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Resumo

O melhor modelo para descrever a interação gravitacional é a teoria da Rela-
tividade Geral. Observações variadas corroboram a legitimidade da teoria, por
comparação com a mais antiga descrição newtoniana. Entre outros, podemos
encontrar a explicação para a precessão anómala do periélio de Mercúrio, o
desvio para o vermelho (gravitacional) da luz e a previsão da evolução orbital dos
pulsares binários. Além disso, a Relatividade Geral prevê a existência de ondas
gravitacionais, ondulações do espaço-tempo produzidas por massas aceleradas.

Graças a uma rede conectada de interferômetros chamada LIGO / Virgo, as
ondas gravitacionais produzida pela coalescência de corpos astrofísicos massivos
e compactos foram medidas diretamente. Estas observações recentes abriram o
caminho para uma forma completamente nova de testar a interação gravitacional.
As ondas gravitacionais emitidas por buracos negros, estrelas de neutrões ou
outras fontes compactas, transportam as assinaturas dos seus progenitores e
do meio em que estes nasceram e evoluíram. Por isso, as ondas gravitacionais
transportam informação sobre a gravidade.

A possibilidade de usar ondas gravitacionais para obter um entendimento mais
profundo de problemas em aberto dentro da Relatividade Geral motiva o trabalho
desenvolvido nesta tese. Cada secção é essencialmente dedicada a desafiar o
modelo atual de gravitação, às vezes incluindo novos campos de matéria ainda
não descobertos, e outras vezes modificando a estrutura teórica da Relatividade
Geral.

Na primeira parte deste manuscrito, são discutidas as consequências astrofísicas
da possível presença de campos escalares que permeiam galáxias. Em particular,
a inclusão de um novo escalar fundamental como um dos constituintes da matéria
escura desconhecida pode resolver alguns dos problemas da cosmologia moderna
(por exemplo, ausência de concentrados de matéria escura ou fraqueza de atrito
dinâmico em galáxias anãs). Assim, fornece-se um quadro detalhado da interação
de buracos negros massivos e estruturas escalares de matéria escura.

A segunda parte é dedicada à análise da geração e propagação das ondas grav-
itacionais. São analisados os efeitos da dispersão das ondas gravitacionais pela
presença de binários entre a fonte e os observadores. Posteriormente, é exami-
nada a aproximação do limite próximo como uma ferramenta interessante para
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investigar a colisão de objetos compactos extremos. Esses corpos podem ser
vistos como estrelas compactas que imitam o espaço-tempo de um buraco negro,
mas não possuem singularidades nem horizontes. As propriedades das ondas
gravitacionais produzidas por tais eventos são discutidas também. Por fim, a
evolução dinâmica de campos escalares em torno de binários de buracos negros é
também formulada dentro da abordagem de limite próximo.

A última parte desta tese foca-se em mecanismos de instabilidade em torno de
buracos negros e estrelas, em dois modelos alternativos de gravitação. O primeiro
considera espaços-tempos em teorias com acoplamentos não triviais entre um
grau de liberdade escalar e a curvatura do espaço-tempo. O segundo investiga
a contingência de ter novos acoplamentos com um campo vetorial. No último
cenário, novas soluções de estrelas de neutrões são também discutidas.

Palavras-chave: Relatividade geral; Ondas gravitacionais; Objetos compactos;
Halos de matéria escura; Escalarização espontânea.



Abstract

The most accurate model to describe the gravitational interaction is the well-
known theory of General Relativity. Several observational evidences corroborate
the legitimacy of the theory compared to the older Newtonian gravity. Among
others, we can find the explanation for the deviation of the precession of Mercury’s
perihelion, the gravitational redshift of light and the prediction of the orbital
decay of binary pulsars. General Relativity furthermore predicts the existence of
gravitational waves, i.e. spacetime ripples produced by accelerated masses.

Thanks to a connected network of interferometers called LIGO/Virgo, gravita-
tional waves from the coalescence of massive and compact astrophysical bodies
have been measured directly. These recent observations paved the way to a
completely new route to test the gravitational interaction. Gravitational waves
emitted by black holes, neutron stars or other compact sources, carrying the
signatures of their generators and of the environment in which they live, will
provide crucial knowledge about the underlying theory of gravitation.

The possibility of using gravitational waves to obtain a deeper understanding
of open problems within General Relativity motivates the work developed in
this thesis. Each part is essentially devoted to challenging the current model of
gravitation, sometimes including yet undiscovered new matter fields, and other
times modifying the theoretical framework of General Relativity.

In the first part of this manuscript, I discuss the astrophysical consequences of
the presence of scalar fields permeating galaxies. Remarkably, including a new
fundamental scalar as one of the constituent of the unknown dark matter may
solve some of the problems of modern Cosmology (e.g. absence of dark matter
cusps or weakness of dynamical friction in dwarf galaxies). Hence, a detailed
picture of the interaction of massive black holes and scalar dark matter structures
is provided.

The second part is dedicated to the analysis of the generation and propagation of
gravitational waves. The effects of gravitational wave scattering by the presence
of binaries between the source and the observers are analyzed. Afterwards, I
examine the close limit approximation as a promising tool to investigate the
collision of extreme compact objects. These bodies can be seen as compact stars
that mimic the spacetime of a black hole, but neither possess singularities nor
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horizons. The properties of the gravitational waves produced by such events are
discussed. Finally, the dynamical evolution of scalar fields around black hole
binaries is also formulated within the close limit approach.

The last part of this thesis focuses on unstable mechanisms around black holes
and stars, in two alternative models of gravitation. The first considers binary
spacetimes in theories with non-trivial couplings between a scalar degree of free-
dom and the spacetime curvature. The second instead delves into the contingency
of having new couplings with a vector field. In the latter scenario, I show novel
neutron star solutions arising accordingly.

Key-words: General Relativity; Gravitational waves; Compact objects; Dark
matter haloes; Spontaneous scalarization.
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Chapter 1
Introduction

The eternal epistemological debate over how to perceive objects and phenomena in Nature
began centuries ago questioning the very existence of things around us. Attempting to
distinguish between what belongs to Metaphysics and what to Physics, this abiding philo-
sophical controversy ended up postulating systematic guidelines on how to build a scientific
theory, how it should relate to reality and its ultimate purposes. Among others, philosophical
paradigms, such as Positivism, Coherentism and Epistemological Anarchism, profoundly
influenced our contemporary vision of the Universe [7–9]. Despite all the possible differences
of such gnosiological approaches, we can safely assume today that natural entities and their
behaviour can be interpreted, and comprehensively described, through the structure of
scientific theories. How to specifically construct and justify a theory is then a subject on its
own, that evades the scope of this thesis. However, one might argue that the evolution of a
theory runs on various, but interconnected, paths. Like parallel trains with some intersecting
stations, a physical model needs to be founded both on a mathematical framework and on
numbers. The former can be conceived as an ensemble of concepts, rules and formulas that
allow for the logical coherence of the theory itself. The latter is the outcome of measurements
taken directly from natural processes through experiments. The best theory is then the
one that explains the largest possible number of phenomena, and allows for making further
predictions within the given framework. This cycle of predictions and experiments is the
basis of every modern Science: as a lichen, an organism built on the mutual relation between
algae and fungi, experiments and theory feed each other in a never ending circle.

Nowadays, after various scientific revolutions, we face a period of corroboration of ideas and
models developed by the joint efforts of scientists around the world. Despite the ubiquitous
presence of unexplained problems in science, the more the current theories are not falsified
by subsequent experiments, the more they consolidate as common knowledge. This is the
case of the best up-to-date model describing gravitation: General Relativity (GR). Its
incredible predicting power found its climax in the first detections of gravitational waves
(GWs) passing through the Earth, produced by coalescing black holes (BHs) [10–14]. These
events demonstrate once again the great heritage that Albert Einstein left us since the
beginning of the last century.
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Chapter 1. Introduction 2

In GR, GWs are perturbations of the gravitational field that propagate at the speed of light.
GWs are commonly produced by accelerated masses in a system with a non-zero degree of
spherical/rotational asymmetry, whose characteristics (mass, acceleration, orbit, etc.) shape
the typical frequency and amplitude of the emitted waves. Among others, typical sources
of GWs are binary systems in orbit, non-spherical supernovae, etc.. Thanks to the GWs
capability to distort the spacetime at their passage, laser interferometers observatories, like
LIGO and Virgo, were able to detect GWs. In simple words, the detection consisted in the
observation of the deformed path that light experiences when a GW is passing through. In
this Introduction we will not display a thorough analysis of the properties of a GW, however,
we refer the reader to Chapter 7 for a brief review of the various part in which a GW can
be decomposed and on some detail about how to obtain GWs from linearized Einstein’s
equations.

Nevertheless, one may wonder why challenge the best model we have to describe why “things
fall”.

“Whenever a theory appears to you as the only possible one, take this as a sign
that you have neither understood the theory nor the problem which it was intended
to solve.”

“Objective Knowledge: An Evolutionary Approach” (Oxford U. Press)

This was Sir Karl Raimund Popper’s view in 1972, regarding the continuous fight over
the acceptance of a cemented scientific knowledge and its contrasts with potential new
developments [15, 16]; it magnificently summarizes one of the aspects of a modern view of
the scientific method, initially developed by Galileo Galilei at the beginning of the 17th
century. In the words of the Austrian-British philosopher one may also find the deeper roots
behind the work shown in this manuscript. The continuous effort in trying to falsify GR
will inevitably bring more knowledge, expanding its validity and eventually leading to the
comprehension of the phenomena not fully captured today within the general relativistic
framework (even at that point though, it is worth stressing that the scientific endeavour is a
never-ending one!).

Shifting the focus now on how to challenge GR, it is worth to pinpoint some of its actual
open problems. Among others, one may find the lack of a profound understanding of
the nature of singularities [17–20], and the origin of dark energy or dark matter [21, 22].
These (yet) unresolved issues clearly show that there is still room for possible extensions
or modifications of Einstein’s theory. Furthermore, they may serve as a guide for deeper
scientific investigations.

The above-mentioned direct detections of GWs act as one of the possible stations where purely
theoretical studies interconnect with experiments, offering novel information from uncharted
energy scales and spacetime curvatures. In other words, the LIGO/Virgo observations of GWs
produced by BHs and massive stars provided the first insights on regimes where dynamical
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gravitational interactions dominate over the other known fundamental forces – also known
as the strong gravity regime. Furthermore, they posed certain constraints on GR [23–29],
and on some modified gravity models [30–33]. These exciting discoveries can be seen as the
first step on a long road to a new understanding of the gravitational universe. Having the
great possibility of measuring waves coming directly from such extreme environments, it is
even more essential to try and challenge theories of gravitation. Like a magnifying glass,
GWs may shed light on fundamental open questions to which we would otherwise be blind;
boosting our understanding on the nature of the gravitational interaction will help assess
the foregoing deeper problems in the theory.

Th strong gravity regime is the lowest common denominator throughout this thesis. Being
far away from the borders established by the capability of any human-made laboratory, it
assumes a crucial role in testing GR. The usual stage where such configuration occurs is in
the proximity of compact objects, like BHs or neutron stars (NSs). Being among the sources
that generate detectable GWs, these astrophysical bodies provide the best environments to
test gravity, and might help sharpen our knowledge on the entire Universe.

In the next Sections, one will find the underlying motivations behind the work developed in
each Chapter in more detail. The following three paragraphs highlight the state-of-the-art of
gravitational physics, describing several interconnected directions to challenge theories of
gravitation.

Precision gravitational wave astronomy

The advent of third generation detectors [34–36] and the space-based LISA mission [37]
(together with the planned Tajii program [38]) will increase the number and accuracy of GW
observations, starting a new, precision gravitational wave astronomy era. With high quality
data and low instrumental noise, GWs from massive and distant compact objects will provide
a statistical and systematic vision of the objects populating the cosmos, giving access to
virtually all its visible parts [36, 37]. This new opening on the universe motivates part of
the work in this thesis: an increasing ability to probe the properties of compact objects will
help us in studying and improving models that describe the gravitational interaction and
matter fields. Hence, in the next Chapters we will present various toy models that try to
challenge GR and that, in some cases, might be constrained by future GWs observations.

Nonetheless, this new precise GW astronomy era will already answer some of the fundamental
open questions in the field. Among others, the observation of inspiralling compact objects will
determine their mass and spin to ashtonishing levels of accuracy by astronomy standards [39,
40] and will impose strong constraints on non-trivial radiation channels [41–44]. Precise
measurements of the gravitational waveform may reveal whether the objects have non-
zero tidal Love numbers (i.e. parameters that indicate the rigidity of a body), potentially
discriminating BHs from other hypothetic compact objects [20, 45–47]. Accurate observations



Chapter 1. Introduction 4

will also test long-held beliefs about how matter behaves in curved spacetime. As an
example, the consequences of non-trivially embedding the Maxwell field in highly curvature
spacetimes are shown in Chapter 9. In addition, astronomical measurements on binary pulsar
systems [48, 49], together with observations of GWs emitted by binaries containing NSs,
such as GW170817 [50], have improved our knowledge about compact stars. Theoretical
predictions about NS spacetimes and the equation of state of matter at such high densities
will be compared with observational data, improving our knowledge of non-vacuum extreme
geometries.

This enormous potential for new science requires the careful control of systematic factors.
Environmental effects, such as accretion disks, nearby stars, electric or magnetic fields, a
cosmological constant or even dark matter, can possibly blur what is otherwise a clear picture
of compact binaries [51–57]. Along these lines, in Chapter 6 one can find a specific example
of the effect of compact binaries on the propagation of GWs. Precision GW astronomy can
also inform us on the nature and distribution of dark matter, providing information on the
local dark matter density where the process is taking place [56–58]. In fact, a non-trivial dark
matter environment may change the inspiral of a compact binary, via accretion or dynamical
friction. In addition, if dark matter consists of new fundamental light fields, then rotating
BHs can become lighthouses of GWs [22, 59–61]. The main astrophysical consequences of
such scenarios are extensively discussed in Part I.

This new experimental window will also influence our perception of the most intriguing
and simple astrophysical bodies of the Universe: BHs. A fundamental result of vacuum
GR is that all isolated, stationary and asymptotically flat BHs belong to the same family
of solutions [62, 63] – the Kerr family [64] – fully described by just two parameters, mass
and angular momentum [65–67]. These instrinsic characteristics determine the relaxation
mechanisms of BHs formed after the merger of two compact bodies. Hence, an accurate
analysis of the final, ringdown phase of the GW signal will allow us to perform tests of
the “BH” nature of the newly formed object [20, 47, 68]. Thus, to some extent, testing the
Kerr nature of BHs means testing GR. Furthermore, foundational questions regarding these
fascinating objects are associated with the presence of horizons. Particularly, some of these
issues concern the breakdown of determinism associated with Cauchy horizons or the fate of
singularities of the classical equations [17–20, 33]. While possible pathological behavior is
conjectured to be hidden behind horizons, questions remain concerning the effect of quantum
gravity on the near-horizon structure or even on horizons themselves: do horizons exist? Are
the objects we observe really BHs, or are they extreme (and exotic) compact objects (ECOs)
which mimic the BH behaviour? GW astronomy can have an important role in this matter,
by constraining the existence of “echoes” produced in the last stage of the formation of a
BH mimicker, or assessing the tidal properties of the coalescing compact objects [33, 68–79].
Chapter 7 is entirely dedicated to the generation of GWs from these compact sources.
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Alternative theories

The collection of unexplained problems in the universe, as the nature of dark energy and
dark matter (DM) (see also below), makes theories which modify or expand GR important
on their own [80, 81]. Furthermore, the lack of a consistent theory of quantum gravity, that
might account, for example, for the aforementioned issues with the existence of singularities,
makes the search for alternatives both timely and interesting. Conversely, the astonishing
agreement between GR predictions and experimental observations has strongly constrained
the plausible alternative frameworks. Hence, in the next paragraphs of this Section we focus
on which might be suitable strategies to study alternative theories, that is, challenging GR.
In view of this, one may distinguish two ways to tackle the study of alternative theories.

On one side, tests of GR and its alternatives are based on the capability to constrain the
parameters of each theory with the highest precision. In order to be sensitive to such small
deviations, one needs to compute the gravitational waveforms using the full framework of
an alternative theory. To study GW generation in modified gravity, a thorough study of
the properties of the theory is needed, namely, carrying out a spacetime decomposition (e.g.
3+1) [82–86], understanding if the theory is well-posed and constructing physically motivated
initial data. Notably, this program has been carried out for only a few theories [87–95]. Then,
one may perform the time evolution of relevant physical systems and obtain GWs solving the
modified gravity evolution equations. Thus, having an expanded GWs catalogue, the network
of GWs interferometers will allow for precision tests of the promising alternative, making
the search for new physics also possible [24, 33, 96–99]. Additionally, some modified theory
allows also for the presence of ECOs. As already mentioned, having accurate waveforms
from such bodies would prove to be useful in the procedure of match filtering between the
GW observations and a future, extended, GWs catalogue (see Chapter 7).

On the other side, tests of gravity comprise also smoking guns for new physics: unique
predictions of an alternative theory. Thanks to such peculiar phenomena, one may therefore
discriminate between GR and its competitors. In view of this, it is crucial to search for such
distinctive mechanisms in the GW signals produced by compact bodies [59, 96, 100–102].
If a compact object in an alternative theory differs from its GR counterpart, it might
give rise to valuable smoking guns for the modified model. Hence, given the important
role that BHs possess in different theories of gravitation, it might be useful to introduce
the no-hair conjecture and no-hair theorems now. With no-hair conjecture it is usually
meant that BHs cannot be described by any number other than their mass, electric charge
and angular momentum. This conjecture is directly motivated by the above-mentioned
uniqueness theorems by Israel and Hawking [62, 63] (see the Kerr hypothesis above). Any
other charge that might describe a BH spacetime is called hair, and the no-hair conjecture
can be summarized with the sentence: “BHs have no-hair” [103, 104].

In alternative theories possessing extra scalar degree-of-freedom, as Brans-Dicke or Bergmann-
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Wagoner scalar-tensor gravity [96, 105], the no-hair conjecture has been proved, giving rise
to the so-called no-scalar hair theorems [106–113]. These theorems state that, if the scalar is
time-independent, BH solutions in scalar-tensor theories are the same as those in GR: the
scalar must be trivial and the spacetime it is described by known BH solutions in GR (i.e.
the Kerr metric). Overcoming these theorems is possible, if one relaxes one or more of its
assumptions. Considering for instance an oscillating time-dependent complex scalar field
in a Kerr spacetime may lead to BHs with non-trivial scalar hair [114]. Furthermore, it is
also possible to have BH solutions that differ from GR ones, but that are still described
only by their mass and angular momentum. In this case, one commonly refers to hair of the
second kind, that are not associated with extra charges, but are non-trivial functions of the
BH’s general relativistic parameters (e.g. the BH mass). In the context of more complicated
alternative theories, with extra couplings between the scalar and the gravitational sector for
example, one or more of the hypothesis of no-scalar hair theorems might fall. Once again,
evading such no-go results might produce BH solutions with non-trivial hair. One example of
those occurs in theories that allow BHs with non-trivial scalar charges through a mechanism
called spontaneous scalarization [115–125]. One interesting aspect of such solutions, that
motivates part of this thesis, resides in the possibility of having new and interesting dynamics
in binary systems, when compact objects encompass new charges (or hair).

Historically, spontaneous scalarization arose in the framework of scalar-tensor theories, when
a new fundamental scalar degree-of-freedom couples with gravity with strength parametrized
by a coupling constant β (the nature of the coupling itself might differ between alternative
theories). For certain coupling strengths β one finds static solutions in scalar-tensor theory
with a trivial scalar, equivalent to those of GR, which are also stable. However, there are
couplings for which a GR solution is unstable and triggers a “tachyonic” instability, leading
to stars with non-trivial charges. These compact stars are said to be scalarized [126]. The
possibility to “awake” a new fundamental field is a valuable smoking gun for these alternative
theories, as it leads, for example, to dipolar emission of radiation. Due to its non-perturbative
nature, spontaneous scalarization of NSs avoids the strong constraints set by solar system
experiments, established in the regime where the gravitational forces are relatively close to
the Newtonian ones [127, 128]. Stringent constraints on spontaneous scalarization of NSs
in massless scalar-tensor theories arise from pulsar timing [96, 129]. For massive scalars
instead the constraints become weaker. In fact, in this case NS binary systems radiate
only when each component of the binary is close enough to interact with the scalar field
of the companion [128], becoming more important closer to the merger. If the field is too
massive the scalar is never excited. Let us stress that the above constraints uses NSs systems.
Binaries containing only BHs cannot be used to test dipolar scalar radiation in scalar-tensor
gravity because of the no-hair theorem applying in those theories (see discussion above).
However, a similar scalarization mechanism might also happen in vacuum BH spacetimes,
when non-trivial coupling between the scalar and the curvature are present [115, 116]. Hence,
a search for a non-trivial scalar charges in BH binaries might also be performed in the near
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future. In this case, constraints on BH charges in modified gravity might arise directly from
GW observations, when there will be the proper numerics to model GWs generated by BHs
in alternative theories (see [95] for instance).

Scalarization phenomena may occur also for vector, tensor and spinor fields [6, 130–136]. In
theories including a vector field, like the Einstein-Maxwell theory, a massless vector field is
embedded in curved spacetime through the standard “comma-goes-to-semicolon” rule [137],
but there are endless other possibilities. Ultimately, it is up to the observations to determine
the appropriate description. For instance, in a simple and elegant extension proposed by
Hellings-Nordtvedt [138], a non-minimal coupling between the curvature and the vector field
is introduced. The consequences on the structure of compact stars of such new coupling are
discussed in Chapter 9 where spontaneously vectorized stars are shown in detail.

Furthermore, scalar instabilities may also happen in compact binary spacetimes. Hence,
these mechanisms may provide distinctive observables during the inspiral of compact objects.
As an example, Chapter 8 describes scalar perturbations of binaries in theories of gravity
with a new fundamental scalar degree-of-freedom. The chosen model is Einstein-scalar-Gauss-
Bonnet gravity (EsGB), which admits the Schwarzschild geometry as well as BHs with scalar
hair as solutions. Accordingly, scalar perturbations grow unbounded around binary systems.
This “dynamical scalarization” process is easier to trigger: it occurs at lower values of the
coupling constant of the theory, compared to the corresponding process for isolated BHs.
These results emphasize the importance of having waveforms for BH binaries in alternative
theories, in order to consistently perform tests beyond GR.

Dark matter

One of the greatest open problem in Physics regards the nature and properties of DM. The
term DM commonly refers to an hypothetical form of matter that should account for roughly
27% of the total mass–energy density present in the universe. The extraordinary role that DM
played in shaping the cosmos, providing the proper condition for the formation of structures
for instance, makes the search for its unknown character of rare importance. Furthermore,
since this unknown form of matter interacts only gravitationally with the environment,
gaining insight into DM physics offers a unique opportunity to test the fundamental laws of
gravitation.

The theoretical existence of DM has a long history, that notably started with Lord Kelvin
and Henri Poincaré [139]. However, the first and most important evidences for the existence
of DM date back to the works of Zwicky in 1933 [140] and Rubin and Ford in 1970 [141]. The
former studied the dispersion velocities of the galaxies forming the Coma cluster. Assuming
an average mass of ∼ 109M� per galaxy, Zwicky computed their average kinetic energy and
their typical velocity dispersion. Then, estimating the cluster mass based only on the visible
matter content, he concluded that the total mass was not enough to keep the cluster bound
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together; the presence of extra dark mass was necessary to match the observed data. The
latter instead used the the rotation curve of galaxies to highlight the ubiquitous presence of
DM. Specifically, computing the circular velocity profile of stars and gas as a function of
their distance from the galactic center, they found a discrepancy between expected values
(computed again only through visible masses) and the observed ones. Despite the lack of a
model describing the DM composition, these seminal works firmly consolidated its existence
as a necessary aspect of the universe.

Nowadays, the most accredited model for DM is the cold DM model (CDM), that requires non-
relativistic velocities for its constituents. Through the last century, a number of candidates
were proposed to explain the nature of CDM. Among others, one may find weakly interacting
massive particles (WIMPs), massive compact halo objects (MACHOs), axions etc. [142].
Each of those successfully described at least some of the observational evidences required
to be a DM candidate, as, for instance, accounting for the observed power spectrum of the
cosmic microwave background (CMB) [143], or the large-scale structure of the universe.
Conversely, none of the current model containing massive particles, of both baryonic or
non-baryonic origin, successfully describes what happens at the scale of a galaxy or less
∼ 1kpc, being in most cases inconsistent with observations. For instance, the discrepancy
between the number density of galaxies and the the predicted number density of DM haloes,
the expected DM density cusps in the centers of galaxies, or the weakness of dynamical
friction in dwarf galaxies are example of such small-scale issues [144].

Supported by the observational evidence of the existence of the Higgs boson [145] (the
first scalar particle ever detected) and inspired by axion-like particles, in which massive
scalars were introduced to solve the strong CP violation present in quantum chromodynamics
(QCD) [146], models of DM comprising an ultralight scalar field increased their popularity
in the last decades [60, 147–151]. The scalar mass in these models is of the order of 10−22eV.
The fundamental underlying reason for the choice of such small mass (compare to the
usual scale of particle masses in the Standard Model) resides in having a typical de Broglie
wavelength comparable with (sub-)galactic scales

λdeBroglie
2π ∼ 1.9 kpc

(
10−22eV

µ

)(
10 km s−1

v

)
. (1.1)

Remarkably, thanks to this typical length-scale, that gives them the name fuzzy DM
models [152], such DM configurations can explain the large-scale structure of the universe,
as well as account for some of the above-mentioned small-scale open issues of particle-like
CDM models [60, 153–155].

In Part I of this thesis the possibility of having scalar particles as one of the constituent of
DM is thoroughly analyzed. Using a theory of a scalar field in flat space as a starting point,
it can be shown that localized time-independent solutions cannot exist [156]. This powerful
result limits the ability of fundamental scalars to describe possible novel objects where the
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scalar is confined (see also the no-hair paragraph above). A promising way to circumvent
such no-go result is to consider time-dependent fields. Within this more general framework,
it can be shown that BHs can stimulate the growth of structures in their vicinities [59, 114],
and that new self-gravitating solutions are possible. Such objects can describe dark stars
which have so far gone undetected [24, 33, 157, 158]. Surprisingly, the simplest solution of
this kind also seems to be a good description of structures we know to exist: dark matter
cores in haloes. As argued above, these fuzzy DM models require ultralight bosonic fields,
of which the axion is a prototypical example, or generalizations thereof, such as axion-like
particles [142, 159], ubiquitous in string-inspired scenarios [160, 161]. Remarkably, these
boson condesates provide a natural alternative to the standard structure formation through
DM seeds and to the cold DM paradigm. A similar, albeit much wider, phenomenology
arises in models of ultralight vector fields, such as dark photons, that are also a generic
prediction of string theory [162].

The core of these scalar DM haloes is also called Newtonian boson star (NBS). The study of
the dynamics of such objects is interesting for a number of reasons. As DM candidates, it is
important to understand the stability of such configurations, and the way they interact with
surrounding bodies (stars, BHs, etc) [55, 163]. For example, the mere presence of a star or
planet might change the local DM density. The motion of a compact binary can, in principle,
stir the surrounding DM to such an extent that a substantial emission of scalars takes place.
When a star crosses one of these extended bosonic configurations, it may change its properties
to the extent that the configuration simply collapses or disperses; in the eventuality that it
settles down to a new configuration, it is important to understand the timescales involved.

Understanding the behavior of DM when moving perturbers drift by, or when a binary
inspirals within a DM medium, is fundamental for attempting to detect DM via GWs. In
the presence of a non-trivial environment accretion, gravitational drag and the self-gravity
of the medium all contribute to a small, but potentially observable, change of the GW
phase [55, 56, 58, 164–167]. Understanding the backreaction on the environment seems to
be one crucial ingredient in this endeavour [167].

Plan of the thesis

For the sake of clarity, the structure of this manuscript is summarized as follows.

Part I is entirely dedicated to the study of a promising DM candidate: ultralight scalar
fields. Chapters 2 and 3 describe the theoretical framework needed to introduce and study
NBSs and their excitations. The perturbative scheme to compute sourceless and sourced
perturbations is outlined. The Quasi Normal Modes (QNMs) of such structures are also
shown. Chapter 4 examines a number of cases in which perturbers are placed statically or in
motion inside NBS. Scalar fluxes due to BHs oscillating or binaries orbiting inside NBSs are
computed. Effects on the GWs generation are also discussed.
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In Part II various aspects of the GWs generation and propagation are considered. Chapter 6
shows the effects of the scattering between a GW and an intersecting binary system. The
cross section for such events is also computed for the first time. Results from this Chapter
show that, given the current values of the population of compact objects in the universe, the
GWs emitted from distant sources will not suffer modifications due to scattering processes
with binaries during their propagation. In Chapter 7, a generalization of the Close Limit
Approximation (CLAP) is developed. Notably, approximate waveforms from head-on collision
of ECOs are shown for the first time. An analysis of the QNMs of binary BHs is also provided.

Finally, Part III investigates instability mechanisms in alternative theories. These processes
can be treated both at a linear and a non-linear level. Chapter 8 focuses on linear scalar
instabilities in EsGB, using the generalized CLAP formalism developed in Chapter 7. Results
therein highlight the fundamental role of the non-trivial interactions during the collision
of compact objects. Chapter 9 deals instead with instabilities arising from a simple non-
minimally coupled vector-tensor theory. A linear analysis shows the onset of such unstable
processes, while a non-linear analysis delineates the outcome of the instability: vectorized
NSs.

Unless otherwise stated, geometrized units, where G = c = 1, are used (i.e. energy and time
have units of length). A (−,+,+,+) convention for the spacetime metric is also employed.
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In this first Chapter of Part I we start by describing the framework of theories that lead to
scalar-made objects.

We consider two different theories of scalar fields, yielding localized objects with a static
energy-density profile, but with a time-periodic scalar. The first theory describes a self-
gravitating massive scalar, and the resulting objects are known as boson stars [168–170].
In the limit of weak gravitational fields, these bodies reduce to the so-called Newtonian
boson stars. These are objects made of very light fields (in particular, bosons with a
mass ∼ 10−22 eV), and describe very well most cores of DM haloes [60, 152, 171, 172].

The second theory describes a non-linearly-interacting scalar in flat space, yielding solutions
known as Q-balls: non-topological solitons which arise in a large family of field theories
admitting a conserved charge Q, associated with some continuous internal symmetry [173].
Q-balls are not particularly well motivated as a DM candidate, but serve as an additional
example of a scalar configuration to which our formalism can be directly applied. For this
reason, a detailed treatment of such objects is given in Appendix A.

After describing how to build scalar field structures, we focus on the computation of the
physical quantities that describe the dynamics of small perturbations evolving on a scalar
field configurations. For instance, being interested in evaluating the effects that a scalar
environment might cause on binaries orbiting inside them, in Sec. 2.3 we illustrate how to
compute the energy emitted at spatial infinity during such processes. This total flux of
energy, in general, contains contribution both from the background and from the particles
in motion into it. Hence, in Sec. 2.4 we show how to extract solely the energy lost by
the perturbers during such interaction. This might be especially interesting in light of the
computation of the dynamical friction effects that occurs in these environments [60].

13
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2.1 The theory

We start considering a general U(1)-invariant, self-interacting, complex scalar field Φ(xµ)
minimally coupled to gravity described by the action

S ≡
∫
d4x
√
−g

(
R

16π −
1
2g

µν∂µΦ∂νΦ∗ − U
)
, (2.1)

where R is the Ricci scalar of the spacetime metric gµν , g ≡ det(gµν) is the metric determinant,
and U(|Φ|2) is a real-valued, U(1)-invariant, self-interaction potential. For a weak scalar
field |Φ| � 1, the self-interaction potential is U ∼ µ2|Φ|2/2 +O(|Φ|4), where µ is the scalar
field mass. By virtue of Noether’s theorem, this theory admits the conserved current

jµ = − i2 (Φ∗∂µΦ− Φ∂µΦ∗) , (2.2)

and the associated conserved charge

Q = −
∫
d3x
√
h jt , (2.3)

where the last integration is performed over a spacelike hypersurface of constant time
coordinate t, with h ≡ det(gµν) the determinant of the induced metric hµν = gµν − δ0

µδ
0
ν . We

shall interpret this charge as the number of bosonic particles in the system.

The scalar field stress-energy tensor is given by

TSµν = ∂(µΦ∗∂ν)Φ−
1
2gµν

(
∂αΦ∗∂αΦ + 2U(|Φ|2)

)
, (2.4)

and its energy within some spatial region at an instant t is

E =
∫
d3x
√
hTStt . (2.5)

2.2 The objects

We are interested in spherically symmetric, time-periodic, localized solutions of the field
equations. These will be describing, for example, new DM stars or the core of DM halos.
We take the following ansatz for the scalar in such a configuration,

Φ0 = Ψ0(r)e−iΩt , (2.6)

where Ψ0 is a real-function satisfying

∂rΨ0(0) = 0 and lim
r→∞

Ψ0 = 0 . (2.7)
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Our primary target are self-gravitating solutions. When gravity is included, a simple
minimally coupled massive field is able to self-gravitate. Thus, we consider minimal boson
stars – self-gravitating configurations of scalar field in curved spacetime with a simple mass
term potential

UNBS = µ2

2 |Φ|
2 . (2.8)

In this manuscript we restrict to the Newtonian limit of these objects, where gravity is not
very strong. However, many of the technical issues of dealing with NBS are present as well in
a simple theory in Minkowski background. Thus, we will also consider Q-balls [173]: objects
made of a non-linearly-interacting scalar field in flat space. For these objects, we use the
Minkowski spacetime metric ηµν and restrict to the class of non-linear potentials

UQ = µ2

2 |Φ|
2
(

1− |Φ|
2

Φ2
c

)2

, (2.9)

where Φc is a real free parameter of the theory. See Appendix A for details about these
objects.

What we are ultimately interested to is not in the objects per se, but rather on their dynamical
response to external agents. The response to external perturbers is taken into account, by
linearizing against the spherically symmetric, stationary background,

Φ = [Ψ0(r) + δΨ(t, r, θ, ϕ)] e−iΩt , (2.10)

with the assumption |δΨ| � 1, where Ψ0 is the radial profile of the unperturbed object, and
θ and ϕ are coordinates used to parametrize the 2-sphere. Then, the perturbation δΨ allows
us to obtain all the physical quantities of interest, like the modes of vibration of the object,
and the energy, linear and angular momenta radiated in a given process. This approach
has a range of validity, |δΨ| � 1, which can be controlled by selecting the perturber. As
we show below, δΨ ∝ mpµ, where mp is the rest mass or a mass-related parameter of the
external perturber. Since our results scale simply with mp, it is always possible to find an
external source whose induced dynamics always fall in our perturbative scheme.

For a generic point-like perturber, the stress-energy tensor is given by

Tµνp = mp
uµuν

u0
δ (r − rp(t))

r2
δ (θ − θp(t))

sin θ δ (ϕ− ϕp(t)) , (2.11)

where uµ ≡ dxµp/dτ is the perturber’s 4-velocity and xµp (t) = (t, rp(t), θp(t), ϕp(t)) a
parametrization of its worldline in spherical coordinates.
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2.3 The gross fluxes

The energy, linear and angular momenta contained in the radiated scalar can be obtained by
computing the flux of certain currents through a 2-sphere at infinity. These currents are
derived from the stress-energy tensor of the scalar (Eq. (2.4)). A detailed computation of the
above quantities is crucial to understand how small perturbations propagate inside and outside
scalar structures. For instance, a massive BH moving inside a scalar environment might
emit radiation in the form of scalar waves, because its mass can source scalar perturbations
on the background (see Sec. 3.2.3). To quantify such effects, we evaluate the flux of energy
emitted during the BH motion, that reaches an observer at spatial infinity.

First, we decompose the fluctuations as

δΨ =
∑
l,m

∫
dω√
2πr

[
Zωlm1 Y m

l e−iωt +
(
Zωlm2

)∗
(Y m
l )∗ eiωt

]
, (2.12)

where Y m
l (θ, ϕ) is the spherical harmonic function of degree l and order m, and Z1(r) and

Z2(r) are radial complex-functions. It should be noted that Z1 and Z2 are not linearly
independent. In particular, for the setups considered in this work, we find Z1(ω, l,m; r) =
(−1)mZ2(−ω, l,−m; r)∗. However, for generality, we do not impose any constraint on the
relation between these functions at this stage. The decomposition in Eq. 2.12 can be also
written in the equivalent form

δΨ =
∑
l,m

∫
dω√
2πr

Y m
l e−iωt [Z1(ω, l,m; r) + (−1)mZ2(−ω, l,−m; r)∗] . (2.13)

Unless strictly needed, we omit the labels ω, l and m in the functions Zωlm1 (r) and Zωlm2 (r)
to simplify the notation. For a source vanishing at spatial infinity, we will see that one has
the asymptotic fields

Z1(r →∞) ∼ Z∞1 e
iε1

(√
(ω+Ω)2−µ2

)
r
,

Z2(r →∞) ∼ Z∞2 e
iε2

(√
(ω−Ω)2−µ2

)∗
r
, (2.14)

where ε1 ≡ sign(ω+Ω+µ) and ε2 ≡ sign(ω−Ω−µ), and Z∞1 and Z∞2 are complex amplitudes
which depend on the source. We choose the signs ε1 and ε2 to enforce the Sommerfeld
radiation condition at large distances. By Sommerfeld condition we mean either: (i) outgoing
group velocity for propagating frequencies; or, (ii) regularity for bounded frequencies.

Scalar field fluctuations cause a perturbation to its stress-energy tensor, which, at leading
order and asymptotically, is given by

δTSµν(r →∞) ∼ ∂(µδΦ∗∂ν)δΦ−
1
2ηµν

[
∂αδΦ∗∂αδΦ + µ2|δΦ|2

]
, (2.15)
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with δΦ ≡ e−iΩtδΨ. Then, the outgoing flux of energy at an instant t through a 2-sphere at
infinity is given by

Ėrad = lim
r→∞

r2
∫
dθdϕ sin θ δTSrµξ

µ
t , (2.16)

with the timelike Killing vector field ξt = −∂t. Plugging the asymptotic fields (2.14) in the
last expression, it is straightforward to show that the total energy radiated with frequency
in the range between ω and ω + dω is

dErad

dω
= |ω + Ω|Re

[√
(ω + Ω)2 − µ2

]∑
l,m

|Z∞1 (ω, l,m) + (−1)mZ∞2 (−ω, l,−m)∗|2 .

(2.17)
In deriving the last expression we considered a process in which the small perturber interacts
with the background configuration during a finite amount of time. In the case of a (eternal)
periodic interaction (e.g., small particle orbiting the scalar configuration) the energy radiated
is not finite. However, we can compute the average rate of energy emission in such processes,
obtaining

Ėrad =
∫
dω

2π |ω + Ω|Re
[√

(ω + Ω)2 − µ2
]∑
l,m

|Z∞1 (ω, l,m) + (−1)mZ∞2 (−ω, l,−m)∗|2 .

(2.18)
The last expression must be used in a formal way, because, as we will see, the amplitudes Z∞1
and Z∞2 contain Dirac delta functions in frequency ω. The correct way to proceed is to
substitute the product of compatible delta functions by just one of them, and the incompatible
by zero. 1

The (outgoing) flux of linear momentum at instant t is

Ṗ rad
i = lim

r→∞
r2
∫
dθdϕ sin θ δTSrµe

µ
i , (2.19)

with i = {x, y, z} and where ex, ey, ez are unit spacelike vectors in the x, y, z directions,
respectively. These are given by

ex = sin θ cosϕ er + cos θ cosϕ
r

eθ −
sinϕ
r sin θ eϕ ,

ey = sin θ sinϕ er + cos θ sinϕ
r

eθ + cosϕ
r sin θ eϕ ,

ez = cos θ er −
sin θ
r
eθ ,

with eµr = δµr , e
µ
θ = δµθ and eµϕ = δµϕ in spherical coordinates. For an axially symmetric

process there are only modes with azimuthal number m = 0 composing the scalar field
fluctuation (2.12). In that case, using the asymptotic fields (2.14), we can show that the

1It is easy to do a more rigorous derivation applying the formalism directly to a specific process. For
generality, we let (2.18) as it is.
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total linear momentum radiated along z with frequency in the range between ω and ω + dω

is

dP rad
z

dω
=
∑
l

2(l + 1)Θ
[
(ω + Ω)2 − µ2

] ∣∣(ω + Ω)2 − µ2∣∣√
(2l + 1)(2l + 3)

[Λ11(ω, l) + 2Λ12(ω, l) + Λ22(ω, l)] ,

(2.20)
where Θ(x) is the Heaviside step function and we defined the functions

Λ11(ω, l) ≡ Re
[
Z∞1 (ω, l, 0)Z∞1 (ω, l + 1, 0)∗

]
,

Λ12(ω, l) ≡ Re
[
Z∞1 (ω, l, 0)Z∞2 (−ω, l + 1, 0)

]
,

Λ22(ω, l) ≡ Re
[
Z∞2 (−ω, l + 1, 0)Z∞2 (−ω, l, 0)∗

]
.

Additionally, it is possible to show that no linear momentum is radiated along x and y in an
axially symmetric process.

Finally, the outgoing flux of angular momentum along z at instant t is

L̇rad
z = lim

r→∞
r2
∫
dθdϕ sin θ δTSrµeµϕ , (2.21)

with the spacelike Killing vector eϕ. Plugging the asymptotic fields (2.14) in the last
expression, it can be shown that the total angular momentum along z radiated with frequency
in the range between ω and ω + dω is

dLrad
z

dω
= Re

[√
(ω + Ω)2 − µ2

]∑
l,m

m |Z∞1 (ω, l,m) + (−1)mZ∞2 (−ω, l,−m)∗|2 . (2.22)

In the case of a periodic interaction, the angular momentum along z is radiated at a rate
given by

L̇rad
z =

∫
dω

2π Re
[√

(ω + Ω)2 − µ2
]∑
l,m

m |Z∞1 (ω, l,m) + (−1)mZ∞2 (−ω, l,−m)∗|2 . (2.23)

We can also compute how many scalar particles cross the 2-sphere at infinity per unit of
time. This is obtained by

Q̇rad = lim
r→∞

r2
∫
dθdϕ sin θ δjr , (2.24)

with
δjr(r →∞) ∼ Im (δΦ∗∂rδΦ) , (2.25)

at leading order. Using the asymptotic fields (2.14), we can show that the number of particles
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radiated in the range between ω and ω + dω is

dQrad

dω
= ε1Re

[√
(ω + Ω)2 − µ2

]∑
l,m

|Z∞1 (ω, l,m) + (−1)mZ∞2 (−ω, l,−m)∗|2 . (2.26)

This gives us a simple interpretation for expressions (2.17) and (2.22). The spectral flux of
energy is just the product between the spectral flux of particles and their individual energy
Ω + ω; similarly, the spectral flux of angular momentum matches the number of particles
radiated with azimuthal number m times their individual angular momentum – which is
also m. For a periodic interaction, scalar particles are radiated at an average rate

Q̇rad =
∫
dω

2π Re
[√

(ω + Ω)2 − µ2
]∑
l,m

|Z∞1 (ω, l,m) + (−1)mZ∞2 (−ω, l,−m)∗|2 . (2.27)

2.4 The perturber’s fluxes

One may wonder what is the relation between the radiated fluxes and the energy and
momenta lost by the massive perturber (Elost, P lost

z , Llost
z ). Noting that both the energy and

momenta of the scalar configuration may change due to the interaction, by conservation of
the total energy and momenta we know that

Elost = ∆E + Erad, P lost
z = ∆Pz + P rad

z , Llost
z = ∆Lz + Lrad

z , (2.28)

where ∆E, ∆Pz and ∆Lz are the changes in the energy and momenta of the configuration.
So, if we have the radiated fluxes, determining the energy and momenta loss reduces to
computing the change in the respective quantities of the scalar configuration.

In a perturbation scheme it is hard to aim at a direct calculation of these changes, because in
general they include second order fluctuations of the scalar – terms mixing Φ0 with δ2Φ; this
does not concern the radiated fluxes, since Φ0 is suppressed at infinity. However, for certain
setups we can compute indirectly the change in the configuration’s energy ∆E. Let us see
an example. An object interacting with the scalar only through gravitation is described by
a U(1)-invariant action; so, Noether’s theorem implies that

∇µ δjµ = 0 , (2.29)

with
δjµ = Im

(
δΦ∗∂µδΦ + Φ∗0∂µδ2Φ + δ2Φ∗∂µΦ0

)
. (2.30)

One may have noticed that we are neglecting the lower order perturbation

δjµ = Im (Φ∗0∂µδΦ + δΦ∗∂µΦ0) , (2.31)
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however, this current does not contribute to a change in the number of particles in the
configuration ∆Q, because it is suppressed at large distances by the factor Φ0 (and its
derivatives). In (2.30) we are also omitting the terms involving only Φ0, since it is easy to
show that they are static and, so, do not contribute to ∆Q. Using the divergence theorem,
we obtain that the number of particles is conserved,

∆Q = −
∫
t=+∞

d3x
√
h δjt +

∫
t=−∞

d3x
√
h δjt = −Qrad , (2.32)

which means that the number of particles lost by the configuration matches the number
of radiated particles – no scalar particles are created. If, additionally, we can express the
change in the configuration’s mass in terms of the change in the number of particles – as (we
will show) it happens for NBS – we are able to compute ∆M from the number of radiated
particles Qrad; so, we obtain the energy loss of the perturber Elost using only radiated fluxes.
The loss of momenta P lost

z and Llost
z can, then, be obtained through the energy-momenta

relations; for example, a non-relativistic perturber moving along z satisfies

Elost =
(mpvi)2 −

(
mpvi − P lost

z

)2

2mp
= P lost

z vi −
(P lost

z )2

2mp
, (2.33)

where vi is the initial velocity along z. Finally, we can compute the change in the scalar
configuration momenta ∆Pz and ∆Lz using (2.28).

The conservation of the number of particles (i.e, Noether’s theorem) plays a key role in our
scheme; it allows us to compute the change in the number of particles – a quantity that
involves the second order fluctuation δ2Φ – using only the first order fluctuation δΦ. When
the perturber couples directly with the scalar via a scalar interaction that breaks the U(1)
symmetry – like the coupling in (A.10) – the number of scalar particles is not conserved; the
perturber can create and absorb particles. In that case, our scheme fails and it is not obvious
how to circumvent this issue to calculate of ∆M . In Section 3.2 we apply explicitly the
scheme described above to compute the energy and momentum loss of an object perturbing
an NBS (e.g. a plunging BH) from the radiation that reaches infinity.
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In the first part of this Chapter we show how to get self-gravitating objects in theories with
a minimally coupled massive field (Eq. (2.1)), or even with higher order interactions, but
taken at the Newtonian level. In the second part, perturbation theory techniques are applied
to obtain, and solve, the dynamical perturbation equations induced by external perturbers
in such scalar environments (e.g. orbiting binaries or plunging BHs).

