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We present a complete discussion of the boundary term in the action functional of general relativity when
the boundary includes null segments in addition to the more usual timelike and spacelike segments. We
confirm that ambiguities appear in the contribution from a null segment, because it depends on an arbitrary
choice of parametrization for the generators. We also show that similar ambiguities appear in the
contribution from a codimension-two surface at which a null segment is joined to another (spacelike,
timelike, or null) segment. The parametrization ambiguity can be tamed by insisting that the null generators
be affinely parametrized; this forces each null contribution to the boundary action to vanish, but leaves
intact the fredom to rescale the affine parameter by a constant factor on each generator. Once a choice of
parametrization is made, the ambiguity in the joint contributions can be eliminated by formulating well-
motivated rules that ensure the additivity of the gravitational action. Enforcing these rules, we calculate the
time rate of change of the action when it is evaluated for a so-called “Wheeler-DeWitt patch” of a black hole
in asymptotically anti de Sitter space. We recover a number of results cited in the literature, obtained with a
less complete analysis.
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I. INTRODUCTION AND SUMMARY

The action functional for the gravitational field in general
relativity, the famous Hilbert-Einstein action, is given
simply (in the absence of a cosmological constant) by the
spacetime integral of the Ricci scalar. But it has long been
recognized that a well-defined variational principle for a
finite domain of spacetime must also involve a contribution
from the domain’s boundary [1,2]. In the typical context in
which the boundary consists of timelike and spacelike
hypersurfaces, the boundary action is given by the surface
integral of the trace of the extrinsic curvature. When the
intersection between two segments of the boundary is not
smooth, the extrinsic curvature is singular and the boundary
action acquires additional contributions from the intersec-
tion [3,4]. While all this is well known, the case in which the
boundary includes segments of null hypersurfaces has
received very little attention in the literature. Indeed, to
our knowledge the contribution of a null boundary to the
gravitational action has only been examined recently in
Refs. [5] and [6]; the second reference, in particular, offers a
detailed account of the variational principle of general
relativity in the presence of null boundaries. But these
works do not consider the contribution to the gravitational
action coming from a nonsmooth intersection between a null
segment of the boundary with another (spacelike, timelike,
or null) segment. It appeared important to us to fill this gap,
and to provide a complete account of the boundary term in
the action functional of general relativity when the boundary
includes null segments, in addition to the more usual
timelike and spacelike segments.

The desire for completeness was not the sole motivation
for undertaking this work. We were also motivated by a
desire to better understand the calculations supporting the
recent “complexity equals action” conjecture of Brown
et al. [7,8], which was made in the context of the AdS/CFT
correspondence [9]. This proposal emerged from previous
studies attempting to understand the growth of the Einstein-
Rosen bridge for AdS black holes in terms of circuit
complexity in the dual boundary CFT [10–13]. As we will
describe, the calculations on the gravity side which support
this conjecture rely in an essential way on evaluating the
gravitational action for regions with null boundaries. On
the CFT side, the conjecture considers the complexity C of
the quantum state jψðtÞi on a particular time slice of the
boundary conformal field theory. Loosely, we may think of
C as the minimum number of quantum gates required to
produce jψi from a particular reference state—see [8] for
further details. The conjecture then relates C to the
gravitational action I evaluated for a corresponding region
in the dual (asymptotically) anti-de Sitter spacetime, known
as a “Wheeler-DeWitt (WDW) patch.” The WDW patch is
the region enclosed by past and future light sheets sent into
the bulk spacetime from the time slice on the boundary,
where C is to be evaluated. An example is illustrated in
Fig. 1, and the conjecture states that C ¼ I=ðπℏÞ.
A particularly interesting case in which to examine this

conjecture is that of an eternal black hole in anti de Sitter
space [7,8]. In this case, the quantum state jψðtL; tRÞi
depends on two times tL and tR, i.e. the time on each of the
asymptotic boundaries on either side of the Einstein-Rosen
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bridge (the left and right boundaries in a conformal
diagram).1 The corresponding WDW patch is displayed
in Fig. 1. In part, the “complexity equals action” conjecture
was motivated by the expectation that the complexity in this
situation should increase linearly in time (for a very long
initial period), and the observation that this property is
shared by the action of the Wheeler-DeWitt patch. In
particular, it was found that at late times [7,8]

dI
dt

¼ 2M ð1:1Þ

for a Schwarzschild-AdS black hole, where M is the total
mass energy of the spacetime, and t stands for one of the
boundary times (i.e. tL or tR), with the other time being held
fixed. Similar results for other spacetimes, all indicating
that I increases linearly with t at late times, were reported
by Brown et al in support of the conjecture.
One of our main purposes in this paper is to critically

examine how Eq. (1.1) was obtained: We question the
methods bywhich dI=dtwas calculated in [7,8], we identify
what we take to be a more rigorous approach, and we
recalculate dI=dt according to these methods. We perform
the calculations for both a Schwarzschild and Reissner-
Norström black hole in anti-de Sitter space, and we find that
our results for dI=dt precisely agree with those reported by
Brown et al. [7,8]. This agreement, in spite of the very
different methods used in the calculation, may seem at first
sight a surprising outcome. The mechanism behind the
agreement will be discussed in detail in Sec. III D.

There are two main reasons to suspect the methods
adopted by Brown et al., and hence to be skeptical of their
results for dI=dt. First, the Wheeler-DeWitt patch has a
boundary that includes segments of null hypersurfaces, and
the familiar boundary term in the gravitational action (the
Gibbons-Hawking-YorkK term [1,2]) is ill defined for such
segments; it applies only to spacelike or timelike segments
of the boundary. One might attempt to evade this problem
by evaluating the boundary contribution for a null segment
by approaching the hypersurface through a sequence of
timelike or spacelike surfaces. However, as we will show in
Appendix A, in general this limiting procedure is ambigu-
ous and does not yield a unique answer. The second key
problem is that the boundary of the Wheeler-DeWitt patch
also includes codimension-two surfaces—joints—at which
different boundary surfaces intersect; for example, in
Fig. 1, the spacelike portion of the boundary at (or rather
near) r ¼ 0 is joined to null segments extending towards
the two asymptotic AdS regions. Because the boundary is
not smooth at such joints, we should expect them to make
separate contributions to the gravitational action, in spite of
the higher codimensionality of these surfaces. Indeed, that
nonsmooth portions of the boundary contribute to the
action was demonstrated by Hayward [4] in the case of
joints between timelike and spacelike surfaces.2 One might
attempt to define the joint contributions for an intersection
involving a null segment by applying a limiting procedure
to the Hayward terms, but as we show in Appendix A, this
yields a divergent result.
The first issue, of correctly assigning a boundary con-

tribution to the gravitational action when the boundary
includes a null segment, was recently examined by Neiman
[5] and given a much more thorough analysis by Parattu
et al. [6]. The correct boundary term is identified by a
careful consideration of the variational principle for general
relativity, which keeps track of all terms that are pushed to
the boundary when an integration by parts is carried out. In
the case of a timelike or spacelike segment, this exercise
reveals the Gibbons-Hawking-York K term, i.e. the trace of
the extrinsic curvature integrated over the boundary seg-
ment [1,2]. In the case of a null segment, Parattu et al. show
that the boundary term is given by an integral of the form3R
κ dSdλ, in which λ is the parameter running on the null

generators of the hypersurface, dS is an area element on the
cross sections λ ¼ constant, and κðλÞ measures the failure
of λ to be an affine parameter4: if the vector field kα is
tangent to the null generators, then kβ∇βkα ¼ κkα. This

FIG. 1. Wheeler-DeWitt patch of an eternal Schwarzschild-anti
de Sitter black hole. The patch is defined by a future light cone
originating inside the white-hole horizon and reaching the left
boundary at time tL and the right boundary at time tR. This light
cone is joined to a past light cone converging to the future
singularity.

1The two boundaries of an eternal AdS black hole correspond
to the original CFT and its thermofield double, and the bulk
geometry is then dual to a purification of a thermal density matrix
involving these two CFTs [14].

2Similar joint contributions were found for the Regge calculus
action with Euclidean signature in [3].

3These authors also include a term involving the expansion Θ
of the null generators. As we discuss below, this term is not
required because it depends only on the surface’s intrinsic
geometry.

4This can also be interpreted as (a component of) the extrinsic
curvature of the null segment [15,16].
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expression for the boundary term reveals a striking fact: its
value depends on the parametrization of the null generators,
and it can be altered at will by a change of parametrization.
For example, the boundary term vanishes when λ is chosen
to be an affine parameter. This observation implies that in
general, the gravitational action is ambiguous when it is
evaluated for a region of spacetime that is bounded in part
by a segment of null hypersurface.
The second issue, the proper accounting of contributions

from joints, was examined by Hayward [4] in the context of
timelike and spacelike surfaces, but his treatment does not
apply to null surfaces. We consider such situations in this
paper, and evaluate the contribution of null joints to the
gravitational action. We recall that Hayward’s conclusion
was that when (say) two spacelike segments are joined
together, the boundary term in the action acquires a
contribution of the form

R
η dS, where η is the rapidity

parameter relating the two unit normals by a Lorentz
transformation, and dS is a surface element on the joint.
On the other hand, when a spacelike, timelike, or null
segment is joined to a null segment of the boundary, we
find below that the contribution to the boundary action is of
the similar form

R
a dS, where a is a quantity tied to the

description of the null hypersurface.5 More precisely, if the
null segment is described by the equation Φ ¼ 0, with Φ a
scalar function in the spacetime, and if its null normal is
given by kα ¼ −μ∂αΦ in the adopted parametrization, with
μ another scalar, then a ¼ ln μ. This contribution to the
action is also ambiguous, because a can be changed at will
by a redefinition of the function Φ.
These observations imply that the computation of the

gravitational action for a Wheeler-DeWitt patch is plagued
with ambiguities: The contribution to the action from each
null segment of the boundary depends arbitrarily on the
choice of parametrization for the generators, and the
contribution from each joint between a null segment and
another (spacelike, timelike, or null) segment is also
arbitrary. These ambiguities may seem to be problematic
for the “complexity equals action” conjecture, but we note
that the complexity is also expected to be ambiguous—we
return to this point in Sec. IV. In any event, at a pragmatic
level, the ambiguities must be tamed before I can be
computed and featured in a critical examination of the
conjecture. Let us add that the ambiguities apply only to the
gravitational action evaluated for a given region of a given
spacetime—the on-shell action; they are evaded when the
action is varied in an implementation of the variational
principle for general relativity.
To see in more concrete terms what the gravitational

action looks like when it is evaluated for a region V of
spacetime whose boundary ∂V is broken up into a number
of segments, we consider (in some fixed spacetime) the

region illustrated in Fig. 2. The boundary includes four
spacelike segments, four null segments, and the joints
between them. For this region, the gravitational action takes
the form of

S ≔ 16πGNI ¼
Z
V
ðR − 2ΛÞdV þ S∂V ; ð1:2Þ

where GN is Newton’s gravitational constant, R the Ricci
scalar, Λ the cosmological constant, dV an invariant
volume element in V , and where the boundary term is
given explicitly given by

S∂V ¼2

Z
S1

KdΣþ2

Z
S2

KdΣ−2

Z
S3

KdΣ−2

Z
S4

KdΣ

þ2

Z
N 1

κdSdλþ2

Z
N̄ 2

κdSdλ−2

Z
N̄ 3

κdSdλ

−2

Z
N 4

κdSdλþ2

I
B11

adS−2

I
B12

ηdSþ2

I
B22

adS

−2

I
B24

adSþ2

I
B44

adSþ2

I
B34

ηdS

þ2

I
B33

adS−2

I
B13

adS; ð1:3Þ

in terms of quantities introduced previously. The sign in
front of each integral will be explained in the technical
sections of the paper. We recall that the contribution from
each null segment is ill defined because it depends on the
choice of λ (which implies a choice of κ), and that except
for B12 and B34, the contribution from each joint is also ill
defined because of the freedom to redefine a.
The gravitational action only becomes well defined

when rules are introduced to specify κðλÞ on each null
segment, and a on each null joint. An attractive choice of
parametrization suggests itself: By ensuring that the gen-
erators of each null segment are affinely parametrized, we
can set κ ¼ 0 and eliminate all such contributions to S∂V .

FIG. 2. A region V of spacetime with its broken boundary ∂V .
The boundary consists of four spacelike segments S1, S2, S3, S4,
and four null segments N 1, N̄ 2, N̄ 3, N 4. These are joined at
codimension-two surfaces denoted Bjk.

5As this paper was nearing completion, we learned that similar
junction terms were proposed in [17].
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Awell-motivated rule to assign a on each null joint emerges
when the influence of these joints on the variational
principle is duly considered, and when the on-shell gravi-
tational action is required to be properly additive, in the
sense that SðV Þ ¼ SðV 1Þ þ SðV 2Þ when a spacetime
region V is subdivided into two subregions, V 1 and
V 2.

6 Our rule goes as follows: When a null segment is
joined to a spacelike or timelike surface, we set
a ¼ ln jn · kj, where nα is the unit normal to the spacelike
or timelike surface, kα is the normal to the null hypersur-
face, and n · k ≔ gαβnαkβ is their inner product; when a null
segment is joined to another null segment, we set instead
a ¼ ln j 1

2
k · k̄j, where kα and k̄α are the null normals. Along

with an appropriate specification of signs, this rule ensures
that the on-shell gravitational action is properly additive.7

The assignment κ ¼ 0 and the joint rules for a eliminate
the ambiguities from the gravitational action, except for a
remaining freedom to rescale λ by a constant factor. We can
remove this final ambiguity for the WDW patch by
imposing a normalization condition on the null normals
at the asymptotic AdS boundary. With these rules in place,
we can finally turn to the task of evaluating S for a Wheeler-
DeWitt patch of a Schwarzschild-AdS black hole, and
calculate its rate of change dS=dt. As stated previously and
described in detail below, we arrive at precisely the same
result first obtained by Brown et al. [8]: dS=dt ¼ 32πGNM,
or dI=dt ¼ 2M.
In the remainder of the paper we offer a detailed account

of the results summarized above. We begin in Sec. II with a
thorough description of the variational principle in general
relativity, when ∂V consists of spacelike, timelike, and null
hypersurface segments.8 After some preliminary remarks in
Sec. II A we review the well-understood case of timelike
and spacelike segments in Sec. II B, before moving on to
the null case in Sec. II C. In Sec. II D we form a closed
boundary by joining spacelike and timelike segments, and
obtain Hayward’s expression for the η-terms in the gravi-
tational action; his rules are summarized in Sec. II E. In
Sec. II F we form a closed boundary by joining spacelike
and null segments, and derive the appropriate joint con-
tributions to the action, our own a-terms; the rules for null
joints are summarized in Sec. II G. The additivity rules

for a are formulated in Sec. II H, which concludes the
section. While much of the material contained in Sec. II is
known from the literature, we consider that a self-contained
and complete account enhances the clarity of the presen-
tation. We also take the opportunity to fill in some of the
technical details left implicit in Hayward’s work [4], and to
provide minor improvements on the developments of
Parattu et al. [6].
In Sec. III we revisit the calculation of dS=dt for a

Wheeler-DeWitt patch of a spacetime describing an eternal
black hole in asymptotically anti-de Sitter space. We begin
with an uncharged black hole in Secs. III A, III B, and III C,
compare our calculations to those of Brown et al. [8] in
Sec. III D, and turn to the charged case in Sec. III E. In
Appendix A we provide an analysis of the ambiguous
nature of the gravitational action when the boundary
includes a null segment. We show that in general, evalu-
ating the boundary action for a null segment through the
limit of a sequence of (say) timelike surfaces produces an
ill-defined result. A notable exception to this statement
arises when the limit is a stationary null surface, e.g. a
Killing horizon; in this case the limit is unique. The theme
is pursued further in Appendix B, in which we show that
the parametrization ambiguity of the gravitational action
can be eliminated by adding a suitable counterterm; the
consequences of this observation will be explored in a
forthcoming publication [27]. Finally, we conclude in
Appendix C with an Action User’s Manual that provides
a concise guide on how each relevant contribution to the
action, and in particular, the sign of each contribution, are
evaluated.

II. VOLUME, SURFACE, AND JOINT
CONTRIBUTIONS TO THE
GRAVITATIONAL ACTION

For the developments of this section, we focus our
attention on a spacetime of d ¼ 4 dimensions; the gener-
alization to higher-dimensional spacetimes is immediate.
To keep track of the sign of different contributions to the
action, we adopt the convention according to which all
timelike and null normal vectors are future-directed, and all
spacelike normals are outward-directed with respect to the
region of interest. Further, we recall that the quantity S
considered below is related to the usual gravitational action
I by S ¼ 16πGNI, as defined in Eq. (1.2).

A. Background and previous results

It is well known that the Hilbert-Einstein action defined
on a four-dimensional domain V ,

SV ≔
Z
V
ðR − 2ΛÞ ffiffiffiffiffiffi

−g
p

d4x; ð2:1Þ

must be supplemented by a boundary term S∂V in order to
give rise to a variational principle in which only the metric

6Additivity beyond the on-shell action, for example in the
context of a path integral for quantum gravity, cannot be
guaranteed. This is because the metric may not be sufficiently
smooth across a null boundary to ensure that λ is an affine
parameter on both sides of the boundary. A further obstruction to
addivity would arise from an extra imaginary contribution to the
action, which has been argued to exist in [18–20]—see also
[5,21–24]. However, this contribution is typically neglected and
we do so here as well.

7It should be noted that there are exceptions to this statement:
As Brill and Hayward have demonstrated [25], the action may not
be additive when a joint B possesses a timelike direction; we
exclude such cases from our considerations.

8A treatment by complementary methods will appear in [26].
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variation δgμν (and not its derivatives) is required to vanish
on the boundary ∂V . The reason is that variation of SV
produces the expression

δSV ¼
Z
V
ðGμν þ ΛgμνÞδgμν

ffiffiffiffiffiffi
−g

p
d4xþ

I
∂V

δvμdΣμ;

ð2:2Þ

with an additional boundary term that must be properly
disposed of. We have introduced

δvμ ≔ gαβδΓμ
αβ − gαμδΓβ

αβ; ð2:3Þ

and dΣμ is an outward-directed surface element on ∂V . The
slash in the middle of the δ symbol in δvμ reminds us that
this infinitesimal quantity is not the variation of another
quantity vμ.
The manipulations carried out in the following subsec-

tions reveal that in all the cases considered,

I
∂V

δvμdΣμ ¼ −δS∂V ; ð2:4Þ

where S∂V is a suitable boundary term, whose variation
reproduces the expression of the left-hand side when the
induced metric on ∂V is held fixed. With this result
established, the gravitational action is properly identified
with SV þ S∂V , and its variation yields

δðSV þ S∂V Þ ¼
Z
V
ðGμν þ ΛgμνÞδgμν

ffiffiffiffiffiffi
−g

p
d4x: ð2:5Þ

The boundary ∂V is usually constructed from spacelike
and timelike hypersurface segments, and in this case the
manipulations that lead to the identification of S∂V are well
known. The most complete version of this computation was
presented by Hayward [4], who paid careful attention to
situations in which ∂V is not a smooth hypersurface.
Specifically, Hayward examined cases in which a (timelike
or spacelike) segment of ∂V is joined to another (timelike
or spacelike) segment at a two-dimensional surface, in such
a way that the normal vector field is discontinuous at the
joint. He showed that in general, such joints contribute to
the boundary action. We reproduce Hayward’s computa-
tions below, and provide details that were left out of
his paper.
The boundary ∂V can also include segments of null

hypersurfaces. This case was not given much attention in
the literature, with the notable recent exceptions of Neiman
[5] and Parattu et al. [6]. We revisit these constructions
here, providing a more complete treatment. Unlike Neiman,
who took the null generators of the hypersurface segments
to be affinely parametrized, we allow the generators to be
arbitrarily parametrized. This generalization reveals the
important fact that the boundary action evaluated on a null

segment depends on the choice of parameter and is there-
fore ill defined in general. And unlike Parattu et al., who
did allow for an arbitrary parametrization but did not
consider the joints with other surfaces, we pay close
attention to the joint that arises when a null segment is
joined to a spacelike, timelike, or null segment. Our
manipulations pertaining to a given null segment also offer
a minor improvement on the treatment provided by Parattu
et al.: while their derivation requires the normal vector to
∂V to be given an extension off the hypersurface so as to
define its derivatives in all directions, our derivation
involves only tangential derivatives and therefore does
not require such an extension.

