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R E S U M O

Há evidencia numérica que indica que em relatividade geral soluções
perto do limite de formação de um buraco negro em simetria esférica
têm um comportamento crítico, isto é, existe invariância de escala,
universalidade e comportamento de lei de potências. Porém, quando
se abandona esta simetria, estes fenómenos ainda não estão totalmente
compreendidos. Este manuscrito contém evidencia de que quando se
deixa a simetria esférica nem todas as características de colapso crítico
se mantêm.

Primeiro, como estudar um sistema na relatividade geral sem re-
strições de simetria é computacionalmente custoso e desafiante, é
desejável construir modelos que reproduzam o quadro do colapso
crítico e que sejam mais simples de estudar. Na primeira parte deste
documento estes modelos são construídos em espaço-tempo plano.
Começando com deformações da equação de onda, estes modelos
admitem solução analítica e é possível mostrar que a solução limite
tem auto simetria discreta. Estas soluções limite são estudadas no
cone de luz passado do ponto de explosão. Em simetria esférica há
um sentido no qual a solução crítica é única. Também são apresen-
tadas evoluções numéricas esféricas para modelos mais gerais, os
quais mostram um comportamento semelhante. Fora da simetria es-
férica as soluções limite têm mais liberdade. Diferentes topologias
para a explosão são possíveis, e até a solução crítica precisa de uma
reinterpretação localmente como uma família parametrizada.

A segunda parte deste manuscrito tem uma abordagem mais canónica
para explorar o colapso crítico para além da simetria esférica. Usando
ferramentas da relatividade numérica, o colapso de ondas gravita-
cionais no vácuo é estudado. Primeiro, para levar a cabo as ditas
evoluções numéricas, os dados iniciais são sumamente importantes.
Motivado por estudos de fenómenos críticos nesta configuração, duas
abordagens comuns para a construção de dados iniciais do tipo de
ondas gravitacionais são comparados a nível linear. Em particular,
dados iniciais tipo ondas de Brill são construídos analiticamente e
comparados com ondas de Teukolsky, numa tentativa de compreender
o comportamento numérico diferente que estes dois tipos de dados
iniciais apresentam. Em geral, as ondas de Brill têm momentos multi-
polares mais altos do que as ondas de Teukolsky, que são puramente
quadrupolares. Isto poderia ser uma explicação para as diferenças
observadas na evolução dinâmica destes dois tipos de ondas. Porém,
para uma escolha típica da função de semente das ondas de Brill,
todos os momentos de ordem elevada são cancelados identicamente, o
que faz os dados iniciais de Brill no regime linear serem surpreenden-
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temente semelhantes aos de Teukolsky para uma escolha semelhante
da sua função de semente.

Por último, empregando as ondas de Brill já mencionadas, ondas
gravitacionais axi-simétricas e sem torção são evoluídas perto do limite
do colapso com o código pseudo-espectral de relatividade numérica
bamps. Esta é a primeira aplicação da nova funcionalidade de refi-
namento de malha adaptável. Seis famílias diferentes de dados de
Brill que dependem de um único parâmetro são consideradas; duas
centradas e quatro descentradas, das quais as últimas nunca foram
anteriormente estudadas. Para cada família, o parâmetro é ajustado
até o limite da formação de buraco negro. Os resultados para as
famílias centradas concordam com a literatura. Os resultados chave
são os seguintes. Primeiro, perto do limite de colapso o pico global
da curvatura aparece no eixo de simetria mais afastado da origem,
o que indica que no limite o colapso aconteceria em redor de dois
centros separados. Isto era já conhecido para as famílias centradas,
pois horizontes aparentes foram encontrados explicitamente. Agora, a
mesma prova é dada para duas das famílias descentradas. Segundo,
não se encontrou evidência de auto simetria discreta nem de uma
lei de potências universal no escalamento do escalar de curvatura.
Finalmente, são observadas algumas características universais na cur-
vatura, em concordância com estudos prévios. Estas características
aparecem várias vezes em cada espaço-tempo individual perto do
limite do colapso e, para além disso, estão presentas nas seis famílias.

palavras-chave : relatividade geral; relatividade numérica; fenó-
menos críticos; colapso gravitacional, ondas gravitacionais.
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A B S T R A C T

There is numerical evidence implying that in general relativity so-
lutions near the threshold of black hole formation in spherical sym-
metry follow critical behavior, this is, scale-invariance, universality
and power-law scaling. However, when abandoning such symmetry
the full extent of critical phenomena in gravitational collapse has yet
to be completely understood. This manuscript contains compelling
evidence that when dropping spherical symmetry not all the features
of critical collapse carry over.

First, as investigating numerically a system in general relativity
without symmetry restrictions is both, computationally expensive
and challenging, it is desirable to construct models that vindicate
the picture of critical collapse that are easier to study. In the first
part of this document, such models are constructed in flat spacetime.
Starting with deformations of the wave equation these models admit
analytical solutions, and it is possible to show that they have discrete
self-similar threshold solutions. These threshold solutions are studied
in the past light cone of the blowup point. In spherical symmetry
there is a sense in which a unique critical solution exists. Spherical
numerical evolutions are also presented for more general models, and
exhibit similar behavior. Away from spherical symmetry threshold
solutions attain more freedom. Different topologies of blowup are
possible, and even locally the critical solution needs reinterpretation
as a parametrized family.

The second part of this manuscript has a more canonical approach
to exploring critical collapse beyond spherical symmetry. Using tools
from numerical relativity, collapse of gravitational waves in vacuum is
studied. First, to carry out such numerical evolutions, initial data are of
great importance. Motivated by studies of critical phenomena in such
a setup, two common approaches to constructing gravitational wave
initial data are compared at the linear level. In particular, Brill wave
initial data are constructed analytically and compared with Teukolsky
waves in an attempt to understand the different numerical behavior
observed in dynamical nonlinear evolutions of these two different
sets of initial data. In general, Brill waves feature higher multipole
moments than the quadrupolar Teukolsky waves, which might have
explained the differences observed in the dynamical evolution of the
two types of waves. However, for a common choice of the Brill wave
seed function, all higher order moments vanish identically, rendering
the linear Brill initial data surprisingly similar to the Teukolsky data
for a similarly common choice of its seed function.
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Last, using the Brill waves mentioned above, twist-free, axisymme-
tric gravitational waves are evolved close to the threshold of collapse
with the pseudospectral numerical relativity code bamps. This is the
first application of the new adaptive mesh refinement functionality
of the code. Six different one-parameter families of Brill wave initial
data are considered; two centered and four off-centered, of which the
latter have not been treated before. Within each family the parameter
towards the threshold of black hole formation is tuned. The results
for the centered families agree with the literature. The key results
are first, that close to the threshold of collapse the global peak in the
curvature appears on the symmetry axis but away from the origin,
indicating that in the limit the collapse would happen around two
disjoint centers. This was known for the centered by families by ex-
plicitly finding a pair of separated apparent horizons around these
peaks, and now the same empirical evidence is given for two of the
off-centered families. Second, evidence neither for strict discrete self-
similarity nor for universal power-law scaling of curvature quantities
is found. Finally, approximately universal strong curvature features
are observed, in agreement with previous work. These features appear
multiple times within individual spacetimes close to the threshold
and are furthermore present within all six families.

key-words : general relativity; numerical relativity; critical phenome-
na, gravitational collapse, gravitational waves.
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1
I N T R O D U C T I O N T O C R I T I C A L P H E N O M E N A I N
G R AV I TAT I O N A L C O L L A P S E

Using numerical methods to solve Einstein equations of General Rel-
ativity (GR) is nowadays its own field of study, known as Numerical
Relativity (NR). In the last decades, enormous advances have been
made in order to solve complex problems, mainly in the strong-field
regime, using this approach to GR together with the help of supercom-
puters (see [1] for a review). In this manuscript critical phenomena in
gravitational collapse are studied from the point of view of NR, which
is the connecting thread along with this whole work, which serves,
once again, to emphasize the usefulness of NR in the study of extreme
spacetimes. First of all, it is of main importance to contextualize this
work. The title of this thesis is "critical phenomena in gravitational
collapse: Beyond spherical symmetry", which is, already, a non-trivial
title. Through the next sections of this introduction the main concepts
will be reviewed, starting with the theory of GR, followed by the ex-
planation of the basic concepts of NR, and extending on what critical
phenomena are and how they play a role within the gravitational
context.

1.1 theory of general relativity

The theory of General Relativity (GR), also known as Einstein’s theory
of gravity, is the current most accepted theory to explain gravity and
its properties. This geometric theory was proposed by Albert Einstein
in 1915 and since then has been reviewed and collected by many
authors. In this manuscript, I will give a small review for the reader
that is already familiar with the subject, as the objective is to give the
context of this work. For the unfamiliar reader I recommend reading
the canonical textbooks [2–7] for a more detailed explanation of GR.

GR is a geometric theory that sees the spacetime as a differentiable
four dimensional Lorentzian manifold (M, g) with a non-degenerate
metric tensor gαβ of signature (−,+,+,+) with the associated Levi-
Civita covariant derivative ∇α. The notion of causality is introduced
by the line element, which in coordinates xα is expressed as

ds2 = gαβdxαdxβ, (1.1)
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4 introduction to critical phenomena in gravitational collapse

often called the infinitesimal interval. This object gives information
about the causal structure of the spacetime, as two events that are
infinitesimally close can be causally related only if they are in the light
cone of each other. That mean both events are connected by a null or
timelike path. For a timelike path it is possible to define the proper
time

∆τ =
∫ λ f

λi

√
−gαβ(λ)

dxα

dλ

dxβ

dλ
dλ. (1.2)

In the case of null paths the interval is zero, therefore no extra
definitions are needed. In the case of spacelike path one can define
the path lenght

∆τ =
∫ λ f

λi

√
gαβ(λ)

dxα

dλ

dxβ

dλ
dλ. (1.3)

The affine connection which is compatible with the metric (∇αgβγ =

0), also known as Levi-Civita connection or the Christoffel symbols
Γα

βγ is given by

Γα
βγ =

1
2

gαδ
(
∂γgδβ + ∂βgγδ − ∂δgβγ

)
, (1.4)

which is symmetric Γα
βγ = Γα

γβ. The object which measures the
failure of ∇α to commute is the Riemann curvature tensor

Rα
βγδ = ∂γΓα

βδ − ∂δΓα
βγ + Γα

ργΓρ
βδ − Γα

ρδΓρ
βγ, (1.5)

which is symmetric in the index pairs Rαβγδ = Rγδαβ and anti-symmetric
on each pair Rαβγδ = −Rβαγδ = Rβαδγ. The Ricci tensor is defined by
contracting two indices

Rαβ = Rγ
αγβ, (1.6)

which is also symmetric Rαβ = Rβα. The Ricci scalar or scalar curvature
is defined as

R = Rα
α. (1.7)

(Note that the Einstein notation for summation when contracting
indices is used).

The main idea behind GR is that the gravitational field is measured
by the curvature of spacetime, and at the same time, this curvature is
related to the presence of matter and energy. This is represented by
the Einstein field equations

Gαβ = 8πTαβ, (1.8)
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where Tαβ is the stress-energy tensor, which is symmetric and rep-
resents the amount of mass-energy of the matter, and Gαβ is called
Einstein tensor,

Gαβ = Rαβ −
1
2

gαβR, (1.9)

which is also symmetric. Note that in Eq. 1.8 geometrized units (G =

c = 1) are used. This convention will be maintained through the whole
manuscript unless otherwise stated.

By looking at Eq. 1.8, one can see that on the left hand side the
curvature of the spacetime is present, and related to the right hand
side which encodes energy, momentum, stress and strain. A revolu-
tionary statement that lead to the modern understanding of gravity
in a relativistic and geometric manner. The Einstein equations are a
nonlinear system of Partial Differential Equations (PDEs) of second
order in the metric. Moreover, these field equations imply the local
conservation of energy-momentum. As a consequence of the Bianchi
identity ∇ρRαβγδ + ∇δRαβργ + ∇γRαβδρ = 0, the divergence of the
Einstein tensor vanishes, ∇βGαβ = 0, and therefore

∇βTαβ = 0, (1.10)

is a requirement for any system satisfying the Einstein equations.
Another important consequence of the Einstein equations is that

in vacuum Tαβ = 0 the Ricci scalar vanishes R = 0, consequently the
Ricci tensor does Rαβ = 0. Be aware, however, that this does not mean
that the curvature of spacetime vanishes as well, since it is given by
the Riemann tensor and only Rα

βγδ = 0 means zero curvature (flat
spacetime). This implication is of main importance in Part ii of this
manuscript, where characteristics of Gravitational Waves (GW) are
studied in vacuum and therefore, the curvature scalar R is not a good
measure. Instead, another scalar (and thus gauge-invariant) becomes
relevant, the Kretschmann scalar

I = RαβγδRαβγδ. (1.11)

A solution to the Einstein equations is given by the metric tensor
and it is often expressed with the line element in the form of Eq.
1.1. These solutions depend on the matter model, however, it is also
possible to have vacuum solutions Tαβ = 0. For instance, flat spacetime
(Rα

βγδ = 0) is represented by the Minkowski metric

ds2 = −dt2 + dx2 + dy2 + dz2 = ηαβdxαdxβ, (1.12)

where ηαβ will be hereafter referred as the flat metric or Minkowski
metric.

A vacuum solution of main importance for this manuscript is the
one corresponding to a Schwarzschild black hole (BH)

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2,
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(1.13)

which represents a static, uncharged and non rotating BH where M is
a constant with dimensions of mass in geometrized units. Note that
in the limit of M going to zero Minkowski spacetime is recovered.
The boundary of a Schwarzschild BH corresponds to r = 2M, a 3

dimensional hypersurface called the event horizon. Once something
falls inside the event horizon it can never escape, not even light. Inside
the BH, the integral lines of ∂

∂r are incomplete timelike geodesics, as
they cannot be continued past the curvature singularity at r = 0.
The nature of singularities is uncertain, but here it is considered the
Hawking-Penrose definition, that a Lorentzian manifold (M, g) is
singular if it is not geodesically complete. That is, there exists at least
one geodesic which is inextendible in at least one direction but has
only a finite range of affine parameter. For a more detailed discussion
about spacetime singularities see Section 9.1 from [5] or [8]. This
curvature singularity is causally disconnected from the rest of the
universe as it is "protected" or "hidden" by the event horizon. It is
fair to say that the singularity of a BH is the limit of GR as a valid
theory. There are other solutions in GR that represent BHs, including
rotating or charged BHs, however as BHs are not the main subject of this
work extra details are not given and rather the notion of gravitational
collapse is introduced.

To think about gravitational collapse in a heuristic manner one can
think of a region of spacetime in which the curvature gets big enough
such that the spacetime "collapses" and forms a BH. In other words,
one can say that gravitational collapse happens when a BH forms in a
region of the space where there was none before. Different scenarios,
like a supernovae [9], might lead to collapse, however, the scenario
relevant for this work is the collapse of GWs in vacuum. In order to
connect with this let us introduce the notion of Apparent Horizon
(AH). The AH is the marginally outer trapped surface on which the
expansion of outgoing null geodesics vanishes. This is a quasi-local
notion (i.e. local in time) of the boundary of a BH, in contrast with the
event horizon, which is a global notion. The fact that the AH is defined
quasi-locally makes it possible to build AH locators numerically (see
Section 4.2.3). This tool will be used for the diagnosis of a spacetime
in Chapter 4, where it will be considered that a spacetime contains a
BH only if an AH is found.

Let us now for completeness introduce the notion of GW or gravita-
tional radiation. GWs are undulations of the spacetime that propagate
at the speed of light. These waves can normally be described in the
linearized theory as

gαβ = ηαβ + hαβ, |hαβ| � 1, (1.14)
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where ηαβ is the Minkowski metric and hαβ is the perturbation around
flat space. Now, it is possible to define the trace-reversed wave pertur-
bation

h̄αβ ≡ hαβ −
1
2

hγ
γηαβ. (1.15)

Using the Lorentz gauge condition ∇αh̄αβ = 0, the trace-reversed wave
perturbation satisfies the wave equation

�h̄αβ = ∇γ∇γh̄αβ = 0, (1.16)

and therefore, giving name to the GWs. For an extended textbook
treatment see Chapter 9 in [10]. In fact, one of the biggest successes of
GR was the prediction of GWs, whose detection was first reported in
2015 by the LIGO/VIRGO Collaboration [11].

1.2 numerical relativity

With the context, GR, clear, it is time to introduce the tool that is used
in this manuscript, NR. In Chapter 4 an all-purpose NR code is used
and in Chapter 2 a code in flat space but using a 3+1 spherical splitting
as inspired by NR is employed. In this section, a brief review of the
basic concepts of NR is given. For a textbook treatment see [10, 12–15].

NR is the tool that allows the scientific community to have, let us
say, a laboratory in which to simulate the most extreme spacetime
evolutions. It is, moreover, a very useful utensil to study fundamental
properties of GR that are not possible to be addressed analytically.
The biggest success of NR is providing part of the input for waveform
modelling for the detection of GWs (see [16] for a review) together with
the discovery of critical phenomena in gravitational collapse [17]. The
most common approach to NR is the 3+1 formalism. This formalism
consists of slicing the four dimensional spacetime of Einstein equa-
tions into three dimensional spatial hypersurfaces Σt, such that the
induced metric γαβ has a positive signature (0,+,+,+). This procedure
allows reformulating the equations as an Initial Value Problem (IVP)
or Cauchy problem with constraints, as the equations are decomposed
into "space" and "time". This 3+1 splitting is not an inherent structure
of GR, actually, it depends on the choice of time coordinate. Let us
explain the procedure. First of all consider a spacetime with metric
gαβ, which is globally hyperbolic and consequently can be foliated in
several three dimensional spacelike hypersurfaces Σt as in Fig. 1.1.

Consider a particular spacetime foliation, as in Fig. 1.2, where two
adjacent hypersurfaces are considered (Σt, Σt+dt). It is necessary to
introduce the lapse function α(t, xi) defined as

gtt = gµν∇µt∇νt ≡ α−2(t, xi), (1.17)
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Figure 1.1: Figure 2.1 from [13] in which a foliation of the spacetime into
three dimensional spacelike hypersurfaces is illustrated. t is a
parameter that can be considered the universal time function (not
necessarily the proper time) that labels the spatial hypersurfaces
Σt.

and the unit normal vector to the spatial hypersurfaces Σt, correspond-
ing to the 4-velocity of the normal observers,

nµ = −α∇µt. (1.18)

The lapse of proper time dτ between the two hypersurfaces measured
by a normal observer along a integral curve of nµ is expressed as

dτ

dt
= α(t, xi). (1.19)

With these quantities it is possible to define the projection operator
onto de spacelike hypersurfaces Σt, that is, the spatial metric

γµν = gµν + nµnν. (1.20)

The time vector is defined as

tµ = αnµ + βµ, (1.21)

where βµ is the shift vector and it is purely spatial nµβµ = 0. The shift
vector βi(t, xi) is the relative velocity between normal observers and
the lines of constant spatial coordinates

xi
t+dt = xi

t − βi(t, xi)dt. (1.22)

The lapse α and the shift vector βi are known as gauge functions since
their determination is not unique and they carry information about
the coordinates choice. The metric can be 3+1 split in terms of the
gauge functions and the spatial metric as

ds2 = (−α2 + βiβ
i)dt2 + 2βidtdxi + γijdxidxj, (1.23)
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where βi = γijβ
j. In this coordinate system the unit normal vector can

be written as

nµ =

(
1
α

,−βi

α

)
,

nµ = (−α, 0). (1.24)

Figure 1.2: Figure 2.2 from [13] in which two consecutive hypersurfaces are
shown with their respective parametrization in terms of the lapse
α and the shift βi.

Now, it is needed to differentiate between the intrinsic curvature
(the one coming from the internal geometry of the hypersurfaces) and
the extrinsic curvature, which is associated with how those hypersur-
faces are embedded in the four dimensional spacetime. The extrinsic
curvature tensor Kµν is a measure of the change of the normal vector
under parallel transport along the spacelike hypersurface Σt

Kµν = −Pα
µ∇αnν = −(∇µnν + nµnα∇αnν), (1.25)

which is symmetric, purely spatial and where Pα
µ = δα

µ + nαnµ is
the projection operator onto the spatial hypersurfaces. The projection
operator coincides with the induced spatial metric Pαβ = γαβ. The
extrinsic curvature can also be written in terms of the Lie derivative
along the normal vector of the spatial metric

Kµν = −1
2
Lnγµν, (1.26)

where the Lie derivative along a vector X is defined as

LXTα1...αr
β1...βs = Xγ∂γTα1...αr

β1...βr (1.27)

− (∂γXα1)Tγα2...αr
β1...βs − ...− (∂γXαr)Tα1...αr−1γ

β1...βs

+ (∂β1 Xγ)Tα1...αr
γβ2...βs + ... + (∂βs X

γ)Tα1...αr
β1...βs−1γ.

In order to write the Einstein equations as a Cauchy problem, evo-
lution equations for the spatial metric and the extrinsic curvature are
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needed. The evolution equation for the three dimensional spatial met-
ric is purely kinematic, that is, it comes from rewriting the definition
of extrinsic curvature Eq. 1.25 and results in

∂tγij = −2αKij + Diβ j + Djβi, (1.28)

where Di is the three dimensional spatial covariant derivative asso-
ciated with γij. The evolution equation for the extrinsic curvature,
which encodes the dynamics of the system, corresponds to

∂tKij −LβKij = −DiDjα + α
[
(3)Rij + KKij − 2KikKk

j

]
+ 4πα

[
γij(S− ρ)− 2Sij

]
, (1.29)

where Sµν = Pα
µPβ

νTαβ is the spatial stress tensor measured by the
normal observers with S = Sµ

µ.
These evolution equations by themselves are not equivalent to the

Einstein equations. The 3+1 decomposition also includes the spatial
constraint equations. These remaining equations correspond to the
relation between dynamical variables that must be satisfied at all times.
They only depend on the spatial derivatives and are independent of the
gauge functions α and βi. The first constraint comes from contracting
the Einstein field equations with the normal vector twice. It is called
the Hamiltonian or energy constraint

(3)R + K2 − KµνKµν = 16πρ (1.30)

where ρ = nµnνTµν is the local energy density as measured by the
normal observers. The second constraint comes from projecting the
Einstein field equations into the spacelike hypersurfaces and then
contracting with the normal vector. This is called the Momentum
constraint (which corresponds actually to three equations)

Dµ (Kαµ − γαµK) = 8π jα, (1.31)

where jα = −PαµnνTµν is the momentum density as measured by the
normal observers.

The group of Eqs. 1.28, 1.29, 1.30 and 1.31, are commonly referred
to as the standard Arnowitt-Deser-Misner (ADM) equations. However,
this is not the original form from [18], rather this is the non-trivial
rewriting by York [19]. Nevertheless, these are the base equations
employed for evolutions in NR. It is important to note, however, that
is possible to add arbitrarily multiples of the constraints to these equa-
tions, therefore, their formulation is nonunique. One might ask why
someone should do this, and the answer is that the physical solutions
of the system will always remain the same, but the mathematical
properties and how they behave under small constraint violations (a
fact that always happens when working with NR) may differ.

There is a wide variety of ways to choose these additions, together
with different choices of coordinates. For a summary of different strate-
gies see Chapter 5 from [13] or Chapter 11 from [10]. Probably the most



1.3 critical phenomena 11

famous are Z4 [20–25] and Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) [26–28] using moving-puncture coordinates. Due to the fact that
these formulations are strongly hyperbolic, they have a well-posed
IVP. An alternative formulation is Generalized Harmonic Gauge (GHG)
[29–31], for which GR is represented as a symmetric hyperbolic system,
and therefore, it has a well-posed Initial Boundary Value Problem
(IBVP) for which the boundary conditions are required to be constraint
preserving and radiation controlling [32]. The GHG formalism is im-
plemented inside bamps, the code used for the evolutions of GWs in
vacuum in Chapter 4. For a detailed explanation of this formalism see
[33] and [34].

1.3 critical phenomena

Following the structure of the title of this thesis, it is time to explain
what critical phenomena are and how they play a role in the grav-
itational context. Critical phenomena are by definition the name of
the physics of critical points. This type of phenomenology appears
in several fields of physics, such as thermodynamics (for instance
gas-liquid phase transition), magnetism (as the ferromagnetic phase
transition) and in GR in the gravitational collapse (at least in spheri-
cal symmetry). Critical phenomena, in general, are characterized by
three main features: power-law scaling of the order parameter with
a critical universal exponent, universality of the critical solution, and
scale-invariance. To go deeper into each of these features, let us use
the main topic of this manuscript, critical phenomena in gravitational
collapse as an example to follow the discussion, and then make the
analogy with other physical systems.

1.3.1 Theory: Critical phenomena in spherical symmetry

Most of what is well known about critical phenomena in gravitational
collapse, independently of the matter model, concerns the spherically
symmetric setting. In this section, I give a brief review of the basic
theory on this topic, for which the standard picture of critical phenom-
ena corresponds to the spherical symmetry restriction and it is well
exemplified by the massless scalar field collapse [17]. For a detailed
review of this subject see [35, 36], however, be aware that some of the
aspects discussed here will change beyond spherical symmetry thanks
to the contributions to this topic in the recent years, including further
Chapters of this thesis.

Critical phenomena in gravitational collapse were discovered in
1993, one of the breakthroughs of NR, by Choptuik [17], where he
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considered a minimally coupled real massless scalar field φ to gravity
in spherical symmetry. The action of such a system corresponds to

S =
∫ √

−g (R− 8π∇αφ∇αφ) d4x, (1.32)

and the stress-energy tensor for a massless scalar field corresponds to

Tαβ = ∇αφ∇βφ− 1
2

gαβ∇γφ∇γφ. (1.33)

The general spherically symmetric line element in Schwarzschild
coordinates is

ds2 = −α2(r, t)dt2 + a2(r, t)dr2 + r2dΩ2, (1.34)

where the field equations are

Φ̇ =
(α

a
Π
)′

, (1.35)

Π̇ =
1
r2

(
r2 α

a
Φ
)′

,

α′

α
− a′

a
+

1− a2

r
= 0,

a′

a
+

a2 − 1
2r
− 2πr

(
Π2 + Φ2) = 0,

and where Φ ≡ φ′ and Π ≡ aφ̇/α are the auxiliary scalar field vari-
ables. In this notation φ′ = dφ

dr refers to the spatial derivative and
φ̇ = dφ

dt refers to the time derivative.
In such a setup, Choptuik considered one-parameter families of

initial data, for example

φ(r) = φ0 tanh[(r− r0)/δ], (1.36)

where φ0 generally corresponds to the free parameter to choose, but
other combinations are possible, for instance, fixing φ0 and r0 and
varying δ. For other choices see Table I in [17]. Usually this parameter
is referred to as p, nomenclature that is used from now on. What
Choptuik discovered was that regarding the chosen value for p in the
initial data, the outcome of the evolution of the Einstein equations was
qualitatively different. When choosing weak initial data (p < p?), the
scalar field would end up dispersing to infinity, i.e. leaving flat space
behind. When the initial data was strong enough (p > p?) the scalar
field would collapse, forming a BH. The threshold lying in between
both regimes is what later became known as the critical solution,
which separates both end states and displays some special properties,
called critical phenomena.

First, this threshold solution was universal, that is, independent of
the initial data family. The solution on the verge of collapse was always
the same. See Fig. 1.3 which was taken from [36], for a illustration of
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universality. It is clear looking at that figure that when a phase space
trajectory starts on a critical surface, it never leaves it. One can say
then that the critical surface is an attracting manifold and that the
critical point is an attractor of codimension one. As a consequence,
universality emerges. When a set of initial data is tuned close to the
critical surface, its evolution will happen almost parallel to this surface
getting closer and closer to the critical solution, where any imprint
from the initial data is gone but for its distance to p?. The closer p is
to p? the more the solution approaches the critical solution and the
longer it will stay close to it, resembling its characteristics.

Figure 1.3: The phase space picture for the BH threshold in the presence of
a critical point. This image is taken from [36]. In this picture the
surface represents the critical solution for p = p?, the space on the
right represents the subcritical regime p < p? and the space on
the left is the supercritical regime p > p?. The continuous black
line represents an arbitrary one-parameter family of solutions, for
which it is possible to choose the value of the parameter p. For any
of these lines, p? corresponds to the intersection with the critical
surface, and any solution that starts tuned to its respective p? will
end up in the critical solution. It is also shown that when close to
criticality (in both regimes) the solutions get very proximate to
the critical solution, following its behavior for a finite amount of
time.

Second, the main geometric feature of this critical solution is what
Choptuik reported as echoing, meaning that the critical solution is
scale-invariant, or self-similar. Such a symmetry can be Discrete Self-
Similar (DSS), as in Choptuik’s example, or Continuous Self-Similar
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(CSS). A spacetime is said to be CSS if there is a homothetic vector field
ξ

Lξ gµν = 2gµν. (1.37)

Consequently, in a CSS spacetime, in coordinates adapted to the sym-
metry xµ = (τ, xi) the vector field ξ = − ∂

∂τ
and the metric coefficients

have the form

gµν(τ, xi) = e−2τ g̃µν(xi). (1.38)

In the case of a DSS spacetime the definition from Eq. 1.38 can be
adapted as

gµν(τ, xi) = e−2τ g̃µν(τ, xi), (1.39)

where gµν(τ, xi) is periodic in τ with period ∆. A more extended
explanation about CSS and DSS is given in Section 2.1. This ∆ is usually
referred as echoing period and in Choptuik’s case it experimentally
takes the value ∆ ' 3.44. This echoing period is universal and only
depends on the matter model, at least, in the spherically symmetric
case.

Third and last, there are some quantities, in this example, the mass
of the created BH (which serves as order parameter), that scale for
p > p? as a power-law of the form

M ' |p− p?|γ, (1.40)

where p is the free parameter of the family of initial data, p? is the crit-
ical value, M is the mass of the BH and γ is the critical exponent, that
is universal and experimentally takes a value of γ ' 0.37. This means
that a BH arbitrarily small can be formed. However, this power-law
behavior also applies to other gravitational quantities, as it was also
proven by [37] that in the subcritical regime (p < p?) the maximum
of the curvature scalar R also follows such a relation, but with a scal-
ing exponent of −2γ. In other words, close to the verge of collapse,
the dimensionful quantities that have a measure of length scale as
a power-law with exponent γ, which is universal and only depends
on the matter model. This applies as well to the Kretschmann scalar
(I = RabcdRabcd), which, as it was explained in Section 1.1, will be the
relevant curvature scalar in the vacuum setups as in Chapters 3 and 4,
for which the corresponding scaling relation holds as

I−1/4
max ' (p− p?)γ. (1.41)

Moreover, if the critical spacetime is DSS such power-laws should have
a superimposed periodic wiggle.

As Choptuik, Chmaj and Bizon [38] introduced when studying
the collapse of a Yang-Mills field, critical phenomena in gravitational
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collapse can be classified as type I or type II. They might also be found
in the literature as Type I and Type II transitions or Type I and Type II
behavior. This classification has some similarities with the statistical
mechanics classification of first and second order phase transitions,
but they are not a perfect analogy.

