, (5.54)

where again the coefficients a(i)
∞ can be obtained perturbatively. In the following we discuss two

different methods to compute BS axial modes.

Axial quasinormal modes via continued fractions

In Ref. [160], the polar modes of some mini BS configurations were computed using a WKB
approximation. Here, we resort to a continued fraction method [153] adapted from the studies
of ordinary stars as showed in Refs. [147, 193] (see also Ref. [154] in which the same method
was applied to gravastars).

First, we write the solution of the homogeneous Regge-Wheeler equation in a power-series
expansion of the form

ΨRW (r) = (r − 2M)2iMσeiσr
∞∑
n=0

anz
n , (5.55)

where z ≡ 1 − R2/r, and r = R2 is some point outside the stellar object (in our case will
be outside the effective radius). The expansion coefficients an are found to satisfy a four-term
recurrence relation of the form:

α1a2 + β1a1 + γ1a0 = 0 , n = 1 , (5.56)
αnan+1 + βnan + γnan−1 + δnan−2 = 0 , n ≥ 2 ,
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where:

αn = n(n+ 1)(R2 − 2M) , n ≥ 1 , (5.57)
βn = 2n(−3Mn+R2(n− iR2σ)) , n ≥ 1 ,

γn = 6M((n− 1)n− 1+) + (1 + l − n)(l + n)R2 ,

δn = 2M(3− n)(1 + n) , n ≥ 2 .

Since the Regge-Wheeler equation is homogeneous, the coefficient a0 is an arbitrary normal-
ization constant. The ratio a1/a0 can be determined by imposing the continuity of ΨRW and
Ψ′RW at r = R2. From Eq. (5.55) it follows that:

a1

a0

=
R2

ΨRW (R2)

[
Ψ′RW (R2)− iσR2

R2 − 2M
ΨRW (R2)

]
. (5.58)

As in the case of ordinary stars, the values of ΨRW (R2) and Ψ′RW (R2) are obtained by inte-
grating numerically the Regge-Wheeler equation in the interior. Leaver [194] has shown that
the four-term recurrence relation (5.56) can be reduced to a three-term recurrence relation by a
gaussian elimination step and solved by standard methods [109] (see also Ref. [154] for a more
detailed discussion). The complex roots of the continued fraction relation are the QNMs of the
BS.

Axial quasinormal modes via direct integration

In some cases, QNMs can be computed via direct integration [146, 151]. This method is not
particularly well-suited, because radial QNM functions grow exponentially as r → ∞ and
become very sensitive to numerical errors [109]. However, it is possible to integrate Eq. (5.52)
up to moderately large values of r and to minimize the truncation errors by considering a large
number of terms in the series expansion (5.54). In our code, we typically considered N = 15 in
Eq. (5.54) and integrated up to r ∼ 30M . This would suppress truncation errors at the level of
10−15 ∼ 10−22.

The method is a simple extension of the case of uniform density stars [151, 152, 192]. We
perform two integrations of Eq. (5.52): one from the center of the star with the boundary con-
dition (5.53) up to rm, and another from r∞ with the boundary condition (5.54) until rm. The
wavefunctions constructed this way have the correct boundary conditions both at the origin and
at infinity. However, for generic values of the frequency σ the Regge-Wheeler function is not
continuous at the matching point r = rm. We define the jump at rm as [151]

∆m(σ) ≡
[
dΨRW/dr∗

ΨRW

]
−
−
[
dΨRW/dr∗

ΨRW

]
+

, (5.59)

where the “minus” and “plus” subscripts denote evaluation at r = rm from the left and from
the right, respectively. The axial QNMs are obtained as the roots of ∆m(σ). Due to the numer-
ical inaccuracies discussed above, this procedure becomes less accurate for modes with large
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imaginary part. For example it can be used to obtain only the first few tones of a Schwarzschild
BH [151].

A similar procedure can be adopted in the case of ordinary stars, this time by requiring
that the Wronskian of the two solutions (those constructed by integrating from the center and
from infinity) is vanishing at the star surface. This is equivalent to requiring continuity of
the wavefunction and of its first derivative. To test our code, we successfully found some of
the modes presented in Refs. [152, 192] for constant density stars, whose background metric
coefficients can be determined analytically (see Appendix C). For all modes computed by direct
integration, we have checked the stability of the results under variation of the parameters rm and
r∞. We stress that, at variance with continued fraction techniques, the direct integration is only
accurate when σI � σR, mainly because of the exponential radial divergence of the QNMs.

5.4.2 Polar quasinormal modes
As discussed in Sec. 5.1.2, the polar sector can be reduced to a system of three coupled second
order differential equations: two for the scalar field perturbations φ± and one for gravitational
perturbations described by a modified Zerilli equation. In practice, in the interior of the object it
is more convenient to solve directly for the polar perturbation functions, K, H0 and H1, which
are described by three first order differential equations and by an algebraic relation.

As in the axial case, at the origin we require regularity of the perturbations and we can
expand them in powers of r as

X(r ≈ 0) ∼ rl
N∑
i=0

xi0 r
i , (5.60)

where X collectively denotes H2 = H0, K, H1 and φ±. It is straightforward to show that this
expansion near the center only depends on three free parameters.

At infinity, the background scalar field vanishes and gravitational and scalar perturbations
decouple [160].

Let us now discuss the asymptotic behavior of the gravitational field. In vacuum, all polar
metric perturbations can be written in terms of one single function which obeys the Zerilli
equation, [

d2

dr2
∗

+ σ2 − VZ(r)

]
ΨZ = 0 , (5.61)

where dr/dr∗ = 1− 2M/r,

VZ(r) =
dr

dr∗

2Λ̃2r2(3M + (Λ̃ + 1)r) + 18M2(Λ̃r +M)

r3(Λ̃r + 3M)2
, (5.62)

and Λ̃ = (l − 1)(l + 2)/2. The generic solution at infinity is a superposition of outgoing and
incoming waves:

ΨZ(r →∞) ∼ Aoute
iσr∗ + Aine

−iσr∗ , (5.63)
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and again the standard QNM condition requires Ain = 0 [109]. The metric perturbations can be
written in terms of the Zerilli function through the following equations:

H1 = − Λ̃r2 − 3Λ̃Mr − 3M2

(r − 2M)(Λ̃r + 3M)
ΨZ − r2dΨZ/dr∗

r − 2M
,

K =
Λ̃(Λ̃ + 1)r2 + 3M Λ̃r + 6M2

r2(Λ̃r + 3M)
ΨZ +

dΨZ

dr∗
,

H0 = H2 =
Λ̃r(r − 2M)− σ2r4 +M(r − 3M)

(r − 2M)(Λ̃r + 3M)
K

+
M(Λ̃ + 1)− σ2r3

r(Λ̃r + 3M)
H1 .

The asymptotic behavior of the scalar field perturbations is more involved. In vacuum, the
equations for the scalar perturbations (5.36) reduce to[

d2

dr2
∗

+ (σ ± ω)2 − Vφ(r)

]
φ± = 0 , (5.64)

where

Vφ(r) =

(
1− 2M

r

)(
µ2 +

l(l + 1)

r2
+

2M

r3

)
. (5.65)

The asymptotic solution for the scalar perturbations reads

φ±(r →∞) ∼ B±e
−k±r∗rν± + C±e

k±r∗r−ν± , (5.66)

where we have defined ν± = Mµ2/k± and

k± =
√
µ2 − (σ ± ω)2 . (5.67)

Without loss of generality, we choose the root such that Re[k±] > 0. Different physically
motivated boundary conditions are possible for the scalar field, depending on the sign of the
imaginary part of k±, Im[k±] ∼ − (σR ± ω)σI . As usual, a purely outgoing-wave boundary
condition at infinity, i.e. φ± ∼ ei|Im[k±]|r∗ , defines the QNMs. On the other hand, due to the
presence of the mass term it is possible to have quasi bound-state modes, i.e. states that are
spatially localized within the vicinity of the compact object and decay exponentially at spatial
infinity [195–197]. Therefore, quasi bound-states are simply defined by C± = 0. In the case at
hand, the QNM conditions depend on σR and on σI , as shown in Table 5.2 where all cases are
listed. In the following, we detailed the QNM condition for stable and unstable modes.

Let us start discussing the boundary conditions for stable modes (σI < 0). When σR > ω
the QNM condition is the same for both scalar perturbations, B± = 0. However, if σR < ω, the
QNM condition for the scalar fields perturbations is different, being B+ = 0 and C− = 0. Note
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Table 5.2: Possible boundary conditions at infinity for the scalar field perturbations φ± with eigenfrequency σ =
σR + iσI .

σI σR Im[k±] QNM condition Bound-state condition
I stable, σI < 0 σR > ω Im[k+] > 0, Im[k−] > 0 B+ = 0, B− = 0 C+ = 0, C− = 0
II stable, σI < 0 σR < ω Im[k+] > 0, Im[k−] < 0 B+ = 0, C− = 0 C+ = 0, C− = 0
III unstable, σI > 0 σR > ω Im[k+] < 0, Im[k−] < 0 C+ = 0, C− = 0 C+ = 0, C− = 0
IV unstable, σI > 0 σR < ω Im[k+] < 0, Im[k−] > 0 C+ = 0, B− = 0 C+ = 0, C− = 0

that in this case the stable QNMs of φ− decay exponentially and degenerate with the bound-state
modes.

For unstable modes (σI > 0) the situation is different. In this case when σR > ω, the QNM
condition is the same for both scalar perturbations, C± = 0 and coincide with the bound-state
conditions. However, when σR < ω the QNM conditions read C+ = 0 and B− = 0, so that
only the unstable QNM of φ+ degenerate with the bound-state condition.

This peculiar behavior is due to the presence of a mass term (which allows for bound states)
and of a complex background scalar field, ω 6= 0, which essentially shifts the real part of the
frequency of the scalar perturbations. Note that in the case of probe complex scalars around
a Schwarzschild BH, the terms introduced by ω can be eliminated by a simple shift of the
wave frequency, but in the case at hand this term is physical because of the coupling to the
gravitational perturbations.

Polar QNMs via direct integration

Computing the polar modes of a BS is particularly challenging. To compute the polar QNMs
of perfect fluid stars the usual continued fraction method proved to be very robust. However,
unlike the case of ordinary stars, BSs do not possess a surface where fluid perturbations vanish.
In order to understand this issue, let us briefly review the case of ordinary stars [147, 193].
In that case polar QNMs are found by first solving a boundary problem in the interior of the
star, requiring the perturbations to be regular at the center and the pressure perturbations to be
vanishing at the surface of the star. For any given frequency, this procedure singles out one
solution that satisfies the correct boundary condition in the interior and it allows to construct
the Zerilli function ΨZ at the radius of the star. Then, Chandrasekhar transformations [127] are
used to transform the Zerilli function into the Regge-Wheeler function ΨRW and, finally, the
continued fraction method can be implemented as explained above for the axial case.

Contrarily to the case of fluid perturbations in ordinary stars, in the BS cases the matter
perturbations (scalar field perturbations) propagate in vacuum and, strictly speaking, there is no
exterior Schwarzschild solution in which the linear dynamics is simply governed by a single
Regge-Wheeler equation. This prevents a direct extension of this method.

To circumvent this problem, we opted for direct integration techniques, which we now de-
scribe. The system of linearized perturbation equations can be written as a first order system
for the sixth dimensional vector Ψ =

(
H1, K, φ+, φ−, φ

′
+, φ

′
−
)
. We perform two integrations:

one from the origin and one from infinity, in both cases imposing suitable boundary conditions
as discussed above. It is easy to show that, for each integration, there exists a three-parameter
family of solutions, corresponding to three independent parameters of the near-origin and near-
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infinity expansions. Then, we construct the linear combinations

Ψ− = α
(−)
1 Ψ

(−)
1 + α

(−)
2 Ψ

(−)
2 + α

(−)
3 Ψ

(−)
3 , (5.68)

Ψ+ = α
(+)
1 Ψ

(+)
1 + α

(+)
2 Ψ

(+)
2 + α

(+)
3 Ψ

(+)
3 , (5.69)

where α(±)
i are constants and Ψ− and Ψ+ refer to the integration from the origin and from

infinity, respectively. The subscripts 1, 2 and 3 refer to three linear independent solutions of
the homogeneous system. Since the system of equations is linear, we have the freedom to set
one of the coefficients α(±)

i of the linear combination to unity. The other five coefficients can
be obtained by requiring Ψ− = Ψ+ at some arbitrary matching point. For a generic frequency,
only five out of the six components of Ψ can be matched smoothly. Finally, the eigenfrequency
of the problem is obtained by requiring that also the remaining component is continuous. In
practice, for each frequency σ we can perform six numerical integrations of the linear system,
construct the linear combinations above, obtain the coefficients α(±)

i and compute the jump
of the only discontinuous component of Ψ at the matching point. Then, a standard shooting
method can be implemented to obtain the complex eigenfrequency. Similarly to the direct
integration discussed in the axial case, this method provides accurate results only when σI �
σR.

5.4.3 Results for boson star quasinormal modes
Using the methods described above, we have computed axial and polar modes of several BS
models in a fully relativistic setting, i.e. without using any approximation method. As shown
in Table 5.2, the spectrum of BS polar modes is fairly rich. Here, we focus on the least damped
modes, i.e. those with the smallest imaginary part, which are expected to dominate the ringdown
waveform at late time [109]. Note that, for all BS models we have investigated, there exists a
class of much longer lived modes than that considered in Ref. [160]. We also shown the modes
in units of M , for future comparisons. In the tables, N ≥ 1 is the overtone number.

For the axial modes, we have used the continued fraction method and, for the modes with
σI � σR, we independently confirmed the results by using a direct integration method. The
direct integration works better for compact configurations like the solitonic BSs, which share
many similarities with compact uniform density stars. The least damped axial QNMs of soli-
tonic BSs are presented in Table 5.3, comparing the results of the two different methods.

Note that this class of BS modes is qualitatively similar to the w-modes of constant density
stars with comparable compactness [132]. Computing the modes for the mini BS and massive
BS models is more challenging, because the imaginary part of these modes is comparable to the
real part. In this case, a direct integration method becomes inaccurate. On the other hand, for
these cases, we have successfully implemented the continued fraction method discussed above.
Some modes for the mini BS model and the massive BS model are presented in Table 5.4. We
note that, according to Ref. [147], the value of R2 in the expansion (5.55) cannot be completely
arbitrary. In fact, it has to be slightly larger than the BS effective radius, in order to obtain
a stable mode. This introduces an intrinsic inaccuracy in the BS QNMs computed with the
continued fractions. Indeed, at r = R2 the background scalar field is not exactly vanishing

Programa de Pós-Graduação em Fı́sica - UFPA



5.4 Quasinormal modes of boson stars 82

Table 5.3: Axial QNMs for solitonic BS configuration I and II for l = 1 and l = 2. Here we compare the results
obtained through the continued fraction and the direct integration methods.

l = 1
Continued fraction Direct integration

Model N Re(σ) [Λ2µ] -Im(σ) [Λ2µ] Re(Mσ) -Im(Mσ)
solitonic BS I 1 0.22328867 0.08370555 0.412478 0.154628
solitonic BS I 2 0.38509593 0.10287792 0.711383 0.190045
solitonic BS I 3 0.55353269 0.11432831 1.022530 0.211197
solitonic BS II 1 0.20007784 0.06608236 0.339858 0.112249
solitonic BS II 2 0.32840222 0.08229700 0.557833 0.139792
solitonic BS II 3 0.46744415 0.09216367 0.794014 0.156552

Re(σ) [Λ2µ] -Im(σ) [Λ2µ]
0.22329050 0.08370789
0.38509593 0.10287792
0.55353269 0.11432831
0.20007454 0.06608373
0.32840223 0.08229700
0.46744415 0.09216367

l = 2

Model N Re(σ) [Λ2µ] -Im(σ) [Λ2µ] Re(Mσ) -Im(Mσ)
solitonic BS I 1 0.25636868 0.05347247 0.47358 0.098779
solitonic BS I 2 0.32633835 0.10252772 0.60284 0.189398
solitonic BS I 3 0.47822011 0.10629265 0.88341 0.196353
solitonic BS II 1 0.26620716 0.02511717 0.452187 0.0426647
solitonic BS II 2 0.32967926 0.08729943 0.560002 0.148289
solitonic BS II 3 0.41859619 0.08681748 0.711039 0.147471

Re(σ) [Λ2µ] -Im(σ) [Λ2µ]
0.25636863 0.05347248
0.32633833 0.10252773
0.47822011 0.10629266
0.26620715 0.02511717
0.32967925 0.08729944
0.41859618 0.08681749

Table 5.4: Axial QNMs of mini BS and massive BS configurations for l = 1 and l = 2, computed by a continued
fraction method.

l = 1 l = 2
Model N Re(σ) [µ] -Im(σ) [µ] Re(Mσ) -Im(Mσ)

mini BS I 1 0.136 0.254 0.085 0.160
mini BS I 2 0.316 0.388 0.200 0.245
mini BS II 1 0.297 0.296 0.158 0.158
mini BS II 2 0.725 0.457 0.387 0.244

massive BS I 1 0.228 0.207 0.515 0.468
massive BS I 2 0.416 0.184 0.940 0.415
massive BS II 1 0.264 0.213 0.508 0.410
massive BS II 2 0.473 0.190 0.913 0.366

Re(σ) [µ] -Im(σ) [µ] Re(Mσ) -Im(Mσ)
0.277 0.388 0.175 0.246
0.456 0.374 0.289 0.237
0.452 0.552 0.242 0.295
0.721 0.456 0.385 0.244
0.225 0.197 0.507 0.444
0.375 0.180 0.847 0.408
0.260 0.204 0.502 0.395
0.437 0.182 0.844 0.351

and the recursion relations (5.56) are not exactly satisfied. This error decreases for compact
configurations, because the scalar field decays faster. In our calculations, we used R2 = 1.4R
and checked the accuracy of the method by changing the location of R2 in the range 1.3M to
1.5M . We estimate an error of a few percents in the values presented in Table 5.4.

Let us now discuss the polar modes, which show a much richer structure due to the cou-
pling between gravitational and scalar perturbations. Some of these modes were computed in
Ref. [160] using a WKB approximation, for the cases in which µ < (σ ± ω) (cf. Eq. (5.67)).
In this case, both gravitational and scalar perturbations behave as outgoing waves at infinity.
However, this restriction prevents the existence of quasi-bound state modes for the scalar field
perturbations, which are expected to dominate in the late time signal. Here we focus on this
complementary regime, where scalar perturbations admit localized states (cf. Table 5.2). We
have obtained the fundamental modes of our BS models using the direct integration method
described above. A selection of the results is presented in Table 5.5. For the solitonic BS polar
modes, due to the precision needed for the background, a precise root finder method was not
possible, making the modes more inaccurate than the mini and massive BS cases.

In Tables 5.4–5.5 we also show the l = 1 axial modes and the l = 0 polar modes, respec-
tively. Given the quadrupolar nature of GR, in the Schwarzschild case the l = 0, 1 perturbations
are simply associated to infinitesimal changes in the mass and in the angular momentum, re-
spectively [177, 178]. However, due to the coupling with the scalar field, for BSs these modes
become part of the spectrum and are associated to monopole and dipole emission.

Finally, by comparing the real part of the polar modes shown in Table 5.5 with the orbital
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Table 5.5: Polar QNMs of mini BS, massive BS and solitonic BS configurations for l = 0 (left), and l = 2 (right),
computed by a direct integration method.

l = 0 l = 2
Model N Re(σ) [µ] -Im(σ) [µ] Re(Mσ) -Im(Mσ)

mini BS I 1 0.001416 1× 10−11 0.0009 7× 10−12

mini BS I 2 0.11356 1× 10−13 0.0719 9× 10−14

mini BS I 3 0.12958 9× 10−15 0.0820 5× 10−15

massive BS I 1 0.0197 1× 10−4 0.04460 4× 10−4

massive BS I 2 0.0636 1× 10−11 0.1436 4× 10−11

massive BS I 3 0.0896 5× 10−13 0.2023 4× 10−13

solitonic BS I 1 3× 10−4 2× 10−5 0.002 1× 10−4

solitonic BS I 2 0.063 9× 10−6 4.631 7× 10−5

solitonic BS I 3 0.103 2× 10−10 7.601 2× 10−9

Re(σ) [µ] -Im(σ) [µ] Re(Mσ) -Im(Mσ)
0.1195 5× 10−5 0.0757 3× 10−5

0.1316 2× 10−5 0.0833 1× 10−5

0.1404 8× 10−6 0.0888 5× 10−6

0.0403 2× 10−5 0.0909 6× 10−5

0.0716 2× 10−6 0.1616 5× 10−6

0.0947 5× 10−7 0.2136 1× 10−7

0.0348 1× 10−4 0.3137 1× 10−3

0.0769 3× 10−5 0.6928 2× 10−4

0.1127 4× 10−6 1.0156 3× 10−5

frequency of circular geodesics shown in Fig. 5.2, we observe that such modes can be potentially
excited by a quasicircular EMRI [134,198] in the point-particle limit. We investigate this effect
in the next section.

5.5 Point-particle orbiting a boson star
The gravitational and the scalar wave emission by a particle in a circular geodesic motion around
a BS is governed by the inhomogeneous system of equations (5.26) and (5.28)-(5.30) and (5.36).
The solutions can be constructed via Green’s function techniques. Once again we shall treat the
axial and polar separately.

5.5.1 Axial sector
The axial sector is fully described by Eq. (5.26). The general solution can be constructed from
two independent solutions of the associated homogeneous equations:

ΨRW =
1

WZ

[
Z+(r)

∫ r

0

dr∗Z−SRW + Z−(r)

∫ ∞
r

dr∗Z+SRW

]
, (5.70)

where Z± are solutions of the homogeneous associated equation with the following boundary
conditions

Z+(r →∞) ∼ eiσr∗ , (5.71)
Z−(r → 0) ∼ rl+1, (5.72)

and WZ = Z−(dZ+/dr∗) − Z+(dZ−/dr∗) is the Wronskian. At large distance, the solu-
tion (5.70) reads

ΨRW (r →∞) ∼ eiσr∗

WZ

∫ ∞
0

dr∗Z−SRW . (5.73)
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Figure 5.4: (Adapted from Ref. [156]) Dominant l = 2, m = 1 contribution to the axial gravitational flux
emitted by a point-particle orbiting a BS for the stable BS configurations used in this chapter, compared to that of
a Schwarzschild BH. The solitonic configuration for r > 3M have basically the same values of the BH case.

For circular orbits the source terms generically contain Dirac’s delta terms δ(r − rp) and their
derivative, namely:

SRW = [GRW δ(r − rp) + FRW δ
′(r − rp)] δ(σ −mΩ) ,

so that the solution (5.73) can be rewritten as

ΨRW ∼ Ψ̄RW δ(σ −mΩ)eiσr∗ , (5.74)

where [199]

Ψ̄RW =
e

1
2

(u−v)

WZ

[
GRWZ− −

d

dr∗

(
e

1
2

(u−v)FRWZ−

)]∣∣∣∣∣
r=rp

.

Finally, the energy flux at (null) infinity due to the axial part of the perturbations is given by
[199, 200]

Ė inf,axial
lm =

1

16π

(l + 2)!

(l − 2)!

∣∣Ψ̄RW

∣∣2 .
Due to the explicit form of the source term, the axial flux is vanishing for even values of l+m.
In Fig. 5.4, we show the dominant l = 2, m = 1 contribution of the axial flux for various
stable BS models as well as that of a Schwarzschild BH. The deviations from the BH case are
basically indistinguishable at large distances. As expected, more compact configurations like
the solitonic BS model are closer to the BH case.
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5.5.2 Polar sector
The polar sector is described by the inhomogeneous system of coupled equations (5.28)–(5.30).
A general method to solve this class of problems was presented in Ref. [175], which we shall
closely follow. The polar equations can be written as

dΨ

dr
+ VΨ = S, (5.75)

where we introduced the 6-dimensional vectors

Ψ =
(
H1, K, φ+, φ−, φ

′
+, φ

′
−
)
, (5.76)

and the vector S describes the source terms. The matrix V can be straightforwardly constructed
from Eqs. (5.28)–(5.30). In order to solve Eq. (5.75), let us define the 6 × 6 matrix X, whose
columns are formed by independent solutions of the associated homogeneous problem. It is
easy to show that

dX

dr
+ VX = 0. (5.77)

The general solution can be written in terms of the homogeneous solutions by [175]

Ψ = X

∫
drX−1S. (5.78)

The matrix X can be constructed in the following way [30,175]: the solution close to the origin
is defined by three independent parameters, say (ψor0 , φ

or
+ , φ

or
− ). Likewise, the solution close

to infinity is characterized by (ψ∞0 , φ
∞
+ , φ

∞
− ). We can construct three independent solutions

integrating the equations from the origin by setting the triad to (1, 0, 0), (0, 1, 0) and (0, 0, 1).
Using the same for the integration from infinity, we construct the set of six independent solutions
which form X.

The boundary conditions for the problem are analogous to those described in the previous
sections. For the gravitational functions, we require regularity at the origin and outgoing waves
at infinity. For the scalar field, we require regularity at the origin, but the condition of outgoing
waves is not satisfied for all values of Ω. In fact, for sufficiently small frequency, when k2

± >
0 (cf. Eq. (5.67)), the perturbations of the scalar field are localized near the star and form
quasi-bound states. If k2

± < 0, the orbital frequency is larger then the potential well and the
perturbations are wave-like at infinity. The value of Ω for which this transition occurs depends
on the specific model through µ and ω and on the azimuthal numberm (cf. Eq. (5.67) and recall
that, for a circular orbit, σ = mΩ).

To compute the polar gravitational part of the flux we construct the Zerilli function at infin-
ity, using the solutions for K and H1 obtained by solving the coupled system. Then, the polar
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gravitational flux is the sum of the multipolar contributions [175, 199, 200]:

Ė inf,Z
lm =

1

64π

(l + 2)!

(l − 2)!
(mΩp)

2 |ΨZ(r →∞)|2 , (5.79)

which, by virtue of the specific source term, are nonvanishing only for even values of l +m.
The scalar flux can be computed through the energy momentum tensor of the scalar field [175,

201] (see also Refs. [113, 114] for other approach). It reads

Ė
inf,φ±
lm = 2(mΩp)

2|φ±(r →∞)|2. (5.80)

The total energy flux for the polar sector is the sum of the two contributions, i.e.

Ė inf,polar
lm = Ė inf,Z

lm + Ė
inf,φ±
lm . (5.81)

In the next subsection, we give the details of the polar part of the flux.

5.5.3 Emitted polar flux and inspiral resonances
Adopting the procedure explained above, we have evaluated the total scalar and polar gravita-
tional flux emitted by a test-particle orbiting a BS in several BS models. In some cases, the
numerical integration is challenging. Indeed, for sufficiently small orbital frequency the scalar
perturbations decay exponentially at infinity, but they are nonetheless coupled to the gravita-
tional perturbation which instead propagate to infinity as waves. To achieve good accuracy, the
numerical domain of integration should extend up to many wavelengths, i.e. r∞σ � 1, where
r∞ is our numerical value for the infinity. On the other hand, the typical lengthscale of the
scalar perturbation is given by the Yukawa-like term, i.e. 1/µ. Due to the exponential decay, it
is challenging to integrate the scalar field if r∞µ � 1 and this sets a limit to the values of r∞
that can be used. To circumvent this problem, we have constructed the large distance solution
perturbatively using many terms (typically 20) in the series expansion of the solutions at the
infinity. This allows to reduce numerical truncation errors. Note that this problem becomes
more severe when the mass of the scalar field is large, µ� σ.

An interesting phenomenon that occurs for test-particles orbiting relativistic stars is the
appearance of resonances in the flux (see, e.g., Ref. [134]). The resonance condition reads

mΩ = σR, (5.82)

where m is the azimuthal number and σR is the real part of the QNM frequency. In other
words, if the characteristic frequency of the BS matches (multiples of) the orbital frequency of
the particle, sharp peaks appear in the emitted flux. This is consistent with a simple harmonic
oscillator model, where the orbiting particle acts as an external force and where σR is the proper
frequency of the system. In this picture, the imaginary part of the frequency σI is related to the
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Figure 5.5: (Adapted from Ref. [156]) Main multipole contributions to the polar flux, l,m = 2, 3 and 4, for the
mini and massive BS configurations I. The dots indicate the approximated results obtained by setting the scalar
perturbations to zero.

damping of the oscillator and it is roughly proportional to the width of the resonance, while the
quality factor σR/σI is proportional to the square root of the height [134].

The appearance of these resonances seems to be a generic feature of BSs. As shown in
Fig. 5.5, the resonant frequencies may correspond to a stable circular orbit located outside the
BS effective radius (as for the rightmost resonance of the massive BS case in the right panel of
Fig. 5.5) or may correspond to stable circular orbits inside the BS (as in the mini BS case shown
in the left panel of Fig. 5.5). While resonant circular orbits also occur around outside perfect-
fluid stars [134] and gravastars [198], the existence of resonant geodesics inside the compact
object is peculiar to BSs, due to the absence of a well-defined surface and due to the existence
of stable circular orbits inside the star [156]. We shall address the solitonic BS case later, due
to its complexity.

The existence of these inner resonances is intriguing, because they appear to be a generic
feature of compact objects supported solely by the self-gravity of a scalar field. Indeed, any
sufficiently compact object can support bound and quasi-bound modes in its interior. In Ap-
pendix C, we show that constant density stars can support bound-state modes (i.e. modes with
purely real frequency) for massive scalar perturbations with l > 0 and they can also support
quasi-bound modes (i.e. modes with small but nonvanishing imaginary part) for massless scalar
and for gravitational perturbations. In the case of ordinary stars, these modes cannot be excited
because their frequency is higher than the frequency of the innermost stable circular orbit. How-
ever, the same class of modes exist also for BSs which, however, admit stable circular orbits in
their interior. In the case of a BS, even the massive scalar modes are quasi-bound. The small
imaginary part of the frequency is related to the coupling between scalar and gravitational per-
turbations: even if the scalar flux is zero for bound-state modes, part of the energy carried by the
scalar field can be converted into gravitational energy that is then dissipated at infinity through
gravitational waves. This also explains qualitatively why the imaginary part of these modes is
small (i.e. why the resonances are generically narrow), because the dissipation mechanism is
not efficient.