The resulting NBSs have been studied for decades, either as BH mimickers, as toy models
for more complicated exotica that could exist, or as realistic configurations that can describe
DM [168–170]. In the context of fuzzy DM models, structure formation is enhanced by
haloes of condensed ultra scalar field (µ ∼ 10−22eV) [174], whose core can be model with an
NBS [175]. Notably, the smallness of the scalar mass helps overcoming some of the relevant
open problems appearing within massive particle-like cold DM models, as the absence of a
DM cusp at the center of galaxies, or the unexplained small number of small mass DM haloes
(< 107M�) [152]. Additionally, current cosmological observations regarding the large-scale
structure of the universe remain unchanged within fuzzy DM models [176, 177].

DM haloes are large objects whose compactness are typically orders of magnitude smaller
than the ones of BHs or NSs. As an example, NBSs, that should account only for the core
of such haloes, have compactness M/R ∼ 10−5 (in geometrized units). This compactnesses
already indicate that these objects might not need a full GR formalism to be described.
Furthermore, given their typical large mass (Mhalo ∼ 1010M�), the motion of BHs or stars
inside DM haloes can be easily treated through perturbation theory, since their mass ratio
can be considered of the order MBH/Mhalo . 10−4, assuming known supermassive BH

21
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Figure 3.1: Universal radial profiles Ψ(r) and U(r) of the numerical solution of system (3.6)
with appropriate boundary conditions. Due to the scaling (3.7), this profile describes
all the fundamental NBSs. They are characterized by the re-scaling invariant quantity
γ/(M2

NBSµ
3) ' 0.162712 and the mass-radius relation (3.11).

masses [178]. Moreover, as it will be shown quantitatively in the next Section, the equations
describing such scalar configurations possess a scale invariance that simplifies enormously
the computation. In fact, once obtained the results for one specific configuration, we can
rescale them to obtain results for the entire space of NBS configurations.

3.1 Background configurations

The field equations for Φ and gµν are obtained through the variation of action (2.1) with
respect to Φ∗ and gµν , resulting in

1√
−g

∂µ
(√
−ggµν∂νΦ

)
= µ2Φ ,

Rµν −
1
2Rgµν = 8πTSµν . (3.1)

Here, we are already using that U ∼ µ2 |Φ|2 /2, since we want to consider a (Newtonian)
weak scalar field |Φ| � 1. The stress-energy tensor of the scalar TSµν is given in Eq. (2.4).
We are interested in localized solutions of this model with a scalar field of the form (2.6),
with frequency

Ω = µ− γ . (3.2)

in the limit 0 < γ � µ. In this case, the energy Ω of the individual scalar particles forming
the NBS is approximately given by their rest-mass energy µ. In Appendix B we show that,
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using the Newtonian spacetime metric

ds2 = − (1 + 2U) dt2 + dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (3.3)

with a weak gravitational potential |U(r)| � 1, and retaining only the leading order terms,
the system (3.1) reduces to the simpler system

i∂tΦ̃ = − 1
2µ∇

2Φ̃ + µU Φ̃ ,

∇2U = 4πµ|Φ̃|2 , (3.4)

where the Schrödinger field Φ̃ is related with the Klein-Gordon field Φ through

Φ̃ ≡ √µ eiµtΦ . (3.5)

This is known as Schrödinger-Poisson (SP) system (see, e.g., Ref. [179]). To arrive at this
description, we assume that the scalar field Φ is non-relativistic, which implies |∂tΦ̃| � µ|Φ̃|.
Furthermore, using the ansatz (2.6) for the scalar field Φ, we find

∂2
rΨ + 2

r
∂rΨ− 2µ (µU + γ) Ψ = 0 ,

∂2
rU + 2

r
∂rU − 4πµ2Ψ2 = 0 , (3.6)

with the constraints 0 < γ � µ, |U | � 1 and |Ψ| � 1. Remarkably, this system is left
invariant under the transformation

(Ψ, U, γ)→ λ2(Ψ, U, γ), r → r/λ . (3.7)

These relations imply that the NBS mass scales as MNBS → λMNBS (see Eq. (3.9)). This
scale invariance is extremely useful, because it allows us to effectively ignore the constraints
on γ, U and Ψ when solving Eq. (3.6); one can always rescale the obtained solution with
a sufficiently small λ, such that the constraints (i.e., the Newtonian approximation) are
satisfied for the rescaled solution. Even more importantly is the fact that once a fundamental
ground state NBS solution is found, all other fundamental stars can be obtained through a
rescaling of that solution; obviously, the same applies to any other particular excited state.

A numerical solution of system (3.6) describing all fundamental NBSs, is summarized in
Fig. 3.1. The appropriate boundary conditions on Φ are stated in Sec. 2.2, while here we
also impose

∂rU(0) = 0 and lim
r→∞

U = 0 . (3.8)

It is possible to show that, at large distances, the scalar decays exponentially as Ψ ∼
e−
√

2µγr/r, whereas the Newtonian potential falls off as −MNBS/r. Noting that the mass of
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an NBS is given by
MNBS = 4πµ2

∫ ∞
0

dr r2 |Ψ|2 , (3.9)

a fundamental NBS satisfies,

MNBS
M�

' 3× 1012 λ

(
10−22 eV

µ

)
, (3.10)

with a scaling parameter λ, such that {Ψ, U, γ/µ} ∼ O(λ2). If one is interested in describing
a DM core of mass M ∼ 1010M�, this can be achieved then via a fundamental NBS made of
self-gravitating scalar particles of mass µ ∼ 10−22 eV, with a scaling parameter λ ∼ 10−2,
which satisfies the Newtonian constraints.

All the fundamental NBSs satisfy the scaling-invariant mass-radius relation

MNBSµ = 9.1
Rµ

, (3.11)

where the NBS radius (R) is defined as the radius of the sphere enclosing 98% of its mass.
This result agrees well with previous results in the literature [149, 170, 179–182]. Comparing
with some relevant scales, it can be written as

MNBS
M�

= 9× 109 100 pc
R

(
10−22 eV

µ

)2

. (3.12)

Accurate fits for the profile of the scalar wavefunction are provided in Ref. [183]. Unfortu-
nately, these fits are defined by branches, and similar results for the gravitational potential
are not discussed at length. We find that a good description of the gravitational potential of
NBSs, accurate to within 1% everywhere is the following:

U = µ2M2
NBSf , (3.13)

f =
a0 + 11a0

r1
x+

∑9
i=2 aix

i − x10

(x+ r1)11 , (3.14)

x = µ2MNBSr , r1 = 1.288 ,

a0 = −5.132 , a2 = −143.279 , a3 = −645.326 ,

a4 = 277.921 , a5 = −2024.838 , a6 = 476.702 ,

a7 = −549.051, a8 = −90.244 , a9 = −13.734 . (3.15)

The (cumbersome) functional form was chosen such that it yields the correct large-r behavior,
and the correct regular behavior at the NBS center. For the scalar field, we find the following
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1%-accurate expression inside the star,

Ψ = µ2M2
NBSg , (3.16)

g = e−0.570459x
∑8
i=0 bix

i + bfx
9.6

(x+ r2)9 , (3.17)

x = µ2MNBSr , r2 = 1.182 ,

b0 = 0.298 , b1 = 2.368 , b2 = 10.095 ,

b3 = 12.552 , b4 = 51.469 , b5 = −8.416 ,

b6 = 54.141, b7 = −6.167 , b8 = 8.089 ,

bf = 0.310 . (3.18)

Finally, for future reference, the number of particles contained in an NBS is

QNBS = 4πµ
∫ ∞

0
dr r2 |Ψ|2 , (3.19)

and, then, we can write the mass as MNBS = µQNBS.

3.2 Small perturbations

As shown in detail in Appendix B, small perturbations of the form (2.10) to the scalar field,
together with the NBS perturbed gravitational potential

U = U0(r) + δU(t, r, θ, ϕ) , (3.20)

satisfy the linearized system of equations

i∂tδΨ = − 1
2µ∇

2δΨ + (µU0 + γ) δΨ + µΨ0δU , (3.21)

∇2δU = 4π
[
µ2Ψ0 (δΨ + δΨ∗) + P

]
, (3.22)

where U0 is the gravitational potential of the unperturbed star, and we have included an
external point-like perturber

P ≡ mp
δ (r − rp(t))

r2
δ (θ − θp(t))

sin θ δ (ϕ− ϕp(t)) . (3.23)

The system (3.21)-(3.22) was obtained considering a non-relativistic external perturber. Note
in fact that P is just the non-relativistic limit of T ptt given in (2.11).

This system of equations was derived for non-relativistic fluctuations, which satisfy |∂tδΨ| �
µ|δΨ|, and are sourced by a non-relativistic, Newtonian perturber. To study the sourceless
case, we can simply set mp = 0. As shown in detail in Appendix B, the perturber couples to
the NBS through the total stress energy tensor entering Einstein’s equation in (3.1), which
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is taken to be the sum of the stress energy tensor of the scalar TSµν (given in Eq.(2.4)) and
of the perturber T pµν (given in Eq.(2.11)). We neglect the backreaction on the perturber’s
motion and treat its worldline as given.

Let us decompose the fluctuations of the scalar field as in (2.12), and the gravitational
potential and the source, respectively, as 1

δU =
∑
l,m

∫
dω√
2πr

[
uωlmY m

l e−iωt +
(
uωlm

)∗
(Y m
l )∗ eiωt

]
,

P =
∑
l,m

∫
dω√
2πr

[
pωlmY m

l e−iωt +
(
pωlm

)∗
(Y m
l )∗ eiωt

]
, (3.24)

where pωlm are radial complex-functions defined by

pωlm ≡ r

2
√

2π

∫
dtdθdϕ sin θ P (Y m

l )∗ eiωt . (3.25)

Hence, using Eqs. (2.12)-(3.24) in the system (3.21)-(3.22), we obtain the matrix equation

∂rX − VB(r)X = P , (3.26)

with the vector X ≡ (Z1, Z2, u, ∂rZ1, ∂rZ2, ∂ru)T , the matrix VB given by



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

V − 2µ(ω − γ) 0 2µ2Ψ0 0 0 0

0 V + 2µ(ω + γ) 2µ2Ψ0 0 0 0

4πµ2Ψ0 4πµ2Ψ0 V − 2µ2U0 0 0 0


.

with the radial potential defined as

V (r) ≡ l(l + 1)
r2 + 2µ2U0 , (3.27)

and the source term
P (r) ≡ (0, 0, 0, 0, 0, 4πp)T . (3.28)

Note that the condition of non-relativistic fluctuations translates, here, into the simple
inequality |ω| � µ.

As suitable boundary conditions to solve for the fluctuations, we require both regularity at

1Note that the perturbation δU must be real-valued. Again, we will omit the labels ω, l and m in the
functions uωlm(r) and pωlm(r) to simplify the notation.
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the origin,

X(r → 0) ∼
(
arl+1, brl+1, crl+1, a(l + 1)rl, b(l + 1)rl, c(l + 1)rl

)T
, (3.29)

with complex constants a, b and c, and the Sommerfeld radiation condition at infinity,

X(r →∞) ∼
(
Z∞1 eik1r, Z∞2 eik2r, u∞, ik1Z

∞
1 eik1r, ik2Z

∞
2 eik2r, 0

)T
, (3.30)

with

k1 ≡
√

2µ (ω − γ) , (3.31)

k2 ≡ −
(√
−2µ (ω + γ)

)∗
. (3.32)

In the last expression we are using the principal complex square root.

To calculate the fluctuations we will make use of the set of independent homogeneous
solutions {Z(1),Z(2),Z(3),Z(4),Z(5),Z(6)}, uniquely determined by

Z(1)(r → 0) ∼
(
rl+1, 0, 0, (l + 1)rl, 0, 0

)T
,

Z(2)(r → 0) ∼
(
0, rl+1, 0, 0, (l + 1)rl, 0

)T
,

Z(3)(r → 0) ∼
(
0, 0, rl+1, 0, 0, (l + 1)rl

)T
,

Z(4)(r →∞) ∼
(
eik1r, 0, 0, ik1e

ik1r, 0, 0
)T

,

Z(5)(r →∞) ∼
(
0, eik2r, 0, 0, ik2e

ik2r, 0
)T

,

Z(6)(r →∞) ∼
(
0, 0, u∞, 0, 0, 0

)T
. (3.33)

Then, the matrix
F (r) ≡

(
Z(1),Z(2),Z(3),Z(4),Z(5),Z(6)

)
(3.34)

is known as the fundamental matrix of the system (3.26). Notably, the determinant of F is
independent of r.

The constancy of the fundamental matrix determinant

Consider a first-order matrix ordinary differential equation

dX(r)
dr

− V (r)X(r) = 0 , (3.35)

with X a N -dimensional vector and V a N × N matrix. A fundamental matrix of this
system is a matrix of the form F (r) ≡

(
X(1), ...,X(N)

)
, where {X(1), ...,X(N)} is a set

of N independent solutions of Eq. (3.35). The determinant of this N ×N matrix can be
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written as
detF (r) = εi1 ... iNX1

(i1) ... X
N
(iN ) ,

where ε is the Levi-Civita symbol, and Xj
(k) is the j-th component of the vector X(k). Using

Eq. (3.35) it is easy to see that

d

dr
detF =

N∑
k=1

εi1 ... iNV k
j X

1
(i1) ... X

j
(ik) ... X

N
(iN ) . (3.36)

Using the relation
εi1 ... iN X1

(i1) ... X
j
(ik) ... X

N
(iN ) = δjk detF , (3.37)

we get
d

dr
detF = Tr(V ) detF . (3.38)

If the trace Tr(V ) ≡ V k
k is identically zero (which is always the case in this work), the

determinant of the fundamental matrix is constant.

Finally, note that system (3.26) is invariant under the re-scaling

(U0,Ψ0, γ, ω)→ λ2(U0,Ψ0, γ, ω) , r → r/λ , (3.39)

and, so, it can always be pushed into obeying the non-relativistic constraint. Additionally,
for convenience, we impose that δΨ and δU are left invariant by the re-scaling, by performing
the extra transformation

(Z1,2, u)→ λ−3(Z1,2, u) , mp → λ−1mp . (3.40)

For a process happening during a finite amount of time the change in the NBS energy is, at
leading order,

∆ENBS = −
∫
t=+∞

d3x
√
h δTStt +

∫
t=−∞

d3x
√
h δTStt

= µ∆QNBS , (3.41)

since, at leading order,

δTStt = µ2
(
|δΨ|2 + 2Ψ0Re(δ2Ψ)

)
= µ δjt , (3.42)

where δ2Ψ is a second order fluctuation of the scalar and we used (2.30) for the second
equality.
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3.2.1 Validity of perturbation scheme

The perturbative scheme requires that |δΨ| � 1, which can always be enforced by making mp

as small as necessary. On the other hand, the background construction neglects higher-order
post-Newtonian (PN) contributions. A self-consistent perturbative expansion requires that
such neglected terms (of order ∼ U2

0 ) do not affect the dynamics of small fluctuations (of
order ∼ δU). This imposes mp & 104M�

(
MNBS

1010M�

)3 ( µ
10−22 eV

)2
, which holds true for many

systems of astrophysical interest. As shown in Appendix B, the scalar evolution equation
(B.17) is sourced by higher PN-order terms. However, these are nearly static, or very low
frequency terms, hence will make a negligible contribution for high-energy binaries or plunges.
In other words, the previous constraint can be substantially relaxed in dynamical situations,
such as the ones we focus on. Finally, the Newtonian, non-relativistic approximation requires
the source to have a small frequency . 2× 10−8 (µ/10−22eV

)
Hz, in the case of a periodic

motion. In Appendix B we show how to extend the formalism to include Newtonian but high
frequency sources, and use it to calculate emission by a high frequency binary in Section 4.6.
For plunges of nearly constant velocity v piercing through an NBS, the Newtonian and
non-relativistic approximation requires that v . Rµ. Fortunately, any NBS has Rµ� 1 and
the latter condition is trivially verified.

3.2.2 Sourceless perturbations

Free oscillations of NBSs are fluctuations of the form

δΨ = 1√
2πr

[
Z1Y

m
l e−iωt + Z∗2 (Y m

l )∗ eiω∗t
]
,

δU = 1√
2πr

[
uY m

l e−iωt + u∗ (Y m
l )∗ eiω∗t

]
, (3.43)

where Z1, Z2 and u are regular solutions of system (3.26) with P = 0, satisfying the Sommer-
feld condition at infinity. These are also known as QNM solutions, and the corresponding
frequency ω is the QNM frequency. Noting that the condition

det(F ) = 0 , (3.44)

holds if and only if ω is a QNM frequency, we are able to find the NBS proper oscillation
modes by solving the sourceless system (3.26), and requiring at the same time that (3.44) is
verified. These frequencies are shown in Table 3.1.

Additionally, notice that the sourceless system (3.26) admits also the trivial solution

δΨε = εΨ0(1 + iγt) ,

δUε = ε U0 , (3.45)

with a constant ε � 1. This solution is valid only for a certain amount of time (while
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the perturbation scheme holds) and it corresponds just to an infinitesimal change of the
background NBS (i.e, an infinitesimal re-scaling of the original star) by a λ = 1 + ε/2. This
perturbation causes a static change in the number of particles in the star

δQε = ε

2QNBS , (3.46)

and in its mass
δMε = µ δQε = ε

2MNBS . (3.47)

3.2.3 External perturbers

In the presence of an external perturber, one needs to prescribe its motion through the
source term (3.23). A solution of the system (3.26) which is regular at the origin and satisfies
the Sommerfeld condition at infinity can be obtained through the method of variation of
parameters, and it reads

Z1(r) = 4π
[ 3∑
n=1

F1,n(r)
∫ r

∞
dr′F−1

n,6(r′)p(r′) +
6∑

n=4
F1,n(r)

∫ r

0
dr′F−1

n,6(r′)p(r′)
]
, (3.48)

Z2(r) = 4π
[ 3∑
n=1

F2,n(r)
∫ r

∞
dr′F−1

n,6(r′)p(r′) +
6∑

n=4
F2,n(r)

∫ r

0
dr′F−1

n,6(r′)p(r′)
]
, (3.49)

u(r) = 4π
[ 3∑
n=1

F3,n(r)
∫ r

∞
dr′F−1

n,6(r′)p(r′) +
6∑

n=4
F3,n(r)

∫ r

0
dr′F−1

n,6(r′)p(r′)
]
, (3.50)

where Fi,j is the (i, j)-component of the fundamental matrix defined in Eq. (3.34). To obtain
the total energy, linear and angular momenta radiated during a given process, all we need
are the amplitudes Z∞1 and Z∞2 . These are given by

Z∞1 = 4π
∫ ∞

0
dr′F−1

4,6 (r′)p(r′) , (3.51)

Z∞2 = 4π
∫ ∞

0
dr′F−1

5,6 (r′)p(r′) . (3.52)

Let us now apply our framework to a few physically interesting external perturbers.

Plunging particle

Consider a pointlike perturber plunging into an NBS. Without loss of generality, we can
assume its motion to take place in the z-axis, being described by the worldline xµ(t) =
(t, 0, 0, zp(t)) in Cartesian coordinates. Neglecting the backreaction of the fluctuations on
the perturber’s motion,

z̈p(t) = −∂zU0(zp) . (3.53)
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We consider that the perturber crosses the NBS center at t = 0 (i.e. zp(0) = 0) with velocity

żp(0) = −
√

2 (U0(R)− U0(0)) + v2
R , (3.54)

where vR is the velocity with which the massive object enters the NBS; in other words, it is
the velocity at r = R. In spherical coordinates the source reads

P = mp
δ(ϕ)
r2 sin θ [δ (r − zp(t)) δ (θ) + δ (r + zp(t)) δ (θ − π)] . (3.55)

Here we do not want to be restricted to massive objects describing unbounded motions
and, so, we consider also perturbers with small vR. These may not have sufficient energy
to escape the NBS gravity, being doomed to remain in a bounded oscillatory motion (see
Section 4.4). In these cases, we want to find the energy and momentum loss in one full
crossing of the NBS and, so, we shall take the above source as "active" just during that time
interval, vanishing whenever else.

Using Eq. (3.25) the function p is

p = − mp√
2π
Y 0
l (0)δ0

m

|t′p(r)|
r

(
e−iωtp(r) + (−1)leiωtp(r)

)
,

with tp(r) ≥ 0 defined by zp [tp(r)] = −r. This can be rewritten in the form

p = mp√
2π
Y 0
l (0) δ0

m

|t′p(r)|
r

(
cos [ωtp(r)] δeven

l − i sin [ωtp(r)] δodd
l

)
. (3.56)

The property
p(ω, l, 0; r) = p(−ω, l, 0; r)∗ , (3.57)

together with the form of system (3.26), implies that

Z2(ω, l, 0; r) = Z1(−ω, l, 0; r)∗ , (3.58)

Z∞2 (ω, l, 0) = Z∞1 (−ω, l, 0)∗ . (3.59)

So, the spectral fluxes (2.26), (2.17), (2.20) and (2.22) become, respectively,

dQrad

dω
= 4 Re

[√
2µ(ω − γ)

]∑
l

|Z∞1 (ω, l, 0)|2 , (3.60)

dErad

dω
= (µ− γ + ω) dQ

rad

dω
' µdQ

rad

dω
, (3.61)

dP rad
z

dω
=
∑
l

16µ(l + 1)√
(2l + 1)(2l + 3)

Θ (ω − γ) |ω − γ|Re [Z∞1 (ω, l, 0)Z∞1 (ω, l + 1, 0)∗] , (3.62)
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and
dLrad

z

dω
= 0 . (3.63)

These expressions were derived assuming a perturber in an unbounded motion. However,
these are also good estimates to the energy and momenta radiated during one full crossing
of the NBS by a bounded perturber, as long as its half-period is much larger than the NBS
crossing time.

To compute how much energy is lost by the perturber, we need to know the change in the
NBS energy ∆ENBS. At leading order, this is given by

∆ENBS = µ∆QNBS = −µQrad , (3.64)

using Eq. (3.41) in the first equality and (2.32) in the second. Conservation of total energy-
momenta, expressed through Eq. (2.28), implies that the perturber loses the energy

Elost = ∆ENBS + Erad =
∫
dω (ω − γ)dQ

rad

dω

= 4
√

2µ
∫
dωRe

[
(ω − γ)

3
2
]∑

l

|Z∞1 (ω, l, 0)|2 . (3.65)

The last expression should be understood as an order of magnitude estimate. If we had
considered only the leading order contribution to ∆ENBS and Erad, we would have ob-
tained Elost = 0. In the second equality we used higher order corrections to Erad – the
factor (ω− γ)� µ; but not to ∆ENBS. The corrections to ∆ENBS may be of the same order
of the corrections to Erad and should be included in a rigorous calculation of Elost. We do
not attempt that in this work. Interestingly, in our approximation the energy loss of the
perturber matches the kinetic energy of the radiated scalar particles at infinity, as can be
readily verified. The terms neglected should contain information about, for instance, the
gravitational and kinetic energy of the radiated particles when they were in the unperturbed
NBS. Still, we believe that Eq. (3.65) is a good estimate of the order of magnitude of Elost and
that it scales correctly with the boson star and perturber’s mass, MNBS and mp, respectively.

For a small perturber mpµ� vR, its momentum and energy loss are related through (see
Eq. (2.33))

P lost
z ' −E

lost

vR
. (3.66)

Using the full expression (2.33), it is possible to see that if Elost ∝ m2
p, then P lost ∝ m2

p in
the limit mpµ� vR. The Elost ∝ m2

p follows from Z∞1 ∝ mp (see Eq. (3.51)).

Conservation of total momentum, as expressed in (2.28), implies that the NBS acquires a
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momentum

PNBS = P lost
z − P rad

z = −E
lost

vR
− P rad

z . (3.67)

In the last passage we did not included the kinetic energy associated with the momentum
acquired by the boson star ∆Pz inside ∆ENBS. The reason is that it is easy to check that it
is subleading comparing with the correction of Erad considered.

Orbiting particles

Consider an equal-mass binary, with each component having mass mp, and describing a
circular orbit of radius rorb and angular frequency ωorb in the equatorial plane of an NBS.
The source is modelled as

P = mp

r2
orb
δ(r − rorb)δ

(
θ − π

2

)
[δ(ϕ− ωorbt) + δ(ϕ+ π − ωorbt)] . (3.68)

We are assuming that the center of mass of the binary is at the center of the NBS, but
in principle our results extend to all binaries sufficiently deep inside the NBS. Also, our
methods can be applied to any binary as long as a suitable source P is given.

Using Eq. (3.25) the source above yields

p = mp

√
π

2
Y m
l (π/2, 0)
rorb

(1 + (−1)m)δ (r − rorb) δ (ω −mωorb) . (3.69)

The perturber’s motion is fully specified by a prescription relating rorb and ωorb; we consider
Keplerian orbits r3

orb = M/ω2
orb, whereM = 2mp is the total mass. This setup describes either

stellar-mass or supermassive BH binaries orbiting inside an NBS. Alternatively, applying
the transformation mp(1 + (−1)m) → mp, we obtain a source that describes an extreme
mass ratio inspiral (EMRI). This could be, for instance, a star of mass mp on a circular
orbit around a central massive BH of mass MBH. In such case we consider the Keplerian
prescription r3

orb = MBH/ω
2
orb.

The symmetry
p(ω, l,m; r) = (−1)mp(−ω, l,m; r)∗ , (3.70)

together with the form of system (3.26) implies

Z2(ω, l,m; r) = (−1)mZ1(−ω, l,−m; r)∗ , (3.71)

Z∞2 (ω, l,m) = (−1)mZ∞1 (−ω, l,−m)∗ . (3.72)
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These simplify the emission rate expressions (2.27), (2.18) and (2.23), yielding

Q̇rad = 2
π

∫
dωRe

[√
2µ (ω − γ)

]∑
l,m

|Z∞1 (ω, l,m)|2 ,

Ėrad = 2
π

∫
dω(µ− γ + ω)Re

[√
2µ (ω − γ)

]∑
l,m

|Z∞1 (ω, l,m)|2 ,

L̇rad
z = 2

π

∫
dωRe

[√
2µ (ω − γ)

]∑
l,m

m |Z∞1 (ω, l,m)|2 . (3.73)

These can be written explicitly as

Q̇rad = 32π p̃2∑
l,m

Re
(√

2µ (mωorb − γ)
) ∣∣∣F−1

4,6 (mωorb; rorb)
∣∣∣2 , (3.74)

Ėrad = 32π p̃2∑
l,m

Re
(√

2µ (mωorb − γ)
)

(µ− γ +mωorb)
∣∣∣F−1

4,6 (mωorb; rorb)
∣∣∣2 , (3.75)

L̇rad
z = 32π p̃2∑

l,m

mRe
(√

2µ (mωorb − γ)
) ∣∣∣F−1

4,6 (mωorb; rorb)
∣∣∣2 , (3.76)

where we defined
p̃ ≡ mp

√
π

2
Y m
l (π/2, 0)
rorb

(1 + (−1)m) .

Equation (3.75) can be further simplified using

µ− γ +mωorb ' µ ,

since we are treating the scalar fluctuations as non-relativistic; that is only valid if γ � µ

and ωorb � µ. Large azimuthal numbers m do not spoil the approximation, because the
emission is strongly suppressed by F−1

4,6 in that limit.

Now we follow the same procedure that we applied in the previous section to a plunging
particle, to estimate the rate of energy loss of the binary. We start by computing, at leading
order, the change in the NBS energy per unit of time:

ĖNBS = µQ̇NBS = −µQ̇rad , (3.77)

where we used Eq. (3.41) in the first equality and (2.32) in the second. 2 Conservation of
the total energy implies that the binary energy loss per unit of time is

Ėlost = Ėrad + ĖNBS = 32πp̃2∑
l,m

(mωorb − γ) Re
(√

2µ (mωorb − γ)
) ∣∣∣F−1

4,6 (mωorb; rorb)
∣∣∣2 .

(3.78)

2Equations (2.32) and (3.41) are easy to adapt to changes happening during a finite amount of time ∆t.
To get the rates of change we just need to divide these expressions by ∆t and take the limit ∆t→ 0.
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Again, the last expression should be understood as an order of magnitude estimate (the
reason is discussed in the previous section where we considered a plunging particle).

For a small perturber mp � |ωorb|r2
orb, its angular momentum and energy loss are related

through

L̇lost
z ' Ėlost

ωorb
. (3.79)

Conservation of total angular momentum, expressed through Eq. (2.28), implies that per
unit of time the NBS acquires the angular momentum

L̇NBS = L̇lost
z − L̇rad

z = Ėlost

ωorb
− L̇rad

z . (3.80)

3.3 Free oscillations

l ω
(n)
QNM/

(
M2

NBSµ
3)

0 0.0682 0.121 0.138 0.146 0.151 0.154 0.159
1 0.111 0.134 0.144 0.149 0.153 0.157 0.162
2 0.106 0.131 0.143 0.149 0.153 0.156 0.161

Table 3.1: Normal frequencies of an NBS of mass MNBS for the three lowest multipoles.
For each multipole l we show the fundamental mode (n = 0) and the first five overtones.
At large overtone number the modes cluster around γ ' 0.162712M2

NBSµ
3. The first mode

for l = 0 agrees with that of Ref. [175] when properly normalized and with an ongoing fully
relativistic analysis [184]. The two lowest l = 0, 1, 2 modes are in good agreement with a
recent time-domain analysis [185].

The characteristic, non-relativistic oscillations of NBSs are regular solutions of the sys-
tem (3.21)-(3.22) satisfying Sommerfeld conditions (3.30) at large distances. For each
angular number l, there seems to be an infinite, discrete set of solutions which we label
with an overtone index n, ωnQNM. The first few characteristic frequencies, normalized to the
NBS mass, are shown in Table 3.1. They turn out to be all normal mode solutions, confined
within the NBS. The characteristic frequencies are all purely real and cluster around γ. We
highlight the fact that the numbers in Table 3.1 are universal, they hold for any NBS. The
fundamental l = 0 mode (the first entry in the Table) had been computed previously [175],
and agrees with our calculation to excellent precision (after proper normalization). Our
results are also in very good agreement with the frequencies of the first two modes, obtained
in a recent time-domain analysis [185]. Modes of relativistic stars have been considered in
the literature [186–190] and should smoothly go over to the numbers in Table 3.1. Note that
modes of relativistic BSs are damped, due to couplings between the scalar and the metric and
the possibility to lose energy via gravitational waves. Such damping – which is small for the
relevant polar fluctuations [188–190] – should get smaller as one approaches the Newtonian
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regime, but a full characterization of the modes of boson stars is missing. Our results show
that NBSs are linearly mode stable; it would be interesting to have a formal proof, perhaps
following the methods of Ref. [191, 192]. We point out that the stabilization of a perturbed
boson star through the emission of scalar field – known as gravitational cooling – has been
studied previously [193–195].
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Despite the intense study and the recent activity at the numerical relativity level [69, 196–
201], the interaction of NBSs with smaller objects has hardly been studied. Notably, the
variety and disparity of scales in the problem makes it ill-suited for full-blown numerical
techniques, but ideal for perturbation theory. Hence, in this Chapter we investigate the
response of localized scalar configurations to bodies moving in their vicinities. As an example,
we will focus on stars and BHs piercing through or orbiting such DM environments.

The setup is depicted in Fig. 4.1. The moving external bodies are modelled as point-like.
Such approximation is a standard and successful tool in BH perturbation theory [202–204],
in seismology [205] or in calculations of gravitational drag by fluids [206, 207]. In this
approximation we lose small-scale information. For light fields, the de Broglie wavelength
is much larger than the size of stars, planets or BHs. Therefore we do not expect to lose
important details of the physics at play. The extrapolation of our results to moving BHs or
BH binaries should yield sensible answers.

A fundamental motivation towards the study of BHs in the galactic center lies in the fact
that baryonic matter tends to slowly accumulate near the center of a DM structure, where it
may eventually collapse, forming a massive BH. Then, gravitational collapse can impart a

37
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Figure 4.1: An equatorial slice of our setup, where a binary of two BHs or stars is orbiting
inside an NBS, and a single BH is plunging through it. Our formalism is able to accommodate
both scenarios, and others. The NBS scalar field is pictured in gray dots, and forms a large
spherical configuration. The motion of the binary or of the plunging BH or star stirs the
scalar profile, excites the NBS modes and may eject some scalar field.

recoil velocity vrecoil to the BH of the order of 300 km/s [208], leaving the BH in an damped
oscillatory motion through the DM halo, with respect to its center, with a crossing timescale

τcross =
√

3π
Gρ
∼ 1.4× 106 yr

√
103M� pc−3

ρ
, (4.1)

and an amplitude

A ∼ 69 pc
√

103M�pc−3

ρ

vrecoil
300 km/s . (4.2)

The damping mechanism is due to dynamical friction caused by stars and DM. An intriguing
result, shown later in Section 4.4, suggests that the DM effects may be comparable to the one
of stars in galactic cores. In fact, we will show how massive objects traveling through scalar
media can deposit energy and momentum in the surrounding scalar field due to gravitational
interaction [60, 209, 210].

As already argued in the Introduction, another motivation to study such scalar configurations
comes from the possibility of measuring GWs generated by distance sources. In fact, data
from binaries in the central part of galaxies give us a unique opportunity to search for
DM imprints on GW signals, through, for instance, a dephasing mechanism due to the
non-vacuum environment. Hence, in the following we focus also on the scalar radiation
emitted by equal mass and extreme-mass-ratio binaries and how this compares to the usual
GW emitted. Quantifying the energy flowing at infinity through the scalar channel might
help in understanding the detectability of such DM configurations.

The results obtained in this Chapter comes directly from the solution of the Einstein Klein-
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Figure 4.2: Universal perturbations induced a massive object, of mass mp, sitting at the
center of the scalar configuration. We assume that the perturber was brought adiabatically
so that δQNBS = δMNBS = 0. Left panel: perturbation in the mass density of the
NBS obtained using Eq. (4.6). Right panel: perturbation in the gravitational potential
rδU = r (δUp + δUε). As expected, for large r, we recover the Coulombian potential
U = −mp/r.

Gordon system, taken at the Newtonian level. Therefore, all the quantities presented here
are evaluated considering scalars as (at least) one component of DM haloes. However, since
BHs and stars interact with the DM field only gravitationally, some of the results presented
in the following might be qualitatively applied also to other DM configurations, as the ones
coming from a different choice of the scalar-self potential or if self-gravitating vectors are
considered [142]. To assess the above statement, one should perform a similar analysis,
solving for the specific dynamical equations of the chosen model. This task goes beyond the
scope of this thesis.

4.1 A perturber sitting at the center

Perturbations induced by static objects located inside an NBSs, or inside a solitonic DM
cores of light fields are interesting in their own right. For perturbers localized far away, the
induced tidal effects can dissipate energy and lead to distinct signatures, both in GW signals
and in the dynamics of objects close to such configurations [45, 46, 211]. We will not perform
a general analysis of static tidal effects and will instead focus on perturbations due to a
massive object at the center of an NBS. Such object can be taken to be a supermassive BH or
a neutron star, and the induced changes are important to understand how DM distribution
is affected by baryonic “impurities.”

Consider then a BH or star, described by the source (3.23), and inducing static, spherically
symmetric, real perturbations on the scalar field and gravitational potential, respectively,
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δΨp(r) and δUp(r). Then, Eqs. (3.21) and (3.22) become

∇2δΨp = 2µ (µU0 + γ) δΨp + 2µ2Ψ0δUp ,

∇2δUp = 4π
(
2µ2Ψ0 δΨp + P

)
. (4.3)

In the static source limit, it is straightforward to show that the matter moments are given by

p = lim
rp→0

1
2
√

2
mp

rp
δ0
l δ

0
mδ(ω)δ(r − rp) , (4.4)

for which the variation of parameters method described in Section 3.2.3, implies that

δΨp = mp

6∑
n=4

F1,n(r)
r

lim
rp→0

(
F−1
n,6(rp)
rp

)
,

δUp = mp

6∑
n=4

F3,n(r)
r

lim
rp→0

(
F−1
n,6(rp)
rp

)
, (4.5)

where the components of the fundamental matrix and its inverse are evaluated at l = m =
ω = 0. Note that the change in the number of particles and mass of the NBS, respectively,
δQp and δMp, is static, but non-zero in general. This is a consequence of the source being
treated as if it was eternal. However, we know that if the perturber is brought in an adiabatic
way to the center of the NBS there is no scalar radiation emitted, and, so, no change in
the number of particles and mass of the star, δQNBS = δMNBS = 0. Fortunately, we are
free to sum a trivial homogeneous solution (3.45) to enforce δQNBS = δMNBS = 0, while
keeping δΨ = δΨp + δΨε and δU = δUp + δUε a solution of the inhomogeneous system. The
perturbation induced in the density of particles is given by

δρQ = −δjt = 2µΨ0 Re (δΨ) = 2µΨ0

(
δΨp + ε

2Ψ0

)
,

and the one induced in the mass density by

δρM = δTS00 = µ δρQ = 2µ2Ψ0

(
δΨp + ε

2Ψ0

)
, (4.6)

where jt is the t-component of the Noether’s current. The parameter ε associated with the
trivial homogeneous solution must be chosen appropriately, so that

4π
∫ ∞

0
dr r2δρQ = 4π

∫ ∞
0

dr r2δρM = 0 . (4.7)

The perturbations in the mass density and gravitational potential of an NBS induced by
a massive object sitting at its center are shown in Fig. 4.2. Our results indicate that the
particle attracts scalar field towards the center, where the gravitational potential corresponds
solely to that of the point-like mass. These results are consistent with those in Ref. [149].
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We find an insignificant change in the local DM mass density, when placing a point-like
perturber at the center of an NBS; notice that δρM (0)/ρM (0) ∼ 10mp/MNBS. Thus, a
massive perturber will not enhance greatly the local DM density, which is smooth and flat
for light scalars.

On the other hand, studies with particle-like DM models find that its density close to
supermassive BHs increases significantly [212, 213]. This is in clear contrast to our results for
light fields: a perturber does not significantly alter the local ambient density, since its size
is much smaller than the scalar de Broglie wavelength. Parenthetically, large overdensities
seem to be in some tension with observations [147]. Possible ways to ease the tension rely
on scattering of DM by stars or BHs, or accretion by the central BH, induced by heating
in its vicinities [214–216]. These outcomes cannot possibly generalize to light scalars, at
least not when the configuration is spherically symmetric, since there are no stationary
BH configurations with scalar “hair” [67, 106–110, 217]. But these results do prompt the
questions: what happens to an NBS when a BH is placed at its center? What happens to the
local scalar amplitude of an NBS when a binary is orbiting? We now turn to these issues.

4.2 A black hole eating its host boson star

As we noted, there are no stationary, spherically symmetric configurations when a non-
spinning BH is placed at the center. On long timescales, the entire NBS will be accreted
into the BH, with a fraction dissipating to infinity. This means, in particular, that our
results cannot be extrapolated to when the point-like particle is a BH, and describe the
system only at intermediate times. Hence, what is the lifetime of such a system, composed
of a small BH sitting at the center of an NBS? Unfortunately, most of the studies on BH
growth and accretion assume a fluid-like environment [218], an assumption that breaks down
completely here, since the de Broglie wavelength of the scalar is much larger than that of
the BH. Exceptions to this rule exist [219, 220], but focus on different aspects, and do not
consider setups with the necessary difference in lengthscales.

The precise answer to this question requires full non-linear simulations in a challenging
regime, with proper initial conditions. However, in the limit we are interested in, where the
BH, of mass MBH � MNBS, is orders of magnitude smaller and lighter than the NBS, a
perturbative calculation is appropriate. Consider a sphere of radius r+ centred at the origin
of the NBS. The NBS is stationary, and there is a flux of energy crossing such a sphere
inwards (detailed in Appendix C), given by

Ėin ≈ 10−3µ7r2
+M

5
NBS , (4.8)

and the same amount crossing it outwards. If such a sphere defines the BH boundary
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r+ = 2MBH
1, a fraction will be absorbed by the BH. Because of relativistic effects, low-

frequency waves (the scalar field frequency is µ and we are in the low frequency regime with
µMBH � 1) are poorly absorbed, and we find that the flux into the BH is [221]

Ėabs = 32π (MBHµ)3 Ėin = 16π
125

M5
BH

M5
NBS

(MNBSµ)10 ,

where we are taking the limit ω → µ in the expression for the transmission. Strictly speaking,
since we are in the ω < µ regime, the limit performed above will only provide an approximate
result, and a full computation of the transmission coefficient in a BH spacetime for such
frequency limit should be needed. Hence, our calculation should be understood as an order
of magnitude estimation. However, we have tested the above physics with a series of toy
models, including the study of accretion of a massive, non-self-gravitating scalar confined in
a spherical cavity with a small BH at the center (see Appendix C). This toy model conforms
to the physics just outlined. Another example in Appendix C suggests that all modes of the
NBS are excited during such an accretion process, but made quasinormal (i.e., damped) by
the presence of the absorption. These are all low-frequency modes, and our argument should
be valid even in such circumstance.

With Ėabs = ṀBH and fixed NBS mass, we find the timescale

τ ∼ 1
M4

BHM
5
NBSµ

10 = 1024 yr MNBS
1010M�

(
χ

104

)4 ( 0.1
MNBSµ

)10
, (4.9)

where χ ≡MNBS/MBH. In other words, the timescale for the BH to increase substantially its
mass – which we take as a conservative indicative of the lifetime of the entire NBS – is larger
than a Hubble timescale for realistic parameters. The above timescale shows that nearly
monochromatic scalar waves (the scalar background configuration) are poorly absorbed by
static BH. Additionally, this results corroborate the assumptions of our perturbative scheme:
the background configuration will not change sensibly during the typical astrophysical scale
that we are interested in. When the material of the star is nearly exhausted, a new timescale
is relevant, that of the quasinormal modes of the BH surrounded by a massive scalar. This
timescale is τQNM ∼MBH(MBHµ)−6 < τ [59, 222], but still typically larger than a Hubble
time.

The results above showed that the system composed by a static BH and the scalar environment
might considered stable on some relevant timescale. Furthermore, if we consider rotating
BHs rather than static ones, under suitable circumstances (i.e. complex massive scalars with
frequency above a certain threshold [59]), the entire setup may become even more stable. In
fact, the BH rotation is able to provide energy, via superradiance, to the surrounding field,
and sustain nearly stationary, but non-spherically-symmetric, configurations [114]. We will

1Actually, such a sphere should be placed outside the effective potential for wave propagation around BHs,
but the difference is not relevant here.
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not discuss these effects here.

4.3 Massive objects plunging into boson stars

Figure 4.3: Spectrum of radiation released when an object of mass mp plunges into an NBS
with initial velocity vR ≈ 0. Emission takes place for frequencies ω > γ (see Eqs (3.61)-(3.62)).
(Upper) Left panel: lowest multipole contribution l = 0, 1, 2, 3 to the total spectral flux
of energy. (Upper) Right panel: multipole contributions to the radiated kinetic energy of
the scalar field. Lower panel: spectral fluxes of linear momentum along z associated with
the lowest multipoles. The results obtained for other plunging velocities are summarized in
Eqs (4.10)-(4.13).

Consider now a massive perturber plunging, head-on, into an NBS. The perturber is assumed
to have traveled from far away, but for our purposes the only relevant quantity is the
perturber velocity when it reaches the NBS surface, v = −vRez, with vR ≥ 0. This setup is
described in detail in Sec. 3.2.3. As we argued before (and also below), this situation could
describe a massive BH “kicked” at formation, via GW emission, in a DM core of light fields,
or, simply, stars crossing an NBS. Our framework allow us to do the first self-consistent
computation of the gravitational drag acting on perturbers in such systems. Including the
effect of the NBS gravitational potential on the perturber motion sets a natural critical
velocity in the problem, the escape velocity vesc. For the fundamental NBS described in
Fig. 3.1, the velocity needed to escape from the surface of the NBS is vesc ∼ 0.47MNBSµ.
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When the velocity is smaller than this, the crossing object should be confined in the NBS
with an oscillatory motion. For now, we study a simple one-way motion, and assume that
when the particle crosses the NBS once, it simply “disappears”. This will allow us to estimate
the dynamical friction on the perturber. This assumption is formally correct and accurate
for unbound motion. For bound oscillatory motion it is not, and we work out the full case
below, in Section 4.4.

Some quantities of interest are the spectral fluxes of energy and linear momentum radiated
in these processes, as well as the energy lost by the perturber. These are given, respectively,
by Eqs. (3.61)-(3.62) and (3.65). The upper left panel of Fig. 4.3 shows the contribution
of the lowest multipoles to the total energy spectrum dErad/dω (dElost/dω upper right
panel). These results were obtained through the numerical evaluation of expressions (3.61)-
(3.65) for a perturber plunging into an NBS, starting the fall from rest at R. The fluxes
converge exponentially with increasing values of l, after a sufficiently large l. Our results are
compatible with Erad

l ∝ e−l, where Erad
l is the l-mode contribution to the energy radiated.

Once the behavior of Erad
l for large l is known, we can find the total energy radiated. For

a particle plunging with zero initial velocity into an NBS we obtain Erad ∼ 1.28m2
p/MNBS

and Elost ∼ 0.18m2
pMNBSµ

2. Applying this procedure to other velocities, we find that the
following is a good description of our results,

Erad = 29
m2
p

MNBS

e−3.25/X

X17/4 (4.10)

Elost = 7m2
pMNBSµ

2 e
−3.54 (X−0.05)−1

(X − 0.05)17/4 (4.11)

accurate to within 5% of error for 0 . vR . 2.5MNBSµ. This interval spans over non-
relativistic astrophysical relevant velocities (e.g., 0 . vR[km/s] . 6000 for the DM core of
the Milky Way). Here,

X ≡ vR
MNBSµ

+ 0.68 . (4.12)

The lower central panel of Fig. 4.3 shows the multipolar contribution to the spectral flux of
linear momentum along z. The linear momentum radiated also converges exponentially in
l, after a sufficiently large l. For a perturber starting at rest, the total linear momentum
radiated along z in the whole process is P rad ∼ −0.43m2

pµ. The fitting expression

P rad = −2.4m2
pµ
e−2.26 (X−0.27)−1

(X − 0.27)17/4 , (4.13)

is a good approximation to our results (within 5% of error for 0 . vR . 2.5MNBSµ).
Figure 4.4 shows how the total radiated energy Erad, the total energy lost by the moving
perturber Elost, and the linear momentum radiated P rad vary with the change of initial
velocity.
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Figure 4.4: Total and kinetic energy, and linear momentum emitted when an object of
mass mp plunges through an NBS, as a function of the initial perturber velocity. The dots
correspond to the numerical data used to obtain Eqs. (4.10)-(4.11)-(4.13).

The momentum lost by a small plunging object (mpµ� vR) is given by P lost = −Elost/vR,
as shown in Eq. (2.33). We have thus computed, in a self-consistent way, the dynamical
friction acting upon a body moving within an NBS. The quantity Elost is the actual kinetic
energy lost by the perturber as it crosses the NBS. Note that, in accordance with the results
for the energy lost – in particular, its sign – this is indeed a friction; the body will slow down.
On the other hand, the results for the energy lost together with the radiated momentum
show that the NBS will acquire a small momentum in the direction of the moving perturber,
described by Eq. (3.67); note the two lines crossing each other close to vR = MNBSµ in
Fig. 4.4.

