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On the basis of Einstein's theory of relativity, the principle of causality, and Le Cha-
telier's principle, it is here established that the maximum mass of the equilibrium con-
figuration of a neutron star cd~not be larger than 3.2M'. The extremal principle given
here applies as well when the equation of state of matter is unknown in a limited range of
densities. The absolute maximum mass of a neutron star provides a decisive method of
observationally distinguishing neutron stars from black holes.

The estimate of the range of the critical mass
for a neutron star varies from 0.32 to 1.5MO.
The greatest uncertainty comes from the equa-
tion of state at nuclear densities and above. In
fact the knowledge of physical properties of neu-
tron-star material at densities smaller than 10"
g/cm', essential to describe the properties of
the crust of neutron stars' and perhaps the change
in period of the pulsars, ' is of no relevance for
the determination of the maximum mass of a neu-
tron star. The reason is that on increase of the
central density the star becomes more and more
compact and its crust becomes only a few tens of
meters thick, or even less, depending on the
models. ' At nuclear densities and above, the
equation of state is very poorly known because of
the presence of strong interactions' between nu-
cleons and threshold effects in the creation of
resonances" because of unavailability of phase
space.

In recent times it has become clear that the
most powerful tool in determining the difference
between neutron stars and black holes relies on
the possible difference in mass of the two ob-
jects 'No poss. ibility exists of differentiating

them on the basis of electrodynamic properties. '
Moreover, the recent discovery of x-ray sources
in binary systems gives the possibility of deter-
mining the mass of a collapsed object with great
accuracy, ' %e therefore have the clear need of
establishing on solid ground the maximum mass
of a neutron star. Instead of trying to analyze
the details of nuclear interactions we follow here
a different approach. %e take that most extreme
equation of state that produces the maximum crit-
ical mass compatible solely with these three con-
ditions: (1) standard general-relativity equation
of hydrostatic equilibrium, (2) Le Chatelier's
principle, and (3) the principle of causality.
While no suggestion is made that the resultant
equation of state accurately represents the actual
physical behavior of matter, it does illustrate a
point of principle by yielding a maximum mass
for the critical mass. It is not altogether new to
approach the equation of state from the side of
hydrostatic theory rather than from the side of
the structure of matter. Gerlach" has shown
that from a set of measurements on a sequence
of stars at the end point of thermonuclear evolu-
tion one can, in principle, work back to deduce
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the equation of state, without any call on nuclear
or elementary particle theory. We present here,
first, an extremization technique for the case in
which we assume that the equation of state is
known everywhere apart from a finite range of
pressure and densities

PP -P -P1P

p(p. ) = p = p(p, ); (1b)

in order to avoid a "supraluminous" equation of
state (velocity of sound greater then the speed of
light, violation of causality; c =1 in our units),
we demand that

d&&&/dp -1. (2)

Also, we require that pressure be a monotonical-
ly nondecreasing function of the density (Le Cha-
telier's principle, which implies no spontaneous
collapse of matter locally, speed of sound real):

dp/dp ~0. (3)

This last condition could, indeed, be relaxed;
however, the proof is more straightforward as-
suming the validity of both conditions (2) and (3).
We wish to choose the equation of state between

p, and p„so as to extremize the mass of the neu-
tron star. We integrate the standard general rel-
ativistic equations

M =M, (p„p, ) + ) 4»r'p(dr/dp) dp
Py

+M,(p„r„»&,).

Here with Af, we have indicated the mass con-
tained in the range of densities p, ~ p ~ p„which
is clearly a constant, and with M, the mass con-
tained in the range of densities p ~ po. Clearly
M, is a function not only of p, but also of r, and

&&&o, which in turn are functions of the equation
of state adopted in the range of densities p, ~ p

p
Letting the primes denote derivatives with re-

spect to p, we have

(7.1)

u/G= &', (7.2)

Hu/G =&&&, (7.3)

with R the radius of the star.
This problem may be formulated in terms of

the standard calculus of variations with inequality
constraints. " We give here an alternative formu-
lation in terms of control theory, "which yields
both necessary and sufficient conditions. We
take p as the independent variable. Then Eq. (5)
can also be written

dm (r)/dr =4»pv' = H(p, v),

dp (p+ p) [4» v'p(v) +»& {r)Jdr r(v —2»&)

(4 1)

0 - u -- 1 in the range p, -- p - p, . (7.4)

where u(p) is given by the known equation of state
in the ranges p, ~ p and p ~ p, and has to have

= G(p, P, »&, v) (4 2)

That is, the total mass of the star is given by

M = j 4rp(v)r'dv ~, (5)
0

Equations (7) replace Eqs. (1)-(5). Here u be-
comes the so-called control variable. """Since
we seek the maximum of M given by Eq. (6) with
the constraints given by Eq. (1)-(3), we can in-
troduce the generalized Hamiltonian"

H(p, p, m, r, y„y„y„u) =[y, +y,H/G+y, /G}u+ [M,(p, r, »&)J~v &,
+ p[(p —a, )J,„v ~, (8)

where a, indicates the value of the pressure at p
=- p, and y„y„y, are a set of Lagrange multipli- troduce the new variable
ers which satisfy the Euler-Lagrange equations

u =sin M. (10)
8 g 8 1

'8p G ''Bp G
+Q~ Mq

1
+ g&3 Q~

Bw' G Blil G
(9 2)

The corresponding Euler- Lagrange equation then
gives

2[y, +y, H/G+y, /G} sin~ cos~ = 0,

9 0
+g' Q.