The structure of the resonances is fairly rich and it depends on the values of l, m and
on the specific BS model. We can gain some insight by looking at the analog problem for
a Schwarzschild BH. In that case, the location and width of the resonances can be computed
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Figure 5.6: Zoom of the main multipole contributions to the polar flux for orbital frequencies close to the interface
condition (5.83). Left panel: mini BS configuration I for l = m = 2. In this case the interface condition
corresponds to rp = 7.3624M . Middle panel: mini BS configuration I for l = m = 3; the interface condition
corresponds to rp = 10.0292M . Right panel: massive BS configuration I for l = m = 4; the interface condition
corresponds to rp = 3.8540M .

analytically in the small mass limit [202, 203]. For the Schwarzschild BH case, the real and
imaginary part of the quasi-bound modes read

σR ≈ µ

(
1− M2µ2

2(n+ l + 1)

)
,

σI ≈ − 41−2lπ2(Mµ)4l+6

M(1 + l + n)2(2+l)

[
(2l + n+ 1)!

Γ
[

1
2

+ l
]2

Γ
[

3
2

+ l
]2
n!

]
,

where n ≥ 0 is the overtone number. Therefore, as σ approaches σR there is a multitude of
modes that can be excited and their separation in orbital frequency vanishes in the large l or large
n limit. However, in the same limit the imaginary part (and hence the width of the resonances)
of the modes decreases very rapidly, as shown by the last equation above. Our results for
the resonances appearing in the flux from a BS inspiral are in qualitative agreement with this
behavior. This is shown in Fig. 5.6, where we show the polar flux in a restricted region of the
orbital radius for some BS model. Due to the complex scalar field, the resonance condition is
shifted: σ ± ω ≈ µ and corresponds to k± ≈ 0 in Eq. (5.67), i.e. to the interface between
quasi-bound states and QNMs. In the left panel of Fig. 5.6, we show the main l = m = 2
contribution for our mini BS configuration I. In this case, the interface condition k+ = 0 occurs
at rp ≈ 7.3624M and, even for l = 2, several resonances appear when the particle approaches
this peculiar orbit. Similar results hold for the contribution to the flux l = m = 3 for the
mini-BS configuration I and l = m = 4 for the massive BS configuration I. In these case, the
interface condition reads rp ≈ 10.0292M and rp ≈ 3.8540M , respectively. Note that the width
of the resonances decreases very rapidly for large values of l, so that the resonances of higher
multipoles are more difficult to resolve and the corresponding modes have a smaller quality
factor.
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Figure 5.7: Polar flux for the stable (solitonic BS I configuration, cf. Table 5.1), compared with the Schwarzschild
BH case.

Our analysis generically shows that the orbital frequency

Ωres ∼
µ∓ ω
m

, (5.83)

plays a special role in the gravitational and scalar flux emitted in a quasicircular inspiral around
a BS. The detectability and some observational implications of these resonant frequencies are
discussed in Chapter 6 (see also Ref. [156]).

The presence of the scalar field perturbations is crucial for the resonances. In order to
illustrate this point, we have considered a decoupling limit, where gravitational and scalar per-
turbations do not couple to each other. Although this approximation is not fully consistent, it
is nevertheless useful to separate the features of the flux computed for the full coupled system.
In this limit, scalar perturbations are described by two coupled second-order equations, which
support normal modes, i.e. modes with purely real part. These modes are very close to the real
part of the slowly-damped modes found in the full system and they roughly coincide with the
resonant frequencies of the point-particle quasicircular inspiral. Likewise, we have computed
the gravitational flux after having artificially set the scalar perturbations to zero. In Fig. 5.5 we
show a comparison between the fluxes in the decoupling limit and those obtained by solving
the full equations for mini BSs and massive BSs. Away from the resonances, the gravitational
flux is in very good agreement with the exact result. This is consistent with the picture pre-
sented above: in absence of gravito-scalar coupling, the system would admit normal bound
scalar modes. The latter however acquire a small imaginary part due to the coupling with the
gravitational sector and can be dissipated at infinity as gravitational waves. Thus, the real part
of the QNMs is mainly governed by the scalar sector, whereas the generic aspects of the flux
away from the resonant modes is mainly driven by the gravitational sector.

Supported by the good agreement of the decoupling of the scalar field and gravitational
perturbations, we have adopted it to compute the flux in the solitonic BS configurations. In this
case, the large mass of the background scalar field makes it challenging to solve the full system.
This is due to the presence of two different length scales: the BS mass M which regulates the
gravitational sector, and the scalar-field mass µM � 1 which regulates the decay of the scalar
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field.
In Fig. 5.7 we show the flux obtained in the decoupling limit, compared to its (exact)

Schwarzschild counterpart. We only show the stable circular orbits located roughly at r > 6M .
For these orbits, the difference is small. This is expected because the external spacetime is very
close to Schwarzschild. On the other hand, unlike the other BS models, highly energetic stable
circular orbits exists close to the stable light-ring inside the star. In Fig. 5.7 we have neglected
the resonance structure of the flux. However, as shown in Tab. 5.5, resonant frequencies for this
model correspond to relativistic high-energy orbits and they are not excited by the quasicircular
inspiral. Furthermore, since the mass coupling of these configurations is higher than the other
models, scalar field radiation is only emitted for very high multipoles, which are subdominant.
Thus, for solitonic compact configurations the main distinctive feature of such compact hori-
zonless configurations with respect to a Schwarzschild BH is the possibility of having stable
geodesics in the core of the object, which are also associated to large gravitational fluxes. We
refer the reader to Chapter 6 (also Ref. [156]), where other features of the inner inspiral are
discussed.

5.6 Conclusions and outlook
In this chapter we constructed three different BS models, namely mini, massive and solitonic
BSs. The spacetimes were constructed using the full Einstein’s equations, without any ap-
proximation method. Moreover, we discussed circular geodesic motion in the BS spacetime,
showing some specific features that are also present in the case of circular motion in uniform
density stars in general relativity, like the presence of two light-rings, depending on the com-
pactness of the star. We computed the QNMs of the BS configurations, extending the results
of Ref. [160], showing that generically they would be excited by the motion of a point parti-
cle in circular orbits. The energy fluxes emitted by the particle were calculated, showing the
distinctive characteristic of the resonances in the flux. The analysis made here also extends the
results of Ref. [173]. The discussion on the detectability and observational consequences of the
resonances will be given in the following chapter.

The results presented in this chapter offer an answer to the question of whether or not one
can distinguish BSs from BHs, from the gravitational point of view. We conclude that the mo-
tion of stellar-size objects would leave characteristic imprints in the signal that are intrinsically
connected with the BS models. The mass of the bosonic particle forming the star has to be light
enough in order to reproduce supermassive objects. The studies presented here for the gravita-
tional flux are for point particles in circular orbits, and are most applicable in the region where
the scalar field φ0 is small enough, i.e., outside an effective BS radius. Inside the star other ef-
fects like accretion and dynamical friction should be considered (these are analyzed in the next
Chapter). In particular, these effects in a head-on collision could lead to interesting features.
Also, the study of eccentric orbits is a direct and important generalization of the present work.

Another possible extension of the present study is the investigation of EMRIs in rotating
BS spacetimes. Rotating BSs were analyzed in the literature, in both Newton’s and Einstein’s
gravity context [204]. Perturbation theory around non-spherically symmetric spacetimes is still
a challenge, and some cases were studied only within approximation schemes, like in slowly
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rotating BHs [146, 197, 205]. The study presented here serves as a reference for further studies
of BSs systems.
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Chapter 6

Into the lair: Gravitational wave

signatures of dark matter

The Universe is populated with a plethora of different gravitationally-bound objects in dynam-
ical equilibrium. Luminous, hydrogen-fueled stars like our Sun are supported against collapse
by radiation and gas pressure, whereas darker, compact and quiescent objects like neutron stars
are prevented from full collapse by degeneracy pressure. Although evidence has been mounting
for decades, only in recent years has it has become apparent that a completely different class
of objects may, or must, also abound. Dark matter (DM) makes up a large fraction of galaxies
and even though its exact nature is not known, it conglomerates into huge halos around the
center of galaxies [206]. Because all forms of matter gravitate, compact self-gravitating DM
configurations could therefore be a substantial component of our own galaxy.

Compact DM objects have also been occasionally invoked as an alternative to one of the
most intriguing predictions of general relativity, namely the existence of black holes (BHs).
Very massive main-sequence stars are dynamically unstable, a feature which is shared by most
of the known compact configurations. Thus, “standard” stars cannot explain the dark, compact
and supermassive objects lurking at the center of most galaxies, like the ∼ 106M� object in
our own Milky Way [207]. It is widely accepted that BHs are the most natural explanation for
these supermassive compact objects. Nevertheless, although actual observations support the BH
hypothesis, experiments showing the direct existence of an event horizon are still missing. In
fact, some argue that an observational proof of the event horizon based only on electromagnetic
observation is fundamentally impossible [208]. In an attempt to test the BH paradigm, exotic
forms of matter which possibly collapse to form supermassive horizonless objects, have been
proposed. Besides their relevance for testing fundamental aspects of gravity, these objects may
contribute to the dark matter content of the Universe [206], being thus relevant for particle
physics and cosmology. The exact nature of the object at the center of our galaxy will soon be
strongly constrained by observations [209–211], making this an exciting time to theoretically
model and understand alternatives.

Common approaches to probe DM in astrophysical settings are based on model-dependent
interactions between the DM and the baryonic sector. Such approaches usually focus on the
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imprints these interactions leave on the evolution and equilibrium structures of astrophysical
objects. However, the equivalence principle guarantees that all forms of matter gravitate as pre-
dicted by Einstein’s general relativity, regardless of the (non)baryonic nature of the constituent
particles. As such, model-independent signatures of DM can arise from the study of gravita-
tional self-interacting effects, like the existence of supermassive DM configurations. See [212]
for a very recent proposal in this direction.

It is widely believed that measurements of gravitational waves (GWs) from inspiralling
stellar-mass objects into supermassive compact objects will map the entire spacetime geome-
try [213, 214] and will carry imprints of the nature of the central object. Thus, GW measure-
ments are in principle able to test the existence of compact DM objects and to discriminate
between between BHs and other types of horizonless objects [173, 215].

With the above as motivation, we study distinctive features of the extreme mass-ratio inspiral
(EMRI) around supermassive scalar-field configurations. In this system, a small compact object
with mass µp ∈ (1, 10)M� spirals into a supermassive object with mass M ∈ (104, 107)M�.
The late-time inspiral of this system is of interest to future space-based GW detectors [216,217].
The typical orbital period is (102, 104) seconds and low-frequency GWs are emitted in the
(10−4, 10−2) Hz frequency band. In the EMRI limit, the inspiral can last tens to hundreds of
years in the detector band. In one year of observation, millions of radians are contained in the
signal, encoding rich information about the spacetime dynamics [213]. For this reason EMRIs
are exceptional probes of strong-field gravity [218], modifications of general relativity [174,
175, 203, 219] and of the nature of supermassive objects.

Here we argue that the GW signal from an EMRI can be also used to probe the existence of
exotic fields that constitute the dark content of the Universe. If the central object is a BH, the
inspiral terminates with a merger and subsequent ringdown [109]. Instead, if the central object
is formed by some compact DM configuration that interacts very weakly with baryonic stars,
the EMRI proceeds also in the interior of the object, contributing significant amounts of signal-
to-noise ratio to the signal [173]. EMRIs are relatively clean systems that can be described
with great accuracy within a perturbative approach. During most of the inspiral the stellar-
mass object can be considered as a test particle moving on a fixed background. The timescale
for merger is much longer than the orbital period and the evolution can be described by an
adiabatic approximation. At each instant, we consider that the particle follows a geodesic of the
background spacetime and the secular evolution of the geodesic parameters can be computed by
solving the linearized Einstein’s equations. In this way one finds the inspiralling orbit and the
corresponding gravitational waveform. This procedure takes into account the main dissipative
effects of the back-reaction. A more detailed analysis, which would also consider conservative
effects [220, 221] is beyond the scope of this chapter.

Among other models for self-gravitating exotic fields (e.g. axion stars [222], boson-fermion
stars [223], etc...), boson stars (BSs) are particularly interesting because they arise as simple
solutions of the Einstein-Klein-Gordon equations, without requiring any exotic matter other
than a massive bosonic field (for reviews on the subject see [51, 144, 163]). BSs are compact
stars configurations that may be thought of as a natural realization of Wheeler’s geons [224] for
scalar fields. Unlike the original geons, BSs can admit stable configurations which share many
features with central galactic objects, without having singularities nor horizons [169,225], being
indistinguishable from BHs in certain regimes. Formation of BSs has been studied extensively
in the literature [51, 185, 226–231]. The recent discovery of the Higgs boson [232] is of course

Programa de Pós-Graduação em Fı́sica - UFPA



6.1 GW-signatures of EMRIs inside compact DM configurations 94

a further motivation to study this type of solutions.
BSs can be classified [51] according to the scalar potential in the Klein-Gordon Lagrangian.

Depending upon the scalar self-interactions, the maximum mass of a BS spans the entire range
from one to billions of solar masses.

Rather than working on a case-by-case analysis, here we focus on generic features that can
leave a characteristic imprint on the waveform. The inspiral can be divided into two different
regimes: the motion in the exterior of the supermassive object and the motion in the interior. In
Section 6.1 we discuss EMRIs inside generic DM configurations. We show that the inspiral is
mostly driven by accretion of the scalar field onto the small compact object and by dynamical
friction [233, 234], rather than by GW emission. We include these effects in a Newtonian anal-
ysis and compute the signal emitted in GWs. The signal is markedly different from that arising
during the merger into a supermassive BH and it also deviates substantially from the evolution
obtained when accretion and gravitational drag are neglected [173]. While our results of Sec-
tion 6.1 are fairly generic, to discuss the outer evolution we need to specify some relativistic
model. This is done in Section 6.2, where we describe the EMRI around a spherically symmet-
ric BS. We show that the evolution is driven by the emission of gravitational and scalar waves,
which we describe at fully relativistic level. We show that, during a quasi-circular evolution,
the energy flux can be resonantly excited. This leads to a large dephasing with important ob-
servational consequences for GW detection. We conclude in Section 6.3 by discussing possible
extensions of our approach. We use the signature (−,+,+,+) for the metric and in most of the
chapter we adopt natural units ~ = c = G = 1, unless otherwise stated.

6.1 GW-signatures of EMRIs inside compact DM configura-

tions
We are interested in discussing simple models that can capture the salient features of the inspiral
through a DM medium in the extreme mass-ratio limit. There is a variety of situations in which
such inspiral can occur. The most obvious one is the existence of self-gravitating, compact
DM objects. Another is the inspiral around Kerr BHs surrounded by bosonic clouds [235–238].
Very recently, the GW signatures of intermediate mass BHs with DM mini-halos has also been
considered [212].

Despite the multitude of models one can conceive, two of the most important generic fea-
tures of these configurations are: (i) they interact with standard baryonic matter by purely grav-
itational effects and (ii) they are typically supported by self-interactions of a massive bosonic
field, whose mass can range between O(10−20) eV (or smaller) and O(1) TeV (or larger). In
fact, as far as purely gravitational effects are considered, many dynamical aspects do not even
depend on the nature of the DM particles (e.g. spin, mass, coupling constants,...), but solely on
their mass-energy distribution.

Although compact DM configurations usually require relativistic effects to support their
selfgravity, many features of the inspiral can be captured by a simple Newtonian model. In this
section, we consider compact Newtonian objects which are characterized by some nonvanishing
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density profile ρ(r) when r < R and zero outside. The simplest model is a constant-density star1

supported by purely radial pressure, but more realistic nonconstant profiles are also possible.
The crucial point here is to assume that these objects do not couple with standard matter in any
way other than through gravitational interactions. In particular, the small orbiting perturber can
penetrate the stellar surface and move inside the object. Our main interest here is to understand
this motion and the corresponding GW emission.

6.1.1 Accretion- and gravitational drag-driven inspiral
While the motion in the exterior is driven by radiation-reaction only, when the particle pene-
trates the stellar surface other effects must be taken into account, namely the accretion of the
nonbaryonic mass onto the small compact object and the drag force due to the gravitational in-
teraction of the orbiting perturber with its own wake. In the context of EMRIs, these effects have
been taken into account to study the imprints of matter surrounding supermassive BHs [240] on
the GW emission. We will show that in the interior of compact nonbaryonic matter configura-
tions, these processes are actually dominant and the inspiral is mostly driven by DM accretion
rather than by GW emission.

Accretion: Collisionless versus Bondi-Hoyle

Accretion of the scalar field onto the small compact object produces external forces that con-
tribute to the secular evolution. As long as the accreted mass is much smaller than the total
mass of the orbiting object, the assumption of quasi-stationary motion should provide a fairly
accurate description. Let us start by some simple estimates, assuming the accretion cross sec-
tion is roughly the geometrical one of the small compact object. For head-on collisions, the
small compact object of mass µp traverses the entire diameter 2R of the star, accreting a tube of
length 2R and radius Rp. Therefore,

Maccreted

µp
∼ 3

2

µpM

R2
∼ 0.02

µp
M
� 1 , (6.1)

where we used Rp ≈ µp, R ∼ 10M and we have assumed constant density. Thus, during a
single passage, the accreted matter has a negligible effect for head-on collisions. On the other
hand, during the inspiral from the surface, the orbiting object can accrete much more as it
sweeps through the equatorial plane, tearing a disk-gap of width µp and area ∼ R2. In this case
we get

Maccreted

µp
∼ 3M

4R
∼ O(1) , (6.2)

for compact central objects. Thus, inspirals have to be carefully considered.

1Constant density solutions exist – both in Newtonian gravity and in general relativity – also when the fluid is
anisotropic, as in the case of selfgravitating scalar fields [239]. However, we will show that possible anisotropies in
the fluid are not important to model the inspiral, because accretion and dragging are mostly insensitive to pressure
in the extreme mass-ratio limit.
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Figure 6.1: Level plots corresponding to the ratio Rp/` = 1, 10−4, 10−8 in the (σDM,mDM) plane, where σDM

is the total self-interaction cross section for DM and mDM is the mass of the DM particle. In the left-uppermost
part of the parameter space the radius of the small compact object Rp is much larger than the mean free path ` and
accretion occurs at the Bondi-Hoyle rate (6.6). In the lower-rightmost part of the diagram Rp � ` and accretion is
governed by Eq. (6.5). Straight lines refer to µp/M = 10−6 and R = 2M , but they have a simple scaling with the
inverse of the mass ratio and with the compactness of the central object.

In a more rigorous treatment, dynamical effects and the nature of the small compact object
must be included. Accretion is described by

µ̇p = σρv , (6.3)

where ρ is the density of the DM configuration, v is the modulus of the velocity of the small
object with respect to distant static observers and σ is the accretion cross section. The latter
strongly depends on the physical processes involved in the accretion and on the nature of the
perturber. If the small compact object is a BH, whose radius Rp is much smaller than the mean
free path ` = (σDMn)−1 (σDM and n being the DM self-interaction total cross section and the
particle density, respectively), then an approximate formula is σ = πR2

eff where [69, 241]

Reff ∼
Rp

v
. (6.4)

is the effective capture radius. Therefore, as v → 0, any particle that forms the supermassive
object will eventually fall into the small BH even when orbiting at large distance. Clearly, there
exists a cutoff distance given by the radius R of the supermassive star and which corresponds to
a minimum velocity, vmin = Rp/R. In the small mass-ratio limit vmin ∼ µp/M � 1. Therefore,
for any v > vmin we get

µ̇p =
πρR2

p

v
Rp � ` . (6.5)

Programa de Pós-Graduação em Fı́sica - UFPA



6.1 GW-signatures of EMRIs inside compact DM configurations 97

If the small compact object is a neutron star, the effective cross section is the minimum between
the geometrical cross section and sum of the cross sections upon the individual nuclei of the star
(see, e.g., [142,242]). Provided the scattering cross section between DM particles and the stellar
nucleons is larger than 10−45cm2, Eq. (6.5) is still a good approximation for the accretion rate
at nonrelativistic velocities. If the small object is a white dwarf, the geometrical cross section
is typically larger than the individual scattering contributions, so that the effective cross section
is given by the sum of the individual nuclei cross sections [142]. In this case the accretion rate
will depend on the details of the microphysics and on the type of DM particles that make up
the supermassive object. However, white dwarfs are not compact enough to sustain tidal forces
and are likely to be tidally disrupted during the latest stage of the external inspiral. Thus, we
shall restrict our attention to accretion onto relatively slow BHs and neutron stars only, both
governed by Eq. (6.5).

On the other hand, if the radius of the object is comparable to or larger than the mean free
path, Rp � `, then accretion becomes a macroscopic process and cohesion forces and matter
compressibility must be taken into account [69, 241]. When the small compact object is a BH,
this type of accretion is described by the Bondi-Hoyle formula [69, 243, 244]

µ̇p = 4πλ
ρµ2

p

(v2 + c2
s)

3/2
Rp � ` , (6.6)

where cs is the speed of sound and λ is a number of order unity which depends on the details
of the fluid. In our numerical simulations we have assumed λ = 1, but the results depend on λ
very mildly. In Fig. 6.1, we show the straight lines in the DM cross section-mass (σDM–mDM)
plane corresponding toRp/` = 1, 10−4, 10−8 for a mass ratio µp/M = 106M� andR = 2M . In
the upper-leftmost part of the parameter space Rp � ` and accretion occurs at the Bondi-Hoyle
rate (6.6). In the lower-rightmost part of the diagram Rp � ` and accretion is governed by
Eq. (6.5). In the rest of this chapter, we shall consider the two regimes separately.

Drag force

Another important effect is the gravitational drag which results in a dynamical friction force on
the small compact object traveling through the DM distribution [233, 234]. The gravitational
field of the small perturber is felt universally, including by the DM making up the compact
configuration. Thus, a portion of this material is “dragged” along the inspiral, being tantamount
to a net decelerating force acting on the perturber. In the EMRI limit, at the scale of the small
compact object, the density of the medium is nearly constant, so that we can adopt the theory of
dynamical friction for motion through constant-density media. For linear motion, the dynamical
force friction reads [234]

FDF = −
4πµ2

pρ

v2
Iv , (6.7)
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with

Iv =


1
2

log
(

1+v/cs
1−v/cs

)
− v/cs , v < cs

1
2

log
(

1− c2s
v2

)
+ log

(
vt
rmin

)
, v > cs

(6.8)

where rmin is the effective linear size surrounding the small compact object.
The gravitational drag force in the case of circular motion has been derived in [245], where it

is shown that the curvature of the orbit will bend the wake at large distances from the perturber.
However, it is found that the subsonic motion is remarkably similar to the linear case, whereas
the supersonic motion deviates from the linear case when the size of the small perturber is not
parametrically smaller than the the orbital radius. Within the extreme mass-ratio assumptions,
the size of the perturber is always much smaller then the orbital radius, i.e. rmin � r, so that
we expect the linear-motion analysis to approximate well the generic orbital case. We have
confirmed this expectation by checking the results obtained using Eq. (6.7) with those obtained
by implementing the fitting formulae given in [245] for the gravitational drag force in subsonic
circular motion.

If the central object is very compact, the speed of sound is comparable to the speed of
light, and, in the nonrelativistic limit we focus on, the motion is likely to be subsonic. On the
other hand, supersonic motion is in principle allowed close to the surface and depending on
the particular model at hand. Supersonic motion produces a sharp enhancement of the drag
force when v ≈ cs [234, 245]. In particular, the supersonic drag force depends on rmin and
effects related to the circular motion must be taken into account if rmin & O(r/10). Even when
v � cs, in the extreme-mass ratio limit rmin � r, the results obtained for the linear motion
are in remarkably good agreement with the exact ones [245]. In our models we have assumed
rmin ≡ Reff � r.

Dynamical friction might be very important during the inspiral. Indeed, since the force due
to accretion reads Fa = µ̇pv, we obtain

|FDF|
F collisionless
a

∼

{
1
3
c3

c3s

v
c

v � cs

log
(

vt
rmin

)
c2

v2 v � cs
, (6.9)

for the accretion rate (6.5) and

|FDF|
FBondi
a

∼

{
(3λ)−1 v � cs

λ−1 log
(

vt
rmin

)
v � cs

, (6.10)

for the Bondi rate (6.6), respectively. In Eq. (6.9) we have considered Rp ∼ 2µp/c
2 and we

have reintroduced the speed of light c for clarity. Thus, in the case of collisionless accretion,
if the motion is supersonic but nonrelativistic, cs � v � c, dynamical friction dominates over
accretion. In the subsonic regime, if cs ∼ O(c), the drag force is subdominant in the nonrela-
tivistic limit and we expect the late stages of the inner inspiral to be dominated by collisionless
accretion effects. Nonetheless, depending upon the ratio cs/c, there exists a crossover regime
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in which both effects are equally important. On the other hand, if accretion is governed by the
Bondi rate, it is comparable to the gravitational drag force in the subsonic regime and it is neg-
ligible in the supersonic one. The results presented in the next section are obtained by including
both the accretion and the drag force during the inspiral and considering both types of accretion
separately.

Gravitational radiation backreaction

In addition to accretion and gravitational drag, the motion inside compact DM configurations
is also driven by gravitational radiation reaction, similarly to the usual inspiral around compact
objects in vacuum. Neglecting radiation-reaction, the motion of the perturber is governed by
the gravitational force Fg(r) = m(r)µp/r

2. For simplicity, in this chapter we consider the
following mass function and DM density profile:

m(r) = M
( r
R

)α
, ρ(r) =

αM

4πRα
rα−3 , (6.11)

but our results extend straightforwardly to more realistic profiles. Note that the equation above
reduce to the case of constant-density DM configuration when α = 3 and to the vacuum case
(briefly discussed in Appendix D) when α = 0.

Neglecting radiation-reaction, the energy and angular momentum of the perturber are con-
served quantities [212]:

E =
1

2
µpṙ

2 +
L2

2µpr2
− Mµp

(1− α)Rαr1−α , (6.12)

L = µpr
2ϕ̇ . (6.13)

In the case of circular orbits of radius r, we get

E = µp
M(1 + α)

Rαr1−α2(α− 1)
, (6.14)

L2 = µ2
p

M

Rα
r1+α . (6.15)

and the Keplerian frequency reads

Ω =

√
m(r)

r3
. (6.16)

For circular orbits the radius and the orbital frequency are constant and, therefore, these orbits
dissipate energy through the standard quadrupolar formula [246]:

ĖGW =
32µ2

pM
3r3α−5

5R3α
, (6.17)
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where we have used Eq. (6.16). Finally, differentiating Eq. (6.14) and using the energy balance
law, Ė = −ĖGW, we obtain the evolution equation of the orbital radius

ṙ = − 64M2µp
5(α + 1)r3−2αR2α

, (6.18)

whose solution reads
r(t) = R (1 + t/τ0)−

1
2(α−2) , (6.19)

with (α − 2)τ0 = 5(1 + α)R4/(128M2µp). Note that the late time behavior of the solution
above strongly depends on α: for α < 2 the radius drops to zero in a finite time |τ0|, whereas
for α > 2 the radius approaches zero asymptotically. In the singular case α = 2 the behavior is
exponentially suppressed.

Let us now show that radiation-reaction effects are small compared to accretion. Simply by
angular momentum conservation and using Eq. (6.16), we obtain, for the secular evolution of
the radius under accretion,

ṙaccretion = − 2

1 + α

r(t)µ̇p
µp(t)

. (6.20)

By comparing with Eq. (6.18), we obtain

ṙcollisionless

ṙreaction

∼ 5α

32

(
R

M

)3/2(
R

r(t)

) 3(α−1)
2

, (6.21)

ṙBondi

ṙreaction

∼ 5αλ

32c3
s

R

M

(
R

r(t)

)α−1

, (6.22)

for collisionless and subsonic Bondi accretion, respectively. Interestingly, in both cases and for
any α > 1, the late-time inspiral in the interior of DM compact configurations is generically
dominated by accretion and not by radiative dissipation.

6.1.2 Numerical evolution of the inspiral in the interior
In this section we describe the secular evolution of the small perturber inside a spherically-
symmetric DM configuration as driven by DM accretion and gravitational drag. As proved in
the previous section, gravitational radiation reaction is a small effect compared to accretion, so
we can safely neglect it here. In Newtonian theory, the accretion- and gravitational drag-driven
inspiral is described by the following system:

µ̇pṙ + µp(r̈ − rϕ̇2) = −µpm(r)

r2
+ FDF,r , (6.23)

rµ̇pϕ̇+ µp(rϕ̈+ 2ṙϕ̇) = FDF,ϕ , (6.24)
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Figure 6.2: Secular evolution of the orbital parameters of a point particle orbiting a constant density, Newtonian
star with radius R = 6M . The particle starts at r(0) = 8M with initial eccentricity ei ≡ e(t = 0) = 0.1. When
r > R (blue curves), the evolution is radiation-driven through the quadrupole formula (cf. Appendix D). When
r < R (red curves) the evolution is driven by dynamical friction and by (i) collisionless accretion (left panels, cf.
Eq. (6.5)) or ii) Bondi-Hoyle accretion (right panels, cf. Eq. (6.6)). Upper panels: cs = 0.6 and the motion is
always subsonic. In the interior the orbits circularize quickly. Lower panels: cs = 0.2; the inspiral in the interior
starts supersonic and the evolution is dominated by dynamical friction. When v < cs, the evolution proceeds
qualitatively as in the upper panel. In the small left panels we show (from top to bottom): the radial position in
polar coordinates, the module of the particle’s velocity and the time evolution of the mass-ratio. The evolution
does not qualitatively depend on the accretion rate formula used.
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together with Eq. (6.5) or Eq. (6.6) for the evolution of µp(t). In the equations above FDF,r and
FDF,ϕ are the two components of the gravitational drag force. Namely,

FDF,r = FDF
ṙ

v
, FDF,ϕ = FDF

rϕ̇

v
. (6.25)

where v2 = ṙ2 + r2ϕ̇2 and FDF is the linear dynamical force friction, Eq. (6.7). As discussed
above, using the formula for linear motion is well justified in the extreme-mass ratio limit [245].