B. Spacelike/timelike segment

We begin with the well-studied task of evaluatingR
δvμdΣμ on a spacelike or timelike segment of ∂V . We

denote this segment by Σ, and imagine that it is bounded by
the two-surfaces B1 and B2. When Σ is spacelike, B1

represents an inner boundary, and B2 an outer boundary.
When Σ is timelike, B1 represents a past boundary, and B2 a
future boundary.

1. Preliminaries

We first import some helpful results from Secs. 3.1, 3.2,
and 3.4 of Ref. [28]. (We will make frequent use of results
obtained in this book, and we shall refer to it as the Toolkit.)
The hypersurface Σ is described by the relation ΦðxαÞ ¼ 0
for some scalar field Φ. When Σ is spacelike, Φ is taken to
increase toward the future across the hypersurface; when it
is timelike, Φ increases outward. The hypersurface can also
be described by parametric equations xα ¼ xαðyaÞ, in
which ya are intrinsic coordinates on the hypersurface.
The unit normal is

nα ¼ ϵμ∂αΦ; ð2:6Þ

where ϵ ≔ nαnα ¼ �1 and μ ≔ jgαβ∂αΦ∂βΦj−1=2. The
equation implies that when Σ is spacelike, nα is a
future-directed vector; when Σ is timelike, nα points to
the outside. The vectors

eαa ≔
∂xα
∂ya ð2:7Þ

are tangent to Σ and orthogonal to nα. We define
eaα ≔ habgαβe

β
b. The induced metric on the hypersurface is

hab ≔ gαβeαae
β
b; ð2:8Þ

and we denote its determinant by h and its inverse by hab.
The completeness relation for the inverse metric is given by

gαβ ¼ ϵnαnβ þ hαβ; hαβ ≔ habeαae
β
b: ð2:9Þ
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The directed surface element on Σ is

dΣα ¼ ϵnαdΣ; dΣ ≔ jhj1=2d3y; ð2:10Þ
with the convention that dΣα ∝ ∂αΦ, with a positive factor
of proportionality. The extrinsic curvature of the hypersur-
face is defined by

Kab ≔ eαae
β
b∇αnβ; ð2:11Þ

and we recall the identity

eαa∇αe
β
b ¼ Γc

abe
β
c − ϵKabnβ ð2:12Þ

for the derivatives of the tangent vectors; the Christoffel
symbols Γc

ab are those constructed from hab.

2. Variation of geometric quantities

We next perform a variation δgαβ of the metric, and see
how various geometric quantities defined on Σ respond to
the variation. In this exercise it is understood that the
description of the hypersurface is unchanged during the
variation, so that the equationsΦ ¼ 0 and xα ¼ xαðyaÞ keep
their original form. This implies that the tangent vectors eαa
are unaffected by the variation. A variation of the metric,
however, induces a variation of nα, which is given by

δnα ¼
δμ

μ
nα;

δμ

μ
¼ −

1

2
ϵnαnβδgαβ: ð2:13Þ

There is also a change in eaα: the relation δab ¼ eaαeαb implies
that 0 ¼ eαbδe

a
α, so that

δeaα ¼ δAanα ð2:14Þ
for some infinitesimal quantity δAa. The relation 0 ¼ eaαnα

implies that 0 ¼ eaαδnα þ ϵδAa, and ϵ ¼ nαnα implies that
0 ¼ nαδnα þ ϵδμ=μ. We have obtained

δnα ¼ −
δμ

μ
nα − ϵδAaeαa ð2:15Þ

for the variation of nα.
The quantity δAa can be expressed in a number of ways.

We have

δAa ¼ ϵnαδeaα ¼ −ϵeaαδnα; ð2:16Þ
and combining the second form with the identity δnα ¼
nβδgαβ þ gαβδnβ gives

δAa ¼ −ϵeaαnβδgαβ: ð2:17Þ
This shows that δAa is associated with the variation of the
normal-tangent components of the inverse metric. Further,
these results reveal that δAa is not the variation of a
quantity Aa.
The completeness relation for the inverse metric implies

that

δgαβ ¼ −2ϵ
δμ

μ
nαnβ − δAaðeαanβ þ nαeβaÞ þ δhabeαae

β
b:

ð2:18Þ
This expression confirms that δ ln μ represents the variation
of the normal-normal component of the inverse metric, δAa

the variation of the normal-tangent components, and shows
that the variation of the purely tangential components is
captured by δhab.
We next work out two expressions for δK, the variation

of the trace of the extrinsic curvature. For the first, we begin
with K ¼ habKab and write δK ¼ Kabδhab þ habδKab.
Recalling the definition of the extrinsic curvature, we have
that

δKab ¼ eαae
β
bð∇αδnβ − nμδΓ

μ
αβÞ

¼ eαae
β
b½∇αðδ ln μÞnβ þ ðδ ln μÞ∇αnβ − nμδΓ

μ
αβ�

¼ δμ

μ
Kab − eαae

β
bnμδΓ

μ
αβ; ð2:19Þ

so that

δK ¼ Kabδhab þ
δμ

μ
K − hαβnμδΓ

μ
αβ: ð2:20Þ

For the second expression for δK, we begin with δK ¼
hαβ∇αnβ which implies

δK ¼ ðδhαβÞ∇αnβ þ hαβ∇αδnβ þ nαhβμδΓ
μ
αβ: ð2:21Þ

To evaluate the first term, we write hαβ ¼ eαaeaβ , take the
variation to get δhαβ ¼ eαanβδAa, and combine this with
∇αnβ to get zero, because eαanβ∇αnβ ¼ 1

2
eαa∇αðnβnβÞ ¼ 0.

The second term requires more work. We have

hαβ∇αδnβ ¼ eαaeaβ∇αδnβ

¼ eαa∇αðeaβδnβÞ − eαað∇αeaβÞδnβ

¼ −ϵ∂aδAa þ ϵδAbeαae
β
b∇αeaβ þ

δμ

μ
eαanβ∇αeaβ:

ð2:22Þ

The second term involves

eαae
β
b∇αeaβ ¼ eαa∇αðeβbeaβÞ − eαaeaβ∇αe

β
b

¼ eαa∇αðδabÞ − eaβΓc
abe

β
c ¼ −Γc

cb; ð2:23Þ

and the third term involves

eαanβ∇αeaβ ¼ eαa∇αðnβeaαÞ − eαaeaβ∇αnβ ¼ −K: ð2:24Þ

Collecting results, we have obtained
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hαβ∇αδnβ ¼ −ϵDaδAa −
δμ

μ
K; ð2:25Þ

where Da is the covariant-derivative operator compatible
with the induced metric hab. Our second expression for δK
is therefore

δK ¼ −ϵDaδAa −
δμ

μ
K þ nαhβμδΓ

μ
αβ: ð2:26Þ

3. Boundary term

We may now evaluate

Z
Σ
δvμ dΣμ ¼

Z
Σ
ϵδvμnμ dΣ ð2:27Þ

when Σ is a spacelike or timelike hypersurface. We have
that

δvμnμ ¼ ðgαβnμ − nαδβμÞδΓμ
αβ ¼ ðhαβnμ − nαhβμÞδΓμ

αβ;

ð2:28Þ

where the completeness relation was used to go from the
first expression to the second. Invoking next Eqs. (2.20)
and (2.26), we obtain

δvμnμ ¼ −2δK − ϵDaδAa þ Kabδhab; ð2:29Þ

so that

Z
Σ
δvμ dΣμ ¼

Z
Σ
ϵð−2δK þ KabδhabÞdΣ

−
I
B2

δAadSa þ
I
B1

δAadSa; ð2:30Þ

where dSa is a surface element on B1 and B2, the
boundaries of Σ.
We now require the variation δhab to vanish on Σ,9 and

see that the former expression becomes

Z
Σ
δvμdΣμ

¼ −2ϵ
Z
Σ
δK dΣ −

I
B2

δAadSa þ
I
B1

δAadSa

¼ δ

�
−2ϵ

Z
Σ
K dΣ

�
−
I
B2

δAadSa þ
I
B1

δAa dSa:

ð2:31Þ

If δAa were the variation of a quantity Aa, we could take the
variation sign outside the B1 and B2 integrals and identify a
boundary term SΣ for the spacelike or timelike segment.
But δAa is not the variation of anything by itself, and
these manipulations will not go through until we join
segments together to form a closed hypersurface ∂V—see
Sec. II D below.

C. Null segment

We next turn to the task of evaluating
R
δvμdΣμ on a null

segment of ∂V . We again denote this segment by Σ, and
take it to be bounded in the past by a two-surface B1 and in
the future by a two-surface B2.

1. Preliminaries

To handle the case of a null hypersurface we follow the
methods reviewed in Sec. 3.1 of the Toolkit [28]. We
describe the hypersurface by the relation ΦðxαÞ ¼ 0 for
some scalar Φ, with the convention that Φ increases toward
the future. The hypersurface can also be described by the
parametric equations xα ¼ xαðλ; θAÞ, where θA is constant
on each null generator spanning the hypersurface, while λ is
a parameter on each generator. The null normal to the
hypersurface is

kα ¼ −μ∂αΦ; ð2:32Þ

where μ is a (positive definite) scalar function on Σ; the
minus sign ensures that kα is a future-directed vector. The
definition of the intrinsic coordinates ðλ; θAÞ implies that
the vectors

kα ¼ ∂xα
∂λ ; eαA ¼ ∂xα

∂θA ð2:33Þ

are tangent to the hypersurface10 and kα ¼ gαβkβ is
orthogonal to the spacelike vectors eαA. The null vector
satisfies the geodesic equation

kβ∇βkα ¼ κkα; ð2:34Þ

with κðλ; θAÞ measuring the failure of λ to be an affine
parameter on the null generators. The vector basis is
completed with a second null vectorNα, which is transverse
to the hypersurface, orthogonal to eαA, and which we choose
to normalize by kαNα ¼ −1. This allows us to write

κ ¼ −Nαkβ∇βkα: ð2:35Þ

9This is, of course, the usual boundary condition for Einstein’s
general relativity, i.e. the intrinsic geometry is held fixed on the
(timelike and spacelike) boundary surfaces.

10We emphasize that for a null boundary segment Σ, the
normal kα is orthogonal to the surface but kα is tangent to it.
Further, our convention is that kα is future directed and hence kα
is past directed (i.e. kt > 0 while kt < 0).
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We let

γAB ≔ gαβeαAe
β
B ð2:36Þ

be an induced metric on Σ, noting that a displacement on
the hypersurface comes with the line element
ds2 ¼ γABdθAdθB. In this description, which exploits the
congruence of null generators to construct a system of
adapted intrinsic coordinates ðλ; θAÞ, the induced metric is
not merely degenerate but explicitly two dimensional. We
let γAB denote the matrix inverse to γAB, and γ ≔ det½γAB�.
We also introduce eAα ≔ γABgαβe

β
B.

The completeness relation for the inverse metric is
given by

gαβ ¼ −kαNβ − Nαkβ þ γαβ; γαβ ≔ γABeαAe
β
B: ð2:37Þ

According to Eq. (3.20) of the Toolkit, the directed surface
element on Σ is

dΣα ¼ −kα
ffiffiffi
γ

p
d2θdλ; ð2:38Þ

with the convention that dΣα ∝ ∂αΦ, with a positive factor
of proportionality.
The two-tensor

BAB ≔ eαAe
β
B∇αkβ ð2:39Þ

governs the behavior of the congruence of null generators.
It is typically decomposed as

BAB ¼ 1

2
ΘγAB þ σAB; ð2:40Þ

with Θ ≔ γABBAB measuring the rate of expansion of the
congruence, and σAB its rate of shear. We have that

Θ ¼ 1ffiffiffi
γ

p ∂ ffiffiffi
γ

p
∂λ ; ð2:41Þ

which indicates that Θ is the relative rate of change offfiffiffi
γ

p
d2θ, the cross-sectional area of a bundle of null

generators.
We conclude these preliminary remarks with a discus-

sion of the arbitrariness involved in the description of null
hypersurfaces. First, the parametrization of the null gen-
erators is arbitrary, and this implies that λ can be redefined
independently on each generator, λ → λ̄ðλ; θAÞ. The tangent
vector kα, therefore, is defined up to a multiplicative factor
that can vary arbitrarily over the hypersurface. Second, the
function Φ is itself arbitrary, and could be replaced by a
different function that also vanishes on the hypersurface,
Φ → Φ̄ðΦÞ. For a given vector field kα corresponding to a
given choice of parametrization, the freedom to change Φ
corresponds to the freedom to change μ by an arbitrary

multiplicative factor in Eq. (2.32). Note that these two
sources of arbitrariness are independent from one another:
For a fixed choice of Φ, a reparametrization changes kα by
an arbitrary multiplicative factor, which is then inherited by
μ through Eq. (2.32); for a fixed choice of parametrization
and kα, a change of Φ corresponds to a change of μ by an
independent multiplicative factor.

2. Variation of geometric quantities

We next perform a variation δgαβ of the metric, and see
how various geometric quantities defined on Σ respond to
the variation. It is again understood that the description of
the hypersurface is unchanged during the variation, so that
the equations Φ ¼ 0 and xα ¼ xαðλ; θAÞ keep their original
form. This implies that the tangent vectors kα and eαA are
unaffected by the variation. We also assume that the
hypersurface stays null during the variation, and therefore
impose

δðgαβkαkβÞ ¼ kαkβδgαβ ¼ 0 ð2:42Þ

in our manipulations. We further assume that the vectors kα

and eαA stay orthogonal during the variation, so that

δðgαβeαAkβÞ ¼ eαAk
βδgαβ ¼ 0: ð2:43Þ

At a later stage we shall impose the additional restriction
that the variation of the induced two-metric γAB ≔ gαβeαAe

β
B

should vanish, completing to six the count of fixed metric
components on the hypersurface (the same count as for a
timelike or spacelike boundary surface).
The statements that δkα ¼ 0 and δeαA ¼ 0, together with

the relations kαkα ¼ 0 and eαAkα ¼ 0, imply that kαδkα ¼ 0

and eαAδkα ¼ 0, which means that

δkα ¼ δakα ð2:44Þ

for some δa. There is actually a quantity a whose variation
is δa. To see this, recall the relation kα ¼ −μ∇αΦ, which
implies that δkα ¼ ðδ ln μÞkα, so that

a ¼ ln μ: ð2:45Þ

This quantity will play a very important role below. A
similar calculation reveals that

δeAα ¼ δaAkα ð2:46Þ

for some infinitesimal quantity δaA.
Variation of ∇αkμ yields

δð∇αkμÞ ¼ kβδΓμ
αβ; ð2:47Þ

and a short calculation also reveals that
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δð∇αkβÞ ¼ ð∇αδaÞkβ þ δa∇αkβ − kμδΓ
μ
αβ: ð2:48Þ

For each one of these identities it is understood that kμ

or kα is differentiated in the directions tangent to the
hypersurface.
Equations (2.34) and (2.47) immediately imply that

δκ ¼ −kαkβNμδΓ
μ
αβ: ð2:49Þ

Alternatively, we can write Eq. (2.34) in the form
kα∇αkβ ¼ κkβ, and construct the variation using
Eq. (2.48). This yields

δκ ¼ kα∇αδaþ kαNβkμδΓ
μ
αβ: ð2:50Þ

We next examine the variation ofΘ, the rate of expansion
of the congruence of null generators. In the first version of
this calculation we write Θ ¼ γABBAB and express the
variation as δΘ ¼ BABδγ

AB þ γABδBAB. Equations (2.39)
and (2.48) imply that

δBAB ¼ δaBAB − eαAe
β
BkμδΓ

μ
αβ; ð2:51Þ

and taking the trace returns

δΘ ¼ BABδγ
AB þ Θδa − γαβkμδΓ

μ
αβ: ð2:52Þ

In the second version of the calculation we write instead

Θ ¼ γαμ∇αkμ ¼ eαAe
A
μ∇αkμ ð2:53Þ

and take the variation using Eq. (2.47). We have

δΘ ¼ eαAðδeAαÞ∇αkμ þ eαAe
A
μ δð∇αkμÞ

¼ eαAðδaAÞkμ∇αkμ þ eαAe
A
μkβδΓ

μ
αβ: ð2:54Þ

The first term vanishes, and we end up with

δΘ ¼ kαγβμδΓ
μ
αβ: ð2:55Þ

3. Boundary term

We may now evaluate
R
Σ δv

μdΣμ when Σ is a null
hypersurface. We recall Eq. (2.3) and write

δvμkμ ¼ ðgαβkμ − kαgβμÞδΓμ
αβ; ð2:56Þ

in which we insert the completeness relation (2.37). After
some simple algebra we arrive at

δvμkμ ¼ ðkαkβNμ − kαNβkμ þ γαβkμ − kαγβμÞδΓμ
αβ: ð2:57Þ

We next use Eqs. (2.49), (2.50), (2.52), and (2.55) to
replace each term involving δΓμ

αβ by variations of quantities
defined on the hypersurface. We obtain

δvμkμ ¼ kα∇αδaþ Θδa − 2δðκ þ ΘÞ þ BABδγ
AB: ð2:58Þ

With Eq. (2.41) this equation becomes

δvμkμ ¼
1ffiffiffi
γ

p ∂
∂λ ð

ffiffiffi
γ

p
δaÞ − 2δðκ þ ΘÞ þ BABδγ

AB; ð2:59Þ

and this shall be our final expression for δvμkμ.
We have found that the hypersurface integral is given by

Z
Σ
δvμdΣμ ¼

Z
Σ
½2δðκ þ ΘÞ − BABδγ

AB� ffiffiffi
γ

p
d2θdλ

−
Z
Σ

∂
∂λ ðδa

ffiffiffi
γ

p
d2θÞdλ: ð2:60Þ

Incorporating our assumption that Σ is bounded in the
future by a two-surface B2 and in the past by a two-surface
B1, this is

Z
Σ
δvμdΣμ ¼

Z
Σ
½2δðκ þ ΘÞ − BABδγ

AB� ffiffiffi
γ

p
d2θdλ

−
I
B2

δa
ffiffiffi
γ

p
d2θ þ

I
B1

δa
ffiffiffi
γ

p
d2θ: ð2:61Þ

This can be expressed in a different form by manipulating
the δΘ term. Because Θ ¼ ∂λ ln

ffiffiffi
γ

p
we have that

Z
Σ
δΘ

ffiffiffi
γ

p
d2θdλ

¼
Z
Σ
∂λðδ ln ffiffiffi

γ
p Þ ffiffiffi

γ
p

d2θdλ

¼ −
Z
Σ
ð∂λ

ffiffiffi
γ

p Þδ ln ffiffiffi
γ

p
d2θdλþ

I
B2

ffiffiffi
γ

p
δ ln

ffiffiffi
γ

p
d2θ

−
I
B1

ffiffiffi
γ

p
δ ln

ffiffiffi
γ

p
d2θ

¼ −
Z
Σ
Θδ

ffiffiffi
γ

p
d2θdλþ

I
B2

δ
ffiffiffi
γ

p
d2θ −

I
B1

δ
ffiffiffi
γ

p
d2θ:

ð2:62Þ

In the second and third terms the variation sign can be taken
out of the integral, and in the first term we can write
δ

ffiffiffi
γ

p ¼ − 1
2

ffiffiffi
γ

p
γABδγ

AB. This yields

Z
Σ
δΘ

ffiffiffi
γ

p
d2θdλ ¼ 1

2

Z
Σ
ΘγABδγAB

ffiffiffi
γ

p
d2θdλþ δA2 − δA1;

ð2:63Þ

where Aj ≔
H
Bj

ffiffiffi
γ

p
d2θ is the area of the two-surface Bj.

