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Resumo

O tratamento do infinito nulo futuro na Relatividade Numérica é ainda um problema em aberto. Este

é relevante porque é o único ”local” no espaço-tempo onde a radiação gravitacional pode ser medida

de forma inequı́voca, e corresponde também à idealização adequada de observadores de eventos as-

trofı́sicos. A precisão das formas de onda extraı́das das simulações numéricas é crucial para estimar

as corretas propriedades das fontes de radiação gravitacional observadas pelos interferómetros. At-

ualmente, essas formas de onda são calculadas por extrapolação ou por extração/evolução Cauchy

caracterı́stica. No entanto, esses métodos são insatisfatórios do ponto de vista de primeiros princı́pios.

Neste trabalho, adotamos uma abordagem alternativa – o método hiperboloidal –, no qual o espaço-

tempo é foliado em hipersuperfı́cies espaciais que se estendem até ao infinito nulo futuro. Para isso, in-

troduzimos novas coordenadas que compactificam o espaço-tempo. Nestas coordenadas, as equações

de onda têm termos formalmente singulares, o que podemos superar considerando a taxa de decai-

mento dos campos e redimensionando-os tal que as equações se tornem regulares no infinito nulo

futuro. Para entender melhor a taxa de decaimento dos campos, apresentamos o modelo good-ugly e

mostramos que reproduz o comportamento das equações linearizadas de Einstein. Implementamos a

abordagem hiperboloidal para as equações do modelo e mostramos que estas são regulares no infinito

nulo futuro. Para a implementação numérica, usamos o código NRPy+, e resolvemos as equações em

primeira ordem no tempo e no espaço com dados iniciais axialmente simétricos numa grelha que exclui

os extremos. Verifica-se convergência, indicando um resultado bem-sucedido.

Palavras Chave

Astronomia de ondas gravitacionais; Compactificação; Hiperboloidal; Infinito nulo futuro; Relatividade

Geral; Relatividade numérica.
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Abstract

The treatment of future null infinity in Numerical Relativity is still an open problem. Its relevance is

due to it being the only ”location” in spacetime where gravitational radiation can be unambiguously

measured, and is also the appropriate idealization of observers of astrophysical events. The accuracy

of the waveforms extracted from numerical simulations is crucial to estimate the correct properties of

the sources of gravitational radiation observed by the interferometers. Currently, these waveforms are

computed by either extrapolation or Cauchy-characteristic extraction/evolution. However, these methods

are unsatisfactory from a first principles perspective. In this work, we take an alternative approach – the

hyperboloidal method – in which spacetime is foliated into spacelike hypersurfaces that reach future null

infinity. To do that, we introduce new coordinates that compactify spacetime. In these coordinates, the

wave equations have formally singular terms, which we can overcome by considering the rate of decay

of the fields and rescaling them such that the equations become regular at future null infinity. To better

understand the rate of decay of the fields, we introduce the good-ugly model and show that it reproduces

the behavior of the linearized Einstein equations. We implement the hyperboloidal approach for the

model equations and show that they are regular at future null infinity. For the numerical implementation,

we use the NRPy+ code and solve the equations in first-order in time and space with axially symmetric

initial data on a staggered grid. Clean convergence is found, indicating a successful result.

Keywords

Compactification; Future null infinity; General Relativity; Gravitational wave astronomy; Hyperboloidal;

Numerical Relativity.

vii





Contents

1 Introduction 1

2 Gravitational Waves 5

2.1 Gravitational Waves in General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Brief review of General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Curved spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Linearized theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Expansion around flat space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Gauge freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 The Transverse-Traceless gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3.A Physical intuition of the propagating degrees of freedom . . . . . . . . . 12

3 Approaches to the weak-field regime in Numerical Relativity 15

3.1 Wave extraction, Cauchy-Characteristic matching, and extraction . . . . . . . . . . . . . . 16

3.2 Hyperboloidal compactification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Conformal formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 The good-bad-ugly model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Numerical methods 23

4.1 Finite differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Method of Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Convergence testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Gravitational Waves in Hyperboloidal Slices 29

5.1 Geometric setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.1 Geometric quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Regularization at the origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Regularization at future null infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Linearized Einstein equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



5.4.1 Generalized Harmonic Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.2 Transverse-Traceless gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Numerical simulations 43

6.1 NRPy+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Implemented equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Boundary condititons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4 Numerical treatment of the origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.5 Initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Discussion of the results 53

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 57

A Geometric quantities 61

B Source terms in the GU model 65

x



List of Figures

2.1 Representation of how a set of pointlike particles initially distributed in a circle are per-

turbed by a Gravitational Wave (GW) traveling perpendicularly to them when H× = 0. . . 12

2.2 Representation of how a set of pointlike particles initially distributed in a circle are per-

turbed by a GW traveling perpendicularly to them when H+ = 0. . . . . . . . . . . . . . . 13

3.1 Penrose diagram of Minkowski spacetime foliated along Cauchy (on the left of the dashed

line) and characteristic (on the right of the dashed line) slices. . . . . . . . . . . . . . . . . 17

3.2 Penrose diagram of Minkowski spacetime foliated along hyperboloidal slices. . . . . . . . 20

4.1 Representation of the computational grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1 Dynamics of the evolution of the G (on top) and U (on the bottom panel) fields in axial

symmetry starting with initial data given in Sec. 6.5. The evolution depicted here was

performed with 120 grid points in the radial coordinate, 24 grid points in θ, and 4 points in

ϕ. As expected, the ugly fields decay must faster than the goods, and are always zero at

future null infinity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Dynamics of the evolution of the Gθ (on top) and Uθ (on the bottom panel) fields in axial

symmetry starting with initial data according to Sec. 6.5. The evolution depicted here was

performed with 120 grid points in the radial coordinate, 24 grid points in θ, and 4 points in

ϕ. As expected, the ugly fields decay must faster than the goods, and are always zero at

future null infinity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Values of the (a) G, (b) G−, and (c) Gθ fields at I + for all values of time and θ from the

evolution with 80 grid points in r, 16 in θ and 4 in ϕ starting with initial data according to

Sec. 6.5. The values were obtained through a fourth-order extrapolation, necessary due

to the staggered grid. We notice that for later times the fields vanish, indicating that the

signals leave the domain completely through I +. . . . . . . . . . . . . . . . . . . . . . . 50

xi



6.4 Norm convergence of the state-vector (G,G+, G−, Gθ, U, U+, U−, Uθ) in axial symmetry

with the norm (6.17), starting with 80 grid points in r, 16 in θ and 4 in ϕ and increasing the

resolution by a factor of p = 1.5. We see that the convergence factor approaches 2, as

anticipated for second-order finite differences approximation, which indicates a successful

result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5 Rescaled differences of the extrapolated values at I + with θ = 0.5 for: (a) the G field,

(b) the G− field, and (c) the Gθ field. Starting with 80 grid points in the radial coordinate,

16 in θ and 4 in ϕ, the resolution was increased by a factor of p = 1.5. The evolution

was performed with second-order finite differencing approximation of spatial derivatives,

i.e. n = 2. l, m, and h stand for the values of the corresponding field given by the low,

medium, and high-resolution runs, respectively. The alignment of the rescaled differences

indicates convergence at I +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xii



Acronyms

BH Black Hole

CCE Cauchy-Characteristic extraction/evolution

CCM Cauchy-Characteristic matching

EFE Einstein field equations

EM electromagnetic

EOM Equation of Motion

GBU good-bad-ugly

GU good-ugly

GHG Generalized Harmonic Gauge

GR General Relativity

GW Gravitational Wave

IVP Initial Value Problem

IBVP Initial Boundary Value Problem

LIGO Laser Interferometer Gravitational-Wave Observatory

MOL Method of Lines

NR Numerical Relativity

ODE Ordinary Differential Equation

PDE partial differential equation

RHS right-hand side

RK4 fourth-order Runge-Kutta

TT Transverse-Traceless

tt transverse-traceless

xiii



xiv



1
Introduction

1



General Relativity (GR) has been the most successful theory of gravity since its postulation. It predicts

the existence of Gravitational Waves (GWs), which were directly detected for the first time in 2015 by

the Laser Interferometer Gravitational-Wave Observatory (LIGO) [1, 2]. Since then, GWs have been

detected frequently, and have brought with them information about the universe. These detections gave

very strong evidence for the existence of Black Holes (BHs), and, along with their electromagnetic (EM)

counterpart, imposed constraints on modified theories of gravity [3].

The data gathered by GW detectors is compared with waveforms obtained from numerical simula-

tions to look for a gravitational wave signal. Thus, the precision of the theoretical waveforms is critical

for recovering the correct properties of the systems that emitted the signal. In Numerical Relativity (NR),

these waveforms are obtained by evolving the system (usually a coalescing compact binary) using the

Einstein field equations (EFE) and extracting the emitted signals. Gravitational radiation is only unam-

biguously defined at future null infinity (I +), the “location” in spacetime where light rays arrive, and

which also corresponds to the correct idealization of astrophysical observers. Currently, waveforms are

obtained at future null infinity by either extrapolation or using Cauchy-Characteristic extraction/evolu-

tion (CCE). The most common way is to compute the relevant quantities at several radii and perform

an extrapolation to future null infinity. In CCE, spacetime is divided into a Cauchy and a characteristic

domain reaching null infinity, separated by an unphysical boundary. The characteristic domain uses as

initial data the evolution from the Cauchy domain and allows us to reach future null infinity. However,

this method poses some problems, namely if we evolve for a longer period of time the waveform gets

affected by the unphysical boundary. This is not satisfactory from a first principles viewpoint.

The use of hyperboloidal slices is a possible solution to this problem. Hyperboloidal slices are space-

like and smooth everywhere, and by definition, they reach future null infinity, which allows us to unam-

biguously extract gravitational waves. In practice, evolving on hyperboloidal slices requires writing the

EFE in a new set of coordinates adapted to outgoing waves. By performing this coordinate transfor-

mation, infinity is brought to a finite coordinate distance. This introduces infinities in the equations

themselves, but they can be overcome by considering the rate of decay of the fields as we approach

future null infinity. In this process, we sacrifice the signals coming from future null infinity. However, this

is not to worry about, since an accurate computation of gravitational radiation can only be done in a

neighborhood of I +.

The thesis is structured as follows: In chapter 2, we review the most important aspects of GR and

explain how GWs emerge from it. In chapter 3, we give a brief description of the methods used to extract

gravitational radiation at future null infinity and introduce the approach taken in this work. In chapter 4,

we explain important methods used in NR. We focus, in particular, on the ones used in this project.

