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Gravitational radiation from a particle in circular orbit around a black hole.
II. Numerical results for the nonrotating case
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One promising source of gravitational waves for future ground-based interferometric detectors is
the last several minutes of inspiral of a compact binary. Observations of the gravitational radiation
from such a source can be used to obtain astrophysically interesting information, such as the masses
of the binary components and the distance to the binary. Accurate theoretical models of the wave-
form are needed to construct the matched filters that will be used to extract the information. We
investigate the applicability of post-Newtonian methods for this purpose. We consider the particular
case of a compact object (e.g. , either a neutron star or a stellar mass black hole) in a circular orbit
about a much more massive Schwarzschild black hole. In this limit, the gravitational radiation
luminosity can be calculated by integrating the Teukolsky equation. Numerical integration is used
to obtain accurate estimates of the luminosity dE/dt as a function of the orbital radius ro. These
estimates are fitted to a post-Newtonian expansion of the form dE/dt = (dE/dt)~ Pz aux", where
(dE/dt)~ is the standard quadrupole-formula expression and 2:—:(M/ro) ~ . From our fits we
obtain values for the expansion coefficients ag up through order 2: . While our results are in excellent
agreement with low-order post-Newtonian calculations, we 6nd that the post-Newtonian expansion
converges slowly. Corrections beyond x may be needed to achieve the desired accuracy for the
construction of the template waveforms.

PACS number(s): 04.30.+x, 04.80.+z, 97.60.Jd, 97.60.Lf

I. INTRODUCTION

Detection of gravitational waves using the planned
kilometer-size laser interferometer detectors [Laser Inter-
ferometer Gravitational Wave Observatory (LIGO) [1],
VIRGO [2] and presumably others] will generally rely
on matched filter techniques [3) to extract the signal
from the noise in which it will be embedded [4]. De-
tector sensitivity will be restricted to the range 10—1000
Hz, with maximum sensitivity at 100 Hz [1). For
the case of gravitational radiation originating from in-
spiraling neutron-star or black-hole binary systems, the
gravitational-wave frequency sweeps through 10 Hz ap-
proximately 1 to 10 min before the final merger. For the
matched filter technique to be successful, and for reliable
determinations of the source parameters to be possible, it
is necessary to construct theoretical template waveforms
that are accurate to within 1 rad of phase over most
of the 103—104 cycles emitted in. these last few minutes
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[5, 6].
It seems unlikely that straightforward numerical inte-

gration of the Einstein equations will be able to produce
accurate waveforms in the near future. In the absence
of such a direct numerical calculation of the waveform,
a post-Newtonian expansion is one possible approximate
procedure for Ending accurate waveforms for coalescing
compact binaries. Several groups [7—9] have been cal-
culating post-Newtonian approximations, including wave
generation and radiation reaction, to the gravitational
waveform from inspiraling binaries: Lincoln and Will [7],
for example, have recently calculated such waveforms in
a post-Newtonian expansion where the orbital elements
are described accurately through order (v/c), but that
only includes the lowest-order contribution to the radia-
tion reaction (i.e. , that given by the quadrupole formula).
But these estimates are not yet accurate enough for our
purposes: neglect of the next-order term in the radiation
reaction introduces errors in the inspiral rate of order
(v/c)z 1% and these errors result in an accumulated
phase error of 1 rad in a few hundred cycles.

We address the following question: to what order must
one carry such a post-Newtonian expansion in order to
calculate the waveforms suKciently accurately? Our
tools and our understanding of the Einstein equations are
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not sufhcient to obtain the answer to this question in full
generality; however, we can answer it in the special case
where p/M « 1 (where p is the mass of the smaller body
and M is the mass of the larger one). In this limit the
less massive body acts as a small perturbation upon the
stationary spacetime geometry of the more massive one.
Thus, using the linear perturbation theory pioneered by
Regge and Wheeler [10], Zerilli [ll], and Teukolsky [12],
we can obtain the waveform and luminosity to all orders
in v/c (and first order in p/M). Detweiler [13] was the
first to compute the waveform and gravitational radiation
luminosity in this way.