Substitution within Eq. (2.61) gives
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Z
Σ
δvμdΣμ ¼

Z
Σ
½2δκ − ðBAB − ΘγABÞδγAB�

×
ffiffiffi
γ

p
d2θdλþ δA2 −

I
B2

δa
ffiffiffi
γ

p
d2θ

− δA1 þ
I
B1

δa
ffiffiffi
γ

p
d2θ: ð2:64Þ

If we now assume that δγAB ¼ 0 on Σ (as part of the
variational conditions on the null surface—see the dis-
cussion above), the result simplifies to

Z
Σ
δvμdΣμ

¼ 2

Z
Σ
δκ

ffiffiffi
γ

p
d2θdλ −

I
B2

δa
ffiffiffi
γ

p
d2θ þ

I
B1

δa
ffiffiffi
γ

p
d2θ

¼ δ

�
2

Z
Σ
κ

ffiffiffi
γ

p
d2θdλ −

I
B2

a
ffiffiffi
γ

p
d2θ þ

I
B1

a
ffiffiffi
γ

p
d2θ

�
:

ð2:65Þ

This computation reveals the existence of a boundary term

SΣ ¼ −2
Z
Σ
κ

ffiffiffi
γ

p
d2θdλþ

I
B2

a
ffiffiffi
γ

p
d2θ −

I
B1

a
ffiffiffi
γ

p
d2θ

ð2:66Þ

for a segment Σ of a null hypersurface. We note that by
virtue of Eq. (2.41), the condition δγAB ¼ 0 automatically
implies that δΘ ¼ 0, and this term was therefore eliminated
in Eq. (2.65). We note that our boundary term (2.66) differs
from the one given in [6] by a term proportional to Θ, since
the δΘ term was retained there in their final expression
for

R
Σ δv

μdΣμ.
Our expression for SΣ pertains to an isolated segment of

null hypersurface. This segment, however, is only part of a
closed boundary ∂V of a finite domain V of spacetime. In
particular, Σ will be joined to other (spacelike, timelike, or
null) segments comprising ∂V at B1 and B2, and hence we
should expect additional contributions at these joints
coming from the neighboring segments. We will show
below in Sec. II F that with the addition of these contri-
butions, SΣ becomes

SΣðjoinedÞ

¼ −2
Z
Σ
κ

ffiffiffi
γ

p
d2θdλþ 2

I
B2

a
ffiffiffi
γ

p
d2θ − 2

I
B1

a
ffiffiffi
γ

p
d2θ:

ð2:67Þ

That is, the joint terms at B1 and B2 acquire a factor of 2.
Furthermore, the joining of segments forces a to take the
specific form a ¼ ln jn · kj þ a0 when Σ is joined to a
spacelike or timelike surface with unit normal nα, or of the

form a ¼ lnð−k · k̄Þ þ a0 when it is joined to another null
surface with normal k̄α. Here, a dot indicates an inner
product between vectors, for example n · k ≔ gαβnαkβ, and
a0 is an arbitrary quantity that satisfies δa0 ¼ 0.
It is striking that the value of SΣðjoinedÞ is ill defined,

first because it depends on the choice of parametrization for
the null generators, and second because it depends on the
choice of a0. However, the variation of the boundary term is
well defined, because the parametrization and a0 are fixed
while taking the variation. For a stationary null hypersur-
face there exists a preferred parametrization λ� defined such
that κ, γAB, and a are all independent of λ�. An example of
this is a Killing horizon, for which kα can be identified with
the Killing vector ξα evaluated on the horizon, Φ is chosen
to be equal to ξαξ

α, and then a ¼ − lnð2κÞ. In this case
SΣðjoinedÞ reduces to

S�ΣðjoinedÞ ¼ −2κ�Aðλ�2 − λ�1Þ; ð2:68Þ

where A ≔
R ffiffiffi

γ
p

d2θ is the cross-sectional area of the
hypersurface. Note that the two joint terms in Eq. (2.67)
have cancelled here because the cross sections are invariant
under the Killing flow, i.e. A1 ¼ A2 ¼ A and a1 ¼ a2.

4. Reparametrizations

It is instructive to work out what happens to SΣðjoinedÞ
when the parametrization of each generator is changed
from λ to λ̄ ¼ λ̄ðλ; θAÞ. The effect of this transformation on
the various geometrical quantities was deduced in
Ref. [29]. Defining e−β ≔ ∂λ̄=∂λ, we have that

k̄α ¼ eβkα; γ̄AB ¼ γAB; B̄AB ¼ eβBAB;

κ̄ ¼ eβðκ þ ∂λβÞ: ð2:69Þ

The first relation implies that ā ¼ aþ β (assuming thatΦ is
not changed during the reparametrization), and the third
gives Θ̄ ¼ eβΘ. Inserting this within SΣðjoinedÞ yields

S̄ΣðjoinedÞ ¼ SΣðjoinedÞ − 2

Z
Σ
∂λβ

ffiffiffi
γ

p
d2θdλ

þ 2

I
B2

β
ffiffiffi
γ

p
d2θ − 2

I
B1

β
ffiffiffi
γ

p
d2θ

¼ SΣðjoinedÞ þ 2

Z
Σ
Θβ

ffiffiffi
γ

p
d2θdλ; ð2:70Þ

with the second expression following from the first after an
integration by parts. As expected, in general the value of
SΣðjoinedÞ for a given spacetime is not invariant under a
reparametrization of the null generators. An exception
arises in the case of a stationary hypersurface, for which
Θ ¼ 0. In this case the boundary term is invariant under a
reparametrization, and it will therefore return the same
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value as in Eq. (2.68) irrespective of the parameterization of
the null generators (so long as the choice of Φ is fixed).

5. Redefinition of Φ

We have pointed out that SΣðjoinedÞ is ill defined
because it depends on the choice of parameter λ, and also
because it depends on the choice of function Φ that
describes the hypersurface. To conclude this discussion,
we describe the change to SΣðjoinedÞ that results when we
perform the redefinition

Φ → Φ̄ðΦÞ; ð2:71Þ

assuming that Φ̄ ¼ 0 when Φ ¼ 0. We keep the para-
metrization fixed during this operation, so that kα is
unchanged as a vector field on the hypersurface. It is easy
to see that under the redefinition (2.71), kα is reexpressed as

kα ¼ −μ̄∂αΦ̄; μ̄ ≔ μ
dΦ
dΦ̄

: ð2:72Þ

This implies that a ≔ ln μ is changed to

ā ¼ aþ ln
dΦ
dΦ̄

; ð2:73Þ

this change is actually in the a0 piece of a, since the
remaining piece—given by ln jn · kj or lnð−k · k̄Þ—is fixed
for a given parametrization. The boundary action becomes

S̄ΣðjoinedÞ ¼ SΣðjoinedÞ þ 2

I
B2

ln
dΦ

dΦ̄
ffiffiffi
γ

p
d2θ

− 2

I
B2

ln
dΦ

dΦ̄
ffiffiffi
γ

p
d2θ: ð2:74Þ

This shows that the value of SΣðjoinedÞ for a given
spacetime is not invariant under a redefinition of Φ.

D. Closed hypersurface: Timelike
and spacelike segments

In Secs. II B and II C, we derived boundary terms for the
gravitational action (1.2). However, as we noted there, our
analysis only examined isolated (spacelike, timelike, or
null) boundary segments, which are implicitly part of a
closed boundary ∂V of a finite domain V of spacetime. As
a result, we were unable to give a complete description of
the boundary contributions arising at the joints between
neighboring segments. We repair this deficiency in the next
sections by focusing on the intersection of various boun-
dary segments.
We begin in this section by forming a closed hypersur-

face ∂V with a timelike segment T joined to two spacelike
segments S1 (in the past) and S2 (in the future), as
illustrated in Fig. 3. The intersection between T and S1

is the spacelike two-surface B1, and B2 is the intersection

between T and S2. This is one of the cases that were first
considered by Hayward [4].
To avoid confusion we must carefully specify the

notation employed on each hypersurface segment and
the joints between them. To set the stage we consider only
T and the future surface S ≡ S2, which intersect at
B≡ B2; the past surface will be added at a later stage.
The spacelike hypersurface S has intrinsic coor-

dinates ya, a future-directed unit normal vector nα with
ϵ ¼ nαnα ¼ −1, and a set of tangent vectors eαa ¼ ∂xα=∂ya.
The induced metric is hab, the extrinsic curvature is Kab,
and the boundary quantity introduced in Eq. (2.17) is again
denoted δAa. The inverse metric on S is expressed as

gαβ ¼ −nαnβ þ habeαae
β
b: ð2:75Þ

The two-dimensional surface B can be given an embedding
in S. In this description, it has intrinsic coordinates θA, an
outward-directed unit normal vector ra, and a set of tangent
vectors eaA ¼ ∂ya=∂θA. The induced metric is γAB, and we
have the completeness relation

hab ¼ rarb þ γABeaAe
b
B: ð2:76Þ

We promote ra and eaA to spacetime vectors according to
rα ¼ raeαa and eαA ¼ eaAe

α
a, and combine the completeness

relations to give

gαβ ¼ −nαnβ þ rαrβ þ γABeαAe
β
B; ð2:77Þ

the inverse metric evaluated on B.
Turning to the timelike hypersurface T , we give it

intrinsic coordinates zj, an outward-directed unit normal
vector sα with ϵ ¼ sαsα ¼ þ1, and a set of tangent vectors
eαj ¼ ∂xα=∂zj. The induced metric is fjk, the extrinsic
curvature is Ljk, and the boundary quantity introduced in
Eq. (2.17) is now denoted δBj. The inverse metric on T is

FIG. 3. Domain V bounded by a closed hypersurface ∂V
consisting of a timelike segment T and two spacelike segments
S1 and S2. The intersection between T and Sj is the closed two-
surface Bj.
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gαβ ¼ sαsβ þ fjkeαj e
α
k: ð2:78Þ

The two-dimensional surface B can also be given an
embedding in T . In this description, it has the same
intrinsic coordinates θA, but the outward-directed unit
normal vector11 is now mj, and the tangent vectors are

ejA ¼ ∂zj=∂θA. The induced metric is γAB, and we have the
completeness relation

fjk ¼ −mjmk þ γABejAe
k
B: ð2:79Þ

We promote mj and ejA to spacetime vectors according to
mα ¼ mjeαj and eαA ¼ ejAe

α
j , and combine the completeness

relations to give

gαβ ¼ −mαmβ þ sαsβ þ γABeαAe
β
B; ð2:80Þ

an alternative expression for the inverse metric evaluated
on B.
Each pair fnα; rαg and fmα; sαg forms a set of (mutually

orthogonal) unit normals on B. Each pair can be used as a
two-dimensional vector basis, and the bases are related by a
spacetime boost. For example, we may write

nα ¼ cosh ηmα þ sinh ηsα; rα ¼ sinh ηmα þ cosh ηsα

ð2:81Þ

for some boost parameter η. A consequence of these
relations is

mα¼ 1

coshη
nα−

sinhη
coshη

sα; rα¼ sinhη
coshη

nαþ 1

coshη
sα;

ð2:82Þ

which expresses mα (the normal to B embedded in T ) and
rα (the normal to B embedded in S) in terms of nα (the
normal to S) and sα (the normal to T ).
Now from Eq. (2.31) we have that

Z
S
δvμdΣμ ¼ δ

�
2

Z
S
K

ffiffiffi
h

p
d3y

�
−
I
B
raδAa ffiffiffi

γ
p

d2θ;

ð2:83Þ

where we have inserted the relation dSa ¼ ra
ffiffiffi
γ

p
d2θ for the

surface element on B. The same equation also produces

Z
T
δvμdΣμ ¼ δ

�
−2

Z
T
L

ffiffiffiffiffiffi
−f

p
d3z

�
þ
I
B
mjδBj ffiffiffi

γ
p

d2θ;

ð2:84Þ

where this time we used the relation dSj ¼ −mj
ffiffiffi
γ

p
d2θ for

the surface element. Following the notation introduced
above, we are using L to denote the trace of the extrinsic
curvature on T . Combining these two terms gives

Z
SþT

δvμdΣμ

¼ δ

�
2

Z
S
K

ffiffiffi
h

p
d3y − 2

Z
T
L

ffiffiffiffiffiffi
−f

p
d3z

�
−
I
B
δC

ffiffiffi
γ

p
d2θ;

ð2:85Þ

where δC ≔ raδAa −mjδBj.
To evaluate the joint term on B, we recall from Eq. (2.17)

that δAa ¼ þeaαnβδgαβ and δBj ¼ −ejαsβδgαβ. This gives

δC ¼ ðraeaαnβ þmje
j
αsβÞδgαβ

¼ −ðraeαanβ þmjeαj s
βÞδgαβ

¼ −ðrαnβ þmαsβÞδgαβ
¼ þ sinh η

cosh η
ð−nαnβ þ sαsβÞδgαβ

−
1

cosh η
ðnαsβ þ sαnβÞδgαβ; ð2:86Þ

where Eq. (2.82) was used in the last step.
On the other hand, we can vary the equation

sinh η ¼ gαβnαsβ ð2:87Þ

using Eq. (2.13) for δnα and an analogous relation for δsβ.
Simple algebra then returns

δη ¼ −
sinh η
2 cosh η

ð−nαnβ þ sαsβÞδgαβ

þ 1

2 cosh η
ðnαsβ þ sαnβÞδgαβ; ð2:88Þ

and we conclude that δC ¼ 2δη. Incorporating this in
Eq. (2.85), we arrive at

Z
SþT

δvμdΣμ ¼ δ

�
2

Z
S
K

ffiffiffi
h

p
d3y − 2

Z
T
L

ffiffiffiffiffiffi
−f

p
d3z

− 2

I
B
η

ffiffiffi
γ

p
d2θ

�
: ð2:89Þ

Hence the full boundary term for the hypersurface S þ T
includes the Hayward term [4], proportional to the boost
parameter η, at the joint B.

11This normal mj is in the tangent space of T and “outward-
directed” from this boundary surface. This also means that it is a
future-directed timelike unit vector.
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The joint term in Eq. (2.89) involves the parameter
required to boost between the normal nα to T and the
normal sα to S, i.e. η ≔ arcsinhðn · sÞ, with
n · s ≔ gαβnαsβ. It is useful to give a simpler expression
for η, one which will be adapted to other types of joints
below. For this purpose, we introduce a basis of null vectors
kα and k̄α; we take kα and k̄α to be incoming and outgoing
with respect to T , respectively,12 and we temporarily
normalize them so that k · k̄ ¼ −1. In terms of this basis,
we have

nα ¼ 1

2A
kα þ Ak̄α; sα ¼ −

1

2B
kα þ Bk̄α; ð2:90Þ

where A ≔ −n · k > 0 and B ≔ −s · k > 0. With these
expressions, we can easily show that sinh η ¼
1
2
ðA=B − B=AÞ, so that

η ¼ lnð−n · kÞ − lnð−s · kÞ: ð2:91Þ

Noting that A ¼ 1=ð2ĀÞ and B ¼ 1=ð2B̄Þ with Ā ≔ −n · k̄
and B̄ ≔ s · k̄, η can alternatively be expressed as

η ¼ − lnð−n · k̄Þ þ lnðs · k̄Þ: ð2:92Þ

These expressions reveal that η is independent of the
normalization of the null vectors kα and k̄α, as it should
be. The normalization condition k · k̄ ¼ −1, which facili-
tated the computations producing to Eqs. (2.91) and (2.92),
can therefore be relaxed; the expressions are valid for
arbitrarily normalized null vectors.
At this stage we introduce the past surface S1 and

construct the closed hypersurface ∂V . The previous analy-
sis can again be applied to determine the boundary term on
S1 and the joint B1 where the former intersects with T .
However, we must alter some signs to account for the fact
that while dΣμ is outward directed on all of the segments
comprising ∂V , we take nα to be future directed on both S1

and S2. The final result is

Z
∂V

δvμdΣμ

¼ δ

�
2

Z
S2

K
ffiffiffi
h

p
d3y − 2

Z
T
L

ffiffiffiffiffiffi
−f

p
d3z

− 2

Z
S1

K
ffiffiffi
h

p
d3y − 2

I
B2

η
ffiffiffi
γ

p
d2θ þ 2

I
B1

η
ffiffiffi
γ

p
d2θ

�
:

ð2:93Þ

Hence Eq. (2.4) implies

S∂V ¼ −2
Z
S2

K
ffiffiffi
h

p
d3yþ 2

Z
T
L

ffiffiffiffiffiffi
−f

p
d3z

þ 2

Z
S1

K
ffiffiffi
h

p
d3yþ 2

I
B2

η
ffiffiffi
γ

p
d2θ − 2

I
B1

η
ffiffiffi
γ

p
d2θ;

ð2:94Þ

and we have reproduced Hayward’s expression for the
complete boundary action when ∂V consists of the union
of a timelike surface T , a past spacelike surface S1, and a
future spacelike surface S2. The boost parameter η that
appears in the integrals over B1 and B2 is defined by
Eq. (2.87), and given more explicitly by Eqs. (2.91)
and (2.92).

E. Rules for timelike and spacelike joints

The considerations of Sec. II D can easily be adapted to
other types of joints between timelike and spacelike
boundary segments. A number of relevant cases are
illustrated in Fig. 4; a more complete set of situations
was presented in Hayward’s original work [4]. For all these
cases, the boost parameter η can be expressed in terms of
the projections of the normal vectors in the directions of the
null vectors kα and k̄α introduced previously.
In the situation depicted in Fig. 4(a), we have a past

boundary broken at the two-surface B into two spacelike
segments of normal nα1 and n

α
2 . In this case, the contribution

from B to the boundary action is −2
H
B ηadS, where dS ≔ffiffiffi

γ
p

d2θ is a surface element on B, and where the boost
parameter is given by

ηa ¼ lnð−n1 · kÞ − lnð−n2 · kÞ
¼ − lnð−n1 · k̄Þ þ lnð−n2 · k̄Þ: ð2:95Þ

In Fig. 4(b), the past boundary is replaced by a future
boundary, and the contribution to the boundary action is
2
H
B ηbdS with ηb ¼ ηa.
In the situation illustrated in Fig. 4(c), we have two

timelike segments of normals sα1 and sα2 joined together at
B. In this case the contribution to the boundary action is
−2

H
B ηcdS, with

ηc ¼ lnð−s1 · kÞ − lnð−s2 · kÞ ¼ − lnðs1 · k̄Þ þ lnðs2 · k̄Þ:
ð2:96Þ

Figure 4(d) represents the situation examined in detail in
Sec. II D, which features a timelike boundary of normal sα

joined at B to a future, spacelike boundary of normal nα. In
this case the contribution to the boundary action is
2
H
B ηddS, with

ηd ¼ lnð−n · kÞ − lnð−s · kÞ ¼ − lnð−n · k̄Þ þ lnðs · k̄Þ:
ð2:97Þ

12That is, both null vectors are future directed, i.e. k · n < 0
and k̄ · n < 0, and then we choose k · s < 0 and k̄ · s > 0.
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In Fig. 4(e), the future boundary is replaced by a past
boundary, and the contribution to the boundary action
becomes 2

H
B ηedS, with ηe ¼ ηd.