• Type I:

In statistical mechanics, in a first order phase transition the order
parameter has a finite discontinuity. In type I critical phenomena
the mass of the BH turns on at a finite value (see Fig. 1.4). This
means that there is a minimum, non-zero BH mass which is in
some sense universal, as it does not depend on the initial data.
As it is not possible to have arbitrarily light BHs, this discontinu-
ity in the mass has a parallelism with the discontinuity of the
order parameter in the first order phase transitions in statistical
mechanics. First order phase transitions do not show critical
behavior in statistical mechanics, in contrast, in Type I gravita-
tional collapse critical features appear and the diagram from Fig.
1.3 still applies. In this case the critical solution is stationary or
time-periodic and can be described by a continuous or discrete
symmetry (analogous do DSS and CSS). The dimensionful quan-
tity that follows a power-law behavior and plays the role of an
order parameter is the lifetime tp that a given solution is close to
the critical solution [35, 39]

tp ' −
1

λ0
ln |p− p?|. (1.42)

Type I critical phenomena happen when a mass scale becomes
dynamically relevant in the field equations, see for example the
massive scalar field [40], the Yang-Mills field [38] or the driven
Neutron Star collapse [41].

• Type II: Second order phase transitions in statistical mechanics
are also called continuous, due to the absence of a finite discon-
tinuity in the order parameter. In type II critical phenomena the
mass of the formed BH follows a power-law of the form Eq. 1.40,
which implies that arbitrary light BH can be created. In contrast
with Type I critical phenomena, the mass of the BH does not have
a "jump", it is rather continuous as the order parameter is contin-
uous as well in the second order phase transitions from statistical
mechanics. Type II critical phenomena are also characterized by
having a critical solution that is either CSS or DSS (see Section 2.1
for more details about this type of scale-invariance). Examples
of type II critical phenomena are the massless scalar field [17] in
spherical symmetry which shows DSS and the critical solution of
a perfect fluid [42] in spherical symmetry which shows CSS.
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There are some systems, such as the massive scalar field [40], that
might display both Type I and Type II behavior. This seems to depend
on the ratio of the length scale of the initial data to the length scale
of the mass of the scalar field. For a summary of the type of critical
phenomena in gravitational collapse in spherical symmetry for differ-
ent matter models see Table I in [36], but in this work the focus will
exclusively be on Type II critical phenomena.

Figure 1.4: Figure 2 from [43]. This image shows the schematic behavior of
the mass of the formed BH for critical phenomena. In the top
panel, there is a type I transition where the mass of the BH, MBH
does not vanish at the threshold. In contrast, in the bottom panel,
a type II critical phenomena behavior for the mass of the BH is
shown, where MBH gets infinitesimally close to zero at the critical
point.

Choptuik’s discovery was the first scenario in which critical phe-
nomena in gravitational collapse were reported, opening the door to a
new field of study within NR. As it was said, in this thesis the focus
will be only on type II critical phenomena. This type of critical phe-
nomena is the one appearing in the Choptuik spacetime and also in
the collapse of GWs in vacuum, relevant cases for the Strong and Weak
Cosmic Censorship conjectures (see Section 1.4). It is important to
remark, nevertheless, that most of the theory about critical phenomena
in gravitational collapse comes from studies carried out in spherical
symmetry (with the massless scalar field or other matter models),
being just a (growing) handful of studies moving beyond. This field
of research has substantially changed in recent years (the past four or
five years in particular), while the research that is contained in this
manuscript was ongoing. In Section 1.5 a historical and chronological
recapitulation of critical phenomena in gravitational collapse is done,
citing the most relevant works and explaining why this last period
had important contributions (including this document and related
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work) that motivate a change in the paradigm of critical phenomena
in the gravitational collapse.

1.3.2 Analogy with other systems

The critical phase transitions in other fields of physics, such as sta-
tistical mechanics, share the same properties as in the spherically
symmetric gravitational collapse case: fine-tuning, universality, scale-
invariant physics, and power-law behavior of the order parameter with
universal scaling exponent. As will be mentioned in Section 1.4, this is
an important motivation to study critical phenomena in gravitational
collapse as part of the theory of critical phase transitions. For the
analogy in this manuscript let us just consider two common and well
understood cases: the liquid-gas transition in a fluid and the ferromag-
netic phase transition as two examples to state the similarities with
critical phenomena in gravitational collapse. For a textbook treatment
of critical phenomena in statistical mechanics see [44–46].

In thermodynamics, phase transitions are thresholds in the space of
external forces at which the macroscopic observables, or one of their
derivatives, change discontinuously. For instance, the difference in
densities in the liquid and gas phases depends on the temperature as
a power-law with a critical exponent γ as follows

ρliquid − ρgas ' (T? − T)γ, (1.43)

which is obviously reminiscent of the power-law from Eq. 1.40. A
priori, when crossing the boiling curve (see Fig. 1.5) the density of
the fluid changes discontinuously from liquid to gas, however, this
difference depends on the temperature according to Eq. 1.43. When
the temperature reaches criticality, this difference vanishes and it is
possible to change phase continuously. This critical point is defined as
the end of the liquid-gas equilibrium curve.

A very similar feature is found in Ising ferromagnets. At high
temperatures (T > T?) and null external magnetic field B = 0 the
system is in the paramagnetic phase, that is, there is not an overall
magnetization |m| = 0. However, for low temperatures (T < T?), the
spins tend to align along a specific direction, even in the absence of
an external magnetic field, therefore the magnetization is not null
|m| 6= 0 and the system is in the ferromagnetic phase. This behavior
is characterized by the power-law

|m| ' (T? − T)γ, (1.44)

where T? is the Curie temperature and γ is the critical exponent.
Again, a power-law like Eq. 1.40 is present. By looking at Fig. 1.6 it is
clear that there are two phases. When applying an external magnetic
field, below the critical temperature the spontaneous magnetization
changes discontinuously. However, above the critical temperature the
magnetization change it is continuous.
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Figure 1.5: Phase diagram of a fluid (from Fig. 1.1 of [44]). In this case all
the phase transitions are first order except at the critical point C,
beyond which it is possible to move continuously from liquid to
gas.

Figure 1.6: This corresponds to Fig. 1.2 in [45]. M corresponds to the mag-
netization, H to the external magnetic field applied, T to the
temperature, and Tc to the critical temperature or Curie tempera-
ture. (a) corresponds to the ferromagnetic phase, where the spins
align with the applied magnetic field in a discontinuous manner,
revealing a first order phase transition. (b) corresponds to the
critical point, at which the first order phase transition becomes
continuous and the correlation length diverges. (c) corresponds to
the paramagnetic regime where the magnetization aligns continu-
ously (second order phase transition) with the external magnetic
field.
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1.4 motivation

The main motivation to study critical phenomena in gravitational
collapse comes from both, the strong (SCC) and the weak cosmic
censorship (WCC) conjectures [47, 48]. They are of great concern in
classical 3+1 gravity, therefore a way to try to find counterexamples to
them is to use NR to study extreme spacetimes.

The WCC conjecture is usually stated as

Generic asymptotically flat initial data have a maximal future development
possessing a complete future null infinity.

Maximal future development here is meant in the sense that any
other future development is contained in the maximal development
[5].

WCC, in other words means that no naked singularities might be
seen from future null infinity. A priori this would be in contradiction
with the findings by Choptuik [17] that were explained in the section
right above, where for the critical solution a naked singularity appears.
Although this might be a counterexample to the WCC, it is not con-
sidered a conclusive example due to the fine tuning that is needed to
achieve the critical solution. As the conjecture is stated for generic data,
it means that an open set of initial data that has a zero probability
measure (as is the case of the critical solution), is not in contradiction
with such a statement.

On the other hand, the SCC conjecture is normally expressed as

Generic asymptotically flat initial data have a maximal future development
which is locally inextendible as a Lorentzian manifold in a continuous manner.

Where the continuity requirement on the extension refers to the
metric. This can be thought of as for generic initial data, the solution,
when maximally extended, is unique. This obviously has to do with
the regularity of the solution (see [48] for more details), because when
maximally extended something has to go wrong such that the solution
can not be extended. However, if in the case of critical phenomena the
critical solution remains regular enough it might be the case that for
an open set of asymptotically flat initial data the solution is extendible
beyond the blowup by choosing fresh data in the singular surface in
inequivalent manners, which would violate the SCC. It might even
happen that this scenario is the case for a large set of solutions in,
let us say, the collapse of GWs in vacuum, that is close enough to
criticality so that the violation of the SCC would happen in an open
set of data. Therefore, the violation of SCC would be honest. A further
discussion on this topic might be found in Section 2.5.2, nevertheless,
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this is an essential point on why one might study critical phenomena
in gravitational collapse.

After all, it can not be ignored that the study of the most extreme
spacetimes within GR is part of its completeness. On the other hand,
phase transitions are very well understood in other systems such
as statistical mechanics, thermodynamics, or magnetism, therefore
it is a must to also find the right significance they have within the
gravitational context by focusing on the threshold between collapse
and dispersion and comprehending its peculiarities.

1.5 history of critical phenomena in gravitational col-
lapse

As is well known and was discussed above, critical phenomena in
gravitational collapse discovered by Choptuik in 1993 [17] were a
breakthrough in the field of NR. Since then numerous authors have
studied such phenomenology in different systems with different sym-
metry restrictions, however, Choptuik’s work was pioneering, setting
the discovery of critical phenomena for a massless scalar field in spher-
ical symmetry. The critical exponent for the scaling of the masses of
the BHs in this case resulted γ ' 0.37. Critical phenomena in the spher-
ical case are well known, therefore, studying the collapse of GWs in
vacuum becomes more interesting. If one wants to understand critical
phenomena in GWs, one should go beyond spherical symmetry since
any spherically symmetric solution will not represent GWs. The first
work investigating such a setting was done by Abrahams and Evans
already in 1993 [49], where they evolved a single one-parameter family
of Teukolsky waves (see Chapter 3) and report a critical exponent of
γ ' 0.37 as well for the scaling of the mass of the BHs, and ∆ ' 0.6
for the echoing period. Soon after a second study [50] by the same au-
thors came, where they investigated a second family of Teukolsky data
where this time they found a critical exponent of γ ' 0.36, compatible
with the previous result, leading to the conclusion that the critical
exponent was universal and the same as in the pioneering work of
Choptuik for the massless scalar field. These two studies were the first
ones to report an axisymmetric critical solution, since there are no
spherical dynamical GWs. The picture of critical phenomena remained
the same so far, a self-similar critical solution that lies on the verge
between dispersion and BH formation that acts as an attractor and it is
universal, displaying as well a universal critical exponent and echoing
period. Since then many other authors evolved GWs trying to look
for critical phenomena, however, nobody was able to reproduce such
results so far. In Table 1.1 there is a summary of the attempts to evolve
GW in vacuum from the ’90s until nowadays. In part, an explanation
might be that most authors tried to evolve Brill waves (see Chapter
3) instead of Teukolsky due to the fact that they are much simple to
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obtain as initial data and, as the features of critical collapse shall not
depend on the family of the initial data, there is, a priori, no conflict.
It was not until [51] in 2021 that critical phenomena were studied with
a Teukolsky family again.

Authors Year Data type References Comments

Abrahams & Evans 1993 Teukolsky [49, 50] critical behavior

Alcubierre et.al. 2000 Brill [52]

Garfinkle & Duncan 2001 Brill [53]

Santamaria 2006 Brill [54]

Rinne 2008 Brill [55]

Sorkin 2011 Brill [56] critical behavior*

Hilditch et.al. 2013 Brill & Teukolsky [57]

Hilditch et.al. 2017 Brill [58] critical behavior

Khirnov & Ledvinka 2018 Brill [59]

Ledvinka & Khirnov 2021 Brill & Teukolsky [51] critical behavior

Suárez et.al. 2022 Brill [60] critical behavior

Table 1.1: Summary of published results on numerical simulations of non-
linear waves. In the case of [56] it was shown by posterior studies
that what the author reported as critical behavior was not fully
trustable.

Focusing again on the spherically symmetric cases and in the mass-
less scalar field, in 1998 Garfinkle and Duncan came up with a work
[37] in which the power-law scaling was also happening for the max-
imum of the curvature scalar in the subcritical regime (in addition
to the mass of the BHs in the supercritical one). This time, the critical
exponent corresponds to −2γ, as the curvature scalar has units of
inverse length square. This allows one to study the universal scal-
ing approaching the critical point from both sides, that is, from the
subcritical regime as well as from the supercritical one.

The first attempt to understand the critical collapse of a mass-
less scalar field beyond spherical symmetry was performed in 1999

by Martín-García and Gundlach [61] by perturbative analysis of the
spherical solution. In this work, the authors study nonspherical linear
perturbations of Choptuik’s solution. They found that all nonspherical
perturbations of the Choptuik’s spacetime decay, however, the mode
corresponding to ` = 2 had the slowest damping, and that there is
a single pure spherical mode that grows, which causes collapse or
dispersion. This result will be, somehow, contradicted in the future,
see Table 1.2 for a summary of the published results beyond spherical
symmetry, but let us proceed with the facts in order.

After Martín-García and Gundlach, the first numerical study beyond
spherical symmetry for the massless scalar field came out in 2003 by
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Authors Year References Comments

Martín-García & Gundlach 1999 [61]

Choptuik et. al. 2003 [62] two centers of collapse

Healy & Laguna 2014 [63]

Deppe et. al. 2019 [64]

Baumgarte 2019 [65] two centers of collapse

Table 1.2: Summary of published results on studies beyond spherical sym-
metry for the critical gravitational collapse of the massless scalar
field.

Choptuik et. al. [62], where the authors studied the collapse of a
massless scalar field in axisymmetry. The authors adopted a two-
parameter family of initial data parametrized by η as the overall
strength which was tuned to criticality, and ε for the deviation from
spherical symmetry. In this work, the authors report that the critical
solution might be considered as the spherically symmetric one but
with axisymmetric perturbations. In other words, they found that
both, the critical exponent γ and the echoing period ∆ decrease when
increasing ε, the parameter measuring departure from sphericity. A
second important result from this study was that for large values of
ε and fine tuning to criticality, the collapsing region bifurcates into
two collapsing centers along the symmetry axis, which suggest a
nonspherical growing mode dominating the evolution, in apparent
contradiction with Martín-García and Gundlach [61]. The authors also
speculate that despite the insufficient resolution in their numerical
simulations, this bifurcation would occur indefinitely, making the
critical solution much more complex and interesting than was initially
thought. As one will see further in this manuscript, such a bifurcation
behavior is found for other setups as it is described in Section 4.3.2 for
the collapse of GWs in vacuum, however, this was the very first time
such a feature was reported.

Following the study of scalar fields in axisymmetry, the next year,
in 2004, the same authors, Choptuik et. al. [66] published a study
describing the critical collapse of a complex (rather than real) scalar
field with angular momentum, again, an axisymmetric setup. This
time the authors find a DSS critical solution that is universal modulo a
family dependent phase. It was also found that the angular momentum
was not much relevant for the critical behavior and it turned out that it
did not scale as a pure power-law. This was the second non spherically
symmetric critical solution after Abrahams and Evans and the collapse
of GWs in vacuum [49]. The authors take this fact as a positive outcome,
where they even state that
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"[...] the phase space has a more intricate structure than one might have
naively imagined, probably containing an infinite set of distinct intermediate
attractors characterized by their behavior near the center of symmetry".

This was the second indication, together with [62] that when going
beyond spherical symmetry a more complex threshold solution might
arise.

In the meantime, other authors [52–55] evolved non-linear GWs as
summarized in Table 1.1, but the case of Sorkin in 2011 [56] deserves
special attention. This was the first work after Abrahams and Evans
[49] that successfully evolved non-linear GWs and reported critical
behavior. The initial data chosen by Sorkin were centered prolate Brill
waves, a popular choice also in the previous evolutions of Brill waves
(see Table 1.1). In this work, Sorkin reports the finding of a different
critical solution from the one found by Abrahams and Evans [49]. In
this case, the blowup of the curvature occurs in concentric rings in the
equatorial plane centered on the symmetry axis rather than pointwise
(see Section 2.3.7 for a similar solution in a toy model). However,
regarding the power-law, Sorkin reports that the maximum curvature
scales as a power-law and that the scaling exponent for all the studied
families lies in a range of γ ∈ [0.38, 0.4], which is compatible both
with Abrahams and Evans [49] and Choptuik [17]. This result was
very exciting as it could lead to a change in the understanding of
the universality of critical solutions. However, in previous studies
the regime in which the critical amplitude should lie was reported
below the limit given by Sorkin, and finally, in 2017, it was found
by Hilditch et. al. [58] that the regime that Sorkin was studying as
subcritical was in fact supercritical as they had better numerical results
to bound the critical amplitude. More details about this work are given
below. Unfortunately, this means that despite the excitement there
exists subsequent work that contradicts the result of the work done by
Sorkin.

It is worth commenting that before Hilditch et. al. [58] there was an
earlier attempt to study critical collapse evolving non-linear GWs in
moving-puncture coordinates in 2013 [57]. In this work the authors
do not study critical phenomena due to the lack of accuracy of their
numerical simulations, however, they attempt to evolve both Brill and
Teukolsky waves, noticing that the latter have improved numerical
behavior. This fact will be relevant further in this manuscript as there
are some differences between these two types of initial data that might
explain some discrepancies in the behavior near the critical regime
(see Chapter 3).

Moreover about the same time, in 2014 the work by Healy and
Laguna [63] about the critical collapse of scalar fields beyond axisym-
metry was a second attempt to study numerically the massless scalar
field in a setup different than spherical symmetry. This time the au-



24 introduction to critical phenomena in gravitational collapse

thors study deviations from the spherical solution with a parametrized
addition of the spherical harmonic Y21(θ, φ), finding that the mass of
the BHs scales as a power-law with the critical exponent of γ ≈ 0.37,
as in the spherical case, independently of the amount of the spherical
harmonic of the initial data. So far, the authors give evidence of one
single spherical unstable mode and they find difficulty in reporting
echoing, however, they argue that the tuning to the critical amplitude
could be better, as they are still far from the threshold. This result
is in agreement with the theoretical findings by Martín-García and
Gundlach [61] and, as it is not as close as Choptuik et. al. [62] to
criticality, it is not in contradiction.

Let us now focus on Hilditch et. al [58], where the authors evolve
centered Brill waves with a pseudospectral method, bamps, the same
code that has been used (although with updates and the inclusion
of Adaptive Mesh Refinement (AMR)) in Chapter 4 of this document.
See Section 4.1 and [34] for a detailed description of the code. In
this work, the authors find evidence of critical phenomena in the
collapse of axisymmetric prolate Brill waves in vacuum, and they
can tune the closest to the threshold amplitude so far, designated
as A? = 4.6966953125, giving evidence of the powerful numerical
method that is implemented within bamps. The authors also rule out
the critical amplitude achieved by Sorkin [56] by evolving exactly the
same amplitude and finding an (AH), therefore, it must be a super-
critical amplitude. Nevertheless, right before the AH gets formed, the
authors also see that the maximum of the Kretschmann scalar also
occurs in equatorial rings centered in the symmetry axis. To classify
a set of initial data as supercritical, the authors look for AHs, which
are found to bifurcate in parameter space when close to the threshold
suggesting that the Brill wave initial data collapse to form a head-on
collision of two BHs, however, evidence is still to be determined, but
it is a result in agreement with the findings by Choptuik et. al. [62].
This study also finds evidence of power-law scaling in the relevant
curvature scalar, i. e. the Kretschmann scalar, which behaves like a
straight line plus some wiggles where the scaling exponent γ ' 0.37
is compatible with Abrahams and Evans [49], however, they find an
echoing period of ∆ ' 3, which is rather different, suggesting for the
first time that the period might depend on the initial data and not only
on the matter model. So far the authors were able to show only one
period in the scaling of the Kretschmann scalar, therefore speculations
on what could happen are open, it might be that the period changes
when tuning closer to criticality or that the wiggle even disappears, in
either case, it is an indication that the scaling might not be always the
same and that more investigation is needed.

Between 2018 and 2019 two interesting publications evolving nu-
merically the massless scalar field beyond spherical symmetry came
out. One of them by Deppe et. al. [64] carried out evolutions with no
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symmetry assumptions with the SpEc code, in full-3d, of the massless
scalar field and studied the behavior for different symmetry assump-
tions close to the threshold of BH formation. The authors report that
even with a departure from spherical symmetry the critical solution is
always the same as in the spherical case, where the scaling exponent
γ is consistent with previous results but the echoing period ∆ seems
to slightly differ. In this case, the authors do not observe any non
spherical growing modes, as Choptuik et. al. [62] did, however, it is not
clear if the tuning to criticality was sufficient to find such modes. The
second work that came out at that time by Baumgarte [65] also studies
aspherical deformations of the Choptuik spacetime numerically but
restricted to axisymmetry. This time the author evolves axisymmetric
sets of initial data and examines the effects of the deviation from
sphericity. Baumgarte found that both the scaling exponent γ and the
echoing period ∆ agree with previous results when the deviation from
spherical symmetry is small, however, their values decrease when
departing from sphericity, in agreement with Choptuik et. al. [62]. The
key result of this work is that when studying the spherically symmetric
critical solution with nonlinear perturbations the evolution might be
described in terms of the effective values of the scaling exponent γ, the
echoing period ∆ and also the decay rate κ, where the three depend
on the departure from spherical symmetry. Baumgarte found that for
sufficiently large deviations from spherical symmetry κ decreases and
can even change sign, transforming a decaying mode into a growing
one, explaining the discrepancy between Martín-García and Gundlach
[61] and Choptuik et. al. [62]. In summary, when one departs enough
from the sphericity there is a non spherical growing mode that in fact
leads again to the bifurcation of the spacetime along the symmetry
axis with two centers of collapse, above and below the origin.

At this point of the story, there were found at least two models
(massless scalar field and GWs in vacuum) that display two centers of
collapse when evolving axisymmetric initial data, therefore, investigat-
ing other systems that might display such property became relevant.
The first study about critical phenomena in gravitational collapse of
electromagnetic waves was published by Baumgarte et. al. [67] in 2019.
The decision to study such a system in axisymmetry makes Maxwell’s
equations reduce to a wave equation similar to the massless scalar field
case and, moreover, this system shares the property with the collapse
of GWs in vacuum that none of them have a spherically symmetric
solution. This work studies two dipole families of initial data, finding
a scaling exponent of γ ' 0.145 for the maximum energy density
ρ ' (η? − η)−2γ, and an approximate echoing period of ∆ ' 0.55,
however, the discrete self-similarity of the critical solution and the
wiggles in the power-law seems to be only approximate, as well as
the universality, since two critical solutions seem to be almost the
same. The authors speculate that this approximate rather than exact
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DSS behavior might be due to the presence of higher order angular
multipoles. Soon after, a follow up of this work came out by Men-
doza and Baumgarte [68] in 2021, where the authors study critical
phenomena in the gravitational collapse of electromagnetic waves for
dipole and quadrupole initial data, as a generalization of the above
mentioned previous work. This work is one of the breakthroughs
regarding critical phenomena in gravitational collapse in recent years,
as it was shown that the dipole and the quadrupole initial data lead
to different threshold solutions (both qualitative and quantitative).
The dipole data (odd) leads to a single collapsing center when on the
other hand the quadrupole (even) happens to have two collapsing
centers along the symmetry axis, bifurcating the spacetime as it was
already been reported previously for the massless scalar field and the
GWs in vacuum. One might think that these two solutions can still
be locally the same as the bifurcating of the spacetime might be two
copies of the dipole solution, however, it is shown in this work by
Mendoza and Baumgarte [68] that both the scaling exponent and the
average echoing period are different (see their Fig. 7). The authors then
speculate that the threshold solution is not universal as it depends on
the initial data once spherical symmetry is dropped. This finding is
in total agreement with Chapter 2 of this manuscript and [69], where
also two different threshold solutions were found in axisymmetry for
a toy model that reproduces critical phenomena. The speculation is
that different multipoles in the initial data might couple to different
parts of the nonlinearities in Einstein’s equations, which results in the
already explained different behavior of the threshold solution. This
work was also the motivation for Chapter 3 of this thesis, where Brill
and Teukolsky waves are compared in the linear regime as, a priori,
they also correspond to different multipoles.

To complete the historical recapitulation about critical phenomena
in gravitational collapse, a discussion of the work by Ledvinka and
Khirnov [51] is required, in which the authors study the critical vac-
uum gravitational collapse using both Teukolsky and Brill waves as
initial data. This is the first study using GWs in vacuum that actually
studies several families of initial data of different nature. In their con-
clusions, they explain that they find what happens to be only partially
similar to the DSS behavior of the massless scalar field. Despite finding
several approximate echoes they do not have a regular delay. The
evidence found is that the threshold solution DSS structure might be at
most considered approximate. This translates as well to the wiggles of
the power-law that the maximum of the Kretschmann scalar follows,
both the echoing period and the scaling exponent differ and therefore
are dependent on the initial data family (see their Fig. 1). As in pre-
vious studies, the authors also found a bifurcation of the spacetime
along the symmetry axis when tuning to the threshold. The results
from Ledvinka and Khirnov are consistent with Chapter 4 of this
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manuscript, and both contradict the conclusion made by Abrahams
and Evans [49, 50], that both the critical exponent and the echoing
period are universal, as well as the DSS nature of the critical solution.

In summary, critical phenomena in gravitational collapse seem to be
well understood under the assumption of spherical symmetry where
the critical solution displays self-similar behavior, the dimensionful
quantities scale as a power-law with universal critical exponent and
echoing period, and the critical solution is also unique and indepen-
dent of the initial data. However, when one departs from spherical
symmetry and the studied system does not admit such a spherical
solution, the picture becomes more complex. The threshold solution
seems to only display approximate DSS, in agreement with Chapters 2.
The scaling exponent and the echoing period also appear to change
and to depend on the specific initial data family, as will be seen in
Chapter 4. Finally, the universality of the critical solution, understood
as in the spherical setup, changes, since the spacetime shows a bifurca-
tion leading to two centers of collapse. Moreover, it was shown for the
toy models [69] and for the electromagnetic waves [68] that actually
different threshold solutions exist. For the latest updates within this
context please keep reading through this document as we will discuss
the state of the art of critical phenomena in gravitational collapse
beyond spherical symmetry.

1.6 contributions of this manuscript

Hereafter, this PhD thesis is divided into two main parts. First of all
the study of critical phenomena using toy models [69] corresponding
to Chapter 2. In this work a simpler strategy involving modelling is
taken rather than investing more computational resources to evolve
complicated setups such as GWs in vacuum or electromagnetic waves
coupled to gravity. Let us think about some relatively simple nonlinear
models that resemble the principal part of GR, reproduce the standard
picture of critical phenomena in gravitational collapse in spherical
symmetry, and that one can study beyond. In this Chapter, five models
with these characteristics are presented, where some of them allow
analytical solutions and some of them are studied numerically with a
code that I personally wrote from scratch for the occasion, that allows
evolution in spherical symmetry. This was the very first time, up to
my knowledge, that a simple model with just one single scalar field
could reproduce the critical phenomena scenario. This result was an
important contribution in recent years to our theoretical understanding
of why critical phenomena seem to be more subtle once spherical
symmetry is out of the game.

In the second part of this manuscript, which has two chapters, the
focus is on GWs in vacuum. In Chapter 3 a comparison in the linear
regime between Brill and Teukolsky waves is carried out. The motiva-
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tion for such an investigation is that many authors have reported that
evolving Brill waves seem more challenging than Teukolsky waves,
with a priori, no conjectures explaining this difference. Moreover, un-
der the light of [51], it seems that having different sets of initial data
matters regarding the scaling exponent and echoing period in the
critical collapse of GWs in vacuum, adding more interest to studying
the differences between Brill and Teukolsky waves. Finally, [68] gave
the hypothesis that was missing: different multipoles on the initial
data might lead to different, at least globally, threshold solutions in the
case of critical collapse with electromagnetic waves. Teukolsky waves
are quadrupolar by construction, however, Brill waves are multipolar,
but the findings by [70], corresponding to Chapter 3, show that the
most common choice of the Brill data is also quadrupolar and that at
least in the linear regime there are not enough discrepancies between
both types of initial data that can explain the different behavior during
evolution.

The second Chapter of the second part, about GWs investigates
more deeply critical phenomena in GWs in vacuum using the adaptive
pseudospectral code bamps [34], which includes AMR. More details
about this implementation can be found in the forthcoming PhD
thesis of Sarah Renkhoff [71]. In this work, six different families of
Brill waves are evolved and tuned to the verge of BH formation. The
findings for these different families are totally consistent with [58]
and [51]. For the centered Brill wave families, the previous results
were reproduced, meanwhile, the off-centered families bring again the
two key results: evidence of different scaling exponents and echoing
period for the different families of initial data, and bifurcation of the
spacetime, finding disjoint AHs for supercritical sets of data close to
the threshold. In this work it was difficult to claim exact DSS behavior
of the threshold solution. It was not possible to claim DSS, both for
the threshold solution and for the wiggles in the power-law of the
maximum of the Kretschmann scalar. It is clear that more research
is needed since there are not enough periods for all families yet and
some doors are still open, however, this contribution is another key
result that confirms that in the real setting of the collapse of GWs in
vacuum, which does not admit a spherically symmetric solution, the
scheme gets more complicated.

Finally, a final statement and the conclusions are gathered in 5.
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2
S E M I L I N E A R WAV E M O D E L F O R C R I T I C A L
C O L L A P S E

The weak and strong cosmic censorship conjectures are of great im-
portance in classical 3+1 dimensional gravity. The first of them can be
informally stated as given generic asymptotically flat initial data, the
resulting solution will exist globally outside a BH region [47], [48]. The
latter is likewise the conjecture of uniqueness of solutions coming from
generic initial data, and it is directly related to regularity of solutions
at blowup. Despite their important meaning and significance, both
are conjectures. A way to deal with the lack of a global proof is to
try to find counterexamples using, for instance, NR. There is the hope
that, within the picture of critical phenomena in gravitational critical
collapse, giving evidence that an open set of initial data do not have
complete BH exteriors, or are regular enough at the blowup such that
they might be extended non uniquely, might be possible.

The strategy within NR is to try to construct such extreme spacetime
is the following: consider a one-parameter family of initial data such
that small values of the (strength) parameter result in data close to flat
space, with larger values being more and more deformed. Then tune
that strength parameter to the threshold of BH formation. Starting with
the pioneering work of Choptuik [17], as seen in Section 1.3.1, studies
along these lines in spherical symmetry revealed behavior which has
since come to be known as critical phenomena in gravitational collapse.
In short, it has been found that for a given family there is, in a sense,
a single solution lying between dispersion and collapse to form a
BH. Numerical evidence suggests that these solutions have naked
singularities. However, these naked singularities are not considered
counterexamples to the cosmic censorship conjectures due to the high
fine tuning of the initial data that is needed to exactly evolve the critical
solution. These threshold solutions are captivating as they show the
features of the called critical phenomena. Empirically, these solutions
are either continuously (CSS) or discretely (DSS) self-similar and, for a
given model, seem to be unique (in the sense that all families of initial
data display the same threshold solution, i.e. the critical solution). As a
consequence, when considered as a function of the strength parameter,
solutions naturally engender a power-law behavior near the threshold.
Some examples, in spherical symmetry, are [72, 73] and [37], where
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the critical solution is DSS and the maximum of any nonvanishing
curvature scalar represented as a function of the distance from the
threshold in phase space, exhibits a power-law with a superposed
periodic wiggle.

