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Gravitational waves from inspiraling compact binaries: Validity of the stationary-phase
approximation to the Fourier transform
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We prove that the oft-used stationary-phase method gives a very accurate expression for the Fourier trans-
form of the gravitational-wave signal produced by an inspiraling compact binary. We give three arguments.
First, we analytically calculate the next-order correction to the stationary-phase approximation, and show that
it is small. This calculation is essentially an application of the steepest-descent method to evaluate integrals.
Second, we numerically compare the stationary-phase expression to the results obtained by fast Fourier trans-
form. We show that the differences can be fully attributed to the windowing of the time series, and that they
have nothing to do with an intrinsic failure of the stationary-phase method. And third, we show that these
differences are negligible for the practical application of matched filtefi88556-282199)00414-3

PACS numbsg(s): 04.25.Nx, 04.30.Db, 04.80.Nn

|l INTRODUCTION AND SUMMARY often much more convenient to deal whlif) as an analytic
expression rather than as a table of values; efforts to obtain
The ongoing construction of kilometer-size interferomet-sych an analytical expression, even if it is only approximate,
ric gravitational-wave detectors, such as the American LIGQyre therefore well justified. It can also be argued that to ex-
(Laser Interferometer Gravitational-wave Observatotiie  press the waveform in the frequency domain is in a sense
French-ltalian VIRGO, the British-German GEO600, and themore natural than to express it in the time domain. One of
Japanese TAMA300, has motivated a lot of recent work onhe reasons is that the orbital energy, whose expression is
strategies to analyze the data to search for and measure thgyuired in the derivation of the waveform, is primarily a
gravitational-wave signall-16. Much of this work has function of F, the gravitational wave’s instantaneous fre-
been devoted to inspiraling compact binaries, composed Qfuency(which will defined precisely belowit is therefore
neutron stars and/or black holes, which are one of the mos{atural to expresh also as a function of, which unliket is
promising sources of gravitational waves for these detectorg coordinate-independent quantity. Another reason resides
The key idea behind this work is that the gravitational-waveyith the fact that the post-Newtonian expression for the re-
signals will be detected and measured by matched filteringation F(t) suggests that the instantaneous frequency is not
[17], a well-known technique by which the detector’s dataalways a monotonically increasing function of tirfieg], a
stream is cross-correlated with a set of model waveformgonphysical behavior that signals the eventual breakdown of
(called templatgs and the signal-to-noise ratio maximized the post-Newtonian expansion; in contrast, the post-
as a function of the template parameters. Newtonian expression for the inverted relatigf) is mono-
While the detector output is represented by a discrete timéonic, a property that suggests tlkais indeed a more natural
series, the operations associated with matched filtering améme variable.
usually carried out in(discrete frequency space, which re- In the past, and in the specific context of inspiraling bina-
quires taking thediscretg Fourier transform of the time se- ries, analytic expressions fbi(f) have been obtained within
ries; the method of choice here is the standard fast Fourighe stationary-phase approximatidii9], essentially the
transform(FFT). At the same time, it is necessary to com- jeading-order term in an expansion in powers of the small
pute the Fourier transform 6i(t), the model waveform. The  guantity (radiation-reaction time scaléorbital period.
waveformh(t) can easily be discretized to mimic the dis- while it has generally been felt that this approximation is
crete sampling of the detector output, and the discrete timgdequate, this belief has not yet been backediuthe pub-
series can easily be Fourier transformed by FFT to yield thgished literaturg with a detailed quantitative analysis. Claims
discrete analogue of tHeontinuou$ Fourier transfornmh(f). in the literature]14] to the effect that this approximation is
However, in theoretical investigatiofd—13,15,1$it is  notadequate have prompted us to examine this question.
Our objective in this paper is to prove, beyond any rea-
sonable doubt, that the stationary-phase approximation to the
*Present address: Institute for Theoretical Physics, University ofFourier transform of an inspiraling-binary signal is in fact

