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ABSTRACT 

The equilibrium configurations of rigidly rotating white dwarfs and neutron stars are calculated using 
the Harrison-Wheeler and the Tsuruta-Cameron Vy equations of state, along with the general-relativistic 
equations of structure. The equations of structure used are the exact relativistic equations with one ex- 
ception: they have been expanded in powers of the angular velocity Ü, and terms of higher order than 
fi2 have been neglected. The equilibrium configurations of slowly rotating supermassive stars are also 
calculated. 

I. INTRODUCTION 

The recent discoveries of galactic X-ray sources and quasi-stellar radio sources, to- 
gether with progress in the dynamical theory of supernovae, has led to a renewal of 
interest in the general-relativistic theory of stellar structure. This subject had its be- 
ginnings in the 1939 analysis of Oppenheimer and Volkoff of a non-rotating star made 
from an ideal neutron gas. More recently, a number of authors have calculated in 
greater detail the relativistic equilibrium configurations of cold white dwarfs, neutron 
stars, and supermassive stars, when these stars are not rotating. (For reviews of these 
calculations see Harrison et al. 1965; Thorne 1967; and Wheeler 1967.) 

It is now appropriate to abandon the restriction that relativistic stellar models be 
non-rotating and to investigate the effects of angular velocity on the structure of rela- 
tivistic stars. In this series of papers we examine the case of stars which rotate rigidly and 
slowly. In Paper I (Hartle 1967) the equations of structure for slowly rotating rela- 
tivistic stars were derived. Terms of greater than second order in the angular velocity 
were neglected in these equations, but no other approximations were made. In this paper 
(Paper II) these equations are integrated numerically for particular equations of state 
corresponding to white-dwarf matter, neutron-star matter, and supermassive-star mat- 
ter. The stability of the equilibrium configurations calculated here, and the gravitational 
waves which they emit when perturbed, will be discussed in subsequent papers of this 
series. 

In § II the equations of structure are summarized; in § III they are applied to the cal- 
culation of white-dwarf and neutron-star models; and in § IV they are used to calculate 
models for supermassive stars. Some properties of the exterior gravitational fields of 
slowly rotating stars are examined in the Appendix. 

II. EQUATIONS OF STRUCTURE 

The method used to construct models for rigidly and slowly rotating relativistic stars 
is summarized briefly here. For details and derivations the reader should refer to Paper I, 
the notation of which we follow. 
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808 JAMES B. HARTLE AND KIP S. THORNE Vol. 153 

a) An Equation of State Is Assumed 

As the first step in the calculation of a slowly rotating stellar model, a one-parameter 
equation of state, 

E = E{P) , N = N{P) , (1) 

is specified. Here P is the pressure, E is the total density of mass-energy, and N is the 
number density of baryons. For neutron stars and white dwarfs this relation will be one 
of the equations of state for cold degenerate matter, while for supermassive stars, it will 
be the poly tropic equation of state of index 3. 

b) Values for the Central Density and Angular Velocity Are Chosen 

For slow rotation, once the equation of state is specified, there is a unique equilibrium 
configuration for each choice of the central density and angular velocity. The small per- 
turbations away from a non-rotating equilibrium configuration are all proportional to 
the angular velocity or to its square. Consequently, for a given central density, all the 
models of different angular velocities can be obtained from a single model by scaling. In 
this paper the results are given in tabular and graphical form for the angular velocity 
Ù satisfying1 7 ^ 

fí2 = M/R* , (2) 

where M is the mass of the non-rotating configuration and R is its radius.2 This is ap- 
proximately the critical angular velocity at which rotational shedding will occur, and it 
is thus an upper bound on those angular velocities for which the assumption of slow 
rotation could be valid. 

Having chosen a value of the angular velocity for each value of the central density, 
one constructs a sequence of equilibrium models by integrating the general-relativistic 
equations of structure for a sequence of central densities. The integration procedure is 
the following. 

c) A Non-rotating Stellar Model Is Computed 

For a given value of the central density, the non-rotating equilibrium configuration is 
determined by integrating the Tolman-Oppenheimer-Volkoff equation of hydrostatic 
equilibrium for the pressure, P(r), and the mass interior to a given radius, M{r): 

dP 
dr 

-(E + P) 
(M + 47rr3P) 
r{r - 2M) ’ 

(3 a) 

dM/dr = 4irr2£ . (3b) 

The integration is performed outward, starting at the star’s center, r = 0. At the star’s 
center Af is 0; £ is the given central density, Ec; and P is P(Ef) as given by the equation 
of state (eq. [1]). The radius of the surface of the star, R, is that value of r at which P{r) 
drops to zero; and the value of M(r) there is the star’s total mass. 

The metric that describes the spherically symmetric geometry of the non-rotating 
star has the Schwarzschild form 

^2 ^ — (>v(r)dfî + [1 - IMtf/r^dr2 + r2(dd2 + sin2 6 dtf) . (3c) 

The remaining function in the metric, v{r), is determined by integrating outward from 
the center the equation 

dv/dr = — 2(£ + P)~x{dP/ dr) (3d) 

with the boundary condition v(c°) = 0. 

1 Here, and throughout, we use units in which c = G = 1. 
2 In this paper the radius of the non-rotating star will be denoted by R rather than by a, as it was in 

Paper I. 
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No. 3, 1968 SLOWLY ROTATING RELATIVISTIC STARS 809 

The total number of baryons in the non-rotating star can be found from the integral 

R 
A = fN{r)[\ - 2M{r)/r]~l^TrrHr . (3e) 

o 

For further discussion of the construction of non-rotating stellar models see Thorne 
(1967). 

Ó) The Rotational Perturbations in the Metric and Stress-Energy Tensor Are Specified 

When the equilibrium configuration described above is set into slow rotation, the 
geometry of spacetime around it and its interior distribution of stress-energy are changed. 
With an appropriate choice of coordinates, the perturbed geometry is described by 

j , vn i o// , / , U + 2(m° + m2P2)/(r - 2M)\ ^ , ds2 = — e” 1 + 2(ä0 + hiP‘i)\dll -{ :  dr2 

l — 2M/r (4) 

+ r2[l + 2(v, - kdPiW1 + sin2 e(d<t> - œdt)2] + 0(Q8) . 

Here, P2 = P2(cos 9) = (3 cos2 0 — l)/2 is the Legendre polynomial of order 2; co, which 
we call “the angular velocity of the local inertial frame,,,3 is a function of r and is pro- 
portional to the star’s angular velocity 12; and ^0, ^2, w0, m2, v2 are all functions of r that 
are proportional to 122. 

In the above coordinate system the fluid inside the star moves with the 4-velocity ap- 
propriate to uniform and rigid rotation (see, e.g., Thorne 1967, p. 332), of which the con- 
travariant components are 

u* = (-gtt - 2ügtt - gutf)-112 

= erW2[i + if2 sin2 _ uYe-* -ho - feP2] , (5) 

u* = tiu* , 

The quantity 

ur = u6 = 0 . 

¿0 = 12 — co , (6) 

which appears in the expression for ue, is the angular velocity of the fluid relative to the 
local inertial frame. It plays a fundamental role in the equations of structure below. 

The baryon number density, the density of mass-energy, and the pressure of the fluid 
are affected by the rotation because the rotation deforms the star. In the interior of the 
star at given (r,6), in a reference frame that is momentarily moving with the fluid, the 
pressure is 

P+(E + P)(Po* + P2P2) = P + AP ; (7a) 

the density of mass-energy is 

E+(E + P)(dE/dP)(p0* + p2^P2) = P + AE ; (7b) 

and the number density of baryons is 

N+{E + P)(dN/dP)(po* + P2*P2) = Y + AY . (7c) 

Here, p0* and p2* are dimensionless functions of r, proportional to Í22, which describe the 
pressure perturbation; all other parameters were defined above. The stress-energy tensor 
for the fluid in the rotating star is, of course, 

T/ = — (£ + AE + P + AP)ußu
v + (P + AP)V . (8) 

3 Note that these “local inertial frames,, are not the frames in which Coriolis forces are absent The 
Coriolis-free frames are discussed in Landau and Lifschitz (1962, p. 362). Cf. Hartle (1967) for further 
discussion. 
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810 JAMES B. HARTLE AND KIP S. THORNE Vol. 153 

The rotational perturbations of the star’s structure are described by the functions 
œ, ho, mo, po*, fa, w2, v2, p2*> These functions are calculated from Einstein’s field equa- 
tions as described below. 

e) The “Rate of Rotation of an Inertial Frame” and the Moment of Inertia Are Determined 

In equilibrium, a rotating star attains a balance between pressure forces, gravitational 
forces, and centrifugal forces. The magnitude of the centrifugal force is determined not 
by the angular velocity ß of the fluid relative to a distant observer but by its angular 
velocity relative to the local inertial frame, co(r). This quantity is of first order in ß and 
is found by integrating the differential equation 

where 
r4 dr \ J drj 

+ -§^ = 0, 
r dr 

j(r) = - 2M(r)/r]1/2 . 

(9) 

(10) 

The solution must be regular at the origin; and outside the star it takes the form 

w(r) = ß - 2J/rz , (11) 

where J is the total angular momentum of the star. The moment of inertia of the star is 
defined as the ratio //ß and is conveniently expressed in terms of the radius of gyra- 
tion, Rg: 

Rg = (moment of inertia/ikf)1/2 = (//ßM)1/2 . (12) 

In practice, one integrates equation (9) outward from the center of the star, where 
the boundary conditions w = wc and dœ/dr = 0 are imposed. The constant œc is chosen 
arbitrarily. When one reaches the surface—and only then—one can determine the 
angular velocity, ß, and angular momentum, J, corresponding to o)c: 

■'-KfL- “-“<*>+§ 

(cf. eq. [11]). If a different value of ß is desired, one rescales the function co(r) to obtain it: 

CO (/J new =:= ^(^©^(ßrxew/ßold) • (14) 

/) The Spherical Deformations of the Star Are Calculated 

The spherical part of the rotational deformation is calculated by integrating the ¿ = 0 
equations of hydrostatic equilibrium for the “mass perturbation factor” mo and the 
“pressure perturbation factor” Po*'A 

dmo 
dr 

(15a) 

dpo* _ mo(l + 87rf2P) 47r(E + iV * r*f /dd>\> 
dr (r - 2MY (r - 2M) 12 (r _ 2M) \dr) 

(15b) 
, rj ( r*jW \ 

dr \r- 2Mj * 

These equations are integrated outward, with the boundary conditions that both mo and 
po* vanish at the origin. With these boundary conditions, the rotating star will have the 

4 These equations were written in Paper I in terms of the variable R introduced there; but in the limit 
of slow rotation the equations are the same when written in terms of r as when written in terms of R. 
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same central density as the non-rotating one (cf. eq. [7b]). Outside the star, w0, which is 
one of the perturbations in the metric tensor, is given by 

M0 = ÔM - J2/r* , (15c) 

where 8M is a constant. Consequently, the total mass-energy of the star with central 
density Ec and angular velocity Í2 is 

M(R) +ÔM = M(R) + m0(R) + P/Rz , (16) 

where R is the radius of the star’s surface. 
Once ^>0*, 5M, and J have been calculated, one obtains the function Ä0(r) from the 

algebraic relations 

h = TT? + i outside the star , (17a) r — 2M rz\r — 2M) 

fa = — po* d" \r2e~v(b2 + fac, inside the star . (17b) 

Here fac is a constant determined by the demand that fa be continuous across the star’s 
surface. 