Beyond spherical symmetry, the picture gets more complicated (see
Section 1.5). Similar behavior was found, although with features that
have yet to be explained. For instance, in [67] and in [68] the authors
study the gravitational collapse of electromagnetic waves, where the
threshold solutions seem to only be approximately self-similar. Study-
ing dynamic systems that display critical phenomena in gravitational
collapse beyond spherical symmetry is complicated and computation-
ally expensive (see for example the collapse of GWs in vacuum from
Chapter 4), hence, it is worth looking for an easier and computation-
ally cheaper option to rigorously understand what happens with the
critical phenomena once spherical symmetry is out of the game. To
walk in this direction it is then desirable to construct maximally simple
models that capture the qualitative behavior of critical phenomena
close to the threshold of blowup. Some research has been made [74–
78], however, all of these works show continuos rather than discrete
self-similarity. Therefore in this Chapter, and from the point of view
of nonlinear partial differential equations (PDEs), the aim is to find a
simple system that admits small-data global existence, meaning that if
the initial data is sufficiently small in some norm (a high derivative
version of E1) then the solution exists as a smooth function for all
t, but large data blowup and that has a unique discretely self-similar
critical solution at the threshold between the two regimes.

Let us illustrate what the next sections of this Chapter will be about.
Let us take the system

�φ = ∇aφ∇aφ , (2.1)

as a model to indicate the structural shape of the terms that generate
the self-similar critical solutions, where ∇ is the Levi-Civita derivative
compatible with the Mikowski metric ηab, and � is the flat space
D’Alambertian operator. The main aim of this Chapter is to give such
a model, therefore in Section 2.2 several toy models are presented,
some of them with analytical solutions and some others for which
numerical tools were employed, explaining also in detail how the
numerical solutions were computed.

Furthermore, the properties of solutions near blowup are of interest
as well as the status of conjectures related to cosmic censorship for
spherical symmetry and beyond. All the presented models are of the
type of Eq. 2.1 but with different coefficients before the nonlinearity.
This means that the principal part is taken to be the D’Alambertian
associated with ηab. Please, be aware that, as only semilinear wave
models are introduced, there are no notions of trapped surface, nor of
a BH formation intrinsic to the model.
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2.1 self-similar functions

Solutions to these models either live forever (small-data global exis-
tence) or terminate at some finite time (large-data breaking down).
There are two ways in which, depending on the model, the blowup
happens: either it is just the first derivative that blows up, or it is
the field itself that explodes pointwise. Each of them has an analog
in L2-like norms, although they are not equivalent. All the models
of Section 2.2 have fine structure at the threshold of blowup which
is described by self-similarity, either continuous or discrete, a spe-
cial case of scale-invariance that will be introduced in more detail in
Section 2.1.2. Since there are two types of blowup and two types of
self-similarity there must be a relationship between both concepts that
are discussed below.

2.1.1 Definitions and blowup

Let us start giving some definitions. A function f (t, xi) is said to be in
L2 at instant t if the integral

|| f ||L2 ≡
(∫
D[ f (t,·)]

dΣ
∣∣∣ f (t, xi)

∣∣∣2)1/2

, (2.2)

exists and it is finite, where D[ f (t, ·)] is the domain of f (t, xi), (T, xi)

are global inertial coordinates on Minkowski and dΣ is the natural
volume form induced in level sets of t.

Referring to the H1 norm, a function f (t, xi) it is said to be H1 at
instant t if the integral

|| f ||H1 ≡
(∫
D[ f (t,·)]

dΣ

(∣∣∣ f (t, xi)
∣∣∣2 + ∑

i

∣∣∣∂i f (t, xi)
∣∣∣2))1/2

(2.3)

exists and it is finite, where ∂i denotes the partial derivative ∂/∂xi.
Generalizing these definitions, a function f (t, xi) is said to be in the
Sobolev space Hk at instant t if the norm [79]

|| f ||Hk ≡
(∫
D[ f (t,·)]

dΣ ∑
|α|≤k

∣∣∣∂α
i f (t, xi)

∣∣∣2)1/2

, (2.4)

exists and it is finite, where α = (α1, α2, α3) are non-negative integers,
|α| = α1 + α2 + α3 and ∂α

i f ≡ ∂α1
x ∂α2

y ∂α3
z f . Please, note that the case

|α| = 0 refers to no derivatives, so the pure function is applied. Please,
note as well that H0 ≡ L2 and that k = 1 corresponds to the definition
of H1 from Eq. 2.3.

As a last definition, a function f (t, xi) is said to be E1 at instant t if
the integral

|| f ||E1 ≡
(∫
D[ f (t,·)]

dΣ
( ∣∣∣∂t f (t, xi)

∣∣∣2 + ∑
i

∣∣∣∂i f (t, xi)
∣∣∣2 ))1/2

,
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exists and it is finite. Let us also explain what is the meaning of what
is called "blowup". If a function that is initially Hk (or E1) fails to fulfill
the definition at some instant t′ > t, it is said that it blows up in Hk

(or E1) at that instant t′. Please note that if a function blows up in Hk

it will also do so for any Hk′ for k′ > k.
The formulation of the WCC conjecture [48] is given in terms of the

local L2 norm integrability of the connection coefficients. Intuitively,
if any blowup happens, it might be directly associated with at least
one derivative of the metric, and therefore, the connection appears
naturally. As it would be the first derivative of the metric blowing up,
the modelling interest relies on the semilinear wave equations with
blowup in E1 rather than in L2.

2.1.2 Self-similar functions

Self-similarity means invariance under specific scale transformations,
however, let us properly define it. In this case, two types of self-
similarity will be considered: continuos (CSS) and discrete (DSS).

A scalar function f is said to be CSS if there exists a coordinate
system (t, xi) and a ν ∈ R such that

f (λt, λxi) = λν f (t, xi) , (2.5)

for any λ > 0. Please note that the chosen coordinates are such the
center of the symmetry is the origin. Homegeneous functions of degree
ν are a particular case of CSS for when ν is an integer.

A scalar function f is said to be DSS if there exists coordinate sys-
tem (t, xi), a ν ∈ R, and some ∆ > 0 such that (2.5) holds for λ = e−m∆,
with any m ∈ Z. Thus, DSS functions have a fractal-type behavior
under scale transformations. The condition (2.5) is often expressed in
similarity coordinates (T, Xi) = (− log |t|, xi/t) as

f (T + τ, Xi) = e−ντ f (T, Xi) , (2.6)

where τ = − log λ. In the case of DSS functions the last condition is
satisfied for τ = m∆.

2.1.3 Self-similarity and blowup

Self-similar functions exhibit particular examples of blowup, either
pointwise or under some integral norm. To show this let us integrate
Eq. 2.5 in the following way∫

R3
dΣ ∑
|α|=k

∣∣∣∂α
i f (t, xi)

∣∣∣2 =
1

λ2(ν−k)

∫
R3

dΣ ∑
|α|=k

∣∣∣∂α
i f (λt, λxi)

∣∣∣2 ,

(2.7)
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now, carrying out a change of variables such that x̃ = λx, ỹ = λy,
z̃ = λz and therefore dΣ̃ = λ3dΣ∫

R3
dΣ ∑
|α|=k

∣∣∣∂α
i f (t, xi)

∣∣∣2 = λ2(ν−k+3/2)
∫

R3
dΣ̃ ∑
|α|=k

∣∣∣∂α
i f (λt, x̃i)

∣∣∣2 .

(2.8)

As inside an integral, it is possible to name the integration variables as
one please, it is clear that a CSS function satisfying Eq. 2.5 also satisfies∫

R3
dΣ ∑
|α|=k

∣∣∣∂α
i f (t, xi)

∣∣∣2 =
1

λ2(ν−k+3/2)

∫
R3

dΣ ∑
|α|=k

∣∣∣∂α
i f (λt, xi)

∣∣∣2 ,

(2.9)

for any λ, where xi are the canonical Cartesian coordinates and the
domain of f is R3, except (possibly) a set of zero measure.

Now, making the particular choice of λ = 1/|t|, for t < 0∫
R3

dΣ ∑
|α|=k

∣∣∣∂α
i f (t, xi)

∣∣∣2 =
1

|t|2(k−ν−3/2)

∫
R3

dΣ ∑
|α|=k

∣∣∣∂α
i f (−1, xi)

∣∣∣2 .

(2.10)

Therefore, a nontrivial CSS function with ν 6 −3/2 + k cannot be in
Hk for all times because if this function is considered Hk at a certain
instant of time t < 0, it blows up at t = 0. The analogous argument
goes through in the case of a CSS function in E1, where it also blows
up at t = 0 if the nontrivial CSS function with ν 6 −1/2 is in E1 at
t < 0.

A CSS function must satisfy

∂α
t f (t, xi) =

1
λν−k ∂α

λt f (λt, λxi) , |α| = k ,

∂α
xi f (t, xi) =

1
λν−k ∂α

λxi f (λt, λxi) , |α| = k , (2.11)

for any λ. Making again the choice λ = 1/|t|, the CSS function satisfies

∂α
t f (t, xi) =

1
|t|k−ν

∂α
λt f (λt, λxi)|(−1,xi/|t|) , |α| = k ,

∂α
xi f (t, xi) =

1
|t|k−ν

∂α
λxi f (λt, λxi)|(−1,xi/|t|) , |α| = k . (2.12)

It is easy to see that a CSS function with ν < k will not be in Ck
b

(fucntions with k-derivatives bounded). It the CSS function is at Ck
b at

a certain time t < 0, it will blow up at t = 0.
In the case of DSS functions, the both arguments above can be

extended. Take a nontrivial DSS function with the same bounds on ν

and take the limit t→ 0− trhough a sequence tm = −1/λm = −e−m∆,
then, the DSS function will satisfy Eq. 2.9 and Eq. 2.11 for a discrete
set of values λ. The results on the bounds of ν and the blowup on the
respective norms for both CSS and DSS functions are summarized in
Table. 2.1.
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Hk E1 Ck
b

ν ≤ −3/2 + k ν ≤ −1/2 ν < k

Table 2.1: A CSS or DSS function with degree ν (see Eq. 2.5) must blow up in
a given function norm (first line) if the associated condition in ν
(second line) is satisfied.

2.1.4 Sobolev embedding

It can be shown (see for details Theorem 6.5 in [79]) that, for each k a
non-negative integer and s > k + 3/2, there is a constant c such that

|| f ||Ck
b
≤ c || f ||Hs , (2.13)

with f an arbitrary function. In particular, for k = 0 and s = 2,

|| f ||C0
b
≤ c || f ||H2 . (2.14)

This implies that if a function blows up in C0
b , it also blows up in H2.

Since the C0
b-norm is equal to the L∞-norm, if a function blows up

in L∞ it also blows up in H2.

2.2 model equations

In this Section the used models are presented. It is shown a simple
method to generate nonlinear wave equations with an analytical so-
lution, that can be stated in terms of partial waves. Note, however,
that not all the presented models respond to this procedure and have
analytical solutions, in those cases the numerical method of Section
2.4.1 is applied.

2.2.1 The wave equation and partial wave solutions

Let (r, θA) be spherical polar coordinates built from xi in the usual
manner. In these coordinates the flat-space wave equation is,

�ϕ ≡ −∂2
t ϕ + ∂2

r ϕ + 2
r ∂r ϕ + /∆ϕ = 0 , (2.15)

with /∆ the standard Laplacian on the round two-sphere of area ra-
dius r. Then, the general solution might be written in terms of the
partial waves ϕ`m(t, r), where the full solution is constructed as

ϕ =
∞

∑
`=0

`

∑
m=−`

ϕ`m(t, r)Y`m(θ
A) , (2.16)

where Y`m are the standard spherical harmonics. Each partial wave
has an associated equation

−∂2
t ϕ`m + ∂2

r ϕ`m + 2
r ∂r ϕ`m − `(`+1)

r2 ϕ`m = 0 , (2.17)
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whose solution may be written, independently of m, as [80]

ϕ`m =
`

∑
k=0

(k + `)!
2kk!(`− k)!

1
rk+1 [F

`−k(u)− (−1)`−kF`−k(v)] , (2.18)

where u = t− r is the retarded time, v = t + r is the advanced time,
and F is a real-valued function that decays at large argument, and that
it is determined by the chosen initial data for the partial wave and its
time derivative.

2.2.2 Deformation functions

In order to generate nonlinear equations, the deformed scalar field φ

is defined as

φ ≡ D(ϕ), (2.19)

for which whenever ϕ satisfies Eq. 2.15 it must solve

�φ− χ∇aφ∇aφ = 0 , (2.20)

where ∇aφ∇aφ ≡ −(∂tφ)2 + (∂rφ)2 + /∇aφ /∇aφ and /∇ denotes the
covariant derivative induced by ηab on the two-spheres of constant u
and v. Let us see in more detail how this happens

�φ = ∇a∇a (D(ϕ)) = ∇a (D′(ϕ)∇a ϕ
)

(2.21)

= D′′(ϕ)∇a ϕ∇a ϕ + D′(ϕ)∇a∇a ϕ.

Taking into account that by Eq. 2.15, D′(ϕ)∇a∇a ϕ = 0 is satisfied,
replacing ϕ = D−1φ and moving terms to the left hand side it is
possible to arrive to Eq. 2.20 where being D the deformation function
twice continuosly differentiable, the coefficient χ from Eq. 2.20 takes
the form

χ = D′′
D′2 , (2.22)

and it is single valued when represented as a function of φ. It is
required, moreover, that the deformation function D(ϕ) ' ϕ for
small ϕ, so the model will have small data global existence. This last
condition also implies that analytic solutions to Eq. 2.20 can be trivially
constructed using Eq. 2.16. It is important to note, however, that the
specific type of blowup, if happens, is determined by the specific
choice of the deformation function D(ϕ) and as it will be shown in
Sections 2.4.3 and 2.4.4 it will depend on its periodicity. Below there is
the list of the models studied in this manuscript.

2.2.3 Model 1

The deformation function that generates this model is

φ = D(ϕ) ≡ A−1
1 log(1 + A1ϕ) , (2.23)
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which results in the nonlinear wave equation

�φ + A1∇aφ∇aφ = 0 , (2.24)

where A1 ∈ R is a constant that can be freely chosen. This is the classi-
cal example of Nirenberg that motivates the classical null condition for
nonlinear wave equations that, on a Minkowski spacetime, requires
that for a nonlinearity of the form Aµν∂µΦ∂νΦ the equality Aµν = ξµξν

holds for any null vector ξµ, as it is discussed in [81]. This model is the
simplest among the presented ones, but it is a good start to preparing
the code of Section 2.4.1 to solve the non-analytical models reliably.

2.2.4 Model 2

Although model 1 from above (2.2.3) is an interesting exercise ma-
nipulation of the wave equation, the ultimate interest lies in model
equations that appear in physical applications of GR. This Chapter of
the manuscript aims to prove that not only the system in GR show
the properties of threshold solutions, therefore numerical solutions
to semilinear wave models will be computed, being the first of these
models a modification of model 1 in which there are two coupled
scalar fields described by

�φ1 + A2∇aφ2∇aφ2 = 0 ,

�φ2 + B2∇aφ1∇aφ1 = 0 . (2.25)

For model 2 analytical solutions are not known, only in the particular
case A2 = B2 = A1 the model reduces to model 1 of Eq. 2.24 as φ1

and φ2, as well as their derivatives, agree as functions. Hence, for this
model the numerical method described in Section 2.4 is used.

2.2.5 Model 3

By studying plots of the Choptuik solution, for instance Figs 3 and 4 of
[65], one might be reminded of the textbook example the topologists
sine curve defined by f (x) = sin(1/x) where x ∈ (0, 1]. This connec-
tion gives the idea of experimenting deformation functions involving
periodic functions. Let us then adjust the construction from Ep. 2.20

(also to avoid branch cuts) as

φ1 = D1(ϕ) ≡ A3 sin
[

A−1
3 log(1 + ϕ)

]
,

φ2 = D2(ϕ) ≡ A3 cos
[

A−1
3 log(1 + ϕ)

]
. (2.26)

Note that although these deformations are not globally invertible,
D′′1 /D′21 and D′′2 /D′22 are single-valued functions of both φ1 and φ2.
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Following the procedure of Eq. 2.21 it generates the nonlinear coupled
model

�φ1 +
φ1 + A3φ2

A2
3 − φ2

1
∇aφ1∇aφ1 = 0 ,

�φ2 +
φ2 − A3φ1

A2
3 − φ2

2
∇aφ2∇aφ2 = 0 , (2.27)

that also has the algebraic constraint

φ2
1 + φ2

2 = A2
3. (2.28)

Although Eq. 2.27 gives the system for model 3, its presentation
is not ideal for a numerical implementation since it has poles. In
order to avoid these poles, the constraint can be treated to give extra
information, as follows

∇aφ1∇aφ1 = ∇a

√
A2

3 − φ2
2∇

a
√

A2
3 − φ2

2 =
φ2

2

A2
3 − φ2

2
∇aφ2∇aφ2.

(2.29)

Now, substituting φ2
2 = A2

3 − φ2
1 and reorganizing it is possible to

arrive at the first equality out of the constraint, that corresponds to Eq.
(26) from [69] where a typo was found, being the correct expression

∇aφ1∇aφ1

A2
3 − φ2

1
− ∇aφ2∇aφ2

A2
3 − φ2

2
= 0 . (2.30)

Applying the D’Alambertian operator to the algebraic constraint al-
lows to compute this second equality that emerges from the constraint

φ1�φ1 + φ2�φ2 +∇aφ1∇aφ1 +∇aφ2∇aφ2 = 0 . (2.31)

Bringing together Eq. 2.30 and Eq. 2.31 with the system 2.27 it results
in

∇aφ1∇aφ1 +∇aφ2∇aφ2 = A2
3
∇aφ1∇aφ1

A2
3 − φ2

2
. (2.32)

Now using this relation in Eq. 2.27 it is clear that model 3, with the
algebraic constraint from Eq. 2.28, can be expressed by avoiding the
poles as

�φ1 + A−2
3 (φ1 + A3φ2) (∇aφ1∇aφ1 +∇aφ2∇aφ2) = 0 ,

�φ2 + A−2
3 (φ2 − A3φ1) (∇aφ1∇aφ1 +∇aφ2∇aφ2) = 0 . (2.33)

For the IVP (Cauchy problem), solutions with initial data satisfying
Eq. 2.28 will be of the form of Eq. 2.26 and will satisfy the algebraic
constraint for all times. As well, for the IBVP, the boundary conditions
need to be constraint preserving. It is clear already, that blowup
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Figure 2.1: A contour plot of a threshold solution of model 3 with A3 = 1/15,
see Eq. (2.26). The parameter here was chosen simply for clarity
of plotting. This threshold solution blows up in H1 (and not in L2)
in a DSS fashion at (t?, r?) = (1, 0). In the inset the solution is
plotted along the red curve t + 2r(t) = 1 indicated in the main
plot. The figure is naturally compared with Fig. 1 of [82]. The
colors from the colormap refer to the value of the scalar field.

solutions for this model will be oscillatory in nature. Furthermore, for
the interested reader, there is a more succinct way to express model 3

by eradicating either φ1 or φ2 in Eq. 2.27 using the constraint Eq. 2.28,
yielding

�φ1 +
φ1 + A3

√
φ2

1 − A2
3

A2
3 − φ2

1
∇aφ1∇aφ1, (2.34)

�φ2 +
φ2 − A3

√
φ2

2 − A2
3

A2
3 − φ2

2
∇aφ2∇aφ2, (2.35)

for which the equations are decoupled and correspond to two different
systems, corresponding to the positive and negative signs of the square
root. In Fig. 2.1 a spherical solution associated with this model is
plotted at the threshold of blowup in the past light cone of the blowup
point, for a specific choice of the parameters.
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2.2.6 Model 4

As model 2 from Section 2.2.4 might be seen as an extension of model
1 from Section 2.2.3, in this case what it is introduced as model 4 can
be seen as an extension to model 3 from Section 2.2.5 by dropping
the algebraic constraint Eq. 2.28, therefore the adjusted equations of
motion are

�φ1 + A−2
4 (φ1 + A4φ2) (∇aφ1∇aφ1 +∇aφ2∇aφ2) = 0 ,

�φ2 + B−2
4 (φ2 − B4φ1) (∇aφ1∇aφ1 +∇aφ2∇aφ2) = 0 . (2.36)

Solutions to this system are not known analytically, in general, since
it was not obtained from a deformation of the wave equation, but for
the specific choice of A4 = B4 and when the constraint Eq. 2.28 is
satisfied, model 3 is recovered. The numerical results for this model are
carefully studied in Section 2.4, where it is examined if the oscillatory
behavior of model 3 is also present in this model.

2.2.7 Model 5

Coming back to the general deformation function, conformal metric
can be defined as η̃ab = Ω2ηab where the inverse conformal metric
is denoted as η̃ab and the associated covariant derivative by ∇̃a. It
is possible then to compute the conformal factor Ω2 such that the
generic deformation equation 2.20 can be rewritten as a wave equation
in terms of this conformal metric.

For the wave equation �ϕ = 0 the associate standard stress-energy
tensor is

Tab[ϕ] = ∇a ϕ∇b ϕ− 1
2

ηab∇c ϕ∇c ϕ, (2.37)

and it is covariantly conserved ∇bTab[ϕ] = 0. On the other hand, the
stress-energy tensor for the scalar field φ responds to

Tab[φ] = (D′)2Tab[ϕ], (2.38)

case in which the covariant conservation takes the form∇b [Tab[φ](D′)2].
Rewritting the latter expression in terms of ∇̃a and η̃ab the following
relation appears

∇̃bTab[φ] = ∇̃aφ
(
∇̃bφ∇̃bφ

) [
ln

Ω2

D′

]
. (2.39)

It is clear now that by choosing Ω2 = D′ = ∂ϕD (please, be aware
that in [69] there is a typo in first paragraph of Section G, where it
states that Ω−2 = ∂ϕD) the conformal stress-energy is also convari-
antly conserved ∇̃bTab[φ] = 0, therefore, it is possible to rewrite Eq.
2.20 as

�̃φ = η̃ab∇̃a∇̃bφ = 0. (2.40)
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As a consequence, the deformed wave equation automatically admits
the standard stress-energy,

Tab[φ] = ∇̃aφ∇̃bφ− 1
2 η̃ab∇̃cφ∇̃cφ . (2.41)

In this way, the original model has been rewritten in a clean geomet-
ric manner that results in a quasilinear equation. This reformulation
by itself is not of particular help, nevertheless, the conserved energy
will be useful in the future to prove the findings of this manuscript
rigorously. Furthermore, this construction allows for building more
general DSS-type models. Let φ = φ0 and take D, the deformation
function, as monotonic increasing on its domain. Inspired by 2.27, set

φ1 = P1(φ0) , φ2 = P2(φ0) , (2.42)

where P1 and P2 are any periodic functions that satisfy

P2
1 + P2

2 = δ2 , P′21 + P′22 = ε2 , (2.43)

with δ and ε positive functions of φ0 uniformly bounded above and
below away from 0. Analogous calculations to those for model 3

leading to Eq. 2.33 arrive at the regularized equations of motion for
model 5

�̃φ1 − ε−2P′′1 (φ0)
(
∇̃aφ1∇̃aφ1 + ∇̃aφ2∇̃aφ2

)
= 0 ,

�̃φ2 − ε−2P′′2 (φ0)
(
∇̃aφ1∇̃aφ1 + ∇̃aφ2∇̃aφ2

)
= 0 . (2.44)

For a complete model, these equations might be solved, together
with 2.40. The fields φ1 and φ2 have a combined stress-energy Tab[φ1] +

Tab[φ2] = ε2Tab[φ0] that is conserved with ∇̃a after carrying out the
analogous conformal transformation to the general φ. The disadvan-
tage of this model is that it requires more fields, however, it is more
robust than model 3 as it grants a large amount of freedom in the
choosing of a compactifying function. A flaw of using Eq. 2.40 with
Eq. 2.44 is that the coupling between the fields is one-directional,
which, when choosing initial data that violate the various constraints
between the different fields, makes it impossible to create nontrivial
evolution in φ0 from φ1 and φ2. Nonetheless, a modification can be
made to sidestep this weakness. From Eqs. 2.42 and 2.43 it is possible
to compute and use

ε2∇̃aφ0∇̃aφ0 = ∇̃aφ1∇̃aφ1 + ∇̃aφ2∇̃aφ2 , (2.45)

now, by multiplying by Ω−2 Eq. 2.20 it can be expressed as

�̂φ0 − ε−2χ
(
∇̃aφ1∇̃aφ1 + ∇̃aφ2∇̃aφ2

)
= 0 , (2.46)

where �̂φ0 ≡ η̃ab∇a∇bφ0 is the reduced wave operator associated
to η̃ab, and χ is viewed as a function of φ0. It is remarkably that the
combined system from Eq. 2.44 and Eq. 2.46 admits a natural analogy
to GR. The fields φ1, φ2 are analogous to some field theory matter and,
since it is required in building η̃ab, the field φ0 is equivalent to a metric
component.
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2.3 criticality, regularity and the threshold of blowup

In this section, the focus is on nonlinear equations with analytical
solutions, as models 1 and 3 from Sections 2.2.3 and 2.2.5, that are
generated from a deformation of the wave equation. It is examined the
extent to which threshold solutions and those in their neighborhood
in phase space display behavior like the one in gravitational collapse.
The starting point will be the spherical solutions to afterward move
on to more general solutions.

2.3.1 Bounds and blow up in spherical symmetry

First of all, let us settle that spherical threshold solutions blow up at
the origin. In this context, solutions to the flat wave equation (Eq. 2.15)
take the form

ϕ =
1
r
[F(t + r)− F(t− r)] , (2.47)

where F(x) is an arbitrary function. Consider a subset {ϕ?(t, r)} of the
solutions Eq. 2.47, such that for t < t?, ϕ?(t, r) > ξ?, where ξ? is some
constant, and ϕ?(t?, r?) = ξ? is a local minimum. Let us assume the
notation that the label ? stands for blowup. As an illustrative example,
the point (t?, r?) is the location of the blowup in the deformed wave
equation. Due to spherical symmetry, the minimum must be reached
at the origin, therefore r? = 0. To prove this let us imagine, on the
contrary, that r? > 0. Since (t?, r?) is a local extremum

r?
[
F′?(t? + r?) + F′?(t? − r?)

]
= F?(t? + r?)− F?(t? − r?) ,

F′?(t? + r?) = F′?(t? − r?) , (2.48)

which implies that

ϕ?(t?, r?) = 2F′?(t? − r?) = ξ? . (2.49)

On the other hand, using L’Hôpital to compute the limit of Eq. 2.47

when r → 0, at the origin happens

ϕ?(t, 0) = 2F′?(t) , (2.50)

which, by choosing an adequate time t = t? − r? gives

ϕ?(t? − r?, 0) = ϕ?(t?, r?) = ξ? . (2.51)

By assumption r? > 0, so this contradicts the assumption that ϕ?(t, 0) >
ξ? for t < t?. Hence r? = 0 must be always satisfied, which means
that the global minimum of a spherical solution to the wave equation
always happens at the origin. Let us consider now a compactify-
ing deformation function D [ϕ] = C (ϕ), as a logarithm for example,
with C(ϕ) defined on ϕ > ξ? and such that the blowup

lim
ϕ→ξ?

C(ϕ) = ∞. (2.52)



44 semilinear wave model for critical collapse

Call from Section 2.2 the additional requirement on the deforma-
tion function, which in this case translates as C(ϕ) ' ϕ for small ϕ.
For a one-parameter family of initial data, the solutions of Eq. 2.20

at the threshold between global existence and blowup are of the
form φ?(t, r) ≡ C [ϕ?(t, r)], and by the previous discussion must blow
up at (t?, 0).

2.3.2 Criticality of spherical threshold solutions

All the studied models with analytical solutions share the property
that the threshold solutions of these deformation models are universal
in the sense that the structure of their blowup close to (t?, 0) is inde-
pendent of the initial data. These universal solutions are referred to as
critical solutions. Please be aware that all critical solutions are threshold
solutions but not all threshold solutions are critical, for instance, if
a threshold solution depends on the initial conditions it will not be
critical. To explain how universality appears let us start by noticing
that the original solution to the wave equation satisfies

lim
(t,r)→(t?,0)

ϕ?(t, r) ∼ ξ? +
1
2 ∂2

t ϕ?(t?, 0) (t? − t)2

− 1
2 ∂t∂r ϕ?(t?, 0) (t? − t) r + 1

2 ∂2
r ϕ?(t?, 0)r2 . (2.53)

Moreover, it is easy to show that ∂t∂r ϕ(t, 0) = 0 and ∂2
t ϕ(t, 0) =

3∂2
r ϕ(t, 0) = 2F′′′(t) for any regular solution (2.18) of the wave equa-

tion. The last limit thus becomes

lim
(t,r)→(t?,0)

ϕ?(t, r) ∼ ξ? + F′′′? (t?)
[
(t? − t)2 + 1

3 r2
]

∼ ξ? + F′′′? (t?)e−2T
(

1 +
1
3

X2
)

, (2.54)

where in the last step similarity adapted coordinates were introduced

T = − log(t? − t) , X = (t? − t)−1r , (2.55)

and an expansion about (t?, 0) was carried out.
Let us give an illustrative example. Pick model 1 from Section 2.2.3

and set A1 = 1. In this case the compactifying function is C(ϕ) =

log (1 + ϕ) and ξ? = −1 , which turns over

lim
(t,r)→(t?,0)

φ?(t, r) ∼ −2T + log
(
1 + 1

3 X2)+ log
[
F′′′? (t?)

]
, (2.56)

where the first term is the critical solution. Please, note that in the
past light cone of the neighborhood of (t?, r?), the similarity adapted
coordinate X ≤ 1. The expression Eq. 2.56 is independent of the initial
data to leading order, which highlights the universality of blowup
of critical solutions, which happens in L∞. This critical solution is
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approximately CSS, centered at the blowup point, and with degree ν = 0
(see Eq. 2.5)

lim
(t′,r)→(0,0)

φ?(t? + λt′, λr) ∼ φ?(t? + t′, r) . (2.57)

2.3.3 Alternative compactifications

For a more general class of models with ξ? = −1, consider

C(ϕ) =
1
n

(
1− 1

(1 + ϕ)n

)
, (2.58)

where n > 0, and so one has

lim
(t,r)→(t?,0)

φ?(t, r) ∼ 1
n

[
F′′′? (t?)

]−n (1 + 1
3 X2)−n

e2nT . (2.59)

In this case, the universality of blowup of threshold solutions is
weaker, since there is a dependence on the initial conditions through
∂2

t ϕ?(t?, 0). However, there is still a universal power 2n. It is remark-
able that the entire freedom within a large function space boils down
just to one parameter at the threshold. It is appealing to think of the
single remaining parameter as a single hair of "the" critical solution,
so that uniqueness can be understood in a parameterized sense as in
the standard discussion of stationary BHs with symmetry. The thresh-
old solutions of these models blow up in a CSS form, centered at the
blowup point, with ν = −2n (see Eq. 2.5).