Equation (6.24) can be directly integrated in two extremal limits. Neglecting gravitational
drag, and for any accretion rate, we get

rΩ ≡ rϕ̇ =
L

rµp
, (6.26)

which can be also obtained from the conservation of the angular momentum L. On the other
hand, if we neglect accretion (µp =const) and in the limit v � cs, we get

rΩ ≡ rϕ̇ =
L

rµp
exp

(
−4πρ

3c3
s

µpt

)
, (6.27)

where we have assumed constant density.
In the general case, the system (6.23)-(6.24) has to be integrated numerically for a given

density profile ρ(r) and some initial conditions. The latter are chosen at the time the particle
reaches the radius of the object at the end of the quasi-elliptical, radiation-driven inspiral in the
exterior.

Some results are shown in Fig. 6.2. As an example, we have considered a constant-density,
Newtonian star with radius R = 6M and a point-like particle located at r = 8M at t = 0. The
initial eccentricity is ei = e(t = 0) = 0.1. Similar results can be obtained for other choices of
the parameters and for nonconstant density profiles2.

In absence of dissipative effects, the motion inside constant-density distributions is worked
out in Appendix E, where we show that the small body moves on ellipses centered at the origin.
The quasi-elliptical evolution is then governed by Eqs. (6.23)-(6.24). Figure 6.2 summarizes
the quasi-elliptical evolution of the orbital parameters in the subsonic (upper panels) and in
the supersonic (lower panels) cases, both for collisionless accretion (left panels) and for Bondi
accretion (right panels), respectively. In the top panels, we show the evolution of the orbital
parameters for the case cs = 0.6 (in units of the speed of light), i.e. the motion in the interior
of the object is always subsonic. In the large panels we show the orbit in cartesian coordinates.
The small panels refer to the evolution of the orbital radius, the velocity and the mass of the
small object, respectively. To help visualization, we have considered the unrealistic initial mass
ratio µp(t = 0) = 10−2M and the number of cycles grows with the inverse of µp/M . In the
interior, accretion is very efficient and the mass-ratio becomes of order unity during the inspiral,

2Nonetheless, in the deep interior of stellar configurations the density is nearly constant, so that we expect
constant-density profiles to be a good approximation for the latest stages of the inner inspiral inside more compli-
cate matter configurations.
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so that our approximation breaks down.
In the interior (red curves) the orbit circularizes, regardless the details of the accretion rate.

This can be proved analytically in the case of accretion-driven inspiral. Indeed, using the results
of Appendix E, together with conservation angular momentum conservation and the energy bal-
ance law, it is easy to derive the secular evolution of the semi-major axis b and of the eccentricity
in the small-eccentricity limit:

ḃaccretion = −b
(

1

2
+
e2

8

)
µ̇p
µp

+O(e4) . (6.28)

ėaccretion = −e
4

µ̇p
µp

+O(e3) . (6.29)

The equation above shows the important result that circular motion remains circular. Because
µ̇p > 0, orbits which are slightly eccentric will tend to circularize. Therefore, as clearly shown
in Fig. 6.2, circular inspiral is an attractor of the motion. Remarkably, this result is independent
of the specific accretion process.

In the bottom panels of Figure 6.2, we show the same quantities as in the top panels but for
the case cs = 0.2, i.e. the motion in the interior starts supersonic and, as the velocity decreases,
the inspiral enters the subsonic regime. As expected, during the supersonic phase the motion is
dominated by dynamical friction and the velocity decreases abruptly. As the particle enters the
subsonic regime, the evolution proceeds qualitatively as in Fig. 6.2. However, the inspiral in
the supersonic case is much faster and the orbits do not have time to circularize. Note that the
evolution does not qualitatively depend on the accretion rate formula used: the results shown in
the left and right panels of Figure 6.2 are qualitatively similar.

Finally, note that the accretion can be extremely efficient. In the latest stages of the inspiral,
the orbiting object will start accreting very fast [cf. (6.36) below] and an arbitrarily small initial
mass will accrete an amount of matter M in a finite amount of time. Therefore, our small mass-
ratio hypothesis will eventually break down. If the orbiting object is a neutron star, during the
inspiral it will develop a DM core and it will likely collapse to form a BH [142]. The signal
emitted during the collapse is another distinctive feature that must be quantified by a relativistic
analysis.

6.1.3 Gravitational waveforms
Here we present the waveforms emitted during the inspiral shown in Fig. 6.2. Once the orbital
radius, angular velocity and perturber mass are obtained as functions of time, we can use the
standard quadrupole formula to compute h+(t) and h×(t) for a distant observer located at r̃
with an angle view of (ι, 0) [cf. Eq. (3.72) in [246]].

In Figure 6.3 we consider ι = π/2, so that only h+ is nonvanishing and the wave is linearly
polarized. The motion in the exterior is driven by the classical radiation-reaction mechanism,
briefly summarized in Appendix D for completeness. In panel a) we have neglected accretion
and dynamical friction, so that the evolution proceeds only through the radiation-backreaction.
In panel b) we have considered accretion but neglected gravitational drag and the signal has a
constant amplitude and constant frequency. We discuss this case in detail in the next section.
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Figure 6.3: Gravitational-wave amplitude h+r̃ along (ι, 0) = (π/2, 0) as a function of time when collisionless
accretion (left panels) and Bondi accretion (right panels) are considered, respectively. Small panels refer to: a)
usual radiation-driven inspiral (neglecting accretion and dynamical friction); b) accretion-driven inspiral (neglect-
ing radiation and dynamical friction); c) inspiral driven by accretion and dynamical friction (neglecting radiation)
with cs = 0.6, which corresponds to the orbits shown in the top panels of Fig. 6.2; d) same as panel c) but with
cs = 0.5; e) supersonic regime with cs = 0.2, which corresponds to the orbits shown in the bottom panels of
Fig. 6.2. Remaining parameters as in Fig. 6.2.

Programa de Pós-Graduação em Fı́sica - UFPA



6.1 GW-signatures of EMRIs inside compact DM configurations 105

In panels c)-e) we have included both accretion and dynamical friction with different constant
values of cs.

The last panel shows the supersonic case described in the lower set of panels of Figure 6.2.
As expected, the contribution of dynamical friction becomes dominant as cs � c and we ob-
serve two effects: (i) the amplitude of the signal decreases in time and (ii) the total time of the
inspiral in the interior quickly decreases for smaller values of cs. The latter effect is simply due
to the extra dissipative channel during the evolution.

These features would be completely missed by an evolution purely driven by radiative ef-
fects. Our analysis does not include relativistic effects, but provides a strong case for including
accretion and gravitational drag effects in the inspiral inside compact DM configurations.

6.1.4 Analytical Fourier waveforms in the stationary-phase approxima-

tion
Some of the qualitative features of the waveforms presented in Figure 6.3 can be analytically
captured by a toy model in which we consider a small object of mass µp on a quasi-circular
orbit inside a Newtonian star and whose secular evolution is driven by a single dissipative
effect. At Newtonian order, it is possible to obtain analytical templates of the waveforms in
Fourier domain in the case of accretion-driven and radiation-driven inspiral. To lowest order,
µp, r and Ω are constant and the Newtonian waveforms simply read:

h+(t) =
Gr2µω2

GW

c4r̃

(
1 + cos2 ι

2

)
cos(ωGWt) , (6.30)

h×(t) =
Gr2µω2

GW

c4r̃
cos ι sin(ωGWt) , (6.31)

where ωGW = 2Ω. Then, dissipative effects can be included by replacing the constant param-
eters ωGW, r and µp by ωGW(t), r(t) and µp(t), where the secular time evolution is governed
by the specific dissipative mechanism [246]. In the next sections, we shall treat collisionless
accretion, Bondi accretion and radiation-reaction separately.

Collisionless accretion, Rp � `

In order to isolate the effects of accretion, let us neglect GW reaction and gravitational drag.
As we discussed above, if cs = O(c), the gravitational drag is a small effect compared to
accretion, at least in the nonrelativistic regime and for collisionless accretion. Let us then
consider the orbital evolution driven by accretion only. Because the system is in isolation, the
total angular momentum is constant, even when accretion is included. On the other hand, the
binding energy evolves during accretion. A simple and powerful result can be obtained solely
by angular momentum conservation,

µp(t)r(t)
2 =

L

Ω(t)
. (6.32)
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For quasi-circular orbits, v = rΩ and the orbital frequency reads as in Eq. (6.16). Using
Eq. (6.32), we obtain

µ(t) =
L√

Gm(r)r(t)
, (6.33)

where, here and in the rest of the section, we restore factors G and c for clarity. Finally, using
Eq. (6.5) we get:

ṙ = −8πLG

c2

ρ(r)r(t)

m(r) + 4πρ(r)r(t)3
Rp � ` . (6.34)

Once a density profile is specified, the equation above can be solved for r(t). Then, the other
dynamical quantities µ(t) and Ω(t) respectively read as in Eqs. (6.33) and (6.16).

To be concrete, let us consider the density profile given in Eq. (6.11). In this case, Eq. (6.34)
can be directly integrated:

r(t) = R (1− t/tinsp)
1
3 , (6.35)

µp(t) = µ(i)
p (1− t/tinsp)−

α+1
6 , (6.36)

Ω = Ωi (1− t/tinsp)
α−3

6 , (6.37)

where µ(i)
p is the mass of the particle at the time t = 0, with R = r(0) and Ωi = Ω(0), and we

have introduced the duration of the inspiral,

tinsp =
c2R3(1 + α)

6GαL
=

c2(1 + α)

8πG3/2α〈ρ〉µ(i)
p

√
M

R
, (6.38)

where 〈ρ〉 = 3M/(4πR3).
With this solution at hand, we can compute the corresponding gravitational waveforms [246].

Standard treatment allows to write Eqs. (6.30) and (6.31) to lowest order as

h+(t) = A+(tret) cos$(tret) , (6.39)
h×(t) = A×(tret) sin$(tret) , (6.40)

where tret is the retarded time and $ = 2
∫ t
ti
dt′Ω(t′). In the case at hand, we get

$ = $0 −
12tinsp

3 + α

√
GM

R3

(
τ

tinsp

) 3+α
6

, (6.41)

where τ = tinsp − t and $0 = $(tinsp). Note that the orbital frequency Ω is constant when the
density is homogeneous. When the density is nonconstant it is relevant to compute the Fourier
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transform of the waveform. Adopting a stationary phase approximation [246], we obtain

h̃+ = A+e
iΨ+ , h̃× = A×eiΨ× , (6.42)

where

A+ =
4
√

3iµ
(i)
p

c4r̃

√
tinsp

2(α− 3)

1 + cos2 ι

2

×
[
G

3(α−4)
2 παM

α−6
2 R

6+α
2 f

3+α
2

] 1
α−3

, (6.43)

A× =
2 cos ι

1 + cos2 ι
A+ , (6.44)

Ψ+ =
12tinsp

3 + α

(
R3

GM

) 3
α−3

(πf)
3+α
α−3

+2πf
(
tc +

r

c

)
−$0 −

π

4
, (6.45)

Ψ× = Ψ+ + π/2 . (6.46)

where f = 2Ω/(2π). Therefore, for α > 0 the amplitude and the phase increase with the
frequency.

Bondi-Hoyle accretion, Rp � `

In this case, from Eq. (6.6) we get

ṙ = −8πLGλ

c3
s

ρ(r)
√
Gm(r)r(r)

m(r) + 4πρ(r)r(t)3
Rp � ` , (6.47)

which, for the density profile given in Eq. (6.11), can be directly integrated

r(t) = R
(

1− t/t(B)
insp

) 2
7−α

, (6.48)

µp(t) = µ(i)
p

(
1− t/t(B)

insp

)−α+1
7−α

, (6.49)

Ω = Ωi

(
1− t/t(B)

insp

)α−3
7−α

, (6.50)

where we have assumed α 6= 7 and

t
(B)
insp =

c3
sMR7/2(1 + α)

(7− α)αλL(GM)3/2
=

c3
s(1 + α)

4πG2α(7− α)〈ρ〉λµ(i)
p

.
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Similarly to the previous case, using the solution above we can perform a stationary phase
approximation to compute the amplitude and the phase in the frequency domain. The relevant
ones read

A+ =
2iµ

(i)
p

c4r̃

√
t
(B)
insp(7− α)

α− 3

1 + cos2 ι

2

×
[
G

7α−25
4 π

1+α
2 M

3α−13
4 R

15−α
4 f 2

]1/(α−3)

, (6.51)

Ψ+ =
7− α

2
t
(B)
insp

(
R3

GM

) 7−α
2(α−3)

(πf)
4

α−3

+2πf
(
tc +

r

c

)
−$0 −

π

4
. (6.52)

Gravitational radiation-reaction

The motion driven solely by gravitational radiation reaction has been worked out in Section 6.1.1.
Using Eqs. (6.19) and (6.16) we obtain, to lowest order,

A+ =
4iµ

(i)
p

c4r̃

√
τ0(α− 2)

α− 3

1 + cos2 ι

2

×
[
G2α−7π2Mα−4R6−αf

7−α
2

]1/(α−3)

, (6.53)

Ψ+ =
8(α− 2)

5− 3α
τ0

(
GM

R3

) 2(α−2)
α−3

(πf)
5−3α
α−3

+2πf
(
tc +

r

c

)
−$0 −

π

4
. (6.54)

where τ0 is defined below Eq. (6.19).
Comparing the waveform amplitudes and phase in Fourier space shows that each specific

dissipative mechanism produces a very peculiar signal. In particular, the signal produced by
accretion-driven inspiral is dramatically different from that arising in the classical radiation-
driven inspiral, already at Newtonian level. Our analysis can be easily extended to more realistic
density profiles. In general, the signal strongly depends on the DM profile and the waveform
parameters are also sensitive to the type of accretion process. Thus, the GW signal can be used
to constrain the nature and the properties of compact DM configurations.

6.2 Relativistic analysis for the external inspiral
A self-consistent relativistic analysis of the inspiral around scalar-field compact configuration
is fairly involved already at first order in the mass ratio. Indeed, due to the coupling between
gravitational and scalar perturbations and to the presence of a background scalar field, a small
perturber will also source scalar waves, even if it is formed by purely baryonic mass. On the
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Vs(|Φ|2) φ0(r = 0) ω/µ Mµ Rµ Mω R/M

mini-BS I µ2|Φ|2 0.0541 0.853087 0.63300 7.86149 0.54000 12.4194
mini-BS II 0.1157 0.773453 0.53421 4.52825 0.41319 9.03368

massive-BS I µ2|Φ|2 + λ
2
|Φ|4 0.0188 0.82629992558783 2.25721 15.6565 1.86513 6.9362

massive-BS II 0.0309 0.79545061700675 1.92839 11.3739 1.53394 5.8981
solitonic BS I µ2|Φ|2(1− 2|Φ|2/σ2

0)2 0.0371 0.1220326382068426831501347644 7.36961 22.8587 0.89933 3.1017
solitonic BS II 0.0389 0.1236174876926880171453994576 6.77654 20.2924 0.83770 2.9945

Table 6.1: Boson-star models used in this chapter. The quantitiesM ,R and µ represent the mass of the solution, its
radius and the mass of the scalar field. For massive-BS and solitonic-BS configurations we used the fiducial values
λ = 800πµ2 and σ0 = 0.05. The labels “I” and “II” respectively refer to stable and unstable configurations with
respect to radial perturbations. The significant digits of the eigenvalue ω do not represent the numerical precision,
but they show the fine tuning needed to obtain the solution.

other hand, this property allows for a much richer phenomenology that would be missed if a
fully relativistic analysis is not properly performed. To be concrete, in this section we focus
on specific models for selfgravitating DM objects. We investigate the emission of gravitational
and scalar waves sourced by a test-particle in circular orbit around a boson star (BS). In this
section we discuss the main features of this process. The mathematical procedure is standard
but technically involved. A detailed analysis will appear elsewhere [149].

6.2.1 Relativistic models of supermassive DM objects
For concreteness, in the following we focus on BS configurations [144] which are relativistic
solutions of the Einstein-Klein-Gordon theory but most of our results hold at a qualitative level
for different models.

We consider the Einstein-Klein-Gordon theory:

S =

∫
d4x
√
−g
[
R

2κ
− gab∂aΦ∗∂bΦ− Vs(|Φ|2)

]
+ Smatter,

where κ = 8π and Smatter denotes the action of any baryonic matter field. The Einstein-Klein-
Gordon equations read

Rab −
1

2
gabR = κ

(
TΦ
ab + Tmatter

ab

)
, (6.55)

1√
−g

∂a
(√
−ggab∂bΦ

)
=

dVs
d|Φ|2

Φ , (6.56)

where
TΦ
ab = ∂aΦ

∗∂bΦ + ∂bΦ
∗∂aΦ− gab

(
∂cΦ∗∂cΦ + Vs(|Φ|2)

)
,

is the energy-momentum of the scalar field. For a complex scalar field, Eq. (6.56) is supplied by
its complex conjugate. We will focus on spherically symmetric selfgravitating objects, whose
line element is

ds2
0 = −ev(r)dt2 + eu(r)dr2 + r2(dθ2 + sin2 θdϕ2) , (6.57)
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whereas the background scalar field reads

Φ0(t, r) ≡ φ0(r)e−iωt , (6.58)

with φ0(r) being a real function. The field equations for v(r), u(r) and φ0(r) form an eigenvalue
problem for ω and they can be solved by standard methods, see e.g. [51, 143, 157, 164, 166,
176]. The equations can be recast in the form of Einstein gravity coupled to an anisotropic,
nonbarotropic fluid, whose energy density and pressure are defined in terms of the stress-energy
tensor of the scalar field, TΦ

ab. Namely,

ρ ≡ −TΦ
t
t

= ω2e−vφ2
0 + e−u(φ′0)2 + V 0

s , (6.59)
pr ≡ TΦ

r
r

= ω2e−vφ2
0 + e−u(φ′0)2 − V 0

s , (6.60)

pt ≡ TΦ
θ
θ

= ω2e−vφ2
0 − e−u(φ′0)2 − V 0

s . (6.61)

where V 0
s = Vs(φ0) and ρ, pr and pt are the density, radial pressure and tangential pressure

of the fluid, respectively. Using a standard shooting method, we have constructed spherically
symmetric compact BSs which are solutions of three different models, presented in Table 6.1.

6.2.2 Geodesics around boson stars
Stellar-size objects gravitating around supermassive BSs have a small back-reaction on the ge-
ometry and to first order in the object’s mass move along geodesics of the BS background.
Accordingly, GW emission by such binaries requires a knowledge of geodesic motion together
with the consequent perturbative expansion of the gravitational field. Many features of the grav-
itational radiation can be understood from the geodesic motion, in which we now focus. We will
also focus exclusively on circular, geodesic motion. The rationale behind this is that it makes
the calculations much simpler while retaining the main features of the physics. Furthermore, it
can be shown that generic eccentric orbits get circularized by GW emission in vacuum [189],
on a time scale that depends on the mass ratio.

We follow the analysis by [127], the formalism for a generic background is presented in
[190]. Following previous studies, we assume that the point-particle is not directly coupled to
the background scalar field [168, 169, 173]. The conserved energy E, the angular momentum
parameter per unit rest mass L, and the orbital frequency of circular geodesics read

Ec =

(
2A(rc)

2

2A(rc)− rcA′(rc)

)1/2

(6.62)

Lc =

(
r3
cA
′(rc)

2A(rc)− rcA′(rc)

)1/2

, (6.63)

Ω =
ϕ̇

ṫ
=

(
A′(rc)

2rc

)1/2

. (6.64)
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Figure 6.4: Circular geodesic motion for different BS models and configurations (cf. Table 6.1). In the top, middle
and lower row we show the orbital frequency Ω, the energyEc and the specific angular momentumLc, respectively.
Each column refers to a different BS model. From left to right: mini-BS, massive-BS and solitonic BS. For each
model, we compare the geodesic quantities to those of a Schwarzschild BH and for the solitonic BS model we
also compare to the metric elements of a uniform density star with R = 3M . In the last column, the markers
indicate the outer last stable orbit for solitonic BS configurations, which is approximately given by r ≈ 6M and
MΩisco ≈ 0.06804. The light-rings are given by rl− ≈ 2.72093M and rm ≈ 2.9812M , with MΩl− ≈ 0.188818
and MΩl+ ≈ 0.192453, for the first configuration and rl− ≈ 1.91163M and rm ≈ 2.99883M , with MΩl− ≈
0.184590 and MΩl+ ≈ 0.192452, for the second one.
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withA(r) = ev as defined in Eq. (6.57). A summary of the geodesic quantities corresponding to
the BS models in Table 6.1 is presented in Fig. 6.4. Up to the innermost stable circular orbit of
a Schwarzschild spacetime, r = 6M , geodesic quantities are very close to their Schwarzschild
counterpart with same total mass, as might be expected for very compact configurations. How-
ever, the geodesic structure at r < 6M can be very different [173]. A striking difference is that
stable, circular timelike geodesics exist for BSs even well deep into the star [168, 169, 173].

For less compact configurations – namely mini BSs and massive BSs – stable circular
geodesics exist all the way down the center of the star. This is an important feature because,
if radiative effects and external forces are small, the inspiral will proceed through a secular
evolution of these orbits. Furthermore, the orbital frequency Ω is roughly constant close to the
origin. This also implies that the circular geodesics deep inside the BS are nonrelativistic, as the
velocity measured by static observers at infinity vanishes as the radius approaches zero. In this
case, our previous Newtonian analysis should provide reliable results. Therefore, we expect
that even the circular orbits in the interior of the object will be accessible to a quasi-circular
evolution that, as we previously discussed, is mainly driven by accretion and gravitational drag
effects.

More compact configurations such as solitonic BSs may show truly relativistic effects. For
these models R ∼ 3M and an innermost stable circular orbit exists at r ≈ 6M with MΩisco ≈
0.06804. This is to be expected, as the background scalar field is exponentially suppressed and
the spacetime is very close to Schwarzschild outside the solitonic-BS effective radius. Like in
the case of a Schwarzschild BH, there exists an unstable light ring at roughly rm ≈ 3M . The
unexpected feature is the presence of a second stable light ring at rl−, together with a family of
stable timelike circular geodesics all the way to the center of the star. This is clearly a relativistic
feature, which is similar to the case of uniform density stars. The latter may also present two
light-ring and stable circular time-like orbits in their interior, depending on their compactness.
The bottom panels of Fig. 6.4 depicts a uniform density star with radius R = 3M . In this case,
the two light-rings degenerate in the star surface. It has been argued [173] that, for these very
compact models, the orbiting particle plunges when it reaches the innermost stable circular orbit
and, due to radiation effects, the eccentricity of the orbits in the interior of the BS will increase.
However, as we have discuss, accretion effects are dominant in the interior of the star and they
also contribute to circularize the orbit. Our results are based on a Newtonian analysis, which
is nonetheless accurate well deep inside the star, where the velocity is small. It is therefore
possible that, after the initial plunge, the particle will have access to these circular geodesics,
whose evolution is governed by accretion, rather than by radiative effects.

6.2.3 Point-particle orbiting a boson star, resonant fluxes and quasinor-

mal modes
The gravitational and scalar energy fluxes emitted during the quasi-circular inspiral of a test-
particle around a compact BS can be derived at fully relativistic level. The emission is governed
by an inhomogeneous system of equations, whose regular solutions can be constructed via
standard Green’s function techniques. We present here the main results, whereas a detailed
analysis will appear elsewhere [149].
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Figure 6.5: Dominant l = 2, m = 1 contribution to the axial gravitational flux emitted by a point-particle orbiting
a BS for the stable BS configurations used in this chapter, compared to that of a Schwarzschild BH. The most
compact configurations are closer to the BH case, and both solitonic configurations for r > 3M have basically the
same values of the BH case.

The axial sector is governed by a single equation which does not involve scalar perturba-
tions. Due to the explicit form of the source term, the axial flux is vanishing for even values of
l+m. In Fig. 6.5, we show the dominant l = 2, m = 1 contribution of the axial flux for various
BS models and compared to that of a Schwarzschild BH.

The polar sector is described by an inhomogeneous system of coupled equations. A general
method to solve this class of problems was presented in [175] (see also [30]). The contribution
of the polar radiation to the total energy flux is nonvanishing only when l + m is even and it is
maximum when l = m. The dominant contributions is shown in Fig. 6.6 as a function of the
orbital distance for mini BSs and massive BSs. The axial and polar sector present similar fea-
tures: at large distance the deviations from the BH case are basically indistinguishable, whereas
for stable circular orbits inside the BS the energy flux quickly decreases as the orbit shrinks. In
this limit, the orbital velocity is nonrelativistic and our results agree with a simple quadrupole
formula [246].

However, the polar flux shows some sharp peaks which correspond to specific resonant
frequencies. This interesting phenomenon occurs quite generically for small objects orbiting
relativistic compact stars (see, e.g. [134, 247]) and it is related to the excitation of the quasi-
normal mode (QNM) frequencies. For a point-particle with orbital frequency Ω, the resonance
condition reads

mΩ = σR, (6.65)

where m is the azimuthal number and σR is the real part of the QNM frequency. In other
words, if the characteristic frequency of the BS matches (multiples of) the orbital frequency of
the particle, sharp peaks appear in the emitted flux. This can be modeled in terms of a simple
harmonic oscillator, where the orbiting particle acts as an external force and where the σR is the
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Figure 6.6: Main multipole contributions, l,m = 2, 3 and 4, for the mini and massive-BS configurations.

Model σRM −σIM h/ν2 δφGW [rads]
mini-BS I 0.0757 3× 10−5 0.01 6× 103

massive-BS I 0.0909 6× 10−5 0.13 9× 104

massive-BS I 0.1616 5× 10−6 0.02 2× 102

massive-BS I 0.2136 1× 10−7 0.007 4× 10−1

Table 6.2: Polar quasi-bound modes σ = σR + iσI of mini-BS and massive-BS configurations corresponding to
the resonances shown in Fig. 6.6 for l = 2 and computed by a direct integration method [149]. We also present
the height of the resonance normalized by the mass ratio, h/ν2, and the total GW dephasing δφGW as computed
in Eq. (6.68) for Tobs = 1yr and M = 105M�.

proper frequency of the system. In this picture, the imaginary part of the frequency σI is related
to the damping of the oscillator and it is roughly proportional to the width of the resonance,
while the quality factor σR/σI is proportional to the square root of the resonance height [134].
In agreement with this model, the resonances shown in Fig. 6.6 correspond to the lowest damped
QNMs, which are presented in Table 6.2. The QNM spectrum of a BS is rich and comprises
several classes of modes [160]. Here we have found a novel class of lowest damped modes,
which can be excited during the inspiral due to their low frequency. A complete analysis of the
QNM spectrum was presented in Chapter 5.

As shown in Fig. 6.6, the resonant frequencies may correspond to a stable circular orbit
located outside the BS radius (as for the rightmost resonance in the right panel of Fig. 6.6) or
may correspond to stable circular orbits inside the BS (as in the mini-BS case shown in the left
panel of Fig. 6.6). While resonant circular orbits also occurs around perfect-fluid stars [134]
and other BH mimickers [198], the existence of resonant geodesics inside the compact object is
peculiar of BSs, due to the absence of a well-defined surface and due to the existence of stable
circular orbits inside the star. Similar results as those shown in Fig. 6.6 may be derived for other
choices of the parameters and for higher values of l.

The existence of these resonances is intriguing, because they appear to be a generic feature
of compact objects supported solely by the self-gravity of a scalar field. For BSs, this novel
class of modes corresponds to the scalar perturbations being localized close to the BS radius
and decaying exponentially at infinity, while the gravitational perturbations propagate to infinity
as plane waves. These modes are usually named “quasi-bound” states [195–197] and they are
supported by the mass of the scalar field. In fact, any sufficiently compact object can support
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this class of modes in its interior. Constant density stars can support bound-state modes (i.e.
modes with purely real frequency) for massive scalar perturbations with l > 0 [149]. In the case
of a BS, these modes acquire a small imaginary part which is related to the coupling between
scalar and gravitational perturbations: even if the scalar flux is zero for bound-state modes, part
of the energy carried by the scalar field can be converted into gravitational energy that is then
dissipated at infinity through GWs. This also explains qualitatively why the imaginary part of
these modes is small (i.e. why the resonances are generically narrow), because the dissipation
mechanism is not efficient.

The overall structure of the resonances is fairly rich and it depends on the values of l, m
and on the specific models. However, in line with the case of a Schwarzschild BH, the modes
have a hydrogenic-like spectrum. In that case, the location and width of the resonances can be
computed analytically in the small mass limit [202, 203]. For a Schwarzschild BH the quasi-
bound modes σ = σR + iσI read

σR ≈ µ

(
1− M2µ2

2(n+ l + 1)

)
,

σI ≈ − 41−2lπ2(Mµ)4l+6

M(1 + l + n)2(2+l)

(2l + n+ 1)!

Γ
[

1
2

+ l
]2

Γ
[

3
2

+ l
]2
n!
,

where n ≥ 0 is the overtone number. Therefore, as σ approaches σR there is a multitude
of modes that can be excited and their separation in orbital frequency vanishes in the large l or
large n limit. In the same limit the imaginary part (and hence the width of the resonances) of the
modes decreases very rapidly, as shown by the last equation above. Our results are in qualitative
agreement with this behavior, although in the BS models we considered the scalar field mass
is not small, cf. Table 6.1. Indeed, in the opposite regime when µM � 1 the imaginary part
is exponentially suppressed, at least when the background spacetime is a BH [248]. We have
found the same exponential behavior in the case of solitonic BSs (which have µM = O(10), cf.
Table 6.1). This makes it extremely challenging to compute the polar flux for solitonic BSs and
the corresponding flux would show extremely narrow resonances. This is the reason why we do
not show the polar flux for solitonic BSs in Fig. (6.6) However, the effective mass for a complex
scalar field also depends on ω and, correspondingly, the resonance condition is shifted [149].
Our analysis generically shows that the resonant frequencies are of the order

Ωres =
µ∓ ω
m

, (6.66)

and the width of the resonances decreases quickly for large values of m and for the overtones.
It would be interesting to derive an analytical formula similar to the one above, for BSs. Re-
markably, the resonant frequencies only depend on the parameters of the theory – namely on
the scalar field mass and on ω – so that possible detection of resonant fluxes can be used to
discriminate among different models and to tell a BS from a supermassive BH.