The binding energy of a relativistic star is the difference between its rest mass and its 
total mass-energy: 

Eb = pA - M . (18) 

Here the rest mass has been expressed as the product of the total baryon number, A, and 
the rest mass per baryon, p. The change in binding energy, öEb, of the rotating over the 
non-rotating star is calculated from w0, po*, and the density of internal energy, 

e = E- pN , (19) 
through the formulae 

ÔED= -~+ f^B(r)dr , 
■K o 

B(r) = (£ + P)po\^ [(l - 
2Af\_I/2 

]- dP 0 - T)m\ (20) 

+ (£ - e)(l - ^)"3/2[^ + Í?W] 

The change in the total baryon number is then obtained from equation (18). 

g) The Quadrupole Deformations of the Star Are Calculated 

One calculates the quadrupole part of the deformations by integrating the 1=2 equa- 
tions 

dv^ 
dr 

"-t-hî+T^w (S"‘N£+«-“]! fe 

4»s 

r(r - 2M) 

_ A'dVr I 1 

^ dr + r - m\dr) \ dr ’ 

(21a) 
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812 JAMES B. HARTLE AND KIP S. THORNE 

subject to the four boundary conditions 

^2 = v2 = 0 at r = 0 and at r = oo . 

Outside the star Ä2 and V2 have the analytic form 

J* , „ 2M n/r A 
1,2 ri+ K [r{r - 2M)]1» 02 W V ’ 

where is a constant and Qn
m is the associated Legendre polynomial of the second kind. 

Once ^2 and have been calculated from equations (21), the non-radial mass and pres- 
sure perturbation factors, w2 and ÿ2*, are determined from the algebraic relations 

w2 = (r — 2M)[— h2 — ^(dÿ/dr)^2 + i^ÿidû/dr)2] , (23a) 

p2 = —h2 — \r2e~vü>2 . (23b) 

The rotational deformation of the star is most clearly understood as follows: The 
surface of constant given density that lies at radius r in the non-rotating configuration is 
displaced in the rotating configuration to radius 

r + £oM + £2MA(cos 0) , (24a) 
where 

£0 EEE Sr = -A)*(£ + P)/{dP/dr) , £2 = -p2\E + P)/{dP/dr) . (24b) 

Vol. 153 

(21c) 

(22a) 

(22b) 

Equation (24a) describes the surfaces of constant density in a particular coordinate 
system. An invariant parameterization of a surface of constant density can be obtained 
by embedding it in a three-dimensional flat space. To do this, we ask for the surface in a 
three-dimensional flat space with polar coordinates r*, 0*, <£*, which has the same intrin- 
sic geometry as the surface of constant density in our star. Accurate to order Í22, the 
desired 3-surface in flat space is the spheroid 

r*(0*) = r + £oW + U2M + r[v2(r) — fe(r)]}P2(cos 0*) . (25a) 

The mean radius of this spheroid is 

... r* = r + Ur) , (25b) 
and its eccentricity is 

e = [(radius at equator)2/(radius at pole)2 — 1]1/2 

(25c) 
= [- 3(zj2 - ¿2 + Ur)]"2 . 

The mean radius of the star and the eccentricity of its surface we denote by R = R -\-bR 
and eSy respectively; and we calculate them by setting r = P in equations (25). 

The deformation of the star’s external gravitational field is determined by the metric 
perturbation factors h2y v2y and m2 of equations (22) and (23). Far from the star, h2 be- 
comes the non-radial perturbation in the Newtonian potential and thereby determines 
the star’s quadrupole moment to be 

Q = [coefficient of r“3P2(cos 0)term in Newtonian potential] = ^KMZ + J2/M. (26) 

Here K is the constant in equations (22), which is determined by the numerical integra- 
tion of equations (21).5 

Some of the properties of the exterior gravitational field of a slowly rotating star are 
examined in the Appendix; and a more careful definition of the quadrupole moment than 
equation (26) is also given there. 

6 The factor ^ quoted in eq (138) of paper I is in error 
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No. 3, 1968 SLOWLY ROTATING RELATIVISTIC STARS 813 

III. WHITE-DWARE AND NEUTRON-STAR MODELS 

a) Equations of State 

Slowly rotating white-dwarf and neutron-star models are presented here for two 
equations of state: (1) the Harrison-Wheeler (HW) equation of state (see Harrison et at. 
1965, chap, viii) and (2) the Vy equation of state proposed by Tsuruta and Cameron 
(1966), with the form P = E imposed above 1.08 X 1016 g cm-3. Harrison and Wheeler 
idealize matter at high densities as an equilibrium mixture of non-interacting, degenerate 
nucleons and electrons. The equilibrium is established through the weak interactions of 
the constituents, but all strong interactions are neglected. This idealization is probably 
inaccurate at densities much above 1013 g cm-3 and is certainly inaccurate above nuclear 
densities (4 X 1014 g cm-3). In the Vy equation of state, the equilibrium mixture is en- 
larged to include some of the hyperons, and a phenomenological baryon-baryon potential 
is included to approximate the effects of the strong interactions. However, so few of the 
properties of matter in bulk at near-nuclear densities and above have been calculated 
accurately that either equation of state will give only a qualitative description of stars 
with central densities in this region. 

In our computations the HW and Vy equations of state were used in tabular form, 
with logarithmic interpolation between table entries. The HW table used is given in 
Table 1. This version of the HW equation of state, which was obtained from B. K. 
Harrison (private communication), has been used in all previous computations of Har- 
rison-Wakano-Wheeler (HWW) stellar models (Harrison et al. 1965; Meitzer and Thorne 
1966). However, it differs slightly from the more accurate version given on page 109 of 
Harrison et al. Our version of the Vy equation of state is given in Table 2. It was con- 
densed and adapted from a more extensive table, kindly given to us by S. Tsuruta and 
A. G. W. Cameron. In both equations of state, the internal energy density, e, was calcu- 
lated from the equation of state E = E{P) by integrating the equation of adiabatic com- 
pression, 

dN_ _ d(E - e) _ dE , . 
N E - e E + P' ^ } 

b) Structure of Non-rotating Stars 

The non-rotating equilibrium configurations of matter obeying the HW equation of 
state have been calculated previously and discussed in detail by Harrison, Wakano, and 
Wheeler (1958). (See also Harrison et al. 1965; Meitzer and Thorne 1966; Thorne 1967.) 
The properties of these non-rotating “HWW configurations,,, as recalculated in connec- 
tion with the present investigation, are summarized in Table 3 (masses, radii, etc., for 
thirty models) and in Figure 6 (internal distributions of density and pressure for four 
representative models). In Table 3 the two distinct families of stable configurations— 
white dwarfs at < 2.5 X 108 g cm-3, and neutron stars at 5.0 X 1013 < Ec< 6.0 X 
1015 g cm-3—are delineated clearly. 

The non-rotating Vy configurations have been calculated previously and discussed by 
Tsuruta and Cameron (1966). Their properties, as recalculated in connection with the 
present investigation, are summarized in Table 4 and Figure 10. Again the division into 
white dwarfs, neutron stars, and unstable stars is clear. 

c) Effects of Rotation on the Stellar Structure 

The effects of rotation on the structures of the HWW and the Vy configurations have 
been calculated using the procedure outlined in § II. The results of those calculations are 
presented in Table 5 and Figures 1, 3, and 5-9 for the HWW configurations, and in 
Table 6 and Figures 2, 4, 5, and 10-13 for the Vy configurations. Detailed discussions of 
the results are contained in the table footnotes, in the figure captions, and in the text 
below. 
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TABLE 1 