In the situation depicted in Fig. 4(f), we have two
spacelike segments of normal nα1 and nα2 joined together
at B. The joint gives a contribution 2

H
B ηfdS to the

boundary integral, with

ηf ¼ lnð−n1 · kÞ − lnð−n2 · kÞ
¼ − lnð−n1 · k̄Þ þ lnð−n2 · k̄Þ: ð2:98Þ

Finally, in Fig. 4(g), we have two timelike segments of
normal sα1 and sα2 , and the joint contribution is 2

H
B ηgdS,

with

ηg ¼ lnðs1 · kÞ − lnð−s2 · kÞ ¼ − lnð−s1 · k̄Þ þ lnðs2 · k̄Þ:
ð2:99Þ

A summary of the general rules for the construction of
joint terms for intersections of spacelike and/or timelike
boundary segments, as well as all of the other boundary

terms in the gravitational action, appear in Appendix C.
Note that our presentation of these joint terms differs
somewhat from that originally given in [4,25]; our results,
however, are in precise agreement with those earlier works.
Our construction also provides an explicit prescription for
the sign of these terms, which was left ambiguous there.

F. Closed hypersurface: Null and spacelike segments

In this section, we form a closed hypersurface ∂V by
combining null and spacelike hypersurfaces. Cases in
which null segments are joined to timelike hypersurfaces
can be treated along the same lines, but we shall not
describe such a construction here. However, the appropriate
joint terms in the gravitational action for these situations
will be described in Sec. II G.

1. Past light cone truncated by spacelike segments

We begin by joining a truncated past light coneN to two
spacelike segments S1 (in the past) and S2 (in the future), as
illustrated in Fig. 5. The intersection between N and S1 is
the two-surface B1, and B2 is the intersection between N
and S2. From Eq. (2.31), we have that

FIG. 4. Joint terms in the boundary action. In (a) a past boundary is broken at B into two spacelike segments of normal nα1 and n
α
2 ; the

contribution from B to the boundary action is −2
H
B ηdS. In (b) a future boundary is broken into two spacelike segments; the contribution

to the boundary action is 2
H
B ηdS. In (c), a timelike boundary is broken into two timelike segments of normal sα1 and s

α
2; the contribution

to the boundary action is −2
H
B ηdS. In (d), a timelike boundary of normal sα is joined at B to a future, spacelike boundary of normal nα;

the contribution to the boundary action is 2
H
B ηdS. In (e), a timelike boundary is joined to a past boundary, with contribution −2

H
B ηdS.

In panel f, two spacelike boundaries are joined, with contribution 2
H
B ηdS. Finally, two timelike boundaries are joined in (g), with

contribution 2
H
B ηdS. In all panels the shaded region represents the interior of V . The figure also shows the null vectors kα and k̄α,

which are introduced in the main text.
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Z
S2

δvμdΣμ ¼ δ

�
2

Z
S2

K
ffiffiffi
h

p
d3y

�
−
I
B2

raδAa ffiffiffi
γ

p
d2θ;

ð2:100Þ

where we inserted the relation dSa ¼ ra
ffiffiffi
γ

p
d2θ for the

surface element on B2. According to the conventions
introduced in Sec. II B, dΣμ ∝ ∂μΦ, with the function Φ
increasing toward the future of the hypersurface. Because
this coincides with the direction out of V , we have that dΣμ

is correctly oriented on ∂V . From Eq. (2.31) we also get

Z
S1

δvμdΣμ ¼ δ

�
−2

Z
S1

K
ffiffiffi
h

p
d3y

�
þ
I
B1

raδAa ffiffiffi
γ

p
d2θ;

ð2:101Þ

with the change in sign accounting for the fact that the
outward direction now coincides with the past of S1. On the
other hand, Eq. (2.65) gives

Z
N
δvμdΣμ ¼ δ

�
2

Z
N
κ

ffiffiffi
γ

p
d2θdλ

�

−
I
B2

δa
ffiffiffi
γ

p
d2θ þ

I
B1

δa
ffiffiffi
γ

p
d2θ; ð2:102Þ

with the same convention that dΣμ ∝ ∂μΦ, with Φ increas-
ing toward the future of N , which coincides with the
exterior of V .
Combining these expressions produces

Z
∂V

δvμdΣμ

¼ δ

�
2

Z
S2

K
ffiffiffi
h

p
d3yþ 2

Z
N
κ

ffiffiffi
γ

p
d2θdλ − 2

Z
S1

K
ffiffiffi
h

p
d3y

�

−
I
B2

ðδaþ raδAaÞ ffiffiffi
γ

p
d2θ þ

I
B1

ðδaþ raδAaÞ ffiffiffi
γ

p
d2θ:

ð2:103Þ

Below we shall show that raδAa ¼ δa when a truncated
past light cone is joined to a segment of spacelike hyper-
surface. This remarkable property allows us to write

Z
∂V

δvμdΣμ ¼ δ

�
2

Z
S2

K
ffiffiffi
h

p
d3yþ 2

Z
N
κ

ffiffiffi
γ

p
d2θdλ

− 2

Z
S1

K
ffiffiffi
h

p
d3y − 2

I
B2

a
ffiffiffi
γ

p
d2θ

þ 2

I
B1

a
ffiffiffi
γ

p
d2θ

�
; ð2:104Þ

and to identify the boundary action

S∂V ¼ −2
Z
S2

K
ffiffiffi
h

p
d3y − 2

Z
N
κ

ffiffiffi
γ

p
d2θdλ

þ 2

Z
S1

K
ffiffiffi
h

p
d3yþ 2

I
B2

a
ffiffiffi
γ

p
d2θ − 2

I
B1

a
ffiffiffi
γ

p
d2θ:

ð2:105Þ

We shall also show that in Eq. (2.105), a must be of the
form

a ¼ lnð−n · kÞ þ a0; ð2:106Þ

where nα is the unit normal to S1 or S2, kα is the null
normal to N , n · k is their inner product, and a0 is an
arbitrary quantity that satisfies δa0 ¼ 0.
Reiterating the statements made near the end of

Sec. II C 3, we observe that in general, the boundary action
is ill defined because it depends on the choices made for the
parameter λ and function a0.

2. Future light cone truncated by spacelike segments

Next we form a closed hypersurface ∂V by joining a
truncated future light cone N̄ to two spacelike segments S1

(in the past) and S2 (in the future); see Fig. 6. The
intersection between N̄ and S1 is the two-surface B1,
and B2 is the intersection between N̄ and S2.
The contributions to the ∂V integral coming from S2 and

S1 are still given by Eqs. (2.100) and (2.101), respectively.
The contribution from N̄ , however, requires us to introduce
an overall minus sign in Eq. (2.102), so that

FIG. 5. A closed hypersurface ∂V consisting of a past spacelike
surface S1, a truncated past null cone N , and a future spacelike
surface S2.

FIG. 6. A closed hypersurface ∂V consisting of a past spacelike
surface S1, a truncated future null cone N̄ , and a future spacelike
surface S2.
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Z
N̄
δvμdΣμ ¼ δ

�
−2

Z
N̄
κ̄

ffiffiffi
γ

p
d2θdλ̄

�

þ
I
B2

δā
ffiffiffi
γ

p
d2θ −

I
B1

δā
ffiffiffi
γ

p
d2θ; ð2:107Þ

where quantities with overbars refer to the null generators
of the future light cone. The minus sign accounts for the
fact that in the conventions employed to derive Eq. (2.65),
dΣμ ∝ ∂μΦ with Φ increasing toward the future of N̄ . This
direction corresponds to the interior of V , and a correct
outward orientation for dΣμ therefore requires the change
of sign.
Combining these expressions produces

Z
∂V

δvμdΣμ

¼ δ

�
2

Z
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K
ffiffiffi
h

p
d3y − 2

Z
N̄
κ̄

ffiffiffi
γ
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d2θdλ̄ − 2

Z
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K
ffiffiffi
h

p
d3y

�

þ
I
B2

ðδā − raδAaÞ ffiffiffi
γ

p
d2θ −

I
B1

ðδā − raδAaÞ ffiffiffi
γ

p
d2θ:

ð2:108Þ

Below we shall show that raδAa ¼ −δā when a truncated
future light cone is joined to a segment of spacelike
hypersurface. This allows us to write

Z
∂V

δvμdΣμ

¼ δ

�
2

Z
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K
ffiffiffi
h

p
d3y − 2

Z
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κ̄

ffiffiffi
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− 2

Z
S1

K
ffiffiffi
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ffiffiffi
γ
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ā
ffiffiffi
γ

p
d2θ

�
;

ð2:109Þ

and to identify the boundary action

S∂V ¼ −2
Z
S2

K
ffiffiffi
h

p
d3yþ 2

Z
N̄
κ̄

ffiffiffi
γ

p
d2θdλ̄

þ 2

Z
S1

K
ffiffiffi
h

p
d3y − 2

I
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ā
ffiffiffi
γ

p
d2θ

þ 2

I
B1

ā
ffiffiffi
γ

p
d2θ: ð2:110Þ

Further, we shall show that in Eq. (2.110), ā must be of the
form

ā ¼ lnð−n · k̄Þ þ ā0; ð2:111Þ
where nα is the unit normal to S1 or S2, k̄α is the null
normal to N̄ , n · k̄ is their inner product, and ā0 is an
arbitrary quantity that satisfies δā0 ¼ 0.

Once more we observe that the boundary action is ill
defined because it depends on the choices made for the
parameter λ̄ and function ā0.

3. Past and future light cone truncated by
spacelike segments

As a final variation on the theme, we form ∂V by taking
the union of a past spacelike surface S1, a truncated future
null cone N̄ , a truncated past null cone N , and a future
spacelike surface S2; see Fig. 7. The intersection between
N̄ and S1 is the two-surface B1, the intersection between
N̄ and N is the two-surface B, and B2 is the intersection
between N and S2.
With the contributions listed previously we have thatZ
∂V

δvμdΣμ

¼ δ

�
2

Z
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K
ffiffiffi
h

p
d3yþ 2

Z
N
κ

ffiffiffi
γ

p
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− 2

Z
N̄
κ̄

ffiffiffi
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ffiffiffi
h

p
d3y

�

−
I
B2

ðδaþ raδAaÞ ffiffiffi
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I
B
ðδaþ δāÞ ffiffiffi

γ
p

d2θ

−
I
B1

ðδā − raδAaÞ ffiffiffi
γ

p
d2θ: ð2:112Þ

We have already stated that raδAa ¼ δa on B2 and raδAa ¼
−δā on B1. We may also show that δā ¼ δa on B, and use
this property to simplify the expression. We note first that
on B, the null vectors kα and k̄α satisfy

k · k̄ ¼ −c; ð2:113Þ
where c is a positive scalar field. Next we take the variation
of c ¼ −kαk̄α, recalling that δk̄α ¼ 0 and invoking
Eq. (2.44) for δkα; we find that δc ¼ cδa. Doing the same

FIG. 7. A closed hypersurface ∂V consisting of a past spacelike
surface S1, a truncated past null cone N , a truncated future null
cone N̄ , and a future spacelike surface S2.
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with c ¼ −k̄αkα, we now find that δc ¼ cδā and conclude
that indeed, δā ¼ δa. Our manipulations also reveal that
δa ¼ δ ln c ¼ δ lnð−k · k̄Þ, so that a ¼ lnð−k · k̄Þ þ â0,
where â0 is an arbitrary function such that δâ0 ¼ 0.
With all these results in hand, we find thatZ

∂V
δvμdΣμ

¼ δ

�
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Z
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K
ffiffiffi
h
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�
; ð2:114Þ

and we have identified the boundary action
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ffiffiffi
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ffiffiffi
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I
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ā
ffiffiffi
γ

p
d2θ:

ð2:115Þ
The joint terms all come with specific forms for the
integrand: On B1 we have that ā ¼ lnð−n1 · k̄Þ þ ā0, where
nα1 is the unit normal to S1, on B2 we have that
a ¼ lnð−n2 · kÞ þ a0, where nα2 is normal to S2, and on
B we have instead a ¼ lnð−k · k̄Þ þ â0.
Again this boundary action (2.115) is ill defined because

it depends on the choices made for the parameters λ and λ̄,
as well as the functions a0, ā0, and â0.

4. Proof that raδAa = � δa and δa = δ lnð−n · kÞ
We now establish that

raδAa ¼ −ζδa; δa ¼ δ lnð−n · kÞ ð2:116Þ

on a two-surface B formed from the intersection of a
spacelike surface S and a null surface N . Here, ζ ¼ −1
whenN is a past light cone, and ζ ¼ þ1 when it is a future
light cone. The (future-directed) unit vector nα is normal to
S, kα is the (future-directed) normal to N , and n · k ≔
gαβnαkβ is their inner product.
We rely on a system of adapted coordinates xα ¼

ðλ; r; θAÞ defined in an open domain V that includes N
and S. We have that λ is a time coordinate, and surfaces of
constant λ provide a foliation of V in spacelike hyper-
surfaces; the coordinate is defined such that λ ¼ λ0 on S.

We also have that r is constant on each member of a family
of nested hypersurfaces, which can be either timelike or
null; it is such that r ¼ r0 on N . When intersected with a
surface of constant λ such as S, the hypersurfaces of
constant r become nested spheres, and B is also described
by r ¼ r0. Finally, the angular coordinates θA range over
the spheres of constant λ and r. The coordinates are
illustrated in Fig. 8.
In these coordinates, N is the hypersurface r ¼ r0, and

ðλ; θAÞ are intrinsic coordinates. When N is a past light
cone (ζ ¼ −1), r increases toward the future of N , and
whenN is a future light cone (ζ ¼ þ1), r increases toward
its past. The null generators are parametrized with λ, and
the angular coordinates are calibrated to ensure that θA is
constant on each generator. We have that kα ¼ ð1; 0; 0; 0Þ,
kα ¼ ð0; ζα; 0; 0Þ for some scalar α > 0, and kα is orthogo-
nal to eαA. These relations imply that gλλ ¼ 0, gλr ¼ ζα,
gλA ¼ 0, and gAB ¼ γAB on N .
The hypersurface S is described by λ ¼ const, and

ðr; θAÞ are intrinsic coordinates. Its unit normal is
nα ¼ ð−1=β; 0; 0; 0Þ, with β > 0 a scalar field on S, and
we have that gλλ ¼ −β2 on S. The two-surface B is at r ¼
r0 in S, and θA serve as intrinsic coordinates. Its unit
normal is ra ¼ ð1=γ; 0; 0Þ, where γ > 0 is a scalar field on
B, and we have that hrr ¼ γ2 on B. Because B is also a
surface λ ¼ const of Σ, its induced metric is neces-
sarily γAB.
By virtue of the foregoing results, the spacetime metric

evaluated on B has the structure

gαβ ¼

0
BBB@

0 ζα 0 0

ζα hrr hr2 hr3
0 hr2 γ22 γ23

0 hr3 γ23 γ33

1
CCCA; ð2:117Þ

and the spatial metric hab is given by the submatrix that
excludes the first row and column. A key observation is that
with hab fixed on S and γAB fixed on N , the only variable
component of the metric is gλr ¼ ζα. Calculation of gαβ and
hab reveals that

βγ ¼ α−1; ð2:118Þ

a result that will be required presently.

FIG. 8. Adapted coordinates ðλ; r; θAÞ in V .
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We may now proceed with the derivation of Eq. (2.116).
We first invoke Eq. (2.17) and calculate

raδAa ¼ raeaαnβδgαβ ¼ −raeαanβδgαβ ¼ −rrnλδgλr:

ð2:119Þ

Writing rr¼hrara¼hrr=γ¼γ, nλ ¼ gλαnα ¼ −gλλ=β ¼ β,
we may conclude that

raδAa ¼ −ζβγδα ¼ −ζ
δα

α
¼ −ζδ ln α: ð2:120Þ

The definition of a ≔ ln μ is provided by the equation
kα ¼ ζμ∂αΦ, which relates kα to the gradient of an arbitrary
function Φ that goes to zero on N . In our adapted
coordinates we can always write Φ ¼ ðr − r0ÞΨðλ; r; θAÞ,
where Ψ is another arbitrary function, and conclude that
kr ¼ ζμΨ. Since this must be equal to ζα, we have that
α ¼ μΨ, or a ¼ ln α − lnΨ. Because Φ and Ψ are fixed
during the variation, we have that δa ¼ δ ln α, and

raδAa ¼ −ζδa: ð2:121Þ

The first part of Eq. (2.116) is thus established. To establish
the second part we observe that n · k ¼ kαnα ¼
−1=β ¼ −γα, so that lnð−n · kÞ ¼ ln γ þ ln α. But γ2 ¼
hrr is fixed during the variation, so

δa ¼ δ ln α ¼ δ lnð−n · kÞ; ð2:122Þ

as required. Notice that δa is now expressed independently
of the adapted coordinates. This relation can be integrated
to yield

a ¼ lnð−n · kÞ þ a0; ð2:123Þ

where a0 is an arbitrary scalar field on B whose variation
δa0 is required to vanish.
The lesson behind the result of Eq. (2.123) is that while

the piece lnð−n · kÞ of a becomes determined when a
segment of null hypersurface is joined to a spacelike
segment, the remaining piece a0 continues to be arbitrary.
The first piece lnð−n · kÞ contains the dependence on the
choice of parametrization, while the second piece a0
contains the dependence on the choice of Φ.

G. Rules for null joints

The considerations of Sec. II F can easily be adapted to
other types of joints involving one or two null hyper-
surfaces. All possible cases are illustrated in Fig. 9, which
displays a null segment and its boundary B; the (null,
timelike, or spacelike) segment to which it is joined is not
shown. When B is a future boundary and the outward
direction across the null hypersurface coincides with the
future direction (upper-left panel), the contribution to the

boundary action is 2
H
B adS, where dS ≔ ffiffiffi

γ
p

d2θ is the
surface element on B. When B is a past boundary and the
outward direction still coincides with the future direction
(upper-right panel), the contribution to the boundary action
is −2

H
B adS. When B is a future boundary and the outward

direction coincides with the past direction (lower-left
panel), the contribution to the boundary action is again
−2

H
B adS. And finally, when B is a past boundary and the

outward direction coincides with the past direction (lower-
right panel), the contribution to the boundary action
is 2

H
B adS.

When a null segment is joined at B to a spacelike
segment, we have seen that

aspacelike ¼ lnð−n · kÞ þ aspacelike0 ; ð2:124Þ

where nα is the unit normal to the spacelike segment, kα is
the null normal, n · k ≔ gαβnαkβ is their inner product, and

aspacelike0 is an arbitrary scalar field on B required to have a
vanishing variation. When the null segment is joined
instead to a timelike segment, a calculation similar to
the one carried out in Sec. II F 4 would reveal that in this
case,

atimelike ¼ ln js · kj þ atimelike
0 ; ð2:125Þ

where sα is the unit outward normal to the timelike
segment, and atimelike

0 in another arbitrary scalar field with
zero variation. And when the null segment is joined to
another null segment, we have seen that

FIG. 9. Joint terms in the boundary action. (a) displays a null
segment joined at B to another segment (not shown) which can be
either spacelike, timelike, or null; because B is a future boundary
to the null segment and the outward direction is a future direction,
the contribution from B to the boundary action is 2

H
B adS. In (b),

the joint B is a past boundary, the outward direction continues to
be a future direction, and the contribution to the boundary action
is −2

H
B adS. In (c), the joint B is again a future boundary, but the

outward direction is now a past direction; for these cases the
contribution to the boundary action is −2

H
B adS. In (d), where

the joint B is a past boundary, the outward direction is a past
direction, and the contribution to the boundary action is 2

H
B adS.