The geometric setup of this work is given in chapter 5. A careful regularization at the origin and future

null infinity is done, and the linearized EFE are derived. Then, we show that these equations can be

2



modeled by two types of equations. The details of the numerical implementation are given in chapter 6,

as well as the results obtained. Finally, in chapter 7, we discuss the importance of this work and explore

how it can be continued.
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2.1 Gravitational Waves in General Relativity

GR predicts the existence of ripples in spacetime that propagate at the speed of light – called gravita-

tional waves. GWs are the propagating degrees of freedom that are manifest in the curvature. Anal-

ogously to Electromagnetism, where EM waves are generated by moving charges, in GR GWs are

generated by moving masses. However, the power emitted by gravitational radiation scales as

P =
G

5

...
Qij

...
Qij , (2.1)

where G = 6.67 × 10−11 m3kg−1s−2 is Newton’s gravitational constant, and Qij is the traceless part of

the quadrupole moment

Iij(t) =

∫
Σ

d3xT 00(x, t)xixj (2.2)

evaluated in retarded time u = t − r. In the regime where Newtonian gravity is a good approximation,

the quadrupole moment of the energy emitted by two masses M at a distance R orbiting around each

other is

Iij(t) =
MR2

4

1 + cos 2ωt sin 2ωt 0
sin 2ωt 1− cos 2ωt 0

0 0 0 ,

 (2.3)

where ω =
√

2GM
R3 is the frequency. The power then scales as

P ∼ G
...
Q2 ∼ G4M5

R5
. (2.4)

For a system of two objects with masses M ≫ m, the power scales as

P ∼ G4M3m2

R5
. (2.5)

Let us compute this for the Earth-Sun system. To do that, we need to reintroduce factors of c. Through

dimensional analysis, one writes

P ∼ G4M3m2

R5c5
. (2.6)

The Earth has a mass m = 5.97×1024 kg, and orbits at about R = 1.5×108 km from the Sun, which has

a mass M = 1.989 × 1030 kg. Hence, the power emitted by the gravitational radiation of the Earth-Sun

system is ≈ 30 W, which is a negligible amount. Just to have an idea, the power output of the Sun is

3.8 × 1026 W. Thus, the only gravitational waves we can detect originate in extreme scenarios, such as

collisions of highly compact objects. Despite that, since GWs get damped as they propagate, when they

reach us on Earth, they have small amplitudes. The amplitude of a GW, h, is a measure of the ratio by

which spacetime is stretched or compressed. It is related to the variation of the mass properties of the

6



emitting body by the quadrupole formula

h =
2G

c4
1

R

∂2Q

∂t2
, (2.7)

where R is the distance from the source to the detector, and Q is the quadrupole moment of the source.

The first detected GW, for instance, had an amplitude h ∼ 10−22. This difficulty made them undetectable

to us for about 100 years after their prediction. To detect them, interferometers have been built with arms

that extend for kilometers. GWs were first detected by the LIGO in 2015 [1,2], and their study can provide

new key insights into the physics of the universe.

In this chapter, we will discuss where this all comes from. We start by explaining the ideas that led

to the postulation of GR and introduce important geometric concepts. Finally, we explore how GWs

emerge in GR.

2.2 Brief review of General Relativity

2.2.1 Introduction

Postulated by Einstein more than 100 years ago [4], GR is the most accurate theory of gravity to date. It

has been extensively tested (see for instance [5]), and all the predictions tested so far turned out to be

correct. GR revolutionized the way we think of gravity, by explaining it as a manifestation of the curvature

of spacetime, instead of as a force acting at a distance. In the words of John A. Wheeler, “matter tells

spacetime how to curve, and spacetime tells matter how to move” [6].

When developing this theory, Einstein was inspired by three principles:

• The principle of general covariance, which states that the form of physical laws is invariant under

any arbitrary differentiable coordinate transformation.

• The principle of equivalence, which states that all test objects fall with the same trajectory in a

gravitational field regardless of their mass.

• Mach’s principle, which says that the local inertial properties of objects are determined by the

quantity and distribution of matter in the universe.

2.2.2 Curved spacetime

In GR, the metric tensor, gµν , is the fundamental object of study. It determines causality, by defining the

speed of light, faster than which no signal can travel. The metric is a symmetric (0,2) tensor, usually

defined to be nondegenerate – which allows us to define the inverse metric gµν .

7



In a curved space, we need to define a generalization of the partial derivative, the covariant derivative

∇µ, which is a way of specifying a derivative along tangent vectors of a manifold. To define it, one

introduces a unique object relating vectors in tangent spaces of nearby points that we can construct from

the metric, the Christoffel symbols. For the commonly chosen case of metric compatibility, where the

covariant derivative of the metric with respect to the Christoffels vanishes everywhere, i.e. ∇αgµν = 0,

and torsion freeness they take the form

Γλ
µν =

1

2
gλσ(∂µgνσ + ∂νgµσ − ∂σgµν) . (2.8)

The information about the curvature of a manifold is encrypted in the Riemann tensor

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ . (2.9)

The curvature of spacetime dictates the motion of the bodies within it. The EFE are a set of 10

non-linear partial differential equations that relate certain components of the Riemann tensor with the

energy-momentum tensor Tµν ,

Rµν − 1

2
gµνR = 8πTµν , (2.10)

where Rµν = Rλ
µλν is the Ricci tensor, and R = Rµ

µ is the Ricci scalar. The EFE incorporate the

relation between the geometry of spacetime and the distribution of mass and energy.

2.3 Linearized theory

To study the emergence of GWs in GR, one follows the approach of linearized theory, which consists of

expanding the Einstein field equations around a known solution.

2.3.1 Expansion around flat space

Consider the metric perturbed around flat spacetime

gµν = ηµν + ϵhµν , (2.11)

where |ϵ| ≪ 1. The linearized Riemann tensor, δRρ
σµν , is given by

δRρ
σµν = lim

ϵ→0
∂ϵR

ρ
σµν , (2.12)

8



i.e. we can compute the linearized Riemann tensor by substituting the expression for the metric (2.11)

in the definition (2.9) and keeping only the linear terms in hµν .

Let us then obtain the linearized version of the EFE. We start by noting that, since we are working

up to linear order, indices are raised and lowered with the Minkowski metric ηµν . The inverse metric to

leading order reads

gµν = ηµν − ϵhµν . (2.13)

Since the Christoffel symbols are expressed in terms of derivatives of the perturbation hµν , we can

discard the terms ΓΓ of the Riemann tensor because they are of second-order in h. Thus, the Riemann

tensor to linear order is given by

δRσ
ρµν = ∂µΓ

σ
νρ − ∂νΓ

σ
µρ (2.14)

=
1

2
ησλ(∂µ∂ρhνλ − ∂µ∂λhνρ − ∂ν∂ρhµλ + ∂ν∂λhµρ) . (2.15)

The Ricci tensor is then given by

δRµν =
1

2
(∂ρ∂µhνρ + ∂ρ∂νhµρ −□hµν − ∂µ∂νh) , (2.16)

where h = hµµ is the trace of hµν and □ = ∂µ∂µ, and the Ricci scalar by

δR = ∂µ∂νhµν −□h . (2.17)

As one can already guess from Eqs. (2.16) and (2.17), the EFE look rather cumbersome. They can

however be written more compactly by defining

h̄µν = hµν − 1

2
ηµνh . (2.18)

Finally, the linearized Einstein equations yield

□h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16πTµν , (2.19)

with c = G = 1, and Tµν the energy-momentum tensor.

2.3.2 Gauge freedom

According to the principle of general covariance, the laws of physics must take the same form for all

observers. This means that physical quantities must not depend on the frame of reference, or coordinate

system – in other words, physical quantities are invariant under any coordinate transformation

9



xµ → x′µ(x) , (2.20)

where x′µ is a smooth function of xµ.

If we impose Eq. (2.11), we have that, under the infinitesimal local transformation

xµ → x′µ = xµ + ϵ ξµ(x) , (2.21)

where |ϵ| ≪ 1, the metric transforms like

gµν(x) → g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) . (2.22)

Thus, plugging in the expression for the perturbed metric (2.11), and taking the first-order terms

yields

hµν(x) → h′µν(x
′) = hµν(x)− 2∂(µξν) . (2.23)

The perturbed metric reads

g′µν = ηµν + ϵ (hµν(x)− 2∂(µξν)) . (2.24)

The infinitesimal coordinate transformation (2.21) does not spoil the condition that the term added

to the Minkowski metric must be O(ϵ). Consequently, these infinitesimal local transformations are a

symmetry of the linearized theory. Under the coordinate transformation (2.21), h̄ transforms as

h̄µν(x) → h̄′µν(x
′) = h̄µν(x)− 2∂(µξν) + ηµν∂αξ

α . (2.25)

Consequently, we have

∂ν h̄µν(x) → ∂ν h̄′µν(x
′) = ∂ν h̄µν(x)− ∂ν∂νξµ . (2.26)

We can choose ξµ such that

∂ν h̄µν(x)− ∂ν∂νξµ = 0 . (2.27)

This is just the wave equation for ξµ with a source term ∂ν h̄µν . Therefore, we can always choose a

gauge such that

∂ν h̄µν = 0 . (2.28)

This is known as the harmonic gauge (or Lorentz gauge). In this gauge, the linearized Einstein equations

10



(2.19) reduce to an inhomogeneous wave equation

□h̄µν = −16πTµν , (2.29)

where we are considering the system of natural units G = c = 1.

2.3.3 The Transverse-Traceless gauge

Consider the vacuum solution of the linearized Einstein equations,

□h̄µν = 0 . (2.30)

A solution to this equation is given by

h̄µν = Re(Hµνe
ikαxα

) , (2.31)

where Hµν is a complex, symmetric polarization matrix, and kµ is the wave vector. The expression in

Eq. (2.31) will solve the wave equation (2.30) if the wave vector is null, i.e. kαkα = 0. Thus, gravitational

waves, like EM waves, travel at the speed of light.

Since Hµν is a 4 × 4 symmetric matrix, it has 10 independent components. However, it is important

to note that the linearized equations only take the form (2.30) in harmonic gauge, which implies

kµHµν = 0 . (2.32)

This tells us that the polarization is orthogonal to the direction of propagation, and imposes four con-

ditions on the polarization matrix, leaving it with six independent components. However, the condition

(2.32) does not fix the gauge completely.

We can add to ξµ a vector ξ̃µ such that □ξ̃µ = 0, therefore respecting the harmonic gauge condition.

In particular, we can take

ξ̃µ = λµeikαxα

. (2.33)

Under this transformation, the polarization matrix changes as

Hµν → H ′
µν = Hµν + i(2k(µλν) − kαλαηµν) . (2.34)

Thus, there are four extra degrees of freedom λµ that reduce the total independent components of Hµν

11
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Figure 2.1: Representation of how a set of pointlike particles initially distributed in a circle are perturbed by a GW
traveling perpendicularly to them when H× = 0.

to two. In particular, we can choose

H0µ = 0 , Hµ
µ = 0 . (2.35)

This is known as the Transverse-Traceless (TT) gauge.