HARRISON-WHEELER EQUATION OF STATE 

E 

8.31E-41 
lf.!7E-40 
8.31E-40 
4*17E-39 
8.31E-39 

2.79E-38 
2.38E-37 
1.37E-36 
7•00E-36 
6•96E—35 

4.79E-34 
1.74E-33 
5.95E-33 
1.56E-32 
4.62E-32 

2.67E-31 
9.63E-31 
4.83E-30 
2.32E-29 
5.19E-29 

1.65E-28 
8.23E-28 
2.37E-27 
7.19E-27 
2.69E-26 

7.86E-26 
1.93E-25 
6.60E-25 
1.65E-24 
4.18E-24 

l*35E-23 
3.29E-23 
8.07E-23 
2.67E-22 
6.53E-22 
1.21E-21 

5.82E-28 
5.84E-28 
5.86E-28 
5.97E-28 
6.04E-28 

6.32E-28 
8.52E-28 
1.23E-27 
2.34E-27 
6.54E-27 

1.56E-26 
2.95E-26 
5.22E-26 
8.52E-26 
1.53E-25 

3.71E-25 
7.41E-25 
1.86E-24 
4.68E-24 
7.41E-24 

1.48E-23 
3.71E-23 
7•41E-23 
1.48E-22 
3.71E-22 

7.41E-22 
I.48E-21 
3.71E-21 
7.41E-21 
1.48E-20 

3.71E-20 
7.41E-20 
1.48E-19 
3.71E-19 
7.41E-19 
1.17E-18 

1.00E-45 
7.1IE-43 
2.77E-42 
4,16E-41 
1.12E-40 

8.64E-40 
3.36E-38 
3.21E-37 
3.47E-36 
5.01E-35 

3.76E-34 
1.52E-33 
5.18E-33 
1.45E-32 
4.73E-32 

2.72E-31 
1.05E-30 
5.82E-30 
3.03E-29 
•.82E-29 

2.27E-28 
1.11E-27 
3.59E-27 
1.12E-26 
4.84E-26 

1.42E-25 
4.03E-25 
1.53E-24 
4.07E-24 
1.07E-23 

3.77E-23 
9.57E-23 
2.41E-22 
8.17E-22 
2.04E-21 
3.72E-21 

2.73E-21 
6.49E-21 
1.10E-20 
1.88E-20 
3.05E-20 

4.58E-20 
6.59E-20 
9.55E-20 
1.50E-19 
2.54E-19 

4.49E-19 
9.14E-19 
1.88E-18 
6.09E-18 
2.63E-17 

8.23 E-17 
2.60E-16 
1.09E-15 
3.25E-15 
9.71E-15 

3.93E-14 
9.71E-14 
2.42E-13 
7.34E-13 
1.65E-12 

3.60E-12 
1.01E-11 
2.08E-11 
4.28E-11 
1.10E-10 

2.26E-10 
4.64E-10 
1.19E-09 
2.43E-09 
4.91E-09 
1.23E-08 

2.34E-18 
4.68E-18 
7.41E-18 
1.17E-17 
1.86E-17 

2.95E-17 
4.68E-17 
7.41E-17 
1.17E-16 
1.86E-16 

2.95E-16 
4.68E-16 
7.41E-16 
1.48E-15 
3.71E-15 

7.41E-15 
1.48E-14 
3.71E-14 
7,4lE-l4 
1.48E-13 

3.71E-13 
7.41E-13 
1.48E-12 
3.71E-12 
7.41E-12 

1.48E-11 
3.71E-11 
7.41E-11 
1.48E-10 
3.71E-10 

7.41E-10 
1.48E-09 
3.71E-09 
7•41E-09 
1.48E-08 
3.71E-08 

9.2IE-21 
2.25E-20 
4.05E-20 
7•21E-20 
1.28E-19 

2.25E-19 
3.88E-19 
6.60E-19 
1.11E-18 
1.88E-18 

3.17E-18 
5.39E-18 
9.28E-19 
2.18E-17 
7.27E-17 

1* 90E-16 
5.16E-16 
2.02E-15 
5,70E-15 
1.61E-14 

6.30S-14 
1.69E-13 
4.34E-13 
1.43E-12 
3.37E-12 

7.71E-12 
2.23E-11 
4*87E-11 
1.04E-10 
2.82E-10 

5.89E-10 
1.22E-09 
3.19E-09 
6.52E-09 
1.33E-08 
3.41E-08 

* This version of the HW equation of state, which was kindly given to us by B. Kent Har- 
rison, differs slightly from that presented on p. 109 of Harrison, Thorne, Wakano, and Wheeler 
(1965). Here P, the pressure, E, the total density of mass-energy, and e = E — ¡xN, the density 
of internal energy, are all measured in cm-2. To convert to g cm-8, divide by Gc~2 = 0 742 X 10~28 

cm g-1. In this table and all others, computer notation is used: .742E — 28 stands for 0.742 X 
IO-28. For densities above 3.71 X 10~8 the equation of state is given analytically by 

P = E/3 e = £-0.30 X 10-8(£/3.71 X 10-8)3/4. 

814 
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TABLE 2 

V, EQUATION OF STATE* 

P 

4.9836E-39 
^.9836E-29 
1.0036E-28 
2.1205E-28 
4.2366E-28 

9.288lfE-28 
1.9215E-27 
3.9377E-27 
7.9880E-27 
1.6023E-26 

3.179UE-26 
6.2408E-26 
1.2127E-25 
2.3348E-25 
4.4601E-25 

8.46lUE-25 
1.5960E-24 
2.9967E-2^ 
5.6058E-24 
1.0458E-23 

1.9215E-23 
3.4178E-23 
6.0721E-23 
1.0776E-22 
1.9114E-22 

3.3880E-22 
6.0040E-22 
1.0635E-21 
1.8834E-21 
3.3353E-21 

5.9039E-21 
1.0453E-20 
1.8503E-20 
3.6706E-20 
3.7484E-20 

3:8180E-20 
3.9097E-20 
4.0977E-20 
4.5086E-20 

E 

7.7697E-30 
7.7697E-24 
1.1760E-23 
1.8638E-23 
2.8210E-23 

4.6817E-23 
7.4200E-23 
1.1760E-22 
1.8638E-22 
2.9540E-22 

4.6828E-22 
7.4217E-22 
1.1763E-21 
1.8642E-21 
2.9546E-21 

4.6839E-21 
7.4234E-21 
1.1768E-20 
1.8651E-20 
2.9567E-20 

4.6860E-20 
7.4285E-20 
1.1776E-19 
1.8668E-19 
2.9594E-19 

4.691UE-19 
7.4371E-19 
1.1790E-18 
1.8690E-18 
2.9635E-18 

4.6990E-18 
7.4508E-18 
1.1814E-17 
2.0545E-17 
2.2522E-17 

2.7059E-17 
3.1053E-17 
3.7317E-17 
4.7142E-17 

€ 

7.4750E-39 
7.4750E-29 
1.4929E-28 
3.2137E-28 
6.3769E-28 

1.4638E-27 
3.0959E-27 
6.5039E-27 
1.3563E-26 
2.8063E-26 

5.7589E-26 
1.1711E-25 
2.3606E-25 
4.7164E-25 
9.3455E-25 

1.8377E-24 
3.5858E-24 
6.9517E-24 
1.3391E-23 
2.5664E-23 

4.8876E-23 
9.2308E-23 
1.7268E-22 
3.2051E-22 
5.9105E-22 

1.0840E-21 
1.9788E-21 
3.5983E-21 
6.5205E-21 
1.1785E-20 

2.1244E-20 
3.8210E-20 
6.8590E-20 
1.3811E-19 
1.5494E-19 

1.9370E-19 
2.2793E-19 
2.8190E-19 
3.6730E-19 

P 

5.0797E-20 
6.0582E-20 
7.5031E-20 
9.6859E-20 
1.6060E-19 

2.1986E-19 
3.0559E-19 
4.2968E-19 
6.0693E-19 
8.5554E-19 

1.1982E-18 
1.6786E-18 
2.3391E-18 
3.2632E-18 
4.5808E-18 

6.4720E-18 
9.2075E-18 
1.3275E-17 
1.9255E-17 
2.5896E-17 

4.0657E-17 
6.4245E-17 
1.0201E-16 
1.8148E-16 
2.8777E-16 

5.1457E-16 
1.2344E-15 
2.3908E-15 
4.3086E-15 
8.2081E-15 

1.5168E-14 
2.5777E-14 
4.9050E-14 
8.1234E-14 
1.6078E-13 

2.9400E-13 
5.3314E-13 
7.1030E-13 
8.0000E-13 

E 

5.9361E-17 
7.4766E-17 
9.4146E-17 
1.1855E-16 
1.8793E-16 

2.3670E-16 
2.9806E-16 
3.7532E-16 
4.7261E-16 
5.9526E-16 

7.4956E-16 
9.4407E-16 
1.1891E-15 
1.4976E-15 
1.8863E-15 

2.3763E-15 
2.9937E-15 
3.7714E-15 
4.7523E-15 
5.6716E-15 

7.3435E-15 
9.3176E-15 
1.1639E-14 
1.5080E-14 
1.8315E-14 

2.3046E-14 
3.1132E-14 
3.9756E-14 
5.0327E-14 
6.5706E-14 

8.5389E-14 
1.0877E-13 
1.4812E-13 
1.912IE-13 
2.7804E-13 

4.0032E-13 
5.9320E-13 
7.2628E-13 
8.0000E-13 

€ 

4.7476E-19 
6.1217E-19 
7•8808E-19 
1.0142E-18 
1.6790E-18 

2.1628E-18 
2.7896E-18 
3.6053E-18 
4.6703E-18 
6.0666E-18 

7.8976E-18 
1.0309E-17 
1.3491E-17 
1.7696E-17 
2.3275E-17 

3.0709E-17 
4.0656E-17 
5.4033E-17 
7.2157E-17 
9.0343E-17 

1.2631E-16 
1.7366E-16 
2.3654E-16 
3.4545E-16 
4.6678E-16 

6.8244E-16 
1.1864E-15 
1.9504E-15 
3.2214E-15 
5.7296E-15 

1.0057E-14 
1.6690E-14 
3.0933E-14 
5.0115E-14 
9.6820E-14 

1.7434E-13 
3.1244E-13 
4.1459E-13 
4.7278E-13 

* Adapted from a more extensive table which was kindly given to us by Sachiko 
Tsuruta and A G. W Cameron. The notation is the same as in Table 1. At low densities 
(E < 10-24) the equation of state is that of a polytrope of index 1.5: 

PozE5/3, €<xP. 

At densities above those in the table, the equation of state is given analytically by 

P = £,. e = £- 3.2722 X 10-13(£/8.0000X 10-13)1/2. 
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TABLE 3 

NONROTATING H-W-W CONFIGURATIONS 

Ec, g/cm3 R, Ion M/% + Stable? 

1.00E03 

l.OOEOlj. 