Zurich, CH-8057 Zurich, Switzerland. very accurate. First, we calculate the next-order correction to
"Present address: Department of Physics and Astronomy, McMaghe stationary-phase approximation, and show that it is in-
ter University, Hamilton, Ontario, Canada L8S 4M1. deed small. This calculation is essentially an application of
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the steepest-descent method to evaluate inte@it&ls We 5 V307 QM2 _

then numerically compare the stationary-phase expression hspe(f):WTv”’ze“/’, (1.4
for h(f) to the results obtained by FFT. We show that the

differences we observe can be fully attributed to the windowwherev = (7 Mf)¥3<1, and

ing of the time series, and that they are irrelevant for

matched filtering. Greater differences observed in other cases T 3

[14,18 must be attributed not to any intrinsic deficiency of Ylo)=2mfte—Pe— 7+ 1285 1.5

the stationary phase approximation, but rather to one of the

other issues in constructing the most accurate expression fafyo types of corrections to this result are calculated in Sec.
h(f)—such as the prope(Taylor or Padg expansion of |II.
dF/dt. The first type of correction constitutes an intrinsic im-
We now present and explain our main results. As we shalprovement on the stationary-phase approximation. We show
justify below, it is sufficient for our purposes to consider thethat the steepest-descent evaluation of the Fourier transform
leading-order expression for the gravitational-wave signalreturns the same amplitude as before, but that the phase is
obtained by assuming that the binary’s orbital motitaken  altered by a termdy: — ¥+ 8¢, where
to be circulay is governed by Newtonian gravity, with an 92
inspiral—caused by the loss of energy and angular momen- _ 5 1
tum to gravitational radiation—governed by the Einstein 5¢(U)_4_50 +0(™). (1.8
quadrupole formula. This so-calletlewtonian signal is
given by[1] Notice that this is a correction of ordef'° relativeto ¢(v).
This is much smaller than post-Newtonian corrections to the
M _ phase, which appear at relative order[5]. Incorporating
h(t)=Q(angle$ — (mMF)?Pe™'?®, (1.1 these post-Newtonian corrections into our calculation would
' only change Eq(1.6) by adding a term of ordes’ to the
) ) - right-hand side. This justifies the fact that it was not neces-
whereQ is a function of all the relevant angléposition of sary, for the purposes of this investigation, to use more ac-
the source in the sky, inclination of the orbital plane, orien-., ate versions of Eqg1.2 and(1.3).
tation Cs’}; the %S?thtlonal-wave detector M The second type of correction addresses an implicit as-
= (mymy) > (my+my) = (with my andm, denoting the in- gmption of the stationary-phase method, that the function
dividual masse)s[s the chirp massr is the distance to the h(t) has support in the complete time intervabe <t<t, .
source,F(t) the instantaneous frequenéyvice the orbital  physically, this assumption means that the binary system
frequency, and®(t) = f2mF(t’) dt’ is the phase. The func- myst have formed in the infinite pagt reasonable assump-
tion h(t) represents the gravitational wave measured at th@on given the long lives of compact binarjesind that the
detector site. It is a linear superposition of the wave’s tWojnspiral must continue untif = F(t,) = (an unrealistic as-
fundamental polarizations, and we choose to express it igymption. If we choose instead to restrict the time interval
this complex form for convenience. The relation betwéen o { . <t<t__ such thatF=F(tm)>0 and F
andt is given by[1] =F (tma) <, then the Fourier transform will be affected,

and it will differ from Fspe(f). The value ofF;, is typically
, (1.2 chosen to reflect the lower bound of the instrument’s fre-
quency band. The value &f,,,, could be chosen to reflect
the upper bound of the instrument’s frequency band, or for
wheret,, the “time at coalescence,” is such that formally, some binaries it can be chosen to correspond to the approxi-

3/8
aMF(t)= }

256(1.—1)

F(to) =. The relation betweed andt is mate frequency of the last stable orbit, at which the inspiral
signal changes over to a poorly-known merger signal.

1 [256(t,—t)]%® We shall refer to this truncation of the time interval as

P(t)=Dd.— 6 5M | (1.3  “windowing,” and for concreteness, we will assume that the

signal is started abruptly at=t,,,, and ended abruptly dt
=tmax- Thus,h(t) is assumed to be given by Ed..1) in the
intervalt,,<t<tnax, andis assumed to be zero outside this
interval. In Sec. Il we show that windowing affects both the
amplitude and the phase of the Fourier transform. The am-
plitude acquires an extra factort16A,,, where

where® ., the “phase at coalescence,” is equaldqt,).
The Newtonian signal is the leading-order term in the expan
sion of the gravitational waves in powers @1, where
V=(wMF)¥3is (up to a numerical factothe orbital veloc-
ity. Post-Newtonian corrections to this result come with a