There is a common conceptual confusion in the literature, which fails to distinguish this notion of TT

gauge from the relevant modes extracted using a projection operator when studying the GWs emitted by

an isolated system. Whereas TT gauge is local in momentum space, the latter is local in physical space,

and it has been shown that this difference persists even in the asymptotic region [7,8]. In this work, we

shall refer to the concept introduced in Eq. (2.35) as TT gauge (or differential TT gauge), and the other

as transverse-traceless (tt) gauge (or projection tt gauge).

2.3.3.A Physical intuition of the propagating degrees of freedom

Consider a wave propagating in the z direction with frequency ω. The wavevector is given by

kµ = (ω, 0, 0, ω) . (2.36)

From Eqs. (2.32) and (2.35), one concludes that the polarization matrix must have the form

Hµν =


0 0 0 0
0 H+ H× 0
0 H× −H+ 0
0 0 0 0

 . (2.37)

H+ and H× are the two polarization states. A brief description of the intuition behind these quantities is

given.

The geodesic deviation equation – which relates the curvature with the deviation of the geodesics of

two freefall test particles relative to each other – in the linearized theory reduces to

d2Sµ

dt2
=

1

2

d2hµν

dt2
Sν , (2.38)
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Figure 2.2: Representation of how a set of pointlike particles initially distributed in a circle are perturbed by a GW
traveling perpendicularly to them when H+ = 0.

where Sµ is the displacement vector. Consider a collection of pointlike particles arranged in a circle at

time t = 0. This corresponds to the initial configuration S1(0)2 + S2(0)2 = R2, where R is the radius of

the circle. If we set H× to zero, the solution for Sµ is up to linear order in h given by

S1(t) ≈ S1(0)

(
1 +

1

2
H+e

iωt

)
, S2(t) ≈ S2(0)

(
1− 1

2
H+e

iωt

)
. (2.39)

This solution corresponds to the configuration shown in Fig. 2.1, where the geometric forms represent

how spacetime is perturbed by a GW traveling perpendicularly to them.

On the other hand, if we set H+ = 0, the solution to the geodesic deviation equation will be

S1(t) ≈ S1(0) +
1

2
S2(0)H×e

iωt , S2(t) ≈ S2(0) +
1

2
S1(0)H×e

iωt , (2.40)

which corresponds to the displacement of geodesics in Fig. 2.2.
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GWs, like EM waves, carry information about the source(s) that originated them. Until the detection

of GWs in 2017 [2], physicists relied on EM waves to study the universe. However, with the possibility of

detecting GWs, we have access to more information which will help us to understand our universe better.

For instance, we can study systems like colliding black holes that have no EM counterpart. Furthermore,

GWs interact very weakly with matter, contrary to EM radiation, which gets altered easily.

To detect gravitational radiation, theoretical waveforms are compared with data gathered by the GW

detectors to look for matching signals and, upon detection, get information about the systems that orig-

inated that radiation [9]. Thus, waveforms are the main deliverable of NR for gravitational wave astron-

omy. The form of signals emitted by a given gravitational radiation source is impossible to obtain ana-

lytically since there is no underlying symmetry that can simplify the EFE. Therefore, numerical methods

have been developed to obtain these waveforms. In this chapter, we present the state-of-the-art methods

used, and a new approach using hyperboloidal compactification.

In the EFE, space and time are treated equally. Although it has been an important learning from GR,

there are situations where we are interested in the dynamical evolution of gravity in time. In practice,

this requires breaking the coordinate invariance – albeit the solutions will still be covariant – i.e. treating

time differently, and slicing the spacetime to obtain an appropriate hypersurface where initial data can

be specified.

3.1 Wave extraction, Cauchy-Characteristic matching, and extrac-

tion

The most common way to extract a GW signal at future null infinity is by computing the relevant quantities

at several radii and performing an extrapolation to future null infinity (see, for instance, [10–12]). A

stricter and more precise approach would be to compute these quantities directly at I +. To do this,

we can foliate the spacetime into hypersurfaces that reach future null infinity. There are two important

ways of foliating spacetime into hypersurfaces where the initial data is specified, known as Cauchy and

characteristic slices.

Cauchy slices are constant-time spacelike hypersurfaces that extend from the origin to spatial

infinity (i0). Since one cannot have an infinite computational grid, Cauchy slices have the drawback

of having to be cut at a given value of the radial coordinate and only the interior domain can be evolved.

The artificial boundary that is created has the disadvantage that the slices no longer reach infinity, where

the gravitational radiation is unambiguously defined, and one has to introduce boundary conditions that

are difficult to state.

Characteristic slices, on the other hand, are outgoing null hypersurfaces that represent the paths

followed by light rays (or any radiation that travels at the speed of light) and reach I +. This type of
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Figure 3.1: Penrose diagram of Minkowski spacetime foliated along Cauchy (on the left of the dashed line) and
characteristic (on the right of the dashed line) slices.

foliation is suitable for GW radiation extraction since they reach future null infinity. Nonetheless, null

coordinates are not appropriate to evolve the strong-field region, since coordinate singularities arise in

these scenarios.

The complementarity of the advantages and disadvantages of these foliations (the first is appropri-

ate to describe the strong-field region, whereas the second is suitable to evolve the weak-field region)

suggested their combination. Two important methods arose from this conclusion, Cauchy-Characteristic

matching (CCM) and CCE, where spacetime is foliated into both Cauchy and characteristic slices (see,

for instance, [13]). This combination is illustrated for Minkowski in Fig. 3.1. The dashed line represents

an arbitrary time-like hypersurface that separates the two domains. The interior region, at the left of the

boundary, is foliated into Cauchy slices, and the exterior region, at the right, into characteristic slices.

In CCM the strong-field region is described by Cauchy evolution, and the weak-field region is de-

scribed by characteristic evolution. These evolutions are matched at the time-like interface. The data

from the Cauchy evolution serves as initial data for the characteristic evolution, and the characteristic

data is used in the boundary conditions for the Cauchy evolution. Unfortunately, this method has not

been implemented successfully due to the stability problems that arise when communicating data at the

interface between the Cauchy and characteristic domains [14].

CCE is the current optimal method to numerically obtain the waveform signal of a given source of

gravitational radiation. In this approach, the characteristic evolution uses data from the Cauchy evolution
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for the inner boundary conditions, but it does not provide data for the boundary conditions of the Cauchy

evolution. Thus, instead of solving the Initial Value Problem (IVP), we solve an Initial Boundary Value

Problem (IBVP). In this way, one manages to work around the instabilities that arise in CCM. However,

even at the continuum level for a well-posed IBVP on the Cauchy domain, the unphysical boundary nec-

essarily causes reflections, which are not present in the IVP. This is therefore a systematic modeling

error and as such cannot converge with resolution to the true solution of the IVP. This is unsatisfac-

tory from a first-principles viewpoint since evolving for an extended period of time yields worse results.

Besides that, the equations that are solved in CCE are not well-posed in the relevant norms as shown

in [15, 16]. It is in this setting that the work of this thesis arises – computing gravitational waves all the

way out to future null infinity from first principles.

3.2 Hyperboloidal compactification

Another approach that can be used to extract gravitational waves at future null infinity is to foliate space-

time into hyperboloidal slices. To do that, we need to perform a hyperboloidal compactification, i.e.

introduce hyperboloidal coordinates that bring I + to a finite coordinate distance. This is done in two

steps: the first consists of selecting a time parameter whose level sets are hyperboloidal slices (hyper-

boloidal time), and the second brings in the compactification of the radial coordinate on those slices. A

detailed discussion of this process can be found in [17].

Let us consider the example of the hyperboloidal compactification of Minkowski spacetime and its

use with the wave equation. We can bring spatial infinity to a finite coordinate distance by performing

a compactification in the outgoing direction, R in spherical coordinates. We introduce a compactifying

coordinate r such that R = r
Ω(r) and require that the gradient of Ω(r), known as the compress function,

does not vanish when Ω(r) = 0, which corresponds to infinity in R. We could also do this for a Cauchy

slice, but the loss of resolution of signals propagating near spatial infinity creates numerical problems

and, besides, we are not reaching I +. With that in mind, we also need to introduce a new time coordi-

nate, t, to ensure that the slices reach future null infinity – not just spatial infinity – and to avoid loss of

resolution. We, therefore, define the hyperboloidal time t as

t = T −H(r) , (3.1)

where H(r), known as the height function, must satisfy |dH/dR| < 1 so that t is a time function and

limR→∞ dH/dR = 1 so that it becomes retarded time near infinity.

Consider the case of 1+1 dimensions. The wave equation reads

(−∂2T + ∂2R)ψ = 0 . (3.2)
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In compactified hyperboloidal coordinates, this turns into

[
∂2t +

Ω2

(1− h2)L
(2h∂t∂r −

Ω2

L
∂2r + ∂rh∂t − ∂r

Ω2

L
∂r)

]
ψ = 0 , (3.3)

where h ≡ dH
dR (r) and L ≡ Ω− r dΩdr . We choose H(R) =

√
S2 +R2, where S is a parameter, and set the

compress function to

Ω =
1

2

(
1− r2

S2

)
. (3.4)

Thus, S = ±r is the coordinate location of null infinity, where the wave equations become

∂t(∂t ± 2∂r)ψ = 0 , (3.5)

which indicates that both boundaries are outflow, and boundary conditions are not needed.

In multiple spatial dimensions, the regularization of the equations at future null infinity is not as

straightforward. In 3+1 dimensions, the scalar wave equation in spherical coordinates (T,R, θ, ϕ) is

(
−∂2T + ∂2R +

2

R
∂R +

1

R2
∆S2

)
ψ = 0 , (3.6)

where ∆S2 is the Laplace operator on the 2-sphere. The angular term admits a regular compactification

since, under compactification, it is multiplied by Ω2, whereas the first radial derivative term leads to a

singular operator at infinity. This problem can be solved by rescaling the field such that it attains a non-

vanishing finite limit at future null infinity. In three spatial dimensions, fields that satisfy the wave equation

decay as R−1. We define the rescaled field Ψ = Rψ. The wave equation for this new variable is

(
−∂2T + ∂2R +

1

R2
∆S2

)
Ψ = 0 , (3.7)

which is regular under compactification. In Sec. 3.4, we discuss a model of GR that allows us to under-

stand how to rescale the fields that describe GWs.

By performing this hyperboloidal compactification, we foliate spacetime into hypersurfaces that are

spacelike everywhere and extend from the origin to future null infinity. They are called hyperboloidal

slices and are represented in Fig. 3.2 for Minkowski spacetime.