1.00E05 

1.00E06 

1.00E07 

1.00E08 

2.50E08 

1.00E09 

1.00E10 

1.00E11 

1.00E12 

1.00E13 

1.50E13 

1.70E13 

2.00E13 

2.50E13 

5.00E13 

1.00E14 

3.OOEl^ 

1.00E15 

3.00E15 

6•00E15 

1.00E16 

3.00E16 

1.00E17 

3.00E17 

1.00E18 

3.00E18 

1.00E19 

!•00E20 

1.77E^ 

1.73E4 

1.08E4 

7.24E3 

4.66E3 

3.75E3 

2.70E3 

1.43E3 

7.93E2 

6.87E2 

1,43E3 

2.31E3 

2.78E3 

2.41E3 

4.28E2 

6.91E1 

3.60E1 

2.08E1 

1.42E1 

1.02E1 

8.41E0 

7.48E0 

5.96E0 

5•15E0 

5.18E0 

6.01E0 

6.69EO 

6.72E0 

6.28E0 

3.95E-3 

3.10E-2 

1.33E-1 

4.58E-1 

9.41E-1 

1.17E+0 

1.19E+0 

1.15E+0 

1.01E+0 

8.50E-1 

6.71E-1 

5.59E-1 

4.83E-1 

4.25E-1 

2.62E-1 

1.78E-1 

2.05E-1 

2.66E-1 

4.05E-1 

5.54E-1 

6.61E-1 

6.84E-1 

6.68E-1 

5.77E-1 

4.62E-1 

3.87E-1 

3# 62E-1 

3.92E-1 

4.27E-1 

4.27E-1 

6.72E-10 

4.04E-08 

8.47E-07 

1.28E-05 

7# 09E-05 

1.30E-04 

1.37E-04 

1.17E-04 

1.40E-05 

•2.07E-04 

-4.94E-04 

■6.14E-04 

•6.49E-04 

■6.65E-04 

•6.95E-04 

■7*15E~04 

•6.36E-04 

•1.66E-04 

2.62E-03 

9.40E-03 

1.86E-02 

2.16E-02 

1* 93E-02 

3.44E-03 

•1.68E-02 

■2.84E-02 

■3.14E-02 

•2.85E-02 

■2.49E-02 

•2.48E-02 

3.30E-7 

2.64E-6 

1.36E-5 

6.25E-5 

1.92E-4 

3.70E-4 

4.67E-4 

6.27E-4 

1.05E-3 

1.58E-3 

1.44E-3 

5.78E-4 

3.09E-4 

2.25E-4 

1.61E-4 

6.13E-4 

4.39E-3 

1.10E-2 

2.99E-2 

6.30E-2 

1.12E-1 

1.47E-1 

1.65E-1 

1.83E-1 

1.66E-1 

1.33E-1 

1.03E-1 

9.92E-2 

1*09E-1 

1.19E-1 

6.30E-7 

5.35E-6 

2.99E-5 

1.43E-4 

4.90E-4 

1.15E-3 

1.56E-3 

2.38E-3 

4.71E-3 

8.62E-3 

1.18E-2 

1.59E-2 

1.77E-2 

1.84E-2 

1.94E-2 

2.15E-2 

3.19E-2 

4.93E-2 

9.95E-2 

2.03E-1 

3.88E-1 

5.66E-1 

7.10E-1 

1.10E+0 

1.62E+0 

2.23E+0 

3.15E+0 

4.33E+0 

6.17E+0 

1.18E+1 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

no 

no 

no 

no 

no 

yes 

yes 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

no 

no 

no 

no 

* The various columns are as follows: £c, central density of total mass-energy; R, radius = (surface area of 
star/47r)1/2; M/Mq, total mass-energy of star as measured gravitationally by a distant observer, in units of solar 
masses; Eb/Mq, binding energy in solar-mass units (defined by eq [18] with n taken as the mass of one MFe atom); 
z&, gravitational redshift, AX/X, of a photon emitted from the star’s surface and received at infinity; zc, gravitational 
redshift of a neutrino emitted from the star’s center and received at infinity; “Stable?”, an entry “yes” means the 
star is stable against all radial perturbations; “no” means it is unstable against some radial perturbations (cf. 
Thorne 1967, § 7.5.1). The entries in this and subsequent tables are all accurate to about 1 per cent or better. 

t These binding energies are somewhat different from those quoted by Harrison et al. (1965) The earlier ones 
are in error. Notice that there are stable neutron stars with negative binding energies in the range 2 5E13 <C £<;< 
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TABLE 4 

NONROTATING CONFIGURATIONS* 

Ec, g/cm R, km v% s Stable? 

1.00E04 

1.00E05 

1.00E06 

1.00E07 

1.00E08 

1.00E09 

1.00E10 

l.OOEll 

1.00E12 

b.73E12 

1.00E13 

4.50E13 

5.70E13 

7.18E13 

7.80E13 

8.41E13 

l.OOEl^ 

2.1lOEl4 

5.00E14 

1.00E15 

1.70E15 

3.00E15 

5.00E15 

1.00E16 

3.00E16 

1.00E17 

3 *OOE17 

l.OOElô 

1.00E19 

1.00E20 

2.20E1+ 

1.50E4 

1.02E4 

6.65E3 

4.08E3 

2.37E3 

1.43E3 

8.13E2 

6.42E2 

8.50E2 

1.10E3 

2.1flE3 

3.17E3 

5.17E3 

7.91E2 

2.94E2 

1.02E2 

1.79E1 

1.27E1 

1.20E1 

1.11E1 

9.87E0 

8.91E0 

8.00E0 

7.49EO 

7.47E0 

7.69EO 

7.81EO 

7.78EO 

7.75EO 

3.70E-2 

1.17E-1 

3.34E-1 

6.86E-1 

l.OOE+O 

1.15E+0 

9.94E-1 

7.52E-1 

6.45E-1 

6.28E-1 

6.39E-1 

7.60E-1 

7.13E-1 

3.02E-1 

9.99E-2 

9.69E-2 

1.01E-1 

2.02E-1 

6.48E-1 

1.40E+0 

1.82E+0 

1.95E+0 

1.89E+0 

1.72E+0 

1.55E+0 

l*45E+0 

1.45EK) 

1.49E+0 

1.50E+0 

lo50E+0 

3.95E-8 

5.79E-7 

6.76E-6 

4.02E-5 

1.16E-4 

1.88E-4 

4.87E-5 

-2.38E-4 

-3,93E-4 

-4.19E-4 

-4.09E-4 

-3.32E-4 

-3.50E-4 

-4.24E-4 

-4.38E-4 

-4.39E-4 

-4.35E-4 

5.20E-4 

2.30E-2 

1.39E-1 

2.66E-1 

3.25E-1 

2.87E-1 

1.80E-1 

1.42E-2 

-9o39E-2 

-7 •84E-2 

-4,66e-2 

-3.58E-2 

-4.31E-2 

2.47E-6 

1.15E-5 

4.82E-5 

1.52E-4 

3.62E-4 

7.14E-4 

1,03E-3 

1.36E-3 

1.48E-3 

1.09E-3 

8.55E-4 

4.65E-4 

3.32E-4 

8.60E-5 

1.86E-4 

4.86E-4 

1.46E-3 

1.71E-2 

8.48E-2 

2.34E-1 

3.93E-1 

5.50E-1 

6.32E-1 

6.55E-1 

5.98E-1 

5.27E-1 

5.00E-1 

5.08E-1 

5.24E-1 

5#22E-1 

5.84E-6 

2.71E-5 

1.16E-4 

3.94E-4 

1.06E-3 

2.42E-3 

4.51E-3 

7.94E-3 

1.06E-2 

1.19E-2 

1.31E-2 

!•79E-2 
l,92E-2 

2.05E-2 

2.12E-2 

2.22E-2 

2.48E-2 

5.91E-2 

1.97E-1 

5.74E-1 

1.16E+0 

2.25E+0 

3.73E+0 

6.69E+0 

1.20E+1 

2.16E+I 

3o75E+l 

6.96E+I 

2.25E-+2 

7.32E-tô 

yes 

yes 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

yes 

yes 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

no 

no 

no 

no 

* The notation is the same as that in Table 3 
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TABLE 5 
SLOWLY ROTATING H-W-W CONFIGURATIONS* 

Ec, g/cm VR il, sec 

« n 

-i 
“s/

a “e/
n ÔR/R 6M/M s 

« n 

Q/(MR2) 

1.00E03 
1.00E04 
I.00E05 
1.00E06 
1.00E07 

1.00E08 
2.50E08 
1.00E09 
1.00E10 
1.00E11 

1.00E12 
1.00E13 
1.50E13 
1.70E13 
2.00E13 

2.50E13 
5.00E13 
1.00E14 
3.00E14 
1.00E15 

3.00E15 
6.00E15 
1.00E16 
3.00E16 
1.00E17 

3.00E17 
1.00E18 
3.00E18 
1.00E19 
1.00E20 

0.526 
.508 
.479 
.463 
.430 

.379 

.357 

.327 

.283 

.248 

.211 

.195 

.208 

.211 

.162 

.0733 

.160 

.255 

.355 

.404 

.433 

.444 

.444 

.425 

.380 

.334 

.309 

.323 

.341 
0.344 

9.75E-3 
2.81E-2 
7.66E-2 
2.20E-1 
5.73E-1 

1.24E+0 
1.73E+0 
2.79E+0 
6.81E+0 
1.50E+1 

1.65E+1 
5.05E+0 
2.28E+0 
1.62E+0 
1.58E+0 

1.73E+1 
2.87E+2 
8.67E+2 
2.43E+3 
5.07E+3 

9.10E+3 
1.23E+4 
1.45E+4 
1.90E+4 
2.12E+4 

1.92E+4 
1.49E+4 
1.32E+4 
1.37E+4 
1.51E+4 

1.4 E-6 
6.34E-6 
2.68E-5 
7.08E-5 

1.06E-4 
1.19E-4 
1.34E-4 
1.68E-4 
1.94E-4 

1.28E-4 
4.38E-5 
2.66E-5 
2.00E-5 
8.38E-6 

6.57E-6 
2.23E-4 
1.41E-3 
7.19E-3 
1.88E-2 

3.59E-2 
4.73E-2 
5.20E-2 
5.16E-2 
3.81E-2 

2.45E-2 
1.70E-2 
1.80E-2 
2.18E-2 
2.37E-2 

5.7 E-6 
3.81E-5 
1.90E-4 
6.51E-4 

1.53E-3 
2.08E-3 
3.16E-3 
6.24E-3 
1.14E-2 

1.55E-2 
2.08E-2 
2.31E-2 
2.40E-2 
2.53E-2 

2.79E-2 
4.09E-2 
6.20E-2 
1.18E-1 
2.17E-1 

3.50E-1 
4.43E-1 
5.03E-1 
6.16E-1 
7.11E-1 

7.78E-1 
8.39E-1 
8.83E-1 
9.20E-1 
9.62E-1 

0.209 
.202 
.196 
.195 
.198 

.212 

.219 

.230 

.246 

.260 

.279 

.291 

.292 

.293 

.310 

.326 

.292 

.246 

.201 

.181 

.163 

.154 

.152 

.161 

.188 

.217 

.233 

.227 

.216 
0.213 

0.498 
.449 
.376 
.339 
.271 

.191 

.162 

.127 

.0853 

.0597 

.0430 

.0446 

.0594 

.0654 

.0405 

.00541 

.0144 

.0522 

.128 

.163 

.162 

.149 

.137 

.107 

.0818 

.0701 

.0723 

.0840 

.0902 
0.0862 

2.85E-10 
2.53E-08 
4.76E-07 
6.67E-06 
3.22E-05 

5.18E-05 
5.48E-05 
5.34E-05 
4.85 E-05 
3.98E-05 

2.02E-05 
8.40E-06 
5.66E-06 
4.15E-06 
1.17E-06 

3.03E-07 
1.63E-06 
5.93E-05 
8.02E-04 
2.95E-03 

5.41E-03 
5.70E-03 
4.98E-03 
2.55E-03 
1.16E-03 

9.22E-04 
1.00E-03 
1.33E-03 
1.65E-03 
1.56E-03 

1.27 
1.23 
1.17 
1.15 
1.11 

1.06 
1.05 
1.03 
1.02 
1.01 

1.01 
1.01 
1.01 
1.01 
1.01 

1.00 
1.00 
1.01 
1.03 
1.04 

1.03 
1.02 
1.01 
0.99 
0.99 

0.99 
1.00 
1.00 
1.00 
1.00 

2.00E-1 
1.68E-1 
1.26E-1 
1.07E-1 
7.59E-2 

4.33E-2 
5.34E-2 
2.28E-2 
1.22E-2 
6.93E-3 

4.30E-3 
4.84E-3 
7.51E-3 
8.54E-3 
4.99E-3 

4.49E-4 
7.OLE-4 
4.91E-3 
2.18E-2 
3.35E-2 

3.50E-2 
3.22E-2 
2.91E-2 
2.10E-2 
1.35E-2 

9.92E-3 
9.46E-3 
1.14E-2 
1.30E-2 
1.25E-2 

* All quantities in this table are given for the uniform angular velocity 0 == (M/R2)112, which is roughly the angular velocity 
at which equatorial shedding occurs (very rapid rotation!). The properties of more slowly rotating configurations are obtained 
by scaling the entries in this table in the manner indicated beneath each column heading The various columns are as follows: 
Ec, central density of total mass-energy; Rp/R, radius of gyration (eq. [12]) in units of stellar radii; Í2, angular velocity of star 
as measured by a distant observer (defined m eq. [5] and given numerically in this table by (M/R2)112 in units where c = G = 1). 
(as, angular velocity of the inertial frames at the surface of the star as measured by a distant observer (cf. eq [4] and the sub- 
sequent discussion); <oc, angular velocity of the inertial frames at the center of the star, as measured by a distant observer; SR/R, 
fractional difference between the mean radius of the rotating star and the radius of the non-rotating star of the same central 
density (also equal to half the fractional difference in surface areas; cf. eq [25]); 8M/M, fractional difference in total mass- 
energies (cf eq. [16]); 8E^Mq, difference in binding energies (cf eqs. [18] and [20]) in units of solar masses; es, eccentricity of 
the star’s surface (cf. eq. [25c]); Q/(MR2), quadrupole moment of star (cf. eq. [26]) in units of MR2. 
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TABLE 6 
SLOWLY ROTATING Vy CONFIGURATIONS 

Ec, g/cm VR fl, sec 

« n 
“,/a “c/

n ÔR/R 

« S? 