2.3.4 Deformations using periodic functions

In this section the target is to express the deformation function as the
functional D [ϕ] ≡ P ◦ C(ϕ) with P a bounded periodic function with
period Λ, satisfying limC→0 P(C) ∼ C. Using this construction, solu-
tions to Eq. 2.20 have global existence for small initial data, however,
the first derivative of the field must explode up for large initial data.
In this setup threshold solutions are the ones at the verge between
dispersion and blowup of the first derivative of the solution, with the
form φ?(t, r) ≡ P ◦ C [ϕ?(t, r)]. Again, for this type of deformation
functions the blowup of these threshold solutions occurs at the origin
(t?, 0) and it is universal. For this type of deformation function the
first derivatives are

∂tφ?(t, r) = P ′ ◦ C [ϕ?(t, r)] C ′ [ϕ?(t, r)] ∂t ϕ?(t, r) ,

∂rφ?(t, r) = P ′ ◦ C [ϕ?(t, r)] C ′ [ϕ?(t, r)] ∂r ϕ?(t, r) . (2.60)

Model 3 from Section 2.2.5 corresponds to this new class of defor-
mation function, with ξ? = −1, period Λ = 2π and

φ1 = P ◦ C(ϕ) = A3 sin
[

A−1
3 log(1 + ϕ)

]
, (2.61)
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which results in the bounded field

lim
(t,r)→(t?,0)

φ1?(t, r) ∼ A3 sin
[

A−1
3 log

(
F′′′? (t?)e−2T

[
1 +

1
3

X2
])]

,

(2.62)

with the blowup of the first derivatives happening as

lim
(t,r)→(t?,0)

∂tφ1?(t, r) ∼ (2.63)

− 6 eT

3 + X2 cos
(

A−1
3 log

(
F′′′? (t?)e−2T

[
1 +

1
3

X2
]))

,

and

lim
(t,r)→(t?,0)

∂rφ1?(t, r) ∼ (2.64)

2XeT

3 + X2 cos
(

A−1
3 log

(
F′′′? (t?)e−2T

[
1 +

1
3

X2
]))

.

The threshold solutions of model 3 blow up with a universal power.
The dependence on the initial data reduces to one number, which is
inside the trigonometric function, appearing just as a phase offset. In
Section 2.4 numerical results are shown for this model. It is clear that
the blowup of ∂tφ1? and ∂rφ1? is DSS, centered at (t?, 0), with degree
ν = −1 and λm = e−m∆ = emπA3 (see Eq.2.5)

lim
(t′,r)→(0,0)

∂µφ1?(t? + λnt′, λnr) ∼ λ−1
n ∂µφ1?(t? + t′, r) . (2.65)

Using the construction of model 5, alternative P ◦ C deformation
models can be built. For example, by combining the compactification
Eq. 2.58 with the periodic function sin,

φ1 = sin
[

1
n

(
1− 1

(1 + ϕ)n

)]
. (2.66)

The threshold solutions of this model have the form

lim
(t,r)→(t?,0)

φ1?(t, r) ∼ sin
(

1
n

[
F′′′? (t?)

]−n
[
(t? − t)2 + 1

3 r2
]−n
)

,

(2.67)

which is bounded. Their first derivatives blow up with

lim
(t,r)→(t?,0)

∂tφ1?(t, r) ∼ 2
[
F′′′? (t?)

]−n t? − t(
[t? − t]2 + 1

3 r2
)n+1 cos(∗) ,

(2.68)

and

lim
(t,r)→(t?,0)

∂rφ1?(t, r) ∼ − 2
3

[
F′′′? (t?)

]−n r(
[t? − t]2 + 1

3 r2
)n+1 cos(∗) ,

(2.69)
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where ? here denotes the argument of the sin term in Eq. 2.66.
It is clear, by looking at the cos term, that in these coordinates the

blowup does not satisfy the symmetry from Eq. 2.5. An appropriate
coordinate system, which would imply a DSS blowup, was not found
so far, however, this possibility is not excluded. Nevertheless, the
power of blowup is still universal, and (as before) it is 2n. Again, the
freedom of the critical solution is reduced to one single parameter.
Interestingly, much of the desired phenomenology can be achieved
but with threshold solutions of an apparently different character. If
one wants to insist on finding alternative models that do have DSS

threshold solutions it might be worth trying deformation functions of
the form,

D(ϕ) ' eC(ϕ)P ◦ C(ϕ) . (2.70)

but for this manuscript, it is already enough to count with the simpler
option above. All of the power-laws discussed so far appear in physical
space. Forward in this section, similar results in phase space (a− a?)
are discussed.

2.3.5 Regularity of spherical solutions at blowup

So far, the focus was only on pointwise blowup, but a proper under-
standing of the threshold must also include statements about local
integrability. Consider first deformation functions that involve only
a compactification. As it has already been discussed, with this setup
blowup solutions, whether generic or at the threshold, become un-
bounded pointwise. Therefore by Sobolev embedding (see Eq. 2.14) H2

must explode, but beneath that, the story is more subtle. By choosing
the initial data constant in space for the first time derivative out to
some radius and then cutting off, it is clear that solutions can blow
up in L2 for any of the pure compactification deformation functions.
But around the threshold, the solutions blow up in a special, localized
manner, so that boundedness in L2 depends on the specific deforma-
tion function or compactification. This must also fall in line with the
observations made in the previous section about the regularity of self-
similar functions. In fact, since the compactification determines also
the degree ν, there must exist a relationship between the universal
powers and regularity at the threshold. To examine this, it is supposed
that the integral is dominated by the values of the integrand at the
origin. Expanding then, with the log compactification one finds that

||φ?||L2 ∼ e−3T/2T , ||φ?||E1 ∼ e−T/2 ,

||φs||L2 ∼ T , ||φs||E1 ∼ eT , (2.71)

for threshold solutions. Here it is used the fact that, at the threshold,
the spatial scale on which the solution becomes large pointwise is fixed
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in the similarity coordinate X. It is assumed that the blowup of the
supercritical solution φs occurred at the origin with the spatial scale
fixed in r, and by setting the slow-time T = − log(t? − t), with t? the
instant at which the solution explodes, so that T → ∞ at the blowup.
Thus this estimate on φs need not be verified in practice, and indeed
it is easy to come up with examples in which L2(φs) is finite even at
blowup. For the alternative compactification Eq. 2.58

||φ?||L2 ∼ e(2n−3/2)T , ||φ?||E1 ∼ e(2n−1/2)T ,

||φs||L2 ∼ enT , ||φs||E1 ∼ e(n+1)T . (2.72)

Again these naive estimates on φs need not be satisfied, and serve
only as an indication of possible behavior. All of these estimates
can be verified numerically and are in agreement with the results in
Section 2.1. Moving on to deformation functions involving a periodic
function, by construction, obviously solutions can never blow up in L2.
Proceeding as before,

||φ?||E1 ∼ e−T/2 , ||φs||E1 ∼ eT , (2.73)

for model 3 and

||φ?||E1 ∼ e(2n−1/2)T , ||φs||E1 ∼ e(n+1)T , (2.74)

with the composite deformation function sin ◦ C taking again the
compactification Eq. 2.58. As mentioned in the discussion above, these
predictions are checked in practice by computing numerically norms
for different blowup solutions. Some examples are shown in Fig. 2.2.
In summary, threshold solutions blow up at t = t? in E1 when n ≥
1/4 (that is ν ≤ −1/2), and in the CSS setting in L2 when n ≥ 3/4
(ν ≤ −3/2). The two takeaways are first, that generic blowup solutions
are less regular than threshold solutions, and second, that there is a
direct relationship between the universal power and the specific level
of regularity.

2.3.6 Aspherical perturbations of spherical critical solutions

So far it has been established that, in pure spherical symmetry, thresh-
old solutions of the deformation models (models 1 and 3) depend
on leading order on only one number from the initial data and are,
in this sense, unique. Therefore, according to the usual picture of
critical gravitational collapse, considering a one-parameter family of
spherically symmetric initial data and tuning this parameter to the
threshold of blowup, the critical solution is recovered. Furthermore,
simply by continuous dependence on given data, spherical initial data
close to the threshold generate solutions that appear like the critical
solution for some time in their development. Evidently, the latter
statement is true also for nonspherical perturbations of the spherical
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Figure 2.2: Plots of the E1 norm for spherical solutions of various models
up to the time at which some field quantity explodes in L∞. On
the top left there is a threshold solution for model 1. On the
top right, a supercritical solution for the same model is shown,
demonstrating that a variation of behavior is possible at blowup.
On the bottom left there is the result for φ1 from model 3 at
the threshold. Finally, in the lower right panel, it is shown the
same for the composite deformation function sin ◦ C, with the
compactification Eq. 2.58 and n = 1/4, which can be used in
practice within model 5. These examples are compatible with
the consideration of self-similar functions and the previous naive
norm estimates.

critical solution. But in fact, a stronger result holds. Take a family of
spherical solutions φa(t, r) = D[a ϕ?(t, r)] normalized so that a = 1
corresponds to the threshold solution φ? = φ1. As discussed above,
in the past light cone of the blowup point, φ? is associated with a
critical solution by simple Taylor expansion. Let ϕ̃ denote any regular
partial wave solution Eq. 2.16 with vanishing spherical component ϕ̃00.
One may think of this solution as being parameterized by the infinite
number of parameters stating how much of each of the individual
partial wave solutions ϕ̃lm, each of which also has a fully functional
degree of freedom, is present. Consider the perturbed solutions

φ̃a = D[a (ϕ? + ε ϕ̃)] , (2.75)

and observe, crucially, from Eq. 2.18 that ϕ̃lm(t, r) = O(rl) near the
origin. One can then see that for ε sufficiently small φ̃? = φ̃1 is also a
threshold solution. Starting from φ̃?, within this family, the only way
to restore global existence is to reduce the strength parameter a. It
seems that this result would fit nicely with a perturbative analysis
along the lines of that given in [61]. To understand the effect of the ϕ̃

on the asymptotic solution in the past light-cone of the blowup point,
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Figure 2.3: A contour plot of an axisymmetric threshold solution for model 3
shown on the symmetry axis. Despite shared attributes with the
spherical solution of Fig. 2.1, there are obvious differences too, as
the data here leading to blowup is mostly outgoing (as can be seen
from the direction of the contours). The colors from the colormap
refer to the value of the scalar field. For this model therefore the
conjecture that there is in general a unique threshold solution
regardless of initial data is false.

a generalization of the spherical Taylor expansion given above is
presented below.

2.3.7 Single-harmonic threshold solutions

To this point, the behavior exhibited by solutions of the studied models
had a direct analog to the standard picture of critical collapse. In
moving to consider general nonspherical threshold solutions the way
parts from that picture. The discussion here is focused on model 3 from
Section 2.2.5, but holds more generally. Let us start by constructing a
particular threshold solution from a pure ` = 2, m = 0 partial wave
solution ϕ20 to the wave equation. Recalling the exact solution Eq. 2.18

and working with the family generated by the Gaussian,

F(r) = ae−(r+1)2
, (2.76)

it is found that the threshold solution φ? is obtained with a? ' 1.678.
As observed above, the partial wave vanishes at the origin, and there-
fore the blowup point occurs elsewhere, in this case at (t?, x?, y?, z?) '
(0.735, 0, 0, 1.324). This threshold solution is plotted in Fig. 2.3. Al-
though there are qualitative similarities with the spherical threshold
solution plotted in Fig. 2.1 for the same model one could hardly claim
that the two solutions are the same.
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Impressively, even restricting to threshold solutions build from a
single spherical harmonic as explained, there is still another distinct
branch of threshold solutions. Consider, for instance, the spherical
harmonic Y20(θA) as

Y20(θ
A) =

1
4

√
5
π

(
3 cos2 θ1 − 1

)
, (2.77)

which has local extrema on the x and z-axes. As the setup is axisym-
metric, it is possible to identify x with the cylindrical radial coordinate.
Therefore the solution to the wave equation

ϕ(t, r, θA) = ϕ20(t, r)Y20(θ
A) (2.78)

giving rise to a solution of the deformed wave equation can explode
the compactification in one of two ways,

ϕ20 = −2
√

π

5
, ϕ20 = 4

√
π

5
, (2.79)

at some point, resulting in the first case in blowup of φ on the symme-
try axis as plotted in Fig. 2.3, or else on a ring in the xy-plane in the
second. A snapshot of a solution close to this type of blowup, obtained
with the family

G(r) = −F(−r) , (2.80)

with F the Gaussian from before, is shown in Fig. 2.4.

2.3.8 Blowup amplitudes under perturbations

The previous example shows that threshold solutions constructed
from a generic single harmonic are not unique, and may differ even
in the topology of their blowup. In the spherical setting, it has been
seen that adding arbitrary small perturbations to the initial data at
the threshold nevertheless leaves the same critical amplitude. So an
obvious question is whether or not threshold solutions built from a
single harmonic, or sum of harmonics are locally unaffected by adding
additional harmonics in the same sense. The answer is no. To see this,
recall that the mechanism for this outcome in the spherical case was
that higher order partial wave solutions vanish at the origin, where
blowup is guaranteed to occur with spherical symmetry. In general
the support of higher order partial waves includes however possible
blowup points induced by another partial wave solution. Therefore a
small addition of a higher order partial wave can render a threshold
solution small enough to avoid blowup or drive it unambiguously over
the threshold. The difference between the spherical and generic setup
is illustrated by Fig. 2.5. General threshold solutions are thus described
as a sum over all harmonics, with any individual harmonic potentially
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Figure 2.4: Here a pure l = 2, m = 0 threshold solution for model 3 is plotted
shortly before blowup. Special in this case is that the blowup
occurs on a ring in the z = 0 plane. The colors from the colormap
refer to the value of the scalar field. This was achieved with the
family Eq. 2.80, which may be thought of as the same data as
Eq. 2.76, but evolved backward in time. This shows that away
from spherical symmetry, even when building threshold solutions
purely from a single harmonic, there exist fundamentally different
threshold solutions, although the number of such branches for
each harmonic is always presumably finite. This story becomes
even more involved with higher harmonics.

playing a role in the blowup, and with different topologies, like the
ring of Fig. 2.4, of the singular points possible. This behavior could
be sidestepped by re-expanding the solution in terms of translated
spherical harmonics centered at the blowup point, or more generally
a point in the curve of blowup points, to again recover a basis well-
adapted to the solution at hand.

2.3.9 Self-similarity and generic threshold solutions

By definition, a generic threshold solution can be obtained through
the deformation φ? = D(ϕ?), where ϕ? is a solution of the flat-space
wave equation such that for t < t?, ϕ?(t, xi) > ξ?, and ϕ?(t?, xi

?) =

ξ? is a local minimum. Again, the point (t?, xi
?) is taken to be the

location of blowup of the deformed solution. Because ϕ? is a local
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Figure 2.5: Plots of the blowup threshold amplitude starting from either a
pure spherical solution (blue curve) or an l = 1, m = 0 solution
(red dashed curve), and adding in each case by l = 2, m = 0 spher-
ical harmonic parameterized by ε. See the main text following
Eq. 2.75 for details. There is a neighborhood around the spherical
solution in which the nonspherical deformation makes absolutely
no difference to critical amplitude, although the asymptotic solu-
tion in the past light cone of the blowup point is modified. Once
the perturbation is sufficiently large however the blue curve does
bend away. At this point the threshold solution takes a structure
similar to that illustrated in Fig. 2.3. It is expected that when the
blue curve is extended to the left, eventually the threshold solu-
tion will take the form illustrated in 2.4. In contrast, the pure l = 1
threshold amplitude is immediately affected by the perturbation.

minimum at (t?, xi
?), all first derivatives vanish at this point, and some

second derivatives must be positive, like ∂2
t ϕ?. However, the second

derivatives ∂t∂i ϕ? and ∂j∂i ϕ? may be zero if the blowup happens on a
curve or a surface (as illustrated in Fig. 2.4). It is assumed here that
the blowup happens at a point, but the same discussion applies to any
point in a curve or surface of blowup, with the caveat that the past
light cone of each such point can be treated locally as follows, with a
global understanding to be tackled separately. Close to this blowup
point, the solution of the original flat-space wave equation is

lim
(t,xi)→(t?,xi

?)
ϕ? ∼ ξ? +

1
2 ∂2

t ϕ?(t? − t)2

− ∂t∂i ϕ?(t? − t)(xi − xi
?) (2.81)

+ 1
2 ∂i∂j ϕ?(xi − xi

?)(xj − xj
?) ,

with all derivatives evaluated at (t?, xi
?). Uniqueness of the threshold

solution in the spherical case, and the lack thereof in general, can
be understood here from the fact that the derivatives in the former
case depend only on the l = m = 0 partial wave solution, whereas
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in general higher harmonics can contribute. To count the number of
free-parameters here, first observe that, performing a trace/trace-free
decomposition on ∂i∂j ϕ?, the Laplace piece can be replaced using the
wave equation. Then one might count nine free parameters. Introduc-
ing a spherical harmonic decomposition of ϕ? centered at xi

?, it follows
by the O(rl) property of the partial waves that only the lowest order
(up to l = 2) harmonics can contribute, which gives a consistent count
of parameters. The first derivatives are

lim
(t,xi)→(t?,xi

?)
∂t ϕ? ∼ ∂2

t ϕ?(t? − t) + ∂t∂i ϕ?(xi − xi
?) ,

lim
(t,xi)→(t?,xi

?)
∂i ϕ? ∼ ∂2

i ϕ?(t? − t)− ∂t∂i ϕ?(t? − t) . (2.82)

Let us look at the models arising from deformations using peri-
odic functions. Using model 3 from Section 2.2.5, for instance, which
has ξ? = −1, one has

lim
(t,xi)→(t?,xi

?)
∂tφ1? ∼ − lim

(t,xi)→(t?,xi
?)

cos
[

A−1
3 log (1 + ϕ?)

] ∂t ϕ?

1 + ϕ?

(2.83)

and

lim
(t,xi)→(t?,xi

?)
∂iφ1? ∼ − lim

(t,xi)→(t?,xi
?)

cos
[

A−1
3 log (1 + ϕ?)

] ∂i ϕ?

1 + ϕ?
.

(2.84)

Close to the point (t?, xi
?), the denominator (1 + ϕ?) is quadratic

in (t?− t, xi− xi
?) and the first derivatives ∂t ϕ1? and ∂i ϕ1? are linear in

the same argument. So, the argument applied to spherically symmetric
solutions goes through, the conclusion is that the blowup of ∂tφ1?

and ∂iφ1? is DSS, centered at (t?, xi
?), with ν = −1 and λm = e−m∆ =

emπA3 .
Thus, as a remarkable finding, the CSS and DSS blowup properties of

spherically symmetric threshold solutions, and even the non-standard
behavior with more general compactifications like in model 5 from
Section 2.2.7, can be extended to arbitrary threshold solutions. Now,
however, nine parameters rather than one are required to characterize
the asymptotic solution in the past-light cone of the blowup point.

2.3.10 Power-law scaling around general threshold solutions

So far, power-law behavior that occurs in physical space has been
discussed, yet, in critical collapse such behavior is usually viewed
in phase space. The focus is on this next, working with the time
derivative of the field, since this allows the treatment of both types of
model in a unified way. Consider a family of solutions φa = D[a ϕ],
parameterized by a, with ϕ a fixed, nontrivial solution of the wave



2.3 criticality, regularity and the threshold of blowup 55

equation which explodes the deformation function first at a = a? as
usual. Let xµ(a) be the locus of maxima (in amplitude) of Πa = ∂tφa,
which defines a curve when a . a?, with a? the threshold amplitude.
Since Πa attains a local maxima at xµ(a),

∂tΠa = aD′(a ϕ)∂2
t ϕ + a2D′′(a ϕ)(∂t ϕ)2 = 0 , (2.85)

which is understood to hold at xµ(a), and which it is possible to solve
for (∂t ϕ)2. Since this equation must hold for all values of a, one can
derive in a, and obtain an expression for t′(a) in terms of the other
variables. Assuming more regularity on the curve, one can take higher
derivatives too. Starting with the general expression for Πa then

Πa(xµ(a))−2 =
D′′(a ϕ)

aD′(a ϕ)3∂2
t ϕ

, (2.86)

again understood to hold at xµ(a). From here let us split the discussion
into two cases. First suppose that D = C with the compactification
Eq.2.58, assuming that n > 0. In this case Eq. 2.86 takes the form,

Πa(xµ(a))−2 = − C ′′(a ϕ)

aC ′(a ϕ)3∂2
t ϕ

= (n + 1)
(1 + a ϕ)2n+1

a ∂2
t ϕ

. (2.87)

Please be aware that in ?? there is a typo in Eq. 78, there is a factor
(n + 1) missing that here has been corrected.

The objective now is to extract the piece of this that dominates
as a → a?. Since ∂2

t ϕ is generically non-zero at the maximum and
non-zero as a→ a?, it is needed only to consider

C ′′(a ϕ)

C ′(a ϕ)3 = −(n + 1)(1 + a ϕ)2n+1 . (2.88)

Raising this to the power 1/(2n + 1), Taylor expanding at an arbi-
trary a = a0, plugging in the result for t′(a), and taking the limit a0 →
a? one can conclude that, in the regime a . a?,

Πa(xµ(a)) ' (a− a?)−(2n+1)/2 . (2.89)

The logarithmic compactification used in Eq. 2.23 is more subtle
to treat, but corresponds to the case n = 0. In fact for this model the
range −1/2 < n < 0 may also be interesting to investigate, but this
is not done in here. Moving now to the case D = P ◦ C, again for
concreteness taking the compactification from (2.58), it is found that
Eq. 2.87 is instead replaced by

−Πa(xµ(a))−2 =
P ′′

aP ′3C(a ϕ)∂2
t ϕ

+
P ′C ′′(a ϕ)

aP ′3C(a ϕ)3∂2
t ϕ

. (2.90)

Following from here the same procedure as before, noting that
the first of these terms is now the leading piece, and raising to the
power 1/(n + 1), in the regime a . a?,

Πa(xµ(a)) ' (a− a?)−(n+1)/2 . (2.91)
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Again the log compactification can be thought of as n = 0. With
a little more care it is expected that one could see here also the
superposed periodic wiggle. An important message is that power-
law behavior may appear even in models for which self-similarity is
absent at the threshold, so evidence of both phenomena is needed
for a confident diagnosis. In summary, it is found that under mild
assumptions on the regularity of xµ(a), close to the threshold, all of
the models admit universal power-laws regardless of the nature of
the threshold solution itself. Nevertheless, some care is needed in
interpreting this result. For general data, there may appear multiple
“large-data” regions, and the peak of that which ultimately leads to
blowup in the limit a→ a? may be obfuscated, over some range of a,
by another.

2.3.11 Regularity of threshold vs generic blowup solutions

Recovering results on the norms of threshold and blowup solutions in
the nonspherical setting is trickier than in the previous case. Although
the only numerical part of the calculation is in the evaluation of
the norm itself, the solutions can be highly oscillatory. Nevertheless
in all of the cases that one can reliably verify, which include all of
those presented in Fig. 2.2, it is found that the spherical results carry
over without any surprises, and that threshold solutions are slightly
more regular than generic blowup solutions. In the future it will be
interesting to use the geometric reformulation of the models given in
Section 2.2 together with the conserved stress-energy to prove these
properties beyond doubt.

2.4 numerical results

In the previous section, a fairly complete picture of threshold solutions
for the models that arise as a deformation of the wave equation was
given. To address the obvious criticism that such models may not be
qualitatively representative of systems that do not arise as a deforma-
tion, in this section numerical evidence that similar phenomenology
does occur within the non-deformation models is presented. Presently
the results of this manuscript are restricted to spherical symmetry,
postponing detailed numerical of generic threshold solutions for future
work. First, the used method is briefly explained, before presenting the
classification and numerical results for each model. Similar, though
more comprehensive, numerical work for alternative models can be
found in [74, 76–78, 83].
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2.4.1 Methods

As presented in Section 2.2, all model equations are second order
both in time and space. For the code implementation a reduction of
the system to fully first order form is carried out and centered finite
differences are used. To do so, the following auxiliary evolved fields
are introduced,

Φ = ∂rφ , Π = ∂tφ . (2.92)

In order to deal with the coordinate singularity at the origin, the
Evans method is applied, for any scalar field Ψ and its derivative Ψ′ =
dΨ
dr , with p = 2 [84],

Ψ′ + p
r Ψ = (p + 1)

d(rpΨ)

d(rp+1)
, (2.93)

where the differential operator can be expressed in terms of the grid
points as,

(p + 1)
d(rpΨ)

d(rp+1)
= (D̃Ψ)i = (p + 1)

rp
i+1Ψi+1 − rp

i−1Ψi−1

rp+1
i+1 − rp+1

i−1

. (2.94)

In Section 2.1.2 definitions for the different norms were given, and
their blowup for CSS and DSS functions was introduced and related.
Below in this section, a classification of the presented models in sec-
tion 2.2 is made following these criteria. The code itself is based on
the method of lines with a Runge-Kutta 4 time integrator where the
baseline numerical grid spacing in space is h = 0.01. The Courant-
Friedrichs-Lewy factor is 0.4, so the time step is 2h

5 . For convergence
tests resolution is always doubled for each new member of the con-
vergence series, but for details see Section 2.4.2. The code itself is
written in Python, and the longest numerical evolutions take just a
few hours on a normal desktop machine. To avoid rapid growth of
numerical error Kreiss-Oliger artificial dissipation [85] with a small
dissipation parameter of order σ = 0.02 was used. The particular
boundary conditions for each model are stated in their corresponding
section.

To perform a bisection search to reach the threshold of blowup the
first runs are made with the base resolution to obtain crude bounds.
Afterward the resolution is doubled and the bisection search is per-
formed, classifying the data as having blown up if |Π(t, 0)| > 1025.
In most cases, the resolution was doubled once more and the bisec-
tion is redone as a consistency check. Since no surprises were found
when increasing resolution like this in the searches, the focus is on
the following primarily physical outcome rather than giving strict
error-estimates.
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2.4.2 Convergence tests

To have a trustable code, convergence tests are mandatory for all
presented models (and variables of each model), and in particular
here, they are performed for the critical amplitude, in the deformed
models, or as close as possible to criticality for the remaining models.
It is assumed that if the models converge at the critical amplitude
(or as close as possibe), this is, in the most extreme regime, they will
converge for any smaller initial data. For simplicity, in this section
model 3 from Section 2.2.5 is used as an illustrative example, but all
results are extended to all models and evolved fields.

2.4.2.1 Norm convergence

The objective of the norm convergence test is to check that the defined
norm (in this case for Φ but analog for any other variable)

L2
HM =

i=imax

∑
i=0

h (ΦH −ΦM)2 (2.95)

L2
ML =

i=imax

∑
i=0

h (ΦM −ΦL)
2

converges. The subscripts in this notation refer to the resolution used
in the simulations, where H stands for "high", M for "medium" and L
for "low", being typically hH = hM/2 = hL/4 and h = 0.01. To check
the convergence in Fig. 2.6 the logarithm in base 2 of the ratio of these
two norms is plotted for the evolved variables Φ1 and Π1 of model 3.
In this "boring" plot it is possible to see a constant line at the value of
2, which confirms that this code converges very nicely in the norm
defined in Eq. 2.95. As said before, this result extends to all models
and evolved fields, showing that the used code is robust in terms of
norm convergence.

2.4.2.2 Pointwise convergence

For this type of convergence test, it is needed to run the code three
times, corresponding to "low", "medium", and "high" resolution again
as in Section 2.4.2.1. Then, the error corresponding to the difference
between these runs (ΦM(H) − ΦL(M)) is plotted at the grid points
corresponding to the "low" resolution for the whole radial domain.
In Fig. 2.7 this result is plotted for the field Φ1 of model 3, where it
is possible to observe that the code has second order convergence as
the error for the higher resolutions is four times smaller. This result is
extended to all the other evolved fields for model 3 and also all the
other models.
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Figure 2.6: Norm convergenge plot for model 3 from Section 2.2.5 for the
variables Φ1 (continuous blue line) and Π1 (dashed orange line)
for the choice A3 = B3 = 1 and at the critical amplitude a = −
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Figure 2.7: Pointwise convergence plot for the variable Φ1 of model 3 for
the choice A3 = B3 = 1, at time t ∼ 0.496 and for the critical
amplitude a = −

√
2. The continuos blue line is the error of Φ1 for

the runs with medium and low resolution, and the dashed orange
line for the runs with high and medium resolution multiplied by
4 for a comparable scaling.
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Figure 2.8: L2 and E1 for model 1 for subcritical, critical and supercricital
data computed from the numerical simulations and the exact
solution for model 1 with A1 = −1. The numerical data agree
extremely well with the values computed from the exact solution.
This indicates that, with suitable care, numerical evolutions can
be of real value in determining regularity even at blowup.

2.4.3 CSS and L∞ blowup

2.4.3.1 Model 1

The equations of motion for the auxiliary fields are,

∂tΦ = ∂rΠ ,

∂tΠ = ∂rΦ + 2
r Φ + A1

(
Φ2 −Π2) . (2.96)

and at the outer boundary

∂tΠ =̂− ∂rΠ, (2.97)

where =̂ refers to the equality only at the boundary. Modulo bound-
ary effects which are negligible in the present study, it is possible to
write down closed form solutions for this model, so numerical work
constitutes only a code-test. But such work can be highly valuable
as it may give confidence in purely numerical studies and highlight
algorithmic shortcomings. As observed in section 2.3 this model is
an example with approximately CSS threshold behavior. All blowup
solutions, including those at the threshold, explode in L∞, but never-
theless may remain finite in L2 and even in the energy norm E1. At
the threshold solutions are finite in E1, whereas generically blowup
solutions explode in E1. An important question, therefore, is how
well numerical methods can cope with data at these varying levels



2.4 numerical results 61

of regularity. Pessimistically one might expect that with standard
methods when the solution explodes pointwise, the numerical error
becomes large so fast that any approximation to L2 (and so forth) from
the numerical data also diverges. Investigating this, it is shown for
example in Fig. 2.8, and it was found that the numerics capture the
expected behavior well. To quantify the agreement up to blowup, one
can observe that in the supercritical data plotted there the blowup
occurs at t ' 0.14603. The numerical evolution was made with a
grid-spacing h = 0.0025, and the last output is made at t ' 0.146. At
that time the approximation to the L2 norm is good to about one part
in 104. In the future, it may be useful to examine the same question
for models that have different regularity at blowup, for example by
using the parameterized compactification (2.58).

2.4.3.2 Model 2

The equations of motion for the reduction variables are

∂tΦ1 = ∂rΠ1 , ∂tΦ2 = ∂rΠ2 ,

∂tΠ1 = ∂rΦ1 +
2
r Φ1 + A2

(
Π2

2 −Φ2
2
)

,

∂tΠ2 = ∂rΦ2 +
2
r Φ2 + B2

(
Π2

1 −Φ2
1
)

. (2.98)

At the outer boundary it is imposed

∂tΠ1 =̂− ∂rΠ1 , ∂tΠ2 =̂− ∂rΠ2 . (2.99)

Several families of initial data were evolved and tuned to the thresh-
old of blowup, but here a representative example is discussed, for
which the initial data

Φ1(0, r) = Φ2(0, r) = 0 ,

Π1(0, r) = 2
5 e1/2−r2

, Π2(0, r) = ae1/2−r2
. (2.100)

Experiments choosing the parameters A2 and B2 were carried out, but
the qualitative behavior of the solutions does not change. Recall that
choosing A2 = B2 = A1 and setting φ1 = φ2 solutions of model 1 are
recovered, making this choice of the parameters is an interesting point
to investigate in more detail. In Fig. 2.9 this is done by plotting the
logarithm of the maximum of the time derivative of the scalar field at
the origin (Π1(t, 0)max, Π2(t, 0)max) against the logarithmic distance to
the critical point a? together with their respective linear least-squares
regressions. Note that hereafter a is the only parameter in each family
of solutions and a? refers to its critical value in each case. Note that
there are two lines, one red and one green, but near the threshold,
they perfectly overlap and give, as a result, the figures mentioned
above. Interestingly, in fact, it was found that for any strong data,
with A2 = B2, the two sets (φ1, Φ1, Π1) and (φ2, Φ2, Π2) miraculously
coincide, and so in fact threshold solutions agree with those of model 1.
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This behavior is shown in the bottom panel of Fig. 2.9. Scaling shows
that if A2B2 > 0 then,

A−1
1 (A2B2

2)
1/3φ1 , A−1

1 (A2
2B2)

1/3φ2 , (2.101)

solve the same model with fresh constants A′2 = B′2 = A1. This is
of course borne out in these simulations. The numerical evidence
therefore strongly suggests that all spherical threshold solutions can
be constructed directly from model 1. The conclusion is that model 2
does indeed have a unique critical solution in spherical symmetry.
Given this, it is perhaps not surprising that experiments indicate the
same level of regularity in L2 and E1 for this model as seen in Fig.
2.10 as for model 1 in Fig. 2.8 for subcritical, critical and supercritical
initial data.

