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Transition from inspiral to plunge in binary black hole coalescences
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Combining recent techniques giving nonperturbative resummed estimates of the damping and conservative
parts of the two-body dynamics, we describe the transition between the adiabatic phase and the plunge, in
coalescing binary black holes with comparable masses moving on quasicircular orbits. We give initial dynami-
cal data for numerical relativity investigations, with a fraction of an orbit left, and provide, for data analysis
purposes, an estimate of the gravitational waveform emitted throughout the inspiral, plunge and coalescence
phases.

PACS numbd(s): 04.30—w, 04.25.Nx

| INTRODUCTION GW frequency at the LST&y, calls both for an especially
careful treatment of the Fourier transform of the emitted
The most promising candidate sources for ground base¥yaveform and for an improved knowledge of the transition
interferometric gravitational-wavéGW) detectors such as Petween the inspiral phase and the plunge phase.
the Laser-Interferometric Gravitational Wave Observatory N present paper will attempt to improve our knowledge
(LIGO) and VIRGO are binary systems made of massivelf the transition between inspiral an_d plunge_ by combining
(stellap black holes[1—4]. Such binary black holeBwith two, recently proposedjon-perturbativetechniques: Refs.

individual masses in the range, say, (3-5)] pose special [6] and[7]. Let us_first recall that, a few years ago, Will _and
problems[3,5]. co-workers[8,9] tried to attack the problem of the late-time
Let us recall that gravitational radiation damping is effi- €volution of compact binarie8ncluding the transition from
cient at circularizing such binary systems, and then drivesinspiral to plunge by a direct use of the Damour-Deruelle
for a long time, a slow inspiraling quasi-circular motion of [10—12 equations of motion. These equations of motion are
the binary system. This quasi-circular “adiabatic inspiralgiven in the form of gperturbativeexpansion in powers of a
phase” is expected to terminate abruptly, and to change temall parametee=v/c [“post-Newtonian,” (PN) expan-
some type of “plunge phaselleading to final coalescence sion]. In Ref.[8] a direct integration of these perturbative
when the binary orbit shrinks down to the last stafgiecu-  equations of motion(using the method of osculating ele-
lar) orbit (LSO) defined by the conservative part of the non-ments was used, while in Refl9] it was proposed to im-
linear relativistic force law between two bodiéi the test-  prove the straightforward perturbative approach by using
mass limit, the full nonlinear relativistic force law “hybrid” equations of motion. The “hybrid” approach is a
corresponds to geodesic motion in a Schwarzschild spacerartial re-summation approach in which the perturbative
time, and exhibits, as is well known, an LSO locatedRat  terms in the equations of motion which survive in the test
=_6GM._ Qne expects that a comparable-mass _system Wil ass limit[ »=m,m,/(m, + m,)2—0] are replaced by the
still exhibit such an LSO; see belowNow, the signal to known, exact “Schwarzschild terms,” while the

noise ratio(in an initial LIGO detector for inspiral signals v-dependent terms are left as a perturbative expansion. Both

from comparable-mass black hole binaries reachesasi- . .
- : the robustnesgl3,14] and the consistendy6] of the hybrid
mumfor M =28 , which corresponds to a GW frequency approach of9] have been questionefln particular, it was

for the waves emitted at the LSO equalfigy=170 Hz, a pointed out in Ref[6] that, in this approach, the supposedly
value which |s(nc.)t.§CC|dentaII)/ very c!qse to the location small “v corrections” represent, in several cases, a very
faer= 167 Hz (for |n|t|§1l LIGO) ,Of the minimum of the ch'ar- large (larger than 100%maodification of the corresponding
acteristic detector noise amplituig(f) = VfS,(f) (see Fig. , jndependent termbAnother sign of the unreliability of the
1 of [5]). Therefore the first detections will probably concern hybrid approach is the fact that the recent sti§,16 of
massive systems witM~30M . Moreover, Ref[5] has  (he |ocation of the LSO at the third post-Newtoni8PN)
shown that when the total mast=m, + m; lies in the range  5ccuracy has qualitatively confirmed the 2PN-level results of
(5-40Mg the proximity (within a factor of ~2) between he non-perturbative techniques to be discussed below
the observationally most important frequentiég, and the (namely that the LSO is “lower thanGM” ), thereby cast-
ing doubt on the most striking prediction of the hybrid ap-
proach(an LSO “higher than &M, " i.e. with a lower or-
We neglect here the very small difference between the optimabital frequency.
frequencyf 4 for generic broad-band bursts, and the optimal fre-  In contrast with the perturbative approach[8f and the
quencyf, for inspiral signals(see[5]). partially re-summed approach (8], the present paper will
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rely on the systematic use of non-perturbative re-summatiotion to the plunge, and even during most of the plunge.
techniques. The basic philosophy underlying our approach is We apply our method, in this paper, to deriving two sorts
the following. We are interested in understanding, in quanti-of results which are of direct interest to the ongoing effort to
tative detail, the combined influence on the inspiral detect gravitational waves. First, we shall give initial dy-
plunge transition of radiation reaction and of non-linear ef-namical data(i.e. initial positions and momentdor binary
fects in the force law focomparable-massinary systems black holes that have just started their plunge motion. The
[i.e. for systems for which=m;m,/(m;+m,)? is around  idea here is that numerical relativity will probably not be
1/4]. able, before quite a few years, to accurately evolve binary

At present there exists no method for deriving, from firstsystems over manyor even~ 10) orbits. This is why we
principles, non-perturbative expressions for the two-bodypropose a method for computing accurate initial dynamical
equations of motion, especially in the case of interest wherdata at a moment so late in the evolution that there remains
4v is nota small parameter. As a substitute we shall combingwhen 4v~1) lessthan one orbit to evolve(In the equal-
two different re-summation techniques that have been remass casey=1/4, we shall compute data0.6 orbit before
cently introduced to deal with two separate aspects of thécoalescence.] Our contentionwhose robustness we shall
problem we wish to tackle. try to establishis that suitably re-summed versions arfa-

The first re-summation technique, introduced[@], al-  lytic (PN) results allow one to push the evolution that far.
lows one to get a non-perturbative.dependent, estimate of (We shall use here 2.5PN-accurate information for angular
the rate of loss of angular momentufunder gravitational momentum loss and 2PN-accurate information for the con-
damping in quasi-circular, comparable-mass binaries. Theservative force law. However, as shown[#] and[15,16]
idea of [6] is three pronged(i) to work with an invariant our method can be pushed to higher accuracy when the cor-
function of an invariant argumenf(v), (ii) to inject some  respondingly needed PN results become unambiguously
plausible information about the meromorphic structure ofknown,) Note that this attitude is opposite to the one taken in
this function, and, finally(iii) to use Pad@pproximants to [3] in which it was assumed that “there is little hope, via PN
estimateF (v) from the first few known terms in the pertur- Padeapproximants, to evolve” a binary system up to the
bative (PN) expansion ofF (v). The second re-summation moment where it can provide initial data for the final coales-
technique, introduced ifi7], allows one to derive a non- cence. Let us, however, immediately add that the present
perturbative v-dependent, estimate of tifeonservative part paper is still incomplete, in that we give only dynamical data
of the) nonlinear force law determining the motion of com- (01, G2,P1,P2) but we do not solve the remaining problem of
parable binaries. The idea pf] is to map the real two-body constructing the initial gravitational datg;; (x),Kj;(x)) de-
problem on a simpler effective one-body problem, i.e. on théermined (in principle) by (d,,p,) (given, say, some no-
problem of the motion of a particle of mags=m;m,/(m;  incoming-radiation condition We shall leave thigimpor-
+m,) in some “effective” background metrig®’(x"). The  tany issue to future work. _ _
possibility (and uniqueness, given some natural requirement  The second aim of this work is to provide, for data analy-
of such a mapping, reah effective, was proved at the 2PN sis purposes, some estimate of the complete waveform emit-
level in[7]. The extension of this approach at the 3PN levelted by the coalescence of two black holesth negligible
has been recently discussgib,16 on the basis of the 3PN sping. We do not claim that this part of the work will be as
dynamics recently derived by Jaranowski and ‘$ehpl7].  accurate as the first one. The idea here is to provid®pe-

At the 2PN level thes-dependent terms in the effective met- fully ~10% accurateguess of the complete waveform, with
ric were found to be numerically so sméiround the LS® its transition from an inspiral phase to a plunge one, followed
that the need for a furthefPadetype) re-summing of the by @ coalescence ending in a stationary final state. In view of
effective metric coefficients did not arisgHowever, note the recent realizatiofi5] of the crucial importance of the
that Ref.[16] has introduced, at 2PN and 3PN, the furtherdgtails of the transition to the plunge for the construction of
idea of a specific, Padenprovement ofgifi(xx)_] In this faithful GW templatedfor massive binaries with 8 o<=M
paper we shall show how one can combine the methods oF 40Mo) even an approximate knowledge of the complete
[6] and [7] to derive a full force law(including radiation Waveform will be a valuable information for data analysis
reaction describing the quasi-circular motion  of (e.g. to test the accuracy of present templates and/or to pro-
comparable-mass binaries. Our approach is intended to appRPS€ more accurate or, at least, more robust, templates
to any value of, but is restricted to consideringuasi- " Wh!let prepa:clng thg worl:j fo: pUbIL'C@;“gT’ Wz !I?%ggj of

. . . L e existence of an independent work of Ori an
circular motions, .where the_ radial velocitiR is much which deals with the transition between the inspiral and the
smaller than the circular onRe. As we shall see, we shall plunge in the test mass limit(-0).
consistently check that the conditid®<R¢ holds true not

only during the adiabatic inspiral, but also during the transi-
Il. CONSERVATIVE PART

OF THE TWO-BODY FORCE LAW

2Note that because, considered as a function of the ratio In this section, we recall the non-perturbative construction

m; /m,, reaches itsnaximumu,,=1/4 for m;/m,=1, it stays  Of the (conservativg two-body force law given in Ref.7].
numerically near 1/4 even for mass ratios quite different from 1:There it was shown that the conservative gag. without
e.g., even fom;/m,=3, 4v=0.75. radiation dampingof the dynamics of a binary system, rep-
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resented in Arnowitt-Deser-MisndADM) phase-space co- perturbative re-summed estimate of the real PN Hamiltgnian
ordinates ¢;°™,o°™,p2°M,p,°™), could be mappedat  Hamiltonian reads
the 2PN leve), via the combination of an energy mafy

=f(&ea), and a canonical transformationgpP™ ,pi°M) Hjimprove \/ Heif(Q,P) — puC?
—(0a,pa), @=1,2, into the simpler dynamics of the geode- Hreal 1QP)=Mc?y/1+2v uc?

sic motion of a particle of masg=m;m,/(m;+m,) in (2.4)

some effective background geomegﬁf (x):

and

dZe=gCM (X)) dx#dx’= — A(R)c?d 2+ B(R)dR?
(n-P)? (NXP)?

