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El ánimo que somos se vuelca en sus productos

[...], dedicado plenamente a crear, poseer y tomar

forma; pero lo producido no tiene más vida que la

de provenir de una creación, de un querer activo que

ya se ha realizado, luego su vida está toda ella en el

pasado y por tanto muerta en cierto modo: [...] toda

obra es insuficiente (y también todo status público,

todo nombre proprio, todo tı́tulo académico o pro-

fessional, toda construcción cara a los otros o frente

a uno mismo de una personalidad dada de una vez

por todas) porque en ella lo posible, la dynamis,

adopta el rostro fatal de lo que es lo que es y no

otra cosa, de la identidad necesaria. La posibilidad,

la dynamis, la liberdad... son de lo que está echo el

aire que respira nuestra subjetividad, cuyo principio

es acción.

Fernando Savater, Invitación a la ética
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Resumo

Campos escalares fundamentais são ingredientes essenciais de algumas das soluções pro-

postas para os mais prementes problemas da Fı́sica teórica moderna. A sua deteção pode con-

tribuir para a compreensão, por exemplo, da composição da matéria escura e/ou do correto

horizonte teórico para a Fı́sica à escala de Planck. Caso sejam verdadeiramente elementos do

Universo fı́sico, há boas razões para acreditar que estes campos dão origem a estruturas as-

trofisicamente relevantes. Nesta tese, estudamos a maneira como a presença de tais estruturas

pode ser inferida a partir do seu efeito na dinâmica de corpos celestes.

Prestamos atenção a dois tipos de estruturas de campos escalares: estrelas de bosões e “nu-

vens” de bosões que se desenvolvem em torno de buracos negros em rotação. A estrelas de

bosões são formadas devido ao colapso do campo escalar e as suas caracterı́sticas podem ser

variadas, dependendo do modelo e da escala de energia à qual estão a ser analisadas. Estas estre-

las podem ser consideradas como imitadores de buracos negros, quando muito compactas, mas

também como galos galácticos, nos casos em que são mais diluı́das. Na presença de buracos ne-

gros em rotação, a existência de campos escalares leves promove o crescimento espontâneo de

“nuvens” de bosões. Analisámos o efeito que estas nuvens escalares têm em sistemas binários

de rácio de massa extremo – sistema binários nos quais um buraco negro supermassivo (BNSM)

é orbitado por um objeto muito menos massivo. Concluı́mos que, se o BNSM está rodeado por

uma estrutura de campo escalar real, órbitas circulares equatoriais desenvolvem uma estrutura

ressonante que pode afetar de modo peculiar o binário. No cenário mais especifico do centro

da Via Láctea, calculamos o efeito que uma nuvem de campo escalar complexo, suportada pelo

BNSM central, tem na evolução orbital da estrela S2 e verificamos que tais efeitos podem ser

detetados pela missão GRAVITY.

As estrelas de bosões não têm superfı́cie fı́sica. Isso quer dizer que outras estrelas as podem

penetrar e, ao fazê-lo, podem também as perturbar. Estudamos tal cenário com uma estrela de

bosões diluı́da e apuramos que se desenvolvem aglomerados duradouros de campo escalar em

rotação, mas a estrela de bosões não é destruı́da.

Palavras-chave: campos escalares, estrelas de bosões, buracos negros, órbitas este-

lares, centro da galáxia, mecânica celeste
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Abstract

Fundamental scalar fields are essencial ingredients in proposed solutions to many of the most

pressing problems in modern theoretical Physics. Their detection may shed light, for instance,

on the composition of dark matter and/or on the correct theoretical landscape of Planck-scale

physics. In the event of being actual elements of the physical Universe, there are good reasons to

believe that these fields give rise to astrophysically-relevant structures. This thesis studies how

the presence of such structures can be inferred from their effect on the dynamics of celestial

bodies.

We focus on two types of scalar-field structures: boson stars and bosonic “clouds” grown

from spinning black holes. Boson stars are formed due to the collapse of a scalar field and their

characteristics can be very different, depending on the model and energy scale at which they are

analysed. These structures can be useful black hole mimickers, when very compact, but are also

proposed constituents of galactic haloes, when dilute. The very existence of light, scalar degrees

of freedom triggers the growth of bosonic “clouds” around spinning black holes. We analyse the

effect that these scalar cloud structures have on Extreme-Mass-Ratio-Inspirals – binary systems

in which a supermassive black hole (SMBH) is orbited by a much lighter object. We find that

if the SMBH is surrounded by a real scalar field structure, equatorial circular orbits develop a

resonant structure, that may affect distintively the inspiral. In the more specific scenario of the

center of Milky Way, we calculate the effect a complex scalar cloud supported by the central

SMBH has on the orbital evolution of the S2 star, finding that those effects may be detected by

the GRAVITY instrument.

Boson stars do not have a physical surface. This means that other stars can penetrate them

and, in that process, disturb them too. We study such scenario with a diluted boson star and

we find that long-lived rotating scalar-field clusters develop as a result, but the boson star is not

destroyed.

Keywords: scalar fields, boson stars, black holes, stellar orbits, center of the galaxy,

celestial mechanics
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Chapter 1

Introduction

Since the detection of the Higgs boson [1, 2], fundamental scalar fields entered the list of

building blocks of Nature. This detection reinforces the suspicion that more of them exist. The

idea is seductive because if verified, the new scalar fields may prove very useful in explaining

poorly understood aspects of the physical world (such as the nature of dark matter) or in being

smoking-guns of high-energy theories (such as string theory). Both their mass and the coupling

to the Standard Model (SM) are expected to be very small, reducing the hopes of detecting them

using particle colliders. In what follows, we will be exploring a less direct detection approach

based on the hypothesis that scalar fields may form structures of astrophysical significance.

These structures affect the motion of celestial bodies in unique ways, which can be ultimately

related to the characteristics of the scalar field itself. By understanding these signatures, one

can use them – in case of a comparison with observational data is possible – as hints for the

existence of scalar fields.

1.1 Scalar fields

Scalar fields are the simplest objects one can have in a field theory. Their simplicity and

versatility puts them in the center of the most important debates of modern physics, being used,

for instance, to model inflation [3, 4], to model quintessence [5, 6], to describe extensions of

General Relativity (GR) (see, for instance, Ref. [7]), or as new particles, such as the proposed

Quantum Chromodynamics (QCD) axion [8–10] or the plethora of scalar fields that appear in

the four-dimensional, low-energy description of string theory [11]. In this thesis, we are not

specifically interested in their ancestry, so we will be considering the simple model of a free,
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massive scalar field that, at the energy scales in which GR is a good description of gravity, is

minimally coupled to the underlying spacetime. This is our bedrock assumption.

Of all the scenarios mentioned above, scalar fields are introduced either by hand (i.e. they are

used where they fit the restrictions of the corresponding theory) or consistently, in the cases their

appearance is a consequence of mathematical manipulations associated with the structure of the

theory. In spite of our lack of interest in the provenance of the scalar fields, there is one example

that is particularly relevant: the String Axiverse scenario [12], in which scalar fields appear con-

sistently in String Theory. The full String Theory framework requires more than four spacetime

dimensions. Studying their four-dimensional effective structure amounts to go through a pro-

cess of compactification. This process gives rise to several four-dimensional, massless scalar

fields which can, due to non-perturbative effects, acquire mass [11]. This formation process

resembles the one of the QCD axion that was introduced by Peccei and Quinn, Weinberg and

Wilczek [8–10] as a solution to the QCD strong Charge-Parity (CP) problem. This original em-

bodiment of the concept of axion – from now on the QCD axion – has received much attention

and its characteristics are experimentally constrained (see, e.g., Ref. [13]). String theory axions,

however, are less constrained and can, at least theoretically, have masses as small as 10−33 eV.

Moreover, the coupling of these fields to the SM particles are expected to be very weak (see,

for instance, Ref. [14] and references therein) and that is one of the reasons why these fields are

proposed as Dark Matter (DM)-candidates [15].

Scalar fields with such low-mass and with negligible interactions with baryonic matter may

prove difficult to be detected using collider experiments. The only relevant coupling of these

ultra-light scalar fields to the SM is the one with the photon, and it is by exploring this coupling

that most of the experimental efforts have tried to produce the particles described by these fields.

The most well established experiments are light-shining-through-walls experiments [16], which

try to produce axions by making a laser beam cross a region with a strong magnetic field, helio-

scopes [17], which try to detect axions produced in the solar core, and haloscopes [18] which

target the detection of photons directly converted from axions. Other lines of research, focusing

in less direct signatures have been suggested, and these ultralight scalar fields have shown to

be copious sources of phenomenology: both cosmologically [19, 20], with axionic scalar fields

leaving their imprint in cosmic microwave background anisotropies and in the distribution of

large scale structures, and astrophysically (see, e.g., Ref. [21, 22]), with scalar fields, among

other things, being able to form astrophysically relevant structures either by collapsing [22–26]
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or as a result of the interaction with BHs [27–30] (in which a spectrum of quasi-bound states

appears associated with scattering events and the superradiant mechanism). Our focus will be

on the astrophysical effects of the scalar-field structures.

1.2 Scalar-field structures

We will focus on two types of scalar-field structures: self-gravitating structures, particularly,

boson stars and oscillatons, and BH’s quasi-bound states of scalar-fields.

Self-gravitating solutions

The first solution of an astrophysical, self-gravitating, scalar-field structure was obtained

by Kaup in 1968 [31]. Using a massive complex scalar field minimally coupled to gravity, a

spherically-symmetric solution to the Einstein-Klein-Gordon system of equations was found

numerically and it was first named Klein-Gordon geon. The following year, Ruffini and Bonaz-

zola [32] studied a quantised real scalar field and used as source of the Einstein equations the

expectation value of the energy momentum tensor in a configuration where N bosons occupy

the lowest energy state. Calculating the energy-momentum in this way matches the energy-

momentum obtained by Kaup with a massive complex scalar field, giving rise to the same

results. This means that the classical treatment of the system can be used to derive its most im-

portant characteristics. Up until the 1980s there was not much interest in this topic, but then a

set of new works dealing with scalar fields in gravitational context appeared (see, e.g., [33–35]).

During that period, several terms were used to refer to these rediscoved structures, particularly

the term boson star (BS), which started to be used widely to describe these localized structures

of scalar fields. The question of stability of these solutions is a topic that has attracted much

interest. The first studies were performed with a linear analysis [36–39] concluding that excited

BS states are unstable and that ground states can be organized in a stable and an unstable branch,

whose division is set by the maximum mass configuration of the BS solutions (see Fig. 2.5).

The understanding of the unstable ground state solutions was investigated in later, full numeri-

cal studies that evolved the Einstein-Klein-Gordon equations [40–42] and it was concluded that

they can collapse to BHs, disperse to infinity or transition to the stable branch.

In 1992, Seidel and Suen [43] found solutions of a real scalar field coupled to gravity, which

became known as oscillatons. Derrick’s theorem [44] state that it is not possible to find a

3



classical time-independent stable solution of a real scalar field in flat spacetime. Kaup avoided

this theorem by considering a complex field, and Seidel and Suen did it by considering a time-

dependent real scalar field. Considering that the field can be written as a sum of sinusoidal

functions oscillating with frequencies that are multiple of a fundamental one they were able

to construct solutions of the Einstein-Klein-Gordon system. The dynamics and stability of

oscillatons were studied in Refs. [45, 46], where a set of quasi-stable ground states were found

(excited states are unstable, similarly to the BS case). These solutions are quasi-stable because

they have a small radiating tail [47–49], but the mass-loss rate is for much of the parameter

space larger than a Hubble time.

The formation of BSs and oscillatons happens by the so called “gravitational cooling pro-

cess” [50–52], by which a generic bosonic cloud would gravitationally cool to a BS or Oscilla-

ton by ejecting, through scalar radiation, parts of its total scalar matter.

These solutions (either BSs or oscillatons) can be studied in a Newtonian limit [40, 53, 54].

When the magnitude of the scalar field is very small, the solutions of the Einstein-Klein-Gordon

system have extremely large spatial extent and the underlying spacetime geometry is very close

to Minkowski. It was shown that to study this regime, it is sufficient to work with the simpler

Schrodinger-Poisson (SP) system instead of the Einstein-Klein-Gordon one. Moreover, the SP

system describes the dynamics of both complex and real scalar fields [51] in the low-energy

limit.

BH quasi bound states

In the previous case of the self-gravitating structures, the underlying metric has an umbilical

relation with the scalar field solution. Other scenarios in which scalar fields may participate

are not so intricate, specifically the case in which the background metric, on top of which the

scalar field is analysed, is fixed and insensitive to the scalar-field backreactions. In this case,

one considers that the metric is a vacuum solution of the Einstein equations – meaning that the

energy momentum tensor due to the scalar field is negligible – and the Klein-Gordon equation

is solved with this solution as a background.

The massive KG equation in the Kerr background is hard to solve and the spectrum of bound

states has been found in the regimes Mµ = rg/λC � 1 [27] and Mµ = rg/λC � 1 [28]

where rg and λC are the gravitational radius of the BH and λC is the Compton wavelength of

the scalar field. Later, this spectrum was also studied numerically [29, 30] and both methods
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agreed in the corresponding regimes. The most relevant result of these studies is that some

elements of the massive KG spectrum present a positive imaginary part. These elements cor-

respond to quasi-bound states that can, by extracting rotational energy from the BH through a

process known as superradiance [55], avoid complete absorption by the BH’s horizon. Thus,

massive real scalar fields around BHs can lead to very long-lived—for all purposes stationary—

configurations [56–59], while complex fields may form truly stationary configurations [60–63].

Furthermore, numerical studies have shown (see, e.g., Refs. [56, 57, 64]) that BHs may support

scalar field structures that resulted from a scattering event. In this scenario, a scalar wave meets

a BH and part of it gets trapped in its quasi-bound state structure.

1.3 Astrophysical effects of scalar fields

Although predicted to be small, some works have explored the coupling between these ultra-

light scalar fields and the photon in an astrophysical setting. By considering that scalar clouds

around a BH may emit electromagnetic radiation, Refs. [65–67] have calculated specific signa-

tures for those systems.

One the most seductive scenarios, particularly after the first successful gravitational wave

detection [68], is the collision of two BSs and its gravitational wave output; Refs. [69–71] study

such event either in the case of head-on collisions or in the case of an inspiralling binary. Other

works tackle a slightly different scenario, in which it is considered an inspiraling binary with one

of the elements being a BS; some examples are Ref. [72, 73], in which an Extreme Mass Ratio

Inspiral (EMRI) composed of a SMBH and a BS is investigated in order to extract distinctive

features out of the GW signal. In other works the coexistence of fermions and bosons in the

same astrophysical structure is studied. In Ref. [74], the possibility of light bosons affecting

the equation of state of neutron stars is considered: constrains on the couplings to the SM

particles are obtained. The possibility of bosonic particles being accreted by fermionic stars

is the theoretical backbone of studies of fermion-boson stars – which are evolved and quasi-

normal modes (QNM) are calculated in Ref. [75]. In Ref. [76, 77] stable configurations of

systems containing bosons and fermions are constructed, taking to a next level a long tradition

in the literature (e.g., Refs. [78–81]) and obtaining yet another theoretical argument in favour

of the possibility of stars accreting bosonic particles in their interior.

Given the weak coupling of these light scalar fields to matter, the astrophysically-sized struc-
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tures composed exclusively by these particles are expected to interact with other celestial bodies

only through their gravitational influence. This means that if these objects exist they may, at

least in a first approach, mimic BHs. A great effort has been made to find conclusive tests to

distinguish these structures from BHs: in Ref. [82], the authors investigate the possibility of dis-

tinguishing between rotating BHs and BSs just by looking at the images of accreting tori around

them; in Ref. [83] the response of a BS to the accretion of supersonic winds is compared to the

one of a BH of the same mass; in Ref. [84] the spectral lines profile of an Extremely Compact

Object (which can be a BS) are calculated and compared to those of a BH. In Ref. [85] accretion

disks are studied around BSs and in Ref. [86], the gravitational redshift of those structures is

calculated. Ref. [87] calculates the QNMs of BSs and in Ref. [88] their tidal deformability is

studied; in Ref. [89] the authors study the shadow of BSs and the evolution under perturbations.

One of the most important aspects that distinguishes BHs and BSs is the fact that the latter do

not contain an event horizon, which means that particles and light will be able to reach its center.

So, the study of orbits in the spacetimes generated by BSs [90–99] as well as their gravitational

lensing effects [100, 101] assume particular importance.

The limit in which the BSs and oscillatons can be studied using the Schrodinger-Poisson

system, i.e., the weak-field, Newtonian limit is typically considered in galactic scenarios with

the weak-field BS being considered as a Dark Matter clump, a very seductive scenario given

the ability of BSs in this limit to solve some of the problems of the Cold Dark Matter (CDM)

paradigm [15, 102, 103]. This line of research has been used to constrain the value of the mass of

the scalar field: using rotation curve measurements [104] and pulsar timing measurements [105–

107]. In Ref. [108], the authors use measurements of the environment in the center of galaxies to

constrain the scenario in which a scalar-field structure describes the DM content in that region.

BH quasi-bound states are also fertile sources of phenomenology. In Refs. [109, 110] the

gravitational wave output due to the presence of a real scalar-field cloud around a BH is cal-

culated. In Refs. [111, 112], the authors calculate the shadows of BHs with scalar hair, i.e.,

they extract the effect of the scalar-field structure on the way the light coming from behind

the system is distorted. Observations of other effects typically associated with the presence of

BHs can be scrutinized for the presence of scalar fields: in Ref. [113] the authors study how

the quasi-periodic oscillations observed in the X-ray flux observed in accreting compact objects

distinguish between Kerr BHs and BHs with bosonic hair; in Ref. [114] the iron Kα line of the

reflection spectrum of BHs with scalar hair and BHs without hair is used as a way of distin-
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guishing between the two structures; in Ref. [115] the authors consider BH binaries in which

one of the BHs supports a scalar cloud and study the effects the presence of this cloud has on

the GW signal of the binary.

1.4 Structure of the document

In this document, we present a set of results to be added to this vast body of work. In

Chapter 2 we will introduce all concepts that are used in the rest of the document: the Einstein-

Klein-Gordon equations underpin everything. Both BSs, oscillatons and scalar clouds around

BHs are solutions of that system of equations. We make a brief characterization of each of these

solutions and highlight the relevant aspects for the understanding of the other sections.

In Chapter 3 we generically focus on the Extreme-Mass-Ratio-Inspiral (EMRI) scenario

which is a binary of two massive bodies, one with a mass much bigger than the other, in which

the latter inspirals (due to the emission of gravitational radiation) into the former. These systems

are long lived and are one of the main targets of the next generation of GW wave detectors. If

the more massive component of this binary harbours a real scalar field cloud, then, we argue,

orbital resonances develop and may affect the movement of the lighter component of the EMRI

as it inspirals into the more massive one.

In Chapter 4 we bring the possibility of the development of a scalar field cloud around a BH

to a more specific stage: the center of the Milky Way. Considering that the center of the galaxy

is occupied by a BH around which a complex scalar field cloud has developed, we calculate

how the cloud affects the variation of the orbital elements of the S2-star, one of the stars that are

monitored as they orbit that central massive object. We obtain that, even with very conservative

assumptions, the presence of such a scalar cloud can leave a measurable imprint on the variation

of the orbital elements of the aforementioned star.

Finally, in Chapter 5 we focus on low-energy, self-gravitating scalar field structures. In this

regime, such structures are stable and we explore their reaction to the presence of an orbiting,

point-like particle. The scalar field is tidally deformed and that deformation affects the whole

system: on the one hand, the scalar-field structure develops long-lived rotating overdensities

and, on the other hand, the point-like particle, as it traverses the scalar-field structure, experi-

ences a gravitational friction force.

In what follows, and unless otherwise stated, Planck units are used (G = c = ~ = 1).
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Chapter 2

Framework

In this chapter, we present the theoretical foundations of the rest of the document and we

set notation. In Section 2.1 we discuss quasi-bound states of scalar fields in the presence of

BHs, with special attention to the case in which the Compton wavelength of the scalar field is

bigger than the gravitational radius of the BH. In Section 2.2 we introduce the concept of self-

gravitating bound states of scalar fields. We focus on spherically symmetric boson stars (BSs)

and oscillatons; we describe how these structures are obtained from the Einstein-Klein-Gordon

system and we characterize them.

2.1 Scalar fields in the presence of BHs

In the presence of BHs, scalar field quasi-bound states can be found. The fate of these bound-

states will depend on how the scalar-field modes are related to the superradiance condition.

2.1.1 Description of quasi-bound states

The Scalar-Field-BH system is governed by the action

S =

∫
d4x
√
−g
(
R

16π
− 1

2
gαβΨ∗,αΨ∗,β −

µ2

2
ΨΨ∗

)
, (2.1)

in which R is the Ricci scalar, gαβ and g is the metric and its determinant, Ψ(t, r, θ, φ) is a

(complex or real) scalar field with mass µ = ms, Ψ∗ indicates complex conjugation of the field

and Ψ,α indicates derivation with respect to the indexed coordinate. The study of the quasi-

bound states is made with the assumption that the scalar-field contribution as a matter source is
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negligible. So, the Einstein equations are satisfied by a vacuum solution, in this case the Kerr

metric,

ds2 =−
(

1− 2Mr

ρ2

)
dt2 − 4aMr sin2 θ

ρ2
dtdφ+

ρ2

∆
dr2 + ρ2dθ2+

+

[
(r2 + a2) sin2 θ +

2Mr

ρ2
a2 sin4 θ

]
dφ2, (2.2)

where

∆ = r2 − 2Mr + a2 and ρ2 = r2 + a2 cos2 θ, (2.3)

in whichM is the BH mass, a = J/M is the rotation rate of the BH and (t, r, θ, φ) are the Boyer-

Lindquist coordinates. The Kerr metric is held fixed and the Klein-Gordon (KG) equation

gµν∇µ∇νΨ = µ2Ψ, (2.4)

where∇µ represents the covariant derivative, is solved in this background. This equation admits

separable solutions [116, 117] of the form

Ψ = e−iωt+imφS`m(θ)ψ`m(r), (2.5)

in the case of a complex scalar field (the real scalar field case can be obtained by isolating the

real part of the previous expression), where ω is the mode frequency of the scalar field and ` and

m are angular indices. Substituting in the KG equation, one obtains two Ordinary Differential

Equations (ODEs) for the radial and angular parts of each frequency mode of the scalar field

d

dr

(
∆
dψ`m
dr

)
+

[
ω2(r2 + a2)2 −Mamωr +m2a2

∆
− (ω2a2 + µ2r2 + Λ`m)

]
ψ`m = 0, (2.6)

and
1

sin θ

d

dθ

(
sin θ

dS`m
dθ

)
+

[
a2(ω2 − µ2) cos2 θ − m2

sin2 θ
+ Λ`m

]
S`m = 0, (2.7)

where Λ`m is a separation constant. The angular equation has solutions given by the set of

spheroidal harmonics [118] S`m = Sm` (cos θ; c) where c = a(ω2−µ2)1/2, ` and m are integers.

