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ON SPHERICALLY SYMMETRICAL ACCRETION 

H. Bondi 

(Received 1951 October 3) 

Summary 

The special accretion problem is investigated in which the motion is 
steady and spherically symmetrical, the gas being at rest at infinity. The 
pressure is taken to be proportional to a power of the density. It is found 
that the accretion rate is proportional to the square of the mass of the star 
and to the density of the gas at infinity, and varies inversely with the cube 
of the velocity of sound in the gas at infinity. The factor of proportionality 
is not determined by the steady-state equations, though it is confined within 
certain limits. Arguments are given suggesting that the case physically 
most likely to occur is that with the maximum rate of accretion. 

1. The importance of the accretion of interstellar gas by stars has been 
recognized since the work of Hoyle and Lyttleton (1, 2, 3). In their work the 
problem, later investigated in detail by Bondi and Hoyle (4), was that in which 
the rate of accretion was limited principally by the relative motion of the star 
and the gas cloud, the effects of pressure being considered negligible in comparison 
with the dynamical effects. The result derived in these papers was that 

dM/dt = 27T0L(GMfV-3pm9 (1) 

where M is the mass of the star, dMjdt is the rate of accretion, p«, the density 
of the gas cloud far from the star, V is the relative velocity of the star and the 
distant (undisturbed) parts of the cloud, G is the constant of gravitation, and a 
is a numerical constant which was first estimated to be equal to 2. Later work 
(4) showed that the steady-state equations did not determine a, although it seemed 
likely that it should always be between 1 and 2. It was also shown that if the 
star entered a cloud of uniform density with a plane boundary, a settled down to 
a value near 1*25. 

In all this work pressure effects were neglected, the argument being that any 
heat generated would be radiated away rapidly, so that the temperature of the gas 
was always very low. Considerable mathematical simplification is introduced 
by this assumption, and it was shown that it was likely to be satisfied in most 
cases of astrophysical interest (3). The mathematical difficulties of the more 
general problem, in which both dynamical and pressure effects are, considered, 
seem insuperable at present. However, the extreme case of negligible dynamical 
effects is again far simpler, and will be discussed in this paper. It may reasonably 
be expected that the case discussed here together with the case discussed previously 
bracket the complete problem. 

2. The problem to be discussed may be defined as follows : 
A star of mass M is at rest in an infinite cloud of gas, which at infinity is also 

at rest and of uniform density and pressure p^. The motion of the gas is 
spherically symmetrical and steady, the increase in mass of the star being ignored 
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so that the field of force is unchanging. The pressure p and density p are related " 

everywhere by 

PlP»=(p/p*Y> (2) 

where y is a constant satisfying I ^f. 
With a suitable choice of y, equation (2) is equivalent to the physical condition 

that no heat is radiated or conducted away. Hence the solution should provide 
the most complete contrast possible with the problem previously investigated. 
The equations governing the problem are easily set up. If we take r to be the 
radial coordinate and ü the inward velocity of the gas, the equation of continuity is 

^Trr2pv = constant = A (say), (3) 

where A is the accretion rate. 
Bernoulli’s equation is 

r Q 

J*«, p 

GM 

r 
= constant ( = 0). (4) 

The constant is readily seen to vanish by virtue of the boundary conditions at 
infinity. Combining (2) and (4) we have 

2 y-1 PooIXPoo) J r 
(5) 

Equations (3) and (5) are two equations for the two variables v and p in terms of rf 

the distance from the centre of the star. 
The equations may be made non-dimensional by the appropriate use of the 

velocity of sound in the gas at infinity, which as usual we denote by c. By the 
well-known formula 

C2 =yprjpœ- (6) 

Let us introduce non-dimensional variables, x, y, #, to replace r, vy p, respectively, 
as follows : 

r = xGM/c2, 

v=yc, _ (7) 

p=Zpœ. 

Then (3) and (5) take the non-dimensional form 

x2yz = Á, (8) 

iy2 + (zy-1-i)/(y-i) = i/x, (9) 
where A is given by 

A=^7TX(GM)2>crzpao. (10) 

Accordingly .A is the non-dimensional parameter determining the accretion rate. 
It plays the same role as a in equation (1). It will also be observed that the 
relative velocity V of equation (1) has been replaced by c in (10). 

