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Gravitational waves from inspiraling compact binaries: Validity of the stationary-phase
approximation to the Fourier transform
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We prove that the oft-used stationary-phase method gives a very accurate expression for the Fourier trans-
form of the gravitational-wave signal produced by an inspiraling compact binary. We give three arguments.
First, we analytically calculate the next-order correction to the stationary-phase approximation, and show that
it is small. This calculation is essentially an application of the steepest-descent method to evaluate integrals.
Second, we numerically compare the stationary-phase expression to the results obtained by fast Fourier trans-
form. We show that the differences can be fully attributed to the windowing of the time series, and that they
have nothing to do with an intrinsic failure of the stationary-phase method. And third, we show that these
differences are negligible for the practical application of matched filtering.@S0556-2821~99!00414-2#

PACS number~s!: 04.25.Nx, 04.30.Db, 04.80.Nn
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I. INTRODUCTION AND SUMMARY

The ongoing construction of kilometer-size interferom
ric gravitational-wave detectors, such as the American LIG
~Laser Interferometer Gravitational-wave Observatory!, the
French-Italian VIRGO, the British-German GEO600, and
Japanese TAMA300, has motivated a lot of recent work
strategies to analyze the data to search for and measur
gravitational-wave signals@1–16#. Much of this work has
been devoted to inspiraling compact binaries, compose
neutron stars and/or black holes, which are one of the m
promising sources of gravitational waves for these detect
The key idea behind this work is that the gravitational-wa
signals will be detected and measured by matched filte
@17#, a well-known technique by which the detector’s da
stream is cross-correlated with a set of model wavefo
~called templates!, and the signal-to-noise ratio maximize
as a function of the template parameters.

While the detector output is represented by a discrete t
series, the operations associated with matched filtering
usually carried out in~discrete! frequency space, which re
quires taking the~discrete! Fourier transform of the time se
ries; the method of choice here is the standard fast Fou
transform~FFT!. At the same time, it is necessary to com
pute the Fourier transform ofh(t), the model waveform. The
waveformh(t) can easily be discretized to mimic the di
crete sampling of the detector output, and the discrete t
series can easily be Fourier transformed by FFT to yield
discrete analogue of the~continuous! Fourier transformh̃( f ).

However, in theoretical investigations@1–13,15,16# it is

*Present address: Institute for Theoretical Physics, Universit
Zurich, CH-8057 Zurich, Switzerland.

†Present address: Department of Physics and Astronomy, McM
ter University, Hamilton, Ontario, Canada L8S 4M1.
0556-2821/99/59~12!/124016~8!/$15.00 59 1240
-

e
n
the

of
st
s.
e
g

s

e
re

er

e
e

often much more convenient to deal withh̃( f ) as an analytic
expression rather than as a table of values; efforts to ob
such an analytical expression, even if it is only approxima
are therefore well justified. It can also be argued that to
press the waveform in the frequency domain is in a se
more natural than to express it in the time domain. One
the reasons is that the orbital energy, whose expressio
required in the derivation of the waveform, is primarily
function of F, the gravitational wave’s instantaneous fr
quency~which will defined precisely below!; it is therefore
natural to expressh also as a function ofF, which unliket is
a coordinate-independent quantity. Another reason res
with the fact that the post-Newtonian expression for the
lation F(t) suggests that the instantaneous frequency is
always a monotonically increasing function of time@18#, a
nonphysical behavior that signals the eventual breakdow
the post-Newtonian expansion; in contrast, the po
Newtonian expression for the inverted relationt(F) is mono-
tonic, a property that suggests thatF is indeed a more natura
time variable.