relative factor of ordetV in the amplitude, and a relative 12 X2 -
factor of orderV? in the phasg20]. Throughout this paper SA(v)=— v — 3cos( bmint 7
we use geometrized units, settiig=c=1. V307 [ v”— Xmin
In the stationary-phase approximation, the Fourier trans- « 2
Eggm of the functionh(t) appearing in Eq(1.1) is given by + - n:iUBCOS( bt it 1.7
max
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whereXpin= (7 MF i) ¥ and Il. CALCULATION OF THE FOURIER TRANSFORM
5,3 gy 3 3 We begin with the time-domain signal of E(L.1), and
2V SXmin + (1.9  We assume that the signal begins abruptly at a tigpeand
108, 1285 ends abruptly at a time,. We let F,=F(tn) and

Fma=F(tmay be the corresponding instantaneous frequen-
with similar equations holding fok,a and ¢nax. On the  cies. The relation betwedn andt is obtained by integrating
other hand, the phase acquires an extra téyy) given by
dF 96

11/3
12 Xmin2 . T dt - SWMZ(WMF) ) (2.1)
oY (v)= /—07/2 3 3S|n ¢min+z
30m 07 Xonin which leads to
2
Xmax . ( T
+ ————sin + — 1.9 5M
X — 03 mact 7 9 t(F)=tC—2—56(7T/\/lF)‘8’3, (2.2

The fact thatéA,, and &y, both diverge at the boundaries \yheret, (“time at coalescencel'is a constant of integration.
U =Xmin @aNdv =Xpax Signals the breakdown of our approxi- Tpe phase function is then given by
mations there. Away from the boundarié®,, and ¢, are
bounded, and they oscillate as a function of frequency. Thus, 1
these corrections represent amplitude and phase modulations O(F)=d.— E(WMF)_%, 2.3
induced by the abrupt cutoffs of the functidr(t) at the
boundary points. This is to be contrasted wii#, which  where®, (“phase at coalescencg’is another constant of
represents a steady phase drift. integration.

Our complete expression for the steepest-descent approxi- The Fourier transform,
mation to the Fourier transform is therefore

Foad )= Fapd 1) (1+ 5A)EPV 90 (110 fi = [ e =9

In Sec. Ill we show that the only noticeable corrections tois evaluated by introducing a new integration variable,
hso{ f) are the amplitudg and 'phgs.e modulations th'at come x=(mMF)2 2.5
as a consequence of windowing; in particular, the intrinsic
correction sy is too small to be noticeable |n~the relevant \ hich can be related tovia Egs.(2.1) and(2.2). After some
frequency interval. We do this by comparir‘rgpa(f) to rearrangement, we obtain

he(f), the discrete Fourier transform of the windowed time

seriesh(t); this comparison reveals that any discrepancy be- ~ 5QM? )

tween the two versions of the Fourier transform can be fully h(f)=—5 exp{ : ( 2mfte— Qe+ F&ﬁ) ]
accounted for by the modulatiod®\,, and ¢, . This allows

us to conclude that windowing, and windowing only, must X1V, Xmin »Xmax) » (2.6

be held responsible for any discrepancy betwﬁg,gf) and s s

he(f). While limited to the Newtonian signal of Eql.1), whereXpin= (7 MF 4in) ™, Xmax= (TMF )™, and

there is no reason to believe that this conclusion would be — 13

. . . =(7wMf)"<1. 2.

invalidated by a full post-Newtonian analy$&1]. v=(mMf) @7
Fina”y, in Sec. IV we Calculate the matched'f”tering We have introduced the Fourier integra|

overlap betweehg,{f) andhg(f), and show that the modu-

lations do not significantly affect the overlap. This result, I e T

together with our previous findings, lead us to conclude that H(v Xin Xmax) = X 'em1%dx, 28

Xmin
for the purposes of matched filterinkyg,{ f) andhg(f) are
essentially equivalentrepresentations of the gravitational- Where
wave signal.
The main conclusion of this work is that the stationary- _ 5v3—8x3 3
phase method returns a sufficiently accurate expression for P(Xv)= 1288 + 1285 (2.9

h(f); a similar conclusion was reached independently by

Chassande-Mottin and Flandrin, and reported in Refsltis easy to check thap(v;v)=¢'(v;v)=0, where a prime
[22,23. What is more, from the fact thay/ y=0(v'%, we  denotes differentiation with respect te The function
can be sure that the method will stay accurate for as long ag(x;v) initially decreases fron®,in(v) = ¢(Xmin;v) to zero
the post-Newtonian expansion loft) in powers ofV is itself ~ asx increases fronx,,;, to v, and then increases from zero to
an accurate approximation to the gravitational-wave signal.¢,.{v) = ¢(Xmax;v) asx increases frony to Xyax.
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The Fourier integral is evaluated by usiggas the inte-
gration variable. Becausg¢ is not monotonic in the interval
[ XminsXmax]» the integral must be broken down into two parts.
The first part covers the intervgk,,,v), while the second
part covers the interval(Xya. It is easy to check that the
integral can be expressed as