3. The explicit solution of equations (8) and (9) for general y is possible not 
in terms of the variables y and z but only if an auxiliary variable depending only 
on y2/#v-1 is introduced. It is particularly interesting that mathematical 

requirements lead to the introduction of this variable, since 

u =yz~(y~1)l2 
(ii) 
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has immediate physical significance as the ratio of the local bulk velocity v of 
the gas to the local velocity of sound (yp/p)112- Substituting (11) into (8) and 
solving for y and z we have 

Y-1)I(Y+1) 

Then (9) becomes 

lM4/(VHhl) 

y=uw-D(\¡x2y 

z = (X/x2u)W-1K 

/ A\2(y-i)/(y+i) I /_A_\ 

\#2/ + y — l\x2u) 

2(y-l)/(y+l) ! i 

x y — I 

(12) 

(13) 

(14) 

Rearranging the terms and multiplying by (a;2/A)a(y-1),(v+1) we find that (14) 
takes the form 

(15) 
where 

(16) 

(17) 

f(u) = ^ u-xr-wr+i) = M4/(y+i) 

n i 1 v4(y-i)/(y+i) 
- + —— U    +iXr-(6-3y)/(y+i)4 

y —1J y-i 

A study of the functions/and g serves to determine w as a function of À and x* 
The variables y and z are then readily found by (12) and (13). 

4. We shall first assume that 1 <y<£. The two limiting cases y = i> 
y = £ will be examined later. With this assumption both / and g are each the 
sum of a positive and negative power of the respective variables and hence each 
of them has a minimum. The minimum of f(u) occurs for u = um = i and is of 
value 

/= i(y+^/(r - *) =/m (say)- 

The minimum of g(x) occurs for ^ = ^w = i(5 —3y) and is of value 

8=\tè(5-3y)]'(5_3v),(y+1) =gm (say). 

In our problem x varies between infinity and the value corresponding to the surface 
of the star. This last value is very small indeed. As an example, if the star is 
taken to be the Sun, and c = 1 km/s corresponding to a gas temperature at infinity 
of nearly 3 000 deg. K, the surface value of x is only 5 x io~6. Even for a red 
giant the surface value of x would be less than io~2 unless the temperature of the 
gas at infinity were quite improbably high (more than, say, 5xio4deg. K). 
Accordingly x will attain the valué xm in the physically significant interval. 
Hence, somewhere in that interval, the right-hand side of (15) will reach a value 
as low as A_2(v_1)/(y+1)

<§f
w. But the lowest value / can reach is fm. Hence À cannot 

exceed Ac, where 
/£ \(y+i)/2(y-i) /I\(y+D/2(y-i)/ 

= \fj w \ 

j\(y+l)l2(Y~l) /g _ 3y\-(5-3y)/2(y-l) 

4 
(18) 

Our first result is therefore that the accretion rate A cannot exceed the value 

477A/ G M)2c~3p oo. (19) 

Table I gives the value of Ac for a few values of y. 

y i 

A¿ ie3/2=i-i2. 

Table I 
i -2 

i(° *7) ~3 5. 

i*4=i 
0-625 

i*5 
0-500 0-250 
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5. In order to obtain a more detailed picture it is necessary to discuss f(u) 
and g{x) more fully, and to take account of the boundary conditions of the problem. 
Since, at infinity, v vanishes bntp and p tend to finite limits, it follows that u tends 
to zero there. 

It is now easy to consider the problem graphically. Fig. 1 shows / and g 
drawn for the typical case y = f. The resulting variation of « as a function of x 
is shown in Fig. 2 for the cases (i) À = ¿Ac, (ii) A = Ac and (iii) A = 4AC. It will be seen 
that the boundary condition at infinity implies that u is very small near infinity 
(points beyond A on the graphs). For A<AC, as x diminishes, u rises gradually 
to a maximum (B) and diminishes to zero (C) as x tends to zero. The closer 
A approaches Ac from below, the sharper the maximum B. No part of the curve 
A'B'C' (on which u is very large both at infinity and near # = o) is of physical 
significance, since w given by this curve does not satisfy the boundary condition 
at infinity. No jump from the curve ABC to A'B'C' is possible, since this would 
imply an infinite acceleration. Along ABC the variable u is always less than 
unity, so that the motion is subsonic. Along A'B'C' the value of u exceeds unity. 