It is relevant that in the limit c → 0 (i.e. when the frequency of the scalar field function is
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dominated by the rest mass of the scalar field) it is verified (see Ref. [62] and references therein)

Sm` (cos θ; c)→ Pm
` (cos θ), Λ`m → `(`+ 1), (2.8)

where the Pm
` are the associated Legendre polynomials.

The quasi-bound state solutions of the KG-equation satisfy two conditions: they are ingoing

at the horizon and exponentially decaying at infinity. To obtain them, one has to enforce those

conditions and to do it, it is convenient to rewrite the radial equation in terms of a coordinate

that can penetrate the horizon such as the tortoise coordinate

dr∗
dr
≡ r2 + a2

∆
; (2.9)

then, in terms of U`m = (r2 + a2)1/2ψ`m, the radial equation reads

d2U`m
dr2
∗

+ [ω2 − V (r, ω)]U`m = 0, (2.10)

where the potential V (r, ω) is written as

V (r, ω) =
µ2∆

r2 + a2
+

4amωMr − a2m2 + ∆[Λ`m + (ω2 − µ2)a2]

(r2 + a2)2
+

+
∆(2Mr3 + a2r2 − 4Ma2r + a4)

(r2 + a2)4
, (2.11)

and one verifies that

V (r, ω) ∼

µ
2 as r →∞ (r∗ →∞),

ω2 − (ω −mΩ+)2 as r → r+ (r∗ → −∞),

(2.12)

where

r+ = M + (M2 − a2)1/2 , (2.13)

is the radial coordinate of the BH’s event horizon, and

Ω+ =
a

r2
+ + a2

, (2.14)
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is its angular velocity. This means that the boundary behavior of the radial function is given by

ψ`m(r) ∼


e±ikr∗
r

as r →∞ (r∗ →∞),

e±i(ω−mΩ+)r∗ as r → r+ (r∗ → −∞),

(2.15)

with k = (ω2−µ2)1/2. To select the bound-state solutions we have to impose that at the horizon

it behaves as an ingoing wave, which can be guaranteed by choosing a negative group velocity

for the solution, i.e., we shall have

e−i(ω−mΩ+)r∗ as r → r+ (r∗ → −∞), (2.16)

and at infinity the solution should represent outgoing waves only, which means we have to

choose positive group velocity only, i.e.,

e+ikr∗

r
as r →∞ (r∗ →∞). (2.17)

Moreover, writing k = i
√
µ2 − ω2, one sees that whenever ω2 < µ2, the solution tends to zero

at infinity. In general, the frequency of the scalar field mode, ω, has a real and an imaginary

part, i.e.

ω = ωR + iωI , (2.18)

but considering that |ωI | � |ωR| (see, e.g., Refs. [27, 30]), the exponential decay at infinity

decreed by the condition ω2 < µ2 implies that

ω2
R < µ2. (2.19)

Superradiant instability

Using the general expression for the frequency (Eq. (2.18)) we can see that the time-dependence

of the scalar field (see Eq. 2.5) reads, explicitly

e−iωt = e−iωRteωI t, (2.20)

which means that the real part, ωR, will set the oscillation frequency of the field mode whereas

the imaginary part, ωI , will set its growth or decay rate, for positve or negative values, respec-
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tively.

Numerical studies of these bound states show that (see, e.g., Ref. [30]) the values of the

frequencies can be organized in the following way

(i) ωI < 0 for ωR > mΩ+,

(ii) ωI > 0 for ωR < mΩ+,

(iii) ωI = 0 for ω = mΩ+,

where m is an integer associated with the angular mode (see Eqs. (2.7) and (2.15)). For the first

case, the solutions decay with time, for the second case – which is called the superradiant case

[55] – the solution grows with time, being able to extract energy from the BH that harbours it;

the third case corresponds to a situation in which there is no growth or decay – in the case of a

complex field, the resulting energy density is stationary [60, 62].

2.1.2 Small coupling approximation

Although these solutions are typically obtained using numerical methods (for details on the

numerical construction of the quasi bound states check, for instance, Appendix A of Ref. [109])

if the scalar field has a Compton wavelength λC that is larger than the gravitational radius of the

BH, i.e.

α = rgµ =
GM

c2

msc

~
= Mµ� 1, λC =

1

µ
, (2.21)

then it is possible to find analytical solutions. The method to find these solutions was originally

presented in Ref. [28]. In this limit, the angular functions are given by the associated Legendre

polynomials

Sm` → Pm
` (cos θ), (2.22)

and the radial function is given by

ψ`n(r) = A`nr̃
`e−r̃/2L2`+1

n , (2.23)

where L2`+1
n represent the Laguerre polynomials, n is the overtone number and the radial coor-

dinate is normalized as

r̃ =
2rMµ2

`+ n+ 1
. (2.24)
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The frequency of the scalar field is complex and it is given by [28]

ωR ∼ µ− µ
(

Mµ
`+n+1

)2

ωI ∼ µ
(
am
M
− 2µr+

)
α4`+4

σ`

, (2.25)

where σ` is a parameter that depends on the angular indices (`,m); for the dominant unstable

mode, ` = 1, it is obtained that σ1 = 48 [110]. The fact that the frequency has an imaginary

component, means that for certain modes, the profile of the scalar field will grow with time.

The field mode that will grow more efficiently due to the superradiant mechanism is the n =

0, ` = m = 1 mode [30, 110] for which the scalar field function can then be written as

Ψ =
[
A10eωI t

]
e−i(ωRt−φ)r(Mµ2)e−

r(Mµ2)
2 sin θ. (2.26)

where A10 is a constant to be fixed later. One can normalize the coordinates in terms of the BH

mass by applying the substitution r → r/M,

t→ t/M,

(2.27)

such that the scalar-field function is written as

Ψ =
[
A10eωI t

]
e−i(ωRt−φ)rα2e−

rα2

2 sin θ, (2.28)

making the dependence on the mass coupling parameter, α = Mµ, explicit. Notice also that

with the normalized coordinates, the frequencies are measured in units of M−1 meaning that

we can write ωR ∼Mµ− (Mµ)
(

Mµ
`+n+1

)2
,

ωI ∼
(
a
M
m− 2Mµr+

) (Mµ)4`+5

σ`
.

(2.29)

The real part of the frequency, which determines the oscillation of the scalar field, is very

close to the value of the mass of the scalar field function and the value of the imaginary part

of the frequency is much smaller than the real component. This result agrees with the choice

expressed in Eq. (2.22) for the angular momentum function where it was assumed that ω2 ∼ µ2.
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2.1.3 Complex and real fields

In the rest of the document we will be using complex and real scalar fields. We have used

the complex scalar field case

Ψ =
[
A10eωI t

]
e−i(ωRt−φ)rα2e−

rα2

2 sin θ, (2.30)

to make all the derivations. To obtain the real scalar field solution, we simply consider the real

part of the complex one (see, for instance, Ref. [109, 110])

Re[Ψ] =
[
A10eωI t

]
cos(ωRt− φ)rα2e−

rα2

2 sin θ (2.31)

So far, we explicitly wrote the exponential factor, eωI t, that describes the growth of the scalar

field function. From now on, and given that ωI � ωR, we will absorb it in the normalization

constant that multiplies the scalar field function, i.e., we will write

A0 ≡ A10eωI t. (2.32)

By doing this we are making the reasonable assumption that one can separate the growing scale

(associated with ωI) from the oscillating scale (associated with ωR), meaning that the growing

dynamics of the scalar field structure can be ignored. This situation corresponds to a scenario in

which we have a scalar field with a given profile for a long enough time that it can be considered

constant. This will be translated in the value of the constantA0 which is related to the total mass

of the scalar cloud.

2.1.4 The peak of the scalar field cloud

One of the ways to characterize these bound-state solutions is by the maximum value of their

radial distribution. This quantity is related to the mass coupling parameter as

Rpeak ∼
1

α2
. (2.33)

This means that the smaller the mass coupling parameter (i.e., the bigger the difference between

the Compton wavelength of the scalar field and the gravitational radius of the BH) the farther is

the peak of the cloud from the BH. From Fig. 2.1 one can also see that as the peak of the scalar
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Figure 2.1: Comparing the radial profile of the quasi-bound state density function
(ΨΨ∗/ sin2 θA2

0) (see Eq. (2.30)) for two different values of the mass coupling parameter. We
observe that the smaller the mass coupling parameter, the farther the peak is located from the
BH’s horizon. Moreover, decreasing the mass coupling parameter also causes the scalar cloud
to become more extended.

field density gets farther from the BH, the width of the whole distribution increases too. This

means that for a fixed BH mass M , lighter fields give rise to more extended bound states.

2.1.5 Effective gravitational effect of the scalar field clouds

The bound-state solutions we are analysing are constructed under the condition that α � 1

and this condition implies, taking into account the position of the peak of the cloud, that

rg � Rpeak, (2.34)

where rg is the gravitational radius of the BH. In other words, the bound-state solutions of the

KG equation in the small mass coupling limit concentrate most of their influence very far from

the BH.

Far from the BH the spacetime is approximately flat. So, we can describe the gravitational

influence of the scalar-field cloud as if its energy density sources a small spacetime deviation

from a flat metric, i.e., as if the metric in the region where the scalar field cloud peaks can
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effectively be written as

ds2 = (−1 + 2U)dt2 + (1 + 2V )dr2 + r2dΩ2, (2.35)

where U and V are functions of the radial coordinate only. The corresponding Newtonian

gravitational potential, UN , corresponds to the function U . Following Appendix A, we obtain

that in the case of a complex scalar field, the leading order of the Einstein equations correspond

to

U = V, ∇2U = −4πµ2 |Ψ|2 , (2.36)

whereas if the scalar field is real, one verifies that∇
2(U − V ) = 12π µ

2

2
[A0g(r) sin θ]2 cos(2(ωt+ φ)),

∇2V = −4π µ
2

2
[A0g(r) sin θ]2,

(2.37)

where g(r) = α2r exp(−α2r/2). From this analysis, we see that a real scalar field gives rise

to a time dependent, Newtonian-like potential; this is because its pressure is of the same order

of its energy density (see other accounts of this fact in Ref. [51, 54, 106]). The complex scalar

field case is simpler: because it gives rise to a static energy-momentum tensor, its effective,

Newtonian-like potential will also be static.

2.1.6 Mass of the scalar clouds

To calculate the total mass of the scalar field clouds, we will take advantage of the fact that

their profiles are mainly concentrated in regions that are mostly flat, i.e. far from the BH which

harbours them. This allows us to consider that their effective gravitational influence can be

described by their energy-momentum tensor written in a flat background

T µν = Ψ∗,(µΨ,ν) − 1

2
ηµν
(
Ψ∗,αΨ,α + µ2Ψ∗Ψ

)
, (2.38)

where ηµν is the Minkowski metric. Moreover, by considering the functional form of the scalar

field under analysis (Eqs. (2.30) and (2.31)) and their frequency (Eq. (2.25)), one can consis-

tently argue that the dominant term of the 00 component of the energy-momentum tensor (which
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describes the energy density of the scalar field) is given by (see Appendix A)

ρ = T00 ∼ µ2|Ψ|2. (2.39)

Taking this into account, one can calculate the total mass of the scalar cloud by computing

MSC =

∫
ρr,cr

2 sin θdrdθdφ, (2.40)

where ρr,c is the the density function and can be written as

ρc = µ2A2
Ce−rα

2
r2α4 sin2 θ,

ρr = µ2

2
A2
Re−rα

2
r2α4 sin2 θ,

(2.41)

where ρc, AC and ρr, AR correspond to the value of the energy density and amplitude of the

field profile for the complex and real scalar field case, respectively.

Since the expressions for the energy density of the scalar field cloud are written in terms of

the normalized coordinates (Eq. (2.27)), the integration over the whole space should take that

into account, by rescalling also the integration variables. Performing this rescalling we will end

up with the following expressions for the value of the mass of the scalar cloud

MSC =

Mα2A2
C

∫
e−rα

2
r2α4 sin2 θr2 sin θdrdθdφ,

M
2
α2A2

R

∫
e−rα

2
r2α4 sin2 θr2 sin θdrdθdφ,

(2.42)

where M is the mass of the BH. Simplifying these expressions, we obtain that

MSC =

M
64πA2

C

α4 ,

M
32πA2

R

α4 .

(2.43)

One can then conclude that the amplitude of the scalar field function and the mass of the scalar

cloud are related by A
2
C =

[
MSC

M

]
α4

64π
,

A2
R =

[
MSC

M

]
α4

32π
.

(2.44)
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2.2 Self-gravitating bound states

So far, we focused in solutions of the Klein-Gordon equation in which the background metric

is fixed. This is a good description of a situation in which the scalar field is a subdominant term.

In this section, we drop the latter assumption, such that the scalar field is considered to be the

main source of spacetime curvature. This means that, instead of working with the KG-equation

only, we will work with the Einstein-Klein-Gordon system

Rαβ − R
2
gαβ = 8πTαβ,

∇α∇αΨ = µ2Ψ,

(2.45)

where ∇α is the covariant derivative, Rαβ and R are the Ricci’s tensor and scalar, respectively

and Tαβ is the energy-momentum tensor of the scalar field Ψ with mass ms = µ~/c.

2.2.1 Spherically symmetric solutions of the EKG system

The spherically symmetric solutions of the Einstein-Klein-Gordon system are the simplest

ones. In this case the metric is given by the generic form

ds2 = −A(t, r)dt2 +B(t, r)dr2 + r2dΩ2, (2.46)

where one is allowing for the possibility of time-varying metric coefficients and where dΩ is

the solid angle element given by

dΩ = dθ + sin2 θdφ. (2.47)

We are interested in self-gravitating bound states of the EKG system; considering a generic

situation in which the scalar field is given by a separable function

Ψ(t, r) = H(t)ψ(r), (2.48)

and assuming that there is not an event horizon in the respective spacetime, the bound state

solutions must be regular at the origin and decay exponentially at infinity. The latter condition

is realized if the frequency of the scalar field is real and always smaller than the rest mass of the
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Figure 2.2: Radial profiles of two boson star solutions, both with ψ(0)
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4π = 0.1. One with
0-nodes (a ground state) and another with 1-node (an excited state).

scalar field, i.e.,

ω < µ. (2.49)

This must be verified because, in the limit r → ∞, the Klein-Gordon equation reduces to its

flat-spacetime version

ψ′′(r) +
2ψ′(r)

r
+
(
ω2 − µ2

)
ψ(r) = 0, (2.50)

where it was used that H ∼ exp(−iωt) and the prime indicates derivation with respect to the

radial coordinate; the decaying solution for this equation (which is the one we are interested in)

is

ψ(r) =
exp(−

√
µ2 − ω2r)

r
, (2.51)

for which one must verify that µ2 − ω2 > 0. The frequency of the scalar field solutions has

a central importance and is used to characterize them. This characterizing value comes from

the temporal part of the scalar field function. From its spatial part comes another characteristic,

which is the number of nodes. The existence of nodes (see Fig. 2.2) in a scalar-field solution

is an indication that the solution is unstable [36–39], whereas the ones without nodes – called

ground state solutions – have a stable and an unstable branch. In what follows we will only deal

with ground state solutions.
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Boson stars

For the case in which the scalar field is complex, one writes (see Refs. [31, 32])

Ψ = exp(−iωt)ψ(r), (2.52)

where ω is the frequency of the scalar field and ψ(r) is the radial profile of the scalar field. In

calculating the energy-momentum tensor of the complex scalar field,

Tαβ = Ψ∗,(αΨ,β) − 1

2
gαβ

(
Ψ∗,σΨ,σ + µ2Ψ∗Ψ

)
, (2.53)

the terms depending on the field will be independent of the time coordinate. By dropping the

time-dependence of the metric tensor

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ2, (2.54)

substituting Eq. (2.54) and Eq. (2.52) in the Einstein-Klein-Gordon system of Eq. (2.45) and

performing a scalling of variables

ω → ω/µ, t→ µt, r → µr, ψ → ψ√
4π
, (2.55)

one obtains a coupled system of equations for all the relevant quantities of the problem

A(r) (rB′(r) +B(r)2 −B(r))

r2B(r)2
=
A(r)ψ′(r)2

B(r)
+ ψ(r)2

(
A(r) + ω2

)
, (2.56)

B(r)

(
rψ(r)2 (ω2 − A(r))

A(r)
+

1

r

)
+ rψ′(r)2 =

A′(r)

A(r)
+

1

r
, (2.57)

ψ′(r)

(
−A

′(r)

A(r)
+
B′(r)

B(r)
− 4

r

)
= 2

(
B(r)ψ(r) (ω2 − A(r))

A(r)
+ ψ′′(r)

)
. (2.58)

This coupled set of ODEs is solved using the shooting method where one of the free parameters

is the frequency ω of the scalar field. The solutions obey two conditions: (a) the regularity of

the system, which means that at the origin one fixes

A′(0) = B′(0) = ψ′(0) = 0, (2.59)
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and (b) finiteness of the scalar field solution, which means that at infinity, the scalar-field func-

tion must behave according to

lim
r→∞

ψ(r) = 0. (2.60)

These conditions are not enough to solve the coupled system of ODEs. An inspection of the

equations of motion close to the origin shows that the condition

B(0) = 1, (2.61)

is automatically satisfied for a regular and finite solution of the system, while at infinity, it is

verified that

lim
r→∞

B(r) = 1, (2.62)

under the same conditions. The value of the scalar field and of the metric component A(r) at

the origin are left free, i.e.

A(0) = A0, ψ(0) = ψ0. (2.63)

We have three free parameters – the frequency ω and the values at the origin of ψ(r) and A(r)

– and two shooting conditions, namely, the finiteness of the scalar field function and asymptotic

flatness of the metric

lim
r→∞

ψ(r) = 0, and lim
r→∞

A(r) = 1. (2.64)

One of the free parameters can be chosen by us and it will be the central value of the scalar field

function, ψ0. Then the shooting method will determine ω and A0.

Following this method, we obtain stable (i.e. 0-node) boson star solutions that will be further

characterized by the value of the scalar field function at the origin and by the corresponding

values for the frequency and the value of the metric function at the origin – A(0). In Fig. 2.3

it is plotted one profile of a 0-node complex scalar field function and in Fig. 2.4 the relation

between the central value of the profile of 0-node scalar-field solutions and their frequency.

Notice that there is a minimum value for the frequency of the scalar field and that the solutions

are divided in a stable and unstable branch.

Oscillatons

If instead of a complex scalar field one considers a real one, the corresponding energy-

momentum tensor will have a time-dependence. This means that we have to consider time-
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dependent metric functions. From now on, and for numerical convenience, we will be writing

the spherically symmetric metric as

ds2 = −A(t, r)dt2 +B(t, r)dr2 + r2dΩ2 = −B(t, r)

(
1

C(t, r)
dt2 + dr2

)
+ r2dΩ2. (2.65)

Using this metric and a generic real scalar field function Ψ(t, r) in the Einstein-Klein-Gordon

system of Eq. (2.45) and rescalling the variables as in Eq. (2.55) one isolates the following set

of equations

− B′

rB
+B

(
Ψ2 − 1

r2

)
+ CΨ̇2 + Ψ′2 +

1

r2
= 0, (2.66)

2Ψ′Ψ̇− Ḃ

rB
= 0, (2.67)

B′

B
+B

(
rΨ2 − 1

r

)
+

1

r
=
C ′

C
+ rCΨ̇2 + rΨ′2, (2.68)

2rBCΨ + rC ′Ψ′ + C
(
rĊΨ̇− 4Ψ′ − 2rΨ′′

)
+ 2rC2Ψ̈ = 0, (2.69)

where the dot means time derivative and the prime means radial derivative. To obtain oscillaton

solutions of this system, one considers that both the metric functions as well as the scalar field

can be written as

B(t, r) =
∞∑
j=0

B2j(r) cos(2jωt), (2.70)

C(t, r) =
∞∑
j=0

C2j(r) cos(2jωt), (2.71)

Ψ(t, r) =
∞∑
j=0

ψ2j+1(r) cos([2j + 1]ωt). (2.72)

We follow the original work – Ref.[43] – in restricting the expansion of the metric functions to

even component of the cosine expansion and the scalar-field expansion to odd ones. (See also

Ref. [45, 54])

To the best of our knowledge there is not a solution that encompasses all the orders of the

expansion; the accepted usage is the truncation of the expansion for a maximum value of j =

jmax. Ref. [43] studies the convergence of the series as a function of jmax and obtains solutions

of the system obeying the desired boundary conditions that converge rapidly, i.e., for small

values of jmax – this justifies the truncation procedure. In any case, the value of jmax influences
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the accuracy of the solution obtained; for most cases jmax = 1 is accurate at a∼ 1% level. That

is the value we are going to use in our construction

B(t, r) = B0(r) +B2(r) cos(2ωt), (2.73)

C(t, r) = C0(r) + C2(r) cos(2ωt), (2.74)

Ψ(t, r) = ψ1(r) cos(ωt) + ψ3(r) cos(3ωt). (2.75)

In order to determine the components of the harmonic expansion, we substitute Eqs. (2.73),

(2.74) and (2.75) in Eqs. (2.66), (2.67), (2.68) and (2.69), such that each equation is written has

a harmonic sum; out of these harmonic sums, we force the coefficients of the terms cos(2jωt)

and cos((2j + 1)ωt) with j up to jmax = 1 to be zero and out of that we obtain six ODEs for

the variablesB0, B2, C0, C2,Ψ1,Ψ3. These equations are solved numerically using the shooting

method. As in the case of boson stars, we have to impose regularity at the origin and finiteness

of the solution. The conditions are the same as the ones for the boson star, the challenge here is

to translate them to each of the components of the expansion. The conditions are the following:

• regularity at the origin: A′(t, 0) = B′(t, 0) = ψ′(t, 0) = 0,∀t;

• finiteness of the solution: limr→∞Ψ(t, r) = 0,∀t;

• asymptotically flat metric.

These general considerations are translated to each of the elements of the expansion:

• B(t, 0) = 1,∀t is read off from the equations of motion, this means that conditions

B0(0) = 1 and B2(0) = 0 are guaranteed;

• Ψ(t, 0) and C(t, 0) are not fixed, which means that we will have the freedom to choose

the value of ψ1(0) and the shooting method (see, e.g., [119]) will provide the values for

ψ3(0), C0(0), C2(0);

• regularity at the origin is guaranteed by imposing that the radial derivatives at the origin

are zero, for all the components;

• finiteness of the solution translates immediatly into limr→∞ ψ1(r) = limr→∞ ψ3(r) = 0;

• similarly to the analysis of boson stars, the equations of motion guarantee that limr→∞B(t, r) =

1,∀t which means that we will have limr→∞B0(r) = 1 and limr→∞B2(r) = 0;
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• forcing the metric to be asymptotically flat means that we want limr→∞C(t, r) = 1 which

amounts to impose limr→∞C0(r) = 1 and limr→∞C2(r) = 0.