Our computations should be compared and contrasted with those of Ref. [60, 223], where
dynamical friction in these structures was estimated without including self-gravity (therefore
not accounting for the size of the scalar structure either). In contrast to those of Ref. [60],
our results are self-consistent, regular and finite at all velocities. In Appendix D, we look
at a simple toy model which indicates that the discrepancy between these results may be
partially related with the trivial gravitational potential of the background medium. A
non-trivial gravitational potential can confine small-frequency scalars, suppressing efficiently
scalar emission. Nevertheless, the self-gravity of the scalar seems to help suppressing scalar
emission for small velocities. Thus, the above results are the first self-consistent and accurate
calculation of dynamical friction caused by a self-gravitating scalar on passing objects.
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4.4 A perturber oscillating at the center

As a black hole forms through gravitational collapse in a DM core it can be “kicked”, via
GW emission, and left in an oscillatory motion around the center of the core. The reason for
the kick is that collapse is, in general, an asymmetric process, and leads to emission of GWs
which carry some momentum. This process is known to lead to velocities of at most a few
hundred kilometers per second [208], generically smaller than the galactic escape velocity.
Thus, the remnant BH is bound to the galaxy and, in absence of dissipation, performs an
oscillatory motion.

It is crucial to understand how the DM core reacts to this motion and to quantify the energy
and momentum radiated and deposited in the scalar field. Similar issues were addressed in
Ref. [224], in the context of the interaction between a kicked supermassive black hole and
stars in galaxy cores.

At the center of an NBS the energy density is approximately constant ρE ' 4×10−3M4
NBSµ

6.
So, the motion of the perturber is

zp(t) = −A sin (ωosct) , A ≡

√
3

4π
v2

0
ρE
, ωosc ≡

√
4πρE

3 , (4.14)

where v0 is the velocity of the perturber at the center of the core. The source is described by

P = mp
δ(ϕ)
r2 sin θ [δ (r − zp(t)) δ (θ) + δ (r + zp(t)) δ (θ − π)] . (4.15)

Using Eq. (3.25) the function p reads

p = mp

2
√

2π
|τ ′1,n(r)|

r
Y 0
l (0)δ0

m

∑
n∈Z

[
e−iωτ1,n + e−iωτ2,n + (−1)n

(
eiωτ1,n + eiωτ2,n

) ]
, (4.16)

where we defined

τ1,n ≡
1
ωosc

[
arcsin

(
r

A

)
+ 2nπ

]
, τ2,n ≡

1
ωosc

[
(2n+ 1)π − arcsin

(
r

A

)]
, (4.17)

as are the roots of r+ zp(τ) = 0; the symmetric functions −τ1,n(r) and −τ2,n(r) are the roots
of r− zp(τ) = 0. In the last expressions we are using the principal branch of the inverse sine
function. It is possible to show that the function p can be expressed in the form

p = mp√
2π

Y 0
l (0)√
A2 − r2

δ0
m

ωosc
Θ (A− r)

×
∑
n∈Z

[
δeven
l (cos [ωτ1,n(r)] + cos [ωτ2,n(r)])− i δodd

l (sin [ωτ1,n(r)] + sin [ωτ2,n(r)])
]
,

(4.18)
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Using the mathematical identities

∑
n∈Z

sin
(

2nπ ω

ωosc

)
= 0,

∑
n∈Z

cos
(

2nπ ω

ωosc

)
= ωosc

∑
n∈Z

δ(ω − nωosc) , (4.19)

together with some trivial trigonometric identities, we can rewrite (4.18) as

p = mp

√
2
π

Y 0
l (0)√
A2 − r2

δ0
m Θ (A− r)

∑
n∈Z

δ(ω − 2nωosc)

×
[
δeven
l cos

(
2n arcsin r

A

)
− i δodd

l sin
(

2n arcsin r

A

)]
. (4.20)

With the help of the trigonometric identities

cos(2nx) =
n∑
k=0

(−1)k
(

2n
2k

)
sin2k x cos2(n−k) x , (4.21)

sin(2nx) =
n−1∑
k=0

(−1)k
(

2n
2k + 1

)
sin2k+1 x cos2(n−k)−1 x , (4.22)

the last expression can be written in the alternative form

p = mp

√
2
π
Y 0
l (0)δ0

m Θ (A− r)
[
− i δodd

l

n−1∑
k=0

(−1)k
(

2n
2k + 1

)
r2k+1

(
A2 − r2

)n−k−1

+ δeven
l

n∑
k=0

(−1)k
(

2n
2k

)
r2k

(
A2 − r2

)n−k− 1
2
]∑
n∈Z

1
A2n δ(ω − 2nωosc) . (4.23)

We want to calculate the energy radiated through scalar waves due to the oscillatory motion
of the massive object. First, note that the oscillation frequency is ωosc ∼ 0.135M2

NBSµ
3 . γ.

Only the modes with n ≥ 1 arrive at infinity; so, only these contribute to the energy radiated.
Applying the formalism described in Section 3.2, we obtain

Z∞1 = 4π
∫ A

0
dr′F−1

4,6 (r′)p(r′), Z∞2 (ω, l, 0) = Z∞1 (−ω, l, 0)∗ . (4.24)

The energy radiated per unit of time is (see Eq. (2.18))

Ėrad = 2
π

∑
l,n

(µ− γ + 2nωosc) Re
[√

2µ(2nωosc − γ)
]
|Z̃∞1 (2nωosc, l, 0)|2

' 2
π
µ
∑
l,n

Re
[√

2µ(2nωosc − γ)
]
|Z̃∞1 (2nωosc, l, 0)|2 , (4.25)
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where we used the low-energy limit γ � µ and ωosc � µ, and defined

Z̃∞1 ≡ 4π
∫ A

0
dr′F−1

4,6 (r′)p̃(r′) , (4.26)

p̃ ≡ mp

√
2
π

Y 0
l (0)√
A2 − r2

∑
n∈Z

[
δeven
l cos

(
2n arcsin r

A

)
− i δodd

l sin
(

2n arcsin r

A

)]
. (4.27)

One can anticipate that the dominant contribution to the radiation is given by the n = 1
mode, which has a frequency ω = 2ωosc. This is the lowest frequency radiated by the
perturber and, thus, we expect it to be the one carrying more energy, because the coupling
between the perturber and the scalar is stronger for lower frequencies – as will become evident
in the following sections. Indeed, this is in accordance with our numerics. So, we focus on the
single n = 1 mode. For oscillations deep inside the NBS with an amplitude A � R – which
is where our constant density approximation holds – we find that the following semi-analytic
expression is a good description of our numerical results:

Ėrad = 2
√

2
π

(mpµ)2
√

2ωosc − γ
µ

∑
l

cl

(A
R

)2(l+1)
, (4.28)

with the numerical constants cl. For the first multipoles we find

c0 ' 0.852 , c1 ' 67.7 , c2 ' 30.4 , c3 ' 438 , c4 ' 13.6 , c5 ' 3.85 . (4.29)

The above expression describes our numerics with less than 1% of error for A/R . 0.09.
These amplitudes correspond to kicks of v0 . 0.1MNBSµ, which contains astrophysical
relevant velocities; for the Milky Way DM core our expression covers v . 300 km/s, which
contains typical recoil velocities imparted by GW emission in gravitational collapse. Larger
kicks, like the ones delivered in a merger of two supermassive BHs, have larger amplitudes
and are out of our approximation. However, the framework outlined in Section 3.2 (without
the constant density approximation) can still be applied to those cases.

Using the same reasoning that we applied to the orbiting particles to deduce Eq. (3.78), we
can estimate the perturber’s energy loss per unit of time to be

Ėlost = 2
π

∑
l,n

(2nωosc − γ) Re
[√

2µ(2nωosc − γ)
]
|Z̃∞1 (2nωosc, l, 0)|2 . (4.30)

Considering the single (dominant) n = 1 mode, the numerical evaluation of the last expression
is well described by the semi-analytic formula

Ėlost = 2
√

2
π

(mpµ)2
(2ωosc − γ

µ

) 3
2 ∑

l

cl

(A
R

)2(l+1)
. (4.31)

Again, this describes our numerics with less than 1% of error for small amplitude oscilla-
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tions A/R ≤ 0.09.

One may wonder how long it takes for a kicked BH (or star) to settle down at the center of
an halo, purely due to the dynamical friction caused by dark matter. When the condition

Ėlost
(

2π
ωosc

)
1
2mpω2

oscA2 � 1 , (4.32)

is verified, the system is suited to an adiabatic approximation, and we can compute how the
amplitude changes with time by solving

mpω
2
oscAȦ = −Ėlost . (4.33)

Several astrophysical systems fall within this approximation. For example, the Milky Way
dark matter core has a mass MNBSµ ∼ 10−2; so, for an object forming through gravitational
collapse and receiving a kick of 300 km/s, via GW emission, the adiabatic approximation is
suitable if mp/MNBS � 0.1 – which is verified by all known objects. Using only the dominant
multipole l = 0 (which accounts for more than 61% of the total energy loss for A/R ≤ 0.09,
and more than 89% for A/R ≤ 0.04) we obtain

A = A0 e
−t/τs , (4.34)

with the timescale

τs '
56

mpMNBSµ3 ∼ 1010yr
(

10−22 eV
µ

)2(105M�
mp

)( 0.01
MNBSµ

)
. (4.35)

So, an object kicked at the center of an NBS, interacting solely with the scalar, settles down
in a timescale smaller than the Hubble time if it has a mass mp & 105M�; in other words, if
it is a supermassive BH.

The above timescale is in general much larger than the period of oscillation,

τs ∼
MNBS
mp

( 2π
ωosc

)
. (4.36)

This suggest that treating the source as eternal is indeed a good approximation to study
this process. It is interesting to compare this result with the timescale of damping due to
dynamical friction caused by stars in the galactic core. In Ref. [224] the authors estimate
that timescale to be

τ∗ ∼ 0.1 Mc
mp

( 2π
ωosc

)
, (4.37)

where Mc is the galactic core mass. Using Mc = MNBS we see that τ∗ ∼ 0.1 τs, which
is smaller but still comparable to τs. Both ours and Ref. [224] calculations are order of
magnitude estimates, but our result further suggests that dark matter may exert a dynamical
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Figure 4.5: Logarithm of the universal rate of scalar energy radiated by an EMRI orbiting
inside an NBS: log10

[
Ėrad

EMRI

(
m2
pMNBSµ

3
)−1

]
. The EMRI is described by a supermassive

BH of mass MBH sitting at the NBS center, and a star or stellar-mass BH in a circular orbit
around it. Note that the maximum energy emitted is associated with the smallest frequency
(largest distance). This is due to oscillating background field which imparts an energy µ
to any wave. For a DM core with MNBS ∼ 1010M� and mass ratio mp/MBH ∼ 10−4, the
orbital distances corresponding to non-zero fluxes are in the range rorb . 106MBH. For
larger radii, the fluctuation has too low an energy and is confined to the structure. This
explains the zero-flux (black) region on the left of the panel, corresponding to the suppression
of perturbations with frequency ω ≤ γ.

friction comparable to the one caused by stars, for processes happening in galactic cores.

4.5 Low-energy binaries within boson stars

We now focus on orbiting objects within such an NBS. These will describe binaries, either
at an early or late stage in their life, stirring the field and producing disturbances in the
local DM profile. For example, looking at the matter moments in Eq. (3.69), such systems
can describe stars orbiting around the SgrA∗ BH at the center of the Milky Way. The
supermassive BH has a mass ∼ 4 × 106M� with known companions. The closest known
star, S2, has a pericenter distance of ∼ 2800MBH and a mass mp ∼ 20M� with a large
uncertainty [225, 226]. Its orbit is, however, highly eccentric. Given the mass and sizes of
the NBSs discussed here (i.e. which described the core of DM haloes) all these systems can
be handled via perturbation techniques. In addition, binaries close to supermassive BHs, and
therefore to galactic centers, have been observed recently via electromagnetic counterparts



Chapter 4. External bodies and dark matter haloes 51

to GWs [227].

4.5.1 Scalar emission

Let us consider first an EMRI: a perturber of mass mp orbiting a supermassive BH, of mass
MBH � mp placed at the center of an NBS. Solving the perturbation equations (3.26), with
the source defined in Eq. (3.69), with mp(1 + (−1)m)→ mp, we find that, up to 3% accuracy,
the fluxes of energy (Eqs. (3.77)-(3.78)) are described by

Ėrad
EMRI = 10−2m2

pM
2/3
BHM

4
NBSµ

17/2ω
−11/6
orb Θ [ωorb − γ]

×
[
2.66− 0.49M4/3

NBSµ
2ω
−2/3
orb + 0.054M8/3

NBSµ
4ω
−4/3
orb

]
, (4.38)

Ėlost
EMRI = 10−2m2

pM
2/3
BHM

4
NBSµ

15/2ω
−5/6
orb Θ [ωorb − γ]

×
[
2.70− 0.96M4/3

NBSµ
2ω
−2/3
orb + 0.043M8/3

NBSµ
4ω
−4/3
orb

]
. (4.39)

Notice that in principle, the emission would starts for frequency larger than
(
γm−1). However,

since the emission in multipoles higher than the dipole is suppressed by roughly a factor
103, we consider only l = 1 in (4.38). Equations (4.38)-(4.39) were evaluated assuming a
non-relativistic perturbation, therefore are valid for orbital periods T = 2π/ωorb � 2π/µ ∼
10−22eV/µ yr. We show in Fig. 4.5 the flux of energy (Ėrad) as a function of the orbital
period and of the BH-NBS mass ratio. Once the orbital frequency is fixed, our results are
consistent with an exponential convergence in l for the flux.

The calculation above is easy to adapt to other systems. Consider an equal mass binary
system (M = 2mp). Looking at the matter moments in Eq. (3.69), it is clear that the first
multipole moment that is going to be emitted is the quadrupole m = 2. As a result of solving
the perturbation equations, we find the following expression for the energy emitted in scalar
waves, and the one lost by the orbiting particle (up to 3% of accuracy)

Ėrad = 10−2M4/3m2
pM

4
NBSµ

19/2ω
−13/6
orb Θ [2ωorb − γ]

×
[
1.45− 0.16M4/3

NBSµ
2ω
−2/3
orb + 0.015M8/3

NBSµ
4ω
−4/3
orb

]
, (4.40)

Ėlost = 10−2M4/3m2
pM

4
NBSµ

17/2ω
−7/6
orb Θ [2ωorb − γ]

×
[
2.97− 0.58M4/3

NBSµ
2ω
−2/3
orb + 0.0051M8/3

NBSµ
4ω
−4/3
orb

]
. (4.41)

The expression above is valid both for solar mass BHs as well as for BH masses of the order
∼ 104M�.

In the limit of an high-frequency (ωorb � γ, µU0), but still non-relativistic (ωorb � µ)
excitation, the relevant equations (3.21)-(3.22) can be solved analytically in closed form,
noticing that |Ψ0δΨ| � |δU |. Equation (3.22) therefore reduces simply to

∇2δU = 4πP , (4.42)
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which has the solution

δU = 2√
2π
∑
l,m

u(r)
r
Y m
l (θ, 0)e−im(ωorbt−ϕ) , (4.43)

with

u = − (2π)3/2mp [1 + (−1)m]
Y m
l

(
π
2 , 0

)
2l + 1

[(
r

rorb

)−l
Θ(r − rorb) +

(
r

rorb

)l+1
Θ(rorb − r)

]
.

Then, using the decomposition

δΨ = 2√
2π
∑
l,m

Z(r)
r

Y m
l (θ, 0)e−im(ωorbt−ϕ) , (4.44)

equation (3.21) becomes

∂2
rZ +

(
2µmωorb −

l(l + 1)
r2

)
Z = 2µ2Ψ0u . (4.45)

Using the method of variation of parameters, we can solve the last equation imposing the
Sommerfeld radiation condition at large distances and regularity at the origin. The obtained
solution is, at large distances,

Z(r →∞) = iπµ2Z∞(r →∞)
∫ ∞

0
dr′Z0Ψ0u , (4.46)

where Z0 and Z∞ are homogeneous solutions satisfying, respectively, regularity at the origin
and the Sommerfeld radiation condition at large distances, and are given by

Z0 =
√
r Jl+1/2

(√
2µmωorbr

)
, (4.47)

Z∞ =
√
rH

(1)
l+1/2

(√
2µmωorbr

)
, (4.48)

with Jν(x), H(1)
ν (x) Bessel and Hankel functions [228]. Using the asymptotic form

Z∞(r →∞) ' (−i)l+1
√

2
π

ei
√

2µmωorb r

(2µmωorb)1/4 , (4.49)

and assuming that rorb � R, and ωorb/µ� (rorbµ)−2, the integration in (4.46) converges a
few wavelengths from the binary and gives

Z(r →∞) ' −(−i)l (2π)2 µ2mpΨ0(0)rlorb [1 + (−1)m] 2−
l
2−

3
2 ei
√

2µmωorb r

(µmωorb)1− l
2

Y m
l

(
π
2 , 0

)
Γ
(
l + 3

2

) .
(4.50)
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So, the dominant l = m modes give the scalar perturbation

δΨ(r →∞) ' −8π
3
2µ2mpΨ0(0)

+∞∑
m=1

(−i)m [1 + (−1)m]

×
Y m
l

(
π
2 , 0

)
Γ
(
m+ 3

2

) (µm)
m
2 −1(Mωorb)

m
3

22+m
2 ω

(1+m
2 )

orb

ei
√

2µmωorb r , (4.51)

where we have used Kepler’s law r3
orb = M/ω2

orb. Then, the flux of energy is given by

Ėrad = −r2 lim
r→∞

∫
dθdϕ sin θ TStr = 0.28π3 (µmp)2 (µMNBS)4

+∞∑
m=1

[1 + (−1)m]2
(

1 + mωorb
µ

) Y m
m

(
π
2 , 0

)
Γ
(
m+ 3

2

) m(m2 − 3
4)(Mωorb)

m
3

2( 7
4 +m

2 )(ωorb/µ)(
3
4 +m

2 )

2

. (4.52)

The last expression can be further simplified using (1 +mωorb/µ) ' 1, since we are considering
low-energy excitations of the scalar field. The same reasoning that we used to derive (3.78)
can be applied here to find that the binary loses energy at a rate

Ėlost ' 0.28π3 (µmp)2 (µMNBS)4
+∞∑
m=1

[1 + (−1)m]2
 Y m

m

(
π
2 , 0

)
Γ
(
m+ 3

2

) m(m2 − 1
4)(Mωorb)

m
3

2( 7
4 +m

2 )(ωorb/µ)(
1
4 +m

2 )

2

.

(4.53)

These analytic results are in excellent agreement with our numerics for both EMRIs
(Eq. (4.38)) and equal mass binaries (Eqs. (4.40)): the leading terms agrees with the
numerical within 4%. We remind the reader that the numerical calculations used to obtained
the results in Eq. (4.41), has been obtained employing the variation of parameters method,
described in Sec. 3.2.3 in detail. The numerical integration has been performed with the
built-in integrator function in Wolfram Mathematica. Such agreement is a cross-check both
on our numerical routine and our simple analytical description.

4.5.2 Comparison with gravitational wave emission

In vacuum, the orbit of a binary system shrinks in time, due to the emission of GWs. At
leading order, the loss via GWs is described by the quadrupole formula [229, 230],

ĖGW = 32
5 η

2 (Mωorb)10/3 , (4.54)

where η = m1m2/(m1 +m2)2 is the symmetric mass ratio of a binary of masses m1,m2 and
total mass M = m1 +m2. The NBS instead provides an extra scalar channel for the energy
loss. To estimate the flux of energy emitted in scalar waves, we consider the orbit to be
circular, with the radius equal to the semi-major axis (∼ 970 au) of the S2 star. For EMRIs
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(mp = ηM and MBH = M), combining together Eqs. (4.39)-(4.54) we get

Ėlost

ĖGW ' 10−3
[
MNBS

1010M�

]4
[

106M�
M

]2/3 [
T

16yr

]31/6 [ µ

10−22eV

]17/2
, (4.55)

where we normalized to the typical values for the EMRI composed by Sagittarius A∗ and S2
star, surrounded by a DM halo. Since the total scalar field mass contained in a sphere of radius
rorb � R is negligible with respect to the mass of the central BH MNBS(rorb)/M ∼ 10−10,
we can consider that the entire GW flux emitted is due to the quadrupole moment of the
binary alone, neglecting the gravitational field of the DM halo.

The energy balance equation imposes that the loss in the orbital energy of the binary is due
to the energy carried away by scalar and gravitational waves [231, 232]

dEorb

dt
= −

(
Ėlost + ĖGW

)
. (4.56)

Thus, the energy loss leads to a secular change in the orbital period

Ṫ ' −192π (2π)5/3 ηM5/3

5T 5/3 − 5ηMM4
NBST

5/2

103µ−15/2 .

It is amusing to estimate such secular change for astrophysical parameters similar to those
of S2 star orbiting around SgrA∗,

Ṫ ' −2.42
1015

[
M

106M�

]2/3 [ T

16yr

]−5/3 [ mp

20M�

]
− 4

1017

[
MNBSµ

0.01

]4 [ µ

10−22eV

]7/2 [ T

16yr

]5/2 [ mp

20M�

]
, (4.57)

which seems hopelessly small.

The period change for equal-mass binary systems follows through, and is

Ṫ = −192π (2π)5/3M5/3

20T 5/3 − 3.1M4
NBSmpM

2/3T 17/6

103µ−17/2 .

Backreaction and scalar depletion

One cause for concern is that our calculation assumes a fixed scalar field background Ψ0,
but as the binary evolves scalar radiation is depleting the NBS of scalar surrounding the
binary. Assume, conservatively, that the flux above is only removing scalar field within a
sphere of radius ∼ 10 ` centred at the binary, with the radiation wavelength ` = 2π/ωorb.
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Then the timescale for total depletion of the scalar in the sphere is

τ ∼ ρR3

Ėrad ∼ 1024 yr
[

10−2

µMNBS

]2/3 [104

χ

]2/3 [20M�
mp

]2 [10−22eV
µ

]11/6 [
T

16yr

]7/6
, (4.58)

that is much larger than the Hubble timescale. A similar value can be found for equal
mass binary systems. Thus, our results seem to indicate that the background configuration
remains unaffected by the emission of scalars by low frequency binaries.

4.6 High-energy binaries within boson stars

In this final Section, we now wish to focus on rapidly moving binaries, such as those suitable
for LIGO or LISA sources. In such a situation, the non-relativistic regime is not appropriate.
Instead, one can show that the relevant description of these systems, for which the frequencies
involved ωorb � µ, is accounted for by a slight modification of the previous equations(see
Appendix B for details),

∇2δU = 4πP ,

−∂2
t δΦ +∇2δΦ = 2µ2Φ δU . (4.59)

4.6.1 Scalar emission close to coalescence

We consider two equal-mass point particles, each of mass mp, on a circular motion of orbital
frequency ωorb and radius rorb. We can solve the Poisson equation first, using a multipolar
decomposition. We find

U =
∑
lm

ulm
r
Y m
l (θ, 0)eim(φ−φ0) , (4.60)

ulm = −4πmp (1 + (−1)m) Y m
l (π/2, 0)

2l + 1 r−l−1
orb

[
r2l+1

orb r−lΘ(r − rorb) + rl+1Θ(rorb − r)
]
.

(4.61)

Here φ0 = ωorbt is the azimuthal location of one particle; the other is at φ0 +π. Again, if the
factor mp (1 + (−1)m) is replaced by mp this same source describes a single point particle of
mass mp. We now perform a Fourier transform and a multipolar decomposition of the scalar
to solve Eq. (4.59):

δΦ = 1√
2π
∑
l,m

∫
dω

δψ(ω, r)
r

e−i(ω+Ω)tY m
l . (4.62)

Hence, we find the following ODE for δψ:

δψ′′ +
(

(Ω + ω)2 − l(l + 1)
r2

)
δψ =

√
8πµ2Ψ0 ulmδ (ω −mωorb) ,



Chapter 4. External bodies and dark matter haloes 56

Figure 4.6: Scalar field emission from a high energy, equal-mass binary describing a circular
orbit of radius rorb, evolving inside an NBS. The axis are the normalized x/rorb, y/rorb
respectively, and each frame represents an equatorial slice of the scalar field perturbation
1017Re [δΦ], induced by a binary orbiting in the equatorial plane. In the upper-left panel,
particles are at (x1, y1) = (rorb, 0), (x2, y2) = (−rorb, 0). Moving clockwise in the panels, the
system evolves for an eighth of a period between each, the binary moving anti-clockwise.
The binary components have the same mass, (mp ∼ 106M�) and they are orbiting inside an
NBS of mass MNBSµ ∼ 0.01 with a period of ∼ 1 day.

Here primes stand for radial derivatives. We can now solve this using variation of constants,
requiring outgoing waves at large distances and regularity at the origin. The solution is

δψ = δψ∞

∫ r

0

2
√

2πµ2Ψ0 δψH ulmδ (ω −mωorb)
iω

+ δψH

∫ ∞
r

2
√

2πµ2Ψ0 δψ∞ ulmδ (ω −mωorb)
iω

, (4.63)

where ω = mωorb and δψH,∞ are homogeneous solutions,

δψH =
√
πωr

2 Jl+1/2(ωr) , (4.64)

δψ∞ =
√
πωr

2
(
Jl+1/2(ωr) + iYl+1/2(ωr)

)
. (4.65)

The time domain response of the NBS to the perturbations induced by a binary BH system
is found solving Eq. (4.63) and (4.62). Four snapshots of one period, for two equal mass
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BHs are shown in Fig. 4.6.

A binary deep inside the NBS (rorb � R) and with large orbital frequency (ωorb � 1/rorb)
generates a field at large distances that is independent on the size of the NBS: the integration
converges a few wavelengths away from the binary. We find the following simple result for
the dominant l = m modes:

δψ(r →∞) = i
√

2πmp (1 + (−1)m) Ψ0π
3/2 22−mmm−2Y

m
m (π/2, 0)

Γ[m+ 3/2]
µ2

ω2
orb

(Mωorb)m/3 eiωr .

(4.66)
Here, M = 2mp for the equal-mass binary. If we substitute mp (1 + (−1)m) → mp, these
results also describe an EMRI, where a single particle of mass mp is revolving around a
massive BH of mass M (note the crucial difference that l = m = 1 modes are radiated for
EMRIs, whereas only even modes are emitted for equal-mass binaries). The flux is given by

Ėrad = −r2 lim
r→∞

∫
dθdϕ sin θ δTStr

= 128π3(µ2mpΨ0(0))2 (1 + (−1)m)2
+∞∑
m=1

(
Y m
m (π/2, 0)

Γ(m+ 3/2)
mm−1(Mωorb)m/3

2m+1 ωorb

)2

. (4.67)

Since we are considering high-energy excitations of the scalar (ωorb � µ) it is easy to see
that the rate of change of the NBS energy ĖNBS is much smaller than Ėrad (note that, at
leading order, ĖNBS = µ Q̇NBS = −r2 limr→∞

∫
dθdϕ sin θ δjr .) so, conservation of energy

(as expressed in Eq. (2.28)) implies that Ėlost ' Ėrad.

4.6.2 The phase dependence in vacuum and beyond

In vacuum GR, the dynamics of a binary is governed by the energy balance equation (4.56),
together with the quadrupole formula (4.54). This implies that the orbital energy of the
system Eorb = −M2η/(2rorb) must decrease at a rate fixed by such loss. This defines
immediately the time-dependence of the GW frequency to be f−8/3 = (8π)8/3M5/3(t0− t)/5,
whereM is the chirp mass and f = ωorb/π. Once the frequency evolution is known, the GW
phase simply reads

ϕ(t) = 2
∫ t

Ω(t′)dt′ . (4.68)

To take into account dissipative losses via the scalar channel, we add to the quadrupole
formula the energy flux (4.67). In the Fourier domain we can write the gauge-invariant
metric fluctuations as

h+(t) = A+(tret) cosϕ(tret) , (4.69)

h×(t) = A×(tret) sinϕ(tret) , (4.70)
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where tret is the retarded time. The Fourier-transformed quantities are

h̃+ = A+e
iΥ+ , h̃× = A×eiΥ× . (4.71)

Dissipative effects are included within the stationary phase approximation, where the secular
time evolution is governed by the GW emission [233]. In Fourier space, we decompose the
phase of the GW signal h̃(f) = AeiΥ(f) as:

Υ(f) = Υ(0)
GR[1 + (PN corrections) + δΥ] , (4.72)

where Υ(0)
GR = 3/128(Mπf)−5/3 represents the leading term of the phase’s post-Newtonian

expansion, and f = ωorb/π. We find the following dominant correction due to the background
scalar,

δΥ = 16µ4Ψ2
0

51π3f4 ∼ 10−24
[

µ

10−22 eV

]4
[

10−4Hz
f

]4 [
MNBSµ

0.01

]4
, (4.73)

for equal-mass binaries. Such a correction corresponds to a −6 PN order correction [30].
The smallness of the coefficient makes it hopeless to detect with space-based detectors. Note
that pulsar timing arrays operate at lower frequencies [24], and the previous Newtonian
non-relativistic analysis is necessary. However, on a positive note, the range of ultralight
scalar masses may be lower than the specific value used through this Chapter (∼ 10−22eV).
For instance, for larger haloes and scalar masses, we can find

δΥ = 16µ4Ψ2
0

51π3f4 ∼ 10−8
[

µ

10−19 eV

]4
[

10−4Hz
f

]4 [
MNBSµ

0.1

]4
, (4.74)

that is more likely to be in the sensitivity interval of future space-based detectors [37].

Backreaction and scalar depletion

During the evolution, the binary emits scalar radiation away from the NBS. Assuming, again,
that the above flux is only removing scalar field within a sphere of radius ∼ 10 ` centred
at the binary, with the radiation wavelength ` = 2π/ωorb. Then the timescale for total
depletion of the scalar is

τ ∼ 2× 1011 yr
(

0.1
mpωorb

)7/3( 10−2

µMNBS

)2 (
χ

104

)2 mp

106M�
,

larger than a Hubble timescale, even for binaries close to coalescence. Thus, our results seem
to describe emission of scalars during the entire lifetime of a compact binary.
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4.7 Conclusions

We showed how self-gravitating NBSs respond to time-varying, localized matter fluctuations.
These are structures that behave classically: they are composed of N ∼ 10100 (10−22eV/µ

)2
particles. A binary of two supermassive BHs in the late stages of coalescence emits more
than 1060 particles. Our results show some of the main astrophysical features associated
with bosonic ultralight structures. For example, they are not easily depleted by binaries.
Even a supermassive BH binary close to coalescence would need a Hubble time or more to
completely deplete the scalar in a sphere of ten-wavelength radius around the binary. We
have also shown how a consistent, self-gravitating NBS background leads to regular, finite
dynamical friction acting on passing bodies, contrasting with previous calculations using
infinite non-self-gravitating distributions [60].

Clearly, our results can and should be extended to eccentric motion, or to self-gravitating
vectorial configurations or even other non-linearly interacting scalars [173]. Our computations
should also be a useful benchmark for numerical relativity simulations involving boson stars in
the extreme mass ratio regime, when and if the field is able to accommodate such challenging
setups. We have considered Newtonian boson stars. Extension of our results to relativistic
boson stars is non-trivial, but would provide a full knowledge of the spectrum of boson
stars and of their response to eternal agents. Our methods can also be extended to clouds
arising from superradiant instabilities of spinning BHs [59]. We don’t expect qualitatively
new aspects when the spatial extent of those clouds is large.

Some of the ideas exhibited in this Chapter can be of direct interest also for theories with
screening mechanisms, where new degrees of freedom – usually scalars – are screened, via
non-linearities, on some scales [234]. Such mechanisms do give rise to non-trivial profiles for
the new degrees of freedom, for which many of the tools we use here should apply (see also
Ref. [235]).
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The effects of the environment on the propagation of GWs are usually believed to be negligible.
If the medium filling the cosmos is modelled as a perfect fluid, then GWs do not couple to it
and are neither absorbed nor dispersed by such surroundings [236, 237]. These calculations
have been redone for viscous fluids, for some particle dark matter models [238, 239] and
for more promising results for dark matter models beyond the Weakly Interacting Massive
Particle paradigm [240, 241]. However, the scattering of radiation by gravitationally-bound
binaries, such as the one depicted in the figure 5.1, is an unexplored subject that could
furnish, in principle, measurable observables. This scattering phenomenon is the gravitational
counterpart of well known and observed electromagnetic (EM) scattering phenomena, such
as the Rayleigh scattering of light, responsible for blue skies. Since the ability to do precision
measurements of incoming GWs has increased to unforeseen levels, in the following sections
we wish to investigate further along these lines, explicitly evaluating the cross sections for
these events.

In the first Chapter of this Part, we set the stage for the GW scattering process, defining the
geometrical setup and, as leading examples, we illustrate the EM scattering on a dipole (2p),
a system composed by two electric charges, and the case of the scattering of scalar waves.

5.1 Geometrical conventions

Our calculations and description of the problem involve specific but different frames. We
will consider binaries, in which the motion of the individual bodies under central forces (EM
or Newtonian) are described by ellipses. For a visual representation, we refer the reader to
Fig. 5.2.

63
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Incident

Scattered

Incident
Scattered

Figure 5.1: Scattering of an incoming wave by a binary. The wave affects the motion of
the binary, which in turn re-radiates and contributes to a non-trivial scattered wave.

Consider an observer located along a direction N, whose basis is (P, Q, N). This will be
called the frame of the observer and it is fixed with respect to the observer itself. We choose
as unit vector P the one that points toward the direction of the ascending node N . For the
Keplerian motion considered in the following, the ascending node is where the orbiting object
moves north through the plane of reference. In general, in the presence of a perturbation, this
freedom to choose the ascending node direction no longer exists. Being interested on such
perturbed setups, we choose to keep the basis (P, Q, N) in its unperturbed configuration.
Additionally, we define ψ as the angle between P and the ascending node N ; ζ the angle
between the ascending node and the direction n and ι the angle between N and L, where L
is the angular momentum vector of the binary.

The second frame will be the one that describes the motion of the reduced mass with respect
to the center of mass (CM). This frame is defined with respect to the following directions: n
is the radial direction with respect to the orbital motion, λ is the tangent one, while l is
directed along the angular momentum direction L.

From classical mechanics, the following relations between the binary CM basis and the
observer basis hold [242]

n = (cosψ cos ζ − sinψ cos ι sin ζ) P + (sinψ cos ζ + cosψ cos ι sin ζ) Q + sin ι sin ζN,

λ =− (cosψ sin ζ + sinψ cos ι cos ζ) P + (cosψ cos ι cos ζ − sinψ sin ζ) Q + sin ι cos ζN,

l = sinψ sin ιP− cosψ sin ιQ + cos ιN. (5.1)

Note that the unperturbed case corresponds to the configuration ψ = 0 and ι = const. In
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Figure 5.2: Plane of the orbit with respect to the fixed observer basis (P,Q,N). The angle
ζ is the polar angle describing the motion of the reduced mass µ in the orbital plane, while
L and ι are respectively the total angular momentum and the angle between this vector and
the direction N. The total mass is denoted m.

this configuration, the velocity in the CM frame is:

v = ṙn + r
(
ζ̇ + ψ̇ cos ι

)
λ+ r

(
ι̇ sin ζ − ψ̇ sin ι cos ζ

)
l , (5.2)

where r is the relative position and the dot operator corresponds to a first time derivative.
The frame (n,λ, l), called CM frame in the rest of the Chapter, has time-varying basis with
respect to the fixed observer frame. Lastly, we also introduce the proper frame of the wave
(ex, ey, ez), useful for the definition of the polarizations in both the EM and in the GR case.
We denote α the angle between the P -axis and the ascending node N ′, β the angle between
the ascending node and ex and κ the angle between ez and N. We then have the following
relations between the observer basis and the incoming GW basis:

ex = (cosα cosβ − sinα cosκ sin β) P (sinα cosβ + cosα cosκ sin β) Q + sin κ sin βN,

ey = (cosα sin β + sinα cosκ cosβ) P (sinα sin β − cosα cosκ cosβ) Q− sin κ cosβN,

ez =− sinα sin κP + cosα sin κQ− cosκN. (5.3)

Figure 5.2 sketches the frame of the observer and of the CM.

Finally, we will use the Keplerian parametrization of the orbit, and we perform an expansion
for small eccentricities. Despite this, we will mostly concentrate on the zeroth order. Here is
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the parametrization we will use:

r = a (1− e cos(u)) , (5.4)

ζ = v ≡ 2 arctan
[(1 + e

1− e

)1/2
tan

(
u

2

)]
, (5.5)

l ≡ n (t− t0) = u− e sin u , (5.6)

where a is the semi-major axis, e is the eccentricity, u and v are respectively the eccentric
and true anomaly, l is the mean anomaly, n is the mean motion and t0 is the instant of
passage at the perihelion. At Newtonian order we have that n = ω0, where ω0 is the orbital
frequency of the binary system.

To avoid lengthy expressions, we will also often abbreviate the following trigonometric
functions:

cos(α+ β) ≡ cα+β and sin(α+ β) ≡ sα+β.

Furthermore, variables in bold are to be intended as vectors, while the corresponding normal
ones are their corresponding magnitude. We use Greek letters to represent space-time indices
and latin letters for 3-dimensional spatial indices. As the spatial indices are moved with the
delta metric δij , we indifferently write them in a lower or upper position.

5.2 Scattering of electromagnetic waves

We will start with an old and venerable problem, the scattering of EM waves off obstacles [243].
This incursion will set the stage for both the scalar and gravitational case, while sharing
some (many) features in common. We start by working out how an incoming EM wave
affects a rotating dipole. This is a classical treatment that only requires linear perturbation
theory. We use the change in the dipole moment induced by the incoming EM wave to
compute the scattered radiation and the total scattering cross section. All these quantities
are evaluated for an EM wave propagating along the direction of the observer and with the
electric field oscillating in the plane of the orbit. In the high frequency limit, we recover
classical results concerning scattering off oscillators.

Specifically, we want to evaluate the effect of an incoming EM wave on a binary system of
two electric charges orbiting at a frequency ω0. The monochromatic EM wave propagates
along the z direction and has a frequency Ω.

5.2.1 Unperturbed dipole physics

Consider a system of two charged particles, of mass m1 and m2, that interact through the
product between the EM potential Aµ = (Φ/c,A) and four-current Jµ = (cρ, j), where
ρ is the charge density (ρ = qiδ

3(x − xi)) and j = ρv is the current density. We take
these charges to interact only through the Coulomb force. Consider a system of two
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charged particles in Minkowski flat spacetime with metric ηµν = diag(−1, 1, 1, 1). Using
xµ = (x0, x1, x2, x3) = (ct, x, y, z) as coordinates, where c is the speed of light in vacuum,
the action that describes this system is

S =
∫

d3xdt
[
−FµνF

µν

4µ0
−A1

µJ
2
µ −A2

µJ
1
µ

]
− c2

∫
dτ (m1 +m2) , (5.7)

in which µ0 is the magnetic vacuum permeability, Fµν the antisymmetric EM tensor defined
as Fµν = ∂µAν − ∂νAµ and dτ = dt

√
1− v2/c2, where v2 is the square of the three-velocity

vi = dxi/dt. From now on, we restrict ourselves to the small velocities case, dropping all the
special-relativistic terms. With all these assumptions, the i-th component of the equations
of motion for each particles is

m1r̈
i
1 = q1q2(r1 − r2)i

|r1 − r2|3
, m2r̈

i
2 = q1q2(r2 − r1)i

|r2 − r1|3
, (5.8)

where i = (1, 2, 3), r1(2) represents the position vector of particle 1(2), q1, q2 are the electric
charges and the double dot sign means a second derivative with respect to time t. In the
CM frame, the CM vector position has zero second time derivative (R̈CM = 0), while,
defining the relative position vector with respect to the radial direction defined in Sec. 5.1 as
r ≡ r1 − r2 = rn, the equations for the relative motion become

r̈ = 1
µ

q1q2
| r|2

n, (5.9)

where µ is the reduced mass of the system,

µ = m1m2
m1 +m2

. (5.10)

We define the total mass as m = m1 + m2. Since the Coulomb force is central, the total
angular momentum of the system is conserved and the motion happens on a fixed plane.
The solution to the equations of motion, in analogy with the Newtonian ones, have the
characteristic shape of a conic section, depending on the energy of the particles. Since we
are interested in bound systems, we assume that the energy will be the one associated with
bound orbits.

We focus on the case in which the dipole is composed of two particles with equal and opposite
charge and equal mass:

−q2 = q1 = q ,

m1 = m2 = M . (5.11)

From Eqs. (5.8), we find that the CM is fixed, the angular momentum of the system is
constant and the motion lies in the orbital plane. The orbit of the binary can be directly
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obtained from
r̈ − 4L2

M2r3 = − 2q2

Mr2 , (5.12)

where L = Mr2φ̇/2 is the magnitude of the angular momentum vector of the system and
φ is the angle describing the motion of the reduced mass in the plane of the orbit (polar
angle). Defining the dipole vector (d) as

d = q1r1 + q2r2 = µ

(
q1
m1
− q2
m2

)
r , (5.13)

where r is the proper radius of the system (relative position vector in the dipole case).
Introducing the vector between the CM and the observer, of magnitude R0 and unit direction
R̂0, the generated EM wave has vector potential, electric field and magnetic one given by

A = 1
cR0

ḋ, H = 1
c2R0

d̈× R̂0, E = 1
c2R0

(d̈× R̂0)× R̂0. (5.14)

This is a well-known result, a dipole emits only if it is accelerated. Finally, the expression
for the intensity of the emitted energy is given by [243]:

dI = c
H2

4π R
2
0do→ I = 2

3c3 d̈
2, (5.15)

where we averaged over one period of the orbit and do is the solid angle in the R̂0 direction.

5.2.2 Scattering from a rotating dipole

The binary above is now hit by an EM wave described by a vector potential AµΩ. For
definiteness, the wave propagates along the ez axis, parallel to the direction N and to the
angular momentum of the system L. In this way, the x-y plane of the orbital frame, of the
observer and also of the wave are all parallel between each other and perpendicular to the z
direction in the observer frame.

The action (5.7) needs to be complemented by adding both the scalar and the vector
potentials of the perturbation,

Aµ1 → Aµ1 +AµΩ =
(Φ1
c

+ ΦΩ
c
,A1 +AΩ

)
, (5.16)

Aµ2 → Aµ2 +AµΩ =
(Φ2
c

+ ΦΩ
c
,A2 +AΩ

)
. (5.17)

Using the definitions of EM fields 1 and potentials,

E = −∇Φ− ∂

∂t
A and B = ∇×A , (5.18)

1In order to pass to the old vectorial picture, in this section B = µ0H is the magnetic field in vacuum.
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one finds,

m1a1 = q1E2 + q1EΩ + q1v1 ×B2 + q1v1 ×BΩ ,

m2a2 = q2E1 + q2EΩ + q2v2 ×B1 + q2v2 ×BΩ. (5.19)

Dropping the last two terms of Eqs. (5.19) by assumptions of small internal velocities
compared to the speed of light, we get

m1a1 = q1E2 + q1EΩ,

m2a2 = q2E1 + q2EΩ. (5.20)

Finally, in the CM frame we have

R̈CM = q1 + q2
m1 +m2

(EΩ)CM, (5.21)

r̈ = 1
µ

q1q2
|r|2

n+
(
q1
m1
− q2
m2

)
(EΩ)CM . (5.22)

where (EΩ)CM, means that the quantity under consideration has to be properly expressed in
the CM frame. Using the equations of motion (5.20) and transforming all the quantities in
the CM frame, we find the total angular momentum variation in time,

dL
dt = µ

2q
M
r × (EΩ)CM . (5.23)

Here, we used already the specific setup described by Eq. (5.11).

Equations of motion

As we have shown in Eq. (5.23), the time variation of the angular momentum is given by
the cross product of the relative position vector and the external perturbing force FΩ,

L̇ ∼ r12 × FΩ . (5.24)

An electric field on the plane of the orbit changes the magnitude of the angular momentum,
but not its direction. We should highlight that this simplification still captures the dynamics
of the scattering, allowing us to give an analytic treatment of the process. In order to further
simplify our calculations, we consider the unperturbed motion happening in circular orbits.
Therefore, the equations that describe the perturbation of such kind of trajectory are given
by

r̈ − rφ̇2 = − 2q2

Mr2 + qEΩ
M

(
cγ−Ωt−φ(t) + cγ+Ωt−φ(t)

)
, (5.25)

2ṙφ̇+ rφ̈ = qEΩ
M

(
sγ−Ωt−φ(t) + sγ+Ωt−φ(t)

)
, (5.26)
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where γ is the angle between the direction of polarization of the electric field and the P
direction, in the plane of the orbit. Here, and in this section only, φ is the polar angle
describing the orbital motion in the x-y plane. The constant EΩ is the amplitude of the
electric field. The presence of the perturbation in the right hand side of the second equation
spoils the constancy of the angular momentum but, at first order in EΩ, one can find the
relation linking φ̇ and L. Let us write,

2ṙφ̇+ rφ̈ ≡ 2
M

1
r

d
dt

(
M

2 r2φ̇

)
= 2
M

1
r

d
dtL(t), (5.27)

where L(t) is the angular momentum magnitude. Since without any external perturbation
the angular momentum is conserved (and equal to a constant L◦), we can expand L(t) in
powers of the electric field

L(t) = L◦ + EΩL1(t) +O
(
E2

Ω

)
. (5.28)

Making use of this, a similar expansion for r(t) and for φ(t) can be found,

r(t) = r◦ + EΩg(t) +O
(
E2

Ω

)
, (5.29)

φ(t) = φ(0) + t φ̇ = φ(0) + t
(
ω0 + EΩZp +O

(
E2

Ω

))
, (5.30)

where r◦ is the orbital radius of the unperturbed motion, φ(0) = φ0 is the initial angular
position of the reduced mass in the x-y plane and Zp is the first order correction in the
orbital frequency due to the external perturbation. Using Eqs. (5.26) we find

L̇1(t) = q r◦
2 (sγ0−φ0−tΩ−tω0 + sγ0−φ0+tΩ−tω0) . (5.31)

where we kept only the zero order in the φ(t) expansion because L̇1 is already a first order
quantity. For the unperturbed circular motion, φ̇ = ω0 is constant. Thus, integrating
Eq. (5.31) with φ(t) = ω0t, one finds,

L1(t) =
∫ t

0
dt′[L̇1(t′)]

= qr◦

(
ω0cγ−φ0

Ω2 − ω2
0

+ cγ−φ0+tΩ−tω0

2(ω0 − Ω) + cγ−φ0−tΩ−tω0

2(ω0 + Ω)

)
.