6M/M 

«í? oc S? 
3 

<x n 

e/(MR2) 

1.00E04 
1.00E05 
1.00E06 
1.00E07 
1.00E08 

1.00E09 
1.00E10 
l.OOEll 
1.00E12 
U.73E12 

1.00E13 
^.50E13 
5.70E13 
7.18E13 
7.80E13 

8.41E13 
1.00E14 
2.40E14 
5.00E14 
1.00E15 

1.70E15 
3.00E15 
5.00E15 
1.00E16 
3.00E16 

1.00E17 
3.00E17 
1.00E18 
1.00E19 
1.00E20 

0.451 
.451 
.446 
.423 
.389 

.351 

.298 

.242 

.218 

.214 

.223 

.293 

.314 

.297 

.0691 

.0502 

.0747 

.316 

.500 

.589 

.637 

.671 

.682 

.676 

.649 

.622 

.614 

.620 

.626 
0.624 

2.15E-2 
6.80E-2 
2.05E-1 
5.56E-1 
1.40E+0 

3.37E+0 
6.73E+0 
1.36E+1 
1.80E+1 
1.16E+1 

7.95E+0 
2.68E+0 
1.72E+0 
5.38E-1 
5.17E+0 

2.25E+1 
1.13E+2 
2.16E+3 
6.46E+3 
1.03E+4 

1.33E4^ 
1.64E+4 
1.88E+4 
2.11E+4 
2.21E+4 

2.15E+4 
2 .06e-h4 
2.03E+4 
2.06e+4 
2.06E44- 

1.0 E-6 
4.7 E-6 
1.92E-5 
5.45E-5 
1.09E-4 

1.75E-4 
1.82E-4 
1.59E-4 
1.41E-4 
9.97E-5 

8.48E-5 
7.99E-5 
6.52E-5 
1.52E-5 
1.77E-6 

2.45E-6 
1.63E-5 
3.32E-3 
3.75E-2 
1.19E-1 

I.96E-I 
2.63E-1 
2.91E-1 
2.9OE-I 
2.56E-1 

2.21E-1 
2.10E-1 
2.16e-1 
2.23E-1 
2.21E-1 

5.9 E-6 
3.4 E-5 
1.53E-4 
5.24E-4 
1.4 IE-3 

3.21E-3 
5.98E-3 
1.05E-2 
1.39E-2 
1.56E-2 

1.72E-2 
2.34E-2 
2.50E-2 
2.66E-2 
2.76E-2 

2.88E-2 
3.21E-2 
7.34E-2 
2.12E-1 
4.46E-1 

6.28E-1 
7.74E-1 
8.57E-1 
9.20E-1 
9.58E-1 

9.79E-1 
9.89E-1 
9.94E-1 
9.99E-1 
l.OOE+O 

0.194 
.194 
.195 
.198 
.207 

.219 

.242 

.266 

.276 

.280 

.278 

.252 
.246 
.264 
.329 

.330 

.323 

.214 

.154 

.111 

.0704 

.0308 

.0231 

.OI95 

.0326 

.0518 

.0590 

.0563 

.0518 
0.0526 

0.313 
.314 
.303 
.259 
.202 

.152 

.0998 

.0587 

.0457 

.0482 

.0565 

.113 

.135 
.138 
.00712 

.00257 

.00236 

.0980 

.311 

.314 

.256 

.203 

.172 

.149 

.137 

.142 

.149 

.153 

.150 
0.149 

1.86E-8 
2.87E-7 
3.27E-6 
1.77E-5 
4.62E-5 

7.42E-5 
5.69E-5 
3.05E-5 
2.12E-5 
1.75E-5 

1.74E-5 
2.48E-5 
2.04E-5 
2.45E-6 
8.84E-8 

6.24E-8 
-6.18E-8 
1.68E-4 
1.05E-2 
5.15E-2 

5.73E-2 
1.71E-2 

-I.98E-2 
-4.01E-2 
-3.24E-2 

-1.52 E-2 
-7.25E-3 
-7.OOE-3 
-I.O6E-2 
-I.O8E-2 

1.13 
1.13 
1.13 
1.10 
1.07 

1.04 
1.02 
1.01 
1.01 
1.01 

1.01 
1.03 
1.03 
1.03 
1.00 

1.00 
1.00 
1.02 
1.11 
1.11 

1.05 
O.986 
0.946 
O.920 
O.917 

O.933 
O.942 
O.944 
O.939 
O.939 

9.41E-2 
9.43E-2 
8.98E-2 
7.03E-2 
4.73E-2 

3.00E-2 
1.55E-2 
6.99E-3 
4.84E-3 
5.25E-3 

6.56E-3 
1.72E-2 
2.23E-2 
2.20E-2 
7.55E-4 

2.29E-4 
1.15E-4 
1.33E-2 
8.98E-2 
1.08E-1 

9.97 E-2 
9.64E-2 
9.34E-2 
8.54E-2 
7.19E-2 

6.33E-2 
6.2IE-2 
6.49E-2 
6.62E-2 
6.56E-2 

* For notation see footnote to Table 5. 
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Fig. 1.—Effects of rotation on the masses and mean radii of HWW configurations. The thick curve 
is a plot of mass, M, versus radius, R, parameterized by the logarithm of central density in g cm-3, for 
non-rotating HWW configurations. The thin curve is mass, M -|- bM, versus mean radius, R — R^ 8R, 
for HWW configurations rotating with uniform angular velocity, ß = (M/Rz) V2. This angular velocity 
is approximately the amount needed to produce shedding of mass at the star’s equator, so that our 
method of computation is not actually valid for this large a value of Ü. For smaller angular velocities, 
where our method is valid, the deformation of the mass-radius curve is smaller by the dimensionless 
factor Q?RZ/M. The small arrows indicate the displacement, with increasing angular velocity, of con- 
figurations with the given central densities. To find the mass and mean radius of a configuration of 
given central density and given angular velocity, one moves out along the appropriate arrow by the 
fraction ti2R*/M of the total length of the arrow. 

Fig. 2.—Effects of rotation on the masses and mean radii of Vy configurations. The format of this 
figure is the same as that of Fig. 1. 
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Fig. 3.—Effects of rotation on the number of baryons that HWW configurations contain. The 
number of baryons, ^4, in a configuration of given central density is plotted upward in units of the num- 
ber of baryons in the Sun, Ao = 1 20 X 1057. The central density is plotted horizontally The thick 
curve refers to non-rotating HWW configurations, and the thin curve refers to configurations with the 
“shedding” angular velocity, U = (M/R*)112. For smaller angular velocities, the number of baryons is 
obtained by an upward displacement from the thick curve by the fraction Q2RZ/M of the distance to 
the thin curve 

Fig 4 —Effects of rotation on the number of baryons that Vy configurations contain The format of 
this figure is the same as that of Fig 3. 

Fig. 5.—Dragging of inertial frames at the centers of HWW and F7 configurations. Four curves are 
plotted—two for HWW configurations and two for Vy configurations. The solid curves give a>c/i2 = 
(ß — ioc)/ß, which is the fluid angular velocity at the star’s center relative to the local inertial frames 
there, as measured by a distant observer, divided by the angular velocity of the fluid relative to the distant 
stars. The dashed curves give e~Vcl2wc/Ü = e~vd2{Ü — coc)/ß, which is the same relative angular velocity, 
but this time as measured by an observer at the star's center (time dilation factor e~vd2 included). 
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Fig. 6.—Distribution of energy density {solid curves) and pressure {dashed curves) inside four non- 
rotating HWW configurations. The logarithms of the energy density and pressure are plotted vertically, 
starting at an arbitrary point, which is different for each configuration. Coordinate radius is plotted 
horizontally in units of the total radius of the star. (Total radii, R, are given in Table 3.) The four con- 
figurations shown are the following: the most massive of the HWW white dwarfs, which has central 
density Ec = 2.5 X 108 g cm“3; the least massive HWW neutron star, with Ec = 2.5 X 1013; the most 
massive HWW neutron star, with Ec = 60 X 1016; and an unstable configuration oí Ec — 1.0 X 1018 

g cm“3. The HWW white dwarfs, like the one shown here {2.5 E8)> are all fairly homogeneous, as are the 
neutron stars of large mass {M > 0.4 Afo; e.g., curve 6.0 E15 here). The unstable stars and the neutron 
stars of low mass typically haveHsmall, dense, massive cores surrounded by diffuse, light envelopes (e g., 
2.5 E13 and 1.0 E18 shown here). For further discussion see Meitzer and Thorne (1966). 

Fig. 7.—Dragging of inertial frames as a function of radius in four HWW configurations. The four 
configurations shown here are the ones whose density and pressure distributions are shown in Fig. 6; 
dragging of inertial frames is measured in terms of the same types of quantities as are used in Fig. 5. 
The solid curves give ü/Q = {Ü— <o)/fí, which is the fluid angular velocity at radius r relative to the 
local inertial frames there, as measured by a distant observer, divided by the angular velocity of the fluid 
with respect to the distant stars. The dashed curves give e~vl2ü/ti — e~v!2{ü — co)/ti, which is the same 
relative angular velocity, but this time as measured by an observer in the fluid at radius r (time dilation 
factor e~v!2 included). 
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Fig. 8.—Spherical stretching due to rotation, as a function of radius in four HWW configurations. 
The four configurations shown here are the ones whose density and pressure distributions are shown in 
Fig. 6. The quantity plotted vertically is the fractional change in coordinate radius, £o/V, of the surfaces 
of constant density at radius r, divided by the fractional change, (%o/r)8 = 8R/R, at the star’s surface. 
In more invariant terms, £o/r is one-half the fractional change in surface area of the surfaces of constant 
density (cf. eqs. [25]). 