The case A = AC is quite different. For in this the curves have contact at 
B = B'. Coming from A, the physically significant curve can continue either 
to C or to C'. In the first alternative, the curve is the limiting form of the curves 
for A<AC. The curve has a discontinuous tangent at B and there is hence a 
finite jump in the acceleration. Although this is perhaps physically not very 
plausible, there does not seem to be any argument disallowing this motion altogether. 
It may be significant that at B the value of u is unity, so that the bulk velocity 
equals the velocity of sound. 

The curve ABC' is perfectly smooth and monotonie. For x>xB the motion 
is subsonic, while for x<xB the motion is supersonic. The system is in a state 
quite different from any state possible for A<AC. 

If A exceeds Ac then the pattern of the curves changes as indicated, and no 
solution is possible. 

We see hence that there are two quite different types of motion. Type I 
exists for A ^Ac. The motion is everywhere subsonic (except at x = xm if A = AC), 
and u has a single maximum which is less than or equal to unity. The bulk 
velocity v has a maximum if y <f but not if y ^ f. (This follows from a simple 
consideration of y' in terms of u.) For y<f the velocity v tends to zero as r 
tends to zero, for y = f it tends to a limit (equal to ¿¿A), and for y >f it tends to 
infinity. The density is always a monotonie function of the radius. Type II 
exists only if A = Ac. In this case u, v, p are all monotonie functions of the radius. 

The special case A = o may be briefly referred to here. In this case the gas 
is at rest, forming a tenuous continuation of the star. Since y = o we have by (9) 

z7"1 = I + (y — l)/x. (20) 

Figs. 3, 4 and 5 show y and z as functions of x for y = 1, | and f respectively. 
Three values of A are taken in each case, namely A = AC, A = £AC and the case A = o 
just referred to. It will be seen from the figures that z does not depend very 
critically on A, varying only slightly between the extreme cases A = o and A = AC, 
especially in the case of the higher y values. 

6. It remains to discuss the two limiting cases y = 1 and y = f respectively. 
If y = i equation (9) becomes 

fy2 + ln# = i/#. (9') 
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Fig. !.—/(«) and g(x) for y=£. 

~>x 
Fig. 2.—u as function of x for 

(i) A=èAc; 
(ü) A=Ac; 

(in) A==4Ac. 
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It is easy to eliminate z between (8) and (g') since, by (n), = w in the present 
case. Accordingly 

¿y2--lnj>= — In A-f (i/a?+ 2 In a?). (i^) 

The minimum of the left-hand side occurs for y = I and equals while the 
minimum of the bracket on the right-hand side occurs for a? = | and equals 
2 — 2 In 2. Accordingly 

Ac = Je3/2 = i-i20.lnAc = o-H38.... • (i8'> 

This is also the limit of expression (i8) as i, so that Ag is continuous at y = i* 
Fig. 4 represents this case. 

Fig. 3.—y and z as functions of x for y=£. 
(i) s(A=o); 

(ii) 5: (A=AC, Type I); 
(iii) z (A=Ac, Type II); 
(iv) y (A= Ac, Type II); 
(v) y (A= Ac, Type I); 

(vi) y (A=iAc). 

The case y = f is an even simpler extension of the ordinary case. The only 
real change is that xm (which decreases monotonically as y increases) now equals 
zero. Accordingly there is now no difference between Type I and Type II 
motions for A=AC = ! (Fig. 5). 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
52

M
N

R
A

S.
11

2.
.1

95
B

 

No. 2, 1952 On spherically symmetrical accretion 201 

It can be seen that u,y and considered as functions of x and y, are continuous 
in i 

7. The final question that must be considered is what determines the value 
of À in any actual case. It has been seen that the steady-state equations possess a 
solution whenever o < À ^ Ac. The particular value of À actually occurring must 
therefore be determined by other considerations. This is analogous to the 

0*01 O’l I 10 

Fig. 4.—y and z as functions of x for y=i. 
(i) *(A=o); 

(ii) sr (A=Ac, Type I); 
(iii) # (A=A¿, Type II); 
(iv) y (A=Ac, Type II); 
(v) y (A=Ac, Type I); 

(vi) y (A=JAC). 