Summarizing this analysis, we have five free parameters ψ1(0), ψ3(0), C0(0), C2(0), ω and four

condition to enforce:

lim
r→∞

ψ1(r) = 0, (2.76)

lim
r→∞

ψ3(r) = 0, (2.77)

lim
r→∞

C0(r) = 1, (2.78)

lim
r→∞

C2(r) = 0. (2.79)

Again, and similarly to the case of BSs, we’ll be interested in the ground-state solutions of

the EKG system, which means that we obtain scalar profiles ψ1(r) and ψ3(r) that do not con-

tain nodes. In Fig. 2.4 we plot the relation between the central value of the dominant scalar

component, ψ1(0), and the numerically obtained frequency value ω.

Finally, notice that since A(t, r) = B(t, r)/C(t, r) (see Eq. (2.65)), the coefficients of A are

obtained like this

A0 =
2B0C0 −B2C2

2C2
0 + C2

2

, (2.80)

A2 =
2B2C0 − 2B0C2

2C2
0 − C2

2

, (2.81)

such that A is written as

A(t, r) = A0(r) + A2(r) cos(2ωt). (2.82)

2.2.2 Characterizing the self-gravitating solutions

We will use two different ways of characterizing the self-gravitating scalar-field structures.

On the one hand, we focus on the more direct quantities that are related to their construction: the

central value of the scalar field function (ψ(0) or ψ1(0)) and the fundamental frequency (ω). In

Fig. 2.4 it is represented the relation between these two quantities for both BSs and oscillatons.

Notice that both types of solutions present a minimum value for the fundamental frequency;

that value is different for each of the solutions, with the BSs presenting a lower value than

the oscillatons. However not all of the solutions presented in this plot are equally important in
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terms of astrophysical analysis. As shown in Ref. [36–39, 54] boson stars and oscillatons can be

organized in a stable and unstable branch, being the stable branch composed of solutions with

a central value of the scalar field smaller than ∼ 0.1 as indicated by a vertical line in Fig. 2.4.

Another way to characterize these self-gravitating solutions is through more indirect quanti-

ties – the radius and the mass. To calculate the mass, we use the fact that they are spherically

symmetric solutions of the Einstein equations, which means that their exterior metric is de-

scribed, according to the Birkhoff’s theorem [120, 121], by a Schwarzschild metric with the

corresponding mass parameter. So, one can define the mass of the scalar-field structure as

µM = lim
r→∞

r

2

(
1− 1

B(t, r)

)
, (2.83)

where µ is equal to the mass of the scalar field in Planck units. Unlike fermion stars which have

a physical boundary, these scalar-field self-gravitating bound states do not possess one. So, in

order to define their radius, one considers the value of the radial coordinate up to which 98%

of the total mass is contained. The quantitites obtained in this way can be organized in a Mass-

Radius plot (see Fig. 2.5). We see that there is a maximum mass for both types of solutions and

they differ slightly. As mentioned before, only a subset of the nodeless solutions of the EKG

system is stable; this is the subset that is located to the right of the maximum mass value in

the Mass-Radius plot, i.e., all the solutions that have mass smaller than the maximum mass and

radius bigger than the radius of the maximum-mass solution.

Well within the stable branch, one can find a region in which BSs and oscillatons solutions

give rise to similar structures. This regime is indicated with a small circle in Fig. 2.4 and corre-

sponds to the cases in which the magnitude of the scalar field is very small and the fundamental

frequency is approximately given by the mass of the scalar field. In this regime, the metric

corresponding to the scalar-field structures is approximately flat so that the whole system can

be analysed from a Newtonian perspective.

2.2.3 Newtonian limit

Recovering the analysis made in Appendix A, we will restrict, for convenience, the following

analysis to the case of a complex scalar field. Assuming that the frequency of the scalar field

function is approximately given by the scalar field’s mass, ω ≈ µ, and that the metric deviates
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Figure 2.3: Radial profiles of a boson star, ψ(r), and of an oscillaton, ψ1(r) and ψ3(r), for the
same central value ψ(0)
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Figure 2.4: Relating the frequency of the scalar field function with the central value of ψ(r),
for boson stars, and ψ1(r), for oscillatons. Notice the little gray circle, which corresponds to a
low-energy regime (the bound-state is almost a free state), where the oscillaton and boson star
solutions are similar. Notice also the redline; according to Ref. [54] stable configurations are
on the left and unstable configurations on the right.
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Figure 2.5: Mass-Radius relation for boson stars and oscillatons. Notice the maximum mass
attained by both types of structures. In agreement with, e.g., Ref. [22] one can see that M osc

max ∼
0.60m2

Planck/ms, for oscillatons, and MBS
max ∼ 0.63m2

Planck/m for boson stars. The configuration
with the maximum mass sets the boundary between the stable and unstable branch, with all the
solutions to the right of the maximum mass being stable. The central value of the scalar field
that corresponds to the maximum mass if given by ψ ∼ 0.1 and all the configurations with a
small value are stable. Notice also that the Newtonian configurations are in the far right of the
plot, where the description of BSs and oscillatons agree.

slightly from a flat metric, i.e.,

ds2 = (−1 + 2U)dt2 + (1 + 2U)dr2 + r2dΩ2, (2.84)

we know, from Appendix A that the dominant component of the Einstein equations is the Pois-

son equation (notice that we are not using normalized units here)

∇2U = −4πµ2 |Ψ|2 . (2.85)

In this limit, and for ω ≈ µ, the scalar field function can be separated in a dominant and a

subdominant term as follows:

Ψ = e−iµtχ(t, r). (2.86)

χ(t, r) contains the slow time-variation of the scalar field as well as the spatial profile. Plugging

this into the Klein-Gordon equation

∇α∇αΨ = µ2Ψ, (2.87)
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and considering the background metric of Eq. (2.84), the low-energy component of the scalar

field is described by the Schrodinger equation

i∂tχ = − 1

2µ
∇2χ+ µUχ. (2.88)

Going back to the Fig. 2.4, we see that the set of oscillatons and BSs that are in the upper

left corner (ω ≈ µ and ψ(0)� 1) can be conveniently described by

∇
2U = −4πµ2 |χ|2 ,

i∂tχ = − 1
2µ
∇2χ+ µUχ.

(2.89)

Ref. [54] has set the limit in which the Newtonian and the GR solution agree to be

ψ(0) < 10−3. (2.90)

2.3 Summary

In this chapter we discussed two astrophysically relevant structures that may develop if ultra-

light scalar fields exist. We covered self-gravitating scalar field structures for both complex and

real scalar fields, analysing their characteristics and their Newtonian limit. We also explored the

quasi-bound states of scalar fields around rotating black holes; our analysis focused in the limit

in which the Compton wavelength of the scalar field is much bigger than the gravitational radius

of the BH. In this limit, we saw that the maximum value of the scalar field profile is attained

very far from the BH. Taking advantage of this circumstance, we calculated the effective gravi-

tational potential that results from the existence of such structure both for the complex and the

real case. In the next chapter we will study how the latter case influences the orbital evolution

of a binary system.
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Chapter 3

Scalar field influence on a generic EMRI

The detection of Gravitational Waves (GWs) by the LIGO collaboration [68] opened a new

path in the study of the Universe. LISA [122] – the Laser Interferometer Space Antenna – ,

one of the new facilities that will improve the capacity to study GWs, is tuned to detect them

coming from Extreme-Mass-Ratio-Inspirals (EMRI) [123, 124]. EMRIs are inspiraling binary

systems in which the mass of one of the components is much bigger than the other – the ratio

should be of the order 104 − 106. One of the most favoured scenarios to realize such a system

is the one in which a SMBH (M ∼ 106M�) is orbited by a solar mass BH or by a neutron star

or white dwarf. As the lighter element of the binary is expected to inspiral towards the SMBH

due to the emission of GWs, any deviation to that scenario will contain information about the

environment surrounding the SMBH. In this chapter we focus on an EMRI in which the SMBH

supports an ultralight scalar field quasi-bound state – we shall abbreviate it to Black Hole-

Scalar Field system (BHSFS). We study the impact of the scalar field structure on the orbital

structure of the orbiting body with special emphasis on circular orbits. Unless otherwise stated,

normalized variables of Eq. (2.27) are being considered. This chapter is based on Ref. [125].

3.1 Setup

Our hypothesis is that a real, massive scalar-field quasi-bound state exists around a SMBH

(see Section 2.1). The scalar field is described by (see Eq. (2.31))

Ψ = A0 cos(ωRt− φ)rα2e−
rα2

2 sin θ, (3.1)
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where α = Mµ (see Eq. (2.21)) and

ωR ∼ µ. (3.2)

The amplitude, A0, is related to the scalar field total mass

A2
0 =

[
MSC

M

]
(Mµ)4

32π
, (3.3)

For a cloud with MSC ∼ 20%M we have A0 ∼ 0.05(Mµ)2. We take this as our reference

value.

In the limit Mµ � 1, the maximum value of the radial profile is attained at r = Rpeak and

this region is far from the BH, meaning that the curvature of spacetime is low and it is valid an

analysis of the scalar field using a flat background metric (see details in Section 2.1). In this

limit, the gravitational effect of the SMBH is described by a Keplerian potential

V0 = −1

r
, (3.4)

and the presence of the real scalar field cloud is given by a perturbative potential of the form

V1 ∼ V 0
1 + V 1

1 cos(2(φ− ωRt)), (3.5)

which is the solution of the equation (using α = Mµ)

∇2V1 = −4π
α2

2

[
A0rα

2e−
rα2

2 sin θ
]2 (

1− 3 cos (2(ωRt− φ))
)
, (3.6)

Using the harmonic decomposition technique (see Appendix A), we obtain that the expressions

for the perturbative gravitational potential sourced by the presence of the real scalar field is

given by

V 0
1 = Q1(r) +Q2(r) cos2(θ) , (3.7)

and

V 1
1 = Q3(r) sin2(θ). (3.8)

The functions Qi(r) are given by (we’ll use α = Mµ in order to reduce the length of the
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expressions)

Q1(r) =
A2

0πe
−rα2

2α8r3

(
−192− 192α2r + 2r4α10 + r5α12 − 4r3α8(−3 + r2α2)− 24r2α6(−1 + r2α2)

+ (16α2 − 160r2α4) + (16rα4 − 80r3α6)− 16erα
2

(−12 + r2α6 + (α2 − 4r2α4))
)
,

(3.9)

Q2(r) =
A2

0πe
−rα2

2r3α8

(
576 + 576rα2 − 2r4α10 − r5α12 + 48erα

2

(−12 + α2) + 4r3α8(−2 + r2α2)

+ 24r2α6(−1 + r2α2) + 48α2(−1 + 6r2α2)− (48rα4 − 96r3α6)
)
, (3.10)

Q3(r) =
A2

0πe
−rα2

2r3α8

(
−3456− 3456rα2 − 2r4α10 − r5α12 + 48erα

2

(72 + α2)− 8r3α8(1 + 3r2α2)

− 48(α2 + 36r2α4)− 48(rα4 + 12r3α6)− 24(r2α6 + 6r4α8)
)
. (3.11)

We are interested in studying the movement of an orbiting particle whose orbital plane is the

equatorial one (i.e. θ = π/2) and so, the total gravitational potential which acts on it is given

by

UN

(
r, θ =

π

2
, φ
)

= V0 + V1 = −1

r
+Q1(r) +Q3(r) cos(2(φ− ωRt)), (3.12)

where (r, φ) are inertial polar coordinates in the plane. This potential has two distinctive fea-

tures. First, it has a radial dependence, which can modify the structure of bound orbits of the

background field, for instance changing Kepler’s law1. Second, it has a periodic angular de-

pendence on φ and ω, breaking the axial symmetry of the gravitational potential. This second

feature also appears in planetary motion around disks and galactic formation, and therefore can

enrich the kinematics of particles around BHs. For convenience, we will organize the potential

in Eq. (3.12) specialised to the equatorial plane as

UN(r, φ) = Vr(r) + δV (r, φ), (3.13)

making an explicit separation between the angular and non-angular dependent components.

1The new potential will not be proportional to r−1 and therefore, according to Bertrand’s theorem [126], not
all bound orbits will be closed.
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3.2 Quasi-circular orbits

To estimate the impact of the presence of the scalar field on the dynamics of the EMRI, we

will quantify the modifications it causes on circular orbits. These orbits are the simplest type of

orbits in a standard EMRI and understanding how they change in response to the scalar field is

a first step towards understanding how the global structure of the EMRI is modified.

Under our assumptions, the study of the orbital behavior of a stellar object in the EMRI

reduces to the analysis of the Lagrangian

L =
1

2
(ṙ2 + r2(φ̇+ ωR)2)− UN(r, φ), (3.14)

which describes its motion under the influence of the potential of Eq. (3.13) in a system of

coordinates that is corotating with the scalar field. In regions where |Q3| / |V0| � 1, one can

obtain some insight into this system by exploring the effect of the azimuthal-dependent part on

the stable circular orbits of the Keplerian potential V0. The perturbative approach is set up by

considering the evolution of small deviations r1 and φ1 to the radial and angular behavior of a

stable circular orbit of radius R0

r(t) = R0 + r1(t) , (3.15)

φ(t) = φ0(t) + φ1(t) , (3.16)

where φ0(t) = φi + (Ω0 − ωR)t with Ω2
0 = V ′0(R0)/R0 and, for convenience, we fix the initial

condition to be φi = 0. Neglecting second order terms in r1 and φ̇1, the equations of motion in

the corotating frame are written as

r̈1 +

(
∂2V0

∂r2
− Ω2

0

)
r1 − 2Ω0R0φ̇1 +

∂Q1

∂r
+
∂(δV )

∂r
= 0 , (3.17)

φ̈1 +
2Ω0

R0

ṙ1 +
1

R2
0

∂(δV )

∂φ
= 0 , (3.18)

in which all derivatives are evaluated at r = R0. To study Eqs. (3.17) and (3.18) we consider

that, since φ1(t) � φ0(t), one can write the expression for δV considering that φ(t) ∼ (Ω0 −
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ωR)t. The equations are then written as

r̈1 +

(
∂2V0

∂r2
− Ω2

0

)
r1 − 2Ω0R0φ̇1 +

∂Q1

∂r
+
∂Q3

∂r
cos(2(Ω0 − ωR)t) = 0 , (3.19)

φ̈1 +
2Ω0

R0

ṙ1 −
2

R2
0

Q3 sin(2(Ω0 − ωR)t) = 0 , (3.20)

where the coefficients are evaluated at r = R0. Integrating Eq. (3.20) and substituting the result

in (3.19) one obtains

r̈1 +

(
∂2V0

∂r2
+ 3Ω2

0

)
r1 +

∂Q1

∂r
= −B(R0) cos(2(Ω0 − ωR)t), (3.21)

whose general solution is given by

r1(t) = A cos(κ0t+ α)−B(R0)
cos(2(Ω0 − ωR)t)

κ2
0 − 4(Ω0 − ωR)2

− C(R0)

κ2
0

, (3.22)

φ1(t) = −2Ω0A

R0κ0

sin(κ0t+ α) +D(R0) sin(2(Ω0 − ωR)t)− C(R0)

κ2
0

t, (3.23)

with κ2
0 = V ′′0 + 3Ω2

0 and

A =

[
r1i −

B

κ2
0 − 4(Ω0 − ωR)2

+
C

k2
0

]
cos−1 α, (3.24)

tanα = ṙ−1
1i κ0

[
C

k2
0

− r1i −
B

κ2
0 − 4(Ω0 − ωR)2

]
, (3.25)

B =
∂Q3

∂r
+

4Ω0Q3

R0(Ω0 − ωR)
, (3.26)

C =
∂Q1

∂r
, (3.27)

D =
Ω0B

R0(κ2
0 − 4(Ω0 − ωR)2)(Ω0 − ωR)

− Q3

R2
0(Ω0 − ωR)2

, (3.28)

where all the quantities are calculated at R0 and (r1i, ṙ1i) are the initial conditions for the radial

motion. This kind of solution is long known in problems with non-axisymmetric potentials (see,

e.g., Refs. [127–131]). We can readily see the presence of some singularities in Eqs. (3.22),

(3.24) and (3.28). Two of the singularities appear when

κ0 = ±2(Ω0 − ωR) . (3.29)
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Figure 3.1: Representing the instability measure I of Eq. (3.32) as a function of the radius of
the circular orbit for mass coupling Mµ = 0.03 and different scalar-field amplitudes. Large
scalar amplitudes give rise to a set of unstable orbits. Notice that the range of radii in which the
instability measure is negative, depends on the value of the parameter a0.

These are called Lindblad (inner and outer) resonances. The other singularity, given by

Ω0 = ωR, (3.30)

is called co-rotating resonance, because the perturbation is being made to a circular orbit which

is synchronized with the potential (in this case with the scalar cloud). When a resonant fre-

quency is approached, the above linear analysis breaks down. We shall look into these partic-

ular orbits in the following sections. The radii at which the outer (inner) Lindblad resonance

occurs will be termed outer (inner) Lindblad radius RL±. The radius at which the co-rotating

resonance occurs is the co-rotation radius RC .

3.2.1 Circular orbits

Before considering the effects of the angular part of the gravitational potential, we will focus

on the effects due to its radial term only. To further explore its effects, we ignore the presence

of the φ-dependent part of the potential V1 in the Eqs. (3.19) and (3.20) and the solution is given
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by Eqs. (3.22) to (3.25) with B(r) ≡ 0 and D(r) ≡ 0. As in the analysis with the angular part

of the potential, the behavior of the perturbations indicates that the circular stable orbits of the

BHSFS are not exactly Kleperian. We start with initial conditions at r1i = ṙ1i = 0, and initial

radius such that the orbit would be circular if the scalar cloud did not exist. We find a solution

that deviates from the Keplerian circular orbit. This, of course, is expected: given a value of

the angular momentum, the corresponding value of the radius of the circular orbit of the total

radial potential Vr is different from the radius of the circular orbits of V0. Quantifying this radial

difference is a way of looking into the influence of the scalar field on the orbital structure around

the SMBH. We will indicate the radii of the circular orbits of the total potential Vr by R∗0; their

values are given, for fixed angular momentum L, by

L2

(R∗0)3
=
dVr
dr

, (3.31)

where the derivative is taken at R∗0. The stability of these orbits is guaranteed as long as [132]

I ≡ dVr
dr

+
R∗0
3

d2Vr
dr2

> 0. (3.32)

This inequality is always verified in the range of the mass coupling parameter we are consider-

ing, thus all circular orbits of the potential Vr are stable. Notice, however, that the amplitude of

the scalar field can be larger. Parametrizing the amplitude of the scalar field as

Ã0 = a0A0, (3.33)

where A0 is the standard amplitude of the scalar field (see Eq. (3.3)), we observe that for a0 >

ainsta
0 , unstable orbits appear. More precisely, for a0 < ainsta

0 all circular orbits are stable and for

a0 > ainsta
0 a window of unstable circular orbits with Rmin < R∗0 < Rmax exists. This is shown

in Fig. 3.1, where it is represented the quantity described in Eq. (3.32). Furthermore, it is also

observed that after crossing the boundary imposed by ainsta
0 , the range {Rmin, Rmax} increases

with a0.

For small values of the angular momentum and mass coupling parameter, the difference

between the radius of Keplerian circular orbits, R0, and the radius of circular orbits of the

BHSFS, R∗0, is negligible2; however, this difference has a non-trivial evolution once we start to

2We keep the angular momentum fixed. This observation shows that close to the SMBH Keplerian circular
orbits are good approximations for the circular orbits of the whole system. This reinforces the validity of the
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Figure 3.2: Difference between the radius of a Keplerian circular orbit with angular momentum
L and the radius of a circular orbit of the potential Vr (Eq. (3.13) ) with the same angular
momentum. For small values of the angular momentum the difference is negligible, but then
it grows indefinitely for larger values. This growth means that, far from the SMBH, a stable
circular orbit of the BHSF system with a given angular momentum has a smaller radius than its
Keplerian counterpart (in which the Kepler potential is generated only by the SMBH).

vary those parameters; this can be appreciated in Fig. 3.2. As the angular momentum increases,

the difference between the radii has a behavior which is controlled by the value of the mass

coupling parameter: large values of α imply a large radii difference for a fixed value of the

angular momentum. Notwithstanding, the difference in radii at large distances is due to the fact

that now the orbiting particle sees a different effective mass (central object plus the scalar field

surrounding it, see Fig. 3.3).

Another way of looking at the difference between the circular orbits of an isolated BH and a

scalar-surrounded one is to observe that close to the SMBH a potential V = −M/r is dominant,

while far from the SMBH the dynamics are dominated by V = −Meff/r in which Meff is an

effective mass value, in units of the mass M of the SMBH. It was numerically found that our

system has Meff ∼ 1.26, as can be seen in Fig. 3.3. This number can be interpreted by looking

at Eq. (3.31) in the form

L2 = R∗0 +R∗0
3∂Q1

∂r
(R∗0), (3.34)

results we obtained for the location of the resonant orbits.
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Figure 3.3: Representing the value of the radii of stable circular orbits as a function of the
angular momentum. Continuous lines refer to circular orbits of a Keplerian potential −M/r –
the blue line corresponds to a Keplerian potential with M = 1 and the red line to M = 1.26.
Discontinuous lines represent the radii of circular orbits for the potential of the BHSF system
Vr; for small values of the angular momentum, these values are similar to those generated by a
Keplerian potential with M = 1 while for large values of the angular momentum they stabilize
to the curve described by the Keplerian potential with M = 1.26. This fact leads us to the
conjecture that any other mass coupling parameter would generate a plot that would be bounded
by the two Keplerian curves; the only influence of the mass coupling parameter is the extent to
which the radii of circular orbits deviate from a Keplerian relation, as can be seen in the inline.
In fact, the bigger the mass coupling parameter the smaller is the range of the deviation.
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and observing that for large values of angular momentum L and radius R∗0 it can be written as

L2 = R∗0 +R∗0
3

(
32πa2

0

R∗0
2

)
, (3.35)

where the amplitude of the scalar field A0 was again written as A0 = a0(Mµ)2. Using the value

for a0 prescribed in Eq. (3.3) we obtain

L2 = 1.25R∗0 (3.36)

which is close to the value obtained numerically3. We see, then, that far from the SMBH the

potential governing the dynamics is still Keplerian, but the mass sourcing it is not the SMBH

mass. This “effective” mass Meff corresponds to the mass of the SMBH plus the total mass

contained the scalar field.

3.2.2 Resonant orbits

For the rest of this section, we will go back to Eqs. (3.22) and (3.23), focusing on the resonant

orbits. For a particle near the resonant orbits, the general perturbative approach presented in

those equations is not adequate since it gives unphysical behavior for the perturbations4. Our

main motivation to pursue a more detailed analysis of these orbits is their important role in the so

called angular momentum transfer mechanisms in the context of galactic dynamics [135–137].