C(R)R%(d 6%+ sinfod ¢?). 2.1 = 2\/ .
+ ( ) ( +slI QD) ( ) Heff(QaP) Iu’c A(Q) 1+ ,LLZCZB(Q) ,LLZC2C(Q)

(See[16] for the generalization of this approach to the 3PN (2.5

level.) Here the coordinatesR; 6, ¢) are polar coordinates in B . o ] )
the effectiveproblem (describing the relative motionThey ~ Here Q=v4;Q'Q'=R, n'=Q'/Q is the unit vector in the

are related in the standard wayQ{=Rsindcoss, QY radial direction, and the scalar and vector products are per-
=R sindsing, Q*=Rcod) to the (relative) effective (':arte— formed as in Euclidean space. Henceforth, we shall pose

i . — — gimproved ; FR,
sian coordinate=q,—d,, whereq, andg, are the effec- = treas H=Hieal  and use the following notation:
tive coordinates of each body. One works in the center-of-
maingrame of the binary system, ip;+p,= 0=p;y°M M=m,+m,, u= mlmzl = &22
+p5~ " . The canonical conjugate of the relative posit@n M M (m;+m,)
is the relative momenturR=p,;= —p,. In most of this paper (2.6

we shall work with the effective phase-space coordinate
(Q,P) [or rather with scaled versions of their pdlaounter-
parts R, 6,¢;Pgr,P4,P,)]. We shall only discuss at the end
how to construct the more physically relevant ADM phase
space coordinatesf{®™ ,pi°) from (Q,P). dR  oH

In absence of dampingo be added latér the evolution at - 9Pn -5 (R,Pr,P,), 2.7
(with respect to the real ADM time coordinatg,) of (Q,P)

Tn polar coordinates, restricting ourselves to planar motion in
the equatorial plané= /2 and to the Schwarzschild gauge
[C(Q)=1], we get the equations of motion

is given by Hamilton’s equations do
in 5H|mprovectQ,P) H P, (R Pr.Po), 28
——real =0, (2.2
dtreal ﬂpi dPR H ( )
— R,Pg, 0, 2.9
dP. |mp|rovectQ P) dt o"R( R ‘P)
L Plren =0, (2.3
dtreal Q' dpP,
W:O’ (2.1@
where thereal (i.e. giving thet,., evolution and the real
two-body energy improved (i.e. representing a non- with
|
P2 P2
H(R,PR,Pqp)ch2 1+2v A(R) + —-1]. (2.11
,LLZCZB(R) /.L2C2R2

As in any(non-degenerajeHamiltonian system, this conser- wjth P,(Q) obtained by solving)' = #H/JP; . The Lagrang-
vative dynamics is equivalent to a Lagrangian dynamics jan equations of motion read

improved improved
d aLreaI aLrea

— — - - =0. 2.1
Limeroved Q. Q) = P, — HITE™{ Q,p),  (2.12 dt 0 0 213
improved

To simplify the notation we denote=L ¢}

Finally, the 2PN-accurate metric coefficieni&(R),

3Note that we have the usual relations, suchPas-n'P;, with ~ B(R), Eq. (2.1) [in the Schwarzschild gauge whe@(R)
n'=Q'/R, andP,=Q*P,—Q’P,. =1], read
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3

AR—l—ZGM-i-Z % 2.1
(R)= R\ eR) (214
B(R)=D(R)/A(R), (2.15
with
D(R)=1-6 (%)2 (2.16
(5 "R/ '

Note that it was recently suggestelb] (because of the slow
convergence of the 3PN contributiongo replace the
straightforward expressioi2.14) by a suitably Padapproxi-
mated version, namely(at 2PN Ap (R)=1-2u(1

+vu?) !, whereu=GM/c?R. However, we have checked

PHYSICAL REVIEW D 62 064015

[II. INCORPORATING RADIATION REACTION EFFECTS

We wish to augment the conservative dynamics described
in the previous section by adding, as accurately as possible,
radiation reaction effects. If we were doing it in the Lagrang-
ian formalism we would writdin any coordinate system

————=F"%Q.Q). @D

This would define the additional damping for€&?9Q,Q)
needed in the Lagrangian formalism. In particular, in polar
coordinates we would writéfor planar motiond= /2)

ddL L .
— ——==FrYR¢ R ),

dt yr JR 3.2

that this refinement has only a very minor effect on the re-

sults to be discussed below.
The re-summedconservative dynamics defined by the
Hamiltonian(2.11) contains a LSO which is a-deformed

version of the well-known Schwarzschild LSO. Let us recall
that the radius of the LSO is obtained by imposing the exis-
tence of an inflection point in the effective potential

H(R,Pr=0,7) for the radial motion:

2

dH J°H
ﬁ(R,PRIO,m:O:ﬁ(R,PR:O,‘”, (21D

where the total angular momentusi= P, stays fixed. Equa-
tion (2.17 has a solution irR (for each value of) only for
some specific value of = 7-5%(v). In terms of the rescaled
variablesr=c?R/IGM, j=cJ/(uGM), o=GMep/c?, the
LSO quantities defined, in the equal-mass casel/4, by
the Hamiltonian(2.11), take the following value§7]:

rLso(1/4):5.718, jLSO( 1/4):3404,

LSO(1/14)— Mc?

- &
wso(1/4)=0.07340, 5 =—0.01501.
Mc

(2.18

d JL .
_ _~ _ rlag
at oy Fo (R @R @).

3.3
We want to work in the Hamiltonian framework, hence com-
ing back to the coordinateR, Pg, ¢ andP, and imposing
the constraint that the usual definitio®,=aL/dQ' hold
without correctiongwhich implies that the other usual rela-
tionsQ'=aH/aP;, dH/9Q'=—JL/4Q' and Eq.(2.12 hold
too] we get

drR oH

a_ﬁ_PR(R’PR'P(p):O’ (34)

N R PrP,)=0 (35

dt o, VTRTETD '
dPr oH
d_tR+ﬁ(RvaaP@):Fgam(Rv(PlPRyp(p)v (36)

dpP

d_t(P:fzam(Ry(PipRap(p)l (3'7)

where the Hamiltonian damping forcEiHam(Qj,Pj) is nu-

merically equal to the Lagrangian oneF[?™QJ,P))

Note that the comparable-mass LSO is slightly more inwards. FHRYQI,Qi= IHIIP;) .

(both in terms of the coordinat and in the sense of having
a higher orbital frequengythan its corresponding rescaled

test-mass  limit: r, so(0)=6, j.so(0)=+12=3.4641,

w.s0(0)=6"32=0.068041.

A. What do we know about the radiation reaction force?

The radiation reaction forc& was computed explicitly, at

As we shall need in the following to refer to the numerical lowest (Newtonian fractional order, in harmonic Cartesian-

value ofw so(v) for arbitrary values o, we have fitted the

result obtained by thé&ather intricaté method of Ref[7] to

a simple polynomial inv. We find
oLso( V)= wo[ 1+ w1(4v) + wy(4v)?], (2.19

w=0.0680414, w,=0.0693305, w,=0.00935142.
(2.20

like coordinates, as part of the complete 2.5PN equations of
motion, by Damour and Deruellgl0-12. An equivalent
result was also derived within the ADM canonical formalism
by Schéer [19-21. At higher post-Newtonian orders one
has only an incomplete knowledge of the equations of mo-
tion, and one has to rely on tHassumegbalance between
energy and angular momentum losses in the system and at
infinity [22,23. To get an idea of the generic structure of the
radiation dampingin various coordinate systems and at vari-
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ous PN approximationdet us consider the general radiation (3.8) [considered at any PN accuracy, with sotaeknown
reaction force writterfat 1PN fractional accuracy and setting coefficientse and 8]. The polar-coordinate versidifor pla-

G=1) by lyer and Will[22]: nar motiond= 7r/2) of the Cartesian-like Lagrangian damp-
o A ing force(3.8) reads as Eqg3.2), (3.3) with
Fr= ula(Ru)Rn'+ B(R0)v'], (3.9 o
J .
Lag_ rlag”~ _ .irlag
8 MM , FRI=F; R n'F 9, (3.15
a(R,U)ngﬁ R (Asizt Azt - +), (3.9

9 i
Fopell g 31s

Ro)=— oy M g Bt 3.1
B(Rv)= 5" 2 R (Bsz2tByot o), (3.19 This yields

whereR is the relative radius and is the velocity. Then, FL9=upR%p, FR9=u(a+p)R. (3.17

using post-Newtonian expressions for the energy and the an-

gular momentum flux at infinity, and assuming energy andThe important information for our present purpose is the

angular momentum balance, they obtained, at lowsiv-  difference between the component of the damping force,

tonian fractional order, which contains only3 and is, therefore, gauge independént,

and theR component which contains the gauge-dependent
— 1 - =M combinationa+ 3. Let us note, in particular, the expression
As=3(1+ B)v?+ 5(23+6a—96) = ~5BR%, of the Tatio A P P

(3.1)

Lag
R ( * (3.18

_ - M . Lag: —+1)T.
Bsp=(2+ a)v?+ (2~ @) —3(1+ a)R?, (3.12 FL9 B /R

See Ref[22] for th ) f the 1PN di In the following we shall be interested in quasi-circular mo-
>ee Ref[22] for the expressions of the 1PN-accurate radiay; o\ i 2« Re. (We shall see that this condition remains
tion damping term#\,, and B, in the equations of motion

; . . . satisfied even during part of the plunge phage we see
Eﬁgﬁtl;g:?:; aft;r, S??Eézs(gug“?g’ 1V§Sh the Lagrangian % om Eq. (3.18, for such motions the radial component of
712> P72 >-(9.9), (3.1

the damping force will contain one power of the small di-
The coefficientsae and 8 that appear in Eq93.11) and

(312 are twWo arbirary gauge parameters that cannot b%ensionle:ss quantitiR/(R¢). But we learned above, from
fixed by the energy balance method. Iyer and Wap] e gauge dependence of the lowest-order damping force,

: ; . e that we can change the definition of the radial coordinate so
showed that this gauge freedom is equivalent to shifting th g

i dinat ¢ b Il radiati @s to set, for instance, the quantitw/3) + 1 to zero(for
(_conserva ive coordinate system by small radiative COrrec- o ar orhitg. This means that the right-hand sitRHS) of
tions. Let us notice that the gauge dependence is reduc

= o . ) .(3.18 can be arranged, in the case of quasi-circular or-
when considering quasi-circular orbits. Indeed, in that Cas%its to contain three powers of the small paramBIR»)
2. .2 . . y Q).
R"=0, M/R=0v"and Eqs(_3.9), (3.10 l:_)e_come(con5|der_|ng [From Eqs(3.11), (3.12 we see that for quasi-circular orbits
only the 5/2PN terms which are sufficient for the point we +=R2] We have checked that the reasoning made
wish to mak @ "

4 above, using the lowest-order gauge dependence, can be for-
32 32 M /M2 mally extended to all higher PN orders.
—+2al, Bejre=— _V_z(_) The conclusion is that there should exist a special coordi-
3 > R2IR nate gauge where, for quasi-circular motions, an excellent
.13 approximation to the damping force is obtained by replacing
gée radial component simply by zero:

3l

Acic= gV 5| B
5 R?

Hence, in the quasi-circular case the only gauge dependen

left is in the coefficienty(R,v) multiplying theradial com- j:léagzoz}-gam_ (3.19
ponent of the damping forcex'). We can use this gauge
arbitrariness to set the ratio To test,a posteriorj the robustness of the approximation

(3.19, we shall also consider another special gauge: namely
(3.14 that where @/B):.=0. (As we said above, this can be

achieved at lowest order by a suitable choicexofand this

16
§+a

IR
’E circ__z

to any value we like. For example, by choosiEg= —16/3

we can setag=0 or by choosinge=—10/3 we can set  4The discussion above concerns only the lowest-order tergy in
(a+B)circ=0. but we shall see below that, to all orders, the crucial combination

Having understood the gauge dependence of the coeffgR? can, for circular orbits, be expressed in terms of invariant
cienta in Eq. (3.9) let us come back to the general structure quantities.
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can be extended to higher PN orders by suitable choices of _ @)
higher gauge parametersinally, this means that there ex- Folt=— S (3.29
ists another coordinate gauge where, to an excellent approxi- ¢

mation, the radial damping force is given as . _ _
The problem of giving a non-perturbative, re-summed esti-

R mate of the energy loss rater “flux function” ) along cir-
}-IF-{ag: ]:gam: —__gHam (3.20 cular orbits, sayb ., has been recently tackled by Damour,
29 ¢ lyer and Sathyaprakasf6]. By combining several of the
non-perturbative techniques recalled abfieework with an
The results in the two gauges are compared and discussediavariant functionF(v), to use some global information
the end of Sec. V. aboutF(v) in the complexv plane, to use Padapproxi-
What is important for the following is that in both gauges mantg Ref. [6] came up with the following expression for
(3.19 and(3.20, knowledge of the full damping force can &, considered as a function of the gauge-invariant ob-
be deduced from the sole knowledge&f . servable:

— 3\1/3
B. Non-perturbative estimate of the angular momentum v,=(GMw/c®)™, w=e¢, (3.26

reaction force along quasi-circular orbits
namely,

The analysis of the previous subsection has shown that

the crucial equation in which one should accurately incorpo- 32, ., fos(vy )
rate radiation reaction effects is (Dcirc:FDIS(Uw):%Vszm- (3.27)
[0] po
dpP . . T
d_t‘P :]-“zam( R,¢,Pr,P,). (3.20) Here, and in the following, we set=1 to simplify formulas.