Finally, the total angular momentum to first order in the external field is

L(t) = L◦ + EΩL1(t)

= L◦ + EΩqr◦ω0cγ−φ0

Ω2 − ω2
0

+ EΩqr◦
2

[
cγ−φ0+tΩ−tω0

ω0 − Ω + cγ−φ0−tΩ−tω0

ω0 + Ω

]
. (5.32)
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From the definition of angular momentum, from Eqs. (5.29) and (5.30) and up to O
(
E2

Ω
)
,

L(t) = 1
2Mr(t)2φ̇(t)

= M

2 r2
◦ω0 +

(
M

2 r◦(r◦Zp + 2ω0g(t))
)
EΩ . (5.33)

We can compare with Eq. (5.32) order by order, to get

L◦ = M

2 r2
◦ω0 , (5.34)

at order zero, and

Zp = q

Mr◦

(2ω0cγ−φ0

Ω2 − ω2
0

+ cγ−φ0+tΩ−tω0

(ω0 − Ω) + cγ−φ0−tΩ−tω0

(ω0 + Ω)

)
− 2ω0g(t)

r◦
. (5.35)

Now that we have used the Keplerian polar equation to get the angular perturbation due to
the incoming wave, we substitute this result in φ̇2 in the radial equation (5.26) in order to find
the equation governing g(t). Then substituting the expansions given by Eqs. (5.29)- (5.30),

g̈(t)− r◦(ω0 +EΩZp)2 = − 2q2

M(r◦ + EΩg(t)) + qEΩ
M

(cγ−Ωt−φ0−ω0t + cγ+Ωt−φ0−ω0t) , (5.36)

we get, at zero order in EΩ, the relation between the Newtonian orbital frequency and the
characteristics of the binary,

ω2
0 = 2q2

Mr3
◦
. (5.37)

Substituting M obtained by the equation above in the first order expansion of Eq. (5.36),
we find a differential equation for g(t).

g̈(t) + ω2
0g(t) + 2r3

◦ω
4
0cγ−φ0

q(ω2
0 − Ω2)

= r3
◦ω

2
0(Ω− 3ω0)cγ−φ0+tΩ−tω0

2q(Ω− ω0) + r3
◦ω

2
0(Ω + 3ω0)cγ−φ0−tΩ−tω0

2q(Ω + ω0) ,

(5.38)

The equation above represents a driven harmonic oscillator with multiple resonant frequencies,
whose solution is given by

g(t) = k1 cos(tω0) + k2 sin(tω0)

+ r3
◦
q

[
2ω2

0cγ−φ0

Ω2 − ω2
0
− ω2

0(Ω− 3ω0)cγ−φ0+tΩ−tω0

2Ω(Ω2 − 3Ωω0 + 2ω2
0)
− ω2

0(Ω + 3ω0)cγ−φ0−tΩ−tω0

2Ω(Ω2 + 3Ωω0 + 2ω2
0)

]
. (5.39)

in which k1 and k2 are integration constants. We set the two constants of integration to zero
in the following. Finally, we can evaluate Zp considering the explicit solution for g(t) given
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by Eq. (5.39) with k1 = k2 = 0,

Zp = r2
◦
q

[3ω3
0cγ−φ0

ω2
0 − Ω2 −

ω2
0(Ω2 − 4Ωω0 + 6ω2

0)cγ−φ0+tΩ−tω0

2Ω(Ω− 2ω0)(Ω− ω0)

+ ω2
0(Ω2 + 4Ωω0 + 6ω2

0)cγ−φ0−tΩ−tω0

2Ω(Ω + 2ω0)(Ω + ω0)

]
. (5.40)

The roots of the denominators in the solution for g(t) are{
− 2ω0,−ω0, 0, ω0, 2ω0

}
.

The negative values are solution because of the symmetry of the problem, but they are not
adding any physics to the positive ones, so we will consider only 0, ω0, 2ω0. Let’s evaluate
the limit of r(t) for these roots,

lim
Ω→0

r(t) = r◦ −
2EΩr

3
◦cγ−φ0

q
+ EΩr

3
◦

q

(7
4cγ−φ0−tω0

)
− EΩr

3
◦

q

(3
2 t ω0sγ−φ0−tω0

)
,

lim
Ω→ω0

r(t) = r◦ −
EΩr

3
◦

q

(1
3cγ−φ0−2tω0

)
+ EΩr

3
◦

q

(
t ω0sγ−φ0

)
,

lim
Ω→2ω0

r(t) =∞ . (5.41)

In the high-frequency limit, the reasoning described before does not hold because the effect
of the external field lives on a timescale much shorter than the one associated with the
proper rotation of the binary, such that we can neglect the free motion of the system during
one (or few) period of oscillation of the external electric field. So, we can just consider that

lim
Ω→∞

r(t) = r◦ . (5.42)

From these results we see that resonant phenomena appear depending on the ratio between
the incoming and the orbital frequency. Especially, in the Ω→ 0 limit the radial motion of
the reduced mass has a secular instability given by the last term of Eq. (5.41). This term
can be understood thinking that the low frequency limit of our scattering corresponds to
a perfect dipole inside a capacitor: in the large time limit, the two particles are dragged
away from each other. In the Ω→ ω0 case there is also such a secular term, but it can be
set to zero with an appropriate choice of the initial condition. Finally, the Ω → 2ω0 case
corresponds to a proper resonance, meaning that the amplitude of the motion for that value
is infinite.

Scattered Fields

Having solved the perturbed equations of motion, we can find the scattered electrical field,
energy and the total cross section. When the system interacts with the external perturbation,
the total field will contain a perturbed dipole term. In addition, the CM may contribute to
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the scattered field; we denote this contribution ELW, where LW stands for Liénard–Wiechert,

Escattered = E2p +ELW . (5.43)

We express our results in the fixed observer frame, using

R̂0 = cos δ cos ξP + sin δ cos ξQ + sin ξN , (5.44)

n(t) = cosφ(t) P + sinφ(t) Q , (5.45)

EΩ(t) = cos γP + sin γQ , (5.46)

where δ and ξ are the angles that characterize the position of the unitary vector R̂0 with
respect to the CM, in the fixed observer frame; φ(t) is given by Eqs. (5.30) and (5.40), γ
is the direction of the linear polarization of the electric field in the orbital plane and EΩ is
the unitary vector in the direction of the external electric field (EΩ = EΩEΩ). Since we are
considering the motion of a dipole in which the total charge is zero, the contribution from
the CM acceleration is zero.

Radiation from the CM

The scalar and vector potentials produced by one accelerated particle are given by the
Liénard–Wiechert potentials,

Φ = q(
R0 − (v·R̂0)R0

c

) , A = qv

c

(
R0 − (v·R̂0)R0

c

) . (5.47)

We can then find the electric and magnetic field for the accelerated charge in a relativistic
context. For small velocities we get,

E = q

R0
2 R̂0 + q

c2R0
R̂0 × (R̂0 × v̇) , (5.48)

H = 1
R0
R̂0 ×E . (5.49)

Using Eq. (5.22), we find

ELW = (q1 + q2)2EΩ
(m1 +m2) c2R0

R̂0 × (R̂0 × EΩ) . (5.50)

Finally, in the observer frame, one finds

ELW = (q1 + q2)2EΩcΩt
(m1 +m2) c2R0

[
(−cγs2

δc
2
ξ + sγsδcδc

2
ξ − cγs2

ξ)P

+ (sγ
(
−c2

δ

)
c2
ξ + cγsδcδc

2
ξ − sγs2

ξ)Q + (cγcδsξcξ + sγsδsξcξ)N
]
. (5.51)
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As we can see from Eq. (5.50), this term is due to a non zero acceleration of the CM, that,
naturally, depends on the wave perturbation. For two particles with opposite charge, the CM
radiation is zero because of q1 + q2 = 0, and the electric field will be only the one produced
by the perturbed dipole.

The vector potential has contributions from the unperturbed dipole and a contribution from
the perturbed part, induced by the incoming EM wave. Particularly, getting the electric field
E from the vector potential A, we find the same functional expression (5.14), but containing
the acceleration of the dipole given by Eq. (5.22). Therefore, using the definitions of dipole
fields in Eq. (5.14) and the expression for the radial separation (5.39) we find,

E2p(t) = −qr◦ω
2
0

c2R0

[(
n(t)× R̂0

)
× R̂0

]
+ EΩr

3
◦ω

2
0cΩt

c2R0

[(
EΩ × R̂0

)
× R̂0

]
+ 4EΩω

4
0r

3
◦cγ−φ0

c2R0(Ω2 − ω2
0)

[(
n(t)× R̂0

)
× R̂0

]
− 2EΩr

3
◦ω

4
0

c2R0

[(Ω + 3ω0)cγ−φ0−tΩ−tω0

2Ω(Ω2 + 3Ωω0 + 2ω2
0)

+ (Ω− 3ω0)cγ−φ0+tΩ−tω0

2Ω(Ω2 − 3Ωω0 + 2ω2
0)

] [(
n(t)× R̂0

)
× R̂0

]
. (5.52)

H2p(t) = −qr◦ω
2
0

c2R0

[
n(t)× R̂0

]
+ EΩr

3
◦ω

2
0cΩt

c2R0

[
EΩ × R̂0

]
+ 4EΩω

4
0r

3
◦cγ−φ0

c2R0(Ω2 − ω2
0)

[
n(t)× R̂0

]
− 2EΩr

3
◦ω

4
0

c2R0

[(Ω + 3ω0)cγ−φ0−tΩ−tω0

2Ω(Ω2 + 3Ωω0 + 2ω2
0)

+ (Ω− 3ω0)cγ−φ0+tΩ−tω0

2Ω(Ω2 − 3Ωω0 + 2ω2
0)

] [
n(t)× R̂0

]
,

(5.53)

The first term describes the unperturbed dipole radiation, as we can see from a quick
comparison with Eq. (5.14). Once this term is expressed in the observer frame, n(t) also
includes a term linear in the external perturbation, due to the first order Taylor expansion
of the trigonometric functions in Eq. (5.45). The second term, that does not depend on
n(t), is the only one that matters in the high frequency limit. The third term represents the
modification to the dipole emission due to the external wave.

Cross section

The scattering cross section is defined as the ratio between the energy emitted by the system
in any given direction per unit of time, to the energy flux density of the incident radiation
per unit of time. Considering that dI is the energy radiated per second by the binary into
the solid angle do, we can define the differential cross section as

dσ = dIscat
SΩ

, (5.54)

where SΩ is the modulus of the Poynting vector of the incoming wave. Using the relation
between intensity and Poynting vector and considering that the Poynting vector module is a
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time-varying quantity, we get
dσ
do = 〈Sscat〉R2

0
〈SΩ〉

, (5.55)

where the triangle brackets indicate a time average over one (or more) period and do is the
solid angle element given, with our choice of R̂0, by

do = cos ξdξdδ, with ξ = [−π/2, π/2]; δ = [0, 2π]. (5.56)

In the high frequency limit, since the incoming wave is a monochromatic plane wave, its
Poynting vector is

SΩ =
(
c

4πE
2
Ωc

2
Ωt

)
N . (5.57)

Its absolute value, averaged over one period of the EM wave (2π/Ω = TΩ), is

〈SΩ〉 = Ω
2π

∫
TΩ
SΩdt = cE2

Ω
8π . (5.58)

To evaluate the Poynting vector of the scattered radiation we need to use the fields obtained
in (5.52) and (5.53),

〈Sscat〉 = 〈 c4π (E2p ×H2p)〉 = Ω
2π

∫
TΩ

c

4π |E2p ×H2p|dt . (5.59)

In the high frequency limit we can evaluate the differential scattering cross section using
only the second term in Eq. (5.52) and Eq. (5.53),

dσ
do =

(
q2

c2M

)2 (
2c2ξc

2
γ−δ + c2(γ−δ) − 3

)
. (5.60)

The total high frequency scattering cross section is found by integrating the above, and
yields

σ = 32π
3

(
q2

c2M

)2

, (5.61)

the standard Thomson result [243]. Notice that q2/Mc2 is the classical charge radius. In
the case of a circular orbit, the cross section in (5.61) can be given as a function of the
unperturbed orbital frequency through (5.37),

σ = 32π
3

(
r3
◦ω

2
0

2c2

)2

= Ar2
◦ , (5.62)

where A = 8π
3

(
r2
◦ω

2
0

c2

)2
. The total cross section for a wave with a generic frequency Ω is

shown in Fig. 5.3 at Ω & ω0. From this plot, we can see that the cross section goes to infinity
when the incoming frequency approaches twice of the orbital frequency and that in the high
frequency limit it reaches the value given in Eq. (5.62).
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Figure 5.3: Total scattering cross section for a dipolar wave as a function of the external
frequency. Here, σ̃ ≡ σ/(Ar2

◦) is shown as a function of Ω̃ ≡ Ω/ω0. We set c = 1 and the
two angles γ = φ0 = 0. As expected, the cross section grows unboundedly for Ω = 2ω0. For
large values of Ω we recover the standard high-frequency classical result (5.62).

5.3 Scattering of scalar waves

For completeness, we now show that the previous results are straightforward to extend in the
presence of a scalar interaction. Let’s suppose that a binary system, made of two point-like
scalar charges, interacts with a scalar wave and that is on a circular orbit of frequency ω0.

We consider the following action,

S =
∫

d4x

[
−1

2∂
µφ∂µφ− ρqφ

]
+ Sm , (5.63)

where φ is the scalar field and ρq is a general scalar charge density. The action for a free
particle Sm is as in (5.7). The scalar field is then governed by the Klein-Gordon equation

∂µ∂µφ = ρq . (5.64)

For a point-like charge ρq = qδ3(x− x′)dτ
dt , in the non-relativist limit the static solution is

given by the Green’s function of the Laplace operator,

φ(x) = − q

4π
1

|x− x′|
, (5.65)

therefore, a Coulomb-like potential. From the Euler-Lagrange equation in a non-relativistic
regime, one finds,

m1a
j
1 = −q1

(
∂φ2
∂xj

)
1
, m2a

j
2 = −q2

(
∂φ1
∂xj

)
2
, (5.66)

in which the scalar field φi is the potential produced by the particle i.
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Let’s now consider the case in which a scalar wave impinges on the system. We call δφ = φΩ

the perturbation in the scalar potential. The equations of motion are then altered to include
the interaction of the binary with the wave,

m1a
j
1 = −q1

(
∂φ2
∂xj

)
1
− q1

(
∂φΩ
∂xj

)
1
, (5.67)

m2a
j
2 = −q2

(
∂φ1
∂x2

j

)
2
− q2

(
∂φΩ
∂xj

)
2
. (5.68)

Using the explicit form of the potential (5.65), transforming the equations to the CM frame
and assuming that the scalar field is homogeneous enough to be evaluated directly in the
CM position, we find

R̈CM = −
(
q1 + q2
m

)(
∂φΩ
∂xj

)
CM

, (5.69)

r̈ = − 1
µ

q1q2
|r|2

n−
(
q1
m1
− q2
m2

)(
∂φΩ
∂xj

)
CM

. (5.70)

These equations are formally equivalent to the EM counterpart, and no further calculation
is necessary.

The existence of a background of light bosons may be motivated by the problem of dark
matter, for instance (see e.g. [244] and Chapter 4). Their influence in binary systems was
recently described in [180, 245, 246]. The scattering that we described here may be of interest
to refine these studies.
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Here we evaluate the effects of the scattering of a GW on a binary system, in the same
fashion as the EM scattering depicted in Chapter 5.

Broadly speaking, the scattering of GWs is suppressed by the smallness of the gravitational
coupling constant. However, resonances between the impinging GW and a binary system may
enhance the effects to measurable levels. This motivated a few studies in the past [247, 248],
both focusing on resonant interactions between a passing GW and a binary. The outcomes
of this Chapter extend previous results in an important direction, by including dissipative
terms and evaluating the scattered GW and the scattering cross section for two physical
configurations: (i) for GWs propagating along the direction of the angular momentum of the
system (i.e. oscillating in the orbital plane), and (ii) for GWs propagating perpendicularly
to the angular momentum vector (i.e. GW travelling parallel to the orbital plane).

The work developed here is also motivated by a study suggesting that the modes of oscillation
of stars could be excited by passing GWs [249]. In fact, as it will be clear later, the master
differential equation that rules these excitations is akin to our radial displacement in the

79
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binary, due to the incoming GW. Additionally, in both cases one may get resonances induced
by the scattering process. In the single star case there are also reasons to expect that the
GW signal can be the source of measurable deviations in the acoustic oscillations of the
stars [250]. A still open issue concerns the study of scattering on binaries made of two stars.
In this peculiar case, if the frequency of the excited mode is comparable with the proper
orbital frequency, the scattering process can leave a signature both on the binary as a whole
and on each single compact body in the couple.

The incoming gravitational wave

Let us start defining the incoming GW properties. To coherently perform the PN expansion,
in the following we restore the units of G and c. We consider an incoming monochromatic GW
propagating in the z direction of a fixed basis (ex, ey, ez), at a frequency Ω (the employed
geometrical conventions are described in detail in Section 5.1). Additionally, the binary
system is made of two compact stars (or BHs) modelled by two point particles of mass m1

and m2 orbiting at an orbital frequency ω0. In the transverse traceless (TT) gauge, the
waveform is

Hij = Pklij
{
H+ cos (Ω t− k z) e+

kl +H× sin (Ω t− k z) e×kl
}
, (6.1)

where e+
ij = ex ⊗ ex − ey ⊗ ey and e×ij = ex ⊗ ey + ey ⊗ ex are the two polarization states of

the GW [251], Pijkl = PikPjl− 1
2PijPkl is the TT projection operator, with Pij = δij −NiNj

the projection onto the plane orthogonal to N. As the wave is a solution of

�Hij = 0, (6.2)

we have,
k = ±Ω

c
, (6.3)

and H+ = const and H× = const. As a consequence, the spatial derivatives of Hij will be
suppressed, ∂kHij = O

(
1
c

)
(homogeneity condition), in particular ∂jHij = 0 (transverse),

and we can assume that in the near zone of the compact binary one has Hij ∼ (Hij)A ∼
(Hjk)CM. These conditions will be used in the following when we will perform a perturbative
expansion of the solution.

6.1 Post-Newtonian formalism

To deal with the equations of motion for two point-like masses on a bound orbit, we shall
treat the GW perturbation within a PN framework. This procedure highlights the non-linear
character of the Einstein equations, but, given the relatively small spacetime curvatures
in the system, allow us for a perturbative treatment. For GWs which are homogeneous on
length-scales larger than the characteristic orbital distance between the masses, we find the
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same equations of motion as those described by Turner [247] and Mashhoon [248]. Later,
using an angle-action formalism to treat the variation of the orbital parameters, we find that
the changes in the orbital parameters are linear in the incoming GW. Likewise, resonances
between the binary and the incoming GW happen at certain discrete GW frequencies (integer
multiples of the proper orbital frequency), in agreement with previous literature [247, 248].

6.1.1 Einstein’s equations

We want to solve Einstein’s equations

Gµν = 8πG
c4 Tµν , (6.4)

where Gµν is the Einstein tensor and Tµν is the stress-energy tensor for point particles

Tµν =
∑
A=1,2

mA√
−g

vµAv
ν
A√

− (gρσ)A
vρAv

σ
A

c2

δ(3)(x− xA) , (6.5)

where g is the determinant of the metric gµν . Defining the gothic metric gµν =
√
−ggµν and

the tensor Hµανβ = gαβgµν − gανgβµ, we have the well-known identity [242]

∂αβH
µανβ = (−g)

(
2Gµν + 16πG

c4 tµνLL

)
, (6.6)

where tµνLL is the Landau-Lifshitz tensor [242]. Next we define the gravitational field

lµν = gµν − ηµν , (6.7)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric and we impose the harmonicity
condition on the metric perturbation lµν ,

∂ν l
µν = 0 . (6.8)

Using (6.6), we can rewrite the field equations as

�lµν = 16πG
c4 Tµν + Λµν , (6.9)

where
Λµν = 16πG

c4 tµνLL + ∂ρl
µσ∂σl

νρ − lρσ∂ρσlµν , (6.10)

is at least quadratic in the gravitational field. In our case, lµν is formed by two different
terms, the perturbation Hµν due to the incoming GW that we are superimposing on the
original unperturbed gravitational field hµν . Thus, at linear order we can write

lµν = hµν +Hµν . (6.11)
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Since �Hµν = 0, the field equations (6.9) can be rewritten as a d’Alembertian equation for
hµν ,

�hµν = 16πG
c4 Tµν [m,hµν , Hµν ] + Λµν [hµν , hµν ] + Λµν [hµν , Hµν ] + Λµν [Hµν , Hµν ] . (6.12)

The last term in (6.12) can be neglected when considering only the dominant, linear order
in Hµν terms.

6.1.2 Post-Newtonian iteration

We perform the post-Newtonian iteration of the field equations in harmonic coordinates in
the near-zone of the isolated source. As we are only interested in the effect of the external
perturbation on the binary dynamics, we only need the lowest order PN expansion. We
parametrize the metric by the usual PN potentials, using the variable h00ii ≡ h00 + hii,

h00ii = −4V
c2 +O(c−4) , (6.13)

h0i = −4V i

c3 +O(c−5) , (6.14)

hij = O(c−4) . (6.15)

Each potential obeys a flat space-time d’Alembertian equation sourced by the lowest order
potentials and by some matter energy density components. We get

�V = −4πGΥ−Hab∂abh
00ii , (6.16)

�V i = −4πGΥi −Hab∂abh
00ii + 1

c
∂tH

ia∂ah
00ii , (6.17)

where we have defined

Υ = T 00 + T ii

c2 , and Υi = T 0i

c
. (6.18)

The first terms in the r.h.s. of Eqs. (6.16) are of compact support, while the other terms
are of non-compact support. We solve these equations perturbatively and up to linear order
in H. The zeroth order corresponds to the Newtonian term and the equation becomes
∆V = −4πGΥ, with Υ = m1δ1 +m2δ2, and thus

VN = Gm1
r1

+ Gm2
r2

. (6.19)

We now decompose V in a Newtonian part and a contribution linear in H, V = VN + Vh.
Inserting it into Eq. (6.16), we find

Vh = ∆−1
[
−Hab∂ab

(
Gm1
r1

+ Gm2
r2

)]
. (6.20)
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Using the fact that H ij ∼ (H ij)CM , we see that the inverse Laplacian will not act on H.
Further commuting it with the spatial derivatives, we get

Vh = Gm1
r1

Hijn
i
1n

j
1 + Gm2

r2
Hijn

i
2n

j
2 . (6.21)

The potential V i can be obtained in a similar way.

6.1.3 Geodesic equation

The geodesic equations for point-particles is equivalent to the conservation of the matter
stress-energy tensor, ∇νTµν = 0. We express the resulting equations for particle 1 as [252]

d
(
P i
)
1

dt =
(
F i
)

1
, (6.22)

with

P i =
giµv

µ

√−gρσvρvσ
, (6.23)

F i = 1
2
∂igµνv

µvν
√−gρσvρvσ

. (6.24)

Using the expression of the metric as a function of the potentials, see Eq. (6.13), we obtain
at linear order in H

P i1 = vi1 − v
j
1(H i

j)1, (6.25)

F i1 = 1
2v

j
1v
k
1 (∂iHjk)1 + (∂iV )1 . (6.26)

Using the relation V = VN+Vh, with Vh given by Eq. (6.21), we finally obtain the acceleration
of particle 1,

ai1 = −Gm2
r2

12

(
1 + 3

2Hjkn
j
12n

k
12

)
ni12 + dHij

dt vj1 . (6.27)

Here we ignored all higher order post-Newtonian corrections, since they will be sub-leading
in the computation of the cross-section.

6.1.4 Lagrangian formulation

The equations of motion (6.27) can be derived from the Lagrangian

L = Gm1m2
r12

(
1 + 1

2Hijn
i
12n

j
12

)
+ 1

2m1v
2
1 −

1
2m1Hijv

i
1v
j
1 + 1

2m2v
2
2 −

1
2m2Hijv

i
2v
j
2 . (6.28)

Varying the Lagrangian with respect to the velocities, we obtain the linear momentum

P i ≡
∑
A=1,2

δL

δviA
= m1v

i
1 −m1Hijv

j
1 +m2v

i
2 −m2Hijv

j
2.
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It is possible to see that the time-derivative of the momentum is zero. Then we get the
energy associated with the binary motion,

E ≡
∑
A=1,2

δL

δviA
viA − L (6.29)

= −Gm1m2
r12

(
1 + 1

2Hjkn
j
12n

k
12

)
+ 1

2m1v
2
1 −

1
2m1Hijv

i
1v
j
1 + 1

2m2v
2
2 −

1
2m2Hijv

i
2v
j
2 .

(6.30)

Similarly the angular momentum J i is given by

J i ≡ εijk
∑
A=1,2

xjA
δL

δvkA

= εijk
[
m1

(
xj1v

k
1 −Hklx

j
1v
l
1

)
+m2

(
xj2v

k
2 −Hklx

j
2v
l
2

)]
, (6.31)

where εijk is the Levi-Civita tensor. Finally, we define the CM integral

Gi = m1x
i
1 −m1H

i
jx
j
1 + [1↔ 2] . (6.32)

The conservation laws associated with all these quantities are

dP i

dt = 0 , (6.33)

dGi

dt = P i −m1
(
Ḣ i
j

)
1
xj1 −m2

(
Ḣ i
j

)
2
xj2 , (6.34)

dE
dt = 1

2m1
(
Ḣij

)
CM

vi1v
j
1 + 1

2m2
(
Ḣij

)
CM

vi2v
j
2 −

Gm1m2
2r12

(
Ḣij

)
CM

ni12n
j
12 , (6.35)

dJ i

dt = εijk

[
−m1v

j
1 (Hkm)CM vm1 −m2v

j
2 (Hkm)CM vm2 + Gm1m2

r12
nj12 (Hkm)CM nm12

]
.

(6.36)

Unlike the Newtonian result, these quantities are not conserved, due to the incoming GW;
the only conserved quantity here is the momentum P i.

We now wish to work in the CM coordinates. We define the total mass m, the symmetric
mass ratio ν and the relative position xi and velocity vi as

m = m1 +m2 , (6.37)

ν = µ

m
= m1m2

m2 , (6.38)

xi = xi1 − xi2, r = |x| , (6.39)

vi = vi1 − vi2 , ai ≡ ai1 − ai2 . (6.40)
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The CM coordinates are then obtained by solving the equation

Gi = 0 . (6.41)

It implies the well-known Newtonian results, that are still valid at linear order in Hij ,

xi1 ,CM = m2
m
xi, xi2 ,CM = −m1

m
xi, (6.42)

vi1 ,CM = m2
m
vi, vi2 ,CM = −m1

m
vi . (6.43)

In the CM coordinates, the relative acceleration is given by

ai = −Gm
r2

(
1 + 3

2Hjkn
jnk

)
ni + Ḣijv

j , (6.44)

and the conservation laws are now

dP i

dt = 0 , (6.45)

dE
dt = 1

2mνḢijv
ivj − Gm2ν

2r Ḣijn
inj , (6.46)

dJ i

dt = εijkmν

[
Gm

r
njHkmn

m − vjHkmv
m
]
. (6.47)

6.2 Hamiltonian formulation and angle-action variables

To understand the gravitational problem, we will follow a different route from that we used
in the EM example. We will use an approach based on angle-action variables. The dynamics
of a Keplerian orbit in Delaunay variables is well known, and we will use the powerful tool
of perturbation theory in angle-action variables to describe the evolution of the perturbed
system [253]. The advantages of such an approach is that the calculations are simpler,
notably because they capture the symmetries of the system. By promoting the integrals of
motion to coordinate variables in the phase space, the dynamics of the system becomes very
simple, as we will see. In particular, it allows a simple treatment of generic orbits and of
the resonances that occur in such systems. However, in this work we will focus mostly on
circular orbits and resonances will be absent from the final result. In Appendix E, we review
the Hamiltonian in the Delaunay variables, and explain the basics of perturbation theory in
angle-action variables.

6.2.1 Hamiltonian in the modified Delaunay variables

The first step is to determine the Hamiltonian from the perturbed Lagrangian, and then to
express it as a function of the modified Delaunay variables (θ1,2,3, J1,2,3) (see Appendix E). We



Chapter 6. Scattering of gravitational waves by binary systems 86

start from the reduced perturbed Lagrangian in the CM coordinates, in spherical coordinates,

L̃ = Gm

r

[
1 + 1

2 Hijn
inj
]

+ 1
2 ṙ

2
[
1−Hijn

inj
]

+ 1
2 r

2 θ̇2
[
1−Hijθ

iθj
]

+ 1
2 r

2 sin2 θ ϕ̇2
[
1−Hijϕ

iϕj
]
− r ṙ θ̇ Hijn

iθj − r sin θ ṙ ϕ̇Hijn
iϕj − r2 sin θ θ̇ ϕ̇Hijθ

iϕj ,

(6.48)

we derive the conjugate momenta px = ∂L̃/∂ẋ,

pr = ṙ
[
1−Hijn

inj
]
− r θ̇ Hijn

iθj − r sin θ ϕ̇Hijn
iϕj ,

pθ = r2θ̇
[
1−Hijθ

iθj
]
− r ṙ Hijn

iθj − r2 sin θ ϕ̇Hijθ
iϕj ,

pϕ = r2 sin2 θ ϕ̇
[
1−Hijϕ

iϕj
]
− r sin θ ṙ Hijn

iϕj − r2 sin θ θ̇ Hijθ
iϕj , (6.49)

and then the reduced perturbed Hamiltonian

H̃ ≡ prṙ + pθθ̇ + pϕϕ̇− L̃

= −Gm
r

[
1 + 1

2 Hijn
inj
]

+ 1
2p

2
r

[
1 +Hijn

inj
]

+ 1
2r2 p

2
θ

[
1 +Hijθ

iθj
]

+ 1
2r2 sin2 θ

p2
ϕ

[
1 +Hijϕ

iϕj
]

+ pr pθ
r

Hijn
iθj + pr pϕ

r sin θ Hijn
iϕj + pθ pϕ

ρ2 sin θ Hijθ
iϕj .

(6.50)

The perturbed Hamiltonian depends explicitly on time through the perturbation Hij , given
by Eq. (6.1).

The next step is to write the Hamiltonian as a function of the modified Delaunay variables.
This can only be achieved with an expansion in the eccentricity e. In the following we will
only consider the perturbation of a circular orbit. At this order we have that J2 = 0 and θ2

is not defined. Our new set of variables is thus {θ1,3, J1,3}, and the relations between the old
canonical variables and the angle-action ones are

r = J2
3

Gm
, θ = π

2 − arccos
[
1− J1

J3

]
, ϕ = −θ1 + θ3, pr = 0, pθ = 0 , pϕ = J3 − J1 . (6.51)

The Hamiltonian that arises out of this procedure is

˜̃H = −G
2m2

2J2
3

[
1 +

(
Hijn

inj
)
−
(
Hijλ

iλj
)]

+ ΩT , (6.52)

where we have introduced a new variable τ and its conjugate T to absorb the explicit
dependence in time (cf. App. E). In particular it depends not only on the actions but also
on the angle variables. The dependence on the variable τ is only through the incoming
GW and the only modes that contribute to the Fourier expansion are kτ = ±1. Then, as
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Ω0 (J) = d ˜̃H0
dJ =

(
0, 0, G2m2

J3
3
,Ω
)
, we can see that the resonance occurs when

Ω = ±k3n , (6.53)

where n = G2m2

J3
3

is the orbital frequency of the binary and k3 ∈ N.

We can also use the new set of angle-action variables (θ′, J ′), as constructed in Appendix E.
The Hamiltonian for this set of variables is

H̃′
(
J′
)

= −G
2m2

J ′3
2 + Ω T ′ . (6.54)

The Hamilton equations are then

J̇′ = 0, θ̇′1 = 0, θ̇′3 = G2m2

J ′3
3 and τ̇ ′ = Ω . (6.55)

6.2.2 Variation of the orbit elements

We now relate the new set of variables to the orbit elements and obtain their evolution.
From J3 =

√
Gma (with a the semi-major axis), we get

da
dt = 2

√
a

Gm

dJ3
dt = −2

√
a

Gm

∂H̃1
∂θ3

. (6.56)

From J1 = J3 (1− cos ι) we get, using the previous relation,

dι
dt = cos ι− 1

sin ι
1
a

da
dt . (6.57)

We also have
dψ
dt = −dθ1

dt ,
dω
dt = −dψ

dt , and
dl
dt = dθ3

dt .

To obtain explicit results we specify to some specific configurations.

Parallel to the orbital plane: α = 0, β = π/2, κ = π/2 + ι

We compute the variation of the energy, defined as E ≡ H, and get

J2
3

G2m2Ω
dE
dt = −H×2 sin(2ι) cos(Ωt) sin(2ζ) + H+

32 sin(Ωt) (cos(4ι)− 17) cos(2ζ) . (6.58)

The variation of the semi-major axis is given by√
a

Gm

da
dt = −H+

8 cos(Ωt) (cos(4ι)− 17) sin(2ζ) + 2H× sin(2ι) sin(Ωt) cos(2ζ) , (6.59)
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while the variation of the inclination angle is

a3/2
√
Gm

dι
dt = 2H×(1− cos ι) cos ι sin(Ωt) cos(2ζ)− H+

16 cos(Ωt)(cos(4ι)− 17) tan
(
ι

2

)
sin(2ζ) .

(6.60)

Perpendicular to the orbital plane: α = 0, β = π/2, κ = ι

The variation of the energy is

J2
3

G2m2Ω
dE
dt = −H+

16 sin(Ωt)(cos(2ι) + 3)2 cos(2ζ)−H× cos(Ωt) cos2 ι sin(2ζ) . (6.61)

The variation of the semi-major axis is given by

−
√

a

Gm

da
dt = 4H× sin(Ωt) cos2 ι cos(2ζ) + H+

4 cos(Ωt)(cos(2ι) + 3)2 sin(2ζ), (6.62)

and the variation of the inclination angle is

a3/2
√
Gm

dι
dt = 2H× cos2 ι tan

(
ι

2

)
sin(Ωt) cos(2ζ) + H+

8 cos(Ωt)(cos(2ι) + 3)2 tan
(
ι

2

)
sin(2ζ) .

(6.63)

6.3 Scattered gravitational wave

The asymptotic waveform is given by [252],

lTTkm = 2G
c2R
Pijkm

∞∑
l=2

1
cll!

{
NL−2UijL−2 (T −R/C)− 2l

(l + 1)cNaL−2εab(iVj)bL−2 (T −R/C)
}

+O
( 1
R2

)
, (6.64)

where (T, R) are the radiative coordinates. We recall that Pijkm is the TT projection and
the radiative moments UL and VL are related to the mass-type and current-type moments of
the source. Here we suppose that the same relation still holds at linear order in Hij , that is,
UL(T ) = M

(l)
L (T ). The waveform is then given at our order by

lTTkm = HTT
km + 2G

c4R
PijkmM

(2)
ij +O

( 1
R2

)
, (6.65)
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The contribution from the incoming GW, HTT
ij , has to be expanded at future null infinity,

i.e. when R→ +∞ keeping T − R
c constant. We get1

2ΩR
c

HTT
ij = Pijkl

[
H+e

+
ij sin

[
Ω
(
T − R

c

)]
−H×e×ij cos

[
Ω
(
T − R

c

)]]
. (6.66)

Then, we have to link the canonical moments ML and SL to the real source moments IL and
JL, and then to figure out the expression of these source moments. We have the relation

ML(t) = IL(t) + δIL(t) , (6.67)

In our case we are only interested in Mij , for which δIij = 0. The source dipole moment is
given by the usual formula,

Iij(t) = FPB=0

∫
d3y|y|B

[∫ 1

−1
dzδ2(z)ŷijΣ̄ (y, t)

]
+O(c−2) , (6.68)

where FP is the finite part [252]. After some calculation we obtain,

Mij = Iij +O
( 1
c2

)
, (6.69)

Iij = m1y
〈ij〉
1 +m2y

〈ij〉
2 − m1

7
(
H〈ij〉y2

1 + 4H〈ia y
j〉
1 y

a
1

)
− m2

7
(
H〈ij〉y2

2 + 4H〈ia y
j〉
2 y

a
2

)
.

(6.70)

The second term in the gravitational waveform (6.65) is given by

hTT
km = 2G

c4R
PijkmI

(2)
ij . (6.71)

The projection onto the plus and cross polarizations gives,

h+ = G

c4R
(PiPj −QiQj) I(2)

ij , (6.72)

h× = G

c4R
(PiQj +QiPj) I(2)

ij . (6.73)

The explicit expression of the polarizations is given in the Section 6.3.1. We can see that the
amplitude of the scattered wave scales as ω−4/3

0 .

1We did not prove this expression and only consider the general structure of a gravitational wave at
infinity.
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6.3.1 The polarizations of the scattered gravitational waves

Parallel to the orbital plane

Similarly to the usual orbital frequency parameter x =
(
Gmω0
c3

)2/3
, we define the parameter

X ≡
(
GmΩ
c3

)2/3
related to the incoming frequency. When the wave is incident parallel to the

orbital plane (α = 0, β = π/2, κ = π/2 + ι) we find

h+ = Gνmx

c2R

{
−(cos(2ι) + 3) cos(2ζ) +H×

[
X3/2

x3/2 cos(Ωt)
(

5 sin3 ι cos ι cos(2ζ)

+ 1
48

(
6 sin(2ι)(7 cos(4ζ)− 25) + sin(4ι)(7 cos(4ζ)− 17)

))

+ sin(Ωt)
(
X3

x3

(1
6 sin ι cos ι(cos(2ι) + 3) sin(4ζ)− 2 sin3 ι cos ι sin(2ζ)

)

+ 1
4 sin ι cos ι

(
12 sin2 ι sin(2ζ) +

(
8 cos ι− 3 cos(2ι)− 1

)
sin(4ζ)

))]

+H+

[
cos(Ωt)

(
X3

2688x3

(
2
(
661 cos(2ι) + 18 cos(4ι)− 21(cos(6ι) + 74)

)
cos(2ζ)

− 7
(
−65 cos(2ι) + 6 cos(4ι) + cos(6ι)− 198

)
cos(4ζ)− 448(cos(2ι) + 3) sin ζ

+ 448(cos(2ι) + 3) sin(3ζ) + 647 cos(2ι) + 6 cos(4ι)− 7 cos(6ι)− 6
)

+ 1
2688

(
7
(
67 cos(2ι)− 3

(
6 cos(4ι) + cos(6ι)− 70

))
cos2(2ζ)

+ 672 sin2
(
ι

2

)
(cos(2ι)− 3)

(
cos ι

(
(cos(2ι) + 3) cos(4ζ)− 4

)
− 2 sin2 ι

)
− cos(2ζ)

(
448(cos(2ι) + 3) sin ζ + 3931 cos(2ι) + 38 cos(4ι)− 91 cos(6ι)− 4774

)))

+ X3/2

1344x3/2 sin(Ωt)
(
−6 sin2 ι

(
8 cos(2ι) + 35 cos(4ι)− 619

)
sin(2ζ)

− 49(cos(2ι)− 3)(cos(2ι) + 3)2 sin(4ζ)
)]}

, (6.74)
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and

h× = Gνmx

c2R

{
−4 cos ι sin(2ζ) +H×

[
X3/2

x3/2 cos(Ωt)
(

7
3 sin ι cos2 ι sin(4ζ)− 1

7 sin3 ι sin(2ζ)
)

+ sin(Ωt)
(
X3

21x3

(
2 sin(3ι)− 2 sin ι

(
7 cos2 ι cos(4ζ) + 3 sin2 ι cos(2ζ) + 5

))

+ 8 sin ι cos2 ι sin4 ζ − 8
7 cos(2ζ)

(
sin3 ι− 7 sin ι cos ι sin2 ζ

))]

+H+

[
X3/2

192x3/2

(
2 cos ι

(
7(cos(4ι)− 17) cos(4ζ)− 409

)
+ 65 cos(3ι)

+ 17 cos(5ι)
)

sin(Ωt) + cos(Ωt)
(

1
48 sin(2ζ)

(
−24 sin2

(
ι

2

)
(cos(4ι)− 17) sin2 ζ+

+ cos ι
(
(35− 3 cos(4ι)) cos(2ζ)− 23 cos(2ι) + cos(4ι)− 32 sin ζ + 38

)
− 3 sin ι

(
cos(2ι) + 2 cos(4ι)− 17

)
tan ι

)

− X3

24x3 cos ι sin(2ζ)
(

(cos(4ι)− 33) cos(2ζ)− 32 sin ζ + 16
))]}

. (6.75)
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Perpendicular to the orbital plane

For perpendicular incidence (α = 0, β = π/2, κ = ι), we have

h+ = Gνmx

c2R

{
−(cos(2ι) + 3) cos(2ζ) +H×

[
X3/2

12x3/2 cos2 ι cos(Ωt)
(
−7(cos(2ι) + 3) cos(4ζ)

− 60 sin2 ι cos(2ζ) + 17 cos(2ι) + 75
)

+ sin(Ωt)
(
X3

6x3 cos2 ι

(
24 sin2 ι sin ζ cos ζ

− (cos(2ι) + 3) sin(4ζ)
)

+ cos2 ι

(
−3 sin2 ι sin(2ζ)

− 1
4
(
−8 cos ι+ 5 cos(2ι) + 7

)
sin(4ζ)

))]

+H+

[
X3/2

x3/2 sin(Ωt)
(

1
112 sin2 ι(35 cos(2ι) + 109)(cos(2ι) + 3) sin(2ζ)

+ 7
192(cos(2ι) + 3)3 sin(4ζ)

)
+ cos(Ωt)

(
X3

2688x3

(
−448(cos(2ι) + 3) cos ζ

− 448(cos(2ι) + 3) cos(3ζ) + 14(cos(2ι) + 3)
(
12 cos(2ι) + cos(4ι) + 51

)
cos(4ζ)

− 24 sin2 ι
(
92 cos(2ι) + 7 cos(4ι) + 157

)
cos(2ζ)− 448(cos(2ι) + 3) sin ζ

+ 448(cos(2ι) + 3) sin(3ζ) + 457 cos(2ι) + 78 cos(4ι) + 7 cos(6ι) + 738
)

+ 1
5376

(
448(cos(2ι) + 3) cos ζ + 448(cos(2ι) + 3) cos(3ζ) + 14(cos(2ι) + 3)

(
−168 cos ι

+ 132 cos(2ι)− 24 cos(3ι) + 15 cos(4ι) + 109
)

cos(4ζ)

+ 16 sin2 ι(cos(2ι) + 3)(91 cos(2ι) + 345) cos(2ζ)

+ 448(cos(2ι) + 3) sin ζ − 448(cos(2ι) + 3) sin(3ζ) + 8400 cos ι− 4837 cos(2ι)

+ 21
(
104 cos(3ι)− 30 cos(4ι) + 8 cos(5ι) + cos(6ι)− 82

)))]}
, (6.76)
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and

h× = Gνmx

c2R

{
−4 cos ι sin(2ζ) +H×

[
X3/2

x3/2 cos(Ωt)
(

1
7 sin2 ι cos ι sin(2ζ)− 7

3 cos3 ι sin(4ζ)
)

+ sin(Ωt)
(

2X3

21x3 cos ι
(

7 cos2 ι cos(4ζ) + 3 sin2 ι cos(2ζ)− 2 cos(2ι) + 4
)

+
(8

7 cos ι cos(2ζ)
(
14 sin2

(
ι

2

)
cos ι sin2 ζ + sin2 ι

)
− 2 cos3 ι sin2(2ζ)

))]

+H+

[
X3/2

192x3/2

(
−2 cos ι

(
14(cos(2ι) + 3)2 cos(4ζ) + 593

)
− 269 cos(3ι)

− 17 cos(5ι)
)

sin(Ωt) + cos(Ωt)
(

X3

192x3 csc ι
((

101 sin(2ι) + 12 sin(4ι) + sin(6ι)
)

sin(4ζ)

− 64 sin(2ι)
(
sin ζ + sin(3ζ)− cos ζ + cos(3ζ)

))
+ 1

192

(
3
(
−48 cos(2ι)

+ 39 cos(3ι)− 4 cos(4ι) + 3 cos(5ι)− 76
)

sin(4ζ) + cos ι
(
386 sin(4ζ)− 64 cos ζ

+ 64
(
sin ζ + sin(3ζ) + cos(3ζ)

))
+ 4 sin2

(
ι

2

)(
538 cos ι+ 136 cos(2ι)

+ 153 cos(3ι) + 14 cos(4ι) + 13 cos(5ι) + 170
)

sec ι sin(2ζ)
))]}

. (6.77)

6.3.2 The energy balance equation

Before going further, we want to check that the energy balance equation is verified,

〈dEdt 〉 = −〈F〉 , (6.78)

where the brackets stand for the angular average over one orbital period and the left-hand
side has been computed in Eqs. (6.58)-(6.61). The gravitational flux is defined as,

F ≡ c
∫
S

(−g)t0iLLdSi

= c3

16πG

∫
S
∂τHij∂τh

ij R2dΣ , (6.79)

where dSi = N iR2dΣ is the surface element of the two-dimensional surface S. Inserting the
expressions for HTT

ij and hTT
ij we get for the first configuration,

F =
128a2νmω6

0H+ sin3
(
πΩ
ω0

)
cos

(
πΩ
ω0

)
15πΩ

(
Ω2 − 4ω2

0
) , (6.80)
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and for the second configuration,

F =
8a2νmω5

0 sin3
(
πΩ
ω0

)
cos

(
πΩ
ω0

)
(14H+ω0 − 5H×Ω)

15πΩ
(
Ω2 − 4ω2

0
) . (6.81)

After averaging over one orbital period the variation of the energy (6.58)-(6.61), we can see
that the quadrupole formula is respected,

〈dE
′

dt 〉 = −〈F〉 , (6.82)

where we have defined the modified energy

E′ = E + Gm2ν

2r
(
Hijn

inj
)

+ 1
2mν

(
Hijv

ivj
)

= −Gm
2ν

2r

[
1− 1

2
(
Hijn

inj
)]

+ 1
2mv

2 . (6.83)

6.3.3 The cross section

Using the previous results, the scattering cross section can be computed generically for any
binary orientation and any incoming gravitational wave. We find that, for a +-polarized
wave, for instance, the scattering cross section depends on the angle with which the wave
hits the binary. However, in the limit when Ω → ∞, the cross section for either edge- or
head-on configurations is the same,

σ = 11408πν2

2205

(
v

c

)4 a6

λ4
GW

. (6.84)

where we have introduced the orbital radius of the binary system as a = v
ω0
, as well as the

wavelength of the incoming GW, λGW ≡ c
Ω . From this formula we can see that at equal

total mass, the effect is larger the slower the system. Also, it highlights a structure similar
to that of Rayleigh scattering of light.

Note that the cross section is not allowed to grow unboundedly, since that would take us
away from the perturbative regime we work in. In particular, we must require that the
scattered wave is always of much smaller amplitude than the incoming GW. Evaluating the
scattered wave a wavelength away from the scatterer, we find that the cross-section can be
expressed as

σ = C2
1

11408π a2

2205 , (6.85)

with C1 � 1 the ratio between scattered and incident GWs. In addition, we must require that
C2 ≡ HΩ/ω0 � 1, to ensure that the back-reaction on the binary is small. This condition
prevents the cross section from getting arbitrarily large for weakly-bound binaries.
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6.4 Conclusions

After a period of consolidation of the detection of gravitational waves, entering the period of
precision GW physics, we will require a better control on the possible effects that affect the
production and propagation of GWs. This will also be essential to use GWs as an ultimate
proof of the constituents of the Universe. As an example of possible effects that might affect
the propagation of GWs, in this Chapter we studied the GW scattering over a binary of
compact objects.