In the past, and in the specific context of inspiraling bin
ries, analytic expressions forh̃( f ) have been obtained within
the stationary-phase approximation@19#, essentially the
leading-order term in an expansion in powers of the sm
quantity ~radiation-reaction time scale!/~orbital period!.
While it has generally been felt that this approximation
adequate, this belief has not yet been backed up~in the pub-
lished literature! with a detailed quantitative analysis. Claim
in the literature@14# to the effect that this approximation i
not adequate have prompted us to examine this question

Our objective in this paper is to prove, beyond any re
sonable doubt, that the stationary-phase approximation to
Fourier transform of an inspiraling-binary signal is in fa
very accurate. First, we calculate the next-order correctio
the stationary-phase approximation, and show that it is
deed small. This calculation is essentially an application
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the steepest-descent method to evaluate integrals@19#. We
then numerically compare the stationary-phase expres
for h̃( f ) to the results obtained by FFT. We show that t
differences we observe can be fully attributed to the windo
ing of the time series, and that they are irrelevant
matched filtering. Greater differences observed in other ca
@14,18# must be attributed not to any intrinsic deficiency
the stationary phase approximation, but rather to one of
other issues in constructing the most accurate expressio
h̃( f )—such as the proper~Taylor or Pade´! expansion of
dF/dt.

We now present and explain our main results. As we s
justify below, it is sufficient for our purposes to consider t
leading-order expression for the gravitational-wave sign
obtained by assuming that the binary’s orbital motion~taken
to be circular! is governed by Newtonian gravity, with a
inspiral—caused by the loss of energy and angular mom
tum to gravitational radiation—governed by the Einste
quadrupole formula. This so-calledNewtonian signal is
given by @1#

h~ t !5Q~angles!
M
r

~pMF !2/3e2 iF, ~1.1!

whereQ is a function of all the relevant angles~position of
the source in the sky, inclination of the orbital plane, orie
tation of the gravitational-wave detector!, M
5(m1m2)3/5/(m11m2)1/5 ~with m1 andm2 denoting the in-
dividual masses! is the chirp mass, r is the distance to the
source,F(t) the instantaneous frequency~twice the orbital
frequency!, andF(t)5*2pF(t8) dt8 is the phase. The func
tion h(t) represents the gravitational wave measured at
detector site. It is a linear superposition of the wave’s t
fundamental polarizations, and we choose to express
this complex form for convenience. The relation betweenF
and t is given by@1#

pMF~ t !5F 5M
256~ tc2t !G

3/8

, ~1.2!

wheretc , the ‘‘time at coalescence,’’ is such that formall
F(tc)5`. The relation betweenF and t is

F~ t !5Fc2
1

16F256~ tc2t !

5M G5/8

, ~1.3!

whereFc , the ‘‘phase at coalescence,’’ is equal toF(tc).
The Newtonian signal is the leading-order term in the exp
sion of the gravitational waves in powers ofV!1, where
V5(pMF)1/3 is ~up to a numerical factor! the orbital veloc-
ity. Post-Newtonian corrections to this result come with
relative factor of orderV in the amplitude, and a relativ
factor of orderV2 in the phase@20#. Throughout this pape
we use geometrized units, settingG5c51.

In the stationary-phase approximation, the Fourier tra
form of the functionh(t) appearing in Eq.~1.1! is given by
@5#
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h̃spa~ f !5
A30p

24

QM 2

r
v27/2eic, ~1.4!

wherev[(pMf )1/3!1, and

c~v !52p f tc2Fc2
p

4
1

3

128v5
. ~1.5!

Two types of corrections to this result are calculated in S
II.

The first type of correction constitutes an intrinsic im
provement on the stationary-phase approximation. We sh
that the steepest-descent evaluation of the Fourier trans
returns the same amplitude as before, but that the phas
altered by a termdc: c→c1dc, where

dc~v !5
92

45
v51O~v10!. ~1.6!

Notice that this is a correction of orderv10 relative to c(v).
This is much smaller than post-Newtonian corrections to
phase, which appear at relative orderv2 @5#. Incorporating
these post-Newtonian corrections into our calculation wo
only change Eq.~1.6! by adding a term of orderv7 to the
right-hand side. This justifies the fact that it was not nec
sary, for the purposes of this investigation, to use more
curate versions of Eqs.~1.2! and ~1.3!.