3.3 Conformal formalism

In this section, we present an alternative approach to CCM that uses hyperboloidal slices, where initial

data can be specified. The idea of this approach is to “bring infinity closer”. Although the physical

distance is infinite, we can always introduce a set of coordinates that brings infinity to a finite coordinate
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Figure 3.2: Penrose diagram of Minkowski spacetime foliated along hyperboloidal slices.

distance. However, this compactification implies that the metric becomes infinite. This is solved by

evolving a conformal (unphysical) metric g̃µν related to the physical metric of spacetime ḡµν

g̃µν = Ξ2ḡµν , (3.8)

where Ξ is called the conformal factor and is defined such that it vanishes when the metric is infinite,

thus giving a conformal metric that is finite everywhere. This idea was introduced by Penrose [18]. In

this approach, we can unambiguously extract gravitational radiation (as well as other quantities that can

only be consistently defined at infinity). However, by simply substituting Eq. (3.8) in the EFE we get a

singular expression for Ω = 0. This issue was solved by Friedrich [19], which introduced conformal field

equations that are regular equations for ḡµν and certain additional independent variables.

However, this approach also poses some problems, such as ensuring the stability of the evolutions

against constraint violation.

Alternatively, we can also evolve the full four-dimensional spacetime metric as was done in the pio-

neering works of Hahn and Lindquist in 1964 [20] – the first documented effort to generate BH space-

times by numerically solving the EFE – and Pretorius in 2005 [21] – one of the first simulations of BH

binaries through inspiral, merger and ringdown.
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3.4 The good-bad-ugly model

The good-bad-ugly (GBU) model is a model of GR. It represents the three types of field equations that

are included in the EFE, and consists of the following equations

□g ≃ 0 , (3.9a)

□b ≃ (∇T g)
2 , (3.9b)

□u ≃ 2

R
∇Tu , (3.9c)

where g stands for good, b for bad, and u for ugly. In this work, we will not be interested in bad fields,

since we are focusing on the linearized theory where non-linear equations like (3.9b) do not appear.

Good fields decay like a solution to the wave equation, whereas ugly fields decay faster near future

null infinity. A careful discussion of the asymptotics of these fields can be found in [22]. By modeling the

linearized EFE as good and ugly equations, we can understand the rate of decay of the fields, which

will in turn help us understand how to rescale them such that they attain a finite limit at future null infinity.

The propagating degrees of freedom manifest in the curvature, h+ and h×, will be modeled as goods

since they are the quantities we measure on Earth (i.e. they should not decay as fast as all the other

quantities), whereas the other eight independent metric components will be modeled as uglies. We will

return to this topic in chapter 5.
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Figure 4.1: Representation of the computational grid.

As we saw in Chapter 2, the EFE are a set of ten non-linear, coupled partial differential equa-

tions (PDEs). These features make them extremely hard to solve analytically. One can only do so

in very special scenarios, either when there is an underlying symmetry that significantly simplifies the

problem or by making assumptions. To study more complex phenomena, like the inspiral and merger

of compact objects, we resort to numerical methods. These allow us to obtain accurate approximate

solutions to complex problems that would otherwise be unsolvable. In this chapter, we introduce the

theoretical reasoning behind the numerical approach taken in this work. A more in-depth explanation of

the numerical methods used to solve problems in GR can be found in [23–25].

4.1 Finite differences

The most popular methods to solve partial differential equations numerically are finite differencing, finite

elements, and spectral methods. We shall focus on the first since it was the one used in the present

work.

Computers have only finite memory, hence, when trying to solve a PDE numerically, we must find

a way to discretize the field we are solving for. In the finite differencing method, this is done by first

discretizing spacetime itself. Then, instead of a continuum, spacetime is described by a set of discrete

points – called the computational grid – illustrated in Fig. 4.1 for a 1+1 dimensional spacetime. The

distances in space do not necessarily have to be uniform, but we will consider it so, given that in this

work we only worked with computational grids with uniform spacing between points, ∆x. ∆t denotes the

time step.

The next step is the discretization of the differential equations themselves. This is done by approxi-
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mating the differential operators by finite differences between values of the involved functions at nearby

points. Instead of one differential equation, we are then left with several coupled algebraic equations.

Consider, for instance, a field u(t, x). Discretizing the domain of u would mean having points at

xi = x0 + i∆x , i = 0, . . . , I , (4.1a)

tn = t0 + n∆t , n = 0, . . . , N , (4.1b)

uni = u(tn, xi) (4.1c)

In this example, a first spatial derivative would be approximated to order O(n2) by the finite difference

∂u

∂x
=
uni+1 − uni−1

2∆x
+O(∆x) ≈

uni+1 − uni−1

2∆x
. (4.2)

This approximation has an associated error that is called truncation error, τ∆. It is defined as the

result of acting with a finite difference operator in the solution to the original differential equation, and it

scales with a power of the grid spacing ∆. The scaling power determines the order of the approximation.

We say that a consistent approximation is of order n if

lim
∆→0

τ∆ ∼ ∆n . (4.3)

There is yet another error associated with the finite differencing approximation, called the solution

error ϵ∆. It is defined as

ϵ∆ ≡ u− u∆ , (4.4)

where u is the exact solution to the original differential equation, and u∆ is the exact solution to the finite

difference equation. This error defines the concept of convergence. We say a finite difference approxi-

mation converges if ϵ∆ goes to zero in the continuum limit. We will address how to test convergence in

section 4.3.

4.2 Method of Lines

The Method of Lines (MOL) is an approach to solving evolution equations, in which the discretization of

space and time are made separately. Consider, for instance, a scalar PDE of the form

∂tu = D(u) , (4.5)

where D is an arbitrary spatial differential operator. By discretizing only the spatial derivatives, equation

(4.5) can be rewritten as a coupled system of Ordinary Differential Equations (ODEs). Consider, for
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example, the advection equation in 1+1 dimensions

∂tu = −∂xu . (4.6)

By discretizing the spatial derivative like in Eq. (4.2), we then arrive at the system of ODEs

dui
dt

= −ui+1 − ui−1

2∆x
. (4.7)

Given these equations, we can now use any ODE discretization technique to find approximate solutions,

e.g. the Euler method or higher-order methods such as Runge-Kutta methods.

In particular, a common method to integrate in time is the fourth-order Runge-Kutta (RK4). Using

RK4, each time step is calculated via

un+1 = un +
∆t

6
(k1 + 2k2 + 2k3 + k4) , (4.8)

where k1, k2, k3 and k4 are recursively computed in the following way

k1 = D(un) , (4.9a)

k2 = D(un + k1∆t/2) , (4.9b)

k3 = D(un + k2∆t/2) , (4.9c)

k4 = D(un + k3∆t) . (4.9d)

This method is commonly referred to as MOL-RK4.

4.3 Convergence testing

Numerical methods are very useful to calculate solutions to a given equation that would otherwise be

impossible to solve analytically. Nonetheless, by performing a numerical calculation at only one resolu-

tion – in the case of the aforementioned example, this means calculating the solution at only one value

of ∆x and ∆t – one cannot know if the result obtained is close to the correct solution.

The numerical solution obtained is said to converge if it gets closer to the exact solution at the

appropriate rate as resolution is increased. There are two important notions of convergence that we use

in this work, pointwise and norm convergence. While norm convergence is typically used in numerical

analysis and can, at least for certain model problems, be proved mathematically, pointwise convergence

is a useful tool in computational physics that allows us to understand what is happening locally, e.g.

understanding if an error is coming from the origin or the boundary conditions.
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The solution to a stable finite difference approximation of order n can be interpreted as a continuum

function that can be expanded as a power series of the discretization parameter ∆

u∆ ∼ u+ ϵ(∆)n , (4.10)

where u is the solution of the original PDE. Thus, if we increase the resolution by p, i.e. redefine the grid

spacing as ∆/p, we should also have that

u∆/p ∼ u+ ϵ

(
∆

p

)n

, (4.11a)

u∆/p2 ∼ u+ ϵ

(
∆

p2

)n

. (4.11b)

Using Eqs. (4.10), (4.11a), and (4.11b), one can deduce that in the limit ∆ → 0

u∆ − u∆/p

u∆/p − u∆/p2

= pn . (4.12)

In order to test pointwise convergence, one plots the grid functions u∆ − u∆/p and pn(u∆/p − u∆/p2),

where the differences can be taken by interpolating onto the same grid or calculated at shared grid

points. If these “line up”, i.e. if their difference at each point is less than a small value, then we say the

code converges pointwise everywhere. If there is a point where the difference between the two functions

is large, we say the code does not converge at that point.

We define the norm convergence factor by taking the norm of the denominator and numerator in

Eq. (4.12)

c(t) :=
||u∆ − u∆/p||

||u∆/p − u∆/p2 ||
. (4.13)

Usually, the L2-norm is used, although other options are possible. By taking the norm at a given time,

we are integrating in space and therefore obtain a function that only depends on time. In the continuum

limit, we obtain the same limit as (4.12).

In any numerical calculation, one should test if the numerical solutions converge, i.e. if the conver-

gence factor (4.13) behaves as expected. By testing the code’s convergence, one can also estimate the

solution errors associated with the results. We will see applications of these ideas in chapter 6.
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In this chapter, we derive the field equations for linearized GR on hyperboloidal slices. We start by

introducing the geometrical setup, where we express the ten independent metric components as a set

of physical variables and linearize them. We then study the regularization of both the origin and future

null infinity. The appropriate rate of decay of the fields is imposed in two ways: first, we fix the gauge,

and second, we make constraint additions to the equations. The equations obtained are modeled by

two goods and eight uglies, as introduced in Section 3.4.

5.1 Geometric setup

5.1.1 Geometric quantities

We define the outgoing and incoming null vectors, respectively, as

ξµ = ∂µT + CR
+∂

µ
R , (5.1)

ξ
¯

µ = ∂µT + CR
−∂

µ
R , (5.2)

where the quantities CR
± can be interpreted as coordinate light speeds. Derivatives along the outgoing

null direction, ∇ξ, and angular derivatives are called good derivatives since they are expected to improve

the fall-off of the fields they are applied to. On the other hand, derivatives along the ingoing null direction,

∇ξ
¯

, are called bad derivatives since they do not change the rate of decay of the fields.

The co-vectors are defined as

ηµ = −CR
+∇µT +∇µR− C+

A∇µθ
A , (5.3)

η
¯
µ = CR

−∇µT −∇µR+ C−
A∇µθ

A , (5.4)

where A = θ, ϕ, and the quantities C±
A can be interpreted as the shift in the angular directions.