For our purposes it is necessary to determine
only the luminosity dE/dh as a function of ro.
From this, we can obtain the binary inspiral rate
dro/dh = (dro/d—E)(dE/dh) and consequently the rate
of change of the gravitational wave frequency df/dh =
(df/dro) (dro/dh) with fractional error of order p/M
(here ro denotes the orbital radius of the particle in
Schwarzschild coordinates, and in dro/dE, E is the par-
ticle's orbital energy).

We examine the convergence of the post-Newtonian ex-
pansion for dE/dh using high-precision numerical calcu-
lations. At large orbital radii the luminosity approaches

(dE'i 32 p, M
( dh ) iv 5 ro

which follows directly from the quadrupole formula [1.4].
At finite ro, dE/dh may be expressed as this "Newtonian"
result times a power series in 2:—:(M/ro) i~2. The coeffi-
cients may be obtained by fitting that expansion to our
numerical results for dE/Ch. In fact, the two lowest-order
corrections are already known exactly:

dE (dE& ( 1247

waveforms, and Sec. VI ofFers some concluding observa-
tions.

II. SUMMARY OF THE FORMALISM

We model the binary system as a point particle of mass
p following a circular orbit around a nonrotating black
hole of mass M, with p « M. The gravitational radia-
tion is described as a perturbation of the Schwarzschild
geometry driven by the point particle's stress-energy.
The perturbation formalism as we have used it is pre-
sented in full detail in paper I [17] (cf. Detweiler [13]);
we shall only briefly summarize it here.

In the Newman-Penrose formalism [19], the gravita-
tional perturbations associated with outgoing radiation
are described by the complex Weyl scalar iIi4. The per-
turbation equation for C4 is separable in space and time.
(See [10] for an analysis of the Schwarzschild case [12],
for the general case, and [20] for a comprehensive account
of this problem. ) The time dependence of the perturba-
tion is e '~' and the angular dependence is described
by spin-weighted spherical harmonics with spin-weight
s = —2 (so that l & 2 and ~m[ & t, where t and m are the
usual spherical harmonic degree and order). The radial
dependence R I~(r) is governed by the inhomogeneous
Teukolsky equation [12].

The source term of the inhomogeneous Teukolsky
equation depends only on the stress-energy tensor of the
point particle and has support only at the particle's ra-
dial location ro. There are boundary conditions at both
the horizon and at spatial infinity: the radiation must
be strictly "down-going" (i.e. , fiowing into the black hole
only) at the horizon, and out-going at spatial infinity. In
the liinit p « M the test particle orbit does not evolve
and thus the orbit is a source of radiation only at har-
monics of the Keplerian orbital frequency 0:

u) =mA, (2.1)
The coefBcient of x2 in this expansion was computed

by Wagoner and Will [15] and by Gal'tsov [16]. Recently
one of us (Poisson [17], paper I) derived analytically the
4vr coefficient after our numerical fits had revealed it with
high accuracy. An alternate derivation of this coeKcient,
valid for arbitrary mass ratios, was subsequently given
by Wiseman [18].

Our numerical fits provide higher-order terms in this
series, as well. We thus obtain a high-order post-
Newtonian expansion for the power radiated. By trun-
cating this expansion at nth order, we obtain an estimate
of the inspiral rate which can be compared to the high-
precision numerical answers.

Paper I [17] reviews the perturbation formalism and
finds solutions using approximate, analytical methods.
In Sec. II of this paper we briefly review the Teukolsky
perturbation formalism and describe how we solve for the
perturbation. We describe our numerical methods and
estimate the accuracy of our results in Sec. III. In Sec.
IV we model our numerical results for dE/Ch in terms of
a post-Newtonian expansion, and determine the values of
the expansion coeKcients. Section V examines the im-
plications of our results for the construction of template

R g (r~oo)=pZg r e' "*, (2 2)

where Zg is a constant and

r* = r + 2M ln(r/2M —1) (2.3)

is the usual tortoise radial coordinate. Note that Zg is
independent of p. The factor e' " in Eq. (2.2) corre-

where 0 = (M/ros)i~ .
Like Detweiler [13], we solve the inhomogeneous

Teukolsky equation by means of a Green's function con-
structed from the two linearly independent solutions,
R~& (r) and R~& (r), of the homogeneous Teukolsky
equation. The function R~&~(r) satisfies the ingoing-
wave boundary condition at the event horizon but is
a superposition of ingoing and outgoing waves at in-
finity. Correspondingly, R

& (r) satisfies the outgoing-
radiation boundary condition at infinity, but is a super-
position of "down-going" and "up-going" radiation at the
horizon.