16
[ (v, Xmin »Xmax) = g[Jl(vamin)"_Jz(U-Xmax)]-

(2.10
where
$min X2 -
Hox= [T evde 211
0 v —X
and
Pmax X2 “igp
Jo(V, Xmay) = s € do. (2.12
0 X°—v

We recall thatdmin= & (Xmin;v) and ¢pna= ¢(Xmax;v) are
functions ofv.

The coordinate transformation— ¢ is defined implicitly
by Eq.(2.9. It will prove sufficient to invert this relation in
a neighborhood ok=uv, or ¢=0. The following relations
are established by Taylor expansion:

X=0 1@1)7/2 12, 2_56UG _ 10016y 30017/2¢3/2
5 45 2025

4281344
1142 2712 4312
30375 ¥ ¢ O™,

(2.13

where the upper sign refers to the interya},,,v), while
the lower sign refers tou, Xl We also have

2
X :@v—7l2¢—1/2+§ -1_ 23\/%03/2(151/2
vi-x® 24 9 135
19232
+ 5075 U4¢+ O(vl3/2¢3/2) (214)

in the first interval, and

2 an &
X :ﬂ)v77/2¢—1/2_§v71_ 23 30113/2(;51’2
x3—p3 24 9 135
19232
_ 4 13/2 4 3/
6075 Y ¢+ 0O(v"“¢ 2) (2.15

in the second interval.

To evaluate the integrald,(v,Xmin) andJ,(v,Xmad, We
let = a—iB and deform the contour of integration into the
complex plane. While the original contour is along the
axis, from 0 togd,in OF Pmax, We take the new contour to be
the union ofC andC’, whereC is the curvea=0 with 8
running from 0 tox, while C’ is the curvea= ¢pin OF dmax
with B8 running fromee back to 0. The contour is completed

PHYSICAL REVIEW B9 124016

by joining C andC’ with the curveB=o, with a running
from O tO ¢dmin OF Pmax; this part of the contour does not
contribute to the integral. The advantage of this choice of
contour is that the integrand is exponentially suppressed
away fromB=0, ensuring a rapid convergence of the inte-
gral.

We evaluate the contribution fror® to J;(v,Xmin) by
substituting Eg.(2.14) into Eq. (2.11), replacing ¢ by
—iB and usingB=0 andB=« as limits. The integrations
give rise tol'-functions, and we obtain

e V—30i 77077/2_ i 1 23y30i 77v3/2
1 24 9 270
19232
- 6075v4+ o(v*¥?). (2.16
A similar calculation also reveals
e V—30i7 -T2 5—iv71+ 23y30i 7 32
2 24 9 270
19232
+ 6075v4+0(vl3/2). (2.1

The contribution fromC’ to J;(v,Xmin) iS calculated by
letting ¢=dmin—18, and expressing the functiof( )
=x?/(v3—x%) as a Taylor series abouty,. Thus, f(Pmin
—iB)=f(dmin) —if'(dmin) B+ - - - is substituted into Eq.
(2.1, whose limits are replaced hg= and 8=0. The
resulting integrations are again elementary, and we obtain

37 =ie " ming(v X, (218
where
9(v.X) = ¥ 16 X0+ 20) (2.19
! |v3—X3| 5 |v3—X3|3
A similar calculation also reveals
IS =ie ¥mag (v, Xma- (2.20

We note that whenx<1, the functiong(v,x) can be well
approximated by its first termx?/|v3—x3|, except wherx

=yp. In this situation, the expansion f@(v,x) does not
converge, and our method of calculation breaks down. Thus,
our expression for the Fourier transform will be accurate
only when v3=x7Mf is not too close to eithexy,>

= 7 MF i OF Xmae = TMF ax. In other words, our expres-
sion will be inaccurate near the boundariesF,, and f