The inverse metric can be expressed as

gµν = −2e−φ

τ
ξ(µξ

¯

ν) + �g
µν , (5.5)

where τ = CR
+−CR

− . The first term of Eq. (5.5) encapsulates the radial causal structure of spacetime, and

φ is related to its determinant. The last term, �g
µν , captures the physics along the directions orthogonal

to the radial null directions. It is the inverse of a 4 × 4 symmetric matrix whose only non-vanishing

components are the angular ones

�gµν = R̊2 qµν , (5.6)
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where we define the 2-metric qµν as

qµν =


0 0 0 0
0 0 0 0
0 0 eh+ coshh× sin θ sinhh×
0 0 sin θ sinhh× e−h+ coshh× sin θ2

 . (5.7)

R̊, h+, and h× are the three independent quantities contained in �gµν . h+ and h× are the propagating

degrees of freedom of the GWs manifest in the curvature, i.e. the quantities we measure on Earth, and

R̊ is related to the determinant of �gµν .

To determine the inverse of the 2-metric, we use the following ansatz

qµν =


f1(T,R, θ, ϕ) f2(T,R, θ, ϕ) f5(T,R, θ, ϕ) f6(T,R, θ, ϕ)
f3(T,R, θ, ϕ) f4(T,R, θ, ϕ) f7(T,R, θ, ϕ) f8(T,R, θ, ϕ)
f5(T,R, θ, ϕ) f7(T,R, θ, ϕ) e−h+ coshh× − csc θ sinhh×
f6(T,R, θ, ϕ) f8(T,R, θ, ϕ) − csc θ sinhh× eh+ coshh× csc θ2

 , (5.8)

where the f ’s are arbitrary functions of the coordinates.

We use the fact that ηµ and η
¯
µ are orthogonal to �g

µν , i.e.

�g
µνηµ = 0 and �g

µνη
¯
µ = 0 , (5.9)

to determine the f functions, thus obtaining the components of �g
µν . Their explicit lengthy expressions

are omitted here and included in Appendix A for the sake of clarity. With this, we can at last write both

the metric and its inverse, which suffice to define all the geometric quantities, such as the Christoffel

symbols and the Riemann tensor.

5.1.2 Linearization

To linearize, we take Minkowski spacetime as the background. An interesting follow-up calculation would

be to linearize around different backgrounds, which was not done in this project due to time constraints.

We perform the linearization by expressing the variables as the value they take in flat spacetime plus a

small, perturbative term

CR
± = ±1 + ϵ δCR

± , (5.10a)

C±
A = 0 + ϵ δC±

A , (5.10b)

φ = 0 + ϵ δφ , (5.10c)

R̊ = R+ ϵ δR̊ , (5.10d)

h+,× = 0 + ϵ δh+,× . (5.10e)

31



By substituting these in the metric, and linearizing in the usual way

hµν = lim
ϵ→0

∂ϵgµν , (5.11)

one obtains the linearized metric. We can also define the linearized Ricci tensor in the same way

δRµν = lim
ϵ→0

∂ϵRµν . (5.12)

If the reader recalls from chapter 2, a useful quantity to define when one works in the linearized theory

is h̄µν , introduced in Eq. (2.18). The components of hµν and h̄µν are given in Appendix A, which can

be written in terms of the variables δC±, δC±
A , δφ, δR̊−1, and δh+,×. Hence, the evolution equations for

these variables contain all the physical information of the system.

The background quantities take their flat spacetime value and are denoted with a dot on top. For

instance, the flat background metric in spherical coordinates is ġµν = diag(−1, 1, R2, R2 sin2 θ).

5.2 Regularization at the origin

In spherical coordinates, the equations contain terms that diverge with O(R−2) and O(sin−2 θ). Choosing

as evolved variables a proper rescaling of the tensorial quantities, all code variables remain finite [26].

Furthermore, evolved variables need to be sufficiently smooth functions (at least C2). Let us obtain the

conditions that make the evolved variables satisfy these requirements.

Consider a generic 2-tensor gµν in Cartesian coordinates

gµν =


gTT gTX gTY gTZ

gXT gXX gXY gXZ

gY T gY X gY Y gY Z

gZT gZX gZY gZZ

 , (5.13)

which is well-defined at the origin. We wish to perform a coordinate transformation – to spherical polar

coordinates – in such a way that it remains well-defined near the origin. In terms of spherical polars

(T,R, θ, ϕ), Cartesian coordinates read

T = T , (5.14a)

X = R sin θ cosϕ , (5.14b)

Y = R sin θ sinϕ , (5.14c)

Z = R cos θ . (5.14d)

Hence, the jacobian matrix is defined as
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Jµ′
µ =


1 0 0 0
0 cos(ϕ) sin(θ) R cos(ϕ) cos(θ) −R sin(ϕ) sin(θ)
0 sin(ϕ) sin(θ) R cos(θ) sin(ϕ) R cos(ϕ) sin(θ)
0 cos(θ) −R sin(θ) 0

 . (5.15)

In the new coordinates, the components of the tensor gµ′ν′ can be computed in the following way

gµ′ν′ = Jµ
µ′gµνJν′

ν . (5.16)

At the origin, R = 0, all angles are the same point physically. Thus, gRR must be independent of the

angles θ, ϕ, and the limits in different directions must be the same. In particular, we have that

lim
θ→0

gRR = lim
θ→π

2
ϕ→0

gRR = lim
θ→π

2
ϕ→π

2

gRR =⇒ gXX = gY Y = gZZ := g0RR . (5.17)

On the other hand,

lim
θ→π

2

gRR = g0RR + gXY sin(2ϕ) , (5.18)

but this must not depend on either θ or ϕ. This implies that gXY = 0. Similarly, we have that gXZ =

gY Z = 0.

Proceeding in a similar manner for the gTR component, we conclude that gTX = gTY = gTZ := g0TR.

The component gTR is then given by

gTR = g0TR (cos θ + (cosϕ+ sinϕ) sin θ) , (5.19)

implying that we must have g0TR = 0.

The generic 2-tensor in spherical polar coordinates at the origin then reads

gµ′ν′ = diag(gTT , g
0
RR, g

0
RRR

2, g0RRR
2 sin2 θ) . (5.20)

To understand how each of the tensor components in spherical coordinates scales withR, we expand

it around the origin and impose that derivatives of the tensor components are well-defined functions at

the origin, i.e. they must take the same limit independently of the direction we approach the origin from

(be it the x-axis, y-axis, z-axis, or any other direction). We start by expanding only up to first-order and

determine whether the first derivatives vanish at the origin, e.g.

gXX ≈ g0RR +X∂XgXX + Y ∂Y gXX + Z∂ZgXX . (5.21)
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Let us focus on gRR. If we approach the origin from the x-axis, for instance, we have y = z = 0 and

R = x. Thus, in this situation

∂RgRR ≈ ∂xgRR . (5.22)

The same applies to the other axes. These conditions imply

∂RgRR ≈ ∂RgRR(cos θ + (cosϕ+ sinϕ) sin θ) . (5.23)

Since this is not allowed to be a function of the angles, we must have that the first radial derivative of the

RR component vanishes, ∂RgRR = 0.

Looking at the components gθθ and gϕϕ, and following a similar procedure, we conclude that ∂Rgθθ =

∂Rgϕϕ = 0. Hence, we conclude that the expansion of the spatial part of the tensor at the origin is, up to

first-order in R, given by Eq. (5.20).

Let us now consider the shift (gTX , gTY , gTZ). As we saw, it is zero at the origin, so the expansion to

first-order includes only the first-order terms:

gTX ≈ X∂XgTX + Y ∂Y gTX + Z∂ZgTX , (5.24a)

gTY ≈ X∂XgTY + Y ∂Y gTY + Z∂ZgTY , (5.24b)

gTZ ≈ X∂XgTZ + Y ∂Y gTZ + Z∂ZgTZ . (5.24c)

Following a similar approach to what was done for the spatial components of gµ′ν′ , we conclude that the

expansion of the shift in spherical polars is, up to first-order, given by (∂RgTR, 0, 0). An analogous result

is obtained for a generic vector.

As we saw, the first-order derivatives of the spatial components vanish, therefore we need to expand

to second-order if we want to have more information about their behavior near the origin. By doing the

same as for the first derivatives, we conclude that the second derivatives are well-defined near the origin.

Thus, a generic tensor can be expressed near the origin in spherical polar coordinates as

gµ′ν′ = diag(gTT , g
0
RR +

1

2
∂2rgRRR

2, g0RRR
2 +

1

2
∂2rgθθR

4, g0RRR
2 sin2 θ +

1

2
∂2rgθθR

4 sin2 θ) , (5.25)

where the derivatives are computed at the origin.

In other words, gTT and gRR are even functions and the following conditions must be satisfied

gTR = O(R) , gTθ = O(R2) , gTϕ = O(R2) , gRR − gθθ
R2 = O(R2) ,

gRR − gϕϕ

R2 sin2 θ
= O(R2) , gθϕ = O(R3) , gRθ = O(R3) , gRϕ = O(R3) .

(5.26)

The regularity conditions in terms of our variables imply that, at the origin, the following conditions
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must be satisfied

δR̊
R = O(1) +O(R2) , ∂RδC

R
− = ∂RδC

R
+ ,

δCR
+ + δCR

− = O(R) , δC−
θ − δC+

θ = O(R) ,

δC−
ϕ − δC+

ϕ = O(R) , δC−
θ + δC+

θ = O(R2) ,

δC−
ϕ + δC+

ϕ = O(R2) , δh+ = O(R2) ,

δφ+ 1
2 (δC

R
− − δCR

+) = O(1) +O(R2) , δh× = O(R) .

(5.27)

5.3 Regularization at future null infinity

We follow the approach taken in [27] and [28] to regularize the evolution equations at future null infinity.

To do so, we come back to the model introduced in chapter 3, the GBU model. Since we are only

interested in good and ugly fields – recall that the bad equation had a non-linear term and thus it does

not appear in the linearized equations – we will focus only on the good-ugly (GU) equations

□g = Sg(T,R, θ, ϕ) , (5.28a)

□u− 2

χ(R)
∇Tu = Su(T,R, θ, ϕ) , (5.28b)

with

lim
R→∞

χ(R) = R . (5.29)

For the purpose of this section, we take χ(R) = R since we are only interested in the asymptotic

behavior. For the numerical implementation, it will be important to redefine χ(R) as an even function so

that ugly fields are, like a solution to the wave equation, even. However, in the context of the asymptotic

regime, the parity of the fields can be ignored. Furthermore, we consider source terms Sg and Su. We

assume that the source terms decay much faster than the fields – at least like O(R−3) – so that, in the

asymptotic regime, the equations approach Eqs. (3.9a) and (3.9c), respectively.