The Green function analysis implies that the asymp-
totic behavior of R

&
determines the corresponding be-

havior of B g . We thus have that
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sponds to purely outgoing radiation at inanity. For such
solutions B g~, the associated Weyl scalar falls oE like
e'~" /r at infinity.

Physically interesting information may be obtained
from R t~(r ~ oo). In particular, the luminosity is
given by

(2.4)

V(r) = f l(8+1)/r —6M/r (2.7)

where f = 1 —2M/r. The solution X
&

is chosen to
satisfy the down-going radiation boundary conditions at
the black-hole horizon:

X t (r ~2M) e

Its asymptotic behavior at large r is then

X t (r ~ oo) A'"q P(ar)e
+A'„"'P(u)r)e' ',

(2.8)

(2.9)

where the overbar denotes complex conjugation, and
P(wr) is a power series in 1/ur whose coefficients can
be determined by substituting Eq. (2.9) into Eq. (2.6).

We can recover R
&

at any r from X
&

and its first
derivative at the same r by using an algebraic transfor-
mation due to Chandrasekhar [25]. In this way, we find
that B'"& is determined by A'"t

III. NUMERICAL INTEGRATION

The only major numerical task is to integrate the
Regge-Wheeler equation (2.6), determine X~& (r) and

Note that the sum has been restricted to positive spher-
ical harmonic order m. This restriction is possible be-
cause the contributions from negative m are the same as
those from positive m, and there is no contribution from
m=0.

The number Zg~ encapsulates all the information
about the source and the wave propagation from the near
zone to infinity. It depends on (i) rp directly, (ii) R

& (r)
and its first derivative evaluated at r = rp, and (iii) the
constant B'"&, defined by

BH (r ~ oo) r—1Bin e iwr' + r—sBout ster"

(2.5)
The direct dependence of Zg~ on rp may be written
down explicitly [17]; the evaluation of the other (wave-
propagation) elements requires the numerical integration
of the homogeneous Teukolsky equation.

It is clear from the asymptotic form of B+& [cf.
Eq. (2.5)] that determination of B'"& by direct integra-
tion of the Teukolsky equation is difficult [21—24]. Since
we are interested only in perturbations of Schwarzschild
spacetime, we can instead integrate the Regge-Wheeler
equation:

f z + 2 f + w ——V(r) X~& (r) = 0, (2.6)

with the potential

its first derivative at r = rp, and find A'"&

We integrated the Regge-Wheeler equation for each
5 & E & 2, E & m & 0, and ~ = mA. If r is chosen as
the independent variable, the Regge-Wheeler equation
is singular at the black-hole horizon where the bound-
ary conditions are imposed. Alternatively, if the tor-
toise coordinate r' [cf. Eq. (2.3)] is chosen as the in-
dependent variable, the singularity is "pushed off" to
r* —+ —oo. We nevertheless chose to adopt r as the
independent variable, hence avoiding the numerical in-
version of r'(r); we found that the singular character of
the Regge-Wheeler equation is not a serious impediment.
The integration was started at r = r, = 2M(l + s) for
small s (10 & s & 10 iP). Equation (2.8) was used
to infer the boundary conditions X

& (r, ) and X &' (r, )
(where a prime denotes diKerentiation with respect to r).
Using the algorithm of Bulirsch and Stoer [26), we then
integrated outward from r = r, : the integrator spent a
long time in the singular region near r = 2M and then

rp/M
6
8
10
12
24
36
48
70
80
90
100
120
140
150
300
400
500
600
700
800
900
1000
2000
3000
4000
6000
8000
12000
16000
24000
32000

(M/y) 2dE/dt
9.334792562807677 x 10
1.957426618374151 x 10 4

6.147308500354202 x 10
2.428366476150825 x 10
7.545091436738473 x 10
1,0045251750454977 x 10
2.4040127560388038 x 10
3.681880101348405 x 10
1.8945354109627725 x 10
1.0541121060132224 x 10
6.238202648137723 x 10
2.51576748851826 x 10 'o