Let us now estimate the prospects of observing such effects. A generic framework to study
the detectability of narrow resonances has been developed by [174]. While the orbiting body
crosses the resonance, the emitted energy flux increases by orders of magnitude and the inspiral
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proceeds faster. Therefore, the main observational consequence is a dephasing of the GW signal
induced by the orbital acceleration at the resonance. Following [174], we model the energy flux
as a top-hat function3:

Ė = Ė0 + h(t)H
[
δt2res − (t− tres)

2
]
, (6.67)

where Ė0 is the flux in absence of the resonance which is well approximated by the quadrupole
formula at large distance, h(t) is a time-dependent height of the resonance occurring at t = tres,
δtres is its duration and H is the Heaviside function. In our case δtres is much shorter than
the orbital period, thus the leading-order formula for the dephasing induced by the resonance
reads [174]

|δφGW| ∼
5h

16ν2

M∆Ωres

(MΩres)10/3

Tobs

M
, (6.68)

where h = h(tres), ν = µp/M � 1 and ∆Ωres is the width of the resonance in the frequency
space. We estimate ∆Ωres ≈ 2σI and Ωres ≈ σR, where σR and σI are the real and the imaginary
part of the QNM frequency. Finally, we obtain

|δφGW| ≈ 8.6× 103rads

[
105M�
M

] [
Tobs

1yr

]
×
[
h/ν2

10−2

] [
σIM

10−5

] [
0.1

σRM

]10/3

, (6.69)

where we have rescaled all quantities by typical values as obtained for the peak of the resonance
and for the QNM frequencies (cf. Table 6.2). Space-based observatories like eLISA/NGO will
be sensitive to variations in the GW phase of the order of one radian [216, 217]. The estimate
above shows that the dephasing induced by the flux resonance can easily be larger by orders
of magnitude. In fact, such large dephasing implies that a matched-filtering search for EMRIs
that uses general relativistic templates would likely miss the signal or detect it but extracting
completely wrong physical parameters. Depending on the parameters of the model, the height
and the width of the resonance can be smaller and, for very narrow resonances, the dephasing
will be negligible. Nonetheless, the bottom line of our analysis is that the quasi-circular inspiral
of small compact objects around supermassive BSs will leave potentially detectable imprints
that would be missed if the central object is a priori assumed to be a BH.

Once the energy fluxes are computed, the evolution of an EMRI can be modeled using an
adiabatic approximation and a Teukolsky evolution [249, 250]. This procedure will include
dissipative effects to all Post-Newtonian orders, but it is valid only at first order in the mass
ratio. While such relativistic approach (together with including self-force effects [220, 221]) is
crucial for generating accurate templates, no qualitatively new features will arise with respect
to the case of inspiral around a massive BH. Our goal here is to point out new effects that
can be used as a smoking gun for scalar-field configurations. One effect is the appearance of

3Note that, as shown in Fig. 6.6 and consistently with a simple harmonic oscillator model [134], the resonant
flux consists of a resonance and an antiresonance. Both can be modelled by a top-hat function as in Eq. (6.67),
but they would have opposite sign. However, the height of the antiresonance is of the order of the Newtonian flux
or less, whereas the height of the resonance is large by orders of magnitude. Therefore, we can safely neglect the
contribution from the antiresonance and focus on a single top-hat function as in Eq. (6.67).
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resonances discussed above. Another effect is the existence of stable circular orbits inside the
BS and the possibility that the small compact object proceeds all the way down to the origin,
without plunging. This was discussed in Section 6.1 within a much simpler – although more
general – Newtonian analysis.

6.3 Conclusions and outlook
According to general relativity, if self-interacting fundamental scalar fields exist in nature they
may collapse to form compact self-gravitating configurations whose mass ranges from one to
billions of solar masses, depending upon the scalar potential. Future GW detectors will be sen-
sitive to the signal emitted by neutron stars and solar-mass BHs orbiting supermassive objects
like those powering active galactic nuclei. In this chapter, we have investigated several dis-
tinctive features of the inspiral around supermassive scalar-field configurations in the extreme
mass-ratio regime. Rather than working on a case-by-case analysis, we focused on generic fea-
tures that can leave a characteristic imprint on the gravitational waveform and which are fairly
independent from the microphysics of DM particles.

Working in a Newtonian approximation, we have discussed the inspiral in the interior of very
generic DM configurations. If the small compact object interacts purely gravitationally with the
scalar field, its motion will be described by quasi-elliptical orbits whose secular evolution is
driven by DM accretion and by gravitational drag. These effects dominate the inspiral and are
responsible for a peculiar GW signal. If accretion dominates over dynamical friction, the signal
has a nearly constant amplitude and nearly constant frequency at late times. This is markedly
different from the classical plunge which would occur if the central object were a BH and it
might be used to discriminate the supermassive objects in galactic nuclei and to probe DM. We
have shown that, already at Newtonian level, the waveforms in the Fourier space are strongly
sensitive on the DM density profile.

As an aside application, our results may also be relevant to study the GW signal from the
inspiral of putative primordial BHs [5] in the interior of neutron stars or to study the inspiral
around Kerr BHs endowed with bosonic clouds [235–238].

Secondly, the motion of the small compact object in the exterior of the supermassive config-
uration is driven by the emission of gravitational and scalar waves, which are coupled to each
other. Due to this coupling, a baryonic test-particle in quasi-circular motion can resonantly
excite the scalar QNMs of the central DM object. We have demonstrated this by considering
some specific models of relativistic BSs in spherical symmetry. These resonances appear as
sharp peaks in the energy flux emitted in GWs and would result in a faster inspiral, leading
to a dephasing which can have observational consequences for future detectors. The resonant
frequencies are largely insensitive to the details of the system, and they mainly depend only on
the mass of the scalar particle. We have shown that the resonances correspond to the excitation
of a novel class of QNMs, which have a much longer lifetime and should therefore dominate the
late-time signal during the gravitational collapse and during the ringdown. We have discussed
the QNM spectrum and the linear response of the system at fully relativistic level.

The plethora of DM candidates, modified gravitational theories and models for BH mimick-
ers makes it mandatory to select generic features such as those described here. More rigorous
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case-by-case analysis might be performed if some of these signatures are eventually detected.
Indeed, our work can be extended in several directions. A rigorous treatment of the accretion
and drag effects in the interior beyond the Newtonian approximation is lacking. Relativistic ef-
fects might be important at the interface close to the radius, where velocities may be moderately
relativistic and the motion could be supersonic. Special relativity effects were included in [251]
and it would be interesting to extend our work by using those results and also by including Post-
Newtonian corrections to the accretion-driven inspiral. On the other hand, the late-time inspiral
close to the origin is intrinsically nonrelativistic and we expect our results to be accurate in that
regime. Furthermore, a simple extension of our analysis is to include noncircular motion at fully
relativistic level (see e.g. [199], where the same extension has been performed for the inspiral
around a BH). Our results also show that a relativistic analysis as that performed by [173] should
be extended to include the effects of accretion and dynamical friction. Finally, we focused here
on nonspinning solutions, while spin will certainly play a crucial role. In particular, possible
superradiance instabilities [252], which affect horizonless and spinning compact objects, can be
considered together with their possible imprint on the GW signal emitted during the inspiral.

While this study was in its last stages, a related work appeared in the literature [212]; while
the assumptions of both works are different, and our framework more general, the broad con-
clusions are both optimistic: gravitational waves can be an efficient tool to study DM.
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Chapter 7

Light rings as observational evidence for

event horizons: Long-lived modes,

ergoregions and nonlinear instabilities of

ultracompact objects

Our current understanding of stars and stellar evolution strongly suggests that sufficiently com-
pact, massive objects are unstable against gravitational collapse. Neutron stars, with compact-
ness 2GM/c2R ∼ 1/3 cannot sustain masses larger than ∼ 3M�, whereas giant stars with
masses M & 10M� have compactnesses orders of magnitude smaller. In other words, ordinary
matter cannot support the enormous self-gravity of a massive and ultracompact object, so that
the latter is naturally expected to be a black hole (BH).

The above picture has been challenged by the construction of exotic objects relying on
different support mechanisms. For example, boson stars made up of fundamental massive scalar
fields can be as compact as a neutron star and as massive as the BH candidate at the center of
our galaxy [144, 156]. Several other – albeit more artificial – objects such as gravastars [253],
superspinars, etc, share similar properties [252, 254] and have been proposed as prototypical
alternatives to stellar and massive BHs.

The observation – or lack thereof – of a surface would be bullet-proof indication that com-
pact dark objects have star-like properties or are instead endowed with an event horizon. Such
tests are extremely challenging to perform in the optical window, but will become available with
the advent of gravitational-wave astronomy: the oscillation modes of BHs have a very precise
and well-known structure, which can be tested against observations [10, 109, 255], while the
presence of a surface should be imprinted also on the gravitational waves generated during the
merger of two objects [154, 156, 173] (but see the discussion in Sec. 7.3.3).

Fortunately, general relativity also comes to the rescue in helping to discriminate the nature
of compact objects. Very compact and highly spinning objects with an ergoregion but without
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a horizon are unstable [256]. Thus, rapidly-spinning compact objects must, in principle, be
black holes [252, 254]. However, observations of these objects are marred with uncertainties
and not all of them are highly spinning. Furthermore, depending on the compactness and the
spin, the instability time scale might be longer than the age of massive objects [257], making it
an ineffectual mechanism.

Very recently, a new mechanism was put forward that could exclude any ultracompact star
configuration on the grounds that such object would be nonlinearly unstable [258]. If correct,
this mechanism would close the “BH paradigm” project: within general relativity, the obser-
vation of an ultracompact object would be an observation of a BH 1. The relevance of such
corollary calls for a detailed analysis of the decay of linear perturbations in the spacetime of
ultracompact configurations, and of the nonlinear evolution of such objects. Here, we wish to
take a first step in this direction by studying linear perturbations.

We show that linear perturbations of any ultracompact star do become arbitrarily long-lived
in the eikonal regime, and correspond to fluctuations trapped between the outer, unstable light
ring and the origin. Such modes are peaked at the location of a stable light ring, whose existence
is a peculiar property of these ultracompact objects. Already at the linear level, these long-lived
modes turn unstable against the ergoregion instability [256] when a small amount of rotation is
added to the star. Furthermore, at the nonlinear level, we provide evidence that the outer layers
of the star may fragment and subsequently fallback on the star’s core, making it dynamically
resemble a “boiling object”. Consequent emission of gravitational radiation will cause mass
loss and a decrease in compactness, leading to stable stars without light rings. Depending on
the star structure, fragmentation could even be due to BH formation, in which case the end-state
is a BH.

7.1 Ultracompact objects
We define an ultracompact object as one possessing a light ring (in addition, we will be working
mostly with horizonless objects). We focus here on static, spherically symmetric spacetimes
described by (henceforth we use geometrical units G = c = 1)

ds2 = −f(r)dt2 +B(r)dr2 + r2dΩ2
2 . (7.1)

If we use coordinates where the spacetime is manifestly asymptotically flat, then f(r), B(r)→
1 at large distances. Moreover, the requirement that the spacetime be locally flat and regular
implies that f(r) and B(r) be finite at the origin r = 0 for any object.

The radial equation for null geodesics in this geometry reads [190]

B(r)f(r)ṙ2 = E2 − Vgeo ≡ E2 − L2f(r)

r2
, (7.2)

1We are assuming that the instability time scale is short enough to dominate the dynamical evolution of the
compact object, see below for a discussion.
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where Vgeo is the geodesic potential2 and E and L are the conserved specific energy and angular
momentum of the geodesic. The existence of one (unstable) light ring for ultracompact objects
– at roughly rLR ∼ 3M for spherically symmetric configurations – means that Vgeo has a local
maximum at that point. Because Vgeo diverges and is positive at the origin for ultracompact
stars, this also implies the existence of a local minimum and therefore of a second – stable –
light ring, typically within the star.

The existence of a stable light ring is thus an unavoidable feature of any ultracompact star
and has dramatic consequences for the dynamics of the latter. Indeed, a stable light ring sug-
gests that some modes can become very long-lived [135, 190, 259, 260]. When this happens,
nonlinear effects can become important and destabilize the system. In a nutshell, this was the
argument recently put forward to suggest that ultracompact configurations might be nonlinearly
unstable [258] 3.

In the following we will test some of these consequences by computing the modes of ul-
tracompact configurations and the time evolution of wavepackets in the vicinities of such ob-
jects. We consider two different ultracompact objects – constant density stars and “gravastars”
– briefly described below. Our results apply also to ultracompact boson stars, which have been
recently built in Ref. [156], or to any other ultracompact object, as will become apparent from
the technical details we present.

7.1.1 Constant-density stars
Constant-density stars are excellent idealized models to explore the properties of ultracompact
objects. Because of the simplicity of the model, the metric is known analytically in the entire
space. Outside the star, the spacetime is described by the Schwarzschild metric. Inside the star,
the metric coefficients are given by [69]

f(r) =
1

4R3

(√
R3 − 2Mr2 − 3R

√
R− 2M

)2

, (7.3)

B(r) =

(
1− 2Mr2

R3

)−1

, (7.4)

where R is the radius of the star. The pressure is given by

p(r) = ρc

√
3− 8πR2ρc −

√
3− 8πr2ρc√

3− 8πr2ρc − 3
√

3− 8πR2ρc
, (7.5)

where ρc = 3M/(4πR3) is the density of the uniform star.

2To simplify the comparison with the effective potential for wave propagation, here we defined the geodesic
potential Vgeo = E2 −B(r)f(r)Vr, where Vr is the effective potential adopted in Eq. (29) of Ref. [190].

3Similar arguments have also been recently used to suggest that the superradiant instability could lead to tur-
bulent states [261].
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7.1.2 Thin-shell gravastars
“Gravitational condensate stars”, or gravastars, have been devised to mimic BHs [253]. In these
models, the spacetime is assumed to undergo a quantum phase transition in the vicinity of the
would-be BH horizon. The latter is effectively replaced by a transition layer and the BH interior
by a segment of de Sitter space [262]. The effective negative pressure of the de Sitter interior
contributes to sustain the self-gravity of the object for any compactness. In the static case these
models have been shown to be thermodynamically [253] and dynamically [154,263,264] stable
for reasonable equations of state.

Here we focus on the simplest static thin-shell gravastar model, whose exterior metric for
r > R is identical to Schwarzschild whereas the interior, r < R, is described by a de Sitter
metric,

f(r) = B(r)−1 = 1− 2M

R

r2

R2
, (7.6)

where M is the gravastar mass measured by an observer at infinity and the effective cosmolog-
ical constant of the de Sitter region is Λ ≡ 6M/R3. The junction conditions at r = R surface
have already been partially chosen by requiring the induced metric to be continuous across the
shell (cf. Ref. [154] for details). Israel’s junction conditions [265] then relate the discontinuities
in the metric coefficients to the surface energy Σ and surface tension Θ of the shell as [263]

[[B−1/2]] = −4πRΣ ,

[[
f ′B−1/2

f

]]
= 8π(Σ− 2Θ) . (7.7)

where the symbol “[[ ...]]” denotes the “jump” in a given quantity across the spherical shell.
In the simplest model considered here, the coefficient B is continuous across the shell, and
therefore Σ = 0, whereas the surface tension is nonzero.

7.2 Perturbations of ultracompact objects
Various classes of perturbations of the metric (7.1) are described by a master equation[

∂2

∂t2
− ∂2

∂r2
∗

+ Vsl(r)

]
Ψ(r, t) = 0 , (7.8)

where ∂2

∂r2
∗

= f
B

∂2

∂r2 + f
2B

(f
′

f
− B′

B
) ∂
∂r

and

Vsl(r) = f

[
l(l + 1)

r2
+

1− s2

2rB

(
f ′

f
− B′

B

)
+ 8π(prad − ρ)δs2

]
, (7.9)

where the prime denotes derivative with respect to the coordinate r, which is related to the
tortoise coordinate r∗ through dr/dr∗ =

√
f/B. In the potential (7.9) l ≥ s, s = 0, 1 for

test Klein-Gordon and Maxwell fields, respectively, whereas s = 2 for axial perturbations of
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Figure 7.1: Examples of the potential governing linear perturbations of a static ultracompact star. The black solid
line and the red dashed line correspond to l = 10 gravitational axial perturbations of a uniform star withR = 2.3M
and of a gravastar with R = 2.1M , respectively.

a (generically anisotropic) fluid in general relativity (where prad = T rr and ρ = −T tt are the
radial pressure and the energy density of the fluid, respectively). In the latter case, using the
field equations, the potential above reduces to

V2l(r) = f

[
l(l + 1)

r2
− 6m(r)

r3
− 4π(prad − ρ)

]
, (7.10)

where m(r) is defined through B(r) = (1− 2m(r)/r)−1. Clearly, assuming a time dependence
Ψ(r, t) = ψ(r)e−iωt, the radial function ψ satisfies a Schrodinger-like equation, d2ψ/dr2

∗ +
[ω2 − Vsl(r)]ψ = 0.

For a thin-shell gravastar, the gravitational perturbations in the interior of the star are de-
scribed by the potential (7.10), with −prad = ρ = Λ/(8π) and m(r) = M(r/R)3. In this
case the Schroedinger-like problem in the interior simplifies considerably and can be solved
analytically in terms of hypergeometric functions F [a, b, c; z] [154]

ψ(r) = rl+1(1− C(r/2M)2)
iMω√

C F

[
l + 2 + i2Mω√

C

2
,
l + 1 + i2Mω√

C

2
, l +

3

2
;
Cr2

4M2

]
, (7.11)

where C = (2M/R)3. The master function above describes both gravitational axial and polar
perturbations of the gravastar interior and has to be matched with the Regge-Wheeler or Zerilli
function in the Schwarzschild exterior using suitable junction conditions [154].
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7.3 Long-lived modes of ultracompact objects

7.3.1 A WKB analysis
As previously discussed, ultracompact stars have two light rings. From a point of view of mass-
less fields, which propagate as null particles in the eikonal regime, the light rings effectively
confine the field and give rise to long-lived modes. Before analyzing in some detail each of the
specific geometries, let us perform a WKB analysis of these trapped modes.

The effective potential for wave propagation, Vsl(r), shares many similarities with the geodesic
potential Vgeo(r) to which it reduces in the eikonal limit [190]: it has a local maximum, diverges
at the origin and is constant at infinity. Examples of the effective potential Vsl(r) are shown in
Fig. 7.1, corresponding to l = 10 gravitational axial perturbations of a uniform star with com-
pactness M/R ∼ 0.435 (black solid curve) and of a thin-shell gravastar with compactness
M/R ∼ 0.476 (dashed red curve), respectively.

Because the potential necessarily develops a local minimum, it is possible to show that
in the eikonal limit (l � 1) the spectrum contains long-lived modes whose damping time
grows exponentially with l. In order to do so, we follow closely the analysis by Festuccia and
Liu [266, 267] 4.

In the eikonal limit the potential can be approximated as Vsl(r) ∼ l2f/r2. Let us define
ra, rb and rc to be the three real turning points of ω2

R − Vsl(r) = 0 as shown in Fig. 7.1 for
the black solid curve. When such turning points exist, the real part of the frequency of a class
of long-lived modes in four spacetime dimensions is given by the WKB condition (see also
Ref. [268]) ∫ rb

ra

dr√
f/B

√
ω2
R − Vsl(r) = π (n+ 1/2) , (7.12)

where n is a positive integer and we have used the fact that dr∗ = dr/
√
f/B. The imaginary

part of the frequency ωI of these modes is given by

ωI = − 1

8ωRγ
e−Γ , (7.13)

where

Γ = 2

∫ rc

rb

dr√
f/B

√
Vsl(r)− ω2

R , (7.14)

γ =

∫ rb

ra

dr√
f/B

cos2 χ(r)√
ω2
R − Vsl(r)

, (7.15)

χ(r) = −π
4

+

∫ r

ra

dr√
f/B

√
ω2
R − Vsl(r) . (7.16)

4These authors study the Schwarzschild-anti-de Sitter geometry, for which Vsl(r) shares many of the properties
above: it diverges at the boundaries, vanishes near the horizon and always displays a maximum at the unstable light
ring.
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Figure 7.2: Real and imaginary parts of the long-lived modes of a uniform star for different compactness (left
panels) and for a gravastar with R = 2.2M (right panels). The lines are the WKB results, whereas markers show
the numerical points (when available) obtained using direct integration or continued fractions. For uniform stars
we show gravitational axial modes, whereas for gravastar we show both axial modes (red circles) and gravitational
polar modes with vs = 0.1 (green squares), where vs is related to the speed of sound on the shell [154]. Note that
the modes of a static gravastar become isospectral in the high-compactness regime [154].

By expanding Eqs. (7.12) and (7.13), one can show that, to leading order in the eikonal limit,
the mode frequency reads

ω ∼ a l − i b e−cl l� 1 , (7.17)

where a, b and c are positive constants. By expanding Eq. (7.12) near the minimum of the
potential displayed in Fig. 7.1, it is possible to show that

a ∼ ΩLR2 ≡
√
f(rLR2)

rLR2

, (7.18)

where ΩLR2 is the angular velocity of the stable null geodesic at the light-ring location r = rLR2.
For constant-density stars this orbital frequency reads

ΩLR2 =
2
√
M(R− 9M/4)

R2
, (7.19)
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and is vanishing in the Buchdahl limit R→ 9M/4. For gravastars

ΩLR2 =

√
R− 2M

R3/2
, (7.20)

and is vanishing at the Schwarzschild limit R→ 2M .

7.3.2 Numerical results: the spectrum of linear perturbations
A numerical computation of the quasinormal mode (QNM) frequencies [109] shows that long-
lived modes are indeed part of the spectrum, as indicated by the WKB analysis. In Fig. 7.2 we
present some of these modes for constant-density ultracompact stars with R/M = 2.3, 2.4, 2.5
(left panels) and for a thin-shell gravastar with R = 2.2M (right panels). The exact numerical
values obtained via direct integration and continued fractions (cf. e.g. Ref. [109] for details) are
denoted by markers and are compared against the WKB prediction (lines). These independent
computations are in very good agreement, validating each other.

For uniform stars (left panels of Fig. 7.2) we present the gravitational axial modes which
are governed by the effective potential in Eq. (7.10). The existence of trapped modes in ultra-
compact stars was discovered in Ref. [269] (see also [270, 271] and [132] for a review). Our
analysis perfectly agrees with previous results and extends the latter in the case of large values
of l.

For gravastars (right panels of Fig. 7.2) we present both gravitational axial and gravitational
polar perturbations. The latter depends on the equation of state of the thin-shell through the
parameter v2

s ≡ ∂Σ/∂Θ, which is related to the speed of sound on the shell. To compute
the gravastar modes we matched the exact solution (7.11) to the Regge-Wheeler or the Zerilli
function in the Schwarzschild exterior for axial or polar modes, respectively, as discussed in
detail in Ref. [154].

We note that the critical value of l for which the behavior (7.17) sets in depends strongly
on the compactness: the larger the star radius (constrained to R/M . 3) the larger the critical
value of l. Nonetheless, the qualitative behavior is largely independent of the compactness,
the nature of the modes and even the nature of the ultracompact object, as long as the latter
is compact enough to support long-lived modes. In particular, our results show that trapped
modes also exist in the polar sector of gravitational perturbations, which are coupled to the fluid
perturbations [132] and that dominate the linear response of the object to external sources.

In the top panel of Fig. 7.3 we show a representative example of the eigenfunctions corre-
sponding to the long-lived modes of an ultracompact object. This plot refers to a uniform star
with R = 2.3M , but different choices of the compactness and different models give similar
results. The eigenfunctions are confined within the unstable light ring and within the star. Fur-
thermore, they peak close to the location of the stable light ring and high-l eigenfunctions are
more and more localized around r ∼ rLR2. It will be important in the following (cf. Sec. 7.5) to
observe that the eigenfunctions spread over a distance R/l in the angular direction and ∼ l−1/2

in the radial direction.
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Figure 7.3: Top panel: gravitational axial eigenfunctions of an ultracompact star for l = 2 and l = 10. The
radius of the star, R = 2.3M , is marked by a vertical line. High-l modes correspond to eigenfunctions which are
localized near the stable light ring. Middle and bottom panels: time evolution of a scalar Gaussian wavepacket
with width σ = 4M centered at r0 = 6M in the background of a constant-density star of radius R = 2.3M for
l = 2 and l = 10. The waveform extracted at r = 0 (middle panel) and r = 40M (bottom panel). Note that the
Schwarzschild ringdown phase lasts until t ∼ 60M .

7.3.3 Numerical results: time evolution of wavepackets
In the middle and bottom panels of Fig. 7.3 we summarize the evolution of a Gaussian scalar
wavepacket in the background of an ultracompact constant-density star. Initially the wavepacket
is localized outside the star and has the form

Ψ̇(0, r) = exp

[
−(r + 2 log (r −R)− r0)2

σ2

]
. (7.21)

where r0 and σ denote the initial position and the width of the packet. The overdot denotes time
derivative.

Imprints of the Schwarzschild BH geometry on ultracompact stars

As shown in Fig. 7.3, the signal initially consists of a damped sinusoid, whose frequency
and damping time match closely the quasinormal frequencies of the Schwarzschild BH space-
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time [109, 255]. Thus, although the QNMs of Schwarzschild BHs are not part of the spectrum
of this ultracompact star, they are still excited at early times and are an important part of the
response of this system. Such interesting “mode camouflage” phenomenon was observed ear-
lier in the context of BHs surrounded by matter [135, 260]. In the present context, it also has
a natural interpretation: the modes of BHs “live” on the external null circular geodesic [190],
which is also present for ultracompact stars. Accordingly, we expect the BH ringdown stage to
dominate until other scales become important, in our case, after fluctuations cross the star.

This feature has two important consequences for gravitational-wave astronomy and for at-
tempts at proving or ruling out the existence of BHs. Any spacetime which – close to the un-
stable null circular geodesic – resembles the Kerr geometry is expected to ringdown like a Kerr
BH at early times. In other words, both dirty BHs and ultracompact stars will show a dominant
ringdown stage which is indistinguishable from that of vacuum Kerr BHs. This was observed
for dirty BHs in Ref. [135,260] and our results show that it holds even for ultracompact objects,
which can be looked at as a deformed BH with no horizon. Thus, current gravitational-wave
ringdown searches which assume the source is described by the Kerr geometry [272, 273] are
most likely to perform well under any circumstances.

These results also have an impact on proposed methods to discriminate between BHs and
other objects. These proposals typically hinge on the no-hair theorem and the characteristic
oscillation modes of these objects [10]. The argument is that different objects have different
oscillation modes, and the modes of BHs are known very accurately; thus, the measurement of
these modes can be used to infer which object is oscillating. While the reasoning is correct, in
practice the ringdown mode of any object which is compact enough will be dominated at early
times by a universal ringdown: it is a superposition of the QNMs of a vacuum BH.

Furthermore, it is commonly believed that different boundary conditions (for example due to
the presence of an event horizon instead that of a surface) would drastically change the spectrum
of ringdown modes. While it is true that the full QNM spectrum (as obtained in the frequency
domain) is strongly affected by the boundary conditions, nonetheless the early-time behavior of
the waveforms is mostly dominated by the macroscopic “local” properties of the object (i.e. by
the geometry near the unstable light ring), irrespectively of the existence of a horizon [135,260].
It is still possible – though probably more challenging – to dig out the signal in the late-time
stage, which will contain the object’s true modes, but this would require large signal-to-noise
detections [135, 260].

Long-lived perturbations

The mode camouflage phase we just described lasts roughly 60M , which corresponds to the
(roundtrip) light-crossing time for the star under consideration. The light crossing time seems
to be decisive in the low-frequency modulation of the signal. At very late times, the modes
of the system set in and the field decays very slowly. The decay rate depends on the initial
conditions and on the model, but it is always slower than 1/t. For example, for the case shown
in the bottom panels of Fig. 7.3 we estimate the decay to be at most ∼ t−0.4 inside the star for
the l = 10 mode assuming it is a power-law decay. The results are equally well described, at
late-times, by a 1/ log t behavior. The reason why the signal decays so slowly at late-times is
apparent from the top panel of Fig. 7.3 and also in Fig. 7.4: the corresponding eigenfunctions
in the frequency domain are trapped inside the star and localized near the stable light ring.
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Figure 7.4: Scalar eigenfunctions of an ultracompact star with R = 2.3M for m = 0 and l = 6, 10, 20 (from left
to the right). We find that the eigenfunctions have a typical width that scales as l−1 in the angular direction and a
width in the radial direction that depends on the model used for the star, but typically ranges between l−0.4− l−0.8.
Therefore, the “aspect ratio” of the perturbation∼ l0.6−l0.2 grows in the large-l limit and the perturbation becomes
more and more elongated along the radial direction.

7.4 Spinning ultracompact objects and the ergoregion insta-

bility
The long-lived modes that generically exist for any static ultracompact star can turn unstable
when the star is spinning. This instability is related to the ergoregion instability which affects
any spacetime possessing an ergoregion but not a horizon [256]. The ergoregion is defined as
the spacetime region in which observers must be dragged along with rotation and cannot remain
at rest. This corresponds to the timelike Killing vector ξt becoming spacelike, i.e.

ξt · ξt = gtt(r, θ) > 0 . (7.22)

In fact, the existence of long-lived modes in the static limit is the underlying reason of the
ergoregion instability. This has been first discussed by Comins and Schutz, who studied a scalar
field propagating in a slowly-rotating background in the eikonal limit [259]. They considered
the line element

ds2 = −F (r)dt2 +B(r)dr2 + r2dθ2 + r2 sin2 θ(dφ−$(r)dt)2 , (7.23)

which, although not being a solution of Einstein’s equations coupled to a fluid, should ap-
proximate the exact metric describing a spinning star in the case of slow rotation and high
compactness [259]. In such metric, the ergoregion is defined by

$(r) sin θ >

√
F (r)

r
, (7.24)
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and its boundary, the ergosphere, is topologically a torus. In the eikonal limit, the Klein-Gordon
equation in the background (7.23) can be written in the form [259]

ψ′′ +m2B

F
(ω̄ + V+)(ω̄ + V−)ψ = 0 , (7.25)

where ω̄ = ω/m is a rescaled frequency, m is the azimuthal number associated to the axisym-
metry of the background, and

V± = −$ ±
√
F

r
, (7.26)

are the effective potentials that describe the motion of (counter-rotating for the plus sign and
co-rotating for the minus sign) null geodesics in the equatorial plane of the geometry (7.23).