The functionfps(v,, ; ¥) entering Eq(3.27 is the “factored
. . flux function” of [6], scaled to the Newtoniaguadrupol
As P, is just the total angular momentum of the binary SYS-flux (hence the c[aget ofis). It was shown iﬁG] tha’?thi
tem, Eq.(3.21) expresses the rate of loss of angular momen- ) ] -
tum under gravitational radiation reaction. As usual we shalf€duence of near-diagonal Pafgproximants of ps(v) ex-
estimate the RHsrwszam:f;ag (remember thatFHam hibits a very good converge'nq‘at least in they=0 limit

and F29 differ only in the arguments in which they are where high-order P.N expansions are kndi@]) toward the
expressedby assuming that there is a balance between th xa_ct result(numencglly knovyn wherv=0 [25]). On this
mechanical angular momentum lost by the system and th asis, it was argueq ir6] that; |.n the c?omparablt?-mass c'ase,
flux of angular momentum at infinity in the form of gravita- ¥# 0, our “best estimate” of is obtained by Padapproxi-
tional waves. In the case of quasi-circular orbits of interesfnating the currently most complete post-Newtonian results,
here we expect that, to a good approximatidf, will not namely the 2.5PN ond&6]. This yields a result of the form
depend explicitly onp and will, therefore, be expressible in

terms of theorbit-averagedflux of angular momentum. i N 1 (3.29
. .. . . D|S(U,V) ’ .
Moreover, in the case of quasi-circular orbits there is a 1+ C1v
simple relation between angular momentum loss and energy Cov
loss. Indeed, the rate of energy loss along any orbit, in polar 1+ -
coordinates, is given by 1+ 3c
U
1+ —=
dg dH 1+C5U

EZEZ.R]:R-F QD]: , (322)
where the dimensionless coefficiertsdepend only orw.

. . . _ Thec,'s are some explicit functions of the coefficierf{sof
and in particular along quasi-circular orbit we hgvemem-

: the straightforward Taylor expansion 6fv). In turn, the
bering Eq.(3.1
Ing Eq.(3.18] f’s, being defined by the identitjwhere T means “Taylor
dH o . expansion’)
(E) =<p]—'f,)r°+O(R2). (3.23
quasi-circ v

T[f(v)]ET[(l— . )ﬁ(v) =1+fo+f2+- -,
pole

Finally, if we know some good estimate of tliaveraged (3.29
energy loss along circular orbits, say
are given hy

dH .
(E) :—(Dcirc((P)v (324) fk: Fk— Fk—llvpole (33@
circ

in terms of the Taylor coefficients of the usu@lewton-
we can obtain a good estimate of the needegactive force normalized flux function:
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TTE@)]=T| 0 F(o)| =1+ Fpo2+ Fov? = p=n, p=—tm T
[F(v)]= 32,210 (v) |=1+Fu +Fg +- . GM' "y PeT uGM T uGM ’33
(3.31) (3.39
i d

(Note thatF,=0, but thatf,=—1/v,#0.) More explic- = t b= Hroal - i =Ef

itly we have “GM’ o e
(3.40

1247 35
Fo=— 335 13 Fs=4m (3.32  Finally, the dynamics, including radiation reaction, in re-

scaled coordinates, is explicitly described by the following
44711 9271 65 system of equation§in the “canonical” case where Eq.

_ A X2 3.19 holds):
Fa=~ 9072 " 504" 18" (3-19 holds]

~

dr oH
- 8191+5_35 (3.33 —fza—(r,pr,p¢), (3.41
s~ \672 " 247" : dt Pr
and d(,D A (9H
—A=wE&—(r,pr,p¢), (3.42
) dt Py
. ¢ P f1fa—13 (3.34
C = ] C = T C :—’ " a
L R U S dp.  H _
EJFW(V,DMJ@)—O, (3.43
fA[ 3+ a+f5f,—fo(2f,F5+1y)]
C4:_ 2 2 ’ (3'35) d
(f1—f2)(f1f3—13) 9Py _ % (@(r,p;,po)) (3.44
d’f (P L 7 (P L .
(7= o) (— 3+ 2f,f5f 4~ f1 5~ F3f5+ f1f5fe)

(Fofa— O[3+ 5+ F2f,— f(2f,f5+1Ty)]

(3.36

. . 1 pe P
As is clear from these expressions, they depend on the defi- H=-— 1+2v ANl 1+——+—| -1},
nition used for the quantity o) which represents a v B(r) r2
v-dependent estimate of the location of the “pole”dny, (3.49
which coincidegsee the discussion i6]) with the location .
of the “light ring” or last unstable circular orbit Riging F (o =0l Fo_ 32 5 fos(ve;v)
=3GM in the »—0 limit). Actually, as we shall use the o=@ 5 Ve DIS )’

; 2 1-v,/vpd V)

Pade representation only above and around the LSO (3.46
(ng*gW:GGM whenv=0) the precise choice afy, V) is _ _
probably not crucialas long as it stays near its known and where in Eq(3.45 we use the scaled versions of our
=0 limit: Upole(V:O):]-/\/E]- In this work, we shall follow ~ current best estimate of the effective metric coefficients
Ref. [6] and use the pole location they obtained from Pade (1), B(r) [see[7] and Eqs(2.14—(2.16) abovd, that is

approximating their “new” energy functioe(x), namely

2 2v 1 ev)
AN=1--+—, B(r)=——1-—|. (3.47
rrs r2

A(r)

DIS _

Upole™ ﬁ

(3.37  Note that the argument, enteringﬁ-‘q, , Eq.(3.46), is simply
defined ag ,= 0'®, wherew=w(GM) is the function ofr,

p, and p, defined by Eg.(3.42, ie. o(r,p,,p,)

Then, combining Eq€3.29, (3.26 and(3.27) we define our = gH(r,p, ,p,)/dp, .

best estimate of the component of the radiation reactive

force along quasi-circular orbits as

1— 3—61/

IV. TRANSITION BETWEEN INSPIRAL AND PLUNGE

32 ; fois(ve;v) The first-order evolution syste(8.41)—(3.44) defines our

ff,frcE— —5 Pois(v,)=— g MY

w

To simplify the notation we shall work in the following with

reduced quantities, that is

wl—vwlvgclfe(v) -

(3.38

proposed best estimate for completing the usually considered
“adiabatic” inspiral evolution into a system which exhibits a
smooth transition between inspiral and plunge. The rest of
this paper will be devoted to extracting some of the impor-
tant information contained in this new evolution system. Be-
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functions of v being defined by solving Eq2.17); see Eq.
(2.18.] This arbitrariness is not a problem. Our new evolu-
tion system (3.41)—(3.44 describes a smooth transition
“through” the formally defined “old” LSO, and does not
care about old definitions. In other words, whens finite,
and especially when=1/4 (which, one should remember, is
expected to be aaccumulation poinbf observed values of
v; see footnote 2 aboyethe smooth transition process blurs
the notion of LSO. It is only forw<1 (see below that one
recovers a sharp transition near tHedefined LSO. In the
bottom panel of Fig. 1 we compare the two kinetic contribu-
tions to the Hamiltonian(3.45: the “azimuthal” contribu-
tion pf‘,/r2 and the “radial” contr|but|onpr/B(r) One sees
in this figure that our basic assumption of quasi-circularity
[which, at the level oA, meanspr/B(r)<p2/r2] is well
satisfied throughout the transmon In fact, even dowrr to
=3.79 one hasp,/B(r)<0 1p /r2. The radial kinetic en-
ergy would become equal to the azimuthal one only below
r=3. We shall, anyway, not use, in the foIIowing, our sys-
tem below the(usua) “light ring” r=3 (where p?/B(r)
~0.30p%/r?).

We exhibit more quantitative results on the transition be-
tween the inspiral and the plunge in Figs. 2 and 3. These

030 | ~ ] figures plot the values of several physical quantitesergy,

020 It ~< ] angular momentum, radial velocity and radial coordipate

computed at thev-LSO [i.e. whenw= w,5o(v)] after inte-

ANy ] gration of the systeni3.41)—(3.44). The energy which is
0.00, Lo im0 75 o0 1% 150 5.0 plotted is the reduced non-relativistic real energy, i&ay(

—M)/u. (In the test-mass limit, this reduced energy equals
FIG. 1. In the top panel we show the inspiraling circulezla- \/8/9—1=-0.057191)

tive) orbit for v=1/4. The location of the-LSO, defined by the Having obtained, through Figs. 2 and 3, a first impression

conservative part of the dynamics, is also indicated. In the botton®f the physics of the inspiral> plunge transition, we shall

panel we compare the two kinetic contributions that enter thelow study in more detail this transition, notably by compar-

Hamiltonian: the “radial” and the “azimuthal” one. The figure ing it with various analytical approximations. The first ap-

shows that the assumption we made of quasi-circularity, i.eproximation we shall consider is the current standard one

p?/B(r)<p3/r?, is well satisfied throughout the transition from the used for dealing with the inspiral phase: the adiabatic ap-
adiabatic phase to the plunge. proximation.

0.10 |

fore coming to grips with such detailed information, it is
useful to have a first visual impression of the physics con-
tained in our systen3.41)—(3.44). To do this we plot in the Let us compare the exact numerical evolution with the
top panel of Fig. 1 the result of a full numerical evolution of usual adiabatic approximation to inspiral motion. This ap-
Egs. (3.4)—(3.44 in the equal-mass casev€1/4). We proximation is defined by saying that tieffective body
started the evolution at=15, ¢=0 and used as initial val- follows an adiabatic sequence of exact circular orbits whose
ues forp, andp, the ones provided by the adiabatic approxi- energy is slowly drained out by gravitational radiation. It is
mation [see Egs(4.6) and (4.13 below]. The dashed circle obtained from Eqs(3.41), (3.44, by neglectingp?, i.e. by

in this plot indicates the radial coordinate location of thesetting p,=0. Noticing that9H/ap,= 2pr§H/§procpr we
LSO defined by the conservative part of the dynamics, i.e. b)éet thatdr/dt vanishes linearly wittp, .

the HamiltonianH (r, Pr.p,). More precisely this ¥-LSO”

A. Comparison with the adiabatic approximation

The first equation

(3.41) is then formally satisfied wittp,=0=r. Imposin
is simply definedfor any V) by r=riso(v), wherer so(v) 5 p,=0 in Eqs.(3.4¥2) and (3.43 wrrér obtain twopfurthgr
is the solution of Eq(2.17). In particular,r so(5)=5.718, equations:

as recalled in Eq(2.18. Note that, in the presence of radia- .
tion reaction effects, there is an arbitrariness in what one dHg

would like to mean by saying that “the system is crossing —r (1:Pe) =0, (4.1
the LSO.” Indeed, we could define the “LSO crossing” in

several inequivalent ways, notably) r-LSO: the time when .

r=riso(v); (i) j]-LSO: the time wherp ,=j =] so(v); (iii) o= %(r D.) 4.2
w-LSO: the time wherdp/dt= o=, so(v). [The “LSO” p,
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FIG. 2. Variation withv of the »-LSO values of the real re- FIG. 3. »-LSO values of the radial velocitjon the top and of

duced non-relativistic energEPeF;{M:(Srem—M)/M (on the top, the radial positior{on the bottomversusv, derived integrating the
and of the real angular momenturs P, /(u«GM) (on the bottom), full dynamical evolution.

computed integrating the full dynamics, i.e. with radiation reaction

effects included. Wj(u)zA(u)[l+j2u2]. (4.4)
where we define Solving d,W;(u)=0 gives a parametric representationj of
in terms ofu:

A'(u)

(WA *9

pi) jgdiatiu):
1+—|—1].
I,.2

Ho(r.p,)=H(r,p,=0p,)
1
=— 1+2v A(r)
14
(4.3 where the prime denote¥du. In the case where the func-
' tion A is given by Eq.(3.47), i.e. A(u)=1—2u+2vu?, Eq.
. ) ) o (4.5) yields, in term of the orignafreduced radial variable
Equation(4.1) provides a link between and p,=j in the r=1/u
adiabatic limit. From the structur€s.45 of H, it is easily
seen that Eq(4.1) is equivalent to looking for the minimum, 212 3
say (for conveniencgin the variableu=1/r, of the “radial 2. (r)= o v) (4.6)

. Jadiap(F) = .
potential” adiab r3—3r2+5yp
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Note that there exist real circular orbithough possibly un- 3.00
stable onesas long agZ,,{r)>0, i.e. as long as>—3r?