2.4.4 DSS models and their blowup

2.4.4.1 Model 3

The equations of motion for the third model,

∂tφ1 = Π1 , ∂tφ2 = Π2 ,

∂tΦ1 = ∂rΠ1 , ∂tΦ2 = ∂rΠ2 ,

∂tΠ1 = ∂rΦ1 +
2
r Φ1 + A−2

3 (φ1 + A3φ2)[Φ2
1 + Φ2

2 −Π2
1 −Π2

2] ,

∂tΠ2 = ∂rΦ2 +
2
r Φ2 + A−2

3 (φ2 − A3φ1)[Φ2
1 + Φ2

2 −Π2
1 −Π2

2] ,
(2.102)

are supplemented with the corresponding boundary conditions,

∂tΠ1 =̂− ∂rΠ1 − 1
r Π1 , ∂tΠ2 =̂− ∂rΠ2 − 1

r Π2 . (2.103)

These boundary conditions are modified with respect to those of the
previous models simply to avoid code crashes, but in all applications,
nevertheless, the boundary is kept causally disconnected from the
region at the center, which is an actually interesting one. Like in
model 1 the analytical solutions are known, so again this is mainly a
code-test. In this spirit, in Fig. 2.11 it is shown again the logarithm of
the maximum of the time derivative Π1(t, 0)max against the logarithmic
distance to the critical point for a representative family of initial data
given by

φ1(0, r) = 0 , φ2(0, r) = 1 ,

Φ1(0, r) = 0 , Φ2(0, r) = 0 ,

Π1(0, r) = ae1/2−r2
, Π2(0, r) = 0 , (2.104)

in this instance using A3 = 1. In all the studied cases one clearly
observes the expected DSS behavior, which manifests as a straight line
plus a periodic wiggle whose period depends on the value of A3, as
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Figure 2.9: In the top panel the scaling law obtained close to the threshold
by taking the maximum of the time derivatives of the evolved
fields φ1, φ2 for Model 2 is plotted. The chosen parameters are
A2 = B2 = −1, and initial data is as stated in Eq. 2.100. The
threshold amplitude a? = 1.5103468 was obtained by numerical
bisection. In the legend r2 refers to the square of the Pearson
correlation coefficient, which is computed using the Scipy Python

library [86]. A best fit on the data at this resolution returns the
gradient 0.49594 with standard error 0.00018. On the bottom,
snapshots of the same fields close to blowup for the threshold
solution itself are plotted. Observe that the fields lie on top of
each other at late times, indicating that the threshold solution is
in fact described by the same critical solution of model 1. Identical
results are obtained with other families of initial data.
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Figure 2.10: L2 and E1 for model 2 for subcritical, critical and supercricital
data computed from the numerical simulations with A1 = B1 =
−1. For this choice of the parameters the qualitative behavior
agrees with Fig. 2.8

.

this constant appears inside the periodic function. Regarding regular-
ity, recall that this model actually has a similar behavior as model 1.
Although the solution itself never diverges, first derivatives are diver-
gent for any blowup solution. Solutions are always finite in L2. At the
threshold E1 is finite, but for all other blowup solutions it diverges.
This and its comparison with the numerical result is shown in Fig.
2.12, which agrees perfectly well. The result is similar to the ones
obtained for models 1 in Fig. 2.8 and for model 2 in Fig. 2.10, however,
now the L2 norm remains always finite, as expected.

2.4.4.2 Model 4

Remember that model 4 from Section 2.2.6 is thought as an extension
of model 3 in which the constraint φ2

1 + φ2
2 = A3 is violated. The

equations of motion are

∂tφ1 = Π1 , ∂tφ2 = Π2 ,

∂tΦ1 = ∂rΠ1 , ∂tΦ2 = ∂rΠ2 ,

∂tΠ1 = ∂rΦ1 +
2
r Φ1 + A−2

4 (φ1 + A4φ2)[Φ2
1 + Φ2

2 −Π2
1 −Π2

2] ,

∂tΠ2 = ∂rΦ2 +
2
r Φ2 + B−2

4 (φ2 − B4φ1)[Φ2
1 + Φ2

2 −Π2
1 −Π2

2] .
(2.105)

In this case, the two scalar fields of the model are not, a priori, related
to each other because solutions do not arise from a deformation of the
wave equation. In Fig. 2.13 the logarithm of the maximum of the time
derivative Π1(t, 0)max against the logarithmic distance to the critical
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Figure 2.11: Scaling plot for Π1(t, 0)max for model 3 with A3 = 1 for the
family of initial data of Eq. 2.104. The threshold amplitude for
this family is a? = −

√
2. For comparison, the analytic result is

also given. The drift between the numerical and analytic curves
is caused by numerical error, but does converge away with
resolution, as can be understood from the higher resolution data.
In the legend r2 again refers to the square of Pearson correlation
coefficient, which was computed from the lower resolution data
and is close to unity. Linear regression on the numerical data
gives the gradient 0.4945, with standard error 0.0049, close to
the expected value 1/2 seen in Sec. 2.3.

point is plotted. One can observe that this model, despite violating the
constraint and not coming from a deformation of the wave equation,
exhibits DSS behavior too. In this particular plot A4 = B4 = 1 were
chosen, and the family of initial data,

φ1(0, r) = 0 , φ2(0, r) = 1
2 ,

Φ1(0, r) = 0 , Φ2(0, r) = 0 ,

Π1(0, r) = ae1/2−r2
, Π2(0, r) = 0 . (2.106)

tuned to the threshold a? = −2.4122175 by numerical bisection. In
this case, as in model 3, one can regulate the period by choosing
the value of A4 and B4, as one can see in Fig. 2.14. As choosing
different constants would make different models to be solved, having
different periods is not in contradiction. An interesting fact that arose
experimentally is that comparing the values of the constants from
2.14 and the new critical amplitudes, it turns out that when choosing
A4 = B4 = 1/3, the new critical amplitude is three times the one
when the constants are equal to the unit. Same for the case in which
A4 = B4 = 2, where the new critical amplitude is the half of the A?

corresponding to A4 = B4 = 1. It was also experimentally found that
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Figure 2.12: L2 and E1 for model 3 for subcritical, critical and supercricital
data computed from the numerical simulations and the exact
solution for model 3 with A1 = 1. The numerical data agree
extremely well with the values computed from the exact solution.
In this case, the L2 norm remains always finite.

the period of the superimposed wiggle in the scaling relation also
depends on the constants A4 and B4. See Fig. 2.14. This behavior was
also experimentally found for model 3, and although intuitively it
should be an analytical relation, it is not computed in this manuscript.

Similar to model 2, close to the threshold it is possible to observe
that, at least for the families of data that were tested, the "constraint"
is in fact small close to criticality. Similar behavior is observed for
any blowup solution, but it is most pronounced at the threshold. This
is illustrated in the second plot of Fig. 2.13. Note, however, that this
behavior is not as striking as in model 2, where the “constraint” seems
identically satisfied over an entire region, rather than just being small
as in this case. Concerning regularity, at the threshold the raw fields φ1

and φ2 remain finite (and thus the solution remains finite in L2), but
as shown in the discussion above first derivatives do explode. This
data suggest that the energy norm E1 is finite at the threshold but
diverges for supercritical solutions (see Fig. 2.15), in agreement with
model 3. Having examined several different families of initial data,
the numerical evidence again suggests that in spherical symmetry
model 4 has a unique critical solution in the same sense as the other
models.

2.5 conclusions and closing of the chapter

The cosmic censorship conjectures are perhaps the most important
open problems in strong-field gravity. In looking for evidence either
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Figure 2.13: Representative plots obtained with model 4 with A4 = B4 = 1
and the initial data family of Eq. 2.106. This is obtained with a? '
−2.4122. On the top panel, it is shown the now familiar scaling
plot for Π1. As in model 3 the curve looks like a straight line
plus a periodic wiggle, indicating that this is a DSS regime. Lin-
ear regression on the numerical data gives a slope 0.499, with
standard error 0.019. On the bottom panel, the maximum of
the absolute value at the origin of the quantity that serves as a
constraint in model 3 is plotted. In fact, this quantity is small in
a neighborhood around the origin, so that near the threshold,
solutions of model 4 are close to solutions of model 3.

for or against them it is imperative to examine extreme regions of
the solution space. Combining such considerations with numerical
approximation, critical phenomena in gravitational collapse have been
discovered. The standard picture of critical collapse is that, considering
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Figure 2.14: Representative plots of the scaling of Π1 obtained with model 4
and their linear regressions. Linear regression on the numerical
data gives a slope 0.461, with standard error 0.0076. On the
top panel A4 = B4 = 1/3 and the initial data family of Eq.
2.106. This is obtained with a? ' −7.2366. The bottom panel
corresponds to A4 = B4 = 2 with the same initial data and with
a? ' −1.2061. Linear regression on the numerical data gives
a slope 0.668, with standard error 0.026. As in model 3 and in
Fig. 2.13 the curve looks like a straight line with a wiggle of
different periods, indicating that this is still a DSS regime and
that the parameters of the model regulates the period. Note that
the differences in the slopes when doing the linear regression
are due to the lack of enough periods to have a far fitting. This
might be achieved with better and more accurate simulations
that would require more computing resources.
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Figure 2.15: L2 and E1 for model 4 for subcritical, critical and supercricital
data computed from the numerical simulations with A1 = B1 =
1. In this case, the L2 norm remains always finite, as in Fig. 2.12.

any one-parameter family of initial data and tuning that parameter to
the threshold of BH formation, then as it heads towards blowup the
resulting threshold solution will approximate ever more closely, in the
strong-field region, a unique self-similar critical solution which has a
naked singularity. In suitable coordinates data within the family, but
close to the threshold, approach the critical solution for some time
interval ∼ −γ−1 log |a − a?| before either dispersing or collapsing,
with γ a universal parameter independent of the particular family.
Examining solutions parametrically in a neighborhood of the threshold
reveals that the curvature scalars, BH masses and so forth display
power-law behavior, with power γ, in a? − a.

In spherical symmetry numerical evidence in favor of this picture
is pristine, and there is even a proof [82] that the Choptuik critical
solution, with the posited DSS, exists. Part of this phenomenology
remains robustly without symmetry, but cracks have appeared in the
picture. Prominent examples are given by the variability of the scaling
parameters and apparent contradiction of uniqueness of the critical
solution in scalar field collapse when large aspherical perturbations
are present [62, 65], the seeming absence of a unique self-similar
critical solution in the collapse of the electromagnetic fields [67, 68]
and the consistent challenge in treating threshold solutions in vacuum
gravity [34, 51, 57, 58] and so in recovering the results of [49]. In all
of these cases however, the edge of what is possible with present
numerical methods is close, so there are arguments against adjusting
the standard picture until numerical error could be reliably controlled.
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The present study is, therefore, a way to side-step these difficulties
by constructing the absolute simplest school-boy model that could cap-
ture the qualitative behavior of interest. The presented models are
based on a trick of Nirenberg, admit a small-data global existence
result, and in most cases can be solved analytically, making interpre-
tation of threshold solutions unambiguous, regardless of symmetry.
These are referred to as deformation models in this manuscript. In
contrast with earlier models, they also have the advantage, at least
from the point of view of gravitation, that their nonlinearity appears in
first derivatives of the fields, just as in GR nonlinearities are of the form
of a linear combination of "Γ2". To the best of my knowledge, here it is
also the first such model that admits DSS solutions. (Other examples
with such solutions are known [87] but require a large number of
fields). Although the models can be reformulated in a natural way
that introduces a non-trivial spacetime metric, they are nevertheless
fundamentally tied to the flat-metric, and so should not be thought
of as a model for WCC. Rather, at best one can hope to capture the
properties required for SCC in terms of regularity at blowup and of
course those of critical collapse. To summarize the findings of this
Chapter, let us split them in the following three categories.

2.5.1 Spherical symmetry

Restricting to pure spherical symmetry, the obvious analog of the
standard picture of critical collapse was completely vindicated for
all of the presented models, regardless of how they arose. For the
deformation models, simple Taylor expansion shows that generically
at most one number from the initial data survives to parameterize the
threshold solution near the blowup point. In fact there is a measure-0
special case in which this parameter vanishes, but this has not been
investigated in detail. In this work this one-parameter family of Taylor
expanded threshold solutions is defined to be the critical solution.
In that one parameter remains, it is unique in the same sense the
Schwarzschild is the unique static vacuum solution. Extracting this
parameter in any numerical setup seems impractical, however. For
models that do not arise as a deformation of the wave equation, the
spherical setting was treated numerically and evidence compatible
with this picture was found. With either type of model it is found that
universal power-law behavior, for example in the maximum of any
divergent field quantity, like the energy density, was manifest. This was
shown analytically for the deformation models. Moving on to consider
small aspherical perturbations, to avoid having to perform more costly
numerics only the deformation models are studied. One finding was
that the critical amplitude remains fixed, and that the blowup itself
is still dominated by the lowest spherical harmonic. This is a simple
consequence of the fact that aspherical partial wave solutions all vanish
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at the origin. Nevertheless the asymptotic threshold solution, which
maintains the scale-symmetry from the spherical setting, is deformed
as perturbations are added, perhaps in contradiction expectations, so
that a larger number of parameters are needed for its description.
Power-law scaling in this regime, both in the physical and phase space
pictures, also remains universal. The agreement with the standard
picture of critical collapse in the regime in which numerical results are
unambiguous, is striking. This gives the confidence that these models
do capture qualitatively the phenomena of interest, and potentially do
have predictive power for GR.

2.5.2 Strong cosmic censorship

As mentioned at the beginning of this Chapter, the SCC conjecture
might be thought of as the requirement that for generic initial data the
resulting solution, when maximally extended, is unique. In the context
of blowup, typically in the context of BH interiors as in [88, 89], this is
taken to mean that at a Cauchy horizon, or more generally in the limit
towards any the end-point of any incomplete geodesic, the metric
should lose enough regularity that the solution can not be extended
beyond the blowup. If this fails to be the case, perhaps by choosing
fresh data at the singular surface, one may obtain many inequivalent
extensions and so violate global uniqueness. The specific requirement
in GR [48] is that there exist no coordinates in which the Christoffel
symbols are locally L2. The natural analog for the presented models
is the requirement that, at blowup, solutions explode in the energy
norm E1. The conclusion from these models is that for each type of
model there exists a direct, specific, relationship between the physical
and phase space power-law parameters ν and γ, and the regularity of
data at blowup. It was found that threshold solutions are more regular
than generic blowup solutions, and so depending on the values of
these parameters solutions could be extended beyond the blowup
point. This was not investigated in detail in here, and this result may
have no direct counterpart in GR, but if it does it will permit numerical
simulations a new say on SCC in a variety of scenarios.

2.5.3 The threshold of blowup

The departure from the standard picture of critical phenomena emerges
when considering either aspherical deformations of spherical thresh-
old solutions or general threshold solutions. So far, from the experi-
mental point of view, the presented results in this Chapter are compat-
ible with the numerical results in GR. First, power-law scaling persists
both in physical space near the blowup point, and also in phase space
as the threshold is approached. In GR there is evidence, in scalar field
collapse, that power-law rates deviate from their values in spherical
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symmetry as large asphericity appears [62, 65] so this is a possible
difference to the models. That said, it is not obvious that the available
numerical data are sufficiently fine-tuned to recover the limiting rates,
and the interactions of multiple fields complicate the interpretation.
If spherical data for the models are perturbed by a sufficiently large
asphericity, blowup occurs away from the origin, with the solution ap-
pearing very differently than the spherical critical solution in the past
light cone of the blowup point, in contradiction with the expectation
that there exist a unique critical solution in the general setting. This
may manifest, for example by the formation of multiple nonspherical
centers away from the origin. The latter has been observed in GR in
both scalar field [62, 65] and vacuum collapse [58]. As illustrated in
Fig. 2.4 blowup can even occur on curves rather than points, an im-
portant possibility to be investigated in the gravitational context and
what motivates the choice of the initial data in Chapter 4 further in
this manuscript. Depending on the model, general threshold solutions
may exhibit self-similarity, but require several parameters to describe
them as they approach blowup. In GR, by analogy, the existence of a
single critical solution would be a red-herring in general. Instead, the
threshold of collapse should be characterized by power-law scaling,
and, crucially, additional regularity with respect to general blowup
solutions. Recalling that some of the models display these features, but
do not satisfy the formal definition of self-similarity at the threshold,
and the lack of exact self-similarity in nonspherical numerical work for
GR, one can conjecture that in the past light cone of a blowup point,
threshold solutions in GR can still be described by a finite number of
parameters. In this way, one can still use the language critical solution,
but that solution must now be thought of as a parameterized family,
whose specific nature is, for now, uncertain.

2.5.4 Final comment and future work

The work done in this Chapter shows that in these models, when
departing from spherical symmetry, some of the understanding about
the standard picture of critical phenomena needs to be changed. A
priori, there is no reason why these features should not be translated
into GR, despite its more complicated nature. This work, therefore,
leaves some open doors to further investigate. First, as a direct follow
up, it is highly desirable to develop tools that allow to study the
models without symmetry restrictions numerically and check whether
or not the solution space of GR exhibits the same properties. Moreover,
regarding these models, it is still a question if it can be rigorously
proven, without using the exact solutions, the properties of the solu-
tions that are not covered in here and satisfactory explain what are
the structural conditions that determine either CSS or DSS at the thresh-
old. So far, it is only possible to speculate that it has to do with the
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factor attached to the nonlinearity, but this is, however, pure intuition.
The final comment for future work is that as these models have the
shortcoming of being purely semilinear, no notion of BH formation
is possible. Hence, developing other more sophisticated models that
avoid this is still remaining in the possible paths that can follow this
manuscript.
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3
C O M PA R I S O N O F L I N E A R B R I L L A N D T E U K O L S K Y
WAV E S

As seen in the introduction in Sections 1.3.1 and 1.5, understanding
critical phenomena in gravitational collapse becomes more compli-
cated once one drops spherical symmetry. In this scenario, the natural
question is to ask what happens with GWs in vacuum, since they re-
semble pure gravity and since there are no spherical dynamical GWs.
The first attempt to evolve such a setting was done by Abrahams and
Evans [49], where the authors were using what is called Teukolsky
waves [90] to explore the critical phenomena of GWs in vacuum. How-
ever, and despite numerous other attempts (see Table 1.1) reproducing
their results has proven difficult. Some of these issues might be purely
numerical, nevertheless, other features could be inherent from the lack
of spherical symmetry [69].

To study the collapse of GWs in vacuum different authors use dif-
ferent types of initial data, being these divided between Brill [91] and
Teukolsky waves [90]. The former are used in the recent studies [58, 60]
and in Chapter 4 of this manuscript. The latter are used (together with
Brill waves) in [51]. For Brill waves it is only necessary to solve one
elliptic equation whose solution provides a nonlinear vacuum solution
to Einstein’s constraint equations. On the other hand, Teukolsky waves
are quadrupolar, linear perturbations of Minkowski spacetime which
can be "dressed up" in different manners to yield nonlinear solutions
to the Einstein constraint equations. It is important to notice that both,
Brill and Teukolsky waves, have their seed function, for which many
authors choose Gaussian profiles, letting some freedom in the choice
of the initial data.

Many authors have claimed that the numerical behavior of Brill and
Teukolsky waves is different, even compromising numerical stability
in the case of the first ones. In [51] they report that the most difficult
families to tune towards criticality were the Brill wave families, finding
the numerical stability as the limit to their bisection search. The authors
of [57] wonder, literally, why it is so difficult to evolve Brill wave data.
In my personal experience with bamps (see Chapter 4), in agreement
with [51], the limiting factor when evolving Brill waves is, in some
sense, numerical stability together with the peculiar shapes of the AHs.
Moreover, it is needed to say that both [51] and Chapter 4 conclude

77
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that different families of initial data lead to different scaling exponents
γ and therefore, presumably, different threshold solutions. More detail
about these two types of initial data will be given in Sections 3.1.1 and
3.1.2.

Among the attempts to understand the critical phenomena beyond
spherical symmetry there are the studies [67] and [68] where the criti-
cal gravitational collapse of electromagnetic waves is investigated. In
this case, the initial data are linear by construction as an electromag-
netic spherical wave of a given multipole ` is adopted at a moment of
time symmetry and then used to solve Einstein’s equations. It might
be expected that the different nonlinearities of Einstein’s equations
coupled to the different multipoles, however, it is expected that the evo-
lution is dominated by the linear "seed" data. These studies conclude
that initial data for different multipoles yield qualitatively different
threshold solutions, threatening the uniqueness of the critical solution.
Let us take, as an illustrative example, the dipole data with ` = 1. In
this case in [67] a unique center of collapse, at the origin, was found.
In contrast, for quadrupole data ` = 2, in [68] two separate centers of
collapse along the symmetry axis were found, in agreement with [58],
[51] and Chapter 4.

The last observation suggests an explanation for the different be-
havior of Brill and Teukolsky waves as they have, a priori, different
multipole moments. These multipole moments would couple to differ-
ent parts of Einstein’s equations giving different results as it happens
with the critical gravitational collapse of electromagnetic waves. As
electromagnetic waves are linear, in the sections below analytical linear
solutions of brill waves are compared directly with Teukolsky waves
in three different ways: i) Comparing the data by transforming the
Brill waves to the Transverse-Traceless (TT) gauge, ii) by computing
the gauge-invariant Moncrief function for the different multipoles and
iii) by computing the respective Kretschmann scalars.

3.1 linear gravitational wave initial data

In this section a deeper description of the two types of initial data
that are analyzed, Brill and Teukolsky waves, is given, so that the
reader can follow and understand the discussion of this Chapter. For
more details on the initial data, I suggest the original papers of Brill
[91] and Teukolsky [90] together with Chapter 9 of [10] for a textbook
explanation of linearized GWs in a notation close to that used here.

3.1.1 Teukolsky waves

Teukolsky waves are commonly referred as quadrupolar gravitational-
wave solutions to the linearized Einstein’s equations (see [92] for a
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generalization to higher multipoles). The metric is in the Transverse
Traceless gauge (TT), and using natural units c = 1 is as follows:

ds2 = −dt2 + dr2 {1 + A frr
}
+ r drdθ

{
2B frθ

}
+

r sin(θ) drdφ
{

2B frφ

}
+ r2 dθ2 {1 + C f (1)θθ + A f (2)θθ

}
+

r2 sin(θ) dθdφ
{

2(A− 2C) fθφ

}
+

r2 sin2(θ) dφ2 {1 + C f (1)φφ + A f (2)φφ

}
, (3.1)

where the fij are angular functions for ` = 2 and m = 0 listed in the
appendix A. The coefficients A, B and C can be constructed from a
seed function F(t, r) being a common choice a linear superposition of
Gaussians at a moment of time symmetry at t = 0:

F(t, r) = ATλ4
(
(t− r) e−((r−t)/λ)2 − (r + t) e−((r+t)/λ)2

)
, (3.2)

The notation in 3.2 is thatAT corresponds to the amplitude of the wave,
λ is a constant with units of length that determines the wavelength.
Taking this seed function, m = 0 due to the axisymmetry and going
through the needed calculations (see Appendix A) the coefficients A, B
and C take the following form:

AT = −24ATe−(r/λ)2
, (3.3a)

BT =
8AT

λ2 e−(r/λ)2
(2r2 − 3λ2), (3.3b)

CT =
8AT

λ4 e−(r/λ)2
(r4 − 4r2λ2 + 3λ4), (3.3c)

and the metric, evaluated at t = 0, becomes

ds2 = −dt2 + dr2
{

1 +AT
(
72 sin2(θ)− 48

)
e−(r/λ)2

}
+

r2dθ2
{

1 + 24AT

(
sin2(θ)

(
− r4

λ4 +
4r2

λ2 − 3
)
+ 1
)

e−(r/λ)2
}
+

rdθdr
{

48AT sin(θ) cos(θ)
(

3− 2
r2

λ2

)
e−(r/λ)2

}
+

r2 sin2(θ)dφ2
{

1 + 24AT

(
sin2(θ)

(
r4

λ4 −
4r2

λ2

)
+ 1
)

e−(r/λ)2
}

.

(3.4)

Earlier before, when beginning this Chapter, it was said that the
Teukolsky waves are already linear perturbations of the Minkowski
spacetime that later on need to be "dressed up" in order to have
nonlinear solutions to Einstein’s equations. This means that Teukolsky
waves are linear before solving the Hamiltonian and Momentum
constraints, which can be done in different ways to have the nonlinear
solution. In this case, the metric 3.4 is a vacuum solution at a moment
of time symmetry, being the Momentum constraint automatically
satisfied. Therefore, only the Hamiltonian constraint needs to be solved
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to have nonlinear solutions to Einstein’s equations, however in this
work, the focus is only on the linear perturbation,

hT
ij = γT

ij − ηij, (3.5)

where γT
ij is the spatial Teukolsky metric that can be read from 3.4,

and ηij is the Minkowski metric. The nonvanishing initial metric
perturbations in the TT gauge in spherical polar coordinates are written
in the form

hrr = A frr, (3.6a)

hrθ = rB frθ , (3.6b)

hθθ = r2(C f (1)θθ + A f (2)θθ ), (3.6c)

hφφ = r2 sin2 θ(C f (1)φφ + A f (2)φφ ), (3.6d)

where the coefficients take the particular expression of 3.3. Please, be
aware that now, due to notation purposes, the coefficients are renamed
as AT, BT and CT to refer to Teukolsky wave coefficients. This is done
in order to avoid future confusions with Brill wave coefficients when
analyzed in the gauge transformation of Section 3.2.1.

3.1.2 Brill waves

The construction of Brill waves, fully nonlinear, axisymmetric vacuum
gravitational-wave initial data [91], is simpler than the construction
of Teukolsky data. In this case, the line element in a moment of time
symmetry corresponds to

γijdxidxj = ψ4 (e2q(dr2 + r2dθ2) + r2 sin2(θ)dϕ2) , (3.7)

where q = q(r, θ) is the seed function. Many authors choose a Gaussian
profile for this function, including Holz et al. [93] which gives to this
choice the name of "Holz seed function"

q(r, θ) = ABr2 sin2(θ)σ−2e−(r/σ)2
= ABρ2σ−2e−(ρ

2+z2)/σ2
, (3.8)

where AB is the amplitude of the Brill wave and σ a constant with
dimensions of length which is a measure of the wavelength, and ρ

corresponds to the cylindrical radial coordinate. However, it is possible
to rewrite this seed function expressing the angular part in terms of
the spherical harmonics Y00(θ, φ) and Y20(θ, φ) as

q(r, θ) = q00(r)Y00(θ) + q20(r)Y20(θ), (3.9)

where

q00(r) =
√

π
4AB

3

( r
σ

)2
e−(r/σ)2

(3.10a)

q20(r) = −
√

π

5
4AB

3

( r
σ

)2
e−(r/σ)2

. (3.10b)
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This simple rewriting might seem trivial at first, however, it is giving
some extra information. First of all, only the spherical harmonics with
m = 0 appear on the expression due to the axisymmetry that naturally
comes with the Brill waves, nevertheless, it is noticeable that the
only angular component, that depends on θ, is the contribution from
Y20(θ, φ), which means that this seed function is purely quadrupolar
with ` = 2. Teukolsky waves are purely quadrupolar as well, and this
seems, at first, a strong indication that for this specific choice of the
Holz seed function it might also be the case for the Brill wave. In any
case, let us not anticipate and continue with the development of the
facts.

Regarding the constraints, the Hamiltonian constraint is the only one
that is needed to be solved. Since this is a moment of time symmetry
the Momentum constraint is automatically satisfied. The Hamiltonian
constraint then takes the form

∇2ψ = −ψ

4
τ, (3.11)

where the function τ = τ(r, θ) is given by

τ ≡ ∂2q
∂ρ2 +

∂2q
∂z2 (3.12)

and where ∇2 is the flat Laplace operator. For the specific choice 3.8

τ(r, θ) =
2AB

σ6 e−(r/σ)2
(

2r4 − 6r2σ2 + σ4 − 2r2(r2 − 3σ2) cos2(θ)
)

.

(3.13)

Again, the angular part of the function τ(r, θ) can be expressed in
terms of the spherical harmonics only with a quadrupolar contribution
as follows

τ(r, θ) = τ00(r)Y00(θ) + τ20(r)Y20(θ) (3.14)

where the coefficients take the form

τ00(r) =
√

π
4AB

3σ6 e−(r/σ)2
(

4r4 − 12r2σ2 + 3σ4
)

(3.15a)

τ20(r) = −
√

π

5
16AB

3σ6 e−(r/σ)2
(

r4 − 3r2σ2
)

. (3.15b)

This is a special case. Usually, the Hamiltonian constraint needs
to be solved numerically since there is not an analytical solution.
However, since the purpose is the comparison with the already linear
Teukolsky waves, considering only the linear part of the solution is
sufficient. For this purpose, the conformal factor Ψ is rewritten as

ψ = 1 + u, (3.16)
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and the Hamiltonian constraint in order to be linear in the amplitude
AB takes the form

∇2u = −1
4

τ. (3.17)

The line element becomes, to linear order:

γijdxidxj = dr2 + r2(dθ2 + sin2 θdϕ2)+ (3.18)

(4u + 2q)(dr2 + r2dθ2) + 4ur2 sin2(θ)dϕ2.