Br Q
(9.3)

Since u has to fulfill the inequality (7.4), we in-

which allows the solutions ~ =0 and ~ =»/2 or u

=0 and M =1. It is clear that in the extremization
technique of Eq. (6) we have to take into account
not only the integral in the range of densities po
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- p -p, but also the mass M» this contribution
is automatically taken into account by the trans-
ver sality conditions"

(12.1)(y, +sM, /s~), , =O,

(y, +sM, /am), , =O, (12.2)

(y, +8M, /BP+g)~, =0, (12,3)

which are the boundary conditions to be fulfilled
in the integration of the system of Eq. (9). We
can then conclude, in complete generality, that
the desired extremum has to lie on the boundary
of the allowed range of the control variable u,
namely on path with u =0 and u =1 (see Fig. 1).
To see which one of the paths maximizes the
mass and at which point the "switch" of condi-
tions from u =0 to u =1 has to be applied, it is
necessary to proceed to a direct integration of
Eqs. (f) and (9). We can then conclude that the
path which maximizes the mass is given by path
a in Fig. 1."

If we now turn from this general problem to
the special case of establishing an absolute up-
per limit to the mass of a neutron star, our vari-
ational principle applies much more directly and
the problem greatly simplifies. The extremiza-
tion of the Hamiltonian (8) together with the con-
straints (7), the differential equations (7), (9),
and (11), and the transversality conditions sim-
ply tell us that the maximum mass is obtained
for that equation of state which maximizes at
each density the velocity of sound of the material.
We know from general arguments that at densi-

ties below p, =4.6 x10" g/cm' the equation of
state of free degenerate neutrons, neglecting all
nuclear interactions, maximizes the velocity of
sound of neutron-star material, ' in the sense that
any realistic equation of state has smaller val-
ues of the sound velocity. ' At densities larger
than p, = 4.6 x 10"g/cm' very little is known

about the possible description of the interactions
between nucleons at suprenuclear densities.
Therefore we assume the equation of state with
the highest conceivable velocity of sound, namely
the one with velocity of sound equal to the speed
of light. By direct integration of the equations of
equilibrium for selected values of the central
density (see Fig. 2) we can then conclude that no

matter what the details of the equation of state at
nuclear or supranuclear density, a neutron star
can never have a mass larger than 3.3M~.

Finally, it is important to realize that although
our arguments are presented here in the case of
neutron stars with zero angular momentum they
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FIG. 1. "Allowed rhomboid" in the p p plane. The
equation of state is known for popo and p& p&. In the
range po- p- p& all equations of state compatible with
the principle of causality and Le Chatelier's principle
have to be contained inside the rhomboid. Path a (b)
maximizes (minimizes} the mass of the neutron star;
see Ref. 14.

FIG. 2. Matching of the "allowed rhomboid" to the
Harrison-%heeler equation of state {Ref. 15) for a value
of the density po

——2X 10 g//cm~ {lower right-hand side
of the figure}. The different paths followed correspond
to an equation of state with u =1 {path a in Fig. 1}or to
a combination of a path with + = 0 and then + = 1 (path b

in Fig. 1). The difference in inclination of the lines
with u = 1 between Figs. 1 and 2 is due to the difference
in scale: linear in Fig. 1 and logarithmic here. In
these computations the integrations are carried out up
to the value of critical central density at which the val-
ue of the critical mass is reached.



VOL. UME $2, NUMBER 6 PHYSICAL RE VIEW LETTERS 11 I'"EBRUARY 1«)74

can indeed be applied to the case of pulsars and
x-ray sources. The reason is that all the pul-
sars" and the pulsating binary x-ray sources'
are rotating very slowly (P a 33 msec), and in
this region their masses can be affected by rota-
tion only by a factor 5M/M &0.2~'/(M/R'), where
~ is the angular velocity, M the mass, and R the
radius of the neutron star. Moreover, rapidly
rotating neutron stars (P ~ 0.1 msec) would have
a decay time T =8„,/[- (dE/df) d; „]of approxi-
mately one week if dissipation is due to dipole
magnetic rediation, or T & 10 min if dissipation is
due to emission of gravitational radiation. " Even
in this very extreme case (P~ 0.1 msec) the crit-
ical mass of a neutron star would be changed by
a factor smaller than 1.5."
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