+5v>0. In fact the positive, real solution inof 200 F v=1/4

[r3_3r2+5V]lightring:0 4.7) 100

defines the light ring or last unstable circular orpitith 0.00
i 2(Fightring) = + 1. We find I jgnt ing=2.84563 in the case 3
v=1/4. Equation(4.2) then gives the parametric representa- = ool
tion of w= w(GM) throughout the adiabatic phase for circu-

exact evolution

lar orbits: 200 diab. limit
. 1 V1-3v/r? Rl
Oadian(r) = — ) (4.9
r¥?2 \/1 +2v[Vz(r)—1] %5 40 50 ‘ 70 80 9.0

wherez(r) denotes the following quantity:
0.00

(r)=HZ( 0,0 = adiab) A (4.9) 1/4

z(r)= r,Pr=0,0,=]adiab) = . . v=
efft [+ Py p(p J adiab r3—3r2+5v

Note that the effective one-body description seems to be- 451

come somewhat unsatisfactory at the light rijag least for
exactly circular orbits Indeed, we see from Eq&.8) and 5
(4.9 that the blowup of(r), i.e. of the effective energy, at &
the light ring, Eq.(4.7), implies that the real orbital fre-

exact evolution

!

[}

1

i

|
quency of circular orbitsp(r), Eq.(4.8), tends to zero at 010 ¢ -
the light ring. This is probably an unphysical behayifstom '
the test-mass limit, one expects the orbital frequency to have !
a non-zero limit at the light ring; see, e.g., RE§] where !
Padeapproximants are used to compute a finite value of 015 ‘ ‘ ! ‘ ‘

T80 40 50 7.0 8.0 9.0

(I)”ght ing(¥)]. The other factors in Eq(4.8) imply, as ex- R,%’M
pected, a regulaincreaseof w(r) asr decreases below the
LSO. Pending the construction of an improved version of th : . :
effective onegbody approach which WOUF|)d be better behave op) and the radial velocityon the bottony computed with the
. . . . dxact evolution and within the adiabatic approximation, versus

we have decided, when dealing with the evolution of theR/GNI
system(3.41)—(3.44), to stop the simulation at the light ring. '
[In our simulations of plunging orbits the effective energy A .
stays bounded, but the orbital frequencft) levels off very ?diab:M
close to the light rind. djadiap/dr

Finally Eq. (3.44) becomes, in the adiabatic limit,

FIG. 4. We compare the number of gravitational cydias the

(4.13

Note thatv®¥@ formally tends to—o whenr—r g [in-

dj - (9|:|0 deed, j.gian(r) reaches, by definition, a minimum at
—A=]"P(—(r,j)). (4.10 =r.sol- This shows that the adiabatic approximation is
dt Py meaningful only during the inspiral phagee. “above” the

. . o LSO). In Figs. 4 and 5 we compare, for=1/4, the number
Then usingdj/dt=(dj/dr)(dr/dt) andde=wdt we can of gravitational cycles, defined byNgw=ocw/(27)

solve the motion in the adiabatic limit by quadratures: = ¢/, the orbital angular frequenay [or, equivalently, the
gravitational wave frequencygyw= wgw/(27) = w/ ], and
- djadiab dr the radial velocity, computed with the exact equations of
dtagian= dr | r (@agiap(T))’ (4.17) motion and in the adiabatic limit, as well as the gravitational
¢\ Wadiab . .
waveform. These figures show that, in the equal-mass case
. - v=1/4, the adiabatic approximation starts to significantly
dPagian= ( dJadiab) _ wfdiab(r) dr. (4.12 deviate from the exact evolution quite before one reaches the
dr ] F (@agian(r)) LSO. Figure 4 is normalized so thAf3 and A& coin-

A cide for large values dR/GM, and that\&i2he zero at the
The radial velocity ,=dr/dt, as a function of the parameter r-LSO. For instance, we find that the number of GW cycles
r, in the adiabatic limit, is given by given by the adiabatic approximation differs from the exact
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2 ‘ ‘ ‘ - by integrating the two equation@.11) and (4.12 [which

give a parametric representationfggiab(r) and{oadiab(r) in
terms of the auxiliary parameteli.

Note in Fig. 5 that the dephasing between the two wave-
forms becomes visible somewhat before the L@@ shall
14l ] dwell more on this subject in Sec)Wote also that the time
exact evolution when the adiabatic evolution reaches the L8@diabatic
] LSO”) corresponds to a time when the exact evolution
reaches a frequency=0.80w,5o(0), i.e. a time signifi-
cantly beforethe w-LSO. This is why there are more cycles
after the adiabatic LSO in Fig. ®nore than two cycleghan
there will be after thegexacl w-LSO (we shall see below
that N&er -S0= o NaferLSo- 1 2048 forv=1/4).

18 | v=1/4

——- adiab. limit

04 5 s ‘ ‘ ! B. The r-linearized approximation

-4 0
Opgp(0)(¢ = t150) The previous subsection has shown the severe shortcom-
ings of the adiabatic approximation. Let us now consider a
et ovorion second analytical approximation which is more accurate than
——~ adigb. limit the adiabatic one, and which, in particular, allows one to see
analytically what happens during the transition between the
inspiral and the plunge. This approximation is based on a

simple linearization with respect to the radial velocduydi,
which is small during the inspiral, as well as the beginning of
the plunge.

As H depends quadratically om andp,<1 we pose

012 |

vzcos( Oew)

-0.08 ~
Ci(r.]) Lo ( ')}
r 1 =|— ——(r ’ ’
(1) D, 9P, Pr.] o0
1 1 A%(r)
028 - ” . = a o AR (4.149
wmo(a)(t_tl_so) 14 O(rlj) ef'f(ryJ) vir
FIG. 5. We contrast the orbital frequenayn the top, divided  (note thatC, is a positive quantity where
by the Schwarzschild value so(0)=6"%2 and the restricted
waveform(on the botton), evaluated with the exact dynamical sys- ~0 ) R _ j2
tem and within the adiabatic approximation. Note that in both plots Hei(rJ) =Her(r,pr=0j)= \/A(r)| 1+ .
the quantities are given as a function of the rescaled time variable r 4.15

050(0)(t—1t,s0), Wheret, s is defined as the time at which the

adiabatic solution reaches thd SO position. .
P Then, modulop,2 fractional effects that we neglect, we can

write
number already by 0.1 when=8.8, and thatV&a-(r so)
=0.9013. The top panel of Fig. 5 contrasts w, go dr
(=fow/ S, wherefSW . =622 GM is the fiducial —==C(r,))pr . (4.16
Schwarzschild LSO GW frequengycomputed with the ex- dt

act evolution and within the adiabatic approximation, as a_. L ) . . .
function of time. Note that. for the horizontal axis. we use Pifferentiating twice the above equation with respect to time,

w1 s0(0) (1~ s0), Wherew, so(0)= mi g so=6¥2 [pro- e obtain

vided by thev—0 limit of Eq. (2.19] andeso is defined as d%p 1 &3

the time at which the adiabatic solution reaches &0 ML m— (4.17)
position. Finally, in the bottom panel of Fig. 5 we compare dtiz2  Ci(r,j) dt®

the last few GW cycles of the exact and the adiabegic
stricted waveform, i.e. h(t)=v’cospeu(t), With v  when neglecting some nonlinear terms(dr/dt)2 and

= (de/dt)*and pew=2¢, in the crucial interesting region (dr/d1)(dj/di). On the other hand, taking the derivative
around the LSO. Bydiabaticrestricted waveform we mean ith respect to time of Eq(3.43 and neglecting fractional

the restricted waveform in which(t) = @.gias(t) is derived  corrections of0(p?), we end up with
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d’p,  d oH #PHo dr  9*Hg- do

My
d’iz dt or (I’ pf’p¢)~_ z?l’z a_&raj ‘7:‘P' E:a_j(rajadiab(r))- (4-22)

(4.18

TOI get "fin .a_utokl‘wo[nous syséem we further approximjim Note thate is obtained from this equation by a quadrature,
S0 V|_ng orjin the oyvest-or e approxwpaﬂon o E@.43, once the radial motion(t) is known from the integration of
obtained by neglecting both, anddp, /dt. In other words, £ (4.21).

j(r) is obtained, as in adiabatic approximation, by solving
Eq. (4.1. Finally, j=].qian(r), as given by Eq(4.6). We

The conceptually interesting feature of the above
““ r-linearized” approximation is the structure of E@.21).

define
The previously considered “adiabatic” approximation corre-
2A sponds to neglecting®r/dt3 in Eq. (4.21). We now see that
2 o . 0 . .. . . .
wr (1) =C(Jadiab(r))— (" adiab(r)) this is a good approximation only when the characteristic
or frequency of variation of the radial motion, defined, say, by
1 r5_ 6r4+3ur3+ 20ur2— 3002 wZarac= (d%r/dt3)/(dr/dt), is much smaller than the fre-
=0 : ' uency of radial oscillations? (determined by the restorin
V2HZ(T ] adiab) ré(r2—6v) d y r { y g

radial force ensuring the existence of stable circular orbits
(419  As o? tends to zero, before changing sign, at the LSO, it is
clear that the adiabatic approximation must break down
somewhat above the LSO. When it breaks down the “inertia
term” d3r/dt® in Eq. (4.21) becomes comparable to both the

. 3 2 “restoring force” term w,zdr/di and the “driving force”
___ Padan(n) (r ~3ri+5n)?. ]: (@adiap(T)), — B, coming from gravitational radiation damping.
vzﬂﬁ(r,jadiab) r’(r’—6v) adiab In Fig. 6 we compare the number of gravitational cycles
(4.20 and_the radial velocity evaluated with the exact evolution and
the r-linearized equations. We start the evolutionrat15
[where the replacements- j.qip(r) are done after the par- and fix the initial values ofir/dt andd?r/dt? in the “adia-
tial differentiationg. It is easny seen that the quantity batic approximation” defined by neglecting in E¢.21) the

J? HO/ar&J is negative, so that?( being also negatiyethe  “inertia term” d®r/dt® (and then by differentiating again the