Fig. 9.—Rotational deformation as a function of radius in four HWW configurations. The four con- 
figurations shown here are the ones whose density and pressure distributions are shown in Fig. 6. The 
quantity plotted vertically is the eccentricity of the surfaces of constant density at radius r, divided by 
the eccentricity of the exterior surface of the star. (Recall that the intrinsic geometry of the surfaces of 
constant density is that of a spheroid; cf. eqs. [25].) 
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824 JAMES B. HARTLE AND KIP S. THORNE Vol. 153 

i) Dragging of Inertial Frames 

The dragging of inertial frames as a function of radius is shown in Figure 7 for four 
representative HWW configurations and in Figure 11 for four representative Vy con- 
figurations. The dragging of inertial frames as measured by a distant observer is always 
greatest at the sta^s center, and it decreases outward, verifying a theorem due to Hartle 
(1967). A comparison of Figure 7 with Figure 6, and Figure 11 with Figure 10, reveals in- 
formation about the effect of the density distribution on the dragging of inertial frames : 
the more massive a given shell of matter, the greater the dragging on the inertial frames 
interior to it. In the white dwarfs and massive neutron stars, the density distribution is 
fairly homogeneous, so that the amount of dragging changes smoothly over the interior of 

Fig 10.—Distribution of energy density {solid curves) and pressure {dashed curves) inside four non- 
rotating F7 configurations This figure is identical in format to Fig. 6. The density and pressure distribu- 
tions are qualitatively similar to those for HWW configurations (cf. Fig. 6) : white dwarfs and massive 
{M > 0.4 Mo) neutron stars have fairly homogeneous density and pressure distributions (Examples 
shown here: the most massive V7 white dwarf, which has Ec = 1 0 X 109 g cm“3; and the most massive 
Vy neutron star, which has Ec = 3 0 X 1015.) Unstable stars and neutron stars of low mass typically 
have small, dense, massive cores surrounded by diffuse, light envelopes. (Examples shown here: the least 
massive Vy neutron star, which has Ec = 1.0 X 1014; and the unstable configuration with Ec — 1 0 X 
1018.) 

the star. In the neutron stars of small mass and the unstable stars there is a high-density, 
high-mass core surrounded by a diffuse envelope. The dragging of frames in these stars 
peaks sharply in the core and is relatively small and slowly varying in the envelope. 

The magnitude of the dragging of inertial frames shows a general increase with central 
density—i.e., an increase with increasing influence of relativity on the non-rotating 
stellar structure. This is evident in Figures 7 and 11; but it shows up much more vividly 
in Figure 5 and in Tables 5 and 6, where the values of the total dragging at the center and 
at the surface of a star are given as functions of central density. The dragging is negligible 
in white dwarfs (<0.3 per cent at the center; <0.01 per cent at the surface even when 
the star is near rotational shedding). However, the dragging is quite marked in neutron 
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stars (up to 25 per cent at the surface and 75 per cent at the center, as measured by a 
distant observer when the star is near rotational shedding). The dragging of frames is 
greater in V7 neutron stars than in HWW neutron stars, because the V7 neutron stars are 
more relativistic (2M/R is larger) and have more uniform density distributions. These 
properties of the V7 neutron stars ultimately trace back to the fact that the V7 equation 
of state is much stiffer near nuclear densities than the HW equation of state (see, e.g., 
Thorne 1967, chap. vii). 

At any given radius the angular velocity of the fluid relative to the distant stars, or of 
the inertial frames relative to the distant stars, or of the fluid relative to the inertial 
frames, is greater when measured by a local observer than when measured by an ob- 
server far away, who looks down into the star. The difference in measurements is asso- 
ciated with the gravitational redshift of the photons by means of which the distant ob- 
server learns about the rotation. The angular velocities measured by the distant observer 

Fig. 11 —Dragging of inertial frames as a function of radius in four V7 configurations The four con- 
figurations here are the same as those in Fig 10; the format of this figure is the same as that of Fig 7. 

are co, and Í2 — a; = ¿ó, and the angular velocities measured by a local observer are 
e~v,2ü, e~v,2(^, and e~v,2û. It is in terms of the observations of a distant observer that 
uniform angular velocity (Í2 = constant) is defined. The effect of redshift on the angular 
velocities is exhibited in Figures 5, 7, and 11. 

ii) Spherical Deformations: Change in Mass, Radius, and Baryon Number 

In addition to producing quadrupole deformations (see next section), rotation pro- 
duces a spherical stretching of a star and a consequent change in the mass, mean radius, 
and baryon content for fixed central density. The spherical stretching as a function of 
radius inside the star is shown graphically for four representative HWW configurations 
in Figure 8 and for four V7 configurations in Figure 12. A comparison of Figure 8 with 
Figure 6, and Figure 12 with Figure 10, reveals information about the effect of the den- 
sity distribution on the spherical stretching. In configurations with high-density cores 
and diffuse envelopes (HWW, Ec = 2.5 E13 and 1.0 E18; V7, Ec = 1.0 E14 and 1.0 E18), 
the stretching is very small in the core and is sizable only in the outer parts of the en- 
velope. When the density is more nearly homogeneous (HW, Ec — 2.5 E8 and 6.0 E15; 
Ft, Eç = 1.0 E9; and, especially, V7, Ec = 3.0 E15), the fractional spherical stretching 
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826 JAMES B. HARTLE AND KIP S. THORNE Vol. 153 

is more nearly uniform throughout the interior of the star. This general tendency is 
precisely what one expects on the basis of Newtonian intuition, as are the following as- 
pects of the over-all magnitude of the stretching and of the changes in mass and baryon 
content. 

The changes in mass, mean radius (i.e., surface area), and total baryon content due to 
rotation are given in Tables 5 and 6 and in Figures 1-4. Notice that the maximum masses 
and baryon numbers of neutron stars and of white dwarfs are increased by about 20 per 
cent as a result of uniform rotation near the mass-shedding angular velocity. For lower 
angular velocity, the increases in maximum mass and baryon number are proportionally 
smaller (bM and bA œ fl2). Notice also that the masses, baryon numbers, and radii 
always increase for fixed central density as a result of rotation. 

Fig. 12.—Spherical stretching due to rotation, as a function of radius in four Vy configurations. The 
four configurations here are the same as those in Fig. 10; the format of this figure is the same as that of 
Fig. 8. 

The fractional change in mean radius, bR/R, for £22 = M/R* is fairly insensitive to 
central density, Ec, because for these angular velocities the ratio of centrifugal to gravita- 
tional force at the star’s surface is fairly insensitive to Ec. The fractional changes in mass 
and baryon number, bM/M and <5^4/^, for £22 = M/Rz show large variations with cen- 
tral density. For configurations with dense cores and diffuse envelopes, the mass and 
baryon content are determined largely by the core, which is little affected by the rotation 
that produces mass shedding at the envelope’s equator (cf. Figs. 8 and 12). Consequently, 
for core-envelope stars (unstable stars and small-mass neutron stars) bM/M and bA/A 
are small when Í22 = M/RB. For configurations with more uniform density distributions 
(white dwarfs and large-mass neutron stars), all regions of the star contribute significantly 
to the mass and baryon number, and the entire star is stretched (cf. Figs. 8 and 12) ; 
hence bM/M and bA/A are sizable. 

The density distribution is also important in determining the radius of gyration (cf. 
Tables 5 and 6). Stars with dense cores and diffuse envelopes have small radii of gyra- 
tion; stars with fairly uniform density distributions have large radii of gyration. Excep- 
tions are the unstable stars of high central density. Because of the curvature of space 
inside these stars, their volumes are much larger than (47t/3).R3. Consequently, when 
measured in units of Æ, their radii of gyration are much larger than Newtonian intuition 
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would suggest (Rg/R ~ 0.3-0.6, compared with R0/R « 1 as suggested by Newtonian 
intuition). 

iii) Quadrupóle Deformations: Eccentricity and Quadrupole Moment 

The surfaces of constant density in a slowly rotating star have the intrinsic geometries 
of spheroids. The eccentricities of these spheroids (eq. [25c]) give a measure of the quad- 
rupole deformation of the star. The eccentricity as a function of radius is shown graphical- 
ly for our four representative HWW configurations in Figure 9 and for our four repre- 
sentative Vy configurations in Figure 13. The quadrupole deformation has the same 
qualitative dependence on the density distribution as does the spherical stretching (cf. 
preceding section) : for configurations with dense cores and diffuse envelopes the core is 
very little deformed compared with the envelope, whereas for configurations with more 
homogeneous density distributions the core and envelope deformations are comparable. 

Fig. 13.—Rotational deformation as a function of radius in four Vy configurations. The four configura- 
tions here are the same as those in Fig. 10; the format of this figure is the same as that of Fig. 9. 

The eccentricities of the exterior surfaces of HWW and Vy configurations are given in 
Tables 5 and 6 for Q2 = M/Rs, Notice that the eccentricities are all very nearly unity. 
This is an indication that ß = (M/Rz)112 is, indeed, approximately the angular velocity 
for rotational shedding of mass—and also that our assumption of slow rotation is invalid 
for so large an angular velocity. For other angular velocities the eccentricity is smaller by 
the factor ß(R3/lf)1/2. 

In neutron stars the velocity of the surface when mass shedding occurs, 

= {M/Rzyi2R{\ - 2M/R)~112, (28) 

is a significant fraction of the velocity of light (more than 0.8c for the most massive 
neutron stars). By contrast, the surface velocity at mass shedding for white dwarfs is 
very small (^lO-2 c for the most massive). This difference is due to the fact that neutron 
stars are much more tightly bound than white dwarfs. In the sense that the slow-rota- 
tion approximation covers a greater range of surface velocities in neutron stars than in 
white dwarfs (<0.1c compared to <0.001c), it is less restrictive for neutron stars than 
for white dwarfs. If measured, instead, by the ratio of rotational energy to gravitational 
potential energy for which slow rotation is valid, the slow-rotation approximation is 
equally restrictive in the two types of stars. 
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A measure of the deformation of the star’s exterior gravitational field is its quadrupole 
moment, Q (see eq. [26] and the Appendix). The quadrupole moments of HWW and Vy 

configurations are given in Tables 5 and 6 for Í22 = M/Rz. The quadrupole moment has a 
behavior with central density similar to that of the radius of gyration: in units of M/R* 
the quadrupole moment is largest for configurations of fairly uniform density and small- 
est for configurations with high-density cores and diffuse envelopes. For unstable con- 
figurations of very high central density, the quadrupole moments are larger than one 
might expect on Newtonian grounds, because the stellar volume is much larger than 
(47r/3)£3. 

iv) Stability 

For non-rotating HWW and Vy configurations, one can diagnose stability against 
radial perturbations from the form of the curve of mass versus radius (Figs. 1 and 2). 
(See, e.g., Thorne 1967, chap, iv.) One finds that only configurations below the first 
maximum of the curve (white dwarfs) and between the first minimum and second maxi- 
mum (neutron stars) are stable. 