In all panels the shaded region indicates the interior of V .
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anull ¼ lnð−k · k̄Þ þ anull0 ; ð2:126Þ

where k̄α is the normal to the second null segment, and anull0

is yet another arbitrary scalar field with vanishing variation.

H. Additivity rules

We will say that an action is additive if the action for the
union of two regions V 1 and V 2 is equal to the sum of the
actions for V 1 and V 2 separately, when the action is
evaluated on field configurations that extend across
V ¼ V 1∪V 2. This is not a property that is typically
discussed in the context of classical field theory, but it
was in fact a primary consideration in [2]. There, additivity
of the gravitational action was argued to be a requirement
for quantum amplitudes (as described by path integrals in
quantum gravity) to be additive, and this was presented as a
motivation to introduce the Gibbons-Hawking-York boun-
dary term. However, it was subsequently shown that when
taking into account the contribution of joint terms, the
gravitational action S ¼ SV þ S∂V is not additive in gen-
eral [25]. More precisely, obstacles to additivity arise from
timelike joints (at the intersection of two timelike boundary
surfaces). The volume and hypersurface terms are all
properly additive, and there is no obstacle to additivity
coming from joints (between timelike and/or spacelike
segments) that are entirely spacelike—the case considered
throughout this paper.
The consideration of null boundary segments creates

additional obstacles to additivity, due to the arbitrariness
associated with joint terms. An example of this situation is
provided by Fig. 7, which can be viewed as the union of
Figs. 5 and 6, with the S1 of Fig. 5 identified with the S2 of
Fig. 6. In this case we find that according to Eq. (2.115), the
joint term coming from B1 ≡ B2 ≡ B is given by

SB½Fig: 7� ¼ −2
I
B
a

ffiffiffi
γ

p
d2θ; ð2:127Þ

with a ¼ lnð−k · k̄Þ þ â0. On the other hand, Eqs. (2.105)
and (2.110) imply

SB½Fig: 5∪Fig: 6� ¼ −2
I
B
ða1 þ ā2Þ ffiffiffi

γ
p

d2θ; ð2:128Þ

with a1 ¼ lnð−n1 · kÞ þ a01 and ā2 ¼ lnð−n2 · k̄Þ þ ā02;
because the S1 of Fig. 5 is identified with the S2 of
Fig. 6, we have that nα1 ≡ nα2 ≡ nα. To work out the relation
between a and a1 þ ā2, we decompose the null vectors kα

and k̄α in a basis consisting of the mutually orthogonal unit
vectors nα and rα, the second vector pointing out of B. We
have kα ¼ Aðnα − rαÞ, k̄α ¼ Āðnα þ rαÞ for some scalars A
and Ā, and it follows that n · k ¼ −A, n · k̄ ¼ −Ā, and
k · k̄ ¼ −2AĀ. We next find that

a − ða1 þ ā2Þ ¼ ln 2þ â0 − ða01 þ ā02Þ; ð2:129Þ

and observe that the two versions of SB disagree unless the
right-hand side happens to vanish. Failure to achieve this
would result in a gravitational action that is not properly
additive.
It is possible to exploit the arbitrariness of â0, a01, and

ā02 to produce a gravitational action which is additive. That
is, we demand additivity for the boundary terms at space-
like joints arising when null segments intersect other
boundary segments. This requirement, in fact, becomes a
prescription to remove the arbitrariness of these joint terms.
For example, in Eq. (2.129), the simplest way to achieve
additivity is to set a01 ¼ ā02 ¼ 0 and â0 ¼ − ln 2. These
choices give us additivity rules for null joints, which can be
formulated as follows:

(i) spacelike rule.—for a joint between null and
spacelike hypersurfaces, assign a ¼ lnð−n · kÞ,
where kα is the future-directed normal to the null
hypersurface (with arbitrary normalization), and nα

is the future-directed unit normal to the spacelike
hypersurface;

(ii) timelike rule.—for a joint between null and timelike
hypersurfaces, assign a ¼ ln js · kj, where sα is the
outward-directed unit normal to the timelike hyper-
surface;

(iii) null rule.—for a joint between two null hyper-
surfaces, assign a ¼ lnð− 1

2
k · k̄Þ, where kα is the

future-directed normal to the first null hypersurface
(with arbitrary normalization), and k̄α is the future-
directed normal to the second hypersurface (also
with arbitrary normalization).

The additivity rules eliminate the arbitrariness of the joint
terms, once a choice of normalization has been made for the
null normals.
We may test the applicability of these rules in a few

examples. In Fig. 10 we show the first few examples
of intersections between timelike and/or spacelike
boundary segments considered in Fig. 4, but with a null
surface now extending from each joint to subdivide the
spacetime region into two parts. Combining the joint rules
in Sec. II E with those above for joints involving null
segments, we see in each case that additivity is indeed
satisfied:
In Fig. 10(a), the composite figure gives rise to a joint

term −2η with η ¼ − lnð−n1 · k̄Þ þ lnð−n2 · k̄Þ from
Eq. (2.95). On the other hand, the null joint on the left
contributes 2a1, while the one on the right contributes
−2a2. The spacelike rule makes the assignments a1 ¼
lnð−n1 · k̄Þ and a2 ¼ lnð−n2 · k̄Þ, and we recover
−η ¼ a1 − a2, as required for the proper additivity of
the gravitational action. In Fig. 10(b), the spacelike/space-
like joint contributes 2η with η ¼ lnð−n1 · kÞ − lnð−n2 · kÞ,
again from Eq. (2.95). The null joint on the left gives 2a1
with a1 ¼ lnð−n1 · kÞ, and the one on the right gives −2a2
with a2 ¼ lnð−n2 · kÞ. We have that η ¼ a1 − a2, and once
again the boundary action is additive.
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In Fig. 10(c), we have that the timelike/timelike joint
contributes a boundary term −2η with η ¼ lnð−s1 · kÞ −
lnð−s2 · kÞ from Eq. (2.96). The null joint on the bottom
contributes −2a1, while the one on the top gives 2a2. The
timelike rule makes the assignments a1 ¼ lnð−s1 · kÞ and
a2 ¼ lnð−s2 · kÞ, and we find that −η ¼ −a1 þ a2, as
required by additivity. In Fig. 10(d), the composite figure
comes with a contribution 2η from the joint, with η ¼
− lnð−n · k̄Þ þ lnðs · k̄Þ from Eq. (2.97). The null joint on
the top contributes −2a1 with a1 ¼ lnð−n · k̄Þ, and the one
on the bottom contributes 2a2 with a2 ¼ lnðs · k̄Þ. We have
η ¼ −a1 þ a2, and once more verify that the gravitational
action is additive. Finally, in Fig. 10(e), we have that the
contribution from the spacelike/timelike joint is −2η, with
η ¼ lnð−n · kÞ − lnð−s · kÞ, again from Eq. (2.97). In this
case the null joint on the bottom gives −2a1 with
a1 ¼ lnð−n · kÞ, while the one on the top gives 2a2 with
a2 ¼ lnð−s · kÞ. We have −η ¼ −a1 þ a2, as required by
additivity.
The spacelike and timelike rules can also handle the case

depicted in Fig. 11(a). Here the composite figure describes
a null/timelike joint giving rise to a joint term −2acomp. The
null/spacelike joint on the top provides a contribution
−2atop, while the spacelike/timelike joint at the bottom
contributes 2η with η ¼ lnð−n · kÞ − lnð−s · kÞ from
Eq. (2.97). Here the timelike rule makes the assignment
acomp ¼ lnð−s · kÞ, while the spacelike rule gives
atop ¼ lnð−n · kÞ. We have that −acomp ¼ −atop þ η, and
once more we find that the rules ensure the proper additivity
of the gravitational action.
The spacelike and timelike rules, however, are not

sufficient to handle the case illustrated in Fig. 11(b); for
this and similar cases we require the null rule. The
composite figure represents a null/null joint with joint term

−2acomp. The null/spacelike joint at the top comes with
−2atop, while the joint at the bottom comes with −2abot.
The spacelike rule makes the assignments atop ¼ lnð−n · kÞ
and abot ¼ lnð−n · k̄Þ. We may decompose nα in the null
basis provided by kα and k̄α and conclude that
ð−n · kÞð−n · k̄Þ ¼ − 1

2
k · k̄. According to this, we have

that atop þ abot ¼ acomp, as required by additivity.
Many other examples could be constructed. In all such

cases the three additivity rules formulated in this section are
sufficient to restore the additivity of the gravitational action
when null boundaries are involved. We note that these
additivity rules do nothing, however, to restore additivity in
the problematic case of timelike joints identified by Brill
and Hayward [25].

FIG. 10. Composition of boundary actions. In (a),(b), a spacelike/spacelike joint (i.e. the joint formed by the intersection of two
spacelike surfaces) is obtained by taking the union of two null/spacelike joints. In (c), a timelike/timelike joint is the union of two null/
timelike joints. In (d),(e), a spacelike/timelike joint is the union of a null/spacelike joint and a null/timelike joint.

FIG. 11. Composition of boundary actions. In (a), a null/
timelike joint is obtained by taking the union of a null/spacelike
joint with a spacelike/timelike joint. In (b), a null/null joint is the
union of two null/spacelike joints.
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III. RATE OF CHANGEOF THE GRAVITATIONAL
ACTION FOR ADS BLACK HOLES

In this section we return to the “complexity equals
action” conjecture introduced in [7,8]. As described pre-
viously, this conjecture leads one to consider the action of
regions of asymptotically AdS spacetimes with null boun-
daries. Our considerations of boundary terms in Sec. II
allow us to provide a precise definition for the gravitational
action S ¼ SV þ S∂V when the region V possesses a
boundary with one or several null segments, which was
lacking in [7,8]. Hence we are able to provide a careful
examination of the results presented there.
As we have seen, S contains contributions from V , from

the piecewise smooth portions of the boundary ∂V , and
from the joints B where these portions are joined together.
However, in general the resulting gravitational action S is
ambiguous for a given spacetime, because the contribution
from each null segment of the boundary depends on an
arbitrary choice of parameterization, and because the
contribution from each null joint is the integral of an
arbitrary scalar field a. The first source of ambiguity, the
one associated with the choice of parametrization, is
naturally tamed by declaring that all null segments shall
be affinely parametrized. This choice ensures that κ ¼ 0
and that the null segments make no contribution to the
gravitational action. Then the additivity rules formulated in
Sec. II H allow us to eliminate (much of) the arbitrariness
associated with the null joints. We adopt both of these
conventions in the following calculations, but we must
acknowledge that these choices do not completely elimi-
nate the ambiguities. In particular, there remains the free-
dom to rescale the affine parameter λ by a constant factor on
each generator of the null boundaries, which in turn will
rescale the contribution of the corresponding joint terms.
We fix this remaining ambiguity by imposing a fixed
normalization condition of the null normals at the asymp-
totic AdS boundary. While this normalization is again an
arbitrary choice, such a condition must be imposed if one is
going to compare the actions of different regions (poten-
tially in different spacetimes) in a meaningful way.
We wish to exploit our precise definition of the gravi-

tational action to calculate how S changes with time when
evaluated for a Wheeler-DeWitt patch of a black hole in
anti-de Sitter spacetime. This computation was first pre-
sented by Brown et al. [8] using an incomplete specifica-
tion of the action, and the analysis there might be viewed as
questionable. However, we shall show that our more
complete and rigorous methods produce precisely the same
answer: In particular, for a Schwarzschild-anti de Sitter
black hole at late times t,

dS
dt

¼ 32πGNM; ð3:1Þ

where M is the total mass-energy assigned to the black
hole. We recall that our convention for the gravitational

action S omits the usual factor of 1=ð16πGNÞ, i.e.
S ¼ 16πGNI. Hence, in the more usual convention, this
equation would read dI=dt ¼ 2M, and with Eq. (3.1) we
have therefore reproduced the elegant universal result of
[7,8]. In fact, our calculations extend the previous analysis
to include black holes with planar and hyperbolic horizons.
We conclude this section by reconsidering the case of
charged black holes in anti-de Sitter spacetime and again,
our analysis reproduces the results of [7,8].

A. Schwarzschild-anti de Sitter spacetime

We express the metric of an (nþ 2)-dimensional SAdS
spacetime as follows:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΣ2
k;n; with

fðrÞ ¼ r2

L2
þ k −

ωn−1

rn−1
: ð3:2Þ

Here, L is the AdS curvature scale and k ¼ fþ1; 0;−1g
denotes the curvature of the n-dimensional line-element
dΣ2

k;n, given by

dΣ2
k;n¼

8>><
>>:
dΩ2

n¼dθ2þsin2θdΩ2
n−1 for k¼þ1;

dl2
n¼dθ2þθ2dΩ2

n−1 for k¼0;

dΞ2
n¼dθ2þsinh2θdΩ2

n−1 for k¼−1:
ð3:3Þ

Here, dΩ2
n is the standard metric on a unit n-sphere, while

dl2
n is the flat metric on Rn (with dimensionless coordi-

nates) and dΞ2
n is the metric on an n-dimensional hyper-

bolic “plane” with unit curvature. In all three cases, the
metric of Eq. (3.2) is a solution of Einstein’s equations with
a negative cosmological constant, i.e.

Rμν−
1

2
RgμνþΛgμν¼0 with Λ¼−

nðnþ1Þ
2L2

: ð3:4Þ

Each of these solutions can be represented by the same
Penrose diagram, as shown in Fig. 12. In particular,
the black holes corresponding to k ¼ fþ1; 0;−1g have
spherical, planar, and hyperbolic horizons, respectively. Of
course, these geometries are also static with Killing
vector ∂t.
The parameter ω is related to the position of the event

horizon rH by13

13Let us note that with k ¼ −1, this mass parameter vanishes
when rH ¼ L, but a smooth horizon remains for smaller values of

rH in the range n−1
nþ1

≤ r2H
L2 < 1, in which case the mass parameter

becomes negative [30,31]. However, in this regime, the causal
structure of the black hole takes the form shown in Fig. 13, with
an outer and an inner horizon. Hence the calculation of dI=dt in
Sec. III B is restricted to rH > L when k ¼ −1 [32].
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ωn−1 ¼ rn−1H ½ðrH=LÞ2 þ k�: ð3:5Þ

The total mass energy of the spacetime is given by [30,33]

M ¼ nΩn;k

16πGN
ωn−1; ð3:6Þ

where Ωn;k denotes the (dimensionless) volume of the
corresponding spatial geometry. Hence, for k ¼ þ1 we
have the volume of a unit n-sphere, Ωn;þ1 ¼
2πðnþ1Þ=2=Γðnþ1

2
Þ, while for k ¼ 0 and −1, we implicitly

introduce an infrared regulator to produce a finite volume.
For our calculations it is useful to introduce the null

coordinates u and v, defined by

du ≔ dtþ f−1dr; dv ≔ dt − f−1dr: ð3:7Þ

Integrating these relations yields the “infalling” null coor-
dinate u ¼ tþ r�ðrÞ and the “outgoing” null coordinate
v ¼ t − r�ðrÞ, where r�ðrÞ ≔ R

f−1dr. The metric
becomes

ds2 ¼ −fdu2 þ 2dudrþ r2dΣ2
k;n ð3:8Þ

or

ds2 ¼ −fdv2 − 2dvdrþ r2dΣ2
k;n ð3:9Þ

when expressed in terms of the null coordinates. For the
three choices ðt; rÞ, ðu; rÞ, and ðv; rÞ we have that

Z ffiffiffiffiffiffi
−g

p
dnþ2x ¼ Ωn;k

Z
rndrdw; ð3:10Þ

where w ¼ ft; u; vg.

B. Wheeler-DeWitt patch

We consider the Wheeler-DeWitt (WDW) patches of a
Schwarzschild-anti-de Sitter spacetime illustrated in
Fig. 12. As described in Sec. I, the corresponding action
SðtL; tRÞ depends on the choice of the time slice on the left
and right boundaries [7,8]. As shown in the figure, the
Killing vector corresponding to time translations in
Eq. (3.2) generates an upward (downward) flow in
the asymptotic region on the left (right), and hence the
action is invariant upon shifting the time slices as
SðtL þ δt; tR − δtÞ ¼ SðtL; tRÞ. Instead we will fix the time
on the right boundary and only vary the asymptotic time
slice on the left-hand side. In particular, we will compare
the actions for the two WDW patches shown on the left
panel of the figure. For the first, shown in dark color, the
time on the left boundary is t0 and we denote Sðt0Þ the
action evaluated for this patch. The asymptotic time for
the second WDW patch, shown in light color, is translated
slightly with respect to the first by δt, and the action
evaluated for this patch is denoted Sðt0 þ δtÞ. These two
actions contain contributions from the interior of the
corresponding patches, the bounding surfaces, and the
joints between them. Our aim will be to evaluate
the difference δS ≔ Sðt0 þ δtÞ − Sðt0Þ.
We are considering “late times,” and so both patches reach

the spacelike singularity that defines the future boundary of
the Penrose diagram—but they do not touch the past
singularity. That is, the patches are bounded by a spacelike
surface near the future singularity at r ¼ 0, and by four null
segments extending (almost) all the way to the AdS
boundaries at r ¼ ∞; in fact, these must be truncated to
regulate the gravitational action evaluated for these WDW
patches. Note that this is a standard issue in holographic
calculations [9] and the standard procedure is to evaluate the
quantity of interest with a (timelike) cut-off surface at some

FIG. 12. Wheeler-DeWitt patch of a Schwarzschild-anti de Sitter spacetime. On the left panel, the patch at coordinate time t0 is shown
in dark color, and the patch at time t0 þ δt is shown in light color. The difference between the two patches is shown on the right panel. In
the left panel, the curved arrows indicate the flow of the Killing vector ∂t in each of the quadrants of the Penrose diagram. Further the red
dashed curves indicate the cut-off surfaces at r ¼ rmax near the asymptotic AdS boundaries.
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large radius. In particular, one might choose the latter to be
r ¼ rmax ¼ L2=δ, in which case δ plays the role of a short
distance cut-off in the boundary theory. Typically, holo-
graphic calculations are employed to evaluate UV-safe
quantities, such as correlation functions, and so one is able
to take the limit δ → 0 at the end of the calculation [9]. In
particular, in a standard calculation of the renormalized
action, one can introduce a finite set of boundary counter-
terms which then yield a finite result in this limit [30].
However, such an approach does not yield a finite result for
the action of a WDW patch [27,34]. One might therefore
interpret the divergence in the action here as being related to
the complexity required to establish correlations at arbitrar-
ily short distance scales in the state of the boundary theory. In
this way, the divergences found here would be similar to
those found in holographic calculations of entanglement
entropy [35,36]. For simplicity, our approach to regulating
the action will be to let the null sheets defining the
boundaries of the WDW patch originate slightly inside
the AdS boundary, i.e., at ðt; rÞ ¼ ðt0; rmaxÞ. An alternative
approach would be to let the null sheets originate at ðt; rÞ ¼
ðt0;∞Þ but truncate the region on which we are evaluating
the action at the cut-off surface, r ¼ rmax. These different
choices for the regulator do not significantly change the
result for the gravitational action, and both approaches yield
the same results in the following; we will return to these
issues in [27,34].
As noted above, another important ingredient in our

computations is that the vectors defining the null bounda-
ries of the WDW patch will be normalized in precisely the
same way at the asymptotic AdS boundary. While in
different contexts we may make different choices for this
normalization, here we must fix the normalization in order
to compare the action of different WDW patches in a
meaningful way. For example, in the following we choose
k · t̂L ¼ −c, where k is the (future-directed) normal to the
past null boundary of the left-hand side of Fig. 12, t̂L ¼ ∂t
is the asymptotic Killing vector which is normalized to
describe the time flow in the left boundary theory, and c is
an arbitrary (positive) constant. If instead we allowed the
latter to be a function of time, i.e. k · t̂L ¼ cðtÞ, we could
produce whatever answer we might desire for the difference
δS and hence for the time derivative in Eq. (3.1). It is only
with a fixed constant c that a meaningful result is produced;
we return to this issue in Sec. IV.
Now to compute δS ¼ Sðt0 þ δtÞ − Sðt0Þ, we recall that

with an affine parametrization for each null surface, these
make no contribution to the action and thus to δS. Further,
we observe that the left null joint at r ¼ rmax for Sðt0 þ δtÞ,
is simply related to the one for Sðt0Þ by a time translation;
given our fixed normalization of the corresponding null
normals, the corresponding joint contributions are identi-
cal, and they therefore make no contribution to δS. A
similar conclusion holds for the joints linking the incoming
null segment to the spacelike surface near the singularity.