2,\

Ho
B/(r)=C (I’ J adiab( r))o"l’aj (r, Jad|ab(r))~7: (wadlab(r))

quantity B, given by Eq.(4.20 is positive. resulting approximate equatipnMoreover, we normalize
Combining Egs(4.17 and (4.18), we finally derive the A to be zero at the-LSO. We derive from the exact
following third order differential equation in: evolution Mg {r so)=—0.04223. The main conclusion
drawn from Fig. 6 is that the-linearized approximation is
d , dr quite good both during the inspiral phase and, more impor-
TsJ”"r(r)ﬁ__Bf(r)' (4.2 tantly, during the transition to the plunge taking place near

the LSO. This is interesting to know because it shows that
the crucial physical effect that is lacking in the usually con-
sidered adiabatic approximation is the simple “inertia term”
d®r/dt® in Eq. (4.22). Note, however, that in order to add
this inertia term it is necessary to have in hand the Hamil-
tonian describing at least the slightly non-circular orlite
normalization of Eq(4.21) crucially depends on the knowl-

We shall often refer to Eq4.21) as the “linearr equation”
because it was obtained by working linearly in the radial
velocity r=dr/dt. (Note, however, that this is a third-order
nonlineardifferential equation imr.) It is easily seen that the
guantity w,z(r) defines the square of the frequency of the
radial oscillations. As seen in E¢4.19 it is proportional to 5 . n s or o
the curvature of the effective radial potentid(r,j) deter- €d9e Ofwy which depends both asH/dp; and ong“H/or<].
mining the radial motion. Above the LSO, i.e. when This being said, we do not, however, recommend to use in
>r so(v), the radial potential has minimum(defining the ~ practice ther-linearized approximatio'n. Indeed, we think
stable circular orbit with angular momentujh and, there- that the “exact” system(3.41)—(3.44) is a more accurate
fore, wf(r) is positive. Wherr =r so(7), the radial poten- description of the evolution of the system because it keeps
tial has an inflection poinfsee Eq.(2.17], and, therefore, @ll the nonlinear effects im?. Numerically speaking, it is _
»?(r) vanishes. Whemr <r so(v), the radial potential is gssennally as easy to integrate the “exact” system than its
concave, andvrz(r) becomes negativéSee, e.g., Fig. 1 of r-linearized approximation, so that there would be anyway

[7] for a plot of the shape of the radial potential. no practical advantage in downgrading the accuracy of the
Within the same approximation used aboye., essen- System(3.41)—(3.44. However, we shall see next that the
tially, neglecting terms which aractionally of orderpf), r-linearized system can be further used to lead to a simple
we can finally write the angular frequency along our quasi-analytical approach to the transition to the plunge in the case

circular orbits as wherev<<1.
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1.50

while consideringd®r/dt® as a fractionally small terrfto be
evaluated by further differentiatingr/dt=—B, /w?). In

that case, one sees thtt/dt would be O(v) [and d3r/dt3
=0(v%)] as v—0. However, the fact thatbrz(r) vanishes

whenr=r so(v) shows that the waylr/dt tends to zero
with v, near the LSO, is more subtle. Having understood
from this reasoning that, whem— 0, the interesting transi-
tion effects take place very near the LSO, we now turn to a
precise analysis of this transition.

A first method for dealindwhen »— 0) with this transi-
exact evolution tion would be(as just sketchedo continue working with the
——— (dr/dt)~linearized evolution third-order equation(4.21), considered in the immediate
neighborhood of =r so(v). However, it is bettefin order
150 ‘ ‘ ‘ not to increase the differential ordep go back to the exact

80 40 RIOM 60 70 system(3.41)—(3.44) and to approximate it directly when

—0 andr—r go(v).
0.00 ‘ ‘ . Let us see the consequences of the evoluii®ml)—
(3.44) whenr is very nearr so(v). To do this it is conve-
nient to introduce some notation. Using, as we did in Sec.

IV B, the fact thatH depends quadratically op, and that
p,<1, we define

0.50

NGW

-0.50

-0.05 -

1 gH LSO
- —(r,p, IJ)

4.2
Pr Py 423

C5Av)=

-0.10

dR/dt

p;—0

Note thatC-5° is a number, which depends on® In terms
a5/ ] of the previous definition4.14), one has simplyC->(v)

exact evolution

/ =C,(ri so(v),jiso(¥)). Explicitly, it reads

——— (dr/dt)-linearized evolution

A1)
vHo(r ) Hee(r, i) (1—6v/%) |

FIG. 6. Contrast of the number of gravitational cycles the (4.24
top) and the radial velocityon the botton, computed with the
exact evolution and the Iineérequation, versulk/GM.

-0.20 : : : LSO,
3.0 40 5.0 6.0 7.0 Co(v)=
R/IGM

In the »=0 limit this simplifies to

V2

C. Universal p equation CrLSO(0)= 3

(4.25
Until now we have been considering the general case
where the symmetric mass ratie=m;m,/(m;+m,)2 can  The point in having introduced the notati¢h 23 is that Eq.
be of order of its maximum value,=1/4. As is clear (3.4 reads simply, when one is very near the LSO,
from the results above whenvdis of order unity thenon-
adiabatic aspects of radiation damping effects become im- 1 dr
portant in an extended region of orde(R/GM)~1, above Pr= @ a
the standard LSO. On the other hand, we expect that when r
4y<<1 the transition between the adiabatic inspiral and thel_
plunge will be sharply localized around the standard LSO
defined by Eq(2.17. Indeed, wherv is a small parameter,
the damping forcé—"q,, Eq. (3.46), being proportional to,
can be treated as a perturbatively small quantity in the evo-
lution of the system. Consequently, the “driving force” ®As we considew<1, we could further take the limit—0 in all

term. —B. . in the r-linearized equatiori4.21) contains the the quantities which have a finite limit as=0. However, in order
SmaI’I arra,metew It is then clear that ail the time deriva- not to unnecessarily lose accuracy we shall not do so. For instance
. P . P . . we shall always consider that so(») is computed forv+0,
tives ofr (being driven byB,) will tend to zero withwv. If the

. 2. . . though we shall see later that the directiependence im _go(7)
coefficientwy in Eq. (4.21) never vanishes, it is easy to see [which is O(v)] is parametrically small compared to the width

how one would satisfy Eq(4.21) by solving for dr/dt, O(v?'®) of the radial axis where the transition takes place.

(4.2

his allows us to recast E¢3.43 in the form(after neglect-
ing fractionalpr2 terms on the RHS
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1 d?r e P This yields
@@__7(”)' (4.27)
L . 8j=F (@150 (1~ tis0), (4.3)
Here, as abovetq(r,j)=H(r,p,=0p,=j). Then we ex-
pand the RHS of the above equation around the LSO; i.e., we A A
write wheret, go is the time at whichj(t)=]j so(v). Let us also
. . define
r=riso(v)+or, [j=jisolv)+dj. (4.28
Keeping the first nontrivial terms in the expansion in powers 20
of ér and §j [and neglecting subleading terms, such as those ALSO—Lsof Z "0 ,
of orderO(8r 8j), O((8j)?) and O((5r)®)] one obtains ' ot
My 1[%H, (azﬂo)
— = o)+ . 5j). (4.2 -
= 2( s | O G| (oD 429 g .
Ls0 B =Cr™| -7 Folwiso). (4.32
arad) Lso

Moreover, near the LSO we can write E§.44) as

ij)z d_jz% (orso),  with &Lsoz(ﬂo _ The quantityBF° is the LSO value of the quantiti,(r)
dt  dt ’ 9/ so introduced in Eq(4.20 above. The explicit values of these
(4.30 quantities are
|
[ (3 2 2 2 2,2 2,3 4
ArLSO(V)Z (r°=2r°+2v)(—210vj“—60vr +6A0] r<—12jr°+6r") ,
r7(r?=6v)(j+r?)»?H(r,)) <o
[ 2j(r3=2r2+21)(r3=3r2+5u)| . .
Br*v)=| - : > Folorso)- (4.33
' ro(r2=6v)(r’+ %) v?Ag(rj) | o °
|
In the »=0 limit they simplify to k,=(BLSO)Z5(ALSO) =35 | =(ALSOBLSO)~1/5
(4.37
ArLSO(0)=F%, it is straightforward to derive the following ‘“universal
p-equation”:
01 [Flausov)iv) d? 1
BLSO(,) = — v{ ¢ —+ —p’=— 4.3
BN v v a2 2P 7 439
=1.052<10 *». (4.39  The explicit values of the scaling coefficierks andk, are

easily derived from our previous results. Let us only quote
Finally, inserting Eq.(4.3D) into Eq. (4.29, and replacing  explicitly their v=0 limit:
everything in Eq.(4.27) yields the simple equation
k. (0)=1.8900"% k,(0)=26.1%"5  (4.39
d2sr
dt?

1/5

I EArLSO( or)?=—BS9t—1,s0). (435 Note the interesting fractional scalings> V2 ke~
2 Let us also note the autonomoliisne-independentequa-
tion obtained by taking the time derivative of E¢.398:
This equation can be recast in a universal form by re-scaling

. ": 22 . d3 d
the variablessr and 6t=(t—t,go). Indeed, posing _P+p_P: vy (4.40
dr® dr
5I’=krp, t—t s0= 5t:kt7', (436)
Equation(4.40 could have been directly derived by consid-

with ering the r-linearized equation(4.21) close tor=r go.
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AL

exact
—-—- adiabatic limit
-2

==
==
-~

-1

dpldrt

-2

exact

———adiabatic limit

-3 1 1
-2 -1 0

T

FIG. 7. The universap and p curves and their adiabatic ap-
proximations. The long-dashed curve at the bottom of the top pan
represents the approximate asymptotic solufi®s3).

There is, however, more information in E@L.38 because
its derivation showed that=0 marks the moment where
j(t)=]jLso(?).

The adiabatic approximation is recovered by neglecting in

Eq. (4.38 the first term on the RHS. This gives

=

1

Padiab

(4.4

Padiab= Y — 27, (

The universap andp curves and their adiabatic approxima-
tions are shown in Fig. 7. We have integrated E439
fixing the initial values(for large, negativer) of p and
dp/dr in the adiabatic limit provided by Ed4.41). We see

PHYSICAL REVIEW D62 064015

d

7=0: p=0.8339, d—i=—0.8233; (4.42)
dp

p=0: 7=0.8226, 52—1.267. (4.43

We recall that 7=0 marks the moment wherg(t)
=]jso(v), while p=0 corresponds to(t)=r gq. The val-
ues given by Eqs(4.42 and (4.43 can then be used to
compute corresponding values of the physical quantities
dr/dt andj by using the following parametric representa-
tions derived from our treatment above:

r(n)=risol»)+kep(n),  H(n)=tsotker, (4.44

. . aA A dr B kr dp

J(T)_JLSO(V)+-7:¢(C0|_30)|(IT, —,{ (T)_EE
(4.495

Correspondingly to these approximate resultsrfar, j and

dr/dt, one can also write an approximate result for the an-
gular frequency, namely

(Z—?)(rbé)(f):%(r(ﬂ,j(ﬂ)

ZHO

ardj

= w50 v>+( ) kep(7)
LSO

.

In the approximation where we replaeéy zero in all quan-
tities which have a finite limit whew—0, the above para-
metric results give the following explicit numerical linksx-

e(iept forf,_so which is an arbitrary integration constant

A,
dj?

+

}LSOkIT.