Now, it is possible to use the Green function G(r, r′) = 1/|r− r′| to
write the solution to the linear Hamiltonian constraint

u(r, θ, ϕ) =
1

16π

∫
τ(r′, θ′, ϕ′)d3x′

|r− r′| . (3.19)

It is important to consider the expansion of this Green function in
terms of the spherical harmonics, where r< is the greater and r> is the
smaller of the two radii r and r′

1
|r− r′| =

4π

r>
∑
`,m

1
2`+ 1

r`<
r`>

Y∗`m(θ
′, ϕ′)Y`m(θ, ϕ). (3.20)

Writing everything in terms of the spherical harmonics in 3.19, this
is, inserting the expansion 3.20 and the function 3.14 one can find

u(r, θ, ϕ) =
1
4

∫ (
τ00(r′)Y00(θ

′, ϕ′) + τ20(r′)Y20(θ
′, ϕ′)

)
∑
`,m

1
2`+ 1

r`<
r`+1
>

Y∗`m(θ
′, ϕ′)Y`m(θ, ϕ)d3x′. (3.21)

The next step is to write the volume element as d3x′ = r′2dr′dΩ′2

and integrate the angular part using the orthogonality of the spherical
harmonics,∫

Y∗`m(θ
′, ϕ′)Y`′m′(θ

′, ϕ′)dΩ′2 = δ`,`′δm,m′ . (3.22)

After this procedure the result is, again, a pure quadrupole for u(r, θ)

as well, that will propagate into the metric as it depends linearly on
u(r, θ),

u(r, θ) = u00(r)Y00 + u20(r)Y20 (3.23)

with

u00(r) =
1
4

∫ ∞

0

τ00(r′) r′2dr′

r>
(3.24a)

u20(r) =
1
4

∫ ∞

0

r2
<τ20(r′) r′2dr′

r3
>

. (3.24b)
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Please, be aware that due to the existence of r< and r>, the integrals
in 3.24 have to be split into two parts for the cases when r′ is smaller
or greater than r, for instance

u00(r) =
1
4r

∫ r

0
τ00(r′) r′2dr′ +

1
4

∫ ∞

r
τ00(r′) r′dr′. (3.25)

Now, Mathematica [94] is used to carry out the integral, where the
coefficients expressed as 3.15 are inserted, arriving at the result

u00(r) = −
√

π

6σ2ABe−(r/σ)2 (
2r2 + σ2) (3.26a)

u20(r) = −
√

π

5
AB

24r3σ2

(
3
√

πσ5erf
( r

σ

)
(3.26b)

− 2re−(r/σ)2
(

2r2σ2 + 4r4 + 3σ4
) )

,

where the definition of the error function erf(z) is

erf(z) ≡ 2√
π

∫ z

0
e−t2

dt. (3.27)

One may wonder if the coefficient u20(r) remains finite when r → 0,
nevertheless it is enough to look at the leading-order terms in the
Taylor expansion of the error function about z = 0

erf(z) =
2√
π

(
z− z3

3

)
+O(z5), (3.28)

to realise that, indeed, u20(r) remains finite.
To finish assembling the metric, it is needed to insert 3.9 and 3.23 in

the line element 3.18. Here it is possible to read the spatial metric γB
ij ,

however, the focus is again in the wave perturbation

hB
ij = γB

ij − ηij, (3.29)

that in explicit form reads as

hrr =
AB

8r3σ2

(
−
√

πσ5 (3 cos2(θ)− 1
)

erf
( r

σ

)
(3.30a)

−2re−
r2

σ2
(

cos2(θ)
(
−2r2σ2 + 4r4 − 3σ4

)
+ 2r2σ2 − 4r4 + σ4

))
,

hθθ =
AB

8rσ2

(
−
√

πσ5 (3 cos2(θ)− 1
)

erf
( r

σ

)
(3.30b)

−2re−
r2

σ2
(

cos2(θ)
(
−2r2σ2 + 4r4 − 3σ4

)
+ 2r2σ2 − 4r4 + σ4

))
,

hφφ =
AB

8σ2

(
e−

r2

σ2
(

cos(2θ)
(

2r2σ2 + 4r4 + 3σ4
)
− 2r2σ2 − 4r4 + σ4

)
(3.30c)

−
√

πσ5

r
(
3 cos2(θ)− 1

)
erf
( r

σ

))
.
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As a final comment, just to remark that using the Holz seed function
3.8, which appears to be purely quadrupolar, transfers to the metric
perturbation that, for this special case, is as the Teukolsky perturbation,
a pure ` = 2 mode. This fact makes the comparison between both fairer
since the goal is to find what makes the difference in the behavior of
Brill and Teukolsky waves during evolution. It is a good sign that the
starting point is two sets of initial data that are as similar as possible.
Moreover, taking into account that the Holz seed function is a very
common choice among the authors, this adds the value of studying
what is, probably, the most common option.

3.2 comparisons

In this section, the comparison between linear Brill and Teukolsky
waves is made, in particular, in three different ways. Naively, one
can try to make a direct comparison of both perturbations at first,
noticing that in the case of Brill the component hB

rθ = 0 meanwhile in
Teukolsky it does not vanish. However, it is important to be aware that
this direct comparison is meaningless since both metrics are expressed
in different gauges. This is the reason why the (fair) comparison has
to follow a different path, writing both metrics in the same gauge or
using an artifact that is gauge-invariant, as the Moncrief formalism
that will soon be introduced in Section 3.2.2, or the Kretschmann scalar
in Section 3.2.3.

3.2.1 Gauge transformation

As the metric of Teukolsy waves is expressed in the TT gauge, in this
first section a gauge transformation is carried out to write the Brill
waves in TT gauge as well, which, for a purely spatial perturbation hij
it means that

ηijhij = 0, (3.31a)

∂jhij = 0. (3.31b)

In order to pursue this gauge transformation, cartesian coordinates
are used, meaning ηij = diag(1, 1, 1), and that the covariant derivatives
associated with ηij become partial derivatives. Let us assume that hB′

ij
is the Brill wave perturbation in the new gauge, this is in the TT gauge.
Then the linearized spatial gauge freedom depends on the one-form
generator ξi and can be written as

hB′
ij = hB

ij − 2∂(iξ j). (3.32)

Now let us use 3.31b as follows

∂jhB′
ij = 0⇒ ∂j∂jξi + ∂i∂

jξ j = ∂jhB
ij. (3.33)
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To solve this equation ξi is decomposed in the following manner

ξi = ξ̂i + ∂i ϕ , (3.34)

with

∂i∂i ϕ =
1
2

hB , (3.35a)

∂j∂j ξ̂i = ∂jhB
ij − ∂ihB (3.35b)

where hB ≡ ηijhB
ij is the trace.

Now it is needed to remind the expression for the linearized vacuum
Hamiltonian constraint, that both, Brill and Teukolsky waves satisfy:

∂i∂jhij − ∂i∂ihk
k = 0 . (3.36)

With this in mind, it is easy to see that the divergence of 3.35b vanishes

∂j∂j(∂
i ξ̂i) = ∂i∂jhij − ∂i∂ihk

k = 0 , (3.37)

and that, with the suitable boundary conditions, the divergence of ξ̂i
also vanishes everywhere

∂i ξ̂i = 0. (3.38)

The fact that the divergence of ξ̂i is also null means that 3.34 is the
decomposition of the transverse and longitudinal parts in the Fourier
space.

Finally, it is needed to prove that this gauge transformation satisfies
the TT conditions 3.31a and 3.31b. In the first place let us take the trace
of 3.32

hB′ = hB − 2∂iξi = hB − 2 ∂i∂i ϕ = 0, (3.39)

where it is clear that it satisfies the first condition 3.31a of the TT

gauge. In second place, let us apply 3.31b to 3.32 and carry out the
full computation

∂ihB′
ij = ∂ihB

ij − ∂i∂i(ξ̂ j + ∂j ϕ)− ∂i∂j(ξ̂i + ∂i ϕ) (3.40)

= ∂ihB
ij − ∂ihB

ij + ∂jhB − ∂j(∂
i∂i ϕ)− ∂j(∂

i ξ̂i)− ∂j(∂
i∂i ϕ)

= ∂jhB − ∂jhB = 0,

where 3.35a and 3.35b were used.
Once the change of gauge it is clear it is time to carry out the

explicit calculation to solve equations 3.35a and 3.35b. Let us start for
the first one, which has a very familiar form, resembling 3.17, and
consequently it is possible to use the same Green function as before,
G(r, r′) = 1/ | r− r′ |:

ϕ = − 1
8π

∫ hB

| r− r′ |dx3. (3.41)
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It is possible to use again the Green’s function expansion 3.20, but
this time for the trace of the Brill perturbation

hB =
AB

16r3σ2

(
2re−

r2

σ2
(

cos(2θ)
(

6r2σ2 − 4r4 + 9σ4
)

(3.42)

−6r2σ2 + 4r4 + 3σ4
)
−3
√

πσ5(3 cos(2θ) + 1)erf
( r

σ

))
Using again Mathematica [94] to solve this integral, the result might

be expressed in terms of the spherical harmonics Y00(θ, φ) and Y20(θ, φ)

ϕ =
1
6
√

πABσ2e−
r2

σ2 Y00(θ)

+

√
π

5
ABσ2

48r3 e−
r2

σ2

(
−3
√

πσe
r2

σ2
(

σ2 − 2r2
)

erf
( r

σ

)
− 8r3 + 6rσ2

)
Y20(θ), (3.43)

or substituting their explicit expression

ϕ =
ABσ2

64r3

(
−
√

πσ
(
3 cos2(θ)− 1

) (
σ2 − 2r2) erf

( r
σ

)
(3.44)

−2re−
r2

σ2
(
cos2(θ)

(
4r2 − 3σ2)− 4r2 + σ2)) .

The next step is to solve the equation for ξ̂i, for which the same
procedure is applied but with subtlety. This time the equation is solved
for the three Cartesian components, this is for (ξ̂x, ξ̂y, ξ̂z), however,
the integration is over the Green function using the spherical polar
coordinates. To do this, the Jacobian J is used to transform from the
spherical polar coordinates to Cartesian coordinates

(ξ̂x, ξ̂y, ξ̂z) = J(ξ̂r, ξ̂θ , ξ̂φ), (3.45)

where the Jacobian and the inverse Jacobian are written in terms of
(r, θ, φ)

J =

 sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)
cos(θ) cos(φ)

r
cos(θ) sin(φ)

r − sin(θ)
r

− csc(θ) sin(φ)
r

csc(θ) cos(φ)
r 0

 , (3.46)

J−1 =

 sin(θ) cos(φ) r cos(θ) cos(φ) −r sin(θ) sin(φ)

sin(θ) sin(φ) r cos(θ) sin(φ) r sin(θ) cos(φ)

cos(θ) −r sin(θ) 0

 . (3.47)
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The right hand side of equation 3.35b in spherical polar coordinates
is

(∂jhB
ij − ∂ihB)r =

AB

8r4 (3 cos(2θ) + 1)e−
r2

σ2

(
−3
√

πσ3e
r2

σ2 erf
( r

σ

)
+ 4r3 + 6rσ2

)
, (3.48)

(∂jhB
ij − ∂ihB)θ =

AB

4r3σ2 sin(2θ)e−
r2

σ2

(
−3
√

πσ5e
r2

σ2 erf
( r

σ

)
+4r3σ2 + 4r5 + 6rσ4

)
, (3.49)

(∂jhB
ij − ∂ihB)φ = 0,

and after applying the Jacobian, the right hand side in Cartesian
coordinates but expressed in terms of (r, θ, φ) is

(∂jhB
ij − ∂ihB)x =

AB

8r4σ2 sin(θ) cos(φ)
(

2re−
r2

σ2
(

cos(2θ)
(

10r2σ2 + 4r4 + 15σ4
)

(3.50)

+6r2σ2 + 4r4 + 9σ4
)
− 3
√

πσ5(5 cos(2θ) + 3)erf
( r

σ

))
,

(∂jhB
ij − ∂ihB)y =

AB

8r4σ2 sin(θ) sin(φ)
(

2re−
r2

σ2
(

cos(2θ)
(

10r2σ2 + 4r4 + 15σ4
)

+6r2σ2 + 4r4 + 9σ4
)
− 3
√

πσ5(5 cos(2θ) + 3)erf
( r

σ

))
,

(∂jhB
ij − ∂ihB)z =

AB

8r4σ2 cos(θ)e−
r2

σ2

(
−3
√

πσ5(5 cos(2θ)− 1)e
r2

σ2 erf
( r

σ

)
+ cos(2θ)

(
20r3σ2 + 8r5 + 30rσ4

)
− 2r

(
2r2σ2 + 4r4 + 3σ4

))
.

Here again, Mathematica [94] is used to carry out the following
integral, where now the index i runs along (x, y, z)

ξ̂i = −
1

4π

∫ (∂jhB
ij − ∂ihB)

| r− r′ | dx3, (3.51)

resulting, in terms of the spherical harmonics

ξ̂x = −
√

π

3
ABσ2

140r4 e−
r2

σ2

[(
7
√

2πr2σe
r2

σ2 erf
( r

σ

)
− 14
√

2r3
)
(Y1−1 −Y11)

(3.52)

+
(

erf
( r

σ

)√
7πe(r/σ2)

(
15σ3 − 6r2σ

)
− 8
√

7r3 − 30
√

7rσ2
)
(Y3−1 −Y31)

]
,

ξ̂y = i
√

π

3
ABσ2

140r4

[(
14
√

2r3 − 7er2/σ2√
2πr2σerf

( r
σ

))
(Y1−1 + Y11)

(3.53)

+
(√

7πer2/σ2
erf
( r

σ

) (
6r2σ− 15σ3)+ 30

√
7rσ2 + 8

√
7r3
)
(Y3−1 + Y31)

]
,
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ξ̂z =

√
πABσ2

420r4 e−
r2

σ2

[(
28
√

3πr2σe
r2

σ2 erf
( r

σ

)
− 56
√

3r3
)

Y10

(3.54)

+
(√

7πer2/σ2
erf
( r

σ

) (
18r2σ− 45σ3)+ 24

√
7r3 + 90

√
7rσ2

)
Y30

]
.

The next lines are not strictly needed here, but for the curious reader,
applying the inverse jacobian J−1

3.47 it is possible to compute the
components of ξ̂i in spherical polar coordinates as follows

ξ̂r =
ABσ3

32r4 (3 cos(2θ) + 1)e−
r2

σ2

(√
πe

r2

σ2
(
2r2 − 3σ2) erf

( r
σ

)
+ 6rσ

)
,

(3.55a)

ξ̂θ = −
ABσ2

8r3 sin(θ) cos(θ)e−
r2

σ2

(
3
√

πσ3e
r2

σ2 erf
( r

σ

)
− 4r3 − 6rσ2

)
,

(3.55b)

ξ̂φ = 0. (3.55c)

However, what is indeed necessary is to calculate ξi, for which first
3.35b is applied to conserve the calculation that was done in Cartesian
coordinates, and only after, applying the inverse Jacobian the wanted
result will come out.

ξr = (J−1)i
r ξ̂i + ∂r ϕ (3.56)

=
AB

128r4

(
3
√

πσ3(3 cos(2θ) + 1)
(
2r2 − 3σ2) erf

( r
σ

)
+2re−

r2

σ2
(

cos(2θ)
(

8r4 + 27σ4
)
− 8r4 + 9σ4

))
,

ξθ = (J−1)i
θ ξ̂i + ∂θ ϕ

= −3ABσ2

32r3 sin(θ) cos(θ)e−
r2

σ2

(√
πσe

r2

σ2
(
2r2 + 3σ2) erf

( r
σ

)
− 8r3 − 6rσ2

)
, (3.57)

ξφ = (J−1)i
φ ξ̂i + ∂φ ϕ = 0. (3.58)

The important part is almost in there. After assembling ξi it is
possible to compute the transformation to TT gauge of the Brill initial
data for the Holz seed function 3.8, and it is here where also the beauty
happens, since it is possible to rewrite the Brill perturbation hB′

ij in the
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same form as the Teukolsky perturbation was originally written in
3.6a, which it is recalled in here

hrr = A frr, (3.59a)

hrθ = rB frθ , (3.59b)

hθθ = r2(C f (1)θθ + A f (2)θθ ), (3.59c)

hφφ = r2 sin2 θ(C f (1)φφ + A f (2)φφ ). (3.59d)

Nevertheless, the difference relies on the particular expression of the
coefficients, which for the Brill wave are written as

AB =
ABσ2

8r5

[
2re−(r/σ)2 (

4r2 + 9σ2)+√πσ
(
2r2 − 9σ2) erf

( r
σ

) ]
,

(3.60a)

BB = − AB

12r5

[
2re−(r/σ)2

(
4r4 + 6r2σ2 + 9σ4

)
− 9
√

πσ5erf
( r

σ

) ]
,

(3.60b)

CB =
AB

96r5σ2

[
2re−

r2

σ2
(

16r6 + 36r2σ4 + 63σ6
)

(3.60c)

+ 3
√

πσ5 (2r2 − 21σ2) erf
( r

σ

)]
.

In Fig. 3.1 these coefficients for both Brill and Teukolsky are com-
pared with a suitable rescaling of the amplitudes AT = AB/80. The
qualitative features of both sets of initial data, for the given seed func-
tions, indeed appear quite similar. Moreover, for the interested reader,
in Fig. E.1 from Appendix E all the non-vanishing components of the
perturbation hab for Brill and Teukolsky in TT gauge are shown.

It is important to note, however, that the transformation of the lin-
earized Brill wave initial data to TT gauge results in a purely quadrupo-
lar Teukolsky wave only for the specific angular dependence of the
Holz seed function 3.8. In general, linearized Brill wave initial data
are a superposition of waves with different multipole moments, as
it might seem obvious, but for this special choice 3.8 all multipoles
different from ` = 2 are suppressed.

3.2.2 Gauge-invariant Moncrief formalism

As a second approach to computing the Teukolsky and Brill data, the
gauge-invariant Moncrief formalism is employed (see [95] and also
[96] for a review as well as Section 9.4.1 in [10] for a textbook treat-
ment). In general, the Moncrief formalism assumes that the spacetime
metric can be decomposed into a background metric, gB

ab, given by
the Schwarzschild metric and a perturbation hab. In this specific case,
the background metric is flat and hence corresponds to a zero-mass
Schwarzschild spacetime. The perturbation hab is then decomposed
into scalar, vector, and tensor spherical harmonics of even and odd
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Figure 3.1: Comparisons of the functions A (top panel), B (middle panel,
and C (bottom panel) for Teukolsky waves and Brill waves, both
expressed in TT gauge. From these functions, which are listed in
Eqs. 3.3 and 3.60, respectively, the initial spatial metric γij can be
computed from Eq. 3.6a. For the purposes of these comparisons
AT = AB/80 and σ = λ are adopted, and show the functions A,
B, and C divided by AB for both sets of data.

parity, from which the gauge-invariant Moncrief functions R`m can be
computed for each mode ` and m.
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For both the Teukolsky and the Brill data, only even-parity contri-
butions enter the decomposition of the perturbative metric, for which
the prescription starting with Eq. (9.77) in [10] might be followed.
Specifically, for both the Teukolsky data γT

ij and the Brill data γB
ij , the

projections H2`m, h1`m, K`m, and G`m from Eqs. (9.78) through (9.81) are
computed. In these integrals, the components of the tensor spherical
harmonics can be expressed in terms of functions W`m and X`m, which
are listed in Appendix C.1. For instance, G`m is computed from

G`m =
1

2(`− 1)`(`+ 1)(`+ 2)
1
r2

∫
γ−W∗`m dΩ (3.61)

(where γ− ≡ γθθ − γφφ/ sin2 θ, and where γθφ = 0 is assumed).
In the next step, the functions k1`m and k2`m from (9.88) and (9.89)

in [10] need to be found. Finally, these functions can be combined into
the gauge-invariant Moncrief functions R`m as in (9.87) in [10].

For the Teukolsky waves of section 3.1.1, all the intermediate results
are listed in the appendix C.1.1 with corresponding figures.

Since these data are constructed as an axisymmetric, purely quadrupo-
lar wave, it is not surprising that the only non-vanishing terms are
those with ` = 2 and m = 0. The final result for the gauge-invariant
Moncrief function RT

20 is

RT
20 = −

√
π

5
8AT

λ4 r3e−(r/λ)2 (
2r2 − 7λ2) . (3.62)

The Brill waves of Section 3.1.2, on the other hand, are not purely
quadrupolar by construction. In Section 3.2.1 it was already shown that,
for the special choice of the Holz seed function (3.8), a transformation
of the data to TT gauge again results in a purely quadrupolar Teukolsky
wave. It is therefore not surprising that, in this case again, the only non-
zero Moncrief function is that with ` = 2 and m = 0. Alternatively, the
Moncrief formalism to the Brill wave in its original gauge of Section
3.1.2 may be applied. In this case, the intermediate results for the
projections H2`m, h1`m, K`m, and G`m as well as the functions k1`m and
k2`m are listed in Appendix C.1.2 with corresponding figures. The
Moncrief function R20 is, by construction, independent of gauge, and
given by

RB
20 =

√
π

5
AB

[
1

6rσ2 e−(r/σ)2
(

4r4 + 2r2σ2 + 3σ4
)
−
√

π

4
σ3

r2 erf
( r

σ

)]
.

(3.63)

Both (3.62) and (3.63) can also be written in the form

R20 =
r
6

√
π

5
(r∂r A− 6A− 6B + 12C) , (3.64)

with the functions A, B, and C given by (3.3) for Teukolsky waves, and
by (3.60) for Brill waves (see also exercise 9.7 in [10]).
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Figure 3.2: The gauge-invariant Moncrief function R20/AB for Teukolsky
(orange dashed line) and Brill (blue continuous line) waves. As
in Fig. 3.1 AT = AB/80 is chosen as well as λ = σ and plot both
functions in units of the amplitude AB.

In Fig. 3.2 the Moncrief functions (3.62) and (3.63) are compared.
While the two results for Teukolsky and Brill wave evidently differ
quantitatively, their general qualitative features are, indeed, quite
similar, which is consistent with the findings of Section 3.2.1. It is
important to note, however, that the only gauge-invariant function
is R20, therefore, the only one that can serve for a fair comparison.
In the figures from Appendix C it can be observed that all the other
intermediate projections do not agree, neither qualitatively, but at the
end when used to compute R20, the final result is quite similar for
both Brill and Teukolsky.

Finally, it is instructive to consider multipole moments with ` > 2
for the Brill wave initial data. Starting with these data in the gauge
of Section 3.1.2, the projections H2`m, h1`m, and K`m must all vanish
identically for ` > 2, but G`m, given by Eq. 3.61, could be nonzero. To
evaluate this term for Brill waves it is observed that, from Eq. 3.18,
γ− = 2q, which contains both monopole and quadrupole terms (see
Eq. 3.9). Note also that the functions W`0 can be written as a linear
combination of spherical harmonics Y`′0 with `′ ≤ ` (see Appendix D).
Using Eq. D.12, the integral in Eq. 3.61 may therefore be written as

1
r2

∫
γ−W∗`0 dΩ = 4

√
2`+ 1

∫
q(
√

5Y20 + Y00) dΩ

= 4
√

2`+ 1
(√

5 q20 + q00

)
, (` > 2 even) (3.65)

where the decomposition from Eq. 3.9 was employed in the last step.
In general, this integral will therefore not vanish, and will instead
give rise to multipole moments higher in order than ` = 2. For the
seed function from Eq. 3.8, however, q20 = −q00/

√
5 (see Eqs. 3.10),

leads to an exact cancellation in Eq. 3.65, and therefore to a vanishing
of all higher-order multipole moments. This result is consistent with
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the finding in Section 3.2.1 that, when transformed to TT gauge, Brill
waves become purely quadrupolar if the seed function has the angular
dependence of Eq. 3.8.

3.2.3 Kretschmann scalar

As a third way to compare the Teukolsky and Brill initial data the
Kretschmann scalar is computed

I = (4)Rabcd (4)Rabcd, (3.66)

where (4)Rabcd is the (four-dimensional) spacetime Riemann tensor of
the spacetime. In the case of time-symmetric vacuum data, as this
is, the Kretschmann scalar might be expressed in terms of the (three-
dimensional) spatial Ricci tensor Rij only,

I = 8 γijγkl RikRjl . (3.67)

The Kretschmann scalar (I) is computed for both the Teukolsky data
from Section 3.1.1 and the Brill data from Section 3.1.2 to leading order
(i.e. quadratic) in the amplitude. In Fig. 3.3 the results are compared,
and as in the previous comparisons, it is possible to see that the
qualitative features are very similar.

There is, however, a more direct way of comparing both Kretschmann
scalars IT and IB, by looking at their ratio in Fig. 3.4. Once again, the
adopted ratio between both amplitudes AB and AT is AT = AB/80.
As one can observe in Fig. 3.4 some variations appear on the ratio,
rather than be just a constant surface, showing that the Kretschmann
scalars IB and IT are qualitatively similar but indeed quantitatively
different.

3.3 summary and discussion

Two common approaches in the construction of GW initial data have
been compared at the linear level, particularly those called Teukolsky
waves [90] (Section 3.1.1) and Brill waves [91] (Section 3.1.2). Both
approaches use a seed function for which, as other authors do, Gaus-
sian profiles 3.2 and 3.8 were chosen. While the Teukolsky waves are
constructed as purely quadrupolar (` = 2) waves, the Brill waves, in
general, are not.

The objective was to compare both sets of initial data, however, as
they appear in different gauges a direct comparison was not possible.
Instead, three different ways were adopted to compare the data: the
Brill data was transformed into the TT gauge of Teukolsky (Section
3.2.1), the gauge-invariant Moncrief functions R`m were computed
(Section 3.2.2) and the Kretschmann scalars for both cases were evalu-
ated (Section 3.2.3).
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Figure 3.3: The Kretschmann scalar I for both Teukolsky waves (top panel)
and Brill waves (bottom panel) divided by the square of the
amplitude AB

2. As in Figs. 3.1 and 3.2 AT = AB/80 and λ = σ
are adopted.

Surprisingly, it was found that, while linearized Brill waves will, in
general, not be purely quadrupolar, and will be instead superpositions
of waves with different multipole moments, for the special choice of
the Holz seed function 3.8, that has a very concrete angular depen-
dence, all higher-order moments cancel out exactly, casting the Brill
waves as purely quadrupolar waves. Meanwhile, these waves are not
identical to Teukolsky waves with the seed function 3.2, both share
many qualitative features in all the three comparisons.

Teukolsky and Brill wave initial data play an important role in the
context of vacuum gravitational critical collapse, where they have
been often adopted by several different authors as [58] or [51] in
their recent works as well as in Chapter 4 from this manuscript. As
it is known that the two types of initial data appear to have different
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Figure 3.4: The ratio IT/IB between the Kretschmann scalars for Teukolsky
and Brill waves. As in the previous figures AT = AB/80 and
λ = σ are adopted.

threshold solutions (i.e. different critical exponents γ) and to behave
numerically differently. Nevertheless, the works [67] and [68], where
initial data with different multipole moments lead to qualitatively
different threshold solutions in the critical collapse of electromagnetic
waves, suggest that higher-order multipole moments present in the
Brill data may result in the observed differences in their evolution
from those of Teukolsky, as these different multipoles would couple to
different parts of the non-linearities of the Einstein’s equations, giving
a hypothesis to proof during the present work. However, as discussed
above, for precisely the seed function often used for Brill waves Eq.
3.8 those higher-order multipole moments are exactly suppressed. The
conclusion is, therefore, that the multipole structure of Brill waves
cannot be held responsible for the observed differences.

It is important to remark, however, that for these choices of the seed
functions despite the data being similar, they are not identical. As
discussed before, the Brill data is in a different gauge, but even if trans-
formed to TT gauge from Teukolsky data, both sets still correspond to
different seed functions. While it may well be worth exploring whether
either one of these differences is related to the observed differences in
the evolution of the data, it is also possible that the latter is related to
nonlinear effects, which are ignored in the analysis here.





4
E V O L U T I O N O F B R I L L WAV E S W I T H A N A D A P T I V E
P S E U D O S P E C T R A L M E T H O D

In this Chapter a psudospectral adaptive code, bamps, is used to evolve
twist-free, axisymmetric GWs in vacuum close to the threshold of col-
lapse. This setup resembles pure gravity and it is beyond spherical
symmetry since there are not spherical dynamical GWs. It is clear so
far that critical phenomena in gravitational collapse in spherical sym-
metry match the full picture of critical phenomena, however, as it was
summarized in the historical recapitulation of Section 1.5 and also seen
in Chapter 2, once spherical symmetry is dropped the phenomenology
becomes more complicated. The three main features of critical phe-
nomena are universality of the critical solution, scale-invariance and
power-law behavior of the order parameter with universal exponent.
It is already known that in gravity the power-law behavior manifests
both in the supercritical and subcritcail regimes. In the supercritical
regime the mass of the formed BH follows Eq. 1.40, which it is remind
here as

MBH ' |p− p?|γ, (4.1)

where MBH is the mass of the formed BH, p is the independent pa-
rameter on the family of initial data, p? is the critical value and γ is
the scaling exponent. In the subcritical regime, the maximum of any
invariant curvature scalar, as argued in [37], satisfies the power-law
behavior. In Section 1.1, it was already seen that when working in
vacuum the stress-energy tensor vanishes Tµν = 0, and consequently
does the Ricci scalar R = Rµ

µ. The relevant invariant curvature scalar
for this work, whose maximum should follow a power-law of the form
of Eq. 1.41 is the Kretschmann scalar

I = RabcdRabcd, (4.2)

where Rabcd is the four dimensional Riemann tensor. For the purpose
of smooth reading, let us recall the scaling relation for the maximum
of such a curvature scalar

I−1/4
max ' |p− p?|γ. (4.3)

Recall that in here the Kretschmann scalar is to the power of −1/4
such that the quantity I−1/4 has dimensions of length and it scales

97
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with γ and not a multiple of such a exponent. Moreover, arguments of
[97, 98] suggest that if the critical spacetime is DSS, then this power-law
from Eq. 4.3 should happen with a periodic wiggle superimposed.
The above properties (scale-invariance, universality and power-law
behavior with universal exponent) have been repeatedly verified for
the spherical massless scalar field for many different families of ini-
tial data. In spherical symmetry, other alternative models have been
considered and even though details such as the particular type of
self-similarity differ, the basic structure prevails. See Section 1.5 for a
compilation of different studies and [35, 36] for reviews.

Less clear, however, is the precise extent to which critical phenomena
extend beyond spherical symmetry. The simplest scenario in which
dynamical GWs happen is the axisymmetric setup. This composition
is of special interest in GR as working in vacuum one can try to
understand the aspects of critical collapse determined by pure gravity.
Previous studies of this system have considered two main types of
vacuum initial data: Brill waves [91], which refer to a solution of the
constraint equations in axisymmetric vacuum at a moment of time
symmetry, and Teukolsky waves, constructed first by Teukolsky [90]
and generalized afterwards by Rinne [92], which are general solutions
to the linearized Einstein field equations in TT gauge. For a comparison
of these two types of waves at the linear level see Chapter 3 or [70]. It is
worth commenting that as linearized solutions, Teukolsky wave initial
data need to be dressed up to construct solutions of the constraint
equations of GR. See [49, 50, 57, 99] for some strategies.

Concerning vacuum time evolutions, although it was already men-
tioned in Section 1.5, let us give credit again here to Abrahams and
Evans [49, 50] who were the first to study GWs near the threshold of
collapse already in the early 1990s. In summary, they evolved mem-
bers of one-parameter families of (constraint solved) Teukolsky waves
without moment of time symmetry and tuned to the threshold. The au-
thors observed that the BHs masses also follow the power-law 4.1. Since
then, numerous authors (see Table 1.1) have evolved GWs to explore
the threshold of collapse, nevertheless, none have unambiguously
recovered this early success. Two of these studies deserve additional
mention here. First, in [58], which is the direct precursor of this Chap-
ter, the authors evolved a single family of Brill waves. In qualitative
agreement with other axisymmetric simulations [62, 65, 67, 68], near
the verge of BH formation global maxima of the curvature form away
from the origin as a consequence of large spikes appearing in the cur-
vature. In collapse spacetimes, a separate pair of horizons were found
along the symmetry axis around the greatest of the curvature spikes.
In this study, although tentative evidence for the power-law scaling
with a periodic wiggle was found (there were not periods enough for
a solid evidence) for the Kretschmann scalar, nothing could be con-
cluded about universality as the authors evolved just one family. In a
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second important and recent work that also deserves to be mentioned
here, Ledvinka and Khirnov [51] directly confirmed the findings of
Hilditch et. al. [58] using an independent code and a different gauge,
where they also tuned to a comparable vicinity of the threshold. Inves-
tigating several families of initial data, the authors also found pairs
of disjoint AHs for (constraint solved) Teukolsky waves. Once again,
also in qualitative agreement with other studies in axisymmetry, they
report too that although power-law scaling does appear in their fam-
ilies, the scaling exponent does not seem to be universal. Therefore,
it does not seem to be a universal threshold solution. However, the
most important finding of [51] is the existence of repeated curvature
features which do appear to be universal despite not happening in a
strictly DSS manner.