The second type of correction addresses an implicit
sumption of the stationary-phase method, that the func
h(t) has support in the complete time interval2`,t,tc .
Physically, this assumption means that the binary sys
must have formed in the infinite past~a reasonable assump
tion given the long lives of compact binaries!, and that the
inspiral must continue untilF5F(tc)5` ~an unrealistic as-
sumption!. If we choose instead to restrict the time interv
to tmin,t,tmax, such that Fmin[F(tmin).0 and Fmax
[F(tmax),`, then the Fourier transform will be affected
and it will differ from h̃spa( f ). The value ofFmin is typically
chosen to reflect the lower bound of the instrument’s f
quency band. The value ofFmax could be chosen to reflec
the upper bound of the instrument’s frequency band, or
some binaries it can be chosen to correspond to the app
mate frequency of the last stable orbit, at which the insp
signal changes over to a poorly-known merger signal.

We shall refer to this truncation of the time interval
‘‘windowing,’’ and for concreteness, we will assume that t
signal is started abruptly att5tmin and ended abruptly att
5tmax. Thus,h(t) is assumed to be given by Eq.~1.1! in the
interval tmin,t,tmax, and is assumed to be zero outside th
interval. In Sec. II we show that windowing affects both t
amplitude and the phase of the Fourier transform. The a
plitude acquires an extra factor 11dAw , where

dAw~v !52
12

A30p
v7/2F xmin

2

v32xmin
3

cosS fmin1
p

4 D
1

xmax
2

xmax
32v3

cosS fmax1
p

4 D G , ~1.7!
6-2
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GRAVITATIONAL WAVES FROM INSPIRALING . . . PHYSICAL REVIEW D 59 124016
wherexmin[(pMFmin)
1/3 and

fmin5
5v328xmin

3

128xmin
8

1
3

128v5
, ~1.8!

with similar equations holding forxmax and fmax. On the
other hand, the phase acquires an extra termdcw given by

dcw~v !5
12

A30p
v7/2F xmin

2

v32xmin
3

sinS fmin1
p

4 D
1

xmax
2

xmax
32v3

sinS fmax1
p

4 D G . ~1.9!

The fact thatdAw and dcw both diverge at the boundarie
v5xmin andv5xmax signals the breakdown of our approx
mations there. Away from the boundaries,dAw anddcw are
bounded, and they oscillate as a function of frequency. Th
these corrections represent amplitude and phase modula
induced by the abrupt cutoffs of the functionh(t) at the
boundary points. This is to be contrasted withdc, which
represents a steady phase drift.

Our complete expression for the steepest-descent app
mation to the Fourier transform is therefore

h̃sda~ f !5h̃spa~ f !~11dAw!ei (dc1dcw). ~1.10!

In Sec. III we show that the only noticeable corrections
h̃spa( f ) are the amplitude and phase modulations that co
as a consequence of windowing; in particular, the intrin
correctiondc is too small to be noticeable in the releva
frequency interval. We do this by comparingh̃spa( f ) to
h̃fft( f ), the discrete Fourier transform of the windowed tim
seriesh(t); this comparison reveals that any discrepancy
tween the two versions of the Fourier transform can be fu
accounted for by the modulationsdAw anddcw . This allows
us to conclude that windowing, and windowing only, mu
be held responsible for any discrepancy betweenh̃spa( f ) and
h̃fft( f ). While limited to the Newtonian signal of Eq.~1.1!,
there is no reason to believe that this conclusion would
invalidated by a full post-Newtonian analysis@21#.

Finally, in Sec. IV we calculate the matched-filterin
overlap betweenh̃spa( f ) andh̃fft( f ), and show that the modu
lations do not significantly affect the overlap. This resu
together with our previous findings, lead us to conclude t
for the purposes of matched filtering,h̃spa( f ) and h̃fft( f ) are
essentiallyequivalent representations of the gravitationa
wave signal.