1.1670297381469564 x 10
8.274457551383351 x 10
2.6073383971227096 x 10
6.201576437236146 x 10
2.0350485987533726 x 10
8.186438165393261 x 10
3.7902840858413365 x 10
1.945130362386846 x 10
1.0798725934420318 x 10
6.378752721731783 x 10
1.9965668413422893 x 10
2.630686436939572 x 10
6.244509398335936 x 10
8.225583027365644 x 10
1.952253057505779 x 10
2.571245492447089 x 10
6.10213764672353 x 10
8.036335624329943 x 10
1.9071315991777994x 10

TABLE I. Numerical values for the gravitational power,
including multipoles up through E = 5, for several values of
orbital radius. Caution: This table is printed with a large
number of significant places. This is not intended to indi-
cate the accuracy of our calculations. In fact, these numbers
are accurate to between six and ten significant places. Many
places are offered solely for the purpose of precise reproduc-
tion and testing of our results.
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TABLE II. Decomposition of the gravitational power into
multipole contributions, for ro/M = 10. See caution in Ta-
ble I.

m
2
1
3
2
1
4
3
2
1
5

3
2
1

Sum =

(M/p) dE/dt
5.368795477495964 x 10
1.9316094014509972 x 10
6.426082556370699 x 10
4.79591646035441 x 10
5.714898908903078 x 10
9.53960064291412 x 10
8.778757573084952 x 10
5.262245330003326 x 10
1.457585631445564 x 10 '
1.5241547683239266 x 10
1.4921162878190968 x 10
1.8291012379756077 x 10
3.8193532390971175x 10
2.367637176972572 x 10

6.147308500354202 x 10

proceeded swiftly.
We first integrated from r = r, to 7 = Tp, and obtained

the values of XHt (ro) and X t' (rc) We th. en resumed
the integration, proceeding until r reached a value of or-
der 1/tu. Equation (2.9) and its derivative were then used
to approximate A'"& . For each subsequent integration
step in r, the corresponding approximate value of A'"t
was estimated; this procedure yields a sequence A'"t (r)
of numbers which converges to A'"& in a way governed
by Eq. (2.9). Since the values of A'"& (r) approach A'"&

as a power series in 1/ur (with the constant term be-
ing the correct answer), A'"& is obtained rapidly and
to high accuracy by using repeated Richardson extrap-
olation [27]. The Richardson extrapolator successively
doubled the target radius for integration, extrapolating
the sequence A'"& (r) to obtain an estimate for r = oo.
The Richardson limit was assumed to be reached when
the next step made a relative change in the answer of less

than one part in 10s. The integrator was then stopped,
and we obtained the value of A'"t . In general the resid-
ual relative error incurred by cutting off the extrapolation
here is much smaller than 10; it is probably around
10 . The remaining operations were purely algebraic.
For the given values of 8 and m the number Zg was
evaluated, which lead to the power radiated by the mode
(I., m). We repeated this calculation for a wide range of
orbital radii; for each rp the calculations were performed
for 2 & E & 5 and 1 & m & E. Complete tables of all
our numerical results are available [28]; to facilitate the
reader's ability to check our results, we have also included
a small subset of our numerical data in the tables. Table
I lists the summed contributions of the modes L & 5 for a
range of rp. Tables II to IV list all the individual mode
contributions for three diferent values of ro

The accuracy of our results is difficult to estimate. All
computations were performed in IEEE double-precision
arithmetic [29]. The numerical integration was done with
a relative local truncation error no greater than one part
in 10io and the number of steps of integration was not
large; so, there was not much opportunity for the global
error to grow. The Richardson limit we obtained was
invariant (in the first six places) to changes of the ini-
tial radius as we varied z from 10 to 10 (we used
z = 10 s): thus the accuracy of our answers is not par-
ticularly affected by the singular character of the Regge-
Wheeler equation near r = 2M.

Finally, and most importantly, after minor debugging,
the solution process behaved as expected: the Richard-
son extrapolator did act as if the extrapolated quantity
was in fact the first term of a power series, chopping off
successive terms and converging faster than any polyno-
mial. This gives us great confidence in the answers. We
can be sure that we have at least 6 significant digits in
the answers, and internal evidence from the structure of
the residuals in our fits gives us reason to believe that
our answers have about nine significant places (see Fig.
2).