Consequently the computation of δS relies only on the
pieces illustrated on the right panel of Fig. 12: We have
the volume contributions from the regions V 1 and V 2, the
surface contribution from the spacelike segment S, and the
joint contributions from the n-surfaces B and B0. All told,
we have that

δS ¼ SV 1
− SV 2

− 2

Z
S
K dΣþ 2

I
B0
a dS − 2

I
B
a dS;

ð3:11Þ

where dΣ is a volume element on S, and dS is a surface
element on B and B0.

C. Calculation of δS

We first evaluate the volume contribution

SV ¼
Z
V
ðR − 2ΛÞ ffiffiffiffiffiffi

−g
p

dnþ2x ð3:12Þ

for the regions V 1 and V 2 depicted on the right panel of
Fig. 12. By virtue of the Einstein field equations,
R ¼ 2ðnþ 2ÞΛ=n, and the integrand is the constant

R − 2Λ ¼ −
2ðnþ 1Þ

L2
: ð3:13Þ

We begin with the computation for V 1, and next turn to V 2.
As shown in Fig. 12, the past and future null boundaries

on the left of the first WDW patch are labeled by u ¼ u0
and v ¼ v0, respectively. These null boundaries become
u ¼ u0 þ δt and v ¼ v0 þ δt for the second, shifted WDW
patch. Hence the region V 1 is bounded by the null surfaces
u ¼ u0, u ¼ u0 þ δt, v ¼ v0 þ δt, as well as the spacelike
surface r ¼ ϵ ≪ rH. The volume integral is best performed
in the ðu; rÞ coordinate system, which is regular throughout
the region; in this system the surface v ¼ v0 þ δt is
described by r ¼ ρðuÞ, with ρðuÞ defined implicitly by
r�ðρÞ ¼ 1

2
ðv0 þ δt − uÞ. Making use of Eq. (3.10), we have

that

SV 1
¼ −

2ðnþ 1Þ
L2

Ωn;k

Z
u0þδt

u0

du
Z

ρðuÞ

ϵ
rndr

¼ −
2Ωn;k

L2

Z
u0þδt

u0

duρnþ1ðuÞ; ð3:14Þ

where we have neglected the ϵnþ1 term that was to be
subtracted from ρnþ1 in the final integrand.
As also shown in the figure, the region V 2 is bounded by

the null surfaces u ¼ u0, u ¼ u1, v ¼ v0, and v ¼ v0 þ δt.
In this case, the volume integral is most easily performed in
the ðv; rÞ coordinates, in which the surfaces u ¼ u0;1 are
described by r ¼ ρ0;1ðvÞ, with r�ðρ0;1Þ ¼ 1

2
ðv − u0;1Þ. Then

we have
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SV 2
¼ −

2ðnþ 1Þ
L2

Ωn;k

Z
v0þδt

v0

dv
Z

ρ0ðvÞ

ρ1ðvÞ
rndr

¼ −
2Ωn;k

L2

Z
v0þδt

v0

dv½ρnþ1
0 ðvÞ − ρnþ1

1 ðvÞ�: ð3:15Þ

Now we perform the change of variables u ¼ u0 þ v0 þ
δt − v in the integral for SV 1

, combine it with the integral
for SV 2

, and notice that the terms involving ρðuÞ and ρ0ðvÞ
cancel out. This cancellation was to be expected, because
the portion of V 1 below the future horizon and the portion
of V 2 above the past horizon have equal volumes, as noted
in [8]. Taking this property into account, the radial integral
for SV 1

could have been limited to the interval ϵ < r < rH,
and the integral for SV 2

could have been limited to
rB < r < rH; the dependence of each term on rH would
have similarly cancelled out in the difference SV 1

− SV 2
. In

any event, we are left with

SV 1
− SV 2

¼ −
2Ωn;k

L2

Z
v0þδt

v0

dvρnþ1
1 ðvÞ; ð3:16Þ

with the function ρ1 varying from rB to rB0 as v increases
from v0 to v0 þ δt. This is a small variation in the radius,
i.e. rB0 ¼ rB þOðδtÞ, and hence the volume contribution to
δS is simply

SV 1
− SV 2

¼ −
2Ωn;k

L2
rnþ1
B δt: ð3:17Þ

We next evaluate the surface contribution to δS, given by
−2

R
S KdΣ, where S is the boundary segment given by the

spacelike hypersurface r ¼ ϵ. The (future-directed) unit
normal to any surface r ¼ constant inside the future
horizon is given by nα ¼ jfj−1=2∂αr. The extrinsic curva-
ture is then

K ¼ ∇αnα ¼ −
1

rn
d
dr

ðrnjfj1=2Þ; ð3:18Þ

and the volume element becomes

dΣ ¼ Ωn;kjfj1=2rndt ð3:19Þ

after integrating over the “angular” variables described by
Eq. (3.3). Letting r ¼ ϵ ≪ rH and then approximating
f ≃ −ðω=rÞn−1, we find that

−2
Z
S
KdΣ ¼ ðnþ 1ÞΩn;kω

n−1δt: ð3:20Þ

Given the proximity of S to the spacelike singularity at
r ¼ 0, it is remarkable that the answer turns out to be finite
and independent of ϵ. This occurs because the divergence in
K is precisely compensated for by the vanishing of dΣ. We
return to discuss this point in Sec. IV.

We next turn to the joint terms �2
H
adS contributed

by the n-surfaces B and B0. The null rule formulated in
Sec. II H states that

a ¼ ln

�
−
1

2
k · k̄

�
; ð3:21Þ

where kα is the (future-directed) null normal to the left-
moving null hypersurfaces, i.e. on which v ¼ v0 and
v0 þ δt, while k̄α is the (future-directed) null normal to
the right-moving surface, on which u ¼ u1.
Our convention was to choose the vectors kα and k̄α to be

affinely parametrized, and suitable expressions are

kα ¼ −c∂αv ¼ −c∂αðt − r�Þ; k̄α ¼ c̄∂αu ¼ c̄∂αðtþ r�Þ;
ð3:22Þ

where c and c̄ are arbitrary (positive) constants. This choice
implements the asymptotic normalizations k · t̂L ¼ −c and
k̄ · t̂R ¼ −c̄, where t̂L;R are the asymptotic Killing vectors
which are normalized to describe the time flow in the left
and right boundary theories, respectively. With these
choices, we have that k · k̄ ¼ 2cc̄=f, so that

a ¼ − ln

�
−f
cc̄

�
: ð3:23Þ

With the above expression, we find that

2

I
B0
adS − 2

I
B
adS ¼ 2Ωn;k½hðrB0 Þ − hðrBÞ�; ð3:24Þ

where hðrÞ ≔ −rn lnð−f=cc̄Þ.
To express this result in its final form, we perform a

Taylor expansion of hðrÞ about r ¼ rB. Because the
displacement is in a direction of increasing v, we have
that du ¼ 0, dv ¼ δt, and dr ¼ − 1

2
fδt. This gives us

hðrB0 Þ − hðrBÞ ¼ −
1

2
f
dh
dr

����
r¼rB

δt

¼ 1

2

�
rn

df
dr

þ nrn−1f ln

�
−f
cc̄

������
r¼rB

δt;

ð3:25Þ

and then

2

I
B0
adS − 2

I
B
adS

¼ Ωn;k

�
rn

df
dr

þ nrn−1f ln

�
−f
cc̄

������
r¼rB

δt: ð3:26Þ
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Combining Eqs. (3.17), (3.20), and (3.26), we arrive at

δS ¼ Ωn;k

�
−
2rnþ1

L2
þ ðnþ 1Þωn−1

þ rn
df
dr

þ nrn−1f ln

�
−f
cc̄

������
r¼rB

δt ð3:27Þ

for the change in gravitational action when the left time
slice of the WDW patch is translated by δt. Making use of
the explicit expression for f, this expression implies that

dS
dt

¼2nΩn;kω
n−1

�
1þ1

2

�
r
ω

�
n−1

f ln

�
−f
cc̄

������
r¼rB

: ð3:28Þ

When this is evaluated at late times, rB approaches rH, f
approaches zero, and we see that dS=dt rapidly approaches
the asymptotic constant 2nΩnω

n−1. Recalling Eq. (3.6) for
the mass energy of the SAdS spacetime, this is

dS
dt

¼ 32πGNM ð3:29Þ

at late times. In the more usual convention in which the
gravitational action is I ≔ S=ð16πGNÞ, this is dI=dt ¼ 2M,
precisely the same result reported in Brown et al. [7,8].14

We might add that the calculations there focused on the
case of spherical black holes, i.e. k ¼ þ1. Our analysis
shows that the same simple result applies also for planar
and hyperbolic horizons, i.e. k ¼ 0 and −1.

D. Comparison with Brown et al.

It is remarkable that the two very different methods of
calculating dI=dt should produce precisely the same out-
come, given how the accounting of various contributions to
the gravitational action differs in each method. It is
interesting to examine in detail how each contribution to
the action appears in the calculation of dI=dt in [7,8] and
compare with our results:
First, Brown et al. implicitly assume that the gravita-

tional action is additive. They use this property to divide the
WDW patches at t0 and t0 þ δt into various subregions and
evaluate δS in terms of the action evaluated for each of the
subregions. In the end, they essentially focus on two
regions, V1 and V2 on the right panel of Fig. 12, but each
of these is further divided into the portion outside of the
horizon and that behind the horizon. We note that only
spacelike joints arise in subdividing the WDW patches
there; as we discussed, with appropriate choices for the
boundary terms, the gravitational action will indeed be

additive. Further, we observe that (segments of) the future
and past horizons now play the role of boundary surfaces
for these various subregions. These (null) surfaces did not
appear in our calculations because we did not subdivide the
WDW patches. One may worry that the final results will
depend on choices made, e.g., in defining the parametriza-
tion of these null surfaces. To answer this we make two
observations: First, in general, any internal boundary sur-
face will be common to two neighboring subregions, so as
long as the common boundary is described consistently in
evaluating the action of these two subregions (e.g. they are
assigned the same null normal kα), the corresponding
boundary contributions will cancel when the actions are
added to evaluate the full action of the complete WDW
patch. Thus, the choices made in describing such internal
boundary surfaces will never affect the final result. Second,
for the particular case considered here, the internal boun-
dary surfaces are segments of a Killing horizon, i.e. they are
stationary null boundary surfaces. As discussed below
Eq. (2.70) and in Appendix A, such stationary null
boundaries are distinguished because the corresponding
contributions to the gravitational action are not ambiguous.
This point will play an important role in the following.
In the calculation presented in [7,8], the authors argue

that the time translation symmetry of the geometry ensures
that the contributions to Sðt0 þ δtÞ and Sðt0Þ from the
portions of the corresponding WDW patches outside of the
horizon will cancel in the difference δS. While we agree
with this conclusion, assuming the reasonable choices
described above for the boundary terms, we would like
to point out a subtlety having to do with the boundary
contributions coming from the horizon. In particular, it is
not true that the boundary contribution coming from the
future horizon (or from the past horizon) is identical for these
two exterior regions. Instead, the two actions cancel because
the contribution from the segment between u0 and u0 þ δt
on the future horizon cancels that from the segment between
v0 and v0 þ δt on the past horizon. The simplest way to see
that these two contributions match is to note that since the
geometry is static, it is invariant under an inversion of the
time coordinate. Hence, inverting t about the time slice t0 þ
1
2
δtmaps these boundary segments on the two horizons into

one another. Further, in comparing these two null segments,
it is important that there is no ambiguity in their contribu-
tions to the gravitation action, since both are part of a
stationary horizon, as discussed above.
Next, Brown et al. consider the portion of V2 which lies

behind the past horizon (see Fig. 12). At late times, the
radial coordinate is essentially constant throughout this
region and so the geometry reduces to the direct product of
a constant transverse space, i.e. the n-dimensional geom-
etry described by Eq. (3.3), and the exponentially small
two-dimensional geometry extending in the r and t (or u
and v) directions. Since the transverse geometry is constant,
the authors argue that by applying the two-dimensional

14We would like to add that Shira Chapman and Hugo
Marrochio also confirmed that using our techniques, one recovers
dI=dt ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − J2=L2

p
for the late time growth of the spinning

BTZ black hole, as found in [8].
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Gauss-Bonnet theorem [37], this region does not contribute
to the time dependence of the WDW patch, although they
acknowledge that there may be subtleties in this argument
related to regulating the gravitational action. Our construc-
tion seems to eliminate this issue or at least, relates any
question about the UV divergences in the complexity to the
behavior of the geometry and the WDW patch near the
asymptotic boundary [34]. Let us add that the analysis of
[37] implicitly introduces a new imaginary contribution to
the null joint terms, which violates the additivity of the
gravitational action. However, these imaginary terms do not
affect the result for dI=dt—see Sec. IV for further
discussion. From our perspective, it is the proximity of
the u ¼ u1 surface to the past horizon that ensures the
cancellation of the corresponding contributions. For exam-
ple, if the generators of the past horizon were affinely
parametrized, the only contributions to the gravitational
action of this region15 would come from the joints on the
boundary, i.e. B, B0 and the intersections of v ¼ v0 and
v ¼ v0 þ δt with the past horizon. Then because of the
proximity of the u ¼ u1 boundary and the past horizon,
evaluating the joint terms at B and B0 yields essentially the
same result as those on the horizon, up to an overall sign.
We return to this point below.
Lastly, Brown et al. consider the portion of V1 which

lies behind the future horizon (see Fig. 12) and whose
action then gives the entire result for δS. There are three
contributions: (i) the volume integral of the Einstein-
Hilbert action; (ii) the boundary integral of the Gibbons-
Hawking-York (GHY) term on a spacelike surface near
the singularity at r ¼ 0; and (iii) the GHY term evaluated
on a spacelike surface just inside the horizon which is then
taken to approach r ¼ rH. The first two contributions also
appear in our calculations,16 but the third term may seem
suspect in view of our discussion of ambiguities in taking
the null limit of spacelike or timelike surfaces. However,
here the limit is taken to a stationary null surface, and
there is no such ambiguity. A caveat is that there is no
ambiguity for the sum of the boundary and joint
terms evaluated on a stationary null surface in this way.
Brown et al. assume that the joint terms cancel between
the two ends of the null segment, which is not a priori
clear from our perspective. On the other hand, a careful
analysis along the lines of those given for the first
example in Appendix A shows that this cancellation
indeed occurs.

Hence at a pragmatic level, the key difference between
the two calculations is as follows: In the Brown et al.
computation, an essential contribution to δS originates
from the segment of the future horizon (between u ¼ u0
and u0 þ δt), which plays no role in our calculation as it
appears on a surface that is internal to the WDW patch. On
the other hand, our computation features contributions
from the joints, B and B0, at the bottom of the WDW
patches, which play an inconsequential role in [7,8].
However, when all contributions are combined together,
the final result is the same dI=dt ¼ 2M for late times in
both cases. It thus follows that these two distinct con-
tributions appearing in the different calculations must in
fact be the same. Tracing through the above discussion,
we can see the mechanism for this equality. First, because
the future horizon is an internal boundary, the boundary
contribution of the null segment on the future horizon is
the same for the portions of V1 inside and outside of the
horizon, up to an overall sign. Then because of the time
inversion symmetry (as well as the time translation
symmetry) of the geometry, the contribution on the future
horizon for the exterior part of V1 can be related to that on
the past horizon for the exterior of V2. Again the past
horizon is an internal boundary and so the contribution is
the same for the corresponding null segment of the portion
of V2 inside the horizon. Lastly, we found that the joint
contributions from B and B0 match the contribution from
the horizon for this portion of V2 inside the horizon.
Hence through a series of equalities, we see that the
boundary contribution from the segment of the future
horizon in the Brown et al. computation must be equal to
the joint contributions from the bottom of the WDW patch
in our computation. Therefore the key difference between
the two approaches is largely a matter of accounting, i.e.
while our computation directly compared the full WDW
patches at t ¼ t0 and t0 þ δt, Brown et al begin by
subdividing the WDW patches and evaluate the action
on a series of subregions. However, as explained above,
Brown et al. also make a number of assumptions, begin-
ning with additivity of the gravitational action, which
we have verified with the detailed considerations in
our paper.

E. Extension to charged black holes

We next turn our attention to the case of a charged
AdS black holes in nþ 2 dimensions.17 The line element
takes the same form as in Eq. (3.2), but with (see, for
example, [38]),

fðrÞ ¼ r2

L2
þ k −

ωn−1

rn−1
þ q2

r2ðn−1Þ
: ð3:30Þ

15The integral of the Einstein-Hilbert term is negligible
because the proper volume of this region is exponentially
small.

16Given our presentation of the calculation of the Einstein-
Hilbert term above, this statement may not be immediately clear.
However, we observe that at the end of the calculation we set
rB ≃ rH, and so there is essentially no contribution to the volume
integral coming from behind the past horizon in V2—as noted in
the previous footnote.