The main conclusion of this work is that the stationa
phase method returns a sufficiently accurate expression
h̃( f ); a similar conclusion was reached independently
Chassande-Mottin and Flandrin, and reported in R
@22,23#. What is more, from the fact thatdc/c5O(v10), we
can be sure that the method will stay accurate for as lon
the post-Newtonian expansion ofh(t) in powers ofV is itself
an accurate approximation to the gravitational-wave sign
12401
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II. CALCULATION OF THE FOURIER TRANSFORM

We begin with the time-domain signal of Eq.~1.1!, and
we assume that the signal begins abruptly at a timetmin and
ends abruptly at a timetmax. We let Fmin[F(tmin) and
Fmax[F(tmax) be the corresponding instantaneous frequ
cies. The relation betweenF and t is obtained by integrating

dF

dt
5

96

5pM 2
~pMF !11/3, ~2.1!

which leads to

t~F !5tc2
5M
256

~pMF !28/3, ~2.2!

wheretc ~‘‘time at coalescence’’! is a constant of integration
The phase function is then given by

F~F !5Fc2
1

16
~pMF !25/3, ~2.3!

whereFc ~‘‘phase at coalescence’’! is another constant o
integration.

The Fourier transform,

h̃~ f !5E h~ t !e2p i f t dt, ~2.4!

is evaluated by introducing a new integration variable,

x[~pMF !1/3, ~2.5!

which can be related tot via Eqs.~2.1! and~2.2!. After some
rearrangement, we obtain

h̃~ f !5
5QM 2

32r
expF i S 2p f tc2Fc1

3

128v5D G
3I ~v,xmin ,xmax!, ~2.6!

wherexmin5(pMFmin)
1/3, xmax5(pMFmax)

1/3, and

v[~pMf !1/3!1. ~2.7!

We have introduced the Fourier integral

I ~v,xmin ,xmax!5E
xmin

xmax
x27e2 if dx, ~2.8!

where

f~x;v !5
5v328x3

128x8
1

3

128v5
. ~2.9!

It is easy to check thatf(v;v)5f8(v;v)50, where a prime
denotes differentiation with respect tox. The function
f(x;v) initially decreases fromfmin(v)[f(xmin ;v) to zero
asx increases fromxmin to v, and then increases from zero
fmax(v)[f(xmax;v) asx increases fromv to xmax.
6-3
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The Fourier integral is evaluated by usingf as the inte-
gration variable. Becausef is not monotonic in the interva
@xmin ,xmax#, the integral must be broken down into two par
The first part covers the interval@xmin ,v), while the second
part covers the interval (v,xmax#. It is easy to check that the
integral can be expressed as

I ~v,xmin ,xmax!5
16

5
@J1~v,xmin!1J2~v,xmax!#,

~2.10!

where

J1~v,xmin!5E
0

fmin x2

v32x3
e2 if df ~2.11!

and

J2~v,xmax!5E
0

fmax x2

x32v3
e2 if df. ~2.12!

We recall thatfmin5f(xmin ;v) and fmax5f(xmax;v) are
functions ofv.

The coordinate transformationx→f is defined implicitly
by Eq. ~2.9!. It will prove sufficient to invert this relation in
a neighborhood ofx5v, or f50. The following relations
are established by Taylor expansion:

x5v7
4A30

15
v7/2f1/21

256

45
v6f7

10016A30

2025
v17/2f3/2

1
4281344

30375
v11f21O~v27/2f3/2!, ~2.13!

where the upper sign refers to the interval@xmin ,v), while
the lower sign refers to (v,xmax#. We also have

x2

v32x3
5

A30

24
v27/2f21/21

5

9
v212

23A30

135
v3/2f1/2

1
19232

6075
v4f1O~v13/2f3/2! ~2.14!

in the first interval, and

x2

x32v3
5

A30

24
v27/2f21/22

5

9
v212

23A30

135
v3/2f1/2

2
19232

6075
v4f1O~v13/2f3/2! ~2.15!

in the second interval.
To evaluate the integralsJ1(v,xmin) and J2(v,xmax), we

let f5a2 ib and deform the contour of integration into th
complex plane. While the original contour is along thea
axis, from 0 tofmin or fmax, we take the new contour to b
the union ofC and C8, whereC is the curvea50 with b
running from 0 tò , while C8 is the curvea5fmin or fmax
with b running from` back to 0. The contour is complete
12401
.

by joining C and C8 with the curveb5`, with a running
from 0 to fmin or fmax; this part of the contour does no
contribute to the integral. The advantage of this choice
contour is that the integrand is exponentially suppres
away fromb50, ensuring a rapid convergence of the int
gral.