In order to allow for implementations with pseudo-spectral methods for the future, we perform a first-

order reduction, i.e. we define new evolved variables as a combination of first-order derivatives of the

fields such that we get an equivalent system of equations with only first-order derivatives. For good

fields, we define the characteristic fields

g+ := ∇ξg = ∂T g + ∂Rg , (5.30a)
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g− := ∇ξ
¯

g = ∂T g − ∂Rg , (5.30b)

gA := ∂Ag , (5.30c)

where g+ and g− are simply the good and bad derivatives of g, respectively, and similarly for ugly fields.

Hence, Eq. (5.28a) can be expressed as the system of equations

∂T g =
1

2
(g+ + g−) , (5.31a)

∂T g
+ = −Sg +

1

R
(g+ − g−) +

1

R2��D
AgA + ∂Rg

+ , (5.31b)

∂T g
− = −Sg +

1

R
(g+ − g−) +

1

R2��D
AgA − ∂Rg

− , (5.31c)

∂T gA =
1

2
∂A(g

+ + g−) , (5.31d)

where

��DAψA =
1√
�g
∂A(

√
�g�g

ABψB) (5.32)

is the divergence on the 2-sphere, and Eq. (5.28b) can be expressed as

∂Tu =
1

2
(u+ + u−) , (5.33a)

∂Tu
+ = −Su − 2

R
u− +

1

R2��D
AuA + ∂Ru

+ , (5.33b)

∂Tu
− = −Su − 2

R
u− +

1

R2��D
AuA − ∂Ru

− , (5.33c)

∂TuA =
1

2
∂A(u

+ + u−) . (5.33d)

After performing the hyperboloidal compactification, we get

∂tg =
1

2
(g+ + g−) , (5.34a)

∂tg
+ = − Sg

1 +H ′ +
g+ − g−

R(1 +H ′)
+

��DAgA
R2(1 +H ′)

+
∂rg

+

R′(1 +H ′)
, (5.34b)

∂tg
− =

Sg

−1 +H ′ −
g+ − g−

R(−1 +H ′)
− ��DAgA
R2(−1 +H ′)

+
∂rg

−

R′(−1 +H ′)
, (5.34c)

∂tgA =
1

2
∂A(g

+ + g−) , (5.34d)

and

∂tu =
1

2
(u+ + u−) , (5.35a)
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∂tu
+ = − Su

1 +H ′ −
2u−

R(1 +H ′)
+

��DAuA
R2(1 +H ′)

+
∂ru

+

R′(1 +H ′)
, (5.35b)

∂tu
− =

Su

−1 +H ′ +
2u−

R(−1 +H ′)
− ��DAuA
R2(−1 +H ′)

+
∂ru

−

R′(−1 +H ′)
, (5.35c)

∂tuA =
1

2
∂A(u

+ + u−) , (5.35d)

where H ≡ H(R(r)) is the height function defined in chapter 3. For these equations to be numerically

regular at future null infinity, the coefficients must be at most O(1). We demand that H ′ = 1−R′−1, and

choose R such that R′ ∼ O(R2). Note that the source terms, Sg and Su, must decay at least like O(R−2)

in order for the first term on the right-hand side (RHS) to be regular. The coefficient in the second term

of the RHS of Eqs. (5.34c) and (5.35c) is O(R) and therefore these equations are not regular at I +. We

can redefine our evolved variables to include such diverging terms. Therefore, we introduce the rescaled

fields

G := χ(R)g , (5.36a)

G+ := χ(R)∇ξ(χ(R)g) , (5.36b)

G− := χ(R)g− , (5.36c)

GA := χ(R)∂̃Ag , (5.36d)

where ∂̃A = (∂θ,
1

sin(θ)∂ϕ)
T . Analogously, we introduce rescaled fields for u. In the asymptotic regime,

the equations become

∂tG ≃ 1

2
G− − 1

2R
G+

1

2R
G+ , (5.37a)

∂tG
+ ≃ −cr−G+ −A−��DAGA + SG+ (5.37b)

∂tG
− ≃ −cr−∂rG− +A+��DAGA + SG− (5.37c)

∂tGA ≃ ∂̃AG
+

2R
+

1

2
∂̃AG

− − GA

2R
, (5.37d)

and

∂tU ≃ 1

2
U− − 1

2R
U +

1

2R
U+ , (5.38a)

∂tU
+ ≃ −cr−U+ −A−��DAUA + SU+ , (5.38b)

∂tU
− ≃ 2U−

R(1−H ′)
− cr+∂rU

− +A+��DAUA + SU− , (5.38c)
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∂tUA ≃ ∂̃AU
+

2R
+

1

2
∂̃AU

− − UA

2R
, (5.38d)

where we have introduced the following quantities

α+ = 1 , (5.39a)

α− = χ , (5.39b)

cr± =
±1

(1∓H ′)R′ , (5.39c)

A± =
R′

R
α±c

r
± . (5.39d)

The lower-order terms contained in SG+ , SG− , SU+ , SU− are explicitly given in Appendix B.

This choice of evolved variables is appropriate since it allows us to extract the radiation fields directly,

which correspond to the quantities we measure on Earth. This rescaling makes the good equations

formally regular at I +. However, it is not enough for the ugly equations. In particular, the coefficient of

the first term on the RHS of Eq. 5.38c diverges with O(R). We can solve this by applying the L’Hôpital

rule, although it is not mandatory for our implementation given that we worked with a staggered grid, as

is going to be explained in the next chapter.

Since we performed a first-order reduction, we also need to define the reduction constraints

−1

χ
Ψ+ +

1

2R′ − 1

(
Ψ− − χ′

χ
Ψ+ 2∂rΨ

)
= 0 , (5.40)

ΨA − ∂̃AΨ = 0 , (5.41)

where Ψ = G,U , and check that they are satisfied during the free-evolution.

5.4 Linearized Einstein equations

Recall the ten independent metric components δC±, δC±
A , δφ, δR̊−1, and δh+,×, whose evolution ac-

commodates the physical information of the system. In section 3.4, we said that two of these – δh+,× –

behave like a solution to the wave equation. Hence, they will be modeled as goods, whereas the other

eight fields, which decay faster asymptotically, will be modeled as uglies. We are thus looking to have

two equations of the form of Eq. (5.28a) and eight of the form of Eq. (5.28b).

Alternatively, since we have that T a = 1
2 (ξ

a + ξ
¯

a), the ugly equation can be expressed in the form

□1u := □u−R−1∇ξ
¯

u = S̃u , (5.42)

where S̃u = Su +∇ξu.
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The appropriate rate of decay of the fields can be imposed, i.e. we can force the eight ugly equations

to have the form of Eq. (5.42), through gauge fixing and constraint addition.

5.4.1 Generalized Harmonic Gauge

As discussed in chapter 2, there is still gauge freedom left after we linearize GR. In that chapter, we

introduced the harmonic gauge, which is a common choice since it leads to wave equations. In this

work, we impose a generalization of this gauge – the Generalized Harmonic Gauge (GHG) – that not

only leads to well-posed equations but also allows us to impose the rate of decay of the fields such that

they attain a non-vanishing finite limit at future null infinity.

In GHG, instead of setting the divergence of h̄µν to zero, we set it to some arbitrary functions of the

coordinates

∇ν h̄µν + Fµ = 0 . (5.43)

These functions can be used to impose the rate of decay of four of the fields. We also define a

harmonic constraint equal to the quantity above,

Zµ ≡ ∇ν h̄µν + Fµ , (5.44)

which is used to impose conditions on four other fields.

For our setup, these constraints have components

Zξ = ∇ξ
¯

δCR
+ − 2R−1δCR

+ + 2R∇ξδR̊
−1 + 6δR̊−1 + 2R−1δφ−��DAδC+

A + Fξ , (5.45a)

Zξ
¯

= −∇ξδC
R
− − 2R−1δCR

− + 2R∇ξ
¯

δR̊−1 − 6δR̊−1 − 2R−1δφ+��DAδC−
A + Fξ

¯

, (5.45b)

ZA = RFA − 3

2
(δC+

A + δC−
A ) +

R

2
(∇ξ

¯

δC+
A −∇ξδC

−
A ) +��DBĥAB − ∂Aδφ . (5.45c)

We define a new linearized Ricci tensor

δRµν ≡ δRµν −∇(µZν) +Wµν , (5.46)

where the second term cancels the terms in the linearized Ricci tensor that are not the wave operator

andWµν is the constraint addition and it is a sparse matrix with components proportional to the harmonic

constraint. The evolution equations are obtained by making the appropriate contractions with δRµν . For

instance, the Equation of Motion (EOM) for δCR
+ is obtained by

ξµξνδRµν = 0 . (5.47)
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The remaining seven ugly equations are obtained by making the following contractions: ξµRµA,

�g
µνRµν , ξ

¯

µξ
¯

νRµν , ξ
¯

µRµA, ξ
¯

µξνRµν . The resulting EOMs follow

□1δC
R
+ =R−1∇ξ(2RδR̊

−1 +RFξ) +��DAδC+
A , (5.48a)

□1δC
+
A =− 2R−2∇BĥAB + 2R−2(δC+

A + δC−
A − FA) +R−1∇ξ(FA − δC+

A ) (5.48b)

+R−1∂A

(
Fξ + 4δR̊−1 + 2R−1δφ− 2R−1δCR

+

)
,

□1δR̊
−1 =

1

2
R−2(Fξ − Fξ

¯

) +R−3δφ−R−1∇ξδR̊
−1 +

1

2
R−3(δCR

− − δCR
+) (5.48c)

+��DA(δC+
A + δC−

A − δFA) , (5.48d)

□δCR
− +∇ξ

¯

Fξ
¯

=2R−2δCR
− + 2R−2δφ+ 4R−1δR̊−1 − 2��DAδC−

A , (5.48e)

□1δC
−
A =−R−2(δC−

A + δC+
A ) +R−1∇ξ

¯

(δC+
A − FA)− 2R−1∇ξδC

−
A (5.48f)

+ ∂A

(
2R−2δCR

− −R−1Fξ
¯

+ 4R−1δR̊−1

)
−R−1ZA ,

□δφ− 1

2
∇ξ

¯

Fξ =2R−2δφ+ 4R−1δR̊−1 +
1

2
∇ξFξ

¯

+R−2(δCR
− − δCR

+) +��DA(δC+
A + δC−

A ) . (5.48g)

(5.48h)

The good equations are straightforward to obtain. We define the projected linearized metric on the

background 2-sphere

ĥµν =⊥µν
αβhαβ , (5.49)

where the projection operator is given by

⊥µν
αβ = (˙�g(µ

α ˙
�gν)