)
(0]

(4.49

r(r)=6+1.8900"5(7)+ O(v),

t(r)=t,s0+26.19 57, (4.47)
j(7)=112-0.3436"57+O(v),

dr dp

h — 355

(di)(r) 0.07216%° -, (4.48

()= 1 0.03214%5p(7)—0.005062*57+ O(v).
6.6

(4.49

Note that these explicit results are less accurate than our
previous implicit expressiong&t.44), (4.45 [because of the
O(v) error terms entailed by go(v)=r 50(0)+ O(v),

from Fig. 7 that the adiabatic approximation begins to beetc]. For consistency with the rest of the paper, we have

unacceptably bad wher=—1. From the integration of Eq.
(4.38 we get the important numerical values

used herdas in Eq.(4.34)] the v—0 limit of the value of
v~ 1750 defined by the 2.5PN Padstimate(3.46), namely
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Y
E —0.04 | 3
S S

-0.05

s exact equation 002 / exact equation
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-0.07 |

-0.08 * * ! ! -0.03 * g
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R/IGM R/IGM

FIG. 8. Plot of the radial velocity computed both with the exact
evolution and with thep-equation in the case=0.05. The frac- 0.00
tional error indR/dt at ther-LSO is =10%.

v~ 1759~ -0.01312. Note that a more accurate value of
this quantity is, according to Poisson’'s numerical results
[25], v 1F .%°=-0.01376, which is=5% larger (in
modulus. Note the various scalings with implied (when
considering a point in the transition region parametrized by
some fixed numerical values @f and 7) by Egs. (4.44),

-0.01

dR/dt

(4.45: notably sr=01%%, §j=0(*) and p,~r / e
=0O(v*%). We shall discuss below in more detail some of ‘
these scalings.
Figure 7 vividly illustrates the fadmentioned abovethat
the definition of “LSO crossing” becomes ambiguous in -0.02 : :
.. . . . 5.0 55 6.0 65
presence of radiation damping. Indeed, for instance, the time RIGM

wherer =r go(v) (“r-LSQO"), i.e. the time where=0, dif-

fers from the time wherg=j so(v) (*j-LSQO"), i.e. the
time wherer=0 [see also Eq4.42]. An important issue is
the domain of validity of the universa equation: i.e. the

range of values ofv for which one can use Eqs4.44, ot geduced from the equation. We examine three cases:
(4.45 to approximate the transition between inspiral and ,_ , 5 ,=10"2 and =104
max . 1 *

plunge. We have investigated this question numerically by \ote that, though the accuracy of the approximation de-
comparing the radial velocny- computed wlth the “exact” fined by thep equation increases as—0, its domain of
evolut|_ons(3.41)—(3_.44;,_ar_ld with thep equatlon(_4._3&. Let validity actually shrinks ag gets small. Indeed, if we kegp

us define the practical limit of the domain of validity of the finite, we see thar=1.890-2% tends to zero with

FIG. 9. We compare the radial velocity evaluated with the exact
dynamical system and with theequation in the cases=0.01 and
r=0.0001.

approximation by requiring that the fractional errordr/dt Before discussing the scaling predictions made bythe
at the(say r-LSO be 10%. We find that this limit is reached approximation, let us comment on the various possible defi-
whenv gets as large as nitions of “LSO crossing.” We recall that we defin@) the
“r-LSO” [by the requirementr(t)=r so(v)], (ii) the
Vmar=0.05. (450 j-LSO” [j(1)=].so(¥)], and (iii) the “w-LSO" [@(t)

=w_so(v)]. (In addition, one can also define an “energy
Therefore, the explicit expressions above can be used to eSO” and a “naive” LSO such thatR=6GM.) We see
timate numerically the physical quantities in the transitionfrom our results above that tlreL SO correspond§in the p
region only for v<wp,. Note that the accuracy of the  approximation to p=0, while thej-LSO corresponds to
results above is, by construction, limited to some small=0 and thew-LSO to p+0.1575?°7=0. From these re-
neighborhood of the LSO. They should not be useeen if  sults and the results displayed in Fig. 7 and H¢s42 and
v<vmae O estimate, for instance, the radial velocity at a(4.43, we have the following ordering between these LSO’s:
radius which is significantly different from go (say atr w—LSO<r—LSO<j—LSO, where the order symbols refer
=5 orr=7). To illustrate this we compare in Figs. 8 and 9to the location on the radial axis. We see also that when
the radial velocity computed with the exact evolution, with ?°<1 the w-LSO nearly coincides with the-LSO. When
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discussing scaling relations it would be essentially equivalent 0.08 _ wo-Lso
to use any definition of LSO crossing. For definiteness, and
for consistency with the rest of this paper where we shall use ., | -~
it, we shall consider the-LSO (because it is more invari- -
antly defined than the-LSO). To sufficient approximation 0.06 - //
for determining the leading scaling with we shall consider P
that thew-LSO corresponds tp=0. 0.05 - o
One of the most useful scaling law to consider is that e
concerning the radial momentum at theLSO. Combining R 004 ¢ F ]
Egs.(4.26 and(4.495 we get s
0.03 - » B
e —-—- p,=—0.0750 (4v)"”
0.02 /f 0570

dp 4 ——— p,=—0.0744 (4v)
— - (ALSO)—Z/S(BLSO)3/5_. (451) 7
CSOdt iSO T ' dr oot [ ¥

1 dr 1

Pr

From Eq.(4.43 the value ofdp/dr at the w-LSO (i.e. p % X 02
=0) is dp/d7=—0.8233. Using also the numerical values v

(taken whenv—0) of the coefficients entering E¢4.52),

we get the predicted scaling  @o-Lso

(Pr) o-Ls0™= —0.084441)35, (4.52

—0.2365

_ _ _ ——— Ag/(2m) = 0.7857 (4v)
In thg [eft panel of Fig. 103X;ve compare the gnalytlcal scaling e Agi2m) = 10075 (4v)
prediction, ©,) .- so*(4v)>">, with the numerical results ob-
tained by integrating the full evolution systei®141)—(3.44) 3¢ ]
down to thew-LSO. We have also computed the best fits to
the data using either a formula with one free parameter, of § i
the typep,=—a(4»)®®, or with two free parameterg, = 2 H\
—a(4v)P. Note that the predicted scaling is a surprisingly \\\
good fit to the exact results, even for valuesrahuch larger S T -
than the domain of validity of the equation. In fact, it is 1 T
numerically quite accurate even far=1/4. [In the one-
parameter fit, note that the best-fit coefficient 0.0750 is
11% smaller than the calculated one, E452. This is be- 0 ‘ ‘
cause the best-fit one takes into account the valugs &dr Ty
larger values ofv than the test-mass-limit resui4.52.]

Another useful scaling law concerns the number of orbits FIG. 10. Scaling laws for the radial momentum and the post-
remaining “after LSO crossing.” Let us define the number LSO number of orbits provided by the approximation. In the top
of orbits after LSO crossing ad ¢/27 where Ag is the pf)me_l Wde sbhow the ex_act nrlljm?ri”cal relsu!ts for the rad(ijal momen:]um

P i H i 7 s obtaine integrating the full evolution system down to the

Tfrference in orbital phase between the “light ringt 50 Tw)(; s gfthe ?ypepr= T a4 and ;’r: D ) are
=Tjightring(¥) [Obtained from Eq(4.7)] and thew-LSO, w s indi . .
= w,so(¥). This quantity cannot be really estimated within ilso indicated. In_ th,e’: _bottom panel t_he number 01_‘ orbits remaining
the p approximation, because this approximation assumesafter LSO crossing™ is com_pared with ““? ngmerlcal results com-
that ot <1. However, we can formally say that, within the puted from the exact evolution. We have indicated both the best fit

S s der th ic imi to a formula of the typeAo/2m=a(4v) > and of the type
approximation, we wish to consider the asymptotic 'm'tA<p/27T:a(4v)b. Note that, even if the figure covers the range of

_ ; ~2/5 -
wherep tends to—e proportionally tov™ > (so thatér IS yaiyes ofy up to 1/4, both fits have been evaluated including values
finite). The question is, therefore, what is the asymptotic bebmy UP 10 ¥ma=0.05.

havior of the solutiorp=p(7) of Eq. (4.38 whenp— —x?
It seems that in this limit the “source term™= 7 onthe RHS  _,_ o the kinetic energy grows without bound and approxi-

/(2m)

of Eq. (4.38 is relatively negligible. Indeed, let us neglect it ofiad b2 L
and solve the approximate equatidfp/dr?+ 3p?=0. This mately satisfiesp V(p) whose solution is

equation describes the motion of a particlgp= p=—127,— 1) 2 (4.53
—dV(p)/dp] with potential energy¥(p) = p®/6. This poten-

tial energy (which represents the effective radial potential for some constant... We conclude that, ap— —, the
near the inflection point corresponding to the DS® un-  yariable r tends to a finite limitr.,. (We find 7.,=3.9. The
boundedly negative whep— — . Writing the conservation  corresponding curve is shown in the top panel of Fig. 7.
of “energy,” 3p%+V(p)=const, one finds that, ap  Therefore, from Eq(4.53, the total time elapsed after the

064015-17



ALESSANDRA BUONANNO AND THIBAULT DAMOUR PHYSICAL REVIEW D 62 064015

LSO, t.,—t,so, scales likev 5. Correspondingly, within the fact thatN2a"is not large means that the filtering of
the p approximation, the leading approximation to the orbitalsuch a signal out of the noise is a delicate matter which
phase[obtained by integrating the zeroth order term in Eq.Sensitively depends on the modeling of the phase evolution

(4.53] reads near the LSO and on the modeling of what happens to the
signal after LSO crossing. In RdE] it was assumed that the
Ao @ . Wso -~  « signal is abruptly terminated at the LSO. In a later section we
Z:f{ Edtz 5 (t—tLso) shall use the tools introduced here to go beyond SL_lch an
Lso approximation and study the part of the waveform which is
(:)LSO onLs emitted after LSO crossing.
=S (A8, O)~157,. (4.54
V. INITIAL DATA FOR NUMERICAL RELATIVITY
As w 5o admits a finite limit asv—0, we expect from Eq. One of the main aims of this paper is to use the improved
(4.54) the scaling law approach to the transition from the inspiral to the plunge
introduced above to compute initial dynamical déta. ini-
A—¢m(4y)_l/5 (4.55 tial positions and momentdor binary black holes that have
2 ' ' just started their plunge motion. Ideally, we wish to give

dynamical data for two black holesg)(,0,,p1,p2) such that

This prediction is compared in Fig. 10 with the numericalthe coordinate distande;, —q,| is (i) large enough that one
results obtained by integrating the full syst¢8¥1)—(3.44).  can trust the re-summed non-perturbative technique allowing
As expected from the necessity to inconsistently consideone to compute these daté, large enough to allow one to
parametrically large values pfc v~ 2, this prediction is less hope to complete the present work by constructing the initial
accurate than that obtained for the radial momentum at thgravitational data(g;;(x),K;;(x)) determined(in principle)
w-LSO. We have indicated both the best fit to a formula ofby (q,,p,), and, finally,(iii) small enough to leave only less
the type Ap/2m=a(4v) Y and the best fit toAg/27  than one orbi(at least wherv~1/4) to evolve by means of
=a(4v)P. Note that both fits have been evaluated includinga full 3D numerical relativity code. We think that poifij is
values of » only up to v,,=0.05. Indeed, as discussed satisfied if we use the Padgpe [6] plus effective-one-body
above, beyond this value the fractional error in the radial7] methods we have combined abosed if we stop the
velocity at ther| gg is ~10%. evolution of quasi-circular orbits anywhere around the LSO.