We evaluate the contribution fromC to J1(v,xmin) by
substituting Eq. ~2.14! into Eq. ~2.11!, replacing f by
2 ib and usingb50 andb5` as limits. The integrations
give rise toG-functions, and we obtain

J1
C5

A230ip

24
v27/22

5i

9
v211

23A30ip

270
v3/2

2
19232

6075
v41O~v13/2!. ~2.16!

A similar calculation also reveals

J2
C5

A230ip

24
v27/21

5i

9
v211

23A30ip

270
v3/2

1
19232

6075
v41O~v13/2!. ~2.17!

The contribution fromC8 to J1(v,xmin) is calculated by
letting f5fmin2 ib, and expressing the functionf (f)
[x2/(v32x3) as a Taylor series aboutfmin . Thus, f (fmin
2 ib)5 f (fmin)2 i f 8(fmin)b1••• is substituted into Eq.
~2.11!, whose limits are replaced byb5` and b50. The
resulting integrations are again elementary, and we obta

J1
C85 ie2 ifming~v,xmin!, ~2.18!

where

g~v,x!5
x2

uv32x3u
1

16i

5

x10~x312v3!

uv32x3u3
1•••. ~2.19!

A similar calculation also reveals

J2
C85 ie2 ifmaxg~v,xmax!. ~2.20!

We note that whenx!1, the functiong(v,x) can be well
approximated by its first term,x2/uv32x3u, except whenx
.v. In this situation, the expansion forg(v,x) does not
converge, and our method of calculation breaks down. Th
our expression for the Fourier transform will be accura
only when v3[pMf is not too close to eitherxmin

3

[pMFmin or xmax
3[pMFmax. In other words, our expres

sion will be inaccurate near the boundariesf 5Fmin and f
5Fmax.

It is easy to see from Eqs.~2.18! and~2.19! that the con-
tribution from C8 to J1(v,xmin) vanishes in the limitxmin
→0. Similarly, it can be shown that the contribution fromC8
to J2(v,xmax) vanishes~as xmax

26) in the limit xmax→`.
@This behavior is not revealed by Eq.~2.19!, which gives
g(v,x) as a series expansion for small values ofx. An alter-
native expression forg(v,x), appropriate for large values o
6-4
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x, can easily be obtained.# This allows us to conclude that i
the boundaries are pushed toFmin50 andFmax5`, thenC8
no longer contributes toJ1(v,xmin) andJ2(v,xmax).

Gathering the results, Eqs.~2.10! and ~2.16!–~2.20!, we
find that the Fourier integral can be expressed as

I ~v,xmin ,xmax!5
4A30p

15
e2 ip/4v27/2

3F11
92

45
iv51O~v10!1R~v,xmin ,xmax!G ,

~2.21!

where

R~v,xmin ,xmax!52
12

A30p
e2 ip/4v7/2@e2 ifming~v,xmin!

1e2 ifmaxg~v,xmax!#. ~2.22!

Substituting this into Eq.~2.6!, treating R and theO(v5)
term in Eq.~2.21! as small quantities, we arrive at the fo
lowing expression for the Fourier transform:

h̃~ f !5h̃spa~ f !~11dAw!ei (dc1dcw). ~2.23!