β − 1

2
˙
�gµν

˙
�g
αβ) , (5.50)

and applying the D’Alembert operator we get

□ĥAB = 2 ⊥AB
ab
��∇(a|(δC

+
|b) + δC−

|b) − F|b)) +MAB��∇a(δC
R,a
+ + δCR,a

− ) , (5.51)

where

MAB =

(
1 0
0 −1

)
. (5.52)

Recall that we can choose the gauge source functions to make four fields be modeled as uglies,

namely δCR
− , δC−

A , and δφ. The choice that satisfies this requirement is

Fξ = R−1δφ , Fξ
¯

= −R−1δCR
− , FA = δC+

A . (5.53)
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With this choice, the equations yield

□1δC
R
+ =2R−1∇ξ(RδR̊

−1 + δφ) +��DAδC+
A , (5.54a)

□1δC
+
A =− 2R−2∇BĥAB + 2R−2δC+

A + 4R−1∂AδR̊
−1 + 4R−2∂Aδφ− 2R−2∂AδC

R
+ , (5.54b)

□1δR̊
−1 =2R−3δφ+

1

2
R−3δCR

− −R−1∇ξδR̊
−1 +

1

2
R−3δCR

− − 1

2
R−3δCR

+ +��DAδC−
A , (5.54c)

□1δC
R
− =3R−2δCR

− + 2R−2δφ+ 4R−1δR̊−1 − 2��DAδC−
A , (5.54d)

□1δC
−
A =3R−2∂AδC

R
− −R−2δC−

A −R−2δC+
A + 4R−1∂AδR̊

−1 − 2R−1∇ξδC
−
A −R−1ZA , (5.54e)

□1δφ =2R−2δφ+ 4R−1δR̊−1 − 1

2
∇ξ(R

−1δCR
−) +R−2(δCR

− − δCR
+) +��DA(δC+

A + δC−
A ) , (5.54f)

□ĥAB =2 ⊥ab
AB ��∇(a|δC

−
|b) +MAB��∇a(δC

R,a
+ + δCR,a

− ) . (5.54g)

These equations have the form we expected them to have, (5.42) for eight of the fields and (5.28a)

for the propagating degrees of freedom, with RHSs ∼ O(R−3). This proves that the linearized Einstein

equations can indeed be modeled by the GU model.

5.4.2 Transverse-Traceless gauge

Let us now compare our gauge with the usual TT gauge. In TT gauge we have that

hTT = 0 , h̄TT
0µ = 0 . (5.55)

These conditions must be satisfied by the initial data, at t = 0, and later. Thus, in terms of our variables,

the conditions above translate to

δCR
+ = −δCR

− , (5.56a)

δC+
A = δC−

A , (5.56b)

δR̊−1 =
δCR

−
2R

, (5.56c)

δφ = δCR
− , (5.56d)

and a similar relation for the time derivatives of the fields. By considering these relations, and choosing

the gauge source functions to be zero, we see that equations for the dependent variables turn out to be

the same as the EOMs for the independent variables, indicating that if we impose TT gauge for the initial

data, it gets propagated.
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Numerical simulations
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In this chapter, we start by introducing the tools we worked with. Then, we explain the numerical

implementation and present the results obtained. The code developed is available here, as well as the

Mathematica notebooks used to make the plots.

6.1 NRPy+

NRPy+ is a collection of Python scripts that generates optimized code in C and is mostly used for solving

problems in NR. It can be obtained using Git via the command

$ git clone https://github.com/zachetienne/nrpytutorial.git

The first paper on NRPy+ was released on December 2017 [29]. Since then, NRPy+ has been

continuously updated with new features, and an improved version is expected to be available soon.

The NRPy+ package comes with several helpful tutorials. For our problem, in particular, the most rel-

evant tutorial is Tutorial-Start to Finish-ScalarWaveCurvilinear.ipynb, which allows us to solve the scalar

wave equation in spherical coordinates. Taking advantage of this code, we modified it to solve our

equations in the hyperboloidal setting.

6.2 Implemented equations

For the numerical implementation, we perform the hyperboloidal compactification, as explained in chap-

ter 3, and choose

R(r) =
r

1− r
, (6.1)

where r is the compactified radial coordinate, so that I + corresponds to the point at r = 1, and set the

height function to

H(r) = R(r)− r . (6.2)

For the rescaling function χ(R), introduced in chapter 5, we choose

χ(R) =
√
1 +R2 , (6.3)

so that it is an even function that does not vanish at the origin and approaches R asymptotically. There-

fore, in the asymptotic limit we recover Eqs. (5.37) and (5.38).

We set the source terms Sg and Su to zero. In the future, we could expand this work by considering

non-vanishing source terms.
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The implemented equations read

∂tG =
1

2
G− − R

2χ2
G+

1

2χ
G+ , (6.4a)

∂tG
+ = −cr−G+ −A−��DAGA + SG+ , (6.4b)

∂tG
− = −cr−∂rG− +A+��DAGA + SG− , (6.4c)

∂tGA =
∂̃AG

+

2χ
+

1

2
∂̃AG

− − R

2χ2
GA , (6.4d)

∂tU =
1

2
U− − R

2χ2
U +

1

2χ
U+ , (6.4e)

∂tU
+ = −cr−U+ −A−��DAUA + SU+ , (6.4f)

∂tU
− =

2U−

R(1−H ′)
− cr+∂rU

− +A+��DAUA + SU− , (6.4g)

∂tUA =
∂̃AU

+

2χ
+

1

2
∂̃AU

− − R

2χ2
UA , (6.4h)

where the notation of section 5.3 is used. We also check that the reduction constraints defined in

Eq. 5.40 are satisfied during the evolution.

The MOL is employed for time integration and is performed with a fourth-order accurate Runge-Kutta

scheme. Second-order centered finite differences are used to approximate spatial derivatives. We add

Kreiss-Oliger dissipation [30] to our equations, which consists of adding a term to the RHSs of the form

σ(∆x)3D2
+D

2
−Ψ/16 , (6.5)

where σ is the dissipation strength, ∆x is the grid spacing, D± the standard forward and backward

differencing operators and Ψ stands for the corresponding gridfunction. For our simulations in axial

symmetry, we used dissipation strength σ = 0.4.

We work with a staggered grid, i.e. there are no grid points exactly at the origin and at I +, but they

get closer as the resolution is increased.

6.3 Boundary condititons

Our numerical domain satisfies

r ∈]0, 1[ , θ ∈]0, π[ , ϕ ∈]− π, π[ , (6.6)

where the angles are given in radians. In spherical coordinates, there are two types of numerical bound-

aries – inner and outer. To define the boundary conditions, we introduce points that lay beyond the

domains defined above and that serve only for numerical purposes, not having any physical meaning
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– we call them ghost points. These points are distributed into ghost zones. We use two ghost zones,

meaning that we extend the grid in every direction by two points. Due to the hyperboloidal compacti-

fication we performed, as explained in chapter 3, no outer boundary conditions are needed. However,

we do need to fill in the ghost points, which we do via extrapolation. On the other hand, to compute the

centered finite difference approximation of the spatial derivatives for the inner grid points, one needs to

know the value of the field at the two nearest points. The inner boundary conditions, which map ghost

points to other points in the interior of the grid, must then be defined.

Most of the quantities we consider are even, because, since g is a solution to the wave equation,

it is even in R as long as we start with an even function of R as initial data, as is the case of our

implementation. Any derivative that does not involve the radial coordinate is therefore also even, for

instance, ∂T g and ∂̃Ag. Thus, as long as we choose χ(R) to be an even function of R – which we have –

G and Gθ are also even. Notice that, for our choice of R(r), (6.1), an even function of R is also an even

function of r. An even function of r, ψ, satisfies the inner boundary conditions

ψ(r, θ,±π ± ϕ) = ψ(r, θ,±π ∓ ϕ) , (6.7a)

ψ(r,−θ, ϕ) = ψ(r, | − θ|, ϕ± π) , (6.7b)

ψ(r, π + θ, ϕ) = ψ(r, π − θ, ϕ± π) , (6.7c)

ψ(−r, θ, ϕ) = ψ(r, π − θ, ϕ± π) , (6.7d)

where in the last three relations the sign in ϕ ± π is chosen such that the resulting points lie inside the

domain.

However, the parity of the characteristic fields is not as straightforward, since they include radial

derivatives of the fields. But, since ∂T g is even, from the definition of the characteristic fields 5.30, we

have that g+(−R) − ∂Rg(−R) = g−(R) + ∂Rg(R). Writing this in terms of the rescaled fields and in

hyperboloidal coordinates, we obtain the parity conditions for G+ and G−, which are neither even nor

odd,

G+(−r) = χ(R(r))G−(r)− χ′(R(r))G(r) , (6.8a)

G−(−r) = G+(r)

χ(R(r))
− χ′(R(r))G(r)

χ(R(r))
, (6.8b)

and similarly for U .

46



6.4 Numerical treatment of the origin

Our equations have formally singular terms of the form 2
rψ. We solve this by applying Evan’s method [31],

as discussed in [28, 32], which consists of defining a new differencing operator that includes these

diverging terms, D̃. Thus, the system

∂tψ = ∂rπ , (6.9a)

∂tπ = ∂rψ +
2

r
ψ , (6.9b)

turns into

∂tψ = ∆r−1Dπ , (6.10a)

∂tπ = ∆r−1D̃ψ , (6.10b)

where the differencing operators are computed by

D̃ψ = 3
r2i+1ψi+1 − r2i−1ψi−1

r3i+1 − r3i−1

, (6.11a)

Dπ =
πi+1 − πi−1

2
. (6.11b)

In this way, we avoid diverging terms in the RHSs.

6.5 Initial data

The functions chosen as initial data must be smooth functions of the coordinates everywhere in the

domain. We consider the spherical harmonics,

φ =

∞∑
l=0

m=l∑
m=−l

φlm(t, r)Ylm(θA) , (6.12)

where φlm is given by

φlm =

l∑
k=0

(k + l)!

2kk!(l − k)!

1

rk+1
[F l−k(u)− (−1)l−kF l−k(v)] , (6.13)

with u = t− r the retarded time and v = t+ r the advanced time.

We make a similar choice for the initial data (at t = 0) of G and U . Choosing an axially symmetric
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expression as in [33], φ20Y20, where

Y20 =
1

4

√
5

π
(3 cos2 θ − 1) , (6.14)

and we take

F (r) = e−(r−1/4)2 . (6.15)

The initial data for the other fields are computed straightforwardly by taking the appropriate derivatives

and rescalings, in accordance with their definition (5.36).

6.6 Results

In the following, we present the numerical results from the implementation. Since the simulations were

performed in axial symmetry, Gϕ and Uϕ are zero everywhere. Thus, they are omitted from this discus-

sion.