Now, the boundary of the ergoregion (if it exists) corresponds to two real roots of V+ = 0
and V+ < 0 inside the ergoregion. Because V+ → +∞ at the center and attains a positive finite
value in the exterior, it is clear that the ergoregion must contain a point in which V+ displays a
(negative) local minimum. This simple argument shows the important result that the presence
of an ergoregion in a horizonless object implies the existence of stable counter-rotating photon
orbits.

Furthermore, Eq. (7.25) supports unstable modes whose instability time scale in the eikonal
limit grows exponentially, τ ≡ 1/ωI ∼ 4αe2βm, where α and β are two positive constants [259].
This instability can be understood from the fact that the corresponding modes are localized near
the stable photon orbit, which is situated within the ergosphere, and are confined within the star.
This confinement provides the arena for the instability to grow through the negative-energy
states that are allowed within the ergoregion [256]. Likewise, this argument also explains why
spinning BHs – that also possess a light ring and an ergoregion – are linearly stable, because
the presence of the horizon forbids the existence of trapped modes.

Although the analysis of Ref. [259] is approximate, such result has been subsequently ex-
tended to low values of (l,m) [274] and to gravitational axial perturbations [275]. In both cases,
the instability time scale has been found to be much shorter, ranging from seconds to minutes
for low-m gravitational perturbations of uniform constant stars [275]. The conclusion of these
studies is that, if long-lived modes exist in the static case, they become unstable for sufficiently
high rotation rates. The onset of the instability precisely corresponds to the appearance of an
ergoregion in the interior of an ultracompact star [275]. The same picture applies to other ultra-
compact objects such as gravastars and boson stars, which become linearly unstable when they
possess an ergoregion [252] with an instability time scale that depends strongly on the com-
pactness [257]. The same instability affects also Kerr-like BH geometries spinning above the
Kerr bound (so-called superspinars [254]) when the dissipation at the horizon is not enough to
quench the negative-energy states trapped within the ergoregion [276]. Finally, the ergoregion
instability of acoustic geometries was recently reported [277, 278].
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7.5 The nonlinear regime
The argument for nonlinear instability given earlier is anchored on the large lifetimes of lin-
ear fluctuations. This argument carries over equally to other more familiar contexts, e.g. to
conservative systems with normal modes. Generically however, normal-mode systems are an
idealization and neglect any form of dissipation. The outstanding feature of ultracompact stars
is that gravitational-wave dissipation is already included and is negligible.

We can foresee at least two possible outcomes for the nonlinear development of ultracom-
pact stars; which one is actually chosen depends on the details of the object’s composition:
I. Other dissipation mechanisms are relevant, in which case the star is stable. Loss of energy
through gravitational-wave emission is suppressed for ultracompact stars, but this is not the
only dissipation mechanism. For example, viscosity in neutron stars plays an important role on
relatively short time scales, and may quench possible nonlinear instabilities for very compact
stars. Simple expressions for the dissipative time scales as functions of the angular number l
and the parameters of a neutron star were derived in Ref. [279]:

τη =
10

(l − 1)(2l + 1)
ρ
−5/4
14 T 2

5

(
R

4.5 km

)2

s , (7.27)

τκ = 1014τη
(l − 1)2

l3
ρ

19/12
14 T−2

5

(
R

4.5 km

)2

, (7.28)

τζ > 61τη
η

ζ
, (7.29)

where ρ14 = ρ/(1014 g/cm3), T5 = T/(105K), T is the neutron-star temperature, τη, τκ and
τζ are the time scales for shear viscosity, thermal conductivity and bulk viscosity, respectively,
whereas η, ζ and κ are dissipation coefficients.

These are order-of-magnitude estimates, valid in principle only for neutron stars. Any hy-
pothetical ultracompact star will however also be affected by dissipation of this nature, whose
time scale becomes shorter at shorter scales, i.e., larger l. Note, however, that some modes are
only weakly coupled with the fluid perturbations (e.g. gravitational axial modes and w-modes
in general [132]) so that only a small fraction of the energy contained in such modes can be
dissipated through viscosity. Furthermore, the interior of exotic ultracompact stars could be
made of a superfluid as in self-gravitating Bose-Einstein condensates [144] and also in this case
viscosity is expected to be negligible.
II. Nonlinear effects become relevant. Let us now assume that there is no dissipation mech-
anism strong enough to damp linear perturbations on realistic time scales. Recent studies of
gravitational collapse of small scalar-field wavepackets in anti-de Sitter geometries (which
are another example of conservative systems with normal modes at linear level), suggest that
broad classes of initial data always collapse to form BHs, through a “weakly turbulent” mech-
anism [280]. The process, still not well understood, involves blueshift of initial perturbations
which eventually collapse to a small BH. Although originally discovered in anti-de Sitter, the
mechanism works also in flat spacetime [281] if the boundary conditions prevent leakage of
energy to infinity. Generically, one expects nonlinear effects to play a role whenever the linear
fluctuations are longer lived than any nonlinear timescale. It is unknown whether certain extra
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conditions on the resonant frequencies of the system have to be met [282, 283], but it is likely
that the mechanism is always active at finite amplitude-perturbations. Ultracompact stars trap
high multipole wave very effectively, and we therefore argue that these modes are potentially
subject to the weakly turbulent instability.

If active for ultracompact stars, it most likely involves a growth of curvature close to the
stable null geodesic and consequent collapse to small BHs. The number of such small BHs
would be tied to the angular number of the mode in question and would scale as l. For large
enough initial fluctuation, the BHs that would form can be large enough to swallow the star in
less than a Hubble time.

Figure 7.5: Pictorial description of the nonlinear evolution of a perturbed ultracompact object. The figure rep-
resents the equatorial density profile of the object. The solid circumference represents the unperturbed surface,
whereas the dashed line represents the stable light ring at its interior. Solid circles represent condensation of
nonlinear-growth structures which are the bi-product of the DCF instability. The core is left unperturbed and is
now a less compact – and therefore stable – configuration. Likewise, the the solid circles are also stable and subse-
quent time evolution presumably leads to a fall-back on the core. Gravitational radiation, generated during this and
subsequent repetitions of this process will lead to loss of mass and possibly a reduction of the star’s compactness.

Do nonlinear effects always conspire to produce catastrophic results? The answer is no.
Recent studies show that there exist initial datas which are nonlinearly stable against such
weakly turbulent mechanism [282–284]. How generic such initial conditions are is unclear at
the present time. Nevertheless, a plethora of other nonlinear effects might play a role and one in
particular is likely to be dominant: fragmentation via a “Dyson-Chandrasekhar-Fermi” (DCF)
mechanism, which is akin to the Rayleigh-Plateau fragmentation of fluid cylinders [285–288].
To show this point we observe that, at linear level, the eigenfunctions have a width ∼ l−1 in
the angular direction θ and a width ∼ l−χ in the radial direction, where χ < 1 depends on the
star model (cf. Figs. 7.3 and 7.4 for a representative example of a constant-density star). There-
fore the perturbations are asymmetric, elongated along the radial direction and their elongation
grows with l.
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Let us now assume for simplicity that we are dealing with axisymmetric modes. Axisym-
metric distributions of matter such as these elongated, long-lived modes are unstable against the
same DCF mechanism that affects thin cylinders or rings of matter [285–288]. The minimum
growth time scale of this instability scales as τDCF ∼ δρ−1/2, where δρ is the density fluctuation.
The requirement that nonlinearities take over is that τDCF be much smaller than the lifetime of
linear fluctuations. Because the latter grows exponentially with l for an ultracompact object,
it is easy to show that fragmentation becomes important already at moderately small values of
l even for δρ/ρ ∼ 10−16 or smaller. In other words, we are arguing that even though “weak
turbulence” may be negligible, fragmentation instabilities are not.

The fragmentation of the linear eigenfunction leads to a configuration which can look like
that depicted in Fig. 7.5 (see also nonlinear results for fragmentation of black strings [289]): it
consists on a spherically symmetric core surrounded by droplets of the star fluid, whose sizes
are much smaller than that of the original star. It is easy to see that these smaller droplets,
although of the same material as the original star, are much less compact because they are much
smaller and are therefore expected to be themselves stable. Likewise, the core of the star is
also less compact and stable. On longer time scales, these droplets re-arrange and fall into the
core, and the process continues. The dynamical picture looks like that of a “boiling” fluid, and
radiates a non-negligible amount of radiation. If this scenario is correct, a sizable fraction of
the object’s initial mass can be dispersed to infinity, possibly reducing the compactness of the
final object to values which no longer allow for the existence of light rings.

7.6 Conclusions
Strong and growing evidence suggests that supermassive compact objects in our Universe are
BHs. Nevertheless, incontrovertible proofs are hard to come by and would likely require detec-
tion of Hawking radiation from the event horizon, the latter being negligible for astrophysical
objects. As such, fundamental mechanisms that forbid the existence of ultracompact stars are
mostly welcome and would automatically imply that (the much more easily achievable) obser-
vations of a light ring are detections of BHs in fact. There are at least two known mechanisms
that might do just that. One such mechanism is the possible nonlinear instability of any ultra-
compact star, which have one unstable light ring in its exterior (and another stable light ring in
its interior). We have provided additional evidence that such objects have long-lived fluctua-
tions which may fragment the star and make it less compact on long time scales. Alternatively,
weak turbulence might lead to collapse of the star into a BH. Whether or not the instability is
actually relevant depends on possible additional dissipation mechanisms.

When rotation is added, long-lived fluctuations become unstable already at the linear level.
This is also known as ergoregion instability, and has been used to exclude highly spinning,
compact objects [252, 254, 276]. Taken together, these results suggest that the observation of
the light ring alone – a challenging task which is nevertheless within the reach of next facilities
such as, for instance, the Event Horizon Telescope [290] – is evidence enough for the existence
of BHs, a truly remarkable consequence.

Clearly, future work should consider the difficult but fundamental problem of following
long-lived fluctuations through the nonlinear regime, to understand the role of dissipation, the

Programa de Pós-Graduação em Fı́sica - UFPA



7.6 Conclusions 134

time scale associated with possible nonlinear instabilities, and the issue of the final state.

Programa de Pós-Graduação em Fı́sica - UFPA



Part III

Absorption and scattering of planar scalar

waves

Programa de Pós-Graduação em Fı́sica - UFPA



Chapter 8

Absortion of planar massless scalar waves

by Kerr black holes

Black holes (BHs) [127] are among the most intriguing predictions of general relativity (GR)
[124]. In electrovacuum, BHs are described by the Kerr-Newman family of solutions, which are
governed by just three parameters: mass, spin and electric charge. The no-hair theorem [108]
implies that black holes cannot support additional degrees of freedom, which suggests that in
essence black holes are rather simple objects, even if their astrophysical environments are likely
to be extremely complex.

BHs are believed to populate the galaxies [291]. The realization that supermassive rotating
BHs reside at the center of active galactic nuclei has had a profound impact [292]. Some of
these rotating BHs are expected to be spinning very close to their upper rotating limit [293,294],
and so the phenomenology around rotating BHs is of major importance to astrophysics. This
motivates careful study of the nature and observational consequences of the Kerr metric, which
describes a rotating BH in GR. An improved understanding of the Kerr BH will also help us to
understand more complicated structures, such as rotating BHs in modified theories of gravity
[8, 26, 295, 296].

One aspect of Kerr phenomenology is the absorption and scattering of particles by BHs.
Particles are described by (quantum and fluid) field theories, and so the absorption and scatter-
ing of particles is naturally related to the absorption and scattering of fields, which may have
spin, mass and charge. Spinless (i.e. scalar) fields are particularly important, both as a particle
model (e.g., for pseudoscalar mesons) and as a first model for bosonic fields with spin (e.g.,
the electromagnetic field). In theories that seek to go beyond the Standard Model, light scalar
bosons may play important roles; for instance, in axiverse models [165, 235] and in scalar field
dark matter models [297]. The discovery of a Higgs-like particle by the ATLAS and CMS
collaborations has given extra motivation to the study of scalar fields [232].

The absorption and scattering cross sections of planar waves by black holes have been ex-
tensively studied. Recently, a unified picture of the scattering of massless planar waves by
Schwarzschild BHs was presented [298]. This builds upon the work of many authors in investi-
gating the absorption cross section of planar waves by the Schwarzschild black hole [299–303].
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Various studies have also been made considering charged black holes as central scatterers
[304–307]. Despite their physical relevance, rotating BHs have received less attention in the
literature, with several notable exceptions [308–310]. Absorption and scattering cross sections
by acoustic BH analogues have also been recently investigated [311–314].

In this chapter, we analyze the absorption cross section of a planar massless scalar wave
impinging upon a Kerr BH, giving emphasis to the general case in which the direction of in-
cidence is not aligned with the axis of rotation. The chapter is ordered as follows. In Sec. 8.1
we describe the separation of variables for the massless scalar field in the Kerr spacetime in
Boyer-Lindquist coordinates, and the physical boundary conditions for planar wave scattering.
In Sec. 8.2 we give expressions for the absorption cross section in the Kerr spacetime, and iden-
tify the co and counterrotating contributions. We describe the low- and high-frequency regimes,
and present a new asymptotic formula for the absorption cross section arising from the complex
angular momentum method. In Sec. 8.3 we present a selection of numerical results, considering
different values of the incident angle, and of the BH rotation parameter. We conclude with a
discussion in Sec. 8.4. Throughout, we use natural units (c = G = ~ = 1), and the metric
signature (+,−,−,−).

8.1 Scalar field in the Kerr spacetime
In the standard Boyer-Lindquist coordinate system (t, r, θ, ϕ), the Kerr BH is described by the
line element [107]

ds2 =

(
1− 2Mr

ρ2

)
dt2 +

4Mar sin2 θ

ρ2
dt dϕ− ρ2

∆
dr2

−ρ2dθ2 −
(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θdϕ2, (8.1)

in which ∆ = r2 − 2Mr+ a2 and ρ2 = r2 + a2 cos2 θ. From the asymptotic behavior, one may
infer that M is the mass of the Kerr BH and a its angular momentum per unit mass (a = J/M ).
Here we restrict ourselves to the regime in which the Kerr metric describes a BH spacetime,
i.e., a ≤ M . For a < M the Kerr BH has two horizons. The inner (Cauchy) horizon is at
r− = M −

√
M2 − a2 and the outer (event) horizon is at r+ = M +

√
M2 − a2. If a = M

we have an extreme Kerr BH with an event horizon at r+ = r− = M . The case a > M
corresponds to a naked singularity.

A massless scalar field Φ(xµ) in a curved background is governed by

1√
−g

∂µ(
√
−ggµν∂νΦ) = 0, (8.2)

where gµν are the covariant metric components of the Kerr spacetime, g the metric determinant
and gµν are the contravariant metric components. Here we shall be interested in monochromatic
wave-like solutions of Eq. (8.2), which can be obtained by separation of variables [119, 120],
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so that we may write:

Φ =
Uωlm(r)√
r2 + a2

Sωlm(θ)eimϕ−iωt. (8.3)

The functions Sωlm(θ) are the standard oblate spheroidal harmonics [121], which will be nor-
malized according to

2π

∫
dθ sin θ |Sωlm(θ)|2 = 1. (8.4)

The radial functions Uωlm(r) obey the following differential equation

(
− d2

dx2
+ Vωlm(x)

)
Uωlm(x) = ω2Uωlm(x), (8.5)

with an effective potential given by

Vωlm(x) = − 1

(r2 + a2)2 [m2a2 − 4Mmaωr +

−∆(λlm + ω2a2)] + ∆
∆ + 2r(r −M)

(r2 + a2)3 − 3r2∆2

(r2 + a2)4 . (8.6)

In Eq. (8.5) we made use of the tortoise coordinate x of the Kerr spacetime, defined through

dx =
r2 + a2

∆
dr. (8.7)

The constants λlm are the eigenvalues of the oblate spheroidal harmonics (cf., e.g., Ref. [315]).
The independent solutions of Eq. (8.5) are usually labeled as in, up, out and down (see, e.g.,
Ref. [123]). Here we will be interested in the inmodes, since they characterize purely incoming
waves from the past null infinity, obeying the following boundary conditions

Uωlm(x) ∼
{
AωlmRI +RωlmRI

∗ (x/M →∞),
TωlmRII (x/M → −∞).

(8.8)

The functions RI and RII are given by

RI = e−iωx
N∑
j=0

Aj∞
rj
, (8.9)

RII = e−iω̃x
N∑
j=0

(r − r+)jAjr+ , (8.10)

where ω̃ ≡ ω − ma/(2Mr+), and the coefficients Aj∞ and Ajr+ are obtained by requiring
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that the functions RI and RII are solutions of the differential equation (8.5) far from the BH
and close to the outer horizon, respectively. The coefficients Rωlm and Tωlm are related to the
reflection and transmission coefficients, respectively, and obey the following relation

∣∣∣∣Rωlm

Aωlm

∣∣∣∣2 = 1− ω̃

ω

∣∣∣∣ TωlmAωlm
∣∣∣∣2 . (8.11)

When ωω̃ < 0, it follows that |Rωlm|2 > |Aωlm|2, due to a phenomenon known as superradiance
[316].

8.2 Absorption cross section
The partial absorption cross section of an asymptotic plane scalar wave propagating in the di-
rection n = (sin γ, 0, cos γ) is given by [309, 310]

σlm =
4π2

ω2
|Sωlm(γ)|2Γωlm, (8.12)

where the transmission factors are

Γωlm =

(
1−

∣∣∣∣Rin
ωlm

Ainωlm

∣∣∣∣2
)
, (8.13)

and the total absorption cross section is

σ =
∞∑
l=0

l∑
m=−l

σlm. (8.14)

The cross section is invariant under γ → π−γ. When the direction of incidence is parallel to the
spin axis of the BH (γ = 0), we have σlm = 0 for m 6= 0. When the direction of incidence lies
in the equatorial plane of the BH (γ = 90 degrees) we have σlm = 0 for odd values of l+m,
because Sωlm(π/2) = 0 in this case. The total absorption cross section can be decomposed in
the following way:

σ = σ+ + σ−, (8.15)

where

σ± =
1

2

∞∑
l=0

σl0 +
∞∑
l=1

l∑
m=1

σl±m. (8.16)

In this way we may separate the absorption cross section into corotating (σ+) and counterrotat-
ing (σ−) contributions.

Programa de Pós-Graduação em Fı́sica - UFPA



8.2 Absorption cross section 140

Χ

bc!Χ"
Figure 8.1: Illustrating a planar wave impinging upon a Kerr black hole. The left plot shows a segment of planar
wave impinging upon a black hole at angle of incidence γ (where γ is angle between the black-hole rotation axis
and the direction of incidence). The right plot shows the locus of absorption, corresponding to that part of the
wavefront which is absorbed in the geometric-optics limit. The locus is described by bc(χ), where χ is the angle
between a point on the surface and the projection of the BH rotation axis, and bc is the critical impact parameter.

8.2.1 Low-frequency regime
In the low-frequency regime, it has been shown that the absorption cross section for stationary
BHs equals the area of the BH event horizon [317, 318]. This result is quite general and does
not depend on the direction of the incident wave. We have checked our numerical results in
this limit, computing numerically the absorption cross section for low values of ω. Sample
values for the area of the horizon are presented in TABLE 8.1. In Sec. 8.3 we compare these
low-frequency limits of the absorption cross section with the numerical results for the quantity
(8.14), obtaining excellent agreement.

8.2.2 High-frequency regime
At high frequencies, under the eikonal approximation, the wave propagates along null geodesics
which pass orthogonally through the initial wavefront. Hence, an analysis of absorption can be
made by computing the capture cross section of null geodesics impinging on a Kerr BH from
infinity. Calculations of the capture cross section may be found in Refs. [127, 319]. Below, we
develop a complementary approach which emphasises the geometrical aspects of the calcula-
tion.
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Figure 8.2: Schematic illustration of a slice of a Kerr black hole. Here, M = 1, a = 0.8M and the event horizon
[black] and ergoregion [red] are shown as solid lines. The photon orbit zone, marked in beige, is spanned by the
family of constant-radius null geodesics, shown as dotted lines. Special cases include the polar orbit, which runs
from pole to pole (and precesses around the black hole), shown as a dashed line at r/M ≈ 2.67; and the co and
counterrotating equatorial orbits marked by purple points at r/M ≈ 1.81 and 3.82, respectively.

Capture cross section

Figure 8.1 illustrates the scenario: a planar wavefront impinges upon a rotating black hole, at
an angle of incidence γ. The capture cross section σgeo is the area of the ‘locus of absorption’
which is traced on the incident planar surface. We may write

σgeo =

∫ π

−π

1

2
b2
c(χ, γ)dχ, (8.17)

where χ an angle defined on the planar surface, measured from the rotation axis in a corotating
sense. Here, bc(χ, γ) is the ‘critical’ impact parameter, which corresponds to the marginal case
of a null geodesic that asymptotically approaches a constant-radius photon orbit.

For a Schwarzschild black hole, the constant-radius photon orbit occurs at r = 3M (the
‘light-ring’), and the set of such orbits defines a 2D ‘photon sphere’. In the Kerr case, the radius
of the orbit depends on the azimuthal angular momentum. Figure 8.2 shows that the set of all
constant-radius photon orbits defines a ‘photon orbit zone’. Each point in this zone is associated
with a constant-radius null geodesic, which is the asymptote of a null ray encroaching from
spatial infinity.

To find bc(χ, γ) we solve the geodesic equations which are obtained with Hamilton-Jacobi
methods. Geodesics on Kerr are governed by four first-order equations, and three constants of
motion: energy E, azimuthal angular momentum Lz and Carter constant Q. The first step is to
establish the relationship between the constants of motion and the values of b and χ for the null
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ray passing orthogonally through the planar wavefront. Without loss of generality, let us assume
that the wave is impinging along the φ = 0 direction. We may introduce an ‘impact vector’ b
with Cartesian components b = [b cos γ cosχ, b sinχ,−b sin γ sinχ]. This corresponds to a ray
with the following constants of motion:

L̂z ≡ Lz/E = b sinχ sin γ, (8.18)
Q̂ ≡ Q/E2 = b2 cos2 χ+ (b2 sin2 χ− a2) cos2 γ. (8.19)

The next step is to find the critical radius and impact parameter, rc and bc, for the direction χ,
by solving

R(rc) = 0,
∂R(rc)

∂r
= 0, (8.20)

where
R(r) =

(
(r2 + a2)− aL̂z

)2

−∆
(

(L̂z − a)2 + Q̂
)
. (8.21)

By solving Eq. (8.20) we get a pair of values (rc(χ, γ), bc(χ, γ)), corresponding to the radius of
the photon orbit and the critical impact parameter for a null ray that passes through the incident
wavefront at an angle χ relative to the rotation axis, as shown in Fig. 8.1. The capture cross
section is computed by inserting bc(χ, γ) into Eq. (8.17).

Figure 8.3 shows the geodesic capture cross section as a function of angle of incidence γ for
a variety of black hole spins a. Some values for the capture cross section in the special case of
on-axis incidence (γ = 0) are presented below in TABLE 8.1. These values will be compared
with the numerical results for the absorption cross section exhibited in Sec. 8.3.

Table 8.1: Low- and high-frequency limits of the absorption cross section for the different choices of a exhibited
in the plots of the Sec. 8.3. The high-frequency results presented here are for on-axis incident null geodesics.

a [M ] 0.00 0.30 0.60 0.90 0.99
σ(ω ≈ 0) [πM2] 16.000 15.631 14.400 11.487 9.128
σ(ω �M) [πM2] 27.000 26.726 25.855 24.168 23.409

Sinc approximation

In the 1970s, Sanchez [300] found that, at high frequencies, the absorption cross section for
a Schwarzschild BH oscillates around the geometric capture cross section with a peak-to-peak
period of ∆ω = 1/

√
27M . In one sense, oscillations arise from the contributions of successive

partial waves to Eq. (8.14). In a complementary sense, as recently shown in Refs. [320, 321]
using complex angular momentum (CAM) methods, the oscillations are related to the properties
of the unstable photon orbit. For a scalar field absorbed by a spherically-symmetric BH, it was
shown that [320]

σ/σgeo ∼ 1− 8πβ e−πβ sinc (2πω/Ω) , (8.22)
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Figure 8.3: Geodesic capture cross section σ as a function of angle of incidence γ, where γ = 0 corresponds to
incidence along the black hole’s axis of rotation (and σ is symmetric under γ → π − γ). The geodesic capture
cross section is the high-frequency asymptote for the planar wave absorption cross section.

where β ≡ Λ/Ω, with Ω the frequency of the null orbit, and Λ the associated Lyapunov ex-
ponent. In the Schwarzschild case, σgeo = πb2

c is the geodesic capture cross section and
Ω = 1/(

√
27M) = 1/bc with β = 1. The oscillatory term arises from a (high-frequency

approximation to) a sum over Regge poles. Regge poles are characteristic resonances of the
spacetime closely related to the quasinormal modes. The idea that oscillations in absorption
cross sections provide information about the properties of the null orbits is an intriguing one,
which surely deserves further investigation in non-spherically-symmetric cases, such as Kerr.

In Sec. 8.3 we show that oscillations around the capture cross section are also present in the
Kerr context, and, for general angles of incidence, these oscillations exhibit a richer spectrum.
The oscillations arise from the superposition of partial contributions which now depend on
azimuthal number m as well as on l. From the complementary viewpoint, these oscillations are
related to the spectrum of Regge poles, which also depend on both l and m.

In the special case in which the plane wave is incident along the axis of rotation (γ = 0
or π), a slightly-modified version of Eq. (8.22) is still valid, even though the BH itself is not
spherically symmetric. One subtlety is that we need to take account of the spheroidal harmonics
in Eq. (8.12). Progress can be made with an asymptotic relation, obtained using the WKB
techniques of Ref. [322]:

|Sωl0(γ = 0)|2 =
1

4π2

∂A

∂L
. (8.23)

Here L = l + 1/2 and A is the angular eigenvalue of the spheroidal equation for m = 0. We
may then use the following expansion

A

L2
= 1− 1

2
α2 +

1

32
α4 +

5

8192
α8 +O(α12), (8.24)
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Figure 8.4: The sinc approximation for on-axis incidence (γ = 0). The solid lines show the numerically-
determined cross section (cf. Fig. 8.6), and the dashed lines show the sinc approximation, Eq. (8.25), for a range
of a/M and ωM .

which is valid in the regime α ≡ aω/L < 1. It follows that 2π2|Sωlm(γ)|2 = L−α4L
32

+ . . ., and
the subdominant term is very small near the Regge pole, and may be neglected. The other steps
in the derivation of Ref. [320] follow through unchanged, and we arrive at

σ/σgeo ∼ 1− 8πβ e−πβ

Ω2b2
c

sinc (2πω/Ω) , (8.25)

where again β = Λ/Ω. In the on-axis case, bc, Ω and Λ can be written in closed form; the
relevant expressions are found in Eqs. (18), (22) and (24), respectively, of Ref. [323]. Note that
now bc 6= 1/Ω, for a > 0. In Fig. 8.4 we plot a selection of results obtained through Eq. (8.25),
and compare with numerically-determined cross sections.

Semi-analytic approximation

In the high frequency regime, the behaviour of the transmission factors are closely linked to the
properties of null orbits, via

Γωlm ∼ [1 + exp (−2π(ω − ΩRL)/ΩI)]
−1 (8.26)

(cf. Eq. (15) in Ref. [320]). Here ΩR(a/M, µ) and ΩI(a/M, µ) are, respectively, the orbital
frequency and Lyapunov exponent associated with a null orbit with angular momentum ratio
µ ≡ m/L. Accurate semi-analytic approximations for ΩR and ΩI are given in Ref. [322]: see
Eq. (2.35), (2.36) and Eq. (2.40).

Figure 8.5 shows the transmission factors Γωlm as a function of frequency Mω, for the
case l = 5, a = 0.9M , and −l ≤ m ≤ l. It shows that Eq. (8.26) provides an excellent
approximation in the regime ω ∼ ΩRL.
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Figure 8.5: Transmission factors Γωlm for angular
multipoles l = 5 and −l ≤ m ≤ l. The solid
lines show numerical solutions of Eq. (8.13), and
the dashed lines show the semi-analytic approxima-
tion, Eq. (8.26).
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Figure 8.6: On-axis (γ = 0) absorption cross sec-
tion for a/M = 0.00, 0.60 and 0.99. The horizon-
tal lines represent the high-frequency limits. We
see that the general pattern of the on-axis absorp-
tion cross section, even for rapidly rotating BHs, is
similar to the case of spherical (a = 0) BHs.

8.3 Numerical results
In this section we present our numerical results for the scalar absorption cross section of the
Kerr BH. We give particular attention to the off-axis absortion cross section, i.e., the γ 6= 0
cases, which exhibit many distinct features when compared to the spherically symmetric case.

As for the numerical precision, we have considered the summation in Eqs. (8.9) and (8.10)
until the next term contributes less than 10−3 of the total value. This makes the computation
more efficient, as we do not need to integrate to very large radii in order to obtain convergent
results. In our case, the maximum radius r∞ is typically r∞/r+ ∼ 102 and the numerical outer
horizon rh is such that (rh/r+ − 1) ∼ 10−2.

The numerical upper limit in the l summation in Eq. (8.14), lmax, should be considered
carefully, in order to properly compute the total absorption cross section. The convergence of
Eq. (8.14) depends strongly on the value of the wave frequency ω. For higher values of ω one
should take higher values of lmax. For the results presented here, which are in the frequency
range 0 < ωM < 1.4, we performed the summation until lmax = 8. Additional terms coming
from l > 8 would contribute less than 10−6 of the total value, being unnoticeable in the data
plots presented here. Our results were checked using independent codes, which increases their
reliability.