= Fmax-
It is easy to see from Eq$2.18 and(2.19 that the con-
tribution from C’ to J1(v,Xpyn) vanishes in the limitxq,,
—0. Similarly, it can be shown that the contribution fr&h
t0 Jo(V,Xmay) Vanishes(as Xmay ) in the limit Xpa— .
[This behavior is not revealed by E¢(R.19, which gives
g(v,x) as a series expansion for small valuexxofn alter-
native expression fog(v,x), appropriate for large values of
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X, can easily be obtainedThis allows us to conclude that if

the boundaries are pushedRg,,=0 andF =, thenC’ Shy(v)=

no longer contributes td;(v,Xmin) andJ(v,Xma)- 307
Gathering the results, Eq&.10 and (2.16—-(2.20), we

find that the Fourier integral can be expressed as + (v, Xma SiN

U7/2

T
g(v aXmin)Sin( Dmint Z

(2.28

T
¢max+ Z

10 X+ Xmand) = 4V30m g imla, 112 Notice thatdA,, represents an amplitude modulation, while
i 15 5¢,, is a phase modulation; both oscillate as a function of
frequency. The suffix “w” indicates that these corrections

92 : e N
X 1+4—5|v5+0(vlo)+R(v,Xmm,Xmax) , are associated with “windowing.

(2.21 Ill. COMPARISON WITH DISCRETE
FOURIER TRANSFORM

where The preceding analysis reveals that apart from windowing

issues, the stationary-phase approximation to the Fourier
R(6 X Xor) = — 12 &1y 1 @ bring (1 X ) transform is extremely accurate: Apart from the modulations
V30 oA, and 8¢, hg,{f) differs from h(f) only by a small
phase driftdy of relative order . In this section, we firm
up this conclusion by comparirigs,{f) to hg(f), the dis-
crete Fourier transform of the functidr(t).

The discrete Fourier transform is evaluated by fast Fourier
transform (FFT), using the routines oNumerical Recipes
[24]. The time series is prepared as follows.

We begin withh(t) as displayed in Eq(1.1), with the

+e 1 Pmag (v, Xman - (2.22

Substituting this into Eq(2.6), treatingR and theO(v°)
term in Eq.(2.21) as small quantities, we arrive at the fol-
lowing expression for the Fourier transform:

h(f)=hepd ) (1+ 5A,) €/ (VT 30w), (223 jrrelevant factorQM/r set to unity. Thus,
Here, h(t)= (7 MF)%%i?®, (3.1
5 J30r QM? _ whereF (t) and®(t) are given by Eqs(1.2) and(1.3). This
hspd )= —5~ Tv*me'w, (2.24  function is assumed to be nonzero only in the intefg],

<F(t)<Fax The duration of the signal is
with T:t(Fmax)_t(Fmin)v (3.2

- while the total number of wave cycles is
P(v)=2mft.— D, 7 + o5’ (2.29 1
Nzﬁ[(b(Fmax)_q)(Fmin)]- (3.3
is the stationary-phase approximation to the Fourier trans-
form. Our calculation reveals the existence of two types ofThe values oh(t) at the endpoint$(F ) andt(F . do
correction terms. The first is not agree. This is a potential difficulty for the FFT, which
considers the signal to be periodic with peribdTo remedy
92 1 this, we prepare our time series by padding) with zeros
5'/’("):4_5” +0(v"), (226 on both sides. More precisely, we la{t) be zero in the
interval 0<t<T, be equal to the expressi¢8.1) in the in-

which represents a small, but steadily growing phase driftt€rval T<t<2T, and be zero again in the intervall 2t
Notice thatéy is of orderO(v9) relative to . The other _<4T. Thus, the effective duration of the time series is four

correction terms come as a consequence of the abrupt cutoffénes the duration of the actual signal. We choose the value
imposed afF =F ;, andF = F,,,. They are of the parameterg, and ®. such thatt(F,;,)=T and
®(Fin)=0. This particular padding of the time series is

somewhat ad ho(t has not been carefully chosen to be the
g(v,xmin)cos( bumint E) smallest needed to make negligible the circular correlations
4 of the FFT), but as we shall see the final results are very
good and optimization would be redundant.
(2.27 The zero-padded functioh(t) is discretely sampled at
timest,=kAt, wherek=0,1,... ,N—1 andAt=4T/(4N
—1), with 4N denoting the number of sampled points. The
and Nyquist frequency[24] is given by fy,=1/(2At), and N