Our results show that gravitationally-bound binaries are able to scatter incoming gravitational
radiation. We have computed the scattered field for general configurations, two special
cases are shown in Section 6.3.1. Consider now the binary neutron-star systems: PSR
J1411+2551 [254] (orbital period 2.6 days, total mass 2.5M�) and the ultra-relativistic pulsar
PSR J1946+2052 [255] (orbital period 0.078 days, total mass 2.5M�). For a GW incoming
at a frequency f = Ω/(2π) = 200Hz, we find from the expressions in Sec. 6.3.1 that the order
of magnitude of the correction in the amplitude – due to scattering – is, for the first binary
pulsar h+,× ∼ 10−5 H+,×, while for the ultra-relativistic pulsar we have h+,× ∼ 10−7 H+,×.
As expected from Eq. (6.85) the effect is larger for slowly rotating pulsars. We also find that
the effect is slightly stronger for the configuration of an incoming gravitational wave parallel
to the orbital plane.

The numbers above are small, but not desperately small as to be discouraging. However,
how likely is such an event? The magnitude of the scattered wave is insensitive (to this
order) to the structure of the compact objects forming the binary. Thus, stellar mass
black-hole binaries of similar periods will give rise to similar scattered amplitudes. The
number of stellar mass black holes in the central parsec of our own Galactic nucleus was
recently reported to be significant, of order N = O(104) [256]. If this finding generalizes to
other supermassive black holes in galactic nuclei, this implies that there exists a substantial
screen of potential scatterers around supermassive black holes. Such screen may give rise
to detectable levels of scattered radiation, either from binaries (the object of the current
study) or from isolated objects (e.g. Ref. [249]). For example, consider GWs generated by
stellar-mass black hole binaries in the last stages of the inspiral and merger, and (barely)
detectable by LIGO, f = Ω/(2π) ∼ 20 Hz. The emitting-binary is close to the galactic
center, and the emitted GWs will now cross a screen of binaries, which we assume have
parameters close to the binary pulsar above (orbital period 2.6 days, total mass 2.5M�).
Using the scattering cross-section (6.84), and the number density found in the galactic center
n, the mean free path of the GW is ∼ 1/(nσ) ∼ 100 Mpc, a number which is clearly too
big to be of relevance. These estimates assume quasi-circular motion, we do not expect any
qualitatively important change to occur when eccentricity is included.

Finally, it is worth to mention that an analysis for secular effects of a stochastic background
of GWs was already performed in [257]. Even in this case, with the accuracy achieved by
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current GW observatories, the smallness of the gravitational constant makes a detection far
from feasible. However, on a positive note, pulsar timing holds the promise to overcome
these limitations and detect minor variations in the time of arrival of the radio-wave from a
background of GWs [258].
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The ability to model the evolution of compact binaries from the inspiral to the coalescence
is central to GW astronomy. Current waveform catalogues are built from vacuum binary
BH (BBH) models, by evolving Einstein equations numerically and complementing them
with knowledge from slow-motion and small curvatures expansions. Much less is known
about the coalescence process in the presence of matter, or in theories other than GR. In
this final Chapter of Part II, we explore the Close Limit Approximation as a powerful tool
to understand the coalescence process in general setups. In particular, we study the head-on
collision of two equal-mass, compact but horizonless objects. Afterwards, we will apply the
CLAP to investigate the effect of colliding black holes on surrounding scalar fields.

A non-standard way to generate gravitational waves

The GWs generation due to the coalescence of compact objects is now well understood. In
order to describe the system during its evolution, one can separate the entire motion in

97
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different stages, each of which corresponds to different physical configurations. The inspiral
part, coincides with a large separation between the sources and it is modeled using slowly
moving and weakly stressed sources1 [252, 259]. During this inspiral motion, the orbit of the
binary shrinks because of GWs emission, up to a point in which the above approximations
are not enough to coherently describe the coalescence of compact objects. In fact, given the
highly non-linear character of Einstein’s equations, when the bodies are sufficiently close
to each other, one needs full numerical methods to account for such non-linearities. This
stage is called the merger and requires full numerical simulations, commonly referred to
“numerical relativity” (NR) [260–263]. Once the final object is formed, it will continue to
release energy and momenta during, what is called, the ringdown. Similarly to the case of
a bell hit by an hammer, one can use spacetime perturbation theory to model this final
relaxation mechanism [202, 264–267]. Perturbation theory, extended to include self-force
effects [268, 269], can also be used to describe binaries characterized by an extreme mass
ratio between the masses of its componentes.

These models are built in the framework of GR, and rely on the hypothesis that all compact
objects in the Universe (with masses & (2.5 − 3)M�) are BHs. Hence, to test GR and
the BH hypothesis beyond null or biased tests [270], one needs to construct the inspiral,
merger and ringdown not assuming GR, nor BHs as the sources. In particular, extended
models of the merger phase might be the key to perform the aforementioned tests in the
strong-field regime. However, the extension of NR to modified gravity theories and to ECOs
is not an easy task, since they require the time-evolution problem to be well-formulated and
well-posed [81, 93, 95, 271–274]. With the former it is commonly intended that the equation
of motion can be rewritten as a system which contains only first order derivatives both
in time and space; the latter instead refers to specific conditions on the partial derivative
equations, that ensure for the accuracy of the results (e.g. being symmetric or strongly
hyperbolic). Notably, the conditions above are not easy to achieve in theories with extra
fields and couplings. We will not go further in this vast topic, since in this thesis we are only
interested in physical systems for which perturbation theory is applicable.

A possible way to circumvent the above problem is to use an alternative approach, in
particular the CLAP [275–282]. In this approach, the slice of spacetime describing the last
stages of the merger is described using standard initial data of NR simulations. This metric
turns out to be a small deformation of the stationary spacetime of the final BH, and can
then be studied using perturbation theory; the perturbation parameter, in this case, is the
separation between the two BHs. Thus, we do not need NR to evolve these initial data:
it is sufficient to solve the perturbation equations (e.g. the Zerilli equation) to obtain the
GWs emission from the merger and ringdown stages. Since the CLAP showed a remarkable

1The sources that are suitable for a Post Newtonian expansion are the ones for which ε =
max{|U/c2|1/2, |T 0i/T 00|, |T ij/T 00|1/2} � 1, where Tµν are the components of the matter stress-energy
tensor and U is its Newtonian potential.
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agreement with NR simulations [283, 284], its extension beyond GR and beyond the BH
hypothesis could be a valuable tool to model the merger stages of compact binary coalescence
in an extended framework.

In the following, Greek indices refer to quantities defined on a spacetime- four-dimensional
(4D) manifold, Latin indices to their three-dimensional spatial part (3D).

7.1 The formalism

We shall here review the standard CLAP approach for BBH coalescences in GR. This
approach is based on the assumption that in the final stages of the coalescence, when the two
BHs are sufficiently close to each other, the spacetime is a small deformation of a single BH
spacetime, and thus can be studied using the techniques of spacetime perturbation theory.
To this aim, BBH initial data, originally developed in the context of NR, are recast as a
perturbation of Kerr spacetime. In this Chapter we shall consider, as a first step, the case of
a head-on collision of non-rotating BHs, which leads to a non-rotating BH. Thus, the BBH
initial data are recast as a perturbation of a Schwarzschild BH.

7.1.1 The 3 + 1 decomposition

We briefly recall the basic concepts of the 3 + 1 decomposition in NR. We refer the interested
reader to one of the several excellent books and reviews on the subject [83–86] for further
information and details.

In order to formulate GR (or any other gravitational theory) as a time evolution problem,
we first decompose the 4D spacetime in a set of 3D spatial hypersurfaces Σt, labeled by a
time parameter t, each of them having a 3-metric γij given by the space components of

γµν = gµν − nµnν . (7.1)

Here, gµν is the 4D spacetime metric, and nµ is the unit timelike (nµnµ = −1) vector normal
to the hypersurfaces Σt. Thus, we can write the spacetime metric as

ds2 = gµνdx
µdxν

= −(α2 − βiβi)dt2 + 2γijβidtdxj + γijdx
idxj , (7.2)

where α, βi are called lapse function and shift vector, respectively, and contain the information
about how the coordinate system changes from a slice to another. The choice of the lapse
and shift, thus, corresponds to the choice of the foliation of the spacetime. The embedding
of the hypersurfaces in the 4D spacetime is described by the extrinsic curvature

Kij = −1
2Lnγij , (7.3)
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where Ln = α−1(∂t −Lβ) is the Lie derivative along the unit vector nµ. If a scalar field Φ is
also present, we define its momentum as,

Π = −LnΦ . (7.4)

Then, all 4D quantities such as the Ricci scalar R, the Ricci tensor Rµν , etc. can be
decomposed in terms of the 3D metric γij . The 3D Ricci tensor and Ricci Scalar, 3Rij , 3R,
the extrinsic curvature and Kij , its trace K = γijKij , and the scalar field momentum Π
follow from this 3D metric. We denote with ∇µ the covariant derivative with respect to the
4D metric gµν , and with Di the covariant derivative with respect to the 3D metric γij .

With this decomposition, Einstein equations (possibly supplemented with the scalar field
dynamical equation) lead to two sets of equations: (i) the evolution equations, which are
(with a careful choice of variables) hyperbolic equations giving the time evolution of the
3D quantities; (ii) the constraint equations, which are ellyptic equations which have to be
satisfied at any 3D slice Σt.

The evolution equations are given by [285]

(∂t − Lβ)Kij = −DiDjα+ α
(
Rij − 2Kk

i Kjk +KKij

)
+ 4πα (γij (S − ρ)− 2Sij) , (7.5)

(∂t − Lβ) Π = α
(
−DiDiΦ +KΠ−DiαDiΦ

)
, (7.6)

where Lβ is the Lie derivative along the shift vector, ρ is the matter energy density and
Sij is the 3 + 1 decomposition of the matter energy-momentum tensor, for which explicit
expressions are given in the case of scalar fields in Eqs. (7.11)-(7.13).

The constraint equations are formed by an Hamiltonian constraint equation

HGR ≡ 3R+K2 −KijK
ij = 0 , (7.7)

and by three momentum constraint equations

MGR
i ≡ DjK

j
i −DiK = 0 . (7.8)

In presence of matter, the constraint equations are

HGR = 16πρ , (7.9)

MGR
i = 8πji , (7.10)

where ji is its energy-momentum flux. For a massless scalar field (with vanishing self-potential)
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the scalar-related quantities take the form

ρ = 1
2Π∗Π + 1

2D
iΦ∗DiΦ , (7.11)

ji = 1
2 (Π∗DiΦ + ΠDiΦ∗) , (7.12)

Sij = 1
2 (DiΦ∗DjΦ +DiΦDjΦ∗) + 1

2γij
(
Π∗Π−DkΦ∗DkΦ

)
, (7.13)

where Π is the momentum of the scalar as defined in Eq. (7.4). The above quantities are
computed from the scalar stress-energy tensor given in Eq. (2.4), in the massless scalar limit.

The general procedure to find the evolution of physical systems strictly depends on the
specific numerical implementation. However, for the purpose of this work, we may assume
that in NR one first solves the constraint equations at the initial time t = t0, finding the
initial data on Σt0 of the system. Then, one solves the evolution equations, finding the
spacetime at all times t ≥ t0. Within the CLAP, instead, the evolution of physical initial
data is determined through the use of perturbation theory, therefore solving a linearized
version of the evolution equations (see below).

7.1.2 Initial data for binary black holes in general relativity

Solving the constraint equations (7.7)-(7.8) and finding initial data appropriate to study a
given system is a subject of study on its own [84–86, 286]. The original formulation of the
CLAP [275] used the Misner initial data [287] (a common choice for NR simulations decades
ago) to describe BBH head-on collisions. Subsequently, it was found that the Brill-Lindquist
(BL) initial data [288] are more appropriate for NR simulations, because they have a simpler
form and are easier to be extended to the more realistic non-head-on case (the Bowen-York
initial data [289]). Thus, later applications of the CLAP employ the BL (or Bowen-York)
initial data [276, 278, 281, 290]. Here we shall use BL initial data and their extensions.

In the case of a head-on collision of two non-rotating compact objects starting from rest, the
extrinsic curvature identically vanishes. Additionaly, considering that in vacuum Φ = 0, the
constraint equations (7.7)-(7.8) reduce to 3R = 0. The BL three-metric γij is a conformally
flat solution of this equation describing two BHs. It has the form

3ds2
BL = ϕ4

BL
3dη2 = ϕ4

BL

(
dR2 +R2dΩ2

)
, (7.14)

where dΩ2 = dθ2 +dφ2 sin2 θ , 3dη2 is the flat three-metric, and ϕBL(R, θ, φ) is the conformal
factor. With this choice, the Hamiltonian constraint 3R = 0 reduces to ∇2ϕBL = 0. The BL
solution of this equation is

ϕBL = 1 + m1
2|R−R1|

+ m2
2|R−R2|

, (7.15)

where the vector R is the position vector in the flat three-space, and Ri is the position of
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the i-th BH; M = m1 +m2 is the ADM mass of the entire spacetime. Note that m1 and m2

are not the ADM masses of the two BHs, which are [288]

M1 = m1

(
1 + m2

2d

)
, M2 = m2

(
1 + m1

2d

)
, (7.16)

and d = |R2 −R1|. We choose the origin of the coordinate system in the center-of-mass:
m1R1 +m2R2 = 0. In the region of spacetime where R > R1, R2, the conformal factor can
be expanded in terms of Legendre polynomials:

ϕBL = 1 + M

2R +
∞∑
`=1

ξ`

(
M

R

)`+1
P` (cos θ) . (7.17)

The coefficients ξ` are given by [290]

ξ` =
(
R1
M

)` m1
2M +

(
R2
M

)` m2
2M . (7.18)

In the following we shall consider equal-mass binary systems; thus m1 = m2 = M/2. By
choosing the Z-axis aligned with the motion, R1/2 = (0, 0,±Z0) with Z0 = d/2. Thus ξ1 = 0,
and Eq. (7.18) reduces to

ξ` = 1
2

(
Z0
M

)`
, for ` = 2, 4, 6, . . . . (7.19)

When the coefficients ξ` vanish, ϕBL = 1 + M/(2R) and the metric (7.14) describes the
t = const. slices of the Schwarzschild’s background. Indeed, by defining the Schwarzschild
radial coordinate r in terms of the isotropic radial coordinate R by

R = 1
4
(√

r +
√
r − 2M

)2
, (7.20)

Eq. (7.14) gives
3ds2

BL = F4
BL

(
f−1dr2 + r2dΩ2

)
, (7.21)

where

f(r) = 1− 2M
r

, (7.22)

FBL ≡ ϕBL (R, θ) (1 +M/2R)−1 . (7.23)

If ϕBL = 1 +M/(2R), FBL = 1 and by defining the 4D spacetime metric as

ds2 = −fdt2 + 3ds2
BL , (7.24)

(corresponding to an appropriate choice of the shift vector and lapse function, i.e. to
an appropriate gauge choice), it coincides with the Schwarzschild geometry. If, instead,
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the coefficients ξ` are small but non-vanishing, the metric (7.14) is a perturbation of
Schwarzschild’s three-metric, and Eq. (7.24) is a perturbation of Schwarzschild’s spacetime.
Therefore the BL three-metric, in the coordinates (r, θ, φ), has the form

3ds2
BL =

1 + 1
1 + M

2R

∞∑
`=2,4,...

ξ`

(
M

R

)`+1
P` (cos θ)

4 (
f−1dr2 + r2dΩ2

)
. (7.25)

If ξ` � 1 we can linearize in the parameters ξ`, and Eq. (7.25) gives:

3ds2
BL =

1 + 4
1 + M

2R

∞∑
`=2,4,...

ξ`

(
M

R

)`+1
P` (cos θ)

(f−1dr2 + r2dΩ2
)
. (7.26)

The parameter Z0 in Eq. (7.19) describes the (initial) distance between the BHs in the
isotropic frame. This quantity does not have a direct physical interpretation; thus, several
authors characterize the initial BH separation with the proper distance L between the
apparent horizons of the two BHs, given by [290]

L =
∫ Z2

Z1

[
1 + M

4

( 1
Z0 + Z

+ 1
Z0 − Z

)]2
dZ . (7.27)

The extrema Z1, Z2 are the intersections of the apparent horizons of the two BHs with the
Z-axis, and can be found by numerical integration of the equations describing the apparent
horizons [291, 292]; the procedure to compute these quantities is described in detail, for
instance, in [281]. This computation shows that, for example, L = 3M for Z0 ' 0.5M ,
L = 3.5M for Z0 ' 0.7M , L = 4M for Z0 ' 0.85M .

A comparison with NR computations in the head-on case shows that the CLAP is accurate,
in the equal-mass case, for L . 4M (see [280] and the discussion in [281]), corresponding
to Z0 . 0.85M and thus ξ2 . 0.36; as noted in [275], it is remarkable that the agreement
extends far beyond the region ξ` � 1 in which the CLAP is expected to be applicable.
Therefore, we shall apply Eq. (7.26) and, more generally, perturbation theory, also to initial
separations for which the condition ξ` � 1 is only marginally satisfied.

7.1.3 Perturbations and their time evolution

The metric in Eq. (7.24) describes the Schwarzshild spacetime, which we consider as the
background, with a perturbation with even parity, at a fixed “initial” time t = t0. Thus, it
can be recast in the form

gµν = g(0)
µν + hµν , (7.28)

where
g(0)
µν = diag(−f, f−1, r2, r2 sin2 θ) (7.29)
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is the Schwarzschild spacetime (with f defined in Eq. (7.22)), and hµν(t, r, θ, φ) is the
perturbation, whose evolution in the wave zone r � M can be described in terms of the
Zerilli function Q [202]. The original definition of the Zerilli function is appropriate for the
study of oscillating solutions; in this case, we want to study the evolution of a given set
of initial data at the time t = t0; thus, it is more appropriate the definition of the Zerilli
function in terms of gauge-invariant quantities given in [293, 294].

We first note that the only non-vanishing perturbations in the metric (7.24)-(7.26) are

hrr(r, θ) = f−1 ∑
`=2,4,...

g`(r)ξ`P`(cos θ) ,

hθθ(r, θ) = hφφ
sin2 θ

= r2 ∑
`=2,4,...

g`(r)ξ`P`(cos θ) , (7.30)

where
g` = 4

(
1 + M

2R

)−1 M `+1

R`+1 . (7.31)

Using the notation of [294] for polar parity, axially symmetric perturbations, Eqs. (7.30)
correspond to the perturbation functions H`

2(t, r), K`(t, r) given by

hrr(t, r, θ) = f−1∑
`

H`
2(t, r)P`(cos θ) ,

hθθ(t, r, θ) = r2∑
`

K`(t, r)P`(cos θ) , (7.32)

which implies that at the initial time t = t0,

H`
2(t0, r) = K`(t0, r) = g`ξ`, with ` = 2, 4, 6, . . . , (7.33)

while the other perturbation functions (H`
0, H

`
1) and (G`, h`0, h`1) identically vanish at t = t0.

Since the leading contribution comes from the quadrupole perturbations, we shall consider
the ` = 2 contribution only. Then, following [294], we define the ` = 2 Zerilli function at
t = t0,

ψ(t0, r) =
√

4π
5 λ−1Q(r)ξ2 , (7.34)

where λ = 1 + 3M/(2r) and (leaving implicit the index ` = 2 and the arguments of H2(t0, r)
and K(t0, r))

Q(r) = 2rf2

ξ2

[
H2
f
− 1√

f

d

dr

rK√
f

]
+ 6r
ξ2
K

= 2rf2
[
g

f
− 1√

f

d

dr

rg√
f

]
+ 6rg , (7.35)

with
g = 4 (1 +M/(2R))−1M3/R3 , (7.36)
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and R defined in Eq. (7.20). Thanks to the considerations above, it is possible to show that
the perturbation equations, that comes from a variational principle in a gauge-invariant
fashion [293, 294], can be written as a wave equation for the Zerilli function,

− ∂2ψ

∂t2
+ ∂2ψ

∂r2
∗
− VZψ = 0 , (7.37)

where r∗ = r + 2M log
∣∣ r
2M − 1

∣∣ is the tortoise coordinate, and

VZ = f

{
1
λ2

[
9M3

2r5 −
3M
r3

(
1− 3M

r

)]
+ 6
r2λ

}
, (7.38)

is the Zerilli potential. Eq. (7.37) is called the Zerilli equation [202].

In most implementations of the CLAP, the Zerilli equation (7.37) with initial condition (7.34)
is solved in the time domain. Alternatively, it can be solved in the frequency domain. Indeed,
it can be shown (see e.g. [295]) that if the function ψ(t, r∗) is the solution of the Zerilli
equation (7.37) with initial conditions (7.34) and ψ̇(t0, r∗) = 0 (i.e., assuming stationarity of
the initial data), then, choosing the time coordinate such that t0 = 0, the Laplace transform

ψ̃(ω, r∗) =
∫ ∞

0
dtψ(t, r∗)eiωt , (7.39)

is the solution of the Zerilli equation with source

∂2ψ̃

∂r2
∗

+ (ω2 − VZ)ψ̃ = S , (7.40)

where
S(ω, r∗) = iωψ(t = 0, r∗) , (7.41)

and boundary conditions of ingoing wave at the horizon, outgoing wave at infinity (see
Eq. (7.46)). Finally, the total energy emitted in GWs in the collision is given by [275]

E = 1
384π

∫ ∞
0

∣∣∣∣∂ψ∂t
∣∣∣∣2 dt . (7.42)

We have solved Eq. (7.40) using two different approaches, reproducing in both cases the
results in the literature for head-on BBH collisions with the CLAP approach [275]. The total
energy obtained with our computation agrees with that of Ref. [275] within one percent.

Finally, in this Chapter we only consider head-on collisions of non-rotating, equal mass
compact objects starting from rest as in [275]; however, it is worth mentioning that the
CLAP approach has been extended to more realistic setups, considering BHs with initial
velocity [296], unequal masses [290] and non-head-on binary inspirals [278].
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7.1.4 Numerical integration of the Zerilli equation with source

We shall discuss here the numerical integration of the Zerilli equation with source in the
frequency domain, Eq. (7.40) (see also [295, 297]):

∂2ψ̃

∂r2
∗

+
(
ω2 − VZ

)
ψ̃ = S , (7.43)

where ψ̃(ω, r) is the Laplace transform (7.39) of the Zerilli function ψ(t, r),

ψ̃(ω, r∗) =
∫ ∞

0
dtψ(t, r∗)eiωt , (7.44)

and
S(ω, r) = iωψ(t = 0, r) = iω

√
4π
5

1
1 + 3M

2r
Q(r)ξ2 , (7.45)

where Q(r) is given in Eq. (7.35) and ξ2 = Z2
0/(2M2) . 1.

If the Zerilli equation (7.43) describes perturbations of a Schwarzschild BH, it is defined
in −∞ < r∗ < +∞. In this case, the source term (7.45) does not vanish at the horizon,
S(r∗ → −∞) = iωψ(t = 0, r∗ → ∞) = S̄ 6= 0. The ingoing wave boundary conditions at
the horizon r∗ → −∞, ∂ψ/∂r∗ = ∂ψ/∂t 2 translate in the Laplace transform space into
∂ψ̃/∂r∗(ω) = −iωψ̃(ω)− ψ(t = 0) . Therefore, the boundary conditions of ψ̃(ω, r∗) are:

ψ̃(ω, r∗) = AHe−iωr∗ + S̄

ω2 (r∗ → −∞) ,

ψ̃(ω, r∗) = A∞eiωr∗ (r∗ → +∞) , (7.46)

with AH , A∞ constants to be determined. The constant term is related to the fact that the
BL initial data do not vanish at the horizon, and do not affect the GW emission at infinity.

We find the solution of Eq. (7.43) satisfying ingoing boundary conditions at the horizon,
outgoing boundary conditions at infinity, by employing two different approaches: the Green
function approach and a shooting method, finding the same results.

Green’s function method

The Green function approach consists in finding two independent solutions of the homogeneous
Zerilli equations: ψ̃H , satisfying ingoing wave conditions at the horizon, and ψ̃∞, satisfying

2Note that these conditions are consistent with ψ̇(t = 0) = 0 because in the BL initial data ∂ψ/∂r∗ = 0 at
the horizon.
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outgoing wave conditions at infinity, i.e.

ψ̃H =

 e−iωr∗ , r∗ → −∞ ,

Dine
−iωr∗ +Doute

+iωr∗ , r∗ → +∞ ,

ψ̃∞ =

 Bine
−iωr∗ +Boute

+iωr∗ , r∗ → −∞ ,

eiωr∗ , r∗ → +∞ .
(7.47)

The solution of the Zerilli equation with source, Eq. (7.43), satifying the boundary condi-
tions (7.46), is then:

ψ̃(ω, r∗) = ψ̃∞

W

∫ r∗

−∞
Sψ̃Hdr′∗ + ψ̃H

W

∫ ∞
r∗

Sψ̃∞dr′∗ , (7.48)

where W = ψ̃H
(
∂ψ̃∞/∂r∗

)
− ψ̃∞

(
∂ψ̃H/∂r∗

)
is the constant Wronskian of the homogeneous

equation. By imposing the boundary conditions at infinity (7.46) we find

A∞(ω) = 1
W

∫ +∞

−∞
Sψ̃Hdr∗ . (7.49)

Apparently, the integral (7.49) is not well defined at the lower bound, where the integrand
reduces to the oscillating term S̄e−iωr∗ . This is due to the fact that, strictly speaking, the
Laplace transform (7.44) is well defined in the upper complex plane; the inverse Laplace
transform can be computed along a path ω = ωR + iε with ε � 1 and −∞ < ωR < +∞.
Thus, along this path e−iωr∗ → 0 as r∗ → −∞ and the oscillating term disappears. As
suggested in [295], we can compute the integrals for real values of ω, as long as we subtract
the ill-valued contribution at the horizon:

A∞(ω) = 1
W

∫ +∞

r̄∗
Sψ̃Hdr∗ + i

ω

S̄

W
e−iωr̄∗ , (7.50)

where r̄∗ is negative and very large. We have computed A∞(ω), by evaluating the integrals
from r̄∗ = −44M to the extraction radius rextr

∗ = 400M .

The time-domain Zerilli function at infinity can then be computed, as a function of the
retarded time u = t− r∗, as

ψ(u) = 1
2π

∫ +∞

−∞
A∞(ω)e−iωudω . (7.51)

Shooting method

The shooting approach, instead, consists in the numerical integration of Eq. (7.43), from r̄∗ =
−44M to the extraction radius rextr

∗ = 400M , by imposing the boundary conditions (7.46)
and matching the solution at rextr

∗ with an analytic expression obtained by an asymptotic
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expansion of Eq. (7.43). For each value of the frequency ω, we performed the numerical
integration of Eq. (7.43) for different values of AH until we obtained an outgoing wave
at infinity, as in Eq. (7.46). In this way we computed the function A∞(ω) and then, by
Eq. (7.51), the Zerilli function at infinity.

The results of the two approaches perfectly agree with each other, and they also agree with
the results of [275] (see Fig. 7.1).

7.2 Close limit of extreme compact objects

We shall now apply the CLAP to describe the head-on collision of two non-rotating, equal
mass ECOs. We model an ECO (see e.g. [33] and references therein) as a spherically
symmetric compact body with mass M and a surface at r = r0,

r0 = 2M(1 + ε) , (7.52)

with ε� 1. One of the motivation to consider these class of objects is to mimic the effects of
a theory where BHs are absent (via, for example, high-energy phenomena). We assume for
example, that a theory of quantum gravity forbids the existence of horizons via Planck-scale
physics [298–303]. We do not wish to build such a theory but merely to investigate some of
its consequences. Furthermore, we do assume that departures from GR occur only close to
the Schwarzschild radii.

In addition to the above motivation, ECO models of the above kind are also interesting from
the perspective of testing some of the unique features related with BH spacetimes. In fact,
a rather (a priori) simple question, what happens in the ε→ 0 limit of ECOs, might give
non-trivial outcomes, as the appearance of echoes will show later in this Chapter.

A fundamental difference between the surface of an ECO and the horizon of a BH is that
an incoming wave is partially reflected by the ECO surface, while it is totally absorbed by
a BH horizon. Thus, given a (scalar, gravitational, etc.) test field φ(t, r∗) ∼ φ̃(r∗)eiωt, its
boundary condition near the surface r = r0 is

φ̃(r∗) ∼ e−iωr∗ + Reiωr∗ . (7.53)

The parameter R, which in general depends on the frequency ω and on the spin of the field,
is called reflectivity coefficient of the ECO.

7.2.1 Initial data for extreme compact objects

We shall first introduce the spacetime metric of a single, isolated, spherically symmetric
ECO; then, using the procedure of Brill and Lindquist discussed in Sec. 7.1.2, we shall define
initial data corresponding to two ECOs starting from rest (this approach can naturally be
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extended to the case of ECOs with initial momentum, using the procedure of Bowen and
York [289]).

The GW signal produced by the collision of ECOs will consist of waves caused by excitations
of the exterior spacetime [267, 304], as well as contributions which probe the interior of the
object [20, 68–70, 305–307]. For a wide class of ECOs, the lapse in its interior is very small,
leading to large delays in signals which have probed the interior geometry [20, 33, 308]. Thus,
in the following we “freeze” the inner region, which means that in practice we cut it off from
our domain, and all the information about the interior is replaced by boundary conditions at
the surface.

Let us first consider a single, isolated (spherically symmetric) ECO. Throughout this Chapter
we always assume that the exterior of ECO spacetimes can be described through vacuum
GR equations. Hence, we consider that small-scale departures from GR, that should be
needed to form ECOs in the first place, are irrelevant in what follows. Working in vacuum
GR, due to Birkhoff theorem, the exterior of the ECO r > r0 is described by Schwarzschild’s
geometry (Eq. (7.29)). Since ε � 1, r0 < 3M and thus the light ring r = 3M , where null
circular geodesics are defined, lies in the exterior of the ECO. This plays a crucial role in
the GW emission, as we discuss below. Then, we define the isotropic radial coordinate as in
Schwarzschild metric (7.20):

R = 1
4
(√

r +
√
r − 2M

)2
. (7.54)

In terms of the coordinate R, the location of the surface is R0 = R(r0) = M/2(1−2
√
ε). The

interior of the ECO depends on the profile of its energy density ρ(R). As discussed above,
under our assumptions the emitted GW signal does not depend on the structure of the
interior; it only depends on the location of the surface. Yet, for consistency we shall model
the interior with a specific example of energy density profile ρ(R), vanishing for R > R0 (see
Appendix F).

Let us now consider two spherically symmetric ECOs, with equal masses and total ADM
mass M , initially at rest. We perform a 3+1 decomposition of the spacetime, as in Sec. 7.1.1.
The three-metric of each slice is solution of the Hamiltonian constraint equation (7.9):

HGR = 3R+K2 −KijK
ij = 16πρ . (7.55)

Since the ECOs are initially at rest, the initial extrinsic curvature vanishes and Eq. (7.55)
reduces to 3R = 16πρ. In the exterior of both ECOs, ρ = 0 and the metric can be written in
the BL form, Eq. (7.26):

3ds2
BL−ECO =

1 + 4
1 + M

2R

∞∑
`=2,4,...

ξ`P` (cos θ)

(f−1dr2 + r2dΩ2
)
, (7.56)
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with ξ` = (Z0/M)` /2 as in Eq. (7.19). In the isotropic frame, the two ECOs move along
the z-axis and are located at R = ±Z0, with 0 < Z0 . 0.85M (see Sec. 7.1.2 for a detailed
discussion on the meaning of Z0 and how it is related to physical distances). We call
Eq. (7.56) the BL-ECO initial data.

We remark that although the BL initial data for BBHs in Eq. (7.26) and the BL-ECO initial
data for binary ECOs in Eq. (7.56) are formally identical, the former are defined outside
the BH horizon, while the latter are defined outside the ECO surface. This difference, as
we shall show below, leads to a difference in the GW emission. Note also that, as discussed
above, the region inside the surfaces of the ECOs (explicitly computed for a specific case of
energy density profile in Appendix F) does not contribute to the GW signal, by assumption.

Finally, let us stress that, as it happens for the case of BBHs in GR, the initial data to
describe two ECOs are not unique. Our approach has been chosen by mere mathematical
convenience, under what we believe a reasonable physical assumption (e.g. small lapse). Yet,
this simplified choice allow us to unveil some of the properties of ECOs collision. However,
only a comparison with full non-linear simulations involving ECO binaries will assess the
degree of validity of our approach.

7.2.2 Head-on collision

We shall now recast the BL-ECO initial data in Eq. (7.56) as a perturbation of a single
object,

gµν = g(0)
µν + hµν . (7.57)

Then, we shall evolve them using the tools of perturbation theory.

Since we are not dealing with vacuum spacetimes, the outcome of the ECO collision depends,
in principle, on the features of the ECOs, i.e. on their internal structure. Two outcomes
are possible: either the collision leads to a single BH (which, in the head-on collision of
non-rotating ECOs, is described by the Schwarzschild metric), or it leads to an ECO. In the
former case the initial data should be recast as a perturbation of a Schwarzschild solution;
in the latter, as a perturbation of an ECO. We shall treat these two cases separately.

Formation of a black hole

If the final object is a Schwarzschild BH, the background metric g(0)
µν in Eq. (7.57) is

Schwarzschild’s metric. The procedure of recasting the BL-ECO initial data (7.56) as a
perturbation of Schwarzschild metric is formally equivalent to the derivation in Sec. 7.1.3,
leading to an ` = 2 Zerilli function at the initial time t = t0 given by Eqs. (7.34)-(7.35).

Since the background is Schwarzschild’s metric, the Zerilli equation (7.37) has to be solved
with the same boundary condition as in the BBH case. Therefore, the gravitational waveform
emitted in the collision of two ECOs into a Schwarzschild BH, computed with the CLAP
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(and neglecting the effect of perturbations inside the ECO’s surface) coincides with the
waveform emitted in a BBH collision.

Formation of an extreme compact object

If the final object is an ECO, the background metric g(0)
µν is Schwarzchild metric only for

r > r0. Again, the procedure of recasting the BL-ECO initial data (7.56) as a perturbation
of the ECO metric follows the derivation in Sec. 7.1.3, leading to the Zerilli function at the
initial time t = t0 given in Eqs. (7.34) and (7.35). However, the Zerilli function ψ(t, r∗) is
only defined for r∗ > r0∗ = r0 + 2M log |r0/(2M)− 1|, and it satisfies boundary conditions
different from those of a BH.

Using the Laplace transform approach discussed in Sec. 7.1.3, one finds the Zerilli equation
with source given in Eqs. (7.40) and (7.41). Although the equation is the same as for BBH
collisions, the boundary conditions are different: since the surface is partially reflecting, they
are (see Eq. (7.53))

ψ̃ ∼ e−iω(r∗−r0∗) + R eiω(r∗−r0∗) (r∗ → r0∗)

ψ̃ ∼ eiωr∗ (r∗ →∞) , (7.58)

where R is the reflectivity coefficient of the ECO. In general R is a function of ω; however,
for simplicity, we shall assume it to be a constant.

We solved the Zerilli equation (7.40) with boundary conditions (7.58) using a shooting
method, for different values of ε and of R, finding the gravitational waveform emitted
in the merger and ringdown phases of the collision. Since we only consider the leading
quadrupolar contribution, the Zerilli function is proportional to ξ2, and thus to Z2

0 (cf.
Eq. (7.34)). Moreover, it has (in geometric units) the dimensions of length, hence since the
only dimensionful quantity characterizing the ECO is its ADM mass M , ψ(t, r∗) ∝ Z2

0/M .

7.2.3 Results of the numerical integration

If the outcome of the collision is an ECO, the Zerilli equation (7.43) describes perturbations of
the ECO spacetime which, as discussed in Sec. 7.2, coincides with Schwarzschild’s spacetime
with the domain restricted to r0∗ < r∗ < +∞. Moreover, we impose at r∗ → r0∗ the partially
reflecting boundary conditions (7.58):

ψ̃ = AH(e−iω(r∗−r0∗) + Reiω(r∗−r0∗)) + Ŝ

ω2 (r∗ → r0∗) (7.59)

ψ̃ = A∞eiωr∗ (r∗ →∞)

with R reflectivity coefficient which we assume, for simplicity, to be constant, and the
constant term in the ingoing boundary conditions is due to the fact that S(r0∗) = iωψ(t =
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Figure 7.1: Gravitational waveform for the head-on collision of two equal-mass, spherically
symmetric BHs/ECOs starting from rest, evaluated at the extraction radius rextr∗ = 400M ,
for two possible outcomes. If the final object is a BH, the waveform is identical to that
resulting from the collision of two BHs: a sharp burst followed by ringdown (caused by the
relaxation of the light ring). When the final product is itself an ECO, we observe a similar
initial stage, followed at late times by echoes of the initial burst [33, 69]. Here, the final
object is taken to have a reflectivity of R = 0.1 and a surface r0 = 2M(1 + ε) with ε = 10−10.

0, r0∗) = Ŝ 6= 0. Note that since the tortoise coordinate does not extend to −∞, the Laplace
transform ψ̃(ω, r∗) is well-defined for real frequencies, and we do not need to worry about
ill-defined contributions to the integrals.

In this case we only perform the integration using the shooting approach, i.e. we integrate
Eq. (7.43), from r̄∗ = −44M to the extraction radius rextr

∗ = 400M , by imposing the
boundary conditions (7.59), for different values of AH , until we obtained an outgoing wave
at infinity. Then, using Eq. (7.51) we compute the Zerilli function at infinity.

Figure 7.1 shows the Zerilli quadrupolar waveform generated by the head-on collision of
two spherically symmetric compact objects starting from rest, evaluated at the extraction
radius rextr

∗ = 400M . The waveforms are rescaled by 16Z2
0/M , and thus they do not depend

neither on Z0 nor on M . We compare processes leading to a Schwarzschild BH (dashed
curve) and to an ECO with ε = 10−10 and R = 0.1 (solid line). The early-time component of
the signals parts are identical, while they differ at late times, since the ECO collision signal
is characterized by a series of “echoes”, which are a characteristic feature of GW signals
from ECOs (see e.g. [20, 33, 68, 69, 305, 309]). We stress again that, in this approximation,
the signal depends on the nature of the final object, but it does not depend on whether the
colliding objects are BHs or ECOs.

A simple interpretation of the echo structure is the following. The light ring excitation by
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Figure 7.2: Gravitational waveforms for head-on collisions of two equal-mass, spherically
symmetric ECOs starting from rest, leading to an ECO, for different values of the surface
parameter ε and of the reflectivity R, evaluated at the extraction radius rextr∗ = 400M and
rescaled by 16Z2

0/M . The vertical dashed lines correspond to the peak value of each echo.
The amplitude of the echoes increases with R, while the time delay between echoes (i.e.
between the dashed lines) decreases when ε increases.

the initial data is followed by its “relaxation”. Since both BHs and ECOs have equivalent
geometries close to the light ring, they both relax in the same way [20, 33, 68, 69]. This
relaxation produces an outgoing wave, which corresponds to the early part and ringdown of
the signal. But there’s also an “ingoing” wave which interacts with the ECO via boundary
conditions. Due to a non-zero reflectivity, the ingoing pulse is partly reflected back, and
interacts with the light ring again. The process continues and produces a sequence of
distorted copies of the original burst, i.e. the echoes.

Figure 7.2 displays the dependence of the Zerilli waveform on the ECO parameters ε and R.
We can see that the echo delay increases with ε, while the amplitude of the echoes is larger
for larger values of the reflectivity R.

We find that the time separation between echoes is well described (with a relative error
smaller than 2%) by the following analytical fit,

∆tECO ∼ 4.3 |log ε|M , (7.60)

for 10−10 < ε < 10−6. This logarithmic behaviour is consistent with our knowledge of echoes
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Figure 7.3: Total energy emitted in the head-on collision from rest of two equal-mass,
spherically symmetric compact objects. Fixing the ECOs/BHs initial separation Z0, the
ratio of energy emitted is independent of such quantity. The final object is assumed to be an
ECO with ε = 10−10 and the results are shown as a function of the reflectivity R. Inset:
log-log scale of the same results, including R = 1. This also corresponds to the formation of
a wormhole [68] (see main text).

in the GW signals [33]. We only solved the Zerilli equation for ε ≥ 10−10; for smaller values
of ε, our numerical approach loses accuracy; however, since this limitation is of computational
nature only, we expect the fit (7.60) to hold for smaller values of ε as well.

Finally, we compared the total energy E emitted in GW during a compact object collision
leading to an ECO, with that emitted in a BBH collision. It can be computed in terms of
the Zerilli function from Eq. (7.42). We find that, for ε < 10−3, the energy radiated is very
weakly dependent on ε, while it increases with the reflectivity R. This is due to the fact
that the presence of echoes contributes to the energy loss of the system in GWs.

In Fig. 7.3 we show the total energy E emitted in GWs as a function of R, normalized by
the energy emitted for R = 0 (which coincides with the result for a BBH collision [275]).
This shows which part of the emitted energy is due to echoes. The function E(R) can be
described by the following fit (accurate within 1.5% in the range 0 ≤ R ≤ 0.8):

E

M
≈ 10−6

(
6.14 + R2(1.29 + 3.26R6)

) 256Z4
0

M4 . (7.61)

One can use the CLAP formalism to understand, in particular, the radiation given away
during the formation of wormholes [310, 311]. A class of these objects can be considered
as ECOs with R = 1, when the “throat” is made of a rigid shell [68]. This corresponds to
taking R = 1 in the above framework. The inset of Fig. 7.3 shows the total energy computed
with the CLAP for head-on collisions forming one of these wormholes. The total radiated
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energy is slightly off the predictions of the fit (7.61) because points R & 0.8 were not used in
the fit. Notice that the total radiated energy is over one order of magnitude larger than the
corresponding process forming a BH: substantial amount of energy is released in late-time
echoes.

Furthermore, a spectral analysis shows that the ECO formation excites certain characteristic
frequencies, which correspond to the quasinormal frequencies of the final object. In the
particular case of a thin-shell wormhole described above, most of the radiation is in fact
contained in such modes: the energy spectrum shows clear peaks at such quasinormal
frequencies, which are in excellent agreement with the spectral findings of Ref. [68].

7.3 Binary black holes and scalar fields

From the first observation of the Higgs boson by the ATLAS Collaboration [145], a growing
recognition has been given in studying the effects of scalar particles, both at a cosmological
and an astrophysical level [209, 312–318]. Moreover, most of the modifications of GR which
have been proposed so far can be reformulated in terms of couplings between gravity and
extra fields, the simplest of which are scalar fields [96]. In this Section we study how the
presence of scalar fields may affect a BBH collision, and whether they can leave observable
imprints during the GWs generation.

We shall consider gravity minimally coupled with a complex scalar field. Since we are
interested in BH solutions, we do not include matter fields in the model. Thus, the action is:

S =
∫
d4x
√
−g

(
R

16π −
1
2g

µν∂µΦ∗∂νΦ
)
. (7.62)

The field equations obtained from this action are Einstein’s equations coupled with the
Klein-Gordon equations:

Rµν −
1
2gµνR = 8πTµν , (7.63)

�Φ = 0 , (7.64)

where
Tµν = −1

2gµν
(
∂λΦ∗∂λΦ

)
+ 1

2 (∂µΦ∗∂νΦ + ∂µΦ∂νΦ∗) ,

is the scalar field stress-energy tensor. A wide class of modified gravity theories in which
gravity is non-minimally coupled with a scalar field – the so-called Bergmann-Wagoner
scalar-tensor theories (see e.g. [96, 319] and references therein) – is formally equivalent to
the theory in Eq. (7.62). If restricted to vacuum spacetimes in fact, a conformal rescaling of
the metric maps one theory into the other [319]. Thus, the scalar field Φ can be interpreted
either as a fundamental “matter” field in GR, or as a gravitational degree-of-freedom in a
modified gravity theory.
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The 3 + 1 decomposition of the action (7.62) has been discussed in Sec. 7.1.1. In particular,
the constraint equations have the form

HGR − 16πρ = 0 , (7.65)

MGR
i − 8πji = 0 , (7.66)

where the energy density ρ and the energy-momentum flux ji of the scalar field are given in
Eqs. (7.11)-(7.12).

As extensively discussed in the Introduction, there are various no-scalar hair theorem in
theories including an extra scalar degree-of-freedom. Some of those focus on time-independent
real fields [106, 320], others on static BH spacetimes [110]. Theories described by the
action (7.62) also satisfy a no-scalar hair theorem: stationary BH solutions are described by
the Kerr metric, and thus they have vanishing scalar field (see [67] and references therein).
Therefore, we know that the remnant of a BBH collision becomes – in the timescale of the
QNM oscillations, i.e. of ∼ 1− 10M – a stationary BH solution, with vanishing scalar field.
The no-hair theorem does not tell us what happens before reaching the final stationary
configuration. However, a similar result applies to the inspiral part of a BBH coalescence.
Indeed, an analysis in the PN approximation [252, 259], which accurately describes the BBH
inspiral, shows that the binary dynamics in the theory (7.62), up to 2.5 order in the PN
expansion, is the same as in GR [321]. As argued before, similar results hold also in the a
PN treatment of Bergmann-Wagoner scalar-tensor gravity. However, we still do not know if
the scalar field significantly affect the dynamics during the merger and ringdown stages.

In order to address this problem, we shall study the QNMs of the scalar field during the
merger and ringdown of a BBH (head-on) collision. We do not expect the scalar field to
grow large before the collision, thus we shall treat it as a perturbation of the BBH spacetime;
we define a perturbation parameter ε � 1, such that Φ = O(ε). Therefore, Tµν = O(ε2)
and, to linear order in the perturbation, we can neglect the scalar field from Einstein’s
equations (7.63) (and in particular from the constraint equations (7.65)-(7.66)). We shall
then study the linearized (O(ε)) field equation of the scalar field in the BBH spacetime,
which is modeled using the CLAP. For such configurations we shall compute the scalar field
QNMs. Then, by comparing the scalar field QNMs in a BBH spacetime with the scalar field
QNMs in a stationary BH spacetime, we will assess whether the binary dynamics significantly
affects the scalar field dynamics.

The linearization process just described will provide a wave equation in a non-trivial spacetime,
that needs to be solved with suitable boundary conditions. Despite not being impossible in
principle, this assumptions might already be an indication of the absence of scalar instabilities
in BBH spacetimes. However, only the numerical solution of the above problem will quantify
how much QNMs change due to the interaction energy present in the binary (even foreseeing
that their imaginary part will not change sign).
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7.3.1 The background

We describe the BBH spacetime (neglecting the scalar field, as discussed above) using BL
initial data. Therefore, we recast the BBH spacetime as a perturbation of the Schwarzschild
metric. Including the leading-order quadrupolar contribution, as discussed in Sec. 7.1.3, the
total spacetime can be written as gµν = g

(0)
µν + hµν where g(0)

µν = diag(−f, f−1, r2, r2 sin2 θ)
and hµν is given by Eqs. (7.32)-(7.33):

hrr = f−1gP2(cos θ)ξ2 ,

hθθ = r2gP`(cos θ)ξ2 , (7.67)

where g = 4 (1 +M/(2R))−1M3/R3, the isotropic coordinate R is defined in Eq. (7.20),
and ξ2 = Z2

0/(2M2) . 1. We stress that we are assuming the background to be stationary,
thus neglecting the motion of the BHs, in the timescale of the oscillation (t ∼ (1− 10)M).
This is a crude approximation, since the BH separation changes, and their velocities become
non-negligible in this timescale. Thus, the result of this computation should be considered
as an order-of-magnitude estimate of the effect of the BH dynamics on the scalar QNMs.