The evolution in time of the G and U fields is represented in the top and bottom panels of Fig. 6.1,

respectively, in a polar plot with r and θ dependence, where the outer boundary represents I +. We see

that the signal in the G evolution leaves the domain completely through I +. Comparatively, we observe

that the U signal decays faster, as expected, and that it is always zero at I +. Ugly fields decay faster

than a solution to the wave equation, i.e. at least like O(R−3). Consequently, even when rescaled by

χ(R) they decay fast enough to vanish at I +.

The basic dynamics of the evolution of the Gθ and Uθ fields are represented in Fig. 6.2. These results

albeit similar to the ones above are included here since they constitute a new contribution – as so far,

only the spherically symmetric case had been done [28] – namely, the evolution of ugly fields in axial

symmetry in hyperboloidal coordinates in first-order in space (i.e, with only first-order spatial derivatives).

We again see that the ugly field, Uθ, decays faster than the good one, and is always zero at I +, as

expected.

The values of the rescaled good fields at I + are shown in Fig. 6.3. These were obtained through

a fourth-order extrapolation. Fourth-order extrapolation is necessary due to using a staggered grid, that

does not have grid points at the extremes. We can see that they are finite for every t and θ, and they

approach zero for later times. We omit the G+ plot here since G+ is expected to be zero at I + – from

the simulations, we obtain values of 2-3 orders of magnitude lower than for the other fields. This is

because, by definition,

G+ = χ∇ξ(χg) ,

and g is a solution to the wave equation, i.e. it decays like O(R−2). Asymptotically, we have that
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Figure 6.1: Dynamics of the evolution of the G (on top) and U (on the bottom panel) fields in axial symmetry starting
with initial data given in Sec. 6.5. The evolution depicted here was performed with 120 grid points in the
radial coordinate, 24 grid points in θ, and 4 points in ϕ. As expected, the ugly fields decay must faster
than the goods, and are always zero at future null infinity.

χ(R) = R. Finally, since good derivatives improve the rate of decay of the fields, we conclude that

G+ ∼ O(R−1), therefore vanishing at I +. For the same reason, the plots of the values of the ugly fields

at I + are also omitted here.

To check convergence, the code was first run with 80 grid points in r, 16 in θ and 4 in ϕ, and then the

resolution in r and θ was iteratively increased by a factor of p = 1.5 in the two following runs.

To compute the convergence factor, we considered the energy norm as defined in [34]

E(t) =

∫
Σ

εdrdΩ , (6.16)

with

ε =
1

2

[(
2R′ − 1

2R′

)
(ψ+)2 +

(
1

2R′

)
(ψ−)2 +

1

R2

(
ψ2
θ +

1

sin θ
ψ2
ϕ

)]
R2R′ , (6.17)

where ψ stands for the fields (goods and uglies) before being rescaled (see (5.30)). The conver-

gence factor of the state-vector (G,G+, G−, Gθ, U, U+, U−, Uθ) defined with the norm (6.17) is plotted in

Fig. 6.4. We observe that it is roughly 2, as expected for a second-order finite difference approximation

(chosen in this experiment), suggesting a successful result.
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Figure 6.2: Dynamics of the evolution of the Gθ (on top) and Uθ (on the bottom panel) fields in axial symmetry
starting with initial data according to Sec. 6.5. The evolution depicted here was performed with 120 grid
points in the radial coordinate, 24 grid points in θ, and 4 points in ϕ. As expected, the ugly fields decay
must faster than the goods, and are always zero at future null infinity.

(a) (b) (c)

Figure 6.3: Values of the (a) G, (b) G−, and (c) Gθ fields at I + for all values of time and θ from the evolution with
80 grid points in r, 16 in θ and 4 in ϕ starting with initial data according to Sec. 6.5. The values were
obtained through a fourth-order extrapolation, necessary due to the staggered grid. We notice that for
later times the fields vanish, indicating that the signals leave the domain completely through I +.

As explained in chapter 4, we performed pointwise convergence at I + to further ensure the cor-

rectness of the results. To do that, we used a fourth-order extrapolation of the good fields at future null
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Figure 6.4: Norm convergence of the state-vector (G,G+, G−, Gθ, U, U+, U−, Uθ) in axial symmetry with the norm
(6.17), starting with 80 grid points in r, 16 in θ and 4 in ϕ and increasing the resolution by a factor
of p = 1.5. We see that the convergence factor approaches 2, as anticipated for second-order finite
differences approximation, which indicates a successful result.

infinity (recall that the ugly fields all vanish at I +, thus this analysis is pointless for those fields). Then

we computed the differences between high and medium resolutions and between medium and low. The

latter was rescaled by a factor of p2 = 1.52, and the result is plotted in Fig. 6.5. We can see that the

rescaled differences align almost perfectly on top of each other, indicating convergence at I +.
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(a)

(b)

(c)

Figure 6.5: Rescaled differences of the extrapolated values at I + with θ = 0.5 for: (a) the G field, (b) the G− field,
and (c) the Gθ field. Starting with 80 grid points in the radial coordinate, 16 in θ and 4 in ϕ, the resolution
was increased by a factor of p = 1.5. The evolution was performed with second-order finite differencing
approximation of spatial derivatives, i.e. n = 2. l, m, and h stand for the values of the corresponding
field given by the low, medium, and high-resolution runs, respectively. The alignment of the rescaled
differences indicates convergence at I +.
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Discussion of the results
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7.1 Summary

This work represents a first step toward the implementation of the hyperboloidal approach to solving

problems numerically in full GR. This approach will allow for more accurate results than the currently

employed methods since it allows for the computation of the GWs all the way out to I +, where they are

unambiguously defined, via a smooth slice.

We took the linearized EFE in GHG and, by a careful choice of gauge source functions and constraint

additions, showed that linearized GR can be modeled by the GU model, which allows us to understand

the rate of decay of the fields and therefore how they should be rescaled such that they attain a finite

limit at future null infinity. We also explored how our choice of gauge relates to the usual TT gauge.

By performing a hyperboloidal compactification and properly rescaling the fields, we derived regular

equations at future null infinity. In fact, the rescaled fields are the relevant quantities to compute since

they are the radiation fields that we measure experimentally.

The regularity conditions at the origin were also derived, and we stress the importance of requiring

that the evolved variables be sufficiently smooth functions of the coordinates.

Using NRPy+, the model equations were implemented in hyperboloidal coordinates on a staggered

grid using axially symmetric initial data, in first-order in time and first-order in space. The results of

our experiment were successful, as indicated by the norm and pointwise convergence tests. We also at-

tempted to evolve initial data in full 3D during the timeline of this project but did not observe convergence

in the appropriate norm – for that reason, they are omitted from this document.

7.2 Future work

Continuing work in the direction of treating future null infinity numerically, the next step is to evolve initial

data in the absence of symmetries and show convergence. The generalization to full 3D implies that the

fields gϕ and uϕ are no longer zero. Additional problems arise from this since the ϕ component of terms

with the divergence of gA and uA on the 2-sphere have an additional factor of 1
sin2 θ

, which diverges for

θ = 0, π.

Better results could be obtained by implementing the equations numerically using a non-staggered

grid, thus avoiding extrapolation errors when computing the value of the fields at I +. The difficulty of

this is that the RHSs of the implemented equations can no longer have formally divergent terms, which

we can surpass by applying the L’Hôpital rule on these terms. Furthermore, better grids should be

included in NRPy+ in the near future so the treatment of the origin might be simpler in the future.

Only the model equations were solved numerically in this project. Although we expect similar results

for the linearized GR equations that we derived (since they can be indeed modeled by the GU equations),

it would still be interesting to solve the linearized GR equations themselves, to verify and give more
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evidence of the correctness of our results. To do this, one would have to put together a careful match of

the regularity conditions at the origin and at I +. With this, all the work for solving linearized GR on a

flat background using hyperboloidal slices would be complete.

As mentioned in chapter 5, we could expand this work by linearizing around different backgrounds

(for instance, Schwarzschild and Kerr). Essentially, that implies changing the background quantities in

Eq. (5.10) and following the same steps taken here. In these backgrounds, additional complications may

arise, for instance when relating the strong field region with the asymptotics. On the other hand, in some

aspects evolving around these backgrounds might be simpler because, since we excise the BH interior,

we do not have to deal with the origin.

Hyperboloidal evolution will be completely set up when all these results have been successfully

generalized to full GR. Another field that needs to be included in the model is the bad field from the

GBU model introduced in chapter 3. Bad fields are called “ba d” because they decay slower than the

others (their behavior goes like log(R)
R ).

There is good reason to believe that the hyperboloidal approach could be used in the future to

obtain more accurate waveforms of GWs for binary BH simulations (in vacuum), thus contributing to

better measurements of the properties of the sources. Finally, being able to introduce matter in these

simulations in order to evolve accretion disks or neutron stars, with the advantage of being able to reach

future null infinity, would be the last effort to have a complete approach. Since the hyperboloidal method

is appropriate for extracting any signal traveling at the speed of light, we could also, in principle, extract

EM waves at I +.
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A
Geometric quantities

In this Appendix we give the explicit expressions of the metric components, which follow:

�g
00 =

e−h+R2R̊−2

τ2

(
cosh(h×)C

−
θ

2 + cosh(h×)C
+
θ

2 + e2h+ cosh(h×)(C
−
ϕ − C+

ϕ )2 (A.1)

+2eh+C+
θ (C−

ϕ − C+
ϕ ) sinh(h×)− 2C−

θ (cosh(h×)C
+
θ ) + eh+(C−

ϕ − C+
ϕ ) sinh(h×)

)
,

�g
10 =

e−h+R2R̊−2

τ2

(
cosh(h×)(C−C

+
θ

2 + C+C
−
θ

2) + e2h+ cosh(h×)(C
−
ϕ − C+

ϕ )(−C+
ϕ C− + C−

ϕ C+) (A.2)

+eh+C+
θ sinh(h×)(−2C+

ϕ C− + C−
ϕ (C− + C+)) + C−

θ (− cosh(h×)C
+
θ (C− + C+)

+eh+ sinh(h×)(−2C−
ϕ C+ + C+

ϕ (C− + C+)))
)
,

�g
11 =

e−h+R2R̊−2

τ2
(
cosh(h×)C

+
θ

2CR
−

2 (A.3)
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The components of the linearized metric are given by

h00 =− δφ+ δCR
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+ +
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2
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The components of h̄, as defined in chapter 2, are
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B
Source terms in the GU model

Using the same notation as in chapter 5.3, the source terms in equations (5.37) and (5.38), as well as

in (6.4), are given by

SG+ = − χ2Sg

1 +H ′ −
R′cr−
Rχ

(R− χ)(R+ χ)G− +
2R′cr−
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