In other words, it is possible that BHs anchoring scalar fields may give rise to galactic-like

structure on lengthscales of a few hundred Schwarzschild radii.

The radii of the circular orbits that correspond to the resonant frequencies are obtained by

substituting the expressions for the angular frequency Ω(r) and the epicyclic frequency κ(r)

in the equations defining the resonances and solving for the radial coordinate. By doing this,

one can immediately see that the smallest of the three resonant radii is the one that corresponds

to the inner Lindblad frequency. In order to guarantee that Newtonian mechanics can be used

to study the inner Lindblad resonant orbit, its radius should be considerably bigger than the

gravitational radius of the SMBH; to be precise, let’s consider that it is an order of magnitude

bigger, i.e. RL− & 20M . This scale can be controlled by the mass coupling α = Mµ given

3Recall that, using non-scaled variables, the circular orbit of a Keplerian potential−M/r with angular momen-
tum L has a radius given by R = L2/M .

4The complete understanding of this problem is out of the scope of our work. More details can be found in
Refs. [133, 134].
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that the scalar field rotates with angular frequency ωR ∼ α; taking this into account, the inner

Lindblad radius is given by
RL−

M
≈
(

1

4(Mµ)2

)1/3

, (3.37)

from which one can estimate the maximum value of Mµ such that a Newtonian analysis is

justified, which in the case RL− & 20M , corresponds to α . 0.006. Once the inner Lindblad

radius is sufficiently far from the central BH such that Newtonian mechanics is valid, then the

other two resonances (corotation and outer Lindblad resonance) are automatically ensured to be

within the same regime. The corotation and outer Lindblad radii are, respectively,

RC

M
≈
(

1

(Mµ)2

)1/3

,
RL+

M
≈
(

9

4(Mµ)2

)1/3

, (3.38)

i.e., RL− < RC < RL+.

The analytical solutions we shall be presenting for the quasi circular resonant orbits follow

from the same assumptions made for the general quasi-circular orbits, i.e., the perturbations

r1 and φ1 will be considered small. To do this, we take the equations of motion for the per-

turbations and analyze them separately for each of the three resonant frequencies mentioned

previously.

Lindblad Resonances

To study the behavior of the system at the Lindblad resonances, we have to go back to

equations (3.19) and (3.20) and make the explicit substitution

R0 → RL± Ω0 → ωR ±
1

2
κL±, (3.39)

which under the same reasoning applied before will allow us to write

r̈1 + κ2
L±r1 + C(RL±) + B̃(RL±) cos(κL±t) = 0, (3.40)

with

B̃(RL±) =
∂Q3

∂r
± 4Ω0Q3

RL±κL±
. (3.41)

The differences between the equations for the inner and the outer Lindblad orbits are the numer-

ical value of the epicyclic frequency, the sign in the equation of motion for φ1 (see Eq. (3.45))
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and the functions B(r), C(r). The previous equation has a direct analytic solution given by

r1(t) = − 1

κ2
L±

[
2C(RL±)+(B̃(RL±)−2κ2

L±Γ1) cos(κL±t)+κ
2
L±(B̃(RL±)t−2κL±Γ2) sin(κL±t)

]
,

(3.42)

where Γ1 and Γ2 depend on the initial conditions as

Γ1 =
1

2κ2
L±

[
r1iκ

2
L± + 2C(RL±) + B̃(RL±)

]
(3.43)

Γ2 =
1

2κ2
L±
ṙ1i. (3.44)

Using this expression for the evolution of r1 in

φ̇1 +
2(ωR ± 1

2
κL±)

RL±
r1 ±

2Q3(RL±)

κL±R2
L±

cos(κL±t) = 0, (3.45)

one can derive the expression for φ1.

The solutions for r1 and φ1 at Lindblad resonances show a different behavior from the general

case (3.22) and (3.23), with the radial perturbation growing significantly even when the orbiting

body is initially placed in a circular orbit, i.e., when r1i = ṙ1i = 0. Note that we chose initial

conditions to correspond to a circular orbit in the absence of a scalar cloud. Because of the

term proportional to the time parameter in Eq. (3.42), the radial perturbation increases at each

period of oscillation – see Fig. 3.4. This behavior results from the fact that up to first order, the

perturbation r1 is described by the equation of motion for a harmonic oscillator (with natural

frequency given by κL±) being excited by a harmonic force with the same frequency. This is

a classical example of resonance. While the first order approximation holds, the value of the

radial perturbation increases as seen in Fig. 3.5. Once this approximation stops being valid,

which eventually happens if enough time passes, the higher order components of the equations

of motion describing r1 and φ1 become important and the evolution of the radial perturbation is

no longer described by Eq. (3.42); the higher order terms force r1 to decrease, as can be seen

in Fig. 3.5, ending up describing a beating pattern. The time that it takes for a complete beat,

both at inner and outer Lindblad resonances, depends on the mass coupling parameter and on

the amplitude a0 of Eq. (3.33); we numerically compute this dependence, finding a good fit to

be

τbeat ∼
1

a1.3
0

21.5M

(Mµ)
91
25

, (3.46)
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Figure 3.4: Representing the orbit of a particle at the outer Lindblad resonance. We used
Mµ = 0.015 and we artificially enhanced the scalar field amplitude (again, we artificially
increased the amplitude to Ã0 = 350A0, where A0 is the standard amplitude of the scalar field
given by A0 = 0.05(Mµ)2) to allow for an easier representation of the main characteristics.
The behavior presented is described by a first order approximation (see Eq. (3.42)) where an
increase in the radius of the orbit can be seen.
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Figure 3.5: Representing r1(t) = r(t) − RL+. Notice that this calculation was made using the
initial conditions ṙ1i = r1i = 0, meaning that the particle was initiated in the circular orbit
with radius given by the outer Lindblad radius. The amplitude of the scalar field is artificially
enhanced (we use an amplitude Ã0 = 350A0 where A0 is the standard amplitude of the scalar
field given by A0 = 0.05(Mµ)2) in order for the beatting pattern to be more easily observed.
The mass coupling parameter used is Mµ = 0.015 so that the outer Lindblad radius is RL+ ∼
21.5M . Top panel: The first order evolution of the perturbation r1 is represented, agreeing with
the analytical expression of Eq. (3.42) (see Fig. 3.4 for a depiction of the orbit). Bottom panel:
As the absolute value of the perturbation increases due to the first order resonant behavior,
higher orders of the equation of motion acquire importance preventing an indefinite grow of r1

by giving rise to a beat pattern.
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which means that the analytic solutions of Eq. (3.42) and (3.45) are accurate up to τbeat/2 in

which the maximum value of r1 is attained.

Corotation Resonance

Going back to the equation of motion (3.17) and (3.18), considering that the circular orbit

has a radius given by the corotation radius we see that the zeroth order term vanishes identically

and (see Eq. (3.16))

φ(t) = φi + φ1(t). (3.47)

Thus, what sets corotation apart from the general orbits and Lindblad orbits is the fact that

besides the initial condition of the radial perturbation, also the initial angle is important for the

motion, as can be seen in the corotation equations of motion

r̈1 +

(
∂2Ψ0

∂r2
− ω2

R

)
r1 − 2ωRRC φ̇1 + C(RC) +

∂Q3

∂r
[cos(2φi)− 2 sin(2φi)φ1] = 0 , (3.48)

φ̈1 +
2ωR
RC

ṙ1 −
2Q3

R2
C

[sin(2φi) + 2 cos(2φi)φ1] = 0, (3.49)

where the coefficients are computed at the corotation radius. To write these equations, we

considered that the angular perturbation φ1 is small enough to allow for the expansion of the

corresponding sinusoidal functions up to first order. Moreover, we observed that in order for

the analytical solution to be valid, the initial condition φ1i = φ1(t = 0) has to be of the same

order as φ1
5. After all these cautionary remarks, one can advance to the solution of the equation

of motion; the method used previously to obtain the expressions describing the motion of the

orbiting body is not adequate in this case. One has to employ a more evolved method, described

in Appendix B, which in general gives a solution of the form

r1(t) = C1 cos(ω1t) + C2 cos(ω2t), (3.50)

φ1(t) = C3 sin(ω1t) + C4 sin(ω2t), (3.51)

5The approach presented here focuses on motions around the point φi = 0, a stable Lagrangian point. For an
alternative approach to the study of the motion at corotation, see Section 3.3 of Ref. [131].
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or

r1(t) = C1 sin(ω1t) + C2 sin(ω2t), (3.52)

φ1(t) = C3 cos(ω1t) + C4 cos(ω2t), (3.53)

where ωi depends only on the parameters of the problem—both the scalar field and the mass

of the SMBH—and Ci depends on the parameters of the problem and the initial conditions.

Comparison with the numerical calculations (see Table 3.1) shows good agreement with the

analytical solutions for an arbitrary range of the time parameter. In general, one of the sinusoidal

functions in the solution for r1 and φ1 dominates over the other leading to the so called banana

orbits [138] which can be appreciated in Fig. 3.6. The width of the banana orbits, which

is related to the maximum value attained by the radial perturbation r1, is dependent on the

amplitude of the scalar field but also on the initial angle. The extent of the banana orbit, i.e., the

angular range it covers, depends only on the initial conditions of the problem, particularly on

the initial angle. Hence, no matter how thin it is, a banana orbit will always be found close to a

stable Lagrangian point (see Appendix A) as a result of an initial angle φ1i 6= 0. On the other

hand, the time it takes for an orbiting body to describe a complete banana orbit does not depend

on the initial angle, being determined by the mass coupling parameter as

τbanana ∼
15M

(Mµ)3
, (3.54)

meaning that banana orbits take less time to appear for higher mass couplings6.

If the initial angle is precisely at φ1i = π/2 then the resulting orbit is not a banana orbit.

This particular initial angle corresponds to an unstable Lagrangian point (see Appendix B) and

a particle that starts there will cover the whole angular range. For initial angles bigger than

π/2, the banana orbits are recovered, but in this case they will be centered around the stable

Lagrangian point φi = π.

As this discussion illustrates, one sees that the position of the Lagrangian points determines

the shape of corotation orbits. Most notably, the proximity to a given Lagrangian point deter-

mines the way the orbiting body reacts to a perturbation: a particle at an unstable Lagrangian

6This timescale is much smaller than the instability time scale of the scalar field we are considering, which is
given by τ/M ∼ (Mµ)−9 (see Section 2.1).
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Figure 3.6: Representing banana orbits. The mass coupling parameter used in the calculations
is Mµ = 0.01 so that the corotation radius is given by RC ∼ 21.5M . The orbits are depicted
in the co-rotating frame and because they are symmetric in y we show only one quadrant. We
used an artificially enhanced amplitude for the scalar field (we use Ã0 = 350A0) in order to
make possible a clearer representation of the orbits. We show two initial angles, φ1i = π/3 and
φ1i = π/4. The influence of the initial angle on the extent and on the width of the banana orbit
is apparent, and can be related to the approximate analytic solution presented in Table 3.1.
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Table 3.1: The general solution, described by Eqs. (3.50)-Eq. (3.53), for the specific cases
described in Figs. 3.6 and 3.7. To obtain these values we applied the method described in Ap-
pendix B. From these expressions we can see the immediate influence of the initial perturbations
φ1i and r1i on the amplitude of the solutions.

Initial conditions r1(t) φ1(t)
r1i = ṙ1i = φ̇1i = 0 r1 = φ1i[−0.004 sin(0.01t) + 0.2 sin(0.0002t)] φ1 = φ1i[−0.0004 cos(0.01t) + cos(0.0002t)]

φ1i = ṙ1i = φ̇1i = 0 r1 = r1i[−3 cos(0.01t) + 4 cos(0.0002t)] φ1 = r1i[0.3 sin(0.01t) + 17 sin(0.0002t)]

point will spend some time at that point, which depends on the mass coupling parameter as

τunstable ∼ τbanana ∼
15M

(Mµ)3
, (3.55)

and then it will rapidly move to the other unstable Lagrangian point. On the other hand, a

particle at a stable Lagrangian point stays there indefinitely or, in case of a perturbation, librates

around it - it is this libration that gives rise to banana orbits.

The libration around stable Lagrangian points may induce an accumulation of orbiting bodies

in the surrounding regions. In fact, perturbations to a body sitting exactly at a stable Lagrangian

point will force it to librate around it, as shown in Fig. 3.7, and find itself trapped. A similar ef-

fect was obtained in N-body calculations in a galactic setting [139] and constitutes a fingerprint

of a gravitational potential of the form given in Eq. (3.12)

3.2.3 Orbital torque

The fact that the perturbing gravitational potential imposed by the presence of the scalar

field has an angular component means that the angular momentum is not exactly conserved (cf.

Eq. (3.18)). The angular momentum of the orbiting body initialized in a circular orbit of radius

R0 is given by

L = (R0 + r1)2(Ω0 + φ̇1), (3.56)

and the the torque responsible for this is, up to first order, given by

dL

dt
=
dL1

dt
= 2R0Ω0ṙ1 +R2

0φ̈1. (3.57)
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Figure 3.7: Orbital motion due to a radial perturbation to a particle at the stable Lagrangian point
φi = 0. The amplitude of the scalar field is artificially enhanced (we use Ã0 = 350A0) so that
the features of the movement are clearer and the mass coupling parameter used is Mµ = 0.01.
The orbits are initiated at radial position r(0) = RC + r1i for different values of the radial
perturbation r1i as an illustration of the fact that nearly circular orbits in the vicinity of the
corotation orbit are described by a libration around stable Lagrangian points. The approximate
analytical solution describing the motion is presented in Table 3.1.
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To get an idea of the magnitude of this effect, we calculate the average value of this quantity

over a revolution around the central BH

〈
dL1

dt

〉
=

1

∆t

∫ ∆t

0

dL1

dt
dt, (3.58)

where ∆t is the interval over which we average. We obtain an expression for this quantity by

observing that the expression for φ̈1 is related with r1 (see Eq. (3.20) and (3.49)) such that we

can write
dL1

dt
= 2Q3 sin(2(Ω0 − ωR)t) (3.59)

for the general case,
dL1

dt
= 4Q3

(
sin(2φi) + cos(2φi)φ1

)
(3.60)

for the corotation case and
dL1

dt
= ±2Q3 sin(κL±t) (3.61)

for the inner and outer Lindblad case. The average values are

〈
dL1

dt

〉
= 0 (3.62)

for the general case,

〈
dL1

dt

〉
= ±(Ω0 − ωR)

π
Q3

(
1− cos

(
2πκL±
Ω0−ωR

)
κL±

)
(3.63)

for the inner (minus sign) and outer (plus sign) Lindblad resonances, where we used ∆t =

2π/(Ω0 − ωR), and

〈
dL1

dt

〉
=

2ωR
π
Q3

(
2 sin(2φi) + 2 cos(2φi)×[C3

ω1

(
1− cos(2πω1/ωR)

)
+
C4

ω2

sin(2πω2/ωR)
])

(3.64)

for the corotation case, where we considered ∆t = 2π/ωR.

The change in the angular momentum of a particle over a complete orbit around the BH

is considerable only when the particle is orbiting at a resonant orbit. Particularly, since the

function Q3 is overall negative, we see that at the inner Lindblad resonance there is an increase
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in the angular momentum while at the outer Lindblad resonance there is a decrease. At the

corotation resonance the angular momentum transfer depends structurally on the initial angle

φi: explicitly, as argument of sinusoidal functions, and implicitly, affecting the values of the

constants C3 and C4 (cf. Appendix B). The latter fact can be seen by calculating the change in

the angular momentum of a particle in a stable Lagrangian point φi = 0 or φi = π.

In any case, in the mass coupling limit we are considering the angular momentum changes

only slightly. Be that as it may, the transfer of angular momentum from the scalar cloud can

play an important role on the dynamical evolution of the EMRI in more extreme regimes.

3.3 Discussion

While the existence of light, weakly-coupled scalar fields as part of the description of the

physical universe may still be a question to be solved, their potential to produce unique effects

in the vicinity of SMBHs is a settled issue. Although the analysis we present doesn’t take

into account the backreaction of the scalar field to the presence of the orbiting particle or the

regions closer to the BH’s event horizon, the appearance of resonances in the orbital history

of EMRIs is an inescapable feature if a real scalar field exists around the central BH. Our

calculations identified the three most important ones – the two Lindblad and the corrotating

one. The appearance of these resonances is a direct consequence of the “Newtonian pressure”

that survives in the low-energy limit of real scalar field structures. In spite of the appealing

phenomenology associated with them, particularly the similarity with the effects giving rise to

angular momentum transfer occuring in accretion disks, one would need a very massive cloud

to have spectacular orbital effects. Our results show that with conservative assumptions, the

effects are small. In any case, the orbital resonances are not the only effect that we observe. The

presence of the scalar cloud, no matter its mass, will introduce an “invisible” mass distribution,

with a toroidal-like shape, surrounding the BH. Its presence changes the structure of the orbital

distribution around the BH. The transition between the regions influenced by the presence of

the cloud (i.e. orbits with a radius bigger or equal to the peak of the cloud) to regions where

its presence isn’t felt (orbits with radius smaller than the peak of the cloud) will also have an

impact on EMRIs’ orbital evolution. While the detection of the orbital resonances is a distinct

sign of the presence of a real scalar field cloud surrounding the central BH, the effects of the

toroidal energy density of the scalar field is a common feature of both real and complex scalar

51



fields. In the next chapter, we will pay attention to the effects of the latter.
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Chapter 4

A scalar field cloud in the center of the

galaxy

The center of the Milky Way contains a very massive object (with mass of the order 106M�)

and all the studies conducted so far point to the possibility that such object is a BH [140].

Reaching this conclusion was mainly a result of an observational effort of a set of stars that

populates that region of the galaxy – the S-stars – that culminated in the measurement of the

gravitational redshift of one of those stars [141] – the S2 star.

The continuous tracking of the movement of the S2 star will provide information on the

evolution of its orbit. Although the orbit is dominated by the presence of the SMBH, other

structures that may exist in that region will perturb it and will leave an imprint on its evolution.

In this chapter, we propose a scenario in which the central object of the galaxy is a SMBH that

harbours a complex scalar field cloud; this structure, because it extends far away from the BH

will be able to perturb the orbit of S2. The effects that we derive from this scenario can then be

confronted with future data. The results presented in this chapter are based on Ref. [142].

4.1 Describing the effect of the scalar field

We will consider the scenario (already presented in Chapter 2) in which the scalar field

cloud that develops around the SMBH in the center of the galaxy corresponds to a toroidal

density distribution given by the scalar field function of Eq. (2.30) (notice that the variables are
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normalized by the BH’s mass – Eq. (2.27))

Ψ = A0e−i(ωRt−φ)rα2e−
rα2

2 sin θ. (4.1)

To describe the gravitational potential that results from the presence of the scalar field cloud

in a region far from the SMBH we solve the Poisson’s equation

∇2Usca = −4π(Mµ)2|Ψ|2. (4.2)

Putting in the expression of Eq. (4.1) for the functional form of the scalar field function, one

obtains

∇2Usca = −4π

[
MSC

M

](
α10

64π
e−α

2rr2 sin2 θ

)
(4.3)

where we used

α = Mµ. (4.4)

To solve this equation we use the harmonic decomposition technique and we obtain an expres-

sion for the gravitational potential that can be written as (see Appendix A)

Usca = Λ
[
P1(r) + P2(r) cos2 θ

]
, (4.5)

with Λ = MSC/M and

P1(r) =
16α4r2 + 48

16α4r3
+

e−α
2r

16α4r3

[
α10
(
−r5

)
− 6α8r4 − 20α6r3 − 40α4r2 − 48α2r − 48

]
,

(4.6)

P2(r) = − 9

α4r3
+

e−α
2r

16α4r3

[
α10r5 + 6α8r4 + 24α6r3 + 72α4r2 + 144α2r + 144

]
. (4.7)

The equations of motion of the stars

Given that the BH has a much bigger mass than the S2-star, we will be focusing exclusively

on the motion of the latter. The equations of motion governing the behavior of a faraway star

around the BH surrounded by a scalar cloud are

d2r

dt2
= − r

r3
+ Λ∇

[
P1(r) + P2(r) cos2 θ

]
(4.8)
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where r = xêx+yêy +zêz is the normalized point-mass position vector with respect to the BH.

To advance with this exercise, we will assume that the presence of the field is subdominant

in such a way that in the Newtonian regime (far away from the BH) the gravitational potential

due to the scalar cloud can be considered as a perturbation to the Keplerian potential generated

by the central BH. So, the presence of the scalar field will be treated as a perturbation of a

Keplerian orbit.

4.2 Perturbing the orbit of S2

To obtain the effect of the presence of the scalar field on the orbit of the S2 star, we will have

to use the Gauss equations (see Appendix D). In doing these calculations, we are assuming that

the movement of the S2 star can be described by a perturbed Keplerian orbit. Being aware of

the multitude of sources of perturbation, we assume also that all of them are additive and the

effect of each one of them can be estimated independently.

4.2.1 Perturbing force due to the scalar cloud

The perturbing force that results from the presence of the scalar cloud is given by

F pert = Λ∇
[
P1(r) + P2(r) cos2 θ

]
(4.9)

and can be decomposed as (see Appendix D)

FR/Λ = sin2(i) sin2(f + ω)P ′2(r) + P ′1(r) (4.10)

FT/Λ = −sin2(i)(e cos(f) + 1) sin(2(f + ω))P2(r)

a (e2 − 1)
(4.11)

FN/Λ = −sin(2i)(e cos(f) + 1) sin(f + ω)P2(r)

a (e2 − 1)
(4.12)

where the prime ′ stands for derivative with respect to the radial coordinate and FR, FT , FN are

the radial, transversal and normal (to the orbit) components of the perturbing force, respectively.
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4.2.2 Collecting the orbital values of the S2 star

The framework we set up until now is developed in a reference frame which is centered

in the BH and whose z-axis is aligned with the BH’s spin direction. This means that we’ll

need the orbital parameters of the S2-star with respect to that reference frame. One can obtain

them from the measured, Earth-based reference frame values in Ref. [141] by applying a set of

rotations that relate the two frames (following the approach originally presented in Ref. [143]

and reproduced in Appendix C). However, given the uncertainty in the orientation of the BH’s

spin, the aforementioned conversion is not well defined. Facing this problem, we decided to, in

a first run of our calculations, use the orientation proposed by Ref. [143].

The orbital elements for the orbit of the S2 star in the re-scaled units of Eq. (2.27) read (see

Ref. [141])

a0 = 2.5× 104, e0 = 0.88473, i0 = 133.817o

ω0 = 66.12o, Ω0 = 227.82o (4.13)

which correspond, in the BH-centered reference frame defined in Ref. [143], to

a0 = 2.5× 104, e0 = 0.88473, i0 = 90.98o

ω0 = 81.60o, Ω0 = 254.191o (4.14)

4.3 Calculating the variation of the orbital parameters

In this section, we are going to calculate the mean variation of the orbital parameters over

a complete orbit. These variations will be related to the mass coupling parameter α = Mµ

because the distribution of the scalar field density depends on that parameter. This is crucial

given that one expects that the effects on the orbit of the star will depend on the position of the

scalar-field cloud with respect to it.