Here,

h̃spa~ f !5
A30p

24

QM 2

r
v27/2eic, ~2.24!

with

c~v !52p f tc2Fc2
p

4
1

3

128v5
, ~2.25!

is the stationary-phase approximation to the Fourier tra
form. Our calculation reveals the existence of two types
correction terms. The first is

dc~v !5
92

45
v51O~v10!, ~2.26!

which represents a small, but steadily growing phase d
Notice thatdc is of orderO(v10) relative toc. The other
correction terms come as a consequence of the abrupt cu
imposed atF5Fmin andF5Fmax. They are

dAw~v !52
12

A30p
v7/2Fg~v,xmin!cosS fmin1

p

4 D
1g~v,xmax!cosS fmax1

p

4 D G ~2.27!

and
12401
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dcw~v !5
12

A30p
v7/2Fg~v,xmin!sinS fmin1

p

4 D
1g~v,xmax!sinS fmax1

p

4 D G . ~2.28!

Notice thatdAw represents an amplitude modulation, wh
dfw is a phase modulation; both oscillate as a function
frequency. The suffix ‘‘w’’ indicates that these correction
are associated with ‘‘windowing.’’

III. COMPARISON WITH DISCRETE
FOURIER TRANSFORM

The preceding analysis reveals that apart from window
issues, the stationary-phase approximation to the Fou
transform is extremely accurate: Apart from the modulatio
dAw and dcw , h̃spa( f ) differs from h̃( f ) only by a small
phase driftdc of relative orderv10. In this section, we firm
up this conclusion by comparingh̃spa( f ) to h̃fft( f ), the dis-
crete Fourier transform of the functionh(t).

The discrete Fourier transform is evaluated by fast Fou
transform ~FFT!, using the routines ofNumerical Recipes
@24#. The time series is prepared as follows.

We begin withh(t) as displayed in Eq.~1.1!, with the
irrelevant factorQM/r set to unity. Thus,

h~ t !5~pMF !2/3e2 iF, ~3.1!

whereF(t) andF(t) are given by Eqs.~1.2! and~1.3!. This
function is assumed to be nonzero only in the intervalFmin
,F(t),Fmax. The duration of the signal is

T5t~Fmax!2t~Fmin!, ~3.2!

while the total number of wave cycles is

N5
1

2p
@F~Fmax!2F~Fmin!#. ~3.3!

The values ofh(t) at the endpointst(Fmin) and t(Fmax) do
not agree. This is a potential difficulty for the FFT, whic
considers the signal to be periodic with periodT. To remedy
this, we prepare our time series by paddingh(t) with zeros
on both sides. More precisely, we leth(t) be zero in the
interval 0,t,T, be equal to the expression~3.1! in the in-
terval T,t,2T, and be zero again in the interval 2T,t
,4T. Thus, the effective duration of the time series is fo
times the duration of the actual signal. We choose the va
of the parameterstc and Fc such that t(Fmin)[T and
F(Fmin)[0. This particular padding of the time series
somewhat ad hoc~it has not been carefully chosen to be t
smallest needed to make negligible the circular correlati
of the FFT!, but as we shall see the final results are ve
good and optimization would be redundant.

The zero-padded functionh(t) is discretely sampled a
times tk5kDt, wherek50,1, . . . ,4N21 andDt54T/(4N
21), with 4N denoting the number of sampled points. T
Nyquist frequency@24# is given by f Ny51/(2Dt), and N
6-5
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must be adjusted so thatf Ny.Fmax. The FFT returns the
Fourier transform of the time series, discretely sampled
the frequency domain. The frequency resolution isD f
5(4NDt)21.

We denote the discrete Fourier transform of the ze
padded time seriesh(t) by h̃fft( f ), and we wish to compare
this to h̃spa( f ), the stationary-phase approximation given
Eqs.~2.24! and~2.25!. ~It is understood that the correct va
ues fortc andFc are substituted in these equations.! To do
this we define the relative amplitudeArel and relative phase
c rel by

Arel~ f !5mod@ h̃fft~ f !/h̃spa~ f !# ~3.4!

and

c rel~ f !5arg@ h̃fft~ f !/h̃spa~ f !#, ~3.5!

where mod(z)5r is the modulus of the complex numberz

5reiu, while arg(z)5u is its argument. Ifh̃fft( f ) andh̃spa( f )
were in perfect agreement, thenArel51 andc rel50.