velocity-limited case of accretion where a is not determined by the steady-state 
equations (4). The method used there to determine a specific value of a was to 
consider the case in which the star entered a cloud of gas with a plane boundary. 
The use of such a model would lead to very great mathematical difficulties in 
the present case, since the conditions of time-independence and spherical 
symmetry would have to be dropped simultaneously. 
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The boundary conditions at the surface of the star do not seem to be of help 
in the problem, since the star will swallow up any material falling into it without 
imposing any real conditions on the velocity, density, or pressure of the incoming 

o-oi o-i i 10 

Fig. 5.—y and 2 as functions of x for y=f. 
(i) z (A=o); 

(ii) sf(A=Ac); 
(iii) yCA^Ac); 
(iv) y 

There remains the possibility of investigating the stability of the system with 
respect to small disturbances. Even if only spherically symmetrical perturbations 
are admitted, a partial differential equation of considerable complexity results. 
It is easily seen from it that disturbances are in part propagated with the velocity 
of sound relatively to the material, but the nature of the part that remains behind 
is not easily found. However, this may be a possible method of approach to 
the problem. 

There is yet another possibility of investigating the stability of the system, 
and that is by comparing the energy of the system in its various states. The state 
with the lowest energy would then be expected to be the only stable state. Owing 
to the fact that our system is not isolated (the star itself not being considered part 
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of the system) the validity of this approach is not quite assured, and similarly 
doubts may arise owing to the infinite extent of the system. Nevertheless, since 
the comparison of the energy of the system in every spherical shell leads to the same 
result, it seems very likely that the method gives the correct answer. 

The energy of the gas per unit mass is constant by virtue of our assumptions 
(c/. equation (4)). Accordingly a comparison of the densities is all that is involved. 
Consider now z as function of À for fixed x. Then it may be seen from equations 
(13), (15) and (16) that for u less than unity z decreases as A increases. Accord- 
ingly the energy of the system in every spherical shell is lower for the Type I 
state with A = AC than for any other Type I state. Comparing now, for A = AC, 
the Type I and the Type II states, it is immediately seen that, for the 
densities are the same, but that for x<xm the density (and hence the energy) is 
lower in the Type II state. 

Accordingly the system has, in the sense described, the lowest energy in the 
Type II state, and we may expect to find a natural system in this state with A = Ac. 
If y = f, the difference between the Type II state and the Type I state with 
A = AC disappears, and we would expect to find the system in this joint state. 
The result that the Type II state is the one most likely to be realized is very 
satisfactory, since the behaviour of all the functions is most uniform and smooth 
in this state. The result is also in agreement with the intuitive idea that, since 
there is nothing to stop the process of accretion, it takes place at the greatest 
possible rate, i.e. with A = AC. 

8. The two cases of accretion that have been examined so far may be called 
velocity-limited and temperature-limited respectively. The intermediate range 
of cases presents far greater difficulties. However, it may be possible to con- 
jecture what the result is in the following way. 

In the velocity-limited case of accretion the accretion rate A is given (4) by 

A^2^{GM)W^ (21) 

while for, say, y = f in the temperature-limited case the result is 

A = 27T(GM)2cr3pco. (22) 

If we therefore write down the formula 

A==2tt(GM)% V2 + c2)-3/2/>oo, 

it seems likely that it represents the order of magnitude of the accretion rate in 
the intermediate case, in which a star of mass M moves with relative velocity V 
in a uniform cloud of gas, in which the undisturbed density and the velocity of 
sound have the values and c respectively. This formula, in agreement with 
intuitive ideas, suggests that if c exceeds F, temperature (pressure) imposes the 
chief limitation on the rate of accretion; whereas if V exceeds c, dynamical 
limitations are of greater importance. 

The Umitations due to pressure have probably been somewhat overestimated 
in this work. For if the cloud is able to radiate away some of the heat of com- 
pression then the adiabatic law will not apply, the pressure near the star will 
be diminished, and the accretion rate somewhat increased. How large this 
effect will be depends on the composition of the cloud. If there is a high pro- 
portion of constituents (such as hydrogen molecules (2)) that easily radiate at 
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moderate temperatures, then the effect will be appreciable. In this case the 
effective value of y will be closer to unity than to the standard value for the gas in 
question. If y equals unity the process is isothermal. 

The work of the present paper, together with previous work, is likely to give 
a fair estimate of the order of magnitude of accretion in all cases of physical 
interest. Further progress in this field will probably require the consideration 
of non-steady states. 

Trinity College, 
Cambridge : 

1951 October 2. 
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