4.3.1 Calculating the orbital parameter variations

Using Eqs. (D.9) to (D.14), one can calculate the average variation of the orbital parameters

of S2 over one period. This calculation will uncover the magnitude of the effect and relate it to
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the parameters of the problem. We calculate it using the standard integral

〈∆κ〉 =

∫ f0+2π

f0

dκ

dt

dt

df ′
df ′. (4.15)

where κ ∈ {a, e, i,Ω, ω,M0}1 and dt/df ′ is obtained by inverting an embodiment of the Kepler

equation
df

dt
=

√
1

a3

(
(1 + e cos f)2

(1− e2)3/2

)
. (4.16)

Notice that the calculation of 〈∆κ〉 assumes that the variations in the orbital parameters are

sufficiently slow for it to be justified to consider that the background values (i.e. the inital

values of the orbital parameters) are a good approximation of the orbit along a whole period.

Another important aspect is that the value of 〈∆κ〉 does not depend on the value of f0. We

calculate the integrand for each of the orbital parameters in the Appendix D.

1These are the orbital parameters that characterize an elliptical orbit (see appendix D).
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4.3.2 Using a fixed direction of the BH spin

From Appendix D, one can see that the derivatives of the functions P1(r) and P2(r) (the

ones from Eqs. (4.6) and (4.7), respectively) only influence the radial force and that the func-

tion P1(r) does not participate in the calculations; we use those expressions in the integral of

Eq. (4.15) and we are able to calculate the average value of variation of the orbital parameters

as a function of the mass coupling parameter α. We present those results in Fig. 4.1 considering

that the unperturbed orbit is described by the orbital parameters of Eq. (4.14). Notice that all

plots show the values of the variation of the orbital parameters normalized by the parameter Λ;

one verifies that:

1. The average variation of the semi-major axis 〈∆a〉/Λ is negligible;

2. For values α . 0.001 the effect of the scalar field cloud on the variation of all the or-

bital parameters is very small and only for bigger values one observes typical order of

magnitude variations;

3. There’s a maximum value of 〈∆i〉/Λ, 〈∆e〉/Λ and 〈∆Ω〉/Λ and a minimum of 〈∆ω〉/Λ.

The maximum of the first three elements occurs for the same value of α - α ∼ 0.012 -

while the minimum of 〈∆ω〉/Λ occurs for α ∼ 0.022.

4. The variations 〈∆i〉/Λ and 〈∆e〉/Λ may present a positive or negative variation depend-

ing on the mass of the scalar field. Their dependence on α is the same and for the value

of α0 ∼ 0.022 it is observed that 〈∆i〉 = 〈∆e〉 = 0 (notice that for the same value of α,

〈∆ω〉/Λ attains its minimum value) . For mass coupling parameters α > α0, the variation

of these elements is negative.

5. The angular parameters present variations with different orders of magnitude. The small-

est is the variation of the inclination, then the longitude of the ascending node, the argu-

ment of the periapsis and the largest corresponds to the variation of the mean anomaly at

epochM0.

6. For all the elements κ for which 〈∆κ〉 6= 0, all butM0 tend to zero as the value of the

coupling α increases. This connects with the point number (ii) and has to do with the

dependence of the peak of the scalar-field cloud on the value of α. For values α . 0.001

there isn’t a variation of the parameters because the whole cloud is farther from the BH
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than any part of the orbital trajectory of the star. As the value of α increases, the distance

that separates the peak of the cloud from the central BH decreases and one observes

variations in the orbital parameters up until the moment when the variations tend to zero

again, in this case because for larger values of α the cloud is completely contained inside

the orbit of the star. When this happens, the presence of the cloud won’t change any of

the geometrical parameters that characterize the orbit, but it produces a perturbing radial

force that, on top of the main gravitational pull of the BH, will influence the dynamical

variables of the orbit, particularly it will affect its mean motion. This effect on the mean

motion will be translated in a constant variation of the mean anomaly at epoch for all

values of α that correspond to cases in which the scalar cloud is completely inside the

orbit.

In order to compare the scalar field cloud results with other predictions, we have to make an

assumption on the value of the parameter Λ; we will make the very conservative assumption

of Λ = 0.001, i.e., the mass of the scalar field cloud is 0.1% of the mass of the central BH in

agreement with the ∼ 1% upper limits of Ref. [141, 144]. Having established this, we will turn

to the plots to obtain the following orders of magnitude

〈∆a〉 ∼ 10−10

〈∆e〉 ∼ ±10−5

〈∆i〉 ∼ ±0.001′

〈∆Ω〉 ∼ 0.01′

〈∆ω〉 ∼ −1′

〈∆M0〉 ∼ 20′

. (4.17)

4.3.3 Using other directions of the BH spin

Given the uncertainty in the orientation of the BH spin we can argue that the the orbital

elements with respect to the BH-centered frame of reference, Eq. (4.14), cannot be considered

with certainty either. This means that one should explore the range of values that one can assign

to them. We point out that the calculation of 〈∆κ〉 does not depend on the orbital parameter Ω0.

So, we will focus only on i0 and ω0.
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One can conclude, from observing the plots with the varying values of the inclination angle i

and the argument of the periapsis ω, that the results are much more sensitive to the former than

to the latter. There are, however, two points in common between the two cases: the variation of

the semi-major axis remains negligible, such that one can say that 〈a〉 ≈ 0, and the variation of

the mean anomaly at epoch is, to all purposes, unaffected by the different values of i and ω.

In Fig. 4.2, for different values of the initial inclination i0 ∈]0, π[, we observe a significant

change in the profile of the relations ∆κ vs. α:

1. The variation of the eccentricity remains, similarly to the case of Fig. 4.1, negligible.

2. The variation of inclination and longitude of the ascending node are significantly affected

by the inclination of the orbit. One can see that the profile of dependence of these two

quantities on α changes both in order of magnitude and in sign. For instance, 〈∆ω〉/Λ

is, independently of the value of α, always positive if i0 = 144◦ and always negative if

i0 = 36◦;

3. We verify that for some values of the parameters α and value of i0, the variation of ω is

positive, which is not verified in Fig. 4.1. Besides this new feature, the order of magnitude

of the effect does not change with respect to reference case.

A consequence of the uncertainty in the orbital parameter i0 is the widening of the range of val-

ues for the variation of the orbital parameters due to the present of the scalar cloud. Assuming,

again, that Λ = 0.001, the orders of magnitude for the variation of each of the orbital parameters

can reach up to 

〈∆a〉 ∼ 10−10

〈∆e〉 ∼ ±10−5

〈∆i〉 ∼ ±0.1′

〈∆Ω〉 ∼ ±1′

〈∆ω〉 ∼ ±1′

〈∆M0〉 ∼ 10′

(4.18)

depending on the value of the initial nclination i0.

From Fig. 4.3, we observe a much weaker influence of such variation in the shape and order

of magnitude of the profiles ∆κ vs. α:
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1. One verifies that for some values of ω0, the order of magnitude of the variation of the

eccentricity can be bigger than that of Fig. 4.1. However, and given that Λ is expected to

be small, one can conclude that no matter the actual value of ω0, the contribution of the

scalar cloud to the variation of the eccentricity will always be negligible;

2. The influence of the value of ω0 to the variation 〈∆i〉 is significant because it can make it

null;

3. With respect to the variations 〈∆Ω〉 and 〈∆ω〉, one observes that different values of ω0

have no significant influence on them, except for slight supressions on the magnitude of

these variations with respect to Fig. 4.1.

Different values of ω0 do not introduce much change in the orders of magnitude of the potential

effects of the scalar-field cloud on the orbital parameters of the orbit. In fact, an inspection of

Fig. 4.3 is translated in 

〈∆a〉 ∼ 10−10

〈∆e〉 ∼ ±10−4

〈∆i〉 ∼ ±0.01′

〈∆Ω〉 ∼ 0.01′

〈∆ω〉 ∼ −1′

〈∆M0〉 ∼ 10′.

(4.19)

which is very similar to the reference case of Fig. 4.1.
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4.3.4 The effective range of the mass coupling parameter

From the analysis of the results in Figs. 4.1,4.2 and 4.3, one can see that the values of the

factor α that give rise to large variations of the orbital parameters are, approximately, in the

range

0.001 . α . 0.05, (4.20)

which corresponds to (see Eq. (2.33))

1.2× 104 . Rpeak . 3× 106. (4.21)

This range of α is comparable with the orbital range of S2 (3×103 . r . 5×104) which means

that, as expected, the dynamics of S2 is mostly altered when the orbit intersects the scalar field

high density regions.

Moreover, this range of the mass coupling parameter can be translated in a scalar field mass

parameter2

10−20 eV/c2 < ms < 10−18 eV/c2. (4.22)

4.4 Discussion

Given the exquisite agreement between the gravitational redshift predicted by GR and the one

that was measured by Ref. [141], it is expected that the GR contributions will be the dominant

effect determining the variation of the orbital elements of the stars in the center of the galaxy.

However, with increasing capacity by the observational facilities, one can use the deviations

from the GR-predicted values as a way of studying the central region of the galaxy.

The largest relativistic orbital effect is due to the static component of the first Post-Newtonian

correction, which produces the advance of the periastron, given by, e.g., [146–148]

〈∆ω〉 =
6π

a(1− e2)
∼ 11.3′. (4.23)

Compared with this, the contribution of the scalar-field cloud to 〈∆ω〉, in our very conservative

assumptions, may be large enough to be detected. However, the vast amount of other reasonable

effects that will influence this value, can eclipse this contribution.

2For comparison, remember that the mass of the electron is approximately 0.5 MeV/c2 and the upper bound
on the photon’s mass is 10−18 eV/c2 ([145]).
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In fact, as stressed by Ref. [146], second Post-Newtonian order effects, tidal distortions of

the stars near the periastron or an extended distribution of mass inside the orbit of the star are

expected to influence the amount of variation of the periastron longitude. Among them, the one

that may compete more directly with the influence of the scalar cloud is an extended distribution

of mass inside the orbit of the star.

Following the treatment of Refs. [147, 149, 150], one can calculate the average variation

of the orbital parameters of the S2 star as a result of the presence of an extended, power-law,

mass distribution of stars (characterized by a exponent γ) that generates a average potential (see

Appendix E). Considering two extreme cases – a ”light” and a ”heavy” case corresponding,

respectively, to two limits of the total mass of the extended mass distribution – for the light

case, γ = 1.5, we obtain 〈∆ω〉 ∼ −1.37′ and for the heavy case, γ = 2.1, we obtain 〈∆ω〉 ∼

−17.19′. These results indicate that the effect of the galactic potential can be competitive with

the first post-Newtonian correction with respect to the argument of the periastron. The other

orbital elements are not affected by this distribution of mass, which makes them suitable to use

as tests to constrain the parameters of the scalar cloud.

The distinguishing factor of the scalar-field cloud is its potentiality to affect the other orbital

parameters besides the position of the periastron. So, only a complete assessment of all the

orbital parameters of the S2-star can provide a satisfactory result with respect to the existence

of such structure. For the other orbital parameters, the influence of the scalar-field structure will

add, primarily, to the GR-predicted frame-dragging effects (see, e.g., Ref. [146]) which will

depend on the magnitude and direction of the spin of the SMBH. One can have an estimation

of these values by considering that the direction of the BH’s spin maximizes the respective

contributions, which are constrained from above by (see Ref. [151])

〈∆i〉 . 4πχ

na3(1− e2)3/2
∼ 0.1′χ (4.24)

〈∆Ω〉 . 4πχ

na3(1− e2)3/2

1

sin i
∼ 0.1′χ (4.25)

where χ ≡ (c/G)(S•/M
2) is the dimensionless angular momentum parameter of the SMBH.

We see that the variation of the inclination due to the scalar field cloud may be of the same order

of magnitude of the frame-dragging effects. Moreover, due to the uncertainty associated with

the direction of the BH’s spin and the dependence of the inclination parameter i0 in the BH’s

centered reference-frame, it is hard to fix a value for 〈∆Ω〉, however, for non-extreme cases
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of the parameter i0, the frame-dragging contribution may be of the same order of the scalar-

field one. Although naive, these estimates show that the presence of a scalar-field cloud in the

vicinity of the SMBH in the center of the galaxy may be detectable through the deviations of

the variations of the orbital parameters with respect to the GR-predicted values.

The other S-stars have semi-major axis values in the same order of magnitude as the S2-star.

This means that a scalar cloud that affects the latter will also affect the other S-stars. Summing

to this the fact that the other S-stars have different angular orbital parameters and the fact that,

according to Fig. 4.2, the value of the inclination of the orbit can produce a big change in the

order of magnitude of the variation of the orbital parameters, a careful study of all the S-stars

will be a robust test on the hypothesis of the scalar-field cloud. Indeed, since the orientation

of the orbits of the S-stars is so diverse, the effect of the cloud on each one of them would be

different and that difference could be, having a big enough number of measurements, traced

back to the nature of the scalar-field cloud.
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Chapter 5

Reaction of a scalar-field structure to an

orbiting particle

We consider the scenario in which a low-energy, stable, complex scalar field configuration of

the Einstein-Klein Gordon system is perturbed by a pointlike mass. This two-component system

will be evolved separately and the only interaction between the components is gravitational. The

time evolution of the low-energy scalar structure will be described by the Schrodinger-Poisson

(SP) system, which will contain the effect of the presence of the point-particle, whereas the

movement of the point-particle will be rendered from the gravitational potential of the scalar

field configuration by the laws of Newtonian mechanics. This chapter is based in the work of

Ref. [152].

5.1 Describing the setup

From Section 2.2, we saw that in the weak-field limit, a spherically-symmetric complex

scalar field function can be written as

Ψ = e−iµtψ(t, r). (5.1)

and its dynamics is governed by the SP system

i∂tψ = − 1
2µ
∇2ψ + µUψ

∇2U = −4πµ2 |ψ|2
. (5.2)
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Using the typical rescalling of variables,

t→ µt, r → µr, ψ → 1√
4π
ψ , (5.3)

the SP system is written as

i∂tψ =− 1

2
∇2ψ + Uψ,

∇2U =ψψ∗. (5.4)

It is known [51] that a transformation of the form

(t, r, U, ψ)→ (λ−2t̂, λ−1r̂, λ2Û , λ2ψ̂), (5.5)

leaves the SP system of equations unchanged. Using this property, one can normalize the sys-

tem by working only with the “hat-variables”, meaning that the order of magnitude of all the

quantities involved in this problem is hidden in the parameter λ. Notice that Ref. [54] fixes the

value of λ for which the behavior described by the SP sytem coincides with the behavior of the

Einstein-Klein-Gordon system (i.e. the scale of the low-energy limit)

λ2 < 10−3 . (5.6)

This is the limit of validity of all the statements that stem from the analysis of the SP system:

these calculations only cover scalar fields whose magnitude is compatible with the previous

limit. So, having established the limits of validity of our working system, we will, from now on

and unless otherwise stated, work in terms of the “hat-quantities” of Eq. (5.5).

5.1.1 Stationary solutions in the weak-field limit

To find the stationary, spherically symmetric, ground state solutions of the SP system, we

follow the same technique used with the EKG system: we consider a scalar field of the form

ψ = exp(−iγt)f(r), (5.7)
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i.e. γ is the difference between the total energy of the field and its rest energy (notice that ψ

corresponds to the slow-varying part of the scalar field, the total scalar field function being Ψ ∼

exp(−imst) exp(−iγt)f(r); thus, its energy isE = ms+γ)1 and since stationary configurations

are bound states of the system, one expects2 that γ < 0. By substituting the previous ansatz on

the SP system, one obtains

f ′′(r) +
2

r
f ′(r) + 2(γ − U(r))f(r) = 0 , (5.8)

U ′′(r) +
2

r
U ′(r) = f(r)f ∗(r) .

These equations are used to find the profiles f(r) of the stationary configurations of the scalar

field. To do it, one has to impose boundary conditions that come from two reasonable phys-

ical requirements: the profile has to be regular and finite. Regularity is enforced by demand-

ing that f ′(r) and U ′(r) are zero in the origin; finiteness is then guaranteed by insisting that

limr→∞ f(r) = 0. Moreover, one must demand that the resulting gravitational potential U(r),

when measured at infinity, describes, as it should, the effect of the total mass of the scalar field

configuration.

To calculate the total mass, we will use the fact that we’re working in the Newtonian limit

and use a volume integral

MSC =

∫
ρ(t, r)dV , (5.9)

where ρ = µ2ΨΨ∗ is the leading order term of the the weak-field limit of the 00 component

of the scalar field energy-momentum tensor. Writing the previous integral in terms of the hat-

quantities of Eq. (5.5), we obtain MSC = Mf/µ where

Mf =

∫
ρf (t, r)dV =

1

4π

∫
ψψ∗dV , (5.10)

which in the case of the stationary configuration, can be simplified to

Mf =
1

4π

∫ ∞
0

ψ∗ψdV =

∫ ∞
0

f(r)f ∗(r)r2dr . (5.11)

1In the low-energy limit this difference is very small. Moreover, since we are working with the “hat-quantities”
(see Eq. (5.5)), the value of γ that we present in the equations is related with that normalized system of coordinates;
to convert it back to Planck units, one has to multiply it by λ2, which will consistently make it small

2Using the non-scaled variables, one can see that see that γµ = ω
µ − 1, and because the bound state condition is

ω
µ < 1, a bound state must have γ

µ < 0.
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Having calculated the mass, one can write the boundary behavior for the gravitational poten-

tial in the hat-quantities as

lim
r→∞

U(r) = −Mf

r
. (5.12)

Imposing these conditions along with the value for the scalar field at the origin which, since we

are working with the normalized “hat quantities” can be f(0) = 1, one obtains, numerically,

a profile for f(r). To this profile corresponds a unique value of the quantities γ and U(r =

0). Since we are only interested in the 0-node, ground state solutions, we quote here only its

characteristic values,

γ = −0.6922, U(0) = −1.3418,

Mf = 2.0622, R99 = 4.8228 , (5.13)

where R99 is the radial position up to which 99% of the mass of the scalar configuration is

contained.

5.1.2 The point-like particle

We now want to understand how an orbiting mass Mp disturbs, dynamically, the previous

self-gravitating massive scalar structure. We model the orbiting mass as pointlike particle 3

and use its energy-momentum tensor in the Einstein-Klein-Gordon system (see section 6.5 of

Ref. [153])

T µνP =
1√
−g

Mp

∫
dxµP
dτ

dxνP
dτ

δ(4)(xα − xαP (τ))dτ , (5.14)

where xαP are the spacetime coordinates of the point-particle, τ is its proper-time and δ(4) is

the Dirac-delta. A low-energy analysis of the Einstein-Klein-Gordon system with the pointlike

mass included yields (see Appendix A)

i∂tψ = −1

2
∇2ψ + Uψ ,

∇2U = ψψ∗ + P (x,xP ) , (5.15)

with

P (x,xP ) =
4πMP

r2
δ(r − rP )δ(cos θ − cos θP )δ(φ− φP ) , (5.16)

3Due to the nonlinear nature of Einstein’s field equations, problems arise in the definition of point particles in
such context. However, we will always be working in the Newtonian limit where such idealization is acceptable.
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where rP , θP and φP correspond to the spherical coordinates indicating the position of the

point-like particle. Notice that since we are using the “hat quantities” of Eq. (5.5), the value of

the mass of the orbiting particle, Mp, when converted to Planck units, must also be multiplied

by µ. Using the spherical harmonics closure relation [154]

δ(cos θ − cos θP )δ(φ− φP ) =
∑
`m

Y ∗`m(θP , φP )Y`m(θ, φ) , (5.17)

Eq. (5.16) can be re-written as a sum of spherical harmonics

P (x,xP ) = pA(r,xP ) +
∑
`,m

p`,m(r,xP )Y`m(θ, φ) , (5.18)

where

pA(r,xP ) =
MP δ(r − rP )

r2
, (5.19)

p`,m(r,xP ) =
4πMP δ(r − rP )

r2
Y ∗`m(θP , φP ), (5.20)

This expansion motivates us to write the other quantities involved in the problem in a similar

way, i.e.

ψ(r, θ, φ) = ϕA(r) +
∑
`,m

ϕ`,m(r)Y`m(θ, φ), (5.21)

U(r, θ, φ) = VA(r) +
∑
`,m

V`,m(r)Y`m(θ, φ). (5.22)

5.1.3 The evolution equations

When the pointlike particle is put in orbit, both the scalar field and the gravitational poten-

tial will, in general, develop a multipolar strucuture which will translate in the development of

non-trivial profiles for the (`,m) components of the expansions of Eqs. (5.21) and (5.22). This

development will be coordinated by the SP system of equations, where we introduce the afore-

mentioned expressions for the scalar field and gravitational potential, which are then projected

in each (`,m) component. By doing that, we obtain two equations for each mode, one for ϕ`,m,

coming from the projection of the Schrodinger equation, and one for V`,m coming from the

projection of the Poisson equation. Particularly, in order to harvest the zeroth order component
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(which we indicate with “A”) we integrate both sides of it over the whole sphere and we obtain

∂tϕA = i
2
∇2
rϕA − i

∫
dΩ[Uψ]

∇2
rVA = pA +

∫
dΩ[ψψ∗]

, (5.23)

where dΩ = sin θdφdθ and∇2
r ≡ ∂2

∂r2
+ 2

r
∂
∂r

. To obtain the equations corresponding to a general

(`,m) mode we integrate each side of the equations multiplied by the corresponding spherical

harmonic function and we obtain∂tϕ`,m = i
2

(
∇2
r −

`(`+1)
r2

)
ϕ`,m − i

∫
dΩ[Uψ]Y ∗`,m(

∇2
r −

`(`+1)
r2

)
V`,m = p`,m +

∫
dΩ[ψψ∗]Y ∗`,m

. (5.24)

5.2 Running the simulation

In order to study the evolution of our two body system we evolve the SP-equations for each

(`,m) mode to account for the scalar field structure, along with the equations of motion of the

point particle, which are given by Newton’s laws of motion (see Appendix F for the numerical

details). This is accomplished with the following algorithm:

1. Given the initial conditions, calculate the gravitational potential of the “scalar field +

particle” system using a sparse matrix solver included in SciPy [155];

2. From t = 0 to t = ∆t, use the iterated Crank-Nicolson method [156] to advance the scalar

field and the Euler’s method [157] to advance the position and velocity of the particle;

3. Calculate the gravitational potential of the “scalar field + particle” system using a sparse

matrix solver;

4. From t = ∆t to t = 2∆t, use the iterated Crank-Nicolson method to advance the scalar

field and the two-step Adams-Bashforth [157] method to advance the position and veloc-

ity of the particle;

5. Repeat the former and the latter steps until t = 700.

74



~vi

yi

xi

Figure 5.1: Pictorial description of the different outcomes of throwing a pointlike particle at a
scalar, self-gravitating structure. We expect that the particle with initial conditions ri = (xi, yi),
vi = (−vi, 0), being thrown towards the center of the oscillaton, either scatters (schematically
represented in dashed black) or stays in a bounded orbit (in dashed blue).