TABLE III. Decomposition of the gravitational power
into multipole contributions, for ro/M = 150. See caution
in Table I.

TABLE IV. Decomposition of the gravitational power
into multipole contributions, for ro/M = 1000. See caution
in Table I.

2
2
3
3
3
4
4
4
4
5
5
5
5
5

m
2
1
3
2
1

3
2
1
5
4
3.
2
1

Sum =

(M/y) dE/dt
8.199125786292143 x 10
1.5533943517118724 x 10
7.293520702420003 x 10 '
2.9082089243401785 x 10
6.74697151150845 x 10
7.971664741718715 x 10
3.9142213792047955 x 10
4.505010440900235 x 10
8.521671202482892 x 10
9.309999512986334 x 10 '"
~..842899552929203 x 10
3. ] ~. l.)4657697295971 x 10
1.5786392264188516 x 10
1.8449226677094525 x 10

8.274457551383351 x 10

2
1
3
2
1

3
2
1
5
4
3
2
1

Sum =

(M/p) dE/dt
6.369945055198321 x 10
1.7759713704759728 x 10
8.614435276459479 x 10
5.059610388808615 x 10
7,895853658131901 x 10
1.430413566682988 x 10
1.034676636333062 x 10
8.001814004174917 x 10
2.254175411299116x 10
2.5368671341710977x 10
1.943844777526346 x 10
3.0755337304511715 x 10
6.332662426296351 x 10
4.965606233081542 x 10

6.378752721731783 x 10
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IV. POST-NEWTONIAN EXPANSION

In this section we fit our numerical results for dE/dt
to a post-Newtonian expansion of the form

dE (dE'i )dt ( dt ) ~
(4 1)

where x = (M/ro) ~ and (dE/dt)iv is the quadrupole
approximation luminosity [cf., Eq. (1.1)]. The first four
terms are already known [15—17]:

-5

a0 1 a1 =0 a2 =
336 a3 =471.1247 (4.2)

By fitting Eq. (4.1) to our numerical results (we use an
equal-weight least-squares fitting criterion, implemented
with the method of singular-value decomposition [30]),
we are able to estimate a few of the higher-order coeffi-
cients.

Equation (2.4) shows that the gravitational power has
contributions from arbitrarily high-order terms in the
multipole expansion. In this paper, we have included
multipoles only up through E = 5, and this will induce
errors in the values of the post-Newtonian coefBcients.
However, Paper I shows that a multipole of order E only
contributes to the total power as a correction of order
(M/re) . By computing terms up through t' = 5 we
therefore incur a relative error of order (M/ro) = xs.
Consequently, our numbers allow, in principle, the accu-
rate determination of the post-Newtonian coefficients up
through order x7. This is not achieved in practice, be-
cause the higher-order coeFicients are increasingly sensi-
tive to numerical error.

To illustrate this point, we tested how accurately we
could recover, by least-squares fitting, the coefficients
shown in (4.2). Typically, our fits yield the theoreti-
cally derived coefficients with the following relative er-
rors: Aae/ao 10, Eai 10, Eaq/aq 10, and
Gas/as ~ 10

Figure 1 shows the residual obtained by subtracting
the theoretically derived terms from the numerical re-
sults. The residual, b„is defined by

dE/dt —(dE/dt) N (1 —is2s4s7 x~ + 47rxs )
(dE/dt) ~ x4 (4.3)

The coefficient a4 is E at z = 0 and the coefficient as
is the slope of A at z = 0. A least-squares best fit of a
cubic to those points for which ro/M ) 100 gives b,
—4.8924 —37.981x + 135.15x + 19.714x . From this we
conclude that

a4 —4.89, a5 —38, a6 +135. (4.4)

The natural question is now: how accurate are the es-
timations of a4, as, and as. This is difficult to ascertain.
The quality of the fits is measured in terms of the stan-
dard deviation o, essentially the rms deviation of each
data point from the fitted curve. A small value of o.

therefore corresponds to a good fit. But a good fit by
no means implies an accurate determination of the post-
Newtonian coefficients: it is possible to change slightly

-8
0 0.1

0
o

0.2
I

0.3
I

0.4 0.5

FIG. 1. The residual A plotted against x. The intercept
is a measure of a4 and the slope near the axis is a measure
of a5. Although the curve appears symmetrical, it is not well

approximated by a parabola.