In Fig. 8.6 we show the total on-axis absorption cross section for a/M = 0.00 (Schwarzschild
case), 0.60, and 0.99. In the on-axis case, as the frequency is increased, the absorption cross
section increases from the area of the event horizon and then oscillates regularly around the
high-frequency limit given by the capture cross section of null geodesics (see Fig. 8.3), which
is represented by horizontal lines in Fig. 8.6.

In Fig. 8.4 we compare the numerically-determined cross section with the ‘sinc approxima-
tion’ of Eq. (8.25). We see that the agreement is excellent in the moderate-to-large Mω regime,
which confirms the validity of Eq. (8.25).

In Fig. 8.7 we show the absorption cross section for a range of rotation parameters (a/M =
0.30, 0.60, 0.90, and 0.99) and incidence angles (γ = 0, 30, 60, and 90 degrees). We see that,
as we move away from the on-axis case (γ = 0), by increasing the incidence angle γ, and
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Figure 8.7: Off-axis absorption cross section for a/M = 0.30, 0.60, 0.90 and 0.99. For comparison, we also
exhibit the on-axis case (γ = 0), and its high-frequency limit (horizontal lines). We see that the oscillation pattern
for the off-axis cases differs considerably from the regular one exhibited in the on-axis case.

increasing the rotating parameter a, the absorption cross section starts to differ considerably
from the regular behavior shown in Fig. 8.6. In the high-frequency regime, σ oscillates in an
irregular way around the geodesic capture cross section. This irregular oscillatory behavior
arises as a consequence of breaking the azimuthal degeneracy, so that the transmission factor
becomes strongly dependent on m, as shown in Fig. 8.5. In other words, there is a coupling
between the BH rotation and the azimuthal number m, which may be interpreted as the result
of frame-dragging [308].

The azimuthal number m may be positive, which corresponds to corotating modes, or nega-
tive, which corresponds to counterrotating modes. In order to see their contribution separately,
we computed the absorption cross sections, σ+ and σ−, as defined in Eq. (8.16). The results are
shown in Fig. 8.8. When we split the absorption cross section into co (σ+) and counterrotating
(σ−) contributions, we see that the oscillating pattern becomes more regular. Furthermore, we
see that the counterrotating contributions for the total absorption cross section are bigger than
the corotating ones. This agrees with the null geodesic approach, where the critical radius for
retrograde orbits is bigger than the one for direct orbits [127]. We note that σ+ and σ− move
further apart as the rotation rate increases. The difference between the co and counterrotating
absorption cross sections is more pronounced for γ = 90 deg, as a consequence of the increased
importance of frame-dragging in the equatorial plane.

In Fig. 8.9 we show the main partial contributions for the total absorption cross section for
fixed values of |m|, varying l, according to Eq. (8.12). We see from Fig. 8.9 that corotating
(am > 0) and counterrotating (am < 0) contributions to the partial absorption cross section
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Figure 8.8: Co (σ+) and counterrotating (σ−) absorption cross section for γ = 30, 60, and 90 degrees. The curves
are plotted for different BH rotation parameters, namely a/M = 0.30, 0.60, 0.90, and 0.99. The counterrotating
absorption cross sections are bigger than the correspondent corotating ones, and their separation becomes larger as
a increases.

Programa de Pós-Graduação em Fı́sica - UFPA



8.3 Numerical results 148

 0

 5

 10

 15

 20

 25

 30

 35

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

σ
lm

/(
π

M
²)

ωM

a/M = 0.9, γ = 60 deg

(l,m)=(0,0)
(l,m)=(1,0)
(l,m)=(2,0)
(l,m)=(3,0)

 0

 1

 2

 3

 4

 5

 6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

σ
lm

/(
π

M
²)

ωM

a/M = 0.9, γ = 60 deg

(l,|m|)=(1,1)
(l,|m|)=(2,1)
(l,|m|)=(3,1)
(l,|m|)=(4,1)
(l,|m|)=(5,1)

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

σ
lm

/(
π

M
²)

ωM

a/M = 0.9, γ = 60 deg

(l,|m|)=(2,2)
(l,|m|)=(3,2)
(l,|m|)=(4,2)
(l,|m|)=(5,2)

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

σ
lm

/(
π

M
²)

ωM

a/M = 0.9, γ = 60 deg

(l,|m|)=(4,3)
(l,|m|)=(5,3)

Figure 8.9: Partial absorption cross sections for a/M = 0.90 and γ = 60 degrees. We plot the main contributions
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Figure 8.10: Zoom at the mode with l = m = 1 for γ = 30, 60, and 90 degrees, with a/M = 0.99. Superradiance
is more evident for this mode, although being very small even in this case.
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with the same value of |m| become equal after a certain value of the frequency. This occurs once
both waves are completely absorbed, i.e. |Rin

ωlm/Ainωlm|
2

= 0, and the sign of m in Eq. (8.12)
becomes irrelevant. The approximate value of the frequency at which absorption becomes sig-
nificant is determined by ΩRL, where ΩR is the frequency of the corresponding null orbit, which
depends on both m/L and a/M (see Sec. 8.2.2).

Due to superradiance [316], the reflection coefficient can actually exceed unity for some
values of (ω,m). See, for instance, Ref. [315], where the reflection coefficient is computed for
different values of a. For these values, as can be seen in Fig. 8.10, the transmission factor and
partial absorption cross section are negative, although the total absorption cross section remains
positive. We recall that there is no superradiance for m = 0, and that it is most evident for the
l = m = 1 mode.

8.4 Conclusion
We have numerically computed the absorption cross section of plane massless scalar waves inci-
dent upon Kerr BHs, for general angles of incidence, revealing the effect of black hole rotation.
In the special case of on-axis incidence, we showed that the absorption cross sections are well-
described by a simple ‘sinc’ approximation. Our result was obtained by extending the complex
angular momentum method of Ref. [320]. In the general case of arbitrary incidence, we showed
that the absorption cross section of a Kerr BH exhibits an irregular oscillation pattern, which is
in contrast to the regular oscillations shown by a Schwarzschild BH. We have taken steps to ex-
plain this effect in terms of the coupling between the azimuthal angular momentum of the field
and the angular momentum of the BH. In Sec. 8.2.2 we gave a semi-analytic approximation to
relate the transmission of partial waves to the properties of the null photon orbits. To explore
the coupling, we have compared the corotating (am > 0) and counterrotating (am < 0) contri-
butions to the absorption cross section. We have shown that, due to superradiance in the Kerr
spacetime, the partial absorption cross section becomes negative for some values of (ω,m).

Some of the features observed in the scalar absorption by Kerr BH have also been ob-
served in the absorption of sound waves by the draining bathtub: an (inexact) analogue of Kerr
BH in (2+1)-dimensions [314] which is amenable to a full analysis using the complex angular
momentum approach [313]. The results presented here represent a significant step towards un-
derstanding the absorption by axially-symmetric BHs, for waves impinging at general angles.
Possible themes for future work could include (i) an extension of the complex angular momen-
tum approach of Sec. 8.2.2 to waves impinging at arbitrary angles of incidence, which would
require careful asymptotic analysis of the spheroidal harmonics, and (ii) analysis of higher-spin
(e.g. Dirac [309] or electromagnetic) planar waves, where there will be an additional coupling
between black hole rotation and the spin of the field.
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Chapter 9

Scalar waves impinging in a dirty black

hole: Schwarzschild black holes

surrounded by thin spherical shells

In the year of 2015, the Theory of general relativity (GR) reaches 100 years of existence. In its
centenary history, GR has been submitted to many experimental tests [1, 9], and has obtained
remarkable success in all of them. Among the predictions of GR, the existence black holes
(BHs) [124] arises as one of the most curious and fascinating ones, due to the features pre-
sented by these objects. In GR, one may assure that in electrovacuum, isolated black holes are
governed by just three parameters [108]: angular momentum, charge, and mass. However, in
an astrophysical environments, BHs are likely to be surrounded by other field sources [291].

The surroundings of BHs have a major importance in many of their observational features.
Indeed, the accretion of matter into BHs is associated to characteristic signatures of the event
horizon itself, through, for instance, the Kα iron line emission [12, 324]. Accretion can play a
very important role in the evolution of supermassive BHs and therefore in the galactic evolution
as well [292, 325, 326]. However, accreting matter into a BH can be very difficult to quan-
tify: In general, one has to solve the time-independent, multidimensional, relativistic, magneto-
hydrodynamic equations with coupled radiative transfer [69,327]. Notwithstanding, many sim-
plifying assumptions can be made in order to obtain the main features of accreting models. For
instance, one can assume a non-interacting fluid flowing spherically into the BH, which can be
solved analytically for some equation of state [69].

Most of the features of the accreting matter into BHs are obtained kinematically: given a
fixed gravitational background one can in principle compute all relevant observational quanti-
ties. This reasoning is based on the assumption that the accreting matter has a density which
is much smaller than the supermassive black hole itself, and therefore one can safely neglect
its gravitational influence, and treat the system adiabatically. Despite that, some gravitational
features considering matter environment surrounding BHs were studied in the past years. Con-
figurations known as dirty BHs were considered to analyze the influence of environmental mat-
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ter fields around BHs [328–330]. In Ref. [331, 332] a perturbative formula to study quasi-
normal modes of BHs with surrounding matter was proposed, where it was shown that the
presence of an environment can modify the quasinormal modes of the BHs. More recently, in
Ref. [260], the BH environment influence in the gravitational wave phenomenology was stud-
ied in a broad class of scenarios, some of them in which the whole configuration resembles
an isolated BH. Additionally, in Ref. [333] Gürlebeck showed that the presence of matter sur-
rounding a Schwarzschild BH has no influence on the multipole moments of the distorted BH,
within generic assumptions on the matter.

Studies of BHs with surrounding matter can also be interesting in the context of dark matter.
It is known that dark matter can form halo structures surrouding galactic disks. Also, clouds
of dark matter can be formed in the BH vicinity [138, 139], in some cases this may lead to BH
hairy configurations [136]. The effect of dark matter halos in the scattered light of the galaxies
was studied recently in Ref. [334], setting an upper limit on the dark matter-photon cross section
using observation data. The dark matter can be accreted by BHs, which would have an influence
on its evolution. Therefore, it is interesting to study cases where the matter surrounding the BH
couples very weakly to the interacting fields (i.e., interacts only gravitationally), for which the
gravitational effects of the matter surrounding BHs can be seen more clearer.

The scattering/absorption of fields by isolated BHs have been widely investigated [298–
304, 306–308, 310, 335–339], and helped us to understand many of the BH phenomenological
features. Although planar wave scattering seems to be a very peculiar phenomenum, many
interesting outcomes may be analyzed through it, like the accretion of dark matter by compact
objects [149, 156]. Also, planar wave absorption shares many features with the accretion of a
uniform velocity fluid into a BH [340]. Moreover, the scattering of light by the BHs may cast a
shadow [341–343], that should be visible with near-future telescopes.

Within the literature on BHs planar wave scattering, the consideration of the gravitational
effect exerted by the environment in the absorption spectrum is still missing. A review on
wave propagation, taking into account the coupling with matter including effects of coupling
with other matter fields, can be seen in Ref. [344]. However, the study of the gravitational
backreaction of the matter surrounding the BH in its absorption is still lacking in the literature.
In this chapter, we analyze the case of Schwarzschild BHs surrounded by a thin spherical shell
[345], which we shall call dirty black hole (DBH). More specifically, we analyze the absorption
cross section of planar massless scalar waves impinging upon a Schwarzschild BH surrounded
by a thin shell of matter.

The remaining of this chapter is organized as follows. In Sec. 9.1 we review some fea-
tures of a Schwarzschild BH surrounded by a thin spherical shell. In Sec. 9.2 we investigate
the massless scalar field in the spacetime of interest, and the suitable boundary conditions for
planar wave scattering. In Sec. 9.3 we provide expressions for the absorption cross section of a
Schwarzschild BH with a thin spherical shell. Also, we describe the low- and high-frequency
regimes, and show a sinc approximation for the absorption cross section. In Sec. 9.4 we show
a selection of our numerical results, considering different values of the shell position, and of
the BH and shell masses. We finalize pointing out some remarks in Sec. 9.5. Throughout the
chapter, we use natural units (c = G = } = 1).
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9.1 Black holes with surrounding spherical shells
Spherically symmetric spacetimes can be described by the following line element:

ds2 = −A(r)dt2 +
1

B(r)
dr2 + r2dΩ2, (9.1)

where A and B are functions of the radial coordinate r only and dΩ2 denotes the unit 2-sphere
line element. We want to describe the metric functionsA andB correspondent to a thin spherical
shell outside of a Schwarzschild BH. In GR, (isotropic) fluid configurations are described by
the Tolman-Opennheimer-Volkoff (TOV) equations [69], i.e.,

dµ

dr
= 4πr2ρ(r), (9.2)

dA

dr
= 2

µ+ 4πr3p

r2 − 2rµ
A, (9.3)

dp

dr
= −µ+ 4πr3p

r(r − 2µ)
(p+ ρ), (9.4)

where p and ρ are the pressure and density of the fluid, respectively, and µ is the mass function,
defined through

B(r) = 1− 2µ

r
. (9.5)

The vacuum solutions (i.e. ρ = p = 0) of the TOV equations are given by

A = a1

(
1− 2a2

r

)
(9.6)

µ = a2, (9.7)

where a1 and a2 are constants. From Eq. (9.2) we can see that a2 accounts for the total mass-
energy of the configuration, within the radius r. Moreover, we note that the vacuum solution
can always be brought to its Schwarzschild form, both inside and outside of the spherical shell,
by absorbing the constant a1 in a time re-parametrization [345]. However, here we choose to
keep the constant a1 for the solution inside the shell.

Now let us restrict ourselves to the case of a spherical thin shell surrounding a Schwarzschild
BH [346]. Let RS denote the radial position of the sphere. We have that, for r > RS, the metric
function can be written in the Schwarzschild form:

A(r) = B(r) = 1− 2M

r
, (9.8)

where M is the Arnowitt–Deser–Misner (ADM) mass. This mass, M , accounts for the mass
of the spherical shell and also of the BH inside it. In the region between the BH event horizon
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and the spherical shell, we can see from Eq. (9.7) and the behavior of B(r), that the constant
a2 = MH is the BH event horizon mass. The only remaining constant is a1, which we choose
such that A(r) is continuous across the spherical shell. We have that

a1 ≡ α =
(1− 2M/RS)

(1− 2MH/RS)
. (9.9)

Therefore, the full solution is given by

A(r) =

{
α(1− 2MH/r), r < RS

(1− 2M/r), r > RS
, (9.10)

B(r) =

{
(1− 2MH/r), r < RS

(1− 2M/r), r > RS
. (9.11)

Using the metric discontinuities, we can evaluate the surface energy Σ and the surface ten-
sion Θ of the spherical shell. The surface energy and tension are obtained through the following
relations [154, 345] √

B(RS)
+
−
√
B(RS)− = −4πRSΣ, (9.12)[

A′(RS)
√
B(RS)

A(RS)

]
+

−
[
A′(RS)

√
B(RS)

A(RS)

]
−

= 8π(Σ− 2Θ), (9.13)

where the subscript signs + and − indicate the limit r → RS from r > RS and r < RS,
respectively. Using the metric coefficient (9.11), we find

Σ =
1

4πRS

(√
1− 2MH

RS

−
√

1− 2M

RS

)
. (9.14)

Moreover, using Eq. (9.13), the surface tension is given by

Θ = 1
16π

(
8πΣ−

[
A′(RS)

√
B(RS)

A(RS)

]
+

+

[
A′(RS)

√
B(RS)

A(RS)

]
−

)
, (9.15)

hereafter the prime denotes derivative with respect to the coordinate r, inserting (9.10) and
(9.11) in (9.15), we obtain

Θ =
1

8πRS

 1− MH

RS√
1− 2MH

RS

−
1− M

RS√
1− 2M

RS

 . (9.16)
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9.2 Scalar field
The massless scalar field Φ is described by the Klein-Gordon equation, namely

1√
−g

∂a
(√
−ggab∂bΦ

)
= 0. (9.17)

Monochromatic scalar waves in spherically symmetric spacetimes can be decomposed in the
following way:

Φωlm(t, r, θ, φ) =
∑
lm

Uωl(r)

r
e−iωtYlm(θ, φ), (9.18)

and, using Eq. (9.17), we obtain the following radial equation for Uωl(r)

√
AB

(√
ABU ′

)′
+
{
ω2 − A

[
l(l+1)
r2 + (AB)′

2Ar

]}
U = 0, (9.19)

where the prime denotes derivative with respect to the coordinate r.
Introducing the Regge-Wheeler coordinate x, which can be defined through

x =

∫
dr

1√
AB

, (9.20)

we can rewrite Eq. (9.19) in the form of an one-dimensional Schrödinger-like equation, given
by [

− d2

dx2
+ Vl − ω2

]
Uωl(x) = 0, (9.21)

where Vl(r) is the effective potential, namely

Vl(r) = A

[
l(l + 1)

r2
+

(AB)′

2Ar

]
. (9.22)

We can note, from FIG. 9.1, that at the event horizon r = 2MH ≡ rH the effective potential
vanishes, and goes as 1/r2 for r � rH . These characteristics of the potential are shared with the
case of an isolated Schwarzschild BH. However, for DBHs the potential presents a discontinuity
at the shell radius RS (cf. FIG. 9.1).

The independent solutions of Eq. (9.21) are usually labeled as in and up. For absorp-
tion/scattering, the one of interest will be the in modes, which denote purely ingoing waves
impinging from the past null infinity. The in modes obey the following boundary conditions:

Uωl(x) ∼
{
AωlRI +RωlRI

∗ (x/M →∞),
TωlRII (x/M → −∞).

(9.23)
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Figure 9.1: The effective potential, Vl(r), plotted for the modes l = 0, 1, 2, at the shell radius RS = 4.0M with
the BH mass MH = 0.9M .

The functions RI and RII can be written as

RI = e−iωx
N∑
j=0

Aj∞
rj
, (9.24)

RII = e−iωx
N∑
j=0

(r − r+)jAjr+ , (9.25)

and the coefficients Aj∞ and Ajr+ are obtained by requesting the functions RI and RII to be
solutions of the differential equation (9.21), far from the BH and close to the event horizon,
respectively. The coefficients Rωl and Tωl in Eq. (9.23) are related to the reflection and trans-
mission coefficients, respectively, and obey the following relation

∣∣∣∣Rωl

Aωl

∣∣∣∣2 = 1−
∣∣∣∣ TωlAωl

∣∣∣∣2 . (9.26)

In order to obtain the coefficients Rωl and Tωl, we integrate the differential equation from
the horizon up to a point far from the configuration (BH + shell). In the integration procedure,
one must carefully choose the boundary conditions at the spherical shell. We impose that the
scalar field is continuous at the shell location, i.e.,

Uωl(RS)+ = Uωl(RS)−, (9.27)

where the + and − signs indicate the limit r → RS from r > RS and r < RS, respectively.
Integrating the differential equation (9.19) across the shell location r = RS, we find the jump
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condition [135]: [√
AB U ′ωl(RS)

]
+
−
[√

AB U ′ωl(RS)
]
−

=
Uωl(RS)

RS

(√
AB+ −

√
AB−

)
. (9.28)

Using the metric functions (9.10) and (9.11), the jump condition can be rewritten as [135](
1− 2M

r

)
U ′ωl(RS)+ −

√
α

(
1− 2MH

r

)
U ′ωl(RS)−

= −2
(M −MH)U(RS)

R2
S (1 + 1/

√
α)

. (9.29)

In practice, one integrates the differential equation (9.19) up to the spherical shell, using
the inner solution, extracting Uωl(RS)− and U ′ωl(RS)−. With these values, we use the jump
condition to determine U ′ωl(RS)+, and then integrate again the differential equation (9.19) from
the shell to a point far away from the configuration which corresponds to the numerical infin-
ity. The reflection and transmission coefficients can be obtained by comparing the numerical
solution with the asymptotic forms (9.23).

9.3 Absorption cross section
In this Section we show the procedure to compute the absorption cross section for arbitrary fre-
quencies, which uses the solutions from the numerical integration scheme described in Sec. 9.2.
We also show analytical approximate results in the low- and high-frequency regimes.

9.3.1 Partial-waves approach
Using the standard partial wave method [347], one may show that the total absorption cross
section σ of planar massless scalar waves impiging on a Schwarzschild BH surrounded by a
spherical shell is given by

σ =
∞∑
l=0

σl, (9.30)

with

σl =
π

ω2
(2l + 1)

∣∣∣∣ TωlAωl
∣∣∣∣2 , (9.31)

being the partial absorption cross section 1, where Tωl and Aωl are the coefficients appearing
on Eq. (9.23). This expression is algebraically the same as the one for a Schwarzschild BH

1The partial absorption cross section, σl, corresponds to the absorption cross section with a fixed value of l.
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without surrounding shells [300]. From Eq. (9.31) we see that the main ingredient to determine
the absorption cross section for arbitrary frequencies is |Tωl/Aωl|2 obtained using the procedure
explained in Sec. 9.2.

9.3.2 Low-frequency regime
In the low-frequency regime, there is a general result which shows that for spherically symmet-
ric BHs the absorption cross section for minimally coupled non-massive scalar field is given by
the area of the event horizon [348]. We have computed numerically the absorption cross section
in the low-range of ω, and the results present large agreement.

9.3.3 Null geodesics: high-frequency
In the high-frequency limits, one can show that the scalar field propagates along null geodesics.
Therefore, the absorption can be studied through null geodesics.

Without loss of generality, let us focus on null geodesics on the equatorial plane of spheri-
cally symmetric spacetimes. The Lagrangian associated to our problem is given by

L =
1

2

(
−Aṫ2 +

1

B
ṙ2 + r2φ̇

)
, (9.32)

where the overdot indicates derivative with respect to the proper parameter of the curve. From
the Lagrangian (9.32), we have the following conserved quantities

E = −∂L
∂ṫ

= A(r)ṫ, (9.33)

L =
∂L
∂φ̇

= r2φ̇. (9.34)

Therefore, Eq. (9.32) can be rewritten as

A

B
ṙ2 + L2A

r2
=
A

B
ṙ2 + Ve(r) = E2, (9.35)

where
Ve ≡ L2A/r2, (9.36)

is the effective potential of the geodesic. When compared to a Schwarzschild BH, the effective
potential Ve has some interesting new features. From FIG. 9.2 we see that, due to the spherical
shell, the potential is discontinuous at the shell’s position. Moreover, depending on the shell’s
location we can have two maxima, which indicates the existence of two unstable light rings (see
bellow).

With Eq. (9.32), one can show that the radius of circular null geodesics rl and the ratio
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Figure 9.2: Effective potential Ve, normalized by the angular momentum, as a function of the radial coordinates
for some values of the shell radius. Here, we assume MH = 0.8M .

Ll/El are given by 2

rlA
′(rl)− 2A(rl) = 0, (9.37)

bl ≡
Ll
El

= rlA(rl)
−1/2, (9.38)

respectively. For a Schwarzschild BH, bl is the critical impact parameter for which a massless
particle coming from the infinity stays in an unstable circular orbit. For b = L/E < bl the
particle gets absorbed by the black hole and for b > bl the particle is scattered to infinity.
However, in the case of a DBH, as we shall see, this is not always true.

The presence of surrounding matter modifies the light ring structure. For the case of the
DBH described in Sec. 9.1, depending on the position of the spherical shell, we have three
possibilities, namely

rl =


3M, if RS < 3MH,

3M and 3MH, if 3MH < RS < 3M,
3MH, if RS > 3M.

(9.39)

Accordingly, we may have two different constants bl associated to unstable circular orbits. Since
we are interested in the absorption properties, we shall be concerned with the critical impact
parameter. The critical impact parameter bc is such that for b < bc the light rays get captured by
the BH. The only situation which there can be ambiguities is the case 3MH < RS < 3M . For
this case, the critical impact parameter will be

bc = min(bl+, bl−), (9.40)

where bl+ and bl− are related to the unstable circular orbits 3M and 3MH, respectively. The
situation is illustrated in FIG. 9.3, where we have fixed the shell radius at RS = 2.8M and the

2The index l denotes quantities related to the light ring.
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Figure 9.3: Null geodesics impinging from infinity with different impact parameters, namely, bl− and bl+. The
geodesics are plotted for RS = 2.8M and MH = 0.9M , in this case we have that the critical impact parameter
corresponds to bl+, since bl+ < bl− and the geodesic with the impact parameter bl− is scattered to infinity (dashed
line).

BH mass to MH = 0.9M , one can show that for these parameters bl− > bl+, then we have that
bc = bl+.

The capture cross section, which corresponds to the high-frequency limit of the absorption
cross section, is given by

σgeo = πb2
c . (9.41)

We shall explore the three possibilities described by Eq. (9.39). Additionally, we can impose
energy conditions to the shell, and this would naturally restrict the shell position. In Appendix F
we show how the dominant energy condition (DEC) and strong energy condition (SEC) impose
a minimum radius to the location of the shell. In FIG. 9.4 we plot the lower acceptable value for
the shell position rmin as a function of the BH mass, according to DEC and SEC, and compare
with the position of the inner light ring 3MH. Interestingly, DEC enables all three cases listed in
Eq. (9.39), while for SEC we only have two possibilities (those for which RS > 3MH). We note
that the radius of the shell is always bigger than 2M , despite the energy conditions imposed,
otherwise the whole configuration would collapse into a BH.

We are interested in the effect of the spherical shell in the scattering/capture of null geodesics.
From Eq. (9.35), we have that the geodesics can be described by

(
du

dφ

)2

− B

b2A
+Bu2 = 0, (9.42)

where we have defined u ≡ r−1. We have integrated Eq. (9.42) subject to the boundary condi-
tion u(0) = 0. We detail our results bellow.

In order to understand the influence of the shell mass in the geodesic motion, we inte-
grate three different geodesics for RS = 4.0M (top) and RS = 2.9M (bottom), with MH =
0.899, 0.900, and 0.901M . The impact parameter of the geodesics is chosen to be the one
related to the case MH = 0.9M , such that the geodesic ends up in unstable circular motion
(dark solid line). The results are shown in the left panels of FIG. 9.5, where we show cases
for 3MH < RS < 3M (bottom) and RS > 3M (top). The case RS < 3MH is similar to the
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Figure 9.5: Null geodesics coming from infinity with a fixed impact parameter. LEFT PANELS: We fix the
shell position, and change the BH mass. In the top and bottom images we choose RS = 4M and RS = 2.9M ,
respectively and the impact parameter b to be the one for the critical case for MH = 0.9M . RIGHT PANELS: we
fix the BH mass, and change the shell position. In the top and bottom images we choose MH = 0.9M , and b to be
the critical one for RS = 4.00M (top) and RS = 2.900M (bottom).
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Figure 9.6: Critical impact parameter as a function of the BH mass MH, for some values of the shell radius RS.

Schwarzschild BH case with massM . For a bigger shell mass, or equivalently a smallerMH/M
ratio, the geodesic is scattered to infinity (dashed line). For a smaller shell mass, the geodesic
is captured by the BH (dotted line). Therefore, we conclude that the more massive the shell is
the higher are the chances of a geodesic being scattered.

Another possibility is to let free the shell radius, fixing the horizon mass MH = 0.9M . We
can chose the impact parameter to be the one related to the unstable circular geodesic (dark
solid line) associated with the shell radius RS = 4M (top), and RS = 2.9M (bottom). The
results for these choices are showen in the right panels of FIG. 9.5. For a smaller shell radius,
the geodesic is captured by the BH (dashed line). For a bigger shell radius, the geodesic is
scattered to infinity (dotted line). Therefore, bigger the shell radius is, more the configuration
scatterers light.

The above features can be confirmed by analyzing how the critical impact parameter varies
with RS and MH. In FIG. 9.6 we plot the critical impact parameter as a function of the BH
mass, for some values of the shells radius. As we can see, the impact parameter increases with
the mass of the BH, up to a point in which bl− = bl+, then it goes as bl+ = 3

√
3M , regardless

of MH. This is in agreement with Eq. (9.40). Moreover, the critical impact parameter increases
with the radius of the shell. For RS < 3MH, the impact parameter depends only on the ADM
mass M , and the system behaves as a single BH with mass M . When the mass of the BH is set
to zero, we see that the critical impact parameter also goes to zero. This is expected, since there
would be no absorption if there was no BH.

Another interesting feature arises when the spherical shell is far away from the BH. When
this happens, the whole system behaves as a single BH with a mass MH. This can be seen
directly from the metric function, since

A(r) ∼ 1− 2MH

r
+O(R−1

S ), (9.43)

when RS � MH. This can be understood in terms of the density of the spherical shell, which
decays quickly with its position, c.f. Eq. (9.14). Moreover, FIG. 9.6 also shows the case RS =
20M , for which the critical impact parameter behaves almost as a straight line bc ∼ 3

√
3MH,

characteristic of the BH case.
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Figure 9.7: LEFT: Sinc approximation for fixed BH mass, MH = 0.9M , and different shell positions, namely,
RS = 2.5, 2.9, and 4.0M . RIGHT: Sinc approximation for fixed shell position RS = 4.0M and different BH
masses, namely, MH = 0.7, 0.8, and 0.9M . The dashed lines show the sinc approximation (9.44), and the solid
lines represent the numerical results of the absorption cross section.

Sinc approximation

At high values of ω, the absorption cross section presents a regular oscillatory pattern around its
capture cross section. Using complex angular momentum methods, some authors have shown
that these oscillations are related to the features of the unstable null orbit [321,349]. It has been
shown that for a spherically symmetric BHs [349]

σ/σgeo ∼ 1− 8πe−πβsinc (2πω/Ω) (9.44)

in which β ≡ Λ/Ω, where Ω is the frequency of the null circular orbit and Λ the associated
Lyapunov exponent [190]. For the DBH case explored here, the capture cross section σgeo

is given by σgeo = πb2
c , with Ω = 1/bc, and β = 1. In FIG. 9.7, we show a sample of

results obtained through Eq. (9.44) and compare with the numerical results we obtained for the
absorption cross section obtaining very good agreement.