5.2.1 The initial conditions

At t = 0, the scalar field is given by the ground-state, 0-node, stable configuration described

in Eq. (5.13). The point particle’s degrees of freedom are its initial position and velocity. We

performed several simulations to study the influence of varying these parameters on the evolu-

tion of the system. In each simulation, the initial condition for the field and the gravitational

potential are

ϕA(t = 0) = fE(r) , VA(t = 0) = UE(r) , (5.25)

ϕ`,m(t = 0) = 0 , V`,m(t = 0) = 0 ,

where fE and UE are given by the 0-node solutions of Eq. (5.8). The point particle will be

thrown at the scalar self-gravitating structure, a setup characterized by (see Fig. 5.1),

1. the impact parameter yi,

2. the mass MP of the particle being thrown,

3. the velocity vi with which the particle is thrown.

To write the initial conditions of this motion, we consider the plane that contains the position

and velocity vectors of the particle (for all purposes it can be the θ = π/2 plane). In this plane,

we put the center of coordinates in the center of the scalar field structure, we use (xi, yi) to
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indicate the initial position of the perturbing particle and (−vi, 0) to indicate its initial velocity.

Then, we can obtain the initial conditions in polar coordinates of the plane (see Fig. 5.1):

ri =
√
x2
i + y2

i , φi = arctan

(
yi
xi

)
, (5.26)

ṙi = −vi cosφi, φ̇i =
vi
ri

sinφi. (5.27)

We run 27 simulations, spanning the following set of initial conditions

xi = 8, yi ∈ {1.0, 3.0, 5.0}, (5.28)

vi ∈ {0.3, 0.5, 0.7}, Mp ∈ {0.1, 0.001, 10−5}. (5.29)

To make it easier to refer to each simulation, we assign a unique code to each of them. The first

character of the code refers to the mass of the particle – “L”, “M” or “S”, i.e., large, medium

or small – for, respectively, Mp = 0.1, 10−3 or 10−5; the remaining characters will indicate

explicitly the impact parameter yi and the initial velocity vi. As an example, the simulation that

has as initial conditions yi = 1.0, vi = 0.3,MP = 0.1 is called “simulation LY1V03”.

We also run 9 simulations in which we evolve the equations of motion of the particle and

the SP-system side-by-side without considering the effect of the particle on the scalar field. We

will call these the “control tests” and we will refer to them with a similar code indicating the

impact parameter and the initial velocity. So, the “control test” that has as initial conditions

yi = 1.0, vi = 0.3 is referred to by “control test Y1V03”.

5.2.2 The boundary conditions of the SP-system

Regarding the scalar field components, we demand regularity at the boundaries of all quan-

tities. At the origin, regularity is guaranteed by fixing ϕ′A(0) = ϕ`,m(0) = ϕ′`,m(0) = 0 and

U ′(0) = 0. To treat the boundary condition at infinity, we benefit from the careful analysis

made in Ref. [51]. The authors show that in order to treat spatial infinity in this system, one

must either put it far enough from the active zone or add a sponge to the simulation so that no

reflections at the infinity boundary occur. We choose the first option. All the runs of our code

were made with a spatial grid that extends up to r = 1000 (in the agreed units). We consider that

at the infinity boundary all components of the scalar field and of the potential are zero except

the spherical component of the potential, VA. In fact, as the mass of the scalar field structure has
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to be conserved in the grid, we impose that VA(r = 1000) = −Mf/1000, where Mf is given in

Eq. (5.13).

5.2.3 Time and space discretization of the system

We tested the code – with results that can be seen in Appendix F – and based on that we

decided to conduct all the simulations using a spatial grid of ∆r = 0.1 and time step of ∆t =

10−3.

5.3 Results

In the simulations of the “scalar field + particle” system, the evolution of both components

encodes information about the whole system. We will show details regarding the movement of

the particle and the struture of the scalar field configuration as a function of time. Particularly,

we will analyse how the backreactions of the field affect the movement of the particle and how

the non-spherical components of the field evolve.

5.3.1 General evolution of the field

We verified that in the simulations we ran, the description of all the quantities involved

– the scalar field, the gravitational potential, and the trajectory of the point-particle – were

dominated by the ` = 0 and ` = 1 terms of the expansions in Eqs. (5.21) and (5.22). Particularly,

we verify that for the cases with particle mass given by Mp = 10−3 and Mp = 10−5 the

terms ` ≥ 2 are completely negligible, whereas for the case with Mp = 0.1, we verify that

max[|ϕ2,m|/|ϕ1,m|] ∼ max[|V2,m|/|V1,m|] ∼ O(10−2), which is the upper bound for any other

ratio of the form max[|ϕ`+1,m|/|ϕ`,m|] or max[|V`+1,m|/|V`,m|], for ` > 1 in the Mp = 0.1 case.

The latter fact is translated in a slight change in the numerical values of some of the quantities

that are calculated in what follows. However, since our focus will be on orders of magnitude

and not in exact numerical values, we will, for the sake of simplicity and economy in the length

of the expressions, use throughout this section a truncated series to describe the meaningful
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quantities, i.e.,

ψ(r, θ, φ) = ϕA(r) +
1∑

m=−1

ϕ1,m(r)Y1m(θ, φ), (5.30)

U(r, θ, φ) = VA(r) +
1∑

m=−1

V1,m(r)Y1m(θ, φ). (5.31)

Notice that the term m = 0 isn’t considered in this expansion. This is due to the fact that the

orbital plane is taken to be θ = π/2 (see Section 5.2.1), and so the m = 0 components are

identically zero.

5.3.2 Effects on the orbiting particle

The set of initial conditions of the orbiting particle (see Section 5.2.1), gives rise to bounded

and unbounded orbits of the equilibrium scalar field structure. Technically, an unbounded orbit

has energy per unit mass,

ε =
1

2

(
ṙ2 + r2φ̇2

)
− UE(r) , (5.32)

larger than zero. In such case the expression

ṙ2 = 2ε− Ueff , (5.33)

is always non-negative, where Ueff is given by

Ueff =
L
r2
− 2UE(r) , (5.34)

for initial angular momentum per unit mass4 L. In our case, however, whenever we say that

an orbit is unbounded, we simply mean that the apoastron of the orbit wasn’t observed in

the grid during the whole simulation time. In this sense, we find that all simulations result

in bounded orbits except MY1V07, SY1V07, Y1V07, MY3V07, SY3V07, Y3V07, LY5V07,

MY5V07, SY5V07 and Y5V07. Notice that all the unbounded orbits correspond to initial ve-

locity vi = 0.7 and that for the cases yi = 1.0, 3.0 the control test is unbounded whereas the

corresponding simulation with MP = 0.1 is bounded. These cases show that the reaction of the

scalar field to the presence of the massive particle alters significantly its trajectory.

4This classification is valid for the equilibrium configuration, in which angular momentum is conserved.
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Friction force

The backreaction of the scalar configuration on the motion of the particle can be computed

through the calculation of the effective force that appears in the movement of the particle as it

travels through the scalar cloud. We call this a “friction force”. To calculate it, we employ two

different methods. The first method is to compare the acceleration vector in the orbital plane

of the simulations with backreactions (indicated by the subscript “sim”) with the respective

“control tests”5 (indicated by the subscript “control”), i.e.

F f = F sim − F control , (5.35)

with F control = Mpacontrol (same thing for “sim” component); the acceleration vector is written

as

a =

[
d2r

dt2
− r

(
dφ

dt

)2
]
r̂ +

[
r
d2φ

dt2
+ 2

dr

dt

dφ

dt

]
φ̂ . (5.36)

So, we will write (
F f

MP

≡
)
f f = asim − acontrol . (5.37)

The other method of quantifying this friction force is through the gravitational potential function

f f = −∇Usim(r, φ) +∇Ucontrol(r), (5.38)

where U represents the gravitational potential. The difference between the two should reflect

the extra force that appears as a finite mass effect. The gravitational potential in Eq. (5.31) can

be written as6

U = VA(r) + 2

√
3

8π
sin θ

(
R(r) cosφ+ I(r) sinφ

)
, (5.39)

5Remember the classification introduced in subsection 5.2.1
6We verify that the source terms of the Poisson equation for the ` = 1 components of the gravitational potential

– see Eq. (5.22) –, given by s1,±1 =
∫ ∫

(ψψ∗ + p1,±1Y1,±1)Y ∗
1,±1 sin θdθdφ where p1,±1 comes from the point-

particle contribution (see Eqs. (5.15) and (5.18)), satisfy the following identity (s1,−1 + s∗1,−1) = −(s1,1 + s∗1,1)
and (s1,−1 − s∗1,−1) = (s1,1 − s∗1,1), which means that Re[s1,1] = −Re[s1,−1] and Im[s1,1] = Im[s1,−1]. This
relation between the real and imaginary parts of the source terms allows us to write V1,−1 = R(r) + iI(r) and
V1,1 = −V ∗

1,−1.
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where R ≡ Re[V1,−1] and I ≡ Im[V1,−1]. In the plane of motion, which we consider to be

θ = π/2, we can write f f as

f f = −
[
∂VAsim

∂r
− ∂VAcontrol

∂r
+ 2

√
3

8π

(
∂R(r)

∂r
cosφ+

∂I(r)

∂r
sinφ

)]
r̂−

− 2

r

[√
3

8π

(
−R(r) sinφ+ I(r) cosφ

)]
φ̂. (5.40)

Using both methods to assess the friction force, we calculate the quantity

〈f f〉 =
1

tout − tin

∫ tout

tin

f f dt, (5.41)

where tin, tout are, respectively, the time in which the particle penetrated and left the scalar

field structure for the first time. In order to understand the influence of each of the parameters

on the movement of the particle, we run tests in groups of simulations where only one of the

parameters is changing:

1. same mass and initial velocity: MV1 = {LY1V07, LY3V07, LY5V07}, MV2 = {MY1V05,

MY3V05, MY5V05};

2. same mass and impact parameter: MI1 = {LY1V03, LY1V05, LY1V07}, MI2 = {MY1V03,

MY1V05, MY1V07};

3. same velocity and impact parameter: VI1 = {LY1V07, MY1V07, SY1V07}, VI2 =

{LY1V05, MY1V05, SY1V05}.

One can make three comments on the results of this exercise. The first comment is that the two

methods to calculate the friction force give, as expected, the same results. The second has to do

with the direction of the average force. We obtain that the average friction force has negative

components in both planar directions. The third, and final, comment is that the mass is the

factor that influences the most the magnitude of the friction force7. As can be seen in Fig. 5.2,

the variation of the initial velocity vi and the impact parameter yi does not affect significantly

the order of magnitude of the friction force, whereas one can see a systematic and clear variation

7This is not surprising in our context given that the range of variation of the value of the mass is much bigger
than the one of the other two parameters. We can say that we are conditioned by the size of the scalar field
structure. If the impact parameter and/or the velocity are too big or too small the simulations won’t work properly
either because the particle wouldn’t spend enough time close to the scalar field structure or because it would pass
too far from it in such a way that the interaction wouldn’t produce measurable effects.
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Figure 5.2: Representing −〈f rf 〉 (by • or ◦) and −〈fφf 〉 (by � or �) for different sets of sim-
ulations. In panel a), MV1, MV2, i.e. mass and velocity are kept constant; red, filled points
represent MP = 0.1, vi = 0.7 and blue, hollow points represent MP = 0.001, vi = 0.5. In
panel b) MI1, MI2 i.e. mass and impact parameter are kept constant; red, filled points repre-
sent MP = 0.1, yi = 1.0 and blue, hollow points represent MP = 0.001, yi = 1.0. In panel
c) VI1, VI2 i.e. velocity and impact parameter are kept constant; red, filled points represent
vi = 0.7, yi = 1.0 and blue, hollow points represent vi = 0.5, yi = 1.0
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of this value as one changes the value of the mass of the particle. Specifically, one verifies that

− 〈f rf 〉 ∼ αrMP , −
〈
fφf

〉
∼ αφMP , (5.42)

where αr depends on the initial velocity and the impact parameter, while αφ almost doesn’t de-

pend on those parameters, presenting a value of the order 10−1 in all instances. The dependence

of αr in the yi and vi parameters is asymmetrical: the variation of the initial velocity doesn’t

affect significantly its value – the order of magnitude does not change – whereas the bigger the

impact parameter the smaller is the order of magnitude of the coefficient. In fact, while for cases

in which yi = 1, 3 we verify αr ∼ O(1) for yi = 5 we observe αr ∼ O(10−1). This comes as

no surprise since the bigger the impact parameter the farther from the center of the scalar struc-

ture the particle will pass which means that the particle crosses regions where the scalar field

is more and more diluted, decreasing the value of the friction force. Moreover, since the value

we are calculating corresponds to a force per unit mass, which by the relations of Eq. (5.42)

is proportional to the mass of the incoming particle, we conclude that the total force F scales

as the square of the incoming particle Mp. This is not a new result (see, for instance, [158]),

but provides a connection between our study and the study of the drag force in self-interacting

media.

Loss of angular momentum

Another way to describe the effect of the interaction between the orbiting particle and the

scalar field is to study the angular momentum of the former. We don’t use the energy because

the energy depends on the gravitational potential which in our scenario is dynamical and so

it doesn’t provide a good measure to characterize the movement of the orbiting particle. The

angular momentum, however, is a good measure in the sense that it depends only on kinematic

variables. Having said that, we are going to study the quantity

∆L =
Lout − Lin

Lin
(5.43)

where Lout, Lin represent the angular momentum per unit mass of the orbiting particle when

it leaves and when it enters the scalar field structure, respectively. We show in Fig. 5.3, the

angular momentum per unit mass as a function of time. From the picture, we can see that, as

expected, the loss of angular momentum is mainly affected by the mass of the orbiting particle.
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Figure 5.3: Representing −∆L (see Eq. (5.43)) for different sets of simulations. In panel a),
MV1, MV2, i.e. mass and velocity are kept constant; red points represent MP = 0.1, vi = 0.7
and blue points represent MP = 0.001, vi = 0.5. In panel b) MI1, MI2 i.e. mass and impact
parameter are kept constant; red points represent MP = 0.1, yi = 1.0 and blue points represent
MP = 0.001, yi = 1.0. In panel c) VI1, VI2 i.e. velocity and impact parameter are kept
constant; red points represent vi = 0.7, yi = 1.0 and blue points represent vi = 0.5, yi = 1.0

Particularly, the following relation can be found

∆L = σMP (5.44)

with the proportionality factor, σ, varying slightly with the initial velocity and impact factor

being, however, always of order 10−1.

5.3.3 Changes in the density distribution of the field

The appearance of the friction force and the loss of angular momentum are related to the

dynamical reaction of the scalar field to the presence of the incoming particle. In this respect,

it is verified that the scalar field structure develops non-spherical over-densities that are time

dependent. In order to appreciate this behavior, we will isolate the different components of the

scalar field density. Using Eqs. (5.30) and (5.31) we can write the quantity ρf = (4π)−1ψψ∗

(see Eq. (5.10)) as

ρf =
1

4π
(ρA + ρ1,−1Y1−1 + ρ1,1Y11) , (5.45)
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where

ρA = ϕAϕ
∗
A +

3 sin2 θ

8π

(
ϕ1,−1ϕ

∗
1,−1 + ϕ1,1ϕ

∗
1,1

)
, (5.46)

ρ1,−1 = ϕ1,−1ϕ
∗
A − ϕAϕ∗1,1 , (5.47)

ρ1,1 = ϕ1,1ϕ
∗
A − ϕAϕ∗1,−1. (5.48)

To simplify the expression for ρf , we observe that (see footnote 6)

Re[ρ1,−1] = −Re[ρ1,1], Im[ρ1,−1] = Im[ρ1,1], (5.49)

which allows us to write, without loss of generality,

ρ1,−1(t, r) = A(t, r) + iB(t, r) , ρ1,1(t, r) = −ρ∗1,−1(t, r) , (5.50)

and with that we can rewrite ρf as

ρf =
1

4π

(
ρA +

√
3

2π
[A(t, r) cosφ+B(t, r) sinφ]

)
, (5.51)

where we fixed the value θ = π/2 for the orbital plane.

Time dependence of the non-spherical density

The time dependence of the functions A(t, r) and B(t, r) (see Eq. (5.50)) is illustrated in

Fig. 5.4. In the figure, we see that the profile of the non-spherical components of the density

evolves with time, a behavior that, combined with the angular dependence conveyed by the sinu-

soidal functions (see Eq. (5.51)), will result in rotating and oscillating non-spherical component

of the density of the scalar field. A dramatic example of such behavior can be appreciated in

Fig. 5.5 in which it is displayed the value of the density function in the plane θ = π/2 for

the simulation LY5V07. In this particular simulation, the incoming particle is scattered by the

scalar field structure and moves past it. However, the short time in which the particle is close

to the center of the scalar field structure is enough to give rise to a rotating over-density, as can

be seen in the last contour plot presented in the respective figure. This example is simple to

represent, however, when the particle stays in a bounded orbit, the non-spherical over-densities

have a less organized behavior. In this case, there are two competing effects: on the one hand
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Figure 5.4: Representing the non-spherical components (A(t, r) = Re[ρ1,−1] and B(t, r) =
Im[ρ1,−1]) of the scalar field density obtained from simulation MY5V03 in two different in-
stants of time. In these two instants of time, we see that as the maximum value of the real
component decreases, the imaginary component one increases.

the scalar field structure is dictating the evolution of the non-spherical densities through the SP

system and on the other hand the movement of the bounded particle introduces an oscillating

“forcing term” on top of that.
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In order to illustrate this behavior we will consider the position of the center of mass of

the scalar field configuration, which, as shown below, is directly related to the functions A

and B (see Eq. (5.50)). The position of the center of mass of the scalar field configuration

rCM = (xCM , yCM , zCM) is given by

rCM =

∫
ρf (r)rd3r∫
ρf (r)d3r

, (5.52)

where ρf (r) is given by Eq. (5.51). Then, the denominator is written as

Mf =

∫
ρf (r)d3r =

1

4π

(
4π

∫
ϕ∗AϕAr

2dr+W1

[
−
∫
ϕ∗1,−1ϕ1,−1r

2dr −
∫
ϕ∗1,1ϕ1,1r

2dr

])
,

(5.53)

and since W1 =
∫∫

Y1−1Y1,1 sin θdθdφ = −1 we obtain that

Mf =

∫
ϕ∗AϕAr

2dr +
1

4π

(∫
ϕ∗1,−1ϕ1,−1r

2dr +

∫
ϕ∗1,1ϕ1,1r

2dr

)
. (5.54)

In all our simulations the movement is planar, so it suffices to calculate the (x, y) coordinates

of the center of mass (the origin of the coordinates is at the center of the initial configuration of

the scalar field). We obtain that

xCMMf =
1

3

√
3

2π

∫
r3A(t, r)dr, (5.55)

and

yCMMf =
1

3

√
3

2π

∫
r3B(t, r)dr. (5.56)

We verify that the center of mass of the scalar configuration oscillates around its initial

position – xCM = yCM = 0 – and the magnitude of the oscillation depends mainly on the mass

of the particle. As we can see in Figs. 5.6 and 5.7, bounded orbits will produce less organized

oscillations of the coordinates of the center of mass whereas unbounded orbits create a more

organized, regular pattern. Moreover, independently of the other parameters, one verifies that

O(xCM) ∼ 10−1 for MP ∼ 10−1, O(xCM) ∼ 10−2 for MP ∼ 10−3 and O(xCM) ∼ 10−4 for

MP ∼ 10−5; the same relations hold for yCM.

As became clear in the study of the friction force and the loss of angular momentum, the

mass of the particle is the most important factor determining the change in its dynamics. Taking

that into account, we will focus on the characteristics of the movement of the center of mass of

87



−10

0

10 xp LY3V07

xp MY3V05

0 100 200 300 400 500 600 700

−1

0

1

t

xCM LY3V07

50xCM MY3V05

Figure 5.6: Representing the evolution in time of the x-coordinate of the center of mass of
the scalar field structure (xCM) and of the orbiting particle (xP ) for simulations LY3V07 and
MY3V05. Both simulations represent bounded orbits and they differ only in the mass of the
orbiting particle. Notice that the bigger the mass of the particle, the bigger the value of xCM and
the more oscillations it presents.
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Figure 5.7: Representing the evolution in time of the x-coordinate of the center of mass of
the scalar field structure (xCM) and of the orbiting particle (xP ) for simulations LY5V07 and
MY5V07. Both simulations represent unbounded orbits and they differ only in the mass of the
orbiting particle. Similarly to the bounded orbit case, the bigger the mass of the particle, the
bigger the value of xCM and the more it oscillates, but in this case, the particle is unbounded.
The center-of-mass of the scalar field structure keeps moving even when the particle goes away.
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the scalar field configuration using the simulations SY5V07, MY5V07 and LY5V07. Using this

set of simulations is appropriate for two reasons: 1) all the orbits are unbounded, which allows

a clearer and simpler analysis of the dynamical aspects of the center of mass; 2) the simulations

differ from each other by the value of the mass of the incoming particle, which is exactly the

parameter that influences the most all the details of the dynamics of the system. We calculate

the radial and angular velocity of the center of mass by using the values of xCM and yCM that

we calculate directly from the simulation files (see Eqs. (5.55) and (5.56)). To do it, we use the

following expressions

rCM =
√
x2

CM + y2
CM , (5.57)

φCM = arctan

(
yCM

xCM

)
, (5.58)

ṙCM =
xCMẋCM + yCMẏCM

rCM

, (5.59)

φ̇CM =
ẏCMxCM − yCMẋCM

r2
CM

. (5.60)

in which ẋ ≡ dx/dt. We present the results of these calculations in Fig. 5.8 and from there

two things are evident: 1) the behavior of the simulations with the smaller values of the mass

of the particle are very similar, except for the frequency of oscillation and the magnitude; 2) the

magnitude of the velocity components scales with the mass of the incoming particle, and we

verify that

max[ṙCM] = max[(rφ̇)CM] ∝ 0.1MP . (5.61)

Magnitude of the non-spherical density

In Fig. 5.4 it is plotted the profile of the non-spherical components of the scalar field density,

namely A(t, r) and B(t, r) for two different moments in time. The magnitude of these non-

spherical components depends on the mass of the neighboring particle: the bigger the mass

MP , the bigger the magnitude of these components, as can be seen in Fig. 5.9. There, we

represent the maximum value of the magnitude of functions A and B (see Eq. (5.50)) in the

different sets of simulations MV1, MV2, MI1, MI2, VI1 and VI2. We see that, again, of the

three initial parameters of the incoming particle, the mass has the strongest influence on the

magnitude of the non-spherical components of the scalar field density. In fact, similarly to the

89



−4

−2

0

2

4

·10−2
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Figure 5.8: Representing the evolution in time of the radial and angular velocities of the center-
of-mass of the scalar field structures – Eqs. (5.55) and (5.56) – obtained for the simulations
LY5V07, MY5V07 and SY5V07. Dotted lines represent the simulation LY5V07, dashed lines
represent the values of the simulation MY5V07 multiplied by 102 and the filled lines represent
the CM velocities of simulation SY5V07 multiplied by 104. Notice the dependence of the
magnitude of the CM velocities on the mass of the incoming particle and the similarities of the
frequencies and shape of the evolution of simulations MY5V07 and SY5V07.

case of the friction force, one can write

max [A] ∼ βAMP , max [B] ∼ βBMP , (5.62)

i.e., the maximum magnitude of both A and B is directly proportional to the mass of the incom-

ing particle, with the proportionality factors βA,B presenting values between 3 and 5 without

any correlation with the initial velocity and impact parameter of the particle.