17The results presented in this section were independently
confirmed by Shira Chapman and Hugo Marrochio [32].
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The full solution also includes the Maxwell vector poten-
tial, which may be written as

Aαdxα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
2ðn − 1Þ

r �
q

rn−1H
−

q
rn−1

�
dt; ð3:31Þ

where the constant term is chosen to ensure that At vanishes
at the horizon.18 The combined metric and vector potential
then provide a solution for the Einstein-Maxwell equations
resulting from the (bulk) action,

SV ¼
Z
V
ðR − 2Λ − FαβFαβÞ ffiffiffiffiffiffi

−g
p

dnþ2x; ð3:32Þ

where Fαβ ¼ ∂αAβ − ∂βAα is the electromagnetic field
strength. Recall that Λ ¼ −nðnþ 1Þ=ð2L2Þ. The ADM
mass of this charged solution is given by the same
expression as in Eq. (3.6), while the charge of the gauge
potential is related to the parameter q by

Q ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðn − 1Þ

p Ωn;k

8πG
: ð3:33Þ

As before, we wish to calculate the change δS ¼ Sðt0 þ
δtÞ − Sðt0Þ in the total (gravitational plus electromagnetic)
action between the two WDW patches displayed in Fig. 13,
where the time slice on the left boundary is shifted slightly
by δt (and we are considering late times t0). The details of
the calculation are virtually identical to those presented in

the preceding subsection, and we can rely on a few key
observations to simplify our task. First, the asymptotic
joints near the left AdS boundary are related by a time
translation, and their contributions cancel out in δS.
Second, by virtue of the additivity of the action we can
conclude that the boundaries internal to the regions of
interest, e.g., the event horizon, do not contribute to δS;
only the external boundaries are relevant. Third, the
external boundaries are all segments of null hypersurfaces,
which give no contribution to δS (or the individual
actions) by virtue of our assumption that the generators
are affinely parametrized. As a result, inspection of the right
panel of Fig. 13 indicates that in addition to the volume
contributions, only the joints B, B0, C, and C0 contribute
to δS.
We begin with the evaluation of the volume contribution

to the action from Eq. (3.32) and use

R ¼ 2ðnþ 2Þ
n

Λþ n − 2

n
FαβFαβ; ð3:34Þ

which is a consequence of the Einstein equations. As in the
uncharged case, only the region inside the future horizon
contributes to δS, because the regions outside the horizon
produce cancelling contributions, and the region inside the
past horizon contributes a negligible term at late times. The
remaining contribution is then given by an equation similar
to Eq. (3.14), with integration limits given by rþ and r− at
late times. We arrive at

δSV ¼ −2Ωn;k

�
rnþ1
þ − rnþ1

−

L2
−

q2

rn−1−
þ q2

rn−1þ

�
δt: ð3:35Þ

FIG. 13. Wheeler-DeWitt patch of a Reissner-Nordström anti–de Sitter spacetime. On the left, the patch at coordinate time tL ¼ t0 is
shown in dark color, and the patch at time tL ¼ t0 þ δt is shown in light color. The difference between the two patches is shown on the
right. The red dashed curves on the left indicate the cutoff surfaces at r ¼ rmax near the asymptotic AdS boundaries.

18The latter is required for A ¼ Aαdxα to be a well-defined
one-form at the bifurcation surface(s).
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We also rely on the results presented in the preceding
section to evaluate the joint contributions to δS. In this case
we find that

δSB;B0 ¼ Ωn;krn
df
dr

����
rþ

δt; δSC;C0 ¼ −Ωn;krn
df
dr

����
r−

δt;

ð3:36Þ

the relative sign between the two expressions is a conse-
quence of the different signs involved in null-joint terms in
the action (as summarized in Fig. 9). The combined joint
contributions therefore give

δSB;B0 þ δSC;C0

¼ 2Ωn;k

�
ωn−1

2
−
q2ðn − 1Þ

rn−1
þ rnþ1

L2

�����
rþ

r−

:

¼ 2Ωn;k

�
q2ðn − 1Þ

rn−1−
−
q2ðn − 1Þ

rn−1þ
þ rnþ1

þ − rnþ1
−

L2

�
δt:

ð3:37Þ

Combining Eqs. (3.35) and (3.37), we arrive at

δS ¼ 2nΩn;k

�
q2

rn−1−
−

q2

rn−1þ

�
δt; ð3:38Þ

or

dI
dt

¼ n
Ωn;k

8πGN

�
q2

rn−1−
−

q2

rn−1þ

�
: ð3:39Þ

This expression agrees with the one reported by Brown
et al. [8] when n ¼ 2 and k ¼ þ1, that is, for a four-
dimensional spherical charged AdS black hole. Further, let
us observe that when q → 0, rn−1− → q2=ωn−1 and
rþ → rH, and hence we recover the expected dI=dt →
2M for any number of spacetime dimensions.

IV. DISCUSSION

We have presented a complete analysis of the boundary
terms required in the action functional of general relativity,
paying careful attention to the case of null boundary
segments. As we have seen, this case requires the intro-
duction of two new classes of boundary terms, the first on
the null segments themselves, and the second on the
associated joint terms where the null boundaries intersect
other segments. For a typical null segment and its asso-
ciated joint, we have19

−2
Z

κdSdλþ 2

I
adS: ð4:1Þ

In the first term, κ is defined by Eq. (2.34), kβ∇βkα ¼ κkα,
where kα is the (future-directed) null tangent vector along
the boundary segment. With kα ¼ ∂xα=∂λ as in Eq. (2.33),
κ measures the failure of λ to be an affine parameter along
the null generators of the boundary segment. In Sec. II F 4,
we showed that the function a in the joint terms takes the
form

a ¼ ln jn · kj þ a0; ð4:2Þ

where nα is the unit normal to the other boundary segment
forming the joint, and a0 is an arbitrary scalar whose
variation δa0 is required to vanish.
As discussed in the main text, the null boundary terms

(4.1) are ambiguous. In particular, κ depends on an arbitrary
choice of parametrization for the null generators, i.e. the
choice of λ. Further, there are two distinct ambiguities in
the expression (4.2) for a. First, the piece ln jn · kj depends
on the arbitrary normalization of the null tangent kα, and
this ambiguity is again related to the choice of λ.20 The
second term in Eq. (4.2), a0, reveals a separate dependence
on the choice of the function Φ defining the boundary
surface—see the discussion above Eq. (2.32). Despite these
ambiguities, the variation of the boundary terms on the null
segments and null joints is well defined and by construc-
tion, it cancels the corresponding total derivative terms
coming from the variation of the bulk action. However,
evaluating the gravitational action for a particular spacetime
geometry will yield different numerical values depending
on the different choices in the construction of the boundary
terms (4.1).
We might add that there are further ambiguities that are

inherent to any variational problem. For example, one can
always add a total derivative term to the (bulk) action
without affecting the equations of motion, and with a
judicious choice, without affecting the vanishing of the
boundary variations. However, in general such a term
would modify the value of the action when it is evaluated
on a particular field configuration. Similarly, one could add
boundary terms whose variation vanishes, e.g. because of
the boundary conditions imposed on the fields. The scalar
a0 appearing in the null joint terms (4.2) would be an
example of such a boundary term. While we chose this
scalar to be a simple constant, the variational principle
would remain intact with more complicated choices, e.g.
a0 ∝ R where R is the Ricci scalar associated with the

19Here we do not concern ourselves with the precise sign
associated with these contributions to the action—see Sec. II or
Appendix C.

20Note that this ambiguity remains even if a specific pre-
scription is chosen for κ. That is, if we fix κ in Eq. (2.34), we must
still specify the initial value for kα in order to solve this
differential equation.
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induced geometry on the joint. A further example of the
latter class would be the term

R
Σ Θ

ffiffiffi
γ

p
d2θdλ introduced on

null boundary segments in [6]—see the discussion below
Eq. (2.66). In this paper we have proposed what we see as
the minimal set of boundary terms for the gravitational
action, and we have not considered specious contributions
of the above form.21

In the context of the “complexity equals action” con-
jecture [7,8], the ambiguities described above may seem to
be problematic. However, as emphasized in [7,8], the
circuit complexity of a quantum state is also ambiguous.
In particular, it depends on the choice of initial reference
state and specific set of quantum gates, with which one acts
to construct the desired state. Further, the precise value of
the complexity will depend on the tolerance that one
introduces to describe the accuracy with which the desired
state must be constructed. It would be interesting to draw a
more precise connection between the ambiguities described
here for the circuit complexity and those described above
for the gravitational action.
Now as we discussed, the ambiguities in the gravitational

action can be tamed with natural prescriptions. In particu-
lar, the reparametrization ambiguity on the null segments
can be mitigated by choosing the null generators to be
affinely parametrized, and then the corresponding boun-
dary term simply vanishes. Further, in Sec. II H the
undetermined functions a0 at the null joints were fixed
by demanding additivity for the gravitational action.22

These choices still leave the freedom to rescale the affine
parameter along any of the null segments by a constant
factor. However, in the context of the AdS/CFT correspon-
dence and evaluating the action on WDW patches, we can
remove this final ambiguity by imposing a normalization
condition on the null normals near the asymptotic AdS
boundary; see the discussion towards the end of Sec. III B.
This choice (along with the previous two) allows us to
make a meaningful comparison of the action for different
WDW patches. In particular, following [7,8] we evaluated
the rate of change of the action for the WDW patch of
asymptotically AdS black holes in Sec. III and found the
same result reported there, i.e. dI=dt ¼ 2M (for late times
and uncharged black holes). Our analysis reveals that
this simple result applies to noncompact horizons (i.e.
planar and hyperbolic horizons) as well as spherical
horizons.
We wish to emphasize that the result dI=dt ¼ 2M for

SAdS black holes at late times is very robust, i.e. it does
not depend on the specific choices made above to

eliminate the ambiguities associated with null boundary
terms. Examining each of our choices in reverse order, we
see that in Eq. (3.22), the asymptotic normalization of the
null tangents was in fact arbitrary, i.e. k · t̂L ¼ −c and
k̄ · t̂R ¼ −c̄, where c and c̄ are arbitrary constants. Our
final result for the rate of change of the action was
independent of these constants—see Eq. (3.28). We also
see that in the joint contributions (4.2), a0 could be chosen
to be any constant (or in fact, some function of the
intrinsic geometry of the null joint) and the precise choice
would not modify our result for dI=dt. The independence
of a0 is a consequence of the Killing symmetry ∂t of the
black hole spacetime and of the very small difference in
the geometries of the joints B and B0 at late times—see
Fig. 12. Finally, one can imagine replacing our choice
κ ¼ 0 with κ ¼ κ0, where κ0 is some arbitrary nonvanish-
ing constant on the null boundary segments—in fact,
different values of κ0 might be chosen on the different null
boundaries. Our result for dI=dt would again remain
unchanged, first because most of the null boundary
contributions would simply cancel as a result of the
Killing symmetry ∂t, and second because at late times,
the segment at u ¼ u1 is almost a stationary surface, i.e.
this null boundary is very close to the past horizon at
u ¼ −∞—again; see Fig. 12. We must note that this
robustness relies on fixing the ambiguities with “reason-
able” choices. For example, if one were to choose c ¼ cðtÞ
or κ0 ¼ κ0ðtÞ above, then one would find dI=dt ≠ 2M and
the result would depend on the details of the selected
functions. However, our perspective is that with such
arbitrary (time-dependent) choices, one simply cannot
expect to meaningfully compare the action of WDW
patches at different times. The significant role of the
time-translation Killing symmetry highlighted above sug-
gests the importance of making detailed studies of time-
dependent scenarios in the future.
One slightly unsettling feature of the calculation of dI=dt

is that an essential contribution comes from the boundary
segment near the spacelike singularity at r ¼ 0, i.e. the
boundary segment S in Fig. 12. This contribution is
determined by evaluating the K term on a regulator surface
at r ¼ ϵð≪ rHÞ and then taking the limit ϵ → 0. It is
remarkable that the result (3.20) turns out to be finite and
independent of ϵ. At a pragmatic level, this occurs because
the divergence in K is precisely compensated for by the
vanishing of the volume element dΣ. This precise balance
relies on the specific behavior of the metric function fðrÞ
near the singularity, and therefore on the assumed validity
of the Einstein equations in this region of spacetime. Of
course, this outcome might be regarded with suspicion
since UV effects, e.g. higher curvature terms arising as
stringy and quantum corrections, are expected to modify
the field equations and spacetime geometry in the vicinity
of the singularity. However, one might argue that these
deviations should be small so long as the regulator scale ϵ is

21Appendix B introduces an interesting “specious” boundary
term which removes the reparametrization ambiguities on the null
segments. We hope to discuss this boundary “counterterm” in
greater detail elsewhere [27].

22Implicitly, to produce an additive gravitational action, we are
assuming that the same null tangents are used on any common
null segments for neighboring spacetime regions.
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chosen to be well above the quantum gravity scale, and
hence the evaluation of the action should be robust. As a
simple test of this reasoning, one might examine how the
rate of change (1.1) of the WDW patch action is modified
if the regulator is taken to be small but finite. Here one
finds

δ

�
dI
dt

�
¼ −k

nΩn;k

8πGN
ϵn−1: ð4:3Þ

Hence for a spherical horizon (i.e. k ¼ þ1), the regulator
corrections reduce the rate, which seems to align with the
conjecture of [7,8] that there should be a bound
dI=dt ≤ 2M. However, the rate increases for a hyperbolic
horizon (i.e. k ¼ −1) and the result may seem to contradict
those expectations. We should add that preliminary inves-
tigations [39,40] into extending these calculations to
(classical) higher curvature theories have cast doubt on
the simple argument given above. It is certainly a question
which deserves further study.
Future studies of the “complexity equals action”

conjecture should examine less symmetric situations, as
well. With less symmetry, caustics and crossings will
generically appear on the boundary of the WDW patch,
i.e. there will be points where the null generators of the
boundary of the WDW patch cross each other and the
boundary fails to be smooth.23 Indeed, this situation
will arise generically whenever one seeks the action
of a spacetime region defined in terms of future or
past sets.
Our intuition is that locally such crossings will typically

have the geometry of a spacelike joint formed by the
intersection of two null surfaces; e.g. see [41]. We have not
proven that this is the only generic case, but it is at least
clear that such null-null joints form a broad class of stable
crossings. In this case, our results would allow the
evaluation of the corresponding gravitational action, in
that one would simply include an additional joint contri-
bution with a ¼ lnð− 1

2
k · k̄Þ, where kα and k̄α are the null

normals on either side of the joint.
A new feature would be that these crossings may

terminate at a caustic or at another crossing of lower
dimension, for example at a “corner” or joint of
codimension-three, i.e. the simultaneous intersection of
three segments of the boundary surface. In such cases, one
might need to include an additional contribution to the
action from the corner or caustic where the null-null joint
terminates—see further discussion of such corner contri-
butions below. To evaluate the boundary contribution for a

caustic, one approach would be to “regulate” the geometry
as follows: First, introduce an additional timelike boundary
surface which cuts the endpoints of the crossing out of the
boundary and then remove this regulator surface so that the
endpoints reappear in a limit. It seems that the regulated
geometry in such an approach would also typically involve
a codimension-three joint. This provides some motivation
to study the boundary terms (if any are needed) for such
higher codimension corners, as discussed in the next
paragraph.
Our discussion in this paper has focused on the pos-

sibility of spacelike joints, or intersections between pairs of
boundary surfaces. The case of timelike joints where two
timelike boundary surfaces meet was also considered in
[4,25]. Of course, our analysis could be further generalized
to consider more complicated intersections involving more
than two boundary surfaces. For example, in d spacetime
dimensions, a volume with planar boundary surfaces, i.e. a
d-dimensional polyhedron, would have joints where pairs
of boundaries intersect (as considered here) but also
“corners” where three, four and up to d boundary surfaces
intersect simultaneously. In principle, a more complete
analysis would include the possibility of additional boun-
dary terms for each of these different types of intersections.
Of course, this generalization would need to be carried out
for corners involving only timelike and spacelike surfaces
first, before proceeding to cases involving null boundary
surfaces as well.
When the spacetime signature is Euclidean, there

is only one kind of boundary segment and hence only
one kind of joint to be considered. As originally described
in [3] (see also [4]), the joint terms in the gravitational
action take the familiar form 2

H
ηdS in this context, where

η ¼ π − θ with θ denoting the dihedral angle of the joint.
When the spacetime signature is continued to Lorentzian,
it is not immediately obvious how the dihedral angles
should be defined, but a prescription for doing so was
given in [18,19] and applied there to the definition of the
Regge action. This continuation can be used to recover the
Hayward terms [4,25] for spacelike joints that we have
examined in this paper. However, there is one interesting
small difference. The integrand η of the spacelike joint
terms which one obtains from this continuation differs
from that given earlier in Sec. II E (see also Appendix C)
by an imaginary constant. It appears likely that a similar
procedure could also be used to understand the new joint
contributions found in this paper for intersections involv-
ing null boundary segments. However, we expect that the
integrand a in these joint terms would also acquire an
imaginary piece. This would correspond to making an
alternative choice of the constants â0, a01 and ā02 in
Sec. II H. With these new choices, the gravitational action
(specifically its imaginary part) would lack the additivity
that motivated our choices above, but on the other hand
the two cases of timelike and spacelike joints would now

23To clarify our nomenclature, we use “caustic” to refer to the
situation where the crossing null rays were only infinitesimally
separated in the transverse directions on the boundary, and
“crossing” for the case where the null rays were initially widely
separated.
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resemble each other more closely.24 These imaginary
contributions to the action can be ignored if one is
interested only in infinitesimal variations of the action.25

However, they become relevant in considering topology
change in quantum gravity [20]. One also arrives at
new insights into the Bekenstein-Hawking entropy by
retaining this imaginary contribution to the action
[5,22–24]. These imaginary contributions also play a
role in a new derivation of holographic entanglement
entropy [42].
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APPENDIX A: AMBIGUITIES IN THE NULL
LIMIT FROM TIMELIKE SURFACES

In Sec. II, we described the contributions to the gravi-
tational action arising from boundary segments and joints

between them. In particular, we showed that the contribu-
tions from null segments and null joints are in general
ambiguous. The question arises as to whether these
ambiguities can be resolved by interpreting a null hyper-
surface as the limit of a sequence of timelike or spacelike
surfaces. In this section, we show that such a limiting
procedure is also generically ambiguous. An exception to
this general rule arises when the null limit is a stationary
surface; in this case a unique limit exists.26 Further, we
demonstrate that the Hayward joint terms that appear in
such a limiting procedure yield a divergent result. For
concreteness we shall consider the specific case of a
sequence of timelike hypersurfaces that is made to
approach a null limit. Also, for the sake of simplicity,
we restrict our attention to a few simple examples involving
(i) a static and spherically symmetric spacetime, (ii) the
Kerr spacetime, and (iii) the radiative Vaidya spacetime.
In all cases we evaluate the boundary action S∂V on a

segment of ∂V that consists of a timelike hypersurface T
truncated by spacelike hypersurfaces S1 and S2 to the past
and future, respectively. We take T to be an inner boundary
to V , and we ignore the contribution to S∂V that comes
from the outer boundary. In fact, we shall also ignore the
contributions from S2 and S1, but retain the joint term at
B2, the two-surface of intersection between T and S2, as
well as the joint term at B1, the two-surface of intersection
between T and S1. Selecting the corresponding terms from
Eq. (2.94) gives

S ¼ 2

Z
T
L

ffiffiffiffiffiffi
−f

p
d3zþ 2

I
B2

η
ffiffiffi
γ

p
d2θ − 2

I
B1

η
ffiffiffi
γ

p
d2θ:

ðA1Þ

We recall the notation employed in Sec. II D: Coordinates
zj are placed on the timelike hypersurface T , which
possesses an intrinsic metric fjk and an extrinsic curvature
Ljk, while coordinates θA are placed on B1 and B2, which
possess an intrinsic metric γAB; the vector sα is normal to T
and points toward smaller values of r on the inner surface,27

nα is normal to S1 and S2 (pointing to the future), and the
boost parameter η is defined by sinh η ≔ nαsα.