7.3.2 Scalar perturbations’ master equation

Since hµν ∝ Z2
0 , we can expand the D’Alembertian operator � = 1√

−g∂µ (gµν
√
−g∂ν) in

Eq. (7.64), for small separations, as

� = �(0) + Z2
0 �

(1) +O(Z3
0 ) , (7.68)

where the explicit form of the operator �(1) is given in Appendix G. Expanding the scalar
field as

Φ (t, r, θ, φ) = 1
r

∑
`,m

ψ`m (t, r)Y `m (θ, φ) , (7.69)

we get a non-separable equation, where the harmonic component ψ`m couples with the
components ψ`±2m. As discussed in Appendix G, we can follow the same approach used
to study scalar field perturbations around rotating BHs (see e.g. [322, 323]); indeed, the
leading-order rotational corrections are quadrupolar as well. Remarkably, the ` ↔ ` ± 2
couplings do not affect the QNM frequencies at leading order in the perturbations (see
also [324, 325]), and thus they can be neglected, leading to a decoupled, Schrödinger-like
equation:

∂2ψlm
∂t2

+ ∂2ψlm
∂r2

(
U0 + Z2

0 Ũ0
)

+ ∂ψlm
∂r

(
U1 + Z2

0 Ũ1
)

+ ψlm
(
W0 + Z2

0W1
)

= 0 , (7.70)

where ` ≥ 1. The monopolar ` = 0 perturbations are not affected by the Z2
0 corrections (see

Eq. (G.13)), hence the ` = 0 QNMs are the same as in the single BH case. The derivation of
Eq. (7.70) and the explicit form of the functions UA(r), ŨA(r), WA(r) (A = 0, 1) are given
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Figure 7.4: Fractional percentage shifts ∆ωR/ωR (left panel) and ∆ωI/ωI (right panel),
as defined in Eq. (7.71), for ` = 1, 2, 3 and m = `, as functions of the BHs initial separation
Z0/M .

in Appendix G.

In order to find the QNMs, we have solved Eq. (7.70) through direct integration with outgoing
boundary conditions at infinity and with ingoing boundary conditions at the horizon. The
boundary conditions have been determined as a perturbative, polynomial expansion at each
boundary, whose coefficients have been found solving Eq. (7.70) order by order, as explained,
e.g. in Ref. [326].

7.3.3 Quasi normal modes

To validate our integration method, as a first step we computed the fundamental scalar
QNMs of a Scwharzschild BH, setting Z0 = 0. Our results agree with those in the literature
(e.g. [190]) within 0.2%. Then, we computed the scalar QNMs in BBH collisions for different
values of ` ≥ 1 and of Z0. Figure 7.4 shows the fractional percentage shift of real and
imaginary parts of the QNMs with respect to those in Schwarzschild BHs:

∆ωR/I
ωR/I

=
ωR/I − ω

(Schw)
R/I

ω
(Schw)
R/I

, (7.71)

for ` = 1, 2, 3 and m = `, as functions of Z0/M ≤ 0.7.
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As we can see from Fig. 7.4, the QNMs shifts have a non-trivial dependence on the BH
separation Z0, but each mode is shifted by just a few percent from the corresponding mode
of an isolated BH. Despite the approximations discussed above, this result provides a strong
indication that the BH dynamics does not significantly affect the behaviour of the scalar
perturbations, at linear order. Thus, we expect that, like in the inspiral and in the late
ringdown, the scalar field does not play a relevant role in the BH dynamics. If, instead, a
significant growth of the scalar field takes place in a BBH coalescence, there would be an
instability at the linearized level as well; we provide evidence against this scenario, because
the mode frequencies do not change enough in this stage to become unstable.

Thus, our results indicate that scalar fields in GR, or in modified gravity theories in which
the no-hair theorem applies, do not significantly affect the coalescence of BBHs.

These results are also interesting in light of a completely different question: at what time
the GW signal from a BBH coalescence can be described as a superposition of QNMs? This
problem, i.e. the determination of the starting time of the ringdown, is widely debated [327–
332]. Indeed, the procedure of constructing a GW template is based on joining different
approximations, from the regime where the BHs separation is large (PN approximation)
to the ringdown oscillations (perturbation theory), passing through the highly non-linear
merger process that requires numerical approaches. Our results indicate that an observer
measuring the scalar oscillations during a BBH collision may extend the validity of the
ringdown treatment closer to the merger, where, in principle, only full numerical studies are
accurate and reliable. This is an indication that the same may hold true for the gravitational
waveform.

7.4 Conclusions

GW astronomy has the potential to answer crucial questions regarding the correct description
of gravity. The full exploitation of such potential requires knowledge about the dynamics of
compact objects in a generic theory of gravity. While NR is the tool of excellence for this,
the evolution of a single binary within the context of a modified theory can take months to
perform on supercomputers, and may require years of careful study of the relevant partial
differential equations and associated well-posedness.

In this Chapter, we explored the close limit approximation as a “quick-and-dirty” tool to
understand non-linear coalescence processes. Its remarkable agreement with full non-linear
simulations is an important benchmark. In fact, albeit it is a perturbative scheme, it uses
constraint-satisfying initial data, and their evolution works accurately even when the premises
of the model are only partially satisfied. Consequently, this provides some confidence that this
technique works well also when extending those studies beyond GR or BH spacetimes. The
main requirement to use the CLAP consists in having solutions of the constraint equations.
These can be solved, as we showed, also in the presence of fundamental fields (see also
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Ref. [285, 333]).

Further effort is required here, the payoff is significant: with much less computational time
and effort one is able to investigate setups that, in principle, should be only described
through non-linear simulations. We showed how the CLAP can work for the coalescence of
equal-mass, compact, horizonless objects, and how it too predicts the existence of echoes in
GWs. This is a significant result in that it extends and complements other past perturbative
calculations [33, 68, 69]. Moreover, we studied scalar fields minimally coupled with gravity in
BH spacetimes (which are equivalent to non-minimally coupled scalar fields in a Bergmann-
Wagoner scalar-tensor theory), estimating the scalar modes in the merger of a BH binary,
and showing that they are very similar to those in a stationary BH spacetime. In future
works, we will further use this tool to investigate compact objects collisions in other - and
perhaps more complicated, alternative theories, as EsGB for instance, and we will investigate
its usage also for non head-on binaries.
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Studying the stability of a physical configuration plays a fundamental role in Physics. In
the case of alternative theories of gravitation, for instance, it is crucial to understand the
viability of the theory itself and of the solutions of its field equations. Finding the onset of
an instability may lead to a great opportunity. In fact, thanks to such mechanisms one could
constrain a theory or a coupling constant if the observations do not meet the predictions. In
addition, they furnish a natural framework to develop new BHs or stars solution, different
from the typical ones of GR, that might arise as the result of the instability.

An important example of such processes appears when extra degrees of freedom are coupled
with curvature or matter fields. In non-minimally coupled scalar-tensor theories, one may
find that, for certain coupling strengths, a star solution of GR is unstable and provokes
an instability. This process may lead to compact objects with non-trivial charges and it
is dubbed spontaneous scalarization [104, 106, 110–112, 115–126], as it is akin to the more
famous spontaneous magnetization of ferromagnetic materials. As this process may be
an important smoking gun for some alternative theories, in this Chapter we use results
from the CLAP [275, 276, 290, 334] (see Chapter 7) to model unstable processes in binary
BH spacetimes. This Chapter is also motivated by recent works on the scalarization of
multi-body systems, that showed how signatures of this non-perturbative mechanism can
emerge dynamically [90, 335–338].
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Starting from theories allowing for spontaneous scalarization of isolated BHs, we investigate
dynamical scalarization processes in binary BH spacetimes, specializing our computations
in the context of EsGB. Working with non-trivial couplings between the scalar and the
spacetime curvature, we wish to highlight the effects of the scalar field dynamics in a two-body
spacetime.

8.1 Einstein-scalar-Gauss-Bonnet gravity

In the following we consider Einstein-scalar-Gauss-Bonnet gravity as a specific example
of scalar-tensor theory of the above class. EsGB emerges naturally in the low-energy
limit of string theories [339–341], and is the only alternative theory that includes an extra
scalar degree-of-freedom, coupled to a quadratic curvature term constructed from the
spacetime metric, which equations of motion are second (differential) order. For EsGB, a
3+1 decomposition of the field equations has been recently performed [93, 94].

The action of EsGB is given by

S = 1
16π

∫
d4x
√
−g

[
R− 1

2 (∇Φ)2 + η

4 f(Φ)RGB

]
, (8.1)

where η is the dimensionful coupling constant of the theory and f (Φ) is a generic coupling
function between the scalar field and the Gauss-Bonnet invariant RGB, that is

RGB = R2 − 4RijRij +RijklR
ijkl , (8.2)

with R (Rij) being the Ricci scalar (tensor) and Rijkl the Riemann tensor. The equations of
motion obtained from the action (8.1) are given by

Gµν = 1
2Tµν −

1
8η Gµν , (8.3)

�Φ = −η4
∂f (Φ)
∂Φ RGB , (8.4)

where Gµν is the usual Einstein tensor and

Gµν = 16Rα(µCν)β + 8Cαβ (Rµανβ − gµνRαβ)− 8CGµν − 4RCµν , (8.5)

with
Cµν = ∇µ∇νf (Φ) = f′∇µ∇νΦ + f′′∇µΦ∇νΦ , (8.6)

and the scalar field stress-energy tensor is defined as,

Tµν = ∂µΦ∂νΦ− 1
2gµν∂

αΦ∂αΦ . (8.7)

In order to study the evolution of any physical configuration in EsGB, one needs to find
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consistent initial data. This consists in solving the EsGB constraint equations coming
directly from Eqs. (8.3)-(8.4). A solution to these equations, in general, includes complicated
functions of the scalar Φ and the scalar momentum density KΦ

1. However, in this work
we are only interested in understanding if, and how, BBHs in vacuum might be unstable
in EsGB. In order to assume a trivial scalar field profile Φ = 0 and momentum density
KΦ = 0 on the initial hypersurface, we restrict to theories obeying df/dΦ|Φ=0 = 0. With
this assumption, we rule out theories allowing only for BH solutions with scalar hair, as
the ones due to an exponential coupling function (see Ref. [340]). Further considering BHs
initially at rest, the momentum constraint equations are identically satisfied (and therefore
not shown here), while the Hamiltonian reads as in vacuum GR

3R = 0 , (8.8)

where 3R is the Ricci scalar evaluated on the initial three-spacelike hypersurface of foliation.

8.2 Binary black hole background

In order to model a BBH spacetime, one needs to account for their interaction energy. The
CLAP formalism of BBHs in GR succeeded to consistently describe such configurations [4,
275, 276, 290, 334], and we will use this approximation in what follows. Remarkably, this
perturbative method was used to find the ringdown waveforms produced by the head-on
collision of BHs binaries in GR (see Chapter 7). This approach is based on having initial
data describing BBHs that are solutions of the Hamiltonian constraint equation (8.8). Such
solution is not unique: different initial data [287–289] may be used within the CLAP. The
ones that we employ in this work are given by the Brill-Lindquist initial data [288]. These
are conformally flat, time symmetric initial data representing two BHs initially at rest.

Let us focus on equal-mass binaries, of total ADM massM . In isotropic cartesian coordinates,
we place the BHs on the Z-axis (R1/2 = (0, 0,±Z0), where Ri is the position of each BH in
this reference), therefore the origin of the reference frame is in the CM of the system. As
shown in detail in Refs. [4, 276, 281, 290], using the CLAP of BBHs, we can recast the 4D
initial spacetime as a perturbation of the Schwarzschild metric. Thus, including for the sake
of simplicity only the leading-order quadrupolar contribution [275], the spacetime can be
written as

gµν = g(0)
µν + hµν , (8.9)

1KΦ is defined as the Lie derivative of the scalar field with respect to the normal vector to the initial
hypersurface of foliation.
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where

g(0)
µν = diag(−f, f−1, r2, r2 sin2 θ) ,

f = 1− 2M/r , (8.10)

and, using the Legendre polynomial P2 (cos θ), hµν is given by

hrr = f−1gP2(cos θ) Z2
0

2M2 ,

hθθ = r2gP2(cos θ) Z2
0

2M2 , (8.11)

with
g = 4 (1 +M/(2R))−1M3/R3 , (8.12)

and the isotropic coordinate R is defined in terms of the Schwarzschild radial coordinate r as

R = 1
4
(√

r +
√
r − 2M

)2
. (8.13)

The parameter Z0 in Eq. (8.11) represents the initial separation between the BHs in the
isotropic frame. For Z0 = 0 there is just a single BH of mass M in the initial slice. When
0 < Z0 . 0.4 one single common horizon appears [276, 290, 334]. In this regime, the spacetime
can be thought to represent two BHs close to one another, enveloped by a common distorted
horizon [275]. Moreover, it is worth to note that Z0 itself is only a parameter and not a
physical quantity. However, it is possible to establish a realation between Z0 and the physical
distance between the apparent horizons of the initial colliding BHs (L) [4, 280, 281, 290–292]:
an explicit computation gives L = 3M for Z0 ' 0.5M , L = 3.5M for Z0 ' 0.7M , L = 4M
for Z0 ' 0.85M .

The metric in Eq. (8.9) shows how the colliding BHs spacetime can be seen as a time-
dependent perturbation of a Schwarzchild background. Hence, in the CLAP, the time
evolution of this small (even) gravitational perturbations can be achieved by gauge-invariant
perturbations techniques [293, 294, 342]. Notably, as shown in Ref. [275], the gravitational
perturbation equations can be cast in a single Zerilli equation for one unknown function (the
Zerilli function) [343]. Solutions of such equation provide GW signals remarkably similar to
the results obtained using full numerical simulations [283].

Instead, in the following, we use the metric in Eq. (8.9) only as the background spacetime in
which evolving the scalar field, thus neglecting the motion of the BHs in the timescale of
the oscillation. This is a severe approximation. First because astrophysical BHs in binaries
move at large velocities when close to one another. Furthermore, on a timescale of order M ,
the BHs collide, hence the extrinsic spacetime curvature will take non-zero values, changing
the background spacetime in which scalar perturbations propagate. However, albeit an
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approximation, restricting to a frozen background still shows the main feature of the onset
of instabilities in binary spacetimes, as we shall see later.

A CLAP treatment allowing for spontaneous scalarization during the collision (or the inspiral)
of BHs in EsGB is left for future work.

8.3 Scalar instabilities

To test the onset of scalar instabilities in BBHs geometries, we study the behaviour of small
linear scalar fluctuations in backgrounds described by Eq. (8.9). These vacuum configurations
have been chosen since EsGB allows also for BH solutions identical to GR.

Small scalar perturbations can be mathematically expressed replacing Φ→ εΦ in Eqs. (8.3)-
(8.4), with ε a small bookkeeping parameter. Thus, one can linearize the Einstein-KG system
up to O(ε). In this limit, the KG equation decouples from Einstein’s equations. Hence, the
background spacetime is not affected by the scalar perturbations. Our perturbation scheme
will eventually breakdown at sufficiently late times: the exponentially growing scalar gives
rise to an exponentially growing stress-tensor, the backreaction of which on the geometry
can no longer be neglected. Here, we focus solely on the early-time development of the
instability.

What we are left to solve is the KG equation

�Φ = −η4
∂f (Φ)
∂Φ RGB , (8.14)

where the box operator (� = 1√
−g∂µ (gµν

√
−g∂ν)) is defined on the BBH background in

Eq. (8.9). In the following we further assume that the Gauss-Bonnet coupling is such that
can be well approximated by a quadratic function (linearizing it around an extremum for
instance), hence,

f (Φ) = Φ2

2 . (8.15)

As shown in Refs. [115, 116], in this class of theories the KG equation admits solutions
composed by a constant scalar around spacetimes satisfying GR equations. Furthermore,
a linear stability analysis showed that, for certain values of the coupling constant η, GR
solutions may be unstable. To find the endpoint of this instability, one needs to solve the
equation of motion including the backreaction of the scalar on Einstein’s equations. This
eventually leads to scalarized (or hairy) BHs or stars. For new detailed studies of the
properties of rotating and non-rotating scalarized BHs in EsGB we also refer the reader to
Refs. [344–346].

Conversely, here we are interested in the effect on scalar fluctuations due to the presence of a
binary. Hence, both the box operator and RGB in Eq. (8.4) depend on the perturbed BBH
spacetime, and in the CLAP, we may expand them in powers of the small BHs separation
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Z0,

� = �(0) + Z2
0 �

(1) +O(Z3
0 ) ,

RGB = R(0)
GB + Z2

0 R
(1)
GB +O(Z3

0 ) . (8.16)

Decomposing the scalar in spherical harmonics as,

Φ (t, r, θ, ϕ) = 1
r

∑
`,m

ψ`m (t, r)Y `m (θ, ϕ) , (8.17)

the KG equation is non-separable because it couples different components of the index `.
The mathematical details of the procedure to separate (perturbatively) Eq. (8.4) are given
in Appendix G. Let us summarize here the most important passages to arrive to the master
equation that describes scalar perturbations in EsGB, in the axisymmetric stationary BBH
spacetime.

The procedure is similar to the one described in Ref. [4, 322]. Let us expand the scalar field
using the spherical harmonics base. The key point is that, for each spherical harmonics index
`, the KG equation becomes separable in the limit Z0 → 0. Hence, using the specific ansatz
in Eq. (G.5), for each ` ≥ 1 one gets a Schrödinger-like equation that includes corrections in
Z2

0 ,

∂2ψ`m
∂t2

+ ∂2ψ`m
∂r2

(
U0 + Z2

0 Ũ0
)

+ ∂ψ`m
∂r

(
U1 + Z2

0 Ũ1
)

+ ψ`m

((
W0 + η

4W̃0

)
+ Z2

0

(
W1 + η

4W̃1

))
= 0 , (8.18)

where all the potentials are listed in Eq. (G.10). The monopolar ` = 0 perturbations are
not affected by the Z2

0 corrections (see Eq. (G.13)), hence the ` = 0 modes are the same as
in the single BH case. Setting η/M2 = Z0/M = 0 in Eq. (8.18), one gets the perturbations
describing scalar perturbations in a static Schwarzschild spacetime [267]. Additionally, one
may notice that the scalar field fluctuations are independently affected both by η and Z0.
This means that there might be non-trivial effects on the scalar QNMs of oscillation of a
BBH even in pure GR (setting η = 0 and Z0 6= 0). For such scenario, we refer the interested
reader to Chapter 7 Section 7.3.

In the following we strictly focus on EsGB (hence η 6= 0).

8.3.1 Boundary conditions

To find unstable modes, we start with an harmonic time dependent scalar field,

ψ`m (t, r) = Ψ (ω, r) e−iωt , (8.19)
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where we dropped the subscript `m in the r.h.s.. Substituting the ansatz (8.19) in Eq. (8.18),
an unstable mode is found when a bounded regular solution of the KG equation

∂2Ψ
∂r2

(
U0 + Z2

0 Ũ0
)

+ ∂Ψ
∂r

(
U1 + Z2

0 Ũ1
)

+ Ψ
((

W0 + η

4W̃0

)
+ Z2

0

(
W1 + η

4W2

)
− ω2

)
= 0 ,
(8.20)

with potentials in Eq. (G.10), possesses a frequency that satisfies

ω = ωR + iωI , with ωI > 0. (8.21)

Being interested in the onset of the instability, without loss of generality, we might look
for solutions with purely imaginary frequencies (ωR = 0). The asymptotic behaviours of
Eq. (8.20) provide us the proper boundary conditions to be imposed. Especially, asking for
regularity both at the horizon and at spatial infinity, we get

Ψ (r ∼ 2M) = (r − 2M)

2MωI√
1−2(Z0/M)2q(1)

`m

N∑
n=0

an (r − 2M)n ,

Ψ (r ∼ ∞) = e−rωI

rl

N∑
n=0

bnr
−n , (8.22)

where the coefficients an, bn have to be found substituting Eq. (8.22) in Eq. (8.20) and
solving it order by order. For each configuration, the value of N has to be increased until
the boundary conditions (8.22) do not converge to fixed values [326].

8.3.2 Isolated black hole scalar bound states

As a consistency check, we first integrate Eq. (8.20) for a single static BH (Z0 = 0), searching
for static bound states, as the ones found in [115, 116]. This means that in the following we
seek only for solutions with

ω = 0 . (8.23)

Considering the quadratic coupling function in Eq. (8.15), a comparison with the results in
Ref. [115] is straightforward. In Fig. 8.1 we show different scalar bound states that correspond
to unstable solutions around Schwarzschild BHs for the first three scalarized solutions, for
` = 0, 1, 2. Not all the values of η/M2 provide static scalar non-trivial solutions. In fact,
these bound states correspond only to a specific set of η/M2. The corresponding values of
the coupling parameter are summarized in table 8.1. Compare to previous literature [115],
we evaluate the static unstable bound states also for ` > 0. These solutions will serve as
benchmarks for the bound states solution in the BBH case, as we shall see in the next section.

Each entry in table 8.1 corresponds to a parabola in a (η,M) plane. Non-linear studies
including the scalar field backreaction on the spacetime geometry showed how hairy BHs
solutions, end points of the tachyonic scalar instability, belong only to an infinite set of
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Figure 8.1: Scalar profiles for different values of `, for the first three scalarized solutions
around an isolated static BH. Solid, dashes and dotdashed lines correspond to zero, one
or two nodes solution respectively. The black lines (` = 0) match with previous literature
results [115]. Because of spherical symmetry, scalar perturbations of an isolated BH in EsGB
are insensitive to the specific values of m. Thus, each curve correspond to a specific, single
value of `, regardless of the value of m.

narrow bands in the (η,M) plane [115]. The values in table 8.1, computed through a linear
analysis, coincide only with one of the two ends of each band.

8.3.3 Scalarization in binaries spacetimes

Let us turn now to the case of two BHs in a binary. Hence, we solve Eq. (8.20) for Z0 6= 0.
As clear from the coefficients in Eq. (G.13), scalar monopolar perturbations vanishes when
Z0 6= 0. Hence, the results obtained for isolated BHs hold when ` = 0.

For ` ≥ 1 instead, we compute how the specific values of η/M2 shown in Tab. 8.1 vary as
a function of the BHs separation. Results are summarized in Fig. 8.2. Different branches
for the same ` refer to different values of the spherical harmonic index m. From Eq. (G.13)
we may notice that each branch in Fig. 8.2 departs from the single BH value (Z0 = 0) to
larger values of η/M2 if q(`m)

1 > 0, q(`m)
2 < 0, and to smaller ones if q(`m)

1 < 0, q(`m)
2 > 0. All

the branches in Fig. 8.2 for which the value of η/M2 decreases when Z0 increases can be
approximated by the following fit

η

M2 ≈
(
η

M2

)n`m
Z0=0

− an`m
(
Z0
M

)3/2
, (8.24)

accurate within 1% for 0 ≤ Z0/M ≤ 0.4. In the above fit, the first term on the r.h.s
corresponds to each specific entry in Tab. 8.1 and an`m is a constant that depends on the
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(
η/M2)n`m

Z0=0
` n=0 n=1 n=2

0 2.902 19.50 50.93
1 8.282 29.82 65.84
2 16.30 42.97 83.82

Table 8.1: Values of the coupling constant η corresponding to the static scalar bound states
solutions around isolated BHs. Each value of η/M2 refers to a different curve in Fig. 8.1.
The values for ` = 0 agree with the literature [115].

the number of nodes and on the angular indices. As an example, some of its values are
a011 = 8.74, a022 = 31.64, etc..

Finally, given the assumptions made to build the binary spacetime in Section 8.2, we stress
that the results summarized in Fig. 8.2, obtained for stationary backgrounds, have to be
intended only as an indication of what happens to scalar fields in BBHs geometries, even
when the BHs are left free to collide.

8.4 Conclusions

As depicted in Fig. 8.2, BBH spacetimes in EsGB might suffer field instabilities. These
results indicate that this process can happen before the final object is formed. Specifically,
we showed that asymmetric configurations describing a BBH can scalarize due to different
perturbation modes. Notably, fixing a value of ` > 0, this unstable mechanism can be
enhanced by BBH spacetimes, for smaller values of the coupling constant compare to the
corresponding scalarization threshold value of the (final) isolated BH.

Nonetheless, in a realistic scenario the effect of the velocity of the colliding BHs might change
the picture just described. Furthermore, the assumption that the BHs in the initial slice
are simple Schwarzschild BHs might fail. In fact, each component of the binary might have
already individually scalarized because of the ` = 0 modes shown in Tab. 8.1, that appear
for lower values of η/M2 with respect to modes with ` ≥ 1. However, our findings are
not completely ruled out, since spherically symmetric scalarized BHs exist only for specific
bands2, that depend on the value η/M2. However, we recognize that the observation of the
binary instability, described by the results in Fig. 8.2, would require some undesirable ad
hoc fine-tuning of the parameters. To conclude, the above results remark once more the

2As an example, let us assume that a binary is composed by two Schwarzschild BH of mass MBH each and
that η/M2

BH > 19.50. In this case none of the two initial BHs can be scalarized due of monopolar instabilities,
because being out of a scalarization band [115]. However, for an initial BH distance of Z0/ (2MBH) ∼ 0.5,
the {n, `,m} = {0, 1,±1} mode of the binary grows unboundedly if, for instance, η/M2

BH ∼ 20.
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Figure 8.2: Existence lines for the coupling constant of EsGB gravity, corresponding to
static bound states solutions of Eq. (8.20), as a function of the normalized geometrical BHs
separation (Z0/M). Each curve is labelled for different values of {n, `,m}. In both panels,
the solid lines correspond to zero node solutions (n = 0), the dashed to one node (n = 1)
and dotdashed to two nodes (n = 2). Results for negative values of m coincide with their
positive m counterpart, and therefore are not explicitly shown in the legend. All the different
branches depart, respectively, from each value shown in Tab. 8.1, previously evaluated for
Z0 = 0. Left panel: bound states associated with ` = 1. Right panel: bound states
associated with ` = 2.

fundamental role that the strong field regime possesses during BHs collisions and coalescences:
in order to perform consistent tests of alternative theories, we need waveforms that properly
accounts for backreacting effects when high spacetime curvatures are involved. Again, this
work is a first step towards the study of the GWs produced by merging BHs in EsGB through
the CLAP formalism.
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Let us now turn our attention to unstable processes in the context of theories with an extra
vectorial degree-of-freedom. The vector field discussed here can be interpreted in different
ways, either as (i) the well-known electromagnetic field, or as (ii) a still unknown vector field,
which is “hidden” since it is weakly coupled with the standard model.

Within the interpretation (i), we are studying strong-gravity modifications of the coupling
between the gravitational and the electromagnetic field. We remark that the effects we are
seeking only show up in the presence of a very large spacetime curvature, such as those in
the core of NSs, or near the horizon of BHs. Therefore, despite the enormous accuracy of
existing experimental data on the electromagnetic field, the effects studied in this Chapter
are not ruled out by current observations. In particular, we mainly study the effects of the
inclusion of a coupling ∼ RXµX

µ (where R is the spacetime curvature) in the action of the
theory. This coupling resembles a mass term (but with a non-constant and non-uniform
“mass”). We note that even the existence of a photon mass has not been definitely ruled
out [347, 348]; a photon-curvature coupling is more elusive, since it shows up only in strong
curvature regions.

Within the interpretation (ii), one tries to enlarge the standard model with as many fields as
possible, and question which of those fields can be constrained with experiments. In this
context, the theory treated in this Chapter arises naturally, in the sense that (hidden, with

133
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small couplings to the standard model) vectors are a generic prediction of string theory [349],
and are promising dark matter candidates [142]. Generalized theories with vector fields,
avoiding ghosts and other pathologies, have recently been studied in Ref. [350].

As previously discussed in Chapter 8, even in this framework we look for smoking-gun effects
of such new fields and couplings. Notably, we will find and describe an example of vectorized
compact stars.

9.1 Hellings-Nordtvedt gravity

In the Hellings-Nordtvedt (HN) gravity theory [138], a single massless vector field is non-
minimally coupled to the gravitational field. The action for the HN theory is,

S =
∫
d4x

√
−g

16π (R− FµνFµν − ΩXµX
µR− ηXµXνRµν) + SM , (9.1)

where Xµ is a massless vector field, Fµν = Xν;µ − Xµ;ν , Rµν (the subscript ; represents
a covariant derivative) and R are the Ricci tensor and scalar, respectively, Ω and η 1 are
dimensionless coupling constants, and SM is the matter fields action. The action (9.1) yields
the field equations [351]

Rµν −
1
2gµνR− ΩΘ(Ω)

µν − ηΘ(η)
µν + Θ(F )

µν = 8πGTµν , (9.2)

Fµν;ν + 1
2ΩXµR+ 1

2ηX
νRµν = 0 , (9.3)

where

Θ(Ω)
µν = XµXνR+XαX

αRµν −
1
2gµνXαX

αR− (XαX
α);µν + gµν�(XαX

α) , (9.4)

Θ(η)
µν = 2XαX(µRν)α −

1
2gµνX

αXβRαβ − (XαX(µ);ν)α + 1
2�(XµXν) + 1

2gµν(XαXβ);αβ

(9.5)

Θ(F )
µν = −2(FαµFνα −

1
4gµνFαβF

αβ) , (9.6)

and Tµν is the matter stress-energy tensor.

As already noticed in Ref. [351], the divergence of Eq. (9.3) leads to the constraint equation,(
ΩXµR+ 1

2ηX
νRµν

)
;µ

= 0 , (9.7)

that comes directly from the fact that the action is not fully gauge invariant (not being
invariant under Xµ → Xµ + λ,µ, with λ being a scalar function). However, this extra

1We choose the signs convention for the coupling constants different from those used in Ref. [138]. Our
conventions are consistent with those used in studies of scalar-tensor theories.
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constraint equation is trivially satisfied in our case, since we will restrict to vector fields of
the form Xµ = {X0, 0, 0, 0}, when dealing with non-rotating stars (as explained in Sec. 9.3.1
in detail).

Before diving into the calculations of star configurations in HN gravity, let us highlight
at least two fundamental issues of this theory. The first is related with the fact that the
vector-curvatures couplings in the action break the gauge invariance of the theory. Being
the strength of this violation spacetime dependent provides an uncertainty about how many
degrees-of-freedom the theory possesses [352]. Furthermore, HN gravity is also known to
be plagued by ghost instabilities [353]. These problematic fields spoil the validity of the
theory, unless new terms are included to cure such fundamental issue. Said so, let us stress
that the choice of working with HN gravity has been pursued mostly for its mathematical
simplicity. Thanks only to two extra coupling terms, we can highlight some peculiar
features, that might appear also in more complicated – and better justified – vector-tensor
theories [132, 350, 354, 355]. Hence, HN gravity is mostly used as a proxy to get insight on
what happens when an extra vector field is embedded in high curvature spacetimes.

9.2 Linearized fluctuations of stars

We consider perturbations of static, spherically symmetric stars in HN gravity, composed by
a perfect fluid. The background is thus described by a spacetime metric with the form

ds2 = −Fdt2 + 1
G
dr2 + r2dθ2 + r2 sin2 θdφ2 , (9.8)

where F (r) and G(r) are general functions of the radial coordinate r, and by a stress-energy
tensor with the form

Tµν = (p+ ρ)uµuν + gµνp , (9.9)

where
uµ =

(
F−1/2, 0, 0, 0

)
(9.10)

is the four-velocity of the fluid, p(r) is its pressure, and ρ(r) is its energy density.

We study two different equations of state (EOS) for the fluid composing the star. The
first is a constant density (CD) EOS (see, e.g. [356]) with radius R and mass M , where
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ρ = 3M/(4πR3) = const, and

G = 1− 8
3πr

2ρ ,

p =

ρ
(
G1/2 −

√
1− 2M

R

)
3
√

1− 2M
R −G1/2

 ,

F =

3
2

√
1− 2M

R
− 1

2G
1/2

2

. (9.11)

The second is the polytropic (Poly) EOS which has been used in [100] to study spontaneous
scalarization in scalar-tensor theories,

ρ(p) =
(

p

Kn0mb

) 1
Γ
n0mb + p

Γ− 1 . (9.12)

where n0 = 0.1fm−3 = 1053km−3, mb = 1.66 × 10−24g = 1.23 × 10−57km is the average
baryon mass, Γ = 2.34 and K = 0.0195 are dimensionless parameters.

When Xµ = 0 the field equations (9.2)- (9.3) reduce to those of GR. Therefore, all vacuum
or matter solutions of GR are also solutions of the HN theory, including those describing
spherically symmetric compact stars in GR. We shall now study the stability of these
solutions, considering a small vector field perturbation:

Xµ = εξµ , (9.13)

where ε� 1 is a dimensionless bookkeeping parameter. At first order in ε, Eq. (9.2) reduces
to GR Einstein’s equations, and the vector field equation (9.3) can be written as

Fµν;ν − 4πGΩXµT + 4πGηXν
(
Tµν −

1
2δ

µ
νT

)
= 0 . (9.14)

The vector perturbation ξµ can be expanded in vector spherical harmonics,

ξµ =
∑
l





0

0

al(r)(sin θ)−1∂φYl

−al(r) sin θ∂θYl


+



fl(r)Yl
hl(r)Yl
kl(r)∂θYl
kl(r)∂φYl




e−iωt , (9.15)

where Ylm(θ, φ) are scalar spherical harmonics, and, since the perturbation equations do not
depend on the azimuthal index m, we leave that index implicit. The perturbations al(r)
(with l ≥ 1) have axial parity, i.e. they transform as (−1)l+1 for a parity transformation
θ → π − θ, φ→ φ+ 2π, while the perturbations fl(r) and hl(r) with l ≥ 0, and kl(r) with
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l ≥ 1, have polar parity, since they transform as (−1)l for a parity transformation. These
two classes of perturbations can be studied separately, because they are decoupled in the
perturbations equations.

We note that when Tµν = 0, Eq. (9.14) reduces to Maxwell’s equations, while the equations
for the gravitational field (9.2) coincide with Einstein’s equations plus terms quadratic
in the vector field. Therefore, at first order in the perturbations HN gravity coincides
with Einstein-Maxwell theory for BH spacetimes. Thus, since BHs are linearly stable in
Einstein-Maxwell theory [264, 357–362], they are also stable against linear perturbations in
HN gravity.

9.2.1 Instabilities and spontaneous vectorization in the axial sector

The harmonic decomposition of the linearized vector field (Eq. (9.14)) yields a system of
ordinary differential equations for the perturbation functions. For the axial part we get (for
l ≥ 1),

FGa′′l + 1
2
(
GF ′ + FG′

)
a′l +

[
ω2 − F

(
l(l + 1)
r2

)]
al − 2πF [η (ρ− p) + 2Ω (ρ− 3p)] al = 0 ,

(9.16)
where a prime denotes a derivative with respect to the coordinate r. The term

η (ρ− p) + 2Ω (ρ− 3p) , (9.17)

in Eq. (9.16) behaves as an effective mass (squared) for the vector field. When it is negative,
one expects GR configurations to be unstable against radial perturbations. For instance, in
theories with η = 0, this is the case when the coupling constant Ω is negative and ρ > 3p, or
when Ω is positive and ρ < 3p. A similar approach has been used for a qualitative study of
the stability properties of scalar-tensor theories in [363, 364].

Numerical solutions

We have solved numerically Eq. (9.16), for CD and Poly stars, as an eigenvalue problem for
the frequencies ω. In both cases, we have used direct integration to search for instabilities [189,
190], looking for unstable solutions with purely imaginary frequency ωI > 0, and imposing
regularity at the center of the star and at infinity. In order to enforce a regular behavior
near the center of the star, we perform an asymptotic expansion of the axial perturbation
equation (9.16), by expanding the perturbation function as

al =
N∑
i=0

ailr
i . (9.18)

We truncate the expansion at N = 4 because we found that further coefficient does not
affect significantly the results. Thus, we find the values of the coefficients ai>0

l in terms of
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Figure 9.1: Unstable dipolar vector perturbation profile for a CD star. The solid blue line
(η = 0,Ω = −20) corresponds to an instability rate Mω = 0.094i for a CD star compactness
M/R = 0.2. The dashed red line (Ω = 0, η = −20) corresponds to a rate M ω = 0.071 i for a
CD star compactness M/R = 0.4.

a0
l (which can be set to an arbitrary value). In terms of these coefficients we can compute
al(r0) and al,r(r0) at r0 � R, with R being the surface of the star. We then numerically
integrate Eq. (9.16) from r0 to R and, imposing regularity of the perturbations, from the
surface to r � R.

Unstable modes have frequency ω = ωR + i ωI , with ωI > 0. Since we look for the onset
of the instability, we look for solutions with purely imaginary frequency, i.e., ωR = 0, by
matching the solution far away from the star with

al(r) ≈ eωIrc1 + e−ωIrc2 , (9.19)

where c1 and c2 are two constants of integration. Finally, since we require an asymptotically
flat spacetime, we impose c1 = 0. We thus find a perturbation which grows in time and
regular at spatial infinity, behaving asymptotically as

al(t, r) = c2e
−ωIreωIt . (9.20)

Later, in order to solve the perturbation equations with polar parity (9.25) and (9.26), we
will follow the same approach. The only difference is that, for each value of the harmonic
index l, we have two perturbation functions, fl(r) and kl(r).

We found that unstable modes are present for some configurations, the properties of which are
summarized in Figs. 9.1 and 9.2. Figure 9.1 shows the radial profile of dipolar (l = 1) unstable
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Figure 9.2: The shaded regions represent CD (left panel) and Poly (right panel)
star configurations with different values of Ω and M/R, which are unstable under axial
perturbations in HN gravity with η = 0. The green dot-dashed curve is the Newtonian
solution for a CD star, Eq. (9.22). The dashed red line corresponds to the Buchdal limit on
the compactness of a CD star (M/R < 4/9 ≈ 0.444).

modes for a CD star with compactness M/R = 0.2 and couplings constants (Ω, η) = (−20, 0)
and for a CD star with compactness M/R = 0.4 and coupling constants (Ω, η) = (0,−20).

When Ω, η > 0, we find unstable solutions as well. For each choice of η and Ω we find a
sequence of characteristic frequencies corresponding to unstable solutions with nodes.

In Fig. 9.2 we show the stability diagram for different values of the coupling constant Ω,
assuming η = 0, obtained by considering dipolar axial perturbations of stellar configurations
with different values of the compactness M/R. The left panel refers to CD stars, while the
right panel refers to Poly stars. The shaded region corresponds to configurations which are
unstable under axial perturbations. Strictly speaking, these regions correspond to instability
to dipolar (l = 1) perturbations, but we find strong evidence that the configurations unstable
to l > 1 axial perturbations are also unstable to dipolar ones. The dotted horizontal line
represents the Buchdal limit M

R < 4
9 , which we verified to be satisfied in HN theory, while the

dot-dashed curve corresponds to the Newtonian configurations for CD stars (see discussion
below). Note that, as discussed above, for negative couplings Ω, η, even Newtonian stars
can become unstable. We find that unstable configurations also exists in the case of η 6= 0.

The separation between the stable and unstable regions, i.e. the boundaries of the shaded
regions in Fig. 9.2, correspond to zero-mode solutions, i.e., static regular solutions with
non-vanishing vector field. In order to improve our understanding of this boundary, we shall
now consider zero-mode solutions in the Newtonian limit (i.e., MR � 1) for a CD star. In
this limit Eq. (9.16) reduces to

a′′l −
(
l(l + 1)
r2 + µ2

)
al = 0 , (9.21)
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where µ2 = 2πρ(2Ω + η) is the effective mass of the vector inside the star. Imposing
regularity at the origin, the general solution of Eq. (9.21) inside the star is (modulo an
arbitrary multiplicative constant) al =

√
rJl+1/2(−iµr), with Jν Bessel function. Outside

the star ρ = 0 and imposing regularity at infinity Eq. (9.21) gives al ∝ r−l. Matching the
interior and the exterior solution at the radius of the star r = R we find that a regular
solution exists only for Il−1/2(−iµR) = 0, where Iν is the modified Bessel function, i.e., for
µR = iπ, which corresponds to

− 3M (η + 2Ω) = 2π2R . (9.22)

When η = 0, this equation admits a non-trivial solution for negative values of Ω. Thus, for
η = 0, Ω < 0 we expect the presence of unstable solutions.

The Newtonian prediction (9.22) is shown in Fig. 9.2 (green dot-dashed curve). We note that
this line is close to the boundary of the unstable region, and it is closer for smaller values of
the compactness, as expected. At fixed negative coupling constant Ω, as the compactness
increases to large values, the quantity ρ− 3P decreases. For Poly stars, at M/R ∼ 0.27 it
becomes negative. The effective squared mass of the vector (9.17) is then positive, and the
star is stable. Thus, all the main features of Fig. 9.2 can be understood in simple terms. For
the same reasons, unstable solutions lying on the right side of the plot (positive coupling
constants) exist for very large values of the compactness, when the effective mass squared is
again negative.

It is worth noting that our results resemble those of scalar-tensor theories (compare our
Fig. 9.2 with Fig. 1 of Ref. [364]). The root of the mechanism is the same: a tachyonic
instability that is either triggered by a “wrong” sign of the coupling constants or by the
wrong sign of the trace of the stress-energy tensor. Despite these similarities, we are here
discussing the dipolar axial sector excitations of the vector field, which have a very different
behavior from those of the scalar field. The end state of this instability is unknown to us.

Including backreaction on Einstein’s equations, the axial perturbations give a contribution
to the (θ, θ) component of Einstein’s equations, which can be considered as an effective
stress-energy tensor. This suggests that the star will be made to rotate as a result of such
instability. Another outcome is possible: that the star exits the instability window through
mass shedding. The fate of stars on the unstable branch remains an open issue.

9.2.2 Spontaneous and induced vectorization in the polar sector

Since we are interested in static and spherically symmetric solutions of the full non-linear
field equations in HN gravity, we shall now study linear vector field perturbations with polar
parity in this theory.
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Dynamical case

To begin with, let us consider monopolar (l = 0) perturbations. In the exterior of the star,
we find that the l = 0 polar perturbation equations reduce to those of GR, i.e.

(iωh0 + f ′0)
(
rFG′ + 4FG− rGF ′

)
+ 2rGF

(
iωh0 + f ′0

)′ = 0 ,

ω
(
iωh0 + f ′0

)
= 0 . (9.23)

Since the radial electric field Er is proportional to iωh0 + f ′0, when ω 6= 0 the second of
Eqs. (9.23) implies that Er = 0, and thus the wave is pure gauge: there are no spherically
symmetric electromagnetic waves with radial electric fields in the exterior of the star, in
HN gravity as in GR. Then, since the solution inside the star has to match the exterior
solution, Er is pure gauge in the entire spacetime. In other words, there is no dynamical
linear instability for spherically symmetric modes.

Let us now consider the polar perturbations with the l ≥ 1 case. By replacing the expan-
sion (9.15) in the r component of Eq. (9.14) we find:

hl = −l(l + 1)Fk′l + ir2ωf ′l
F (2πr2((6Ω + η)p− (η + 2Ω)ρ)− l(l + 1)) + r2ω2 . (9.24)

Replacing Eq. (9.24) in the t and θ components of Eq. (9.14) we obtain a system of coupled
ordinary differential equations (ODEs) in fl and kl,

Gf ′′l (1− r2ω2

F (2πr2((6Ω+η)p−(η+2Ω)ε)−l(l+1))+r2ω2 )
F

+ il(l + 1)ωGk′′l
F (l(l + 1) + 2πr2((−η − 6Ω)p− (−η − 2Ω)ε))− r2ω2

− fl(l(l + 1) + 2πr2(3(−η − 2Ω)p+ (−η + 2Ω)ε))
r2F

− il(l + 1)ωkl
r2F

+ il(l + 1)ωk′l
2rF (F (2πr2((6Ω + η)p+ (−η − 2Ω)ε)− l(l + 1)) + r2ω2)2 (rF (−GF ′(l(l + 1)

+ 2πr2((−η − 6Ω)p− (−η − 2Ω)ε))− r2ω2G′) + r3(−ω2)GF ′ + F 2(rG′(l(l + 1)

+ 2πr2((−η − 6Ω)p− (−η − 2Ω)ε)) + 4G(l(l + 1) + πr3((6Ω + η)p′ + (−η − 2Ω)ε′))))

− f ′l
2rF (F (2πr2((6Ω + η)p+ (−η − 2Ω)ε)− l(l + 1)) + r2ω2)2 (rF (G(l2(l + 1)2F ′

+ 4πr2((−η − 6Ω)p(F ′(l(l + 1)− 2πr2(−η − 2Ω)ε) + 2rω2)

− (−η − 2Ω)ε(l(l + 1)F ′ + 2rω2) + πr2(−η − 6Ω)2p2F ′ + πr2(−η − 2Ω)2ε2F ′

+ r2ω2((−η − 6Ω)p′ − (−η − 2Ω)ε′))) + r2ω2G′(l(l + 1) + 2πr2((−η − 6Ω)p

− (−η − 2Ω)ε))) + r3ω2GF ′(l(l + 1) + 2πr2((−η − 6Ω)p− (−η − 2Ω)ε))

− F 2(rG′ + 4G)(l(l + 1) + 2πr2((−η − 6Ω)p− (−η − 2Ω)ε))2) = 0 , (9.25)
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iωGf ′′l
F (2πr2((6Ω + η)p− (η + 2Ω)ε)− l(l + 1)) + r2ω2 + iωfl

r2F

− Gk′′l (2πF ((6Ω + η)p+ (−η − 2Ω)ε) + ω2)
F (2πr2((6Ω + η)p+ (−η − 2Ω)ε)− l(l + 1)) + r2ω2

+ kl(2πF ((−η − 6Ω)p− (−η − 2Ω)ε)− ω2)
r2F

+ iωf ′l
2rF (F (2πr2((6Ω + η)p+ (−η − 2Ω)ε)− l(l + 1)) + r2ω2)2 (rF (GF ′(l(l + 1)

+ 2πr2((−η − 6Ω)p− (−η − 2Ω)ε)) + r2ω2G′) + r3ω2GF ′ + F 2(4G(πr3((−η − 6Ω)p′

− (−η − 2Ω)ε′)− l(l + 1))− rG′(l(l + 1) + 2πr2((−η − 6Ω)p− (−η − 2Ω)ε))))

− k′l
2rF (F (2πr2((6Ω + η)p+ (−η − 2Ω)ε)− l(l + 1)) + r2ω2)2 (rω2F (GF ′(l(l + 1)

+ 4πr2((6Ω + η)p+ (−η − 2Ω)ε)) + r2ω2G′)− F 2(−2πrGF ′((−η − 6Ω)p

− (−η − 2Ω)ε)(l(l + 1) + 2πr2((−η − 6Ω)p− (−η − 2Ω)ε)) + rω2G′(l(l + 1)

+ 4πr2((−η − 6Ω)p− (−η − 2Ω)ε)) + 4l(l + 1)ω2G) + r3ω4GF ′ + 2πF 3(rG′((−η − 6Ω)p

− (−η − 2Ω)ε)(l(l + 1) + 2πr2((−η − 6Ω)p− (−η − 2Ω)ε)) + 2l(l + 1)G(r(−η − 6Ω)p′

+ 2(−η − 6Ω)p− r(−η − 2Ω)ε′ − 2(−η − 2Ω)ε))) = 0 . (9.26)

The perturbation equations have simpler expressions in the exterior of the star. Indeed, as
ρ = p = 0 Eqs. (9.25) and (9.26) can be cast as a single “master equation” in terms of the
quantity

ψ = fl + iωkl , (9.27)

which is:(
l2 + l

)
ψ

2Mr − r2 + l(l + 1)(2M − r)ψ′′

l(l + 1)(2M − r) + r3w2 + 2l(l + 1)
(
l(l + 1)(r − 2M)2 −Mr3w2)ψ′

r (l(l + 1)(2M − r) + r3w2)2 = 0 .