Figure 1 shows plots of mod(h̃fft) and mod(h̃spa) as func-
tions of f for a signal prepared withM51.25 M ( in the
interval betweenFmin540 Hz and Fmax560 Hz. ~Such a
narrow band is not at all typical for inspiral signals sought
any interferometer; we use it merely to exaggerate the er
caused by the stationary phase approximation to the l
where they are visible.! The duration of such a signal isT
515.8 s, and the total number of wave cycles isN5749.
The FFT was taken withN52048, giving a Nyquist fre-
quency off Ny565 Hz. The figure shows that the agreeme
is not perfect: While the stationary-phase approximat
seems to give the mean curve, the discrete Fourier trans
displays oscillations about the mean, and these grow nea
boundary points,f 5Fmin and f 5Fmax. We shall argue tha
the discrepancy is entirely caused by windowing.

In Fig. 2 we show plots ofArel( f )—defined in Eq.~3.4!—
and 11dAw( f )—defined in Eq.~1.7!. We recall thatdAw( f )

FIG. 1. The solid curve labeled ‘‘SPA’’ is a plot o

mod@ h̃spa( f )#, and the dashed curve labeled ‘‘FFT’’ is a plot o

mod@ h̃fft( f )#. The inset shows the same curves in a smaller
quency interval.
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represents the amplitude modulation induced by windowi
The near-perfect agreement betweenArel( f ) and 1
1dAw( f ) shows that any discrepancy between the discr
Fourier transform and the stationary-phase approxima
must be attributed to windowing. This conclusion is co
firmed by Fig. 3, which shows plots ofc rel( f )—defined in
Eq. ~3.5!—anddcw( f )—defined in Eq.~1.9!. Again we see
a near-perfect agreement, indicating that windowing
counts fully for any discrepancy betweenh̃spa( f ) andh̃fft( f ).

Equations~1.7! and ~1.9! give approximate expression
for dAw( f ) anddcw( f ), and we should expect that in som
situations, there could be noticeable differences betw
these quantities and the numerically-determinedArel( f ) and
c rel( f ). Figure 4 indicates that such is indeed the case w
the frequency interval is expanded. Here, the signal is p
pared with the same chirp mass as before, but the freque
interval is now betweenFmin540 Hz andFmax51300 Hz;

-

FIG. 2. The solid curve labeled ‘‘analytical’’ is a plot of 1
1dAw( f ), and the dashed curve labeled ‘‘numerical’’ is a plot
Arel( f ). The inset shows the same curves in a smaller freque
interval.

FIG. 3. The solid curve labeled ‘‘analytical’’ is a plot o
dcw( f ), and the dashed curve labeled ‘‘numerical’’ is a plot
c rel( f ). The inset shows the same curves in a smaller freque
interval. Notice that the error in the phase does not accumulate,
that it is always much smaller than 2p.
6-6
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other relevant quantities are listed in Table I below. A
though the agreement is no longer near-perfect, it is
remarkably good, and this re-enforces our claim that a
discrepancy between the discrete Fourier transform and
stationary-phase approximation is entirely an artifact of w
dowing. We have verified that the intrinsic correction to t
stationary-phase approximation,dc( f ) given by Eq.~1.6!, is
irrelevant in this frequency interval: This phase shift is ju
too small to be noticeable at these frequencies.

FIG. 4. The thin, solid curve labeled ‘‘analytical’’ is a plot o
dcw( f ), and the thick, dashed curve labeled ‘‘numerical’’ is a p
of c rel( f ). Notice that here also the error in the phase does
accumulate, and is always much smaller than 2p.

TABLE I. The last column gives the overlapO between station-
ary phase and FFT waveforms prepared with~identical! chirp mass
M given in solar masses in the first column, initial frequencyFmin

given in Hz in the second column, and final frequencyFmax given in
Hz in the third column. The waveforms have a durationT given in
seconds in the fourth column and a number of wave cyclesN given
in the fifth column. The number of sampled times is 4N, whereN is
given in the sixth column, corresponding to a Nyquist frequen
f Ny given in Hz in the seventh column. In all cases the value ofFmax

is sufficiently large that the contribution to the overlap from high
frequencies can be neglected~assuming the initial LIGO noise spec
trum given in the text!.