V. IMPLICATIONS FOR THE CONSTRUCTION
OF TEMPLATE WAVEFORMS

We can now test the feasibility of using the post-
Newtonian approximation to calculate template wave-
forms for the last few thousand orbits of a compact bi-
nary.

First we derive a rough criterion indicating how accu-
rately dE/dt must be known to ensure that the phase
of the template waveform matches the true waveform
to within one radian. Consider two template waveforms
corresponding to the same physical situation (same two
masses, same distance from observer, etc.) —one con-
structed using an approximate form for E(ro), the second
constructed using the correct function E(ro) (a dot de-
notes a time derivative). I et the two waveforms have
the same phase 4 = 0 and same frequency f = fo at
some initial time t = 0. The relative difference in energy
loss LE implies a difference in the rate of change of the

the value of a4 without affecting the quality of the fit,
provided that a5 and a6 are modified accordingly. Thus
a small uncertainty in a4 is translated into large varia-
tions in the higher-order coefficients. However, this much
is clear: the value of a4 may not be changed by a large
amount without affecting significantly the quality of the
fits. Thus we are confident that our estimation of a4 is
fairly accurate; we believe, but cannot prove, that it is
correct to within 2%%uo. It is much harder to evaluate our
accuracy on az and as., as a rough indication, we would
suggest that as is precise to within 10%%uo and that as is
precise to 50%%uo.
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wave frequency, with Kf/f EE/E. Hence the relative
phase error between the templates, A4, will (initially)
accumulate quadratically in time: A4 (Afo)t . The
entire inspiral lasts a time of order f, fe/fo, and the
total phase accumulated in that time is C fct. Com-
bining these relations, we find that AC', at the end of the
inspiral, is roughly given by

AO/C AE/E, (5.1)

where the right side refers to the relative error in E when
the frequency sweeps past fp.

For the planned ground-based detectors, the relevant
value of fo is 10 Hz (below which the signal is expected to
be undetectable due to inadequate isolation from seismic
noise). This frequency corresponds to (i) ro/M 50
and C 4 x 10s in the case of two 10 Mo black holes,
(ii) to ro/M 70 and C 2 x 104 for a 10M~ black
hole and a 1.4Mo neutron star, and (iii) to ro/M 175
and C™10s for two 1.4MO neutron stars. (Here we
assume that the expansions for non-negligible mass p/M
will be subject to the same convergence problems as for
negligible p/M. )

How accurately can template wave forms be calcu-
lated for these three cases when dE/dt is improved
from the standard quadrupole formula by including post-
Newtonian corrections up through order zs (the order
through which the expansion coefficients are currently

0

10giog

0 O

00 0
a 00

8 0
O I

0
0

000 0
0 0

0
0

0000
0

0
000

0
0

A=30

n=5

0=4 0

-10

log 9

FIG. 2. Plots of 1 g o(„io(n = 3, . . . , 5) as functions of
log&o ro, where (dE/dt) x ( = dE/dt (dE/dt)~ P& o ai,—z"
The values of al, are listed in Eqs. (4.2) and (4.4). Each curve
represents, as a function of orbital radius, the relative error
between the numerical values of dE/dt and a post-Newtonian
expansion truncated to order x". Notice that the asymptotic
behavior of the residuals for each approximation appears to
be a power law, except when the residuals get below 10
Here we are probably seeing the appearance of the numerical
errors in our calculations.

known analytically)? Figure 2 and the criterion described
in Eq. (5.1) show that a post-Newtonian approximation
through order x leads to a cumulative phase error of

10 radians for case (i), 20 radians for case (ii), and
20 radians for case (iii).
Figure 2 further shows that by carrying the expansion

to order xs the cumulative phase accuracy would improve
by a factor of approximately 2 to 6 —a rather modest
improvement considering the effort required to extend
the post-Newtonian calculations to this order. Clearly
the slow convergence of the post-Newtonian expansion is
due to the large values of the expansion coefficients at
order x' and x'.