1. Static, spherically symmetric spacetime

For the first set of examples we consider a spacetime
with metric

ds2 ¼ −gdv2 þ 2dvdrþ r2dΩ2; ðA2Þ

24Of course, as noted previously, the standard prescription for
timelike joints [4,25] is incompatible with additivity of the
gravitational action, and the same issue extends to the Euclidean
setting. Hence it is not surprising that the continuation considered
here leads to a result that is incompatible with additivity.
However, let us add the following observation: One might
consider examining the boundary terms for timelike joints
exclusively from the perspective of requiring a good variational
principle, as in Sec. II D. In this framework, one would find that
there is the freedom to add an arbitrary scalar η0 to the joint term,
as long as δη0 ¼ 0. Additivity of the gravitational action would be
restored if one were to choose η0 ¼ −π. The deficiency of this
prescription is that the timelike joint cannot be modeled as a
limiting sequence of smooth timelike surfaces, with the joint
emerging at the end of the limit. In this approach, the joint term
emerges as a delta-function contribution in the extrinsic curvature
of the usual Gibbons-Hawking-York boundary term and yields
the standard prescription for η in the boundary term on a timelike
joint. This straightforward geometric construction was the origi-
nal approach adopted in [4]. However, we expect that an
appropriate analytic continuation of the proposed “additive”
prescription would also yield a vanishing imaginary contribution
for the boundary terms on spacelike joints.

25Further, these contributions would not modify our results of
dI=dt.

26Of course, this result is related to the discussion at the end
of Sec. II C 4, where we found that the action was invariant
under reparametrizations for a null boundary segment which is
stationary.

27The convention established in Sec. II was that the normal sα
to a timelike boundary should point out of the volume of interest.
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in which v is an advanced-time coordinate, and
dΩ2 ≔ dθ2 þ sin2 θdϕ2. We take g ¼ gðrÞ to be an arbi-
trary function of r. The surface T is described by r ¼ RðvÞ,
in which RðvÞ is an arbitrary function of v. Its normal is

sα ¼ −ðG − 2 _RÞ−1=2½− _R; 1; 0; 0�; ðA3Þ

in which an overdot indicates differentiation with respect to
v, and G ≔ gðr ¼ RÞ. The induced metric is

fjkdzjdzk ¼ −ðG − 2 _RÞdv2 þ R2dΩ2; ðA4Þ

so that the corresponding volume element isffiffiffiffiffiffi
−f

p
d3z ¼ ðG − 2 _RÞ1=2R2dvdΩ, with dΩ ≔ sin θdθdϕ.

The trace of the extrinsic curvature is

L ¼ −
1
2
ðG − 3 _RÞG0 þ R̈

ðG − 2 _RÞ3=2 −
2ðG − _RÞ

RðG − 2 _RÞ1=2 ; ðA5Þ

where G0 ≔ dG=dR.
The surfaces S1 and S2 are both described by an

equation of the form v ¼ rþ const, and their normal
vector is

nα ¼ ð2 − gÞ−1=2½−1; 1; 0; 0�: ðA6Þ

The inner product of nα and sα evaluated at S1 or S2 is

sinh η ¼ −
G − _R − 1

½ð2 − GÞðG − 2 _RÞ�1=2 ; ðA7Þ

so that

η ¼ 1

2
ln

2 −G

G − 2 _R
: ðA8Þ

In these equations, G and _R are evaluated at either v ¼ v1
or v ¼ v2, the values of v at S1 and S2, respectively.
These results imply that

S ¼ −4π
Z

v2

v1

�ðG − 3 _RÞG0 þ 2R̈

G − 2 _R
þ 4ðG − _RÞ

R

�
R2dv

− 4πR2 ln
G − 2 _R
2 −G

����
v2

v1

: ðA9Þ

Now the null limit is achieved by letting _R → 1
2
G, and the

expression reveals that the limit diverges in general.
As a specific example, we may consider the sequence of

timelike hypersurfaces defined by _R ¼ 1
2
ð1 − ϵÞG with

ϵ → 0. In this case, S becomes

S1¼−4π
Z

v2

v1

�
1

2
G0 þ2G

R

�
R2dv−4πR2 ln

ϵG
2−G

����
v2

v1

þOðϵÞ;

ðA10Þ

which diverges logarithmically as ϵ → 0. However, we note
that in the special case that Rðv2Þ ¼ Rðv1Þ, the individual
divergences of the joint terms at v1 and v2 will cancel to
leave a finite action. As another example, we take the
sequence _R ¼ 1

2
G − ϵ with ϵ → 0. In this case

S2¼−4π
Z

v2

v1

�
G0 þ2G

R

�
R2dv−4πR2 ln

2ϵ

2−G

����
v2

v1

þOðϵÞ;

ðA11Þ

which also diverges logarithmically unless Rðv2Þ ¼ Rðv1Þ.
Even when this condition is imposed to eliminate the
logarithmic divergence, the finite terms in S1 and S2 do not
agree with each other. We must conclude that the null limit
does not exist, and so this limiting procedure cannot
provide a unique prescription for the surface action of a
null boundary segment.
An exception to this conclusion arises when the limiting

null surface is stationary, as in the case of a Killing horizon.
To recognize this exception, we consider the sequence of
timelike hypersurfaces described by

RðvÞ ¼ r0½1þ ϵbðvÞ�; ϵ → 0; ðA12Þ
where r0 denotes the radial position of a Killing horizon,
i.e. gðr ¼ r0Þ ¼ 0 in Eq. (A2), and bðvÞ is an arbitrary
function of v. Because RðvÞ is close to r0 we may simplify
our computations by Taylor-expanding G ≔ gðr ¼ RÞ
about its zero value at r0; this gives G ¼ 2ϵκr0bðvÞ, in
which κ ≔ 1

2
dg=drjr¼r0 . Making these substitutions reveals

that

S ¼ −4πr20

Z
v2

v1

dB
dv

dv − 4πr20 ln½ϵr0ðκ0b − _bÞ�
����
v2

v1

þOðϵÞ;

ðA13Þ

where B ≔ 2κv − lnðκb − _bÞ. Again the individual joint
terms diverge but these logarithmic divergences cancel
when combined in the action, and the above expression
simplifies

S ¼ −8πr20κðv2 − v1Þ þOðϵÞ: ðA14Þ
In this case, we observe that the null limit is actually finite
and independent of the arbitrary function bðvÞ. The limit is
therefore well defined, and in fact, limϵ→0S agrees with the
expression of Eq. (2.68), which applies to any stationary
null hypersurface and is invariant under reparametrizations.
We observe that the limit (A14) does not differ by some

residual Oð1Þ constant from the result (2.68) calculated
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with our prescription, but rather they agree precisely. One
may see this precise agreement as further motivation for our
choice of setting aspacelike0 ¼ 0 in Sec. II H, where we fixed
our final prescription for the null joint contributions.

2. Kerr spacetime

The latter conclusion in not an artifact of our restriction
to spherically symmetric spacetimes. A similar calculation
carried out for the specific case of a Kerr spacetime reveals
that when a sequence of timelike surfaces is made to
approach the event horizon of a Kerr black hole,

S ¼ −4π
r2þ − a2

rþ
ðv2 − v1Þ þOðϵÞ; ðA15Þ

where rþ denotes the radius of the event horizon (in Boyer-
Lindquist coordinates) and a is the black hole’s angular
momentum per unit mass. With

κ ¼ rþ −M
r2þ þ a2

¼ r2þ − a2

2rþðr2þ þ a2Þ ; A ¼ 4πðr2þ þ a2Þ

ðA16Þ
standing for the surface gravity and event-horizon area of a
Kerr black hole, respectively, we once more recover
Eq. (2.68) in the limit ϵ → 0.
We can outline the calculations producing Eq. (A15) as

follows: We begin with the Kerr metric as in Eq. (5.55) of
the Toolkit [28], written in terms of coordinates v and ψ that
are regular at the event horizon. For T , we adopt the
sequence of timelike hypersurfaces described by r ¼
RðvÞ ¼ rþ½1þ ϵbðvÞ� with ϵ → 0 and bðvÞ arbitrary,
and we take S1 and S2 to be described by
v ¼ rþ constant. We find that 2L

ffiffiffiffiffiffi
−f

p
can be expressed

as ∂B=∂v for some function Bðv; θÞ that satisfies Bþ
2η

ffiffiffi
γ

p ¼ ðr2þ − a2Þv sin θ=rþ at v ¼ v1 (on B1) and v ¼ v2
(on B2). These results guarantee that the integral over T is
equal to new boundary terms at B1 and B2 that mostly
cancel out the original terms coming from η; what remains
gives rise to Eq. (A15).

3. Vaidya spacetime

In this section we consider the Vaidya spacetime, which
describes a black hole formed by the accretion of null dust.
The metric is again given by Eq. (A2), with the specific
choice gðv; rÞ ¼ 1 − 2mðvÞ=r, where mðvÞ is a time-
dependent mass function. For the sake of simplicity we
adopt the specific model described in Problem 5.2.7 of the
Toolkit [28], for which the mass function is given by

mðvÞ ¼
8<
:

0 v < 0

v=16 0 < v < v0
v0=16 v > v0

; ðA17Þ

where v0 is a constant. The spacetime is flat when v < 0,
accretion begins at v ¼ 0 and causes the mass to increase
linearly, and accretion ends at v ¼ v0, when the black hole
has acquired a mass v0=16.
Restricting our attention to the interval 0 < v < v0, we

find that the radial null geodesics in this spacetime satisfy
the differential equations

dv
dr

¼ 0 ðincoming light raysÞ;
dv
dr

¼ 2

g
¼ 16r

8r − v
ðoutgoing light raysÞ: ðA18Þ

The generic solution to the outgoing-ray equation can be
expressed in the parametric form

vðλÞ ¼ 4cð2 − λÞeλ; rðλÞ ¼ cð1 − λÞeλ; ðA19Þ
where c is a constant, and the parameter λ ranges over a
subset of the interval −∞ < λ < 1. An exceptional solution
to the equation is

r ¼ v=4; ðA20Þ
these light rays originate from the singularity at v ¼ 0,
r ¼ 0, which is therefore momentarily naked. The gen-
erators of the event horizon are identified with the outgoing
light rays that become stationary at v ¼ v0, and join
smoothly with the surface r ¼ 2m0 ¼ v0=8 beyond
v ¼ v0; these light rays have c ¼ v0=8.
We examine a sequence of timelike surfaces T that

approaches the null hypersurface described by Eq. (A20).
We choose the sequence to be described by r ¼ RðvÞ with

RðvÞ ¼ v=4þ ϵbðvÞ; ϵ → 0: ðA21Þ
We let bðvÞ be an arbitrary function of the advanced-time v,
but we assume that b > 0. We also take _b ≔ db=dv < 0, to
ensure that the hypersurfaces are timelike when ϵ > 0. The
unit normal sα and the intrinsic metric fjk take the same
expressions as in Sec. A 1, but with G now standing for
1 − v=ð8RÞ. The computation of Ljk requires a few changes
to account for the v-dependence of the mass function. We
again take the spacelike hypersurfaces S1 and S2 to be
described by equations of the form v ¼ rþ const, and the
unit normal nα can be imported without change from
Sec. A 1.
We compute L and η, expand in powers of ϵ, and insert

within Eq. (A1). After simplification we find that the
boundary action becomes

S ¼ −
π

4

�Z
v2

v1

�
7v − v2

d
dv

lnðb − v _bÞ
�
dv

þ v2 ln
4ϵðb − v _bÞ

3v

����
v2

v1

	
þOðϵÞ; ðA22Þ
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with the integral representing the contribution from T ,
while the boundary terms represent the joint contributions
from the intersections with S1 and S2. Again we see that
the individual joint terms yield a divergent result in the null
limit. Integration by parts allows us to rewrite the above
expression as

S ¼ −
π

8

�
4

Z
v2

v1

v lnðb − v _bÞdv

þ v2
�
7þ 2 ln

4ϵ

3v

�����
v2

v1

	
þOðϵÞ: ðA23Þ

Hence the divergent joint terms still yield a logarithmic
divergence in the action when ϵ → 0, and the limit is not
defined. Even if we set this divergence aside and examine
the finite terms, we see that the integral depends on the
detailed behavior of the function bðvÞ, but that the joint
terms are independent of bðvÞ. This shows that the limit
would be ill defined even if the logarithmic divergence
could be regularized: the limit to r ¼ v=4 depends on how
the null hypersurface is approached.
In Sec. A 1, we also saw the logarithmic divergence

survive in limϵ→0S when the limit was to a nonstationary
null hypersurface. We note that the nonstationary nature of
the hypersurface appears to be a key aspect for the
appearance of this divergence in the action; whether or
not the spacetime itself is stationary appears to be
unimportant.

APPENDIX B: COUNTERTERM FOR THE
NULL BOUNDARY ACTION

One might ask whether the dependence of the gravita-
tional action on the parametrization of the null generators
can be eliminated by adding an additional “counterterm” to
the boundary action SΣðjoinedÞ, as given by Eq. (2.67)? We
recall that the change to SΣðjoinedÞ under a reparametriza-
tion is given by Eq. (2.70),

S̄ΣðjoinedÞ ¼ SΣðjoinedÞ þ 2

Z
Σ
Θβ

ffiffiffi
γ

p
d2θdλ; ðB1Þ

where e−β ≔ ∂λ̄=∂λ. Remarkably, the answer to this ques-
tion is in the affirmative.
Any functional of the hypersurface’s intrinsic geometry

can be added to SΣðjoinedÞwithout affecting the variational
principle, and we seek a counterterm of the suitable form

ΔSΣ ¼
Z
Σ
L

ffiffiffi
γ

p
d2θdλ; ðB2Þ

where L is a function constructed from scalars that
characterize the intrinsic geometry of the hypersurface.
We may consider a number of such scalars, for example, Θ,
R, and BABRAB, where RAB is the Ricci tensor constructed
from γAB, and R the corresponding Ricci scalar. For
simplicity, let us assume that L is a function of only Θ,

and ignore more exotic possibilities. This changes accord-
ing to Θ̄ ¼ eβΘ under a reparametrization, and so the
proposed counterterm becomes

ΔS̄Σ ¼
Z
Σ
e−βLðeβΘÞ ffiffiffi

γ
p

d2θdλ: ðB3Þ
Can a judicious choice for LðΘÞ ensure the invariance
of SΣðjoinedÞ þ ΔSΣ?
It is easy to check that with

L ¼ −2Θðln jΘj þ cÞ; ðB4Þ
where c is an arbitrary constant, the change in the counter-
term is given by

ΔS̄Σ ¼ ΔSΣ − 2

Z
Σ
Θβ

ffiffiffi
γ

p
d2θdλ; ðB5Þ

so that

S̄ΣðjoinedÞ þ ΔS̄Σ ¼ SΣðjoinedÞ þ ΔSΣ: ðB6Þ
With this counterterm, therefore, the boundary action
becomes invariant under a reparametrization of the null
generators.
To see how Eq. (B4) was obtained, take β to be

infinitesimal, perform a Taylor expansion of the trans-
formed boundary action, and obtain

S̄ΣðjoinedÞ þ ΔS̄Σ
¼ SΣðjoinedÞ þ ΔSΣ

þ
Z
Σ
β

�
2Θþ Θ

dL
dΘ

− L
� ffiffiffi

γ
p

d2θdλ: ðB7Þ

Then to have invariance of the action for an arbitrary β, we
require

Θ
dL
dΘ

− Lþ 2Θ ¼ 0; ðB8Þ

and the solution to this differential equation is Eq. (B4).

APPENDIX C: ACTION USER’S MANUAL

We include a summary of how to evaluate the gravita-
tional action with all its relevant contributions. We write the
gravitational action as

SV ≔
Z
V
ðR − 2ΛÞ ffiffiffiffiffiffi

−g
p

dV

þ 2ΣTi

Z
∂V Ti

KdΣþ 2ΣSisignðSiÞ

×
Z
∂V Si

KdΣþ 2ΣNi
signðNiÞ

Z
∂V Ni

κdSdλ

þ 2ΣjisignðjiÞ
I

ηjidSþ 2Σmi
signðmiÞ

×
I

ami
dS ðC1Þ
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where we have arranged contributions from the bulk,
surfaces, and joints in the first, second and third lines
respectively. For bookkeeping, spacelike, timelike and null
boundary surfaces are labeled by Si, Ti and Ni, respec-
tively. Joints formed by an intersection involving no null
segments are denoted by ji, while those with at least one
null segment are denoted by mi.
The expressions for surface and joint contributions are

sensitive to the conventions adopted. We have chosen
conventions whereby the timelike vectors normal to space-
like boundary segements are always directed towards
the future, the null vectors tangent to null boundary
segments are always directed towards the future, and
spacelike vectors normal to timelike boundary segments
always point out away from the volume of interest.
Consequently, for surface contributions, the following
signs must be accounted for:

(i) For spacelike boundaries, signðSiÞ ¼ 1ð−1Þ if the
spacetime volume for which we are evaluating the
action lies to the future (past) of the boundary
segment, i.e. the normal vector points into (out
of) the region of interest.

(ii) For null boundaries, signðNiÞ ¼ 1ð−1Þ if the vol-
ume of interest lies to the future (past) of the null
segment.

The joint contributions, discussed in Secs. II E, II G,
and II H are summarized in a rather straightforward
way below. While our description of the contributions
coming from joints between spacelike and/or timelike
surfaces might appear to differ from that given in [4,25],
our results are in fact in precise agreement with those earlier
works, and our summary provides an explicit prescription
for the sign of these terms, which was previously left
ambiguous.

1. Joints formed by the intersection
of spacelike surfaces

As in the main text, we denote the (future-directed)
timelike unit normal to each hypersurface as nαi with
i ¼ 1; 2. For each boundary segment we introduce a
spacelike unit vector pα

i which is in the tangent space of
the corresponding segment, orthogonal to the joint, and
points outward from the segment. Then the contribution
from the corresponding joint can be written as

ηji ¼ ln jðn1 þ p1Þ · n2j: ðC2Þ

Further, signðjiÞ ¼ þ1 if nα1 is directed out of the volume of
interest, and signðjiÞ ¼ −1 otherwise. (We note that these

rules are sensitive to which boundary segment is labeled S1
and which S2— e.g. consider interchanging the labels in
Fig 4(f).

2. Joints formed by the intersection of timelike surfaces

Let the spacelike unit normal to each hypersurface be
given by sαi (with i ¼ 1; 2 and sαi is chosen to point out of the
volume of interest), and at the joint, introduce two timelike
unit vectors pα

i which are tangent to the corresponding
segment, orthogonal to the joint, and point outward from
their segment. The joint contribution can be written as

ηji ¼ ln jðs1 þ p1Þ · s2j: ðC3Þ

Further, signðjiÞ ¼ −1 in all cases.

3. Joints formed by the intersection of a spacelike
and a timelike surface

Assuming the (outward-directed spacelike) unit normal
to the timelike surface is given by sα, the (future-directed)
timelike unit normal to the spacelike hypersurface is given
by nα and the spatial unit vector orthogonal to the joint in
the latter boundary segment is given by pα, the contribution
from the corresponding joint is

ηji ¼ ln jðnþ pÞ · sj: ðC4Þ

Further, signðjiÞ ¼ þ1 if nα is directed out of the volume of
interest, and signðjiÞ ¼ −1 otherwise.

4. Joints formed by the intersection of at least
one null surface

Assuming the null vector kα is future directed and
tangent to the null surface, and the intersecting surface
has normal vector nα if spacelike, sα if timelike, or (future
directed) null tangent vector k̄α, we have

a ¼
8<
:

ln jk · nj for a spacelike intersecting surface;

ln jk · sj for a timelike intersecting surface;

ln jk · k̄=2j for a null intersecting surface:

ðC5Þ

Further, signðmiÞ ¼ þ1 if the spacetime volume of interest
lies to the future (past) of the null segment and the joint lies
at the past (future) end of the segment; and signðmiÞ ¼ −1
otherwise; see Fig. 9.
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