9.4 Results
In this section we present our numerically results for the scalar absorption of a Schwarzschild
BH surrounded by a thin spherical shell of matter. As a general behavior, we note that the
total absorption cross section, similarly to the case of an isolated Schwarzschild BH, presents a
regular oscillatory behavior around its high-frequency limit.

In the left plot of FIG. 9.8, we show the total absorption cross section for a fixed black hole
mass MH = 0.9M and positions of the shell at RS = 2.5, 2.9, and 4M . By increasing the
frequency, we note that the total absorption cross section increases from the area of the event
horizon and then oscillates regularly around the high-frequency limit given by the capture cross
section of null geodesics (provided in Subsection 9.3.3), which is represented by a horizontal
line. When we keep the same value for the BH mass, we see that the absorption decreases as
the shell is positioned further away from the BH. We should point out that, for this case, DEC
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Figure 9.8: LEFT: Total absorption cross with MH = 0.9M and RS = 2.5, 2.9, and 4.0M . RIGHT: Total
absorption cross section for a fixed shell positionRS = 4.0M and different BH massesMH = 0.7, 0.8, and 0.9M .
The horizontal lines correspond to the high-frequency limit in each case.

is fulfilled while SEC does not allow the shell to be located at RS = 2.5M with MH = 0.9M ,
as it can be seen in FIG. 9.4. Furthermore, according to the right image at plot of FIG. 9.8,
when we consider the same value for the shell position RS = 4.0M and different BH masses
MH = 0.7, 0.8, and 0.9M , we note that the absorption decreases as the mass rate increases. In
this case, both DEC and SEC are satisfied.

In FIG. 9.9, we show the results for the partial (σl) and total absorption (σ) cross sections
for Schwarzschild BHs surrounded by a thin spherical shell of matter (DBHs), and compare
with the results for an isolated Schwarzschild BH. The units are such that we can compare
directly the DBH against isolated BH with the same ADM mass. We note that for the BH mass
MH = 0.9M , as we increase the shell radius RS, the partial and total cross sections for DBHs
become closer to the results for an isolated Schwarzschild BH with mass MH. This occurs
because for a large value of the shell radius the DBH behaves as an isolated BH with mass MH,
as showen by Eq. (9.43). Also, we see that when the shell is closer to the BH, the cross sections
for DBHs approach the ones for a Schwarzschild BH with mass MH = M . This is in agreement
with the fact that, when the shell is near to the BH, the whole system behaves as a BH with
mass M .

9.5 Final remarks
We have considered planar massless scalar waves impinging upon a Schwarzschild BH sur-
rounded by a thin spherical shell of mass, and determined numerically its absorption spectrum.
Our numerical results are in full agreement with the null geodesics analysis (c.f. Sec. 9.3.3).
In the low-frequency regime, we have seen from our numerical results that the total absorption
cross section is given by the area of the event horizon, in accordance with analytical results.

We show that for the same shell mass the absorption is bigger when the shell is closer to
the BH, and for a fixed shell position, the absorption cross section increases as the shell mass
decreases. Also, when we compare the absorption of a DBH with an isolated one, we have
shown that as the shell is placed further away from the black hole the absorption cross section
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of the DBH tends to the result of an isolated Schwarzschild BH with the same mass of the BH
inside the shell. In accordance with the fact that as the shell is positioned away from the BH,
the entire configuration (BH + shell) starts to behave as a single BH with mass MH. Otherwise,
if we approximate the shell to the BH, we note that the absorption rate approaches to case of a
single BH with mass equal to the whole system (BH + shell).

The results presented in this chapter generically shows that the presence of matter around
black holes can modify their absorption properties. The influence of the surrounding matter
intensifies for higher density of the shell. Configurations of comparable amount of masses
of the BH and the surrounding matter can occur, for instance, in stellar BH binaries [350].
Therefore, we expect that the analysis described here may be used to estimate the absorption
properties of these systems. Considering very massive BHs, in which the surrounding matter
is expected to have lesser influence on absorption properties, our analysis could be applied in
cases of BHs hosted in dwarf galaxies [351].

Another interesting feature that arises due to the matter surrounding the black hole is the
appearance of a second light ring. The existence of two light rings happens when the thin shell
is properly placed, but we expect that other matter configurations would also share this feature,
like, for instance, when considering thick shells. Between the two light rings positions there is
a local minimum of the potential, similar to the one that appears in the case of gravastars [154,
262]. In the thick shell case, this minimum point is related to the existence of a stable light ring.
Moreover, stable light rings support long-lived modes in the eikonal limit [352]. There are some
studies that suggest that these long-lived modes can source nonlinear instabilities [352, 353],
and therefore any kind of exotic matter that allows the existence of such feature may eventually
collapse to the black hole. This could put further constraints on the matter surrounding BHs.
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Chapter 10

Absortion of planar massless scalar waves

by Bardeen black holes

One of the most intriguing predictions of general relativity (GR) is the existence of black holes
(BHs). BHs became a paradigm in physics, and are believed to populate the galaxies [291].
Within standard GR, black holes are simple objects, described only by their mass, angular mo-
mentum and charge [354]. However, standard black holes suffer from one of the main problems
of GR: the presence of singularities. Our physical knowledge breaks down at singularities.
Although generally hidden by a horizon, and protected by the Penrose conjecture [355] (see
also [356] for a review), singularities are expected to exist within GR, according to the singu-
larity theorems developed by Hawking and collaborators [357].

Singularities are expected to be better understood with an improved theory of gravity (whether
an extension or a modification of GR) [8]. Notwithstanding, within GR it is possible to obtain
BH solutions without singularities. Bardeen presented a BH solution without singularities that
satisfies the weak energy condition in GR [358]. Although Bardeen’s solution has its theoretical
motivation in the studies of BH spacetimes with no singularities, a stronger physical motivation
for it was missing until it was shown that the Bardeen BH is a solution of GR with a nonlinear
magnetic monopole, i.e., a solution of the Einstein’s equations coupled to a nonlinear electro-
dynamics [359]. Apart from this, further works with other physically motivated regular BHs
can be found in the literature (see, e.g., Refs. [360, 361]).

One way to test the physics of BHs is analyzing test fields around them. In this context,
there are the quasinormal modes: natural oscillation frequencies of the fields with physically
motivated boundary conditions [109, 148]. An extensive survey of quasinormal modes of test
charged scalar fields around different types of regular BHs was presented in Ref. [362]. Quasi-
normal modes of the Dirac field were investigated in Ref. [363] and of the massive scalar fields
in Hayward regular BHs in Ref. [364]. Quasinormal modes have an interesting relation with
scattering processes in BH spacetimes. This relation can be seen, for instance, in the scattering
of Gaussian packets by BHs [365, 366].

Another important aspect of BHs is how they absorb matter and fields around them, i.e.,
their accretion rate. Accretion has an important role in the phenomenology of active galactic
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nuclei, and can be considered as an important agent to the mass growth of their BH hosts (see,
e.g., Refs. [292, 325, 326] and the references therein). Along more than 45 years, absorption
of scalar fields has been studied extensively in many BH scenarios (see, e.g., Refs. [300, 304,
317,318,338,347,367,368] and the references therein). The initial field configuration is usually
taken to be plane waves at infinity and the problem is often directed to compute the absorption
cross section of the field. Also, in the classical (high-frequency) limit, absorption cross sections
are directly related with the shadows of BHs [341–343]. Moreover, the case of planar waves
absorption has many features in common with the case of accretion of a fluid moving with
constant velocity toward a BH (see, e.g., Ref. [340]), which turns out to be important in the
phenomenology of extreme mass-ratio inspirals [149, 156].

In this chapter we address the problem of how regular BHs absorb fields, focusing in the
analysis of the absorption cross section of planar massless scalar waves by a Bardeen regular
BH. Generically, the line element of spherically symmetric BH spacetimes can be written in the
standard spherical coordinate system as

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2, (10.1)

where the function f(r) depends on the particular BH under consideration. As we shall see,
the Bardeen BH has a structure very similar to that of a standard electrically charged BH within
GR, i.e., of a Reissner–Nordström (RN) BH. Because of that, we shall compare our results with
the RN BH ones [304, 305].

The remainder of this chapter is organized as follows. In Sec. 10.1 we review some aspects
of the Bardeen regular BHs. In Sec. 10.2 we revisit the main aspects of the absorption cross
section of planar massless scalar waves in spherically symmetric BH spacetimes. We also
present the results in the low- and high-frequency regimes for the massless scalar absorption
cross section of Bardeen BHs. In Sec. 10.3 we exhibit a selection of our numerical results.
We compare our results for the Bardeen regular BH with the results for the RN BH. Also, we
discuss the possibility of having a Bardeen BH with a similar absorption cross section of a RN
BH. We present our final remarks in Sec. 10.4. Throughout the chapter we use natural units,
for which G = c = ~ = 1.

10.1 Bardeen regular black holes
As mentioned in the Introduction, the Bardeen BH was one of the first regular BH solutions
presented in the literature [358]. Later, it received the physical interpretation of a BH with a
nonlinear magnetic monopole [359]. Nonlinear electrodynamics theories within GR are gener-
ically described by the action

S =

∫
d4x
√
−g
[

1

16π
R− 1

4π
L(F )

]
, (10.2)
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where R is the Ricci scalar; L is the Lagrangian of the electromagnetic field; F = 1
4
FabF

ab;
with Fab being the standard electromagnetic field strength; and g is the determinant of the metric
gab. For the theory that generates the Bardeen regular BH, we have that

L(F ) =
3

2 s q2

( √
2q2F

1−
√

2q2F

)5/2

, (10.3)

where s = |q|/(2M), q is the magnetic charge and M is the mass of the configuration [359].
The line element of the Bardeen BH is given by Eq. (10.1), with

f(r) = 1− 2Mr2

(r2 + q2)3/2
. (10.4)

The Bardeen solution has a structure similar to the RN spacetime, presenting two horizons up
to some value of the BH charge. For q = qext = 4M/(3

√
3), the two horizons coincide and we

have the so-called extremal BH. In this chapter, we shall consider 0 ≤ q ≤ qext.
For later comparison, it is instructive to mention explicitly the RN solution. The line element

of the RN spacetime is given by Eq. (10.1), with

f(r) = 1− 2M

r
+
q2

r2
, (10.5)

where, in this case, q is the electric charge of the BH. The extreme case of the RN BH is given
by qext = M . Note that we are using the same symbol (q) for both magnetic (Bardeen BH) and
electric (RN BH) charge. To better compare both spacetimes, we shall present our results in
terms of the normalized charge Q ≡ q/qext.

10.2 Absorption cross section

10.2.1 Partial-waves approach
A massless scalar field Φ is described by the Klein–Gordon equation, namely,

1√
−g

∂a
(√
−ggab∂bΦ

)
= 0. (10.6)

Here we are considering a minimally coupled scalar field.
A monochromatic wave with frequency ω in a spherically symmetric background can be

written as

Φ =
∑
lm

φ(r)

r
Y m
l (θ, ϕ)e−iωt, (10.7)
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Figure 10.1: Scalar field potential (Vφ) as function of the radial coordinate in units of the event horizon radius
(rh). Here we compare the Bardeen BHs with the Schwarzschild case, and we see that the shape of the potential is
similar in all cases.

where Y m
l (θ, ϕ) are the standard scalar spherical harmonics. Substituting the expansion (10.7)

in Eq. (10.6), and using the properties of the spherical harmonics, we get the following radial
equation for φ(r): (

− d

dx2
+ Vφ(r)− ω2

)
φ(r) = 0, (10.8)

in which x is the tortoise coordinate, defined through dx = f(r)−1dr, and

Vφ(r) = f

(
l(l + 1)

r2
+
f ′

r

)
(10.9)

is the scalar field potential. Plots of Vφ for Bardeen and Schwarzschild BHs are shown in Fig.
10.1. The scalar field potential Vφ is localized, in the sense that it goes to zero at the event
horizon and at infinity [369]. We are interested in a solution that represents a wave coming
from the past null infinity. Such a solution can be written using the so-called in modes, i.e.

φ(r) ∼
{
RI +Rin

ωlR
∗
I x→ +∞ (r → +∞),

T inωl RII x→ −∞ (r → rh),
(10.10)

with

RI = e−iωx
N∑
j=0

Aj∞
rj
, (10.11)

RII = e−iωx
N∑
j=0

(r − rh)jAjrh , (10.12)

where the coefficients Aj∞ and Ajrh are obtained by requiring the functions RI and RII to be
solutions of Eq. (10.8) far from the BH and close to the event horizon, respectively. |Rin

ωl|2 and
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Figure 10.3: Capture cross section of null geodesics (σgeo) by Bardeen and RN BHs. The results for Bardeen BHs
have qualitatively the same behavior of the RN BHs, with the former presenting a bigger capture cross section for
the same value of the normalized charge.

|T inωl |2 are the reflection and transmission coefficients, respectively, and are related through

|Rin
ωl|2 + |T inωl |2 = 1. (10.13)

Using the solution (10.10), the absorption cross section of planar massless scalar waves can
be written as

σabs =
∞∑
l=0

σl, (10.14)

with σl being the partial absorption cross sections, given by

σl =
π

ω2
(2l + 1)

∣∣T inωl ∣∣2 . (10.15)
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10.2.2 Low- and high-frequency limits
In the low-frequency regime, it has been proven that the absorption cross section of massless
scalar fields by static BHs [370], as well as stationary BHs [317, 318], tends to the area of the
BH horizon. Our numerical results agree remarkably well with this low-frequency limit. In Fig.
10.2 we plot the area of the event horizon for the Bardeen and RN BHs, as a function of the
normalized charge. We can see that the event horizon area of a Bardeen BH is bigger than the
corresponding one of the RN BH with the same normalized charge.

In the high-frequency limit, a massless scalar wave can be described by the propagation of a
null vector, which follows a null geodesic. Therefore, in this limit we can consider the classical
capture cross section of null geodesics to describe the absorption cross section of massless
fields.

Geodesics around Bardeen BHs were also studied in Ref. [371]. Here we consider null
geodesics in spherically symmetric BHs. Their motion is described by the Lagrangian Lgeo,
that satisfies

2Lgeo = −f(r)ṫ2 + f(r)ṙ2 + r2ϕ̇2 = 0, (10.16)

in which we consider, without loss of generality, the motion in the plane θ = π/2. The overdot
indicates derivative with respect to the affine parameter of the curve. Considering the conserved
quantities, namely the energy E and angular momentum L (see, e.g., Ref. [190]), the equation
of motion becomes

ṙ2 + L2f(r)

r2
= E2, (10.17)

which can be regarded as an energy balance equation with the effective potential

Veff = L2f(r)/r2. (10.18)

The high-frequency limit of the absorption cross section, also called geometric cross section,
σgeo, is then found by computing the classical capture radius of light rays in the spacetime un-
der investigation. For spherically symmetric spacetimes, the null geodesic radius rl is obtained
through V ′(rl) = 0, with the prime denoting derivative with respect to r. The critical impact pa-
rameter is given by bc = Lc/Ec, with (Lc, Ec) being characteristic of the null circular geodesic.
Therefore, we have

rlf
′(rl)− 2f(rl) = 0, (10.19)

and

σgeo = πb2
c = π

r2
l

f(rl)
. (10.20)

With Eq. (10.19) one finds the value of rl, and by substituting this value in Eq. (10.20) one
finds the capture (or geometric) cross section σgeo.

In Fig. 10.3 we compare the capture cross section of the Bardeen BH with the RN BH case,
as a function of the normalized charge. In general, a Bardeen BH has a bigger capture cross
section, compared with the RN BH with the same value of Q(> 0).

An improvement of the high-frequency approximation to compute the absorption cross sec-
tion for spherically symmetric BHs was proposed in Ref. [349]. It was shown that the oscillatory
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Figure 10.4: Comparison between the full numerical computation of the total absorption cross section of Bardeen
regular BHs, given by Eq. (10.14), with the high-frequency (sinc) approximation, given by Eq. (10.22). We can
see that the numerical and the approximate analytical results agree remarkably well even for intermediate values
of the frequency.

part of the absorption cross section in the eikonal limit can be written as

σosc(ω) = − 4Λl

ωΩ2
l

e
−Λl

Ωl sin

(
2πω

Ωl

)
, (10.21)

where Λl = πλl, with λl being the Lyapunov exponent of the null geodesic [190, 349], and
Ωl = dϕ/dt =

√
f(rl)/rl being the angular velocity of the null geodesic. Therefore, we can

write the high-frequency absorption cross section as

σhf
abs ∼ σgeo + σosc. (10.22)

Equation (10.22) is usually referred to in the literature as the sinc approximation. In Fig. 10.4
we compare the results obtained through Eq. (10.22) with the full numerical computation of the
absorption cross section, given by Eq. (10.14). It is interesting to note that, although Eq. (10.22)
is obtained within the assumption of high frequencies, it is still a very good approximation for
intermediate frequency values.

10.3 Results
We have computed numerically the absorption cross section of planar massless scalar waves
impinging on Bardeen BHs. In this section we show a selection of our results.

In Fig. 10.5 we present the partial absorption cross sections [given by Eq. (10.15)] for
Q = 0.4, 0.6, 0.8 and 0.9999 and for different values of l. We see that for l = 0 the limit
ω → 0 results in σabs → Ah, in agreement with the result mentioned in Sec. 10.2.2.

In Fig. 10.6 we present the total absorption cross section [given by Eq. (10.14)] in the
Bardeen BH case, for Q = 0.6, 0.8 and 0.9999, as well as in the Schwarzschild BH case. The
horizontal lines are the high-frequency limits in each case. We see that the increasing of the
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Figure 10.5: Partial absorption cross sections of massless scalar waves by Bardeen BHs. Different frames corre-
spond to different values of the normalized monopole charge Q. For comparison, in the top-left frame we also plot
the partial absorption cross sections of the Schwarzschild BH (dotted lines).
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profiles are similar, but their low-frequency limits are different.

monopole charge implies in a decreasing of the absorption cross section, in agreement with
the increasing of the scattering potential (cf. Fig. 10.1), as well as with the decreasing of the
horizon area (cf. Fig. 10.2). The sum of the partial absorption cross sections generates the
oscillatory profile shown in the plots of Fig. 10.6.

In Fig. 10.7 we compare the absorption cross section of Bardeen and RN BHs, for the same
values of Q. As already mentioned in Sec. 10.2.2 (cf. Fig. 10.3), the high-frequency limit of
the absorption cross section of the Bardeen BH is bigger than the correspondent RN BH case
with the same value ofQ. We verified that this behavior (bigger absorption for the Bardeen BH)
also applies to the total absorption cross section as a whole, for any fixed value of the frequency
ω, for the same normalized charge Q(> 0). This is in accordance with the fact that the scalar
field potential for the RN BH is always bigger than the corresponding one for the Bardeen BH,
as it is shown in Fig. 10.8, where we plot the case in which l = 0. Larger values of l present a
similar behavior.

Although for the same values of Q the Bardeen BH has a bigger absorption cross sec-
tion than the corresponding RN BH, for different values of the normalized charge Q they can
have the same capture cross section, i.e. the same high-frequency limit of the absorption cross
section. In Fig. 10.9 we plot the values of the normalized charge for which the capture (or
high-frequency absorption) cross section is the same for Bardeen and RN BHs. We can see
from Fig. 10.9 that the RN BH must have a lower value of the normalized charge in order to
have the same capture cross section of a Bardeen BH.

The equality between the high-frequency values of the absorption cross section of RN and
Bardeen BHs with different normalized charges raises the following question: Can a Bardeen
BH produce the same absorption spectrum of a RN BH? To answer this, we have computed the
absorption cross section for configurations which have the same high-frequency limits. Some
results are shown in Fig. 10.10, where we plot the configurations for which (QRN, QBD) are
chosen to be (0.6, 0.46809) and (0.8, 0.63252). We can see that the low-frequency absorption
cross section is different, although not only the high-frequency limits are the same, but also the
oscillation profiles are similar.

The similarity of the oscillation profile of Bardeen and RN BHs with the same σgeo can be
understood as follows. From Eq. (10.21), we see that the oscillation pattern depends on 2π/Ωl.

Programa de Pós-Graduação em Fı́sica - UFPA



10.4 Final remarks 175

Since we use configurations with the same capture cross section, the angular velocity (Ωl) of
the null geodesics are also the same, once bc = 1/Ωl. Therefore, the frequency of oscillation of
the two configurations will be similar.

The above scenario suggests that a regular black hole can, in principle, mimic a black hole
with singularities, as far as mid-to-high-frequency absorption cross section is concerned. How-
ever, we should note that, as Fig. 10.9 shows, there is no complete correspondence between
Bardeen and RN BHs absorption spectra with the same capture cross section, as it can be seen
in Fig. 10.10. Moreover, as it can be verified in Fig. 10.9, for a Bardeen BH with Q = 1, the
corresponding RN BH with the same value of the capture cross section has a normalized charge
Q = 0.8109. Therefore, for a RN BH with a charge Q > 0.8109 there is no correspondent
Bardeen BH with the same capture cross section.

10.4 Final remarks
In this chapter we presented a study of the absorption properties of regular black holes: objects
which have event horizons but not singularities. For that purpose, we analyzed the case of an
asymptotic planar massless scalar wave impinging upon a Bardeen regular black hole1.

We computed numerically the massless scalar absorption cross section of Bardeen regular
black holes showing that the generic oscillation behavior of spherical black holes with singulari-
ties, like the Schwarzschild and Reissner–Nordström ones, is also present in the case of Bardeen
regular black holes. The increasing of the monopole charge, starting from the Schwarzschild
black hole case (for which Q = 0), implies a decreasing of the absorption cross section. Our
numerical results are in full agreement with the low- and high-frequency limits of the absorption
cross section, which can be obtained analytically.

We compared the massless absorption cross section of a Bardeen black hole with the one of
a Reissner–Nordström black hole with the same value of the normalized chargeQ. We obtained
that the behavior of the absorption cross section is qualitatively similar in both cases, but the
Bardeen case always presents a bigger absorption cross section than the Reissner–Nordström
case, for any fixed values of (ω,Q).

Based on the behavior of null geodesics, we have shown that the capture cross section of a
Bardeen black hole is always bigger than the corresponding one of a Reissner–Nordström black
hole with the same value of Q. We have also shown that a Bardeen black hole can have the
same capture cross section of a Reissner–Nordström black hole with a different value of Q.

We computed numerically the massless scalar absorption cross section for arbitrary frequen-
cies by Bardeen and Reissner–Nordström black holes with the same high-frequency limit. We
concluded that, more than having the same capture cross section, the oscillation of the absorp-
tion cross section is similar for both cases. This comes from the fact that the oscillation depends

1After this work has been basically concluded, we became aware of an attempt to compute the scalar absorption
cross section of regular black holes in Ref. [372]. The authors of Ref. [372] used the WKB method with the
Pöschl-Teller potential to solve the differential Eq. (10.8). However, their results do not seem correct, and they
differ considerably from ours. In particular, the authors of Ref. [372] do not obtain the well known results for low-
frequency (given by the horizon area) and high-frequency (given by the capture cross section) absorption cross
section limits. Moreover, their results for small black hole charge do not agree with the Schwarzschild limit, as it
should also be the case.
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on the angular velocity of the null circular geodesic, which is the same for the two cases. Our
results suggest that some regular black holes could be mimicked by black holes with singu-
larities, as far as mid-to-high-frequency absorption properties are concerned. The differences
between the two cases manifest mainly in the low-frequency regime.
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Chapter 11

Scattering by regular black holes: Planar

massless scalar waves impinging upon a

Bardeen black hole

Black holes (BHs) are among the most interesting objects of general relativity (GR). Although
GR is a highly nonlinear theory, BHs come out of it with a very simple structure. Standard
GR BH solutions are parameterized by their mass, charge and angular momentum [354] (see,
e.g., Refs. [136, 139] for interesting counterexamples of the previous statement). Although
related to the earliest predictions of GR, the strong field regime of BHs is still an experimental
challenge [1, 9, 59]. Notwithstanding, the observational data presently available suggest that
BHs populate basically all the galaxies in the Universe [291].

Although very successful in explaining the available data, standard GR BHs suffer from one
of the main problems of GR: the presence of singularities. Hawking and Penrose indeed showed
that, for some hypotheses on the gravitational collapse, the formation of singularities in BHs
would be unavoidable [4, 357]. These singularities were conjectured by Penrose to be hidden
by a horizon [355, 356], and were claimed to be possibly avoided within an improved theory of
gravity (extension or modification of GR) [8].

The study of BHs without singularities can help us to understand the role played by singu-
larities in astrophysics. Still within GR, one can obtain BHs without singularities — dubbed
regular BHs — by relaxing one of the energy conditions on the stress-energy tensor. Bardeen
proposed the first regular BH solution [358], which was later identified as a solution for a non-
linear magnetic monopole [359]. Since then, other regular BHs appeared in the literature, in
different scenarios (see, e.g., Refs. [360–362], and references therein). Moreover, regular BHs
can be relevant in the context of quantum gravity [373, 374], and some of them reproduce the
quantum weak field regime of GR [375].

Studies of scattering by BHs have been extensively made [347]. Reference [298] presented
the results of the scattering of all basic massless (spin 0, 1/2, 1 and 2) fields by Schwarzschild
BHs. Moreover, the shadows of BHs [341,376] may become visible with future telescopes, like
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Figure 11.1: Geodesics approaching a Bardeen BH from infinity with an impact parameter of b = 5.2M , for
different values of the BH charge. The Schwarzschild case (Q = 0) is also exhibited (solid line).

the Event Horizon Telescope [377], and the scattering of light, considering wave and semiclas-
sical approximations, may be important in anticipating subtle characteristics of the shadows.
However, a careful study of the scattering of fields by regular BHs is still lacking in the litera-
ture 1.

The line element of the Bardeen BH can be written as

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2 θdϕ2), (11.1)

where the lapse function f(r) is given by

f(r) = 1− 2Mr2

(r2 + q2)3/2
. (11.2)

The Bardeen BH has a structure similar to the Reissner-Nordström (RN) BH (see, e.g., Ref.
[360]). For q < qext = 4M/(3

√
3) (henceforth, without loss of generality, we shall assume

q ≥ 0) the spacetime has two horizons and for q = qext the horizons degenerate, characterizing
the extremal case. Following Ref. [378], we shall display our results in terms of the normalized
charge Q = q/qext

2.
It is interesting to note that the variation of the charge of the regular BH changes consider-

ably the deflection angle of light rays [371]. In Fig. 11.1 we plot null geodesics coming from
infinity with an impact parameter of b = 5.2M , for different values of the BH charge. The
behavior is qualitatively similar to the case of RN BHs [379]. We see that, adjusting the BH
charge, we can have scattering in basically any direction.

The remainder of this chapter is organized as follows: In Sec. 11.1 we review the main
aspects of the classical geodesic scattering and semiclassical glory approximation to compute

1An approximation scheme to compute the scattering cross section of regular BHs was performed in Ref. [372].
The scheme relies on the Wentzel-Kramers-Brillouin (WKB) approximation, using a modification of the effective
potential (11.13), leading to inaccurate results (see, e.g., Ref. [378]).

2The parameter presented here as Q can also be interpreted as a natural length when one considers that the
Bardeen BH comes from a quantum generalization of GR. See, for instance, Ref. [374] for more details.
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the differential scattering cross section. In Sec. 11.2 we present the partial-wave method used
to compute the scattering cross section of planar massless scalar waves. In Sec. 11.3 we present
the results for the scattering of planar massless scalar waves impinging upon a Bardeen regular
BH, comparing the three different approaches used to compute the scattering cross section. In
Sec. 11.4 we end up with our final remarks. Throughout this work we use G = c = ~ = 1 and
metric signature (−,+,+,+).

11.1 Classical scattering and semiclassical glory
In this section we investigate the scattering by BHs by using two approaches: classical geodesic
scattering and the semiclassical glory approximation. These approaches allow us to foresee
some of the aspects of the scattering cross section obtained within the full partial-wave analysis.

11.1.1 Geodesic scattering
The analysis of null geodesics in the Bardeen spacetime can be seen in Ref. [378]. For the
classical approximation of the scattering we may consider a stream of parallel null geodesics
coming from infinity. In this case, the analysis of Ref. [380] suits the problem of classical
scattering by Bardeen BHs. The classical scattering cross section is given by

dσ

dΩ
=

1

sinχ

∑
b(χ)

∣∣∣∣db(χ)

dχ

∣∣∣∣, (11.3)

where b(χ) is the impact parameter associated with a scattering angle χ. The summation in Eq.
(11.3) is such that we also consider the case in which the null geodesic rotates (one or many
times) around the BH before going to infinity (for instance, see the solid curve of Fig. 11.1).
It is interesting to note that the classical scattering formula given by Eq. (11.3) describes very
well the planar-wave case for small scattering angles, although it gives discrepant results for
moderate-to-high scattering angles, as we shall see in Sec. 11.3.

Let us now obtain b(χ) through a geodesic analysis. Without loss of generality, we shall
restrict the geodesic motion to the plane θ = π/2. From the line element (11.1), we can write,
for null geodesics (

du

dϕ

)2

=
1

b2
− f(1/u)u2, (11.4)

where we have defined u ≡ 1/r, b ≡ L/E is the impact parameter given in terms of the
constants of motion

E = f ṫ and L = r2ϕ̇, (11.5)

and the overdot denotes differentiation with respect to an affine parameter of the curve.
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Figure 11.2: Left panel: Classical scattering cross section of Bardeen BHs, with Q = 0.5, 0.8 and 1, and for the
Schwarzschild BH (Q = 0). Right panel: Classical scattering cross section of Bardeen BHs, normalized by the
Schwarzschild case.

Differentiating Eq. (11.4) with respect to ϕ, we obtain

d2u

dϕ2
= −u

2

2

df(1/u)

du
− uf(1/u). (11.6)

Solving Eq. (11.6) with the appropriate boundary conditions, one can obtain the geodesics fol-
lowed by massless particles, such as the ones shown in Fig. 11.1. The smallest positive root of
the right-hand side of Eq. (11.6) corresponds to the radius of the critical orbit for null geodesics,
uc = 1/rc. Substituting its value in the right-hand side of Eq. (11.4) and setting it to zero, we ob-
tain the impact parameter associated with the critical orbits, bc. Going in the other way around,
i.e., choosing a value b > bc, the smallest root of the right-hand side of Eq. (11.4) is u0 = 1/r0,
where r0 is the turning point — or the radius of maximum approximation — of the geodesic.