Some comments are in order concerning these result§Ve shall leave pointii), i.e. the important task of complet-
First, we note that aIthoungfS“g:A@/Zw tends to infinity  ing the present work by constructing gravitational data, to
whenv—0, it does so very slowly so that the total number future work. However, in preparation for this task we shall
of orbits after the LSO is always quite small compared to theshow how one can compute the dynamical daig) in
number of orbits “just before and around the LSO.” Let us the convenient ADM coordinates. Indeed, the coordinate

define the latter number a$?0u"%=2  /f =212, /fow  CoONditions introduced by Arowitt, Deser and Misri@f7]

where f o= 2 fow=w/27 denotes the orbital frequency have the double advantaga to be linked to the 3-1 for-

andf,;, the time derivative of the orbital frequenc causedmmaﬁon which is used in numerical relativity ai to be
orbit . . . freq y -~ “linked to explicit, high-order post-Newtonian calculations
by GW damping. In the adiabatic approximation, combine

with a Newtonian approximation for both the orbital energy sgg). gl%n%irgilg?—kp(slztrqlg)é tg\?om%g(nagf }/r?éisnhvc;\,:iz;?l?/t gev_ve
and the GW flux, this number readsee, e.9.[5) fined w-LSO [i.e. whende/dt=w go(v)], there indeed re-
2924 mains(when 4v~1) less than one orbit to go before reach-
N —— (4.56 ing the light ring (see next section for a discussion of the
4v importance of the light ring Note that there is nothing sa-
. after ~ raroun . . cred about giving data precisely at taeLSO. Because of
The rat'ONL,SOI,NLS%ﬂZT0'3446(4’)4/126“\'6(1 using the re- points (i) and (ii) above, we wish to stay “as high as pos-
sult of the fit, i.e.N(so="1.0075(4) " "] is thereforepara-  gjp|e » Because of pointiii ), we must, however, be just after
metrically small asv—0. This suggests that, when&1, | 50 crossing. As was already discussed, there are several
the existence of even a formally parametrically |argepossible definitions of “LSO crossing.” The-LSO is the
(v~ ') absolute number of cycles left after the LSO will jynermost LSO(see below and is therefore a convenient
have only a fractionally negligible effect on the extraction of pqice (however, there would be nothing wrong in giving
a GW signal from the noise by means of relativistic filters y5¢5 at a slightly different place; in fact we recommend do-
built on the adiabatic approximation, and terminated at thqng it to check the robustness of the numerical spacetimes
LSO [6,5]. On the other hand, whenwv4-1 the ratio gyolved from our data
Nfee/Nis is not very small. In particular, when=1/4 the As just recalled we wish ténumerically compute com-
number of orbits after the-LSO is equal toNfia(v=1/4)  plete dynamical data at the-LSO and in ADM coordinates.
=0.6024 (computed from the exact evolutipnwhile  The evolution systeni3.41)—(3.44 given above allows one
NPSS"{v=1/4)=2.924. The ratio between the two is to compute dynamical data p,p, .p,) for the relative mo-
NAReyNaun=0.2060. As recently emphasized in RE],  tion described ir(reduced effectivecoordinategi.e. the co-

064015-18



TRANSITION FROM INSPIRAL TO PLUNGE IN . ..

ordinates used in the effective-one-body descriptitmRef.

[7] we have shown how to map the ADM positions and

momenta (“°M, pAPM) onto the effective positions and mo-
menta @,p) by means of a generating functi®(q”"°™,p).

Let us first recall, in order to avoid any confusion, the trivial
transformations linking Cartesian-like to polar-like coordi-

PHYSICAL REVIEW D62 064015

nates, as well as those linking the original to the scaled co-

ordinates. We recall that we work in the center of mass frame
and that we consider planar motion in the equatorial plane

0=ml2:
Q'=d1-dy, Pi=py=—pz, (5.
Pr=n'P;, P,=Q*P,—Q'P,, (5.2
q‘=%, pi=%, (5.3
_E_ i — Y —a*p —aY
Pe=" =P Pe= i — APy APy (5.9

Here n'=Q'/R=q'/r is the radial unit vector R=|Q|, r
=|q|). We have alsoQ*=Rcosp, Q¥=Rsing, q*=rcosp,
g’=rsine. The relations above hold both in effective coor-
dinates [denoted by §'.p;) without extra labels and in
ADM coordlnates Gaom -P°M). The link between @, p;)
and (qADM, PMy is defined by a generating function
G(qAD,\,I .Pi) and reads

o G(q*",p)
q'=0aom+ p; , (5.5
|
N Iqaom .

The generating functio® has been derived up to 2PN order
in [7] (see Ref[15] for the determination o6 at the 3PN
level):

1 1
G(g*""M,p)= EGWN(QADM,D) + EGZPN(qADMyp)-
(5.7

The partial derivatives needed in E@S.5), (5.6) read

dG1pNQ,P) v, ( 1/)1 v\l
&—(]i_pi[_zp +H1+3 q —ai(q-p|l+s Pk
(5.9
IGipNa,P) | v, V) 1 .
4|7 P T 1+3 q —p(a-pv,
(5.9

G , 1 p> 3
ZZLiqp)—p, (14 3v)pi+ = (2 5V)—+ (8
q
2
1
+3v)(q P +— (1 Tv+1h)— 5T ai(a-p)
q
3 2 2
% ——v(8+3v)(q P25,y
8 q°
1(1 7+2)11 (5.10
- = — (VD Vo) — |, .
2 qt
dGopNa,P) |1 WV p?
(9—pi—q §V(1+3V)p +§(2 SV)E+§V
2
1]
(8+3v)(q P) + - (1 Tv+1v?)— 5 +p'
q
% Y 143002+ L (2—5p) -
(9-p) 5( v)p Z( V)a
(5.11)

Givenq' andp;, we use first Eq(5.5) and the values of the
partlal derivatives(5.8)—(5.11) to solve numerically for
dhov - Then we use Eq5.6) to computep®™:

The initial data we start with are the results of the numeri-
cal integration of the systei(8.41)—(3.44), i.e. the values of
r, ¢, py andp, at some time in the evolutiofwhich we
choose to be the time when(t) = w so(v)]. Actually, the
value of ¢ is without significance and we renormalize it to
the convenient valueg,.,=0 so that we work with
Cartesian-like data of the simple fortnemember that we
work in thex-y plane,q*=0=p,, and that we simplify the
writing by denotingg;=q' when working in Cartesian-like
coordinates

Pe

ax=r, qy=0, Px=Pr, Py=— (5.12

When solving, as indicated above, E@s.5), (5.6) to derive
ae”, qp® andpp®™, pf®M, we get these quantities in a
not optimally oriented coordinate systetne. though we
started withgy=0, we end up withg)® #0 because there
is a rotation between the two coordmate systemds the
global orientation is of no physical significance, it is conve-

nient to turn the ADM coordinate system by an angleso
that (PADM ADM

new = ®oid . —a=0. In other words, after this rotation
one has, as in Eq5.12 above,
CIQDM new__ rADM , q>»eDM new__ 0,
pADM
ADM ADM ADM e
pX new_ pr , py new O (5-13

r

The angle of rotatiory is determined by
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TABLE I. Initial data in ADM coordinates atv-LSO for five
representative values of

ADM ADM ADM ADM

v r pr P ph a

0.25 4717 —0.07570  0.7021 3.312 —0.006256
0.1 4.853 —0.04425  0.6997 3.396 —0.001524
001  4.938 —0.01163  0.6996 3.455 —4.088x10
0.001 4.948 —0.002992 0.6998 3.463 —1.054x10
0.0001 4.949 —0.0007592 0.6999 3.464—2.675<10°®

ADM old
y

ADM old ’
Ox

tan=

(5.19

while the more invariant quantitig€® andp”®™ are given

by

rADME \/(qADM)2+ (qADM)Z’

x old yold
ADM _ ADM ~ADM ADM ADM
rooT { ADM (Gxold Pxold +qyo|d Pyold ).
(5.15

Note that(because of the rotational invariance®j all the
angular momenta coincide:

pe=pp>"

=0xPy—QqyPx

_ ~ADM _ADM _ _ADM .ADM
= Uxold Pyold ~ Yyold Pxold

_ nADM _ADM _ ADM ADM
_qx newpynew qynewpxneW'

(5.16

d
This relation is a useful check on the numerical precision ofy

the solution of Eqgs(5.5), (5.6).
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NR
real

g
j=3312, 7=-0.01640. (5.8

©=82.72,

On the other hand, the system including the non-zero radial
force (3.20 yields, at thew-LSO (still starting with an or-
bital phasep=0 atr=15),

r=5.638, p,=—0.07388, r=—0.03542, (5.19

NR
real

&
©=82.77, j=3.311, V__O'01643' (5.20

As we see the differences in the numerical results are quite
small. For instance, the fractional change in (bricia) ra-

dial momentum is less thanx610~ 3. We note also that the
dephasing at the LSO is only 0.05 rad. This analysis indi-
cates that the results based on our fiducial system are quite
robust, mainly because our basic assumption of “quasi-
circularity” (R<Rg) is well satisfied during the transition

to the plunge.

VI. GRAVITATIONAL WAVE FORMS FROM INSPIRAL
TO RING DOWN

In this section, we provide, for data analysis purposes, an
estimate of the complete waveform emitted by the coales-
cence of two black holeéwith negligible sping This esti-
mate will be less accurate than our results above because we
shall extend the integration of our basic syst@&®1)—(3.44)
beyond its range of validity. We think, however, that even a
rough estimate of the complete wavefor@xhibiting the
way the inspiral waveform smoothly transforms itself in a
“plunge waveform” and then into a “merger plus ring-
own” waveform provides very valuable information for
esigning and testing effectual gravitational wave templates.
(See, in particular, the recent work [iB] which emphasizes

In Table | we give initial data in ADM coordinates at the the importance of the details of the transition to the plunge

w-LSO for five values of the parameter We give the more

for the construction of faithful GW templates for massive

invariant quantities corresponding to the “new” ADM coor- binaries)

dinate system Eq(5.13. The quantityp/°™™ denotes the

“transverse” momentum, i.e. simplyp; "= p/PM/rAPM
ADM

Our (rough assumptions in this section will be the fol-
lowing: (i) we use the basic evolution syste®141)—(3.44)

=Pinew- FOr completeness, we give also the value of theto describe the dynamics of the binary system from deep into
anglea, Eqg.(5.19. the inspiral phasésayr=15) down to the “light ring” r

So far all the results we have discussed considered the r g ing(¥)=3, (i) we estimate the waveform emitted
evolution systeni3.41)—(3.44) as the “exact” description of ~during the inspiral and the plunge by means of the usual
the transition through the LSO. However, as discussed irtrestricted waveform” approximation
Sec. Il this system is more like a convenient fiducial system

within a class of systems obtained by shiftifiy O(v°/c®) t<tens: Ninspiral 1) =Cv2(1)cog ()],

termg the coordinate system. To test the robustness of our

predictions for physical quantities at the LSO we shall now (d¢> 13

compare the results of the fiducial systé3m1)—(3.44) with Vo=|—=| , dew=20, (6.1
the results obtained by the more general systg#)—(3.7), dt

with a radial forceFy given (in terms of 7,) by Eq.(3.20.