5.4 Discussion

We studied what happens to a stable, low-energy scalar field configuration when a particle-

like body passes in its neighborhood. The apparent strong connection between the mass of the

incoming particle and the effects it leaves on the scalar field structure, may become a good

lead in investigations about the history of the latter. In the scenarios in which DM is described

by such scalar field structures, the detection of rotating clumps of DM in galaxies may be

explained by a primordial encounter between the DM aggregate and a passing massive particle-

like body. Moreover, the results about the gravitational friction force felt by the orbiting particle
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Figure 5.9: Representing the maximum value in time and space of Re[ρ1,−1] (by • or ◦) and
Im[ρ1,−1] (by � or �) for different sets of simulations. In panel a) MV1,MV2, i.e. mass and
velocity are kept constant; red, filled points represent MP = 0.1, vi = 0.7 and blue, hollow
points represent MP = 0.001, vi = 0.5. In panel b) MI1, MI2 i.e. mass and impact parameter
are kept constant; red, filled points represent MP = 0.1, yi = 1.0 and blue, hollow points
represent MP = 0.001, yi = 1.0. In panel c) VI1, VI2 i.e. velocity and impact parameter are
kept constant; red, filled points represent vi = 0.7, yi = 1.0 and blue, hollow points represent
vi = 0.5, yi = 1.0.

91



provide a good description of the backreaction effects of a scalar field structure. Although one

needs sufficiently massive bodies to obtain a dominant effect of this force, improvements in the

data-gathering techniques and ever more precise instrumentation may allow for the detection of

deviations on the trajectories of astrophysical bodies due to this force.
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Chapter 6

Conclusion

The investigations that address the existence of astrophysically-relevant scalar-field struc-

tures are developed by anticipation. Following a path illuminated by reasonable considerations

(both theoretical and observational), they anticipate the signatures the existence of those struc-

tures may leave. As anything that is done by anticipation, several things can be said and done

that fit the available information or intuition about the problem under consideration. In the

worst case scenario, the exercise of anticipation can lead to a miriad of possibilities that are, all

of them, unattainable; in the best case scenario, the outcome of this project may lead at least to

one instance in which a good prediction is produced. Being the latter the situation we’re hoping

to obtain, we devoted this thesis to explore and calculate effects that the existence of scalar-field

structures may leave on the measurable chacteristics of celestial bodies. Here are the additions

we made to a vast (and growing) body of work:

• the development of a scalar cloud in the SMBH-part of a generic EMRI gives rise to

orbital resonances which can influence the inspiraling of the lighter-part of the binary

(Ref. [125]);

• the development of a scalar cloud in the SMBH in the center of the Milky Way gives rise

to peculiar variations of the orbital elements of the S2 star, one the stars that populates

that central region of the galaxy (Ref. [142]);

• low-energy boson stars can develop long-lived rotating clumps after a scattering event

with a point-like body; moreover, the point-like body, as it traverses the boson star, is

acted upon by a gravitational friction force that scales as the square of its mass (Ref. [152]).

93



The great interest in the development of instruments that can provide more data about the Uni-

verse can only serve as a source of optimism with respect to the search for its hidden compo-

nents. The recent succession of outstanding detections – gravitational wave detection by the

LIGO collaboration, the measurement of the gravitational redshift by GRAVITY, the first pic-

ture of a shadow of a BH by the Event Horizon Telescope – makes us feel as if we are on the

verge of uncovering something fundamental. It is with this spirit of expectation and enthusi-

asm that we look forward for a moment in which conclusive observational data can put our

astrophysical scenarios to the test.
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Appendix A

Newtonian utilities

In this appendix we start by analysing the case in which the spacetime metric is a small

deviation of the Minkowski metric and how to quantify that deviation. Then we write the

dominant components of the energy-momentum tensor of a scalar field in a weak-field regime

and we relate them to the underlying spacetime metric. Still in the weak-field regime, we

note that the Klein-Gordon equation can be effectively described by the Schroedinger equation

and we analyse the description of a point-particle as a source of the Poisson’s equation. We

finish this appendix with a discussion on the harmonic decomposition technique and a note on

Lagrangian points.

A.1 Linearized gravity

We’ll follow an analysis presented in many books (e.g. [159, 160]). Here, we’ll discuss an

approximation of General Relativity which is valid when gravity is everywhere weak, i.e., when

spacetime is approximately flat:

gαβ = ηαβ + hαβ, (A.1)

where ηαβ is the Minkowski metric, which will be the background, and hαβ is a perturbation

tensor that is small compared to the background, i.e., |hαβ| � 1. In what follows we only

retain the terms of the equations that are first order in the perturbation of the metric. Imposing

this decomposition of the metric tensor implies that part of the coordinate freedom of General

Relativity is lost, because not all the coordinate transformations preserve the decomposition of

Eq. (A.1). The subset of coordinate transformations that satisfy this condition are some Lorentz
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transformations and transformations of the form

xα → x′α = xα + χα(xβ), (A.2)

for vectors χα of the same order of the perturbation hαβ . Under this transformation of coordi-

nates, the metric perturbation transforms in such a way that resembles a gauge transformation

(see chapter 17 of [160]); we’ll skip those details.

A consequence of keeping only the terms up to first order in the metric perturbation is that

the indices of quantitites of such order are lowered and raised using the background metric, i.e.

hαβ = ηαµηβνhµν , h = ηαβhαβ. (A.3)

Moreover, considering the relation gανgνβ = δαβ , the inverse total metric, up to terms of first

order in the perturbation metric, is given by

gαβ = ηαβ − hαβ. (A.4)

The Christoffel symbols are, up to first order in the perturbation of the metric, given by

Γαβγ =
1

2

(
∂βh

α
γ + ∂γh

α
β − ∂αhβγ

)
, (A.5)

and the Riemann tensor reads1

Rαβµν =
1

2
(∂βµhαν − ∂βνhαµ − ∂αµhβν + ∂ανhβµ) , (A.6)

where ∂αβ = ∂α∂β . The Ricci tensor and scalar are

Rαβ = −1

2

(
�hαβ + ∂αβh− ∂αµhµβ − ∂βµh

µ
α

)
, (A.7)

R = −�h+ ∂µνh
µν , (A.8)

where � = ηαβ∂αβ . One can now write the Einstein tensor

Gαβ = −1

2

(
�hαβ + ∂αβh− ∂αµhµβ − ∂βµh

µ
α

)
+

1

2
ηαβ (�h− ∂µνhµν) . (A.9)

1The linearized Riemann tensor is gauge-invariant (see Eq. (A.2).
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Before analysing Einstein’s equations we will first decompose both the perturbation tensor

hαβ and the enery-momentum tensor Tαβ in their explicit scalar, vector and tensor components2.

This decomposition can be written as

h00 = 2U/c2, (A.10)

h0j = −4Uj/c
3 − ∂jA/c, (A.11)

hij = 2δjkV/c
2 +

(
∂jk −

1

3
δjk∇2

)
B + (∂jBk + ∂kBj) /c

2 + hTT
jk , (A.12)

with the elements of the decomposion satisfying the following conditions:

∂jU
j = 0, ∂jB

j = 0, ∂kh
jk
TT = 0 = δjkh

jk
TT. (A.13)

With this decomposition, the original ten degrees of freedom of the metric perturbation tensor

hαβ are made explicit:

• one component in the potential U ;

• two components in the vector potential Uj

• one component in the scalar A;

• one component in the scalar B;

• two components in the vector Bj;

• two components in the transverse, traceless tensor hTT
ij

The factors in the decomposition were added following Ref. [159] for later convenience.

It was first observed by Bardeen [163] that it is possible to combine the different components

of the metric into gauge-invariant variables (see Eq. (A.2)) – the so-called Bardeen variables –
2A symmetric 4×4 spacetime tensorAµν in a constant curvature background manifold can be decomposed into

scalar, vector and tensor independent parts. This is the statement of the scalar-vector-tensor decomposition. This
decomposition is related to the way each component transforms under the group of rotations of the background.
Given that A00 has no spatial indices, it is a scalar; A0i = Ai0 has one spatial index, so it is a vector; finally,
Aij = Aji is a spatial tensor. The decomposition is not complete since it is possible to decompose both the
vector A0i and the tensor Aij in scalar, vector and tensor components. This second part of the decomposition
is made by observing that the symmetry of the spatial part of the background manifold allows the expansion of
vectors and symmetric tensors in terms of solutions of the Helmholtz equation (see, for instance, [161–165]). This
is achieved by projecting each object in the basis elements of the space of solutions of the Helmholtz equation
[165, 166]. Consequently, an arbitrary vector is broken into a scalar and a transverse vector (a rendition of the
original Helmholtz theorem); an arbitrary symmetric tensor is decomposed into two scalars, one transverse vector
and a transverse traceless tensor [164, 166].
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given by

Φ̃ = U + ∂tA+
1

2
∂ttB (A.14)

Φ̃j = Uj +
1

4
∂tBj (A.15)

Ψ̃ = V − c2

6
∇2B (A.16)

where Φ̃ and Ψ̃ account for two degrees of freedom, Φ̃j , which is subjected to the condition

∂iΦ̃
i = 0, carries two degrees of freedom. Besides these three variables, the transverse-traceless

component hTT
ij is also gauge-invariant, and describes two degrees of freedom. This means that

of the ten original degrees of freedom of the perturbation tensor, only six are gauge-invariant,

i.e., the gravitational perturbation only has six physical degrees of freedom; the other four are

coordinate artifacts.

Having identified the meaningful quantities, one can now fix a convenient gauge in order to

perform actual calculations. We’ll focus on the Coulomb gauge which fixes

A = B = Bj = 0 (A.17)

so that the perturbation tensor components read

h00 = 2U/c2, h0j = −4Uj/c
3, hjk = 2δjkV/c

2 + hTT
jk (A.18)

along with the condition ∂jU j = 0. In this gauge, the corresponding Bardeen coordinates are

more clearly related to the potentials obtained in the decomposition of the metric tensor, i.e.,

Φ̃ = U, Φ̃j = Uj, Ψ̃ = V. (A.19)

Introducing the metric of Eq. (A.18) in the linearized Riemann tensor3 one obtains the compo-

nents of the Einstein’s tensor (pay attention to the use of the index t, it is related to the index 0

3The Riemann tensor is gauge-invariant.
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as x0 = ct)

G00 = − 2

c2
∇2V, (A.20)

G0j = − 2

c3
∂tjV +

2

c3
∇2Uj, (A.21)

Gjk = − 2

3c2
δjk∇2(U − V )− 2

c4
δjk∂ttV +

1

c2

(
∂jk −

1

3
δjk∇2

)
(U − V ),

+
2

c4
(∂tkUk + ∂tkUj)−

1

2
�hTT

jk , (A.22)

where � = ηαβ∂αβ; in this form, the Einstein tensor is decomposed in its various decoupled

pieces. Before turning to the Einstein’s equations one has to decompose the energy-momentum

tensor in the same way:

T 00 = c2ρ, (A.23)

T 0j = c(sj + ∂js), (A.24)

T jk = τδjk +

(
∂jk − 1

3
δjk∇2

)
σ + ∂jσk + ∂kσj + σjk, (A.25)

where, by virtue of the decomposion, the following conditions are verified

∂js
j = 0, ∂jσ

j = 0, ∂kσ
jk = 0 = δjkσ

jk. (A.26)

Similarly to the case of the metric tensor, out of the ten degrees of freedom of the energy-

momentum tensor, the physical information is contained only in six of them. They can be

identified by using the linearized energy-momentum conservation condition ∂βTαβ = 0 to the

energy-momentum tensor in the decomposed form, giving

∇2s = −∂tρ, ∇2σj = −∂tsj, ∇2σ = −3

2
(∂ts+ τ), (A.27)

which mean that only ρ, sj , τ and σjk are independent (making six degrees of freedom) and the

other components depend on these. Now, using Eqs. (A.20), (A.21) and (A.22) and Eqs. (A.23),

99



(A.24) and (A.25) in the Einstein’s equations, one obtains the following equations:

∇2V = −4πGρ, (A.28)

∇2(U − V ) = −12πG

c2
(∂ts+ τ), (A.29)

∇2Uj = −4πGsj, (A.30)

�hTT
jk = −16πG

c4
σjk. (A.31)

A.2 Energy-momentum tensor of a scalar field in the weak-

field regime

Here we will look at the two scalar field cases, the real and the complex one. The simplest

is the complex scalar field because its enery-momentum tensor doesn’t depend on time. As a

consequence, the only component of order c−2 will appear in T00. This is not the case for the

real scalar field, in which besides this component, the diagonal components Tij will also be of

order c−2.

Independently of the nature of the field – real or complex – its energy momentum tensor can

be organized as follows

T00 =
m2
sc

2

2~2
|Φ|2 +

1

2c2
(∂tΦ) (∂tΦ

∗) +O(1), (A.32)

T0j ∼ O(c−1), (A.33)

Tjk = δjk

(
−m

2
sc

2

2~2
|Φ|2 +

1

2c2
(∂tΦ) (∂tΦ

∗)

)
+O(1), (A.34)

where δjk is the Kronecker delta.

This low-energy analysis is appropriate for any scalar-field configuration in a almost-flat

spacetime, so we won’t distinguish between the BHs quasi-bound state case

Φ = A0g(r) sin θe−i(ωt−φ), complex case (A.35)

Φ = A0g(r) sin θ cos(ωt− φ), real case (A.36)

where

g(r) =

[
2α2r

`+ n+ 1

]
exp

(
− α2r

`+ n+ 1

)
, (A.37)
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(see Eqs. (2.23) and (2.24)) and the self-gravitation bound state case4

Φ = φ(r)e−iωt, complex case – boson star (A.38)

Φ = φ1(r) cos(ωt) real case – oscillaton. (A.39)

In fact, there’s something that is shared between all the cases under analysis, which is the fact

that their fundamental frequency, in this low-energy regime, is given by (notice we’re introduc-

ing the fundamental constants here)

ω ∼ msc
2

~
. (A.40)

The only difference will appear in the treatment between the real and the complex case. In

the complex case, we obtain that the energy-momentum tensor is given by

TC00 =
m2
sc

2

~2
(A0g(r) sin θ)2 +O(1), (A.41)

TC0j ∼ O(c−1), (A.42)

TCjk = O(1), (A.43)

whereas in the real case we obtain

TR00 =
m2
sc

2

2~2
(A0g(r) sin θ)2 +O(1), (A.44)

TR0j ∼ O(c−1), (A.45)

TRjk = −m
2
sc

2

2~2
(A0g(r) sin θ)2 cos (2(ωt− φ)) +O(1). (A.46)

Comparing these explicit calculations with the expansions in Eqs. (A.23), (A.24) and (A.25) and

matching, order by order, with the elements of Eqs. (A.20), (A.21) and (A.22), one concludes

4Notice that we are assuming that the oscillaton is described only with one element of the cosine expansion –
this is the correct assumption given that in this regime the first component is the absolute dominant (this approach
is considered in other works, for instance in Ref. [51]).
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that Eqs. (A.28) to (A.31), reduce to, in the Coulomb gauge,

∇2V = −4πG
m2
s

~2
[A0g(r) sin θ]2 , (A.47)

∇2U = ∇2V, (A.48)

∇2Uj = 0, (A.49)

�hTT
jk = 0. (A.50)

for the complex case and

∇2V = −4πG
m2
s

2~2
[A0g(r) sin θ]2 , (A.51)

∇2(U − V ) = −12πG

c2

(
−m

2
sc

2

2~2
[A0g(r) sin θ]2 cos (2(ωt− φ))

)
, (A.52)

∇2Uj = 0, (A.53)

�hTT
jk = 0, (A.54)

for the real case, from were we can conclude that

∇2U = −4πG
m2
s

2~2
[A0g(r) sin θ]2

(
1− 3 cos (2(ωt− φ))

)
. (A.55)

Identifying the Newtonian potential

In the Coulomb gauge of the weak-field regime, the only relevant components of the metric

due to the presence of scalar field configuration are the potentials U and V :

ds2 = [−1 + 2U/c2](cdt)2 + [δjk(1 + 2V/c2)]dxjdxk. (A.56)

Plugging this metric in the geodesic equation and collecting only the terms up to order c−2, we

obtain

d2t

dτ 2
= 0 +O(c−2), (A.57)

d2xi

dτ 2
−
(
dt

dτ

)2
dU

dxi
= 0 +O(c−2), (A.58)

(A.59)

102



particularly, we know that

ṫ =
dt

dτ
=

√
1

1− v2

c2
− 2U

c2
− 2V v2

c4

∼ 1 +O(c−2), (A.60)

because we assume that the particle is non-relativistic. From here, the geodesic equation for the

coordinate time is satisfied - ẗ = 0+O(c−2) and the geodesic equation for the space coordinates

reduce to

ẍ = ∇U +O(c−2). (A.61)

We conclude that the perturbation potential U of the gtt component of the metric corresponds

to the Newtonian potential.

A.3 Klein-Gordon equation

Using the post-Newtonian metric ds2 = [−1 + 2U/c2](cdt)2 + [δjk(1 + 2U/c2)]dxjdxk and

the scalar field in the weak-field regime (see Eq. (2.86))

Ψ(t,x) = exp

(
−i
msc

2

~
t

)
ψ(t,x) , (A.62)

where we explicitly wrote the fundamental constants, in the Klein-Gordon equation

1√
−g

∂ν
(√
−ggµν∂µΨ

)
− m2

Sc
2

~2
Ψ = 0, (A.63)

we can write

i∂tψ +
~

2mS

∇2ψ +
mS

~
Uψ +O(c−2) = 0. (A.64)

From here, we see that the dynamics described by the Klein-Gordon equation is dominated by

the Schrodinger equation in the weak-field regime.
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A.4 Derivation of the equations for the influence of the orbit-

ing particle in the low-energy regime

To account for the influence of a point-like particle, we’ll follow section 6 of Ref. [153] to

write its energy-momentum tensor (reintroducing the fundamental constants)

T µν =
1√
−g

mpc

∫
dxµp
dτ

dxνp
dτ

δ(4)(x− xp(τ))dτ, (A.65)

where mp and xµp are the mass and the coordinates of the point-particle, τ is the proper-time and

g is the determinant of the metric. Writing explicitly the time-coordinate part of the Dirac delta,

T µν =
1√
−g

mpc

∫
dxµp
d(ct)

dxνp
d(ct)

(
d(ct)

dτ

)2

δ((ct)−(ctp))δ
(3)(x−xp(t(τ)))

dτ

d(ct)
d(ct), (A.66)

we integrate in ct (which is the space-time coordinate x0) and we obtain

T µν =
1√
−g

mp

dxµp
dt

dxνp
dt

(
dt

dτ

)
δ(3)(x− xp(t(τ))), (A.67)

which agrees with the expression given in Ref. [164] for the case of flat metric.

Considering that the mass of the point-particle, as well as its velocity, are within a Newtonian

regime, we can use the weak-field metric ds2 = [−1 + 2U/c2](cdt)2 + [δjk(1 + 2V/c2)]dxjdxk

to obtain the value for dt/dτ by observing that the proper time τ of a timelike particle is defined

as

c2dτ 2 = −ds2 = −gµνdxµdxν = −[−1 + 2U/c2](cdt)2 − [δjk(1 + 2V/c2)]dxjdxk, (A.68)

and so (
dτ

dt

)2

= 1− v2

c2
− 2U

c2
− 2V v2

c4
, (A.69)

where v is the modulus of the velocity of the particle. Expanding in powers of the velocity of

light, we obtain

(
dt

dτ

)2

=
1

1− v2

c2
− 2U

c2
− 2V v2

c4

≈ 1 +
v2 + 2U

c2
+O(c−4). (A.70)
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Using the same metric, we can also write

1√
−g

=
1√

1− 16UV 3

c8
− 24UV 2

c6
+ 8V 3

c6
− 12UV

c4
+ 12V 2

c4
− 2U

c2
+ 6V

c2

≈ 1 +
U − 3V

c2
+O(c−4).

(A.71)

Finally, the energy-momentum tensor of the particle in a weak-field limit is given by

T µν = mp

dxµp
dt

dxνp
dt

δ(3)(x− xp(t(τ))). (A.72)

The components of this energy-momentum tensor can be written as

8πG

c4
T00 = 8πG

(mp

c2
+O(c−4)

)
δ(3)(x− xP ) , (A.73)

8πG

c4
T0j = 8πG

(
−mp

c3
vj +O(c−5)

)
δ(3)(x− xP ) , (A.74)

8πG

c4
Tjk = 8πG

(mp

c4
vjvk +O(c−6)

)
δ(3)(x− xP ) . (A.75)

where we introduced the factor (8πG)/(c4) because it’ll be used in the Einstein’s equations.

Considering that the velocity of the particle is much smaller than the velocity of light, its energy

momentum tensor reduces to

8πG

c4
T00 = 8πG

(mp

c2
+O(c−4)

)
δ(3)(x− xP ) ,

8πG

c4
T0j = O(c−3) , (A.76)

8πG

c4
Tjk = O(c−4) ,

which is a reflection of the fact that the behavior of the particle is dominated by its rest mass.