The main hardship in both [58] and [51] was tuning p to p?. For
instance, in spherical symmetry simulations, either by employing
Adaptive Mesh Refinement (AMR) as in [17] or by using well-chosen
coordinates as in [100, 101], it is frequently possible to tune to machine
precision |p− p?| ∼ 10−15. In axisymmetric evolutions values such
as |p− p?| ∼ 10−9 are usually viable, whereas the best that could be
managed in [58] was |p− p?| ∼ 10−5. There are certain reasons for
this. With less symmetry restrictions the numerical cost to reach a
certain level of accuracy is inevitably higher. Despite of using a pseu-
dospectral numerical method adapted to axisymmetry [34, 102], the
computational cost of the evolutions rapidly grew near the threshold
of collapse as finer curvature features form and more resolution is re-
quired. As a quantitative argument, in [58] about 106 core hours were
used for a single family. As one will see, the current efficiency of the
code bamps that was used for this work is much better. Besides that, an
additional complication was that near the threshold, spacetime could
not be classified as collapsing or dispersing because the evolution
would fail before an AH could be found. It was unclear whether this
was caused by a lack of resolution, coordinate singularities or the
constraint violation rendering the solution unphysical.

Currently, this work returns to the problem of vacuum critical
collapse using the same code as in [58], bamps, however, the code
had a major redisign since then to improve the efficiency related to
computational cost by using AMR. Through this Chapter the reader
will see that six different families of Brill initial data are evolved
and compared both among them and with previous work. As was
previously done, two families of prolate and oblate centered Brill
waves are evolved together with four completely new prolate and
oblate off-centered Brill wave families.
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4.1 formulation and numerical setup

NR is the tool used in this Chapter to evolve GWs in vacuum. The time
evolution of the different sets of initial data were performed using
the adaptive pseudospectral bamps code. In contrast to the spherical
3+1 code used in Chapter 2 where finite differences were used for
the spatial derivatives with a second order convergence, bamps can
evolve in full-3d and uses a pseudospectral approach for the spatial
domain, which has the advantage of having an exponential spatial
convergence (which dominates the convergence, at least in test cases
[34]). To evolve the spacetime the code uses a first order reduction of
the GHG formulation [33] of the Einstein equations 1.8, with the gauge
choices described in [34]. Introducing the variables Φiab and Πab the
field equations are (see Section 1.1 and Section 1.2 for definitions)

∂tgab = βi∂igab − αΠab + γ1βiCiab

∂tΦiab = βj∂jΦiab − α∂iΠab + γ2αCiab

+
1
2

αncndΦicdΠab + αγjkncΦijcΦkab

∂tΠab = βi∂iΠab − αγij∂iΦjab + γ1γ2βiCiab

+ 2αgcd
(

γijΦicaΦjdb −ΠcaΠdb − ge f ΓaceΓbd f

)
− 2α

(
∇(aHb) + γ4Γc

abCc −
1
2

γ5gabΓcCc

)
− 1

2
αncndΠcdΠab − αncγijΠciΦjab

+ αγ0

(
2δc

(anb) − gabnc
)

Cc . (4.4)

Here spacetime components are denoted by Latin letters a, b, c..., the
spatial components are denoted by the Latin letter i, j, k..., and the
standard notation, coherent with Section 1.2, for the lapse, shift spatial
metric and spacetime metric is used. The reduction constraint associ-
ated with the first order reduction is given by Ciab = ∂igab −Φiab. The
harmonic constraint Ca is expressed as a combination of the evolved
variables gab, Φiab,Πab, (see [33]). The constraint damping parameters
were taken to be αγ0 = γ2 = 2γ4 = 2γ5 = 1 throughout. The GHG for-
mulation comes with the freedom to choose gauge source functions Ha,
in this case

naHa = −ηL log(γp/2/α) ,

γi
aHa = −ηS/α2βi , (4.5)

with free scalar functions ηL, ηS. The free parameters were initially
lifted from the best results of [58] and adjusted as seemed appro-
priate from there. As such the starting values were p = 1, ηL =

η̄L/α2 = 0.4/α2 and ηS = 6. At the outer boundary radiation control-
ling, constraint preserving boundary conditions described in [103] are
employed with the adjustments described in [34].
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Brill wave initial data (see Section 3.1.2 from Chapter 3 and Sec-
tion 4.2.1 from the present Chapter) was constructed externally and
then interpolated onto the computational domain. In the treatment
of such axisymmetric data one spatial dimension is suppressed using
the cartoon-method [104], however the implementation follows the
approach of [105], so that only two dimensional data on the x-z-plane
is evolved, and the Killing vector is used to compute the missing
derivatives. Furthermore, only regions where x > 0 and z > 0 are
considered due to the symmetry of the problem.

The time evolution is performed with the method of lines, using
a standard RK4 timestepping algorithm. Within bamps, the compu-
tational domain is divided into patches in a cubed-ball manner (see
Fig. 4.1), forming a ball comprised of deformed cubes, each being
represented internally as a unit cube (u, v, w)T ∈ [−1, 1]3 in the patch-
local-coordinates.

These patches are further divided into smaller grids, which con-
tained between 21 to 31 points in each dimensions in the present work.
Within each grid, the numerical solution is represented by a nodal
spectral representation in a Chebyshev basis, using Gauss-Lobatto
collocation points in each dimension. The grids are coupled to each
other using a penalty method as described in [106–108].

The division of the patches into individual grids is driven by the
AMR system, which divides and combines grids based on heuristics
that estimate the quality of the data representation. This h-refinement
is implemented subject to a 1:2 condition as illustrated in Fig. 4.2. p-
refinement functionality, in which the number of points per individual
grid is increased is also implemented, but was not employed in this
work. For most of the simulations, an estimate of the truncation error
of the spectral series corresponding to the nodal data representation
was used as the refinement indicator, ensuring a grid-local relative
truncation error on the order of no more than 10−9 throughout the
domain, at least up to the maximum number of refinement levels
permitted (19 in the present work). A thorough technical description
of this AMR setup is in preparation.

All computations are parallelized at the grid level, using MPI to
distribute computational work across processes. An integrated load
balancing system is used to ensure an even distribution of both compu-
tations and memory usage across all processes, redistributing grids as
needed whenever AMR operations cause a change in the grid structure.

4.2 the physical model

In this section, the type of initial data that is bisected, Brill waves,
is recalled (see also Section 3.1.2). Then the bisection, the process
that allows the estimation of the threshold amplitude within each
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Figure 4.1: In the left part it is represented a two dimensional diagram of
the bamps cubed-ball grid layout. The ball is built up of several
transformed cubes. These patches can further be divided in sub-
patches using the AMR as shown on the right. In the bottom side
is shown that each subpatch is covered by Gauss-Lobatto grids
ranging from −1 to 1 in local coordinates.

of the evolved families is described. Finally, it is described the post-
processing tools that enabled this estimation.

4.2.1 Brill waves as initial data

As seen in Section 3.1.2 from Chapter 3, Brill wave initial data are
a GW solution to vacuum Einstein constraint equations. Following
the procedure of Brill [91], it is possible to construct axisymmetric
non-linear initial data, where the metric takes the form of Eq. 3.7,
which it is recalled here

dl2 = γijdxidxj = Ψ4 [e2q (dρ2 + dz2)+ ρ2dφ2] . (4.6)

As the data are taken to be at a moment of time symmetry, the extrinsic
curvature vanishes identically and, as a consequence, the momentum
constraint (Eq. 1.31) gets automatically satisfied. For the seed function
a general Gaussian is always chosen

q(ρ, z) = Aρ2e−[(ρ−ρ0)
2/σ2

ρ+(z−z0)
2/σ2

z ] , (4.7)



4.2 the physical model 103

Figure 4.2: Schematic example of a recursively refined grid structure, of the
type bamps uses obeying a 1:2 condition. This example corre-
sponds to 5 levels of refinement.

whose parameters vary depending on the studied family. In the present
Chapter the focus will be on six different families always with z0 = 0,
σρ = σz = 1 covering centered (ρ0 = 0) and off-centered (ρ0 = 4, 5)
Gaussians both geometrically prolate (A > 0) and oblate (A < 0).

Of these six families, the first (prolate A > 0, ρ0 = 0) is best studied
in the literature, see for example [51–53, 58, 93]. In [51] the centered
oblate family (A < 0, ρ0 = 0) was also treated, and so these two
families serve as a point of reference. Khirnov and Ledvinka conclude
that these centered families are more difficult to treat numerically than
their off-set (constraint solved) Teukolsky wave initial data, which
motivates the current use of off-center Brill wave data. (See [55] for
constrained evolution of alternative Brill wave initial data, which
would also be interesting to compare with in the future).

4.2.2 Parameter search

In order to study phenomena near the threshold of collapse, the
first step is to identify that threshold as precisely as one can. In the
case of one-parameter families, this means identifying the value of
such parameter at the threshold. In the present work, the parameter
varying within a family is the amplitude, A, in Eq. 4.7. Modifying A
allows the classification of initial data depending on the outcome of
its evolution. Initial data whose evolution leads to dispersion of the
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fields are classified as subcritical, on the other hand, data that yields a
BH is labelled as supercritical

A subcritical < A? < A supercritical (4.8)

and similarly for families with A < 0.

0 5 10 15 20 25
Time

0

5
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15

20

25
lo

g(
m

ax
(I)

)
0 = 0, A < 0

Subcritical, A = -3.50909
Supercritical, A = -3.5093

Figure 4.3: An illustrative figure to show the different behavior of two close
sets of initial data. The chosen family is a centered oblate Brill
wave ρ0 = 0 with A < 0. One can see that in the case of
the orange dashed line, corresponding to a supercritical ampli-
tude A = −3.50930, the maximum of the Kretschmann scalar
diverges meanwhile on the other hand in the case of the sub-
critical amplitude A = −3.50909 the Kretschmann’s maximum
decreases as the wave disperses.

In Fig. 4.3 one can see how the maximum of the Kretschmann
scalar compares between a subcritical and a supercritical run. This
plot illustrates how similar the evolutions of data from the same
family can be, up to final times where the one parameter that discerns
them makes all the difference between dispersal and collapse. It is
clear evidence that for two sets of initial data that are infinitesimally
close in the parameter space they have completely different outcomes,
exemplifying the definition of a phase transition.

Working with bamps and an AH locator (see Section 4.2.3) enables the
classification as follows. First, at least down to a neighborhood of the
threshold, bamps is able to evolve subcritical data until they disperse.
One can confidently classify the set of initial data as subcritical just
by looking at all the fields dispersing by the end of each evolution.
For instance, the blue line from Fig. 4.3 shows the field dispersal of
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a subcritical run. Second, likewise in Fig. 4.3 one can see how the
orange dashed line blows up, corresponding to a supercritical run,
and stops before time 20. In these evolutions excision of the trapped
region is not executed, therefore, in the case of BH formation bamps

can only evolve for a short time after trapped surface formation. With
this limitation, the procedure is looking for AHs as a post-processing
step. Only when an AH is found a set of initial data is confidently
classified as supercritical.

Categorizing the data as just explained one can estimate that the
threshold amplitude lies in the regime between the highest subcritical
amplitude and the lowest supercritical one. The process of classify-
ing the evolved initial data proceeds in stages, each increasing the
precision of the estimation of the threshold, thereby tuning closer to
A?.

The bisection started with a trivial guess of weak and strong data.
After the limits of the threshold regime are confirmed, data within
them to further tune those bounds at each stage. The precision of such
bounds is increased as far as the method allows. More specifically,
at each stage the threshold regime was divided into 10 subregimes.
When successful, this method manages to add a decimal point per
stage to the limiting amplitudes. This approach furthermore has the
advantage that the data necessary for scaling-plots (like Fig. 4.8) is
already prepared directly at the end point of bisection without having
to go back and resample.

4.2.3 Apparent horizon locator

To conclusively classify a set of initial data as supercritical, the AH

finder ahloc3d [109], which is specifically designed for use with bamps

AMR data is used. ahloc3d replaces the AH finder employed in [34, 58],
which had no functionality with AMR data nor parallelization. During
the development of ahloc3d thorough consistency checks were made
with the results of the older code.

ahloc3d uses a Strahlkörper representation to describe test surfaces
as

r = h(θ, φ) (4.9)

relative to a single center point, and evaluates the expansion

Θ = Disi + Kijs
isj − K , (4.10)

where si is the outward pointing normal vector on the test surface and
K is the extrinsic curvature of the spacetime slice under consideration,
according to the algorithm described in [110]. Using two separate
search methods, it first obtains a rough estimate employing a flow
method using the expansion flow [111] to shrink a large test surface
until an approximate AH is found, i.e. Θ is very small. It then refines
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Figure 4.4: In this figure a color map of the logarithm of the Kretschmann
scalar along the symmetry axis Z and trough time is shown for
the oblate centered family A < 0, ρ0 = 0, for the subcritical
amplitude A = −3.50909.

this estimate using a Newton-Raphson iteration to locate the AH

(Θ = 0) with high accuracy. The search algorithm is fully parallelized
using MPI. Its main limitation is the Strahlkörper representation of the
test surfaces, which makes it unable to find AHs that are not radially
convex. As it will be discussed further below (see Section 4.4), this has
prevented the further fine-tuning of several families of initial data, as
the found AHs approach such non-convex shapes.

4.3 numerical results

In this section it follows the discussion of the outcome from the
bisection search described in Section 4.2.2 for each of the six families.

4.3.1 Dynamics and threshold amplitudes

Basic evolution within each of the families is similar and follows
the behavior observed in [58] for the centered A > 0 family. Very
weak data disperse rapidly, but as the strength of the data increases
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the dynamics become more interesting. If one considers the simplest
non-vanishing curvature scalar in this setup, the Kretschmann scalar,
it possesses wave-like propagation together with large spikes when
waves land on the symmetry axis and oscillate there. In comparison
with the centered families, the off-center data tend to create these peaks
further from the origin, probably because the curvature propagates
further in the ±z-directions before landing on the symmetry axis.
This difference would have made the evolutions of the off-center
families extremely expensive without AMR. To illustrate the dynamics
qualitatively, in Fig. 4.4 a 2D plot of the logarithm of the Kretschmann
scalar against the symmetry axis z and coordinate time is shown for
a set of initial data close to criticality (A = −3.50909) for the oblate
(A < 0) centered (ρ0 = 0) family. Be aware that the region shown is
relatively small but big enough to see that the several peaks of the
curvature scalar occur away from the origin but along the symmetry
axis before they disperse. The results for all of the other families are
similar, with more and more off-centered peaks in the Kretschmann
scalar appearing as the threshold of BH formation is approached. In
the Appendix F similar plots for the rest of the families are presented.
Note that this time the region of interest is bigger since the maximum
spikes of the Kretschmann scalar happen further away in the symmetry
axis. This result will be relevant for Section 4.3.2.

The small initial data that lead to dispersion and the strong initial
data that yields a BH have a clear distinction. The classification of the
data as supercritical (A > A?) is made if and only if a reliable AH is
found with the ahloc3d tool. For an example of a reliable AH found
by ahloc3d see Fig. 4.5. On the other hand, a set of initial data is
classified as subcritical (A < A?) if complete dispersion is seen (with
these inequalities flipped for the A < 0 families). This is a conservative
approach but, given the challenge these extreme spacetimes face and
the unfortunate occasional disagreement between different numerics,
it is important to step with some care and responsibility to compare
rigorously with the literature. The results of the bisection search are
summarized in Table 4.1, where the highest subcritical amplitude and
the lowest supercritical amplitude that were confidently classified with
the ahloc3d are stated. After finding such bounds for the threshold the
ahloc3d started to fail to find AHs in near threshold simulations. The
limits found in the present work for the centered families threshold
amplitudes are compatible with previous works [58] and [51].

4.3.2 Disjoint apparent horizons

With the setup of ahloc3d and the evolved data coming from bamps,
after an AH is found for first time for a given supercritical member of
a family, then it is also possible to find it in the several next time-steps.
In [51, 58] the authors found a pair of disjoint AHs. In agreement with
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Figure 4.5: In this figure an AH found by the ahloc3d is shown. This cor-
responds to the off-center ρ0 = 4, oblate (A < 0) family for an
amplitude of A = −0.0780 at time t ' 13.90.

ρ0 Asub Asup

Prolate
(A > 0)

0 4.69667 4.69680

4 0.09795 0.09870

5 0.0641 0.0645

Oblate
(A < 0)

0 -3.50909 -3.50930

4 -0.07546 -0.07570

5 -0.04878 -0.04900

Table 4.1: In this table the limits of the bisection search are shown. The highest
subcritical (Asub) and lowest supercritical (Asup) amplitudes for
each family are displayed, defining the bounds of the threshold
amplitudes.

such result in the present study is found that close to the threshold
for the oblate (A < 0) off-center families a separated pair of horizons
also appears. These AHs are situated approximately around the two
biggest peaks of the Kretschmann scalar along the symmetry axis and
form (forming a binary BH spacetime if the event horizon shows two
components, but event horizons are not investigated in this work). In
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Fig. 4.6 this behavior is shown for the oblate (A < 0), off-centered
family ρ0 = 4 with amplitude A = −0.0757. Note that such a feature
only appears when tuning close enough to the threshold. As proof
look at Fig. 4.5, corresponding to the same family as Fig. 4.6 but further
from the threshold, with amplitude A = −0.0780. In that case, a single
AH formed situated at the origin and coinciding with the largest peak
of the Kretschmann scalar for such evolution. This is evidence that the
dynamics change as one approaches to the threshold of collapse. Due
to the reflection symmetry of the initial data, the two horizons from
Fig. 4.6 are perfect copies, symmetric about the equator.

Figure 4.6: In this figure the bifurcation of an AH found by ahloc3d is shown.
The horizontal axis represents the x direction and the vertical axis
represents the symmetry axis, z. This is for the specific oblate
off-centered family A < 0, ρ0 = 4 with amplitude A = −0.07570
at time t ' 25.8. Comparing, for example, with Fig. 4 of [58] one
can see that the AHs are off-set by a greater coordinate distance.

For the interested reader, in Appendix G there are shown the AHs

corresponding to the other off-center families as close to the threshold
as possible, corresponding to the values of the amplitude from Table
4.1. There one can see that in the case of the prolate (A > 0) off-center
data there is a single AHs centered at the origin. To see a pair of AHs

as one approaches the threshold, the ahloc3d software needs to be
run close enough to the time of formation of the AH, as shortly after
trapped surface formation the code will fail, making a difficult post-
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processing task to hit the right time to search. In the present work
explicit evidence of two disjoint AHs forming in the prolate off-center
families is not given, however, strong indications are suggesting that
this is a common feature for all the six studied families. Close enough
to the threshold the global peak of the Kretschmann scalar always
occurs, both for subcritical and supercritical cases, away from the
origin and along the symmetry axis. Furthermore, as it is shown in Fig.
4.7, when facing difficulties with ahloc3d some abnormal shapes that
are not trustworthy as AH were found, however, such a shape seems
to indicate that a bifurcation is about to occur. This limitation is a clear
sign that the software needs improvement. It is worth commenting
here as well, that presumably, if one chooses initial data that does not
have reflection symmetry and then tunes well enough to the threshold,
a single AH could form away from the origin along the symmetry axis.
Nevertheless, this option needs further investigation.

Figure 4.7: In this figure an abnormal shape for the output of the software
ahloc3d is shown. The horizontal axis represents the x direction
and the vertical axis represents the symmetry axis, z. This is
for the specific prolate off-centered family A > 0, ρ0 = 4 with
amplitude A = 0.09860 at time t ' 21.56. This outcome it is not
considered as a trustworthy AH due to lack of resolution in the
curve.
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Figure 4.8: The scaling of the Kretschmann scalar for all the studied families
is shown. In the horizontal axis the logarithmic distance to the
critical point is represented and in the vertical axis there is the
logarithm of the maximum of the Kretschmann as I(1/4) in units
of length. The red curve compares with Fig. 4 of [58] and the blue
with the green in Fig. 1 of [51].

4.3.3 Scaling

According to [37], if critical phenomena are present in the collapse
of GWs in vacuum, any curvature scalar invariant should show uni-
versal power-law scaling like 4.2 in the subcritical regime. As this
setup corresponds to vacuum the Ricci scalar vanishes, therefore the
argument above applies to the Kretschmann scalar. In Fig. 4.8 a plot of
the Kretschmann scalar as I1/4 against the logarithmic distance to the
critical point is shown. First, it is clear that the maximum value that
the Kretschmann scalar attains depends on the amplitude of the initial
data for each family. Second, for each family this result is compatible
with the power-law behavior from Eq. 4.2, and agrees very well with
[51, 58] for the two centered families. There is, however, no evidence
of a universal exponent. A priori, this result is compatible with each
family having a different exponent, but, extending these lines further
to the right (which is very computationally expensive and challenging)
would be necessary to make a conclusive statement about universality.
If the exponents were truly different, one could wonder whether there
exists a finite number of such exponents, leading to a new paradigm of
universality, or else, if there are simply as many exponents as families
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Figure 4.9: In this figure four echoes for the family of initial data A < 0,
ρ0 = 0 with A = −3.50909 are shown. Each echo corresponds to
a peak of the maximum of the Kretschmann scalar which happens
at different times against the proper time. Both axes are rescaled
for each curve by a constant λ which is chosen such that the
maximum will correspond to 2 in the plot. The largest ratio of λ’s
across such curves is ∼ 3.

of initial data. Evidently, more investigation is needed. Referring to
DSS, only one family (the blue curve in Fig. 4.8) shows enough periods
for claiming that it behaves as approximately-DSS and more periods are
needed in the other families. This is also the reason why treating the
errors is postponed and the interpretation of this result as qualitative
for now.

4.3.4 Echoes and universality

In the case of a minimally coupled real massless scalar field collapse
in spherical symmetry [17], the critical solutions show DSS behavior,
however, in the axisymmetric collapse of GWs in vacuum the picture
is more complicated. As discussed above, it is observed that for a
near threshold evolution A . A? (flipped for oblate A < 0 families),
several large local peaks in the Kretschmann scalar occur along the
symmetry axis before the data eventually disperse. In Fig. 4.9 these
peaks are plotted against the proper time along timelike curves (the
integral curves of the unit normal vector na) that pass through the
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maxima (one curve per peak), and compare them by rescaling them
with a constant λ so that dimensionless quantities are plotted in both
axes. Due to the coordinates that are used in the present work the shift
is non-zero, and in order to calculate the integral curve of na

τ̇(t) = α(xµ(t)) + constant, (4.11)

ẋi(t) = −βi(xµ(t)),

needs to be solved, where τ(t) is the proper time, α is the lapse, βi

is the shift (see Section 1.2 for definitions) and xi the integral curve
parametrized by t. In Fig. 4.9 the oblate (A < 0) centered family ρ0 = 0
is taken as it is the one in which the highest number of echoes was
found. In Appendix H the analogous plots are shown for the rest of
the families. As one can see, the agreement is not as clear as in Fig.
4.9 for the rest of the families, however, given that A − A? has no
absolute meaning, one can argue that for the other families the data
is not as close to the threshold solution to show as good results as
Fig. 4.9. This is consistent with Fig. 4.8 where the family displaying a
larger number of periods is also the prolate (A > 0) centered one. In
these figures it is allowed the freedom to flip individual curves to take
care of features propagating up or down the z-axis. The agreement of
the four curves in Fig. 4.9 is striking, especially given that the values
of λ for each of the curves vary by a factor of ∼ 3, corresponding to
a little less than two orders of magnitude in the Kretschmann scalar
itself. Four echoes were found for four different times, in agreement
with [51]. It is important to remark, again, that this feature is exclusive
to near threshold evolutions. Serve as proof that fewer echoes are
appearing for the other families as shown in Appendix H and that for
small initial data only one peak of the Kretschmann scalar occurs, and
no such repeated feature appears. On the symmetry axis, the scalar
quantity studied by Ledvinka and Khirnov in [51] is directly related to
the Kretschmann scalar. One might expect their profiles agree with the
ones shown here, but, the normal vector associated with the foliation
of [51] does not coincide with the one considered in the present work.
Thus, the integral curves along which the plot is made do not coincide
either. A detailed comparison is then postponed. It was not possible
to identify whether these repeated features correspond to true DSS

behavior. In the chosen coordinates they appear with no regular time
intervals, and the curvature scaling plots from Fig. 4.8 do not indicate
universal power-laws nor uniformly periodic wiggles, so there is no
reason to expect them to correspond to true DSS. Yet, this is clear
evidence of phenomenology familiar from the spherical setting, where
the standard picture of critical phenomena applies, carrying over.

In order to compare the spacetime behavior among families, in Fig.
4.10 the profile of the Kretschmann scalar against the proper time
along a timelike curve that passes through the maxima is shown for
near critical data. Such an integral curve of na is build in a neigh-
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Figure 4.10: In this figure the largest peak of the Kretschmann scalar, for
the highest subcritical amplitude of Table 4.1, for each of the
six studied families, against the proper time along the integral
curve of na is shown. As in Fig. 4.9, both the proper time and
Kretschmann scalar are rescaled by a constant λ chosen such
that the maximum of the Kretschmann scalar occurs at 2 in
the plot. For these curves the largest ratio of λ’s is around 10,
corresponding to a ratio 104 in the peak of the Kretschmann
itself. The data for the prolate (A > 0) off-centered families and
for the oblate (A < 0) centered family have been flipped along
the vertical axis for a better match.

borhood of each large peak. This representation is similar to Fig. 4.9
but now for the largest peak within the best-tuned data within each
family (see Table 4.1). Each of these lines corresponds to the most
right placed point of Fig. 4.8 for each family, being as close to the
threshold solution as possible. Again, the shapes around the peaks
agree, showing a common feature that appears when evolving initial
data with amplitude A ' A? independently of the chosen family of
initial data, and again, in concordance with [51].

4.4 summary and discussion

The precursor of this work on GW collapse with bamps [58] was severely
restrained by the rapidly increasing computational cost of the evo-
lutions near the threshold. With an allocation of around 10 million
core hours the authors were able to tune just a single family to the
threshold of collapse. That is the main reason with since then bamps
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has undergone a major rebuild, and now it fully supports AMR (which
details will appear soon in an independent report). In the present
work, with a similar allocation it was possible to tune six families
within a comparable distance to the threshold of collapse. Be aware
that so far this is the work in which more families of initial data are
investigated.

There is an obvious question to make here. If now there exists
this additional efficiency why it is not pushed already one (or more)
families closer to the threshold? The answer is that there are still other
complications. During the development of this work difficulties were
encountered in the bisection, and in particular, classifying spacetimes
close to the threshold. The main two reasons for this are, first, it is not
possible to prevent the formation of coordinate singularities, which
no amount of AMR could overcome. These coordinate singularities
would prevent classification if they appear before trapped surface
formation. The choice of the gauge parameter ηS as defined in Eq. 4.5
appears to be highly important. Related to this there is the presence
of constraint violation, which gets worse in the strong-field regime
and especially when fine features appear, but this is not likely to be
the leading problem in the present data. As expected, the evolutions
near the threshold of collapse are numerically more challenging and
constraint violation gets worse. Usually the constraint violation stays
in a range of about 10−8 to 10−6 for small initial data. However, when
the Kretschmann scalar grows this violation can reach up to 10−3, but
still remains several orders of magnitude smaller than the relevant
evolved quantities. The second issue was that, in particular for the
off-centered families, the shapes of the AHs change drastically the
closer one gets to the threshold. It is suspected that there may be
AHs which can not be captured by ahloc3d due to the Strahlkörper
representation described in Section 4.2.3. Fortunately, strategies are
available to avoid both of these issues in the future.

Despite the above mentioned shortcomings, the current setup allows
rigorous examination of the threshold of BH formation of axisymmetric
GWs. Close to the threshold, it was found explicitly that two of the
four off-centered families form two disjoint AHs, in agreement with
[51, 58] for the centered families. In the remaining two families of
off-center data, the expectation is that the same happens due to the
spikes in the Kretschmann scalar form away from the origin and along
the symmetry axis. These spikes are further separated for off-center
data than for centered data. This is not surprising, since the seed
functions were off-set in the cylindrical polar direction ρ, the waves
have time to propagate in the z-direction before they hit the symmetry
axis. It would be interesting to study initial data families off-set in
both ρ and z to examine how generic the appearance of pairs of AH

is within families of reflection symmetry data. However, with the
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(constraint solved) Teukolsky waves from [51] and the present work,
the appearance of a par of AHs does seem a fairly robust feature.

The results for the scaling of the Kretschmann scalar shown in Fig.
4.8 agree perfectly with [51, 58], enhancing confidence that the code is
reliable as the results for centered Brill waves were reproduced. The
main objective was to help establish the extent to which the standard
picture of critical collapse extends beyond spherical symmetry. As
discussed in Section 1.5, a number of studies suggest that this story
is a subtle one, where the present work reinforces this perspective.
Four families of off-center initial data were examined for first time.
Considering the scaling plot for each family individually, it is tempting
to argue that the data take the form of a power-law plus a possibly
periodic wiggle. But at least to the level of tuning that is presented
here, there appears to be neither a universal power nor period in the
wiggle. It might be possible that greater numerical accuracy is needed,
but given the solid agreement with the independent implementation
in [51] that does seem unlikely. The available evidence at this point
suggests that the exponents of the respective power-laws and the
periods of the wiggles (if the latter can even be defined), are family
dependent. Presumably, this corresponds to the manifestation of dif-
ferent threshold solutions, and so departs from the standard picture
of critical phenomena in spherical symmetry (see Section 1.3.1).

Most interestingly, the evidence strongly suggests that aspects of
behavior familiar from the spherical setting do carry over. Looking
at Fig. 4.10, it is clear that, close enough to the threshold solution, all
six families present strikingly similar behavior for the Kretschmann
scalar. A peak of practically the same shape appears at different scales.
This is a clear indication that some kind of universality still remains.
This is, furthermore, in good agreement with the findings by [51]
for alternative families of initial data. Likewise it was also found
that within individual families, those repeated echoes appear in the
curvature scalar.

There are a number of obvious ways in which to extend this work.
First, improvements to ahloc3d are needed so that the AHs that do
not follow the Strahlkörper parametrization can be found. See [112],
where the same problem was faced, for a possible solution. It could
be possible to analyze even the sets of data that were inconclusive
to classify in this work and also to push the same bisection further.
Next, is the treatment of alternative families, including radially off-
set Brill waves and (constraint solved) Teukolsky waves. It is also
expected that finer control of constraint violation and coordinates
would be of benefit. For the latter, DF-GHG [113–115] formulation is
already implemented, but the complete generalization of the outer
boundary conditions to that setting is still ongoing. A further question,
already mentioned in passing in [58], is whether or not the curvature
spikes that are observed have anything to do with BKL behavior. As
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such, following [116], it would be interesting to calculate the expected
behavior of the Kretschmann scalar for comparison. Ultimately, as
bamps undergoes further development, in the future it is expected to
relax the symmetry assumptions and make full-3d evolutions at the
threshold of vacuum collapse. Progress on all of these points will be
reported elsewhere.
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5
F I N A L D I S C U S S I O N

The aim of this manuscript is to bring further progress in the study of
the critical phenomena in gravitational collapse, particularly, beyond
spherical symmetry. As it was introduced in Section 1.5, the standard
picture of critical phenomena perfectly applies when restricting to
spherically symmetric scenarios, however as one can see through the
previous Chapters, when moving to fewer symmetry restrictions, not
all the features might carry over.