For rotating configurations any definite statements about stability must await the 
completion of the dynamical-stability analysis, which is now in progress. 

IV. SUPERMASSIVE STARS 

In contrast to neutron stars and white dwarfs, supermassive stars do not derive their 
pressure from the Fermi pressure of degenerate matter; rather, they rely upon large 
amounts of radiation pressure and small amounts of gas pressure. For masses M > 103 

Mo, stars can be approximated by relativistic polytropes of index 3. (See, e.g., Fowler 
1966Ô and Thorne 1967 for reviews of the properties of supermassive stars.) The equation 
of state can then be put into the form 

P = ixNcPî , E = juM , € = M^cet , (29a) 

et = 3(1 - /3/2)Pt , Et = (pt/a)3/4 + 3(i _ ß/2)p\ . (29b 

Here ¡jl is the rest mass of a baryon, Nc is the central density of baryons, 

a = Pe/fJiNe (29c) 

is the ratio of central pressure to central density of rest mass, and 

_ Aas   ^ 4J8 x (mass of Sun)1/2 ^ ^ . 
p (^radiation + Pgas) (mean molecular weight) (mass of star)1/2 

The ratio ß can be idealized as constant throughout the star. The quantities €t 
are dimensionless pressure, total energy density, and internal energy density, with the 
scale factor /jlNc removed. 

Bardeen (1965) points out that not only can the scale factor pNc be removed from the 
equation of state (29) but it can also be removed from the equations of structure (3) for 
non-rotating stars by introduction of the dimensionless variables6 

Ml = MinNc)112 , P = r(ßNcyf\ Pt = p(MArc)i/2 , Mof = !J,A(pNc)
112 . (30) 

6 To remove the scale factor from eq. (3e), one must calculate rest mass, Mo = nA, instead of A. The 
scale invariant form then becomes 
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The equations of structure for rotating stars (§ He, /, and g of this paper) exhibit the 
same scale invariance. If one computes the structure of a non-rotating or rotating super- 
massive star for given values of a and ß in terms of the dimensionless quantities Mt, 
ra2t, rt, , then one can scale his results to any desired value of the rest mass, Mo, 
by reintroducing the appropriate value of the scale factor, ßNG, and to any value of the 
angular velocity by performing the changes of scale discussed in § II. 

The structures of non-rotating supermassive stars have been calculated by a number 
of people since Fowler and Hoyle first proposed that they might be formed in the nuclei 
of galaxies and that they might be the energy sources for quasi-stellar radio sources. (For 
reviews see Fowler 19666 and Thorne 1967.) The effects of general relativity on the 
structures of stable, non-rotating supermassive stars are negligible. General relativity 
does, however, play an important role in their stability: for any non-rotating star of mass 
greater than 106 Mo, & relativistic instability causes gravitational collapse to begin be- 
fore the star gets hot enough to burn its nuclear fuel. In order to avoid this instability, 
Fowler (1966a) turned his attention to the effects of rotation. Treating rotating stars by 
the post-Newtonian approximation to general relativity, Fowler found that rotation can 
stabilize stars of masses below 108 if o long enough for nuclear burning to occur; but for 
masses above 108 if o, the relativistic instability still dominates. 

The question arose, however, as to whether the full theory of relativity will permit rota- 
tion to stabilize stars of if > 108 ifo long enough for nuclear burning to occur, even 
though the post-Newtonian approximation does not permit such stabilization. One way 
to attack this question, Fowler suggested (private communication), would be to calculate 
the binding energies of rotating, fully relativistic supermassive stars. If rotation can ever 
make the binding energies positive in the fully relativistic region—the region where stars 
of if > 108 Mo would burn hydrogen—then the corresponding stellar models might 
well be stable and be capable of living long enough to burn hydrogen. However, if the 
binding energies remain negative in the fully relativistic region for all reasonable angular 
velocities, then there is little hope of stabilization against collapse. 

In order to carry out Fowler’s suggestion, we have calculated the effects of uniform 
rotation on fully relativistic supermassive stars, using the method of dimensionless 
quantities outlined above. We concentrated our attention on models of rest mass ilfo > 
105 Mo. For such models, the effects of the pressure parameter, ß, are negligible when- 
ever relativistic effects are appreciable. (To see this, one writes the binding energy—the 
only parameter significantly influenced by ß—in the post-Newtonian approximation as 

Eb/Mo = Eb'/Mo* = [0.878/3 + 0.0442(ffiR3/M)]a - 6.94a2 (31) 

[cf. Fowler 1966a, b]. For M > 105 Mo, we have ß < 10-2; hence, if Q2RS/M < 1 to 
avoid rotational shedding, and if a > 10“2 [relativistic region], then the effect of ß is 
negligible. We have also verified that ß has negligible effect by calculating fully relativis- 
tic models with ß ~ 10_2-10-4 and comparing them with models with ß — 0.) 

Because ß has negligible effect in the relativistic region (region where a > 10“2), we 
present here only stellar models with ß = 0. In Table 7 we show the structures of the non- 
rotating stars, and in Table 8 we present the effects of rotation on the stellar structure. 
The binding energy and radius as functions of central density and of angular velocity are 
shown in Figure 14. Notice that rotation affects the radii considerably (8R/R ~ 0.3 for 

M0
t = f(Ei - €t)(l - 2MVrt)-1/247r/42drt . 

o 

Note that the scale-invariant analysis of supermassive stars is possible only so long as ß is taken to be a 
constant, i.e., only so long as ß is not allowed to vary in accordance with eq (29d) when changes of scale 
are made. 
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TABLE 7 

NONROTATING SUPERMASSIVE STARS 

a Ec, g/cm- M/M0 VM0 
R/2M* 

1.00E-6 

3.00E-5 

1.00E-3 

1.00E-2 

3.00E-2 

l.OOE-1 

lAOE-1 

2.10E-1 

2.60E-1 

3.00E-1 

3.50E-1 

4.00E-1 

4.50E-1 

4.90E-1 

5.30E-1 

6.80E-1 

8.00E-1 

l.OOE+O 

l.lj-OE+O 

1.70E+0 

2.10E+0 

3.00E+0 

1.29E-15 

3,48E-11 

1.26E-06 

1.06E-03 

1.99E-02 

2.82E-01 

5.22E-01 

1.09E+00 

1.73E+00 

2.59E+00 

4.86E+00 

1.04E+01 

2.12E+01 

3•38E+01 

4.97E+01 

1.39E+02 

2.47E+02 

5•19E+02 

1.58E+03 

3.12E+03 

6.89E+03 

2.87E+04 

1.000 

1.000 

1.000 

1.001 

1.005 

1.037 

1.059 

1.093 

1.110 

1.116 

1.111 

1.095 

1.081 

1.074 

1.070 

1.066 

1.067 

1.070 

1.077 

1.080 

1.081 

1.079 

•6.93 E-12 

■6.24E-09 

«6.86E-06 

■6.43E-04 

’5.03E-03 

■3.68E-02 

■5.86E-02 

■9.32E-02 

■1.10E-01 

•1.16E-01 

■1.11E-01 

■9.50E-02 

•8.12E-02 

•7.44E-02 

•7.03E-02 

•6.57E-02 

■6.66E-02 

•7.04E-02 

-7.74E-02 

•8.03E-02 

-8.12E-02 

•7.93E-02 

4.30E5 

1.45E4 

4.39E2 

4.83E1 

2.00E1 

1.19E1 

1.23E1 

1.70E1 

2.51E1 

3.82E1 

6.46E1 

9.02E1 

8.52E1 

7.54E1 

6.43 El 

4.41E1 

3.78E1 

3.41E1 

3.44E1 

3.60E1 

3.97E1 

4.17E1 

1.16E-6 

3.46E-5 

1.14E-3 

1.05E-2 

2.60E-2 

4.51E-2 

4.31E-2 

3.07E-2 

2.05E-2 

1.34E-2 

7.83E-3 

5.59E-3 

5.92E-3 

6.70E-3 

7.87E-3 

1.15E-2 

1.35E-2 

1.50E-2 

1.48E-2 

1.42E-2 

1.28E-2 

1.22E-2 

5.17E-6 

1.55E-4 

5.16E-3 

5.11E-2 

1.50E-1 

4.64E-1 

6.28E-1 

8.97E-1 

1.08E+0 

1.23E+0 

1.42E+0 

1.62E+0 

1.82E+0 

1.98E+0 

2.15E+0 

2.76E+0 

3.26E+0 

4.08E+0 

5.70E+0 

6.91E+0 

8.52E+0 

1.22E+1 

* Supermassive stars are here idealized as polytropes of index 3 with ß — Pga«/Ptotai = 0. The various columns are: a, ratio 
of central pressure to central density of rest mass; Ec, central density of total mass-energy for the special case of rest mass Mo = 
nA = 108 Mr)] M/Mo, total mass-energy of star in units of rest mass; Eß/Mo, binding energy of star in units of rest mass; 
R/2M*, radius of star in units of its gravitational radius, 2M* = 2GM/c’i\ z8, gravitational redshift, AX/X, of a photon emitted 
from the star’s surface and received at infinity; zc, gravitational redshift of a neutrino emitted from the star’s center and received 
at infinity. This table is valid to accuracy 1 per cent or better for the more realistic models with ß given by equation (29d), 
with one exception: For small a (a < 10“2) the binding energy must be replaced by 