(9.28)
Solving the Cauchy problem given by Eqs. (9.25) and (9.26), with appropriate initial
conditions (as discussed in Section 9.2.1) and matching at the boundary of the star with
Eq. (9.28), we find unstable configurations for CD stars. In Fig. 9.3, for instance, we show
the radial profile of an unstable mode with l = 1 for a constant density star of compactness
M/R = 0.2, for Ω = −20, η = 0 or η = 20,Ω = 0. As in the case of axial perturbations, we
can construct the instability diagram in the space (Ω,M/R). The static zero-mode solutions
in the Newtonian limit M/R� 1 yields

3M (η − 2Ω) = 2π2R . (9.29)

In Fig. 9.4 we show the instability region (shaded region) in the (Ω,M/R) plan, for η = 0
and negative values of the coupling constant Ω. The horizontal dotted line represents the
Buchdal limit, and the dot-dashed curve represents the Newtonian zero-mode solutions
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Figure 9.3: Unstable dipolar vector perturbation profile for a constant density star with
compactness M/R = 0.2. The solid blue line (η = 0,Ω = −20) corresponds to an instability
rate Mω = 0.103i. The dashed red line (Ω = 0, η = 20) corresponds to a rate M ω = 0.0989i.

corresponding to Eq. (9.29).

An interesting feature of these results is that the contribution of the coupling η to the
effective mass squared has opposite sign from that of axial perturbations: large negative
η make Newtonian stars unstable against axial perturbations, and large positive η turn
Newtonian stars unstable against polar perturbations.

Static case

We showed that spherically symmetric polar modes have no interesting dynamics. However,
there is still room for the existence of non-trivial static (ω = 0) solutions. Replacing the
expansion (9.15) in the field equations (9.14) we find:

h0 = 0 , (9.30)

and2,

[
− f ′0

(
2r
(
m′ − 2

)
+ r(r − 2m)ν ′ + 6m

)
+ 2r(r − 2m)f ′′0 + 4πr2(2Ω(3p− ρ)

+ η(3p+ ρ))f0
]e−ν

2r2 = 0 . (9.31)

2It is possible to show that k0 can be canceled out by the use of an appropriate combination of the
independent components of the modified Maxwell equations.
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Figure 9.4: Instability diagram for CD stars, for polar perturbations with l = 1. The shaded
region represents solutions which are unstable under polar perturbations in HN gravity with
η = 0. The green dot-dashed curve describes zero-frequency modes in the Newtonian regime,
Eq. (9.29). The dashed red line corresponds to the Buchdal limit (M/R < 4/9 ≈ 0.444).

Solving Eq.(9.31) we find a class of linear static vector field solutions, for both the CD and
the Poly star configurations. Equation (9.31) also implies an analytical relation between the
compactness and the coupling constant, in the Newtonian regime for a CD star. Indeed,
since h0 = 0, we can assume the following form for the vector field:

Xµ = (f0(r)/r, 0, 0, 0) . (9.32)

In the limit M/R� 1, for a CD star Eq. (9.31) reduces to

f ′′0 − µ2f0 = 0 , (9.33)

where µ2 = 2πρ(2Ω−η) is the effective mass of the vector inside the star. Imposing regularity
at the origin we find f0 = eµr − e−µr inside the star, and imposing regularity at infinity we
find f0 = const in the exterior. By matching the interior and exterior solutions at the radius
of the star we find

6M(η − 2Ω) = π2R . (9.34)

The static solutions are summarized in Fig. 9.5. These solutions might be said to be induced,
rather than arising spontaneously as the end product of an instability: they arise as the end
product of (perhaps special) initial conditions. Such vectorized solutions have no parallel in
scalar-tensor theory and do not exist in the axial sector of HN gravity itself. Note again
that η contributes with the opposite sign, relative to axial perturbations in Eq. (9.21). From
these solutions we can conclude that in GR, a vector field coupled with the curvature of the
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Figure 9.5: Linear static vector field solutions for a NS background (solid black line) and
for a CD star (dot-dashed red line) for η = 0. The dashed green line corresponds to the
Newtonian analytic solution for the polar sector in the CD star background.

spacetime can have a non-trivial profile around compact stars. Moreover, this result suggests
that vectorized stars can appear even in full non-linear HN gravity.

We should mention that, generically, the vector Xµ will tend to grow all its components.
Thus, with the exception of a measure-zero set of initial conditions, finding only a non-zero
time component is impossible. In other words, the spherically symmetric state that occurs
at linear (and non-linear, as we show below) level is not generic and should always be
accompanied by the linear instability of the non-symmetric modes. However, from a purely
mathematical level the distinction between induced and spontaneous processes can be made
and we have adopted such nomenclature here.

9.3 Static, vectorized neutron stars

We shall now determine full non-linear, stationary and spherically symmetric NS configu-
rations in HN theory, solutions of Eqs. (9.2) and (9.3). In other words, we show that the
induced vectorized solutions, found above at a linear level, do indeed exist at full non-linear
level. Hereafter, we assume η = 0.

9.3.1 Formalism and structure equations

For convenience, we rewrite the line element of Eq. (9.8) defining F = eν(r) and G = 1− 2m(r)
r .

A spherically symmetric vector field can only have non-vanishing t- and r- components.
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Moreover, the r component of the vector field equation reduces to

Xr

4r3

[
Ω(r− 2m)(−2m′(rν ′ + 4) + (4r− 6m)ν ′) + 2r(r− 2m)ν ′′ + r(r− 2m)ν ′2

]
= 0 , (9.35)

which implies Xr ≡ 0. Therefore, all the space components of the vector field identically
vanish:

Xµ = {X(r), 0, 0, 0} . (9.36)

The structure equations for the star are given by the (t, t), (r, r) components of the Einstein
equations (9.2), the vector field equation (9.3) and the conservation of the stress-energy
tensor:

∇νTµν = 0 . (9.37)

We note that Eq. (9.37) holds in HN gravity because the GR modifications do not affect
the matter section of the action (9.1); therefore, as explicitly shown in Ref. [351], the four-
divergence of the stress-energy tensor vanishes in this theory, as in GR. We thus obtain a
system of four ODEs in the variables

{m(r), ν(r), p(r), X(r)} . (9.38)

These modified Tolman-Oppenheimer-Volkoff (TOV) equations are explicitly given by,

e−ν

2r2
[
− 4e2ν(4πr2ρ−m′)− 4r2X ′2 +−eνΩX2(4m′(rν ′ + 1) + 4(3m− 2r)ν ′

+ r(r − 2m)(ν ′2 − 4ν ′′))− eν(4ΩX(r(r − 2m)X ′′ −X ′(rm′ + 2r(r − 2m)ν ′ + 3m− 2r)) ,

+ 2r(2Ω− 1)(r − 2m)X ′2)
]

= 0 ,
e−ν

2r2(r − 2m)
[
2m(−2r2(4eν − 1)X ′2 − 2eν(rν ′ + 1)− 2rΩX(rν ′ + 4)X ′

+ ΩX2(rν ′(rν ′ + 2)− 2)) + 16rm2eνX ′2 + r2(−16πrpeν + 2ΩX(rν ′ + 4)X ′

+ 2eν(ν ′ + 2rX ′2)− 2rX ′2 − ΩX2ν ′(rν ′ + 2))
]

= 0 ,
e−ν

4r2
[
− 2X ′(2r(m′ − 2) + r(r − 2m)ν ′ + 6m)

+ ΩX(−2m′(rν ′ + 4) + 2(2r − 3m)ν ′ + r(r − 2m)(2ν ′′ + ν ′2)) + 4r(r − 2m)X ′′
]

= 0 ,
(r − 2m)(2p′ + (p+ ρ)ν ′)

2r = 0 . (9.39)

This system is invariant under the transformation

{ν(r)→ ν0 + ν̃(r), X → e
ν0
2 X̃} , (9.40)

where ν0 is an arbitrary constant.
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9.3.2 Expansions at the center

The asymptotic expansion near the center of the star of the modified TOV equations (9.39)
is:

ρ = ρc + ρ1r + ρ2
2 r

2 ,

p(r) = pc + p1r + p2
2 r

2 ,

ν(r) = νc + ν1r + ν2
2 r

2 , (9.41)

X(r) = Xc +X1r +X2
r2

2 ,

m(r) = m3r
3 .

Performing the transformation (9.40), we solve the modified TOV equations for ν̃ = ν − νc
and X̃. Comparing order by order, the non-vanishing coefficients of the expansion (9.41) are

m3 =
4π
(
3pcX̃2

cΩ(Ω + 2) + ρc
(
X̃2
cΩ(2Ω + 1)− 1

))
9X̃2

cΩ2
(
X̃2
c (Ω− 1) + 1

)
− 3

,

ν̃2 =
8π
(
3pc

(
X̃2
cΩ(2Ω + 1)− 1

)
9X̃2

cΩ2
(
X̃2
c (Ω− 1) + 1

)
− 3

+
8πρc

(
X̃2
cΩ(4Ω− 1)− 1

) )
9X̃2

cΩ2
(
X̃2
c (Ω− 1) + 1

)
− 3

,

X̃0,2 =
4πX̃cΩ

(
3X̃2

cΩ(3pc + ρc) + 3pc − ρc
)

9X̃2
cΩ2

(
X̃2
c (Ω− 1) + 1

)
− 3

,

p2 = −
4π(pc + ρc)

(
3pc

(
X̃2
cΩ(2Ω + 1)− 1

)
9X̃2

cΩ2
(
X̃2
c (Ω− 1) + 1

)
− 3

−
4π(pc + ρc)ρc

(
X̃2
cΩ(4Ω− 1)− 1

) )
9X̃2

cΩ2
(
X̃2
c (Ω− 1) + 1

)
− 3

.

(9.42)

In the limit Ω = 0 these coefficients reduce to those of the TOV equations in GR. Moreover,
we note that as

9X̃2
cΩ2

(
X̃2
c (Ω− 1) + 1

)
− 3 = 0 (9.43)

all the coefficients defined in (9.42) diverge. Thus, when Eq. (9.43) admits solution r = r̄

inside the star, i.e. 0 ≤ r̄ ≤ R, then the modified TOV equations do not allow for a regular
vectorized solution. Since, as the compactness of the star decreases, the root r̄ becomes
smaller, this is the reason for the existence of a threshold compactness under which the
vectorized solution disappears (see e.g. Fig. 9.8).

9.3.3 Vectorized stars

We numerically solve the modified TOV equations, assuming the polytropic EOS introduced
in Eq. (9.12). At the surface of the star (where the pressure vanishes) we evaluate the
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components of the spacetime metric, of the vector field and of its first derivative. Then, we
numerically integrate the equations in the exterior, which correspond to the modified TOV
equations with ρ = p = 0, from the stellar surface to infinity. With this procedure, we have
a unique solution of the modified TOV equations for any choice of the quantities

{pc, Xc,Ω} , (9.44)

i.e. for any choice of the pressure and of the (time component of the) vector field at the
center of the star, and for any value of the coupling constant Ω. At infinity, the vector field
has the form

X0(r � R) = X∞ + α

r
, (9.45)

where α is a constant which can be considered as a sort of vector charge (although it is not
a Noether charge, as in the case of the scalar charge in scalar-tensor theories [365]), and X∞
is the asymptotic value of (the time component of) the vector field.

We search for solutions of the modified TOV equations with a non-trivial vector field
configuration, and with the same asymptotic behavior as GR solutions, i.e., X∞ = 0. Is it
worth noting that the mass function does not remain constant in the exterior of the star,
due to the energy contribution of the non-trivial vector field. The gravitational mass that a
far away observer can measure, i.e., the Arnowitt-Deser-Misner mass of the spacetime, is the
asymptotic value of M(r). This is the definition of gravitational mass that we are going to
use in the rest of the Chapter.

The baryonic mass of the NS is defined as [103]

m̄ = mb

∫
d3x
√
−gu0n(r) , (9.46)

where u0 is the time component of the four-velocity and n(r) is the number density of
baryons, which is related to the pressure by

p(r) = Kn0mb

(
n(r)
n0

)Γ
. (9.47)

For each vectorized solution, we can evaluate the normalized binding energy of the stars
defined as,

Eb
M

= m̄

M
− 1 . (9.48)

In order to have a bound object, we need Eb to be positive. Moreover, the dependence
of the gravitational mass on the central density often conveys information on the stability
of the configuration. Indeed, in GR a necessary condition for radial stability of a stellar
configuration is dM/dρc > 0, or equivalently dM/dR < 0 [356, 366]. The condition for
stability in generalized theories depends on the number of extra fields, and becomes more
complicated [367]. In Fig. 9.6 we show the results of the numerical integration of the modified
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Figure 9.6: Time component of the vector field at infinity, as a function of its value at the
center of the star, for Ω = −5 and for different values of the central pressure. From top to
bottom, pc = 10−8, 10−6, 10−5, 10−3 Km−2.

TOV equations in the case of Ω = −5.

In the figure, the asymptotic value of the vector field, X∞, is shown as a function of the vector
field at the center, Xc. Each curve corresponds to a different value of the central pressure pc.
The “physical” solutions, i.e., those with the same asymptotic behavior as the GR solutions,
correspond to the intersections of the curves with the X∞ = 0 axis. We see that all curves
intersect the X∞ = 0 axis at the origin (corresponding to the GR solution), but some of
them also have a second intersection, which corresponds to the vectorized solutions.

We computed the vectorized solutions for a wide range of values of the central pressure and
of the coupling constant Ω. The masses and the radii of these configurations are shown
in Fig. 9.7; the corresponding values of the vector charge α (see Eq. (9.45)) is shown in
Fig. 9.8 as a function of the compactness. We can see that comparing different compact star
configurations (for a given value of the coupling Ω), as the compactness decreases there is
a smooth transition between GR stars and vectorized solutions. Then, below a threshold
value of the compactness, the vectorized solution does not exist anymore. As discussed
in Section 9.3.2, this behavior is due to the fact that, when the compactness reaches the
threshold value, the modified TOV equation are not well behaved near the center of the
star, since they become degenerate. Specifically, below the threshold value, the weak energy
condition is violated, leading to unphysical objects. For positive values of Ω, our linearized
results (see Sec. 9.2) suggest that there is more than one solution corresponding to every
value of the central pressure, with different numbers of nodes in the profile of X0(r).

We did not perform a dynamical stability analysis of such vectorized solutions. However,
important information is conveyed by the dependence of the total (normalized) gravitational
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Figure 9.7: Mass-radius configurations for different coupling constants. The longest line
(black) represents the solution for NSs in GR given the EOS in Eq. (9.12), while the other
branches correspond to vectorized solutions.

Figure 9.8: Vector field charge as a function of the compactness, for different stellar
configurations. All the stars carrying a zero charge (α = 0) are always a solution of the
theory, although they are not explicitly shown in the figure. In fact, in the range in which
there are stars with a non-zero charge, the solutions are always two, as it was clear from
Fig.9.6.
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Figure 9.9: Gravitational mass as a function of the (normalized) central baryonic density.
This shows again that the solutions for Ω < 0 are stable solutions of the theory, since they
are associated with dM/dρc > 0. Inset: the normalized binding energy as a function of the
central energy density.

mass on the central energy density (ρc = mbn(0)). This function is shown in Fig. 9.9. In
GR, a criterium for stability is that dM/dρc > 0. Such criterium holds only approximately
in modified theories [367, 368]. We will use this as merely indicative, as more sophisticated
analysis tools include a dynamical evolution or the analysis done in Ref. [367]. With such
criterium, all the vectorized solutions associated with a negative coupling constant are stable:
they are in the stable branch of the dM/dρc curve. Moreover, in the inset of Fig. 9.9 we can
see how the solutions in vector-tensor theory are associated with larger binding energy than
in GR, indicating that they are the preferred configuration. For positive couplings, however,
the behavior is the opposite.

Finally, we note that the instability of solutions in the positive Ω semiplane is consistent
with previous results in scalar-tensor gravity [369]. Thus, none of the solutions associated
with a positive coupling constant are stable and most likely do not play any astrophysical
role.

Somewhat surprisingly, our results show that the changes in the NS structure with respect to
the GR are smaller for larger values of the coupling constants. This finding is consistent with
previous reported results in a related theory [130]. In fact, it is apparent from Fig. 9.8 that
the charge (and so the field) inside vectorized stars is larger for smaller (absolute) values of
the compactness. This is probably due to the role of the coupling constant Ω in the modified
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TOV system. In fact, it resembles the role of a mass for the scalar field in scalar-tensor
gravity: the larger the scalar mass, the smaller are the modifications from GR. Taking into
account this, from the mass-radius plot one can quantify the range of values of Ω that allow
vectorized stars to exist,

Ω ≈ [−12,−2] . (9.49)

Finally, let us stress that there is no linear instability of spherically symmetric stars in GR.
Thus, there is no linear mechanism to drive a GR star to these new vectorized states that we
just described. Such vectorized spherical stars must therefore arise out of non-linear effects
(such as selected initial conditions).

9.4 Conclusions

In this final Chapter, we have shown novel spherically symmetric star configurations in HN
gravity. Particularly, when a vector field is non-minimally coupled to gravity, compact star
solutions with a non-trivial, asymptotically vanishing vector field configuration may arise.
Our results suggest that such vectorized solutions belong to two classes. One is spherically
symmetric and “induced” by non-trivial initial conditions or environments. We build fully
non-linear spacetimes describing such stars. These stars carry a non-zero electric charge
and give rise to dipolar electromagnetic radiation when accelerated. The calculation of such
fluxes and its use in astrophysical observations to constrain the coupling constants is an
interesting open problem. The second family may arise as the end-state of the instability of
GR solutions, and are thus “spontaneously vectorized” stars. Actually, we are unable at this
point to follow the evolution of such instability or even to understand its end state, since it
drives a non-spherically symmetric mode. The end state could be a star with a non-trivial
vector field, but it could also simply be a GR solution away from the instability region.

As a final remark, in the case in which the extra vector field is interpreted as a hidden
vector field, decoupled from the other matter fields, the action of HN gravity is analogous
to to the so-called “Jordan frame” action of scalar-tensor theory [319]. However, while in
scalar-tensor theories the Jordan frame representation is equivalent to an “Einstein frame”
representation, in which the scalar field is minimally coupled to gravity and coupled to
matter, there is no reason to believe that a similar correspondence exists in vector-tensor
theories, such as HN gravity. Hence, the theory studied here might not admit an Einstein
frame representation. Recently, a theory with a massive scalar field minimally coupled to
gravity and non-minimally coupled to matter (i.e., an Einstein frame vector-tensor theory)
has been studied in [130]. Again, there is no fundamental reason to believe that a Jordan
frame representation of such theory exists. See, however, Ref. [370] for a thorough discussion
on this issue.



Chapter 10
Final remarks

In this thesis we exploited different theoretical models, trying either to challenge General
Relativity or to have a better understanding of unknown matter content. The fundamental
motivation towards the work developed in each Chapter comes from the prospect that
gravitational wave detections will strengthen our ability to test compact objects and the
environment in which they live. We believe that investigating configurations and events
that might produce detectable gravitational waves will provide new valuable knowledge. As
a common thread, in each Part of this manuscript we tried to address aspects of two of
the most important unknown entities: the nature of dark matter and the properties of the
gravitational interaction. Future detections will assess the validity of some of the models
that we developed. However, even non-measurements of our predictions might be useful.
Actually, this scenario happens more often than a direct observation of new physics. Given
a certain measurement, the possibility to constrain new astrophysical structure, or extra
parameters of an alternative theory, is an important tool on its own. In fact, current and
future constraints can guide theorists when modifying gravity or looking for non-trivial star
or black hole configurations.

Enlarging our predictive power will help assessing at least some of the major unresolved
mysteries of the universe. Just think of one of the oldest open problems in Physics: the dark
matter composition. Despite believed to not interact directly with the particle constituting
the Standard Model, the gravitational interaction between dark matter and massive black
holes might provide favourable scenarios to test the properties of this unknown form of
matter. Parts of this thesis quantified some of the possible observables that might rise when
black holes plunge or orbitate inside a dark matter halo, modelled through ultralight scalars.
These fuzzy dark matter models are among the most popular current dark matter candidates.
Remarkably, we have self-consistently evaluated, for the first time, the dynamical friction
exerted by the scalar medium on massive particles moving in such environment.

On a slightly different note, we also looked at systems that require a full general relativistic
framework to be comprehensively described. In these cases, the underlying idea is to search
for smoking guns for new physics, that might arise from slight modifications of General
Relativity. For instance, we quantified the structure of compact stars in theories with

153



Chapter 10. Final remarks 154

non-trivial vector-tensor couplings. Notably, we found a new class of neutron stars that do
not have a direct connection with known instabilities. Additionally, the behaviour of black
hole binaries has been studied searching for possible unstable mechanisms. In particular,
we focused on theories with direct couplings between a scalar field and the Gauss-Bonnet
invariant. In this context, we quantified the onset of the instability, when a scalar field
propagates in binary black hole spacetimes.

To date, there are formulations of quantum theories of gravity in which there are mechanisms
that prevent collapsing stars to form a black hole. The outcome of this interrupted collapse is
sometimes called an extreme (or exotic) compact object. Providing high curvature spacetimes,
but avoiding all the pathologies coming from the presence of singularities, these compact
objects acquired an increasing interest in the last decades. Despite not focusing on the
different theories that can produce them, we looked at the process of gravitational wave
generation in these horizonless spacetimes. To investigate the properties of gravitational
waves emitted by extreme compact bodies we used a tool called the close limit approximation.
Starting with two extreme compact objects with sufficiently small initial separation, the
energy emitted by the collision of such objects can been quantified through perturbation
theory. The outstanding agreement that this method had when compared with full numerical
simulations of colliding black holes, makes us confident that it can be also employed to study
the collision of more exotic configurations. The initial part of a gravitational wave emitted
during the collision of such extreme compact bodies resembles the one produced by colliding
black holes, hence the name black hole mimickers. However, the late part of the emitted
signal is characterized by repeating echoes, due to the presence of a surface rather than an
horizon. Remarkably, the energy deposited in these echoes alone might reach that produced
by standard black holes collisions.

Finally, the gravitational wave detections by current and future interferometers rely on the
assumption of negligible interactions between the propagating waves and the medium in
which they travel. In a different Chapter of this thesis, we provided the cross section that
quantifies the interaction between gravitational waves and binaries. Based on the current
values of the population of compact objects in the central part of a nearby galaxy, this
interaction is in fact irrelevant for the present gravitational wave observatories. However,
considering the increasing sensitivity of future gravitational wave detectors, as well as the
possibility of having a greater number of binaries in other galaxies, our findings will acquire
more relevance.



Part IV:

Appendix

155





Appendix A
Scalar Q-balls

In this Appendix we show how to apply the theoretical framework developed in Chapter 2
to study the existence and the small perturbations of another class of scalar-made objects:
Q-balls. In this case gravity is absent and Q-balls are kept together by scalar self-interactions.

Background configurations

The field equation for Φ is obtained through the variation of action (2.1) with respect to Φ∗

and reads

∇µ∂µΦ− 2 dUQ
d|Φ|2 Φ = 0 , (A.1)

where we used gµν = ηµν and the potential UQ defined in Eq.(2.9). We now look for localized
solutions of this model with the form (2.6) – the so-called Q-balls. This ansatz yields the
radial equation

∂2
rΨ + 2

r
∂rΨ +

[
Ω2 − 2 dUQ

d|Φ|2
]

Ψ = 0 . (A.2)

For the class of non-linear potentials (2.9), the last equation becomes

∂2
rΨ + 2

r
∂rΨ +

[
Ω2 − µ2

(
1− Ψ2

Φ2
c

)(
1− 3Ψ2

Φ2
c

)]
Ψ = 0 . (A.3)

According to the results of Ref. [173], there exist stable Q-ball solutions for any 0 < Ω <

µ, independently of the free parameter Φc. Additionally, it is known that, in the limit
Ω/µ� 1, the radial function Ψ mimics an Heaviside step function (the so-called thin-wall
Q-ball) [173, 371, 372]. On the other hand, in the regime Ω/µ ∼ 1, the function Ψ starts
to fall earlier and drops very slowly (thick-wall Q-ball) [371, 372]. In particular, using the
results of Ref. [372] one can show that, in the thin-wall limit,

Ψ(r) ' Φc

[
1 +

( Ω
2µ

)2
]

Θ
(
µ

Ω2 − r
)
. (A.4)

Notice that the Q-ball radius is approximately given by RQ ' µ/Ω2.
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Figure A.1: Three radial profiles Ψ(r)/Φc obtained through numerical integration of
Eq. (A.3) with appropriate boundary conditions (Ψ(∞)→ 0 and ∂rΨ(0) = 0). Each curve
corresponds to a different Q-ball.

A few examples of radial profiles Ψ(r) constructed numerically from Eq. (A.3) are shown
in Fig. A.1. From these results it is already evident that, when Ω/µ→ 0, the scalar does
acquire a Heaviside-type profile. In such a limit the scalar drops to zero on the outside, on
a lengthcale ∼ 1/µ. These results also indicate that the radius of the Q-ball grows when
Ω/µ → 0. This is made more explicit in Fig. A.2, showing the numerical results for the
dependence of the Q-ball radius RQ on the frequency Ω. We defined the Q-ball radius RQ
to be such that Ψ(RQ)

Ψ(0) = 1/2. The dashed line, corresponding to the thin-wall limit (A.4),
agrees remarkably well with the numerics.

The Q-ball charge Q and mass MQ are obtained through (2.3) and (2.5), respectively, and
read

Q = 4πΩ
∫
dr r2Ψ2(r) , (A.5)

MQ = 1
2QΩ + 4π

∫
dr r2

(
(∂rΨ)2

2 + U(Ψ2)
)
. (A.6)

For thin-wall Q-balls these become

Q = 4π
3
µ3

Ω5 Φ2
c , (A.7)

MQ = 2π
3
µ3

Ω4 Φ2
c . (A.8)

We are using a flat background spacetime, which requires that MQ/RQ � 1. In the thin-wall
limit, this corresponds to

Ω/µ�
√

2π
3 Φc . (A.9)
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Figure A.2: Numerical results for the dependence of the Q-ball radius RQµ on the internal
frequency Ω/µ, obtained through direct integration of Eq. (A.3). The dashed line is the
thin-wall limit prediction, Eq. (A.4). A fit on the numerical results gives RQ ∼ 1.08µΩ−2,
within 2% of error, showing a good accordance with the predicted behaviour, Eq. (A.4).

Small perturbations

We now wish to understand the effect of a small perturbation on such Q-ball configurations.
They can be considered either as sourceless small deformations of the background, or sourced
by an external particle. Such perturber could be another Q-ball or simply some charge,
piercing the Q-ball or orbiting around it. In the following, the external probe is modelled as
pointlike, which means that our results are valid only for objects whose spatial extent are
� RQ. We consider an interaction between the perturber and the Q-ball described by the
action

Sint ≡ −
∫
d4x
√
−gRe (Φ)Tp , (A.10)

with Tp ≡ gµνTµνp being the trace of the particle’s stress-energy tensor defined in Eq. (2.11).
This coupling allows for equations of motion that are simultaneously simple enough to
be handled via our perturbation scheme, described in Chapter 2, and it shows interesting
dynamical features, as we shall see later. In the present analysis, we neglect the backreaction
on the particle motion, therefore, the particle’s world line xµp (τ) is considered to be known.

An external particle sources a scalar field fluctuation of the form (2.10) in the Q-ball
background, which satisfies the linearized equation

− ∂2
t δΨ +∇2δΨ +

[
Ω2 − µ2

(
1− 8Ψ2

Φ2
c

+ 9Ψ4

Φ4
c

)]
δΨ + 2iΩ∂tδΨ + 2µ2 Ψ2

Φ2
c

(
2− 3Ψ2

Φ2
c

)
δΨ∗

= Tpe
iΩt , (A.11)

and its complex conjugate. The sourceless case, corresponding to small Q-ball deformations,
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is simply recovered by setting Tp = 0. Decomposing the particle stress-energy trace as

Tpe
iΩt =

∑
l,m

∫
dω√
2πr

[
Tωlm1 Y m

l e−iωt +
(
Tωlm2

)∗
(Y m
l )∗ eiωt

]
, (A.12)

where Tωlm1 and Tωlm2 are radial complex-functions defined by ,

Tωlm1 ≡ r

2
√

2π

∫
dtdθdϕ sin θ Tpei(ω+Ω)t (Y m

l )∗ , (A.13)

Tωlm2 ≡ r

2
√

2π

∫
dtdθdϕ sin θ Tpei(ω−Ω)t (Y m

l )∗ , (A.14)

and plugging the decompositions (2.12) and (A.12) in Eq. (A.11), one obtains the matrix
equation

∂rZ − VQ(r)Z = T , (A.15)

where the vector Z ≡ (Z1, Z2, ∂rZ1, ∂rZ2)T , the matrix VQ is given by

VQ ≡



0 0 1 0

0 0 0 1

Vs − (ω + Ω)2 Vc 0 0

Vc Vs − (ω − Ω)2 0 0


,

and we defined the radial potentials

Vs(r) ≡
l(l + 1)
r2 + µ2

(
1− 8Ψ2

0
Φ2
c

+ 9Ψ4
0

Φ4
c

)
, (A.16)

Vc(r) ≡ −2µ2 Ψ2
0

Φ2
c

(
2− 3Ψ2

0
Φ2
c

)
, (A.17)

and the source term1

T (r) ≡
(
0, 0, T1, T2

)T
. (A.18)

The functions Z1 and Z2 are clearly independent of the azimuthal number m. The symmetry
of Eq. (A.15) implies that the radial functions satisfy Z2(ω, l; r) = Z1(−ω, l; r)∗.

To solve the small perturbations problem, either in the sourced or sourceless case, we need
to establish suitable boundary conditions. We require regular solutions at the origin,

Z(r → 0) ∼
(
arl+1, brl+1, a(l + 1)rl, b(l + 1)rl

)T
,

with (complex) constants a and b, and satisfying the Sommerfeld radiation condition at

1Again, to simplify the notation, we omit the labels ω, l and m in the functions Tωlm1 and Tωlm2 .
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infinity
Z(r →∞) ∼

(
Z∞1 eik1r, Z∞2 eik2r, ik1Z

∞
1 eik1r, ik2Z

∞
2 eik2r

)
, (A.19)

with

k1 ≡ ε1
√

(ω + Ω)2 − µ2 , (A.20)

k2 ≡ ε2
(√

(ω − Ω)2 − µ2
)∗

. (A.21)

where we are using the principal complex square root.

Consider then the set of independent solutions {Z(1),Z(2),Z(3),Z(4)} uniquely determined
by

Z(1)(r → 0) ∼
(
rl+1, 0, (l + 1)rl, 0

)T
,

Z(2)(r → 0) ∼
(
0, rl+1, 0, (l + 1)rl

)T
,

Z(3)(r →∞) ∼
(
eik1r, 0, ik1e

ik1r, 0
)T

,

Z(4)(r →∞) ∼
(
0, eik2r, 0, ik2e

ik2r
)T

. (A.22)

The 4 × 4 matrix F (r) ≡
(
Z(1),Z(2),Z(3),Z(4)

)
is the fundamental matrix of the sys-

tem (A.15). As it is shown in Section 3.2, for a system of the form (A.15), the determinant
det(F ) is independent of r.

Sourceless perturbations

Free oscillations of Q-ball configurations are regular scalar fluctuations satisfying the Som-
merfeld radiation condition at infinity. They correspond to scalar perturbations of the
form

δΨ = 1√
2πr

[
Z1Y

m
l e−iωt + Z∗2 (Y m

l )∗ eiω∗t
]
, (A.23)

where Z1 and Z2 are solutions of system (A.15), with T = 0. For complex-valued ω, the
free oscillations are QNMs. For a real ω, these are termed normal modes. Notice that for
the discrete set {ωQNM} of QNM frequencies, the solutions {Z(1),Z(2),Z(3),Z(4)} are not
linearly independent. In fact, it is easy to see that the condition det(F ) = 0 holds if and
only if ω is a QNM frequency (i.e., ω ∈ {ωQNM}).

External perturbers

Let us turn now to the perturbations induced by an external particle, whose interacting with
the background scalar field. How is such a body exciting the Q-ball, how much radiation
does the interaction give rise to, what backreaction does the Q-ball exert on the perturber?
These are all questions that can be raised in this context, and that we wish to answer.



Chapter A. Scalar Q-balls 162

To obtain physical observable quantities one needs to find the solutions of system (A.15)
that are regular at the origin and satisfy the Sommerfeld condition at infinity. These can be
obtained through the method of variation of parameters

Z1(r) =
4∑

k=3

[ 2∑
n=1

F1,n(r)
∫ r

∞
dr′F−1

n,k(r′)Tk(r′) +
4∑

n=3
F1,n(r)

∫ r

0
dr′F−1

n,k(r′)Tk(r′)
]
, (A.24)

Z2(r) =
4∑

k=3

[ 2∑
n=1

F2,n(r)
∫ r

∞
dr′F−1

n,k(r′)Tk(r′) +
4∑

n=3
F2,n(r)

∫ r

0
dr′F−1

n,k(r′)Tk(r′)
]
. (A.25)

The total energy, linear and angular momenta radiated during a given process can be found
using solely the amplitudes Z∞1 and Z∞2 . These are given by

Z∞1 =
4∑

k=3

∫ ∞
0

dr′F−1
3,k (r′)Tk(r′) , (A.26)

Z∞2 =
4∑

k=3

∫ ∞
0

dr′F−1
4,k (r′)Tk(r′) . (A.27)

Let us now apply our framework to two physically relevant setups: a particle plunging into a
Q-ball configuration, and a particle in a circular orbit around the Q-ball.

Plunging particle. Consider a particle moving at a constant velocity v = −vez (with
v > 0), plunging into a Q-ball, and crossing its center at t = 0. In this case, the trace of the
particle’s stress-energy tensor reads

Tp = − [δ (r + vt) δ (θ) Θ(−t) + δ (r − vt) δ (θ − π) Θ(t)]mp δ(ϕ)
√

1− v2/(r2 sin θ) . (A.28)

Therefore, the source decompositions in Eqs. (A.13)-(A.14) read as

T1 =−
[
cos ((ω + Ω)r/v) δeven

l − i sin ((ω + Ω)r/v) δodd
l

]
mp Y

0
l (0, 0)δ0

m

√
1− v2/(

√
2πrv) ,
(A.29)

T2 =−
[
cos ((ω − Ω)r/v) δeven

l − i sin ((ω − Ω)r/v) δodd
l

]
mp Y

0
l (0, 0)δ0

m

√
1− v2/(

√
2πrv) .
(A.30)

These satisfy the property

T2(ω, l, 0; r) = T1(−ω, l, 0; r)∗ . (A.31)

Thus, due to the form of the system (A.15), one has

Z2(ω, l, 0; r) = Z1(−ω, l, 0; r)∗ , (A.32)

Z∞2 (ω, l, 0) = Z∞1 (−ω, l, 0)∗ . (A.33)
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Finally, the spectral fluxes (2.17), (2.20) and (2.22) become, respectively,

dErad

dω
= 4 |ω + Ω|Re

[√
(ω + Ω)2 − µ2

]∑
l

|Z∞1 (ω, l, 0)|2 , (A.34)

dP rad
z

dω
=
∑
l

8(l + 1)Θ
[
(ω + Ω)2 − µ2

] ∣∣(ω + Ω)2 − µ2∣∣√
(2l + 1)(2l + 3)

Re [Z∞1 (ω, l, 0)Z∞1 (ω, l + 1, 0)∗] ,

(A.35)
dLrad

z

dω
= 0 . (A.36)

Orbiting particle The next setup is composed by a particle describing a circular orbit of
radius rorb and angular frequency ωorb inside a Q-ball and in its equatorial plane. The trace
of the particle’s stress-energy tensor is

Tp = −mp

r2
orb

√
1− (ωorbrorb)2δ(r − rorb)δ

(
θ − π

2

)
δ(ϕ− ωorbt) , (A.37)

which implies

T1,2 = −mp

√
π/2Y m

l (π/2, 0)
√

1− (ωorbrorb)2/rorb δ (r − rorb) δ (ω ± Ω−mωorb) .
(A.38)

Notice that T2(ω, l,m) = (−1)mT1(−ω, l,−m), hence due to the form of system (A.15), we
have

Z2(ω, l,m; r) = (−1)mZ1(−ω, l,−m; r)∗ , (A.39)

Z∞2 (ω, l,m) = (−1)mZ∞1 (−ω, l,−m)∗ . (A.40)

Then, the emission rate expressions (2.18) and (2.23) imply, omitting the arguments (ω, l,m),

Ėrad = 2
π

∫
dω |ω + Ω|Re

[√
(ω + Ω)2 − µ2

]∑
l,m

|Z∞1 |
2 ,

L̇rad
z = 2

π

∫
dω ε1(ω)Re

[√
(ω + Ω)2 − µ2

]∑
l,m

m |Z∞1 |
2 .

where we remind that ε1 ≡ sign(ω + Ω + µ). Re-writing expression (A.38) in the form

T1,2 = T̃ (ωorb, rorb) δ (r − rorb) δ (ω ± Ω−mωorb) , (A.41)
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l ωQNM/µ

0 0.439 0.689 0.931− 1.2× 10−4i 1.153− 1.6× 10−2i

1 0.300 0.555 0.806− 9.8× 10−4i 1.04− 3.3× 10−3i

Table A.1: Some QNM frequencies of a Q-ball configuration with Ω/µ = 0.3, for l = {0, 1, 2}.
Note that the first column corresponds to normal modes, with ω < µ, hence screened
from distant observers: they are confined to a spatial extent ∼ RQ, the radius of the
Q-ball (these modes are the counterpart of the NBS modes in Table 3.1). There is an
infinity of QNM frequencies, parametrized by an integer overtone index n. At large n,
Re (ωQNM) ∼ 0.22n ∼ πn/RQ, as might be anticipated by a WKB analysis. Our results
for the imaginary part of ωQNM carry a large uncertainty, and should be taken as order of
magnitude estimate only.

the previous expressions for the rate of emission read

Ėrad = 2
π

∑
l,m

T̃ 2
[
a1
∣∣∣F−1

3,3 (mωorb − Ω; rorb)
∣∣∣2 a2

∣∣∣F−1
3,4 (mωorb + Ω; rorb)

∣∣∣2 ] , (A.42)

L̇rad
z = 2

π

∑
l,m

mT̃ 2
[
ε1a1

∣∣∣F−1
3,3 (mωorb − Ω; rorb)

∣∣∣2 + ε1a2
∣∣∣F−1

3,4 (mωorb + Ω; rorb)
∣∣∣2 ] . (A.43)

where

a1 = |mωorb|Re
[√

(mωorb)2 − µ2
]
,

a2 = |mωorb + 2Ω|Re
[√

(mωorb + 2Ω)2 − µ2
]
. (A.44)

Free oscillations

The numerical search for QNM frequencies for Q-balls is summarized in Table A.1, for the
particular configuration with Ω = 0.3µ. Whenever ωQNM are pure real numbers, they refer to
normal modes of the object. For a mode to be normal, it must not be dissipated to infinity,
hence the condition ω < µ−Ω is necessary, which also implies that such modes are screened
from far-away observers, by the Q-ball background itself. This means that perturbations
associated with the real-valued frequencies in Table A.1 do not reach spatial infinity. Such
modes are the analogs of the NBS modes, which were all normal (cf. Table 3.1). Q-balls, in
addition to such modes also have quasinormal modes, which decay in time since they are
sufficiently large energy to propagate at large distances.
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Figure A.3: Energy spectra of scalar radiation emitted when a particle of rest-mass mp

plunges through a Q-ball with Ω = 0.3µ with a large velocity v = 0.8c. The spectrum was
decomposed into multipoles (cf. Eq. (A.34)). The sharp peaks correspond to the excitation
of QNM frequencies ωQNM (see Tab. A.1).

Figure A.4: Linear momentum radiated when a particle plunges through a Q-ball (described
by Ω = 0.3µ) with a velocity v = 0.8. Different lines correspond to the different multipolar
cross terms in Eq. (A.35).
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Particles plunging into Q-balls

For concreteness, here we restrict the discussion to a large-velocity plunge v = 0.8c. The
multipolar energy spectrum dErad

l /dω of radiation released during such process is shown in
Fig. A.3 for the first lowest multipoles, obtained through numerical evaluation of Eq. (A.34).
Just like a hammer hitting a bell excites its characteristic vibration modes, the effect of a
plunging particle is to excite the QNMs of a Q-ball. Figure A.3 illustrates this feature very
clearly, the peaks in the energy spectrum are all coincident with the QNMs, some of them
identified in Table A.1. This feature was absent in the dynamics of NBS, simply because
the modes of NBS (Table 3.1) are all normal and confined to the NBS itself: they do not
propagate to large distances. Most of the radiation is dipolar, also apparent in Fig. A.3, but
a substantial amount is emitted in other multipoles as well. For example, the l = 4 mode
still carries roughly 10% of the total radiated energy. Our results are compatible with an
exponential suppression at large l, of the form Erad

l ∼ 0.085e−0.39l. We can use this to sum
over multipoles, and find the total energy radiated,

Erad ∼ 0.188m2
p µ . (A.45)

The emitted radiation carries momentum, which is caused by an interference term between
multipoles (cf. Eq. (A.35)). For radiation entirely emitted in one single direction, the linear
momentum P rad = Erad/c. However, this is in general only a (poor) upper bound on the
radiated linear momentum, as a number of multipoles are involved in the process. Figure A.4
shows the contribution of the modes l ≤ 4 to the spectral flux of linear momentum dP rad

z /dω,
obtained through numerical evaluation of (A.35). Again, most of the contribution comes
from the excitation of the Q-ball’s QNMs. Note the interesting aspect that in some frequency
ranges and for some interference terms, the momentum is positive, i.e., along the direction of
the motion. We observed numerically that the total flux of linear momentum P rad

z converge
exponentially in l, for sufficiently large l. The total radiated momentum is negative, and thus
represents a slowing-down of the moving point particle. Using a similar fitting procedure to
sum over multipoles, we find for this particular configuration,

P rad ∼ −0.088m2
p µ . (A.46)

Orbiting particles

The average dipolar flux of energy and angular momentum, emitted by a particle in circular
orbit inside a Q-ball (Ω = 0.3µ), at an orbital distance rorbµ = 1/3, are shown in Figs. A.5.
The pointlike source is assumed to be orbiting due to some external force, and its orbital
frequency is varied, scanning possible resonant behavior of the Q-ball. As expected, and
verified numerically, the quantity Ėrad is an even function of ωorb, whereas L̇rad

z is an odd one.
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Figure A.5: Average dipolar (l = 1, including m = ±1) rate of energy (left), and angular
momentum (right) radiated by a particle describing a circular orbit around a Q-ball with
Ω = 0.3µ, at radius rorbµ = 1/3 and with orbital frequency ωorb. The peaks are associated
with the excitation of QNM frequencies ωQNM for ωorb = Re (ωQNM) ± Ω – each QNM
frequency is excited by two different ωorb spaced by 2Ω. The excitation of the QNM
frequencies with Re(ωQNM) = {0.806, 1.04 (in Tab. A.1), 1.298}µ is clearly seen from these
plots.

Figure A.6: Average rate of energy radiated by a particle describing a circular orbit
around a Q-ball with Ω = 0.3µ, at a radius rorbµ = 1/3 and with orbital frequency ωorb
for different values of l = m. At low frequencies the radiation is mostly dipolar. At large
orbital frequencies the radiation is synchrotron-like and peaked at large l = m. In the
high-frequency regime, there is a critical multipole m beyond which the energy radiated
decreases exponentially (see main text for further details). There are QNM peaks for all
multipoles, but they are visible only for the dipolar and quadrupolar.
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A few features are apparent in the results above (obtained evaluating Eqs. (A.42)-(A.43)).
The fluxes have clear peaks, which correspond to the resonant excitation of the QNMs of
the Q-ball. It’s worth to note that for each QNM frequency listed in Tab. A.1 there are two
peaks associated with different orbital frequencies separated by a distance 2Ω: the resonances
now occur at ωorb = Ω± ωQNM. This is directly due to the decomposition in Eq. (A.12).

In flat space, a scalar charge on a circular orbit also emits radiation [101, 373]. For small or-
bital frequencies and massless fields, the flux is dipolar and of order Ė ∼ q2r2

orbω
4
orb/(12π) [101,

373] (given the interaction (A.10), the scalar charge q = mp). This explains the rise of
the dipolar flux when the orbital frequency increases. However, at large frequencies, the
radiation becomes of synchrotron type, and the radiation is emitted preferentially in higher
multipoles [374, 375]. This is apparent in Fig. A.6 where we show the contribution of higher
multipoles to the flux. Note that all other multipoles also have resonant peaks, but these
are less pronounced than the dipolar. At large Lorentz factors γ, there is a critical m mode
after which the fluxes becomes exponentially suppressed. The critical multipole is of order
mcrit ∝ γ2 [374, 375]. Thus an evaluation of a large number of multipoles is necessary to
have an accurate estimate of fluxes at large velocities. Our results are consistent with such a
prediction. We find that as ωorb increases, the flux peaks at higher and higher m, but there’s
always a threshold m beyond which the radiation output is exponentially suppressed. Finally,
since this process is not axially symmetric, one cannot use expression (2.20) to compute
the flux of linear momentum along z. Nevertheless, it is straightforward to show that the
average rate of linear momentum radiated Ṗ rad

z vanishes.

Figure A.7: Average rate of energy radiated by a particle describing a circular orbit around
a Q-ball with Ω = 0.7µ, at radius rorbµ = 1/3 and with orbital frequency ωorb. For such a
scalar configuration there is radiation emitted also in the monopole mode, and it dominates
the emission, as seen in the inset.

One interesting aspect, not seen in the study of NBSs, concerns monopolar emission and
emission from particles at rest. Both features are usually absent. It follows from Eq. (A.42),
that for Q-ball configurations with Ω ≤ µ/2 there is no emission of l = 0, and the first
mode contributing to the radiation is l = 1. For these objects there is no radiation emitted
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Figure A.8: Average rate of energy radiated in the case of a particle standing at a fixed
radius rorbµ = 1/3 as function of Ω/µ. It is shown the dominant contributions from the
modes l = 0 and l = 1. The average rate of angular momentum radiated in this case vanishes.

if the particle is at rest, with ωorb = 0. However, for Q-balls with Ω/µ > 1/2 there is
indeed emission of l = 0 modes, contributing more than (or, at least as much as) the l = 1
modes to the radiation (see Fig. A.7). Interestingly, for these Q-balls there is also radiation
emitted even when the particle is at rest (see Fig. A.8). This type of behavior is due to the
coupling (A.10) between two dynamical entities: the external perturber (through Tp) and
the Q-ball configuration (through Φ). The different coupling considered for NBSs, led to the
absence of these features.