In the first part of this thesis, a critical phenomena modelling project
was explained in Chapter 2. Studying critical phenomena in gravita-
tional collapse is normally done using NR. When focusing on setups
that depart from spherical symmetry the complications of a numer-
ical code and the necessary computational cost increases by orders
of magnitude. In an attempt to investigate critical collapse without
spherical symmetry while side-stepping this handicap, the semilinear
wave models from Chapter 2 came to light. These models that replicate
the full description of critical phenomena in the spherically symmetric
case can be studied in a much more efficient manner. A NR inspired
spherical 3+1 code was used to prove that in spherical symmetry all
the models vindicate the critical phenomena. Moreover, some of them
have an analytical solution, which allowed deeper investigation into
the mathematical structure and to straightforwardly obtain threshold
solutions in axisymmetry. It was analytically proven that different
families of initial data lead to different threshold solutions, departing
from the assumption of a universal threshold solution when dropping
spherical symmetry. Part of the motivation for this manuscript, but
in general to study the critical phenomena in gravitational collapse,
was to find counterexamples to the SCC and WCC. In this case, these
toy models can not be thought of as a model for WCC, however, one
can make some connections with the SCC. For these toy models, it
was shown that threshold solutions were more regular than generic
blowup solutions, allowing extension beyond the blowup depending
on the values of some parameters (ν and γ). Despite the lack of proof,
one might wonder how this would apply if it carries over to GR. The
answer is that such regularity of the threshold solution would allow
numerical simulations which could further investigate the SCC.
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The second part of this manuscript returned to GR and implications
for the critical collapse of GWs in vacuum were investigated. Two
approaches were taken in this part, first, in Chapter 3 the focus was
on the linearized initial data for vacuum GWs simulations. Second,
in Chapter 4 such simulations were carried out to bring some light
to the critical phenomena in gravitational collapse beyond spherical
symmetry from a computational approach.

In Chapter 3 two types of vacuum GWs initial data, Brill and Teukol-
sky waves were introduced in the linear regime. It was found in the
literature that these two types of initial data behave differently in nu-
merical simulations, with Brill waves in particular proving difficult in
previous works. Moreover, in the scenario of evolving GWs in vacuum,
it was shown by [51] and in Chapter 4 that different families of initial
data have, a priori, different scaling exponents, which is an indication
of different threshold solutions. As suggested by studies of critical phe-
nomena in gravitational collapse with electromagnetic waves [67, 68],
initial data families leading to quantitative and qualitative different
threshold solutions might be due to the different multipolar structure
of the initial data. When treating Brill and Teukolsky waves in the
linear regime they also have, in general, different multipoles. Given
this assumption, it was worth studying if in the case of GWs in vacuum
this difference was also behind the cause of the different behavior of
the two types of initial data. By comparing them in the linear regime
with three different methods, the outcome was that the most common
choice of the Brill data, the Holz data [93] (a Gaussian profile for the
seed function), had the same multipolar structure as the Teukolsky
waves. Since the two types of initial data purely quadrupolar, it was
found that the differences between them were negligible and in any
case, not the reason why the numerical outcome of both is so different.
It is important to remark that this study was focused on the linear
regime, therefore the possible explanation for the discordance might
be hidden within the nonlinear part and further research is needed.

In Chapter 4 the canonical approach to critical phenomena in gravi-
tational collapse was undertaken. Using the adaptive pseudospectral
NR bamps code, vacuum GWs initial data were evolved. As discussed
in Section 1.5, the pioneering results from Abrahams and Evans [49,
50] about the critical phenomena in the collapse of GWs in vacuum
were never successfully reproduced. Instead, when this scenario was
studied in [51, 58] the authors found some departures from the stan-
dard understanding of the critical collapse in spherical symmetry. The
findings that were exposed in Chapter 4 point in the latter direction.
In this setup, there is a clear phase transition in the parameter space
when two sets of initial data that are infinitesimally close lead to two
distinct end points, one finishing in dispersion and the other in BH

formation. However, the properties of the threshold solution lying in
between both regimes seem to differ from other gravitational collapse
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scenarios in spherical symmetry. Although some universal features
remain associated with the spikes of the curvature scalar, one can not
say that the scaling exponent for all the families is the same, nor the
period of the wiggle, if such a period can even be defined. It was nei-
ther possible to confirm a DSS behavior of the near threshold solutions,
as the echoes in the curvature do not seem to be periodic, at least, in
the chosen coordinates. The code bamps had major structural changes
that are put into practice in this project, dramatically increasing its
efficiency. However other limitations regarding constraint violation,
coordinate singularities, and finding AHs in the post-process search
arose. As these results are in good agreement with [51], work done
with an independent code, the confidence in the accuracy of bamps is
reinforced. Nevertheless, it would be interesting to have more results
from independent codes that can evolve GWs. An example of software
that could be used for this purpose is the CoCoNut code, which has
proven to be valid to evolve GWs in dynamical spacetimes [117]. To-
gether with Chapter 2 and other independent studies, this is a work
that also walks towards changing the paradigm of critical phenomena
in gravitational collapse when moving beyond spherical symmetry.

When I enrolled in the PhD that results in this document, there
was only one study in the literature suggesting that a more intricate
structure could arise in the gravitational critical collapse when moving
to fewer symmetry restrictions. Such work [62] dates from 2003, and
the only departure from the standard story was the appearance of two
centers of collapse when getting close to the threshold. It was only 14

years later when such a feature was reproduced in the collapse of GWs

in vacuum [58], a work that came out in November of 2017, practically
coinciding with my starting date as a PhD student. Since then, several
studies by many authors covered a range of different scenarios to
bring some light to the still dark world of critical phenomena in
gravitational collapse beyond spherical symmetry. The work presented
in this manuscript takes part in that group of studies in the recent
past years.

Gravity is a very special field of physics. As an undergraduate
student would say, there are two main theories to explain the world as
we know it: the Standard Model (SM) of particle physics and GR. The
SM can explain three of the four fundamental forces, electromagnetic,
weak, and strong, however, gravity does not play a role in there and
vice versa. It is well known that both theories apply to different scales.
Colloquially, one can say that the SM, as a quantum field theory, applies
to the physics of the "very small", and, on the other hand, that GR

applies to the physics of "big" scales. So far there is not a unified theory
that joins these two ends, as it would be the dream of many of us
physicists. Of course, both theories are in constant evaluation to face
the shortcomings and experimental evidence that is still unexplained,
but the fact that gravity itself needs a separate formalism means, at
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least, that things might happen differently to other physical systems.
Connecting with critical phenomena in gravitational collapse, one
might wonder: Are critical phenomena behaving differently in gravity?
Are they even critical phenomena at all? Is this an open door to new
physics? With the evidence so far, it is fair to say that this subject
is a relatively new field of study, whereas, in other areas of physics,
such as statistical mechanics, critical phenomena have been studied
for longer. The name of critical phenomena in the gravitational context
comes after the seminal work of Choptuik [17], where it was found
experimentally that the particular setup of a real massless scalar
field minimally coupled in spherical symmetry was sharing the same
properties as the critical solutions in statistical mechanics. Since then
critical phenomena in gravitational collapse was established as a field
of research in its own right. However, the recent discoveries that such
phenomenology does not completely carry over beyond spherical
symmetry for many gravitational settings makes one wonder whether
this is actually critical phenomena that simply works with subtleties
in gravity, or if it is something quite different but still of fundamental
interest. The work developed during this thesis tried to shed some
light on that question and it is part of many studies that will come, as
more investigation is needed. Only time will tell the final answer.
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A
A N G U L A R F U N C T I O N S A N D S E E D F U N C T I O N F O R
T E U K O L S K Y

frr = 2− 3 sin2(θ) (A.1a)

frθ = −3 sin(θ) cos(θ) (A.1b)

f (1)θθ = 3 sin2(θ) (A.1c)

f (2)θθ = −1 (A.1d)

f (1)φφ = − f (1)θθ (A.1e)

f (2)φφ = 3 sin2(θ)− 1. (A.1f)

For the coefficients A, B and C the seed function is a linear combi-
nation of an outgoing solution (x = t + r) and ingoing (x = t− r). In
Chapter 3 a concrete seed function is taken but here in the appendix
let us take a more general approach to understand how the coefficients
are calculated.

Let the seed function, in general, be:

F = F1(t− r) + F2(t + r). (A.2)

Let us define the derivative:

F(n) ≡
[

dnF1(x)
dxn

]
x=t−r

+ (−1)n
[

dnF2(x)
dxn

]
x=t+r

. (A.3)

The coefficients are then given in terms of the seed function and its
derivatives

A = 3

[
F(2)

r3 +
3F(1)

r4 +
3F
r5

]
, (A.4)

B = −
[

F(3)

r2 +
3F(2)

r3 +
6F(1)

r4 +
6F
r5

]
, (A.5)

C =
1
4

[
F(4)

r
+

2F(3)

r2 +
9F(2)

r3 +
21F(1)

r4 +
21F
r5

]
. (A.6)
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B
S P H E R I C A L H A R M O N I C S

In this appendix the spherical harmonics that are used in Chapter 3

are shown to facilitate the reading of the chapter.

Y00(θ, φ) =
1

2
√

π
(B.1)

Y10(θ, φ) =
1
2

√
3
π

cos(θ) (B.2)

Y20(θ, φ) =
1
4

√
5
π

(
3 cos2(θ)− 1

)
(B.3)

Y30(θ, φ) =
1
4

√
7
π

(
5 cos3(θ)− 3 cos(θ)

)
(B.4)

Y11(θ, φ) = −1
2

√
3

2π
eiφ sin(θ) (B.5)

Y1−1(θ, φ) =
1
2

√
3

2π
e−iφ sin(θ) (B.6)

Y31(θ, φ) = −1
8

√
21
π

eiφ sin(θ)
(
5 cos2(θ)− 1

)
(B.7)

Y3−1(θ, φ) =
1
8

√
21
π

e−iφ sin(θ)
(
5 cos2(θ)− 1

)
(B.8)
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C
C O N S T R U C T I O N O F M O N C R I E F F U N C T I O N S

c.1 auxiliary angular functions

In the construction of the gauge-invariant Moncrief functions it is
useful to express the components of the tensor spherical harmonics in
terms of the functions

W`m =

(
∂2

θ − cot θ ∂θ −
1

sin2 θ
∂2φ

)
Y`m (C.1a)

X`m = 2∂φ (∂θ − cot θ)Y`m (C.1b)

(see, e.g., Section 9.4.1 and Appendix D in [10]). For ` = 2 and m = 0,
these functions reduce to

W20 =
3
2

√
5
π

sin2(θ) (C.2a)

X20 = 0 (C.2b)

c.1.1 Teukolsky waves

As one might expect for an axisymmetric, purely quadrupolar wave,
the only non-vanishing terms for the Teukolsky wave of Section 3.1.1
are those with ` = 2 and m = 0. From Eqs. (9.78) through (9.81) in
[10] the functions H220, h120, K20, and G20 are computed and shown in
Figs. C.1, C.2, C.3 and C.4

HT
220 = −96

√
π

5
ATe−(r/λ)2

(C.3a)

hT
120 =

√
π

5
16AT

λ2 re−(r/λ)2 (
2r2 − 3λ2) (C.3b)

KT
20 = 48

√
π

5
ATe−(r/λ)2

(C.3c)

GT
20 = −

√
π

5
8AT

λ4 e−(r/λ)2
(

2r4 − 8λ2r2 + 3λ4
)

. (C.3d)
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Following (9.88) and (9.89) it is possible to then combine these
functions, to form

kT
120 =

√
π

5
32ATr2

λ6 e−(r/λ)2
(

2r4 − 15λ2r2 + 21λ4
)

(C.4a)

kT
220 = −

√
π

5
48ATr2

λ6 e−(r/λ)2
(

2r4 − 13λ2r2 + 14λ4
)

, (C.4b)

which are shown in Figs. C.5 and C.6.
Finally, the gauge-invariant Moncrief function R20 for the Teukolsky

wave of Section 3.1.1, computed from (9.87) in [10], is given by

RT
20 = −

√
π

5
8ATr3

λ4 e−(r/λ)2 (
2r2 − 7λ2) (C.5)

(see also exercise 9.7 in [10]).

c.1.2 Brill waves

For the Brill waves of Section 3.1.2 the analog computation

HB
220 =

√
π

5
AB

r3

[ e−(r/σ)2

3σ2 (4r5 + 2r3σ2 − 3rσ4)−

√
π

σ3

2
erf
( r

σ

) ]
(C.6a)

hB
120 =0 (C.6b)

KB
20 =

√
π

5
AB

6r2

[
2e−(r/σ)2 (

2r2 + 3σ2)−
3
√

πσ3

r
erf
( r

σ

) ]
(C.6c)

GB
20 =

√
π

5
2AB

3σ2 r2e−(r/σ)2
, (C.6d)

and then combine these functions to find

kB
120 = −

√
π

5
AB

6r3σ4

[
3
√

πσ7erf
( r

σ

)
+ (C.7a)

e−(r/σ)2
(

16r7 − 40r5σ2 − 4r3σ4 − 6rσ6
)]

kB
220 =

√
π

5
AB

4r3σ4

[
−3
√

πσ7erf
( r

σ

)
+ (C.7b)

e−(r/σ)2
(

16r7 − 24r5σ2 + 4r3σ4 + 6rσ6
)]

.

All these intermediate functions are shown in the figures at the end of
this Appendix.

The gauge-invariant Moncrief function R20 is then given by

RB
20 =

√
π

5
AB

12r2σ2

[
2re−(r/σ)2

(
4r4 + 2r2σ2 + 3σ4

)
−

3
√

πσ5erf
( r

σ

)]
. (C.8)
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Figure C.1: The intermediate function H220 to build R20 divided by AB is
shown for both Brill and Teukolsky data. It was assumed σ = λ
and AT = AB/80.
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Figure C.2: The intermediate function h120 to build R20 divided by AB is
shown for both Brill and Teukolsky data. It was assumed σ = λ
and AT = AB/80.
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Figure C.3: The intermediate function K20 to build R20 divided by AB is
shown for both Brill and Teukolsky data. It was assumed σ = λ
and AT = AB/80.
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Figure C.4: The intermediate function G20 to build R20 divided by AB is
shown for both Brill and Teukolsky data. It was assumed σ = λ
and AT = AB/80.
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Figure C.5: The intermediate function k120 to build R20 divided by AB is
shown for both Brill and Teukolsky data. It was assumed σ = λ
and AT = AB/80.
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Figure C.6: The intermediate function k220 to build R20 divided by AB is
shown for both Brill and Teukolsky data. It was assumed σ = λ
and AT = AB/80.





D
E X PA N S I O N O F W ` 0 I N T E R M S O F S P H E R I C A L
H A R M O N I C S Y` 0

The functions W`m may also be written as

W`m = `(`+ 1)Y`m + 2∂2
θY`m (D.1)

(see, e.g., eq. D.12 in [10]). Since the second derivative of Y`m with
respect to θ can be expressed in terms of spherical harmonics Y`′m
with `′ = `− 2, `′ = `− 4 etc., it is possible to see that, for even (odd)
`, the W`m can be written as a linear combination of all Y`′m’s with
even (odd) `′ satisfying ` ≥ `′ ≥ m. In axisymmetry, i.e. for m = 0,
it is possible to derive this linear combination from the properties
of Legendre polynomials P`, which are related to the axisymmetric
spherical harmonics by

Y`0 =

√
2`+ 1

4π
P`. (D.2)

Starting with the Legendre equation, which may be written in the
form

d2P`
dθ2 = −cos θ

sin θ

dP`
dθ
− `(`+ 1)P` = x

dP`
dx
− `(`+ 1)P` (D.3)

where x ≡ cos θ in the last step. Using then the recurrence relation

xP′` = P′`−1 + `P` (D.4)

(see, e.g., Eq. 12.25 in [118]) to find

d2P`
dθ2 = P′`−1 − `2P` (D.5)

Now using the identity

P′n+1 = P′n−1 + (2n + 1)Pn (D.6)

(see, e.g., 12.23 in [118]) repeatedly. Starting with n = `− 2, eq. (D.5)
becomes

d2P`
dθ2 = P′`−3 + (2`− 3)P`−2 − `2P`, (D.7)
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next (D.6) is used for n = `− 4 etc.. Starting with an even `, at some
point it ends up with a term P′3, which it is written as

P′3 = P′1 + 5P2 = 5P2 + P0, (D.8)

where P′1 = 1 = P0 was used. We may therefore write

d2P`
dθ2 =

`−2

∑
n=0

(2n + 1)Pn − `2P` (` > 2 even, n even). (D.9)

Using (D.2) again

∂2
θ Y`0 = −`2Y`0 +

√
2`+ 1

`−2

∑
n=0

√
2n + 1 Yn0 (` > 2 even, n even),

(D.10)

which may be inserted into (D.1) to obtain

W`0 = `Y`0 + 2
√

2`+ 1
`−2

∑
n=0

√
2n + 1 Yn0 (` > 2 even, n even).

(D.11)

Since the function q in (3.9) contains only monopole and quadrupole
terms, only the last two terms in this expansion,

W`0 = . . . + 2
√

2`+ 1
(√

5 Y20 + Y00

)
(` > 2 even), (D.12)

can yield a contribution in the integral (3.65) for ` > 2.



E
C O M P O N E N T S O F T H E B R I L L A N D T E U K O L S K Y
P E RT U R B AT I O N S I N T T G AU G E

For the interested reader here there are presented in Fig. E.1 the non-
vanishing components of hab both for Brill and Teukolsky initial data,
in TT gauge, for their respective seed functions 3.8 and 3.2.
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Figure E.1: Non-vanishing components of hab for Teukolsky and Brill data in
TT gauge.



F
C O L O R M A P S

In this Appendix the color maps for the logarithm of Kretschmann
scalar corresponding to the rest of the studied families in Chapter 4

are shown.

Figure F.1: In this figure a color map of the logarithm of the Kretschmann
scalar along the symmetry axis z and through time is shown
for the oblate centered family A > 0, ρ0 = 0, for the subcritical
amplitude A = 4.69667.
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Figure F.2: In this figure a color map of the logarithm of the Kretschmann
scalar along the symmetry axis z and through time is shown
for the oblate centered family A > 0, ρ0 = 4, for the subcritical
amplitude A = 0.09790.

Figure F.3: In this figure a color map of the logarithm of the Kretschmann
scalar along the symmetry axis z and through time is shown
for the oblate centered family A > 0, ρ0 = 5, for the subcritical
amplitude A = 0.06410.
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Figure F.4: In this figure a color map of the logarithm of the Kretschmann
scalar along the symmetry axis z and through time is shown
for the oblate centered family A < 0, ρ0 = 4, for the subcritical
amplitude A = −0.07547.

Figure F.5: In this figure a color map of the logarithm of the Kretschmann
scalar along the symmetry axis z and through time is shown
for the oblate centered family A < 0, ρ0 = 5, for the subcritical
amplitude A = −0.04876.





G
A P PA R E N T H O R I Z O N S

In this Appendix additional AHs are shown. Figs. G.1, G.3 and G.2 cor-
respond to the lowest supercritical run, that is, the closest to threshold
that an AH was found, for the rest of the off-centered families that are
not shown in Section 4.3.2.

Figure G.1: In this figure an AH found by ahloc3d is shown. The horizontal
axis represents the x direction and the vertical axis represents
the symmetry axis, z. This is for the specific prolate off-centered
family A > 0, ρ0 = 4 with amplitude A = 0.09870 at time t '
19.55.
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Figure G.2: In this figure an AH found by ahloc3d is shown. The horizontal
axis represents the x direction and the vertical axis represents
the symmetry axis, z. This is for the specific prolate off-centered
family A > 0, ρ0 = 5 with amplitude A = 0.0645 at time t '
24.06.

Figure G.3: In this figure a bifurcated AH found by ahloc3d is shown. The
horizontal axis represents the x direction and the vertical axis
represents the symmetry axis, z. This is for the specific oblate
off-centered family A < 0, ρ0 = 5 with amplitude A = −0.0490
at time t ' 29.18. As in Fig. 4.6 it is possible to observe that the
AHs are also separated by a greater distance than in [58].



H
E C H O E S

In this Appendix the echoing plots for the rest of the families that are
not appearing in Section 4.3.4 are shown.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
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I*
4

0 = 0, A > 0
First peak, t = 19.08
Second peak, t = 15.86
Third peak, t = 5.48

Figure H.1: In this figure four echoes for the family of initial data A > 0,
ρ0 = 0 with A = 4.69667 are shown. Each echo corresponds
to a peak of the maximum of the Kretschmann scalar which
happens at a different times against the proper time. Both axes
are rescaled for each curve by a constant λ which is chosen such
that the maximum will correspond to 2 in the plot. The largest
ratio of λ’s across such curves is ∼ 4.
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Figure H.2: In this figure four echoes for the family of initial data A > 0,
ρ0 = 4 with A = 0.09795 are shown. Each echo corresponds
to a peak of the maximum of the Kretschmann scalar which
happens at a different times against the proper time. Both axes
are rescaled for each curve by a constant λ which is chosen such
that the maximum will correspond to 2 in the plot. The largest
ratio of λ’s across such curves is ∼ 9.
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Figure H.3: In this figure four echoes for the family of initial data A > 0,
ρ0 = 5 with A = 0.0641 are shown. Each echo corresponds
to a peak of the maximum of the Kretschmann scalar which
happens at a different times against the proper time. Both axes
are rescaled for each curve by a constant λ which is chosen such
that the maximum will correspond to 2 in the plot. The largest
ratio of λ’s across such curves is ∼ 3.
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2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
/

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
I*

4

0 = 4, A < 0
First peak, t = 31.58
Second peak, t = 26.64
Third peak, t = 8.03

Figure H.4: In this figure four echoes for the family of initial data A < 0,
ρ0 = 4 with A = −0.07546 are shown. Each echo corresponds
to a peak of the maximum of the Kretschmann scalar which
happens at a different times against the proper time. Both axes
are rescaled for each curve by a constant λ which is chosen such
that the maximum will correspond to 2 in the plot. The largest
ratio of λ’s across such curves is ∼ 2.
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Figure H.5: In this figure four echoes for the family of initial data A < 0,
ρ0 = 5 with A = −0.04878 are shown. Each echo corresponds
to a peak of the maximum of the Kretschmann scalar which
happens at a different times against the proper time. Both axes
are rescaled for each curve by a constant λ which is chosen such
that the maximum will correspond to 2 in the plot. The largest
ratio of λ’s across such curves is ∼ 2.
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covariant evolution formalism for numerical relativity.” In:
Phys. Rev. D 67 (2003), p. 104005. eprint: gr-qc/0302083.

[21] Daniela Alic, Carles Bona-Casas, Carles Bona, Luciano Rezzolla,
and Carlos Palenzuela. “Conformal and covariant formulation
of the Z4 system with constraint-violation damping.” In: Phys.
Rev. D 85 (6 2012), p. 064040. doi: 10.1103/PhysRevD.85.
064040. url: https://link.aps.org/doi/10.1103/PhysRevD.
85.064040.

[22] Milton Ruiz, David Hilditch, and Sebastiano Bernuzzi. “Con-
straint preserving boundary conditions for the Z4c formulation
of general relativity.” In: Phys. Rev. D 83 (2 2011), p. 024025.
doi: 10.1103/PhysRevD.83.024025. url: https://link.aps.
org/doi/10.1103/PhysRevD.83.024025.

[23] Andreas Weyhausen, Sebastiano Bernuzzi, and David Hilditch.
“Constraint damping for the Z4c formulation of general rela-
tivity.” In: Phys. Rev. D 85 (2 2012), p. 024038. doi: 10.1103/
PhysRevD.85.024038. url: https://link.aps.org/doi/10.
1103/PhysRevD.85.024038.

[24] Zhoujian Cao and David Hilditch. “Numerical stability of the
Z4c formulation of general relativity.” In: Phys. Rev. D 85 (12

2012), p. 124032. doi: 10.1103/PhysRevD.85.124032. url:
https://link.aps.org/doi/10.1103/PhysRevD.85.124032.

https://doi.org/10.1088/0264-9381/31/2/025012
https://doi.org/10.1088/0264-9381/31/2/025012
https://doi.org/10.1088/0264-9381/31/2/025012
https://doi.org/10.1103/PhysRevLett.70.9
https://link.aps.org/doi/10.1103/PhysRevLett.70.9
gr-qc/0302083
https://doi.org/10.1103/PhysRevD.85.064040
https://doi.org/10.1103/PhysRevD.85.064040
https://link.aps.org/doi/10.1103/PhysRevD.85.064040
https://link.aps.org/doi/10.1103/PhysRevD.85.064040
https://doi.org/10.1103/PhysRevD.83.024025
https://link.aps.org/doi/10.1103/PhysRevD.83.024025
https://link.aps.org/doi/10.1103/PhysRevD.83.024025
https://doi.org/10.1103/PhysRevD.85.024038
https://doi.org/10.1103/PhysRevD.85.024038
https://link.aps.org/doi/10.1103/PhysRevD.85.024038
https://link.aps.org/doi/10.1103/PhysRevD.85.024038
https://doi.org/10.1103/PhysRevD.85.124032
https://link.aps.org/doi/10.1103/PhysRevD.85.124032


bibliography 153

[25] David Hilditch, Sebastiano Bernuzzi, Marcus Thierfelder, Zhou-
jian Cao, Wolfgang Tichy, and Bernd Brügmann. “Compact
binary evolutions with the Z4c formulation.” In: Phys. Rev. D
88 (8 2013), p. 084057. doi: 10.1103/PhysRevD.88.084057. url:
https://link.aps.org/doi/10.1103/PhysRevD.88.084057.

[26] Thomas W. Baumgarte and Stuart L. Shapiro. “Numerical in-
tegration of Einstein’s field equations.” In: Phys. Rev. D 59

(2 1998), p. 024007. doi: 10.1103/PhysRevD.59.024007. url:
https://link.aps.org/doi/10.1103/PhysRevD.59.024007.

[27] Masaru Shibata and Takashi Nakamura. “Evolution of three-
dimensional gravitational waves: Harmonic slicing case.” In:
Phys. Rev. D 52 (10 1995), pp. 5428–5444. doi: 10.1103/PhysRevD.
52.5428. url: https://link.aps.org/doi/10.1103/PhysRevD.
52.5428.

[28] Takashi Nakamura, Kenichi Oohara, and Yasufumi Kojima.
“General Relativistic Collapse to Black Holes and Gravitational
Waves from Black Holes.” In: Progress of Theoretical Physics
Supplement 90 (Jan. 1987), pp. 1–218. issn: 0375-9687. doi: 10.
1143/PTPS.90.1. eprint: https://academic.oup.com/ptps/
article-pdf/doi/10.1143/PTPS.90.1/5201911/90-1.pdf.
url: https://doi.org/10.1143/PTPS.90.1.

[29] Helmut Friedrich. “On the existence ofn-geodesically complete
or future complete solutions of Einstein’s field equations with
smooth asymptotic structure.” In: Communications in Mathemat-
ical Physics 107.4 (1986), pp. 587–609.

[30] David Garfinkle. “Harmonic coordinate method for simulating
generic singularities.” In: Phys. Rev. D 65 (4 2002), p. 044029.
doi: 10.1103/PhysRevD.65.044029. url: https://link.aps.
org/doi/10.1103/PhysRevD.65.044029.

[31] Frans Pretorius. “Numerical relativity using a generalized har-
monic decomposition.” In: Classical and Quantum Gravity 22.2
(2005), pp. 425–451. doi: 10.1088/0264-9381/22/2/014. url:
https://doi.org/10.1088/0264-9381/22/2/014.

[32] Heinz-Otto Kreiss and Jeffrey Winicour. “Problems which are
well-posed in a generalized sense with applications to the
Einstein equations.” In: Class. Quantum Grav. 23 (2006), S405–
S420. eprint: gr-qc/0602051.

[33] Lee Lindblom, Mark A Scheel, Lawrence E Kidder, Robert
Owen, and Oliver Rinne. “A new generalized harmonic evo-
lution system.” In: Classical and Quantum Gravity 23.16 (2006),
S447–S462. doi: 10.1088/0264-9381/23/16/s09. url: https:
//doi.org/10.1088/0264-9381/23/16/s09.

https://doi.org/10.1103/PhysRevD.88.084057
https://link.aps.org/doi/10.1103/PhysRevD.88.084057
https://doi.org/10.1103/PhysRevD.59.024007
https://link.aps.org/doi/10.1103/PhysRevD.59.024007
https://doi.org/10.1103/PhysRevD.52.5428
https://doi.org/10.1103/PhysRevD.52.5428
https://link.aps.org/doi/10.1103/PhysRevD.52.5428
https://link.aps.org/doi/10.1103/PhysRevD.52.5428
https://doi.org/10.1143/PTPS.90.1
https://doi.org/10.1143/PTPS.90.1
https://academic.oup.com/ptps/article-pdf/doi/10.1143/PTPS.90.1/5201911/90-1.pdf
https://academic.oup.com/ptps/article-pdf/doi/10.1143/PTPS.90.1/5201911/90-1.pdf
https://doi.org/10.1143/PTPS.90.1
https://doi.org/10.1103/PhysRevD.65.044029
https://link.aps.org/doi/10.1103/PhysRevD.65.044029
https://link.aps.org/doi/10.1103/PhysRevD.65.044029
https://doi.org/10.1088/0264-9381/22/2/014
https://doi.org/10.1088/0264-9381/22/2/014
gr-qc/0602051
https://doi.org/10.1088/0264-9381/23/16/s09
https://doi.org/10.1088/0264-9381/23/16/s09
https://doi.org/10.1088/0264-9381/23/16/s09


154 bibliography

[34] David Hilditch, Andreas Weyhausen, and Bernd Brügmann.
“Pseudospectral method for gravitational wave collapse.” In:
Phys. Rev. D 93 (6 2016), p. 063006. doi: 10.1103/PhysRevD.93.
063006. url: https://link.aps.org/doi/10.1103/PhysRevD.
93.063006.

[35] Carsten Gundlach. “Critical phenomena in gravitational col-
lapse.” In: Physics Reports 376.6 (2003), pp. 339–405.

[36] Carsten Gundlach and Jose M Martin-Garcia. “Critical phenom-
ena in gravitational collapse.” In: Living Reviews in Relativity
10.1 (2007), pp. 1–57.

[37] David Garfinkle and G. Comer Duncan. “Scaling of curvature
in subcritical gravitational collapse.” In: Phys. Rev. D 58 (6
1998), p. 064024. doi: 10 . 1103 / PhysRevD . 58 . 064024. url:
https://link.aps.org/doi/10.1103/PhysRevD.58.064024.

[38] Matthew W Choptuik, Tadeusz Chmaj, and Piotr Bizoń. “Criti-
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