Eb/Mo = 0.878,8a - 6.94a2. 
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TABLE 8 
SLOWLY ROTATING SUEERMASSIVE STARS* 

a VR ß, sec 

cc ÍÍ 

-1 
“s/° “c/

n 8R/R 8M/M 

« £ 

6VM0 
cc ê 

Q/(MR ) 
oc ê 

1.00E-6 
3.00E-5 
1.00E-3 
1.00E-2 
3.00E-2 

1« OOE-1 
1.40E-1 
2.10E-1 
2.60E-1 
3.OOE-1 

3.50E-1 
k. OOE-1 
4.50E-1 
4.90E-1 
5.30E-1 

6.80E-1 
8.OOE-l 
l. OOE+O 
1.40E+0 
1.70E+0 

2.10E+0 
3.00E+0 

0.273 
.271 
.270 
.267 
.256 

.212 

.185 

.13$ 

.112 

.0962 

.0922 

.0977 

.112 

.119 

.128 

.139 

.141 

.138 

.130 

.128 

.123 
0.126 

2.56E-12 
4.14E-10 
7.81E-08 
2.14E-06 
8.02E-06 

1.70E-05 
1.56E-05 
9.35E-06 
5.15E-06 
2.74E-06 

1.25E-06 
7.67E-07 
8.47E-07 
1.02E-06 
1.30E-06 

2.30E-06 
2.90E-06 
3.38E-06 
3.30E-06 
3.08E-06 

2.66E-06 
2.48E-06 

1.7 IE-7 
5.07E-6 
1.65E-4 
1.48E-3 
3.29E-3 

3.80E-3 
2.78E-3 
1.13E-3 
4.99E-4 
2.42E-4 

1.32E-4 
1.06E-4 
1.48E-4 
1.88E-4 
2.53E-4 

4.37E-4 
5.22E-4 
5.58E-4 
4.89E-4 
4.56E-4 

3.81E-4 
3.79E-4 

5.35E-6 
2.05E-4 
6.84E-3 
6.41E-2 
1.69E-1 

3.94E-1 
4.71E-1 
5.66E-1 
6.15E-1 
6.47E-1 

6.82E-1 
7.12E-1 
7.39E-1 
7.57E-1 
7.73E-1 

8.20E-1 
8.46E-1 
8.77E-1 
9.14E-1 
9.30E-1 

9.45E-1 
9.64E-1 

0.246 
.247 
.247 
.248 
.252 

.273 

.286 

.305 

.315 

.319 

.321 

.319 

.315 

.313 

.310 

.306 

.305 

.306 

.309 

.310 

.311 
0.311 

7.41E-2 
7.22E-2 
7.09E-2 
6.53E-2 
5.24E-2 

2.73E-2 
1.97E-2 
1.13E-2 
8.39E-3 
6.93E-3 

7.33E-3 
8.44E-3 
1.14E-2 
1.25E-2 
1.44E-2 

1.62E-2 
1.61E-2 
1.50E-2 
1.31E-2 
1.32E-2 

1.21E-2 
1.31E-2 

4.33E-8 
1.26E-6 
4.07E-5 
3.21E-4 
5.45E-4 

2.61E-4 
1.34E-4 
6.58E-5 
5.09E-5 
3.69E-5 

2.71E-5 
2.39E-5 
3.33E-5 
4.14E-5 
5.42E-5 

8.41E-5 
9.41E-5 
9.42E-5 
8.09E-^ 
7.74E-5 

6.73E-5 
6.93E-5 

1.014 
1.013 
1.013 
1.010 
1.005 

1.000 
1.000 
1.000 
1.000 
1.000 

1.001 
1.001 
1.001 
1.001 
1.001 

1.001 
1.001 
1.001 
1.001 
1.001 

1.001 
1.001 

9.36E-3 
8.96E-3 
8,71E-3 

7.69E-3 
5,53E-3 

2.17E-3 
1.39E-3 
6.95E-4 
4.95E-4 
3.95E-4 

4.lK)E-4 
4.Ç7E-4 

7 *14e-4 
7.7ÖE-4 
9.41E-4 

1.C7E-3 
1.06e-3 
9.61E-4 
8.17E-4 
8.47E-4 

7.48E-4 
8.37E-4 

* Supermassive stars are here idealized as polytropes of index 3 with ß = Pgas/Aotai = 0 This table is valid to accuracy 1 per cent or bette r 
for the more realistic models with ß given by equation (29d), with one exception: For small a (a < 10~2) the binding energy must be replaced 
by equation (31) The notation is the same as that of Table 5 with two exceptions: The column labeled “Ö, sec-1” gives the angular velocity 
Ö = (lf/2?*)1/2for the special case of a star with rest mass Mo = 108 Mq; and the change in binding energy, 5EB, is measured in units of the 
star’s rest mass instead of in solar masses. 
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832 JAMES B. HARTLE AND KIP S. THORNE Vol. 153 

ü2 = M/R*) but has very little effect on the binding energies (bEß/EB^ —10“3 for 
Í22 = M/Rz). Consequently, it appears highly unlikely that uniform rotation can stabilize 
stars of M > 105 ikfo in the relativistic region a > 10“2. We are now studying the effects 
of rotation on stability in order to verify this conjecture. 

Fig. 14.—Effects of rotation on the binding energies and mean radii of supermassive stars The super- 
massive stars are here idealized as relativistic polytropes of index 3 with ß = PKas/Ttotai 1. ß has neg- 
ligible effect on the curves of this figure if the stars have rest mass Mo > 105 Mo. Hence these curves 
were calculated for ß — 0. The thick curve is a plot of the negative of the fractional binding energy, 
— Eb/Mq, versus radius, R, measured in units 2Mq « (gravitational radius). The curve is parameterized 
by a, the ratio of pressure to density of rest mass at the center^of the star. The thin solid curve is frac- 
tional binding energy, (Eb -f- 8Eb)/Mo, versus mean radius, R = R 8R, for rotating configurations 
with angular velocity Q — (M/Rs)l/2. To find the binding energy and mean radius for other angular 
velocities, one moves out along the arrow corresponding to the desired value of a by the fraction Q2RS/M 
of the total length of the arrow Also shown on this figure is binding energy versus mean radius for 
configurations of fixed angular momentum, J — 0.16 Mo2 (dashed curve). It is along such a curve that a 
star of fixed rest mass would try to evolve if it were stable—which these stars are probably not—and 
if it were not shedding mass at its equator. The curves shown here are valid only for a > 0.01. For smaller 
values of a, the post-Newtonian formula (31) is valid. 

We are indebted to William A. Fowler for helpful discussions of supermassive stars, to 
Barbara A. Zimmerman for assistance with the numerical calculations, and to B. Kent 
Harrison, Sachiko Tsuruta, and A. G. W. Cameron for permission to present Tables 1 
and 2 of the HW and Vy equations of state. Part of this work was performed while the 
authors were participating in the summer 1967 International Research Group in Rela- 
tivistic Astrophysics at the Institut d’Astrophysique in Paris. We thank the Institut 
d’Astrophysique and Professor Evry Schatzman for their kind hospitality. 
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No. 3, 1968 SLOWLY ROTATING RELATIVISTIC STARS 833 

APPENDIX 

THE EXTERIOR GRAVITATIONAL FIELD 

From equations (4), (11), (15c), (17a), (22), and (23), one obtains as the external gravitation- 
al field of the rotating star, accurate to second order in the angular velocity, 

ds2 

(>- 

9DÎ P 
2f + 2~ )i1 + 2ü(1 + r ) 

+ fÍLiíaft<®-1)]A<cos#)i 
dP 

+ dr1 

(Al) 

2S0Î 
[r(r - 250î)]1/2 

x ft'(á “ 0 “ Q,'(m - 0i> J’,(cos "O 

X j¿02 + sin2 d[d<t> - 0r)<*]2[ • 

The only constants that enter into this line element are the total mass of the rotating star, 
M + ÖM = ÜDÎ; the star’s total angular momentum, J; and the star’s mass quadrupole mo- 
ment, Q, (Whenever M appears in a term of second order in ß2, it can be replaced by SDî without 
affecting the line element to order £22.) 

The three parameters 5DÎ, /, and Q, which characterize the exterior metric of a slowly rotating 
object, are invariantly defined. This is well known in the case of the mass and the angular mo- 
mentum (see, e.g., Papapetrou 1948; Hartle and Sharp 1967). 

An invariant definition of the quadrupole moment can be given as follows: For a static metric 
there is a unique timelike Killing vector whose length can be normalized to 1 at infinity. In our 
coordinate system, = 5^. The length of the vector, o-2 = — £a£a, is an invariant; and in our 
coordinate system, <7 = (—gtt)112- Consider the surfaces of constant cr. These invariantly defined 
surfaces can be described by embedding them in a three-dimensional space exactly as was done 
for the surfaces of constant density in § II. The embedded surfaces have the geometry of 
spheroids with eccentricities, which, at large distances r* from the origin, behave like 

= (JQ_ 
\Mr* r+<e)- 

(A2) 

The quadrupole moment can thus be defined invariantly in terms of the leading coefficient in 
the asymptotic behavior of the eccentricity, e, which describes the distortion of the intrinsic 
geometry of the surfaces of constant timelike Killing-vector length. 

For stars, such as the Sun, which are not very relativistic (i.e., 9DÎ/V <<C 1), the line element 
(Al) can be expanded in powers of SDÎ/V. For the Sun, the relative magnitudes of the various 
quantities in the external line element are 

W/r < ®l/R ~ 2 X KT6 , J/r2 < J/& 10 •12 <2/r3 < Q/R* < 10" 10 (A3) 
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834 JAMES B. HARTLE AND KIP S. THORNE 

Consequently, to an accuracy of the order of 1 part in 1015, the external line element for the 
Sun is 

^ = -[l - ^ + ^P2(cos 6)]dfi + [l - M + ^i>2(cos e)]“1^ 

(A4) 

+ ^ P2(cos ^J^jàô2 + sin2 d[d<t> ~ | • 

The terms in 29JÎ/V account for the Newtonian gravitational attraction and the relativistic peri- 
helion shift of Mercury’s orbit, and the terms in 2Q/r* produce a perihelion shift associated with 
the Sun’s oblateness (Dicke and Goldenberg 1967). The term in 2J/r3 produces a dragging of 
inertial frames that also leads to a precession of Mercury’s perihelion with respect to the distant 
stars, but a precession that is negligibly small in the case of the Sun. From the line element 
(A4), one can readily verify that the perihelion shift of Mercury due to a slightly oblate, rotating 
Sun is very accurately given by adding the relativistic shift for the spherical Sun to the oblate- 
ness shift for the deformed Newtonian Sun. 

The line element given in equation (Al) describes correctly the geometry outside any slowly 
rotating configuration. It is interesting to compare it with the only known exact solution exterior 
to a rotating object—the Kerr metric (Kerr 1963). To second order in the angular velocity, the 
Kerr metric given in the form of Boyer and Lindquist (1967, eq. [2.13]) can be transformed to 
the form of equation (Al) by the transformation 

(A5) 
A A 2 A • /> 1 A _1_ 0 —> 0 — a2 cos 0 sin 0 — (1 —y~\ . 

It is then seen easily that, for the Kerr solution, J — — SDîa and Q — J2/%51. These results are 
the same as those derived by Hernandez (1967) by a different method. The special relationship 
Q = J2/9K between the quadrupole moment and the angular momentum shows the very special 
nature of the Kerr solution. 
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