Finally, by integrating Eq. (11.4) in the case of scattered geodesics, we obtain

α =

u0∫
0

[
1

b2
− f(1/u)u2

]−1/2

du. (11.7)

The deflection angle following directly from Eq. (11.7) is given by

Θ(b) = 2α(b)− π. (11.8)

By inverting Eq. (11.8), one obtains b(Θ), and substituting it in Eq. (11.3), one obtains the
classical scattering cross section. Plots of the classical scattering cross section obtained by Eq.
(11.3) are exhibited in Fig. 11.2, where we compare the Bardeen cases with the Schwarzschild
one. We see from Fig. 11.2 that the increase of the BH charge contributes to an increase of the
BH classical scattering cross section.

Programa de Pós-Graduação em Fı́sica - UFPA



11.1 Classical scattering and semiclassical glory 181

11.1.2 Glory scattering
The interference that occurs between scattered partial waves with different angular momenta
is not taken into account by the classical formula (11.3). In order to obtain a scattering cross
section that takes into account the interference processes, we need to perform a wave analysis
of the problem. Before going into the full wave analysis, however, it is interesting to apply
an approximate method that works remarkably well for high scattering angles (θ ∼ π) and
that captures some key features of the scattering cross section in this regime, including the
interference process: the semiclassical glory approximation [381]. Indeed, one of the main
advantages of this semiclassical approximation is that one can find an analytical formula that
gives some physical insight for the width of interference fringes in the scattering cross section
as well as the intensity of the scattered flux for θ ∼ π. As a semiclassical approximation, it is
valid for ωM � 1, although it can still reproduce remarkably well some results for ωM ∼ 1.

The semiclassical formula for the glory scattering by spherically symmetric BHs is given
by [381]

dσsc

dΩ
= 2πωb2

g

∣∣∣∣dbdθ
∣∣∣∣
θ=π

J2
2s(ωbg sin θ), (11.9)

where bg is the impact parameter of backscattered rays (θ = π), J2s(x) is the Bessel function
of the first kind (of order 2s), and s is the wave spin. In our case, since we are considering a
scalar wave, s = 0. We note that there are multiple values of bg corresponding to the multiple
values of the deflection angle, namely Θ = π + 2nπ, with n = 0, 1, 2 . . . , that result on back-
scattered rays. All the rays scattered close to the the backward direction (θ ∼ π) contribute to
the glory scattering, but the most important contribution comes from the n = 0 case. The next
contribution, n = 1, has an intensity that is about 0.2 % of the n = 0 one in the Schwarzschild
case, and about 0.8 % in the case of the extreme Bardeen BH. This is a consequence of the
derivative |db/dθ|θ=π in Eq. (11.9) getting rapidly suppressed as n increases. In fact, the values
of bg for rays that pass multiple times around the BH are very close to each other and also to bc.
Here, we consider only the most important contribution to the glory scattering.

Once we have the knowledge of the glory scattering formula, Eq. (11.9), we only need to
determine bg and |db/dθ|θ=π in order to obtain the glory scattering cross section. Therefore, we
apply Newton’s method and numerical integration to obtain the parameters bg and |db/dθ|θ=π.
Numerical results for rc, bc, bg and b2

g|db/dθ|θ=π are presented in Fig. 11.3. From these results
and Eq. (11.9), we may expect that (i) interference fringes get wider and (ii) backscattered
flux intensity is enhanced for higher values of the BH charge. Expectation (i) comes from
the fact that the interference fringe width is inversely proportional to bg, as indicated by the
argument of the Bessel function in Eq. (11.9). Moreover, Fig. 11.3 shows that bg decreases
monotonically as Q increases. We also note from Eq. (11.9) that the scattering intensity is
proportional to b2

g|db/dθ|θ=π, and to the wave frequency. As shown in Fig. 11.3, although bg
decreases monotonically with the increase of Q, b2

g|db/dθ|θ=π increases monotonically with Q,
justifying expectation (ii).

The above analysis may be compared with the results for the glory scattering from RN
BHs [379]. In the latter case, bg decreases monotonically with the increase of the BH charge,
while |db/dθ|θ=π increases monotonically (cf. Fig. 9 of Ref. [379]). Therefore, considering the
change of the BH charge, the behavior of the parameters bg and |db/dθ|θ=π are qualitatively the
same for Bardeen and RN BHs. In the case of RN BHs, however, the combination b2

g|db/dθ|θ=π
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Figure 11.3: Glory scattering parameters for Bardeen BHs with varying charge, considering only the dominant
contribution (Θ = π). We note that, with the exception of |db/dθ|θ=π , all the important parameters related to the
glory scattering decrease monotonically with the increase of Q.

does not increase monotonically with the charge — as it happens for Bardeen BHs. Instead, the
glory scattering amplitude as a function of Q presents a local minimum in the RN case (cf. Fig.
10 of Ref. [379]).

In Sec. 11.3, we compare results obtained from Eq. (11.9) with partial-wave results, exhibit-
ing excellent agreement in the regime θ . π.

11.2 Planar wave scattering
Planar massless scalar waves, represented by the wave function Φ, are described by the Klein-
Gordon equation

1√
−g

∂a
(√
−ggab∂bΦ

)
= 0. (11.10)

Here we shall be interested in monochromatic plane waves. We have

Φω =
∑
lm

φ(r)

r
Y m
l (θ, ϕ)e−iωt, (11.11)

where Y m
l (θ, ϕ) are the scalar spherical harmonics. Substituting Eq. (11.11) into Eq. (11.10),

we obtain the following radial equation:(
− d

dr2
∗

+ Vφ(r)− ω2

)
φ(r) = 0, (11.12)

in which r∗ is the tortoise coordinate, defined through dr∗ = f(r)−1dr, and

Vφ(r) = f

(
l(l + 1)

r2
+
f ′

r

)
(11.13)
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is the scalar field effective potential. The scalar field potential is localized, going to zero at both
asymptotic limits of r∗ (infinity and horizon) [378].

Plane waves coming from infinity can be described in terms of the so-called in modes.
These modes are purely incoming from the past null infinity, obeying the following boundary
conditions:

φ(r) ∼
{
RI +RωlR

∗
I , as r∗ → +∞ (r → +∞),

TωlRII , as r∗ → −∞ (r → rh),
(11.14)

with

RI = e−iωr∗
N∑
j=0

A
(j)
∞

rj
, (11.15)

RII = e−iωr∗
N∑
j=0

(r − rh)jA(j)
rh
, (11.16)

where |Rωl|2 and |Tωl|2 are the reflection and transmission coefficients, respectively. Flux con-
servation implies that |Rωl|2 + |Tωl|2 = 1. Note that the summations in Eqs. (11.15) and
(11.16) are required to keep track of the convergence of the solutions. The numerical infinity
and horizon are chosen such that Vφ(r)� ω2 at the boundaries.

The scalar differential scattering cross section for Bardeen BHs can be written in terms of
partial waves as [347]

dσ

dΩ
= |g(θ)|2, (11.17)

where

g(θ) =
1

2iω

∞∑
l=0

(2l + 1)
[
e2iδl(ω) − 1

]
Pl(cos θ) (11.18)

is the scattering amplitude, with the phase shifts (δl) given by

e2iδl(ω) ≡ (−1)l+1Rωl. (11.19)

11.3 Results
In order to obtain the phase shifts to compute the scattering cross section via the partial-wave
method, we have applied a fourth-fifth Runge-Kutta method to solve the radial equation (11.12).
We have typically started with the near-horizon condition at rs = 1.0001rh, and the outer
boundary (numerical infinity) chosen depends on the value of l. Results were obtained with
boundary conditions (11.14), as well as with alternative conditions in terms of spherical Hankel
functions (see, e.g., Eq. (18) of Ref. [379]). Both conditions lead basically to the same results.
Since the sum in Eq. (11.18) does not converge very quickly, because of the Coulomb charac-
teristic of the problem, we have applied the convergence method first introduced by Yennie et
al. [382], and first applied to the BH scattering problem by Dolan et al. in Ref. [383].
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Figure 11.4: Scattering cross sections for Bardeen BHs considering different BH charges. We also plot the
Schwarzschild case, for comparison. We see that the value of the charge affects the fringe widths, while the
(avarage) amount of scattered flux remains basically the same.
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Figure 11.5: Comparison of partial-wave, semiclassical glory and classical geodesic approaches for the differential
scattering cross section, for Mω = 3 (in the first two cases), and different values of the Bardeen BH charge
[Q = 0.5 (left) and Q = 1 (right)]. The semiclassical glory approximation reproduces very well the results for
backscattered waves (θ ∼ π), while the classical approach works well for small scattering angles.
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of the Bardeen BH charge. We see that the amplitude computed through the partial-wave method oscillates around
the one computed through the glory approximation.

In Fig. 11.4 we show the scattering cross section for Bardeen BHs with different charges
(Q = 0.5, 0.8, 1), as well as for the Schwarzschild BH, and Mω = 2. We see that the fringe
widths increase with the increase of the BH charge. This, as anticipated by the semiclassical
analysis of Sec. 11.1.2, is in accordance with the fact that bg decreases monotonically with
the increase of Q, as previously seen in Fig. 11.3. The amount of scattered flux (on average)
remains basically the same. These general behaviors are similar to the ones presented by the
RN BHs [379].

Figure 11.5 presents comparisons of the numerical scalar scattering cross sections for Bardeen
BHs with the approximated geodesic and glory results. We see that the glory results fit remark-
ably well the numerical results for large angles (θ . π), while the geodesic results fit well the
small-angle region. This very good agreement can also be considered as a consistency check of
our results.

The glory approximation can be used to capture most of the features of the back-scattered
wave. Some caution, however, should be taken when one considers the glory intensity in the
backward direction (normalized by the wave frequency). To illustrate this, in Fig. 11.6 we plot
the amplitudes of the back-scattered wave, for Mω = 1, 2 and 3, computed through the partial-
wave method and through the glory approximation, as a function of the Bardeen BH charge.
We see that the results obtained via the partial-wave method oscillate around the one obtained
using the glory approximation. This agrees with the analysis presented in Ref. [379] for RN
BHs.

In Fig. 11.7 we compare the differential scattering cross sections of Bardeen and RN BHs.
While RN and Bardeen BHs with the correspondent charge produce different scattering patterns
— illustrated by the top-left panel of Fig. 11.7 — we can have configurations with different
charges that produce almost the same scattering pattern. A similarity of the patterns also hap-
pens in the case of absorption cross sections, when the critical impact parameter (bc) of the RN
and Bardeen cases are the same [378]. Here, however, the similarity of the scattering cross sec-
tions intensifies when bg for the RN and Bardeen cases match. The similarities are illustrated in
the top-right and bottom panels of Fig. 11.7, where we show the scattering cross section for a
RN BH withQ = 0.753 and for a Bardeen BH withQ = 1, for different values of the frequency.
The scattering flux intensities are different for intermediate-to-high scattering angles, while the
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Figure 11.7: Comparison between Bardeen and RN BH scalar scattering. Top-left panel: The case of extremal
Bardeen and RN BHs for Mω = 3.0. Top-right panel: Bardeen extreme BH scattering compared with the scat-
tering from a RN BH with Q = 0.753, for Mω = 0.5. Bottom panels: The same as the top-right panel, but with
Mω = 1.5 (left) and Mω = 3.0 (right).

interference widths are essentially the same for all scattering angles.

11.4 Final remarks
We have computed the scalar scattering cross section of regular Bardeen BHs. Numerical results
were compared with both geodesic and glory approximations, and we have found excellent
agreement within the validity limits of each approximation.

From the glory approximation, it is known that the interference fringe widths depend in-
versely on the impact parameter of backscattered waves, bg. The classical analysis from geodesics
shows that bg decreases monotonically with the increase of Q. Therefore, we expect that the
interference fringes get wider as Q increases. This was confirmed from our numerical results
obtained via partial-wave method.

Comparison of Bardeen BHs with RN BHs reveals that the scattering of these two kinds
of BHs can be similar but not identical. By similar we mean that in both cases the scattering
cross section presents (i) intense oscillations in the near-backward scattering, (ii) rapidly grow-
ing flux amount and smoother oscillations for smaller angles, and (iii) similar results for very
small scattering angles. (i) is a consequence of the strong interference between rays passing by
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the opposite sides of the BH, as it is well described by the glory approximation in both cases.
(ii) is a consequence of the fact that for small scattering angles both b and |db/dθ| increase as
θ diminishes, and the difference between paths followed by neighboring rays becomes smaller,
weakening interference effects. We can conclude that the main contribution to the scattering
cross section for very small angles comes from rays with high impact parameters 3. We may
treat such cases in the weak-field regime, where the main contribution to the gravitational in-
teraction comes from the BH mass, i.e., f(r) ∼ 1− 2M/r +O(r−n), where n = 2 in the case
of RN BHs, and n = 3 in the case of Bardeen BHs. This explains (iii), i.e., why, for BHs with
the same mass, in the regime of small angles, all results tend to be the same, regardless of the
nature and value of their charge.

The results presented in this chapter reinforce in a way the results presented in Ref. [378],
implying the conclusion that some properties of Bardeen BHs can be very similar to those of RN
BHs (with different charge). In this sense, we conclude that it may be difficult to discriminate
regular BHs from the standard ones, as far as absorption and scattering of scalar plane waves
are concerned. It should be interesting to extend the analyses presented here and in Ref. [378]
to the scattering and absorption of waves with higher spins and compare with recently obtained
results for RN BHs [307, 384–387].

3There are also contribution from rays with b ∼ bc that pass multiple times around the BH, but since |db/dθ| is
very small in these cases, their contribution to the scattering cross section can be neglected.
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Appendix A

Slowly rotating approximation

The modified field equations are obtained by varying the action (1.1) with respect to the metric
and to the scalar field. Varying the action (1.1) with respect to the metric, neglecting the Smat
term and the potential V (φ), we find

Gab + α1Hab + α2Iab + α3Jab + α4Kab = T φab, (A.1)

where T φab = ∇aφ∇bφ − 1
2
gab∇cφ∇cφ and Hab, Iab, Jab, Kab are explicitly given in Ref. [13].

Varying the action (1.1) with respect to the scalar field φ, we get

− 2�φ = α1R
2 + α2RabR

ab + α3RabcdR
abcd + α4Rabcd

∗Rabcd .

We shall neglect terms of order α2
i in the equation above. Since the Ricci scalar and the

Ricci tensor are both zero in the background spacetime, the scalar field equation reduces to

�φ = −1

2
(α3R̃abcdR̃

abcd + α4
∗R̃abcdR̃

abcd), (A.2)

where the tilde stands for background quantities. We note here that, when a = 0, we recover
the scalar field for spherically symmetric Gauss-Bonnet BHs [22], since at this order the Gauss-
Bonnet term is just the Kretschmann invariant and there is no correction from the Chern-Simons
term [28]. On the other hand, for α3 = 0 we recover the scalar field for slowly rotating Chern-
Simons BHs. Also, there is no correction of order α3a, since the Kretschmann invariant has
only corrections in even powers of a. Therefore, we can write

φ = φGB,CS + α3a
2φc(t, θ), (A.3)

where φGB,CS is the scalar field for spherically symmetric Gauss-Bonnet BHs plus the correc-
tion of slowly rotating Chern-Simons BHs, both assuming small coupling constants. Substitut-

Programa de Pós-Graduação em Fı́sica - UFPA



190

ing Eq. (A.3) in Eq. (A.2), we find that the only solution for φc which is regular at the horizon
and goes to zero in the limit r

M � 1, is given by the corresponding term in Eq. (3.2).
Considering corrections up to α2

i , the modified Einstein’s equations read

Gab + 8α3R̃abcd∇̃c∇̃dφ+ 8α4
∗R̃(a

c
b)
d∇̃d∇̃cφ

=
1

2

(
2∇̃aφ∇̃bφ− g̃ab∇̃cφ∇̃cφ

)
, (A.4)

in which the scalar field φ is given by Eq. (1.7). We note here that the lowest dynamical
corrections to the metric are given by second order terms in α3 and α4. Therefore, we can write

gab = gGB,CSab + α2
3ag

c
ab , (A.5)

where gGB,CSab is the metrics for the spherically symmetric Gauss-Bonnet BH plus the cor-
rection for slowly rotating Chern-Simons BH, both assuming small coupling constants. In
the slowly rotating regime, the only non-vanishing term in gcab is gctϕ [25]. With the ansatz
gctϕ = −ω(r) sin2 θ, we find that the only solution for ω(r) that goes to zero in the regime
r
M � 1, is given by the corresponding term in Eq. (1.5).

Programa de Pós-Graduação em Fı́sica - UFPA



Appendix B

Derivation of equation (2.32)

In this Appendix we present a derivation of the integral (2.32), used to compute the moment of
inertia I of slowly rotating stars in scalar-tensor theory. We begin by noting that

dΛ

dr
=

r

r − 2µ

(
1

r

dµ

dr
− µ

r2

)
, (B.1)

where Eq. (2.15) implies that Λ = −(1/2) log (1− 2µ/r) and where dµ/dr is given by Eq. (2.20).
Introducing the auxiliary variable j ≡ e−Φ−Λ we find, using Eqs. (2.21) and (B.1), that

dj

dr
= −j

[
4πA4(ϕ)

r2

r − 2µ
(ε̃+ p̃) + rψ2

]
. (B.2)

Multiplying the frame dragging equation (2.24) by j and rearranging, we obtain

1

r4

d

dr

(
r4j

dω̄

dr

)
= 16πA4(ϕ) j r2

r−2µ
(ε̃+ p̃)

(
1− σ̃

ε̃+p̃

)
ω̄
r
. (B.3)

If we multiply by r4, integrate from r = 0 to infinity and use the fact that

j = 1 +O(r−1), and
dω̄

dr
=

6 I Ω

r4
+O(r−5). (B.4)

as r →∞, we finally get Eq. (2.32).
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Appendix C

Massive scalar modes of a constant density

star

In this appendix we compute the massive scalar modes of a constant density star and show that
they share many features with those obtained for the BS models presented in the main text. The
background metric of a spherically symmetric star reads

ds2
0 = −ev(r)dt2 + eu(r)dr2 + r2(dθ2 + sin2 θdϕ2) , (C.1)

where e−u(r) = 1 − 2m(r)/r. In the case of an isotropic, perfect-fluid star, the Einstein’s
equations are given by [69]:

m′(r) = 4πr2ρ(r), (C.2)

v′(r) = 2
m(r) + 4πr3P (r)

r2 − 2rm(r)
, (C.3)

P ′(r) = −(m(r) + 4πr3P (r)) (P (r) + ρ(r))

r(r − 2m(r))
, (C.4)

together with an equation of state, relating ρ with P .
We consider a probe scalar field which satisfies the massive Klein-Gordon equation �ψ −

µ2ψ = 0. In order to facilitate a comparison with the BS cases, we assume an ansatz ψ =
Ψ(r)r−1Ylme

i(σ±ω)t. The scalar perturbation equation then reads

d2

dx2
Ψ +

[
(σ ± ω)2 − V0

]
Ψ = 0 , (C.5)

with

V0 = ev
(
µ2 +

l(l + 1)

r2
+

2m

r3
+ 4π(P − ρ)

)
, (C.6)
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Figure C.1: Example of Schroedinger-like potential for massive scalar perturbation of a constant density star with
l = 2, R/M ≈ 2.81 and Mµ = 0.65. For this choice of parameters, the potential has two minima. The location
of the star radius is marked by the vertical dashed line.

where we have used Eqs. (C.2) and (C.3) in order to eliminate of v′ and m′.
For constant density stars we have that ρ(r) = ρc, and the equations (C.2)–(C.4) can be

solved analytically, resulting in

m =
4

3
πr3ρc, (C.7)

ev =

[
3

2

(
1− 2M

R

)1/2

− 1

2

(
1− 2Mr2

R3

)1/2
]2

, (C.8)

P = ρc

[
R(R− 2M)1/2 − (R3 − 2Mr2)1/2

(R3 − 2Mr2)1/2 − 3R(R− 2M)1/2

]
. (C.9)

In the equations above, R is the star radius and M = m(R) is the total mass. The solution
above is valid for r < R, whereas for r > R the spacetime coincides with the Schwarzschild
one due to Birkhoff’s theorem.

For constant density stars, the potential (C.6) can support bound states in a certain region of
the µ–M parameter space. An example is shown in Fig. C.1.

The potential may develop up to two minima: (i) one is located in the outer region for
a certain range of nonvanishing µ and exists for sufficiently compact stars; (ii) the other is
located inside the star and it exists also at small density if the scalar mass µ is sufficiently large.
Furthermore, the inner minimum exists also when µ = 0 in a small range of compactness. In
both cases, the system allows for normal, bound modes, i.e. modes characterized by a purely
real frequency, which can be straightforwardly computed. In Table C.1 we show some modes
computed using a direct integration method for l = 2, R/M ≈ 6.93, Mµ ≈ 2.257 and Mω =
1.865 and l = 2, R/M ≈ 3.10, Mµ ≈ 7.37 and Mω = 0.899. These parameters were
chosen to reproduce the massive and solitonic BS configuration I, analyzed in the main text
(cf. Table 5.1). In those cases, the potential only has one minimum, located in the interior of
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Table C.1: A selection of massive scalar modes ωn of a constant density star for l = 2. The parameters chosen in
the left table are R/M ≈ 6.93, Mµ ≈ 2.257 and Mω = 1.865. For the right table we have chosen R/M ≈ 3.10,
Mµ ≈ 7.37 and Mω = 0.899. We adopted this choice of parameters to represent the massive BS I and solitonic
BS I.

n Mσn MΩp

1 0.030 0.015
2 0.119 0.059
3 0.188 0.094
4 0.236 0.118
5 0.271 0.135
6 0.296 0.148
7 0.314 0.157

Mσn MΩp

2.632 1.316
2.850 1.425
3.065 1.532
3.277 1.638
3.486 1.743
3.692 1.846
3.891 1.945

the star. In Table C.1 we also exhibit the orbital frequency of a particle that excites the modes
when m = 2, i.e. when the condition σn = 2Ωp is met. This configuration is qualitatively
similar to the case of a point-particle orbiting a BS, due to the coupling between scalar and
gravitational perturbations. Indeed, the resonance frequencies are qualitatively similar to those
obtained for the massive BS configuration I in the main text. An important difference to the
BS case is that even localized scalar modes acquire a small imaginary part. This is due to the
fact that scalar perturbations are coupled to the gravitational ones and, although the former are
localized in a region of width ∼ 1/µ close to the BS, the latter dissipate energy at infinity
through gravitational-wave emission. Thus, part of the scalar field energy is converted and
emitted as gravitational waves. We refer the reader to the discussion in the main text for the
interpretation of these results and for more details.
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Appendix D

Radiation-driven inspiral in the exterior

Within a Newtonian approximation the inspiral in the exterior of the central object is simple and
we follow [246]. In absence of dissipation, the motion is elliptical with the mass M located at
the focus and the eccentricity e and the semi-major axis b are conserved quantities. At lowest
order, the secular evolution of e(t) and b(t) driven by the GW emission can be modelled by the
simple quadrupole formula. Clearly, this approach neglects any truly relativistic effect like the
resonances discussed in the main text. On the other hand, the quadrupole formula provides a
good approximation at large distances, when the orbital velocity is nonrelativistic. At first order
in the mass ratio µp/M � 1, the equations for the orbital evolution are

ė = −304

15
e

µpM
2

b4 (1− e2)5/2

(
1 +

121

304
e2

)
, (D.1)

ḃ = −64

5

µpM
2

b3 (1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4

)
, (D.2)

ϕ̇ =
(1 + e cosϕ)2

1− e2

√
M

b3
, (D.3)

where ϕ is the angle in polar coordinates (r, ϕ) and the motion occurs in the θ = π/2 plane.
The evolution is obtained solving the system above with some initial condition for e, b and ϕ.
The radius and angular momentum of the orbit read

r(t) =
b(1− e2)

1 + e cosϕ
, L2 = µ2

pMb(1− e2) . (D.4)

Finally, the GW signal produced during the evolution is governed by the functions h+ and h×,
which can be written in terms of r(t), ϕ(t) and of the relative position of the distant observer
(see, Eqs. (6.30) and (6.31) in the main text). Note that the adiabatical evolution is valid pro-
vided radiation-reaction effects are small and the orbits evolve on timescales much longer than
a typical orbital period. This is indeed the case in the EMRI limit, at least when the orbital
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separation is large. Relativistic corrections to the quadrupolar formula are indeed important in
the final stages of the exterior inspiral, close to the radius of compact stars.
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Appendix E

Motion of particles in a spring-like

potential

In this section we discuss the motion of a small particle inside a Newtonian, constant density star
assuming the particle interacts only gravitationally with the star. This configuration should be a
good approximation during the latest stages of the inspiral inside compact scalar configurations,
where the density profile is nearly constant. The motion of a body inside a constant density
medium is described by a gravitational potential of the form

V (r) = −βµp + γµp r
2 . (E.1)

Here γ = M/(2R3), β = 3M/(2R), where M,R are the mass and the radius of the constant
density object and µp is the test particle’s mass. In polar coordinates, the motion of the body is
described by

µp r
2ϕ̇ = L , (E.2)

1

2
µp ṙ

2 +
L2

2µp r2
+ V (r) = E , (E.3)

where L,E are the conserved angular momentum and energy parameter, respectively. We can
re-express the above as

(
1

r2

dr

dϕ

)2

=
2µpE

L2
− 1

r2
− 2µp V (r)

L2
=

2

k
− 1

r2
−

2µ2
pγr

2

L2
, (E.4)
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where k−1 = µp(E + βµp)/L
2. Changing to z = 1/r2 − 1/k, we get

(
dz

dϕ

)2

= −4z2 + 4B2 , (E.5)

where

B =

√
1

k2
−

2µ2
pγ

L2
. (E.6)

The solution to this equation is z = B cos 2ϕ. Thus, we get

1

r2
=

1

k
(1 + kB cos 2ϕ) . (E.7)

In cartesian coordinates, this can be expressed as the standard equation for an ellipse:

x2

a2
+
y2

b2
= 1 , (E.8)

where a and b are the semi-minor and semi-major axis and

a2 =
k

1 + kB
, b2 =

k

1− kB
. (E.9)

Thus, we get the interesting result that test masses follow ellipses which are centered at the
origin and whose eccentricity reads

e ≡
√

1− a2/b2 =
√

2kB/(1 + kB) . (E.10)

Recalling that a2 = b2(1 − e2), we can re-express the energy and angular momentum in terms
of the eccentricity and semi-major axis b as

E = −βµp + γµpb
2(2− e2) , (E.11)

L2 = 2µ2
pγ(1− e2) b4 . (E.12)

Finally, using Ȧ = r2ϕ̇/2 = L/(2µp) and integrating over one orbit we get A = LT/(2µp),
with T the orbital period and A the area of an ellipse. Using A = πab, we find the analog of
Kepler’s third law:

T 2 =
2π2

γ(1− e2)
, (E.13)

and we obtain the interesting result that the orbital period is completely independent from semi-
major axis, as could be anticipated from the circular orbit case. Note that T ∝ ρ−1/2, where ρ
is the density of the medium.
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Appendix F

Energy conditions

Using the line element (9.1), it can be shown that the non-zero components of the Einstein
tensor G b

a [124] are

G t
t = −B

′

r
− B

r2
+

1

r2
, (F.1)

G r
r = −A

′B

Ar
− B

r2
+

1

r2
, (F.2)

G θ
θ = −A

′′B

2A
− A′B′

4A
+
A′2B

4A2
− B′

2r
− A′B

2Ar
, (F.3)

G φ
φ = G θ

θ , (F.4)

where ′ stands for derivatives with respect to the radial coordinate r. From the Einstein equa-
tions G b

a = 8πT b
a , we note that the energy-momentum tensor T b

a has only diagonal non-zero
components, then the energy density is directly given by ρ = −T t

t , and the pressures or tensions
along a direction j = 1, 2, 3 are given by pj = T j

j .

Dominant energy condition (DEC)
The shell has to be carefully placed for the dominant energy condition to be obeyed. Then

using 1

U b
a = lim

ε→0+

∫ Rs+ε

Rs−ε
T b
a

dr√
B
. (F.5)

The following relation must hold ∣∣U t
t

∣∣ ≥ ∣∣U q
q

∣∣ , (F.6)

with no implicit sum on q.
At the shell position the energy-momentum tensor have non-null components T b

a and the

1We should point out that the derivations present along this Appendix follow the same steps done in Ref. [332].
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components of the Einstein tensor G b
a are non-zero only if they contain terms involving the

second derivative of A or first derivative of B. Thus,

U t
t =

1

8π
lim
ε→0+

∫ RS+ε

RS−ε

(
−B

′

r

)
dr√
B
, (F.7)

using the Einstein equations G b
a = 8πT b

a and inserting (F.1) in (F.5), we obtain

U t
t = − 1

4πRS

(√
1− 2M

RS

−
√

1− 2MH

RS

)
, . (F.8)

Analogously, we find that

U θ
θ = − 1

8πRS

 1− M
RS√

1− 2M
RS

−
1− MH

RS√
1− 2MH

RS

 . (F.9)

Using (F.6) together with (F.8) and (F.9), it is possible to show that the lower bound for RS,
according to DEC, is given by

rDECmin =
5

24

(
5M + 5MH +

√
25M2 +MH (−46M + 25MH)

)
.

Strong energy condition (SEC)
We may carry out a similar analysis considering the strong energy condition, obtaining∣∣U t

t

∣∣+
∣∣U q

q

∣∣ ≥ 0, (F.10)

and ∣∣U t
t

∣∣+ 2
∣∣U q

q

∣∣ ≥ 0. (F.11)

Now, using (F.10), with the aid of (F.8) and (F.9), we arrive at

rSECmin =
3

8

(√
9M2 − 14MMH + 9M2

H + 3M + 3MH

)
.

We note that for this value of rmin, both (F.10) and (F.11) hold, so that the strong energy condi-
tion is fully satisfied.
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