Appendix B
Post-Newtonian expansion of the Einstein Klein
Gordon system

In this Appendix we show how the Einstein-Klein-Gordon system reduces to the Schrödinger-
Poisson system in the Newtonian limit. As follows, we obtain the equations describing a
perturbation to the Newtonian fields up to first post-Newtonian corrections. Finally, we
consider perturbations caused by a point-like particle. In this section we follow closely the
treatment in Chapter 8.2 of Ref. [259].

The Einstein-Klein-Gordon system is the set of field equations for Φ and gµν , which is
obtained through the variation of the action (2.1) with respect to Φ∗ and gµν , and reads

1√
−g

∂µ
(√
−ggµν∂νΦ

)
= µ2Φ ,

Rµν = 8πT̃Sµν , (B.1)

where the Einstein equations are written in an alternative form using the trace-reversed
stress-energy tensor of the scalar field

T̃Sµν ≡ TSµν −
1
2T

Sgµν = ∂(µΦ∗∂ν)Φ + 1
2gµνµ

2|Φ|2 .

In the last equations we used U ∼ µ2|Φ|2/2, since we want to consider a (Newtonian) weak
scalar field |Φ| � 1. More precisely, in our perturbation scheme we consider that Φ ∼ O(ε),
with ε� 1. Moreover, in the Newtonian limit, we consider the spacetime metric ansatz

gtt = −1− 2U +O(ε4) ,

gtj = O(ε3), gjk = O(ε2) , (B.2)

with j, k = {x, y, z} and where U(t, x, y, z) ∼ O(ε2). This gives the Ricci tensor components

Rtt = ∇2U +O(ε4) ,

Rtj = O(ε3), Rjk = O(ε2) , (B.3)
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where we are considering that

∂tU ∼ O(ε3), ∂2
t U ∼ O(ε4) . (B.4)

The non-relativistic limit of the scalar field Φ is incorporated in our perturbation scheme by
considering that 1

∂jΦ ∼ O(ε2), ∂tΦ̃ ∼ O(ε3) , (B.5)

where we introduced an auxiliary scalar field Φ̃ such that

Φ = 1
√
µ
e−iµtΦ̃ . (B.6)

Then, the components of the trace-reversed stress-energy tensor of the scalar field are

T̃Stt = 1
2µ|Φ̃|

2 +O(ε4) ,

T̃Stj = O(ε3), T̃Sjk = O(ε2) . (B.7)

Therefore, at Newtonian order, the Einstein equations reduce to the Poisson equation

∇2U = 4πµ|Φ̃|2 . (B.8)

On the other hand, it is possible to show that, at leading order O(ε3), the Klein-Gordon
equation reduces to the Schrödinger equation

i∂tΦ̃ = − 1
2µ∇

2Φ̃ + µU Φ̃ . (B.9)

So, we have showed that, in the Newtonian limit, the Einstein-Klein-Gordon system for Φ
and gµν reduces to the Schrödinger-Poisson system for Φ̃ and U .

Let us now extend our perturbation scheme to first post-Newtonian order. We start by
considering the spacetime metric ansatz

gtt = −1− 2U − 2δU − 2
(
ψ + U2

)
+O(ε6) ,

gtj = −4Uj +O(ε5) ,

gjk = (1− 2U) δjk +O(ε4) , (B.10)

with the post-Newtonian terms Uj(t, x, y, z) ∼ O(ε3), ψ(t, x, y, z) ∼ O(ε4) and the pertur-
bation δU(t, x, y, z) ∼ O(ξ), where O(ε6) < O(ξ) < O(ε2). This results in the Ricci tensor

1This can be shown rigorously by doing an expansion in powers of (1/c). It corresponds to the assertion
that, in the non-relativistic limit, the energy-momentum relation is E ∼ µ+ 1

2µp
2 + µU , with p2 � µ2 and

|U | � 1.
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components

Rtt =∇2U +∇2δU + 3∂2
t U + 4U∇2U +∇2ψ +O(ε6) ,

Rtj =2∇2Uj +O(ε5) ,

Rjk =∇2Uδjk +O(ε4) , (B.11)

where we imposed the harmonic coordinate condition, which results in

∂tU + ∂jU
j = 0 . (B.12)

Now, we introduce a perturbation δΦ to the Newtonian scalar field, such that

δΦ = 1
√
µ
e−iµtδΦ̃ , (B.13)

treated in our perturbation scheme with

δΦ ∼ O(ξ/ε), ∂jδΦ ∼ O(ξ), ∂tδΦ̃ ∼ O(ξ ε) . (B.14)

Then, the components of the trace-reversed stress-energy tensor of the scalar field are

T̃Stt = 1
2µ|Φ̃|

2 + Im
(
Φ̃ ∂tΦ̃∗

)
− µU |Φ̃|2 + µRe

(
Φ̃∗δΦ̃

)
+O(ε6) ,

T̃Stj = Im
(
Φ̃ ∂jΦ̃∗

)
+O(ε5) ,

T̃Sjk = 1
2µ|Φ̃|

2 +O(ε4) . (B.15)

Thus, it is possible to show that, at first post-Newtonian order, the Einstein equations reduce
to

∇2ψ = 8π
[
Im
(
Φ̃ ∂tΦ̃∗

)
− 3µU |Φ̃|2

]
,

∇2Uj = 4π Im
(
Φ̃ ∂jΦ̃∗

)
,

∇2δU = 8πµRe
(
Φ̃∗δΦ̃

)
, (B.16)

where we used the equations that are satisfied at Newtonian order and we assumed ∂2
t U = 0,

since this happens to be always the case in this work. On the other hand, until order O(ε5),
the Klein-Gordon equation reduces to

i∂tδΦ̃ = − 1
2µ∇

2δΦ̃+µUδΦ̃+µΦ̃ δU+ 1
2µ∂

2
t Φ̃+iU∂tΦ̃+µψΦ̃− 1

µ
U∇2Φ̃−4i U j∂jΦ̃ . (B.17)

Finally, note that, in the case O(ε4) < O(ξ) < O(ε2), the last equation becomes simply

i∂tδΦ̃ = − 1
2µ∇

2δΦ̃ + µUδΦ̃ + µΦ̃ δU . (B.18)
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In the case of a perturbation caused by a point-like particle, one just needs to include the
trace-reversed stress energy tensor of the point-like particle, Eq. (2.11), in the Einstein
equation (B.1). This is given by

T̃ pµν ≡ T pµν −
1
2T

pgµν = mp

2u0 (2uµuν + gµν) δ(r − rp)
r2

δ(θ − θp)
sin θ δ(ϕ− ϕp) ,

with the particle’s 4-velocity uµ ≡ dxµ/dτ . We consider that mp ∼ O(ξ) and that the particle
is non-relativistic, so that ui ∼ O(ε) in our perturbation scheme. Then, the components of
the trace-reversed stress-energy tensor of the particle are

T̃ ptt = mp

2
δ(r − rp)

r2
δ(θ − θp)

sin θ δ(ϕ− ϕp) +O(ε4) ,

T̃ ptj = O(ε3), T̃ pjk = O(ε4) . (B.19)

Thus, we conclude that we just need to add an extra term to the last equation in (B.16),
which becomes

∇2δU = 4π
[
2µRe

(
Φ̃∗δΦ̃

)
+ P

]
, (B.20)

with
P (t, r, θ, ϕ) ≡ mp

δ(r − rp)
r2

δ(θ − θp)
sin θ δ(ϕ− ϕp) .

Let us now consider the case of a non-relativistic point-like particle sourcing ultra-relativistic
scalar perturbations to the Newtonian background. In our perturbation scheme, we consider

δΦ ∼ O(ξε3), ∂jδΦ ∼ O(ξε2), ∂tδΦ ∼ O(ξε2) ,

where, in the ultra-relativistic limit, the energy-momentum relation becomes instead E ∼ p,
with E � µ. with O(ε4) < O(ξ) < O(ε2). So, at Newtonian order, the perturbation in the
scalar field does not enter in the Einstein equations, since we have

T̃Stt = O
(
ε4
)
, T̃Stj = O(ε3), T̃Sjk = O(ε2) .

In the case of a non-relativistic point-like particle, at Newtonian order, the Einstein equations
describing the perturbation reduce to the Poisson equation

∇2δU = 4πP . (B.21)

Note that the assumption of a non-relativistic perturber sourcing an ultra-relativistic scalar
perturbation is consistent as long as the scalar is sufficiently light. Finally, at leading order,
the Klein-Gordon reduces to

−∂2
t δΦ +∇2δΦ = 2µ2Φ δU . (B.22)



Appendix C
Scalar fluxes, newtonian boson stars and black
holes

In this Appendix we illustrate a number of toy-model that capture the important features
associated with the fluxes of scalar fields inside DM structure.

Flux of energy inside a newtonian boson star

We start computing the incoming flux of energy over a tiny spherical surface at the center of
a fundamental NBS. Consider a stationary NBS of the form

Φ = Ψ(r)e−i(µ−γ)t , (C.1)

where Ψ is a solution of system (3.6). This stationary field can be written as a sum of
incoming and outgoing parts Φ = Φin + Φout where

Φin ≡ e−i(µ−γ)t
∫ 0

−∞
dsΨ(s)eisr ,

Φout ≡ e−i(µ−γ)t
∫ +∞

0
dsΨ(s)eisr , (C.2)

with
Ψ(s) = 1

2π

∫ +∞

−∞
drΨ(r)e−isr , (C.3)

and where we are using an even extension of Ψ to negative values of r. Note that Ψ is a
real-valued function, since Ψ is real-valued. Now, the incoming flux of energy over a tiny
spherical surface of radius r+ � R is given by

Ėin ' 4πr2
+T

in
tr (r = 0) . (C.4)
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At leading order, one has

T in
tr (r = 0) ' µ Im (Φin∂rΦ∗in)

= −µ2

∫ 0

−∞
ds′
∫ 0

−∞
ds
(
s′ + s

)
Ψ(s′)Ψ(s) .

Numerical evaluation of the last expression for a fundamental NBS gives

T in
tr (r = 0) ∼ 2.69× 10−4 µ7M5

NBS . (C.5)

Finally, the incoming flux of energy is

Ėin ∼ 3.38× 10−3 r2
+µ

7M5
NBS . (C.6)

Introducing a dissipative boundary

This Section looks at two toy models, aimed at understanding the evolution of an NBS with
a small BH at its center. The main effect that the BH produces is, naturally, dissipation at
the horizon.

A string absorptive at one end

Here, we wish to study a one-dimensional model of absorption of a scalar structure when
the boundary conditions suddenly change. Consider then a string, initially fixed at x = 0, L,
described by the wave equation

∂2
xΦ− ∂2

t Φ = 0 . (C.7)

A normal mode satisfying Φ(x = 0) = Φ(x = L) = 0 is

Φ = e−iωnt sinωnx , (C.8)

ωn = (n+ 1)π
L

, n = 0, 1, 2... . (C.9)

We take a configuration with ωn = ω0 and use this as initial data for a problem where the
boundary condition at the origin becomes absorptive. In particular, Laplace-transform the
wave equation to find,

d2Ψ
dx2 + ω2Ψ = −Φ̇(0, x) + iωΦ(0, x) , (C.10)

Ψ(ω, x) =
∫
dteiωtΦ(t, x) . (C.11)

As boundary conditions, require that

Ψ(ω,L) = 0, Ψ(x ∼ 0) = sinωx− εe−iωx . (C.12)
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These conditions maintain the mirror-like boundary at one extreme x = L, while providing
an absorption of energy at x = 0. The flux of absorbed energy scales like ε2 � 1. The
solution of Eq. (C.10) subjected to the above boundary conditions is

Ψ = i
cos2 ωx sin πx/L+ sin2 ωx sin πx/L

ω − π/L
+ε π sinω(L− x)

ω(π − Lω)(iε cosωL+ (ε− i) sinωL) . (C.13)

The original time-domain field is given by the inverse

Φ(t, x) = 1
2π

∫
dωe−iωtΨ(ω, x) . (C.14)

The integral can be done with the help of the residue theorem. We separate the response
Φ = Φ1 + Φ2. The first term in Eq. (C.13) has a simple, real pole at ω = ω0 = π/L, and it
evaluates to

Φ1(t, x) = sin(πx/L)e−iπt/L , (C.15)

i.e., it corresponds to the initial data.

The second term has poles at complex values of the frequency, which are also the QNMs of
the dissipative system,

ω ≈ nπ + ε− iε2

L
, (C.16)

These poles lie close to the normal modes of the system, including those not present in
the initial data. They dictate an exponential decay ∼ e−ε

2t, and a consequent lifetime
τ ∼ ε−2. Note that this simple exercise shows that all modes are excited when new boundary
conditions are turned on. For NBSs, all the modes cluster around ω ∼ µ, thus we expect to
always be in the low-frequency regime used to estimate the lifetime.

A black hole in a scalar-filled sphere

A toy model more similar to the problem we wish to study is that of a BH, of mass MBH, at
the center of a sphere of radius R which was filled with a massive scalar field. The profile
for the scalar is, initially, that of a normal mode (the Klein-Gordon field Φ = Ψ/r),

Ψ = sinω0r , (C.17)

with ω0 =
√
µ2 + π2/R2. The problem simplifies enormously when the scalar is non-self-

gravitating and is a small disturbance in the background of the BH spacetime. This we
assume from now onwards. In such a case all one has to do is evolve the Klein-Gordon
equation in a Schwarzschild geometry, subjected to Dirichlet conditions at the surface of
the sphere. The results are summarized in Fig. C.1. While they do not mimic entirely the
process of accretion of a self-gravitating NBS by a central BH, these results illustrate some
of the possible physics in the more realistic setup.
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Figure C.1: The evolution of a massive scalar field inside a perfectly reflecting spherical
surface of radius Rµ = 20. In the center of such a sphere, there sits a BH of massMBHµ = 0.2
(upper panels) and MBHµ = 0.1 (lower panels). Left: Scalar field measured on the horizon.
Center: Scalar field measured at rµ = 10. Right: Flux measured at the horizon.

The figures show the scalar extracted at the horizon (left panel), at a midpoint inside the
sphere (middle panel) and the flux per frequency bin (right panel). The scalar, measured
either at the horizon or somewhere within the sphere, decays exponentially. The first
noteworthy aspect is the sensitive dependence of the decay rate on the size of the BH.
Our results are consistent with a decay timescale τ ∼ (MBHµ)−β, with β ∼ 4 − 5, in
agreement with our analysis in Section 4.1 and also with a quasinormal mode ringdown of
such fields [59]. Note that such suppressed decay for small Mµ couplings happens due to
the filtering properties of small BHs, keeping out most of the low-frequency field. This also
explains why the ratio between the field measured at rµ = 10 and at the horizon increases
when the BH size decreases. Note also that, in accordance with the simple toy model above,
overtones are also excited. This is clearly seen in the Fourier analysis (rightmost panels in
Figure C.1), showing local peaks at all the subsequent overtones, which were absent in the
initial data. These correspond to frequencies ω =

√
µ2 + π2n2/R2 , n = 0, 1, .... This is one

important difference between this system and NBSs, for which overtones are all bounded in
frequency.



Appendix D
Gravitational drag by a uniform scalar field

In this Appendix we present the toy model considered in Ref. [60] to compute the gravitational
drag acting on a point-like particle travelling through an infinite homogeneous scalar field
with a constant non-relativistic velocity v � 1. Then, we use (what we believe to be) a more
realistic toy model to compute the energy and momentum lost by the infalling body through
the plunge into a uniform sphere of scalar field.

Neglecting the self-gravity of the scalar field, the equations describing this process are

i∂tΦ̃ = − 1
2µ∇

2Φ̃ + µU Φ̃ ,

∇2U = 4πmp δ(x)δ(y)δ(z + vt) , (D.1)

where mp is the particle’s mass. Now, we change to the frame where the particle is stationary
at the origin and the scalar field propagates with momentum k = µvez; so, the gravitational
potential is simply U = −mp

r . We consider that the scalar has a uniform particle density ρ0

in the far past – before the interaction. This is the classical Coulomb scattering problem,
and it is known to have the analytic solution

Φ̃ = √ρ0 e
π
2 β |Γ(1− iβ)| e

−i
(
k2
2µ t−kz

)
M [iβ, 1, ik(r − z)] , (D.2)

where M is the confluent hypergeometric function of the first kind, r is the radial distance
from the particle, and the parameter β is

β ≡ mpµ

v
. (D.3)

The Klein-Gordon scalar field Φ can be obtained from the Schrödinger field Φ̃ through

Φ = 1
√
µ
e−iµtΦ̃, µ� |∂tΦ̃| . (D.4)

As expected this solution gives
TStt (r →∞) = µρ0 , (D.5)
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where we used the non-relativistic limit k2 � µ2.

A scalar field in a sphere of radius R centred at the particle exerts a gravitational drag Fz
on it,

Fz = −ṖSz − Ṗ rad
z , (D.6)

using a similar reasoning to the one behind Eq. (2.28). Here, ṖSz and Ṗ rad
z are, respectively,

the rate of change of the momentum in the scalar inside the sphere, and the (outgoing) flux
of momentum through a surface of radius R; these are calculated through

ṖSz = −
∫
r<R

d3r ∂tT
S
tz , (D.7)

Ṗ rad
z = R2

∫
r=R

dθdϕ sin θ TSrz . (D.8)

We take the radius R to be the maximum characteristic length of the problem; to compare
with the treatment in Section 4.3 we take it to be the boson star radius. The introduction
of this maximum length is necessary and serves as cutoff to the integration, since the
Coulomb scattering is known to have an infrared divergence caused by the 1/r nature of the
gravitational potential. In other words, the gravitational drag is known to diverge in the
limit R→∞. Using the divergence theorem, we can rewrite the drag force as

Fz = −
∫
r<R

d3r
(
∂tTStz + ∂iTSiz

)
. (D.9)

Since we are considering a stationary regime in (D.2), it is easy to check that ∂tTStz vanishes.
Now, using (2.4) while keeping only the leading order (Newtonian and non-relativistic) terms,

TSiz = 1
µ

Re
(
∂iΦ̃∗∂zΦ̃

)
− 1

2giz
( 1
µ
∂jΦ̃∗∂jΦ̃ + iΦ̃∗∂tΦ̃ + 2µU |Φ̃|2

)
. (D.10)

Using Eq (D.1) it is straightforward to show

∂iTSiz = −µ (∂zU) |Φ̃|2 , (D.11)

which implies that
Fz = µ

∫
r<R

d3r (∂zU) |Φ̃|2 . (D.12)

This result is symmetrical to the gravitational force that the particle exerts on the scalar
and coincides with Ref. [60]. In the same reference, Hui et. al. found that in the limit β � 1
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the last integral can be put in the form 1

Fz =
4πm2

p ρ0µ

v2 C(v,Rµ) , (D.13)

C ≡ Cin(2vRµ) + sin(2vRµ)
2vRµ − 1 ,

where Cin(x) =
∫ x

0 (1− cosx′)dx′/x′ is the cosine integral. For small velocities v � 1/(Rµ),
the gravitational drag is

Fz '
4π
3 m2

p ρ0µ
3R2 . (D.14)

This amounts to a loss of momentum by the particle P lost of the order

P lost ' Fz
2R
v
' 2
v
m2
pµ

2M , (D.15)

where 2R/v is the crossing time and M is the mass of the scalar contained in the sphere of
radius R. Surprisingly, this expression has the same dependence on the physical quantities
than the obtained for a more realistic scenario in Section 4.3; however, this result is a factor
of ten larger than the one of that section.

Alternatively, one can consider a toy model closer to the treatment done in Section 4.3; this
consists in linearizing the SP system with respect to an homogeneous sphere of radius R
made of scalar field with (particle) density ρ0 and constant gravitational potential U0 < 0.
In fact, the assumption of a non-trivial uniform density sphere of scalar field is inconsistent
with an homogeneous gravitational potential, due to the Poisson equation. Here, we assume
that the Poisson equation only applies to the fluctuations of this medium. We consider that
there is no scalar field and the gravitational potential vanishes outside the sphere. The scalar
particles in this medium have energy Ω = µ+µU0, with −µ� µU0 < 0. This can be readily
verified by plugging the ansatz Φ̃0 = eiγt

√
ρ0/µ in the Schrödinger equation, which inside

the sphere reads
i∂tΦ̃0 = − 1

2µ∇
2Φ̃0 + µU0Φ̃0 . (D.16)

That gives γ = −µU0. Then, since the KG scalar field is obtained from the Schrödinger one
through (D.4), one gets that, inside the sphere of radius R, the background scalar field is
Φ0 = e−iΩt

√
ρ0/µ, with the energy Ω = µ+ µU0 satisfying −µ� µU0 < 0.

Now, we want to obtain the fluctuations caused by a point-like perturber travelling through
the medium at constant (non-relativistic) velocity v � 1 along the −ez direction. These

1In Ref. [60] the authors also obtained expressions out of the regime β � 1.
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fluctuations are described by the linearized SP system

i∂tδΦ̃ = − 1
2µ∇

2δΦ̃ + µU0δΦ̃ + µΦ̃0δU , (D.17)

∇2δU = 4πP , (D.18)

with
U0 = U0Θ(R− r) , Φ̃0 =

√
ρ0
µ

Θ(R− r)e−iµU0t , (D.19)

and where the source is given by

P = mp
δ(ϕ)
r2 sin θ [δ(r + vt)δ(θ)Θ(−t) + δ(r − vt)δ(θ − π)Θ(t)] .

Note that the fluctuations δΦ̃ in the Schrödinger field are related with the fluctuation in
the KG field through δΦ = e−iµtδΦ̃. For simplicity, we are neglecting the self-gravity of the
scalar field in the right-hand side of (D.18). This is a good approximation in the region close
to the particle, where the Coulombian potential is dominant. Using the axially symmetric
decompositions

P =
∞∑
l=0

∫
dω√
2πr

e−iωtY 0
l (θ)p(r) , (D.20)

δU =
∞∑
l=0

∫
dω√
2πr

e−iωtY 0
l (θ)u(r) , (D.21)

where
p =

√
2
π
mp

Y 0
l (0)
rv

δ0
m

[
cos

(
ω

v
r

)
δeven
l − i sin

(
ω

v
r

)
δodd
l

]
, (D.22)

the Poisson equation becomes

∂2
ru−

l(l + 1)
r2 u = 4πp . (D.23)

This admits the homogeneous solutions

uI = r−l, uII = rl+1 ,

which are regular, respectively, at infinity and at the origin. Using the method of variation
of parameters, one gets the inhomogeneous solution

u = − 4π
2l + 1

(
r−l

∫ r

0
dr′r′l+1p+ rl+1

∫ ∞
r

dr′
p

r′l

)
, (D.24)
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This results in the analytical expression

u = −i 2
√

2π
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ω
Y 0
l (0)δ0

m

(
i
r

v
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i
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− Γ
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− Γ
(
−l, iω
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(
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r

)}
, (D.25)

where Γ(a, x) is the incomplete gamma function. Now, decomposing the scalar fluctuation as

δΦ̃ =
∞∑
l=0

∫
dω√
2πr

e−i(ω+µU0)t Y 0
l (θ)Z(r) , (D.26)

equation (D.17) becomes

∂2
rZ +

[
2µ
(
ω + µU0Θ(r −R)

)
− l(l + 1)

r2

]
Z = 2µ√ρ0 Θ(R− r)u . (D.27)

Outside the sphere o radius R, the solution satisfying the Sommerfeld radiation condition at
infinity is simply given by

Z(r) = A
√
r H

(1)
l+ 1

2

(√
2µ
(
ω + µU0

)
r

)
, (D.28)

where A is a complex-constant to be determined through the matching with the interior
solution. Using equation (D.25) it is possible to see that the highest frequencies that the
perturber excites (efficiently) are ω ∼ v/(2R). This has the important consequence that
for velocities v � 2Rµ|U0| the emission is strongly suppressed, because the perturber
cannot excite (efficiently) waves that travel to infinity. Additionally, in the limit of small
velocities v � 1/(Rµ), we have

Z(r ∼ R) ' − iA
π

2l+
1
2 Γ

(
l + 1

2

)
[
2µ
(
ω + µU0

)] l
2 + 1

4
r−l , (D.29)

where we used the small argument expansion of H(1)
l+ 1

2
. Inside the sphere of radius R,

equation (D.27) has the independent homogeneous solutions
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√
r H

(1)
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2
(
√

2µω r) ' − i
π

2l+
1
2 Γ

(
l + 1

2
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l
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4
r−l ,

ZII =
√
r Jl+ 1

2
(
√

2µω r) ' (2µω)
l
2 + 1

4

2l+
1
2 Γ

(
l + 3

2

)rl+1 . (D.30)

The solution ZII is regular at the origin, and the solution ZI is (approximately) proportional
to r−l everywhere inside the sphere, making it appropriate to match with the exterior solution
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at r = R. Using the method of variation of parameters, one obtains that the radial function
Z at r = R is

Z(R) = −iπµ√ρ0 Z
I(R)

∫ R

0
dr′ZII u(r′) . (D.31)

Then, the constant A can be determined through matching between the interior and exterior
solutions,

A = −iπµ√ρ0

(
1 + µU0

ω

) l
2 + 1

4 ∫ R

0
dr′ZII u(r′) . (D.32)

Using the large argument expansion of H(1)
l+ 1

2
one gets the radial function Z at infinity,

Z∞ ≡ Z(r →∞) = −2
1
4 (−i)l−1
√
π

A
√
Rei

√
2µ(ω+µU0) r

(vRµ)
1
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1
4
(
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vα

) 1
4
, (D.33)

with the dimensionless parameter
α ≡ ωR

v
. (D.34)

Evaluating the integral in (D.32) we obtain the analytical expression

Z∞ = iπδ0
m(Rµ)4mp

√
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µ2 ei
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2µ(ω+µU0) r (−1)lY 0
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{
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}
. (D.35)

We have also solved this problem numerically (without any approximation). This analytical
expression describes perfectly the exact results for the first multipoles (essentially l ≤ 3);
these account for most of the radiation. The energy radiated with frequency between ω and
ω + dω is

dErad

dω
=
√

2
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(vRµ)
1
2

[
µ+ αv
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 ∞∑
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2 α

1
2 Re

(1 + U0Rµ
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) 1
2
 ∞∑
l=0
|Z∞|2 , (D.36)

where in the last equality we used that the scalar fluctuations are non-relativistic. This
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results in the total radiated energy

Erad =
√

2
R3 (vRµ)

3
2

∞∑
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∫ ∞
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dαα
1
2 Re

(1 + U0Rµ

vα

) 1
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The energy lost by the perturber in this process is

Elost =
√

2
R5µ2 (vRµ)

5
2

∞∑
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∫ ∞
|U0|Rµ
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dαα
3
2 Re
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) 3
2
 |Z∞|2 . (D.38)

In the case of a vanishing gravitational potential U0 = 0, we see that for small velocities
the radiated energy goes with ∼ v−

1
2 and the energy lost by the perturber with v

1
2 ; note

that Z∞ ∼ v
l
2−1. In the case of a non-trivial gravitational potential, the radiated energy is

highly suppressed for small velocities; this is because smaller velocities excite lower frequencies
– these may not be capable of escaping the gravitational influence of the scalar configuration.

The spectral flux of linear momentum radiated along z is given by

dP rad
z

dω
= 4
R2 (vRµ)αΘ

(
1 + U0Rµ

vα

)(
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) ∞∑
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. (D.39)

So, the total linear momentum radiated during this process is

P rad
z = 4

R4µ
(vRµ)2

∞∑
l=0

l + 1√
(2l + 1)(2l + 3)
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(D.40)
The loss in momentum for a small perturber mpµ� v is simply

P lost
z = Elost

v
. (D.41)

In the case of a vanishing gravitational potential, for small velocities the radiated momentum
goes with v

1
2 and perturber’s loss in momentum with ∼ v−

1
2 . Again, with a non-trivial

gravitational potential both quantities are suppressed in the limit of small velocities.

Our toy model shows that: (i) the gravitational potential of a scalar configuration tends to
suppress both the radiation and the loss in momentum for plunging perturbers, specially in
the small velocity limit; 2 (ii) when neglecting the gravity of the scalar, the loss in momentum
for a perturber plunging in a uniform sphere of scalar field at a constant small velocity
follows P lost ∼ v−

1
2 . This behavior is different than the one found in Ref. [60]; in that

2Actually, although we do not present it in this work, we solved the full problem – including the self-gravity
of the scalar – in a way similar to Section 4.3 but with constant velocity. We found qualitative agreement with
the toy model considered here; however, including the self-gravity of the scalar yields to a larger suppression
of radiation and loss of momentum.
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reference besides neglecting the gravity of the scalar, the authors study a stationary regime
in an infinite scalar field medium (introducing a cut-off length R a posteriori).

For a full realistic plunge into an NBS – including the self-gravity of the scalar and the
accelerated free fall of the perturber – see Section 4.3.



Appendix E
Angle-action variables

In this Appendix we show how to develop and use the angle-action formalism, useful to
describe in a compact way the perturbations acting on a binary in Keplerian orbit.

Newtonian dynamics in the Delaunay variables

From the reduced Newtonian Lagrangian in the CM coordinates, using spherical coordinates
(r, θ, ϕ),

L̃ ≡ L

mν
= Gm

r
+ 1

2 ṙ
2 + 1

2r
2
(
θ̇2 + sin2 θ ϕ̇2

)
, (E.1)

we determine the conjugate momenta px = ∂L̃/∂ẋ,

pr = ṙ, pθ = r2θ̇, pϕ = r2 sin2 θ ϕ̇ , (E.2)

and, performing a Legendre transformation, the reduced Hamiltonian,

H̃0 ≡ prṙ + pθθ̇ + pϕϕ̇− L̃

= −Gm
r

+ 1
2p

2
r + 1

2r2 p
2
θ + 1

2r2 sin2 θ
p2
ϕ . (E.3)

The angular momentum L = r ∧ v is then given by

Lr = 0, Lθ = − pϕ
sin θ , Lϕ = pθ . (E.4)

We want to go from the canonical set of variables (r, θ, ϕ, pr, pθ, pϕ) to a set of canonical
angle-action variables, by taking into account the symmetries of the system. We use the
modified Delaunay variables that are well suited to described the Keplerian two-body problem.
The actions are given by,

J3 = Gm√
−2E

, J2 = Gm√
−2E

− L, J1 = L− Lz . (E.5)

The Hamiltonian is then simply

H̃0 = −G
2m2

2J2
3
. (E.6)
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We can then derive the frequencies Ωi = ∂H̃/∂Ji,

Ω3 = G2m2

J3
3

, Ω2 = 0, Ω1 = 0 . (E.7)

The angles θi, conjugate variables of the action Ji, are then linear in time,

θ3 = Ω3(t− t0) + (θ3)0 , θ2 = (θ2)0 , θ1 = (θ1)0 , (E.8)

with (θi)0 the values of the angle variables at time t0. We can also relate the modified
Delaunay variables to the orbital elements a, e, l, ι, ω, ψ, we get

J3 =
√
Gma, J2 =

√
Gma

(
1−

√
1− e2

)
,

J1 =
√
Gma(1− e2) (1− cos ι) , (E.9)

θ3 = l + ω + ψ , θ2 = − (ω + ψ) , θ1 = −ψ . (E.10)

Note in particular that these variables are well-defined when e = 0 and ι = 0, which will
allow us to perform an expansion for small eccentricity.

Perturbation theory

When the total Hamiltonian is no longer integrable, it is not possible to write it as a function
of the actions only. The perturbed Hamiltonian in the modified Delaunay variables can be
written as

H̃ = H̃0 (J) + H̃1 (θ,J, t) , (E.11)

where H̃0 = −G2m2/(2J2
3 ) is the Newtonian Hamiltonian previously studied, and H̃1 is the

perturbation, assumed to be small, O(Hij) ≡ O(ε)� 1. We see that the total Hamiltonian
now depends on the actions and angles, but also on time. The dependence on time can be
removed by introducing a new coordinate τ and its conjugate variable T , and transforming
the time-dependent Hamiltonian H̃ into a time-independent Hamiltonian ˜̃H in the following
way,

˜̃H = ΩT + H̃ (θ,J, τ) . (E.12)

We see that the Hamilton equations for τ are

τ̇ = ∂ ˜̃H
∂T

= Ω , Ṫ = −∂H̃1
∂τ

, (E.13)
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such that τ = Ωt. The other equations for the angle-action variables are unchanged, and are
now given by,

J̇3 = −∂H̃1
∂θ3

, J̇2 = −∂H̃1
∂θ2

, J̇1 = −∂H̃1
∂θ1

,

θ̇3 = G2m2

J3
3

+ ∂H̃1
∂J3

, θ̇2 = ∂H̃1
∂J2

, θ̇1 = ∂H̃1
∂J1

. (E.14)

Using the relations (E.5) linking the angle-action coordinates (θ,J), and the Hamilton
equations (E.14), we can see that we directly have the variation of the orbit elements
a, e, l, ι, ω, ψ. As the perturbation is small, we can use the unperturbed (Newtonian) results
to evaluate H̃1 and its derivatives. Then by averaging over one (Newtonian) orbit, we get
the secular evolution of the binary. However the Hamiltonian ˜̃H is quite complicated and so
are the equations (E.14).

In order to circumvent these technical difficulties we use Hamiltonian perturbation theory to
define a new set of canonical angle-action coordinates (θnew, Jnew) such that the Hamiltonian
will only depend on the action variables. We call

(
θ0, J0) the old variables (including τ and

T ). We have
˜̃H (Jnew) = H0

(
J0
)

+ H̃1
(
θ0,J0

)
. (E.15)

We now consider the generating function

S̃
(
θnew, J

0
)

= θnew · J0 + s̃
(
θnew, J

0
)
, (E.16)

where s̃ = O (ε). Then we can rewrite the Hamiltonian, up to O
(
ε2), as

˜̃H (Jnew) = H0 (Jnew)−Ω0 · ∂s̃

∂θnew
+ H̃1 (θnew,Jnew) .

where Ω0 ≡ ∂H0
∂J0 . Now we expand both the perturbed Hamiltonian H̃1 and s̃ in Fourier

series,

H̃1 (θnew,Jnew) =
∑

k
hk (Jnew) eik·θnew , (E.17)

s̃ (θnew,Jnew) = i
∑

k
sk (Jnew) eik·θnew . (E.18)

Then the Hamiltonian becomes, up to O
(
ε2),

˜̃H (Jnew) = H0 (Jnew) + h0 (Jnew) +
∑
k 6=0

[
hk (Jnew) + k ·Ω0 (Jnew) sk (J)

]
eik·θnew .

As the l.h.s. of Eq. (E.19) depends only on the action variables Jnew, the r.h.s. should also
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depends only on this variables. This gives the Fourier coefficients of the generating functions,

sk (J) = − hk (J)
k ·Ω0 (J) for k 6= 0 . (E.19)

This transformation is valid only when k ·Ω0 (J) 6= 0. The case

k ·Ω0 (J) = 0 , (E.20)

is called the problem of small divisors and it describes the appearance of a resonance at the
corresponding frequency. In that case the formalism we are using to describe the binary
dynamics is no more valid.

We now consider the coordinate transformation, defined by (E.19), to a new set of canonical
variables (θ′, J ′). The Hamiltonian obtained after this transformation is

H̃′
(
J′
)
≡ H̃0

(
J′
)

+ h0
(
J′
)
. (E.21)

It describes the dynamics of the system up to first order included. The new variables are
related to the old ones by the relations,

J′ = J +
∑

k

hk (J)
k ·Ω0 (J)keik·θ′ , (E.22)

θ′ = θ + i
∑

k

∂

∂J

(
hk (J)

k ·Ω0 (J)

)
eik·θ′ . (E.23)

Finally the dynamics of the system is governed by Hamilton’s equation

J̇′ = −∂H̃
′

∂θ′
= 0 , (E.24)

θ̇′ = ∂H̃′

∂J ′
= ∂H̃0

∂J ′
+ ∂h0
∂J ′

. (E.25)



Appendix F
Initial data for extreme compact objects collision

In this Appendix we define in detail a possible choice for the initial data describing an ECO
binary.

We start modelling the ECO interior, finding (in the framework of a 3 + 1 decomposition,
see Sec. 7.1.1) a conformally flat three-metric

3ds2
ECO = ϕ4 3dη2 = ϕ4

(
dR2 +R2dΩ2

)
, (F.1)

solution of the Hamiltonian constraint equation (7.55), which, with the ansatz (F.1), can be
written as

∇2
ηϕ = −2πρϕ5 . (F.2)

We first consider a single, static ECO; then, we shall consider two close static ECOs at rest.
Our solution can, in principle, be matched with the BL solution in the exterior discussed in
Sec. 7.2.1, where R is the isotropic coordinate defined in Eq. (7.54). The interior solution is
defined for R ≤ R0, where R = R0 is the ECO surface.

We consider, for a single, static ECO, a density profile of the form

ρ = ϕ−5

2π

[ 3M
2R3

0
Θ (R0 −R)

]
. (F.3)

Therefore, Eq. (F.2) gives,
∇2
ηϕ = 3M

2R3
0
Θ (R0 −R) . (F.4)

This choice can be considered either as a toy model, or as a specific example of an ECO
interior. We stress that the interior structure of the ECO does not enter in the GW signal
computed in this thesis, since we assume that – due to the small lapse – the internal degrees
of freedom do not significantly affect the GW emission and thus can safely be neglected (see
Sec. 7.2.1).

The exterior solution (i.e. Schwarzschild’s metric) for R ≥ R0 is ϕ = 1 + M/(2R). The
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solution of Eq. (F.4) matching with the exterior is

ϕ = 1 + M

2

(
3

2R0
− R2

2R3
0

)
+ M

2

(
1
R

+ R2

2R3
0
− 3

2R0

)
Θ (R−R0) . (F.5)

Let us now consider two ECOs at rest, with the same positions as the BHs in the BL
initial data (see Sec. 7.1.2), (0, 0,±Z0), having radii R̃1, R̃2, and “bare” masses m1, m2,
corresponding to the ADM masses (see Sec. 7.2.1) M1 = m1(1 +m2/(4Z0)), M2 = m2(1 +
m1/(4Z0)); the ADM mass of the final object is M = m1 +m2.

The constraint equation has the form

∇2
ηϕ = −3m1

2R3
1

Θ(R̃1 −
√

∆− 2Z0R cos θ)− 3m2
2R3

2
Θ(R̃2 −

√
∆ + 2Z0R cos θ) , (F.6)

where ∆ = R2 + Z2
0 and cos θ = Z/R. Matching with the BL solution (7.15) gives:

ϕ = 1− m1
2 Υ

(
R̃1
)
− m2

2 Υ
(
R̃2
)

+ RZ0 cos θ
2

[
m1

R̃3
1
− m2

R̃3
2

]
+
m1g(R̃1,Z0

) +m2g(R̃2,−Z0
)

2 ,

(F.7)
where

Υ
(
R̃i
)

= R2 + Z2
0 − 3R̃2

i

2R̃3
i

g(
R̃i,Z0

) =
[

1√
∆ + 2Z0R cos θ

− 3
2R̃i

+ ∆ + 2Z0R cos θ
2R̃3

i

]
Θ
[√

∆ + 2Z0R cos θ − R̃i
]
.

(F.8)

For an equal mass binary ECO (m1 = m2 = M/2, R1 = R2 = R0), the conformal factor
reduces to

ϕ = 1− M

2 Υ (R0) + M

4
[
g(R0,Z0) + g(R0,−Z0)

]
, (F.9)

with Υ and g defined in Eq. (F.8). An example of this configuration is represented in Fig. F.1
for various ECOs distances.

We remark that this solution has been determined under the assumption that the two ECOs
do not overlap, i.e. that Z0 > R0. Since (for ε� 1) R0 'M/2, this implies that Z0/M & 0.5.
When the ECOs overlap, the solution (F.9) should be considered as a rough approximation.
We remark, however, that the model of the interior does not affect the GW signal derived in
Sec. 7.2.2, because the internal degrees of freedom are, with good approximation, decoupled
from the evolution of the exterior spacetime.



Chapter F. Initial data for extreme compact objects collision 193

Figure F.1: Curves with the same value of ϕ for an equal mass binary ECO spacetime
(m1 = m2 = M/2, R1 = R2 = R0). The axes are normalized to the mass of the final
ECO (Y/M,Z/M), and each frame represents a Y − Z spatial slice of the conformal factor.
Starting from the upper-left panel and moving clockwise in the panels, ECOs are at a
distance Z0 = M{1/8, 3/8, 1/2, 1} from the origin of the reference frame. The dashed red
circles corresponds to the colliding ECOs surfaces and the solid green one to the final static
ECO.





Appendix G
Klein Gordon equation in binary black holes
spacetimes

In this Appendix we show how to separate the KG equation in axisymmetric spacetimes. We
perform this separation in the context of EsGB (see Chapter 8), where, thanks to non-trivial
couplings between the scalar field and the curvature, the r.h.s of the KG equation is non
zero. Setting the coupling constant of EsGB to zero (η = 0) instead, this procedure refers to
separating the KG equation in GR (see Chapter 7).

Let us consider the Klein-Gordon equation for a massless scalar field in EsGB with the
quadratic coupling function in Eq. (8.15),

�Φ = −η4ΦRGB . (G.1)

In the equation above, the d’Alembertian operator is defined as 1√
−g∂µ (gµν

√
−g∂ν), and the

spacetime metric represents the perturbative geometry of a BBH: gµν = g
(0)
µν +hµν . Here, g(0)

µν

is given by the usual Schwarzschild metric (Eq. (7.29)) and hµν by Eq. (7.32). Expanding
the D’Alambertian operator in powers of the BH separation Z0, and neglecting higher order
terms O(Z3

0 ), Eq. (G.1) takes the form:(
�(0) + Z2

0�
(1)
)

Φ = −η4
(
R(0)

GB + Z2
0R

(1)
GB

)
Φ , (G.2)

where each contribution on the right hand side can be computed through the BBH spacetime
in Eq. (7.24),

R(0)
GB = 48M2

r6 ,

R(1)
GB = −α (θ)

Mr6

(
r

(
r(2M − r)d

2g

dr2 + (r − 5M)dg
dr

)
+ 3g(4M − r)

)
, (G.3)

with
α (θ) = 1 + 3 cos(2θ) . (G.4)
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Thus, we expand the scalar field in scalar spherical harmonics Y `m(θ, φ), as in Eq. (8.17),
where the harmonic functions normalization reads as

∫
dΩ
(
Y `m

)∗
Y `′m′ = δ``′δmm′ . As

shown in Ref. [322], since Schwarzschild’s spacetime (Z0 = 0) is spherically symmetric, the
spherical harmonics are eigenfunctions of the KG operator on g(0)

µν , while the first order KG
operator (�(1)) couples harmonics with different `. This means that each solutions of the
zero-th order problem contains only one definite value of the index `. The index m, instead,
always factors out from the equation since the background is axisymmetric. Since the first
order KG operator is proportional to Z2

0 , we assume,

Φ = ψ`m (t, r)Y `m (θ, φ)
r

+ Z2
0
∑
`′ 6=`

ψ`′m (t, r)Y `′m (θ, φ)
r

. (G.5)

It is important to remark that with the ansatz in Eq. (G.5) we restrict to excitations with a
single value of `. Perturbation mixing multiple values of `s simultaneously may lower even
more the threshold of instability of BBH spacetimes in EsGB (see Chapter 8).

Inserting Eq. (G.5) in Eq. (G.2) we find (dropping the (θ, φ) dependence in the spherical
harmonics),
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r
R(0)

GB

]
. (G.6)

Projecting the above equation on the complete basis of spherical harmonics, the components
ψ`′m with `′ 6= ` vanish, because the spherical harmonics are eigenfunctions of �(0). Thus,
the only remaining O(Z2

0 ) term on the l.h.s of Eq. (G.6) can be written explicitly as,

�(1)
[
ψ`mY

`m (θ, φ)
r

]
= −∂Y

`m

∂θ

3g sin(2θ)
8M2r3 ψ`m

+ Y `m

(
− r

(
−r2fdg/dr + 4Mg

) ∂ψ`m
∂r

− 2r3fg
∂2ψ`m
∂r2

+
(
−r2fdg/dr + 2g(`(`+ 1)r + 2M)

)
ψ`m

)
α (θ)

16M2r4 , (G.7)

and we remind that f = 1− 2M/r.

As expected, the projection on Y `m of the O(0) term on the l.h.s in Eq. (G.6) provides the
standard form of the KG equation in Schwarzschild’s spacetime,

− 1
rf

(
∂2ψ`m
∂t2

− f2∂
2ψ`m
∂r2 − f df

dr

∂ψ`m
∂r

+ f
`(`+ 1)r + 2M

r3 ψ`m

)
. (G.8)
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Finally, projecting the full Eq. (G.2) on Y `m using Eq. (G.3) and the results in Eqs. (G.8)-
(G.7), we obtain the desired decoupled equation

∂2ψlm
∂t2

+ ∂2ψlm
∂r2

(
U0 + Z2

0 Ũ0
)

+ ∂ψlm
∂r

(
U1 + Z2

0 Ũ1
)

+

ψlm

((
W0 + η

4W̃0

)
+ Z2

0

(
W1 + η

4W̃1

))
= 0 , (G.9)

with radial potentials given by,

U0(r) = −f2 ,

Ũ0(r) = (r − 2M) fq(1)
`mg

8M2r
,

U1(r) = −f df
dr
,

Ũ1(r) = −q
(1)
`m(2M − r)

(
4Mg(r)− fr2dg/dr

)
16M2r3 ,

W0(r) = f
`(`+ 1)r + 2M

r3 ,

W̃0(r) =
[

48M2(2M − r)
r7

]
,

W1(r) = q
(1)
`m

16M2r4 (fr2(r − 2M)dg/dr + 2g(2M − r)(l(l + 1)r + 2M)) + 3q(2)
`m

(r − 2M)g
4M2r3 ,

W̃1(r) = −2Mq
(1)
lm (2M − r)
r7

(
3 (4M − r) ∆1 + r

(
(r − 5M) d∆1

dr
+ (2M − r) rd

2∆1
dr2

))
.

(G.10)

The coefficients in Eqs. (G.10) are defined as

q
(1)
`m ≡

∫
dΩ
(
Y `m

)∗
Y `mα (θ) , (G.11)

q
(2)
`m ≡

∫
dΩ sin θ cos θ

(
Y `m

)∗ dY `m

dθ
. (G.12)

Since
q

(1)
00 = q

(2)
00 = 0 , (G.13)
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the ` = 0 equation is not affected by the O(Z2
0 ) corrections. Instead, for 0 < ` ≤ 2 one gets,

q
(1)
1−1 = q

(1)
11 = −4

5 , q
(1)
10 = 8

5 ,

q
(1)
2−2 = q

(1)
22 = −8

7 , q
(1)
2−1 = q

(1)
21 = 4

7 , q
(1)
20 = 8

7 ,

q
(2)
1−1 = q

(2)
11 = 1

5 , q
(2)
10 = −2

5 ,

q
(2)
2−2 = q

(2)
22 = 2

7 , q
(2)
2−1 = q

(2)
21 = −1

7 , q
(2)
20 = −2

7 . (G.14)
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