The Einstein tensor, with the metric ds2 = [−1 + 2U/c2](cdt)2 + [δjk(1 + 2V/c2)]dxjdxk, is

given by

G00 = − 2

c2
∇2V +O(c−4) , (A.77)

G0j = O(c−3) , (A.78)

Gjk = − 2

3c2
δjk∇2(U − V ) +

1

c2

(
∂jk −

1

3
δjk∇2

)
(U − V ) +O(c−4).
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Using the energy-momentum of the point particle as a source of the Einstein’s equations,

Gαβ =
8πG

c4
Tαβ , (A.79)

and collecting the dominant terms, one obtains

∇2U = ∇2V = −4πG
(
mpδ

(3)(x− xP )
)
. (A.80)

A.5 Harmonic decomposition

To solve Poisson’s equation

∇2UN = −4πρ, (A.81)

we employ the spherical harmonic decomposition technique [159]. With this technique, the

solution to the Poisson’s equation is given by

UN =
∑
`m

4π

2`+ 1

[
q`m(r)

Y`m(θ, φ)

r`+1
+ p`m(r)Y`m(θ, φ)

]
, (A.82)

where Y`m are spherical harmonics and

q`m(r) =

∫ r

0

s`ρ̃`m(t, s)s2ds, (A.83)

p`m(r) =

∫ ∞
r

ρ̃`m(t, s)

s`+1
s2ds, (A.84)

ρ̃`m =

∫
ρY ∗`m sin θdθdφ. (A.85)

A.6 Lagrangian points

A general potential U = U(r, φ) produces a motion governed by equations on a plane (r, φ)

rotating with angular velocity Ωp given by

r̈ − r(φ̇+ Ωp)
2 +

∂U

∂r
= 0 (A.86)

d

dt
(r2(φ̇+ Ωp)) +

∂U

∂φ
= 0 (A.87)
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The Lagrangian points are the points where the forces acting on the orbiting particle cancel

exactly. To uncover those locations, one forces the equations of motion to describe a particle at

rest in this frame, i.e. ṙ = r̈ = φ̈ = φ̇ = 0, which amounts to

∂U

∂r
= rΩ2

p, (A.88)

∂U

∂φ
= 0. (A.89)

Applying this reasoning to the total potential in Eq. (3.12), U = V0 + V1, one can see from

Eq. (A.89) that the Lagrangian points are located at φ = 0, π/2, π, 3π/2, ... since

∂U

∂φ
= 0⇔ sin(2φ) = 0⇔ φ = 0, π/2, π, 3π/2, ... (A.90)

Substituting these values in Eq. (A.88), we obtain that the radial position of the Lagrangian

points satisfies
∂V0

∂r
+
∂Q1

∂r
± ∂Q3

∂r
= rΩ2

p, (A.91)

where ± refers to the unstable (φ = π/2, ...) or stable points (φ = 0, ...), respectively. Con-

sidering that the derivatives of both Q1 and Q3 are negligible, which is a safe assumption in

general, we obtain that the radial location of the Lagrangian points is given by

1

r

dV0

dr
− Ω2

p = 0⇔ Ω(r)2 − Ω2
p = 0 (A.92)

which means that these points are located in a circle with radius given by the radius of the

Keplerian circular orbit with angular velocity equal to Ωp. Given that this is the velocity at

which the reference frame is rotating, this is called the corotation radius.
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Appendix B

Analytical expression for the perturbation

to the circular orbit at corotation

In this appendix we present some details regarding the analytical solution for the perturba-

tions to the circular orbit at corotation. The equations of motion (3.48) and (3.49) can be written

as
dX

dt
= ÂX +B, (B.1)

in which

XT = (r1, φ1, R1,Φ1), (B.2)

with R1 = ṙ1, Φ1 = φ̇1,

Â =


0 0 1 0

0 0 0 1

−(Ψ
′′
0 − ω2

R) −2P ′3 sin(2φi) 0 2ωRRc

0 4P3

R2
C

cos(2φi) −2ωR
RC

0

 , (B.3)

and

BT =

(
0, 0,−C(RC)− P ′3 cos(2φi),

2P3

R2
C

sin(2φi)

)
. (B.4)

The solution, obtained from standard methods, has the form

X = Xh +Xp, (B.5)
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in which

Xh =
4∑
i=1

ciVi exp(λit), (B.6)

with ci, Vi, λi being constants of integration, eigenvectors and eigenvalues of Â, respectively,

and Xp is a constant vector.

The general form of the solutions will depend on Lagrangian point around which the analysis

is being made. We observe that independently of the Lagrangian point, it is verified that λ2 =

−λ1 and λ4 = −λ3. For stable Lagrangian points (φi = 0, π) all the eigenvalues λi are purely

imaginary, which implies that the solution is given by

r1(t) = C1 cos(Im(λ1)t) + C2 cos(Im(λ3)t), (B.7)

φ1(t) = C3 sin(Im(λ1)t) + C4 sin(Im(λ3)t), (B.8)

where the constants Ci are determined in terms of ci, Vi and the vector Xp. For unstable La-

grangian points (φi = π/2, 3π/2) two of the eigenvalues are real and two are imaginary; the

solution is

r1(t) = C̃1 cos(Im(λ1)t) + C̃2(e−λ3t + eλ3t), (B.9)

φ1(t) = C̃3 sin(Im(λ1)t) + C̃4(e−λ3t − eλ3t), (B.10)

where it was assumed that λ1, λ2 are imaginary and λ3, λ4 are real and the constants C̃i depend

on ci, Vi, Xp. The two solutions have different limits of validity. Around the stable Lagrange

points the solution is valid for all times t. On the other hand, around φi = π/2, 3π/2, the

unstable points, the solution is valid in a limited range of the time coordinate: the presence of

the exponential terms force the values of r1 and φ1 out of the smallness assumption in which

rests the validity of the solution.
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Appendix C

Orbital elements in the BH frame

The orbital elements of the S2 star were measured with respect to the frame of reference

of the observer, sitting on Earth. To describe the orbit of the star in another reference frame,

one needs to convert the orbital elements to that reference frame. One is not expecting that the

geometrical orbital elements – the semi-major axis a and the eccentricity e – are altered from

reference frame to reference frame, but the angular ones should change.

The perturbing gravitational potential due to the presence of the scalar field cloud was cal-

culated in a reference frame centered in the SMBH in the center of the Galaxy and considering

the the z axis was aligned with the direction of the angular momentum of the BH. To convert

the orbital parameters from the Earth-based observer’s reference frame to the BH-centered ref-

erence frame, we’ll follow the recipe presented in Ref. [143] which we reproduce here; Fig. C.1

serves as a pictorial guide to this operation:
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Figure C.1: Representation of the Earth-based reference frame (αs, δs, zs,obs), the reference
frame centered in the (xbh, ybh, zbh) and the angles (i′,Ω′) that relate one with the other. Image
taken from Ref. [143].

1. We use orbital elements in the equations1[167]

x =
a(1− e2)

1 + e cos f
[cos Ω cos(ω + f)− sin Ω sin(ω + f) cos i] , (C.1)

y =
a(1− e2)

1 + e cos f
[sin Ω cos(ω + f) + cos Ω sin(ω + f) cos i] , (C.2)

z =
a(1− e2)

1 + e cos f
sin(ω + f) sin i, (C.3)

ẋ = − na√
1− e2

[cos Ω sin(ω + f) + sin Ω cos(ω + f) cos i+ e(cos Ω sinω + sin Ω cosω cos i)] ,

(C.4)

ẏ = − na√
1− e2

[sin Ω sin(ω + f)− cos Ω cos(ω + f) cos i+ e(sin Ω sinω − cos Ω cosω cos i)] ,

(C.5)

ż =
na√

1− e2
[cos(ω + f) + e cosω] sin i. (C.6)

to the position and velocity of the star in a corresponding Cartesian reference frame; then

we use Eq. (B.7) of Ref. [143] to convert to the variables in the Earth-based observer’s

reference frame – (αs, δs, zs,obs, vαs, vδs, vzs,obs) in Fig. C.1;

1n is the mean motion – see Eq. (D.6)
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2. Then we apply the rotation matrix of eq (1) of Ref. [143]

M =


sin(i′′) sin(Ω′) sin(i′′) cos(Ω′) − cos(i′′)

− cos(Ω′) sin(Ω′) 0

cos(i′′) sin(Ω′) cos(i′′) cos(Ω′) sin(i′′)

 , (C.7)

to convert r = (αs, δs, zs,obs) and ṙ = (vαs, vδs, vzs,obs) (i.e. the position and velocity

of the star in the observer’s reference frame) to rBH and ṙBH (the same vectors in the

BH-centered reference frame). Notice the angles Ω′ and i′′ = i′ + 3π/2 (see Fig.C.1),

they are related to the direction of the BH’s spin with respect to the observer’s reference

frame.

3. Use rBH and ṙBH to obtain the orbital parameters in the BH-centered frame.

Having calculated the vectors rBH and ṙBH , we proceed to calculate orbital parameters in the

BH frame. We start by calculating the orbital angular momentum vector in the BH frame

h = rBH × ṙBH (C.8)

and the eccentricity vector

e = ṙBH × h−
rBH
||rBH ||

. (C.9)

Then, one can determine the vector n,

n = (0, 0, 1)× h, (C.10)

which points towards the ascending node. Having all these vectors, one can start calculating the

orbital parameters. The eccentricity is the norm of the eccentricity vector

e = ||e||. (C.11)

The inclination can be found from the relation

cos i =
hz
||h||

; (C.12)
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the semi-major axis can be obtained from the relation

1

a
=

2

||rBH ||
− ||ṙBH ||2. (C.13)

The longitude of the ascending node and the argument of the periapsis can be found from

Ω =

arccos nx
||n|| for ny ≥ 0,

2π − arccos nx
||n|| for ny < 0,

(C.14)

where ny is the y-component of the vector in Eq. (C.10) and

ω =

arccos n·e
||n||||e|| for ez ≥ 0,

2π − arccos n·e
||n||||e|| for ez < 0,

(C.15)

where nz is the z-component of the eccentricity vector.

The orbital elements and the direction of the BH’s angular momentum

The orbital elements of the S2 star, measured in the Earth-based observer’s frame are given

by ([141])

a0 = 2.5× 104, e0 = 0.88473, i0 = 133.817o

ω0 = 66.12o, Ω0 = 227.82o, (C.16)

where the value of the semi-major axis is in the normalized units of Eq. (2.27). In order to trans-

late these orbital elements to the BH-centered reference frame, we have to make a fundamental

assumption, i.e., the choice of the direction of the BH’s spin. From Eq. (C.7), which contains

the matrix with which the transformation between reference frames is performed, we see that

such transformation depends on the angles Ω′ and i′′ = i′ + 3π/2 (see Fig.C.1), which refer to

the direction of the BH’s spin.

The direction of the BH spin is not a well established quantity. Using the assumption made

by Ref. [143] for the values of the angles i′ and Ω′, we run the aforementioned recipe and we
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obtain

a0 = 2.5× 104, e0 = 0.88473, i0 = 90.98o

ω0 = 81.60o, Ω0 = 254.191o. (C.17)
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Appendix D

Keplerian orbits formalism

Using the re-scaled distance and time coordinates (Eq. (2.27)), the equation of motion of a

mass in a Keplerian gravitational field reads

d2r

dt2
= − r

r3
, (D.1)

where we consider a reference frame centered in the SMBH (in the “center of the galaxy”, let’s

say) with the z-axis aligned with the angular momentum of the SMBH. In a system of cartesian

coordinates, the orbiting mass will follow a path described by
x = r[cos Ω cos(ω + f)− sin Ω sin(ω + f) cos i],

y = r[sin Ω cos(ω + f) + cos Ω sin(ω + f) cos i],

z = r sin(ω + f) sin i,

(D.2)

where

r =
a(1− e2)

(1 + e cos f)
. (D.3)

The parameters (a, e, i,Ω, ω) are the orbital elements characterizing the orbit; the size and the

shape are given by the values of the eccentricity (e) and the semi-major axis (a), the orientation

of the orbit is given by the values of the inclination (i) and the longitude of the ascending node

(Ω); finally the position of the star in the orbit is given by the argument of the periapsis (ω)

and by the true anomaly (f ). Only the latter value is not constant for a Keplerian orbit: the

true anomaly is f = 0 when the star is in the periastron and f = π in the apoastron. The true
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anomaly is related to time by the Kepler equation

M = E − e sinE, (D.4)

where

M =M0 + n(t− t0), (D.5)

is the mean anomaly,M0 is the mean anomaly at epoch1,

n =

√
1

a3
, (D.6)

is the mean motion2 and E is the eccentric anomaly, which is related to the true anomaly by

tan
f

2
=

√
1 + e

1− e
tan

E

2
. (D.7)

D.1 Perturbing a Keplerian orbit

A perturbed Keplerian orbit is described by the equation of motion

d2r

dt2
+
r

r3
= F pert, (D.8)

where F pert represents the perturbing force. Following the osculating conics method (see, e.g.,

Ref. [167]), the perturbed orbit will be described by the same expressions of Eq. (D.2) but with

1If we fix t0 to be the time of periapsis passage, then one can setM0 = 0 implying thatM(t = t0+T/2) = π,
which corresponds to the value in the apoapsis.

2The mean motion is defined by n = 2π/T , where T is the period of the orbit. Before re-scaling, the mean
motion reads n =

√
GM/a3 which becomes n̄ =

√
1/ā3 after re-scaling.

118



orbital parameters varying according to

da

dt
=

2

n
√

1− e2

(
eFR sin f + FT

p

r

)
, (D.9)

de

dt
=

√
1− e2

na
[FR sin f + FT (cos f + cosE)] , (D.10)

di

dt
=
r cos(f + ω)

na2
√

1− e2
FN , (D.11)

dΩ

dt
=

r sin(f + ω)

na2
√

1− e2 sin i
FN , (D.12)

dω

dt
= − cos i

dΩ

dt
+

√
1− e2

nae

[
−FR cos f + FT

(
1 +

r

p

)
sin f

]
, (D.13)

dM0

dt
= −
√

1− e2

(
dω

dt
+ cos i

dΩ

dt

)
− 2r

na2
FR, (D.14)

and the mean anomaly of the perturbed motion looks like

M =M0 +

∫ t

t0

n(t′)dt′, (D.15)

where p = a(1− e2) is the semi latus rectum and
FR = n̂ · F pert,

FT = (k̂ × n̂) · F pert,

FN = k̂ · F pert,

(D.16)

are the radial, transversal and normal (to the orbit) components of the perturbing force. Notice

that n̂ = r/r is the radial unit vector and k̂ is the unit vector orthogonal to the instantaneous

orbital plane; the unit vector k̂ can be written as

k̂ =
r × ṙ
|r × ṙ|

. (D.17)

D.2 Perturbation due to the presence of a scalar-field cloud

Using the perturbing force expression due to the complex scalar-field of Chapter 4

F pert = Λ∇
[
P1(r) + P2(r) cos2 θ

]
, (D.18)
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in Eq. (D.16), we obtain the following components of the force

FR = sin2(i) sin2(f + ω)P ′2(r) + P ′1(r), (D.19)

FT = −sin2(i)(e cos(f) + 1) sin(2(f + ω))P2(r)

a (e2 − 1)
, (D.20)

FN = −sin(2i)(e cos(f) + 1) sin(f + ω)P2(r)

a (e2 − 1)
, (D.21)

where the prime ′ stands for derivative with respect to the radial coordinate. Using these, the

equations governing the time-variation of the orbital parameters (see Eqs. (D.9) to (D.14)) due

to the scalar-field cloud are

da

dt

dt

df
= 2a2(1− e2) [T1] + 2a3e(1− e2) sin(f) [R2] , (D.22)

de

dt

dt

df
= a2

(
e2 − 1

)2

((
e cos2(f) + e+ 2 cos(f)

)
[T3] + sin(f) [R2]

)
, (D.23)

di

dt

dt

df
= a2

(
e2 − 1

)2
cos(f + ω) [N3] , (D.24)

dΩ

dt

dt

df
= a2

(
e2 − 1

)2
csc(i) sin(f + ω) [N3] , (D.25)

dω

dt

dt

df
=−

{
a2(e2 − 1)2(−e sin(f) cos(f)− 2 sin(f))

e

}
[T3]−

{
a2(e2 − 1)2 cos(f)

e

}
[R2]

−
{
a2(e2 − 1)2 cot(i) sin(f + ω)

}
[N3] , (D.26)

dM0

dt

dt

df
=
a2 (1− e2)

5/2

e

((
e cos2(f)− 2e+ cos(f)

)
[R3]− sin(f)(e cos(f) + 2) [T3]

)
,

(D.27)

where

T1 = −sin2(i) sin(2(f + ω))

a (e2 − 1)
P2(f), (D.28)

T3 = −sin2(i) sin(2(f + ω))

a (e2 − 1)

[
P2(f)

(e cos(f) + 1)2

]
, (D.29)

N3 = −sin(2i) sin(f + ω)

a (e2 − 1)

[
P2(f)

(e cos(f) + 1)2

]
, (D.30)

R2 =

[
P ′1(r)

(e cos(f) + 1)2

]
+ sin2(i) sin2(f + ω)

[
P ′2(r)

(e cos(f) + 1)2

]
, (D.31)

R3 =

[
P ′1(r)

(e cos(f) + 1)3

]
+ sin2(i) sin2(f + ω)

[
P ′2(r)

(e cos(f) + 1)3

]
. (D.32)
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Appendix E

Describing an extended mass in the center

of the galaxy

Theoretical studies regarding the distribution of stars in the center of galaxies – there are

stellar dynamics studies that approached the problem ([168–170]) and N-body confirmation

([171–173]) – in which a density distribution of stars around the BH may be described by

a power-law function, describing a stellar cusp around a BH, appear to be validated by the

observational results obtained so far (see, e.g. Ref. [174] and references). A discussion of

these matters is beyond the scope of this thesis, but in order to estimate the orders of magnitude

associated with the effects that may come from the population of stars in the center of the galaxy,

we will use the simple approach of modeling the density of the population of stars by a power

law (as in [147, 149, 150]). We will consider that the mean density in the galatic center is given

by

ρ(r) = ρ0

(
r

r0

)−γ
(E.1)

which ρ0 the stellar density at the characteristic radius of normalization r0. The enclosed mass,

i.e., the mass of the stars that are described by this density function are given by

M(r) = 4π

∫ r

0

ρ(x)x2dx =
4πρ0r

3
0

3− γ

(
r

r0

)3−γ

, γ < 3. (E.2)

Considering that r0 = 0.01 pc the total mass stellar mass within this radius is given by

M∗(r0) =
4πρ0r

3
0

3− γ
, (E.3)
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so that we can write that the average galactic potential is given by

Ugal(r) = − M∗(r0)

(2− γ)r0

(
r

r0

)2−γ

, γ 6= 2. (E.4)

So, the resulting force that perturbs the Keplerian orbit is (F = ∇Ugal)

FR = −M∗(r0)

r2
0

(
a− ae2

r0(1 + e cos(f)

)1−γ

, FT = FN = 0. (E.5)

Given that Ref. [147] also analyses the S2 star, we are going to follow their choices for the

exponents γ and the values of the enclosed mass M∗(r0); so, we will consider two cases

γl = 1.5, M∗(r0) = 2× 103M�,

γh = 2.1, M∗(r0) = 2× 104M�,

(E.6)

where the subscript l and h corresponds to the type of stars that are considered to source the

density distribution under analysis. Since stars with different masses get distributed with differ-

ent density profiles, and given the uncertainty associated with modelling the Galactic potential,

these two cases aim to illustrate two extremal cases.
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Appendix F

Numerical details about the SP system

F.1 Testing the code

We evolve the two components of our two-body system using different techniques. To solve

SP system of equations, of the form of Eqs. (5.23) and (5.24), we use a centered finite difference

stencil to write the derivatives. Particularly, at a generic point uj = j∆u, we discretize the first

derivatives as
∂H

∂u
=
Hj+1 −Hj−1

2∆u
, (F.1)

and the second derivatives as

∂2H

∂u2
=
Hj+1 − 2Hj +Hj−1

(∆u)2 , (F.2)

for a general function H(u), indicating H(uj) = Hj . Having discretized the equations, we

apply the iterated Crank-Nicolson method with two iterations, following the conclusions of

Ref. [156]. To solve the equations of motion of the point-particle, which can be cast in the

generic form dv/dt = G(t, v), we use Euler’s method, with the evolution step given by

vn+1 = vn + ∆tG(tn, vn),

tn+1 = tn + ∆t,

(F.3)
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Figure F.1: Representing the evolution of the quantity ∆ρ of Eq. (F.5) using ∆t = 10−3 and
with three different grid values. We observe that the maximum value of ∆ρ in each simulation
is related to the grid spacing as (∆r)2.

and the two-step Adams-Bashforth method given by

vn+2 = vn+1 + 3
2
∆tG(tn+1, vn+1)− 1

2
∆tG(tn, vn),

tn+2 = tn+1 + ∆t.

(F.4)

Evolving a stationary scalar field solution

Using a timestep ∆t = 10−3, we run a test with three different grid spacings - ∆r =

0.2, 0.1, 0.05. To quantify the effect of the grid spacing in the evolution of the field, define

∆ρ(t) = max (|ρE(r)− ρ(t, r)|) , (F.5)

where ρE(r) = fEf
∗
E is the equilibrium density of the scalar field (see Eq. (5.8)) and ρ(t, r) is

the density of the field that is evolved in time using our code. The results of this evolution are

shown in Fig. F.1. The test allows us to conclude that with decreasing resolution, the magnitude

of the deviations from the initial stationary configuration decreases. Moreover, we obtain that

max [∆ρ] ∼ (∆r)2.
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Figure F.2: Represening the evolution of the energy and angular momentum per unit mass (see
Eq. (F.6)) for the simulation Y3V03. This simulation was run with ∆t = 10−3 and ∆r = 0.1.

Testing the code evolving the orbiting particle

The evolution of the particle will be made with the same time step as the one used for the

SP-equations. To correctly describe this evolution, the code has to guarantee the conservation

of the energy and angular momentum per unit mass for the control tests. To visualize that

conservation, we calculate the following quantities

∆ε =
ε(t)− ε(0)

ε(0)
, ∆L =

L(t)− L(0)

L(0)
, (F.6)

where ε(0) and L(0) represent the initial energy and angular momentum per unit mass, respec-

tively. In Fig. F.2 we show the evolution of these quantities for the control test Y3V03. We

observe that both the energy and the angular momentum are conserved, in the worst case, up to

the percent level.

F.2 Discretizing the Dirac delta

In order to describe the perturbing mass orbiting the scalar configuration as a point particle,

it is necessary to use the Dirac delta. To describe it in a numerical grid, we follow an approach

used in previous works (see Ref. [175] and references therein) in which the construction of the

discretized version of the Dirac delta is made considering that its defining feature is integrability.
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This means that we obtain the discretized Dirac delta by studying the expression

∫ ∞
−∞

f(x)δ(x−X0)dx = f(X0) (F.7)

for some “well-behaved” (continuous with continuous derivatives) function f(x). The finite

difference version of the previous expression is given by

dx
∑
i

fiδi = fi∗ (F.8)

where fi and δi represent the values of function f and the Dirac delta, respectively, at the grid

point i. In our case it suffices to consider that the point X0 is always a grid point such that

X0/dx = i∗. With this setup, we can say that the only point of the grid in which the Dirac delta

takes a non-zero value is precisely the grid point corresponding to X0. This implies that the

finite difference formula of Eq. (F.8) can be written as

dxf(X0)δi∗ = f(X0), (F.9)

from where we can read that the Dirac delta has the following finite difference representation

δi =


1
dx
, i = i∗

0, i 6= i∗
. (F.10)

This definition agrees, in the respective limits, with the simplest definition for the Dirac delta of

[175]. We decided to use a one-point-only discretized Dirac delta for two reasons: a) it works

well; b) given the scales of the problem at hand, we want to reinforce as much as possible the

localized nature of the perturbing mass.
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