M Fmin Fmax T N N fNy O
M ( Hz Hz s Hz

1.00 40 900 34.6 2200 216 948 0.9999
1.25 40 1300 23.8 1521 216 1375 0.9998
1.50 40 1300 17.6 1122 216 1863 0.9997
1.75 40 1200 13.6 868 215 1204 0.9997
2.00 40 1500 10.9 695 215 1505 0.9996
2.25 40 900 8.9 570 214 916 0.9994
2.50 40 1000 7.5 478 214 1091 0.9994
2.75 40 1200 6.4 409 214 1279 0.9994
3.00 40 1400 5.5 354 214 1479 0.9994

10.00 40 1300 0.7 48 211 1374 0.9972
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IV. OVERLAP INTEGRAL

We have shown that any discrepancy betweenh̃fft( f ) and
h̃spa( f ) can be fully attributed to windowing, which induce
amplitude and phase modulations in the Fourier transform
this section we show that these modulations have no sig
cant effect on operations associated with matched filterin

The standard theory of matched filtering predicts that
loss of signal-to-noise ratio incurred when filtering a sign
h̃fft( f ) with a filter h̃spa( f ) is equal to@8#

O5
~hfftuhspa!

A~hfftuhfft !~hspauhspa!
. ~4.1!

We will refer to this quantity as theoverlapbetween the two
expressions for the signal’s Fourier transform. An over
close to unity indicates that the filter is an accurate repres
tation of the signal, and that using this filter in analyzing t
data will return the largest possible signal-to-noise ratio. W
use the notation

~aub!52E
Fmin

Fmax ã* ~ f !b̃~ f !1ã~ f !b̃* ~ f !

Sn~ f !
d f , ~4.2!

whereSn( f ) is the spectral density of the detector noise.
Notice that the point of view expressed here is thath̃fft( f )

is an exact representation of the signal’s Fourier transfo
while h̃spa( f ) is an approximate filter. However, because
its symmetry in these quantities,O also represents the loss i
signal-to-noise ratio incurred when filtering a signalh̃spa( f )
with a filter h̃fft( f ). This is the opposite point view, in which
the stationary-phase approximation is viewed as an e
representation of the Fourier transform.

We evaluate the integrals in Eq.~4.1! by turning them into
discrete sums, using the sampled frequenciesf k5kD f re-
turned by the FFT. Thus,*a( f ) d f'(ka( f k)D f . It is suffi-
cient for our purposes to use a simple analytic model for
noise’s spectral density. We choose a noise curve
roughly mimics the expected noise spectrum of the ini
LIGO detector, and set@5#

Sn~ f !5S0@~ f 0 / f !41212~ f / f 0!2# ~4.3!

for f .40 Hz, with f 05200 Hz. The value ofS0 is irrelevant
for our purposes, andSn( f ) is taken to be infinite below 40
Hz.

The overlapO is calculated for a number of chirp masse
The results are displayed in Table I. The conclusion is cle
For all cases,O.0.997, indicating that the amplitude an
phase modulations have very little effect on matched filt
ing. In view of the fact that the modulations oscillate a
never get large, especially away fromFmin and Fmax where
the instrument is most sensitive, this is the expected con
sion.

It should be noted that for most of the binaries listed
Table I, the adopted value forFmax exceedsthe frequency at
which the last stable orbit is expected to be found.@For
equal-mass systems, this frequency is given approxima

t

y

r

6-7



e
ic

ra
ou
he
no
re
o
in

o-
dis-
ral
The
nce
the
for
y,

DROZ, KNAPP, POISSON, AND OWEN PHYSICAL REVIEW D59 124016
by 1910(M ( /M) Hz.# Our gravitational-wave signals ar
therefore not realistic at high frequencies, something wh
is already made clear by the fact that we do not incorpo
post-Newtonian corrections into our waveforms. Since
purpose here is simply to establish the validity of t
stationary-phase approximation, this lack of realism is
too important. To produce a realistic waveform at high f
quencies, in a regime where the slow inspiral gives way t
rapid merger of the two stars, is still an open and challeng
problem in gravitational-wave research.
-
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