SAW(v) =~ v’

1
V307

+9(v :Xmax)co< Pmaxt g)
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FIG. 1. The solid curve labeled “SPA” is a plot of FIG. 2. The solid curve labeled “analytical” is a plot of 1
mod R4 )], and the dashed curve labeled “FFT” is a plot of +8A,(f), and the dashed curve labeled “numerical” is a plot of
moqﬁm(f)]. The inset shows the same curves in a smaller fre-Arel(f)- The inset shows the same curves in a smaller frequency
guency interval. interval.

must be adjusted so thd,>F .. The FFT returns the represents the amplitude modulation induced by windowing.
Fourier transform of the time series, discretely sampled inThe near-perfect agreement betweek,(f) and 1
the frequency domain. The frequency resolution A§  + J8A,(f) shows that any discrepancy between the discrete
=(4NAt) L. Fourier transform and the stationary-phase approximation
We denote the discrete Fourier transform of the zeroMmust be attributed to Windowing. This conclusion is con-
; ; T ; firmed by Fig. 3, which shows plots af,.(f)—defined in
padded time seriels(t) by hg(f), and we wish to compare ) ! rel )
this tohg,{f), the stationary-phase approximation given byEq' (3.5)—a}ndt5¢W(f)—deftlngddl'n E.q.(l.?%. :{qumdwe_see
Egs.(2.24) and(2.25. (It is understood that the correct val- a hear-periect agreement, indicating that wihdowing ac-

ues fort, and®. are substituted in these equatiorio do ~ counts fully for any d(ijscrepan_cy betweBg,{ f) andhp(f).
this we define the relative amplitude, and relative phase Equations(1.7) and (1.9 give approximate expressions

e DY fc_Jr 5A_W(f) and 8¢,,(f), and we _should expect that in some
situations, there could be noticeable differences between
Arei( ) =mod heg(F)/Mgpd )] (3.4  these quantities and the numerically-determikeg(f) and
Ue(f). Figure 4 indicates that such is indeed the case when
and the frequency interval is expanded. Here, the signal is pre-
pared with the same chirp mass as before, but the frequency
Yrel(F)=ard N (F)/Rgpd )], (3.5 interval is now betweerF ;=40 Hz andF 4= 1300 Hz;
where modg)=r is the modulus of the complex number . . aatyica
=re'?, while argl) = ¢ is its argument. Ihy(f) andhg,{f) osf numercal =y |
were in perfect agreement, thép,=1 and,,=0. ﬁ
Figure 1 shows plots of moH(ﬂ) and modﬁspa) as func- 02 i

tions of f for a signal prepared wittM{=1.25Mg in the
interval betweenF ;=40 Hz andF,,=60 Hz. (Such a
narrow band is not at all typical for inspiral signals sought by §
any interferometer; we use it merely to exaggerate the errorg
caused by the stationary phase approximation to the leve™ of
where they are visiblg.The duration of such a signal 16
=15.8 s, and the total number of wave cyclesAis=749.
The FFT was taken witiN=2048, giving a Nyquist fre-
quency offy,=65 Hz. The figure shows that the agreement
is not perfect: While the stationary-phase approximation %o " % 5 %
seems to give the mean curve, the discrete Fourier transforr 2

displays oscillations about the mean, and these grow near the g1, 3. The solid curve labeled “analytical” is a plot of
boundary pointsf=F i, and f=Fq,,. We shall argue that sy, (), and the dashed curve labeled “numerical” is a plot of
the discrepancy is entirely caused by windowing. Ure(f). The inset shows the same curves in a smaller frequency

In Fig. 2 we show plots oA (f)—defined in Eq(3.4—  interval. Notice that the error in the phase does not accumulate, and
and 1+ 6A,(f)—defined in Eq(1.7). We recall thatsA,,(f) that it is always much smaller thanm2

S

dulation

0.1

0.1 h E
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IV. OVERLAP INTEGRAL

We have shown that any discrepancy betwegkf) and

ﬁspa(f) can be fully attributed to windowing, which induces
amplitude and phase modulations in the Fourier transform. In
this section we show that these modulations have no signifi-
cant effect on operations associated with matched filtering.
The standard theory of matched filtering predicts that the
loss of signal-to-noise ratio incurred when filtering a signal

h(f) with a filter hg,{f) is equal to[8]