The proposed Laser Gravitational-Wave Observatory
in Space (LAGOS) would be most sensitive to gravita-
tional radiation in the bandwidth 10 s Hz & f & 10 2 Hz
[31]. This corresponds to the frequency of the radiation
from compact stellar mass objects orbiting at or near the
last stable circular orbit about small supermassive black
holes (4 x 10s M~ + M & 4 x 10s Mo for Schwarzschild).
Black holes like these may lurk in the centers of active
galactic nuclei [32, 33] and normal galaxies [34—37] (in-
cluding our own [38, 39]). In this case p/M & 10 s and
the approximation p, /M (( 1 is almost exact.

Depending on the mass of the black hole and the
compact object, the radiation can spend anywhere from
hundreds of years (for a 1MO compact object and a
4 x 10sM~ black hole) to seconds (for a 4 x 10 ) in the LA-
GOS bandwidth. Observation times, on the other hand,
will be no longer than 1/3 to 1 year. Consequently, the
number of cycles that can be observed by LAGOS varies
from a very few to on order 3 x 10 .

Since the orbital radius is so close to the last stable
circular orbit for sources that would be observed by LA-
GOS, z = (M/ro)i/2 2/5 is large and many terms
would be needed in a post-Newtonian expansion in order
to find an adequate approximation for dE/dt It would.
be nonsensical to proceed in this way, however: assum-
ing circular orbits, calculations of the kind described here
[but involving max(l) + 20] provide the exact dE/dt and
consequently the exact df/dt for the evolution of the or-
bits. With df/dt and the exact wave forms (which have
not been calculated here, but can be found from the Zg

cf Detweiler [1.3]), numerical wave forms appropriate for
the constructions of matched filters for LAGOS may be
found. Elliptical capture orbits (which may be more im-
portant for LAGOS than for LIGO [41]) may also be
evolved (both in eccentricity and radius) by solving the
Teukolsky equation (only now the radiation is not re-
stricted to harmonics of the orbital frequency).

VI. CONCLUSIONS

We have solved numerically the Teukolsky equation to
find the gravitational-wave luminosity of a test mass in
a circular orbit about a Schwarzschild black hole. Our
results are in excellent agreement with low-order post-
Newtonian calculations and allow us to find approximate
values for higher-order post-Newtonian expansion coefFi-
cients. We find that, for the purpose of computing tem-
plate wave forms for the planned interferometric detec-
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tors, the expansion converges rather slowly.
We have explored the possibility that, by fitting a

somewhat different function to our data, the convergence
of the post-Newtonian expansion could be improved. For
example, paper I shows that each (l, rn) contribution to
dE/dt possesses a simple pole at ro = 3M. We ver-
ified the existence of this pole in our numerical data.
One might suspect that by fitting a power series in x to
(1 3M—/ro) (dE/dt)/(dE/Ct)~, we could obtain better
convergence. Unfortunately, removing the pole does not
help. We also tried a number of higher-order Pade ap-
proximations, without obtaining more rapid convergence.

We feel that the particular problem studied here pro-
vides a useful testbed for exploring more fundamental
questions concerning the convergence of approximation
formalisms designed to include radiation reaction. To
our knowledge there exists no general algorithm that al-
lows one to solve radiation reaction problems to arbi-
trary order in a post-Newtonian expansion (as distin-
guished from, say, a post-Minkowski expansion [42]). In
this sense, the theory is much less well developed than,
say, perturbative quantum electrodynamics. Nor is it un-
derstood whether an infinite post-Newtonian expansion
(assuming one could be generated) would converge or
merely be asymptotic to an appropriate solution of the
field equations.

Such questions acquire precise formulations in the
context of a test mass in a circular orbit around a
spherical body. To wit, consider the function P(x) =
(dE/dt)/(dE/dt)~. A post-Newtonian expansion of the

gravitational-wave luminosity essentially generates the
derivatives of P(x) at x = 0. We know that P(x) is at
least Cs at z = 0, but is it C~ at x = 0? A preliminary
calculation by Ori [43] suggests that the sixth derivative
of P(x) fails to exist at z = 0, due to the presence of a

ln2: term in the post-Newtonian expansion. If this is
true, can one transform to a slightly different variable,
in terms of which the function is C 7 A detailed under-
standing of this rather simple problem might help clarify
the general status of post-Newtonian formahsms that in-
clude radiation reaction.
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