For simplicity, we consider only thémost crucial equal-
mass casey=1/4. We find that our fiducial systerfwith
Fr=0) yields the following numerical values at theLSO
(when starting with an orbital phage=0 atr=15):

r=5.639, p,=-—0.07432, r=-0.03563, (5.17

and (iii ) we estimate the waveform emitted during the coa-
lescence and ringdown by matching, at a titwet .,y Where

the light ring is crossed, the inspirat plunge waveform
(6.1 to the least-damped quasi-normal mode of a Kerr black
hole with mass and spin equal to the total energy and angular

momentum of the plunging binarat t=t,:
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=1 - N~ fa—(t—tend/T 7 Schwarzschild-like radial distanceR=r(1+GM/2r)?
tZtena Mmergef )= Ae cod wgnnt tend)+?'2) ~2.59GM which is not very far from Rign ing(1/4)
=2.84GM.
In keeping with our prescription of setting the divide be-
For convenience, we shall normalize the waveform by takingween a binary-b|ack-ho|e description and a perturbed-
C=1 in Eq.(6.1). The amplitude4 and the phas# of the single-black-hole one, at the timet,,, when r
merger waveforni6.2) are then determined by requiring the T igntring(¥). 1t i natural to assume that the final hole

continuity of h(t) and dh/dt at the matching pointt  formed by the merger is a Kerr hole with mals, and

=tend- angular momentunygy given by
Before giving technical details let us comment on our
assumptiongi)—(iii ). First, we recall that Fig. 1 had shown Mgn 1\/# /T
that the quasi-circularity conditiop?/B(r) <pZ/r? (which is T:He“d:Z 1+2v(He 1), Jend= uGM’
the basic condition determining the validity of our evolution (6.3

system was satisfied with good accuracy during the inspiral
and the beginning of the plunge, and was still satisfiedwhile the dimensionless rotation paramedeis
though with less accuraC)pf/Bso.f_%pi/r2 in the worst case

v=1/4), down to the light ring=3. In other words, our -
work shows that the so-called “plunge” following the in- apH=
spiral phase is better thought of as being still a quasi-circular

inspiral motion, even down to the light ring. We therefore
expect that the usual restricted wavefoffl) (valid for
circular motion) will be an acceptable description of the GW

emission during the plunge. Note that we consider that th%ormal modes[33]. During this phase, often called the
description of the amplitude of the gravitational wave in '

2 o i ) ) ringdown phase, the gravitational signal will be a superposi-
terms ofv,,=¢“", being simpler and more invariant, has atjon of exponentially damped sinusoids. The gravitational
better chance of being correct than a description in terms ofaveform will be dominated by the= 2,m=2 quasi-normal
some other Newtonian-like approximation to the “squaredmode, which is the most slowly damped mode.
velocity” such as (¢)? or 1k. Some evidence for this faith As a rough approximation we assume that the full merger
is given by the fact that the GW flux is surprisingly well + ring-down signal(starting when the light ring is reached
approximatedwithin 10% down to the LS®by the usual can be represented in terms of this least damped quasi-
“quadrupole formula” if the velocity used to define the normal mode. lfwy,, denotes the circular frequency of this
quadrupole formula is the invariant,= ¢*° (see, e.g., Fig. mode andr its damping time, this leads to the simple de-
3 of [6]). scription (6.2). The quantities @q,m,7) are functions of

Concerning the choice of the light ring for shifting the (Mg, ,agy) which have been investigated numerically
description between guasi-circulay binary motion and a [33,34]. Using analytic fits the following expressions for the
deformed Kerr black hole, our motivation is twofold. First, frequency and the decay time of the quasi-normal modes
in the test-mass limity<1, it was realized long ago, in the were obtained35]:
first work of [28] which found the existence of a merger

JsH _ Vjend
GMZ, 1+2v(H&%-1)

(6.9

As the system reaches the stationary Kerr state, the non-
linear dynamics of the merger becomes more and more de-
scribable in terms of oscillations of the black hole quasi-

signal of the type(6.2) following a plunge event, that the |v|Bqunmz[1—0,63(1_5)3/10]ff(5), (6.5
basic physical reason underlying the presence of a “univer-
sal” merger signal was that when a test particle falls below TOqm= 4[1_5]—9/20%(5), (6.6)

R=3GM, the GW it generates is strongly filtered by the

potential barrier, centered arouft==3GM, describing the _whereff(é) and fq(é) are correction factors provided by

radial propagation of gravitational waves. It was then real _ _
ized [29] that the peaking of the potential barrier arouRd Table 11 of [35]. Note thatf;=0.9587 andf,=1.0501 for

~3GM is itself linked to the presence of an unstable “light 3= 10 - _ ,

storage ring”(i.e. an unstable circular orbit for massless par- W€ have numerically studied only the equal-mass case
ticles) precisely aR= Rjignt rign=3GM. A second argument »=1/4. \We have chosen the matching poip{y such that
(applying now in the equal-mass cases 1/4) indicating  r(tend =Tiightring(1/4)=2.84563. With this value of,q we
thatr jgne rign( 1/4)=2.84563 is an acceptable divide betweenobtain the following values for the characteristics of the
the two-body and the perturbed-black-hole descriptionsormed black hole:

comes from the works on the, so-called, “close limit ap-

proximation” [30]. Indeed, recent worksee the reviey31]) agy=0.7952, Egy=0.976M, (6.7
suggests a matching between the two-body and the
perturbed-black-hole descriptions when the distance modulus M wgnm=0.5976, M/7=0.07795. (6.9

mo=2. Using the formulas of Ref.32] one finds thatug
=2 corresponds to a coordinate distance in isotropic coordiNote the numerical value of the quasi-normal mode fre-
nates of ri°=,2xGM. This corresponds to a quency
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In Fig. 12 we plot our estimate of the complete waveform:
inspiral and plungésolid line) followed by merger and ring-
down (dashed ling We also indicated the locations of sev-
eral possible definitions of LSO crossingee Sec. IV
above. In addition to the definitions mentioned above we
also included a “naive LSO’(defined simply by 'a3=6 as
in the Schwarzschild geomejnand an energy LSQsuch
1 that&es(t) = Ean(v)]

The corresponding numerical values of the reduced radial
coordinater are

exact evolution: inspiral + plung
0.22 - ——- adiabatic limit

0.12

0.02

vzcos( Ogw)

-0.08

r1so=6.631, r{ag=6.000, rgq g=6.534,
-0.18 | v g, (6.10
V=

rr_L30:5.718, rw_LSO:5.639. (611)

-0.28 . L . L
500 400 300 200 ~100 0 As mentioned above, the fact that the various definitions of

M
the LSO differ significantly is due to the fact that when
FIG. 11. We compare the inspirai plunge waveform, termi- = 1/4 the GW damping effects are rather large and blur the
nalted qt the light ring, to the adiabatic waveform, terminated at thg-gnsition to the plunge. Note that the number of GW cycles
adiabatic LSO. left after the (exacl w-LSO (and until the light ring is
Nafter— oNafter— 1 2048 (for »v=1/4). As said above, this is
smaller than théphysically less relevapinumber of cycles
Hz. (6.9 |eft after the adiabatic LSQvherew=0.80w,sg), which is
=2.35.
Even if our estimate of the waveform is admittedly rough,
Our results for the waveform are shown in Figs. 11 and 12we think that it can play an important role for defining better
In Fig. 11 we compare the inspiral plunge waveforn{6.1)  filters for the search of signals in LIGO and VIRGO. In
(terminated at the light ringto the usually considered adia- particular, two features of this waveform are strikirig:the
batic waveform(terminated at the “adiabatic LSQ”As al-  “plunge” part of the waveform looks like a continuation of
ready discussed in Sec. IV, by “adiabatic waveform” we the inspiral partthis is because the orbital motion remains in
mean a restricted waveforr(6.1) (with C=1) in which  fact quasi-circulg; and(ii) the adiabatic waveform gets sig-
@(1) = @agian(t) is defined by integrating the two equations _nificantly out of phase with the exact vyaveform before cross-
(4.11) and(4.12. This figure shows that there is a significant ing the LSO. We shall come back in future work to the
dephasing of the adiabatic waveform with respect to th&onsequences of these results for data analysis, and see how
(more exact one already before the LSO. Moreover, the realhey can be used to improve upon the state-of-the-art filters
inspiral signal continues to increase and oscillatef@.35 ~ constructed in Ref46,5].
cycles after the adiabatic LSO.

VII. DISCUSSION

In this paper we have extended a methodology introduced
in previous paper$6,7], and applied it to the study of the
transition from inspiral to plunge in coalescing binary black
holes with comparable masses, moving on quasi-circular or-
bits. Our philosophy is that it is possible to use suitably
re-summed versions of post-Newtonian results to write an
explicit (analytica) system of ordinary differential equations
describing the transition to the plunge. Our explicit proposal
is the evolution systern8.41)—(3.44) obtained by combining

0.12 1

0.02 +

—0.08 -

h(t)

-0.18 - inspiral + plunge ] . At
—-— merger + ring~down the results ofl 6] for the re-summation of the gravitational
028 | [ maive 150 1 wave damping and the results[df] for the re-summation of
®j-LSO v=1/4 the conservative part of the dynamics of comparable-mass
DE-LSO P ; ; ; ;
-0.38 | s 1 binaries. The basic reason why we think the simple evolution
system(3.41)—(3.44) can accurately describe the transition to
048 T 2 T the plunge is that we have consistently checked that most of

UM the “plunge” motion (at least down tdR=3GM) is in fact

FIG. 12. Plot of the complete waveform: inspiral and plungevery.mUCh like a quasi-circular inspiral motidmwith R

followed by merger and ringdown. The locations of several possible<(Rqo)2].
definitions of LSO crossing are also indicated. In general one needs to numerically integrate the basic
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evolution system3.41)—(3.44) to get physical results of di- 2PN-accurate dynamig$o higher PN levels, when they be-
rect interest. However, we have shown that one can undecome fully available. We note in this respect the recent work
stand the various physical elements entering this system HyL6] which extended the effective-one-body approach to the
comparing it to several simple approximations: the adiabati@PN level.(Note in passing that quasi-static tidal interactions
approximation, ther-linearized one, and the universal bejtwe.en black holes enter only at the SPN Ie[\zﬂ]..) Itis
p-approximation(valid whenv=<0.05). In particular, the lat- quite important to complete our determlnat!on of |n!td_34_—

ter approximation allowed us to derive some scaling Iaws.nam!cal. data (qa.,pa) by explicitly construct!ng the initial
one scaling law(which is very well satisfied, even up to the gravitational data @;;(x).K;;(x)) corresponding t0dx,pa)
maximum valuev=1/4) states that the radial momentum at (and °°”ta'T“”9 no frge Incoming radiatjorwhen this be-
the LSO scales like*® while another scaling lawaccu- comes available it will be possible to further check our

rately satisfied only forr<1) states that the number of method(by numerically evolving spa_cetimes starting at Vafi'
cycles left after the LSO scales like 15 ous stages of the plungand to provide more accurate esti-

The o mostmporiantconseqences ofthe present off 1%, e eI ueuerom, Thouoh o Torkang,
proach are(i) a way to compute initial dynamical data 9 app 9 P

(01,0, P1.P,) for a comparable-mass binary black hole Sys_admlttgd.ly rough, we think it can play a useful role for data
. . analysis: it can be used to test the accuracy of present tem-
tem, represented in ADM coordinates, such that only a frac-

tion of an orbit needs to be further evolved by numericalfolaégﬁ(s?ﬁfgdm%?;gifﬂ;za%? Zflzg)sﬁlmi???:big?vre%ﬁates
relativity techniques, andii) an estimate of the complete ' ’ P '

waveform emitted by a binary black hole coalescence\lj\éen\gt'g fﬁ;??t \l/)v?)ﬂ? dt%éh'isn Isﬁlrigilrl]efuitrﬁreo;/tv:r:r'to':g]:g)gléetto
smoothly combining an inspiral signal, a plunge signal, fextend our approach t01bla<F:)k holpes,havri)n significant intrin-
merger signal and a ringdown. PP g sig

However, much work remains to be done to firm up angSiC Spins. We, however, anticipate that this is a highly non-

complete our approach. We checked the robustness of oljvial task.

approach by considering an as-well-justified, slightly differ- A.B.’s research was supported at Caltech by the Richard
ent evolution system. But stronger checks are called for. IiC. Tolman Fellowship and by NSF Grant AST-9731698 and
particular it would be quite important to extend the presenfNASA Grant NAG5-6840. All the numerical results in the
work (which used as input the 2.5PN-accurate damping an@resent paper were produced USMETHEMATICA .
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