_ (hfft| hspa)
\/( hfftl hfﬁ)(hspal hspa)
200 400 600 800 1000 1200

f(Ha) We will refer to this quantity as theverlapbetween the two
f expressions for the signal’'s Fourier transform. An overlap
S(f), and the thick, dashed curve labeled “numerical” is a plot close to unity indicates that the filter is an accurate represen-

of (). Notice that here also the error in the phase does nofation Qf the signal, and that usi_ng thi_s filter in a_nalyzir_lg the
accumulate, and is always much smaller than 2 data will return the largest possible signal-to-noise ratio. We

use the notation

phase modulation

4.1

FIG. 4. The thin, solid curve labeled “analytical” is a plot o

other relevant quantities are listed in Table | below. Al- Frax 2% (F)B(F) +2(£)B* ()
though the agreement is no longer near-perfect, it is still (a|b)=2f M
remarkably good, and this re-enforces our claim that any Frmin Sh

discrepancy between the discrete Fourier transform and ﬂ\ﬁheresn(f) is the spectral density of the detector noise.
stationary-phase approximation is entirely an artifact of win- Notice that the point of view expressed here is ﬁ@(f)

dowing. We have verified that the intrinsic correction to the, ) : i .
stationary-phase approximatiofy(f) given by Eq.(1.6), is IS gn Sxact r_epresentatlor_1 of thg signal’'s Fourier transform,
irrelevant in this frequency interval: This phase shift is just/hile hspd ) is an approximate filter. However, because of
too small to be noticeable at these frequencies. its symmetry in these quantitie®, also represents the loss in
signal-to-noise ratio incurred when filtering a sighal(f)

with a filterhg(f). This is the opposite point view, in which
the stationary-phase approximation is viewed as an exact
representation of the Fourier transform.

We evaluate the integrals in E@.1) by turning them into
discrete sums, using the sampled frequendigskAf re-

df, (4.2

TABLE I. The last column gives the overla between station-
ary phase and FFT waveforms prepared witlentica) chirp mass
M given in solar masses in the first column, initial frequefGy,

given in Hz in the second column, and final frequeRGy, given in _ . -
Hz in the third column. The waveforms have a durafiogiven in  (Uned by the FFT. Thuda(f) df~2a(f)Af. Itis suffi-

seconds in the fourth column and a number of wave cytfegven cient for our purposes to use a simple analytlc_ model for the
in the fifth column. The number of sampled times N,4vhereNis ~ N0iIS€’S spectral density. We choose a noise curve that
given in the sixth column, corresponding to a Nyquist frequency@Ughly mimics the expected noise spectrum of the initial
fny given in Hz in the seventh column. In all cases the valug gf, ~ LIGO detector, and s€b]

is sufficiently large that the contribution to the overlap from higher 4 )

frequencies can be neglect@ssuming the initial LIGO noise spec- Sn(f) =Sl (fo/f)"+2+2(f/f()7] (4.3

trum given in the text ) o
for f>40 Hz, withfy=200 Hz. The value 0§; is irrelevant

M Foin  Fmax T N N fry o for our purposes, an8,(f) is taken to be infinite below 40

Mo Hz Hz s Hz Hz.

The overlapO is calculated for a number of chirp masses.
100 40 900 34.6 2200 '2 948 0.9999  The results are displayed in Table I. The conclusion is clear:
125 40 1300 238 1521 '2 1375 0.9998  For all cases(®>0.997, indicating that the amplitude and
150 40 1300 17.6 1122 '2 1863 0.9997 phase modulations have very little effect on matched filter-
1.75 40 1200 136 868 '2 1204 0.9997 ing. In view of the fact that the modulations oscillate and
200 40 1500 10.9 695 2 1505 0.9996  never get large, especially away frof,, and F ., Where
225 40 900 89 570 ¥ 916 0.9994 the instrument is most sensitive, this is the expected conclu-
250 40 1000 7.5 478 2 1091 0.9994  sion.

275 40 1200 64 409 2 1279 0.9994 It should be noted that for most of the binaries listed in
3.00 40 1400 55 354 B 1479 0.9994 Table I, the adopted value fét,,,, exceedshe frequency at

10.00 40 1300 0.7 48 % 1374 0.9972 Wwhich the last stable orbit is expected to be foupEor

equal-mass systems, this frequency is given approximately
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by 1910M /M) Hz.] Our gravitational-wave signals are ACKNOWLEDGMENTS
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